

KILL IT
WITH FIRE

San Francisco

KILL IT
WITH FIRE
MANAGE AGING COMPUTER SYSTEMS
(AND FUTURE-PROOF MODERN ONES)

by M A R I A N N E B E L LOT T I

KILL IT WITH FIRE. Copyright © 2021 by Marianne Bellotti.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

ISBN-13: 978-1-7185-0118-8 (print)
ISBN-13: 978-1-7185-0119-5 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Katrina Taylor
Developmental Editor: Jill Franklin
Cover Design: Octopod Studios
Interior Design: Maureen Forys, Happenstance Type-O-Rama
Copyeditor: Kim Wimpsett
Compositor: Happenstance Type-O-Rama
Proofreader: James Fraleigh

For information on book distributors or translations, please contact No Starch Press, Inc.
directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2020950272

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respec-
tive owners. Rather than use a trademark symbol with every occurrence of a trademarked
name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

For my father, who kept the 360 system
manual in our attic “just in case.”

About the Author

Marianne Bellotti has worked as a software engineer for over 15 years.

She built data infrastructure for the United Nations to help humanitar-

ian organizations share crisis data worldwide and spent three and a half

years running incident response for the United States Digital Service.

While in government, she found success applying organizational change

management techniques to the problem of modernizing legacy software

systems. More recently, she was in charge of Platform Services at Auth0.

She currently runs Identity and Access Control at Rebellion Defense.

BRIEF CONTENTS

		 Introduction . . xv

1	 	 Time Is a Flat Circle . . 1

2	 	 Cannibal Code . . 17

3	 	 Evaluating Your Architecture 37

4	 	 Why Is It Hard? . 59

5	 	 Building and Protecting Momentum 75

6	 	 Coming in Midstream . 97

7	 	 Design as Destiny . 129

8	 	 Breaking Changes . 161

9	 	 How to Finish . 181

10	 Future-Proofing . . 195

		 Conclusion . . 217

		 Index . 223

CONTENTS IN DETAIL

		 Introduction . . xv

	 1	 Time Is a Flat Circle . . 1

Leveraging What Came Before . 3

The User as the Market Co-Creator . 8

The Mainframe and the Cloud . 9

The Flat-Rate Internet . 11

Migrating for Value, Not for Trends . 14

	 2	 Cannibal Code . . 17

Alignable Differences and User Interfaces 18

Unix Eats the World . 21

Inheritance Paths . 27

Leveraging Interfaces When Approaching Legacy Systems 32

Beware Artificial Consistency . 35

	 3	 Evaluating Your Architecture 37

Problem 1: Technical Debt . 38

Example: The General Ledger . 40

Problem 2: Performance Issues . 42

Example: Case Flow Management . 44

Problem 3: Stability Issues . 45

Example: Custom Configuration . 49

x   Contents in Detail

Stages of a Modernization Plan . 51

No Silver Bullets . 53

Full Rewrite . 54

Iteration in Place . 55

Split in Place . 56

Blue-Green . 56

The Hard Cutoff . 57

Putting It Together . 57

	 4	 Why Is It Hard? . 59

The Curse of Hindsight . 60

Easy and Also Impossible . 63

Overgrowth: The Application and Its Dependencies 64

Shifting Vertically: Moving from One Abstraction Layer to

Another . 66

Shifting Horizontally: Moving from One Application to Another .

67

Shifting from Client to Server . 67

Shifting Down the Dependency Tree 68

Cutting Back the Overgrowth . 68

Automation and Conversion . 69

Transpiling Code . 69

Static Analysis . 71

A Guide to Not Making Things Harder . 72

	 5	 Building and Protecting Momentum 75

Momentum Builder: The Bliss of Measurable Problems 76

Anatomy of the Measurable Problem 78

Momentum Killer: The Team Cannot Agree 80

Step 1: Define a Scope . 81

Step 2: Check for Conflicting Optimization Strategies 83

Step 3: Perform Time-Boxed Experiments 83

Contents in Detail   xi  

Momentum Killer: A History of Failure . 84

Momentum Builder: Inspiring Urgency 87

Protecting Momentum: A Quota on Big Decisions 89

Protecting Momentum: Calculating Opportunity Costs 90

The Cost of Not Adding New Features 93

The Cost of Not Fixing Something Else 94

The Cost of Not Deprecating in Favor of a Different Solution . . 95

	 6	 Coming in Midstream . 97

Finding the Bleed . 98

Mess: Fixing Things That Are Not Broken 101

Figuring Out Whether Something Needs to Be Fixed 105

But . . . What About Conventions? 106

When Does Breaking Up Add Value? 107

The Compounding Problem: Diminishing Trust 108

Solution: Formal Methods . 109

Mess: Forgotten and Lost Systems . 111

The Compounding Problem: Crippling Risk Avoidance 112

Solution: Chaos Testing . 112

Mess: Institutional Failures . 114

The Compounding Problem: No Owners 115

Solution: Code Yellow . . 116

Calling a Code Yellow . 120

Running a Code Yellow . 121

Mess: Leadership Has Lost the Room . 122

The Compounding Problem: Self-Sabotaging Teams 125

Solution: Murder Boards . . 125

Stopping the Bleed . . 127

	 7	 Design as Destiny . 129

Designing Technical Conversations . 131

How to Run a Design Exercise . 132

xii   Contents in Detail

More About Follow-ups: Why vs. How . 134

Some Useful Design Exercises for Engineering Teams 134

Exercise: Critical Factors3 . 135

Exercise: The Saboteur4 . 135

Exercise: Shared Uncertainties5 . 136

Exercise: The 15 Percent6 . 137

Exercises Specifically for Decisions . 138

Exercise: Probabilistic Outcome-Based Decision-Making 138

Exercise: Affinity Mapping . 139

Team Structure, Organization Structure, and Incentives 140

Individual Incentives . 142

Minor Adjustments as Uncertainty . 145

Organization Size and Communication 147

Manager Incentives . 148

Designing a Team: Applications of Conway’s Law 149

Reorgs Are Traumatic . 151

Finding the Right Leadership . 152

Exercise: The Smallest Testable Unit 153

Structuring the Team to Account for Past Failure 155

Exercise: In-Group/Out-Group . . 158

Takeaways . 159

	 8	 Breaking Changes . 161

Being Seen . 162

Who Draws the Line? . 167

Building Trust Through Failure . 168

Breaking Change vs. Breaking . 170

Why Break Things on Purpose? . 171

Projecting Impact . 172

The Kill Switch . 177

Communicating Failure . 178

Failure Is a Best Practice . 179

Contents in Detail   xiii  

	 9	 How to Finish . 181

Revealing Assumptions . 182

Approach 1: Success Criteria . 182

Example: Adding Continuous Integration/Continuous Deploy 183

Approach 2: Diagnosis-Policy-Actions 184

Example: Upgrading a Database . . 184

Comparison . 185

Marking Time . 186

Postmortems on Success . . 187

Postmortem vs. Retrospective . 188

Running Postmortems . 188

The Tale of Two War Rooms . 190

Working Groups vs. Committees . 191

Success Is Not Obvious If Undefined . 194

	10	 Future-Proofing . . 195

Time . 196

Unescapable Migrations . 199

Failing Gracefully . 200

Less Time Between Upgrades, Not More 202

A Word of Caution About Automation 206

Building Something Wrong the Correct Way 207

Feedback Loops . 210

Don’t Stop the Bus . 214

		 Conclusion . . 217

		 Index . 223

We build our computer systems the way we build our

cities: over time, without a plan, on top of ruins.

—ELLEN ULLMAN

INTRODUCTION

I n 1975, renowned physicist David L. Goodstein published his book

States of Matter with the following introduction:

Ludwig Boltzmann, who spent much of his life studying statistical
mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on
the work, died similarly in 1933. Now it is our turn to study statistical
mechanics.

This is a book about how to run legacy modernizations, a topic many

software engineers regard as slow-moving career suicide, if not the pro-

logue to a literal one. This book is for people who work at large organiza-

tions with aging technology, but it is also a book for people who work at

small startups still building their technology. Restoring legacy systems

to operational excellence is ultimately about resuscitating an iterative

development process so that the systems are being maintained and

evolving as time goes on.

Most of the advice in this book can just as easily be used for build-

ing new technology, but legacy systems hold a special place in my heart.

I spent the first 10 years of my professional career traveling around the

xvi   Introduction

world, looking for work in applied anthropology while programming

computers for fun on the side. I knew how to program because my father

was a computer programmer, and I grew up in a house filled with com-

puters at a time when that was rare.

I never became the swashbuckling international aid worker I imag-

ined myself to be, but I ended up finding my applied anthropology work

in legacy modernizations. Like pottery sherds, old computer programs

are artifacts of human thought. There’s so much you can tell about an

organization’s past by looking at its code.

To understand legacy systems, you have to be able to define how the

original requirements were determined. You have to excavate an entire

thought process and figure out what the trade-offs look like now that the

options are different.

Simply being old is not enough to make something legacy. The sub-

text behind the phrase legacy technology is that it’s also bad, barely func-

tioning maybe, but legacy technology exists only if it is successful. These

old programs are perhaps less efficient than they were before, but tech-

nology that isn’t used doesn’t survive decades.

We are past the point where all technical conversations and knowl-

edge sharing can be about building new things. We have too many old

things. People from my father’s generation wrote a lot of programs, and

every year they are shocked by how much of their work survives, still run-

ning in a production system somewhere. My generation has programmed

exponentially more, infecting every aspect of life with a computer chip

and some runtime instructions. We will be similarly shocked when those

systems are still in place 30, 40, or 50 years from now.

Because we don’t talk about modernizing old tech, organizations fall

into the same traps over and over again. Failure is predictable because

so many software engineers think the conversations about modernizing

legacy technology are not relevant to their careers. Some of them are hon-

estly surprised to find out that COBOL still runs much of the financial

sector, that the majority of the web is still written in PHP, or that people

Introduction   xvii  

are still looking to hire software engineers with ActionScript, Flash, and

Visual Basic skills.

Failure can be so predictable that after a year or two of doing this

work, I found that with a little basic information about the technology

deployed, I could predict a series of problems the organization was facing

and how its solutions had failed. Occasionally, I would perform this

parlor trick for the amusement of other engineers and the advancement

of my career, including once during a job interview at the New York Times.

When I left government to go back to the private sector, I discovered

that the same techniques that had worked for old systems also worked

really well with relatively new systems. I moved to a six-year-old com-

pany and did legacy modernization work. Then I moved to a six-month-

old company and still did legacy modernization work. At one point,

exasperated, I complained to my boss, “Why am I running a legacy mod-

ernization on a three-month-old system?” To which he retorted, “Serves

you right for not showing up three months ago.”

That being said, there is little downside to maintaining all systems

as if they are legacy systems. It is easy to build things, but it is difficult

to rethink them once they are in place. Legacy modernizations are hard

not because they are technically hard—the problems and the solutions

are usually well understood—it’s the people side of the modernization

effort that is hard. Getting the time and resources to actually implement

the change, building an appetite for change to happen and keeping that

momentum, managing the intra-organizational communication neces-

sary to move a system that any number of other systems connect to or

rely upon—those things are hard.

And yet, as an industry, we do not talk about these challenges. We

assume the sun, moon, stars, and the board of directors will all magi-

cally reconfigure themselves around the right technical answer simply

because it’s the right technical answer. We are horrified to discover that

most people do not actually care how healthy a piece of technology is as

long as it performs the function they need it to with a reasonable degree

xviii   Introduction

of accuracy in a timeframe that doesn’t exhaust their patience. In tech-

nology, “good enough” reigns supreme.

In trying to explain how to approach a legacy modernization, I first

go back and explore how technology changes over time. Chapters 1 and 2

both explore the mechanics of computing trends and best practices:

How did we settle on the technology that is legacy today, and what can

we learn from that process to guide our modernization plans?

In Chapter 3, I discuss the three broad problems that make organi-

zations feel like they need to modernize: technical debt, performance

issues, and system stability. I give an example of each type of problem

on a real (though anonymous) system and how the plan to modernize it

might come together.

 Chapter 4 discusses why legacy modernization is so hard and fails so

often. I address the great myth of cross-platform compatibility and the

role of abstraction in manipulating what we see as easy or hard.

Chapter 5 talks about the most critical feature of any legacy modern-

ization: momentum. How do you get it, and how do you keep it? I outline

a whole series of conditions—some of them momentum killers, some of

them momentum growers.

Chapter 6 deals with coming into a modernization project that has

already started and how to fix the most common problems that might

be stalling it.

Chapter 7 provides as thorough of an overview as possible into design

thinking and how we can use design to direct and ultimately improve the

outcomes of technical conversations.

Chapter 8 is all about breaking stuff and the value of not being afraid

of failure. I explore how chaos testing complements legacy moderniza-

tion and how to work with an organization where the suggestion that

you should break things on purpose might seem like a bridge too far.

Chapter 9 discusses why success is not as obvious or self-evident as

you might assume and how to define criteria to determine when a proj-

ect is finished.

Introduction   xix  

Finally, Chapter 10 lays out strategies to keep you from ever having to

do a modernization on the same system again. How do you know if your

software is maintainable? What can you do if it is not?

The language in this book is deliberate. I use the term organization

instead of company or business. The vast majority of my work experience

in this space is with governments and nonprofits, but legacy is every-

where. The organizations that need to build and maintain good technol-

ogy are not exclusively in the private sector. The US federal government

is one of the single largest producers of technology, for example. The

conversation about legacy systems crosses from businesses to govern-

ments to hospitals to nonprofits. For that reason, when I mention the

“business” side of the organization, I mean that in terms of the mission-

focused components that engineering is building technology to support.

An organization doesn’t have to make a profit to have a business side.

Throughout the book, I use the word system to refer to a grouping of

technologies that work together for a common set of tasks. System is a

troublesome word in technology conversations as it seems you can never

find a group of engineers who agree where its boundaries are. For my

purposes, though, that vagueness is beneficial. It allows me to talk about

legacy modernizations in general.

To describe parts of a system, I frequently use the words component

or occasionally service. While many of the techniques in this book are

applicable to any type of technology, examples and discussions are heav-

ily slanted toward software engineering and web-based development in

particular. I couldn’t write a book about legacy systems without main-

frames, data centers, and old operating systems, but most of my experi-

ence is with upgrading these systems to more internet-friendly options,

and this book reflects that. I look forward to technologists with other

backgrounds supplementing the material in this book with essays on

whether my advice also applies to them.

My sincere hope is that as you read this, you find inspiration for your

own technical projects, regardless of the age of your technology. I’ve tried

xx   Introduction

my best to pack as many resources, exercises, and frameworks into this

book as possible, to be as detailed as possible, and to ground as many

assertions with real-world stories as I can.

We are reaching a tipping point with legacy systems. The generation

that built the oldest of them is gradually dying off, and we are piling more

and more layers of society on top of these old, largely undocumented and

unmaintained computer programs. While I don’t believe society is going

to crumble at our feet over it, there’s a lot of good, interesting work for

people willing to jump in.

1
TIME IS A FLAT CIRCLE

I n the summer of 2016, I found myself sitting in front of the weirdest

system I had ever encountered as a software engineer. There was a

fairly banal web application written in Java that was connecting to what

I would eventually figure out was a mainframe. The mainframe itself

wasn’t the weird part. When you venture into the world of legacy mod-

ernization, you quickly realize that mainframes are still everywhere—in

banks, in government, buried deep in the foundation of civil society.

Having a web application send requests to a mainframe wasn’t so weird.

I had a hard time accepting that a technology designed for bulk trans-

actions would respond quickly enough to meet the demands of a web-

site at a reasonable scale, but despite my concerns, it did appear to be

doing okay.

No, what was weird was that the mainframe in question was from the

1960s and storing data on magnetic tape. There was no way that main-

frame could respond quickly enough, so when I saw this on the architec-

ture diagrams, I focused on a group of mysterious machines that were

sitting in the middle; a modern web application was on one side and an

ancient mainframe on the other.

2   Kill It with Fire

The only information I had about this cluster of machines was the

acronym the organization used for it. Nobody on the engineering teams

I was working with seemed to know what the machines did. It took a lot

of digging through several decades of documentation before I figured out

what they were: Unisys ClearPath Dorados. In other words, they were more

mainframes, newer ones, that were effectively configured like a cache in

front of the old mainframe. That was how 60-year-old code was respond-

ing fast enough to serve requests from the modern internet. The organiza-

tion had a new machine sitting in between that was storing a temporary

copy of the relevant data. About once a week, the new mainframes would

request an update from the older mainframe.

When I asked an engineer who worked on this system what he

thought about this arrangement, he said something that has stuck with

me ever since and ultimately changed my understanding of modernizing

legacy computer systems: “Well, how is the cloud any different from old

time-sharing schemes on mainframes?”

The answer is that it isn’t really. Both of these approaches charge

you for time spent on shared resources maintained by a much larger

institution. You are connecting over the same lines of communication,

sometimes with the same protocols. The client/server model is virtually

the same; only the interfaces and programming languages are different.

On this point, the engineer added another interesting observation: “We

started with thin-client mainframe green-screen terminal applications,

then they wanted us to migrate to fat clients on PCs, now they want APIs

with thin clients again.”

 The first mistake software engineers make with legacy moderniza-

tion is assuming technical advancement is linear. With that frame of

mind, anything built in older design patterns or with an older architec-

tural philosophy is inferior to newer options. Improving the performance

of an old system is just a matter of rearranging it to a new pattern.

My experiences dealing with Frankenstein systems like the one

described taught me that progress in technology is not linear. It’s cyclical.

Time Is a Flat Circle   3  

We advance, but we advance slowly, while moving tangentially. We aban-

don patterns only to reinvent them later and sell them as completely new.

Technology advances not by building on what came before, but by piv-
oting from it. We take core concepts from what exists already and modify

them to address a gap in the market; then we optimize around filling

in that gap until that optimization has aggregated all the people and

use cases not covered by the new tech into its own distinct market that

another “advancement” will capture.

In other words, the arms race around data centers left smaller

organizations behind and created a demand for the commercial

cloud. Optimizing the cloud for customization and control created the

market for managed platforms and eventually serverless computing.

The serverless model will feed its consumers more and more devel-

opment along its most appealing features until the edge cases where

serverless approaches don’t quite fit start to find common ground

among each other. Then a new product will come out that will address

those needs.

Leveraging What Came Before

Most people realize that technology can be invented and not become

popular until much later, but they typically attribute this effect to the

lack of vision of the inventor or deficiencies of skills within the market-

ing department or the maturity level of the technology itself.

Economists have a different explanation for adoption rates of new

technology. They typically describe it as the contrast between alignable

and nonalignable differences. Alignable differences are those for which the

consumer has a reference point. For example, this car is faster than that

car, or this phone has a better camera than that phone.

Nonalignable differences are characteristics that are wholly unique

and innovative; there are no reference points with which to compare.

You might assume that nonalignable differences are more appealing

4   Kill It with Fire

to potential consumers. After all, there’s no competition! You’re doing

things differently from everyone else. But when it comes time to make a

purchasing decision, if there is no comparison, there is no clear sense of

value. How does one judge the worth of something—and therefore esti-

mate the trade-offs of buying it at a particular price—that has no equiv-

alent? For a nonalignable difference to make an impact, the estimated

value it produces has to be greater than all the alignable differences and

all the other nonalignable differences put together.1

Consumers just aren’t confident about having to do such guesswork.2

It increases the risk of buyer’s remorse, and reasoning about needs and

utility makes consumers uncomfortable. Therefore, products of all kinds

differentiate themselves on the market by finding specific characteristics

that can be labeled as different from characteristics of existing solutions.

This pushes technology into cycles. People do not get exactly the same

experience from the same products. As a company iterates to improve a

certain characteristic of the product, it ultimately makes the product less

desirable for the group of existing customers. Companies do this with the

hope that a larger group of new customers will make that loss irrelevant.

Most of the time this gradual optimization only creates annoyances

that play themselves out over social media and eventually die down.

Occasionally, there are enough people who have experienced a loss in

utility from the optimization that they themselves become a potential

market to be captured. That includes consumers who never bought the

product in the first place but would have if it had been optimized in

some other way. Leveraging alignable differences is pushing the product

1.	 Shi Zhang and Arthur B. Markman, “Overcoming the Early Entrant Advantage: The
Role of Alignable and Nonalignable Differences,” Journal of Marketing Research 35, no. 4
(1998): 413–426, https://www.jstor.org/stable/3152161.

2.	 John T. Gourville and Dilip Soman, “Overchoice and Assortment Type: When and Why
Variety Backfires,” Marketing Science 24, no. 3 (2005): 382–395, https://www.jstor.org/
stable/40056969.

https://www.jstor.org/stable/3152161
https://www.jstor.org/stable/40056969
https://www.jstor.org/stable/40056969

Time Is a Flat Circle   5  

further away from what those consumers want to buy, but creating an

opportunity for another company to figure out.

Consider the following: Is it better to have a small cellphone or a large

cellphone?

The world’s first commercially available cellphone was Motorola’s

DynaTAC 800. It was the big brick phone now used to signal the 1980s in

satirical pieces. More than 10 inches tall, it wasn’t the sort of thing one

could easily carry around in a pocket. Obviously, market demands would

push cellphones to grow smaller. By 1994, IBM’s Simon had gotten them

down to 8 inches tall and added the industry’s first attempt at smart fea-

tures such as sending faxes and emails, maintaining a calendar, keeping

notes, reading the news, and viewing stock prices. Despite those impres-

sive advancements, the Simon was quickly made irrelevant by the flip

phone, which took the 8-inch size and literally folded it in half, making

it similar in size to the average width and the depth of a pants pocket.3

Companies went from selling tens of thousands to millions of devices.

I was in high school during this time, and despite the ubiquity of

them now, a cellphone was not something a kid in the 1990s would

have considered a worthwhile purchase. I had only one friend who had

a cellphone, and it served two primary functions for him: something for

when his car broke down driving back and forth to his part-time job at

Taco Bell, and playing a grayscale version of Snake during class. For me

and my peers, though, we were just as likely to run into the people we

might want to call in the hallway between classes, or we could commu-

nicate with them through other means that our parents paid for. Tex-

ting was not a medium we considered for the cellphone. Pagers worked

just as well.

