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We build our computer systems the way we build our 

cities: over time, without a plan, on top of ruins.

—ELLEN ULLMAN



INTRODUCTION

I n 1975, renowned physicist David L. Goodstein published his book 

States of Matter with the following introduction:

Ludwig Boltzmann, who spent much of his life studying statistical 
mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on 
the work, died similarly in 1933. Now it is our turn to study statistical 
mechanics.

This is a book about how to run legacy modernizations, a topic many 

software engineers regard as slow-moving career suicide, if not the pro-

logue to a literal one. This book is for people who work at large organiza-

tions with aging technology, but it is also a book for people who work at 

small startups still building their technology. Restoring legacy systems 

to operational excellence is ultimately about resuscitating an iterative 

development process so that the systems are being maintained and 

evolving as time goes on.

Most of the advice in this book can just as easily be used for build-

ing new technology, but legacy systems hold a special place in my heart.  

I spent the first 10 years of my professional career traveling around the 
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world, looking for work in applied anthropology while programming 

computers for fun on the side. I knew how to program because my father 

was a computer programmer, and I grew up in a house filled with com-

puters at a time when that was rare.

I never became the swashbuckling international aid worker I imag-

ined myself to be, but I ended up finding my applied anthropology work 

in legacy modernizations. Like pottery sherds, old computer programs 

are artifacts of human thought. There’s so much you can tell about an 

organization’s past by looking at its code.

To understand legacy systems, you have to be able to define how the 

original requirements were determined. You have to excavate an entire 

thought process and figure out what the trade-offs look like now that the 

options are different.

Simply being old is not enough to make something legacy. The sub-

text behind the phrase legacy technology is that it’s also bad, barely func-

tioning maybe, but legacy technology exists only if it is successful. These 

old programs are perhaps less efficient than they were before, but tech-

nology that isn’t used doesn’t survive decades.

We are past the point where all technical conversations and knowl-

edge sharing can be about building new things. We have too many old 

things. People from my father’s generation wrote a lot of programs, and 

every year they are shocked by how much of their work survives, still run-

ning in a production system somewhere. My generation has programmed 

exponentially more, infecting every aspect of life with a computer chip 

and some runtime instructions. We will be similarly shocked when those 

systems are still in place 30, 40, or 50 years from now.

Because we don’t talk about modernizing old tech, organizations fall 

into the same traps over and over again. Failure is predictable because 

so many software engineers think the conversations about modernizing 

legacy technology are not relevant to their careers. Some of them are hon-

estly surprised to find out that COBOL still runs much of the financial 

sector, that the majority of the web is still written in PHP, or that people 
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are still looking to hire software engineers with ActionScript, Flash, and 

Visual Basic skills.

Failure can be so predictable that after a year or two of doing this 

work, I found that with a little basic information about the technology 

deployed, I could predict a series of problems the organization was facing 

and how its solutions had failed. Occasionally, I would perform this 

parlor trick for the amusement of other engineers and the advancement 

of my career, including once during a job interview at the New York Times.

When I left government to go back to the private sector, I discovered 

that the same techniques that had worked for old systems also worked 

really well with relatively new systems. I moved to a six-year-old com-

pany and did legacy modernization work. Then I moved to a six-month-

old company and still did legacy modernization work. At one point, 

exasperated, I complained to my boss, “Why am I running a legacy mod-

ernization on a three-month-old system?” To which he retorted, “Serves 

you right for not showing up three months ago.”

That being said, there is little downside to maintaining all systems 

as if they are legacy systems. It is easy to build things, but it is difficult 

to rethink them once they are in place. Legacy modernizations are hard 

not because they are technically hard—the problems and the solutions 

are usually well understood—it’s the people side of the modernization 

effort that is hard. Getting the time and resources to actually implement 

the change, building an appetite for change to happen and keeping that 

momentum, managing the intra-organizational communication neces-

sary to move a system that any number of other systems connect to or 

rely upon—those things are hard.

And yet, as an industry, we do not talk about these challenges. We 

assume the sun, moon, stars, and the board of directors will all magi-

cally reconfigure themselves around the right technical answer simply 

because it’s the right technical answer. We are horrified to discover that 

most people do not actually care how healthy a piece of technology is as 

long as it performs the function they need it to with a reasonable degree 
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of accuracy in a timeframe that doesn’t exhaust their patience. In tech-

nology, “good enough” reigns supreme.

In trying to explain how to approach a legacy modernization, I first 

go back and explore how technology changes over time. Chapters 1 and 2  

both explore the mechanics of computing trends and best practices: 

How did we settle on the technology that is legacy today, and what can 

we learn from that process to guide our modernization plans?

In Chapter 3, I discuss the three broad problems that make organi-

zations feel like they need to modernize: technical debt, performance 

issues, and system stability. I give an example of each type of problem 

on a real (though anonymous) system and how the plan to modernize it 

might come together.

 Chapter 4 discusses why legacy modernization is so hard and fails so 

often. I address the great myth of cross-platform compatibility and the 

role of abstraction in manipulating what we see as easy or hard.

Chapter 5 talks about the most critical feature of any legacy modern-

ization: momentum. How do you get it, and how do you keep it? I outline 

a whole series of conditions—some of them momentum killers, some of 

them momentum growers.

Chapter 6 deals with coming into a modernization project that has 

already started and how to fix the most common problems that might 

be stalling it.

Chapter 7 provides as thorough of an overview as possible into design 

thinking and how we can use design to direct and ultimately improve the 

outcomes of technical conversations.

Chapter 8 is all about breaking stuff and the value of not being afraid 

of failure. I explore how chaos testing complements legacy moderniza-

tion and how to work with an organization where the suggestion that 

you should break things on purpose might seem like a bridge too far.

Chapter 9 discusses why success is not as obvious or self-evident as 

you might assume and how to define criteria to determine when a proj-

ect is finished.
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Finally, Chapter 10 lays out strategies to keep you from ever having to 

do a modernization on the same system again. How do you know if your 

software is maintainable? What can you do if it is not?

The language in this book is deliberate. I use the term organization 

instead of company or business. The vast majority of my work experience 

in this space is with governments and nonprofits, but legacy is every-

where. The organizations that need to build and maintain good technol-

ogy are not exclusively in the private sector. The US federal government 

is one of the single largest producers of technology, for example. The 

conversation about legacy systems crosses from businesses to govern-

ments to hospitals to nonprofits. For that reason, when I mention the 

“business” side of the organization, I mean that in terms of the mission-

focused components that engineering is building technology to support. 

An organization doesn’t have to make a profit to have a business side.

Throughout the book, I use the word system to refer to a grouping of 

technologies that work together for a common set of tasks. System is a 

troublesome word in technology conversations as it seems you can never 

find a group of engineers who agree where its boundaries are. For my 

purposes, though, that vagueness is beneficial. It allows me to talk about 

legacy modernizations in general.

To describe parts of a system, I frequently use the words component 

or occasionally service. While many of the techniques in this book are 

applicable to any type of technology, examples and discussions are heav-

ily slanted toward software engineering and web-based development in 

particular. I couldn’t write a book about legacy systems without main-

frames, data centers, and old operating systems, but most of my experi-

ence is with upgrading these systems to more internet-friendly options, 

and this book reflects that. I look forward to technologists with other 

backgrounds supplementing the material in this book with essays on 

whether my advice also applies to them.

My sincere hope is that as you read this, you find inspiration for your 

own technical projects, regardless of the age of your technology. I’ve tried 
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my best to pack as many resources, exercises, and frameworks into this 

book as possible, to be as detailed as possible, and to ground as many 

assertions with real-world stories as I can.

We are reaching a tipping point with legacy systems. The generation 

that built the oldest of them is gradually dying off, and we are piling more 

and more layers of society on top of these old, largely undocumented and 

unmaintained computer programs. While I don’t believe society is going 

to crumble at our feet over it, there’s a lot of good, interesting work for 

people willing to jump in.



1
TIME IS A FLAT CIRCLE

I n the summer of 2016, I found myself sitting in front of the weirdest 

system I had ever encountered as a software engineer. There was a 

fairly banal web application written in Java that was connecting to what 

I would eventually figure out was a mainframe. The mainframe itself 

wasn’t the weird part. When you venture into the world of legacy mod-

ernization, you quickly realize that mainframes are still everywhere—in 

banks, in government, buried deep in the foundation of civil society. 

Having a web application send requests to a mainframe wasn’t so weird. 

I had a hard time accepting that a technology designed for bulk trans-

actions would respond quickly enough to meet the demands of a web-

site at a reasonable scale, but despite my concerns, it did appear to be 

doing okay.

No, what was weird was that the mainframe in question was from the 

1960s and storing data on magnetic tape. There was no way that main-

frame could respond quickly enough, so when I saw this on the architec-

ture diagrams, I focused on a group of mysterious machines that were 

sitting in the middle; a modern web application was on one side and an 

ancient mainframe on the other.
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The only information I had about this cluster of machines was the 

acronym the organization used for it. Nobody on the engineering teams 

I was working with seemed to know what the machines did. It took a lot 

of digging through several decades of documentation before I figured out 

what they were: Unisys ClearPath Dorados. In other words, they were more 

mainframes, newer ones, that were effectively configured like a cache in 

front of the old mainframe. That was how 60-year-old code was respond-

ing fast enough to serve requests from the modern internet. The organiza-

tion had a new machine sitting in between that was storing a temporary 

copy of the relevant data. About once a week, the new mainframes would 

request an update from the older mainframe.

When I asked an engineer who worked on this system what he 

thought about this arrangement, he said something that has stuck with 

me ever since and ultimately changed my understanding of modernizing 

legacy computer systems: “Well, how is the cloud any different from old 

time-sharing schemes on mainframes?”

The answer is that it isn’t really. Both of these approaches charge 

you for time spent on shared resources maintained by a much larger 

institution. You are connecting over the same lines of communication, 

sometimes with the same protocols. The client/server model is virtually 

the same; only the interfaces and programming languages are different. 

On this point, the engineer added another interesting observation: “We 

started with thin-client mainframe green-screen terminal applications, 

then they wanted us to migrate to fat clients on PCs, now they want APIs 

with thin clients again.”

 The first mistake software engineers make with legacy moderniza-

tion is assuming technical advancement is linear. With that frame of 

mind, anything built in older design patterns or with an older architec-

tural philosophy is inferior to newer options. Improving the performance 

of an old system is just a matter of rearranging it to a new pattern.

My experiences dealing with Frankenstein systems like the one 

described taught me that progress in technology is not linear. It’s cyclical. 
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We advance, but we advance slowly, while moving tangentially. We aban-

don patterns only to reinvent them later and sell them as completely new.

Technology advances not by building on what came before, but by piv-
oting from it. We take core concepts from what exists already and modify 

them to address a gap in the market; then we optimize around filling 

in that gap until that optimization has aggregated all the people and 

use cases not covered by the new tech into its own distinct market that 

another “advancement” will capture.

In other words, the arms race around data centers left smaller 

organizations behind and created a demand for the commercial 

cloud. Optimizing the cloud for customization and control created the 

market for managed platforms and eventually serverless computing. 

The serverless model will feed its consumers more and more devel-

opment along its most appealing features until the edge cases where 

serverless approaches don’t quite fit start to find common ground 

among each other. Then a new product will come out that will address 

those needs.

Leveraging What Came Before

Most people realize that technology can be invented and not become 

popular until much later, but they typically attribute this effect to the 

lack of vision of the inventor or deficiencies of skills within the market-

ing department or the maturity level of the technology itself.

Economists have a different explanation for adoption rates of new 

technology. They typically describe it as the contrast between alignable 

and nonalignable differences. Alignable differences are those for which the 

consumer has a reference point. For example, this car is faster than that 

car, or this phone has a better camera than that phone.

Nonalignable differences are characteristics that are wholly unique 

and innovative; there are no reference points with which to compare. 

You might assume that nonalignable differences are more appealing 
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to potential consumers. After all, there’s no competition! You’re doing 

things differently from everyone else. But when it comes time to make a 

purchasing decision, if there is no comparison, there is no clear sense of 

value. How does one judge the worth of something—and therefore esti-

mate the trade-offs of buying it at a particular price—that has no equiv-

alent? For a nonalignable difference to make an impact, the estimated 

value it produces has to be greater than all the alignable differences and 

all the other nonalignable differences put together.1

Consumers just aren’t confident about having to do such guesswork.2 

It increases the risk of buyer’s remorse, and reasoning about needs and 

utility makes consumers uncomfortable. Therefore, products of all kinds 

differentiate themselves on the market by finding specific characteristics 

that can be labeled as different from characteristics of existing solutions. 

This pushes technology into cycles. People do not get exactly the same 

experience from the same products. As a company iterates to improve a 

certain characteristic of the product, it ultimately makes the product less 

desirable for the group of existing customers. Companies do this with the 

hope that a larger group of new customers will make that loss irrelevant.

Most of the time this gradual optimization only creates annoyances 

that play themselves out over social media and eventually die down. 

Occasionally, there are enough people who have experienced a loss in 

utility from the optimization that they themselves become a potential 

market to be captured. That includes consumers who never bought the 

product in the first place but would have if it had been optimized in 

some other way. Leveraging alignable differences is pushing the product 

1.	 Shi Zhang and Arthur B. Markman, “Overcoming the Early Entrant Advantage: The 
Role of Alignable and Nonalignable Differences,” Journal of Marketing Research 35, no. 4 
(1998): 413–426, https://www.jstor.org/stable/3152161.

2.	 John T. Gourville and Dilip Soman, “Overchoice and Assortment Type: When and Why 
Variety Backfires,” Marketing Science 24, no. 3 (2005): 382–395, https://www.jstor.org/
stable/40056969.

https://www.jstor.org/stable/3152161
https://www.jstor.org/stable/40056969
https://www.jstor.org/stable/40056969


Time Is a Flat Circle    5  

further away from what those consumers want to buy, but creating an 

opportunity for another company to figure out.

Consider the following: Is it better to have a small cellphone or a large 

cellphone?

The world’s first commercially available cellphone was Motorola’s 

DynaTAC 800. It was the big brick phone now used to signal the 1980s in 

satirical pieces. More than 10 inches tall, it wasn’t the sort of thing one 

could easily carry around in a pocket. Obviously, market demands would 

push cellphones to grow smaller. By 1994, IBM’s Simon had gotten them 

down to 8 inches tall and added the industry’s first attempt at smart fea-

tures such as sending faxes and emails, maintaining a calendar, keeping 

notes, reading the news, and viewing stock prices. Despite those impres-

sive advancements, the Simon was quickly made irrelevant by the flip 

phone, which took the 8-inch size and literally folded it in half, making 

it similar in size to the average width and the depth of a pants pocket.3 

Companies went from selling tens of thousands to millions of devices.

I was in high school during this time, and despite the ubiquity of 

them now, a cellphone was not something a kid in the 1990s would 

have considered a worthwhile purchase. I had only one friend who had 

a cellphone, and it served two primary functions for him: something for 

when his car broke down driving back and forth to his part-time job at 

Taco Bell, and playing a grayscale version of Snake during class. For me 

and my peers, though, we were just as likely to run into the people we 

might want to call in the hallway between classes, or we could commu-

nicate with them through other means that our parents paid for. Tex-

ting was not a medium we considered for the cellphone. Pagers worked 

just as well.

In fact, a Pew Research study revealed that landlines were still the 

communication medium of choice for American teenagers almost a 

3.	 Jan Diehm and Amber Thomas, “Women’s Pockets Are Inferior,” The Pudding, August 
2018, https://pudding.cool/2018/08/pockets/.

https://pudding.cool/2018/08/pockets/
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decade later in 2009.4 More than half of teenagers had never even sent a 

text message. By this point, the iPhone had been on the market for two 

years, and it was in its third iteration. A year later, a follow-up report from 

Pew painted a completely different picture: cellphone use in the United 

States was rapidly growing among teenagers, overtaking all other com-

munication options.5

What happened?

An internet meme goes around every now and again that pegs the 

pivot point on cellphone size at around 2005 with the words “Here we 

realize we can see porn in the mobile.” In reality, screen sizes varied 

up until 2010 with plenty of options from the all-encompassing touch 

screen look to more modest interfaces with physical keyboards that were 

optimized for business use cases. Teenagers were lingering as an under-

served market until screen size started to increase and cameras became 

more of a first-class feature of phones. What teenagers wanted to use 

cellphones for was sharing pictures and videos with each other.6 Once it 

became clear there was a market to capture by selling phones as enter-

tainment devices, cellphones abruptly stopped shrinking and started 

growing. Innovations around resolution, display, and camera quality 

accelerated.

It’s tempting to look at these trends and assume the technology 

simply matured to the point where it was able to find and seize its 

market. But the data doesn’t actually bear that out. Nokia’s N95 offered a 

4.	 Amanda Lenhart, “Teens and Mobile Phones Over the Past Five Years: Pew Internet 
Looks Back,” Pew Research Center’s Internet & American Life Project, August 19, 2009, 
https://www.pewresearch.org/internet/2009/08/19/teens-and-mobile-phones-over-the-past- 
five-years-pew-internet-looks-back/.

5.	 Amanda Lenhart, Rich Ling, Scott Campbell, and Kristen Purcell, “Teens and Mobile 
Phones,” Pew Research Center’s Internet & American Life Project, April 20, 2010, 
https://www.pewresearch.org/internet/2010/04/20/teens-and-mobile-phones/.

6.	 Ibid.

https://www.pewresearch.org/internet/2010/04/20/teens-and-mobile-phones/
https://www.pewresearch.org/internet/2010/04/20/teens-and-mobile-phones/
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5-megapixel (MP) camera in 2007. Shortly thereafter, the first-generation 

iPhone came out with a 2MP camera, and the HTC Dream was released 

in 2008 with 3.15MP camera. In 2010, the iPhone and HTC would debut 

front-facing cameras with 0.3MP and 1.3MP, respectively. The technology 

on the market wasn’t getting better; it was briefly getting worse.7

Simply producing a cellphone that was geared toward teenagers 

in the 1990s or the early 2000s would not have led to an explosion of 

growth. Teenagers had no strong reference point for cellphones. From 

their viewpoint, there were no alignable differences attractive enough to 

justify the expense. It was only once their parents’ devices became prev-

alent in cultural references and everyday life that the market potential of 

teenagers and the large screens necessary to capture their interest were 

unlocked.

Every feature that took off with younger American users had existed 

before 2010. Cameras have been on phones since 2000, and they sold 

well. Phones that streamed live broadcasts were already available in 

2004 when I was living in Japan. It was not some impressive techni-

cal advancement that shifted the market. The growing ubiquity of cell-

phones in daily life had primed a new, more lucrative market to force the 

design of cellphones to do a complete 180.

The history of technology is filled with about-faces like this. A cer-

tain approach or technique becomes popular but doesn’t fit everyone’s 

use case. Companies start experimenting and applying that hot new 

approach to more and more things until the number of situations 

where that approach does not work or is not ideal grows into a force that 

reverses momentum. The industry rediscovers a different way of doing 

things and swings back.

Engineers praised the publish/subscribe model of Kafka as superior 

to the hub-and-spoke model of Enterprise Service Buses (ESBs). ESBs 

7.	 Robert Triggs, “A Little History of the Smartphone Camera,” Android Authority, June 
16, 2017, https://www.androidauthority.com/little-history-smartphone-camera-776711/.

https://www.androidauthority.com/little-history-smartphone-camera-776711/
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were a single point of failure and an anti-pattern for service-oriented 

architecture. Then Kafka added its Connect framework (version 0.9) and 

its Streams API (0.10), which reintroduced many of the core concepts of 

ESBs. Google developed Accelerated Mobile Pages to advance asynchro-

nous loading through JavaScript and then added server-side rendering 

to them—breaking its own spec to move back to a pattern already estab-

lished by HTML.

Market shifts are complex events. We can see the pattern of technol-

ogy cycling through the same approaches and structures over and over, 

but these shifts are less about the superiority of a given characteristic 

and more about how potential consumers organize themselves.

The User as the Market Co-Creator

Broadly, these kinds of complex compounding shifts are referred to as 
Service Dominate Logic (S-D Logic). S-D Logic says that consumer value is 

not created by companies producing products but by an active collabo-

ration between many actors. According to S-D Logic, consumers are not 

passive, thoughtless sheep whose wants and desires are engineered for 

them by industry. Instead, consumers actively participate in creating the 

markets that are leveraged to sell them things.

Consumers and companies create value largely by playing off one 

another. Anyone who has ever tried to start their own business will tell 

you the existence of a problem does not mean there’s a market for solving 

it. In 2004, the inability to stream TV and movies from a handheld device 

easily was not a problem consumers had much interest in having solved. 

The technology to do so existed by then, but no one was willing to invest 

hard-earned dollars in a solution to a problem that everyone else had to 

deal with too. Once cellphones solved the practical problem of keeping 

in touch with the office when on the move, they appeared in the field of 

vision of huge numbers of other consumers. This caused other needs to 

begin to consolidate into marketable problems. You are unlikely to put 
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much thought into the problem of not being able to watch the newest 

episode of your favorite TV show while flying across the country. But, if 

you know that other people have such an option and you are missing out, 

the solution suddenly becomes much more marketable.

The Mainframe and the Cloud

Sometimes, however, the centrifugal forces that govern progress are a 

lot more basic and fundamental. Let’s go back to my story at the begin-

ning of this chapter: Why did we migrate from time-sharing on main-

frames to bulky applications on personal computers to time-sharing on 

the commercial cloud? We could have, for example, continued to develop 

mainframes until they became clouds. Why didn’t we? Why did we spend 

millions of dollars migrating thousands of applications to a new para-

digm only to have to migrate them all back to thinner clients a decade 

or two later?

Technology is, and probably always will be, an expensive element of 

any organization’s operational model. A great deal of advancement and 

market co-creation in technology can be understood as the interplay 

between hardware costs and network costs. Computers are data pro-

cessors. They move data around and rearrange it into different formats 

and displays for us. That’s about all they do, regardless of whether we use 

them to play video games or crunch spreadsheets.

All advancements with data processors come down to one of two 

things: either you make the machine faster or you make the pipes deliv-

ering data to the machine faster. These forces cannot grow independently 

of each other. If the pipes pumping data in get too far ahead of the chips 

processing data, the machine crashes. If the machine gets too far ahead of 

the network, the user experiences no actual value add from the increases 

in speed.

When it becomes possible to create alignable differences by unlocking 

available improvements in either network speeds or hardware speeds, the 
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whole industry tends to change paradigms to optimize for that improve-

ment. In doing so, it creates a market for the next shift by leaving some 

potential customers and use cases behind.

Mainframes in their heyday existed in a world where processor power 

was limited. Having enough of it to make offloading calculations to a 

machine required investing in a whole room full of equipment and spe-

cialized operators, which were expensive. The market invested heavily in 

making the hardware faster. The lowest-hanging fruit in that endeavor 

was actually just making the chips smaller so you could pack more of 

them into the same machine. Doing this did not immediately result in 

smaller mainframes, but rather it expanded the market to capture dif-

ferent price points so that large organizations would still pay millions 

of dollars, while small organizations could be persuaded to pay tens of 

thousands to have mainframes of their own. This exposed computers to 

a larger audience and stimulated the market for what eventually became 

the PC. Even still, there wasn’t any need to make improvements to net-

work speeds, because the computers were slow and couldn’t store much 

data. A supercomputer in 1985, for example, had about as much process-

ing power as an early-generation iPhone. A more typical computer from 

that era might have a few hundred kilobytes of RAM and storage. The 

National Science Foundation Network, which would eventually become 

the backbone of the early internet, offered 56kbps in the 1980s. At that 

speed, it would have taken only about an hour to transfer an entire com-

puter’s worth of data across the network.

Eventually, decades of engineering work changed that relationship. 

Faster, more powerful computers were now waiting for their data to 

come across the network. More and more of these machines were smaller 

and cheaper with endlessly growing storage capacity. As the number of 

machines increased, the load on their networks also increased. The more 

computers connected to a network at the same time, the slower the net-

work becomes. It was going to take time for the demands for more speed 

to produce a market response, so the industry optimized by shifting 
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toward applications that stored more data locally on the machine itself. 

We walked away from applications that run on a centralized computer 

that we communicated with across a network. If we don’t need to move 

data across the network, network speed doesn’t hold us back.

The Flat-Rate Internet

At this point, we don’t have a cycle; we have a transition. The indus-

try preferences shifted from processing on big centralized machines to 

smaller, cheaper, local workstations. It’s not a spoiler to say that it shifted 

back because the internet got faster and cheaper, but was that inevitable?

It’s unlikely that the private sector ever would have built the inter-

net once it had unlocked the personal computing market. Computer 

manufacturers were benefiting much more financially from their propri-

etary standards at the time. The core innovation of the internet was the 

networking of many different types of networks into one inter-network 

(hence the name internet), which required common standards open to all 

manufacturers. Building a network that would scale to cross a single coun-

try was itself a significant engineering challenge. In fact, many national 

computer network projects were attempted during the same period as 

the internet. The United Kingdom had one; France had two; the Soviet 

Union had three failed attempts. The United States ultimately prevailed 

because it was not trying to build a national network; it was simply trying 

to solve compatibility issues caused by all the proprietary standards com-

puter manufacturers were pushing. The US military had funded a number 

of expensive computers, and it wanted research institutions hundreds of 

miles away from one another to be able to share those resources. Had it 

been left up to the computer manufacturers, they obviously would have 

preferred that all the research institutions bought their own machines.

Nevertheless, the internet was built. Slow and cumbersome at first, 

without a specific business implementation, it filled up with scholars, 

hobbyists, futurists, and weirdos. Whereas saturation of the business 
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market unlocked consumers’ desire for cellphones as personal enter-

tainment devices, and saturation of the mainframe computer market got 

smaller organizations with fewer resources looking for smaller machines, 

the internet penetrated the business market through a slightly anarchist 

creative community. In 2000, 76 percent of online users were connecting 

from homes, while 41 percent were connecting from businesses. By 2014, 

home internet use had exploded to 90 percent, and work internet use 

remained stagnant at 44 percent.8

What’s interesting about the internet is that it is the only modern- 

day communication medium that has been historically flat-rate priced.9 

All packets on the internet are billed basically the same way, regard-

less of what they are or where they are going.10 By contrast, you pay  

more when you call long-distance versus placing a local call, or you  

pay more when connecting to a cell network in a foreign country versus 

your own. On the internet, consumers pay more to get faster speeds. 

That put the pressure on telecommunication companies to compete 

by making connections faster. The faster the internet became, the more 

people put on it. The more content that was on the internet, the more 

consumers started logging on. The more people trying to access a given 

resource on the internet, the more expensive hosting those resources on 

your own machines became. Eventually, this flipped the value proposi-

tion of the computer industry by making it cheaper to process data “in 

the cloud” than it was to process it locally. We returned to the notion of 

8.	 Susannah Fox and Lee Rainie, “The Web at 25 in the U.S.,” Pew Research Center’s 
Internet & American Life Project, February 27, 2014, https://www.pewresearch.org/
internet/2014/02/27/the-web-at-25-in-the-u-s/.

9.	 Andrew Odlyzko, “Internet Pricing and the History of Communications,” Computer 
Networks 36, 493–517, 2001.

10.	 You may have heard of “net neutrality,” which is the campaign to maintain the flat-
rate status of the internet. Initially internet service providers provided a flat rate 
because it was difficult to charge based on packet type, but alas modern technology 
makes that more viable.

https://www.pewresearch.org/internet/2014/02/27/the-web-at-25-in-the-u-s/
https://www.pewresearch.org/internet/2014/02/27/the-web-at-25-in-the-u-s/
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renting time on expensive computers someone else owns versus assum-

ing the costs of buying, maintaining, and upgrading those expensive 

computers ourselves.

One can track how architectural paradigms fall in and out of favor 

roughly by whether processing power and storage capacity are growing 

faster than network speeds; however, faster processors are often a com-

ponent of what telecoms use to boost their network speeds. This kind of 

interdependency is true for basically any market. Product development 

shifts consumer behavior, which shifts product development. Technol-

ogy doesn’t advance in a straight line, because a straight line is not actu-

ally efficient. The economy is not a flat plane, but a rich topography with 

ridges and valleys to navigate around.

The factors that influence shifts are also fractal and interdisciplinary 

in nature. The reason American internet service providers (ISPs) settled 

on a flat-rate pricing structure early on is that the landscape offered 

them two options for building the network of communication lines nec-

essary to be in business in the first place: either they built their own links 

or they rented other people’s links. In the latter category, a wide variety of 

options were available, not just existing telecom networks built for the 

telephone, like AT&T, but also private lines maintained by large institu-

tions to connect their data centers. A company like AOL in the 1990s was 

both in competition with telecoms to sell internet access and a customer 

of those same telecoms. This made ISPs much more sensitive to cus-

tomer feedback and the psychological draw of simple, flat pricing a 

necessity.11  Among other things, charging for usage levels means services 

grow more expensive as they get worse. More activity by more users ulti-

mately leads to congestion and degrades network performance. The fact 

that users have trouble correctly estimating their usage levels and that 

the majority of them pay more with flat prices further incentivized the 

11.	 Andrew Odlyzko, “Internet Pricing and the History of Communications,” Computer 
Networks 36, 493–517, 2001.
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industry. If you want a quick demonstration of that, look up your real 

cellular data usage and compare it to what limits you are paying for 

monthly. Most users never come close to exhausting it.

In Europe, it was far more common for telecoms to be government-run, 

which meant less competition forcing simpler pricing models. The Euro-

pean Union would eventually liberalize the internet market in the late 

1990s, while the United States allowed broadband to consolidate. As a 

result, a lot more competition in Europe has subsequently pushed speeds 

up and prices down. Today, the internet is faster in many places than it is 

in the United States. What this means for future shifts in the tech indus-

try is unclear. Any number of factors can change which paradigms are 

being pushed as best practices. Exposure to technology can create a new 

market, and that market could run parallel as mainframes and PCs still 

do, or it could completely overtake another market, just as entertainment-

optimized cellphones wiped out BlackBerries and other business-focused 

phones. Prices could drop. Resources could become scarce. Rarely if ever 

are these changes fueled by pure technical superiority.

Migrating for Value, Not for Trends

What does any of this have to do with legacy modernization? When 

people assume that technology advances in a linear fashion, they also 

assume that anything new is naturally more advanced and better than 

whatever they are currently running. Adopting new practices doesn’t 

necessarily make technology better, but doing so almost always makes 

technology more complicated, and more complicated technology is hard 

to maintain and ultimately more prone to failure.

And yet, information technology that never changes is doomed. It’s 

important to understand that we advance in cycles, because that’s the 

only way we learn how to avoid unnecessary rewrites and partial migra-

tions. Changing technology should be about real value and trade-offs, not 

faulty assumptions that newer is by default more advanced.
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Sometimes it is difficult to compare your use case to the use cases 

of other seemingly similar organizations. The biggest offender on this 

front is the commercial cloud, precisely because it adds value to such a 

broad set of use cases. People tend to assume that means it is a superior 

technology for all use cases, which is not true. I have a friend who runs 

a Hadoop cluster to process financial data for the Department of Trea-

sury. Her chief information officer (CIO) insists that they need to shut 

down the servers they maintain to move this process to the cloud. What 

the CIO doesn’t appreciate is that moving data, while cheaper and easier 

than it was in the 1980s, is still expensive. There’s no question that speed 

and performance are better if you’re processing data in the same place 

that you’re storing it—in this case, on site. Whether Big Data as a Service 

saves you any money depends on how big your big data actually is, where 

it is centralized, and how long it takes it to get that big in the first place. 

Having petabytes of data collected over a five-year period is a different 

situation from having petabytes generated over the course of a few hours.

Value propositions are often complicated questions for this reason. 

It’s hard enough for a purely technical organization to get it right; it’s 

even harder at organizations where the only people with enough knowl-

edge to advise on these issues are vendors. 
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I f technology advances in cycles, you might assume the best legacy 

modernization strategy is to wait a decade or two for paradigms to 

shift back and leapfrog over. If only! For all that mainframes and clouds 

might have in common in general, they have a number of significant dif-

ferences in the implementation that block easy transitions. While the 

architectural philosophy of time-sharing has come back in vogue, other 

components of technology have been advancing at a different pace. You 

can divide any single product into an infinite number of elements: hard-

ware, software, interfaces, protocols, and so on. Then you can add specific 

techniques within those categories. Not all cycles are in sync. The odds of 

a modern piece of technology perfectly reflecting an older piece of tech-

nology are as likely as finding two days where every star in the sky had 

the exact same position.

So, the takeaway from understanding that technology advances in 

cycles isn’t that upgrades are easier the longer you wait, it’s that you 

should avoid upgrading to new technology simply because it’s new.
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Alignable Differences and User Interfaces

Without alignable differences, consumers can’t determine the value 

of the technology in which they are being asked to invest. Completely 

innovative technology is not a viable solution, because it has no refer-

ence point to help it find its market. We often think of technology as 

being streamlined and efficient with no unnecessary bits without a clear 

purpose, but in fact, many forms of technology you depend on have ves-

tigial features either inherited from other older forms of technology or 

imported later to create the illusion of feature parity.

For example, most software engineering teams maintain 80-column 

widths for lines of code. It is easier to read short lines of code than long 

lines of code; that much is true. But why specifically 80 columns? Why not 

100 columns?

Amazingly, an 80-column width is the size of the old mainframe 

punch cards that were used to input both data and programs into the 

room-sized computers built during the 1950s and 1960s. So right now, sol-

idly in the 21st century, programmers are enforcing a standard developed 

for machines most of them have never even seen, let alone programmed.

But, why are mainframe punch cards 80 columns wide? Punch cards 

used by the forebears of the earliest computer companies—back when 

they were mechanical “tabulating machines” used primarily for things like 

the census—were ad hoc and incredibly inefficient. They were designed 

to tally, not calculate, so they were modeled after what a railroad conduc-

tor might use for tickets, rather than for storing data.1 The cards needed 

to be fed into machines in batches and then sorted and stored. To avoid 

having to re-invent everything, the cards themselves were designed to be 

approximately the same size as the paper currency of the United States at 

the time: 3¼ by 7 3⁄8 inches. This meant companies could repurpose exist-

ing drawers, bins, and boxes to acquire necessary accessories.

1.	 Geoffrey D. Austrian, Herman Hollerith: Forgotten Giant of Information Processing (New 
York: Columbia University Press, 1982), 124.
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By the 1920s, customers were leaning on IBM to get more data storage 

out of a single card. IBM’s innovation was to change the shape of the holes 

themselves, making them more rectangular so that they could be placed 

closer together on the card.2 That meant 80 columns of possible holes.

Now, let’s go even deeper. What about the punch card itself? Why 

were the first computers designed to take input from stiff cards with 

holes punched into them? Keyboards have existed as long as typewriters, 

and the first modern typewriter was patented by Christopher Latham 

Sholes, Carlos Glidden, and Samuel W. Soulé in 1868, nearly a century 

before some of these mainframes were developed. Telegraphs were 

experimenting with different types of keyboards even earlier than that. 

Why would people prefer to punch holes in a thick piece of stock paper 

when they could just type their information on a keyboard?

The problem with keyboards, or similar input devices, is that it’s easy 

for human operators to mistype things, especially if those human oper-

ators get no visual confirmation that what they think they typed is actu-

ally what the machine received. Think about typing a password into a 

field on a website that hides what you type. One disadvantage to such 

password-masking fields is if you hit the wrong key, you might not notice 

until the system rejects your input. How many times have you mistyped 

a password like this? Now imagine inputting an entire message without 

being able to see what you typed. Operator error was a big concern for 

telegraphs, especially when they started to play a larger role in ferrying 

critical messages around the globe.

The solution was to have a keyboard, but instead of interfacing 

directly with the telegraph, the keyboard would produce a record that 

could be checked for errors before the machine tried to send the message. 

Many different variations on this concept were developed, and the one 

that eventually stuck was punching holes in paper tape.

2.	 US Patent 1,772,492, Record Sheet for Tabulating Machines, C. D. Lake, filed June 20, 
1928, http://ibm-1401.info/Patent1772492.pdf.

http://ibm-1401.info/Patent1772492.pdf
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What’s curious about the era of tabulating machines in the late 19th 

century and the era of early computers in the 20th is that they arrived 

at the same solution in different ways. The punch cards of tabulating 

machines were developed from railroad tickets, but the punch cards of 

telegraphs were developed from the textile industry.

More than a century earlier, French weavers had been automating 

the pattern designs of elaborate rugs by printing out a design in the form 

of a series of punched holes on cards and feeding those cards into their 

looms. This allowed weavers to produce high-quality products much 

faster, with more artistry and greater accuracy.

The telegraph further refined the system by introducing the con-

cept of encoding. When the goal is to manipulate the threads in a giant 

loom to create a complex pattern row by row, there’s no point in over-

complicating things. One hole per raised thread is perfectly effective.

However, when the goal is to send messages long distances, that kind 

of literalism is inefficient. Telegraph operators were already accustomed 

to using code to represent different letters, but those codes were opti-

mized to reduce operator error. In Morse code, for example, the most 

common letters have shorter codes. This keeps transmission fast and 

minimizes the strain on the operator. Once telegraphs started producing 

a physical record that the operator could double- or triple-check before 

sending the message, the most significant gains in performance were to 

be had by optimizing the encoding for the machines themselves. Letters 

that were expressed in code length anywhere between one to five units 

were not easy for machines to deal with. Machines do far better when 

every letter is equal in length. The best codes now were ones that were 

a bit more complex, had a fixed length, and ultimately stored more data.

A few different systems were developed. The first one to stick was 

developed by Emile Baudot in 1870. The so-called Baudot code, aka Inter-

national Telegraph Alphabet No. 1, was a 5-bit binary system.

Fast-forward to the early computer age when people were develop-

ing massive room-sized machines that also were using binary systems. 
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They needed a way to input data and instructions, but they had no visual 

interface. Computers wouldn’t be developed to work with monitors until 

1964 when Bell Labs incorporated the first primitive visual interface into 

the Multics time-sharing system. We had no way of seeing the input the 

computer was receiving, so we borrowed an interface from the telegraph, 

which, in turn, was borrowing one from 18th-century French weavers.

Technology is like that. It progresses in cycles, but those cycles occa-

sionally collide, intersect, or conflate. We are constantly borrowing ideas 

we’ve seen elsewhere either to improve our systems or to give our users 

a reference point that will make adopting the new technology quicker 

and easier for them. Truly new systems often cannibalize the interfaces 

of older systems to create alignable differences.

This is why maintaining technology long term is so difficult. Although 

blindly jumping onto new things for the sake of their newness is danger-

ous, not keeping up to date is also dangerous. As technology advances, 

it collects more and more interfaces and patterns. It absorbs them from 

other fields, and it holds on to historic elements that no longer make 

sense. It builds assumptions around the most deeply buried characteris-

tics. Keep your systems the way they are for too long, and you get caught 

trying to migrate decades of assumptions.

Unix Eats the World

A common piece of advice for building successful software is to keep 

what you are trying to do simple. But what exactly makes one design 

feel simple and another design feel complicated? Why is a line of code 

80 characters long simpler and easier to read? It is short, but what if I 

told you that user experience research actually puts the ideal number at 

50 to 60 characters wide? This means 80 characters is a good 50 percent 

longer than what we know works best from actual testing.

The human machine is strongly biased toward the familiar. We per-

ceive concepts and constructs we know as simpler, easier, and more 
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efficient just because they are known and comfortable to us. We don’t 

need to be experts in a construct or even necessarily like it in order for 

familiarity to change our perception of it. In the 1960s, psychologist 

Robert Zajonc conducted a series of experiments documenting how even 

a single exposure to something increased positive feelings about it in 

later encounters. He found this effect with languages, individual words, 

and images. Later researchers have observed similar preferences in how 

financial professionals invest,3 how academic researchers evaluate jour-

nals,4 and what flavors we enjoy when we eat.5 In psychology, the term for 

this is the mere-exposure effect. Simply being exposed to a concept makes 

it easier for the brain to process that concept and, therefore, feels easier 

to understand for the user.

Developing new technology or revitalizing an old system is, therefore, 

most likely to be effective when building on familiar concepts. Reference 

points create alignable differences that help us assess the value of some-

thing new, but those same reference points make the new technology feel 

simple and easy, lowering the barrier to entry and increasing the odds it 

will be adopted as well as the speed of adoption.

Consider the Linux operating system. It’s easily one of the most 

popular operating systems for web servers if not computers in general. 

Hundreds of variants currently exist that are available to install freely, 

and there are any number of professional versions. Linux was the uncon-

tested victor to emerge from a mad race to develop an operating system 

that was both portable to many different types of computers and free of 

restrictive licenses.

3.	 Gur Huberman, “Familiarity Breeds Investment,” The Review of Financial Studies 14,  
no. 3 (June 2001): 659–680, https://doi.org/10.1093/rfs/14.3.659.