In fact, a Pew Research study revealed that landlines were still the

communication medium of choice for American teenagers almost a

3.	 Jan Diehm and Amber Thomas, “Women’s Pockets Are Inferior,” The Pudding, August
2018, https://pudding.cool/2018/08/pockets/.

https://pudding.cool/2018/08/pockets/

6   Kill It with Fire

decade later in 2009.4 More than half of teenagers had never even sent a

text message. By this point, the iPhone had been on the market for two

years, and it was in its third iteration. A year later, a follow-up report from

Pew painted a completely different picture: cellphone use in the United

States was rapidly growing among teenagers, overtaking all other com-

munication options.5

What happened?

An internet meme goes around every now and again that pegs the

pivot point on cellphone size at around 2005 with the words “Here we

realize we can see porn in the mobile.” In reality, screen sizes varied

up until 2010 with plenty of options from the all-encompassing touch

screen look to more modest interfaces with physical keyboards that were

optimized for business use cases. Teenagers were lingering as an under-

served market until screen size started to increase and cameras became

more of a first-class feature of phones. What teenagers wanted to use

cellphones for was sharing pictures and videos with each other.6 Once it

became clear there was a market to capture by selling phones as enter-

tainment devices, cellphones abruptly stopped shrinking and started

growing. Innovations around resolution, display, and camera quality

accelerated.

It’s tempting to look at these trends and assume the technology

simply matured to the point where it was able to find and seize its

market. But the data doesn’t actually bear that out. Nokia’s N95 offered a

4.	 Amanda Lenhart, “Teens and Mobile Phones Over the Past Five Years: Pew Internet
Looks Back,” Pew Research Center’s Internet & American Life Project, August 19, 2009,
https://www.pewresearch.org/internet/2009/08/19/teens-and-mobile-phones-over-the-past-
five-years-pew-internet-looks-back/.

5.	 Amanda Lenhart, Rich Ling, Scott Campbell, and Kristen Purcell, “Teens and Mobile
Phones,” Pew Research Center’s Internet & American Life Project, April 20, 2010,
https://www.pewresearch.org/internet/2010/04/20/teens-and-mobile-phones/.

6.	 Ibid.

https://www.pewresearch.org/internet/2010/04/20/teens-and-mobile-phones/
https://www.pewresearch.org/internet/2010/04/20/teens-and-mobile-phones/

Time Is a Flat Circle   7  

5-megapixel (MP) camera in 2007. Shortly thereafter, the first-generation

iPhone came out with a 2MP camera, and the HTC Dream was released

in 2008 with 3.15MP camera. In 2010, the iPhone and HTC would debut

front-facing cameras with 0.3MP and 1.3MP, respectively. The technology

on the market wasn’t getting better; it was briefly getting worse.7

Simply producing a cellphone that was geared toward teenagers

in the 1990s or the early 2000s would not have led to an explosion of

growth. Teenagers had no strong reference point for cellphones. From

their viewpoint, there were no alignable differences attractive enough to

justify the expense. It was only once their parents’ devices became prev-

alent in cultural references and everyday life that the market potential of

teenagers and the large screens necessary to capture their interest were

unlocked.

Every feature that took off with younger American users had existed

before 2010. Cameras have been on phones since 2000, and they sold

well. Phones that streamed live broadcasts were already available in

2004 when I was living in Japan. It was not some impressive techni-

cal advancement that shifted the market. The growing ubiquity of cell-

phones in daily life had primed a new, more lucrative market to force the

design of cellphones to do a complete 180.

The history of technology is filled with about-faces like this. A cer-

tain approach or technique becomes popular but doesn’t fit everyone’s

use case. Companies start experimenting and applying that hot new

approach to more and more things until the number of situations

where that approach does not work or is not ideal grows into a force that

reverses momentum. The industry rediscovers a different way of doing

things and swings back.

Engineers praised the publish/subscribe model of Kafka as superior

to the hub-and-spoke model of Enterprise Service Buses (ESBs). ESBs

7.	 Robert Triggs, “A Little History of the Smartphone Camera,” Android Authority, June
16, 2017, https://www.androidauthority.com/little-history-smartphone-camera-776711/.

https://www.androidauthority.com/little-history-smartphone-camera-776711/

8   Kill It with Fire

were a single point of failure and an anti-pattern for service-oriented

architecture. Then Kafka added its Connect framework (version 0.9) and

its Streams API (0.10), which reintroduced many of the core concepts of

ESBs. Google developed Accelerated Mobile Pages to advance asynchro-

nous loading through JavaScript and then added server-side rendering

to them—breaking its own spec to move back to a pattern already estab-

lished by HTML.

Market shifts are complex events. We can see the pattern of technol-

ogy cycling through the same approaches and structures over and over,

but these shifts are less about the superiority of a given characteristic

and more about how potential consumers organize themselves.

The User as the Market Co-Creator

Broadly, these kinds of complex compounding shifts are referred to as
Service Dominate Logic (S-D Logic). S-D Logic says that consumer value is

not created by companies producing products but by an active collabo-

ration between many actors. According to S-D Logic, consumers are not

passive, thoughtless sheep whose wants and desires are engineered for

them by industry. Instead, consumers actively participate in creating the

markets that are leveraged to sell them things.

Consumers and companies create value largely by playing off one

another. Anyone who has ever tried to start their own business will tell

you the existence of a problem does not mean there’s a market for solving

it. In 2004, the inability to stream TV and movies from a handheld device

easily was not a problem consumers had much interest in having solved.

The technology to do so existed by then, but no one was willing to invest

hard-earned dollars in a solution to a problem that everyone else had to

deal with too. Once cellphones solved the practical problem of keeping

in touch with the office when on the move, they appeared in the field of

vision of huge numbers of other consumers. This caused other needs to

begin to consolidate into marketable problems. You are unlikely to put

Time Is a Flat Circle   9  

much thought into the problem of not being able to watch the newest

episode of your favorite TV show while flying across the country. But, if

you know that other people have such an option and you are missing out,

the solution suddenly becomes much more marketable.

The Mainframe and the Cloud

Sometimes, however, the centrifugal forces that govern progress are a

lot more basic and fundamental. Let’s go back to my story at the begin-

ning of this chapter: Why did we migrate from time-sharing on main-

frames to bulky applications on personal computers to time-sharing on

the commercial cloud? We could have, for example, continued to develop

mainframes until they became clouds. Why didn’t we? Why did we spend

millions of dollars migrating thousands of applications to a new para-

digm only to have to migrate them all back to thinner clients a decade

or two later?

Technology is, and probably always will be, an expensive element of

any organization’s operational model. A great deal of advancement and

market co-creation in technology can be understood as the interplay

between hardware costs and network costs. Computers are data pro-

cessors. They move data around and rearrange it into different formats

and displays for us. That’s about all they do, regardless of whether we use

them to play video games or crunch spreadsheets.

All advancements with data processors come down to one of two

things: either you make the machine faster or you make the pipes deliv-

ering data to the machine faster. These forces cannot grow independently

of each other. If the pipes pumping data in get too far ahead of the chips

processing data, the machine crashes. If the machine gets too far ahead of

the network, the user experiences no actual value add from the increases

in speed.

When it becomes possible to create alignable differences by unlocking

available improvements in either network speeds or hardware speeds, the

10   Kill It with Fire

whole industry tends to change paradigms to optimize for that improve-

ment. In doing so, it creates a market for the next shift by leaving some

potential customers and use cases behind.

Mainframes in their heyday existed in a world where processor power

was limited. Having enough of it to make offloading calculations to a

machine required investing in a whole room full of equipment and spe-

cialized operators, which were expensive. The market invested heavily in

making the hardware faster. The lowest-hanging fruit in that endeavor

was actually just making the chips smaller so you could pack more of

them into the same machine. Doing this did not immediately result in

smaller mainframes, but rather it expanded the market to capture dif-

ferent price points so that large organizations would still pay millions

of dollars, while small organizations could be persuaded to pay tens of

thousands to have mainframes of their own. This exposed computers to

a larger audience and stimulated the market for what eventually became

the PC. Even still, there wasn’t any need to make improvements to net-

work speeds, because the computers were slow and couldn’t store much

data. A supercomputer in 1985, for example, had about as much process-

ing power as an early-generation iPhone. A more typical computer from

that era might have a few hundred kilobytes of RAM and storage. The

National Science Foundation Network, which would eventually become

the backbone of the early internet, offered 56kbps in the 1980s. At that

speed, it would have taken only about an hour to transfer an entire com-

puter’s worth of data across the network.

Eventually, decades of engineering work changed that relationship.

Faster, more powerful computers were now waiting for their data to

come across the network. More and more of these machines were smaller

and cheaper with endlessly growing storage capacity. As the number of

machines increased, the load on their networks also increased. The more

computers connected to a network at the same time, the slower the net-

work becomes. It was going to take time for the demands for more speed

to produce a market response, so the industry optimized by shifting

Time Is a Flat Circle   11  

toward applications that stored more data locally on the machine itself.

We walked away from applications that run on a centralized computer

that we communicated with across a network. If we don’t need to move

data across the network, network speed doesn’t hold us back.

The Flat-Rate Internet

At this point, we don’t have a cycle; we have a transition. The indus-

try preferences shifted from processing on big centralized machines to

smaller, cheaper, local workstations. It’s not a spoiler to say that it shifted

back because the internet got faster and cheaper, but was that inevitable?

It’s unlikely that the private sector ever would have built the inter-

net once it had unlocked the personal computing market. Computer

manufacturers were benefiting much more financially from their propri-

etary standards at the time. The core innovation of the internet was the

networking of many different types of networks into one inter-network

(hence the name internet), which required common standards open to all

manufacturers. Building a network that would scale to cross a single coun-

try was itself a significant engineering challenge. In fact, many national

computer network projects were attempted during the same period as

the internet. The United Kingdom had one; France had two; the Soviet

Union had three failed attempts. The United States ultimately prevailed

because it was not trying to build a national network; it was simply trying

to solve compatibility issues caused by all the proprietary standards com-

puter manufacturers were pushing. The US military had funded a number

of expensive computers, and it wanted research institutions hundreds of

miles away from one another to be able to share those resources. Had it

been left up to the computer manufacturers, they obviously would have

preferred that all the research institutions bought their own machines.

Nevertheless, the internet was built. Slow and cumbersome at first,

without a specific business implementation, it filled up with scholars,

hobbyists, futurists, and weirdos. Whereas saturation of the business

12   Kill It with Fire

market unlocked consumers’ desire for cellphones as personal enter-

tainment devices, and saturation of the mainframe computer market got

smaller organizations with fewer resources looking for smaller machines,

the internet penetrated the business market through a slightly anarchist

creative community. In 2000, 76 percent of online users were connecting

from homes, while 41 percent were connecting from businesses. By 2014,

home internet use had exploded to 90 percent, and work internet use

remained stagnant at 44 percent.8

What’s interesting about the internet is that it is the only modern-

day communication medium that has been historically flat-rate priced.9

All packets on the internet are billed basically the same way, regard-

less of what they are or where they are going.10 By contrast, you pay

more when you call long-distance versus placing a local call, or you

pay more when connecting to a cell network in a foreign country versus

your own. On the internet, consumers pay more to get faster speeds.

That put the pressure on telecommunication companies to compete

by making connections faster. The faster the internet became, the more

people put on it. The more content that was on the internet, the more

consumers started logging on. The more people trying to access a given

resource on the internet, the more expensive hosting those resources on

your own machines became. Eventually, this flipped the value proposi-

tion of the computer industry by making it cheaper to process data “in

the cloud” than it was to process it locally. We returned to the notion of

8.	 Susannah Fox and Lee Rainie, “The Web at 25 in the U.S.,” Pew Research Center’s
Internet & American Life Project, February 27, 2014, https://www.pewresearch.org/
internet/2014/02/27/the-web-at-25-in-the-u-s/.

9.	 Andrew Odlyzko, “Internet Pricing and the History of Communications,” Computer
Networks 36, 493–517, 2001.

10.	 You may have heard of “net neutrality,” which is the campaign to maintain the flat-
rate status of the internet. Initially internet service providers provided a flat rate
because it was difficult to charge based on packet type, but alas modern technology
makes that more viable.

https://www.pewresearch.org/internet/2014/02/27/the-web-at-25-in-the-u-s/
https://www.pewresearch.org/internet/2014/02/27/the-web-at-25-in-the-u-s/

Time Is a Flat Circle   13  

renting time on expensive computers someone else owns versus assum-

ing the costs of buying, maintaining, and upgrading those expensive

computers ourselves.

One can track how architectural paradigms fall in and out of favor

roughly by whether processing power and storage capacity are growing

faster than network speeds; however, faster processors are often a com-

ponent of what telecoms use to boost their network speeds. This kind of

interdependency is true for basically any market. Product development

shifts consumer behavior, which shifts product development. Technol-

ogy doesn’t advance in a straight line, because a straight line is not actu-

ally efficient. The economy is not a flat plane, but a rich topography with

ridges and valleys to navigate around.

The factors that influence shifts are also fractal and interdisciplinary

in nature. The reason American internet service providers (ISPs) settled

on a flat-rate pricing structure early on is that the landscape offered

them two options for building the network of communication lines nec-

essary to be in business in the first place: either they built their own links

or they rented other people’s links. In the latter category, a wide variety of

options were available, not just existing telecom networks built for the

telephone, like AT&T, but also private lines maintained by large institu-

tions to connect their data centers. A company like AOL in the 1990s was

both in competition with telecoms to sell internet access and a customer

of those same telecoms. This made ISPs much more sensitive to cus-

tomer feedback and the psychological draw of simple, flat pricing a

necessity.11 Among other things, charging for usage levels means services

grow more expensive as they get worse. More activity by more users ulti-

mately leads to congestion and degrades network performance. The fact

that users have trouble correctly estimating their usage levels and that

the majority of them pay more with flat prices further incentivized the

11.	 Andrew Odlyzko, “Internet Pricing and the History of Communications,” Computer
Networks 36, 493–517, 2001.

14   Kill It with Fire

industry. If you want a quick demonstration of that, look up your real

cellular data usage and compare it to what limits you are paying for

monthly. Most users never come close to exhausting it.

In Europe, it was far more common for telecoms to be government-run,

which meant less competition forcing simpler pricing models. The Euro-

pean Union would eventually liberalize the internet market in the late

1990s, while the United States allowed broadband to consolidate. As a

result, a lot more competition in Europe has subsequently pushed speeds

up and prices down. Today, the internet is faster in many places than it is

in the United States. What this means for future shifts in the tech indus-

try is unclear. Any number of factors can change which paradigms are

being pushed as best practices. Exposure to technology can create a new

market, and that market could run parallel as mainframes and PCs still

do, or it could completely overtake another market, just as entertainment-

optimized cellphones wiped out BlackBerries and other business-focused

phones. Prices could drop. Resources could become scarce. Rarely if ever

are these changes fueled by pure technical superiority.

Migrating for Value, Not for Trends

What does any of this have to do with legacy modernization? When

people assume that technology advances in a linear fashion, they also

assume that anything new is naturally more advanced and better than

whatever they are currently running. Adopting new practices doesn’t

necessarily make technology better, but doing so almost always makes

technology more complicated, and more complicated technology is hard

to maintain and ultimately more prone to failure.

And yet, information technology that never changes is doomed. It’s

important to understand that we advance in cycles, because that’s the

only way we learn how to avoid unnecessary rewrites and partial migra-

tions. Changing technology should be about real value and trade-offs, not

faulty assumptions that newer is by default more advanced.

Time Is a Flat Circle   15  

Sometimes it is difficult to compare your use case to the use cases

of other seemingly similar organizations. The biggest offender on this

front is the commercial cloud, precisely because it adds value to such a

broad set of use cases. People tend to assume that means it is a superior

technology for all use cases, which is not true. I have a friend who runs

a Hadoop cluster to process financial data for the Department of Trea-

sury. Her chief information officer (CIO) insists that they need to shut

down the servers they maintain to move this process to the cloud. What

the CIO doesn’t appreciate is that moving data, while cheaper and easier

than it was in the 1980s, is still expensive. There’s no question that speed

and performance are better if you’re processing data in the same place

that you’re storing it—in this case, on site. Whether Big Data as a Service

saves you any money depends on how big your big data actually is, where

it is centralized, and how long it takes it to get that big in the first place.

Having petabytes of data collected over a five-year period is a different

situation from having petabytes generated over the course of a few hours.

Value propositions are often complicated questions for this reason.

It’s hard enough for a purely technical organization to get it right; it’s

even harder at organizations where the only people with enough knowl-

edge to advise on these issues are vendors.

2
CANNIBAL CODE

I f technology advances in cycles, you might assume the best legacy

modernization strategy is to wait a decade or two for paradigms to

shift back and leapfrog over. If only! For all that mainframes and clouds

might have in common in general, they have a number of significant dif-

ferences in the implementation that block easy transitions. While the

architectural philosophy of time-sharing has come back in vogue, other

components of technology have been advancing at a different pace. You

can divide any single product into an infinite number of elements: hard-

ware, software, interfaces, protocols, and so on. Then you can add specific

techniques within those categories. Not all cycles are in sync. The odds of

a modern piece of technology perfectly reflecting an older piece of tech-

nology are as likely as finding two days where every star in the sky had

the exact same position.

So, the takeaway from understanding that technology advances in

cycles isn’t that upgrades are easier the longer you wait, it’s that you

should avoid upgrading to new technology simply because it’s new.

18   Kill It with Fire

Alignable Differences and User Interfaces

Without alignable differences, consumers can’t determine the value

of the technology in which they are being asked to invest. Completely

innovative technology is not a viable solution, because it has no refer-

ence point to help it find its market. We often think of technology as

being streamlined and efficient with no unnecessary bits without a clear

purpose, but in fact, many forms of technology you depend on have ves-

tigial features either inherited from other older forms of technology or

imported later to create the illusion of feature parity.

For example, most software engineering teams maintain 80-column

widths for lines of code. It is easier to read short lines of code than long

lines of code; that much is true. But why specifically 80 columns? Why not

100 columns?

Amazingly, an 80-column width is the size of the old mainframe

punch cards that were used to input both data and programs into the

room-sized computers built during the 1950s and 1960s. So right now, sol-

idly in the 21st century, programmers are enforcing a standard developed

for machines most of them have never even seen, let alone programmed.

But, why are mainframe punch cards 80 columns wide? Punch cards

used by the forebears of the earliest computer companies—back when

they were mechanical “tabulating machines” used primarily for things like

the census—were ad hoc and incredibly inefficient. They were designed

to tally, not calculate, so they were modeled after what a railroad conduc-

tor might use for tickets, rather than for storing data.1 The cards needed

to be fed into machines in batches and then sorted and stored. To avoid

having to re-invent everything, the cards themselves were designed to be

approximately the same size as the paper currency of the United States at

the time: 3¼ by 7 3⁄8 inches. This meant companies could repurpose exist-

ing drawers, bins, and boxes to acquire necessary accessories.

1.	 Geoffrey D. Austrian, Herman Hollerith: Forgotten Giant of Information Processing (New
York: Columbia University Press, 1982), 124.

Cannibal Code   19  

By the 1920s, customers were leaning on IBM to get more data storage

out of a single card. IBM’s innovation was to change the shape of the holes

themselves, making them more rectangular so that they could be placed

closer together on the card.2 That meant 80 columns of possible holes.

Now, let’s go even deeper. What about the punch card itself? Why

were the first computers designed to take input from stiff cards with

holes punched into them? Keyboards have existed as long as typewriters,

and the first modern typewriter was patented by Christopher Latham

Sholes, Carlos Glidden, and Samuel W. Soulé in 1868, nearly a century

before some of these mainframes were developed. Telegraphs were

experimenting with different types of keyboards even earlier than that.

Why would people prefer to punch holes in a thick piece of stock paper

when they could just type their information on a keyboard?

The problem with keyboards, or similar input devices, is that it’s easy

for human operators to mistype things, especially if those human oper-

ators get no visual confirmation that what they think they typed is actu-

ally what the machine received. Think about typing a password into a

field on a website that hides what you type. One disadvantage to such

password-masking fields is if you hit the wrong key, you might not notice

until the system rejects your input. How many times have you mistyped

a password like this? Now imagine inputting an entire message without

being able to see what you typed. Operator error was a big concern for

telegraphs, especially when they started to play a larger role in ferrying

critical messages around the globe.

The solution was to have a keyboard, but instead of interfacing

directly with the telegraph, the keyboard would produce a record that

could be checked for errors before the machine tried to send the message.

Many different variations on this concept were developed, and the one

that eventually stuck was punching holes in paper tape.

2.	 US Patent 1,772,492, Record Sheet for Tabulating Machines, C. D. Lake, filed June 20,
1928, http://ibm-1401.info/Patent1772492.pdf.

http://ibm-1401.info/Patent1772492.pdf

20   Kill It with Fire

What’s curious about the era of tabulating machines in the late 19th

century and the era of early computers in the 20th is that they arrived

at the same solution in different ways. The punch cards of tabulating

machines were developed from railroad tickets, but the punch cards of

telegraphs were developed from the textile industry.

More than a century earlier, French weavers had been automating

the pattern designs of elaborate rugs by printing out a design in the form

of a series of punched holes on cards and feeding those cards into their

looms. This allowed weavers to produce high-quality products much

faster, with more artistry and greater accuracy.

The telegraph further refined the system by introducing the con-

cept of encoding. When the goal is to manipulate the threads in a giant

loom to create a complex pattern row by row, there’s no point in over-

complicating things. One hole per raised thread is perfectly effective.

However, when the goal is to send messages long distances, that kind

of literalism is inefficient. Telegraph operators were already accustomed

to using code to represent different letters, but those codes were opti-

mized to reduce operator error. In Morse code, for example, the most

common letters have shorter codes. This keeps transmission fast and

minimizes the strain on the operator. Once telegraphs started producing

a physical record that the operator could double- or triple-check before

sending the message, the most significant gains in performance were to

be had by optimizing the encoding for the machines themselves. Letters

that were expressed in code length anywhere between one to five units

were not easy for machines to deal with. Machines do far better when

every letter is equal in length. The best codes now were ones that were

a bit more complex, had a fixed length, and ultimately stored more data.

A few different systems were developed. The first one to stick was

developed by Emile Baudot in 1870. The so-called Baudot code, aka Inter-

national Telegraph Alphabet No. 1, was a 5-bit binary system.

Fast-forward to the early computer age when people were develop-

ing massive room-sized machines that also were using binary systems.

Cannibal Code   21  

They needed a way to input data and instructions, but they had no visual

interface. Computers wouldn’t be developed to work with monitors until

1964 when Bell Labs incorporated the first primitive visual interface into

the Multics time-sharing system. We had no way of seeing the input the

computer was receiving, so we borrowed an interface from the telegraph,

which, in turn, was borrowing one from 18th-century French weavers.