4.	 A. Serenko and N. Bontis, “What’s Familiar Is Excellent: The Impact of Exposure Effect 
on Perceived Journal Quality,” J. Informetrics 5, no. 1 (January 2011): 219–223.

5.	 Patricia Pliner, “The Effects of Mere Exposure on Liking for Edible Substances,”  
Appetite 3, no. 3 (September 1982): 283–290.

https://doi.org/10.1093/rfs/14.3.659
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Linux is often described as the most popular version of the Unix 

operating system, except the two OSes share very little when it comes to 

implementation.

The story of Linux kicks off with the breakup of Bell Systems in 1982, 

nearly a decade before its creation. A 1956 consent decree against AT&T 

had forbidden the telecom giant from “any business other than the fur-

nishing of common carrier communications services.” This meant that 

when Bell Labs computer scientists Dennis Ritchie, Ken Thompson, and 

Rudd Canaday began developing Unix in the 1970s, no one was sure 

whether AT&T was allowed to sell it. The lawyers at AT&T decided to play 

it safe and allow it to be sold to academic and research institutions with 

a copy of its source code along with the software.6

Having the source code made it easy to port Unix to different machines 

as well as modify and debug it. People printed it out and annotated it 

with their own commentary. Unix became an easy option for teaching 

students how operating systems worked. It spread like wildfire across a 

wide variety of different institutions, including universities, museums, 

governmental organizations, and at least one all-girls private school in 

the early days.

Users began putting their modified versions of Unix on magnetic 

tape and making copies to distribute among each other. These essen-

tially were forks and pull requests long before the infrastructure for such 

things existed. The principal motivation for sharing was to distribute 

bug fixes and patches.

Meanwhile, AT&T’s lawyers were trying to figure out what to do with 

Unix, and they were waffling between their original determination and 

a more traditional restrictive approach to intellectual property. Unix his-

torian Peter Salus tells the story of how AT&T’s developers actively par-

ticipated in the piracy of their own intellectual property.

6.	 Peter H. Salus, The Daemon, the Gnu, and the Penguin (Keller, TX: Reed Media Services, 
September 2008).
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A large number of bug fixes was collected, and rather than issue them 
one at a time, a collection tape was put together by Ken [Thompson]. 
Some of the fixes were quite important. . . . I suspect that a significant 
number of the fixes were actually done by non-Bell people. Ken tried to 
send it out, but the lawyers kept stalling and stalling and stalling.

Finally, in complete disgust, someone “found” a tape on Mountain 
Avenue [the address of Bell Laboratories was 600 Mountain Avenue, 
Murray Hill, NJ] which had the fixes.

When the lawyers found out about it, they called every licensee and 
threatened them with dire consequences if they didn’t destroy the tape . . .  
after trying to find out how they got the tape. I would guess that no one 
would actually tell them how they came by the tape (I didn’t). It was the 
first of many attempts by the AT&T lawyers to justify their existence and 
to kill UNIX.7

 When the university students who studied Unix as part of their com-

puter science degrees graduated and got jobs, they brought Unix with 

them. AT&T’s licensing became more restrictive with every new version, 

as the company tried to figure out what it legally could do to leverage this 

thriving community it had accidentally created.

Then in 1982, the US Department of Justice settled its second anti-

trust case against the telecom and broke up “Ma Bell.” AT&T was sud-

denly free from the consent decree that kept it from treating Unix fully as 

a product, and it wasted no time in cracking down hard on the commu-

nity that had grown over the course of a decade.

If you lived through similar attempts to stop sharing other forms of 

intellectual property, like music and movies, you can understand how 

once people became accustomed to having Unix as a free and modifiable 

operating system, they didn’t want to give it up and go back to the way 

things were before. Taking away access to Unix’s source code sent the 

7.	 Ibid.
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community on the hunt for a replacement that was open sourced and 

ideally free.

An early contender was a variant of Unix developed at Berkeley called 

Berkeley Software Distribution (BSD). BSD had a growing community, 

but it had used part of Unix’s source code as its base, so it was quickly 

bogged down in litigation. The heir to Unix needed to present itself as 

Unix-like while not including any intellectual property from AT&T.

Enter Linux, which was developed as a pet project by computer sci-

ence student Linus Torvalds. There was never any intention to create 

a full operating system from Linux; it was intended to be only a kernel 

for the specific chip architecture to which the creator happened to have 

access. The Linux operating system, therefore, was pieced together from 

a variety of software from other groups. Most of its Unix-like interfaces 

came from Richard Stallman’s GNU project, and GNU itself contained no 

Unix code by design.

So in a way, Linux is a descendant of Unix that involves no code 

directly from Unix. But, why hold on to the Unix look and feel at all? Once 

the decision to start writing something completely new was made, what 

was the value of wrapping things up to look like Unix? For Stallman, the 

situation was clear: free software was a moral mission. The goal was not 

to build a free alternative to Unix, but to build a free replacement for Unix 

that would completely overtake and drive Unix out of business. He did 

not hesitate to describe the strategy of the GNU project in extremes:

As the GNU Project’s reputation grew, people began offering to donate 
machines running Unix to the project. These were very useful, because the 
easiest way to develop components of GNU was to do it on a Unix system, 
and replace the components of that system one by one. But they raised 
an ethical issue: whether it was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU Project’s philos-
ophy said that we should not use proprietary software. But, applying 
the same reasoning that leads to the conclusion that violence in self 
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defense is justified, I concluded that it was legitimate to use a propri-
etary package when that was crucial for developing a free replacement 
that would help others stop using the proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no 
longer have any copies of Unix, because we have replaced them with 
free operating systems. If we could not replace a machine’s operating 
system with a free one, we replaced the machine instead.8

 Stallman used Unix’s interfaces because he understood that if GNU’s 

interfaces matched those of established pieces of software, the users 

of the proprietary pieces of software would have a bigger incentive to 

switch.9

Let’s go down one more level: Why did Unix have the interface it had 

in the first place? Most Unix commands are two-letter abbreviations for 

words that don’t seem to need abbreviating. The authors of The UNIX-
HATERS Handbook attribute this interface to the hardware available to 

Unix’s creators:

The novice Unix user is always surprised by Unix’s choice of command 
names. No amount of training on DOS or the Mac prepares one for the 
majestic beauty of cryptic two-letter command names such as cp, rm, 
and ls.

Those of us who used early 70s I/O devices suspect the degeneracy stems 
from the speed, reliability, and, most importantly, the keyboard of the 
ASR-33 Teletype, the common input/output device in those days. Unlike 
today’s keyboards, where the distance keys travel is based on feedback 
principles, and the only force necessary is that needed to close a micro
switch, keys on the Teletype (at least in memory) needed to travel over 

8.	 Chris DiBona, Sam Ockman, and Mark Stone, eds., Open Sources: Voices from the Open 
Source Revolution (Sebastopol, CA: O’Reilly Media, 1999).

9.	 Ibid.
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half an inch, and take the force necessary to run a small electric gen-
erator such as those found on bicycles. You could break your knuckles 
touch typing on those beasts.

If Dennis and Ken had a Selectric instead of a Teletype, we’d probably 
be typing “copy” and “remove” instead of “cp” and “rm.” Proof again that 
technology limits our choices as often as it expands them.

After more than two decades, what is the excuse for continuing this tra-
dition? The implacable force of history, AKA existing code and books. If 
a vendor replaced rm by, say, remove, then every book describing Unix 
would no longer apply to its system, and every shell script that calls  
rm would also no longer apply. Such a vendor might as well stop imple-
menting the POSIX standard while it was at it.

A century ago, fast typists were jamming their keyboards, so engineers 
designed the QWERTY keyboard to slow them down. Computer key-
boards don’t jam, but we’re still living with QWERTY today. A century 
from now, the world will still be living with rm.10

Just as programmers are now writing lines of code that would fit on 

a punch card, they also use operating systems whose interfaces were 

designed to best fit teletype keyboards. Leveraging familiar constructs to 

boost adoption can create strange traditions.

Inheritance Paths

If people will more quickly adopt technology that follows an already 

familiar pattern, even one they hate, it’s worth exploring how people 

become exposed to certain patterns in the first place. From the very 

beginning, computing has been a cross-functional industry. Networks 

of people are formed around the development of computers and the 

10.	 Simson Garfinkel, Daniel Weise, and Steven Strassmann, eds., The UNIX-HATERS 
Handbook (San Mateo, CA: IDG Books, 1994), 18–19.
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professions most likely to use computers to do other work. In the early 

days of computers, this meant computer users were both the computer 

scientists who built applications, developed languages, and designed 

architectures and the professionals such as scientists, mathematicians, 

and bankers. Even today, these groups have a tendency to silo themselves, 

limiting their exposure to interfaces created for other use cases.

Consider the following: one of the most successful early program-

ming languages is COBOL, and yet modern programming languages 

have inherited very little of COBOL’s design patterns. For example, we 

do not section code off into divisions, nor do we use periods to end lines 

of code. Few programmers would guess that PIC is a variable character 

string. Some of COBOL’s features have reappeared in other languages, 

but very little of its syntax and interface was retained. Instead, COBOL 

itself has adopted many constructs from later languages in an effort to 

clean up its act.

On the other hand, ALGOL60 has profoundly shaped the structure 

and syntax of virtually every modern language, but you’d struggle to find 

a programmer today who has ever even heard of it.11

When we examine the accomplishments of various programming 

languages, COBOL is the obvious winner. COBOL programs still shuffle 

millions of transactions and trillions of dollars from point A to point 

B. It’s hard to name a single thing of significance that was ever imple-

mented in ALGOL60. The language BCPL, a similarly influential and 

obscure descendent of ALGOL60, survived just long enough to become 

the grandfather of C. So how on Earth did the patterns of failed lan-

guages become more familiar to early computer scientists than the 

patterns of the first truly successful, cross-platform high-level program-

ming language?

The answer is that COBOL was a language built for people who did 

not want to understand how the computer worked; they just wanted 

11.	 History buffs and recovering anthropologists do not count.
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to get the job done. When the Committee on Data Systems Languages 

(CODASYL) was developing COBOL, the attitude among those devoted 

to the study and development of computers was that you should learn 

the flavor of Assembly relevant for your particular machine. Making 

programming more accessible and code human-readable was consid-

ered an anti-pattern, dumbing down the beauty of programming for an 

unworthy audience.

This audience, however, was made up of people who actually used 

computers for practical purposes, and many of them were largely 

unamused by the idea that they should rewrite their programs every 

single time they upgraded their machines. This group of people didn’t 

care about being “real programmers.” They cared about getting stuff done, 

better and faster than the competition if possible. Technical correctness 

didn’t matter. Elegance didn’t matter. Execution mattered, and anything 

that lowered the barrier to using computers to execute their goals was 

preferable to more powerful tools that were harder to learn.

Computer scientists during this period had opposite incentives. 

While COBOL users were judged and rewarded based on their ability 

to get nontechnical things done faster with computers, ALGOL60 users 

were judged and rewarded based on their ability to expand the function-

ality of what was even possible to do with the machines in the first place. 

Typically, there were two types of accomplishments in this space: get 

the machine to do something new or get the machine to do something 

more efficiently than before. For computer scientists, the programming 

language was the output. After it was developed, the next step was not to 

write programs, but to write papers about the language and share them 

with other academics for feedback and study.

Roughly three networks of people were programming computers 

between the 1950s and 1970s: scientists and mathematicians, data pro-

cessors, and academics or computer researchers.

Scientists and mathematicians used computers for calculations, 

and they preferred languages that reflected scientific and mathematical 
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notation as much as possible. This community popularized FORTRAN.12 

When two math professors at Dartmouth wanted to create a language 

to make programming more accessible to students, they borrowed 

heavily from the syntax of FORTRAN II to develop BASIC. BASIC 

went on to spawn hundreds of variants, many of which are still in use  

today.

Data processors used computers to read data from one source and 

either run calculations or transform that data in some way before saving 

it to another source. These were the COBOL users, and that language 

proved so effective, it is still being used today.

If you want proof that adoption is influenced by shared knowledge 

among networks of people and not strictly merit, consider this: the orga-

nizations that are trying to replace their old COBOL applications today 

are not migrating them to what would be the first choice for data pro-

cessing among modern programming languages, which is Python, but to 

the language that has inherited COBOL’s market of a common language 

for businesses, which is Java.

The design of the language is never what’s important; it’s the people. 

The type of people who would have become COBOL programmers before 

are now becoming Java programmers, making Java the natural choice, 

despite that it was not designed to handle the use case for which COBOL 

was optimized.

Perhaps that’s why so much COBOL remains in place, having resisted 

all attempts to eliminate it.

Academics and computer researchers focused on the develop-

ment of computers. When they finally moved off Assembly, it was onto 

languages specifically for documenting and implementing algorithms. 

ALGOL60 may not have been used to build many applications, but it was 

what the Association for Computing Machinery (ACM) used to describe 

12.	 FORTRAN is itself an abbreviation of Formula Translation.
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algorithms in textbooks and academic sources for more than 30 years. 

This made it a powerful influence on the languages researchers later 

developed.

The University of Cambridge developed the Cambridge Programming 

Language (CPL) based on ALGOL60. CPL led to BCPL, which was stripped 

down to create B, which was further modified to create C. Next, C became 

the programming language of choice for this group of users, and it led to 

the development of a huge number of languages used by all kinds of pro-

grammers: Java, Go, PHP (via Perl), Ruby, Python, and Swift.

Also popular with this group were the Lisps. Because the original Lisp 

was only a theoretical design document, to this day, waves of different 

implementations spring up quickly followed by futile attempts to stan-

dardize. During the 1960s and 1970s, Lisp was strongly associated with 

AI research and largely was relegated to that niche. Ironically, our own 

era of computing has seen much more progress in AI, but Lisp hardly 

plays a critical role. Instead, today’s Lisps are seen as a family of general 

programming languages that occasionally inject ideas and structures 

into more mainstream languages.

So this pivotal moment of computer science history had two groups 

of people who programmed in order to achieve some practical purpose 

not related to the computers themselves and one group that worked with 

computers to push the boundaries of what the computers themselves 

could do. The bulk of languages that exist retain the constructs that 

were familiar to this third group of programmers, even though COBOL, 

FORTRAN, and BASIC had a much wider community of users.

Overall, interfaces and ideas spread through networks of people, 

not based on merit or success. Exposure to a given configuration cre-

ates the perception that it’s easier and more intuitive, causing it to be 

passed down to more generations of technology. The lesson to learn 

here is the systems that feel familiar to people always provide more 

value than the systems that have structural elegances but run contrary 

to expectations.
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Leveraging Interfaces When Approaching 
Legacy Systems

When I’m working on a legacy system, I always start off by evaluating the 

prospective users. Who will be maintaining this system long term? What 

technologies are they comfortable with? Who will be using this system 

the most? How do they expect the system to work?

That doesn’t mean things can’t be changed or new concepts can’t be 

introduced. Particularly if the system is a couple decades old, the inter-

faces are probably tied to processes and associations that don’t make 

sense anymore, just like the way 80-character lines come from punch 

cards, two-character Linux commands come from teletype machines, 

and the save icon on desktop applications is a floppy disk. Sometimes 

changing interfaces to get rid of requirements that are no longer relevant 

is a good thing. Defining what the requirements of a minimum viable 

product (MVP) would be today if the system were brand new is a great 

thought experiment to run when formalizing a plan of attack.

However, even when the result of change is net positive, changing 

interfaces is not free. Making people think adds friction and increases 

the odds of failure, even if the new interface is better and more consistent 

with the overall vision of the product.

Engineers tend to overestimate the value of order and neatness. The 

only thing that really matters with a computer system is its effectiveness 

at performing its practical application. Linux did not come to dominate 

the operating system world because it had been artfully designed from 

scratch; it scraped together ideas and implementations from a number 

of different systems and focused on adding value in one key place, the 

kernel.

The incentives that reward individual software engineers for their 

uniqueness, their ability to do new things, or to do old things in inno-

vative ways are still present, even if the desire to publish papers in aca-

demic journals has been supplanted by the desire to write popular blog 
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posts. Yet technology is more likely to be successful when it builds on 

common things. These two forces are always in tension with any soft-

ware project, but legacy systems are particularly vulnerable.

We know, for example, that iterating on existing solutions is more 

likely to improve software than a full rewrite. The dangers of full rewrites 

have been documented. Joel Spolsky of Fog Creek Software and Stack 

Overflow described them as “the single worst strategic mistake that any 

software company can make.”13 Chad Fowler, general manager of startups 

at Microsoft, describes it this way:

Almost all production software is in such bad shape that it would 
be nearly useless as a guide to re-implementing itself. Now take this 
already bad picture, and extract only those products that are big, com-
plex, and fragile enough to need a major rewrite, and the odds of success 
with this approach are significantly worse.14

Fred Brooks coined the term second system syndrome in 1975 to explain 

the tendency of such full rewrites to produce bloated, inefficient, and 

often nonfunctioning software. But he attributed such problems not to 

the rewrites themselves, but to the experience of the architects oversee-

ing the rewrite. The second system in second system syndrome was not 

the second version of an existing system, it was the second system the 

architect had produced. Brooks’s feeling was that architects are stricter 

with their first systems because they have never built software before, 

but for their second systems, they become overconfident and tack on all 

kinds of flourishes and features that ultimately overcomplicate things. 

By their third systems, they have learned their lesson.

13.	 Joel Spolsky, “Things You Should Never Do, Part I,” Joel on Software, April 6, 2000, 
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

14.	 Chad Fowler, “Software as Spec,” December 28, 2006, http://chadfowler.com/2006/12/28/
software-as-spec.html.

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
http://chadfowler.com/2006/12/28/software-as-spec.html
http://chadfowler.com/2006/12/28/software-as-spec.html
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Unfortunately, when confronted with the troubles of existing sys-

tems, engineering teams tend to build the most momentum around 

starting from scratch. Initiatives to repair and restore operational excel-

lence gradually, much the way one would fix up an old house, tend to 

have few volunteers among engineering teams. That’s because Zajonc’s 

mere-exposure effect has an upper bound. There’s a point where famil-

iarity breeds contempt.

From an economic perspective, there’s a difference between risk 

and ambiguity.15 Risks are known and estimable threats; ambiguities 

are places where outcomes both positive and negative are unknown. 

The traditional school of thought tells us that human beings are averse 

to ambiguity and will avoid it as much as possible. However, ambigu-

ity aversion is one of those decision-making models that test well in 

laboratories but break down when brought into the real world where 

decisions are more complex and probabilities less clearly defined. Spe-

cifically when the decision involves multiple attributes, a positive fram-

ing of the problem can flip people’s behavior from ambiguity-avoiding 

to ambiguity-seeking.16

The incentives of individual praise aside, engineering teams tend to 

gravitate toward full rewrites because they incorrectly think of old sys-

tems as specs. They assume that since an old system works, all techni-

cal challenges and possible problems have been settled. The risks have 

been eliminated! They can add more features to the new system or make 

changes to the underlying architecture without worry. Either they do not 

perceive the ambiguity these changes introduce or they see such ambi-

guity positively, imagining only gains in performance and the potential 

for greater innovation.

15.	 Frank H. Knight, Risk, Uncertainty, and Profit (Boston: Houghton Mifflin Company, 1921).

16.	 Vicki M. Bier and Brad L. Connell, “Ambiguity Seeking in Multi-Attribute Decisions: 
Effects of Optimism and Message Framing,” Journal of Behavioral Decision Making 7,  
no. 3 (September 1994): 169–182, https://doi.org/10.1002/bdm.3960070303.

https://doi.org/10.1002/bdm.3960070303


Cannibal Code    35  

Meanwhile, the existing system has little ambiguity left. It is what it 

is, hypothetical potential exhausted. We know that past the upper bound 

of mere exposure, once people find a characteristic they do not like, they 

tend to judge every characteristic discovered after that more negatively.17 

So programmers prefer full rewrites over iterating legacy systems because 

rewrites maintain an attractive level of ambiguity while the existing sys-

tems are well known and, therefore, boring. It’s no accident that proposals 

for full rewrites tend to include introducing some language, design pat-

tern, or technology that is new to the engineering team. Very few rewrite 

plans take the form of redesigning the system using the same language 

or merely fixing a well-defined structural issue. The goal of full rewrites 

is to restore ambiguity and, therefore, enthusiasm. They fail because the 

assumption that the old system can be used as a spec and be trusted to 

have diagnosed accurately and eliminated every risk is wrong.

Beware Artificial Consistency

In the next chapter, I’ll go into detail about how to balance these tensions 

to develop a strategy around when to reinvent and rewrite and when to 

leverage existing and familiar interfaces. But for now, the takeaway from 

this exploration of how traits are passed down should be that perception of 

simplicity is influenced by what your use case for technology exposes you 

to. Things seem easier when they are familiar. Familiarity is determined by 

what you are doing with technology and who you are doing it with.

But familiarity has downsides as well. While working with legacy sys-

tems, you’ll find yourself fielding many proposals that claim to improve 

the system largely by establishing artificial consistency. Artificial consis-
tency means restricting design patterns and solutions to a small pool 

17.	 Michael Norton and Jean Frost, “Less Is More: The Lure of Ambiguity, or Why Famil-
iarity Breeds Contempt,” Journal of Personality and Social Psychology 92 (January 2007): 
97–105, https://doi.org/10.1037/0022-3514.92.1.97.

https://doi.org/10.1037/0022-3514.92.1.97
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that can be standardized and repeated throughout the entire architec-

ture in a way that does not provide technical value. What’s important to 

understand about artificial consistency is that it focuses on consistency 

of form and classification over functionality. As an example, Node.js and 

React.js are both forms of JavaScript. These two technologies look con-

sistent, but they do different things and are built upon different abstrac-

tions. The fact that they are both forms of JavaScript doesn’t give Node.js 

an edge when interacting with React.js over any other backend language 

that an engineering team might choose instead. An engineer’s skill in 

one does not necessarily translate to the other.

Artificial consistency can bring value to nontechnical processes. For 

example, standardizing on one programming language makes recruiting, 

hiring, and, ultimately, sharing engineering resources much easier. But 

when the principal purpose of a modernization effort is to provide tech-

nical value, be careful not to be seduced by the assumption that things 

that look the same, or that we use the same words to describe, actually 

integrate better.

Another place where artificial consistency comes into play is with 

databases. The top choices for databases 10 years ago are not the top 

choices today, so senior leaders sometimes will ask that legacy databases 

be migrated to another option more consistent with whatever newer 

systems are using. As with the previous example, there are legitimate 

nontechnical reasons to do this, such as not wanting the expense of sup-

porting two different databases that essentially behave the same way, 

but the issue quickly can get out of hand when the engineering team is 

being asked to remove the key value store they’re using for a cache in 

favor of a relational database.

Figuring out when consistency adds technical value and when it is 

artificial is one of the hardest decisions an engineering team must make. 

Human beings are pattern-matching machines. The flip side of finding 

familiar things easier is that we tend to over-optimize, giving in to artifi-

cial consistency when better tools are available to us. 



3
EVALUATING YOUR 

ARCHITECTURE

A big red flag is raised for me when people talk about the phases of 

their modernization plans in terms of which technologies they are 

going to use rather than what value they will add. This distinction is usu-

ally a pretty clear sign that they assume anything new must be better and 

more advanced than what they already have.

It may seem picky to focus on language, but communication is an 

essential part of keeping modernization on track. Teams tend to move in 

the direction they are looking. If we talk about what we’re doing in terms 

of technical choices, users’ needs get lost. The best way to find value is by 

focusing on their needs.

I always keep in mind three principles when developing a strategy 

around a new legacy system. The tour of history in Chapters 1 and 2 laid 

them out in detail:

●● Modernizations should be based on adding value, not chasing 

new technology.
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●● Familiar interfaces help speed up adoption.

●● People gain awareness of interfaces and technology through their 

networks, not necessarily by popularity.

But for most organizations, the conversation around modernization 

begins with failure. No one would invest the time and effort if the system 

were humming along just fine. The term legacy modernization itself is a 

little misleading. Plenty of old systems exist that no one gives a thought 

to changing because they just work.

So the last thing you need to consider when developing a plan of 

attack is the exact nature of the failure that is driving the desire to mod-

ernize in the first place. In all likelihood, you’re dealing with one or more 

of the following issues: technical debt, poor performance, or instability.

Problem 1: Technical Debt
Old systems don’t need to be modernized simply because they are old. 

Lots of technology has not fundamentally changed in decades. Moving 

to the latest and greatest thing can sometimes cause more problems 

than it solves.

The following situations might warrant modernization:

●● The code is difficult to understand. It references decisions or archi-

tectural choices that are no longer relevant, and institutional 

memory has been lost.

●● Qualified engineering candidates are rare.

●● Hardware replacement parts are difficult to find.

●● The technology can no longer perform its function efficiently.

The terms legacy and technical debt are frequently conflated. They are 

different concepts, although a system can show signs of both problems.

Legacy refers to an old system. Its design patterns are relatively consis-

tent, but they are out-of-date. Upgrading the capacity of the underlying 
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infrastructure results in performance increases. New engineers are dif-

ficult to onboard because of the skills gap between the technology they 

know and the technology with which the legacy system was built.

Technical debt, by contrast, can (and does) happen at any age. It’s a prod-

uct of subpar trade-offs: partial migrations, quick patches, and out-of-date 

or unnecessary dependencies. Technical debt is most likely to happen 

when assumptions or requirements have changed and the organization 

resorts to a quick fix rather than budgeting the time and resources to 

adapt. Unlike legacy systems, performance issues in this case are usu-

ally a byproduct of inefficient code instead of out-of-date infrastructure. 

Upgrading the infrastructure—increasing memory and cores or adding 

servers—doesn’t always produce equal increases in performance.

Systems with substantial technical debt also make it difficult to 

onboard new engineers, but in this case, the difficulty is because the 

application’s internal logic doesn’t make sense. Perhaps the documen-

tation is out-of-date, or levels of abstraction are piled up on top of one 

another, or functions are named unintuitively.

Managing technical debt is about restoring consistency. A good way 

to approach the challenge is to run a product discovery exercise as if you 

were going to build a completely new system, but don’t actually build one! 

Instead, use this new vision to excavate and refocus the current system.

As time passes, requirements naturally change. As requirements 

change, usage patterns change, and the organization and design that is 

most efficient also changes. Use product discovery to redefine what your 

MVP is, and then find where that MVP is in the existing code. How are 

these sets of functions and features organized? How would you organize 

them today?

Another useful exercise to run when dealing with technical debt is to 

compare the technology available when the system was originally built to 

the technology we would use for those same requirements today. I employ 

this technique a lot when dealing with systems written in COBOL. For 

all that people talk about COBOL dying off, it is good at certain tasks. The 
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problem with most old COBOL systems is that they were designed at a 

time when COBOL was the only option. If the goal is to get rid of COBOL, 

I start by sorting which parts of the system are in COBOL because COBOL 

is good at performing that task, and which parts are in COBOL because 

there were no other tools available. Once we have that mapping, we 

start by pulling the latter off into separate services that are written and 

designed using the technology we would choose for that task today.

Example: The General Ledger

One such debt-heavy system was designed as a general ledger for a  

large healthcare organization. It is a complex system involving multi-

ple mainframes working together. It processes requests from still more 

mainframes that back other systems that need to issue payments. The 

general ledger’s core function is to authorize and issue payments from 

an organization to third parties. The system, therefore, must make sure 

the organization has the funds to issue the payment, that the request is 

valid, that the request is not a duplicate, and that the circumstances of 

the request comply with all relevant regulations. In addition, this system 

also tracks money owed to the organization, sends requests to remind 

debtors to pay, and generates reports for various stakeholders.

The current system organizes code based on division—for example, 

Loans and Accounts Payable are different applications within the system 

despite having overlapping requirements—and is written in COBOL or 

the Assembly language specific to the mainframe that typically runs its 

jobs. Overall, the system looks something like Figure 3-1.

It’s easy to see how this system evolved this way. The organization is 

large with a lot of money to spend, and when computers were first being 

introduced to the market, it took advantage of them right away (hence, 

the Assembly). The organization migrated paper processes to digital pro-

cesses largely without changing them and maintains the original pro-

cess boundaries within the technology.  
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Ledger

Budget
management

Accounts
payablePurchasing Reporting

Figure 3-1: The applications that talk to the general ledger

Back then, computers were “extras,” big experimental toys to make 

things faster, and not every business unit felt the new machines would 

add value to their process. The final system ended up divided by business 

unit because the adoption of technology was gradual, unit by unit.

But today, computers are the default, so this is not the way we would 

build such a system. We might preserve the mapping of applications to 

divisions, but we would build shared services that reflected their shared 

requirements. Some features play to COBOL’s strengths of processing 

large amounts of financial data accurately, but COBOL doesn’t necessarily 

bring much to the table when generating reports or sending out mailings.

In modernizing this system, I would identify the appropriate shared 

services and then select one to build. The ideal situation is when I can 

identify an application that needs only one of the proposed shared ser-

vices. We build that service and rewrite that application to use it. Then 

we go back and find an application that needs that shared service plus 

another shared service on our list. We build the second shared service 

and rewrite the application to use both.

However, rarely can applications in large systems be arranged in 

order of ascending complexity in that manner. More likely, we will have 
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to pull out one shared service and rewrite each application one by one, 

before pulling out a second shared service and rewriting each applica-

tion one by one. This can be frustrating, but it’s important not to increase 

load on a new service before we have enough experience with it to know 

what normal behavior looks like.

Problem 2: Performance Issues

Performance issues are actually one of the nicer problems to have with 

legacy systems. Few organizations are motivated to do anything about legacy 

systems until they start affecting the business side and work starts to slow 

down. Sometimes this is because the system itself has slowed down, but 

more likely, the system’s performance has remained pretty static and liter-

ally everything around it has gotten faster.

Normally, the issues of how long something should take and how 

many resources it needs to do the job are highly subjective. People tend 

to accept the current state as fine, especially if they have limited experi-

ence with other systems. If the organization believes its system is having 

performance issues, the hard work of figuring out what “better” is has 

already been done for you. A system cannot have performance issues 

unless the organization that owns it has defined expectations.

This book will repeat the message of trade-offs over and over again. 

No changes made to existing systems are free. Changes that improve one 

characteristic of a system often make something else harder. Teams that 

are good at legacy modernization know how to identify the trade-offs and 

negotiate the best possible deal. You have to pick a goal or a character-

istic to optimize on and set budgets for all other characteristics so you 

know how much you’re willing to give up before you start losing value.

Is it worth losing some accuracy to make things faster? Is it worth 

migrating to managed services when that makes testing locally more 

difficult? When an organization has decided its system has performance 

issues, it is easier to answer these questions. The organization must 
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have some expectation of how fast performance should be or how much 

money it should spend to satisfy requirements.

Once performance requirements are defined, the task of evaluating 

the legacy system and developing a strategy becomes about listing all the 

steps in a given task and identifying performance bottlenecks. With that 

mapped out, you can prioritize improvements, starting with the areas 

where the most gains can be realized.

Tackling each bottleneck should not require eliminating it com-

pletely. If you can do that, great, but in most cases, you’ll find that what 

you would need to invest to eliminate it is not worth the boost in per-

formance. Don’t underestimate the power of 5 percent, 10 percent, and  

20 percent performance gains. As long as your approach to reaching those 

gains moves the system toward a better overall state, a 5 percent gain can 

pay interest as the project moves forward. Other changes may turn that 

 5 percent into a 30 percent or 50 percent gain later.

That being said, don’t throw out engineering best practices and good 

architecture just to patch something up and get a performance boost. 

You can spot such solutions because they often avoid touching what is 

obviously the real problem. The people who propose these solutions are 

often frustrated by the system’s problems and overwhelmed by the pos-

sibility of investing months or years in incremental improvement. They 

argue against the 5 percent change that makes the system better because 

they believe a 5 percent improvement will never be enough. Instead, they 

propose a solution that offers a much larger performance gain, but that 

compounds the root cause or makes it more difficult to fix later. Here’s 

one example of what I mean. We had a system where multiple services 

needed access to a giant unstructured data store. The data had grown to 

a size that deleting some of it from the data store was such a resource- 

intensive process, it affected the performance of normal reads and writes.

The problem was the unstructured nature of the data and the fact 

that so many services needed to access it at one time, but that is a hard 

problem to solve. The process of breaking up the data, structuring it 
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appropriately, and migrating services over would take months, if not 

years. Instead, the engineers on the project wanted to build a garbage 

collection service that would run deletes during low traffic periods when 

the performance hit wasn’t as big an issue.

What’s the problem with this approach? To begin with, creating a 

new service is no small amount of work, and once created, it has to be 

maintained, monitored, tested, and scaled. On top of that, the new ser-

vice is an abstraction to perform a potentially dangerous operation out-

side the normal flow of events. What triggers this service, and how do we 

know the job it’s running is correct? Adding a new service just increases 

the overall complexity of the system to take advantage of a temporary 

situation. As load continues to increase, those low-traffic windows will 

be smaller and harder to find.

Adding this system, if it worked, could produce a huge gain in perfor-

mance that would buy the organization time to fix the real problem. Cer-

tainly that was the intention of the engineers who were proposing it. But 

it’s also possible that once such a bandage was in place, the organization 

would lose interest in fixing the real problem, and this team would have 

accomplished nothing more than resetting the clock on the time bomb.

The smarter thing to do would be to look for the baby steps toward 

breaking up the data that would have produced those 5 or 10 percent 

gains. Such gains add up if you find enough of them.

Large problems are always tackled by breaking them down into 

smaller problems. Solve enough small problems, and eventually the large 

problem collapses and can be resolved.

Example: Case Flow Management

Software built to manage an application through multistaged approval 

processes are performance battlegrounds as they age. Here’s an example 

of a system where we could increase its output just by finding enough 

bottlenecks that could be whittled down. The technology behind this 
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application approval process is reasonably good, but some parts of the 

process are automated, and some are manual. Some parts are digital, and 

some are still on paper. Some parts were digitalized recently and some  

20 years ago. Everyone agrees that the system would be better if the 

remaining parts that could be automated were automated, if the paper 

parts of the process were digitalized, and if the older components of the 

system were brought up to speed, but that’s a long list of improvements.

Not all of the highest priority tasks actually affect the time it takes 

to process an application. For example, at one point in the process, the 

applicant must sign a consent form authorizing the organization to run 

a background check. Although the paper form could be replaced with a 

simple web form or an integration with a third-party service, this part 

of the application process is often done in parallel with processing the 

rest of the application. Therefore, digitalizing that step does not actually 

speed up the total processing time of a single application.

Other seemingly irrelevant issues could make a much bigger differ-

ence. Cases were being sent to the background-check service in batches. 

If one application within that batch had a problem, all the applications 

in that batch had to wait for it to be resolved before moving on. Simply 

reconfiguring jobs into batches of one could save a lot of time.

Instead of looking at the purely technical improvements to the 

system, the team decreased the processing time for an average applica-

tion by tracing the application’s path. They had already done the hard 

work of determining a better system meant faster application turn-

around, and they structured their approach around optimizing for that.

Problem 3: Stability Issues

On the other hand, some legacy systems perform their core functions 

within the parameters the organization needs to be successful, but they 

are unstable. They are not too slow; they produce the correct result and 

within the resources the organizations has available for the task, but 
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there are frequent “surprises,” such as outages with bizarre black-swan-

style root causes or routine upgrades that sometimes go very poorly. 

Ongoing development work is stopped because unforeseen technical 

conflicts pop up and need to be resolved.

In 1983, Charles Perrow coined the term normal accidents to describe 

systems that were so prone to failure, no amount of safety procedures 

could eliminate accidents entirely. According to Perrow, normal acci-

dents are not the product of bad technology or incompetent staff. Systems 

that experience normal accidents display two important characteristics.

They are tightly coupled. When two separate components are 

dependent on each other, they are said to be coupled. In tightly coupled 

situations, there’s a high probability that changes with one component 

will affect the other. For example, if a change to one code base requires 

a corresponding change to another code base, the two repositories are 

tightly coupled. Loosely coupled components, on the other hand, are 

ones where changes made to one component don’t necessarily affect 

the other.

Tightly coupled systems produce cascading effects. One change cre-

ates a response in another part of the system, which creates a response in 

another part of the system. Like a domino effect, parts of the system start 

executing without a human operator telling them to do so. If the system 

is simple, it is possible to anticipate how failure will happen and prevent 

it, which leads to the second characteristic of systems that experience 

normal accidents.

They are complex. Big systems are often complex, but not all 

complex systems are big. Signs of complexity in software include the 

number of direct dependencies and the depth of the dependency tree, 

the number of integrations, the hierarchy of users and ability to dele-

gate, the number of edge cases the system must control for, the amount 

of input from untrusted sources, the amount of legal variety in that 

input, and so on, and so forth. Computer systems naturally grow more 

complex as they age, because as they age, we tend to add more and 
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more features to them, which increases at least a few of these charac-

teristics. Computer systems also tend to start off tightly coupled and 

may in fact stay that way if priority is not given to refactoring the code 

occasionally.

Tightly coupled and complex systems are prone to failure because 

the coupling produces cascading effects, and the complexity makes the 

direction and course of those cascades impossible to predict.

If your goal is to reduce failures or minimize security risks, your best 

bet is to start by evaluating your system on those two characteristics: 

Where are things tightly coupled, and where are things complex? Your 

goal should not be to eliminate all complexity and all coupling; there will 

be trade-offs in each specific instance.

Suppose you have three services that need to access the same data. If 

you configure them to talk to the same database, they are tightly coupled 

(Figure 3-2).

Service Service

Database

Service

Figure 3-2: Tightly coupled services
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Such coupling creates a few potential problems. To begin with, any of 

the three services could make a change to the data that breaks the other 

two services. Any changes to the database schema have to be coordinated 

across all three services. By sharing a database, you lose the scaling bene-

fit of having three separate services, because as load increases on one ser-

vice, it is passed down to the database, and the other services see a dip in 

performance.

However, giving each service its own database trades those problems 

for other potential problems. You now must figure out how to keep the 

data between the three separate databases consistent.

Loosening up the coupling of two components usually ends with the 

creation of additional abstraction layers, which raises complexity on 

the system. Minimizing the complexity of systems tends to mean more 

reuse of common components, which tightens couplings. It’s not about 

transforming your legacy system into something that is completely 

simple and uncoupled, it’s about being strategic as to where you are cou-

pled and where you are complex and to what degree. Places of complexity 

are areas where the human operators make the most mistakes and have 

the greatest probability of misunderstanding. Places of tight coupling are 

areas of acceleration where effects both good and bad will move faster, 

which means less time for intervention.

Once you have identified the parts of the system where there is tight 

coupling and where there is complexity, study the role those areas have 

played in past problems. Will changing the ratio of complexity to cou-

pling make those problems better or worse?

A helpful way to think about this is to classify the types of failures 

you’ve seen so far. Problems that are caused by human beings failing to 

read something, understand something, or check something are usu-

ally improved by minimizing complexity. Problems that are caused by 

failures in monitoring or testing are usually improved by loosening the 

coupling (and thereby creating places for automated testing). Remem-

ber also that an incident can include both elements, so be thoughtful 
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in your analysis. A human operator may have made a mistake to trigger 

an incident, but if that mistake was impossible to discover because the 

logs weren’t granular enough, minimizing complexity will not pay off as 

much as changing the coupling.

Example: Custom Configuration

Consider an organization that wanted to increase the power of custom 

configurations on its monolithic application. It built a configuration 

service that would allow its software engineers to set flags through the 

monolith’s code (Figure 3-3). The application sends requests to the ser-

vice with the identity of the user to fetch the appropriate configuration 

value. Since those values rarely change, more than 90 percent of the 

requests are handled by a cache. If the cache fails, the request moves 

on to a simple web service that immediately retries the cache before 

ultimately going back to the database to retrieve the configuration set-

ting. The database is separate from the monolith’s database, but it runs 

on the same virtual machine (VM). Traffic directly from the application 

connects with the monolith’s database. The custom configuration data-

base uses about 1 percent of the VM resources.

When the service receives the configuration value from the database, 

it updates the cache and sends the data back to the monolith. The data 

Traffic
Server

Database

Cache

Figure 3-3: Requests moving through the custom configuration service
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on custom configurations is stored in a key-value style, with the key being 

the identity of the user and the value being a dictionary with all rele-

vant configuration settings. Because possible customizations are almost 

infinite, these dictionaries do not have standard schemas. If a user has 

no configuration value set for a given flag, it is not present at all in the 

dictionary. The cache preserves this structure.

In general, this service performs well for the organization, but it has 

quirks that are difficult for engineers to reproduce and even harder to 

diagnose. A few problems have been traced back to cache stampedes. 

Users rarely change values after setting them, but in the rare cases where 

the cache does need to be updated, the whole dictionary is affected.

How can we think of this part of the system in terms of complexity and 

coupling? The monolith’s behavior is coupled to the configuration ser-

vice. If the configuration service goes down, the monolith either cannot 

fulfill requests or falls back to a default value that might completely 

change the user’s experience. If the configuration service experiences 

partial outages, the monolith’s behavior becomes wildly unpredictable.