Technology is like that. It progresses in cycles, but those cycles occa-

sionally collide, intersect, or conflate. We are constantly borrowing ideas

we’ve seen elsewhere either to improve our systems or to give our users

a reference point that will make adopting the new technology quicker

and easier for them. Truly new systems often cannibalize the interfaces

of older systems to create alignable differences.

This is why maintaining technology long term is so difficult. Although

blindly jumping onto new things for the sake of their newness is danger-

ous, not keeping up to date is also dangerous. As technology advances,

it collects more and more interfaces and patterns. It absorbs them from

other fields, and it holds on to historic elements that no longer make

sense. It builds assumptions around the most deeply buried characteris-

tics. Keep your systems the way they are for too long, and you get caught

trying to migrate decades of assumptions.

Unix Eats the World

A common piece of advice for building successful software is to keep

what you are trying to do simple. But what exactly makes one design

feel simple and another design feel complicated? Why is a line of code

80 characters long simpler and easier to read? It is short, but what if I

told you that user experience research actually puts the ideal number at

50 to 60 characters wide? This means 80 characters is a good 50 percent

longer than what we know works best from actual testing.

The human machine is strongly biased toward the familiar. We per-

ceive concepts and constructs we know as simpler, easier, and more

22   Kill It with Fire

efficient just because they are known and comfortable to us. We don’t

need to be experts in a construct or even necessarily like it in order for

familiarity to change our perception of it. In the 1960s, psychologist

Robert Zajonc conducted a series of experiments documenting how even

a single exposure to something increased positive feelings about it in

later encounters. He found this effect with languages, individual words,

and images. Later researchers have observed similar preferences in how

financial professionals invest,3 how academic researchers evaluate jour-

nals,4 and what flavors we enjoy when we eat.5 In psychology, the term for

this is the mere-exposure effect. Simply being exposed to a concept makes

it easier for the brain to process that concept and, therefore, feels easier

to understand for the user.

Developing new technology or revitalizing an old system is, therefore,

most likely to be effective when building on familiar concepts. Reference

points create alignable differences that help us assess the value of some-

thing new, but those same reference points make the new technology feel

simple and easy, lowering the barrier to entry and increasing the odds it

will be adopted as well as the speed of adoption.

Consider the Linux operating system. It’s easily one of the most

popular operating systems for web servers if not computers in general.

Hundreds of variants currently exist that are available to install freely,

and there are any number of professional versions. Linux was the uncon-

tested victor to emerge from a mad race to develop an operating system

that was both portable to many different types of computers and free of

restrictive licenses.

3.	 Gur Huberman, “Familiarity Breeds Investment,” The Review of Financial Studies 14,
no. 3 (June 2001): 659–680, https://doi.org/10.1093/rfs/14.3.659.

4.	 A. Serenko and N. Bontis, “What’s Familiar Is Excellent: The Impact of Exposure Effect
on Perceived Journal Quality,” J. Informetrics 5, no. 1 (January 2011): 219–223.

5.	 Patricia Pliner, “The Effects of Mere Exposure on Liking for Edible Substances,”
Appetite 3, no. 3 (September 1982): 283–290.

https://doi.org/10.1093/rfs/14.3.659

Cannibal Code   23  

Linux is often described as the most popular version of the Unix

operating system, except the two OSes share very little when it comes to

implementation.

The story of Linux kicks off with the breakup of Bell Systems in 1982,

nearly a decade before its creation. A 1956 consent decree against AT&T

had forbidden the telecom giant from “any business other than the fur-

nishing of common carrier communications services.” This meant that

when Bell Labs computer scientists Dennis Ritchie, Ken Thompson, and

Rudd Canaday began developing Unix in the 1970s, no one was sure

whether AT&T was allowed to sell it. The lawyers at AT&T decided to play

it safe and allow it to be sold to academic and research institutions with

a copy of its source code along with the software.6

Having the source code made it easy to port Unix to different machines

as well as modify and debug it. People printed it out and annotated it

with their own commentary. Unix became an easy option for teaching

students how operating systems worked. It spread like wildfire across a

wide variety of different institutions, including universities, museums,

governmental organizations, and at least one all-girls private school in

the early days.

Users began putting their modified versions of Unix on magnetic

tape and making copies to distribute among each other. These essen-

tially were forks and pull requests long before the infrastructure for such

things existed. The principal motivation for sharing was to distribute

bug fixes and patches.

Meanwhile, AT&T’s lawyers were trying to figure out what to do with

Unix, and they were waffling between their original determination and

a more traditional restrictive approach to intellectual property. Unix his-

torian Peter Salus tells the story of how AT&T’s developers actively par-

ticipated in the piracy of their own intellectual property.

6.	 Peter H. Salus, The Daemon, the Gnu, and the Penguin (Keller, TX: Reed Media Services,
September 2008).

24   Kill It with Fire

A large number of bug fixes was collected, and rather than issue them
one at a time, a collection tape was put together by Ken [Thompson].
Some of the fixes were quite important. . . . I suspect that a significant
number of the fixes were actually done by non-Bell people. Ken tried to
send it out, but the lawyers kept stalling and stalling and stalling.

Finally, in complete disgust, someone “found” a tape on Mountain
Avenue [the address of Bell Laboratories was 600 Mountain Avenue,
Murray Hill, NJ] which had the fixes.

When the lawyers found out about it, they called every licensee and
threatened them with dire consequences if they didn’t destroy the tape . . .
after trying to find out how they got the tape. I would guess that no one
would actually tell them how they came by the tape (I didn’t). It was the
first of many attempts by the AT&T lawyers to justify their existence and
to kill UNIX.7

 When the university students who studied Unix as part of their com-

puter science degrees graduated and got jobs, they brought Unix with

them. AT&T’s licensing became more restrictive with every new version,

as the company tried to figure out what it legally could do to leverage this

thriving community it had accidentally created.

Then in 1982, the US Department of Justice settled its second anti-

trust case against the telecom and broke up “Ma Bell.” AT&T was sud-

denly free from the consent decree that kept it from treating Unix fully as

a product, and it wasted no time in cracking down hard on the commu-

nity that had grown over the course of a decade.

If you lived through similar attempts to stop sharing other forms of

intellectual property, like music and movies, you can understand how

once people became accustomed to having Unix as a free and modifiable

operating system, they didn’t want to give it up and go back to the way

things were before. Taking away access to Unix’s source code sent the

7.	 Ibid.

Cannibal Code   25  

community on the hunt for a replacement that was open sourced and

ideally free.

An early contender was a variant of Unix developed at Berkeley called

Berkeley Software Distribution (BSD). BSD had a growing community,

but it had used part of Unix’s source code as its base, so it was quickly

bogged down in litigation. The heir to Unix needed to present itself as

Unix-like while not including any intellectual property from AT&T.

Enter Linux, which was developed as a pet project by computer sci-

ence student Linus Torvalds. There was never any intention to create

a full operating system from Linux; it was intended to be only a kernel

for the specific chip architecture to which the creator happened to have

access. The Linux operating system, therefore, was pieced together from

a variety of software from other groups. Most of its Unix-like interfaces

came from Richard Stallman’s GNU project, and GNU itself contained no

Unix code by design.

So in a way, Linux is a descendant of Unix that involves no code

directly from Unix. But, why hold on to the Unix look and feel at all? Once

the decision to start writing something completely new was made, what

was the value of wrapping things up to look like Unix? For Stallman, the

situation was clear: free software was a moral mission. The goal was not

to build a free alternative to Unix, but to build a free replacement for Unix

that would completely overtake and drive Unix out of business. He did

not hesitate to describe the strategy of the GNU project in extremes:

As the GNU Project’s reputation grew, people began offering to donate
machines running Unix to the project. These were very useful, because the
easiest way to develop components of GNU was to do it on a Unix system,
and replace the components of that system one by one. But they raised
an ethical issue: whether it was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU Project’s philos-
ophy said that we should not use proprietary software. But, applying
the same reasoning that leads to the conclusion that violence in self

26   Kill It with Fire

defense is justified, I concluded that it was legitimate to use a propri-
etary package when that was crucial for developing a free replacement
that would help others stop using the proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no
longer have any copies of Unix, because we have replaced them with
free operating systems. If we could not replace a machine’s operating
system with a free one, we replaced the machine instead.8

 Stallman used Unix’s interfaces because he understood that if GNU’s

interfaces matched those of established pieces of software, the users

of the proprietary pieces of software would have a bigger incentive to

switch.9

Let’s go down one more level: Why did Unix have the interface it had

in the first place? Most Unix commands are two-letter abbreviations for

words that don’t seem to need abbreviating. The authors of The UNIX-
HATERS Handbook attribute this interface to the hardware available to

Unix’s creators:

The novice Unix user is always surprised by Unix’s choice of command
names. No amount of training on DOS or the Mac prepares one for the
majestic beauty of cryptic two-letter command names such as cp, rm,
and ls.

Those of us who used early 70s I/O devices suspect the degeneracy stems
from the speed, reliability, and, most importantly, the keyboard of the
ASR-33 Teletype, the common input/output device in those days. Unlike
today’s keyboards, where the distance keys travel is based on feedback
principles, and the only force necessary is that needed to close a micro
switch, keys on the Teletype (at least in memory) needed to travel over

8.	 Chris DiBona, Sam Ockman, and Mark Stone, eds., Open Sources: Voices from the Open
Source Revolution (Sebastopol, CA: O’Reilly Media, 1999).

9.	 Ibid.

Cannibal Code   27  

half an inch, and take the force necessary to run a small electric gen-
erator such as those found on bicycles. You could break your knuckles
touch typing on those beasts.

If Dennis and Ken had a Selectric instead of a Teletype, we’d probably
be typing “copy” and “remove” instead of “cp” and “rm.” Proof again that
technology limits our choices as often as it expands them.

After more than two decades, what is the excuse for continuing this tra-
dition? The implacable force of history, AKA existing code and books. If
a vendor replaced rm by, say, remove, then every book describing Unix
would no longer apply to its system, and every shell script that calls
rm would also no longer apply. Such a vendor might as well stop imple-
menting the POSIX standard while it was at it.

A century ago, fast typists were jamming their keyboards, so engineers
designed the QWERTY keyboard to slow them down. Computer key-
boards don’t jam, but we’re still living with QWERTY today. A century
from now, the world will still be living with rm.10

Just as programmers are now writing lines of code that would fit on

a punch card, they also use operating systems whose interfaces were

designed to best fit teletype keyboards. Leveraging familiar constructs to

boost adoption can create strange traditions.

Inheritance Paths

If people will more quickly adopt technology that follows an already

familiar pattern, even one they hate, it’s worth exploring how people

become exposed to certain patterns in the first place. From the very

beginning, computing has been a cross-functional industry. Networks

of people are formed around the development of computers and the

10.	 Simson Garfinkel, Daniel Weise, and Steven Strassmann, eds., The UNIX-HATERS
Handbook (San Mateo, CA: IDG Books, 1994), 18–19.

28   Kill It with Fire

professions most likely to use computers to do other work. In the early

days of computers, this meant computer users were both the computer

scientists who built applications, developed languages, and designed

architectures and the professionals such as scientists, mathematicians,

and bankers. Even today, these groups have a tendency to silo themselves,

limiting their exposure to interfaces created for other use cases.

Consider the following: one of the most successful early program-

ming languages is COBOL, and yet modern programming languages

have inherited very little of COBOL’s design patterns. For example, we

do not section code off into divisions, nor do we use periods to end lines

of code. Few programmers would guess that PIC is a variable character

string. Some of COBOL’s features have reappeared in other languages,

but very little of its syntax and interface was retained. Instead, COBOL

itself has adopted many constructs from later languages in an effort to

clean up its act.

On the other hand, ALGOL60 has profoundly shaped the structure

and syntax of virtually every modern language, but you’d struggle to find

a programmer today who has ever even heard of it.11

When we examine the accomplishments of various programming

languages, COBOL is the obvious winner. COBOL programs still shuffle

millions of transactions and trillions of dollars from point A to point

B. It’s hard to name a single thing of significance that was ever imple-

mented in ALGOL60. The language BCPL, a similarly influential and

obscure descendent of ALGOL60, survived just long enough to become

the grandfather of C. So how on Earth did the patterns of failed lan-

guages become more familiar to early computer scientists than the

patterns of the first truly successful, cross-platform high-level program-

ming language?

The answer is that COBOL was a language built for people who did

not want to understand how the computer worked; they just wanted

11.	 History buffs and recovering anthropologists do not count.

Cannibal Code   29  

to get the job done. When the Committee on Data Systems Languages

(CODASYL) was developing COBOL, the attitude among those devoted

to the study and development of computers was that you should learn

the flavor of Assembly relevant for your particular machine. Making

programming more accessible and code human-readable was consid-

ered an anti-pattern, dumbing down the beauty of programming for an

unworthy audience.

This audience, however, was made up of people who actually used

computers for practical purposes, and many of them were largely

unamused by the idea that they should rewrite their programs every

single time they upgraded their machines. This group of people didn’t

care about being “real programmers.” They cared about getting stuff done,

better and faster than the competition if possible. Technical correctness

didn’t matter. Elegance didn’t matter. Execution mattered, and anything

that lowered the barrier to using computers to execute their goals was

preferable to more powerful tools that were harder to learn.

Computer scientists during this period had opposite incentives.

While COBOL users were judged and rewarded based on their ability

to get nontechnical things done faster with computers, ALGOL60 users

were judged and rewarded based on their ability to expand the function-

ality of what was even possible to do with the machines in the first place.

Typically, there were two types of accomplishments in this space: get

the machine to do something new or get the machine to do something

more efficiently than before. For computer scientists, the programming

language was the output. After it was developed, the next step was not to

write programs, but to write papers about the language and share them

with other academics for feedback and study.

Roughly three networks of people were programming computers

between the 1950s and 1970s: scientists and mathematicians, data pro-

cessors, and academics or computer researchers.

Scientists and mathematicians used computers for calculations,

and they preferred languages that reflected scientific and mathematical

30   Kill It with Fire

notation as much as possible. This community popularized FORTRAN.12

When two math professors at Dartmouth wanted to create a language

to make programming more accessible to students, they borrowed

heavily from the syntax of FORTRAN II to develop BASIC. BASIC

went on to spawn hundreds of variants, many of which are still in use

today.

Data processors used computers to read data from one source and

either run calculations or transform that data in some way before saving

it to another source. These were the COBOL users, and that language

proved so effective, it is still being used today.

If you want proof that adoption is influenced by shared knowledge

among networks of people and not strictly merit, consider this: the orga-

nizations that are trying to replace their old COBOL applications today

are not migrating them to what would be the first choice for data pro-

cessing among modern programming languages, which is Python, but to

the language that has inherited COBOL’s market of a common language

for businesses, which is Java.

The design of the language is never what’s important; it’s the people.

The type of people who would have become COBOL programmers before

are now becoming Java programmers, making Java the natural choice,

despite that it was not designed to handle the use case for which COBOL

was optimized.

Perhaps that’s why so much COBOL remains in place, having resisted

all attempts to eliminate it.

Academics and computer researchers focused on the develop-

ment of computers. When they finally moved off Assembly, it was onto

languages specifically for documenting and implementing algorithms.

ALGOL60 may not have been used to build many applications, but it was

what the Association for Computing Machinery (ACM) used to describe

12.	 FORTRAN is itself an abbreviation of Formula Translation.

Cannibal Code   31  

algorithms in textbooks and academic sources for more than 30 years.

This made it a powerful influence on the languages researchers later

developed.

The University of Cambridge developed the Cambridge Programming

Language (CPL) based on ALGOL60. CPL led to BCPL, which was stripped

down to create B, which was further modified to create C. Next, C became

the programming language of choice for this group of users, and it led to

the development of a huge number of languages used by all kinds of pro-

grammers: Java, Go, PHP (via Perl), Ruby, Python, and Swift.

Also popular with this group were the Lisps. Because the original Lisp

was only a theoretical design document, to this day, waves of different

implementations spring up quickly followed by futile attempts to stan-

dardize. During the 1960s and 1970s, Lisp was strongly associated with

AI research and largely was relegated to that niche. Ironically, our own

era of computing has seen much more progress in AI, but Lisp hardly

plays a critical role. Instead, today’s Lisps are seen as a family of general

programming languages that occasionally inject ideas and structures

into more mainstream languages.

So this pivotal moment of computer science history had two groups

of people who programmed in order to achieve some practical purpose

not related to the computers themselves and one group that worked with

computers to push the boundaries of what the computers themselves

could do. The bulk of languages that exist retain the constructs that

were familiar to this third group of programmers, even though COBOL,

FORTRAN, and BASIC had a much wider community of users.

Overall, interfaces and ideas spread through networks of people,

not based on merit or success. Exposure to a given configuration cre-

ates the perception that it’s easier and more intuitive, causing it to be

passed down to more generations of technology. The lesson to learn

here is the systems that feel familiar to people always provide more

value than the systems that have structural elegances but run contrary

to expectations.

32   Kill It with Fire

Leveraging Interfaces When Approaching
Legacy Systems

When I’m working on a legacy system, I always start off by evaluating the

prospective users. Who will be maintaining this system long term? What

technologies are they comfortable with? Who will be using this system

the most? How do they expect the system to work?

That doesn’t mean things can’t be changed or new concepts can’t be

introduced. Particularly if the system is a couple decades old, the inter-

faces are probably tied to processes and associations that don’t make

sense anymore, just like the way 80-character lines come from punch

cards, two-character Linux commands come from teletype machines,

and the save icon on desktop applications is a floppy disk. Sometimes

changing interfaces to get rid of requirements that are no longer relevant

is a good thing. Defining what the requirements of a minimum viable

product (MVP) would be today if the system were brand new is a great

thought experiment to run when formalizing a plan of attack.

However, even when the result of change is net positive, changing

interfaces is not free. Making people think adds friction and increases

the odds of failure, even if the new interface is better and more consistent

with the overall vision of the product.

Engineers tend to overestimate the value of order and neatness. The

only thing that really matters with a computer system is its effectiveness

at performing its practical application. Linux did not come to dominate

the operating system world because it had been artfully designed from

scratch; it scraped together ideas and implementations from a number

of different systems and focused on adding value in one key place, the

kernel.

The incentives that reward individual software engineers for their

uniqueness, their ability to do new things, or to do old things in inno-

vative ways are still present, even if the desire to publish papers in aca-

demic journals has been supplanted by the desire to write popular blog

Cannibal Code   33  

posts. Yet technology is more likely to be successful when it builds on

common things. These two forces are always in tension with any soft-

ware project, but legacy systems are particularly vulnerable.

We know, for example, that iterating on existing solutions is more

likely to improve software than a full rewrite. The dangers of full rewrites

have been documented. Joel Spolsky of Fog Creek Software and Stack

Overflow described them as “the single worst strategic mistake that any

software company can make.”13 Chad Fowler, general manager of startups

at Microsoft, describes it this way:

Almost all production software is in such bad shape that it would
be nearly useless as a guide to re-implementing itself. Now take this
already bad picture, and extract only those products that are big, com-
plex, and fragile enough to need a major rewrite, and the odds of success
with this approach are significantly worse.14

Fred Brooks coined the term second system syndrome in 1975 to explain

the tendency of such full rewrites to produce bloated, inefficient, and

often nonfunctioning software. But he attributed such problems not to

the rewrites themselves, but to the experience of the architects oversee-

ing the rewrite. The second system in second system syndrome was not

the second version of an existing system, it was the second system the

architect had produced. Brooks’s feeling was that architects are stricter

with their first systems because they have never built software before,

but for their second systems, they become overconfident and tack on all

kinds of flourishes and features that ultimately overcomplicate things.

By their third systems, they have learned their lesson.

13.	 Joel Spolsky, “Things You Should Never Do, Part I,” Joel on Software, April 6, 2000,
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

14.	 Chad Fowler, “Software as Spec,” December 28, 2006, http://chadfowler.com/2006/12/28/
software-as-spec.html.

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
http://chadfowler.com/2006/12/28/software-as-spec.html
http://chadfowler.com/2006/12/28/software-as-spec.html

34   Kill It with Fire

Unfortunately, when confronted with the troubles of existing sys-

tems, engineering teams tend to build the most momentum around

starting from scratch. Initiatives to repair and restore operational excel-

lence gradually, much the way one would fix up an old house, tend to

have few volunteers among engineering teams. That’s because Zajonc’s

mere-exposure effect has an upper bound. There’s a point where famil-

iarity breeds contempt.

From an economic perspective, there’s a difference between risk

and ambiguity.15 Risks are known and estimable threats; ambiguities

are places where outcomes both positive and negative are unknown.

The traditional school of thought tells us that human beings are averse

to ambiguity and will avoid it as much as possible. However, ambigu-

ity aversion is one of those decision-making models that test well in

laboratories but break down when brought into the real world where

decisions are more complex and probabilities less clearly defined. Spe-

cifically when the decision involves multiple attributes, a positive fram-

ing of the problem can flip people’s behavior from ambiguity-avoiding

to ambiguity-seeking.16

The incentives of individual praise aside, engineering teams tend to

gravitate toward full rewrites because they incorrectly think of old sys-

tems as specs. They assume that since an old system works, all techni-

cal challenges and possible problems have been settled. The risks have

been eliminated! They can add more features to the new system or make

changes to the underlying architecture without worry. Either they do not

perceive the ambiguity these changes introduce or they see such ambi-

guity positively, imagining only gains in performance and the potential

for greater innovation.

15.	 Frank H. Knight, Risk, Uncertainty, and Profit (Boston: Houghton Mifflin Company, 1921).

16.	 Vicki M. Bier and Brad L. Connell, “Ambiguity Seeking in Multi-Attribute Decisions:
Effects of Optimism and Message Framing,” Journal of Behavioral Decision Making 7,
no. 3 (September 1994): 169–182, https://doi.org/10.1002/bdm.3960070303.

https://doi.org/10.1002/bdm.3960070303

Cannibal Code   35  

Meanwhile, the existing system has little ambiguity left. It is what it

is, hypothetical potential exhausted. We know that past the upper bound

of mere exposure, once people find a characteristic they do not like, they

tend to judge every characteristic discovered after that more negatively.17

So programmers prefer full rewrites over iterating legacy systems because

rewrites maintain an attractive level of ambiguity while the existing sys-

tems are well known and, therefore, boring. It’s no accident that proposals

for full rewrites tend to include introducing some language, design pat-

tern, or technology that is new to the engineering team. Very few rewrite

plans take the form of redesigning the system using the same language

or merely fixing a well-defined structural issue. The goal of full rewrites

is to restore ambiguity and, therefore, enthusiasm. They fail because the

assumption that the old system can be used as a spec and be trusted to

have diagnosed accurately and eliminated every risk is wrong.