Hosting the databases on the same VM creates coupling between the 

monolith and the configuration service. If the monolith’s database has 

performance issues, the configuration service’s database feels them, and 

vice versa. However, in this case, fixing that issue by moving the configu-

ration service’s database to its own VM might not bring much value. If the 

monolith’s database is having problems, the product itself is likely down, 

making the performance of this service largely irrelevant. Since the service 

uses only 1 percent of the VM’s resources, it is unlikely that it will affect the 

monolith without first triggering pages to the engineer on call. We might 

want to separate them for the sake of right-scaling, but that increases the 

number of VMs we’re paying for and doesn’t necessarily buy us much more 

than cosmetic improvements on our architectural diagram.

On the complexity side, the data structure was probably a poor design 

choice. When the monolith makes a request, it does not need every value 

set for the user, only the value relevant at that moment. If the key in the 
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key-value store was user ID plus flag ID, the data could be flat, which 

would mitigate the risk of cache stampedes. On the other hand, we 

could keep the data structured as is and change the monolith’s assump-

tions so that it requests the user’s dictionary only once and stores the 

data returned in memory for the lifetime of the session. That solution 

minimizes the coupling between the monolith and the service, but it 

increases complexity. We need to understand how much data we would 

be storing in memory at any one point, and at what level that becomes 

problematic. We need to define a time to live and how to implement it. 

Will we want to make sure all the users’ requests are directed to the same 

server, or should we just assume that if a session is live, all servers in the 

application cluster will query the configuration service at least once and 

store the same data in their memory?

Stages of a Modernization Plan

One day during a one-on-one, an engineer on my team confessed to feel-

ing that we had approached our work on one legacy system completely 

wrong. I had recently brought a new engineer onto the team and given 

her explicit instructions to tear through the system’s testing suites. 

Although the tests were comprehensive and the coverage was good, they 

were brittle, poorly organized, and difficult to make sense of. That was a 

reflection of the system’s overall design, so the new engineer set about 

refactoring huge parts of how the code was organized, making it easier to 

test and the tests more reliable.

Looking at the new engineer’s contributions, my engineer knew 

this configuration was better. For months, we had been working on this 

system. She was kicking herself for not looking at the problem the way 

the newcomer did. “We were too pragmatic,” she said. “We just conformed 

to the system’s existing patterns when we should have redone it.”

I disagreed. What my engineer had forgotten was that when we 

took on this system, it was unstable. Things would frequently go wrong 
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silently. Errors weren’t properly handled or logged. Performance was 

an issue.

It was good to learn how to have that kind of technical vision the new 

engineer displayed. I certainly wasn’t going to discourage my team from 

studying her contributions, but it was right to be pragmatic in the begin-

ning. When you first take on a legacy system, you can’t possibly under-

stand it well enough to make big changes right away. As part of those 

pragmatic changes, we also invested a lot of time documenting and 

researching the system. Truth be told, the new engineer’s first assign-

ment was a series of small, pragmatic changes designed to help her get to 

know the system too, but by that point, my engineers knew the system so 

well, they were able to onboard her much quicker. She tore through those 

assignments in a matter of days.

“How do you think handling a major refactoring at the same time 

that we were having regular incidents would have affected you?” I asked.

“It would have been really stressful.”

So stressful, in fact, that it would have compromised the team’s judg-

ment. These are the kinds of situations where people become frustrated 

and start convincing themselves that the best thing to do is throw the 

whole thing out and build it from scratch.

When both observability and testing are lacking on your legacy 

system, observability comes first. Tests tell you only what won’t fail; mon-

itoring tells you what is failing. Our new engineer had the freedom to 

alter huge swaths of the system because the work the team had done roll-

ing out better monitoring meant when her changes were deployed, we 

could spot problems quickly.

But the real lesson here is that modernization plans evolve as they 

progress. The first stage is one of evaluation. This doesn’t necessarily 

mean you should stop everything and produce big complicated plans, 

but you should focus on low-hanging fruit of immediate issues with 

pragmatic fixes. Use these small tasks to focus your investigation of the 

system itself. Get to know it and its quirks. Where are your blind spots in 
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terms of monitoring? How easy is it to change things, test them, and be 

confident that they will work? Where are the gaps where the official doc-

umentation says things work this way, but they don’t? How much dead 

code is there? And so on, and so forth.

When your team knows the system well enough, you can expand the 

scope to look at issues across the system. Are things organized the way 

they should be? Is there a better technology to incorporate now, perhaps 

a different programming language or a new tool?

On particularly large systems, it is a good idea to make this an itera-

tive multilevel process. In other words, pick one part of the large system 

and focus on that. Look at small pragmatic issues, and then look at more 

global issues within the component. Take a further step back and look for 

those global issues elsewhere in the system itself before deciding on an 

approach to them. Zoom back down to fix the component’s global issues 

and move on to the next component. Continue this local-global-super-

global routine until the system is where you need it to be.

The deeper your team understands the system and its quirks, the 

more predictable the system’s behavior is on a day-to-day basis and the 

easier it is to make big changes.

No Silver Bullets

The only real rule of modernizing legacy systems is that there are no 

silver bullets. The rest of this chapter outlines different styles of orga-

nizing development activities. You will likely use all of them at different 

points on a large project.

The key thing to remember is that this is a toolkit. You break down large 

problems into smaller problems, and you choose the tool that gives you the 

highest probability of success with that specific problem. Sure, you may use 

some methods more often than others, but every large-scale legacy system 

has at least one square peg to contend with. It’s impossible to finish the job 

if all you know how to do is solve for round holes.
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Full Rewrite

A full rewrite is exactly what it sounds like: you start over with the inten-

tion of building a totally new system. The trouble with this approach 

is what do you do with the old system while you’re building the new 

one? Some organizations choose to put the old system on “maintenance 

mode” and give it only the resources for patches and fixes necessary to 

keep the lights on. If the new project falls behind schedule (and it almost 

certainly will), the old system continues to degrade. If the new project 

fails and is subsequently canceled, the gap between the old system and 

operational excellence has widened significantly in the meantime.

The longer the new system takes to get up and running, the longer 

users and the business side of the organization have to wait for new fea-

tures. Neglecting business needs breaks trust with engineering, making 

it more difficult for engineering to secure resources in the future.

On the other hand, if you continue development on the old system 

while building a new system, keeping design decisions in sync between 

the two teams is a considerable challenge. If those systems handle data, 

and almost all computer systems do, migrating the data over from one to 

another poses a huge challenge.

Another consideration is the people involved. Who gets to work on 

the new system, and who takes on the maintenance tasks of the old 

system? If the old system is written in an obsolete technology relevant 

only to that particular system, the team maintaining the old system is 

essentially sitting around waiting to be fired. And don’t kid yourself, 

they know it. So if the people maintaining the old system are not par-

ticipating in the creation of the new system, you should expect that 

they are also looking for new jobs. If they leave before your new system 

is operational, you lose both their expertise and their institutional 

knowledge.

That being said, lots of little parts within a big modernization project 

are not improved much by any kind of iteration. If you have an interface 
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written in ActionScript, it’s probably better to just rewrite it and push it 

into production as a full replacement.

Iteration in Place

If you have a working system, sometimes the simplest thing to do is to 

iterate it until it looks the way you want. This works well with managing 

technical debt, but you can also use it for situations when you want to 

redo the architecture. A fair amount of prep work is necessary to make 

iteration in place work. You will need to set up monitoring. At a mini-

mum, you should have some way to track errors in the application layer 

and search logs, but the tooling here grows more sophisticated every 

year. The better you can identify what normal looks like on your legacy 

system, the easier it is to iterate in place safely.

Another area to make sure you have a mature approach is testing. 

Tests should run automatically, without needing a human being to 

follow test cases manually. Tests should also be multilevel, testing both 

the small units of code and whole processes end to end. Good tests take 

skill to write, and entire books have been written on the subject, so I 

won’t attempt to summarize them in a few paragraphs here. The most 

relevant guide for legacy modernizations is Michael Feathers’ Working 
Effectively with Legacy Code.

Finally, make sure your team can recover from failures quickly. This 

is an engineering best practice generally, but it’s especially important if 

you’re making changes to production systems. If you’ve never restored 

from a backup, you don’t actually have backups. If you’ve never failed over 

to another region, you don’t actually have failovers. If you’ve never rolled 

back a deploy, you don’t have a mature deploy pipeline.

If you have a good monitoring strategy, have a good testing strategy, 

and can roll back changes quickly, you will be able to change almost any-

thing about your legacy system with confidence.
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Although it might seem risky, consider iteration in place to be the 

default approach. It is most likely to produce successful results in the 

greatest number of situations.

Split in Place

Split in place is a variant of iteration in place specific to breaking up sys-

tems. This can mean moving from a monolithic structure to a service- 

oriented one, but it can also mean taking two components that are 

tightly coupled and uncoupling them. The difference from iteration in 

place is that you finish splitting things off by integrating them back. In 

other words, when you pull off a service from a monolith, that service 

will likely still need to receive inputs from and send outputs to the 

monolith. So you build the separate service and ultimately connect it 

to the monolith before moving on to the next service. You keep doing 

this over and over (breaking off services and integrating them back) 

until you’ve broken the whole project into small service-based sets  

of code.

Blue-Green

A familiar pattern for deploys, the blue-green technique involves run-

ning  two components in parallel and slowly draining traffic off from 

one and over to the other. The big benefit to doing this is that it’s easy 

to undo if something goes wrong. Often with technology, increas-

ing load reveals problems that were not otherwise found in testing. 

Legacy systems have both the blessing and the curse of an existing 

pool of users and activity. The system that replaces them has a narrow 

grace period with which to fix those mistakes discovered under high 

load. Blue-green deployments allow the new system to ease into the 

full load of the old system gradually, and you can fix problems before 

the load exacerbates them.
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The Hard Cutoff

The hard cutoff is a deployment strategy where the new system or compo-

nent replaces the old all at once. It is one of the riskiest strategies in the 

modernization toolbox.

A hard cutoff is sometimes done in stages, usually by environment or 

region. An organization might deploy to a low-traffic region first, mon-

itor for issues, and then deploy to a higher-traffic region. This gives the 

organization some of the benefits of blue-green deploys in that it can stop 

the update (and ideally roll it back) midstream, but this method is not 

as accurate as blue-green deploys. The difference between environments 

and regions might not be completely predictable, and problems might 

escape notice.

If you don’t have multiple regions or are working with software 

designed to be installed by the user and have no control over how many 

users get access to the new version, you may not have a choice. Alpha 

and beta testing groups help in the latter case; making sure you can 

undo any change (either through restoring from backup or reverting/ 

rolling back commands in the version control system) helps in the 

former case.

Putting It Together

Good planning is less about controlling every detail and more about set-

ting expectations across the organization. Your plan will define what it 

means to modernize your legacy system, what the goals are, and what 

value will be delivered and when. Specifically, your plan should focus on 

answering the following questions:

●● What problem are we trying to solve by modernizing?

●● What small pragmatic changes will help us learn more about the 

system?
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●● What can we iterate on?

●● How will we spot problems after we deploy changes?

Next, we’ll look at how to move out of the planning stage and into 

facing the problems that will make implementation hard. 



4
WHY IS IT HARD?

O n the surface, each legacy modernization project starts off feeling 

easy. After all, a working system did exist at one point. Somehow 

the organization managed to figure out enough to put something into 

production and keep it running for years. All the modernizing team 

should need to do is simply repeat that process using better technology, 

the benefit of hindsight, and improved tooling. It should be easy.

But, because people do not see the hidden technical challenges they 

are about to uncover, they also assume the work will be boring. There’s 

little glory to be had reimplementing a solved problem. An organization 

about to embark on such an undertaking craves new features, new func-

tionality, and new benefits. Modernization projects are typically the ones 

organizations just want to get out of the way, so they usually launch into 

them unprepared for the time and resource commitments they require.

I tell my engineers that the biggest problems we have to solve are 

not technical problems, but people problems. Modernization projects 

take months, if not years of work. Keeping a team of engineers focused, 

inspired, and motivated from beginning to end is difficult. Keeping their 

senior leadership prepared to invest over and over on what is, in effect, 
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something they already have is a huge challenge. Creating momentum 

and sustaining it are where most modernization projects fail.

By far, the biggest momentum killers are the assumptions that tell 

us the project should be easy in the first place. They are, in no particular 

order, the following:

●● We can build on the lessons learned from the old system.

●● We understand the boundaries on the old system.

●● We can use tools to speed things up.

Let’s take a little time discussing why these obvious truths might not 

be as useful as they seem.

The Curse of Hindsight

In poker, people call it resulting. It’s the habit of confusing the quality of 

the outcome with the quality of the decision. In psychology, people call it 

a self-serving bias. When things go well, we overestimate the roles of skill 

and ability and underestimate the role of luck. When things go poorly, on 

the other hand, it’s all bad luck or external forces.

One of the main reasons legacy modernization projects are hard is 

because people overvalue the hindsight an existing system offers them. 

They assume that the existing system’s success was a matter of skill and 

that they discovered all the potential problems and resolved them the  

best possible way in the process of building it initially. They look at 

the results and don’t pay any attention to the quality of the decisions or the  

elements of luck that produced those results.

Of course, more often than not, very little documentation regarding 

the original decisions remains for them to study in the first place. Still, 

overlooking the role that plain luck plays in the success of any project 

means the team thinks they have room for extra innovations on top of 

the original challenge.
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Software can have serious bugs and still be wildly successful.  

Lotus 1-2-3 famously mistook 1900 for a leap year, but it was so popular 

that versions of Excel to this day have to be programmed to honor that 

mistake to ensure backward compatibility. And because Excel’s popu-

larity ultimately dwarfed that of Lotus 1-2-3, the bug is now part of the 

ECMA Office Open XML specification.

Success and quality are not necessarily connected. Legacy systems 

are successful systems, but that does not mean every decision made in 

designing and implementing them was the right decision. Most people 

think they know that, but they go in the wrong direction with it. They’re 

cynical about the system, but despite that, they overload the road map 

with new features and functionality. No matter how critical of the 

system they appear to be, they still assume the underlying problem has 

been solved.

We struggle to modernize legacy systems because we fail to pay 

the proper attention and respect to the real challenge of legacy sys-

tems: the context has been lost. We have forgotten the web of com-

promises that created the final design and are blind to the years of 

modifications that increased its complexity. We don’t realize that 

at least a few design choices were bad choices and that it was only 

through good luck the system performed well for so long. We over-

simplify and ultimately commit to new challenges before we dis-

cover our mistakes.

Being dismissive of legacy systems is no guarantee that we won’t 

also fall into the trap of relying on context that is lost. Remember the 

game I described in Chapter 3 when looking at what parts of the system 

shouldn’t be in COBOL? It’s a useful technique even when COBOL is 

not a factor. By challenging my team to design a system with the same 

requirements of our legacy system using only technology available 

at the time the legacy system was built, we’re forced to recover some 

context. Many of the “stupid” technical choices from the legacy system 

seem very different. Once forced to look directly at the context, we 
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realize how innovative some of those systems really were. This gives 

us a little insight into which decisions were skill and foresight and 

which were luck.

A successful system could have a design pattern that will not survive 

past a certain scale of usage but that was able to achieve its operational 

goals without ever crossing that threshold. Is that skill or luck? If the 

designers knew the system would not scale but also knew the system 

would never reach the point where it would need to scale that way, we 

could assume the design was a deliberate decision. For example, perhaps 

the system is accessible only to certain people for internal purposes. 

Scaling to millions of requests was not necessary, because it would only 

ever get hundreds of requests per second at most.

On the other hand, if the system was designed with the idea that 

its usage would continue to grow indefinitely and the designers chose 

a pattern that will survive only up to a certain point, their success is a 

matter of luck. They simply did not reach that tipping point. Twitter 

was a well-designed system until it became so popular it started falling 

apart, serving users the notorious “fail whale” cartoon instead of their 

content. Overnight, the engineers who built the social media platform 

and the technology it used went from being perceived as skillful opera-

tors with superior code to a bunch of rank amateurs with an overhyped, 

dumbed-down programming language. They were neither geniuses nor 

dummies.

Scale always involves some luck. You can plan for a certain number 

of transactions or users, but you can’t really control those factors, espe-

cially if you’re building anything that involves the public internet. 

Software systems tend to incorporate multiple technologies working 

together to complete some task. I don’t know anyone who can predict 

how multiple technologies will behave in every potential scale con-

dition, especially not when they are combined. Engineering teams do 

their best to mitigate potential problems, but they will never be able to 

foresee every possible combination of events. For that reason, whether a 



Why Is It Hard?    63  

service works at its initial scale and then continues to work as it grows 

is always a mix of skill and luck.

Easy and Also Impossible

In 1988, computer scientist Hans Moravec observed that it was really 

hard to teach computers to do very basic things, but it was much easier to 

program computers to do seemingly complex things. Skills that had been 

evolving for thousands of years to solve problems like walking, answer-

ing questions, and identifying objects were intuitive, subconscious, and 

impossibly difficult to teach a computer how to do. Meanwhile skills that 

had not been a part of the human experience for thousands of years—

like playing chess or geolocation—were relatively straightforward. His 

theory connecting this paradox to evolution, which had been observed by 

other contemporaneous AI researchers, gained enough traction that the 

paradox itself was named after him.

In Moravec’s own words, “It is comparatively easy to make computers 

exhibit adult-level performance on intelligence tests or playing checkers, 

and difficult or impossible to give them the skills of a one-year-old when 

it comes to perception and mobility.”1

Those wishing to upgrade large complex systems would do well 

to keep Moravec’s paradox in mind. Systems evolve much faster than 

nature, but just as in nature, as the system evolves, more and more of 

its underlying logic becomes obscured. When we get used to something 

just working a certain way, we tend to forget about it. Once we’ve stopped 

thinking about it, we fail to factor it into our plans to modernize.

We assume that successful systems solved their core problems well, 

but we also assume things that just work without any thought or effort 

1.	 Hans Moravec, Mind Children: The Future of Robot and Human Intelligence (Cambridge, 
MA: Harvard University Press, 1988), 15.
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are simple when they may in fact bear the complexity of years of itera-

tion we’ve forgotten about.

This is especially true when the system has multiple layers of abstrac-

tion and even more so when those abstractions grow past the application 

boundaries itself—when they leverage operating system APIs or even 

hardware interfaces. When was the last time you thought about whether 

your favorite software is compatible with the chip architecture on your 

computer? When was the last time you needed to hunt down a specific 

driver to get a new accessory to work with your operating system? If you 

were born after the 1990s, you might never have thought about these 

things at all. Hardware and software interfaces haven’t gotten simpler 

in the last two decades, we’ve just abstracted away a lot of annoying dif-

ferences that made the issue of x86 versus x64 or downloading drivers a 

normal part of working even casually with computers.

With very old legacy systems, the abstraction layers might not be 

there, or worse, they themselves might be out-of-date. I like to call this 

problem overgrowth, and it’s worth describing in detail.

Overgrowth: The Application and  
Its Dependencies

Overgrowth is a particular type of coupling between the software and the 

layers of abstraction making up the platform on which it runs. The perils 

of dependency management are well known, but with legacy systems, 

dependency management is about more than just what a package man-

ager might install. The older a system is, the more likely the platform on 

which it runs is itself a dependency. Most modernization projects do not 

think about the platform this way and, therefore, leave the issue as an 

unpleasant surprise to be discovered later.

We’ve made huge leaps in cross-compatibility, but we’ve not yet 

reached the state where applications are 100 percent platform-agnostic, 

nor are we ever likely to achieve that completely.
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For that reason, we cannot modernize a system without considering 

the underlying platform. Which features of that platform are unique, and 

which are found in other options? How old is the platform, and has it 

since been supplanted by a completely different way of doing things?

What makes major migrations so tricky is that as software ages, ele-

ments of the platform on which it was defined to run fall out of fashion, 

and support for those elements on other platforms becomes less and less 

common. This means that on our oldest systems, there is typically logic 

that either must be written out of the system or must be reproduced on a 

modern platform. The existing platform becomes auxiliary software that 

grows around whatever is being migrated. If you’re switching databases, 

for example, you’re not just moving the data. You might have to rewrite 

your queries in a different language or a different implementation of 

SQL. You may need to rethink hooks or stored procedures. One software 

language often has any number of minor languages that facilitate spe-

cific functions. There are command processors like bash or JCL that trig-

ger jobs, templating languages to build interfaces, querying languages to 

access data, and so on. How well is business logic separated out between 

these layers? Does logic stay where it is sensible, or is it injected to where 

it is convenient?

Most web development projects, for example, run on Linux machines. 

Therefore, it is not uncommon for web applications to include shell 

scripts as part of their code base—particularly as part of the setup/instal-

lation routine. Imagine what migrating those applications would feel 

like 20 years in the future if Linux were supplanted by a different operat-

ing system. We would potentially have to rewrite all the shell scripts as 

well as migrate the actual application.

Smart engineers will point out that with containerization and con-

figuration management tools, such scripts should be a thing of the past, 

but that’s precisely why overgrowth is an issue for legacy code. At one 

point, doing certain tasks via shell script was commonplace; this has 

since been overtaken by a different approach. If we want to migrate 
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an older application, we may find that this older approach is not sup-

ported by the technology we want to use. We must migrate the auxiliary 

software first.

For modern applications, overgrowth is not usually a significant blocker. 

Languages from the same general era of computing tend to share eco

systems, so it is easier to pull out one language and replace it with another 

while making only minimum changes to the auxiliary software around it. 

Remember, overgrowth is just another form of coupling. Coupling is not 

necessarily a bad thing if the value add is there.

In older applications, however, people seem to have trouble seeing 

where this type of coupling is. We tend to forget about auxiliary software, 

just as we forget the complex processes behind the simple tasks Moravec 

struggled to program computers to do. The longer a piece goes without 

being upgraded, the less likely modern platforms and tools will support 

it. As auxiliary software slides out of support, the challenge of moderniz-

ing the actual code becomes more complicated.

Look for overgrowth at integration points, places where the commu-

nication layer changes. There are a few different transitions where you 

are likely to find it.

Shifting Vertically: Moving from One Abstraction Layer to Another
Many layers exist between modern software and the physical volt-

age moving through circuits in a machine. On the most basic level, 

we can define three layers: the software, the hardware, and an oper-

ating system between them. Overgrowth when shifting up or down 

these layers typically takes the form of proprietary standards, espe-

cially with older technology where the manufacturer of the hardware 

would also provide the software. Look out for situations where your 

application code depends on APIs specific to your operating system 

or, worse, when it’s specific to the chip architecture of the physical 

machine on which it runs. This was a common problem with old 

mainframes. Software was written in a variant of Assembly specific 
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to both the company that built the mainframe and usually the model 

of the machine itself.

Shifting Horizontally: Moving from One Application to Another
Just as there is legacy code, there are also legacy protocols. When two 

applications pass data back and forth between each other, if they are 

running on machines or communicating on networking equipment 

developed by a corporation with proprietary protocols, you may see some 

overgrowth around the connection. This is less of a concern with web 

development, because the decentralized nature of the internet pushed 

things toward standard protocols like TCP/IP, FTP, and SMTP—all of 

which have a robust ecosystem of tooling and broad support across multi-

ple platforms. In other areas of software development, proprietary proto-

cols have a larger footprint. How difficult these protocols are depends on 

how common the technology in question is. Proprietary protocols from 

large vendors are probably supported by other options. For example, Mic-

rosoft Exchange Server protocols are proprietary but well supported, while 

an application dependent on AppleTalk might prove difficult to migrate.

Shifting from Client to Server
This shift can take the form of specific software development kits (SDKs) 

for specific tools and integrations, drivers for specific database connec-

tions, or frontend to backend movement. It might horrify some engineers 

to know this, but internal web applications are still sometimes built to  

run on certain web browsers and rely on features or functions not 

available in others. Internet Explorer is the most likely culprit. When-

ever you see IE as the preferred default browser for internal applica-

tions, double-check that the frontend of these applications is not using 

IE-specific JavaScript features. We also see this frequently with Adobe 

Acrobat. Early-generation digital forms frequently were built to lever-

age Acrobat-specific PDF features and may be difficult to move between 

versions of Acrobat. A famous story about this comes from my time at  
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US Digital Service where one of the Department of Veterans Affairs’ web-

sites refused to work unless you downgraded your version of Acrobat.2

Shifting Down the Dependency Tree
As programming languages mature, they occasionally introduce breaking 

changes to their syntax or internal logic. Not all dependencies upgrade 

to handle those changes at the same pace, creating a mess where the 

application cannot be upgraded until the dependencies are upgraded. 

In  applications that are very old, it is likely that some of those depen-

dencies are no longer in active development. For instance, perhaps the 

maintainers never rolled out a version that is compatible with the newest 

version of Java or Node.js, and to get that support, the application must 

switch to a completely different option.

Cutting Back the Overgrowth

Cutting back overgrowth is not technically hard; it is just frustrating 

and demoralizing. Overgrowth slows things down, and if not accurately 

assessed, it creates unfortunate surprises that affect a team’s confidence. 

To minimize its impact, start off by mapping the application’s context. 

What does it run on? What is the process around creating a new instance 

of it? Map its dependencies two levels down.3 Attempt to trace the flow 

of data through the application to complete one request. This should give 

you a clearer picture of where there are likely to be problems. If you can put 

these problems on a road map, they have less dramatic impact on morale.

2.	 “Matt Cutts on the US Digital Service and Working at Google for 17 Years,” Y Combina-
tor, December 4, 2019, https://blog.ycombinator.com/matt-cutts-on-the-us-digital-service- 
and-working-at-google-for-17-years/.

3.	 Dependency trees can be quite complicated, and traversing the whole graph is a lot of 
work without a lot of payoff. Make a list of the application’s direct dependencies and 
what those packages depend on, and then accept the risk that there might be a prob-
lem in nodes further down and move on.

https://blog.ycombinator.com/matt-cutts-on-the-us-digital-service-and-working-at-google-for-17-years/
https://blog.ycombinator.com/matt-cutts-on-the-us-digital-service-and-working-at-google-for-17-years/
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You might be tempted to think that modern software development 

is improving this situation. Cross-compatibility is much better than it 

used to be, that’s true, but the growth of the platform as a service (PaaS) 

market for commercial cloud is increasing the options to program for 

specific platform features. For example, the more you build things with 

Amazon’s managed services, the more the application will conform to fit 

Amazon-specific characteristics, and the more overgrowth there will be 

to contend with if the organization later wants to migrate away.

Automation and Conversion

The last assumption people make about legacy systems is that because 

computers can read the code they are trying to modernize, there must be 

some way to automate the process. They introduce tools like transpilers 

and static analysis with the intention of making modernization faster and 

more efficient.

Those tools are useful, but only if the expectations for them are real-

istic. If you use them as guides to help inform the process, your modern-

ization team can move strategically, side-stepping critical mistakes and 

maybe reducing some costs. However, if you use them as shortcuts and 

skimp on making a true investment in modernization, they will likely let 

you down. Organizations that think the tools are the solution typically 

end up with longer, more painful, and more expensive modernizations.

So, what do these tools do exactly, and what’s the right way to use 

them?

Transpiling Code
Transpiling is the process of automatically translating code written in 

one programming language into another programming language. It 

makes sense to use a transpiler when the difference between the lan-

guage being read and the language in which the output will be written 

is not significant. For example, Python version 3 had enough breaking 
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changes in it that the transition actually required engineers to migrate 

their code bases rather than simply upgrade them. At the same time, 

Python 3 did not change any of the fundamental philosophies of Python 

itself, just some implementation details. Transpiling worked so well that 

tools for Python 2 to Python 3 conversion and Python 3 to Python 2 con-

version are now built in to Python 3.

Another great use case for transpilers is when the language that the 

transpiler is reading was specifically designed to enforce good practices 

on the language the transpiler is writing. JavaScript has many different 

variants of this approach, such as CoffeeScript and TypeScript.

When the differences between the input and output languages are 

significant, transpiling becomes more problematic, and time-saving 

expectations need to be managed properly to ensure a successful out-

come. The classic example of this use case is COBOL to Java. COBOL is 

procedural, imperative, and fixed-point by default. Java is object-oriented 

and floating-point by default. Transpiling COBOL to Java may produce 

code that works, but it will not be maintainable unless engineers go over 

the code and fine-tune it. Often this means rewriting parts of it.

If you are going to use a transpiler for that kind of upgrade, it is 

absolutely essential that the application has well-designed and com-

prehensive test suites, preferably automated ones. The bugs created by 

automatically translating one language to another, completely different 

language can be subtle and difficult to track down. For example, when 

you try to put an eight-digit number into a variable defined as having 

seven digits, COBOL truncates the last digit and moves on. Java, on the 

other hand, throws an exception. The transpiler will not add code to 

handle these exceptions.

People often invest in transpilers to help upgrade their legacy code 

because they think it will save engineering time to have a computer pro-

gram do the first pass, or they think it will replace the need for experts 

in the original language to assist altogether. But when the two languages 

have significant differences, the output of such transpilers doesn’t 
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usually follow the structure and conventions of the language in which it 

writes. Transpilers are not capable of rethinking how you organize your 

code. Transpiled COBOL is Java written as if it were COBOL, and there-

fore, it’s unintelligible to most Java programmers.

The success stories around this kind of transpiling typically come 

from companies that use their transpiling solution as a gateway to con-

sulting services. That is to say, first you buy licenses to use the transpiler, 

and then you buy the talent to rewrite the transpiler’s output into some-

thing workable. This is a fine strategy, as long as you know that’s what 

you’re getting into.

Static Analysis
Although it hasn’t gained much traction outside a theoretical context, 

some interesting work in academia has been done around deploying var-

ious forms of static analysis to explore and ultimately improve legacy sys-

tems. So-called software renovation combines techniques from compiler 

design and reverse engineering to steer the refactoring process. Software 

renovation is intended to be semi-automatic: the analysis is automatic, 

but software engineers do the actual work of restructuring the code.

Some common types of static analysis used for software renovation 

include the following:

DEPENDENCY GRAPHS    In this style of software renovation, the 

dependency graph is mapped, and clustering algorithms are used to 

determine where there is overlap, redundancy, unused libraries, or 

circular dependencies.4

GRAMMARS    These are language-specific tools that produce 

analysis by parsing the abstract syntax tree. Typically they look for 

4.	 Massimiliano Di Penta, Markus Neteler, Giuliano Antoniol, and E. Merlo, “A Language- 
Independent Software Renovation Framework,” Journal of Systems and Software 77, no. 3 
(September 2005): 225–240.
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duplicate code or specific practices that are considered anti-patterns 

(like goto statements).

CONTROL FLOW/DATA FLOW GRAPHS    These graphs are tools 

that track how software executes. Control flow graphs map the order 

in which lines of code are executed, while data flow graphs map the 

variable assignments and references. You can use such analysis to 

discover lost business requirements or track down dead code.

Software renovation methodology hasn’t quite broken out of theoret-

ical studies, but static analysis tools are available both as stand-alone 

products and as features of larger integrated development environments 

or continuous integration and deployment solutions. This is unfortu-

nate because the methodology is what drives the bulk of the impact. The 

tools themselves are not as important as the phases of excavating, under-

standing, documenting, and ultimately rewriting and replacing legacy 

systems. Tools will come and go.

A Guide to Not Making Things Harder
Expectation management is really important. Typically organizations 

make the mistakes described in this chapter because they believe they 

are making the process more efficient. They misjudge how long modern-

ization projects take, and they misjudge how much time they can save 

and how to save it.

Modernization projects have better outcomes when we replace the 

false assumptions described at the opening of this chapter with the fol-

lowing guidelines:

●● Keep it simple. Don’t add new problems to solve just because the 

old system was successful. Success does not mean the old system 

completely solved its problem. Some of those technical decisions 

were wrong, but never caused any problems.
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●● Spend some time trying to recover context. Treat the platform as 

a dependency and look for coupling that won’t transfer easily to a 

modern platform.

●● Tools and automation should supplement human effort, not 

replace it.

Individual contributors often find the barrier to following that advice 

is not convincing themselves, but convincing others. Particularly when 

the organization is big, the pressure to run projects the same way every-

one else does, so that they look correct even at the expense of being 

successful, is significant. In later chapters, we’ll tackle navigating the 

organization and strategies to advance your goals. 





5
BUILDING AND 

PROTECTING MOMENTUM

T his book mainly focuses on big projects. When I discuss upgrades, 

I’m not talking about running a package manager to install the 

latest versions of your dependencies. When I mention deprecations, 

I’m not talking about versioning your API. Much of the advice in this 

book will work regardless of project size, but it is primarily intended for 

big ones.

Chapter 3 covered developing strategy around the engineering chal-

lenge posed by your legacy system. In that chapter, I described the shape 

and nature of different types of approaches and how to look at such a 

challenge holistically. This chapter describes a similar approach from 

the organizational side: how to create a plan that builds momentum and 

keeps teams focused and optimistic even as the work becomes difficult.

The funny thing about big legacy modernization projects is that tech-

nologists suddenly seem drawn to strategies that they know do not work 

in other contexts. Few modern software engineers would forgo Agile 

development to spend months planning exactly what an architecture 
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should look like and try to build a complete product all at once. And yet, 

when asked to modernize an old system, suddenly everyone is breaking 

things down into sequential phases that are completely dependent on 

one another.

Agile approaches to legacy challenges are not well publicized. Any 

number of books are available that describe how you build software. 

A few exist that cover how to maintain software, and even fewer have 

been published that explain how to tackle the challenges of rebuild-

ing software when it has been left to rot or was built wrong in the first 

place.

In truth, what works when rebuilding a system is not all that differ-

ent from what worked to build it in the first place. You need to keep the 

scope small, and you need to iterate on your successes. This might seem 

unnecessary, because the old system and its history have defined all your 

requirements for you. Assuming you fully understand the requirements 

because an existing system is operational is a critical mistake. One of the 

advantages of building a new system is that the team is more aware of 

the unknowns. Existing systems can be a distraction. The software team 

treats the full-featured implementation of it as the MVP, no matter how 

large or how complex that existing system actually is. It’s simply too 

much information to manage. People become overwhelmed, and they 

get discouraged and demoralized. The project stalls and reinforces the 

notion that the modernization work is impossible.

Momentum Builder: The Bliss 
of Measurable Problems

There are a couple different ways to restrict scope when an existing 

system looms in the background. The most straightforward approach 

is to define an MVP from the existing system’s array of features. Pare it 

down into a lighter-weight version of itself that becomes the first itera-

tion and then gradually add back features. While sensible, this strategy 
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requires discipline and strong leadership. All users of the existing system 

will naturally see the features they use as the most critical and lobby 

to get them scheduled for the earliest possible iteration. The process 

becomes political very quickly.

Instead, I prefer to restrict the scope by defining one measurable 

problem we are trying to solve. Building a modern infrastructure is not 

a goal. Different people naturally are going to disagree on which stan-

dards and best practices should be enforced and on how strongly they 

should be enforced. Few real-life systems completely conform to an 

ideal; there are always at least one or two places in systems where a non-

standard approach was used to make a specific function or integration 

work. Everyone knows these compromises exist and that they probably 

will continue to exist in some form or another in the new system, but 

it’s unlikely the organization will be able to agree on when and where to 

introduce them.

But if all the work is structured around one critical problem that you 

can measure and monitor, these conversations become much easier. You 

start by looking for as many opportunities as possible to make the prob-

lem better and prioritize them by amount of estimated impact. When 

there is a disagreement on approach or technology, the criteria for the 

decision becomes “Which one moves the needle further?”

Legacy modernization projects go better when the individuals con-

tributing to them feel comfortable being autonomous and when they can 

adapt to challenges and surprises as they present themselves because 

they understand what the priorities are. The more decisions need to go 

up to a senior group—be that VPs, enterprise architects, or a CEO—the 

more delays and bottlenecks appear. The more momentum is lost, and 

people stop believing success is possible. When people stop believing 

success is possible, they stop bringing their best to work. Measurable 

problems empower team members to make decisions. Everyone has 

agreed that metric X needs to be better; any actions taken to improve 

metric X need not be run up the chain of command.
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Measurable problems create clearly articulated goals. Having a goal 

means you can define what kind of value you expect the project to add 

and whom that value will benefit most. Will modernization make things 

faster for customers? Will it improve scaling so you can sign bigger cli-

ents? Will it save people’s lives? Or, will it just mean that someone gets to 

give a conference talk or write an article about switching from technol-

ogy A to technology B?

Anatomy of the Measurable Problem
It’s natural to want to approach architecture in a holistic way. Our minds 

love order and patterns, the neatness of everything being consistent and 

well thought out. But systems are like houses; they never really stay per-

fectly clean for long. The very act of using something forces it to change. 

You have less memory and less storage, your hardware decays, and you’ve 

added new features, which mean more lines of code.

Good modernization work needs to suppress that impulse to create 

elegant comprehensive architectures up front. You can have your neat 

and orderly system, but you won’t get it from designing it that way in the 

beginning. Instead, you’ll build it through iteration.

The measurable problem is what will guide your teams through the 

modernization effort. When the legacy system was new, its footprint and 

the team that ran it were both small. As the system grew, internal politics 

grew with it. In some cases, entire business units were born or rearranged 

to follow the pattern of the technology. Getting all those people to agree 

and march in the same direction is difficult. The strength of the mea-

surable problem is that it is objective and irrefutable, and therefore, it 

helps the team navigate the internal politics they have inherited from 

the existing system. People can and will disagree on whether the mea-

surable problem is the right problem to solve, but that shifts the burden 

of mediating those disagreements away from the engineering team and 

toward the senior executive who signed off on focusing modernization 

activities on that measurable problem in the first place.
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The last benefit of measurable problems is that positive results are 

not linked to feature launches. When the team tries to create an MVP 

from an existing system, the organization will pressure them to achieve 

feature parity with the existing system as quickly as possible. Success 

or failure becomes tied to launches, which encourages cut corners and 

technical debt.

In all likelihood, the business side of the organization does not 

understand what’s wrong with the existing system. Rolling out features 

they already have is not something they will celebrate. To build momen-

tum behind a modernization effort, it’s essential to communicate how 

modernizing will improve the status quo. Defining a measurable prob-

lem explains to the business side of the organization how the existing 

system could be better. Once the metrics and criteria are defined, any 

given action either moves the needle in a positive direction or doesn’t. 

Missteps are easier to identify, define, and correct. Everyone in the orga-

nization can figure out how things are going by looking at the metrics.

But how does one identify a good measurable problem?

The easiest candidates are ones that reflect the business or mission 

goals of the organization. If you’re thinking about rearchitecting a system 

and cannot tie the effort back to some kind of business goal, you probably 

shouldn’t be doing it at all.

When I was working for the government, one of the most inspir-

ing projects I saw was the effort to modernize the immigration system 

enough to meet a stretch goal for refugee resettlement the Obama 

administration had set. The system itself, even just the subset that con-

cerned refugees, was large and complex. Engineers were overwhelmed by 

the scope of it and the problems that it experienced from time to time.

But the challenge of this particular project was not to make that 

whole system better; it was to get that whole system to process a spe-

cific type of application faster. Defining the goal in this way created a 

much clearer scope for the effort. The team started by doing an analy-

sis of where the bottlenecks in application processing were, and then 
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they began precision-targeting those areas, seeking only to make itera-

tive improvements. Conversations about prioritization focused on what 

changes were likely to increase the number of applications processed—

numbers anyone on the team could look at and refer to as needed. As 

they worked toward this specific goal, the team passed up a lot of oppor-

tunities to make much needed infrastructure changes, because doing so 

would not produce the results where they needed them.

At first glance, this approach might seem unwise or even irrespon-

sible, but the number-one killer of big efforts is not technical failure. 

It’s loss of momentum. To be successful at those long-term rearchitect-

ing challenges, the team needs to establish a feedback loop that con-

tinuously builds on and promotes their track record of success. When 

it became clear that the refugee team was not only going to reach the 

stretch goal—a number that many felt was impossible—but that they 

were actually going to overshoot it by a few thousand people, other teams 

that were better positioned to make those much needed infrastructure 

changes started coming to work with renewed energy. Don’t lose sight of 

the fact that modernization projects are long and typically involve coor-

dinating multiple teams. Being strategically narrow-minded to demon-

strate value and build momentum is not a bad idea.

Good measurable problems have to be focused on problems that your 

engineers give a shit about. Number of refugees saved from ISIS was an 

easy goal to rally people around. In all likelihood, you won’t be able to say 

your database migration is going to do that, but engineers feel passionate 

about other things. Talk to them and figure out what those are.

Momentum Killer: The Team Cannot Agree

When I moved from being an individual contributor to running engi-

neering teams, my role in technical conversations shifted. I saw better 

outcomes when I focused on facilitating a productive conversation 

rather than vying to be the decision-maker. Have you ever found yourself 
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in a meeting that felt like it was running around in circles? Meetings 

where people seemed to be competing to see who could predict the most 

obscure potential failure? Meetings where past decisions were relitigated 

and everyone walked away less certain as to what the next steps were? 