Beware Artificial Consistency

In the next chapter, I’ll go into detail about how to balance these tensions

to develop a strategy around when to reinvent and rewrite and when to

leverage existing and familiar interfaces. But for now, the takeaway from

this exploration of how traits are passed down should be that perception of

simplicity is influenced by what your use case for technology exposes you

to. Things seem easier when they are familiar. Familiarity is determined by

what you are doing with technology and who you are doing it with.

But familiarity has downsides as well. While working with legacy sys-

tems, you’ll find yourself fielding many proposals that claim to improve

the system largely by establishing artificial consistency. Artificial consis-
tency means restricting design patterns and solutions to a small pool

17.	 Michael Norton and Jean Frost, “Less Is More: The Lure of Ambiguity, or Why Famil-
iarity Breeds Contempt,” Journal of Personality and Social Psychology 92 (January 2007):
97–105, https://doi.org/10.1037/0022-3514.92.1.97.

https://doi.org/10.1037/0022-3514.92.1.97

36   Kill It with Fire

that can be standardized and repeated throughout the entire architec-

ture in a way that does not provide technical value. What’s important to

understand about artificial consistency is that it focuses on consistency

of form and classification over functionality. As an example, Node.js and

React.js are both forms of JavaScript. These two technologies look con-

sistent, but they do different things and are built upon different abstrac-

tions. The fact that they are both forms of JavaScript doesn’t give Node.js

an edge when interacting with React.js over any other backend language

that an engineering team might choose instead. An engineer’s skill in

one does not necessarily translate to the other.

Artificial consistency can bring value to nontechnical processes. For

example, standardizing on one programming language makes recruiting,

hiring, and, ultimately, sharing engineering resources much easier. But

when the principal purpose of a modernization effort is to provide tech-

nical value, be careful not to be seduced by the assumption that things

that look the same, or that we use the same words to describe, actually

integrate better.

Another place where artificial consistency comes into play is with

databases. The top choices for databases 10 years ago are not the top

choices today, so senior leaders sometimes will ask that legacy databases

be migrated to another option more consistent with whatever newer

systems are using. As with the previous example, there are legitimate

nontechnical reasons to do this, such as not wanting the expense of sup-

porting two different databases that essentially behave the same way,

but the issue quickly can get out of hand when the engineering team is

being asked to remove the key value store they’re using for a cache in

favor of a relational database.

Figuring out when consistency adds technical value and when it is

artificial is one of the hardest decisions an engineering team must make.

Human beings are pattern-matching machines. The flip side of finding

familiar things easier is that we tend to over-optimize, giving in to artifi-

cial consistency when better tools are available to us.

3
EVALUATING YOUR

ARCHITECTURE

A big red flag is raised for me when people talk about the phases of

their modernization plans in terms of which technologies they are

going to use rather than what value they will add. This distinction is usu-

ally a pretty clear sign that they assume anything new must be better and

more advanced than what they already have.

It may seem picky to focus on language, but communication is an

essential part of keeping modernization on track. Teams tend to move in

the direction they are looking. If we talk about what we’re doing in terms

of technical choices, users’ needs get lost. The best way to find value is by

focusing on their needs.

I always keep in mind three principles when developing a strategy

around a new legacy system. The tour of history in Chapters 1 and 2 laid

them out in detail:

●● Modernizations should be based on adding value, not chasing

new technology.

38   Kill It with Fire

●● Familiar interfaces help speed up adoption.

●● People gain awareness of interfaces and technology through their

networks, not necessarily by popularity.

But for most organizations, the conversation around modernization

begins with failure. No one would invest the time and effort if the system

were humming along just fine. The term legacy modernization itself is a

little misleading. Plenty of old systems exist that no one gives a thought

to changing because they just work.

So the last thing you need to consider when developing a plan of

attack is the exact nature of the failure that is driving the desire to mod-

ernize in the first place. In all likelihood, you’re dealing with one or more

of the following issues: technical debt, poor performance, or instability.

Problem 1: Technical Debt
Old systems don’t need to be modernized simply because they are old.

Lots of technology has not fundamentally changed in decades. Moving

to the latest and greatest thing can sometimes cause more problems

than it solves.

The following situations might warrant modernization:

●● The code is difficult to understand. It references decisions or archi-

tectural choices that are no longer relevant, and institutional

memory has been lost.

●● Qualified engineering candidates are rare.

●● Hardware replacement parts are difficult to find.

●● The technology can no longer perform its function efficiently.

The terms legacy and technical debt are frequently conflated. They are

different concepts, although a system can show signs of both problems.

Legacy refers to an old system. Its design patterns are relatively consis-

tent, but they are out-of-date. Upgrading the capacity of the underlying

Evaluating Your Architecture   39  

infrastructure results in performance increases. New engineers are dif-

ficult to onboard because of the skills gap between the technology they

know and the technology with which the legacy system was built.

Technical debt, by contrast, can (and does) happen at any age. It’s a prod-

uct of subpar trade-offs: partial migrations, quick patches, and out-of-date

or unnecessary dependencies. Technical debt is most likely to happen

when assumptions or requirements have changed and the organization

resorts to a quick fix rather than budgeting the time and resources to

adapt. Unlike legacy systems, performance issues in this case are usu-

ally a byproduct of inefficient code instead of out-of-date infrastructure.

Upgrading the infrastructure—increasing memory and cores or adding

servers—doesn’t always produce equal increases in performance.

Systems with substantial technical debt also make it difficult to

onboard new engineers, but in this case, the difficulty is because the

application’s internal logic doesn’t make sense. Perhaps the documen-

tation is out-of-date, or levels of abstraction are piled up on top of one

another, or functions are named unintuitively.

Managing technical debt is about restoring consistency. A good way

to approach the challenge is to run a product discovery exercise as if you

were going to build a completely new system, but don’t actually build one!

Instead, use this new vision to excavate and refocus the current system.

As time passes, requirements naturally change. As requirements

change, usage patterns change, and the organization and design that is

most efficient also changes. Use product discovery to redefine what your

MVP is, and then find where that MVP is in the existing code. How are

these sets of functions and features organized? How would you organize

them today?

Another useful exercise to run when dealing with technical debt is to

compare the technology available when the system was originally built to

the technology we would use for those same requirements today. I employ

this technique a lot when dealing with systems written in COBOL. For

all that people talk about COBOL dying off, it is good at certain tasks. The

40   Kill It with Fire

problem with most old COBOL systems is that they were designed at a

time when COBOL was the only option. If the goal is to get rid of COBOL,

I start by sorting which parts of the system are in COBOL because COBOL

is good at performing that task, and which parts are in COBOL because

there were no other tools available. Once we have that mapping, we

start by pulling the latter off into separate services that are written and

designed using the technology we would choose for that task today.

Example: The General Ledger

One such debt-heavy system was designed as a general ledger for a

large healthcare organization. It is a complex system involving multi-

ple mainframes working together. It processes requests from still more

mainframes that back other systems that need to issue payments. The

general ledger’s core function is to authorize and issue payments from

an organization to third parties. The system, therefore, must make sure

the organization has the funds to issue the payment, that the request is

valid, that the request is not a duplicate, and that the circumstances of

the request comply with all relevant regulations. In addition, this system

also tracks money owed to the organization, sends requests to remind

debtors to pay, and generates reports for various stakeholders.

The current system organizes code based on division—for example,

Loans and Accounts Payable are different applications within the system

despite having overlapping requirements—and is written in COBOL or

the Assembly language specific to the mainframe that typically runs its

jobs. Overall, the system looks something like Figure 3-1.

It’s easy to see how this system evolved this way. The organization is

large with a lot of money to spend, and when computers were first being

introduced to the market, it took advantage of them right away (hence,

the Assembly). The organization migrated paper processes to digital pro-

cesses largely without changing them and maintains the original pro-

cess boundaries within the technology.

Evaluating Your Architecture   41  

Ledger

Budget
management

Accounts
payablePurchasing Reporting

Figure 3-1: The applications that talk to the general ledger

Back then, computers were “extras,” big experimental toys to make

things faster, and not every business unit felt the new machines would

add value to their process. The final system ended up divided by business

unit because the adoption of technology was gradual, unit by unit.

But today, computers are the default, so this is not the way we would

build such a system. We might preserve the mapping of applications to

divisions, but we would build shared services that reflected their shared

requirements. Some features play to COBOL’s strengths of processing

large amounts of financial data accurately, but COBOL doesn’t necessarily

bring much to the table when generating reports or sending out mailings.

In modernizing this system, I would identify the appropriate shared

services and then select one to build. The ideal situation is when I can

identify an application that needs only one of the proposed shared ser-

vices. We build that service and rewrite that application to use it. Then

we go back and find an application that needs that shared service plus

another shared service on our list. We build the second shared service

and rewrite the application to use both.

However, rarely can applications in large systems be arranged in

order of ascending complexity in that manner. More likely, we will have

42   Kill It with Fire

to pull out one shared service and rewrite each application one by one,

before pulling out a second shared service and rewriting each applica-

tion one by one. This can be frustrating, but it’s important not to increase

load on a new service before we have enough experience with it to know

what normal behavior looks like.

Problem 2: Performance Issues

Performance issues are actually one of the nicer problems to have with

legacy systems. Few organizations are motivated to do anything about legacy

systems until they start affecting the business side and work starts to slow

down. Sometimes this is because the system itself has slowed down, but

more likely, the system’s performance has remained pretty static and liter-

ally everything around it has gotten faster.

Normally, the issues of how long something should take and how

many resources it needs to do the job are highly subjective. People tend

to accept the current state as fine, especially if they have limited experi-

ence with other systems. If the organization believes its system is having

performance issues, the hard work of figuring out what “better” is has

already been done for you. A system cannot have performance issues

unless the organization that owns it has defined expectations.

This book will repeat the message of trade-offs over and over again.

No changes made to existing systems are free. Changes that improve one

characteristic of a system often make something else harder. Teams that

are good at legacy modernization know how to identify the trade-offs and

negotiate the best possible deal. You have to pick a goal or a character-

istic to optimize on and set budgets for all other characteristics so you

know how much you’re willing to give up before you start losing value.

Is it worth losing some accuracy to make things faster? Is it worth

migrating to managed services when that makes testing locally more

difficult? When an organization has decided its system has performance

issues, it is easier to answer these questions. The organization must

Evaluating Your Architecture   43  

have some expectation of how fast performance should be or how much

money it should spend to satisfy requirements.

Once performance requirements are defined, the task of evaluating

the legacy system and developing a strategy becomes about listing all the

steps in a given task and identifying performance bottlenecks. With that

mapped out, you can prioritize improvements, starting with the areas

where the most gains can be realized.

Tackling each bottleneck should not require eliminating it com-

pletely. If you can do that, great, but in most cases, you’ll find that what

you would need to invest to eliminate it is not worth the boost in per-

formance. Don’t underestimate the power of 5 percent, 10 percent, and

20 percent performance gains. As long as your approach to reaching those

gains moves the system toward a better overall state, a 5 percent gain can

pay interest as the project moves forward. Other changes may turn that

 5 percent into a 30 percent or 50 percent gain later.

That being said, don’t throw out engineering best practices and good

architecture just to patch something up and get a performance boost.

You can spot such solutions because they often avoid touching what is

obviously the real problem. The people who propose these solutions are

often frustrated by the system’s problems and overwhelmed by the pos-

sibility of investing months or years in incremental improvement. They

argue against the 5 percent change that makes the system better because

they believe a 5 percent improvement will never be enough. Instead, they

propose a solution that offers a much larger performance gain, but that

compounds the root cause or makes it more difficult to fix later. Here’s

one example of what I mean. We had a system where multiple services

needed access to a giant unstructured data store. The data had grown to

a size that deleting some of it from the data store was such a resource-

intensive process, it affected the performance of normal reads and writes.

The problem was the unstructured nature of the data and the fact

that so many services needed to access it at one time, but that is a hard

problem to solve. The process of breaking up the data, structuring it

44   Kill It with Fire

appropriately, and migrating services over would take months, if not

years. Instead, the engineers on the project wanted to build a garbage

collection service that would run deletes during low traffic periods when

the performance hit wasn’t as big an issue.

What’s the problem with this approach? To begin with, creating a

new service is no small amount of work, and once created, it has to be

maintained, monitored, tested, and scaled. On top of that, the new ser-

vice is an abstraction to perform a potentially dangerous operation out-

side the normal flow of events. What triggers this service, and how do we

know the job it’s running is correct? Adding a new service just increases

the overall complexity of the system to take advantage of a temporary

situation. As load continues to increase, those low-traffic windows will

be smaller and harder to find.

Adding this system, if it worked, could produce a huge gain in perfor-

mance that would buy the organization time to fix the real problem. Cer-

tainly that was the intention of the engineers who were proposing it. But

it’s also possible that once such a bandage was in place, the organization

would lose interest in fixing the real problem, and this team would have

accomplished nothing more than resetting the clock on the time bomb.

The smarter thing to do would be to look for the baby steps toward

breaking up the data that would have produced those 5 or 10 percent

gains. Such gains add up if you find enough of them.

Large problems are always tackled by breaking them down into

smaller problems. Solve enough small problems, and eventually the large

problem collapses and can be resolved.

Example: Case Flow Management

Software built to manage an application through multistaged approval

processes are performance battlegrounds as they age. Here’s an example

of a system where we could increase its output just by finding enough

bottlenecks that could be whittled down. The technology behind this

Evaluating Your Architecture   45  

application approval process is reasonably good, but some parts of the

process are automated, and some are manual. Some parts are digital, and

some are still on paper. Some parts were digitalized recently and some

20 years ago. Everyone agrees that the system would be better if the

remaining parts that could be automated were automated, if the paper

parts of the process were digitalized, and if the older components of the

system were brought up to speed, but that’s a long list of improvements.

Not all of the highest priority tasks actually affect the time it takes

to process an application. For example, at one point in the process, the

applicant must sign a consent form authorizing the organization to run

a background check. Although the paper form could be replaced with a

simple web form or an integration with a third-party service, this part

of the application process is often done in parallel with processing the

rest of the application. Therefore, digitalizing that step does not actually

speed up the total processing time of a single application.

Other seemingly irrelevant issues could make a much bigger differ-

ence. Cases were being sent to the background-check service in batches.

If one application within that batch had a problem, all the applications

in that batch had to wait for it to be resolved before moving on. Simply

reconfiguring jobs into batches of one could save a lot of time.

Instead of looking at the purely technical improvements to the

system, the team decreased the processing time for an average applica-

tion by tracing the application’s path. They had already done the hard

work of determining a better system meant faster application turn-

around, and they structured their approach around optimizing for that.

Problem 3: Stability Issues

On the other hand, some legacy systems perform their core functions

within the parameters the organization needs to be successful, but they

are unstable. They are not too slow; they produce the correct result and

within the resources the organizations has available for the task, but

46   Kill It with Fire

there are frequent “surprises,” such as outages with bizarre black-swan-

style root causes or routine upgrades that sometimes go very poorly.

Ongoing development work is stopped because unforeseen technical

conflicts pop up and need to be resolved.

In 1983, Charles Perrow coined the term normal accidents to describe

systems that were so prone to failure, no amount of safety procedures

could eliminate accidents entirely. According to Perrow, normal acci-

dents are not the product of bad technology or incompetent staff. Systems

that experience normal accidents display two important characteristics.

They are tightly coupled. When two separate components are

dependent on each other, they are said to be coupled. In tightly coupled

situations, there’s a high probability that changes with one component

will affect the other. For example, if a change to one code base requires

a corresponding change to another code base, the two repositories are

tightly coupled. Loosely coupled components, on the other hand, are

ones where changes made to one component don’t necessarily affect

the other.

Tightly coupled systems produce cascading effects. One change cre-

ates a response in another part of the system, which creates a response in

another part of the system. Like a domino effect, parts of the system start

executing without a human operator telling them to do so. If the system

is simple, it is possible to anticipate how failure will happen and prevent

it, which leads to the second characteristic of systems that experience

normal accidents.

They are complex. Big systems are often complex, but not all

complex systems are big. Signs of complexity in software include the

number of direct dependencies and the depth of the dependency tree,

the number of integrations, the hierarchy of users and ability to dele-

gate, the number of edge cases the system must control for, the amount

of input from untrusted sources, the amount of legal variety in that

input, and so on, and so forth. Computer systems naturally grow more

complex as they age, because as they age, we tend to add more and

Evaluating Your Architecture   47  

more features to them, which increases at least a few of these charac-

teristics. Computer systems also tend to start off tightly coupled and

may in fact stay that way if priority is not given to refactoring the code

occasionally.

Tightly coupled and complex systems are prone to failure because

the coupling produces cascading effects, and the complexity makes the

direction and course of those cascades impossible to predict.

If your goal is to reduce failures or minimize security risks, your best

bet is to start by evaluating your system on those two characteristics:

Where are things tightly coupled, and where are things complex? Your

goal should not be to eliminate all complexity and all coupling; there will

be trade-offs in each specific instance.

Suppose you have three services that need to access the same data. If

you configure them to talk to the same database, they are tightly coupled

(Figure 3-2).

Service Service

Database

Service

Figure 3-2: Tightly coupled services

48   Kill It with Fire

Such coupling creates a few potential problems. To begin with, any of

the three services could make a change to the data that breaks the other

two services. Any changes to the database schema have to be coordinated

across all three services. By sharing a database, you lose the scaling bene-

fit of having three separate services, because as load increases on one ser-

vice, it is passed down to the database, and the other services see a dip in

performance.

However, giving each service its own database trades those problems

for other potential problems. You now must figure out how to keep the

data between the three separate databases consistent.

Loosening up the coupling of two components usually ends with the

creation of additional abstraction layers, which raises complexity on

the system. Minimizing the complexity of systems tends to mean more

reuse of common components, which tightens couplings. It’s not about

transforming your legacy system into something that is completely

simple and uncoupled, it’s about being strategic as to where you are cou-

pled and where you are complex and to what degree. Places of complexity

are areas where the human operators make the most mistakes and have

the greatest probability of misunderstanding. Places of tight coupling are

areas of acceleration where effects both good and bad will move faster,

which means less time for intervention.

Once you have identified the parts of the system where there is tight

coupling and where there is complexity, study the role those areas have

played in past problems. Will changing the ratio of complexity to cou-

pling make those problems better or worse?

A helpful way to think about this is to classify the types of failures

you’ve seen so far. Problems that are caused by human beings failing to

read something, understand something, or check something are usu-

ally improved by minimizing complexity. Problems that are caused by

failures in monitoring or testing are usually improved by loosening the

coupling (and thereby creating places for automated testing). Remem-

ber also that an incident can include both elements, so be thoughtful

Evaluating Your Architecture   49  

in your analysis. A human operator may have made a mistake to trigger

an incident, but if that mistake was impossible to discover because the

logs weren’t granular enough, minimizing complexity will not pay off as

much as changing the coupling.

Example: Custom Configuration

Consider an organization that wanted to increase the power of custom

configurations on its monolithic application. It built a configuration

service that would allow its software engineers to set flags through the

monolith’s code (Figure 3-3). The application sends requests to the ser-

vice with the identity of the user to fetch the appropriate configuration

value. Since those values rarely change, more than 90 percent of the

requests are handled by a cache. If the cache fails, the request moves

on to a simple web service that immediately retries the cache before

ultimately going back to the database to retrieve the configuration set-

ting. The database is separate from the monolith’s database, but it runs

on the same virtual machine (VM). Traffic directly from the application

connects with the monolith’s database. The custom configuration data-

base uses about 1 percent of the VM resources.

When the service receives the configuration value from the database,

it updates the cache and sends the data back to the monolith. The data

Traffic
Server

Database

Cache

Figure 3-3: Requests moving through the custom configuration service

50   Kill It with Fire

on custom configurations is stored in a key-value style, with the key being

the identity of the user and the value being a dictionary with all rele-

vant configuration settings. Because possible customizations are almost

infinite, these dictionaries do not have standard schemas. If a user has

no configuration value set for a given flag, it is not present at all in the

dictionary. The cache preserves this structure.

In general, this service performs well for the organization, but it has

quirks that are difficult for engineers to reproduce and even harder to

diagnose. A few problems have been traced back to cache stampedes.

Users rarely change values after setting them, but in the rare cases where

the cache does need to be updated, the whole dictionary is affected.

How can we think of this part of the system in terms of complexity and

coupling? The monolith’s behavior is coupled to the configuration ser-

vice. If the configuration service goes down, the monolith either cannot

fulfill requests or falls back to a default value that might completely

change the user’s experience. If the configuration service experiences

partial outages, the monolith’s behavior becomes wildly unpredictable.

Hosting the databases on the same VM creates coupling between the

monolith and the configuration service. If the monolith’s database has

performance issues, the configuration service’s database feels them, and

vice versa. However, in this case, fixing that issue by moving the configu-

ration service’s database to its own VM might not bring much value. If the

monolith’s database is having problems, the product itself is likely down,

making the performance of this service largely irrelevant. Since the service

uses only 1 percent of the VM’s resources, it is unlikely that it will affect the

monolith without first triggering pages to the engineer on call. We might

want to separate them for the sake of right-scaling, but that increases the

number of VMs we’re paying for and doesn’t necessarily buy us much more

than cosmetic improvements on our architectural diagram.

On the complexity side, the data structure was probably a poor design

choice. When the monolith makes a request, it does not need every value

set for the user, only the value relevant at that moment. If the key in the

Evaluating Your Architecture   51  

key-value store was user ID plus flag ID, the data could be flat, which

would mitigate the risk of cache stampedes. On the other hand, we

could keep the data structured as is and change the monolith’s assump-

tions so that it requests the user’s dictionary only once and stores the

data returned in memory for the lifetime of the session. That solution

minimizes the coupling between the monolith and the service, but it

increases complexity. We need to understand how much data we would

be storing in memory at any one point, and at what level that becomes

problematic. We need to define a time to live and how to implement it.

Will we want to make sure all the users’ requests are directed to the same

server, or should we just assume that if a session is live, all servers in the

application cluster will query the configuration service at least once and

store the same data in their memory?

Stages of a Modernization Plan

One day during a one-on-one, an engineer on my team confessed to feel-

ing that we had approached our work on one legacy system completely

wrong. I had recently brought a new engineer onto the team and given

her explicit instructions to tear through the system’s testing suites.

Although the tests were comprehensive and the coverage was good, they

were brittle, poorly organized, and difficult to make sense of. That was a

reflection of the system’s overall design, so the new engineer set about

refactoring huge parts of how the code was organized, making it easier to

test and the tests more reliable.

Looking at the new engineer’s contributions, my engineer knew

this configuration was better. For months, we had been working on this

system. She was kicking herself for not looking at the problem the way

the newcomer did. “We were too pragmatic,” she said. “We just conformed

to the system’s existing patterns when we should have redone it.”

I disagreed. What my engineer had forgotten was that when we

took on this system, it was unstable. Things would frequently go wrong

52   Kill It with Fire

silently. Errors weren’t properly handled or logged. Performance was

an issue.

It was good to learn how to have that kind of technical vision the new

engineer displayed. I certainly wasn’t going to discourage my team from

studying her contributions, but it was right to be pragmatic in the begin-

ning. When you first take on a legacy system, you can’t possibly under-

stand it well enough to make big changes right away. As part of those

pragmatic changes, we also invested a lot of time documenting and

researching the system. Truth be told, the new engineer’s first assign-

ment was a series of small, pragmatic changes designed to help her get to

know the system too, but by that point, my engineers knew the system so

well, they were able to onboard her much quicker. She tore through those

assignments in a matter of days.

“How do you think handling a major refactoring at the same time

that we were having regular incidents would have affected you?” I asked.

“It would have been really stressful.”

So stressful, in fact, that it would have compromised the team’s judg-

ment. These are the kinds of situations where people become frustrated

and start convincing themselves that the best thing to do is throw the

whole thing out and build it from scratch.

When both observability and testing are lacking on your legacy

system, observability comes first. Tests tell you only what won’t fail; mon-

itoring tells you what is failing. Our new engineer had the freedom to

alter huge swaths of the system because the work the team had done roll-

ing out better monitoring meant when her changes were deployed, we

could spot problems quickly.

But the real lesson here is that modernization plans evolve as they

progress. The first stage is one of evaluation. This doesn’t necessarily

mean you should stop everything and produce big complicated plans,

but you should focus on low-hanging fruit of immediate issues with

pragmatic fixes. Use these small tasks to focus your investigation of the

system itself. Get to know it and its quirks. Where are your blind spots in

Evaluating Your Architecture   53  

terms of monitoring? How easy is it to change things, test them, and be

confident that they will work? Where are the gaps where the official doc-

umentation says things work this way, but they don’t? How much dead

code is there? And so on, and so forth.

When your team knows the system well enough, you can expand the

scope to look at issues across the system. Are things organized the way

they should be? Is there a better technology to incorporate now, perhaps

a different programming language or a new tool?

On particularly large systems, it is a good idea to make this an itera-

tive multilevel process. In other words, pick one part of the large system

and focus on that. Look at small pragmatic issues, and then look at more

global issues within the component. Take a further step back and look for

those global issues elsewhere in the system itself before deciding on an

approach to them. Zoom back down to fix the component’s global issues

and move on to the next component. Continue this local-global-super-

global routine until the system is where you need it to be.

The deeper your team understands the system and its quirks, the

more predictable the system’s behavior is on a day-to-day basis and the

easier it is to make big changes.

No Silver Bullets

The only real rule of modernizing legacy systems is that there are no

silver bullets. The rest of this chapter outlines different styles of orga-

nizing development activities. You will likely use all of them at different

points on a large project.

The key thing to remember is that this is a toolkit. You break down large

problems into smaller problems, and you choose the tool that gives you the

highest probability of success with that specific problem. Sure, you may use

some methods more often than others, but every large-scale legacy system

has at least one square peg to contend with. It’s impossible to finish the job

if all you know how to do is solve for round holes.

54   Kill It with Fire

Full Rewrite

A full rewrite is exactly what it sounds like: you start over with the inten-

tion of building a totally new system. The trouble with this approach

is what do you do with the old system while you’re building the new

one? Some organizations choose to put the old system on “maintenance

mode” and give it only the resources for patches and fixes necessary to

keep the lights on. If the new project falls behind schedule (and it almost

certainly will), the old system continues to degrade. If the new project

fails and is subsequently canceled, the gap between the old system and

operational excellence has widened significantly in the meantime.

The longer the new system takes to get up and running, the longer

users and the business side of the organization have to wait for new fea-

tures. Neglecting business needs breaks trust with engineering, making

it more difficult for engineering to secure resources in the future.

On the other hand, if you continue development on the old system

while building a new system, keeping design decisions in sync between

the two teams is a considerable challenge. If those systems handle data,

and almost all computer systems do, migrating the data over from one to

another poses a huge challenge.

Another consideration is the people involved. Who gets to work on

the new system, and who takes on the maintenance tasks of the old

system? If the old system is written in an obsolete technology relevant

only to that particular system, the team maintaining the old system is

essentially sitting around waiting to be fired. And don’t kid yourself,

they know it. So if the people maintaining the old system are not par-

ticipating in the creation of the new system, you should expect that

they are also looking for new jobs. If they leave before your new system

is operational, you lose both their expertise and their institutional

knowledge.

That being said, lots of little parts within a big modernization project

are not improved much by any kind of iteration. If you have an interface

Evaluating Your Architecture   55  

written in ActionScript, it’s probably better to just rewrite it and push it

into production as a full replacement.

Iteration in Place

If you have a working system, sometimes the simplest thing to do is to

iterate it until it looks the way you want. This works well with managing

technical debt, but you can also use it for situations when you want to

redo the architecture. A fair amount of prep work is necessary to make

iteration in place work. You will need to set up monitoring. At a mini-

mum, you should have some way to track errors in the application layer

and search logs, but the tooling here grows more sophisticated every

year. The better you can identify what normal looks like on your legacy

system, the easier it is to iterate in place safely.

Another area to make sure you have a mature approach is testing.

Tests should run automatically, without needing a human being to

follow test cases manually. Tests should also be multilevel, testing both

the small units of code and whole processes end to end. Good tests take

skill to write, and entire books have been written on the subject, so I

won’t attempt to summarize them in a few paragraphs here. The most

relevant guide for legacy modernizations is Michael Feathers’ Working
Effectively with Legacy Code.

Finally, make sure your team can recover from failures quickly. This

is an engineering best practice generally, but it’s especially important if

you’re making changes to production systems. If you’ve never restored

from a backup, you don’t actually have backups. If you’ve never failed over

to another region, you don’t actually have failovers. If you’ve never rolled

back a deploy, you don’t have a mature deploy pipeline.

If you have a good monitoring strategy, have a good testing strategy,

and can roll back changes quickly, you will be able to change almost any-

thing about your legacy system with confidence.

56   Kill It with Fire

Although it might seem risky, consider iteration in place to be the

default approach. It is most likely to produce successful results in the

greatest number of situations.

Split in Place

Split in place is a variant of iteration in place specific to breaking up sys-

tems. This can mean moving from a monolithic structure to a service-

oriented one, but it can also mean taking two components that are

tightly coupled and uncoupling them. The difference from iteration in

place is that you finish splitting things off by integrating them back. In

other words, when you pull off a service from a monolith, that service

will likely still need to receive inputs from and send outputs to the

monolith. So you build the separate service and ultimately connect it

to the monolith before moving on to the next service. You keep doing

this over and over (breaking off services and integrating them back)

until you’ve broken the whole project into small service-based sets

of code.

Blue-Green

A familiar pattern for deploys, the blue-green technique involves run-

ning two components in parallel and slowly draining traffic off from

one and over to the other. The big benefit to doing this is that it’s easy

to undo if something goes wrong. Often with technology, increas-

ing load reveals problems that were not otherwise found in testing.

Legacy systems have both the blessing and the curse of an existing

pool of users and activity. The system that replaces them has a narrow

grace period with which to fix those mistakes discovered under high

load. Blue-green deployments allow the new system to ease into the

full load of the old system gradually, and you can fix problems before

the load exacerbates them.

Evaluating Your Architecture   57  

The Hard Cutoff

The hard cutoff is a deployment strategy where the new system or compo-

nent replaces the old all at once. It is one of the riskiest strategies in the

modernization toolbox.

A hard cutoff is sometimes done in stages, usually by environment or

region. An organization might deploy to a low-traffic region first, mon-

itor for issues, and then deploy to a higher-traffic region. This gives the

organization some of the benefits of blue-green deploys in that it can stop

the update (and ideally roll it back) midstream, but this method is not

as accurate as blue-green deploys. The difference between environments

and regions might not be completely predictable, and problems might

escape notice.

If you don’t have multiple regions or are working with software

designed to be installed by the user and have no control over how many

users get access to the new version, you may not have a choice. Alpha

and beta testing groups help in the latter case; making sure you can

undo any change (either through restoring from backup or reverting/

rolling back commands in the version control system) helps in the

former case.

Putting It Together

Good planning is less about controlling every detail and more about set-

ting expectations across the organization. Your plan will define what it

means to modernize your legacy system, what the goals are, and what

value will be delivered and when. Specifically, your plan should focus on

answering the following questions:

●● What problem are we trying to solve by modernizing?

●● What small pragmatic changes will help us learn more about the

system?

58   Kill It with Fire

●● What can we iterate on?

●● How will we spot problems after we deploy changes?

Next, we’ll look at how to move out of the planning stage and into

facing the problems that will make implementation hard.

4
WHY IS IT HARD?

O n the surface, each legacy modernization project starts off feeling

easy. After all, a working system did exist at one point. Somehow

the organization managed to figure out enough to put something into

production and keep it running for years. All the modernizing team

should need to do is simply repeat that process using better technology,

the benefit of hindsight, and improved tooling. It should be easy.

But, because people do not see the hidden technical challenges they

are about to uncover, they also assume the work will be boring. There’s

little glory to be had reimplementing a solved problem. An organization

about to embark on such an undertaking craves new features, new func-

tionality, and new benefits. Modernization projects are typically the ones

organizations just want to get out of the way, so they usually launch into

them unprepared for the time and resource commitments they require.

I tell my engineers that the biggest problems we have to solve are

not technical problems, but people problems. Modernization projects

take months, if not years of work. Keeping a team of engineers focused,

inspired, and motivated from beginning to end is difficult. Keeping their

senior leadership prepared to invest over and over on what is, in effect,

60   Kill It with Fire

something they already have is a huge challenge. Creating momentum

and sustaining it are where most modernization projects fail.

By far, the biggest momentum killers are the assumptions that tell

us the project should be easy in the first place. They are, in no particular

order, the following:

●● We can build on the lessons learned from the old system.

●● We understand the boundaries on the old system.

●● We can use tools to speed things up.

Let’s take a little time discussing why these obvious truths might not

be as useful as they seem.

The Curse of Hindsight

In poker, people call it resulting. It’s the habit of confusing the quality of

the outcome with the quality of the decision. In psychology, people call it

a self-serving bias. When things go well, we overestimate the roles of skill

and ability and underestimate the role of luck. When things go poorly, on

the other hand, it’s all bad luck or external forces.

One of the main reasons legacy modernization projects are hard is

because people overvalue the hindsight an existing system offers them.

They assume that the existing system’s success was a matter of skill and

that they discovered all the potential problems and resolved them the

best possible way in the process of building it initially. They look at

the results and don’t pay any attention to the quality of the decisions or the

elements of luck that produced those results.

Of course, more often than not, very little documentation regarding

the original decisions remains for them to study in the first place. Still,

overlooking the role that plain luck plays in the success of any project

means the team thinks they have room for extra innovations on top of

the original challenge.

Why Is It Hard?   61  

Software can have serious bugs and still be wildly successful.

Lotus 1-2-3 famously mistook 1900 for a leap year, but it was so popular

that versions of Excel to this day have to be programmed to honor that

mistake to ensure backward compatibility. And because Excel’s popu-

larity ultimately dwarfed that of Lotus 1-2-3, the bug is now part of the

ECMA Office Open XML specification.

Success and quality are not necessarily connected. Legacy systems

are successful systems, but that does not mean every decision made in

designing and implementing them was the right decision. Most people

think they know that, but they go in the wrong direction with it. They’re

cynical about the system, but despite that, they overload the road map

with new features and functionality. No matter how critical of the

system they appear to be, they still assume the underlying problem has

been solved.

We struggle to modernize legacy systems because we fail to pay

the proper attention and respect to the real challenge of legacy sys-

tems: the context has been lost. We have forgotten the web of com-

promises that created the final design and are blind to the years of

modifications that increased its complexity. We don’t realize that

at least a few design choices were bad choices and that it was only

through good luck the system performed well for so long. We over-

simplify and ultimately commit to new challenges before we dis-

cover our mistakes.

Being dismissive of legacy systems is no guarantee that we won’t

also fall into the trap of relying on context that is lost. Remember the

game I described in Chapter 3 when looking at what parts of the system

shouldn’t be in COBOL? It’s a useful technique even when COBOL is

not a factor. By challenging my team to design a system with the same

requirements of our legacy system using only technology available

at the time the legacy system was built, we’re forced to recover some

context. Many of the “stupid” technical choices from the legacy system

seem very different. Once forced to look directly at the context, we

62   Kill It with Fire

realize how innovative some of those systems really were. This gives

us a little insight into which decisions were skill and foresight and

which were luck.

A successful system could have a design pattern that will not survive

past a certain scale of usage but that was able to achieve its operational

goals without ever crossing that threshold. Is that skill or luck? If the

designers knew the system would not scale but also knew the system

would never reach the point where it would need to scale that way, we

could assume the design was a deliberate decision. For example, perhaps

the system is accessible only to certain people for internal purposes.

Scaling to millions of requests was not necessary, because it would only

ever get hundreds of requests per second at most.

On the other hand, if the system was designed with the idea that

its usage would continue to grow indefinitely and the designers chose

a pattern that will survive only up to a certain point, their success is a

matter of luck. They simply did not reach that tipping point. Twitter

was a well-designed system until it became so popular it started falling

apart, serving users the notorious “fail whale” cartoon instead of their

content. Overnight, the engineers who built the social media platform

and the technology it used went from being perceived as skillful opera-

tors with superior code to a bunch of rank amateurs with an overhyped,

dumbed-down programming language. They were neither geniuses nor

dummies.

Scale always involves some luck. You can plan for a certain number

of transactions or users, but you can’t really control those factors, espe-

cially if you’re building anything that involves the public internet.

Software systems tend to incorporate multiple technologies working

together to complete some task. I don’t know anyone who can predict

how multiple technologies will behave in every potential scale con-

dition, especially not when they are combined. Engineering teams do

their best to mitigate potential problems, but they will never be able to

foresee every possible combination of events. For that reason, whether a

Why Is It Hard?   63  

service works at its initial scale and then continues to work as it grows

is always a mix of skill and luck.

Easy and Also Impossible

In 1988, computer scientist Hans Moravec observed that it was really

hard to teach computers to do very basic things, but it was much easier to

program computers to do seemingly complex things. Skills that had been

evolving for thousands of years to solve problems like walking, answer-

ing questions, and identifying objects were intuitive, subconscious, and

impossibly difficult to teach a computer how to do. Meanwhile skills that

had not been a part of the human experience for thousands of years—

like playing chess or geolocation—were relatively straightforward. His

theory connecting this paradox to evolution, which had been observed by

other contemporaneous AI researchers, gained enough traction that the

paradox itself was named after him.

In Moravec’s own words, “It is comparatively easy to make computers

exhibit adult-level performance on intelligence tests or playing checkers,

and difficult or impossible to give them the skills of a one-year-old when

it comes to perception and mobility.”1

Those wishing to upgrade large complex systems would do well

to keep Moravec’s paradox in mind. Systems evolve much faster than

nature, but just as in nature, as the system evolves, more and more of

its underlying logic becomes obscured. When we get used to something

just working a certain way, we tend to forget about it. Once we’ve stopped

thinking about it, we fail to factor it into our plans to modernize.

We assume that successful systems solved their core problems well,

but we also assume things that just work without any thought or effort

1.	 Hans Moravec, Mind Children: The Future of Robot and Human Intelligence (Cambridge,
MA: Harvard University Press, 1988), 15.

64   Kill It with Fire

are simple when they may in fact bear the complexity of years of itera-

tion we’ve forgotten about.

This is especially true when the system has multiple layers of abstrac-

tion and even more so when those abstractions grow past the application

boundaries itself—when they leverage operating system APIs or even

hardware interfaces. When was the last time you thought about whether

your favorite software is compatible with the chip architecture on your

computer? When was the last time you needed to hunt down a specific

driver to get a new accessory to work with your operating system? If you

were born after the 1990s, you might never have thought about these

things at all. Hardware and software interfaces haven’t gotten simpler

in the last two decades, we’ve just abstracted away a lot of annoying dif-

ferences that made the issue of x86 versus x64 or downloading drivers a

normal part of working even casually with computers.

With very old legacy systems, the abstraction layers might not be

there, or worse, they themselves might be out-of-date. I like to call this

problem overgrowth, and it’s worth describing in detail.

Overgrowth: The Application and
Its Dependencies

Overgrowth is a particular type of coupling between the software and the

layers of abstraction making up the platform on which it runs. The perils

of dependency management are well known, but with legacy systems,

dependency management is about more than just what a package man-

ager might install. The older a system is, the more likely the platform on

which it runs is itself a dependency. Most modernization projects do not

think about the platform this way and, therefore, leave the issue as an

unpleasant surprise to be discovered later.

We’ve made huge leaps in cross-compatibility, but we’ve not yet

reached the state where applications are 100 percent platform-agnostic,

nor are we ever likely to achieve that completely.

Why Is It Hard?   65  

For that reason, we cannot modernize a system without considering

the underlying platform. Which features of that platform are unique, and

which are found in other options? How old is the platform, and has it

since been supplanted by a completely different way of doing things?

What makes major migrations so tricky is that as software ages, ele-

ments of the platform on which it was defined to run fall out of fashion,

and support for those elements on other platforms becomes less and less

common. This means that on our oldest systems, there is typically logic

that either must be written out of the system or must be reproduced on a

modern platform. The existing platform becomes auxiliary software that

grows around whatever is being migrated. If you’re switching databases,

for example, you’re not just moving the data. You might have to rewrite

your queries in a different language or a different implementation of

SQL. You may need to rethink hooks or stored procedures. One software

language often has any number of minor languages that facilitate spe-

cific functions. There are command processors like bash or JCL that trig-

ger jobs, templating languages to build interfaces, querying languages to

access data, and so on. How well is business logic separated out between

these layers? Does logic stay where it is sensible, or is it injected to where

it is convenient?

Most web development projects, for example, run on Linux machines.

Therefore, it is not uncommon for web applications to include shell

scripts as part of their code base—particularly as part of the setup/instal-

lation routine. Imagine what migrating those applications would feel

like 20 years in the future if Linux were supplanted by a different operat-

ing system. We would potentially have to rewrite all the shell scripts as

well as migrate the actual application.

Smart engineers will point out that with containerization and con-

figuration management tools, such scripts should be a thing of the past,

but that’s precisely why overgrowth is an issue for legacy code. At one

point, doing certain tasks via shell script was commonplace; this has

since been overtaken by a different approach. If we want to migrate

66   Kill It with Fire

an older application, we may find that this older approach is not sup-

ported by the technology we want to use. We must migrate the auxiliary

software first.

For modern applications, overgrowth is not usually a significant blocker.

Languages from the same general era of computing tend to share eco

systems, so it is easier to pull out one language and replace it with another

while making only minimum changes to the auxiliary software around it.

Remember, overgrowth is just another form of coupling. Coupling is not

necessarily a bad thing if the value add is there.

In older applications, however, people seem to have trouble seeing

where this type of coupling is. We tend to forget about auxiliary software,

just as we forget the complex processes behind the simple tasks Moravec

struggled to program computers to do. The longer a piece goes without

being upgraded, the less likely modern platforms and tools will support

it. As auxiliary software slides out of support, the challenge of moderniz-

ing the actual code becomes more complicated.

Look for overgrowth at integration points, places where the commu-

nication layer changes. There are a few different transitions where you

are likely to find it.

Shifting Vertically: Moving from One Abstraction Layer to Another
Many layers exist between modern software and the physical volt-

age moving through circuits in a machine. On the most basic level,

we can define three layers: the software, the hardware, and an oper-

ating system between them. Overgrowth when shifting up or down

these layers typically takes the form of proprietary standards, espe-

cially with older technology where the manufacturer of the hardware

would also provide the software. Look out for situations where your

application code depends on APIs specific to your operating system

or, worse, when it’s specific to the chip architecture of the physical

machine on which it runs. This was a common problem with old

mainframes. Software was written in a variant of Assembly specific

Why Is It Hard?   67  

to both the company that built the mainframe and usually the model

of the machine itself.

Shifting Horizontally: Moving from One Application to Another
Just as there is legacy code, there are also legacy protocols. When two

applications pass data back and forth between each other, if they are

running on machines or communicating on networking equipment

developed by a corporation with proprietary protocols, you may see some

overgrowth around the connection. This is less of a concern with web

development, because the decentralized nature of the internet pushed

things toward standard protocols like TCP/IP, FTP, and SMTP—all of

which have a robust ecosystem of tooling and broad support across multi-

ple platforms. In other areas of software development, proprietary proto-

cols have a larger footprint. How difficult these protocols are depends on

how common the technology in question is. Proprietary protocols from

large vendors are probably supported by other options. For example, Mic-

rosoft Exchange Server protocols are proprietary but well supported, while

an application dependent on AppleTalk might prove difficult to migrate.

Shifting from Client to Server
This shift can take the form of specific software development kits (SDKs)

for specific tools and integrations, drivers for specific database connec-

tions, or frontend to backend movement. It might horrify some engineers

to know this, but internal web applications are still sometimes built to

run on certain web browsers and rely on features or functions not

available in others. Internet Explorer is the most likely culprit. When-

ever you see IE as the preferred default browser for internal applica-

tions, double-check that the frontend of these applications is not using

IE-specific JavaScript features. We also see this frequently with Adobe

Acrobat. Early-generation digital forms frequently were built to lever-

age Acrobat-specific PDF features and may be difficult to move between

versions of Acrobat. A famous story about this comes from my time at

68   Kill It with Fire

US Digital Service where one of the Department of Veterans Affairs’ web-

sites refused to work unless you downgraded your version of Acrobat.2

Shifting Down the Dependency Tree
As programming languages mature, they occasionally introduce breaking

changes to their syntax or internal logic. Not all dependencies upgrade

to handle those changes at the same pace, creating a mess where the

application cannot be upgraded until the dependencies are upgraded.