Facilitating technical conversations is more important than being the 

decision-maker because unproductive and frustrating meetings demor-

alize teams.

Because large systems are typically complex, out of control meet-

ings can derail decision-making about the technology that backs them. 

Measurable problems help people prioritize what improvements to 

make and in which order, but when it comes to the nitty-gritty imple-

mentation details, it is not always possible to predict which options 

will have the biggest impact. Reasonable people are going to disagree, 

but pointless arguments need to be defused before they do too much 

damage.

Step 1: Define a Scope 
The best way to handle dysfunctional decision-making meetings is to 

prevent them from happening in the first place by defining and enforc-

ing a scope. I usually start meetings by listing the desired outcomes, the 

outcomes I would be satisfied with, and what’s out of scope for this deci-

sion. I may even write this information on a whiteboard or put it in a 

PowerPoint slide for reference. What do we want to accomplish in this 

meeting? If we get stuck, what other outcomes would be acceptable? 

Sometimes a team cannot agree because there is an actual blocker to 

agreement—a gray area that requires more research, for example. If that 

happens, what is the smallest decision we could make and still feel like 

the meeting was productive?

Once the meeting has a scope, I define areas that we should be able 

to agree are outside that scope. Often out-of-scope issues are decisions 

that are neither blockers nor dependencies. The hard ones do seem to be 

related to in-scope issues, so when in doubt, the team needs to be able 
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to articulate clearly how our in-scope decisions are affected by the issue 

being raised. For example, I had an engineering team that was charged 

with creating a seamless platform where engineers could run commands 

and have the heavy lifting of building, configuring, and deploying done for 

them. At the same time, the organization was also thinking about phas-

ing out one programming language in favor of another. To accomplish the 

first goal, we needed to make a few decisions about the architecture of 

the tool. Would we build a suite of separate tools, or would we build one 

tool that we could add functionality to? Whatever design pattern we chose 

could have been done equally well in either language, so any debate about 

programming languages would bring us no closer to reaching a decision 

on what we wanted the meeting to be about. Discussions about program-

ming languages were out of scope. Although the issue would ultimately 

affect implementation of the design pattern we selected, it was neither a 

blocker nor a dependency when picking the pattern.

With my engineers, I set the expectation that to have a productive, 

free-flowing debate, we need to be able to sort comments and issues into 

in-scope and out-of-scope quickly and easily as a team. I call this tech-

nique “true but irrelevant,” because I can typically sort meeting informa-

tion into three buckets: things that are true, things that are false, and 

things that are true but irrelevant. Irrelevant is just a punchier way of 

saying out of scope.

The purpose of thinking about comments made during meetings as 

true, false, or true but irrelevant is not to discourage people from bring-

ing up irrelevant details. When we think of contributions only in terms 

of true or false, we put pressure on individuals to save face by fighting 

to have the validity of their irrelevant facts acknowledged. By encourag-

ing people to think about their comments as in-scope and out-of-scope, 

we’re saying that the engineer speaking raised a valid point that should 

be considered in a different conversation.

At the same time, relevancy is often difficult for any one person to 

determine. You don’t want engineers to self-censor for fear of bringing up 
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something that’s out of scope. They might incorrectly assume something 

is out of scope because they have incomplete information. If they fail to 

raise the issue because they associate the true but irrelevant bucket with 

failure, they may fail to point out actual problems. A great meeting is not 

a meeting where no one ever mentions anything out of scope; it’s one 

where out-of-scope comments are quickly identified as such by the team 

and dispatched before they have derailed the conversation.

Step 2: Check for Conflicting Optimization Strategies
Even with a carefully defined scope, engineers might bump heads 

anyway. A quick trick when two capable engineers cannot seem to agree 

on a decision is to ask yourself what each one is optimizing for with their 

suggested approach. Remember, technology has a number of trade-offs 

where optimizing for one characteristic diminishes another import-

ant characteristic. Examples include security versus usability, coupling 

versus complexity, fault tolerance versus consistency, and so on, and so 

forth. If two engineers really can’t agree on a decision, it’s usually because 

they have different beliefs about where the ideal optimization between 

two such poles is.

Looking for absolute truths in situations that are ambiguous and 

value-based is painful. Sometimes it helps just to highlight the fact that 

the disagreement is really over what to optimize for, rather than pure 

technical correctness. What is the impact of each optimization? Can the 

negative effects of over-optimizing in one direction be mitigated?

Step 3: Perform Time-Boxed Experiments
If the disagreement is in scope and isn’t a matter of conflicting optimiza-

tion strategies, the best way to settle it is by creating time-boxed exper-

iments. Find a way to try each approach on a small sample size with a 

clear evaluation date and specific success criteria defined in advance. 

Becoming good at experiments is valuable for practically any organi-

zation. It’s the basis of iteration—you build something, collect data on 
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how it is performing, modify it to improve performance, and start the 

cycle over. This is how effective technology is built, so engineering teams 

should get comfortable using it to make hard decisions.

Momentum Killer: A History of Failure

Odds are good that the modernization effort you’re working on now is 

not the first attempt. Companies that successfully maintain their tech-

nology over time usually do not need to engage in a big modernization 

project after all. They are able to keep up through incremental change 

and regular maintenance. If you are running a team tasked with just 

cleaning up the debt and migrating onto more suitable technologies, it 

means the existing organization has failed to adapt.

Your specific situation might have a history of failure that is much 

deeper than slacking off on regular maintenance. Is this even the first 

modernization project? If not, each prior effort likely has left scar tissue 

on the organization that you need to consider. The more false starts a 

project has had, the harder it is to build the momentum necessary to 

succeed.

The first deliverables of a modernization effort have to take this his-

tory of failure into account. People aren’t pessimistic and uninspired by 

legacy modernization projects because they don’t care or don’t realize that 

modernization is important. They often feel that way because they are con-

vinced that success is impossible after experiencing a number of failures.

At the same time, I have yet to find a group of engineers who didn’t 

want to believe they could reach a better state. It’s surprisingly easy 

to change people’s minds about the inevitability of failure when you 

demonstrate that success is possible.

Inspired and motivated engineering teams run smoother and more 

productive modernization processes, so design your modernization 

strategy around front-loading value. What changes will produce the most 

immediate positive impact?
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I once worked for an organization that was facing a major challenge 

around the breakup of its monolith. The organization wanted to build 

a standardized platform that product engineering teams could use to 

deploy services to production easily—a reasonable ambition—but the 

product itself was three monoliths crammed onto a single VM. It was 

a monolith of monoliths, if you will. At the time it had been built, that 

architecture fit the business case, but in the years that followed, the orga-

nization had seen explosive growth. By the time I got there, the architec-

ture didn’t make sense anymore.

This organization was facing two problems. First, the platform ini-

tiative and the monolith breakup were blocking each other. The prod-

uct teams did not want to break up their monolith into services until 

they could deploy on a platform. Understandably, they did not want to 

put something on a release pipeline only to have to migrate it off when 

the platform arrived. The platform group, on the other hand, could not 

build a platform without requirements set by the product teams. They 

had to be able to build with the real needs of real services in mind—

services that did not exist because they had not been broken off the 

monolith yet.

The second problem was that the organization had actually tried 

both sides of this process before and failed at them, multiple times. It 

had tried to build a platform and had migrated some small, unimportant 

services that could be split off with minimum redesign. It had tried this 

at least three times by my estimation, each time losing momentum and 

failing to finish.

The organization had also tried to break up the monolith several 

times. Each time, it became overwhelmed by the complexity of the task. 

Splitting monoliths is rarely, if ever, only about copying and pasting 

some code into a different repository. When software is designed to be 

coupled, engineers usually take advantage of that fact and build on the 

easy access that coupling provides. In this case, that meant their test-

ing suites had a high concentration of end-to-end tests over unit tests. 
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It meant multiple components were accessing the same data store and 

sharing responsibilities over the same information. When their tightly 

coupled monolith became decoupled services, the tests would break, and 

a plan for keeping the data consistent between services would need to be 

developed.

Now facing their fourth attempt, optimism was pretty low. Everybody 

wanted to see the project be successful, but no one wanted to be the first 

team to invest the work only to be left holding the bag when the effort fell 

apart once again.

Prominent engineers on the platform group were asked to come up 

with a plan. They spent weeks collecting data and interviewing teams 

and eventually pitched the following compromise: they would pull 

the three monoliths onto their own release channels with their own 

VMs, thereby ensuring that the platform could support everything the 

product needed without requiring the product team to split anything 

immediately.

The problem with this plan was that it didn’t actually make anything 

better. Now instead of one release cycle with an owner and an orderly 

schedule determining when code hit each region and environment, the 

organization would have three release cycles with no one owning them. 

Every deploy would have to be carefully coordinated across multiple 

teams so that changes did not accidentally hit production for one mono-

lith early or late.

It wasn’t going to lower costs either. Commercial cloud providers 

charge per time usage of each VM. Three separate sets of VMs meant the 

proposed plan would easily double or even triple the organization’s host-

ing expenses.

I wasn’t even sure it would get off the ground. My team had been 

working hard redesigning a service that appeared to be fully separate to 

go onto the platform, and we were finding all sort of weird places where 

components were integrated in unexpected ways.
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What was the value of putting three monoliths on separate release 

channels?

When I asked that question, the engineers thought I was asking what 

the value of breaking up the monolith was. It took several conversations 

before I could get them to understand that I wasn’t questioning their goal. 

I was questioning their starting point. Starting with tripling the number 

of VMs would make updates more complicated for product teams and 

would increase spending unnecessarily. Why would the organization 

continue to invest in the process of breaking up the monolith if its first 

experiences with that process made work harder and more expensive?

The hard problems around legacy modernization are not techni-

cal problems; they’re people problems. The technology is usually pretty 

straightforward. Keeping people focused and motivated through the 

months or years it takes to finish the job is hard. To do this, you need to 

provide significant value right away, as soon as possible, so that you over-

come people’s natural skepticism and get them to buy in. The important 

word in the phrase proof of concept is proof. You need to prove to people 

that success is possible and worth doing.

The more an organization has failed at something, the more proof it 

needs that modernization will bring value. When there’s a history of failure, 

that first step has to provide enough value to build the momentum neces-

sary to be successful. The obvious problem with that is it means there’s a 

natural upper bound. There is a point where cynicism is so high, no single 

first step will ever provide enough value to prove the project will work.

Then what?

Momentum Builder: Inspiring Urgency

If you find yourself in this situation, you have a little due diligence to do 

first. The first question to ask is does this particular migration actually 

add any value at all? Or are we migrating because there’s a new shiny 
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technology in front of us? After all, monoliths are not universally bad. 

Plenty of successful companies run monoliths.

If you believe the migration does add value, the next question to ask 

yourself is will leadership make a commitment to prioritizing it? Some-

times you get lucky, and the change is one with a hard deadline and real 

consequences for it slipping.1

But if leadership isn’t prioritizing it and if you believe the migration 

has real business value but you’re weighted down with the cynicism of 

repeated failures, what you need is a crisis. Value is relative, after all. 

When things are working well and money is coming in, engineers can 

tolerate a multitude of sins. When things are bad, the perception of value 

added by nearly any change goes up. Dealing with crisis alters the orga-

nization’s internal calculus around risk.

When I was working in government, we would reach the upper bound 

on the value scale frequently. Some of the systems were so old, efforts 

to modernize them had literally been passed from generation to gener-

ation. Having a crisis became an essential component of how my teams 

operated—to the point that we might delay talking to an agency for a few 

weeks or months just to see whether a crisis would pop up that we could 

hook into.

Occasionally, I went as far as looking for a crisis to draw attention to. 

This usually didn’t require too much effort. Any system more than five 

years old will have at least a couple major things wrong with it. It didn’t 

mean lying, and it didn’t mean injecting problems where they didn’t 

exist. Instead, it was a matter of storytelling—taking something that 

was unreported and highlighting its potential risks. These problems were 

problems, and my analysis of their potential impact was always truthful, 

but some of them could have easily stayed buried for months or years 

without triggering a single incident.

1.	 Alas, security certifications do have some value. Those who have them tend to like to 
keep them.
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My favorite place to start was with security, followed by system stabil-

ity. One does not need much technical literacy to understand the impact 

and consequences of getting those issues wrong. There are also areas 

where even the best technical teams struggle from time to time, so you’re 

unlikely to come up empty-handed if you look for a potential crisis on 

either these two fronts.

Protecting Momentum: A Quota  
on Big Decisions

Now that you’ve done all the work of assessing the situation and orga-

nizing around it, you don’t want to let the organization itself undermine 

that work. People mean well, but any kind of change is risky, and saying 

yes to risk is difficult. Never fear. You can set the stage to get a yes to orga-

nizational change rather than a no.

First, you need to learn to talk about what you are doing in a way 

that minimizes the number of big decisions that need to be made—

particularly big decisions that include changes in process or anything 

that would need multiple stakeholders to sign off on and many rounds of 

approvals to change.

Decisions that require consulting many stakeholders are obvi-

ously difficult and painful to manage. People will naturally want to 

avoid them. Therefore, the more big decisions your proposal seems to 

include, the more likely people are going to want to slow down or delay 

it a quarter.

You may think that by giving projects fancy names, projecting budgets, 

and settling staffing questions up front you are being diligent, and you are! 

But you’re also making the project look like a series of big decisions, which 

for audiences insulated from the day-to-day pain of legacy systems seems 

too risky. Consider different ways of talking about the same project for dif-

ferent audiences. Some audiences will appreciate detailed planning, and 

other audiences will appreciate a high-level approach.
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Look for the following when you need to prune the number of big 

decisions that have to be made to move forward:

EXISTING PROGRAMS, PROJECTS, OR TECHNOLOGY    These are 

the best off-by-one errors. Riding the coattails of an already approved 

solution removes the need to seek out those approvals yourself.

ADVANTAGEOUS REGULATION    You can eliminate a big decision 

by making it seem like it was already made, but you can also eliminate 

a big decision by making it seem like the organization doesn’t have a 

choice. Compliance, particularly around security, is a great place to 

look, because those rules often come with specific deadlines when 

they must be done or the organization loses certifications, funding, 

and, potentially, clients.

AMBIGUOUS APPROVAL PROCESS    The saying “Ask for forgiveness, 

not permission” is popular among the startup crowd, but let’s face it, 

you’re better off asking for forgiveness if it’s believable that you might 

have been acting in good faith. If you’re bypassing a well-documented 

and well-known approval process, the outcome is less likely to end 

favorably than when the process is ambiguous or nonexistent.

Protecting Momentum: Calculating 
Opportunity Costs
Value add isn’t always a matter of technical outcomes. More often than 

not, business outcomes provide a clearer path to prioritization. Business 

outcomes could be profits, but if you’re working for a mission-driven 

organization, business outcomes could also be people served or impact 

observed. When running a multiyear modernization project, buy-in from 

the business side is essential. You can’t rely on them understanding the 

technical outcomes, so you should know how to illustrate the value of 

business outcomes by calculating opportunity costs.
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For those not familiar with the concept, an opportunity cost is money 

lost by not doing something because you have chosen another opportu-

nity instead. Typically, opportunity costs are expressed in expected prof-

its not realized, but in the context of legacy systems, we usually think of 

opportunity costs in terms of money saved.

Opportunity costs are better as thought experiments than actual cal-

culations. If it were possible to calculate accurately how much time and 

money we were going to spend on each potential approach to upgrading 

an existing system (or upgrading it versus leaving it be and building new 

features), maintaining legacy systems would be easy. But opportunity 

costs are useful in getting people to communicate their assumptions and 

build a case for why the organization should do what we want them to 

do. To provide value, estimates of opportunity cost need not be accurate. 

They need only provide insightful context of the trade-offs proposed by 

a given decision.

Calculating opportunity costs isn’t just about making more profitable 

decisions. It gives the team data with which to justify the moderniza-

tion activity to a wide variety of stakeholders. Investing in the health of 

your technology makes sense to everyone only when the technology is 

visibly failing, and by that point, the problem is much larger and much 

harder to solve. Senior management tends to be skeptical of any kind of 

cleanup activity—fearing that it will slow the organization’s velocity 

unnecessarily.

My first big project at Auth0 was getting a handle on our notifica-

tions system. Auth0 was maintaining a shared email server for testing 

and development purposes only. Nevertheless, customers occasionally 

neglected to move on to a dedicated provider when going to produc-

tion even though plenty of free options were available. Customers were 

rate-limited on the shared provider precisely because it was not intended 

for production, but when they hit their limit, we dumped their email into 

a retry queue so that they could be sent at a later point.
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We assumed—wrongly as it turned out—that customers would go 

over their quota gradually, as a result of natural traffic growth. Had this 

been the case, retrying email over time would have made sense. A handful 

of email messages get delayed, and as those delays become more common, 

it nudges the customer onto a dedicated provider instead. In reality, cus-

tomers were much more likely to catapult over the limit with activities 

that would trigger email to all of their users—hundreds if not thousands 

of emails all at once.

That created a situation where the retry queue would fill up to the 

point where 20 workers would need hours of processing just to clear the 

messages. It affected the performance of the service for everyone and set 

off a page to whoever was on call—all over a bunch of email that most of 

the time no one actually wanted delivered in the first place.

We decided to change the way rate-limiting worked so that instead 

of retrying email, the shared provider would drop them when the limit 

was exhausted. That was a lot of migration work, and not only did we 

have to change the rate-limiting algorithm, but we also had to change 

the technology that was doing the rate-limiting in the first place. Our 

existing rate-limiting solution was in the process of being replaced by 

another solution. We needed to change our architecture and then figure 

out a backward-compatible strategy for our on-premises customers who 

upgraded at a slower cadence than cloud customers.

All of this was a lot of work, and our motivation for investing in it was 

very personal: when the retry queue filled up, it paged someone on our 

team to go fix it. This was both annoying and disruptive. The interrup-

tion was made doubly frustrating by the fact that the official resolution 

to this issue in our playbook was to drop all the email in the retry queue 

anyway. It seemed pointless to ask a human to wake up at 3 AM to do 

what a computer should be able to do automatically.

What we didn’t think about until we were in the middle of the 

change is how much money not trying to send hundreds of thousands 
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of pointless emails was going to save us. We got a certain number of 

email messages per month from the company that ran the shared email 

server for us. When we went over that limit, our account with this pro-

vider automatically bought 50,000 more emails for $20 and sent us an 

alert letting us know it had done so. When we started rolling out this 

change, we were receiving about 10 such alerts a day, or $200 in addi-

tional email. A single incident might cost us anywhere from $1,000  

to $2,000.

When the changes went live, we literally saved the organization tens 

of thousands of dollars just by getting rid of email that our customers 

didn’t want sent in the first place. The whole project had been a huge 

win, but the cost savings gave us political capital that we could spend 

both to justify why we hadn’t spent that time adding new features and to 

get buy-in for similar maintenance work later.

It can be tricky getting started with opportunity costs because the 

number of potential opportunities to calculate can seem infinite. Remem-

ber that opportunity costs are thought experiments and rhetorical 

devices. You don’t need to list the costs of everything your team might  

be doing, just the activities that strengthen the case for what you want to be  

doing. This means highlighting how activities with high prioritization 

might be more expensive than the organization is assuming and describ-

ing in business-friendly language how much value there is to be gained by 

doing things the way you’d like them to be done.

When looking for the right opportunities to compare against, con-

sider activities from these three general categories.

The Cost of Not Adding New Features
This cost typically is calculated by estimating profits or impact of new 

features. It is larger in small organizations where the development team 

may not be big enough to have broken out into distinct units. Shipping 

a new feature with a small organization locks up a greater percentage of 
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the total staff, which means they are not available to do modernization 

work or contribute to other projects.

The pressure to delay maintenance work on legacy systems in favor 

of new features and products is constant at most organizations. There’s 

never a good time for it, although it always seems that if the organization 

could just get through the latest challenge, things will calm down and 

the cleanup can begin. To avoid endless procrastination, try to align the 

new features with the goal state. For example, if migrating from a mono-

lith to services, you might want to use the new feature to identify the first 

service to peel off.

The Cost of Not Fixing Something Else
Legacy systems rarely have only one thing wrong with them. Each step 

in the modernization process is a decision between problems that could 

be fixed with the same time and energy. I’ve already described vari-

ous methods for choosing what to fix and when. Opportunity costs are 

really about selling the strategy up the chain of command. Doing this is 

easier if the organization has defined service-level objectives (SLOs) or has 

service-level agreements (SLAs). Both SLOs and SLAs equate performance 

levels with consumer value. SLAs may go as far as defining a specific 

monetary amount the customer can be reimbursed when performance 

dips below a specific level.

SLOs and SLAs help the team prioritize fixes by how much pain the 

problem is causing for users. They are a good thing to have even if you 

feel confident that you won’t need to justify what you modernize and 

when. But if you do have to justify your strategy, you should be able to 

study historical data and project under what conditions a given system 

or part of a system might violate its SLO. Often this is heavily influ-

enced by scale, so it’s a good opportunity to leverage the business side’s 

ambition to your advantage: look at what level of growth the business 

is expecting and calculate opportunity costs based on how that level of 

growth will affect SLOs.
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The Cost of Not Deprecating in Favor of a Different Solution
This is a particularly difficult cost to calculate because deprecations do 

not complete all at once. For a period of time during a migration or mod-

ernization, it’s likely that an organization will be maintaining both the 

old solution and the modern one, especially if the new solution requires 

code changes to be deployed. So, in addition to the cost of either pur-

chasing or developing the new solution, you have to factor in the cost of 

decommissioning the old solution. How many teams does that affect? 

What are they not working on while they make those changes? What is 

the long-term maintenance burden of the old solution versus the new 

one? Depending on whether the new solution is hosted/software as a ser-

vice (SaaS) or just a new custom-built tool, the considerations could look 

very different. 





6
COMING IN MIDSTREAM

S o far, this book has been operating under the assumption that you 

are initiating the modernization effort at your organization. We’ve 

considered strategy that assumes you’re on-site to do the planning in 

the first place. The organization might have attempted to modernize 

before you were employed there, but I’ve assumed that the current mod-

ernization effort is something you started. However, most moderniza-

tion efforts I’ve been involved with in my career have not looked like 

this. Organizations tend to underestimate the amount of work and level 

of investment modernization requires. An unfortunate consequence of 

that assumption is that they do not seek out expertise until they are in 

trouble.

In my career, the number of modernization efforts I have kicked off is 

dwarfed by the number of modernization efforts I have parachuted into. I 

would love to have the luxury of participating in the planning and assess-

ment phases, but rarely do technical leaders think that is necessary.
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This chapter describes what to do when you’re coming in midstream 

and the project is already in trouble. Activities can get messy when you’re 

attempting to change legacy systems, and this chapter is full of emer-

gency “break glass here” techniques for untangling the mess.

When a project takes months or years of sustained commitment, no 

shortage of things can go wrong. In Chapter  3, I mentioned that most 

modernization stories begin with failure. Coming in when plans are 

already in motion and not going well limits your options. Pushing the 

reset button and going back to the drawing board may do more harm 

than good. A combat medic’s first job is to stop the bleeding, not order 

a bunch of X-rays and put together a diet and exercise plan. To be effec-

tive when you’re coming into a project that has already started, your role 

needs to adapt. First you need to stop the bleeding, and then you can do 

your analysis and long-term planning.

Finding the Bleed

Of course, technology projects do not literally bleed; therefore, identify-

ing the most urgent issues can be a challenge. In this chapter, we dis-

cuss the situations I have seen the most often, but I want us to start with 

some general guidance first.

Find responsibility gaps. There will always be a disconnect between 

responsibilities formally delegated and actual responsibilities or func-

tionality. Conway’s law tells us that the technical architecture and the 

organization’s structure are general equivalents, but no system is a 

one-to-one mapping of its organization. There are parts of the system 

with shared ownership, parts that no one is responsible for at all, parts 

where responsibilities are split in unintuitive ways. When looking for 

bad technology, debt, or security issues, the most productive places to 

mine are gaps between what two components of the same organization 

officially own.
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Organizations tend to have responsibility gaps in the following areas:

●● So-called 20 percent projects, or tools and services built (usually 

by a single engineer) as a side project.

●● Interfaces. Not so much visual design but common components 

that were built to standardize experience or style before the orga-

nization was large enough to run a team to maintain them.

●● New specializations. Is the role of a data engineer closer to a data-

base administrator or a data scientist?

●● Product engineering versus whatever the product runs on. Dev-

Ops/site reliability engineering (SRE) didn’t solve that problem; 

this just moved it under more abstraction layers. If you’ve auto-

mated your infrastructure configuration, great—who maintains 

the automation tools?

When there’s a responsibility gap, the organization has a blind spot. 

Debt collects, vulnerabilities go unpatched, and institutional knowledge 

is gradually lost.

Study the cadence, topics, and invite lists of meetings. Too often, 

meetings are maladapted attempts to solve problems. So if you want to 

know what parts of the project are suffering the most, pay attention to 

what the team is having meetings about, how often meetings are held, 

and who is being dragged into those meetings. In particular, look for 

meetings with long invite lists. Large meetings are less effective than 

small meetings, but they do convincingly spread the blame around by 

giving everyone the impression that all parties were consulted and all 

opinions were explored. Meetings with ever-expanding invite lists sug-

gest something is wrong in that area of the project.

Other red flags around meetings include teams that are having plan-

ning sessions longer than an hour and teams where check-in meetings 

are scheduled with less than 48 hours’ notice.
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Pay attention to the rhetoric of career-minded leaders. It’s harsh 

to say it, but people react to a struggling project in basically two ways. 

There are the people who roll up their sleeves and focus on helping, even 

if helping means unglamorous work not usually part of their responsi-

bilities, and then there are the people who spend the time they could be 

helping drafting excuses that explain why the failure is not their fault. 

Large, messy, in-progress projects will likely have a mix of both people; 

look for the second type. The problems they are running away from tend 

to be the messiest ones.

Look for compounding problems. Coming in midstream means the 

project hasn’t officially failed yet, and what people are getting wrong, they 

are probably doubling and tripling down on. Projects are rarely doomed 

by one critical error. It’s far more likely that the organization was drown-

ing in dysfunctional structures for months leading up to the failure.

All of these examples are places where natural human reactions 

actively make the problem worse instead of better. Having unclear 

responsibilities means teams feel like they are asked to pick up the slack 

for someone else too often. They become self-righteous and start ignor-

ing tasks that aren’t part of their jobs as they see it, making the situation 

worse. Meetings slow down work, which almost always leads to more 

meetings. Career-minded leaders claim failure was beyond their con-

trol, implicitly blaming the team. They make their employees feel unsafe, 

which encourages them to avoid the problem areas as well.

If a project is failing, you need to earn both the trust and respect of 

the team already at work to course-correct. The best way to do that is by 

finding a compounding problem and halting its cycle. If an organization 

is having too many meetings, cut all of them and gradually reintroduce 

them one by one. If career-minded leaders are damaging psychological 

safety, start educating people about blameless postmortems and just cul-

ture. Talk to people and observe how the team behaves as a unit. When 

you can, it is always better to set up someone else for victory rather than 

solving the problem yourself.
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The rest of this chapter describes various in-progress failures I have 

seen and what we did to pull the project out of a death spiral.

Mess: Fixing Things That Are Not Broken

We’ve already looked at a number of reasons organizations try to fix 

things that aren’t broken.

●● They assume new technology is more advanced than older 

technology.

●● They aspire to artificial consistency.

●● They confuse success with quality.

●● They optimize past the point of diminishing returns.

The preeminent target of an organization’s desire to fix things that 

are not broken is the monolith. A monolith in the context of software 

engineering is a tightly coupled application that configures a variety of 

functions and features so that they run on a single discrete computing 

resource. Monoliths were a problem that web development invented. 

Before the internet reached the scale that made distributed computing 

possible, there was little reason not to design programs to run on one 

machine. Lately, it seems like no engineer can bear to suffer a monolith 

to live. Monolith is the ultimate dirty word. Engineers complain about 

them endlessly. No one ever wants to admit to building one. Every suc-

cessful large technical organization seems to have at least one confer-

ence talk about the heroic multiyear campaign it staged to remove a 

monolith.

But if monoliths are so awful, why do so many organizations end up 

with them?

The opposite of a monolith is service-oriented architecture. Instead of 

designing the application to host all its functionality on a single machine, 

functionality is broken up into services. Ideally, each service has a single 
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goal, and typically each has its own set of computing resources. The appli-

cation is created by coordinating the interaction of these services.

Building a product from the beginning with a service-oriented archi-

tecture is usually a mistake. Because you don’t have the proper product/ 

market fit figured out yet, integrations and data contracts become a 

major pain point. A data contract is an implicit agreement written in 

code between two services that must communicate with one another. 

We call it a contract because both sides need to send and receive data in 

the same format for the communication to work. If the server decides to 

change what data it’s sending and the client is not updated accordingly, 

communication between the services breaks down.

When a team is pivoting and iterating, when the feedback loop 

between the customer and team is at its shortest, data contracts get broken 

all the time. Features get added, removed, or moved around. Assumptions 

get made and either validated or thrown out. Before organizations find 

a product market fit, they can pivot in wild and unpredictable ways. For 

example, YouTube started as a video dating service. Groupon started as a 

platform for organizing social actions. Slack started as an online multi

player video game. Slack was actually the second time its founder had 

started building an online game only to realize that the real product was 

something completely different. His earlier startup, Flickr, had the same 

origin story.

In general, the level of abstraction your design has should be inversely 

proportional to the number of untested assumptions you’re making. The 

more abstractions a given design includes, the more difficult changing 

APIs without breaking data contracts becomes. The more often you break 

contracts, the more often a team has to stop new work and redo old work. 

When the product hasn’t even launched yet, forcing teams to redo work 

over and over again doesn’t improve the odds of success.

That’s why monoliths are so great during the early stages of a product. 

They are tightly coupled, but their complexity and level of abstraction are 

low. When an engineer makes a change that breaks another part of the 
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system, she knows it immediately and has access to the code to fix the 

problem she caused.

Once again, focus on the balance between complexity and coupling. 

Complex systems have large surface areas. Every process takes more 

steps, and every part needs its own team to handle its maintenance cor-

rectly. The downsides of complexity can be mitigated by running more 

teams and facilitating communication and knowledge sharing between 

them. If an organization is able to do that, it can achieve the benefits that 

can come from making systems more complex. Well-built complex sys-

tems often allow for greater customization. They can operate at a larger 

scale with greater flexibility.

Tightly coupled systems, on the other hand, achieve flexibility by 

strategically breaking themselves. Every programmer has deployed at 

least one cheap hack to get around an API or inheritance pattern, usu-

ally tacking on a comment that reads “Ugh, do this the right way later.” 

Tightly coupled systems become messy because they accrue debt with 

each workaround that is deployed. The downsides of tight coupling 

can be mitigated with engineering standards dictating how to extend, 

modify, and ultimately play nicely with the coupling. They can also be 

mitigated by honoring the engineering team’s commitment to refactor-

ing on occasion. The benefits of tight coupling are that one person can 

hold enough knowledge of the system in her head to anticipate behav-

ior in a variety of conditions. The architecture is simpler and, therefore, 

cheaper and easier to run.

A system has a lifecycle. When it is new, it’s often run by a small 

team and has much more to gain from being tightly coupled than it does 

from being complex. Small teams building new things frequently throw 

everything out and start over. Small teams have an easier time honoring 

engineering standards because there are fewer people to bring to consen-

sus. Even when small teams are at big organizations, they tend to build 

monoliths because the advantages of a monolith are pretty compelling 

when you don’t know whether what you’re building will be successful 
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and need to change things fast, even if your method of changing them is 

poor. At small organizations, we find people are doing several different 

jobs at once with roles not so clearly defined. Everyone in the same space 

is using the same resources. In short, small organizations build mono-

liths because small organizations are monoliths.

Large organizations benefit more from complex systems because 

they have robust operational units to support them. They have the teams 

to run and maintain all the moving parts of the system—its platform, its 

monitoring, and so on. They rarely throw everything out and start over, 

because they operate at a scale where trying to do that would mean a 

major migration. Large organizations do well when they transition their 

monoliths to services, because the problems around communication and 

knowledge sharing that need to be solved to make complex systems work 

are problems that large organizations have to solve anyway.

But nobody starts a large organization, just as nobody gives birth to 

a teenager. They grow up, and as they grow up, the ideal point on the 

complexity–coupling spectrum shifts. Most monoliths will eventually 

have to be rethought and redesigned, but trying to pinpoint when is like 

trying to predict the exact moment you will outgrow a favorite sweater. 

Some organizations will wait too long, and some will do it too soon. 

Don’t believe anyone who tells you that ditching your monolith is the 

solution to all your problems. Monoliths can and do scale. Sometimes 

they are more expensive to scale, but the notion that it is impossible to 

scale monoliths is false. The issue is that by still having a monolith, you 

might be giving up benefits that could have a huge impact on operational 

excellence.

Fixing things that are not broken means you’re taking on all the risks 

of a modernization but will not be able to find the compelling value add 

and build the momentum that keeps things going. Nontechnical stake-

holders will see time and money spent and not understand what the 

point of it was. This demoralizes engineers and violates trust with the 

team. Fixing the wrong thing makes it harder to secure the resources to 
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finish and makes it much harder to sell the organization on future mod-

ernization efforts that might be more necessary.

Figuring Out Whether Something Needs to Be Fixed
Treating monoliths as inherently bad pushes organizations into fixing 

them when they’re not broken. I had a friend who used to say her great-

est honor was hearing a system she built had to be rewritten in order 

to scale it. This meant she had built something that people loved and 

found useful to the point where they needed to scale it. Most people in 

technology do not go into building a system with that expectation. The 

assumption is that the best way to build something is to build it in such 

a way that it doesn’t need any significant changes for a long time. Opti-

mizing to minimize rewrites might seem like a sensible strategy, but if 

not properly reined in, it invites behavior that ultimately makes systems 

more brittle.

Neal Ford, director and software architect at ThoughtWorks, had 

a saying I’m fond of repeating to engineers on my teams: “Metawork is 

more interesting than work.” Left to their own devices, software engi-

neers will almost invariably over-engineer things to tackle bigger, more 

complex, long-view problems instead of the problems directly in front 

of them. For example, engineering teams might take a break from work-

ing on an application to write a scaffolding tool for future applications. 

Rather than writing SQL queries, teams might write their own object 

relational mapping (ORM). Rather than building a frontend, teams might 

build a design system with every form component they might ever need 

perfectly styled.

Decisions motivated by wanting to avoid rewriting code later are usu-

ally bad decisions. In general, any decision made to please or impress 

imagined spectators with the superficial elegance of your approach is a 

bad one. If you’re coming into a project where team members are fixing 

something that isn’t broken, you can be sure they are doing so because 

they are afraid of the way their product looks to other people. They are 
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ashamed of their working, successful technology, and you have to figure 

out how to convince them not to be ashamed so that they can focus on 

fixing things that are actually broken.

Set the expectation that all systems need to be rewritten even-

tually. Engineers at the highest level write programs that have to be 

revised. No one is smart enough to anticipate every new use case or 

feature, every advancement in hardware, or every adjustment or shift 

that might require code to be rewritten. What works for a large organi-

zation might suffocate a small one. Good technologists should focus on 

what brings the most benefit and highest probability of success to the 

table at the current moment, with the confidence of knowing they have 

nothing to prove.

This requires getting consensus from engineering on what it means 

to be broken in the first place. I’ve mentioned SLOs/SLAs before, and I 

will point to them again: define what level of value a system needs to 

bring to the user. If an ugly piece of code meets its SLO, it might not be 

broken, it might be just an ugly piece of code. Technology doesn’t need to 

be beautiful or to impress other people to be effective, and all technol-

ogists are ultimately in the business of producing effective technology.

But . . . What About Conventions?
Setting the expectation that all code will eventually need to be rewrit-

ten does mean that occasionally code needs to be rewritten to bring 

it in line with modern conventions or to clear debt. The issue of what 

is worth fixing is full of nuance. When I talk about not fixing things 

that aren’t broken, I’m talking about not breaking up monoliths for the 

sake of breaking up monoliths and not rewriting code to fit the newest 

trends for the sake of looking good to outsiders. There are plenty of 

times when changes needed for long-term performance are hard to jus-

tify with existing SLOs alone. Technical debt rarely effects performance 

in a predictable way. A system could badly need a refactor but look fine 

on a monitoring dashboard until the day it falls apart all at once. In 
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deciding whether to spend the time and money realigning a system 

with a given convention, here are some other ways to think about value 

add other than SLOs:

AGE    The older the convention, the more likely it is to be buried 

deeply in various parts of a modern stack. Legacy systems that don’t 

conform find that the tools and options available to them get smaller 

and smaller.

JUSTIFICATION    Why do people who promote this convention pro-

mote it? Is it good security practice? Have there been well-documented 

cases of the convention preventing serious failure?

ADVOCATES    Where is this convention coming from? Is it a big 

organization many other organizations will have to do business with?

OPENNESS    Is the convention based on or tied to open standards? 

Are people blocked from adopting this convention by licensing or 

other proprietary issues?

When Does Breaking Up Add Value?
Since this section has spent a lot of time debunking the suggestion that 

monoliths are inherently bad and need to be broken up, it makes sense to 

close it with some advice on when to break up monoliths.

Monoliths can be scaled, but depending on how activity is grow-

ing, they may be difficult to scale efficiently. For example, if one part of 

the system is using more resources than other parts, it makes sense to 

change to an architecture that allows that piece to be given additional 

resources while not affecting the other parts of the system.

More often than not, monoliths are broken up because of the way 

the organization is scaling. If you have hundreds or even thousands of 

engineers contributing to the same code base, the potential for miscom-

munication and conflict is almost infinite. Coordinating between teams 



108    Kill It with Fire

sharing ownership on the same monolith often pushes organizations 

back into a traditional release cycle model where one team tests and 

assembles a set of updates that go to production in a giant package. This 

slows development down, and more important, it slows down rollbacks 

that affect the organization’s ability to respond to failure.

Breaking up the monolith into services that roughly correspond 

to what each team owns means that each team can control its own 

deploys. Development speeds up. Add a layer of complexity in the form of 

formal, testable API specs, and the system can facilitate communication 

between those teams by policing how they are allowed to change down-

stream interactions.

The Compounding Problem: Diminishing Trust

Large, expensive projects kicked off to fix things that are not broken 

break trust with the nontechnical parts of the organization. It inconve-

niences colleagues, frustrates them, and sometimes confuses them. A 

modernization effort needs buy-in beyond engineering to be successful. 

Spending time and money on changes that will have no visible impact on 

the business or mission side of operations makes it hard to secure that 

buy-in in the future.

Unfortunately, software engineers are socialized around the idea that 

their discipline is so difficult, nonengineers are incapable of understand-

ing even the most basic concepts. Resistance from the nontechnical 

side of an organization tends to be dismissed as ignorance. That means 

once trust is violated, a cycle is started. The harder securing buy-in for 

modernization becomes, the more convinced engineering becomes that 

the problem is their nontechnical colleagues’ intelligence and common 

sense. Engineering stops even trying to speak to the values and needs of 

the business side of the organization. The more out-of-touch their pro-

posals become with the organization’s needs, the less trust engineering 

will command.
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Solution: Formal Methods

Course-correcting a team that is fixing things that are not broken is a 

long process. The only thing worse than fixing the wrong thing is leaving 

an attempt to fix the wrong thing unfinished. Half-finished initiatives 

create confusing, poorly documented, and harder to maintain systems. If 

you’re coming in early enough that not much has been moved around, by 

all means, stop the team from doing what it’s doing.

Otherwise, you have to stay committed. Your first task has to be get-

ting their initiative to a place where you can stop work without creating 

a Frankenstein monster. Once you’ve figured out where that point is, the 

next challenge is figuring out how to tack on value to the process so that 

the organization can recover from its mistake stronger.

Monolith breakups and other large-scale redesigns offer an opportu-

nity to change process as well as change code. A silver lining in fixing 

something that is not broken can be found in treating the fix as an 

opportunity to experiment with and improve engineering practices. If 

the organization lacks proper testing, take the opportunity to build out 

and mature test suites. If the organization doesn’t have monitoring, con-

sider what tools might work for the new architecture. If the organization 

has never done incident response or on-call rotations, use the creation of 

new services to establish those practices.

If the organization does all of these things already, introduce formal 

methods.

Formal methods are techniques for applying mathematical checks to 

software designs to prove their correctness. In attempting to prove cor-

rectness, formal methods can highlight bugs that would otherwise be 

impossible to find just by studying the code. The most accessible form of 

formal methods is called formal specification. It consists of writing out the 

design as a specification with a markup language that a model checker 

can parse and run analysis on. These model checkers take the valid inputs 

defined by the spec and map out every possible combination of output 
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based on the design. Then they compare all those possible outputs to the 

rules the spec has defined for valid outputs, looking for a result that vio-

lates the assertions of the spec.

As of this writing, formal methods are not commonly used by soft-

ware teams. The learning curve is steep, and resources for beginners 

are practically nonexistent. The community of users itself is small 

and skewed slightly toward academia. However, an engineering team 

doesn’t need everyone to know how to write a spec to start using formal 

methods. An organization can start with just one engineer who works 

with other teams to draft and refine specs, the same way engineering 

teams often have a small pool of designers they work with to draft and 

refine UX.

Formal methods help engineering teams consider a broader array 

of conditions and scaling factors. They also improve communication 

between teams by giving everyone a reference detailing the design and 

expected behaviors of a system.

If you can’t find anyone who can make sense of TLA+ syntax or Alloy 

or Petri nets, one slightly easier way to begin introducing formal meth-

ods is with contract testing. Contract testing is a form of automated test-

ing that checks whether components of a system have broken their data 

contracts with one another. When breaking up a monolith into services, 

honoring these contracts or clearly communicating when they need to 

be broken is essential to building, integrating, and maintaining a high-

performing system. Contract testing is not a form of formal specification 

per se, but rolling it out follows roughly the same process. It requires 

every endpoint to have a spec written in a specific markup language that 

the contract testing tool can parse and check for inconsistencies.

Strongly typed languages sometimes can do contract testing without 

any additional tools if repositories are set up correctly. For example, if the 

service owner is responsible for writing the endpoints, the client librar-

ies, and the mocks of the service for testing, they can test for breaking 

changes on their own.
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Mess: Forgotten and Lost Systems
Large organizations lose systems. I don’t mean the systems go down; I 

mean the organizations forget they have them and occasionally lose the 

records of their existence. Entire product lines are designed to handle 

this problem: searching for VMs on networks, transversing connections, 

inspecting dependencies, and managing inventory. It’s amazing how 

common it is, because this seems like something that just shouldn’t 

happen. How can an organization continue to spend money on some-

thing it does not know exists?

When an organization is in startup mode, it typically has a small engi-

neering team that handles basically everything. Groups then constantly 

break off and reform as the architecture is built out. At some point, an 

organization likely will start to create divisions and delegate ownership, 

but that’s a game of musical chairs that will often leave some parts of the 

architecture without a seat when the music stops.

Software without maintainers is a key place to find all kinds of mon-

sters, but how do you find what is unowned and forgotten?

One potential approach is to trace the activities of the engineers who 

were around when things were small. In those early days, strong engi-

neers tend to hop from project to project, applying themselves wherever 

urgency and interest coincide. Not much thought is likely given to tran-

sition planning, because the software is new and would be stable for a 

while without much in the way of maintenance. If the software is par-

ticularly well made, it might slip into obscurity, quietly humming away 

completely unnoticed because it has never seemed to need maintenance 

before. Trace the movements of those early engineers as the software was 

originally being built. What did they touch, and who owns it now?

Another option is to follow the money. Forgotten services still con-

sume resources the organization must pay for. At the least, some record 

of those transactions should exist. If you’re using a commercial cloud 

provider, start tagging your instances automatically. Doing so will high-

light images that are unaccounted for.
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The Compounding Problem: Crippling 
Risk Avoidance
When an architecture is so complex or so old that entire pieces of it are 

forgotten, engineers can feel as if they are working in a minefield. No one 

plans effectively for the unknown unless they plan effectively for failure. 

Without the ability to accept and adapt to failure, the unknown traps 

individual contributors in a catch-22. Changing a system with unclear 

boundaries and missing components is likely to trigger an outage. Not 

taking action increases the odds of failure eventually, but not failure that 

can be traced to one particular decision or action.

Engineers make decisions that are worse for the health of systems 

overall but are less likely to trigger outages that they can be blamed for as 

individuals. Maintaining the system becomes a game of hot potato, with 

every passing year increasing the risks to greater and greater extremes. 

Although many of the engineers caught in this trap understand they are 

choosing the worst possible outcome for everyone, the level of complex-

ity of the system makes it impossible for them ever to feel like they know 

the system well enough to change it safely.

Solution: Chaos Testing
Ultimately, you must accept that it might not be possible to track down 

and account for all systems. Even when you find them, figuring out 

exactly what they do could be difficult. If you’re coming into a project 

with an organization that has forgotten systems, you’re probably deal-

ing with a team that is paralyzed by this reality. The engineers might 

have gotten stuck in the planning phase as they try fruitlessly to figure 

out whether the latest inventory is correct. They are probably scared of 

deploying any changes at all to any system, for fear of finding another 

forgotten system that’s also a critical dependency.

You have to be comfortable with the unknown. You can do that by 

emphasizing resilience over reliability. Reliability is important, but too 
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many organizations use reliability to aim for perfection, which is the 

exact opposite of what they should be trying to accomplish. Site reli-

ability engineers typically talk about performance in terms of number 

of nines—that is, whether a service is up and running 99.9 percent of 

the time (three nines), 99.99 percent of the time (four nines), or 99.999 

percent of the time (five nines). Since these numbers are calculated as 

part of SLAs and since SLAs are written into the contract between the 

organization and its customer, nontechnical people in the organization 

tend to misunderstand the value of the number of nines. More nines are 

not always better.

Five nines means a service has fewer than 5.25 minutes of downtime 

per year. So if something goes wrong, an engineer has only a few minutes 

to wake up, log on, diagnose, and fix it. And even if she is capable of pull-

ing that off, failure can happen only once a year. A former colleague of 

mine and an experienced engineer from Google used to like to say, “Any-

thing over four nines is basically a lie.” The more nines you are trying 

to guarantee, the more risk-averse engineering teams will become, and 

the more they will avoid necessary improvements. Remember, to get five 

nines or more, they have only seconds to respond to incidents. That’s a 

lot of pressure.

SLAs/SLOs are valuable because they give people a budget for fail-

ure. When organizations stop aiming for perfection and accept that all 

systems will occasionally fail, they stop letting their technology rot for 

fear of change and invest in responding faster to failure. That’s the idea 

anyway. Some organizations can’t be talked out of wanting five or even 

six nines of availability. In those cases, mean time to recovery (MTTR) is a 

more useful statistic to push than reliability. MTTR tracks how long it 

takes the organization to recover from failure.

When we encountered systems that had been forgotten and we 

couldn’t figure out what they were doing, we would usually just turn 

them off and see what happened. For an older generation of technolo-

gists, this seems reckless, but modern-day engineering teams refer to this 
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practice as chaos testing. Resilience in engineering is all about recovering 

stronger from failure. That means better monitoring, better documenta-

tion, and better processes for restoring services, but you can’t improve 

any of that if you don’t occasionally fail.

The rationale around provoking failure deliberately is that if some-

thing unexpected does happen, it happens when everyone is on high 

alert and at a time the organization scheduled specifically for that pur-

pose. When we turned off a system, we waited for someone to complain. 

That person was either the system owner or the owner of a downstream 

dependency, but either way, we ended the experiment with more infor-

mation about what the system was doing than we started with.

If no one complained, we tended just to leave the system off and 

move on. Having one less component to modernize was still a win. Do 

we sometimes find out months later that the system we turned off was in 

fact doing something essential? I won’t lie; it does occasionally happen, 

but that’s why investing in testing and monitoring is so important for 

systems at scale of any age. If something is important enough to build 

a component specifically to do it, there should be some way of alerting 

system owners when it doesn’t happen.

Mess: Institutional Failures

If a bad pattern is used in one part of a system, it’s everywhere in the 

system. Sometimes an organization doesn’t know that string concate-

nation on database queries is a bad idea (for example). More likely, the 

bad pattern you’re seeing is a result of shifting norms around technical 

best practices. Remember the days when Facebook thought HTTPS could 

be optional? What would have been secure practice a few years ago is 

already riddled with easily exploitable holes.

It stands to reason, therefore, that if you have a piece of software no 

one has put much thought into maintaining for a few years, there are 

going to be problems, and those problems are going to be systemic. They 
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will be patterns repeated throughout the system. What reason would the 

engineering team have to do things differently?

Lately, I’ve been seeing this kind of rot taking hold within months, 

rather than years. Particularly on security issues, the turnaround between 

secure and cracked seems to grow shorter and shorter all the time. If no 

one has touched something in six months, that is a good place to start 

the search for problems.

Once you’ve found a problem, the next step is to determine whether 

it’s a pattern or just a mistake. Security vulnerabilities from out-of-date 

dependencies are obviously not a pattern. Accidentally removing some-

thing that was once in the code is not a pattern. Not escaping inputs, stor-

ing secrets in plaintext, returning more information than the requester 

needs—those are patterns.

Code-checking software can sometimes be useful in tracking down 

all the instances of a bad pattern. But some problems do not reveal them-

selves easily and require actual human beings. If you’ve found such a 

problem, the first thing to do is define the context around the code. What 

is it doing? What type of requests trigger it, and what processes and ser-

vices does it call? The nice thing about patterns is that if you know their 

context, you can predict them. If a piece of bad code calls a database, the 

natural place to look for other pieces of bad code is other places that call 

that database.

In the worst-case scenario, the problems cross application boundar-

ies. Part of analyzing the context of a bad pattern should be its provi-

dence. In other words, who built this thing? If the same team built two 

applications at about the same time, it’s unlikely completely different 

development practices were used.

The Compounding Problem: No Owners

The trouble with systemic issues, whether they’re in the code base or the 

culture, is that no one actually owns them. If they affect everyone and 
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everyone participates in them, the only people with the authority to fix 

them are the people the least equipped to do so. A CEO or cabinet sec-

retary isn’t going to have much luck neglecting their responsibilities in 

order to dig into implementation issues of one system, no matter how 

large or critical. Such a leader could delegate the responsibility to a more 

tactical subordinate, but that appointee would likely find themselves 

fighting endless political battles.

Problems that impact multiple organizational units require coordi-

nation across those boundaries to fix. The more importance an organiza-

tion gives those boundaries—building budgets and hiring cycles around 

them—the more people at the top of those units will police their bound-

aries. This sets up political battles that are often self-reinforcing. Leaders 

have their fiefdoms. They fought hard for the resources they have. If they 

reroute even a small portion of those resources to institutional problems 

while their peers ignore the problem and the problem is not solved, those 

resources could be permanently forfeited. When there is no precedent 

for cross-functional collaboration, who will take on the risk of being the 

first mover?

Solution: Code Yellow

Systemic problems almost always appear midstream. When we find 

them, I like to document these issues for the wider organization as BOLOs 

(for be on the lookouts). We send out a short announcement explaining the 

problem in plain English, pointing to specific examples we have found 

and establishing a point of contact on our team for other teams to reach 

out to if they find similar issues. If the problem is particularly serious, we 

will set up short talks about the issue, demonstrating what the bad code 

looks like, how to recognize it, and describe appropriate and inappropri-

ate fixes. Sometimes we reach out to other teams specifically.

Broadly, these techniques are part of a methodology called Code 
Yellow, which is a cross-functional team created to tackle an issue 
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critical to operational excellence. The term Code Yellow refers both to 

the team and the process that governs the team’s activities. This was 

a practice developed at Google to handle issues that were beyond the 

scope of what any one part of the organization owned. And unlike other 

processes at Google, it didn’t end up documented and commented on 

in a thousand different management books, so the only people who 

seem to know what a Code Yellow is or how to run one are former 

Google people or individuals trained by former Google people. It has 

spread to other engineering organizations through oral tradition in 

that way.

The purpose of a Code Yellow is to create momentum. When a 

legacy system has performance, stability, or security issues that are 

both systemic and entangled with other issues, it can be overwhelm-

ing and demoralizing. Nobody makes things better, because everybody 

becomes distracted by the total volume of problems. No single improve-

ment feels like it will make enough of an impact to turn the tide.

Code Yellows have the following critical features that ensure their 

success over other project management approaches:

The Code Yellow leader has escalated privileges. The leader gets 

to commandeer any and all resources needed for the Code Yellow effort. 

This includes people, conference rooms, offices, and so on. The leaders can 

pull these resources off of other teams without approval from the normal 

chain of command and without lengthy explanation or discussion.

The leader serves as a central point of contact for the effort. Code 

Yellow issues are often both systemic and sensitive in nature. The organi-

zation may not know the full scope of the issue when declaring the Code 

Yellow. By creating a central point of contact, teams across the organiza-

tion can refer issues to the Code Yellow leader and receive clear and spe-

cific guidance. Unrelated issues can be diagnosed and dispatched easily.

The team is small. Team composition may change as the leader pulls 

in experts from other teams and releases them, but the size of the team at 

any one point in time stays less than eight people. Those people should 
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be able to implement solutions; they are not simply representatives from 

other teams.

 The team is focused. When assigned to a Code Yellow, team mem-

bers are relieved of all other roles and responsibilities so they can focus 

their energies 100 percent on the Code Yellow.

The Code Yellow is temporary. Before declaring a Code Yellow, the 

organization should set success criteria. At what level of improvement 

is the situation no longer critical and the remaining work can be placed 

on the road maps of existing teams with proper prioritization? Code 

Yellows can last for months, but they should not run for quarters. The 

temporary nature of a Code Yellow is what helps conquer the politi-

cal rivalries that otherwise make systemic problems harder to solve. A 

Code Yellow guarantees that only resources that are urgently needed 

will be commandeered and that they will be returned as soon as the 

crisis is over.

An issue warrants a Code Yellow if it is urgent and the scope is 

beyond what one cohesive unit of an organization can handle. That usu-

ally means a security or a system reliability problem. Occasionally Code 

Yellows can be used for more nuanced issues that affect the organiza-

tion’s overall competitiveness. In 2008, Google called a Code Yellow after 

internal studies demonstrated how latency negatively affected users’ 

long-term behaviors:

One might think that the minuscule amounts of latency involved in the 
experiment would be negligible—they ranged between 100 and 400 mil­
liseconds. But even those tiny hiccups in delivering search results acted 
as a deterrent to future searches. The reduction in the number of searches 
was small but significant, and were measurable even with 100  milli­
seconds (one-tenth of a second) latency. What’s more, even after the 
delays were removed, the people exposed to the slower results would take 
a long time to resume their previous level of searching.

[. . .]
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This Code Yellow kicked off at a TGIF where Hölzle metered the perfor­
mance of various Google products around the world, with a running 
ticker on the big screen in Charlie’s Café pinpointing the deficiencies. 
“You could hear a pin drop in the room when people were watching how 
stunningly slow things were, like Gmail in India,” says Gabriel Stricker, 
a Google PR director.1

In 2010, another Code Yellow was called to deal with the aftermath 

of Operation Aurora, a Chinese government cyberattack that rooted 

Google’s corporate network and allowed Chinese intelligence to steal 

information.

In 2015, the Chromium team (the open source project that backs 

Google Chrome) called a Developer Productivity Code Yellow to improve 

performance so that it would be easier to attract and retain contributors.

All of these are critical issues, but they all look different. They have 

different scopes. Only one presented itself as a traditional crisis. But in 

each case, the problem would have been difficult for a single team or sol-

itary division to solve. By building a small, empowered team to start off 

the response, Google was able to create focus and momentum that made 

impossible problems seem solvable.

Code Yellows end when the issue is out of the critical stage, not when 

the problem is fully resolved. Part of the Code Yellow should be develop-

ing a plan for executing on long-term improvements, upgrades, and devel-

opment work. How is post–Code Yellow work assigned? Who holds people 

accountable? The composition of the Code Yellow team should reflect 

this; if the long-term work will involve specific teams, members of those 

teams should be part of the Code Yellow. At the end of the Code Yellow, 

those members return to their teams and continue the Code Yellow work 

as part of their regular road maps.

1	 Steven Levy, In the Plex: How Google Thinks, Works, and Shapes Our Lives (New York: 
Simon & Schuster, 2011).
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It’s worthwhile for leadership to have a high tolerance for risk when 

defining the line of criticality. Code Yellows become less effective the 

longer and less urgent the work becomes. Having a good plan of how 

the work will be completed once normal status is restored and holding 

people accountable produces a better outcome than depending on a 

small elite team to save you.

Calling a Code Yellow
Code Yellows are declared by the lowest-level leader, not the highest. They 

should be declared only by leaders who have authority over all the affected 

parts of the organization. In a small organization, Code Yellows are usu-

ally called by someone very senior, but as the organization grows, this 

practice becomes inefficient and bureaucratic. By granting the authority 

to the lowest-level leader with authority over all affected areas, the orga-

nization is able to continue to move quickly in response to critical issues.

In other words, if the problem is an engineering issue that spans 

teams under multiple directors, the person with the authority to call a 

Code Yellow is the vice president of engineering to whom those directors 

report. If the issue also involves teams of another VP, the person with the 

authority is one level up from the VPs.

Sometimes the scope of a Code Yellow changes to affect a larger part 

of the organization as the team uncovers more details. In that case, it 

is not customary to relitigate the decision to call the Code Yellow itself, 

although some adjustments to communication strategy and success cri-

teria may be warranted. Status meetings may be expanded to include 

leaders from other groups, for example.

Code Yellows are not generally called by engineering managers or 

directors because the scope of their field of influence should be small 

enough to manage the problem via other project management strate-

gies. Code Yellows are for systemic problems; a problem that fits entirely 

within the domain of a single engineering manager without touching or 

affecting any other group is not systemic.



Coming in Midstream    121  

Running a Code Yellow
The Code Yellow leader plays a similar role to that of an incident com-

mander, assigning tasks to team members and serving as the final 

decision-maker. They need to have enough technical knowledge and 

implementation experience to do so with confidence. They also need 

to be able to devote 100 percent of their attention to the Code Yellow. 

For these reasons, senior leaders are usually a poor choice to run a Code 

Yellow. Clearing their calendars to focus on a Code Yellow blocks other 

important things in the organization. They might not understand how 

the product or architecture works with the detail necessary to make 

quick decisions. However, the leader need not necessarily be from engi-

neering. Product managers can make excellent Code Yellow leaders, as 

can staff engineers and principal engineers.

Ideally, the Code Yellow leader should have enough experience with 

the organization to know who the experts are, which teams own which 

parts of the product, and so on and so forth. This allows them to keep 

the team small and limit the amount of discussion around identifying 

resources.

When declaring a Code Yellow, it’s important that the wider orga-

nization be made aware of it. If the organization is large, it may not be 

necessary to broadcast an announcement about the Code Yellow to all 

employees, but every team that might have relevant information or 

resources that will be reassigned in the Code Yellow needs to know. This 

helps smooth the path for the leader when he or she approaches other 

teams.

Because Code Yellows tend to be sensitive, it’s not necessary to pro-

vide a great deal of detail in the announcement. If the Code Yellow was 

triggered by issues, tickets, or discussions that are accessible to everyone, 

the announcement should link to those internal conversations for ref-

erence. Otherwise, the Code Yellow announcement can just define the 

scope as it is known at the time (for example, “We’re declaring a Code 

Yellow on application security”).
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The Code Yellow announcement must clearly identify who the leader 

is, generally with a statement like “John Doe may reach out to you about 

this.”

Part of the leader’s responsibility during a Code Yellow is handling 

communication about the Code Yellow, which includes keeping lead-

ership briefed on progress. Although Code Yellows can be stressful, the 

more time the leader spends in status update meetings with senior lead-

ership about the Code Yellow, the less time that person spends working 

on resolving the Code Yellow.

Daily 5- to 15-minute standup calls strike a happy medium but are 

not required. Some organizations will create either a physical or remote 

“war room” where the Code Yellow team members operate. If the orga-

nization’s monitoring tools are robust enough to handle it without sig-

nificant engineering effort, setting up dashboards to track key metrics 

around the Code Yellow can help keep everyone focused.

Mess: Leadership Has Lost the Room

Losing the room is a sports term. It means a coach has lost the respect 

of his or her players. The team, instead of following orders and working 

together, struggles to self-organize.

This book spends a lot of time discussing value and momentum 

because success with legacy modernization is less about technical 

implementation and more about the morale of the team doing the mod-

ernizing. So, what can you do if the team you’re taking over is so demor-

alized they won’t listen to you long enough to exercise other techniques 

presented in this book?

People are often too quick to equate morale issues with character 

flaws. Incentives play a much larger role in who’s effective at an organi-

zation than some fanciful notion of their character. Organizations that 

refuse to take responsibility for the situations in which they put their 

own employees struggle to achieve operational excellence. They discover 
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they possess a unique ability to find and hire the few bad apples in a pool 

of hundreds of candidates. They watch talent with options walk away 

and complain about the lack of loyalty, integrity, or mental toughness.

Remember, no one wants to suck at their job. Popular culture sells the 

myth about lazy, stupid, uncaring bureaucrats. It’s easy to dismiss people 

that way. Buying into the idea that those kinds of problems are really 

character flaws means you don’t have to recognize that you’ve created an 

environment where people feel trapped. They are caught between con-

flicting incentives with no way to win.

An organization doesn’t have to be part of the government to be a 

bureaucracy. When a leader has lost the room, it is usually because the 

organization has pushed the engineering team back into a place where it 

is not possible to succeed. It’s important not to lose sight of the element 

of bad faith in this outcome. Teams don’t reject their leaders because a 

project fails or even because a project fails multiple times. Teams reject 

their leaders when they feel that success was snatched from them. Either 

they made a real contribution that was ignored or credited to someone 

else, or their efforts to achieve operational excellence were sabotaged by 

the leadership in the organization.

Sometimes you can restore trust and bring a team back from the dead 

just by changing the scenery. Remove old leaders when teams lose faith 

in them and replace them with new leaders who will gain their trust 

rather than assume they have it.

But the longer a situation of bad faith is allowed to continue, the 

deeper the psychological roots grow. The lack of trust in an organiza-

tion and its leadership can diminish the trust a team has in themselves. 

Being betrayed by your own leadership is traumatic. One of the ways 

people process that trauma is by wondering if they deserved it. Removing 

rejected leaders might solve superficial problems, but it doesn’t restore 

teams back to excellence.

People without confidence self-sabotage. They create self-fulfilling 

prophecies and display signs of learned helplessness. For example, I had 
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a team once that experienced a high rate of failed deploys, triggering 

some problem in production at least once a week that required a roll-

back. The organization had also been leaning on them to produce more 

and more while cutting their staff and restricting their resources. I took 

over that team after their old manager was fired, and it was obvious from 

our first few conversations that the problem wasn’t their engineering 

skills. They had been asked to improve a piece of legacy technology that 

had not been updated in a while. It had almost no testing, no monitoring, 

and a complex deploy process.

The reason the legacy system had not been updated in a while was 

because the organization had been regularly refusing requests to staff a 

team for the task or invest anything significant in resources. To top it off, 

the whole infrastructure for this system that processed millions of trans-

actions had been maintained for years by one person.

The team members were completely demoralized. They had lost faith 

in their ability to ship code safely, so they backed off larger, more creative 

solutions to technical challenges that might have helped them. They 

became resigned to their situation, as if outages were inevitable.

They didn’t test things. When things went wrong, they didn’t do a 

thorough investigation and confirm what the failure points had been. 

They avoided those things not because they didn’t understand that they 

were important, but because they had lost faith in their own abilities. 

After so many failures and years of denied resource requests, they felt 

other people in the organization assumed they were bad engineers and 

were desperate to avoid confirming that.

That scenario might sound counterintuitive. If they were so scared 

of failing, they should have tested more, investigated deeper. Why would 

they stick with a process that they knew was bad and would increase their 

likelihood of failure? Like Schrödinger’s cat, if they don’t have a proper 

process, they could be both alive and dead at the same time. If they don’t 

have a proper process, they never have to confront the potential reality 
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that they are just bad engineers. It is always possible that a better process 

would fix all their problems.

However, if they implemented a better process and still failed anyway, 

they would lose this mental lifeline they were hanging on to. The team 

doomed itself to failure because they were afraid of learning that the 

problem the whole time was them—not their process, not the organiza-

tion’s denial of resources, not the inexperienced manager.

The Compounding Problem:  
Self-Sabotaging Teams

Confidence comes before success. Success rarely creates confidence. 

When teams don’t have confidence in themselves, they will always find 

something to debunk successful outcomes. They got lucky. The outcome 

wasn’t as good as it should have been or could have been had another 

team been in charge. The successful outcome did not outweigh past 

failures.

When people can’t accept successful outcomes, they tend to avoid 

success completely. They self-sabotage because the status quo is safe.

Confidence problems are always compounding. The only thing that 

convinces people to stop belittling themselves is knowing they have the 

trust and acceptance of their peers.

Solution: Murder Boards

A murder board is a technique I picked up in government and repurposed 

for engineering teams. In government, we used them to prep people for 

Congressional testimony or confirmation hearings, but applying them 

to a technical challenge was not completely unheard of. NASA’s Ames 

Research Center uses them for satellite launches and requesting funding 

for research.
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The way a murder board works is you put together a panel of experts 

who will ask questions, challenge assumptions, and attempt to poke 

holes in a plan or proposal put in front of them by the person or group 

the murder board exercise is intended to benefit. It’s called a murder 

board because it’s supposed to be combative. The experts aren’t just 

trying to point out flaws in the proposal; they are trying to outright 

murder the ideas.

Murder boards are one of those techniques that are really appropriate 

only in specific circumstances. To be a productive and beneficial exercise, 

it is essential that the murder board precedes an extremely stressful event. 

Murder boards have two goals. The first is to prepare candidates for a  

stressful event by making sure they have an answer for every question,  

a response to every concern, and mitigation strategy for every foreseeable 

problem. The second goal of a murder board is to build candidates’ confi-

dence. If they go into the stressful event knowing that they survived the 

murder board process, they will know that every aspect of their plan or 

testimony has been battle-tested.

I scheduled a murder board for my team with the bad process because 

I understood that before anything else could get better, the team mem-

bers needed to learn that their colleagues in engineering did not look 

down on them. They needed to see that everyone wanted them to suc-

ceed, that their past experience of having goal posts moved, resources 

promised and then taken away, and actions taken in bad faith was over.

They also needed to overcome their fear that they weren’t good 

enough to improve their process or that an improved process wouldn’t 

affect their odds of success. I asked them to write out their plan to test, 

deploy, and monitor one key upcoming change and be prepared to defend 

it. They were not thrilled by the idea of doing a murder board. It took me 

a while to persuade them the exercise could be good. Part of the reason 

they worried was they felt this exercise would invite colleagues to micro-

manage them, talk down to them, or treat them like they were stupid and 

could not be trusted.
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I argued that this was an opportunity to prove to everyone how dif-

ficult their engineering challenge was. They would leave the murder 

board with a new process. If the new process still failed, everyone would 

know it was vetted by the best engineers at the organization and that 

they couldn’t have done any better. In this way, I used the murder board 

to resolve their fear of opening Schrödinger’s box. Failure under a better 

process would not prove they were bad engineers. That process had sur-

vived the murder board and still failed.

To accomplish those goals, it is essential that both sides of the murder 

board know that the purpose of the exercise is to make the candidate 

stronger. There must not be any doubt that everyone is on the same team, 

working for the candidate’s benefit. Criticism should be tough, nitpicky, 

and unforgiving but delivered only if it is relevant to the stressful event to 

come—in this case, a deploy. For that reason, we don’t do murder boards 

when there is no upcoming stressful event to ground them.

It is useful to set some boundaries with the board. We do not use the 

murder board space to dredge up old failures or grudges. We do not use 

the murder board space to put people down or insult them. We don’t use 

it to make grand speeches. The board can ask questions, point out flaws, 

or provide hypothetical situations. They can provide detailed explana-

tions to elaborate fully on a problem they want to highlight, but they 

should avoid doing so and let team members speak in their own words 

as much as possible. Most important, the board’s commentary should be 

exclusively negative, even if there are strong advantages to the plan being 

presented. Murder boards build confidence because they are survived.

Stopping the Bleed

The techniques discussed in this chapter are all about transitioning trou-

bled projects to a state where problems are not compounding in cycles. 

If the organization is making changes that will not provide enough value 

to justify their expense, boost the value of those changes by turning them 
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into a vehicle of better engineering practices. If the organization is par-

alyzed by missing information and unknown complications, promote 

resilience and eliminate the fear of failure. If problems extend beyond 

what any one team can solve by itself, allow the organization to tempo-

rarily reorganize itself around the problem. If teams are demoralized to 

the point where they are hurting themselves, challenge other parts of the 

organization to contribute to their success.

Legacy modernization projects do not fail because one mistake was 

made or something went wrong once. They fail because the organiza-

tion deploys solutions that actually reinforce unsuccessful conditions. If 

you’re coming into a project in the middle, your most important task as a 

leader is figuring out where those cycles are and stopping them.



7
DESIGN AS DESTINY

D esign is not about making things look pretty.

Many software engineers I’ve worked with have never consid-

ered this fact before it was pointed out to them. It’s an easy mistake to 

make. The most noticeable output of design thinking is packaging—how 

we speak about things, how something looks, what features go where, 

and how features behave. When we consider the end results, designers 

seem most effective when relegated to polishing up a product in the final 

stages. We do ourselves and our teams a disservice when we dismiss the 

toolkit of a designer in this way. Design is critical to making good tech-

nical decisions. The US Army/Marine Corps Counterinsurgency Field Manual1 

put it best when it advised soldiers: 

“Planning is problem solving, while design is problem setting.”

1.	 The U.S. Army/Marine Corps Counterinsurgency Field Manual (Chicago: University of Chi-
cago Press, 2007).
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Problem-solving versus problem-setting is the difference between 

being reactive and being responsive. Reactive teams jump around aimlessly. 

Setbacks whittle away their confidence and their ability to coordinate. 

Momentum is hard to maintain. Responsive teams, on the other hand, 

are calmer and more thoughtful. They’re able to sort new information as it 

becomes available into different scopes and contexts. They’re able to change 

approaches without affecting their confidence, because design thinking 

gives them insight into why the change happened in the first place.

With any large, complex project, odds of success are improved if a 

team can frame the problem and adjust to new information. When done 

well, problem-setting frees up all members of the team to act autono-

mously, using their intuition and judgment. At a minimum, problem-

setting keeps everybody on the same page about the project’s goals and 

what success looks like. Legacy projects that maximize the impact of 

design thinking don’t just modernize, they innovate.

If those statements sound familiar, it’s because I’ve already 

described several design exercises for problem-setting in earlier chap-

ters. In Chapter  2, I discussed how working from familiar interfaces 

increases the likelihood of technology being adopted. In Chapter  3, I 

explained how to map a system in terms of complexity and coupling. 

In Chapter 5, I introduced troubleshooting difficult technical conver-

sations with scoping. All of these were design exercises. Now it’s time 

to dive deeper and explore some variations on the problem setting 

approaches I’ve already covered.

The first part of this chapter focuses on applying design techniques 

to technical decision-making: how to structure technical conversations, 

scope problems, and come to a consensus.

The second part of this chapter focuses on using design techniques 

to align incentives. In the previous chapter, I mentioned how conflict-

ing incentives can doom projects and demoralize teams; this chapter 

describes how to figure out what the incentives are within the organiza-

tion and how to position teams for success given that information.
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Designing Technical Conversations

Chapter 5 introduced the concept of scope as a solution to avoid unpro-

ductive meetings, but in reality, the process of managing a major mod-

ernization is all about manipulating scope.

Scope is determined by what problem you want solve, but few 

problems exist completely independent from other factors. Deciding 

which factors actually have influence over the success or failure of that 

marquee problem and which do not requires thorough and regular feed-

back. You will have to become adept at collecting data because the factors 

that can complicate a modernization project are many. They include the 

historical context, the technical constraints, the skills available through 

human capital, and internal politics.

On top of that, some of the information delivered to you by those 

feedback loops will be incorrect, or you will interpret them incorrectly. 

The simplest form of design exercise is to talk to your user. Doing that is 

better than doing nothing, but in unstructured conversations, the quality 

of the feedback can vary. Sometimes users don’t know what they want. 

Sometimes the user and the researcher use the same words to mean 

different things. Sometimes the power dynamics between the user and 

the person conducting the interview are so great, the user tells the inter-

viewer what he or she wants to hear.

Design thinking changes the way we address that challenge. It high-

lights how we ask, who we ask, and who does the asking as determining 

factors in what information comes to the surface and gets discussed in 

the first place.

Don’t underestimate the role social dynamics have in skewing the accu-

racy of your information. We know that people behave differently when 

they are being observed. We know that people tend to be conflict-averse 

and go along with crowds. We know that not every voice on an engineering 

team carries the same weight. Design exercises can succeed where normal 

technical conversations fail because they account for those influences.
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If we think of the average technical conversation as being adversarial 

in nature with individuals either proposing solutions or challenging the 

ideas of others, team members have plenty of opportunities to engage 

in unproductive behavior. What makes them look smart in front of the 

group won’t necessarily translate to good technical strategy.

But with design, we can change the path to winning the argument. 

During a normal team conversation, individual members are looking 

either to increase or to maintain their status among the group. And, what 

increases their status? Shooting down the ideas of others. Demonstrating 

their ability to see some critical flaw everyone else has missed. Develop-

ing a brilliant solution. Of those options, developing a brilliant solution 

is the most difficult to accomplish. Shooting down other people’s ideas is 

usually much easier. So, environments where team members are jockey-

ing for status can overselect for this behavior.

Now, imagine that we started the conversation by telling the team 

we would give them points for coming up with solutions that used a 

specific piece of technology. The amount of time spent shooting down 

ideas would plummet as everyone focused on curating the longest list of 

potential solutions.

That’s the value of design. When we design our conversations, we turn 

them into games. We redirect the energy of team members into provid-

ing more and better answers instead of simply being right and their col-

leagues wrong.

How to Run a Design Exercise

My goal in including a chapter on design in this book is not to turn 

software engineers into designers. I’m skeptical of the habit of techni-

cal people to assume they can pick up disciplines on the fly that others 

have spent years cultivating and studying. I believe that technical people 

should focus on bringing technical expertise to the table and seek out 

other experts to complement their skills. Therefore, I encourage you to 
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incorporate design thinking into your process by hiring a designer or, 

even better, consulting the designers you already employ.

That being said, it is useful to understand how design thinking works. 

Design exercises come in various shapes and sizes, but they share these 

four distinct phases:

WARM-UP    The warm-up creates a break from the distractions of 

everyday life so that the participants in the exercise are focused on 

the task at hand. The simplest warm-ups are listing a few sentences 

introducing your topic/goal/intention, but more active and compli-

cated exercises might devote more time and energy to warming up. 

Posing a simple question for group discussions, pair work, or polling 

people for experiences all can be used as warm-ups.

RESEARCH QUESTIONS    When we do a design exercise, we do it 

with a specific research question in mind. We have a problem or a deci-

sion to make, and we want to hear other perspectives. Or, we’re about 

to invest in a new product, and we want to know if the users will like it. 

The most common design exercise for engineering teams is observing 

potential users interacting with a product. A good researcher will be 

careful not to lead users, not to teach them how to use the product, but 

let them interact with it organically and use carefully worded ques-

tions to direct them to functions relevant to the research objective.

FOLLOW-UPS    People often say things we don’t expect in design exer-

cises, requiring us to divert from the structure we’ve set out for a moment 

to understand this new piece of information. Follow-up questions or 

activities are used to go deeper on individual issues as they appear.

AGGREGATION    At some point—maybe after a single exercise or 

after a series of interviews—we need to look at all the data and draw 

a conclusion. Just like engineering, design is often an iterative pro-

cess. The conclusion of one exercise may create the research question 

for the next. For example, if a user research session reveals that users 
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don’t understand how to interact with the product, future research 

sessions will test alternative interfaces until the organization has 

found something that works for users.

More About Follow-ups: Why vs. How

Creating effective follow-up questions is an art form unto itself. As with 

research questions, be careful that they don’t suggest their own answers 

or create ambiguities that might bias the data, but unlike with devising 

research questions, it is nearly impossible to anticipate everything you 

might want to follow up on ahead of time. You need to write the ques-

tions on the fly.

A good rule of thumb is questions that begin with why produce more 

abstract statements, while questions that begin with how generate 

answers that are more specific and actionable. Think about how your 

answer would be different if the follow-up were “What are the best tools 

for the job?” versus “How do you know these tools are the best for the 

job?” You might list a bunch of common solutions in the answer to the 

first question, convinced that they are good because they are popular. 

You are more likely to describe your various experiences with the tools 

you actually use when asked the second question.

Both why questions and how questions can be useful. Why questions 

broaden the boundaries of the research field by allowing unseen factors 

and forces to be introduced into the data. How questions put you in the 

minds of users so you can see those factors as they understand them. Why 

questions often lead to how questions.

Some Useful Design Exercises for 
Engineering Teams

Design is a rich industry full of interesting approaches and philosophies, 

more than what a single chapter can capture. To get you started, I’ve 
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provided a few of my favorite exercises for technical conversations. Think 

of this as a toolkit. Some of these exercises are loosely adapted from The 
Surprising Power of Liberating Structures: Simple Rules to Unleash a Culture 
of Innovation by Henri Lipmanowicz and Keith McCandless, which is a 

great resource for further learning.2

Exercise: Critical Factors3

This is a brainstorming exercise to do with a team to help prioritize con-

versations around the early stages of a modernization activity. What must 

happen for the project goals to be successful? What must not happen? 

After everyone has had their say and recorded their ideas, the team edits 

the list to make sure everything on it really deserves to be there. A good 

way to do that is for the team to discuss each item in terms of whether 

the project could succeed if everything else on the list of critical factors 

went favorably. The only items that should remain on the list are the fac-

tors that have the ability to take down the entire project by themselves.

After actions: Early technical conversations should focus on achiev-

ing or maintaining good outcomes for these critical factors. In-scope 

issues move outcomes along these critical factors in a positive direction. 

Out-of-scope issues do not affect these outcomes.

Exercise: The Saboteur4

A similar but inverse brainstorming exercise to the critical factors exer-

cise is asking your team to play saboteur. If you wanted to guarantee that 

2.	 Henri Lipmanowicz and Keith McCandless, The Surprising Power of Liberating Structures: 
Simple Rules to Unleash a Culture of Innovation (Seattle: Liberating Structures Press, 2016).

3.	 “Min Specs: Specify Only the Absolute ‘Must Dos’ and ‘Must Not Dos’ for Achieving a 
Purpose,” Liberating Structures, accessed February 2020, http://www.liberating 
structures.com/14-min-specs/.

4.	 “Making Space with TRIZ: Stop Counterproductive Activities and Behaviors to Make 
Space for Innovation,” Liberating Structures, accessed February 2020, http://www 
.liberatingstructures.com/6-making-space-with-triz/.

http://www.liberatingstructures.com/14-min-specs/
http://www.liberatingstructures.com/14-min-specs/
http://www.liberatingstructures.com/6-making-space-with-triz/
http://www.liberatingstructures.com/6-making-space-with-triz/
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the project fails, what would you do? How can you achieve the worst pos-

sible outcome? Once this list is generated, the team discusses if there are 

any behaviors either internally or from external partners that are close to 

items on the saboteur list.

After actions: Some of the behaviors on the saboteur list will be 

habits or ineffective processes that need to be changed. Depending on 

your results, these items might be worth handling as critical factors. 

More likely, though, the saboteur list will show you where the fault lines 

are in your team. What distractions are they the most vulnerable to? 

How well do they understand their true threats? How do internal politics 

manifest among team members? The saboteur exercise should help you 

anticipate out-of-scope issues that are likely to be brought up and who 

they are likely to come from. Having a sense of that from the beginning 

helps keep technical conversations on track. If you’re able to open your 

meetings by defining what is and is not in scope, it is much easier to hold 

everyone accountable.

Exercise: Shared Uncertainties5

This exercise also starts by asking team members to identify potential 

risks and challenges to a project’s success, but this time, you’re looking 

for differences in how such risks are perceived. Give each team member a 

four-quadrant map with the following axes:

SIMPLE TO COMPLEX    Problems are simple if they are well defined 

and understood. They are complicated if their causes are unknown or 

if solving them means giving up something else of value.

ORDERLY TO CHAOTIC    Problems are orderly when there isn’t much 

debate about the correct way to solve them, although those solutions 

5.	 “Critical Uncertainties: Develop Strategies for Operating in a Range of Plausible Yet 
Unpredictable Futures,” Liberating Structures, accessed February 2020, http://www 
.liberatingstructures.com/30-critical-uncertainties/.

http://www.liberatingstructures.com/30-critical-uncertainties/
http://www.liberatingstructures.com/30-critical-uncertainties/
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might be long and tedious. They are chaotic when their solutions could 

accidentally make the situation worse.

Each team member places challenges somewhere on this map. Then 

as a group they compare results. How far apart are they? Where are the 

shared anxieties? Is anyone completely out of sync with everyone else? 

Depending on your team’s composition, you might want to agree on the 

challenges to be mapped in advance or let individuals come up with 

the challenges to map as a group. The advantage to not getting everyone 

on the same page before mapping is if your team draws from different 

organizational units or functions, you can better see knowledge gaps by 

not requiring them all to use the same challenges.