In applications that are very old, it is likely that some of those depen-

dencies are no longer in active development. For instance, perhaps the

maintainers never rolled out a version that is compatible with the newest

version of Java or Node.js, and to get that support, the application must

switch to a completely different option.

Cutting Back the Overgrowth

Cutting back overgrowth is not technically hard; it is just frustrating

and demoralizing. Overgrowth slows things down, and if not accurately

assessed, it creates unfortunate surprises that affect a team’s confidence.

To minimize its impact, start off by mapping the application’s context.

What does it run on? What is the process around creating a new instance

of it? Map its dependencies two levels down.3 Attempt to trace the flow

of data through the application to complete one request. This should give

you a clearer picture of where there are likely to be problems. If you can put

these problems on a road map, they have less dramatic impact on morale.

2.	 “Matt Cutts on the US Digital Service and Working at Google for 17 Years,” Y Combina-
tor, December 4, 2019, https://blog.ycombinator.com/matt-cutts-on-the-us-digital-service-
and-working-at-google-for-17-years/.

3.	 Dependency trees can be quite complicated, and traversing the whole graph is a lot of
work without a lot of payoff. Make a list of the application’s direct dependencies and
what those packages depend on, and then accept the risk that there might be a prob-
lem in nodes further down and move on.

https://blog.ycombinator.com/matt-cutts-on-the-us-digital-service-and-working-at-google-for-17-years/
https://blog.ycombinator.com/matt-cutts-on-the-us-digital-service-and-working-at-google-for-17-years/

Why Is It Hard?   69  

You might be tempted to think that modern software development

is improving this situation. Cross-compatibility is much better than it

used to be, that’s true, but the growth of the platform as a service (PaaS)

market for commercial cloud is increasing the options to program for

specific platform features. For example, the more you build things with

Amazon’s managed services, the more the application will conform to fit

Amazon-specific characteristics, and the more overgrowth there will be

to contend with if the organization later wants to migrate away.

Automation and Conversion

The last assumption people make about legacy systems is that because

computers can read the code they are trying to modernize, there must be

some way to automate the process. They introduce tools like transpilers

and static analysis with the intention of making modernization faster and

more efficient.

Those tools are useful, but only if the expectations for them are real-

istic. If you use them as guides to help inform the process, your modern-

ization team can move strategically, side-stepping critical mistakes and

maybe reducing some costs. However, if you use them as shortcuts and

skimp on making a true investment in modernization, they will likely let

you down. Organizations that think the tools are the solution typically

end up with longer, more painful, and more expensive modernizations.

So, what do these tools do exactly, and what’s the right way to use

them?

Transpiling Code
Transpiling is the process of automatically translating code written in

one programming language into another programming language. It

makes sense to use a transpiler when the difference between the lan-

guage being read and the language in which the output will be written

is not significant. For example, Python version 3 had enough breaking

70   Kill It with Fire

changes in it that the transition actually required engineers to migrate

their code bases rather than simply upgrade them. At the same time,

Python 3 did not change any of the fundamental philosophies of Python

itself, just some implementation details. Transpiling worked so well that

tools for Python 2 to Python 3 conversion and Python 3 to Python 2 con-

version are now built in to Python 3.

Another great use case for transpilers is when the language that the

transpiler is reading was specifically designed to enforce good practices

on the language the transpiler is writing. JavaScript has many different

variants of this approach, such as CoffeeScript and TypeScript.

When the differences between the input and output languages are

significant, transpiling becomes more problematic, and time-saving

expectations need to be managed properly to ensure a successful out-

come. The classic example of this use case is COBOL to Java. COBOL is

procedural, imperative, and fixed-point by default. Java is object-oriented

and floating-point by default. Transpiling COBOL to Java may produce

code that works, but it will not be maintainable unless engineers go over

the code and fine-tune it. Often this means rewriting parts of it.

If you are going to use a transpiler for that kind of upgrade, it is

absolutely essential that the application has well-designed and com-

prehensive test suites, preferably automated ones. The bugs created by

automatically translating one language to another, completely different

language can be subtle and difficult to track down. For example, when

you try to put an eight-digit number into a variable defined as having

seven digits, COBOL truncates the last digit and moves on. Java, on the

other hand, throws an exception. The transpiler will not add code to

handle these exceptions.

People often invest in transpilers to help upgrade their legacy code

because they think it will save engineering time to have a computer pro-

gram do the first pass, or they think it will replace the need for experts

in the original language to assist altogether. But when the two languages

have significant differences, the output of such transpilers doesn’t

Why Is It Hard?   71  

usually follow the structure and conventions of the language in which it

writes. Transpilers are not capable of rethinking how you organize your

code. Transpiled COBOL is Java written as if it were COBOL, and there-

fore, it’s unintelligible to most Java programmers.

The success stories around this kind of transpiling typically come

from companies that use their transpiling solution as a gateway to con-

sulting services. That is to say, first you buy licenses to use the transpiler,

and then you buy the talent to rewrite the transpiler’s output into some-

thing workable. This is a fine strategy, as long as you know that’s what

you’re getting into.

Static Analysis
Although it hasn’t gained much traction outside a theoretical context,

some interesting work in academia has been done around deploying var-

ious forms of static analysis to explore and ultimately improve legacy sys-

tems. So-called software renovation combines techniques from compiler

design and reverse engineering to steer the refactoring process. Software

renovation is intended to be semi-automatic: the analysis is automatic,

but software engineers do the actual work of restructuring the code.

Some common types of static analysis used for software renovation

include the following:

DEPENDENCY GRAPHS    In this style of software renovation, the

dependency graph is mapped, and clustering algorithms are used to

determine where there is overlap, redundancy, unused libraries, or

circular dependencies.4

GRAMMARS    These are language-specific tools that produce

analysis by parsing the abstract syntax tree. Typically they look for

4.	 Massimiliano Di Penta, Markus Neteler, Giuliano Antoniol, and E. Merlo, “A Language-
Independent Software Renovation Framework,” Journal of Systems and Software 77, no. 3
(September 2005): 225–240.

72   Kill It with Fire

duplicate code or specific practices that are considered anti-patterns

(like goto statements).

CONTROL FLOW/DATA FLOW GRAPHS    These graphs are tools

that track how software executes. Control flow graphs map the order

in which lines of code are executed, while data flow graphs map the

variable assignments and references. You can use such analysis to

discover lost business requirements or track down dead code.

Software renovation methodology hasn’t quite broken out of theoret-

ical studies, but static analysis tools are available both as stand-alone

products and as features of larger integrated development environments

or continuous integration and deployment solutions. This is unfortu-

nate because the methodology is what drives the bulk of the impact. The

tools themselves are not as important as the phases of excavating, under-

standing, documenting, and ultimately rewriting and replacing legacy

systems. Tools will come and go.

A Guide to Not Making Things Harder
Expectation management is really important. Typically organizations

make the mistakes described in this chapter because they believe they

are making the process more efficient. They misjudge how long modern-

ization projects take, and they misjudge how much time they can save

and how to save it.

Modernization projects have better outcomes when we replace the

false assumptions described at the opening of this chapter with the fol-

lowing guidelines:

●● Keep it simple. Don’t add new problems to solve just because the

old system was successful. Success does not mean the old system

completely solved its problem. Some of those technical decisions

were wrong, but never caused any problems.

Why Is It Hard?   73  

●● Spend some time trying to recover context. Treat the platform as

a dependency and look for coupling that won’t transfer easily to a

modern platform.

●● Tools and automation should supplement human effort, not

replace it.

Individual contributors often find the barrier to following that advice

is not convincing themselves, but convincing others. Particularly when

the organization is big, the pressure to run projects the same way every-

one else does, so that they look correct even at the expense of being

successful, is significant. In later chapters, we’ll tackle navigating the

organization and strategies to advance your goals.

5
BUILDING AND

PROTECTING MOMENTUM

T his book mainly focuses on big projects. When I discuss upgrades,

I’m not talking about running a package manager to install the

latest versions of your dependencies. When I mention deprecations,

I’m not talking about versioning your API. Much of the advice in this

book will work regardless of project size, but it is primarily intended for

big ones.

Chapter 3 covered developing strategy around the engineering chal-

lenge posed by your legacy system. In that chapter, I described the shape

and nature of different types of approaches and how to look at such a

challenge holistically. This chapter describes a similar approach from

the organizational side: how to create a plan that builds momentum and

keeps teams focused and optimistic even as the work becomes difficult.

The funny thing about big legacy modernization projects is that tech-

nologists suddenly seem drawn to strategies that they know do not work

in other contexts. Few modern software engineers would forgo Agile

development to spend months planning exactly what an architecture

76   Kill It with Fire

should look like and try to build a complete product all at once. And yet,

when asked to modernize an old system, suddenly everyone is breaking

things down into sequential phases that are completely dependent on

one another.

Agile approaches to legacy challenges are not well publicized. Any

number of books are available that describe how you build software.

A few exist that cover how to maintain software, and even fewer have

been published that explain how to tackle the challenges of rebuild-

ing software when it has been left to rot or was built wrong in the first

place.

In truth, what works when rebuilding a system is not all that differ-

ent from what worked to build it in the first place. You need to keep the

scope small, and you need to iterate on your successes. This might seem

unnecessary, because the old system and its history have defined all your

requirements for you. Assuming you fully understand the requirements

because an existing system is operational is a critical mistake. One of the

advantages of building a new system is that the team is more aware of

the unknowns. Existing systems can be a distraction. The software team

treats the full-featured implementation of it as the MVP, no matter how

large or how complex that existing system actually is. It’s simply too

much information to manage. People become overwhelmed, and they

get discouraged and demoralized. The project stalls and reinforces the

notion that the modernization work is impossible.

Momentum Builder: The Bliss
of Measurable Problems

There are a couple different ways to restrict scope when an existing

system looms in the background. The most straightforward approach

is to define an MVP from the existing system’s array of features. Pare it

down into a lighter-weight version of itself that becomes the first itera-

tion and then gradually add back features. While sensible, this strategy

Building and Protecting Momentum   77  

requires discipline and strong leadership. All users of the existing system

will naturally see the features they use as the most critical and lobby

to get them scheduled for the earliest possible iteration. The process

becomes political very quickly.

Instead, I prefer to restrict the scope by defining one measurable

problem we are trying to solve. Building a modern infrastructure is not

a goal. Different people naturally are going to disagree on which stan-

dards and best practices should be enforced and on how strongly they

should be enforced. Few real-life systems completely conform to an

ideal; there are always at least one or two places in systems where a non-

standard approach was used to make a specific function or integration

work. Everyone knows these compromises exist and that they probably

will continue to exist in some form or another in the new system, but

it’s unlikely the organization will be able to agree on when and where to

introduce them.

But if all the work is structured around one critical problem that you

can measure and monitor, these conversations become much easier. You

start by looking for as many opportunities as possible to make the prob-

lem better and prioritize them by amount of estimated impact. When

there is a disagreement on approach or technology, the criteria for the

decision becomes “Which one moves the needle further?”

Legacy modernization projects go better when the individuals con-

tributing to them feel comfortable being autonomous and when they can

adapt to challenges and surprises as they present themselves because

they understand what the priorities are. The more decisions need to go

up to a senior group—be that VPs, enterprise architects, or a CEO—the

more delays and bottlenecks appear. The more momentum is lost, and

people stop believing success is possible. When people stop believing

success is possible, they stop bringing their best to work. Measurable

problems empower team members to make decisions. Everyone has

agreed that metric X needs to be better; any actions taken to improve

metric X need not be run up the chain of command.

78   Kill It with Fire

Measurable problems create clearly articulated goals. Having a goal

means you can define what kind of value you expect the project to add

and whom that value will benefit most. Will modernization make things

faster for customers? Will it improve scaling so you can sign bigger cli-

ents? Will it save people’s lives? Or, will it just mean that someone gets to

give a conference talk or write an article about switching from technol-

ogy A to technology B?

Anatomy of the Measurable Problem
It’s natural to want to approach architecture in a holistic way. Our minds

love order and patterns, the neatness of everything being consistent and

well thought out. But systems are like houses; they never really stay per-

fectly clean for long. The very act of using something forces it to change.

You have less memory and less storage, your hardware decays, and you’ve

added new features, which mean more lines of code.

Good modernization work needs to suppress that impulse to create

elegant comprehensive architectures up front. You can have your neat

and orderly system, but you won’t get it from designing it that way in the

beginning. Instead, you’ll build it through iteration.

The measurable problem is what will guide your teams through the

modernization effort. When the legacy system was new, its footprint and

the team that ran it were both small. As the system grew, internal politics

grew with it. In some cases, entire business units were born or rearranged

to follow the pattern of the technology. Getting all those people to agree

and march in the same direction is difficult. The strength of the mea-

surable problem is that it is objective and irrefutable, and therefore, it

helps the team navigate the internal politics they have inherited from

the existing system. People can and will disagree on whether the mea-

surable problem is the right problem to solve, but that shifts the burden

of mediating those disagreements away from the engineering team and

toward the senior executive who signed off on focusing modernization

activities on that measurable problem in the first place.

Building and Protecting Momentum   79  

The last benefit of measurable problems is that positive results are

not linked to feature launches. When the team tries to create an MVP

from an existing system, the organization will pressure them to achieve

feature parity with the existing system as quickly as possible. Success

or failure becomes tied to launches, which encourages cut corners and

technical debt.

In all likelihood, the business side of the organization does not

understand what’s wrong with the existing system. Rolling out features

they already have is not something they will celebrate. To build momen-

tum behind a modernization effort, it’s essential to communicate how

modernizing will improve the status quo. Defining a measurable prob-

lem explains to the business side of the organization how the existing

system could be better. Once the metrics and criteria are defined, any

given action either moves the needle in a positive direction or doesn’t.

Missteps are easier to identify, define, and correct. Everyone in the orga-

nization can figure out how things are going by looking at the metrics.

But how does one identify a good measurable problem?

The easiest candidates are ones that reflect the business or mission

goals of the organization. If you’re thinking about rearchitecting a system

and cannot tie the effort back to some kind of business goal, you probably

shouldn’t be doing it at all.

When I was working for the government, one of the most inspir-

ing projects I saw was the effort to modernize the immigration system

enough to meet a stretch goal for refugee resettlement the Obama

administration had set. The system itself, even just the subset that con-

cerned refugees, was large and complex. Engineers were overwhelmed by

the scope of it and the problems that it experienced from time to time.

But the challenge of this particular project was not to make that

whole system better; it was to get that whole system to process a spe-

cific type of application faster. Defining the goal in this way created a

much clearer scope for the effort. The team started by doing an analy-

sis of where the bottlenecks in application processing were, and then

80   Kill It with Fire

they began precision-targeting those areas, seeking only to make itera-

tive improvements. Conversations about prioritization focused on what

changes were likely to increase the number of applications processed—

numbers anyone on the team could look at and refer to as needed. As

they worked toward this specific goal, the team passed up a lot of oppor-

tunities to make much needed infrastructure changes, because doing so

would not produce the results where they needed them.

At first glance, this approach might seem unwise or even irrespon-

sible, but the number-one killer of big efforts is not technical failure.

It’s loss of momentum. To be successful at those long-term rearchitect-

ing challenges, the team needs to establish a feedback loop that con-

tinuously builds on and promotes their track record of success. When

it became clear that the refugee team was not only going to reach the

stretch goal—a number that many felt was impossible—but that they

were actually going to overshoot it by a few thousand people, other teams

that were better positioned to make those much needed infrastructure

changes started coming to work with renewed energy. Don’t lose sight of

the fact that modernization projects are long and typically involve coor-

dinating multiple teams. Being strategically narrow-minded to demon-

strate value and build momentum is not a bad idea.

Good measurable problems have to be focused on problems that your

engineers give a shit about. Number of refugees saved from ISIS was an

easy goal to rally people around. In all likelihood, you won’t be able to say

your database migration is going to do that, but engineers feel passionate

about other things. Talk to them and figure out what those are.

Momentum Killer: The Team Cannot Agree

When I moved from being an individual contributor to running engi-

neering teams, my role in technical conversations shifted. I saw better

outcomes when I focused on facilitating a productive conversation

rather than vying to be the decision-maker. Have you ever found yourself

Building and Protecting Momentum   81  

in a meeting that felt like it was running around in circles? Meetings

where people seemed to be competing to see who could predict the most

obscure potential failure? Meetings where past decisions were relitigated

and everyone walked away less certain as to what the next steps were?

Facilitating technical conversations is more important than being the

decision-maker because unproductive and frustrating meetings demor-

alize teams.

Because large systems are typically complex, out of control meet-

ings can derail decision-making about the technology that backs them.

Measurable problems help people prioritize what improvements to

make and in which order, but when it comes to the nitty-gritty imple-

mentation details, it is not always possible to predict which options

will have the biggest impact. Reasonable people are going to disagree,

but pointless arguments need to be defused before they do too much

damage.

Step 1: Define a Scope
The best way to handle dysfunctional decision-making meetings is to

prevent them from happening in the first place by defining and enforc-

ing a scope. I usually start meetings by listing the desired outcomes, the

outcomes I would be satisfied with, and what’s out of scope for this deci-

sion. I may even write this information on a whiteboard or put it in a

PowerPoint slide for reference. What do we want to accomplish in this

meeting? If we get stuck, what other outcomes would be acceptable?

Sometimes a team cannot agree because there is an actual blocker to

agreement—a gray area that requires more research, for example. If that

happens, what is the smallest decision we could make and still feel like

the meeting was productive?

Once the meeting has a scope, I define areas that we should be able

to agree are outside that scope. Often out-of-scope issues are decisions

that are neither blockers nor dependencies. The hard ones do seem to be

related to in-scope issues, so when in doubt, the team needs to be able

82   Kill It with Fire

to articulate clearly how our in-scope decisions are affected by the issue

being raised. For example, I had an engineering team that was charged

with creating a seamless platform where engineers could run commands

and have the heavy lifting of building, configuring, and deploying done for

them. At the same time, the organization was also thinking about phas-

ing out one programming language in favor of another. To accomplish the

first goal, we needed to make a few decisions about the architecture of

the tool. Would we build a suite of separate tools, or would we build one

tool that we could add functionality to? Whatever design pattern we chose

could have been done equally well in either language, so any debate about

programming languages would bring us no closer to reaching a decision

on what we wanted the meeting to be about. Discussions about program-

ming languages were out of scope. Although the issue would ultimately

affect implementation of the design pattern we selected, it was neither a

blocker nor a dependency when picking the pattern.

With my engineers, I set the expectation that to have a productive,

free-flowing debate, we need to be able to sort comments and issues into

in-scope and out-of-scope quickly and easily as a team. I call this tech-

nique “true but irrelevant,” because I can typically sort meeting informa-

tion into three buckets: things that are true, things that are false, and

things that are true but irrelevant. Irrelevant is just a punchier way of

saying out of scope.

The purpose of thinking about comments made during meetings as

true, false, or true but irrelevant is not to discourage people from bring-

ing up irrelevant details. When we think of contributions only in terms

of true or false, we put pressure on individuals to save face by fighting

to have the validity of their irrelevant facts acknowledged. By encourag-

ing people to think about their comments as in-scope and out-of-scope,

we’re saying that the engineer speaking raised a valid point that should

be considered in a different conversation.

At the same time, relevancy is often difficult for any one person to

determine. You don’t want engineers to self-censor for fear of bringing up

Building and Protecting Momentum   83  

something that’s out of scope. They might incorrectly assume something

is out of scope because they have incomplete information. If they fail to

raise the issue because they associate the true but irrelevant bucket with

failure, they may fail to point out actual problems. A great meeting is not

a meeting where no one ever mentions anything out of scope; it’s one

where out-of-scope comments are quickly identified as such by the team

and dispatched before they have derailed the conversation.

Step 2: Check for Conflicting Optimization Strategies
Even with a carefully defined scope, engineers might bump heads

anyway. A quick trick when two capable engineers cannot seem to agree

on a decision is to ask yourself what each one is optimizing for with their

suggested approach. Remember, technology has a number of trade-offs

where optimizing for one characteristic diminishes another import-

ant characteristic. Examples include security versus usability, coupling

versus complexity, fault tolerance versus consistency, and so on, and so

forth. If two engineers really can’t agree on a decision, it’s usually because

they have different beliefs about where the ideal optimization between

two such poles is.

Looking for absolute truths in situations that are ambiguous and

value-based is painful. Sometimes it helps just to highlight the fact that

the disagreement is really over what to optimize for, rather than pure

technical correctness. What is the impact of each optimization? Can the

negative effects of over-optimizing in one direction be mitigated?

Step 3: Perform Time-Boxed Experiments
If the disagreement is in scope and isn’t a matter of conflicting optimiza-

tion strategies, the best way to settle it is by creating time-boxed exper-

iments. Find a way to try each approach on a small sample size with a

clear evaluation date and specific success criteria defined in advance.

Becoming good at experiments is valuable for practically any organi-

zation. It’s the basis of iteration—you build something, collect data on

84   Kill It with Fire

how it is performing, modify it to improve performance, and start the

cycle over. This is how effective technology is built, so engineering teams

should get comfortable using it to make hard decisions.

Momentum Killer: A History of Failure

Odds are good that the modernization effort you’re working on now is

not the first attempt. Companies that successfully maintain their tech-

nology over time usually do not need to engage in a big modernization

project after all. They are able to keep up through incremental change

and regular maintenance. If you are running a team tasked with just

cleaning up the debt and migrating onto more suitable technologies, it

means the existing organization has failed to adapt.

Your specific situation might have a history of failure that is much

deeper than slacking off on regular maintenance. Is this even the first

modernization project? If not, each prior effort likely has left scar tissue

on the organization that you need to consider. The more false starts a

project has had, the harder it is to build the momentum necessary to

succeed.

The first deliverables of a modernization effort have to take this his-

tory of failure into account. People aren’t pessimistic and uninspired by

legacy modernization projects because they don’t care or don’t realize that

modernization is important. They often feel that way because they are con-

vinced that success is impossible after experiencing a number of failures.

At the same time, I have yet to find a group of engineers who didn’t

want to believe they could reach a better state. It’s surprisingly easy

to change people’s minds about the inevitability of failure when you

demonstrate that success is possible.

Inspired and motivated engineering teams run smoother and more

productive modernization processes, so design your modernization

strategy around front-loading value. What changes will produce the most

immediate positive impact?

Building and Protecting Momentum   85  

I once worked for an organization that was facing a major challenge

around the breakup of its monolith. The organization wanted to build

a standardized platform that product engineering teams could use to

deploy services to production easily—a reasonable ambition—but the

product itself was three monoliths crammed onto a single VM. It was

a monolith of monoliths, if you will. At the time it had been built, that

architecture fit the business case, but in the years that followed, the orga-

nization had seen explosive growth. By the time I got there, the architec-

ture didn’t make sense anymore.