After actions: By far the biggest benefit of this exercise is that it intro-

duces alternative perspectives and priorities in a way that is not confron-

tational. In open discussions, different perspectives are often presented 

as responses to other people sharing their own perspectives. This makes 

the contribution feel like a counterargument and encourages people not 

to empathize with or listen to each other.

There’s also an inherent sense of prioritization when overlap and 

consensus are high on the team. If a certain challenge is thought to be 

orderly and simple by everyone, the team might prefer to consider it out 

of scope until strategies are developed around harder problems.

Regarding simple/chaotic and orderly/complex problems, if you have 

any of those, they are good issues to focus early conversations around. 

They are often the most intimidating and anxiety-inducing.

Exercise: The 15 Percent6

In Chapter 3, I talked about the value of making something 5 percent, 10 per-

cent, or 20 percent better. This exercise asks team members to map out how 

6.	 “15% Solutions: Discover and Focus on What Each Person Has the Freedom and 
Resources to Do Now,” Liberating Structures, accessed February 2020, http:// 
www.liberatingstructures.com/7-15-solutions/.

http://www.liberatingstructures.com/7-15-solutions/
http://www.liberatingstructures.com/7-15-solutions/
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much they can do on their own to move the project toward achieving its 

goals. What are they empowered to do? What blockers do they foresee, and 

when do they think they become relevant? How far can they go without 

approval, and who needs to grant that approval when the time comes?

Have each team member brainstorm an ordered list of actions they can 

take right now to make the situation 15 percent better. The number 15 is 

arbitrary; don’t quibble over whether the impact of actions would really be 

only an 8 percent improvement. The point is these actions don’t need to 

come close to solving the problem; they just need to move things forward.

When each team member has a list, the team should discuss the 

items, refine them as needed, and make a commitment to execute.

After actions: The best technical conversations are the ones you 

don’t need to have. This exercise helps teams figure out where they need 

to make decisions versus where they need only advise and support other 

team members. Discussing potential blockers and approvers helps focus 

the invite lists of whatever conversations do need to be scheduled to the 

most relevant people. Nothing produces out-of-scope digressions more 

effectively than having people in meetings who don’t need to be there.

Exercises Specifically for Decisions

The exercises described previously all assume that once information is 

collected and exposed to the team, the right decisions are self-evident. 

It doesn’t always work that way. When you’ve collected all the data as a 

team and had a good, thorough discussion about it, here are two addi-

tional exercises that focus on decision-making.

Exercise: Probabilistic Outcome-Based Decision-Making
Probabilistic outcome-based decision-making is better known as betting. It’s 

a great technique for decisions that are hard to undo, have potentially 

serious impacts, and are vulnerable to confirmation bias. I tend to use 

it a lot to run hiring committees, for example. Firing people is difficult; 
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making a wrong hire can destroy a team’s productivity, and people often 

see what they want to see in potential candidates.

This is how it works: as a group, we make a list of potential outcomes from 

the decision that needs to be made. Outcomes like “We’re able to scale 2× by 

doing this” or “We will implement this new feature by this date.” You can mix 

both positive and negative outcomes if you like, but I find the conversation 

usually goes better if the list of outcomes is either positive or negative.

Then team members place bets as to whether the outcome will come 

true. Traditionally, this exercise is run with imaginary money. Depending 

on the specific decision to be made, I sometimes ask them to bet with 

hours of their time instead of money.

The mechanics of the bet work the same way they do in any other con-

text. If you bet a lot and win, you gain a lot. If you bet a lot and lose, you 

lose a lot. Therefore, just asking someone to put a unit value next to an 

outcome is forcing them to articulate a confidence level. The wondrous 

thing about this design is that if you ask people to rate their confidence 

level between 1 and 10, most of them would struggle to answer. It’s the 

unit itself, the knowledge of how much a dollar or an hour means to them, 

and what it means to lose a certain amount of dollars or time that helps 

research subjects articulate their feelings. It doesn’t matter that they will 

not lose what they’ve bet, just imagining this much money or that much 
time is enough to help people place where their feelings are on a spectrum.

You can do this exercise alone when struggling with your own deci-

sions. When I do it with teams, I like to put everyone’s bets for each out-

come in a shared document or on a whiteboard. Then we discuss how 

confident the team feels that the positive outcomes would be reached by 

making the decision one way or the other. By this point, the right deci-

sion is usually much more obvious.

Exercise: Affinity Mapping
Affinity mapping is a common design exercise involving clustering ideas 

and statements from individuals together visually. This involves a large 
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empty surface, usually a wall or a whiteboard, and generally some mark-

ers and Post-it Notes. You’ve probably done affinity mapping before. 

Everyone writes down their thoughts, one per Post-it Note, and puts it 

on the wall. Meanwhile, a moderator moves the Post-it Notes around, 

assembling them into groups of common ideas or feelings.

Affinity mapping works well for category building, but it can also reveal 

the specific circumstances that make reaching a consensus on a particular 

decision so difficult. Often in open discussions, people will talk past one 

another or assume they mean the same thing when expressing different 

concepts. Affinity mapping can reveal how far apart from one another the 

group really is and where the biggest points of disagreement actually are.

Team Structure, Organization Structure, 
and Incentives

In 1968, Melvin Conway published a paper titled “How Do Committees 

Invent?”7 This paper, originally intended for Harvard Business Review but 

rejected for being too speculative in nature, outlined the ways the struc-

ture and incentives of an organization influenced the software product 

it produced. It received little response but eventually made its way to 

the chair of the University of North Carolina at Chapel Hill’s computer 

science department, Fred Brooks. At the time, Brooks had been ponder-

ing a question from his exit interview at IBM: Why is it so much harder 

to manage software projects than hardware projects? Conway’s insight 

linking the structure of software to the structure of the committees that 

invented it seemed significant enough for Brooks to repackage the thesis 

as “Conway’s law” when he published his guide on effectively managing 

software teams, titled The Mythical Man-Month, in 1975.8

7.	 Melvin E. Conway, “How Do Committees Invent?,” Datamation, April 1968, 28–31.

8.	 Frederick Brooks, The Mythical Man-Month (Reading, MA: Addison-Wesley, 1995).
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Yet, this was not the only useful observation in Conway’s paper. As 

it has subsequently been referenced by hundreds of computer science 

texts since Brooks’s adoption of it as a universal truth, the more nuanced 

observations that supported Conway’s argument have largely been omit-

ted from the conversation. Conway’s law has become a voodoo curse—

something that people believe only in retrospect. Few engineers attribute 

their architecture successes to the structures of their organizations, but 

when a product is malformed, the explanation of Conway’s law is easily 

accepted.

Conway’s original paper outlined not just how organizational struc-

ture influenced technology but also how human factors contributed to 

its evolution. Some of his other observations include the following:

●● Individual incentives have a role in design choices. People will 

make design decisions based on how a specific choice—using a 

shiny new tool or process—will shape their future.

●● Minor adjustments and rework are unflattering. They make the 

organization and its future look uncertain and highlight mistakes. 

To save face, reorgs and full rewrites become preferable solutions, 

even though they are more expensive and often less effective.

●● An organization’s size affects the flexibility and tolerance of its 

communication structure.

●● When a manager’s prestige is determined by the number of 

people reporting up to her and the size of her budget, the manager 

will be incentivized to subdivide design tasks that in turn will be 

reflected in the efficiency of the technical design—or as Conway 

put it: “The greatest single common factor behind many poorly 

designed systems now in existence has been the availability of a 

design organization in need of work.”

Conway’s observations are more important in the maintain-

ing of existing systems than they are in the building of new systems. 
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Organizations and products both change, but they do not always change 

at the same pace. Figuring out whether to change the organization or 

change the design of the technology is just another scaling challenge.

Individual Incentives

How do software engineers get ahead? What does an engineer on one 

level need to accomplish for an organization to be promoted to another 

level? Such questions are usually delegated to the world of engineering 

managers and not incorporated into technical decisions. And yet, the 

answers absolutely have technical impacts.

Most of us have encountered this in the wild: a service, a library, or 

a piece of a system that is inexplicably different from the rest of the 

applications it connects to. Sometimes this is an older component of the 

system reimplemented using a different set of tools. Sometimes this is a 

new feature. It’s always technology that was trendy at the time the code 

was introduced.

When an organization has no clear career pathway for software 

engineers, they grow their careers by building their reputations exter-

nally. This means getting drawn into the race of being one of the first 

to prove the production-scale benefits of a new paradigm, language, 

or technical product. While it’s good for engineering teams to experi-

ment with different approaches as they iterate, introducing and sup-

porting new tools, databases, languages, or infrastructures increases 

the complexity of maintaining the system over time. One organization 

I worked for had an entire stable of custom-built solutions for things 

such as caching, routing, and message handling. Senior management 

hated this but felt their complaints—even their instructions that it 

stop—did little to course-correct. Culturally, the engineering organi-

zation was flat, with teams formed on an ad hoc basis. Opportunities 

to work on interesting technical challenges were awarded based on 

personal relationships, so the organization’s regular hack days became 
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critical networking events. Engineering wanted to build difficult and 

complex solutions to advertise their skills to the lead engineers who 

were assembling teams.

Stern lectures about the importance of choosing the right technol-

ogy for the job did not stop this behavior. It stopped when the organi-

zation hired engineering managers who developed a career ladder. By 

defining what the expectations were for every experience level of engi-

neering and hiring managers who would coach and advocate for their 

engineers, engineers could earn promotions and opportunities without 

the need to show off.

Organizations end up with patchwork solutions because the tech 

community rewards explorers. Being among the first with tales of doc-

umenting, experimenting, or destroying a piece of technology builds an 

individual’s prestige. Pushing the boundaries of performance by adopt-

ing something new and innovative builds it even more so.

Software engineers are incentivized to forego tried and true 

approaches in favor of new frontiers. Left to their own devices, software 

engineers will proliferate tools, ignoring feature overlaps for the sake of 

that one thing tool X does better than tool Y that is relevant only in that 

specific situation.

Well-integrated, high-functioning software that is easy to understand 

usually blends in. Simple solutions do not do much to enhance one’s 

personal brand. They are rarely worth talking about. Therefore, when an 

organization provides no pathway to promotion for software engineers, 

they are incentivized to make technical decisions that emphasize their 

individual contribution over integrating well into an existing system.

Typically, this manifests itself in one of three different patterns:

●● Creating frameworks, tooling, and other abstraction layers to make 

code that is unlikely to have more than one use case theoretically 

“reusable”

●● Breaking off functions into new services, particularly middleware
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●● Introducing new languages or tools to optimize performance for 

the sake of optimizing performance (in other words, without any 

need to improve an SLO or existing benchmark)

Essentially, engineers are motivated to create named things. If some-

thing can be named, it can have a creator. If the named thing turns out to 

be popular, the engineer’s prestige increases, and her career will advance.

This is not to say that good software engineers should never break off 

a new service or introduce a new tool or try a new language on a produc-

tion system. There just needs to be a compelling reason why those actions 

benefit the system versus benefit the prospects of the individual engineer.

Most of the systems I work on rescuing are not badly built. They 

are badly maintained. Technical decisions that highlight individuals’ 

unique contributions are not always comprehensible to the rest of the 

team. For example, switching from language X to language Z may in fact 

boost memory performance significantly, but if no one else on the team 

understands the new language well enough to continue developing the 

code, the gains realized will be whittled away over time by technical debt 

that no one knows how to fix.

The folly of engineering culture is that we are often ashamed of sign-

ing up our organization for a future rewrite by picking the right architec-

ture for right now, but we have no misgivings about producing systems 

that are difficult for others to understand and therefore impossible to 

maintain. This was a constant problem for software engineers answering 

the call to public service from organizations like US Digital Service and 

18F. When modernizing a critical government system, when should the 

team build it using common private sector tools and train the govern-

ment owners on said tools, and when should the solution be built with 

the tools the government worker already knew? Wasn’t the newest, great-

est web application stack always the best option? Conway argued against 

aspiring for a universally correct architecture. He wrote in 1968, “It is 

an article of faith among experienced system designers that given any 
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system design, someone someday will find a better one to do the same 

job. In other words, it is misleading and incorrect to speak of the design 

for a specific job, unless this is understood in the context of space, time, 

knowledge, and technology.”

Minor Adjustments as Uncertainty

Joel Spolsky once described rewriting software as the single worst stra-

tegic mistake any organization could make, but he attributed its nearly 

universal appeal to a clever maxim that code is easier to write than read.9

And it’s true; code is easier to write than read. Nearly every software 

engineer has had the experience of pulling up an old project and finding 

code that she wrote virtually incomprehensible.

But that doesn’t explain why we see the same behaviors with 

infrastructure, data storage, and other products that do not involve 

writing code.

One of the major themes that influences how systems degrade 

over time is how terrible human beings are at probability. We tend to 

overestimate the likelihood of events recurring once we have already 

seen them and underestimate the likelihood of events that have not 

yet happened. Sidney Dekker, a professor of human factors and system 

safety, called the outcome of this cognition problem on system safety 

drift.10 Systems do not generally fail all at once; they “drift” into failure 

via feedback loops caused by a desire to prevent failure. Let’s suppose 

a worker is given a set of checklists with necessary steps to maintain 

the system in good working order. If she misses a step and the system 

doesn’t fail immediately, her perception of risk changes. Skipping that 

9.	 Joel Spolsky, “Things You Should Never Do, Part I,” Joel on Software, April 6, 2000, 
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

10.	 Sidney Dekker, Drift into Failure (Abingdon-on-Thames, UK: Routledge, 2018).

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
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step becomes not such a big deal, unlikely to cause failure. The more 

she skips the step, the more convinced of the safety of her action she 

becomes. She overlooks the possibility that she could have just gotten 

lucky. The more corners she cuts, the more prone to failure the system 

becomes.

At the same time, if the system fails for a reason not represented in 

her checklist, she overestimates the odds of such a failure happening 

again. The system could have failed because there was a significant flaw, 

or it could have failed because of a random series of events unlikely to 

recur. Her ability to respond appropriately is determined by her ability 

to assess the probability of what has just happened correctly. If she over-

estimates, she will find new steps to add to the checklist to ensure that 

an unlikely failure does not recur. Over time, the checklists become more 

and more cumbersome and increase the likelihood that either she or one 

of her colleagues will skip a step.

The systems we like to rewrite from scratch are usually the systems we 

have been ignoring. We don’t know how likely failure is because we pay 

attention to them only when they fail and forget about them otherwise. 

A hundred errors on a legacy system is not failure-prone if it handles two 

million requests over that period. When looking at legacy systems, we 

tend to overrepresent failures.

The systems we like to rewrite from scratch also tend to be complex 

with many layers of abstraction and integrations. When we change some-

thing on them, it doesn’t always go smoothly, particularly if we’ve slipped 

up in our test coverage. The more problems we have making changes, the 

more we overestimate future failures. The more a system seems brittle, 

failure-prone, and just impossible to save, the more a full rewrite feels 

like an easier solution.

Our perception of risk cues up another cognitive bias that makes 

rewrites more appealing than incremental improvements on a working 

system: whether we are trying to ensure success or avoid failure. When 

success seems certain, we gravitate toward more conservative, risk-averse 
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solutions. When failure seems more likely, we switch mentalities com-

pletely. We go bold, take more risks.11

If we are judging odds correctly, this behavior makes sense. Why 

not authorize that multimillion-dollar rewrite if the existing system is 

doomed?

The problem is we’re most likely not judging the odds correctly. 

We’re overemphasizing failure that may be rare and underestimating 

both the time it will take to complete the rewrite and the performance 

gains of the rewrite itself. We are swapping a system that works and 

needs to be adjusted for an expensive and difficult migration to some-

thing unproven.

It’s the minor adjustments to systems that have not been actively 

developed in a while that create the impression that failure is inevita-

ble and push otherwise rational engineers toward doing rewrites when 

rewrites are not necessary.

Organization Size and Communication

Every working person has experienced how an organization’s size affects 

its patterns of communication. When small, an organization commu-

nicates in an open and fluid manner. It is possible for everyone in the 

organization to build a relationship with one another. As the organiza-

tion grows, knowing everyone else becomes less and less feasible. Coor-

dination requires trust. Given a choice, we prefer to base our trust on the 

character of people we know, but when we scale to a size where that is 

not possible anymore, we gradually replace social bonds with process. 

Typically this happens when the organization has reached the size of 

around 100 to 150 people.

11.	 See the work of Daniel Kahneman and Amos Tversky on the pseudocertainty effect for 
more detail, as well as their bestseller book Thinking, Fast and Slow (New York: Farrar, 
Straus and Giroux 2011).
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One of the benefits of microservices, for example, is that it allows 

many teams to contribute to the same system independently from one 

another. Whereas a monolith would require coordination in the form 

of code reviews—a personal, direct interaction between colleagues—

service-oriented architecture scales the same guarantees with process. 

Engineers document contracts and protocols; automation is applied to 

ensure that those contracts are not violated, and it prescribes a course of 

action if they are.

For that reason, engineers who want to “jump ahead” and build some-

thing with microservices from the beginning often struggle. The level of 

complexity and abstraction is out of sync with the communication pat-

terns of the organization.

Manager Incentives

An engineering manager is a strange creature in a technical organiza-

tion. How should we judge a good one from a bad one? Unfortunately, far 

too often managers advance in their careers by managing more people. 

And if the organization isn’t properly controlling for that, system design 

will be overcomplicated by the need to broadcast importance.

Opportunities to go from being an engineering manager to a senior 

engineering manager come up from time to time as an organization 

grows and changes. It’s the difference between handling one team and 

handling many. Managers leave, new teams form, and existing teams 

grow past their ideal sizes. A good manager could easily earn those oppor-

tunities in the normal course of business. Going from senior manager to 

director, though, is more difficult. Going from director to vice president 

or higher is even more so. It takes a long time for an organization to reach 

that level of growth organically.

Organizations that are unprepared to grow talent end up with manag-

ers who are incentivized to subdivide their teams into more specialized 

units before there are either enough people or enough work to maintain 
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such a unit. The manager gets to check off the career-building experience 

of running multiple teams, hiring more engineers, and taking on more 

ambitious projects, and the needs of the overall architecture are ignored.

Scaling an organization before it needs to be scaled has similar con-

sequences to scaling technology before it needs to be scaled. It restricts 

your future technical choices. A complex architecture means the orga-

nization must successfully anticipate a number of future requirements 

and determine how code should be best abstracted to create shared ser-

vices based on those predictions. Rarely are all of those predictions right, 

but once a shared service is deployed, changing it is difficult.

In the same way, managers sometimes subdivide their team before 

there is need to do so. When this happens, they are making predictions 

about future needs that may or may not come true. In my last role, our 

director of engineering decided the new platform we were building 

needed a dedicated team to manage data storage. Predictions about 

future scaling challenges supported her conclusions, but to get the head 

count for this new team, she had to cut it from teams that were work-

ing on the organization’s existing scaling challenges. Suddenly, new 

abstractions around data storage that we didn’t need yet were being 

developed, while systems that affected our SLAs had maintenance and 

updates deferred.

Carrying existing initiatives to completion was not as attractive of an 

accomplishment as breaking new ground. But the problem with design-

ing team structure around the desired future state of the technology is if it 

doesn’t come true, the team is thrown into the chaos of a reorganization.

Designing a Team: Applications of  
Conway’s Law

The challenge of applying Conway’s law in a proactive and positive 

manner is that divisions of work on technical projects can shift depend-

ing on the technical challenge being addressed.



150    Kill It with Fire

Let’s say we have an organization building a system that is composed 

of three web services. Each service has its own repository of code, its own 

machine images, and its own deployment schedule. Each has a three-tier 

structure: an application layer, a data access layer, and a frontend. In the 

beginning, the frontend and the application are logically separate but 

hosted in the same code repository for convenience. The frontend is just 

HTML and some CSS and JavaScript files.

Our engineering teams probably reflect this structure. For each ser-

vice, we have a frontend person and some backend people. We want 

the look and feel of these services to be the same because they are one 

system, so we have a design org that is separate from the three develop-

ment teams, but it produces style guides and assets used by all of them. 

Maybe we assign a specific point of contact on the design team for each 

engineering team. We do the same thing for our operations and secu-

rity groups. Their work is overarching and common to all teams, and we 

want consistent implementation. We don’t want each engineering silo to 

reinvent the wheel.

Now let’s say we want to start using a frontend framework like  

React, Angular, or Vue.js. We still want each service to have the same 

look and feel, but we also want to minimize duplicate efforts. They 

should reuse UI components. Who writes that code? Where does 

that code live? Do we move the frontend engineers out of the prod-

uct engineering groups and into a separate group like the design-

ers, security engineers, and operations people, or do we keep them 

where they are and establish a matrix division to handle the shared 

development work?

The problem with seeing Conway’s law as prescriptive is that tech-

nology is filled with little shifts in perception like this. The technology 

in our example has not fundamentally changed, but our groupings of 

what belongs with what have changed. We could tell the same story in 

reverse: what if we want to transition away from a traditional operations 

team to a DevOps model? Do our operations people now get moved to 
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the product engineering teams? Do backend engineers learn the DevOps 

tools with operations acting as an oversight authority? Do we keep oper-

ations where it is and just ask them to automate?

Reorgs Are Traumatic

The reorg is the matching misused tool of the full rewrite. As the soft-

ware engineer gravitates toward throwing everything out and starting 

over to project confidence and certainty, so too does the software engi-

neers’ manager gravitate toward the reorg to fix all manner of institu-

tional ills.

And like a full rewrite, sometimes this is the appropriate strategy, but 

it is not nearly the right strategy as often as it is used. Reorgs are incred-

ibly disruptive. They are demoralizing. They send the message to rank 

and file engineers that something is wrong—they built the wrong thing 

or the product they built doesn’t work or the company is struggling. It 

increases workplace anxiety and decreases productivity. The fact that 

reorgs almost always end up with a few odd people out who are subse-

quently let go exacerbates the issue.

They are also easy to get wrong, creating new silos where information 

once flowed freely. Organizations are almost always a little behind in 

capturing and documenting the state of things in flight. Reorgs orphan 

in-progress initiatives, particularly the ones focused on long-term main-

tenance, resulting in information loss and follow-ups dropped.

I think of reorgs as major surgery. If something is seriously wrong, 

it’s worthwhile to risk it, but you wouldn’t trust a doctor who wanted to 

open you up because a kidney was just an inch too far to the right. Simi-

larly, you shouldn’t hire managers who want to reorg because they read 

a blog post that said engineering teams work better when structured 

this particular way or that particular way.

Sometimes an organization doesn’t grow in an orderly fashion, and 

as a result, teams end up owning a combination of things that don’t go 
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together or sharing ownership of things that more properly should have 

one owner. These are the sorts of situations where reorgs make sense.

Conway’s law is a tendency, not a commandment. Large, complex 

organizations can develop fluid and resilient communication pathways; 

it just requires the right leadership and the right tooling. Reorgs should 

be undertaken only in situations where an organization’s structure is 

completely and totally out of alignment with its implementation.

Finding the Right Leadership

Modernization projects are ultimately about transitions. You are moving 

resources, adjusting processes, and reimagining implementation. The 

teams that make sense in the beginning do not always make sense at 

the end.

To find the right leadership, look for people who have been success-

ful in a wide variety of different contexts—old systems, new systems, big 

bureaucracies, and small startups. Do not hire aspirationally. Do not hire 

people whose only experiences are working in companies that reflect 

your desired end state. Do not hire based on what you wish were true 

about your organization. This is a pretty common mistake. Organizations 

that want to grow big recruit executives from big organizations. Organi-

zations that want to migrate to the cloud recruit executives who super-

vised cloud products.

Transitions are inherently ambiguous, and the most important char-

acteristic of any leader who steps into a transition is the ability to adapt 

to the changing conditions that ambiguity opens up. You can assess 

those skills in interviews, but the best indicator is usually a candidate’s 

career path. Candidates who are good at adapting have experiences of 

different sizes and industries on their résumés. They might have done 

nonprofit or government work. They might have dipped their toes into 

different careers or roles. They might have left the working world for a 

few years and then successfully come back.
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Candidates who have spent seven or eight years essentially in the 

same type of organization may bring a lot to the table, but they might 

also be too attached to one way of doing things. They might not under-

stand why certain approaches work in this situation but not that situa-

tion. They might be bureaucratic, risk-averse, and not willing to rise to 

the challenge of a different environment.

Transitions are all about change, but determining what should change 

and when it should change are significant questions. We didn’t get where 

we are all at once. Why should we get anywhere else that way? Leaders 

who are comfortable with ambiguity have a higher likelihood of figuring 

out where all the interim phases are between the starting point and the 

end state.

Exercise: The Smallest Testable Unit
I developed this exercise for planning failure drills (better known to 

some software engineers as chaos experiments). I eventually ended up 

repurposing it as an interview question to assess a candidate’s ability to 

design a road map for a transition.

We start with a large goal we want to reach. For example, suppose 

we have a web application where secrets are kept in a plaintext config-

uration file. Three decades ago, that would have been the right way to 

build an application, but now it’s not secure enough. Any number of solu-

tions will improve security, but the organization may not be able to use 

all of them. This is a typical problem with legacy modernizations: the 

ideal solution is dependent on conditions that are either not present or 

not possible. Leaders have to decide whether to compromise on another 

solution or invest time and energy resolving the dependencies of the pre-

ferred solution.

You might be familiar with the expression yak shaving. It’s when 

every problem has another problem that must be solved before it can be 

addressed. In a way, the smallest testable unit exercise is a yak-shaving 

exercise. You advance through each stage by asking the question “What 
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do we need to do this, and how can we test that we have it?” For the pre-

vious example, the road map might look like this:

●● We need to move secrets to a secure secret management solution. 

To do that, we need to know how many secrets we have, where 

they are in code, and who or what needs to use them.

●● We can figure out who needs to use our current secrets by care-

fully logging access to them. To do that, we need a way to aggre-

gate logs and search them. We should take care not to log actual 

secrets, just the request for them.

●● We can test whether we have the ability to aggregate and search 

logs by having various parts of the application write distinctive 

messages to the logs and check where those messages end up. To 

do that, we need access to the application source code.

●● We can test whether we have access to the source code by finding 

the repository, reading the code, and attempting to submit a change 

to it. To do that, we need some kind of version control solution.

And so on, and so forth.

Done well, the candidate plans the roadmap out backward, starting at 

the end state and identifying smaller and smaller units of change. With 

each step, we are designing tests to find weaknesses in the organization’s 

operational excellence that we can resolve. It’s important that our road-

map is structured around proving we have something with a simple test, 

rather than steps that assert we do. On large projects, it’s easy for people 

to become confused or misreport the ground truth. It is useful to know 

how a leader would construct a test to verify information.

A leader with low tolerance for ambiguity either doesn’t see these 

blockers or will not acknowledge them, so she sends a top-down directive 

mandating the new solution. Engineering whips up a hack or a work-

around to handle the blockers or else just ignores the top-down directive, 

and efforts to improve the legacy system stall.
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Structuring the Team to Account for 
Past Failure

Legacy modernizations are never about just one team or one leader. Legacy 

systems survive because they are important; processes tend to grow around 

important systems, and organizations tend to grow around those processes. 

Even if you chose to run one team specifically for the modernization itself, 

the work of that one team will rely on and influence other teams.

The three effective structures for modernization are as follows:

Teams that mirror existing components. If there’s a short history 

of failure, you may be able to trust the current division of labor to carry 

the day. The teams consist of either all or parts of existing teams, so 

coordination between them takes the form of a cross-functional meet-

ing group populated by either the leads of each existing component or 

someone appointed by the component to represent them. More than any 

other structure, this option relies heavily on interpersonal connections. 

If cliques and rivalries have begun to form in the organization, it will be 

hard to keep the group focused.

Lead team and subgroups. With this model, a lead team shapes the 

high-level view of the modernization effort and then dispatches tasks to 

the subgroups who are empowered to make any and all decisions on the 

details of how they implement those instructions. The more a particu-

lar modernization project has a track record of failure, the more I like to 

form a distinction between our effort and business as usual. That means 

this structure can take the shape of an architecture group advising busi-

ness components (which we might already have set up), or we can pull 

people off their normal teams for a short period of time. It is better to 

avoid slotting the same people into the same roles, and you will likely see 

an immediate boost of motivation provided the shuffling of roles is made 

in good faith and the objectives are clear.

As I mentioned in Chapter 6, nothing says you’re serious about accom-

plishing something more effectively than changing people’s scenery. 
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Consult the “Solution: Code Yellow” on page 116 for more information on 

how this structure can work.

One embedded team. When the history of failure is long, sometimes 

the best option is to embed people within existing teams for the sole pur-

pose of implementing solutions. In this model, one team decides on the 

plan and then dispatches its members to different components around 

the organization to work on the solution. The trick to getting this right is 

identity. The members of the embedded team must have strong bonds of 

camaraderie with each other. They must feel like one team. They should 

treat their host teams with compassion and empathy, but they also 

should consider the host teams more like clients or customers rather 

than as peers.

This is not the same as pulling representatives from every team into 

a joint committee. In the committee solution, the individual is bonded 

to her home team, while having no particular attachment to her col-

leagues on the committee. With an embedded team, the dynamic should 

be reversed.

Implementing these three structures is an exercise in itself to help 

figure out organically how the organization should self-organize around 

the new system once completed. Conway’s law is ultimately about com-

munication and incentives. The incentive side can be covered by giving 

people a pathway to prestige and career advancement that complements 

the modernization effort. The only way to design communication path-

ways is actually to give people something to communicate about. In each 

case, we allow the vision for the new organization to reveal itself by design-

ing structures that encourage new communication pathways to form in 

response to our modernization challenges. As the work continues, those 

communication pathways begin to solidify, and we can begin documen-

tation and formalizing new teams or roles. In this way, we sidestep the 

anxiety of reorganizing. The workers determine where they belong based 

on how they adapt to problems; workers typically left out are given time 

and space to learn new skills or prove themselves in different roles, and by 
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the time the new organization structure is ratified by leadership, everyone 

already has been working that way for a couple months.

Choose your modernization team structure based on how much 

organizational change you think will be needed to make the new system 

maintainable.

Leaving teams as they are supposes that the abstractions of the new 

system will match those of the old system. There will not be new respon-

sibilities; there will not be new roles. The only things that change from 

the old system to the new are implementation details like language or 

tool selection. Many migrations will look like this.

Having a lead team with subgroups assumes that there will be over-

arching problems that no one existing team is empowered to fix or has 

all the necessary information to fix. By the time the new system is com-

pleted, new teams may have developed around those issues. For example, 

the organization might realize that new services need to be developed or 

that to enforce good practices across the engineering organization, they 

need internal tooling. With this structure, we know some parts of our 

engineering group will remain the same, and some parts of it will change, 

but we don’t know exactly how.

Finally, the embedded team sets the precedent of injecting expertise 

as needed into other teams. I use this structure when the goal state of the 

new system is significantly different from the old system. When there’s 

that much change, technology and practices that are completely foreign 

to existing engineers usually are being introduced. Moving off main-

frames, shutting down a data center in favor of the cloud, rolling out SRE, 

or incorporating orchestration are all examples of modernization chal-

lenges where there is likely to be a skills gap on the existing teams. The 

expert being injected to advise and assist will start the process of forming 

new teams by figuring out how the work the old team needs to do gets 

split up. For example, if the modernization effort involves a new piece of 

technology, not everyone on the team will need to reach the same profi-

ciency level with it. Rather than a senior manager deciding who will go 
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where, the organization lets the existing team work on it and sees who 

develops an aptitude.

What you don’t want to do is draw a new organization chart based 

on your vision for how teams will be arranged with the new system. You 

don’t want to do this for the same reason that you don’t want to start 

product development with everything designed up front. Your concept of 

what the new system will look like will be wrong in some minor ways you 

can’t possibly foresee. You don’t want to lock in your team to a structure 

that will not fit their needs.

Instead, ask yourself who needs to collaborate with whom for various 

stages of the modernization project to work, and pick a structure that 

makes this communication easy.

Exercise: In-Group/Out-Group
Who needs to communicate with whom may not be clear when you get 

started. This is an exercise I use to help reveal where the communication 

pathways are or should be. I give everyone a piece of paper with a circle 

drawn on it. The instructions are to write down the names of the people 

whose work they are dependent on inside the circle (in other words, “If 

this person fell behind schedule, would you be blocked?”) and the names 

of people who give them advice outside the circle. If there’s no one spe-

cific person, they can write a group or team name or a specific role, like 

frontend engineer, instead.

Then I compare the results across each team. In theory, those inside 

the circle are people with whom the engineer needs to collaborate 

closely. Each result should resemble that engineer’s actual team with 

perhaps a few additions or deletions based on current issues playing 

out. Outside the circle should be all the other teams. Experts not on 

the team should be seen as interchangeable with other experts in the 

same field.

Small variations will exist from person to person, but if the visu-

alizations that people produce don’t look like their current teams, 
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you know your existing structure does not meet your communication 

needs.

You can modify this exercise to look at the communication needs of 

the new system instead of the existing one by focusing the research ques-

tion on a future work stream. Instead of which people might be blockers 

or advisors generally, ask people to visualize the in-group and out-group 

in terms of a specific modernization task.

Takeaways

This chapter covers a lot of ground. Design thinking is a rich landscape 

with lots of insight and strategy of value to the task of legacy moderniza-

tion. I have tried to demonstrate enough of that value to encourage you 

to bring a designer into your fold if you don’t already have one. To review, 

here are the takeaways you should have from this chapter:

●● Design is problem setting. Incorporating it into your process will 

help your teams become more resilient.

●● By themselves, technical conversations tend to incentivize people 

to maintain status by criticizing ideas. Design can help mitigate 

those effects by giving conversations the structure of a game and 

a path to winning.

●● Legacy modernizations are ultimately transitions and require 

leaders with high tolerance for ambiguity.

●● Conway’s law doesn’t mean you should design your organization 

to look like the technology you want. It means you should pay 

attention to how the organization structure incentivizes people to 

behave. These forces will determine what the technology looks like.

●● Don’t design the organization; let the organization design itself 

by choosing a structure that facilitates the communication teams 

will need to get the job done.
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In the next chapter, I’ll continue to explore the concept of communi-

cation by tackling the issue of breaking changes and how to keep them 

from blocking progress forward.



8
BREAKING CHANGES

I n government, we had a saying, “The only thing the government hates 

more than change is the way things are.” The same inertia lingers over 

legacy systems. It is impossible to improve a large, complex, debt-ridden 

system without breaking it. If you’re lucky, the resulting outages will be 

resolved quickly and result in minimum data loss, but they will happen.

Another expression that was popular among my colleagues in govern-

ment was “air cover.” To have air cover was to have confidence that the 

organization would help your team survive such inevitable breakages. It 

was to have someone who trusted and understood the value of change 

and could protect the team. As a team lead, my job was to secure that 

air cover. When I moved back to the private sector, I applied the same 

principles as a manager—networking, relationship building, recruiting, 

doing favors—so I could give my team members the safety and security 

necessary to do the hard jobs for which I had hired them.

In this chapter, I explore the concept of breaking changes. How do 

you sell dangerous changes while being honest about their risks? When 

should you break stuff, and how do you recover quickly?
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But, I want to start with the concept of air cover. Business writers 

sometimes refer to “psychological safety,” which is another great way to 

describe the same concept. To do effective work, people need to feel safe 

and supported. Leadership buy-in is one part of creating the feeling of 

air cover, but for air cover to be effective, it has to alter an organization’s 

perception of risk.

Risk is not a static number on a spreadsheet. It’s a feeling that can be 

manipulated, and while we may justify that feeling with statistics, prob-

abilities, and facts, our perception of level of risk often bears no relation-

ship to those data points.

Being Seen

A year or two ago, I was invited to give a guest lecture on working with 

software engineers at Harvard’s Kennedy School for Government. When 

it came time to give practical advice, the first slide on my deck said in big 

letters, “How do people get seen?”

Being seen is not specifically about praise. It’s more about being 

noticed or acknowledged, even if the sentiment expressed in that 

acknowledgment is neutral. Just as status-seeking behavior influences 

what people say in meetings, looking to be seen influences what risks 

people are willing to tolerate. Fear of change is all about perception of 

risk. People construct risk assessments based on two vectors: level of 

punishment or reward and odds of getting caught.

Of those two, people are more sensitive to changes in odds of getting 

caught than level of punishment or reward.1 If you want to deter crime, 

increase the perception that the police are effective, and criminals will 

be caught. If you want to incentivize behavior, pay attention to what 

behaviors get noticed within an organization.

1.	 Daniel S. Nagin, “Deterrence in the Twenty-First Century,” Crime and Justice 42 (2013): 
199–263, https://doi.org/10.1086/670398.

https://doi.org/10.1086/670398
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Organizations can pay a lot of lip service to good behaviors but still 

not notice them. Being seen is not about matching an organization’s 

theoretical ideals, it’s about what your peers will notice. It’s easy for the 

organization’s rhetoric to be disconnected from the values that govern 

the work environment. What colleagues pay attention to are the real 

values of an organization. No matter how passionate or consistent the 

messaging, attention from colleagues will win out over the speeches.

The specific form of acknowledgment also matters a lot. Positive 

reinforcement in the form of social recognition tends to be a more effec-

tive motivator than the traditional incentive structure of promotions, 

raises, and bonuses. Behavioral economist Dan Ariely attributes this to 

the difference between social markets and traditional monetary-based 

markets.2 Social markets are governed by social norms (read: peer pres-

sure and social capital), and they often inspire people to work harder and 

longer than much more expensive incentives that represent the tradi-

tional work-for-pay exchange. In other words, people will work hard for 

positive reinforcement; they might not work harder for an extra thou-

sand dollars.

Ariely’s research suggests that even evoking the traditional market by 

offering small financial incentives to work harder causes people to stop 

thinking about the bonds between them and their colleagues and makes 

them think about things in terms of a monetary exchange3—which is a 

colder, less personal, and often less emotionally rewarding space.

The idea that one needs a financial reward to want to do a good job 

for an organization is cynical. It assumes bad faith on the part of the 

employee, which builds resentment. Traditional incentives have little 

positive influence, therefore, because they disrupt what was otherwise 

2.	 James Heyman and Dan Ariely, “Effort for Payment: A Tale of Two Markets,” Psychologi-
cal Science 15, no. 11 (2004): 787–793, https://doi.org/10.1111/j.0956-7976.2004.00757.x.

3.	 Dan Ariely, Predictably Irrational: The Hidden Forces That Shape Our Decisions (New York: 
HarperCollins, 2008).

https://doi.org/10.1111/j.0956-7976.2004.00757.x
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a personal relationship based on trust and respect. Behavioralist Alfie 

Kohn puts it this way:

Punishment and rewards are two sides of the same coin. Rewards have 
a punitive effect because they, like outright punishment, are manipu-
lative. “Do this and you’ll get that” is not really very different from “Do 
this or here’s what will happen to you.” In the case of incentives, the 
reward itself may be highly desired; but by making that bonus contin-
gent on certain behaviors, managers manipulate their subordinates, 
and that experience of being controlled is likely to assume a punitive 
quality over time.4

Here’s an example of this in practice. When I worked for USDS, my 

boss constantly complained about people doing the exact opposite of 

what he told them time and time again was what he wanted them to 

do. Specifically, he kept telling teams not to take systems away from 

the organizations that owned them. USDS operated, at least in theory, 

on a consulting model. We were supposed to assist and advise agen-

cies, not adopt their legacy systems long term without any exit plan. My 

boss complained about this approach over and over again. He could not 

understand why people kept gravitating toward a strategy that was more 

difficult, less likely to succeed, and against his wishes.

Every week, we had a staff meeting where people demoed what they 

were working on and gave status updates. Inevitably, USDSers would 

censor their updates, wanting to talk about things only once they had 

achieved success. This meant product launches. All we talked about 

at staff meetings were product launches. Eventually, this convention 

became self-reinforcing. People began to think they shouldn’t talk about 

a project before it had a launch coming up or a milestone reached, that 

the little wins were not worth mentioning.

4.	� Alfie Kohn, “Why Incentive Plans Cannot Work,” Harvard Business Review, September/
October 1993, https://hbr.org/1993/09/why-incentive-plans-cannot-work.

https://hbr.org/1993/09/why-incentive-plans-cannot-work
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The problem was that most USDS projects involved old systems where 

the solutions would take months of untangling, even if the government 

bureaucracy wasn’t a factor. Talking only about product launches meant 

certain teams might work for a full year on something before their peers 

ever heard about their projects.

My boss’s advice of not taking things away from the organizations 

that owned them was great advice for long-term sustainability, but it 

would mean feelings of isolation as colleagues talked about their work 

and you had nothing to contribute, because it would take months to get 

to a product launch. What’s the best way to speed that up? Take over the 

system, remove or otherwise bypass the government client who owns 

it, and bring in a team of bright young USDSers to do all the work. This 

got products to launch quicker, but handing them off to the government 

stakeholders became close to impossible. They didn’t know anything 

about the new system. This is what my boss was trying to prevent, but 

people ignored his advice to prioritize the methods that were going to get 

them seen by their peers early and often.