This organization was facing two problems. First, the platform ini-

tiative and the monolith breakup were blocking each other. The prod-

uct teams did not want to break up their monolith into services until

they could deploy on a platform. Understandably, they did not want to

put something on a release pipeline only to have to migrate it off when

the platform arrived. The platform group, on the other hand, could not

build a platform without requirements set by the product teams. They

had to be able to build with the real needs of real services in mind—

services that did not exist because they had not been broken off the

monolith yet.

The second problem was that the organization had actually tried

both sides of this process before and failed at them, multiple times. It

had tried to build a platform and had migrated some small, unimportant

services that could be split off with minimum redesign. It had tried this

at least three times by my estimation, each time losing momentum and

failing to finish.

The organization had also tried to break up the monolith several

times. Each time, it became overwhelmed by the complexity of the task.

Splitting monoliths is rarely, if ever, only about copying and pasting

some code into a different repository. When software is designed to be

coupled, engineers usually take advantage of that fact and build on the

easy access that coupling provides. In this case, that meant their test-

ing suites had a high concentration of end-to-end tests over unit tests.

86   Kill It with Fire

It meant multiple components were accessing the same data store and

sharing responsibilities over the same information. When their tightly

coupled monolith became decoupled services, the tests would break, and

a plan for keeping the data consistent between services would need to be

developed.

Now facing their fourth attempt, optimism was pretty low. Everybody

wanted to see the project be successful, but no one wanted to be the first

team to invest the work only to be left holding the bag when the effort fell

apart once again.

Prominent engineers on the platform group were asked to come up

with a plan. They spent weeks collecting data and interviewing teams

and eventually pitched the following compromise: they would pull

the three monoliths onto their own release channels with their own

VMs, thereby ensuring that the platform could support everything the

product needed without requiring the product team to split anything

immediately.

The problem with this plan was that it didn’t actually make anything

better. Now instead of one release cycle with an owner and an orderly

schedule determining when code hit each region and environment, the

organization would have three release cycles with no one owning them.

Every deploy would have to be carefully coordinated across multiple

teams so that changes did not accidentally hit production for one mono-

lith early or late.

It wasn’t going to lower costs either. Commercial cloud providers

charge per time usage of each VM. Three separate sets of VMs meant the

proposed plan would easily double or even triple the organization’s host-

ing expenses.

I wasn’t even sure it would get off the ground. My team had been

working hard redesigning a service that appeared to be fully separate to

go onto the platform, and we were finding all sort of weird places where

components were integrated in unexpected ways.

Building and Protecting Momentum   87  

What was the value of putting three monoliths on separate release

channels?

When I asked that question, the engineers thought I was asking what

the value of breaking up the monolith was. It took several conversations

before I could get them to understand that I wasn’t questioning their goal.

I was questioning their starting point. Starting with tripling the number

of VMs would make updates more complicated for product teams and

would increase spending unnecessarily. Why would the organization

continue to invest in the process of breaking up the monolith if its first

experiences with that process made work harder and more expensive?

The hard problems around legacy modernization are not techni-

cal problems; they’re people problems. The technology is usually pretty

straightforward. Keeping people focused and motivated through the

months or years it takes to finish the job is hard. To do this, you need to

provide significant value right away, as soon as possible, so that you over-

come people’s natural skepticism and get them to buy in. The important

word in the phrase proof of concept is proof. You need to prove to people

that success is possible and worth doing.

The more an organization has failed at something, the more proof it

needs that modernization will bring value. When there’s a history of failure,

that first step has to provide enough value to build the momentum neces-

sary to be successful. The obvious problem with that is it means there’s a

natural upper bound. There is a point where cynicism is so high, no single

first step will ever provide enough value to prove the project will work.

Then what?

Momentum Builder: Inspiring Urgency

If you find yourself in this situation, you have a little due diligence to do

first. The first question to ask is does this particular migration actually

add any value at all? Or are we migrating because there’s a new shiny

88   Kill It with Fire

technology in front of us? After all, monoliths are not universally bad.

Plenty of successful companies run monoliths.

If you believe the migration does add value, the next question to ask

yourself is will leadership make a commitment to prioritizing it? Some-

times you get lucky, and the change is one with a hard deadline and real

consequences for it slipping.1

But if leadership isn’t prioritizing it and if you believe the migration

has real business value but you’re weighted down with the cynicism of

repeated failures, what you need is a crisis. Value is relative, after all.

When things are working well and money is coming in, engineers can

tolerate a multitude of sins. When things are bad, the perception of value

added by nearly any change goes up. Dealing with crisis alters the orga-

nization’s internal calculus around risk.

When I was working in government, we would reach the upper bound

on the value scale frequently. Some of the systems were so old, efforts

to modernize them had literally been passed from generation to gener-

ation. Having a crisis became an essential component of how my teams

operated—to the point that we might delay talking to an agency for a few

weeks or months just to see whether a crisis would pop up that we could

hook into.

Occasionally, I went as far as looking for a crisis to draw attention to.

This usually didn’t require too much effort. Any system more than five

years old will have at least a couple major things wrong with it. It didn’t

mean lying, and it didn’t mean injecting problems where they didn’t

exist. Instead, it was a matter of storytelling—taking something that

was unreported and highlighting its potential risks. These problems were

problems, and my analysis of their potential impact was always truthful,

but some of them could have easily stayed buried for months or years

without triggering a single incident.

1.	 Alas, security certifications do have some value. Those who have them tend to like to
keep them.

Building and Protecting Momentum   89  

My favorite place to start was with security, followed by system stabil-

ity. One does not need much technical literacy to understand the impact

and consequences of getting those issues wrong. There are also areas

where even the best technical teams struggle from time to time, so you’re

unlikely to come up empty-handed if you look for a potential crisis on

either these two fronts.

Protecting Momentum: A Quota
on Big Decisions

Now that you’ve done all the work of assessing the situation and orga-

nizing around it, you don’t want to let the organization itself undermine

that work. People mean well, but any kind of change is risky, and saying

yes to risk is difficult. Never fear. You can set the stage to get a yes to orga-

nizational change rather than a no.

First, you need to learn to talk about what you are doing in a way

that minimizes the number of big decisions that need to be made—

particularly big decisions that include changes in process or anything

that would need multiple stakeholders to sign off on and many rounds of

approvals to change.

Decisions that require consulting many stakeholders are obvi-

ously difficult and painful to manage. People will naturally want to

avoid them. Therefore, the more big decisions your proposal seems to

include, the more likely people are going to want to slow down or delay

it a quarter.

You may think that by giving projects fancy names, projecting budgets,

and settling staffing questions up front you are being diligent, and you are!

But you’re also making the project look like a series of big decisions, which

for audiences insulated from the day-to-day pain of legacy systems seems

too risky. Consider different ways of talking about the same project for dif-

ferent audiences. Some audiences will appreciate detailed planning, and

other audiences will appreciate a high-level approach.

90   Kill It with Fire

Look for the following when you need to prune the number of big

decisions that have to be made to move forward:

EXISTING PROGRAMS, PROJECTS, OR TECHNOLOGY    These are

the best off-by-one errors. Riding the coattails of an already approved

solution removes the need to seek out those approvals yourself.

ADVANTAGEOUS REGULATION    You can eliminate a big decision

by making it seem like it was already made, but you can also eliminate

a big decision by making it seem like the organization doesn’t have a

choice. Compliance, particularly around security, is a great place to

look, because those rules often come with specific deadlines when

they must be done or the organization loses certifications, funding,

and, potentially, clients.

AMBIGUOUS APPROVAL PROCESS    The saying “Ask for forgiveness,

not permission” is popular among the startup crowd, but let’s face it,

you’re better off asking for forgiveness if it’s believable that you might

have been acting in good faith. If you’re bypassing a well-documented

and well-known approval process, the outcome is less likely to end

favorably than when the process is ambiguous or nonexistent.

Protecting Momentum: Calculating
Opportunity Costs
Value add isn’t always a matter of technical outcomes. More often than

not, business outcomes provide a clearer path to prioritization. Business

outcomes could be profits, but if you’re working for a mission-driven

organization, business outcomes could also be people served or impact

observed. When running a multiyear modernization project, buy-in from

the business side is essential. You can’t rely on them understanding the

technical outcomes, so you should know how to illustrate the value of

business outcomes by calculating opportunity costs.

Building and Protecting Momentum   91  

For those not familiar with the concept, an opportunity cost is money

lost by not doing something because you have chosen another opportu-

nity instead. Typically, opportunity costs are expressed in expected prof-

its not realized, but in the context of legacy systems, we usually think of

opportunity costs in terms of money saved.

Opportunity costs are better as thought experiments than actual cal-

culations. If it were possible to calculate accurately how much time and

money we were going to spend on each potential approach to upgrading

an existing system (or upgrading it versus leaving it be and building new

features), maintaining legacy systems would be easy. But opportunity

costs are useful in getting people to communicate their assumptions and

build a case for why the organization should do what we want them to

do. To provide value, estimates of opportunity cost need not be accurate.

They need only provide insightful context of the trade-offs proposed by

a given decision.

Calculating opportunity costs isn’t just about making more profitable

decisions. It gives the team data with which to justify the moderniza-

tion activity to a wide variety of stakeholders. Investing in the health of

your technology makes sense to everyone only when the technology is

visibly failing, and by that point, the problem is much larger and much

harder to solve. Senior management tends to be skeptical of any kind of

cleanup activity—fearing that it will slow the organization’s velocity

unnecessarily.

My first big project at Auth0 was getting a handle on our notifica-

tions system. Auth0 was maintaining a shared email server for testing

and development purposes only. Nevertheless, customers occasionally

neglected to move on to a dedicated provider when going to produc-

tion even though plenty of free options were available. Customers were

rate-limited on the shared provider precisely because it was not intended

for production, but when they hit their limit, we dumped their email into

a retry queue so that they could be sent at a later point.

92   Kill It with Fire

We assumed—wrongly as it turned out—that customers would go

over their quota gradually, as a result of natural traffic growth. Had this

been the case, retrying email over time would have made sense. A handful

of email messages get delayed, and as those delays become more common,

it nudges the customer onto a dedicated provider instead. In reality, cus-

tomers were much more likely to catapult over the limit with activities

that would trigger email to all of their users—hundreds if not thousands

of emails all at once.

That created a situation where the retry queue would fill up to the

point where 20 workers would need hours of processing just to clear the

messages. It affected the performance of the service for everyone and set

off a page to whoever was on call—all over a bunch of email that most of

the time no one actually wanted delivered in the first place.

We decided to change the way rate-limiting worked so that instead

of retrying email, the shared provider would drop them when the limit

was exhausted. That was a lot of migration work, and not only did we

have to change the rate-limiting algorithm, but we also had to change

the technology that was doing the rate-limiting in the first place. Our

existing rate-limiting solution was in the process of being replaced by

another solution. We needed to change our architecture and then figure

out a backward-compatible strategy for our on-premises customers who

upgraded at a slower cadence than cloud customers.

All of this was a lot of work, and our motivation for investing in it was

very personal: when the retry queue filled up, it paged someone on our

team to go fix it. This was both annoying and disruptive. The interrup-

tion was made doubly frustrating by the fact that the official resolution

to this issue in our playbook was to drop all the email in the retry queue

anyway. It seemed pointless to ask a human to wake up at 3 AM to do

what a computer should be able to do automatically.

What we didn’t think about until we were in the middle of the

change is how much money not trying to send hundreds of thousands

Building and Protecting Momentum   93  

of pointless emails was going to save us. We got a certain number of

email messages per month from the company that ran the shared email

server for us. When we went over that limit, our account with this pro-

vider automatically bought 50,000 more emails for $20 and sent us an

alert letting us know it had done so. When we started rolling out this

change, we were receiving about 10 such alerts a day, or $200 in addi-

tional email. A single incident might cost us anywhere from $1,000

to $2,000.

When the changes went live, we literally saved the organization tens

of thousands of dollars just by getting rid of email that our customers

didn’t want sent in the first place. The whole project had been a huge

win, but the cost savings gave us political capital that we could spend

both to justify why we hadn’t spent that time adding new features and to

get buy-in for similar maintenance work later.

It can be tricky getting started with opportunity costs because the

number of potential opportunities to calculate can seem infinite. Remem-

ber that opportunity costs are thought experiments and rhetorical

devices. You don’t need to list the costs of everything your team might

be doing, just the activities that strengthen the case for what you want to be

doing. This means highlighting how activities with high prioritization

might be more expensive than the organization is assuming and describ-

ing in business-friendly language how much value there is to be gained by

doing things the way you’d like them to be done.

When looking for the right opportunities to compare against, con-

sider activities from these three general categories.

The Cost of Not Adding New Features
This cost typically is calculated by estimating profits or impact of new

features. It is larger in small organizations where the development team

may not be big enough to have broken out into distinct units. Shipping

a new feature with a small organization locks up a greater percentage of

94   Kill It with Fire

the total staff, which means they are not available to do modernization

work or contribute to other projects.

The pressure to delay maintenance work on legacy systems in favor

of new features and products is constant at most organizations. There’s

never a good time for it, although it always seems that if the organization

could just get through the latest challenge, things will calm down and

the cleanup can begin. To avoid endless procrastination, try to align the

new features with the goal state. For example, if migrating from a mono-

lith to services, you might want to use the new feature to identify the first

service to peel off.

The Cost of Not Fixing Something Else
Legacy systems rarely have only one thing wrong with them. Each step

in the modernization process is a decision between problems that could

be fixed with the same time and energy. I’ve already described vari-

ous methods for choosing what to fix and when. Opportunity costs are

really about selling the strategy up the chain of command. Doing this is

easier if the organization has defined service-level objectives (SLOs) or has

service-level agreements (SLAs). Both SLOs and SLAs equate performance

levels with consumer value. SLAs may go as far as defining a specific

monetary amount the customer can be reimbursed when performance

dips below a specific level.

SLOs and SLAs help the team prioritize fixes by how much pain the

problem is causing for users. They are a good thing to have even if you

feel confident that you won’t need to justify what you modernize and

when. But if you do have to justify your strategy, you should be able to

study historical data and project under what conditions a given system

or part of a system might violate its SLO. Often this is heavily influ-

enced by scale, so it’s a good opportunity to leverage the business side’s

ambition to your advantage: look at what level of growth the business

is expecting and calculate opportunity costs based on how that level of

growth will affect SLOs.

Building and Protecting Momentum   95  

The Cost of Not Deprecating in Favor of a Different Solution
This is a particularly difficult cost to calculate because deprecations do

not complete all at once. For a period of time during a migration or mod-

ernization, it’s likely that an organization will be maintaining both the

old solution and the modern one, especially if the new solution requires

code changes to be deployed. So, in addition to the cost of either pur-

chasing or developing the new solution, you have to factor in the cost of

decommissioning the old solution. How many teams does that affect?

What are they not working on while they make those changes? What is

the long-term maintenance burden of the old solution versus the new

one? Depending on whether the new solution is hosted/software as a ser-

vice (SaaS) or just a new custom-built tool, the considerations could look

very different.

6
COMING IN MIDSTREAM

S o far, this book has been operating under the assumption that you

are initiating the modernization effort at your organization. We’ve

considered strategy that assumes you’re on-site to do the planning in

the first place. The organization might have attempted to modernize

before you were employed there, but I’ve assumed that the current mod-

ernization effort is something you started. However, most moderniza-

tion efforts I’ve been involved with in my career have not looked like

this. Organizations tend to underestimate the amount of work and level

of investment modernization requires. An unfortunate consequence of

that assumption is that they do not seek out expertise until they are in

trouble.

In my career, the number of modernization efforts I have kicked off is

dwarfed by the number of modernization efforts I have parachuted into. I

would love to have the luxury of participating in the planning and assess-

ment phases, but rarely do technical leaders think that is necessary.

98   Kill It with Fire

This chapter describes what to do when you’re coming in midstream

and the project is already in trouble. Activities can get messy when you’re

attempting to change legacy systems, and this chapter is full of emer-

gency “break glass here” techniques for untangling the mess.

When a project takes months or years of sustained commitment, no

shortage of things can go wrong. In Chapter 3, I mentioned that most

modernization stories begin with failure. Coming in when plans are

already in motion and not going well limits your options. Pushing the

reset button and going back to the drawing board may do more harm

than good. A combat medic’s first job is to stop the bleeding, not order

a bunch of X-rays and put together a diet and exercise plan. To be effec-

tive when you’re coming into a project that has already started, your role

needs to adapt. First you need to stop the bleeding, and then you can do

your analysis and long-term planning.

Finding the Bleed

Of course, technology projects do not literally bleed; therefore, identify-

ing the most urgent issues can be a challenge. In this chapter, we dis-

cuss the situations I have seen the most often, but I want us to start with

some general guidance first.

Find responsibility gaps. There will always be a disconnect between

responsibilities formally delegated and actual responsibilities or func-

tionality. Conway’s law tells us that the technical architecture and the

organization’s structure are general equivalents, but no system is a

one-to-one mapping of its organization. There are parts of the system

with shared ownership, parts that no one is responsible for at all, parts

where responsibilities are split in unintuitive ways. When looking for

bad technology, debt, or security issues, the most productive places to

mine are gaps between what two components of the same organization

officially own.

Coming in Midstream   99  

Organizations tend to have responsibility gaps in the following areas:

●● So-called 20 percent projects, or tools and services built (usually

by a single engineer) as a side project.

●● Interfaces. Not so much visual design but common components

that were built to standardize experience or style before the orga-

nization was large enough to run a team to maintain them.

●● New specializations. Is the role of a data engineer closer to a data-

base administrator or a data scientist?

●● Product engineering versus whatever the product runs on. Dev-

Ops/site reliability engineering (SRE) didn’t solve that problem;

this just moved it under more abstraction layers. If you’ve auto-

mated your infrastructure configuration, great—who maintains

the automation tools?

When there’s a responsibility gap, the organization has a blind spot.

Debt collects, vulnerabilities go unpatched, and institutional knowledge

is gradually lost.

Study the cadence, topics, and invite lists of meetings. Too often,

meetings are maladapted attempts to solve problems. So if you want to

know what parts of the project are suffering the most, pay attention to

what the team is having meetings about, how often meetings are held,

and who is being dragged into those meetings. In particular, look for

meetings with long invite lists. Large meetings are less effective than

small meetings, but they do convincingly spread the blame around by

giving everyone the impression that all parties were consulted and all

opinions were explored. Meetings with ever-expanding invite lists sug-

gest something is wrong in that area of the project.

Other red flags around meetings include teams that are having plan-

ning sessions longer than an hour and teams where check-in meetings

are scheduled with less than 48 hours’ notice.

100   Kill It with Fire

Pay attention to the rhetoric of career-minded leaders. It’s harsh

to say it, but people react to a struggling project in basically two ways.

There are the people who roll up their sleeves and focus on helping, even

if helping means unglamorous work not usually part of their responsi-

bilities, and then there are the people who spend the time they could be

helping drafting excuses that explain why the failure is not their fault.

Large, messy, in-progress projects will likely have a mix of both people;

look for the second type. The problems they are running away from tend

to be the messiest ones.

Look for compounding problems. Coming in midstream means the

project hasn’t officially failed yet, and what people are getting wrong, they

are probably doubling and tripling down on. Projects are rarely doomed

by one critical error. It’s far more likely that the organization was drown-

ing in dysfunctional structures for months leading up to the failure.

All of these examples are places where natural human reactions

actively make the problem worse instead of better. Having unclear

responsibilities means teams feel like they are asked to pick up the slack

for someone else too often. They become self-righteous and start ignor-

ing tasks that aren’t part of their jobs as they see it, making the situation

worse. Meetings slow down work, which almost always leads to more

meetings. Career-minded leaders claim failure was beyond their con-

trol, implicitly blaming the team. They make their employees feel unsafe,

which encourages them to avoid the problem areas as well.

If a project is failing, you need to earn both the trust and respect of

the team already at work to course-correct. The best way to do that is by

finding a compounding problem and halting its cycle. If an organization

is having too many meetings, cut all of them and gradually reintroduce

them one by one. If career-minded leaders are damaging psychological

safety, start educating people about blameless postmortems and just cul-

ture. Talk to people and observe how the team behaves as a unit. When

you can, it is always better to set up someone else for victory rather than

solving the problem yourself.

Coming in Midstream   101  

The rest of this chapter describes various in-progress failures I have

seen and what we did to pull the project out of a death spiral.

Mess: Fixing Things That Are Not Broken

We’ve already looked at a number of reasons organizations try to fix

things that aren’t broken.

●● They assume new technology is more advanced than older

technology.

●● They aspire to artificial consistency.

●● They confuse success with quality.

●● They optimize past the point of diminishing returns.

The preeminent target of an organization’s desire to fix things that

are not broken is the monolith. A monolith in the context of software

engineering is a tightly coupled application that configures a variety of

functions and features so that they run on a single discrete computing

resource. Monoliths were a problem that web development invented.

Before the internet reached the scale that made distributed computing

possible, there was little reason not to design programs to run on one

machine. Lately, it seems like no engineer can bear to suffer a monolith

to live. Monolith is the ultimate dirty word. Engineers complain about

them endlessly. No one ever wants to admit to building one. Every suc-

cessful large technical organization seems to have at least one confer-

ence talk about the heroic multiyear campaign it staged to remove a

monolith.

But if monoliths are so awful, why do so many organizations end up

with them?

The opposite of a monolith is service-oriented architecture. Instead of

designing the application to host all its functionality on a single machine,

functionality is broken up into services. Ideally, each service has a single

102   Kill It with Fire

goal, and typically each has its own set of computing resources. The appli-

cation is created by coordinating the interaction of these services.

Building a product from the beginning with a service-oriented archi-

tecture is usually a mistake. Because you don’t have the proper product/

market fit figured out yet, integrations and data contracts become a

major pain point. A data contract is an implicit agreement written in

code between two services that must communicate with one another.

We call it a contract because both sides need to send and receive data in

the same format for the communication to work. If the server decides to

change what data it’s sending and the client is not updated accordingly,

communication between the services breaks down.

When a team is pivoting and iterating, when the feedback loop

between the customer and team is at its shortest, data contracts get broken

all the time. Features get added, removed, or moved around. Assumptions

get made and either validated or thrown out. Before organizations find

a product market fit, they can pivot in wild and unpredictable ways. For

example, YouTube started as a video dating service. Groupon started as a

platform for organizing social actions. Slack started as an online multi

player video game. Slack was actually the second time its founder had

started building an online game only to realize that the real product was

something completely different. His earlier startup, Flickr, had the same

origin story.