When we realized this, we decided to schedule a 10-minute block at 

the end of every staff meeting for “kudos.” Kudos were acknowledgments 

and congratulations of small wins throughout the organization. Did a 

meeting go well? Write a kudos. Did someone go above and beyond the 

call of duty to fix something? Write a kudos. Did a team show integrity 

and resolve through a project failure? Write a kudos. We would collect all 

the kudos in a specific repository throughout the week, and then at the 

end of the staff meeting, someone would read them all out loud.

Given a choice between a monetary incentive and a social one, people 

will almost always choose the behavior that gets them the social boost. So 

when you’re examining why certain failures are considered riskier than 

others, an important question to ask yourself is this: How do people get 

seen here? What behaviors and accomplishments give them an opportu-

nity to talk about their ideas and their work with their colleagues and be 

acknowledged?
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If you want to improve people’s tolerance for certain types of risks, 

change where the organization lands on those two critical vectors of 

rewards and acknowledgment. You have four options: increase the 

odds that good behavior will get noticed (especially by peers), decrease 

the odds that bad outcomes will get noticed, increase the rewards for 

good behavior, or decrease the punishment for bad outcomes. All of 

these will alter an organization’s perception of risk and make breaking 

changes easier.

Note the distinction between good behavior and bad outcomes. When 

deciding how they should execute on a given set of tasks, workers consider 

two questions: How does the organization want me to behave? And, will I 

get punished if things go wrong despite that correct behavior? If you want 

people to do the right thing despite the risk, you need to accept that failure.

One of the most famous examples of these principles in play to raise 

engineering standards is Etsy’s 3-Arm Sweater award.5 The image of the 

3-Arm Sweater is used throughout Etsy to signify a screw-up. It is featured 

prominently on its 404 File Not Found page, for example. The 3-Arm Sweater 

award is given out to the engineer who triggers the worst outage. Celebrat-

ing failure wasn’t just an annual tradition; Etsy employees had an email list 

to broadcast failure stories company-wide.6 Because Etsy wanted to estab-

lish a just culture, where people learned from mistakes together instead of 

trying to hide them, the company found ways to integrate the acknowledg-

ment of those behaviors into day-to-day operations. These practices helped 

Etsy scale its technology to 40 million unique visitors every month.7

5.	 Howard Greenstein, “Build a Culture That Celebrates Mistakes,” Inc., June 19, 2012, 
https://www.inc.com/howard-greenstein/build-a-start-up-tech-culture-that-celebrates- 
mistakes.html.

6.	 Ibid.

7.	 Knowledge@Wharton, “Here’s How Etsy Plans to Scale Without Losing Its Crafty, 
Handmade Aesthetic,” Business Insider, May 10, 2012, https://www.businessinsider.com/
heres-how-etsy-plans-to-scale-without-losing-its-crafty-handmade-aesthetic-2012-5.

https://www.inc.com/howard-greenstein/build-a-start-up-tech-culture-that-celebrates-mistakes.html
https://www.inc.com/howard-greenstein/build-a-start-up-tech-culture-that-celebrates-mistakes.html
https://www.businessinsider.com/heres-how-etsy-plans-to-scale-without-losing-its-crafty-handmade-aesthetic-2012-5
https://www.businessinsider.com/heres-how-etsy-plans-to-scale-without-losing-its-crafty-handmade-aesthetic-2012-5


Breaking Changes    167  

If you want your team to be able to handle breaking things, pay atten-

tion to what the organization celebrates. Blameless postmortems and 

just culture are a good place to start, because they both manipulate how 

people perceive failure and establish good engineering practices.

Who Draws the Line?

But, can blameless postmortems ever really be blameless?

In 2008, system safety researcher Sidney Dekker published an arti-

cle titled “Just Culture: Who Gets to Draw the Line?”8 Dekker’s article 

addresses whether true “blameless” postmortems, where no one was ever 

punished for errors, are the desired end state of just cultures. People want 

psychological safety, but they also want accountability. No one wants 

to excuse actual negligence, but if there’s a line between mistakes that 

should be blameless and those where people should be held accountable, 

who should be able to draw it?

A popular exercise with first-year computer science students is to 

write a hypothetical program instructing a robot to walk across the room. 

Students soon find that the simplest of instructions, when taken liter-

ally, can lead to unexpected results, and the purpose of the exercise is to 

teach them something about algorithms as well as what assumptions 

computers can and cannot make.

Safety researchers like Dekker view organizational procedures largely 

the same way. Prescribed safety, security, and reliability processes are 

useful only if operators can exercise discretion when applying them. 

When organizations take the ability to adapt away from the software 

engineers in charge of a system, any gap in what procedure covers 

becomes an Achilles heel.

8.	 Sidney W. A. Dekker, “Just Culture: Who Gets to Draw the Line?” Cognition, Technology 
& Work 11 (2008): 177–185, https://doi.org/10.1007/s10111-008-0110-7.

https://doi.org/10.1007/s10111-008-0110-7
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That’s why the issue of who gets to draw the line is so critical to a just 

culture. The closer the line-drawing pattern is to the people who must 

maintain the system, the greater the resilience. The further away, the 

more bureaucratic and dysfunctional.

Also, the line is never drawn once; it is actively renegotiated. No rule 

maker can possibly predict every conceivable situation or circumstance 

an organization and its technology might confront. So the line between 

blameless behavior and behavior that people should be held accountable 

for is redrawn. These corrections can be influenced by cultural, social, or 

political forces.

Just as understanding how people get seen is important to construct-

ing incentives that moderate people’s perception of risk, understanding 

who gets to draw the line between mistakes that are acceptable and those 

that are not is important to understanding how privilege is distributed 

around an organization. The highest probability of success comes from 

having as many people engaged and empowered to execute as possible. 

Those who cannot draw the line or renegotiate the placement of the line 

are the organization members with the least privilege and the most in 

need of investment to get the full benefit of their efforts.

Building Trust Through Failure

The suggestion that failure should be embraced or that a modernization 

team should deliberately break something makes people uncomfortable. 

The assumption is that failure is a loss—failure always leaves you worse off.

Or does it?

The science paints a much more complex picture. Although a system 

that constantly breaks, or that breaks in unexpected ways without warn-

ing, will lose its users’ trust, the reverse isn’t necessarily true. A system 

that never breaks doesn’t necessarily inspire high degrees of trust.

Italian researchers Cristiano Castelfranchi and Rino Falcone have 

been advancing a general model of trust in which trust degrades over 
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time, regardless of whether any action has been taken to violate that 

trust.9 People take systems that are too reliable for granted. Under Cas-

telfranchi and Falcone’s model, maintaining trust doesn’t mean estab-

lishing a perfect record; it means continuing to rack up observations of 

resilience. If a piece of technology is so reliable it has been completely 

forgotten, it is not creating those regular observations. Through no fault 

of the technology, the user’s trust in it will slowly deteriorate.

Those of us who work in the field of legacy modernization see this 

happen all the time. Organizations become gung-ho to remove a system 

that has been stable and efficient for decades because it is old, and there-

fore, management has become convinced that a meltdown is imminent.

We also see this happen on more modern systems. Google has repeat-

edly promoted the notion that when services are overperforming their 

SLOs, teams are encouraged to create outages to bring the performance 

level down.10 The rationale for this is that perfectly running systems 

create a false sense of security that lead other engineering teams to stop 

building proper fail-safes. This might be true, but a different way to look 

at it is that the more a service overperforms, the less confident Google’s 

SREs become in overall system stability.

The idea that something is more likely to go wrong only because 

there’s been a long gap when nothing has gone wrong is a version of the 

gambler’s fallacy. It’s not the lack of failure that makes a system more 

likely to fail, it’s the inattention in the maintenance schedule or the fail-

ure to test appropriately or other cut corners. Whether the assumption 

that a too reliable system is in danger is sensible depends on what evi-

dence people are calling on to determine the odds of failure.

9.	 Cristiano Castelfranchi and Rino Falcone, Trust Theory (Hoboken, NJ: Wiley, 2009).

10.	 Chris Jones, John Wilkes, and Cody Smith, “Service Level Objectives,” in Site Reliability 
Engineering: How Google Runs Production Systems, ed. Betsy Beyer, Chris Jones, Jennifer 
Petoff, and Niall Richard Murphy (Sebastopol, CA: O’Reilly Media, 2016). See also “Site 
Reliability Engineering,” Google, accessed January 8, 2020, https://landing.google.com/sre/.

https://landing.google.com/sre/
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 The gambler’s fallacy is one of those logical fallacies that is so perva-

sive, it shows up in all kinds of weird ways. In 1796, for example, a French 

philosopher documented how expecting fathers felt anxiety and despair 

when other local women gave birth to sons because they were convinced 

it lowered their likelihood of having a son within the same period.11

For this reason, the occasional outage and problem with a system—

particularly if it is resolved quickly and cleanly—can actually boost the 

user’s trust and confidence. The technical term for this effect is the service 
recovery paradox.12

Researchers haven’t been able to pin down the exact nature of the ser-

vice recovery paradox—why it happens in some cases but not others—

therefore, you shouldn’t take things as far as trying to optimize customer 

satisfaction by triggering outages. That being said, what we do know is 

that recovering fast and being transparent about the nature of the outage 

and the resolution often improves relationships with stakeholders. Fac-

toring in the boost to psychological safety and productivity that just cul-

ture creates, technical organizations shouldn’t shy away from breaking 

things on purpose. Under the right conditions, the cost of user trust is 

minimal, and the benefits might be substantial.

Breaking Change vs. Breaking

Before I go into the nitty-gritty details of deliberately breaking systems, I 

should acknowledge that I’m using the phrase breaking change to refer to 

all changes that break a system. Breaking change is not normally that broad.

11.	 Greg Barron and Stephen Leider, “The Role of Experience in the Gambler’s Fallacy,” 
Journal of Behavioral Decision Making 23, no. 1 (2009): 117–129, https://doi.org/10.1002/
bdm.676.

12.	 Anupam Krishna, G. S. Dangayach, and Sonal Sharma, “Service Recovery Paradox: The 
Success Parameters,” Global Business Review 15, no. 2 (June 2014): 263–277, https://doi.
org/10.1177/0972150914523567.

https://doi.org/10.1177/0972150914523567
https://doi.org/10.1177/0972150914523567
https://doi.org/10.1177/0972150914523567
https://doi.org/10.1177/0972150914523567
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Typically, what we mean when we say breaking change is a violation 

of the data contract that impacts external users. A breaking change is 

something that requires customers or users to upgrade or modify their 

own systems to keep everything working. It is a change that breaks tech-

nology owned by other organizations.

For the sake of convenience, I’m using the expression breaking change 

here to refer to any kind of change—internally or externally—that alters 

system functionality in a negative way. The rest of this chapter discusses 

both the changes we make as part of deprecations and redesigns that 

break contacts on external-facing APIs and the changes we make when 

seeking to reduce a system’s overall complexity.

Why Break Things on Purpose?

It’s unlikely that any significant legacy modernization project can com-

plete without breaking the system at least once. But, breaking a system 

as an unfortunate consequence of other changes, knowing there’s a risk 

that a break might occur, and deliberately breaking things on purpose 

are different scenarios. I’m arguing that your organization shouldn’t just 

embrace resilience over risk aversion, but it should also occasionally 

break things on purpose.

What kind of scenarios justify breaking things on purpose? The 

most common one when dealing with legacy systems is loss of institu-

tional memory. On any old system, one or two components exist that 

no one seems to know exactly what they do. If you are seeking to mini-

mize the system’s complexity and restore context, such knowledge gaps 

can’t just be ignored. Mind you, the situations when you can’t figure out 

what a component is doing from studying logs or digging up old doc-

umentation tend to be rare, but they do happen. Provided the system 

doesn’t control nuclear weapons, turning the component off and seeing 

what breaks is a tool that should be available when all other avenues 

are exhausted.
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Having a part of a system that no one understands is a weakness, so 

avoiding the issue for fear of breaking things should not be considered 

the safer choice. Using failure as a tool to make systems and the organiza-

tions that run them stronger is one of the foundational concepts behind 

resilience engineering. It’s important to know how each part of a system 

works in a variety of conditions, including how interactions between 

parts work. Unfortunately, no one person can hold all of that information 

in his or her head. Knowledge about a system must be regularly shared 

among the different operational units of a technical organization. An 

organization needs processes to expose relevant details and scenarios, 

communicate them, and judge their significance. That’s why the second 

reason to break things on purpose is to verify that what an organization 

believes about its system is actually true. Resilience engineering tests—

also called failure drills—look to trigger failure strategically so that the 

true behavior of the system can be documented and verified.

The simplest and least threatening of failure drills is to restore from 

backup. Remember, if an organization has never restored from backup, 

it does not have working backups. Waiting for an actual outage to figure 

that out is not a safer strategy than running a failure drill at a time you’ve 

chosen, supervised by your most experienced engineers.

You can justify any failure test the same way. Is it better to wait for 

something to fail and hope you have the right resources and expertise 

at the ready? Or is it better to trigger failure at a time when you can plan 

resources, expertise, and impact in advance? You don’t know that some-

thing doesn’t work the way you intended it to until you try it.

Projecting Impact

Two types of impact are relevant to failure tests. The first is technical 

impact: the likelihood of cascading failures, data corruption, or dramatic 

changes in security or stability. The second is user impact: How many 

people are negatively affected and to what degree?
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Technical impact will be the harder of the two to project. You should 

have some idea of how different parts of the system are coupled and where 

the complexity is in your system from exercises in previous chapters; now 

you’ll want to put that information into a model of potential failures.

A good way to start is with a 4+1 architectural view model. Developed 

by Philippe Kruchten,13 a 4+1 architectural view model breaks an archi-

tectural model into separate diagrams that reflect the concerns of one 

specific viewpoint.

●● Logical view maps out how end users experience a system. This 

might take the form of a state diagram, where system state 

changes (such as updates to the database) are tracked along user 

behavior. When the user clicks a particular button, what happens? 

What actions could the user take from that point, and how would 

the system state adjust?

●● Process view looks at what the system is doing and in what order. 

Process views are similar to logical views except the orientation is 

flipped. Instead of focusing on what the user is doing, the focus is 

on what processes the machine is initiating and why.

●● Development view is the system how software engineers see it. The 

architecture is broken out by components reflecting the applica-

tion code structure.

●● Physical view shows us our systems as represented across physical 

hardware. What actually gets sent across the network? What else 

lives on the same servers?

The +1 in the 4+1 architecture refers to scenarios. Scenarios take a 

small sample of features that can be connected to a specific technique or 

functionality and focus on it. In other words, these are use cases.

13.	 Philippe Kruchten, “Architectural Blueprints—The ‘4+1’ View Model of Software Archi-
tecture,” IEEE Software 12 no. 6 (November 1995): 42–50.
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These views are easier to understand by example. Let’s consider a 

hypothetical system where users upload scanned documents that are 

converted to text files. These text files are tagged automatically based on 

their context, but users may edit both this metadata and the transcrip-

tion itself.

The logical view of this system might look like Figure 8-1.

Upload

Document Text data

Text data Verified 
text data

Verified tagsTags

Process Edit

Figure 8-1: Logical view, a state machine

We model the state of the data as it goes from document to processed 

verified output. Each of the stages is kicked off by a user action, and it’s 

easy to see the functional requirements of the system.

The process view, on the other hand, might look something like 

Figure 8-2.

Open file 
selector window

POST file 
to server

Detonate file 
in sandbox

Process file

Tokenize stringsExtract tagsLoad edit formSave data

Figure 8-2: Process view, the technical processes being performed

Processing a file begins with triggering the interface to select the file 

for the user’s computer. Upon receiving the file, the server downloads it 

into a sandbox to ensure it’s safe. While processing, text data is tokenized 
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so that tags of the most common significant words can be extracted. Then 

we load that data into an edit form so the user can validate it.

Although the two views describe the same system with the same set 

of functions, they highlight different things. The process view contains 

requirements around ensuring the file being uploaded is safe and how 

the tags are identified that are not visible to the user, but without the 

logical view, we might not realize that the intention of the system is 

that the data should not be considered final until the user has verified it.

Kruchten developed the 4+1 architectural view model because he 

observed that traditional architectural diagrams tried to capture all the 

perspectives in one visualization. As a result, instead of enriching and 

deepening our ability to reason about a system, knowledge gaps were cre-

ated where one view was emphasized over all others.

For example, the impacts of a broken sandbox are obvious on the pro-

cess view, but they do not even register on the logical view. Whereas the 

logical view highlights tags and text as separate things that might break 

independently of one another, the process view does not reveal this.

The development and physical views have a similar relationship. 

Figure 8-3 shows what this hypothetical system might look like in a devel-

opment view.

Documents Tags

Create Create

Sandbox

Edit

Parse

Tokenize

Edit

Figure 8-3: Development view, how the code is structured
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Code is organized into two classes: Documents and Tags. Each class 

has a set of methods reflecting a Create, Read, Update, and Delete (CRUD) 

structure. This system saves the document as soon as we’ve verified that 

it’s safe, so that if the parser fails, we don’t lose data. It tokenizes as it 

parses and creates tags after.

The physical view might look more like Figure 8-4.

Users access the system from browsers on their computers. The web 

application runs on a server that interacts with a separate VM for sand-

boxing, an object store for preprocessed documents, and a database for 

post-processed data.

Each of these views is different, and by considering them together, 

we get a clearer picture of the different ways that one component of the 

system might fail and what that failure would affect. 

Once we’ve modeled the system and feel confident that we understand 

it, we can flesh out our analysis of potential failures by collecting data from 

the running system to try to determine how many stakeholders would be 

affected in case of failure and the likelihood of failure happening at all.

Browser

Webserver

Database Object store

Sandbox

Figure 8-4: Physical view, servers in a cloud environment
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The simplest and most obvious place to start is with the system’s logs. 

Is a log produced when this component of the system is active, and do we 

know what triggered it, when it was triggered, how long it ran, or other 

metadata? If we don’t have logs, can we add them? A week or two of data 

will not give you a complete picture, but it will validate what an outage 

would impact and clarify the order of magnitude.

Another trick to estimating impact is to consider whether the miti-

gation can actually be automated. We had this issue around templates 

once. For security reasons, we wanted to standardize on one templating 

language. We needed our users to convert their custom templates and 

didn’t want to spend months communicating and negotiating with cus-

tomers, so we built a tool that did the conversion for the customer and 

tested that the new templates rendered identically.

Finally, there’s the most extreme method I mentioned before: turn 

the component off and see who complains. What if the request leaves 

your network and you can’t tell what the receiver is doing with it, if any-

thing? In those cases, you need to chip away at the challenge until you’ve 

defined the impact. A micro-outage is similar to “turn it off and see who 

complains,” except that you remove the asset only for a small period of 

time and do not wait for a complaint to turn it back on.

The Kill Switch

As a result of your analysis, you should have a general idea of what is likely 

to go wrong. Given that information, part of the plan before deliberately 

breaking a component of a system should be establishing termination cri-

teria. That is to say, if the breakage triggers impacts beyond a certain level, 

when and how do you revert the breakage? Having a rollback strategy is 

important for any kind of change to an operational system, but it’s effec-

tive only if everyone understands what the tolerance for failure really is.

Setting the criteria and process for undoing the break before anything 

is damaged gives people the ability to take on the risk with confidence.



178    Kill It with Fire

Communicating Failure
Of course, it’s not very diplomatic to break something that will affect col-

leagues and users without letting them know. Some level of communi-

cation is usually needed, but how much and with whom depends on the 

objectives of the breaking change.

If you are breaking something to test the system’s resilience, provid-

ing too much information can limit the effectiveness of the drill. The 

whole point of a failure drill is to test whether procedures for recovery 

work as expected. Real failures rarely announce themselves or provide a 

detailed description of how they are triggered.

Before a failure drill, it is not necessary to notify external users at 

all. In theory, your organization will recover successfully, and users 

will experience no negative impacts. Internal stakeholders, including 

system users and other engineering teams, should be notified that there 

will be a failure drill on a specific part of the system, but they don’t need 

to know how long the outage will last, when exactly it will be, or the 

nature of the failure to be triggered. If the drill is a routine test of back-

ups and fail-safes, a week’s notice is usually acceptable. If the drill will 

affect areas of the system with unclear or complex recovery paths or if 

the drill is testing human factors in the recovery process, more notice 

is a good idea. You want to give teams enough time to assess the poten-

tial impact on the parts of the system they own and double-check their 

mitigation strategies. Typically, I recommend no more than 90 days’ 

advance notice for the most elaborate failure drills. If you provide too 

much time, people will procrastinate to the point where it is as if they 

were given no advanced notice at all. If you give too little notice, teams 

will need to stop normal development work to be ready in time.

It’s different if you are breaking something with the intention of 

decommissioning it or otherwise leaving it permanently altered. In that 

case, it is more important to communicate the change to external users. 

The traditional way to do this is to set a date for decommissioning the 

specific feature or service, declare it deprecated, and notify users a few 



Breaking Changes    179  

months in advance. How much time to give users depends on how com-

plex the migration away from the deprecated feature is likely to be. I don’t 

think there’s much value in providing years of notice versus months for 

the same reason I don’t usually give internal teams more than 90 days of 

notice for a failure drill: more time often leads to more procrastination.

If you are particularly unlucky, you might find yourself in a situation 

where you cannot inform users with an email, a phone call, or even a 

letter. You may not even know exactly who the users are. In those situa-

tions, you either have to get a little creative or take your chances that a 

component that looks unused actually is.

Posting a deprecation notice somewhere that users are likely to look 

for information is one solution. One time, when we could find no other 

way to figure out who was using a specific API, we put a message in the 

API itself. Since the attribute we wanted to get rid of happened to be a 

string, we just changed the content of the string to a message saying that, 

for security reasons, we would no longer be providing that value and to 

contact customer support for more information.

But, whatever the method, the most important part of your commu-

nication strategy is that you carry out the breaking change when you said 

you were going to do it. If you hesitate or delay, users will simply not bother 

migrating at all, and the impact of the breakage will be much more damaging.

Once you set a date for failure, whether it’s a drill or a permanent 

decommissioning, you need to honor that commitment.

Failure Is a Best Practice

To summarize, people’s perception of risk is not static, and it’s often not 

connected to the probability of failure so much as it is the potential feel-

ing of rejection and condemnation from their peers. Since social pres-

sures and rewards are better incentives than money and promotions, 

you can improve your odds of success by learning how to manipulate an 

organization’s perception of risk.
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The first task is to understand what behaviors get individuals within an 

organization acknowledged. Those are the activities that people will ulti-

mately prioritize. If they are not the activities that you think will advance 

your modernization process, explore constructs, traditions, and—there’s 

no better word for it—rituals that acknowledge complementary activities.

The second task is to look at which part of the organization gets to 

determine when the operator can exercise discretion and deviate from 

defined procedure. Those are the people who set the ratio of blameless-

ness to accountability in handling failure. Those are the people who will 

grant air cover and who need to buy in to any breaking change strategy 

for it to be successful. Once that air cover is established, anxiety around 

failure tends to relax.

Once you know how to manipulate the organization’s perception of 

risk, successfully managing the break is all about preparation. While you 

will not be able to predict everything that could go wrong, you should be 

able to do enough research to give your team the ability to adapt to the 

unknown with confidence. At a minimum, everyone should know and 

understand the criteria for rolling back a breaking change.

Failure does not necessarily jeopardize user trust. If the situation 

is quickly resolved and users receive clear and honest communication 

about the problem, the occasional failure can trigger the service recovery 

paradox and inspire greater user confidence.

Organizations should not shy away from failure, because failure can 

never be prevented. It can only be put off for a while or redirected to 

another part of the system. Eventually, every organization will experience 

failure. Embracing failure as a source of learning means that your team 

gains more experience and ultimately improves their skills mitigating 

negative impacts on users. Practicing recovering from failure, therefore, 

makes the team more valuable.
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HOW TO FINISH

W hen I was working for the United Nations (UN), my boss at 

the time would regularly start conversations with the words 

“When the website is done . . .” to which I would respond, “The website 

is never done.” I count among my accomplishments the fact that by 

the time I left the UN, people had bought in to the agile, iterative pro-

cess that treats software as a living thing that needs to be constantly 

maintained and improved. They stopped saying “When the website is 

done . . .”

Technology is never done, but modernization projects can be. This 

chapter covers how to define success in a way that makes it clear when 

the modernization effort is completed and what to do next. In the begin-

ning of a project, what success looks like can seem obvious, but often 

some people in an organization make assumptions about what success 

means that are different from the assumptions of others. Getting every-

one on the same page and keeping everyone on the same page is critical 

to ensuring that the project crosses the finish line.
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Revealing Assumptions

A fair number of broken systems end up that way because the units of the 

organization involved in the implementation saw their roles and how they 

contributed to the larger picture differently from one another. Any kind of 

modernization, rearchitecting, or rethinking of an existing technical system 

is a long game. Work will stretch on for months or years. For that reason, it is 

essential when you work on these projects that everyone on the team is able 

to answer this question: How do we know if it’s getting better?

The team should know the long-term answer to that, but they should 

also know what better looks like within days or weeks from where they are 

now. This kind of work is a slog. To do it well, you have to maintain your own 

resilience. You have to be mindful of how people behave when they think 

a project is going poorly. The only thing harder than managing your own 

doubts is dealing with sabotage from colleagues who don’t understand how 

much progress is being made because their expectations of what improve-

ment will look like is different from other members of the team.

Approach 1: Success Criteria

Success doesn’t happen quickly or all at once, which begs the question: 

How do you know whether a project is moving in the right direction? 

When I set success criteria with my teams (and usually my boss or other 

significant stakeholders), we first determine the time frame for evalua-

tion. If two people agree that shipping a feature is an indication of suc-

cess, they can still come into conflict if they disagree on the timeline. 

Shipping something in three months is not the same thing as shipping 

it in a week. For the person who believes the feature should be shipped 

in a week, a deploy much later feels like a warning sign. For the person 

who believes it should be shipped in a year, the same deploy is validation.

If you are familiar with objectives and key results (OKRs), success crite-

ria can take on a similar shape. First, you define your goal, and then, you 
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define how you’ll know that you’ve reached your goal. Except, OKRs usu-

ally focus on signs that the goal is completed, and success criteria should 

focus on signs that you’re heading in the right direction.

The value of this strategy is that the criteria chosen indicates the 

approach that will be taken without anyone arguing about the approach. 

If the success criteria are all about implementing new features, it’s 

unlikely the team is going to prioritize resolving any technical debt. If 

the success criteria are instead about decreasing the number of errors or 

speeding up minimum time to recover, the team has to focus on improv-

ing existing code. Whenever you can avoid having people argue about 

principles, philosophies, and other generalities of good engineering 

versus bad engineering, take advantage of it.

The same goal can have wildly different success criteria depending 

on the team’s model. For example, a consulting model would focus on 

the client’s ability to absorb and adopt process and best practices, not 

deploys. Consultants don’t have much control over deploys, and the only 

way they get control is by not being consultants anymore. As software 

engineers, it is easy to fall into the trap of thinking that effective work 

will always look like writing code, but sometimes you get much closer to 

your desired outcome by teaching others to do the job rather than doing 

it yourself.

Example: Adding Continuous Integration/Continuous Deploy

Goal: Move service on to its own deploy pipeline.

Timeline: One quarter.

Success Criteria:

●● Time to deploy drops by 20 percent.

●● Any single person on the Service team can initiate and manage a 

deploy.

●● Number of deploys in a week goes up.
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Approach 2: Diagnosis-Policy-Actions

Developed by Richard Rumelt, this approach draws on the same infor-

mation as success criteria but frames it a bit differently.1 Informa-

tion is represented in three segments: diagnosis, policy, and actions. 

Diagnosis is a definition of a problem being fixed. Policy refers to the 

boundaries of potential solutions—the rules about what the solution 

should involve doing or shouldn’t involve doing. Finally, actions are 

the steps the team will take to solve the problem without violating 

their policy.

What’s useful about Rumelt’s approach is that it is more focused 

on what you’re going to do and how you’re going to do it. This might be 

better in situations when there is little consensus around what suc-

cess should look like and no single authority to make that decision, 

but you may find this approach more difficult if your team struggles 

with road maps. The challenges of legacy modernization can be varied, 

intertwined, and politically complex. Teams might not agree on what 

success looks like, and they might also disagree on which tasks need to 

be executed to untangle problems. Rumelt’s approach is better for sit-

uations when it is easier to reach agreement on the steps forward and 

their order, but harder to reach consensus on what signs of improve-

ment will look like.

Example: Upgrading a Database

Diagnosis: Our database software is several versions out of date. The 

vendor won’t provide support anymore.

Policy: We want to use blue-green deploys. We will never just turn 

one database version off and the other on all at once.

1.	 Richard P. Rumelt, Good Strategy Bad Strategy: The Difference and Why It Matters (New 
York: Crown Business, 2011).
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Actions:

●● We will back up our data before each upgrade.

●● We will upgrade to 3.2 on this date.

●● We will update to 3.3 on this date.

Comparison

In terms of defining success, success criteria and diagnosis-policy-actions 

have different strengths and weaknesses. Success criteria connects mod-

ernization activities more directly to the value add they can demonstrate. 

It affords more flexibility in exactly what the team does by not prescribing 

a specific approach or set of tasks. It is an excellent exercise to run with 

bosses and any other oversight forces that might be inclined to micro-

manage a team. How to do something should be the decision of the people 

actually entrusted to do it. For that reason, the diagnosis-policy-actions 

approach is too detail oriented to help a team manage up. If the set of 

actions needs to be changed later, the team might be reluctant to do it and 

seem inconsistent in front of senior leadership. Discretion is so critical 

to success; don’t forfeit your team’s right to it by presenting implementa-

tion details for feedback if that’s not requested. What leadership needs to 

know is what outcomes you’re pushing for.

On the other hand, sometimes you know what better looks like but 

have no idea which set of actions will get you there. Research and exper-

imentation might fail to signal a clear winner among competing road 

maps. One side of an organization might say this one thing needs to 

be fixed first, while another side might argue a completely different fix 

takes priority. If the situation can be resolved only by executive decision, 

the diagnosis-policy-action approach is a better fit. The same flexibility 

that makes success criteria effective at adapting to new information and 

changing tactics will create confusion when the team is undecided about 

the day-to-day work.
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Marking Time

Defining what success looks like helps keep people on the same page, but 

since the success criteria and diagnosis-policy-actions approaches cut 

challenges into smaller accomplishments, you also need to stop people 

from losing faith in the significance of those small accomplishments. If 

the team feels like what they’ve succeeded in doing was not worth the 

time they invested in it, the effectiveness of your definition of success 

will be diminished.

What’s to your advantage here is that the perception of time is just as 

variable as perception of risk. Finding a way to mark time is about find-

ing a way to pull people out of day-to-day frustrations that slow down 

time and help them focus on the larger picture. My favorite way of mark-

ing time is bullet journaling. I have a book where every day I write down 

five things I am going to work on and how long I think they will take. 

Throughout the day, I check off those tasks as I complete them and jot 

down little notes with significant details. During slow periods, I often 

doodle in the margins or decorate pages with stickers I’ve gotten from 

vendors.

Whenever I flip two or three weeks back in my bullet journal, I am 

shocked by how much has changed. I’ve gotten so much more done 

than I realized. The tasks I’ve completed feel like months’ worth of work. 

Sometimes I am shocked when looking only one week back in time.

Just as humans are terrible judges of probability, we’re also terrible 

judges of time. What feels like ages might only be a few days. By marking 

time, we can realign our emotional perception of how things are going. 

Find some way to record what you worked on and when so the team can 

easily go back and get a full picture of how far they’ve come.

You might be tempted to say, “Oh, well, they can do that with our proj-

ect management system.” Except, project management tools are geared 

toward presenting one stream of work at a time. Marking time is more 

effective because of the more complete a picture it paints of one specific 



How to Finish    187  

point in people’s lives. Knowing that such-and-such ticket was closed on 

a certain day doesn’t necessarily take me back to that moment. Some-

times a date is just a date. When you mark time, do so in a way that evokes 

memory, that highlights the feeling of distance between that moment 

and where the team is now.

Bullet journaling is effective for me because each page is a snapshot 

of everything that is on my mind at the time. I record work projects, per-

sonal projects, events and social activities, holidays, and illnesses. Any-

thing that I expect to take up a large part of the day, I write down. Looking 

back on a project’s progress with that information gives it a sense of con-

text that I hadn’t considered before. Once I consider it, I realize that I 

have not been standing in one place mindlessly banging my head against 

a wall. Bit by bit, piece by piece, I have made things better.

Postmortems on Success

For software engineers, a postmortem is a review done after an outage 

that explores the timeline of the failure, contributing factors, and the 

ultimate resolution in detail. We typically tack on the prefix “blameless” 

when referring to postmortems to emphasize that the purpose of doing a 

postmortem is to understand what went wrong, not to assign blame to a 

particular group or individual who made a mistake.

But postmortems are not specific to failure. If your modernization 

plan includes modeling your approach after another successful project, 

consider doing a postmortem on that project’s success instead. Remem-

ber that we tend to think of failure as bad luck and success as skill. We 

do postmortems on failure because we’re likely to see them as complex 

scenarios with a variety of contributing factors. We assume that success 

happens for simple, straightforward reasons.

In reality, success is no more or less complex than failure. You should 

use the same methodology to learn from success that you use to learn 

from failure.
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Postmortem vs. Retrospective
Right now you might be thinking to yourself that your organization does 

do postmortems on success, you just call them retrospectives.

And, that’s true. The post-sprint or post-launch retrospective does 

ask many of the same questions as a postmortem. However, I have yet 

to work with a technical organization that treated retrospectives and 

postmortems the same. In practice, retrospectives are much more infor-

mal. They do not generate reports for others to read—at least, not that 

I’ve ever seen. I do not know of any organizations that post their retro-

spectives online for the public to read. I’ve been in a lot of retrospectives 

where we’ve captured great information and had deep soul-searching 

conversations, but rarely have I seen that output leave the whiteboard 

and be shared with other teams.

As an industry, we reflect on success but study failure. Sometimes obses-

sively. I’m suggesting that if you’re modeling your project after another 

team or another organization’s success, you should devote some time to 

actually researching how that success came to be in the first place.

Running Postmortems
Before discussing writing postmortems on success, it might be useful to 

give an overview of how postmortems are run in technical organizations 

in general. The conventional postmortem format has a couple charac-

teristics that are impractical outside incident response. For example, an 

outage happens quickly and ideally is resolved within hours, so creating  

a detailed timeline of events for that is an easier task than it would be for a  

project that has run for months.

A traditional postmortem describes the impact of the outage. The team 

discusses and documents what went well, what went poorly, and where 

people felt they got lucky. As mentioned, the postmortem often includes a 

detailed timeline of events around the incident response. These timelines 

break down what happened, when it happened, and who did what. Post-

mortems also do not usually reference people by name to protect them from 
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blame. Instead, monikers like “SRE 1” or “Software Engineer 2” are used to 

identify individuals and the actions they took. The postmortem concludes 

with actionable steps for improvement. How can the organization improve 

the things that went poorly or build on the things that went well?

Postmortems are written by reviewing communications and inter-

viewing team members. Then a final review meeting is held to present 

and verify the gathered information with the full team.

When running a postmortem on success, you have to weigh the 

investment of time and energy it will take to get that level of detail when 

the timeline stretches out over months instead of hours. Such efforts can 

become cumbersome and bureaucratic fast. Traditional postmortems are 

written by the software engineers who responded to the incident. These 

are people you want working on software, not writing reports.

For that reason, postmortems on success should be run like their 

lighter-weight cousin the retrospective, but documented with the phi-

losophy of traditional postmortems. The value of the postmortem is not 

its level of detail, but the role it plays in knowledge sharing. Postmortems 

are about helping people not involved in the incident avoid the same 

mistakes. The best postmortems are also distributed outside the organi-

zation to cultivate trust through transparency.

Postmortems establish a record about what really happened and how 

specific actions affected the outcome. They do not document failure; they 

provide context. Postmortems on success should serve a similar purpose. 

Why was a specific approach or technique successful? Did the final strat-

egy look like what the team had planned at the start? Your timeline in a 

postmortem for success should be built around these questions: How did 

the organization execute on the original strategy, how did the strategy 

change, when did those changes happen, and what triggered them?

Even the biggest successes have challenges that could have gone 

better and places where good fortune saved the day. Documenting those 

helps people evaluate the suitability of your approach for their own prob-

lems and ultimately reproduce your success.
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If you’re convinced the strategy from another organization will work 

for your issue, don’t wait for those engineers to start doing postmortems. 

You can gather most of the information you need by taking people out for 

coffee. If there’s an organization whose success you want to copy, spend a 

couple weeks interviewing people about their strategy using the postmor-

tem’s key questions.

What went well?

What could have gone better?

Where did you get lucky?

The Tale of Two War Rooms

I examine the contributing factors to success before finalizing a strat-

egy, because I’ve seen organizations learn the wrong lessons from suc-

cess. For example, an organization I was working with had a project 

that was hopelessly behind schedule. Not only did team members 

not have a realistic end date for even the smallest part of the project, 

they did not know why the project kept getting delayed in the first 

place. It was a large project that required a couple different organiza-

tional units to work together and share information. My consulting 

team was just rolling off a successful project that had faced a simi-

lar challenge. The organization had heard that on our project, we had 

arranged for representatives from each organizational unit to work 

out of the same room. For several months, instead of reporting to their 

offices or cubicles every day, this group sat down together in a large 

conference room with their laptops. This was a war room, not a meet-

ing. Over time, the conference room looked more like an open plan 

co-working space.

The organization with the failing project decided to copy our strategy 

without talking to us or learning much about how this war room worked. 

A large conference room was booked for a month, and representatives 
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from each affected operational unit were pulled in and told they had to 

work in that conference room together.

The organization didn’t see the same results that we had, and even-

tually leadership representatives reached out and asked us why. Having 

neglected to research our success, they were forced to research their own 

failure again.

I understood their frustrations. After all, they had followed our pro-

cess to the letter and gotten different results. Or at least, that’s what the 

situation looked like from their perspective, but when they asked for 

my thoughts, I noticed they had missed one critical component of that 

war room.

They put the wrong people in it.

Working Groups vs. Committees

Throughout this book, I have suggested structures that involve one 

small group of people advising, planning for, and, at times, delegating 

work to a larger team. These are working groups. It has become popular 

as of late to use the term working group instead of the word committee 

because committee just sounds bureaucratic to most people. Committees 

have a reputation for not getting anything done or, worse, for building 

through compromise. A camel, the old expression goes, is a horse built by 

committee.

Working groups do not have this baggage, so people will often say 

they want to start a working group and turn around and start a commit-

tee instead—as if simply changing the name of a structure somehow 

makes the structure a more effective tool. Worse still, most people can 

no longer tell the difference between a working group and a committee. 

That was what the leaders had missed when they copied our successful 

strategy. The people in the war room of our project were a working group. 

The people in the war room of the failed project were a committee.

What exactly is the difference?
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Working groups relax hierarchy to allow people to solve problems 

across organizational units, whereas committees both reflect and rein-

force those organizational boundaries and hierarchies. Our war room was 

made up of software engineers and network administrators. We brought 

people who had to work together to implement the project into the same 

room to work next to one another instead of communicating over email, 

through bosses, and scheduling any number of conference calls.

The failed war room, on the other hand, was made up of executives. 

Rather than bringing together people who are peers but report up to dif-

ferent chains of command, this war room just mimicked the existing 

structure and the existing politics of the organization. Worse, the day to 

day of most of these executives consisted almost entirely of meetings. 

Instead of working shoulder to shoulder with colleagues, they used the 

war room as a place to throw their belongings as they ran in and out of 

other conference rooms to conduct business as usual.

Working groups are internally facing; the customers for a working 

group are the members of the working group itself. People join working 

groups to share their knowledge and experience with peers. They are 

effective because they establish a space for cross-organizational collab-

oration and troubleshooting. People on the implementation layer of an 

organization can bring their challenges to peers who have already expe-

rienced those challenges and hear their stories or bounce ideas off them. 

Sometimes this results in recommendations for leadership, but the pri-

mary purpose of a working group is to troubleshoot and evangelize across 

an organization or industry. Working groups are typically initiated and 

staffed by people on the implementation layer of the organization.

A committee is formed to advise an audience external to the commit-

tee itself, typically someone in senior leadership. Whereas the working 

group is open to those who consider themselves operating in the same 

space as the working group’s topic area, committees are selected by the 

entity they will be advising and typically closed off to everyone else. 

That external authority decides the committee’s scope and goals. The 
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committee reports up to that external authority and exists solely for its 

benefit.

Committees also tend to have a lot of procedure around them, but the 

absence of chairpeople and Robert’s Rules of Order does not make a com-

mittee a working group.

The model can have a fair amount of variation. A Code Yellow team, 

for example, might not be self-selecting, and ignoring its advice might 

have serious consequences, but the point of a Code Yellow team is to 

reorganize and redistribute resources temporarily across an organiza-

tion. That team ultimately reports up to a leader who is closer to a peer 

than an executive. The important takeaway is working groups relax orga-

nizational boundaries while committees reinforce them.

There is little value in having senior managers represent their units 

in a war room. Since they are not implementing the technology them-

selves, they cannot speak to what compromises would unblock the 

project without going back to their own engineers. Our war room was 

successful because it shortened the distance those conversations had to 

travel. The failed war room added a game of telephone on top of the exist-

ing barriers to communication. One could never be sure that the message 

coming out of that war room was accurate or if the manager representing 

you had misunderstood an implementation detail.

Funny story: I would, from time to time, run war rooms filled with 

senior executives. It was a tactic I resorted to when the organization was 

in such a state of panic that senior leadership members were microman-

aging their teams. Software engineers can’t fix problems if they spend all 

their time in meetings giving their managers updates about the prob-

lems. The boot has to be moved off their necks.

In that situation, my team would typically run two war rooms: one 

where the engineers were solving problems together and one outfitted 

with lots of fancy dashboards where I was babysitting the senior execu-

tives. The most valuable skill a leader can have is knowing when to get 

out of the way.



194    Kill It with Fire

Success Is Not Obvious If Undefined

Modernization projects without a clear definition of what success looks 

like will find themselves with a finish line that only moves further back 

the closer they get to it. Don’t assume that success is obvious. Different 

members of your team may have different and competing visions of what 

better looks like. Everyone needs to be able to explain how they know 

that their efforts are moving the project forward for people to be able to 

work together. Projects that need something as extreme as a legacy mod-

ernization effort have no shortage of problems to solve. By defining suc-

cess, you keep the finish line from moving.

In the next chapter, I will explain how to maintain software on a day-

to-day basis to avoid having to run legacy modernizations in the first 

place. The finish line of a modernization effort need not be that every-

thing is fixed and the technology is now perfect. I have yet to encounter 

a system that could be described that way, and I have worked for organi-

zations as young as six months and as old as 200 years. All technology is 

imperfect, so the goal of legacy modernization should not be restoring 

mythical perfection but bringing the system to a state where it is pos-

sible to maintain modern best practices around security, stability, and 

availability.



10
FUTURE-PROOFING

T he best way to complete a modernization project is by ensuring that 

you won’t have to go through the whole process again in a few years. 

Future-proofing isn’t about preventing mistakes; it’s about knowing how 

to maintain and evolve technology gradually.

 Two types of problems will cause us to rethink a working system as 

it ages. The first are usage changes. The second are deteriorations. Scaling 
challenges are the change in usage type: we have more traffic or a different 

type of traffic from what we had before. Maybe more people are using the 

system than were before, or we’ve added a bunch of features that over time 

have changed the purpose for which people are using the technology.

Usage changes do not have a constant pace and are, therefore, hard 

to predict. A system might never have scaling challenges. A system can 

reach a certain level of usage and never go any further. Or it can double or 

triple in size in a brief period. Or it can slowly increase in scale for years. 

What scaling challenges will look like if they do happen will depend on 

a number of factors. Because changes to the system’s usage are hard to 

anticipate, they are hard to normalize. This is an advantage. When we 
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normalize something, we stop thinking about it, stop factoring it into our 

decisions, and sometimes even forget it exists.

Deteriorations, on the other hand, are inevitable. They represent a nat-

ural linear progression toward an unavoidable end state. Other factors 

may speed them up or slow them down, but eventually, we know what 

the final outcome will be. For example, no changes in usage were going 

to eliminate the 9th of September from the calendar year of 1999. It was 

going to happen at some point, regardless of the system behavior of the 

machines that were programmed to use 9/9/99 as a null value assigned 

to columns when the date was missing.

Memory leaks are another good example of this kind of change. System 

usage might influence exactly when the leak creates a major problem, but 

low system usage will not change the fact that a memory leak exists that 

will eventually be a problem. The only way to escape the problem is to fix it.

Hardware lifecycles are another example. Eventually chips, disks, and 

circuit boards all fail and have to be replaced.

These kinds of deteriorations are dangerous because people forget 

about them. For a long time, their effects go unnoticed, until one day they 

finally and completely break. If the organization is particularly unlucky, 

the problem is deeply embedded in the system, and it’s not immediately 

clear what has even broken in the first place.

Consider, for example, Y2K. An alarming number of computer pro-

grams were designed with a two-digit year, which became a problem 

in the year 2000 when the missing first two digits were different from 

what the program assumed they were. Most technical people know the 

Y2K story, but did you know that Y2K wasn’t the first short-sighted pro-

gramming mistake of this nature? Nor will it be the last.

Time

It’s unbelievable how often software engineers have screwed up time 

in programs. In the 1960s, some programs had only one-digit years. 
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The TOPS-10 operating system had only enough bits to represent dates 

between January 1, 1964, and January 4, 1975. Engineers patched this 

problem, adding three more bits so that TOPS-10 could represent dates 

up to February 1, 2052, but they took those bits from existing data struc-

tures, thinking they were unused. It turns out that some programs on 

TOPS-10 had already repurposed those areas of storage, which led to 

some wonky bugs.1

How much storage should be dedicated to dates is a constant problem. 

It would be unwise and impractical to allocate unlimited storage for time, 

and yet any amount of storage eventually will run out. Programmers must 

decide how many years will pass before the idea that their program will 

still be functioning seems unlikely. At least in the early days of computers, 

the tendency was to underestimate the lifecycle of software. It’s easy for 

a functioning piece of software to remain in place for 10, 20, 30 years, or 

more. But in the early days of computing, two or three decades seemed 

like a long time. If time was given only enough space to reach 1975, the fix 

might carry it over to 1986. Certain operating systems in 1989 programmed 

limits to reach maturity in 1997—and so on, and on, and on.

These programs are still with us, and we haven’t reached all of their 

maturity dates just yet. In 2028, a date format created by the World 

Computer Corporation will reach its storage limit, and we have no idea 

whether any existing systems use it. Of greater concern is the year 2038 

when Unix’s 32-bit dates reach their limit. While most modern Unix 

implementations have switched to 64-bit dates instead, the Network 

Time Protocol’s (NTP) 32-bit date components will overflow on February 

7, 2036, giving us a potential preview. NTP handles syncing the clocks 

of computers that talk with each other over the internet. Computer 

clocks that are too badly out of sync—typically five minutes or more—

have trouble creating secure connections. This requirement goes back to 

1.	 Dan Hoey, “Software Alert: DATE-86,” Australian Unix Systems User Group Newsletter 6, no. 4 
(January 1986), 37.



198    Kill It with Fire

MIT’s Kerberos version 5 spec in 2005, which used time to keep attackers 

from resetting their clocks to continue using expired tickets.

We don’t know what kinds of problems NTP and Unix rollovers will 

cause. Most computers are probably long upgraded and will be unaf-

fected. With any luck, the 2038 milestone will pass us by with little fan-

fare, just as Y2K did before it. But time bugs don’t need to trigger global 

meltdowns to have dramatic and expensive impacts. Past time bugs have 

temporarily cleared pension funds, messed with text messages, crashed 

video games, and disabled parking meters. In 2010, 20 million chip and 

PIN bank cards became unusable in Germany thanks to a time bug.2 In 

2013, NASA lost control of the $330 million Deep Impact probe thanks to 

a time bug similar to the 2038 issue.

Time bugs are tricky because they detonate decades, or sometimes 

centuries, after they were introduced. IBM mainframes built in the 1970s 

reach a rollover point on September 18, 2042. Some Texas Instruments 

calculators do not accept dates beyond December 31, 2049. Some Nokia 

phones accept dates only up to December 31, 2079. Several program-

ming languages and frameworks use timestamp objects that overflow on  

April 11, 2262.

It’s not that programmers don’t know these bugs exist. It’s just hard 

to imagine the technology of today sticking around until 2262. At the 

same time, people who were programming room-sized mainframes in 

the 1960s never thought their code would last for decades, but we now 

know programs this old are still in production. By the time the year 2000 

came around, that old software (and sometimes the machines that came 

with it) had not only not been retired but was also being maintained by 

technologists two or three generations divorced from its creation.

Resolving time bugs is usually fairly straightforward—when we know 

about them. The problem is we tend to forget that they’re approaching. 

2.	 James Wilson, “German Bank Cards Hit by ‘2010’ Bug,” Financial Times, January 5, 2010.
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We have already seen systems fail thanks to the 2038 bug. Programs in 

financial institutions that must calculate out interest payments 20 or 30 

years into the future act like early warning detection systems for these 

types of errors. Still, organizations must know the state of their legacy 

systems (in other words, whether they’ve been patched) and be aware 

that these incidents are happening.

Unescapable Migrations

Future-proofing systems does not mean building them so that you never 

have to redesign them or migrate them. That is impossible. It means 

building and, more important, maintaining to avoid a lengthy modern-

ization project where normal operations have to be reorganized to make 

progress. The secret to future-proofing is making migrations and rede-

signs normal routines that don’t require heavy lifting.

Most modern engineering organizations already know how to do this 

with usage changes—they monitor for increased activity and scale infra-

structure up or down as needed. If given proper time and prioritization, 

they will refactor and redesign components of the system to better reflect 

the most likely long-term usage patterns. Making updates to the system 

early and often is just a matter of discipline. Those that neglect to devote 

a little bit of time to cleaning their technical debt will be forced into 

cumbersome and risky legacy modernization efforts instead.

One of my favorite metaphors for setting a cadence for early and  

often updates comes from the podcast Legacy Code Rocks (https://www 
.legacycode.rocks/ ). Launching a new feature is like having a house party. 

The more house parties you have in your house before you clean things up, 

the worse condition your house will be in. Although there isn’t a hard-and-

fast rule here that will work for everyone, automatically scheduling some 

time to reevaluate usage changes and technical debt after every n feature 

launches will normalize the process of updating the system in ways that 

will ensure its long-term health. When people associate refactoring and 

https://www.legacycode.rocks/
https://www.legacycode.rocks/
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necessary migrations with a system somehow being built wrong or break-

ing, they will put off doing them until things are falling apart. When the 

process of managing these changes is part of the routine, like getting a 

haircut or changing the oil in your car, the system can be future-proofed 

by gradually modernizing it.

Deteriorations require a different tact. Sometimes they can be mon-

itored. As batteries age, for example, their performance slides in a way 

that can be captured and tracked. Some deteriorations are more sudden. 

Time bugs don’t give any warning before they explode. If the organization 

has forgotten about it, there’s nothing to monitor.

It would be naive to say that you should never build a deteriorating 

change into your system; those issues are often unavoidable. The mis-

take is assuming it is not possible that the system will still be operational 

when the issue matures. Technology has a way of extending its life for 

much longer than people realize. Some of the control panels for switches 

on the New York City subway date back to the 1930s. The Salisbury cathe-

dral clock started running in 1368. There’s a lightbulb over Livermore 

California’s Fire Station 6 that has been on since 1901. All around the 

world, our day-to-day lives are governed by machines long past their 

assumed expiration dates.

Instead, managing deteriorations comes down to these two practices:

●● If you’re introducing something that will deteriorate, build it to 

fail gracefully.

●● Shorten the time between upgrades so that people have plenty of 

practice doing them.

Failing Gracefully

The reason Y2K and similar bugs do not trigger the end of human civili-

zation is because they do not impact every system affected by them with 

uniform intensity. There is a lot of variation in how different machines, 
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different programming languages, and different software will handle 

the same problem. Some systems will panic; some will simply move on. 

Whether it is better for the system to panic and crash or to ignore the 

issue and move on largely depends on whether the failure is in the criti-

cal path of a transaction.

Failing gracefully does not always mean the system avoids crashing. 

If a bug breaks a daily batch job calculating accrued interest on bank 

accounts, the system recovering from the error by defaulting to zero and 

moving on is not failing gracefully. That’s an outcome that if allowed to 

fail silently will upset a lot of people very quickly, whereas a panic would 

alert the engineering team immediately to the problem so it could be 

resolved and the batch job rerun.

How close is the error to a user interface? If the error is something 

potentially triggered by user input, failing gracefully means catching the 

error and logging the event but ultimately directing the user to try again 

with a useful message explaining the problem.

Will the error block other independent processes? Why is it block-

ing other processes? Blocking implies shared resources, which would 

suggest that processes are not as independent as originally thought. For 

truly independent processes, it is probably okay to log the error but ulti-

mately let the system move on.

Is the error in one step of a larger algorithm? If so, you likely have 

no choice but to trigger a panic. If you could eliminate a step in a mul-

tistep process and not affect the final outcome, you should probably 

rethink whether those steps are necessary.

Will the error corrupt data? In most cases, bad data is worse than 

no data. If a certain error is likely to corrupt data, you must panic upon 

the error so the problem can be resolved.

These are good things to consider when programming in unavoid-

able deteriorations. This thought exercise is less useful when you don’t 

know that you have no choice but to program in a potential bug. You 

can’t know what you don’t know.
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But, it’s worthwhile to take some time to consider how your software 

would handle issues like the date being 20 years off, time moving back-

ward for a second, numbers appearing that are technically impossible 

(like 11:59:60 PM), or storage drives suddenly disappearing.

When in doubt, default to panicking. It’s more important that errors 

get noticed so that they can be resolved.

Less Time Between Upgrades, Not More

A few years ago, I got one of those cheesy letter boards for my kitchen—

you know, the ones you put inspirational messages on like “Live life in 

full bloom” or “Love makes this house a home.” Except, mine says “The 

truth is counterintuitive.” Our gut instinct with deteriorations is to push 

them as far back as possible if we cannot eliminate them altogether. Per-

sonally, I feel this is a mistake. I know from experience that the more 

often engineers have to do things, the better they get at doing them, and 

the more likely they are to remember that they need to be done and plan 

accordingly.

For example, in 2019 there were two important time bugs. The first 

was a rollover of GPS’s epoch; the second was a leap second.

The GPS rollover is a problem identical to the time bugs already 

described. GPS represents weeks in a storage block of 10 bytes. That 

means it can store up to 1024 values, and 1024 weeks is 19.7 years. As 

with Y2K, when GPS gets to week number 1025, it resets to zero, and the 

computer has no way of knowing that it shouldn’t backdate everything 

by 20 years.

This had happened only once before, in 1999. Although commercial 

GPS has been available since the 1980s, it had not really caught on by 

1999. The chips that powered the receiver were too expensive, and their 

convenience would not be realized until computers became fast enough 

to overlay that data with calculations determining routes or associating 

physical landmarks with their coordinates. As the helpful bits of GPS 
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were not yet market-ready, consumers were more sensitive to the privacy 

concerns of the technology. In 1997, employees for United Parcel Service 

(UPS) famously went on strike after UPS tried to install GPS receivers in 

all of their trucks.

So, the impacts of the first GPS rollover were minor, because GPS 

was not popular. By 2019, however, the world was a completely different 

place. Twenty years is a long time in technology. Not only were virtually 

all cellphones equipped with GPS chips, but any number of applications 

had been built on top of GPS.

As it turns out, people replace GPS-enabled devices a lot. Mobile app 

updates for many users are seamless and automatic. We are so used to 

getting new phones every two or three years that the rollover of 2019 was 

mainly uneventful. Users with older-model mobile phones experienced 

some problems but were encouraged to buy new phones from their ven-

dors instead.

The second time bug of 2019, a leap second, went a slightly different 

way. A leap second is exactly what it sounds like: an extra second tacked 

on to the year to keep computer clocks in sync with the solar cycle. Unlike 

a leap year, leap seconds are not predictable. How many seconds between 

sun up and sun down depends on the earth’s rotational speed, which is 

changing. Different forces push the earth to speed up, and others push 

the earth to slow down.

Here’s a fun fact: one of the many forces changing the speed of the  

earth’s rotation is climate change. Ice weighs down the land masses on  

Earth, and when it melts, those land masses start to drift up toward the 

poles. This makes the earth spin faster and days fractions of a second shorter.

There have been 28 leap seconds between 1972 and 2020, but as some 

forces slow the earth down and some forces speed it up, there can be sig-

nificant gaps between years with leap seconds. After the leap second in 

1999, it was six years before another was needed. There were no leap sec-

onds between 2009 and 2012. There was a leap second in both 2015 and 

2016, but nothing in the next three years.
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Leap seconds are never fun, but if the reports of problems experi-

enced during each recent leap second can be considered comprehensive, 

they are worse after a long gap than they would be otherwise. Even gaps 

as short as three years are long enough for new technologies either to be 

developed or to get much more traction than they had before. Abstrac-

tions and assumptions are made, and they settle into working systems 

and then are forgotten.

The industries around cloud computing and smartphones started to 

grow just as a multiyear gap in leap seconds was approaching. By the 

time the next leap second event occurred, huge platforms were running 

on technologies that had not existed during the last one. These technol-

ogies were built by engineers who may not even have been familiar with 

the concept of a leap second in the first place. Some service owners failed 

to patch updates to manage the leap second in a timely manner. Reddit, 

Gawker Media, Mozilla, and Qantas Airways all experienced problems.

This was followed by another multiyear gap before the leap second 

of 2015 created issues for Twitter, Instagram, Pinterest, Netflix, Amazon, 

and Beats 1 (now Apple Music 1). By comparison, 2016’s leap second went 

out with a whimper. With just a six-month gap, it seems to have triggered 

problems only in a small number of machines across CloudFlare’s 102 

data centers.

And the 2019 leap second at the end of another multiyear gap? It 

cancelled more than 400 flights when Collins Aerospace’s Automatic 

dependent surveillance–broadcast (ADS–B) system failed to adjust cor-

rectly. ADS–B was not new, but the FAA had released a rule requiring it 

on planes by 2020, so its adoption was much greater than it had been at 

the time of the previous leap second.

As a general rule, we get better at dealing with problems the more 

often we have to deal with them. The longer the gap between the matu-

rity date of deteriorations, the more likely knowledge has been lost and 

critical functionality has been built without taking the inevitable into 

account. Although the GPS rollover came at the end of a 20-year gap, it 
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benefited from the accelerated upgrade cycle of devices most likely to be 

affected. Few people have 20-year-old cellphones or tablets. Leap sec-

onds, on the other hand, have pretty consistently caused chaos when 

there’s a gap between the current one and the last one.

Some deteriorations have such short gaps at scale and don’t need the 

organization to do any extra meddling. For example, the average stor-

age drive has a lifespan of three to five years. If you have one drive—for 

example, the one in your computer—you can mitigate the risks of this 

inevitable failure by regularly backing things up and just replacing the 

computer when the drive ultimately fails.

If you are running a data center, you need a strategy to keep drive 

failure from crippling operations. You need to back up regularly and 

restore almost instantaneously. That might seem like a huge engineer-

ing challenge, but the architecture to create such resilience is built in to  

the scale. Data centers don’t have just a few hard drives and three- to five-

year gaps when they need to be replaced. Data centers often have thou-

sands to hundreds of thousands of drives that are failing constantly. In 

2008, Google announced it had sorted a petabyte of data in six hours 

with 4,000 computers using 48,000 storage drives. A single run always 

resulted in at least one of the 48,000 drives dying.3 A formal study of the 

issue done at about the same time pegged the annual drive failure rate 

at 3 percent.4 At 3 percent failure rate, once you get into the hundreds 

of thousands of drives, you start seeing multiple drives failing every day.

While no one would argue that drive failures are pleasant, they do 

not trigger outages once data centers reach a scale where handling drive 

failure is a regular occurrence. So rather than lengthening the period 

3.	 Grzegorz Czajkowski, “Sorting 1PB with MapReduce,” Google Blog, November 21, 2008, 
https://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html.

4.	 Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso, “Failure Trends in a 
Large Disk Drive Population,” Proceedings of the 5th USENIX Conference on File and Stor-
age Technologies, February 2007.

https://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html
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between inevitable changes, it might be better to shorten it to ensure 

engineering teams are building with the assumption of the inevitable 

at the forefront of their thoughts and that the teams that would have to 

resolve the issue understand what to do.

A Word of Caution About Automation

The second solution people gravitate to if a deteriorating change cannot 

be eliminated altogether is to automate its resolution. In some cases, this 

kind of automation adds a lot of value with relatively little risk. For exam-

ple, failing regularly to renew TLS/SSL certificates could cause an entire 

system to grind to a halt suddenly and without warning. Automating the 

process of renewing them means the certificates themselves can have 

shorter lifespans, which increases the security benefit of using them.

The main thing to consider when thinking about automating a prob-

lem away is this: If the automation fails, will it be clear what has gone 

wrong? In most cases, expired TLS/SSL certificates trigger obvious alerts. 

Either the connection is refused, at which point the validity of the cer-

tificate should be on the checklist of likely culprits, or the user receives a 

warning that the connection is insecure.

Automation is more problematic when it obscures or otherwise encour-

ages engineers to forget what the system is actually doing under the hood. 

Once that knowledge is lost, nothing built on top of those automated activ-

ities will include fail-safes in case of automation failure. The automated 

tasks become part of the platform, which is fine if the engineers in charge 

of the platform are aware of them and take responsibility for them.

Few programmers consider what would happen should garbage col-

lection suddenly fail to execute correctly. Memory management used to 

be a critical part of programming, but now the responsibility is largely 

automated away. This works because the concern is always top of mind 

for software engineers who develop programming languages that have 

automated garbage collection.
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In other words, automation is beneficial when it’s clear who is 

responsible for the automation working in the first place and when fail-

ure states give users enough information to understand how they should 

triage the issue. Automation that encourages people to forget about it 

creates responsibility gaps. Automation that fails either silently or with 

unclear error messages at best wastes a lot of valuable engineering time 

and at worst triggers unpredictable and dangerous side effects.

Building Something Wrong the Correct Way

Throughout this book and in this chapter especially, the message has 

been don’t build for scale before you have scale. Build something that 

you will have to redesign later, even if that means building a monolith to 

start. Build something wrong and update it often.

The secret to building technology “wrong” but in the correct way is to 

understand that successful complex systems are made up of stable simple 

systems. Before your system can be scaled with practical approaches, like 

load balancers, mesh networks, queues, and other trappings of distribu-

tive computing, the simple systems have to be stable and performant. 

Disaster comes from trying to build complex systems right away and 

neglecting the foundation with which all system behavior—planned 

and unexpected—will be determined.

A good way to estimate how much complexity your system can 

handle is to ask yourself: How large is the team for this? Each addi-

tional layer of complexity will require a monitoring strategy and ulti-

mately human beings to interpret what the monitors are telling them. 

Figure a minimum of three people per service. For the purposes of this 

discussion, a service is a subsystem that has its own repository of code 

(although Google famously keeps all its source code in a monolith 

repository), has dedicated resources (either VMs or separate contain-

ers), and is assumed to be loosely coupled from other components of 

the system.
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The minimum on-call rotation is six people. So, a large service with a 

team of six can have a separate on-call rotation, or two small services can 

share a rotation among their teams. People can, of course, be on multiple 

teams, or the same team can run multiple services, but a person cannot 

be well versed in an infinite number of topics, so for every additional ser-

vice, expect the level of expertise to be cut in half. In general, I prefer 

engineers not take on more than two services, but I will make exceptions 

when services are related.

I lay out these restrictions only to give you a framework from which 

to think about the capacity of the human beings on which your system 

relies to future-proof it. You can change the exact numbers to fit what 

you think is realistic if you like. The tendency among engineers is to build 

with an eye toward infinite scale. Lots of teams model their systems after 

white papers from Google or Amazon when they do not have the team to 

maintain a Google or an Amazon. What the human resources on a team 

can support is the upper bound on the level of system complexity. Inevi-

tably the team will grow, the usage of the system will grow, and many of 

these architectural decisions will have to be revised. That’s fine.

Here’s an example: Service A needs to send data to Service B. The 

team maintaining the complete system has about 11 people on it. Four 

people are on operations, maintaining the servers and building tooling to 

help enforce standards. Four people are on the data science team, design-

ing models and writing the code to implement them, and the remaining 

three people build the web services. That three-person team maintains 

Service B but also another service elsewhere in the system. The data sci-

ence team maintains Service A, but also two other services.

Both of those teams are a bit overloaded for their staffing levels, but 

the usage of the system is low, so the pressure isn’t too great.

So, how should Service A talk to Service B?

The first suggestion is to set up a message queue so that communi-

cation between A and B is decoupled and resilient. That would be the 
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most scalable solution, but it would also require someone to set up the 

message queue and the workers, monitor them, and respond when some-

thing goes wrong. Which team is responsible for that? Cynical engineers 

will probably say operations. This is usually what happens when teams 

cannot support what they are building. Certain parts of the system get 

abandoned, and the only people who pay attention to them are the teams 

that are in charge of the infrastructure itself (and usually only when 

something is on fire).

Although a message queue is more scalable, a simpler solution with 

tighter coupling would probably get better results to start. Service A could 

just send an HTTP request to Service B. Delegation of responsibilities on 

triage is built in. If the error is thrown on the Service B side, the team that 

owns Service B is alerted. If it’s thrown on the Service A side, the team 

that owns Service A is alerted.

But what about network issues? It’s true that networks sometimes 

fail, but if we assume that both of these services are hosted on a major 

cloud provider, the chances of a one-off network issue that causes no 

other problems are unlikely. Networking issues are not subtle, and they 

are generally a product of misconfiguration rather than gremlins.

The HTTP request solution is wrong in the correct way because 

migrating from an HTTP request between Service A and Service B to a 

message queue later is straightforward. While we are temporarily losing 

built-in fault tolerance and accepting a higher scaling burden, it creates 

a system that is easier for the current teams to maintain.

The counterexample would be if we swapped the order of the HTTP 

request and had Service B poll Service A for new data. While this is 

also less complex than a message queue, it is unnecessarily resource-

intensive. Service A does not produce a constant stream of new data, 

and by polling Service B, it may spend hours or even days sending mean-

ingless requests. Moving from this to a queue would require significant 

changes to the code. There’s little value to building things wrong this way.
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Feedback Loops

Another way to think about this is to sketch out how maintaining this 

system will create feedback loops across engineering. Thinking about 

how work gets done in terms of flows, delays, stocks, and goals can help 

clarify whether the level of work required to maintain a system of a given 

complexity is feasible.

Let’s take another look at the question of Service A and Service B. We 

know we have seven people working on these two services and that each 

person has an eight-hour workday. Service B’s team is split between that 

and another service, so we can assume they have a budget of four hours 

per service they own. With three people, that’s about 12 hours per day. 

Service A’s team is maintaining a total of three services, so they have a 

budget of 2.5 hours per person and 10 hours per service per day. A model 

like this might have the following characteristics:

STOCKS    A stock is any element that can accrue or drain over time. 

The traditional example of a system model is a bathtub filling with 

water. The water is a stock. In this model, technical debt will accrue 

for each service constantly regardless of the level of work. Debt will 

be paid down by spending work hours. The tasks in our workweek 

are also a stock that our teams will burn down as they operate. That 

eight-hour day is also a stock. When the system is stable, the eight 

hours are fully spent and fully restored each day.

FLOWS    A flow is a change that either increases or decreases a stock. 

In the bathtub example, the rate of water coming out of the faucet is 

a flow, and if the drain is open, the rate of water coming out of the 

bathtub is another flow. In our model, at any time, people can work 

more than eight hours a day, but doing so will decrease their ulti-

mate productivity and require them to work less than eight hours a 

day later. We can represent this by assuming that we’re borrowing 

the extra hours for the next day’s budget. Tasks are completed by 
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spending work hours; we might keep our model simple and say every 

task is worth an hour, or we might separate tasks into small, medium, 

and large sizes with different number-of-hours costs for each option. 

Spending work hours decreases the stock of technical debt or work 

tasks, depending on how those hours are applied.

DELAYS    Good systems models acknowledge that not everything is 

instantaneous. Delays represent gaps of time in how flows respond. 

With our model, new work does not immediately replace old work; 

it is planned and assigned in one-week increments. We can view the 

period between each task assignment as being a delay.

FEEDBACK    Feedback loops form when the change in stock affects 

the nature of the flow, either positively or negatively. In our model, 

when people work more than their total eight-hour budget, they lose 

future hours. The more hours they work, the more hours they have 

to borrow to maintain a stretch of eight-hour days in a row. Eventu-

ally, they have to take time off to normalize. Alternatively, they could 

borrow hours by spending more of their budget on Service A or Ser-

vice B, but that means the other services they are responsible for will 

be neglected, and their technical debt will accrue unchecked.

Visually, we might represent that model like in Figure 10-1. The solid 

lines represent flows, and the dotted lines represent variables that influ-

ence the rate of flows.

Work hours come into the model via our schedule but are affected by 

a stock representing burnout. If burnout is high, work hours fall; if work 

hours are high, burnout rises. How much of our available work hours 

on any given day is devoted to tasks on one service depends on the size 

of our team and the number of services or projects the team is trying to 

maintain at the same time. The more we are able to devote to work tasks, 

the more we ship. When work tasks are completed, whatever extra time 

is left is directed to improving our technical debt.
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Figure 10-1: Feedback loops in the team’s workload

Although this visual model might just look like an illustration, we can 

actually program it for real and use it to explore how our team manages 

its work in various conditions. Two tools popular with system thinkers 

for these kinds of models are Loopy (https://ncase.me/loopy/ ). and Insight-

Maker (https://insightmaker.com/ ). Both are free and open source, and both 

allow you to experiment with different configurations and interactions.

For now, let’s just think through a couple scenarios. Suppose we have 

a sprint with 24 hours of work tasks for Service A and for Service B. That 

shouldn’t be a problem; Service A’s team has a weekly capacity of 50 

hours a week for Service A, and Service B’s team has a weekly capacity of 

60 hours a week for Service B. With 24 hours of sprint tasks, each team 

has plenty of extra time to burn down technical debt.

But what happens if a sprint has 70 hours of work? Service A’s team 

could handle that if every one of the team’s four people borrowed five 

hours that week from the next week, but the team would have no time 

https://ncase.me/loopy/
https://insightmaker.com/
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to manage technical debt and would have only 30 hours of time for Ser-

vice A the following week.

What if 70 hours of work were the norm for sprints? The teams would 

slowly burn out while having no ability to rethink the system design or 

manage their debt. The model is unstable, but we can restore equilibrium 

by doing one of the following:

●● The team transfers ownership of one of their services to another 

team, giving them more hours a day to spend on their tasks for 

Service A or Service B.

●● The team allows technical debt to accrue on one or all of their ser-

vices until a service fails.

●● The team works more and more until individuals burn out, at 

which point they become unavailable for a period of time.

One of the things that the teams might do to try to reestablish equi-

librium is change the design so that the integration pattern means less 

work for Service A’s lower-capacity team. Suppose that instead of con-

necting over HTTP, Service B connected directly to Service A’s database 

to get the data it needs. Service A’s team would no longer have to build 

an endpoint to receive requests from Service B, which means they could 

better balance their workload and manage their maintenance respon-

sibilities, but the model would reach equilibrium at the expense of the 

quality of the overall architecture.

If you’re a student of Fred Brooks’s The Mythical Man-Month, you might 

object to the premise of this model. It suggests that one possible solution 

is to add more people to the team, and we know that software is not suc-

cessfully built in man-hours. More people do not make software projects 

go faster.

But the point of this type of model is not to plan a road map or 

budget head count. It’s to help people consider the engineering team as a 

system of interconnected parts. Bad software is unmaintained software. 
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Future-proofing means constantly rethinking and iterating on the exist-

ing system. People don’t go into building a service thinking that they will 

neglect it until it’s a huge liability for their organization. People fail to  

maintain services because they are not given the time or resources 

to maintain them.

If you know approximately how much work is in an average sprint 

and how many people are on the team, you can reason about the like-

lihood that a team of that size will be able to successfully maintain X 

number of services. If the answer is no, the design of the architecture is 

probably too complex for the current team.

Don’t Stop the Bus

In summary, systems age in two different ways. Their usage patterns 

change, which require them to be scaled up and down, or the resources 

that back them deteriorate up to the point where they fail. Legacy mod-

ernizations themselves are anti-patterns. A healthy organization run-

ning a healthy system should be able to evolve it over time without 

rerouting resources to a formal modernization effort.

To achieve that healthy state, though, we have to be able to see the 

levels and hierarchy of the systems of systems we’re building. Our tech-

nical systems are made up of smaller systems that must be stable. Our 

engineering team behaves as another system, establishing feedback 

loops that determine how much time and energy they can spend on the 

upgrades necessary to evolve a technology. The engineering system and 

the technical system are not separate from each other.

I once had a senior executive tell me, “You’re right about the seri-

ousness of this security vulnerability, Marianne, but we can’t stop the 

bus.” What he meant by this was that he didn’t want to devote resources 

to fixing it because he was worried it would slow down new develop-

ment. He was right, but he was right only because the organization had 

been ignoring the problem in question for two or three years. Had they 
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addressed it when it was discovered, they could have done so with min-

imum investment. Instead, the problem multiplied as engineers copied 

the bad code into other systems and built more things on top of it. They 

had a choice: slow down the bus or wait for the wheels to fall off the bus.

Organizations choose to keep the bus moving as fast as possible 

because they can’t see all the feedback loops. Shipping new code gets 

attention, while technical debt accrues silently and without fanfare. It’s 

not the age of a system that causes it to fail, but the pressure of what the 

organization has forgotten about it slowly building toward an explosion.





CONCLUSION

T he hard part about legacy modernization is the system around the 

system. The organization, its communication structures, its politics, 

and its incentives are all intertwined with the technical product in such 

a way that to move the product, you must do it by turning the gears of 

this other, complex, undocumented system.

Part of the reason legacy modernizations fail so often is that human 

beings are incentivized to mute or otherwise remove feedback loops 

that establish accountability. We are often unable to stop this because 

we insist on talking about that problem as a moral failing instead of an 

unconscious bias. Engineering organizations that maintain a separation 

between operations and development, for example, inevitably find that 

their development teams design solutions so that when they go wrong, 

they impact the operations team first and most severely. Meanwhile, their 

operations team builds processes that throw barriers in front of develop-

ment, passing the negative consequences of that to those teams. These are 

both examples of muted feedback loops. The implementers of a decision 

cannot feel the impacts of their decisions as directly as some other group.
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One of the reasons the DevOps and SRE movements have had 

such a beneficial effect on software development is that they seek to  

re-establish accountability. If product engineering teams play a role in 

running and maintaining their own infrastructure, they are the ones who 

feel the impact of their own decisions. When they build something that 

doesn’t scale, they are the ones who are awakened at 3 AM with a page. 

Making software engineers responsible for the health of their infrastruc-

ture instead of a separate operations team unmutes the feedback loop.

But anyone who has ever tried to run an SRE or DevOps team will tell 

you that maintaining the expectation that product engineering teams 

should be responsible for their infrastructure is easier said than done. 

There will always be a need for specialists on the infrastructure side of 

things—either because the organization is running its own data centers 

and needs the hardware expertise or because the tools that engineers 

interact with to maintain their infrastructure need themselves to be 

maintained—and, therefore, there is always someone to dump respon-

sibilities on.

People do not mute feedback loops because they do not care. They 

mute feedback loops because human beings can hold only so much infor-

mation in their minds at one point. Keeping a feedback loop open means 

listening for information from it, which means first considering what 

information might come back and how to interpret it. Developers mute 

operations because they usually do not understand the details of how 

infrastructure works. Engineers typically mute the feedback loop from 

the business side of the organization, because that feedback is delivered 

in metrics they’re not trained on and struggle to extract insight from. 

Each group is capable of learning the language of the other, but how 

many disciplines should a single person be expected to master to do her 

job? When running a system, engineers must consider resource usage, 

capacity projections, test coverage, inheritance structure, lines of code, 

and more. Is it any wonder most restrict their scope to the massive tech-

nical complexity directly relevant to what their job actually is?
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A high-functioning organization cannot have all feedback loops open 

all the time. It must decide which loops have the biggest impact on oper-

ational excellence. Throughout this book, I have emphasized thinking 

about modernization projects not in terms of technical correctness but 

in terms of value add because it re-establishes the most important feed-

back loop: Is the technology serving the needs of its users?

Meetings, reports, and dialogues are the least efficient feedback loops. 

Feedback loops are most effective when the operator feels the impact, 

rather than just hearing about it. That’s because people are naturally 

inclined to misinterpret information to suit what they already want to 

believe. It is more difficult to do that when the feedback is delivered in the 

form of inconvenience, disruption, interruptions, and additional work.

Nevertheless, since we cannot have all feedback loops open all the 

time, traditional communication can help fill in where impacts are not 

serious enough to warrant an open loop. Designing a modernization 

effort is about iteration, and iteration is about feedback. Therefore, the 

real challenge of legacy modernization is not the technical tasks, but 

making sure the feedback loops are open in the critical places and com-

munication is orderly everywhere else.

As a general rule, the discretion to make decisions should be dele-

gated to the people who must implement those decisions. If you are not 

contributing code or being woken up in the middle of the night to answer 

a page, have the good sense to remember that no matter how important 

your job is, you are not the implementor. You do not operate the system, 

but you can find the operators and make sure they have the air cover they 

need to be successful. Empower the operators.

It should go without saying that this requires trust. Teams are ulti-

mately governed by trust. Leaders of large organizations do not like hear-

ing this, because it means they will be held accountable for outcomes 

that are beyond their control. It is easier to cling to a popular strategy that  

offers guarantees. That way, if it fails, it can be passed off as a freak occur-

rence no leader could have prevented. There are no silver bullets with 
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legacy modernization; every technique in this book could fail under the 

wrong conditions. I’ve done my best to describe the right conditions, and 

the vulnerabilities of each approach, but I am limited by my knowledge 

and experience, which are not (and never will be) infinite. The person in 

the best position to find a working strategy is the person on the ground 

watching the gears of the system turn.

Dealing with this reality gets easier when you accept failure. Failure 

is inevitable when attempting to change complex systems in production. 

There are too many moving parts, too many unknowns, and too much 

that needs to be fixed. Getting every single decision right is impossi-

ble. Modern engineering teams use stats like service level objectives, 

error budgets, and mean time to recovery to move the emphasis away 

from avoiding failure and toward recovering quickly. Don’t forget: a per-

fect record can always be broken, but resilience is an accomplishment 

that lasts. Embracing failure as an organization diminishes the risk of 

empowering the operator and gets better performance from engineers.

We cannot completely eliminate failure, because there’s a level of 

complexity where a single person—no matter how intelligent—cannot 

comprehend the full system. With legacy systems, we have an additional 

complication in the fact that some context of the system has been lost. 

Requirements, assumptions, and the technical limitations of the time 

are all undocumented. There may be abstractions buried in the platform 

that trip us up. Modernization teams need to rediscover the require-

ments and assumptions of the original system and update them for 

the new system, but there are limitations on how much understanding 

even the best modernization team can excavate. Ultimately, old software 

cannot be used as a specification for a new version.

Technology, at its core, is an artifact of human thought. So when mod-

ernizing old technology, what humans think matters quite a lot. Software 

engineers are smart, but they fall victim to trends and fads the same as 

any other profession. Pay attention to how they are incentivized. What 

earns them the acknowledgment of their peers? What gets people seen is 
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what they will ultimately prioritize, even if those behaviors are in open 

conflict with the official instructions they receive from management. 

Technology advances in cycles with old paradigms constantly being 

dusted off to capture neglected segments of the market. Newer is not 

necessarily better. Good technology isn’t about having the most modern, 

most scalable, fastest, or most secure implementation; it’s about serving 

the needs of the user.

But, we also want a world where software engineers strive to make tech-

nology faster, better, and more secure. The only way we get both technology 

that serves the user and strives to improve continuously is by defining suc-

cess up front. What does it mean to bring value, and how do we know when 

value has increased?

In the end, technology is never finished being built. The legacy modern-

ization projects of today were the finished systems of yesterday. Computer 

systems cannot be expected to go unchanged for decades, because rarely 

is a computer isolated from the outside world. The inputs will change, the 

output methods will change, the networks and protocols will change, and 

the program that doesn’t change becomes a time bomb.

The best way to handle legacy modernization projects is not to need 

them in the first place. If the appropriate time and resources are bud-

geted for it, systems can be maintained in such a way that they evolve 

with the industry. The organizations that accomplish this ultimately 

understand that the organization’s scale is the upper bound of system 

complexity. Systems that are more complex than the team responsible 

for them can maintain are neglected and eventually fall apart.

To most software engineers, legacy systems may seem like torturous 

dead-end work, but the reality is systems that are not used get turned off. 

Working on legacy systems means working on some of the most critical 

systems that exist—computers that govern millions of people’s lives in 

enumerable ways. This is not the work of technical janitors, but battle-

field surgeons. It has been the greatest honor to serve among them.
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