In general, the level of abstraction your design has should be inversely

proportional to the number of untested assumptions you’re making. The

more abstractions a given design includes, the more difficult changing

APIs without breaking data contracts becomes. The more often you break

contracts, the more often a team has to stop new work and redo old work.

When the product hasn’t even launched yet, forcing teams to redo work

over and over again doesn’t improve the odds of success.

That’s why monoliths are so great during the early stages of a product.

They are tightly coupled, but their complexity and level of abstraction are

low. When an engineer makes a change that breaks another part of the

Coming in Midstream   103  

system, she knows it immediately and has access to the code to fix the

problem she caused.

Once again, focus on the balance between complexity and coupling.

Complex systems have large surface areas. Every process takes more

steps, and every part needs its own team to handle its maintenance cor-

rectly. The downsides of complexity can be mitigated by running more

teams and facilitating communication and knowledge sharing between

them. If an organization is able to do that, it can achieve the benefits that

can come from making systems more complex. Well-built complex sys-

tems often allow for greater customization. They can operate at a larger

scale with greater flexibility.

Tightly coupled systems, on the other hand, achieve flexibility by

strategically breaking themselves. Every programmer has deployed at

least one cheap hack to get around an API or inheritance pattern, usu-

ally tacking on a comment that reads “Ugh, do this the right way later.”

Tightly coupled systems become messy because they accrue debt with

each workaround that is deployed. The downsides of tight coupling

can be mitigated with engineering standards dictating how to extend,

modify, and ultimately play nicely with the coupling. They can also be

mitigated by honoring the engineering team’s commitment to refactor-

ing on occasion. The benefits of tight coupling are that one person can

hold enough knowledge of the system in her head to anticipate behav-

ior in a variety of conditions. The architecture is simpler and, therefore,

cheaper and easier to run.

A system has a lifecycle. When it is new, it’s often run by a small

team and has much more to gain from being tightly coupled than it does

from being complex. Small teams building new things frequently throw

everything out and start over. Small teams have an easier time honoring

engineering standards because there are fewer people to bring to consen-

sus. Even when small teams are at big organizations, they tend to build

monoliths because the advantages of a monolith are pretty compelling

when you don’t know whether what you’re building will be successful

104   Kill It with Fire

and need to change things fast, even if your method of changing them is

poor. At small organizations, we find people are doing several different

jobs at once with roles not so clearly defined. Everyone in the same space

is using the same resources. In short, small organizations build mono-

liths because small organizations are monoliths.

Large organizations benefit more from complex systems because

they have robust operational units to support them. They have the teams

to run and maintain all the moving parts of the system—its platform, its

monitoring, and so on. They rarely throw everything out and start over,

because they operate at a scale where trying to do that would mean a

major migration. Large organizations do well when they transition their

monoliths to services, because the problems around communication and

knowledge sharing that need to be solved to make complex systems work

are problems that large organizations have to solve anyway.

But nobody starts a large organization, just as nobody gives birth to

a teenager. They grow up, and as they grow up, the ideal point on the

complexity–coupling spectrum shifts. Most monoliths will eventually

have to be rethought and redesigned, but trying to pinpoint when is like

trying to predict the exact moment you will outgrow a favorite sweater.

Some organizations will wait too long, and some will do it too soon.

Don’t believe anyone who tells you that ditching your monolith is the

solution to all your problems. Monoliths can and do scale. Sometimes

they are more expensive to scale, but the notion that it is impossible to

scale monoliths is false. The issue is that by still having a monolith, you

might be giving up benefits that could have a huge impact on operational

excellence.

Fixing things that are not broken means you’re taking on all the risks

of a modernization but will not be able to find the compelling value add

and build the momentum that keeps things going. Nontechnical stake-

holders will see time and money spent and not understand what the

point of it was. This demoralizes engineers and violates trust with the

team. Fixing the wrong thing makes it harder to secure the resources to

Coming in Midstream   105  

finish and makes it much harder to sell the organization on future mod-

ernization efforts that might be more necessary.

Figuring Out Whether Something Needs to Be Fixed
Treating monoliths as inherently bad pushes organizations into fixing

them when they’re not broken. I had a friend who used to say her great-

est honor was hearing a system she built had to be rewritten in order

to scale it. This meant she had built something that people loved and

found useful to the point where they needed to scale it. Most people in

technology do not go into building a system with that expectation. The

assumption is that the best way to build something is to build it in such

a way that it doesn’t need any significant changes for a long time. Opti-

mizing to minimize rewrites might seem like a sensible strategy, but if

not properly reined in, it invites behavior that ultimately makes systems

more brittle.

Neal Ford, director and software architect at ThoughtWorks, had

a saying I’m fond of repeating to engineers on my teams: “Metawork is

more interesting than work.” Left to their own devices, software engi-

neers will almost invariably over-engineer things to tackle bigger, more

complex, long-view problems instead of the problems directly in front

of them. For example, engineering teams might take a break from work-

ing on an application to write a scaffolding tool for future applications.

Rather than writing SQL queries, teams might write their own object

relational mapping (ORM). Rather than building a frontend, teams might

build a design system with every form component they might ever need

perfectly styled.

Decisions motivated by wanting to avoid rewriting code later are usu-

ally bad decisions. In general, any decision made to please or impress

imagined spectators with the superficial elegance of your approach is a

bad one. If you’re coming into a project where team members are fixing

something that isn’t broken, you can be sure they are doing so because

they are afraid of the way their product looks to other people. They are

106   Kill It with Fire

ashamed of their working, successful technology, and you have to figure

out how to convince them not to be ashamed so that they can focus on

fixing things that are actually broken.

Set the expectation that all systems need to be rewritten even-

tually. Engineers at the highest level write programs that have to be

revised. No one is smart enough to anticipate every new use case or

feature, every advancement in hardware, or every adjustment or shift

that might require code to be rewritten. What works for a large organi-

zation might suffocate a small one. Good technologists should focus on

what brings the most benefit and highest probability of success to the

table at the current moment, with the confidence of knowing they have

nothing to prove.

This requires getting consensus from engineering on what it means

to be broken in the first place. I’ve mentioned SLOs/SLAs before, and I

will point to them again: define what level of value a system needs to

bring to the user. If an ugly piece of code meets its SLO, it might not be

broken, it might be just an ugly piece of code. Technology doesn’t need to

be beautiful or to impress other people to be effective, and all technol-

ogists are ultimately in the business of producing effective technology.

But . . . What About Conventions?
Setting the expectation that all code will eventually need to be rewrit-

ten does mean that occasionally code needs to be rewritten to bring

it in line with modern conventions or to clear debt. The issue of what

is worth fixing is full of nuance. When I talk about not fixing things

that aren’t broken, I’m talking about not breaking up monoliths for the

sake of breaking up monoliths and not rewriting code to fit the newest

trends for the sake of looking good to outsiders. There are plenty of

times when changes needed for long-term performance are hard to jus-

tify with existing SLOs alone. Technical debt rarely effects performance

in a predictable way. A system could badly need a refactor but look fine

on a monitoring dashboard until the day it falls apart all at once. In

Coming in Midstream   107  

deciding whether to spend the time and money realigning a system

with a given convention, here are some other ways to think about value

add other than SLOs:

AGE    The older the convention, the more likely it is to be buried

deeply in various parts of a modern stack. Legacy systems that don’t

conform find that the tools and options available to them get smaller

and smaller.

JUSTIFICATION    Why do people who promote this convention pro-

mote it? Is it good security practice? Have there been well-documented

cases of the convention preventing serious failure?

ADVOCATES    Where is this convention coming from? Is it a big

organization many other organizations will have to do business with?

OPENNESS    Is the convention based on or tied to open standards?

Are people blocked from adopting this convention by licensing or

other proprietary issues?

When Does Breaking Up Add Value?
Since this section has spent a lot of time debunking the suggestion that

monoliths are inherently bad and need to be broken up, it makes sense to

close it with some advice on when to break up monoliths.

Monoliths can be scaled, but depending on how activity is grow-

ing, they may be difficult to scale efficiently. For example, if one part of

the system is using more resources than other parts, it makes sense to

change to an architecture that allows that piece to be given additional

resources while not affecting the other parts of the system.

More often than not, monoliths are broken up because of the way

the organization is scaling. If you have hundreds or even thousands of

engineers contributing to the same code base, the potential for miscom-

munication and conflict is almost infinite. Coordinating between teams

108   Kill It with Fire

sharing ownership on the same monolith often pushes organizations

back into a traditional release cycle model where one team tests and

assembles a set of updates that go to production in a giant package. This

slows development down, and more important, it slows down rollbacks

that affect the organization’s ability to respond to failure.

Breaking up the monolith into services that roughly correspond

to what each team owns means that each team can control its own

deploys. Development speeds up. Add a layer of complexity in the form of

formal, testable API specs, and the system can facilitate communication

between those teams by policing how they are allowed to change down-

stream interactions.

The Compounding Problem: Diminishing Trust

Large, expensive projects kicked off to fix things that are not broken

break trust with the nontechnical parts of the organization. It inconve-

niences colleagues, frustrates them, and sometimes confuses them. A

modernization effort needs buy-in beyond engineering to be successful.

Spending time and money on changes that will have no visible impact on

the business or mission side of operations makes it hard to secure that

buy-in in the future.

Unfortunately, software engineers are socialized around the idea that

their discipline is so difficult, nonengineers are incapable of understand-

ing even the most basic concepts. Resistance from the nontechnical

side of an organization tends to be dismissed as ignorance. That means

once trust is violated, a cycle is started. The harder securing buy-in for

modernization becomes, the more convinced engineering becomes that

the problem is their nontechnical colleagues’ intelligence and common

sense. Engineering stops even trying to speak to the values and needs of

the business side of the organization. The more out-of-touch their pro-

posals become with the organization’s needs, the less trust engineering

will command.

Coming in Midstream   109  

Solution: Formal Methods

Course-correcting a team that is fixing things that are not broken is a

long process. The only thing worse than fixing the wrong thing is leaving

an attempt to fix the wrong thing unfinished. Half-finished initiatives

create confusing, poorly documented, and harder to maintain systems. If

you’re coming in early enough that not much has been moved around, by

all means, stop the team from doing what it’s doing.

Otherwise, you have to stay committed. Your first task has to be get-

ting their initiative to a place where you can stop work without creating

a Frankenstein monster. Once you’ve figured out where that point is, the

next challenge is figuring out how to tack on value to the process so that

the organization can recover from its mistake stronger.

Monolith breakups and other large-scale redesigns offer an opportu-

nity to change process as well as change code. A silver lining in fixing

something that is not broken can be found in treating the fix as an

opportunity to experiment with and improve engineering practices. If

the organization lacks proper testing, take the opportunity to build out

and mature test suites. If the organization doesn’t have monitoring, con-

sider what tools might work for the new architecture. If the organization

has never done incident response or on-call rotations, use the creation of

new services to establish those practices.

If the organization does all of these things already, introduce formal

methods.

Formal methods are techniques for applying mathematical checks to

software designs to prove their correctness. In attempting to prove cor-

rectness, formal methods can highlight bugs that would otherwise be

impossible to find just by studying the code. The most accessible form of

formal methods is called formal specification. It consists of writing out the

design as a specification with a markup language that a model checker

can parse and run analysis on. These model checkers take the valid inputs

defined by the spec and map out every possible combination of output

110   Kill It with Fire

based on the design. Then they compare all those possible outputs to the

rules the spec has defined for valid outputs, looking for a result that vio-

lates the assertions of the spec.

As of this writing, formal methods are not commonly used by soft-

ware teams. The learning curve is steep, and resources for beginners

are practically nonexistent. The community of users itself is small

and skewed slightly toward academia. However, an engineering team

doesn’t need everyone to know how to write a spec to start using formal

methods. An organization can start with just one engineer who works

with other teams to draft and refine specs, the same way engineering

teams often have a small pool of designers they work with to draft and

refine UX.

Formal methods help engineering teams consider a broader array

of conditions and scaling factors. They also improve communication

between teams by giving everyone a reference detailing the design and

expected behaviors of a system.

If you can’t find anyone who can make sense of TLA+ syntax or Alloy

or Petri nets, one slightly easier way to begin introducing formal meth-

ods is with contract testing. Contract testing is a form of automated test-

ing that checks whether components of a system have broken their data

contracts with one another. When breaking up a monolith into services,

honoring these contracts or clearly communicating when they need to

be broken is essential to building, integrating, and maintaining a high-

performing system. Contract testing is not a form of formal specification

per se, but rolling it out follows roughly the same process. It requires

every endpoint to have a spec written in a specific markup language that

the contract testing tool can parse and check for inconsistencies.

Strongly typed languages sometimes can do contract testing without

any additional tools if repositories are set up correctly. For example, if the

service owner is responsible for writing the endpoints, the client librar-

ies, and the mocks of the service for testing, they can test for breaking

changes on their own.

Coming in Midstream   111  

Mess: Forgotten and Lost Systems
Large organizations lose systems. I don’t mean the systems go down; I

mean the organizations forget they have them and occasionally lose the

records of their existence. Entire product lines are designed to handle

this problem: searching for VMs on networks, transversing connections,

inspecting dependencies, and managing inventory. It’s amazing how

common it is, because this seems like something that just shouldn’t

happen. How can an organization continue to spend money on some-

thing it does not know exists?

When an organization is in startup mode, it typically has a small engi-

neering team that handles basically everything. Groups then constantly

break off and reform as the architecture is built out. At some point, an

organization likely will start to create divisions and delegate ownership,

but that’s a game of musical chairs that will often leave some parts of the

architecture without a seat when the music stops.

Software without maintainers is a key place to find all kinds of mon-

sters, but how do you find what is unowned and forgotten?

One potential approach is to trace the activities of the engineers who

were around when things were small. In those early days, strong engi-

neers tend to hop from project to project, applying themselves wherever

urgency and interest coincide. Not much thought is likely given to tran-

sition planning, because the software is new and would be stable for a

while without much in the way of maintenance. If the software is par-

ticularly well made, it might slip into obscurity, quietly humming away

completely unnoticed because it has never seemed to need maintenance

before. Trace the movements of those early engineers as the software was

originally being built. What did they touch, and who owns it now?

Another option is to follow the money. Forgotten services still con-

sume resources the organization must pay for. At the least, some record

of those transactions should exist. If you’re using a commercial cloud

provider, start tagging your instances automatically. Doing so will high-

light images that are unaccounted for.

112   Kill It with Fire

The Compounding Problem: Crippling
Risk Avoidance
When an architecture is so complex or so old that entire pieces of it are

forgotten, engineers can feel as if they are working in a minefield. No one

plans effectively for the unknown unless they plan effectively for failure.

Without the ability to accept and adapt to failure, the unknown traps

individual contributors in a catch-22. Changing a system with unclear

boundaries and missing components is likely to trigger an outage. Not

taking action increases the odds of failure eventually, but not failure that

can be traced to one particular decision or action.

Engineers make decisions that are worse for the health of systems

overall but are less likely to trigger outages that they can be blamed for as

individuals. Maintaining the system becomes a game of hot potato, with

every passing year increasing the risks to greater and greater extremes.

Although many of the engineers caught in this trap understand they are

choosing the worst possible outcome for everyone, the level of complex-

ity of the system makes it impossible for them ever to feel like they know

the system well enough to change it safely.

Solution: Chaos Testing
Ultimately, you must accept that it might not be possible to track down

and account for all systems. Even when you find them, figuring out

exactly what they do could be difficult. If you’re coming into a project

with an organization that has forgotten systems, you’re probably deal-

ing with a team that is paralyzed by this reality. The engineers might

have gotten stuck in the planning phase as they try fruitlessly to figure

out whether the latest inventory is correct. They are probably scared of

deploying any changes at all to any system, for fear of finding another

forgotten system that’s also a critical dependency.

You have to be comfortable with the unknown. You can do that by

emphasizing resilience over reliability. Reliability is important, but too

Coming in Midstream   113  

many organizations use reliability to aim for perfection, which is the

exact opposite of what they should be trying to accomplish. Site reli-

ability engineers typically talk about performance in terms of number

of nines—that is, whether a service is up and running 99.9 percent of

the time (three nines), 99.99 percent of the time (four nines), or 99.999

percent of the time (five nines). Since these numbers are calculated as

part of SLAs and since SLAs are written into the contract between the

organization and its customer, nontechnical people in the organization

tend to misunderstand the value of the number of nines. More nines are

not always better.

Five nines means a service has fewer than 5.25 minutes of downtime

per year. So if something goes wrong, an engineer has only a few minutes

to wake up, log on, diagnose, and fix it. And even if she is capable of pull-

ing that off, failure can happen only once a year. A former colleague of

mine and an experienced engineer from Google used to like to say, “Any-

thing over four nines is basically a lie.” The more nines you are trying

to guarantee, the more risk-averse engineering teams will become, and

the more they will avoid necessary improvements. Remember, to get five

nines or more, they have only seconds to respond to incidents. That’s a

lot of pressure.

SLAs/SLOs are valuable because they give people a budget for fail-

ure. When organizations stop aiming for perfection and accept that all

systems will occasionally fail, they stop letting their technology rot for

fear of change and invest in responding faster to failure. That’s the idea

anyway. Some organizations can’t be talked out of wanting five or even

six nines of availability. In those cases, mean time to recovery (MTTR) is a

more useful statistic to push than reliability. MTTR tracks how long it

takes the organization to recover from failure.

When we encountered systems that had been forgotten and we

couldn’t figure out what they were doing, we would usually just turn

them off and see what happened. For an older generation of technolo-

gists, this seems reckless, but modern-day engineering teams refer to this

114   Kill It with Fire

practice as chaos testing. Resilience in engineering is all about recovering

stronger from failure. That means better monitoring, better documenta-

tion, and better processes for restoring services, but you can’t improve

any of that if you don’t occasionally fail.

The rationale around provoking failure deliberately is that if some-

thing unexpected does happen, it happens when everyone is on high

alert and at a time the organization scheduled specifically for that pur-

pose. When we turned off a system, we waited for someone to complain.

That person was either the system owner or the owner of a downstream

dependency, but either way, we ended the experiment with more infor-

mation about what the system was doing than we started with.

If no one complained, we tended just to leave the system off and

move on. Having one less component to modernize was still a win. Do

we sometimes find out months later that the system we turned off was in

fact doing something essential? I won’t lie; it does occasionally happen,

but that’s why investing in testing and monitoring is so important for

systems at scale of any age. If something is important enough to build

a component specifically to do it, there should be some way of alerting

system owners when it doesn’t happen.

Mess: Institutional Failures

If a bad pattern is used in one part of a system, it’s everywhere in the

system. Sometimes an organization doesn’t know that string concate-

nation on database queries is a bad idea (for example). More likely, the

bad pattern you’re seeing is a result of shifting norms around technical

best practices. Remember the days when Facebook thought HTTPS could

be optional? What would have been secure practice a few years ago is

already riddled with easily exploitable holes.

It stands to reason, therefore, that if you have a piece of software no

one has put much thought into maintaining for a few years, there are

going to be problems, and those problems are going to be systemic. They

Coming in Midstream   115  

will be patterns repeated throughout the system. What reason would the

engineering team have to do things differently?

Lately, I’ve been seeing this kind of rot taking hold within months,

rather than years. Particularly on security issues, the turnaround between

secure and cracked seems to grow shorter and shorter all the time. If no

one has touched something in six months, that is a good place to start

the search for problems.

Once you’ve found a problem, the next step is to determine whether

it’s a pattern or just a mistake. Security vulnerabilities from out-of-date

dependencies are obviously not a pattern. Accidentally removing some-

thing that was once in the code is not a pattern. Not escaping inputs, stor-

ing secrets in plaintext, returning more information than the requester

needs—those are patterns.

Code-checking software can sometimes be useful in tracking down

all the instances of a bad pattern. But some problems do not reveal them-

selves easily and require actual human beings. If you’ve found such a

problem, the first thing to do is define the context around the code. What

is it doing? What type of requests trigger it, and what processes and ser-

vices does it call? The nice thing about patterns is that if you know their

context, you can predict them. If a piece of bad code calls a database, the

natural place to look for other pieces of bad code is other places that call

that database.

In the worst-case scenario, the problems cross application boundar-

ies. Part of analyzing the context of a bad pattern should be its provi-

dence. In other words, who built this thing? If the same team built two

applications at about the same time, it’s unlikely completely different

development practices were used.

The Compounding Problem: No Owners

The trouble with systemic issues, whether they’re in the code base or the

culture, is that no one actually owns them. If they affect everyone and

116   Kill It with Fire

everyone participates in them, the only people with the authority to fix

them are the people the least equipped to do so. A CEO or cabinet sec-

retary isn’t going to have much luck neglecting their responsibilities in

order to dig into implementation issues of one system, no matter how

large or critical. Such a leader could delegate the responsibility to a more

tactical subordinate, but that appointee would likely find themselves

fighting endless political battles.

Problems that impact multiple organizational units require coordi-

nation across those boundaries to fix. The more importance an organiza-

tion gives those boundaries—building budgets and hiring cycles around

them—the more people at the top of those units will police their bound-

aries. This sets up political battles that are often self-reinforcing. Leaders

have their fiefdoms. They fought hard for the resources they have. If they

reroute even a small portion of those resources to institutional problems

while their peers ignore the problem and the problem is not solved, those

resources could be permanently forfeited. When there is no precedent

for cross-functional collaboration, who will take on the risk of being the

first mover?

Solution: Code Yellow

Systemic problems almost always appear midstream. When we find

them, I like to document these issues for the wider organization as BOLOs

(for be on the lookouts). We send out a short announcement explaining the

problem in plain English, pointing to specific examples we have found

and establishing a point of contact on our team for other teams to reach

out to if they find similar issues. If the problem is particularly serious, we

will set up short talks about the issue, demonstrating what the bad code

looks like, how to recognize it, and describe appropriate and inappropri-

ate fixes. Sometimes we reach out to other teams specifically.

Broadly, these techniques are part of a methodology called Code
Yellow, which is a cross-functional team created to tackle an issue

Coming in Midstream   117  

critical to operational excellence. The term Code Yellow refers both to

the team and the process that governs the team’s activities. This was

a practice developed at Google to handle issues that were beyond the

scope of what any one part of the organization owned. And unlike other

processes at Google, it didn’t end up documented and commented on

in a thousand different management books, so the only people who

seem to know what a Code Yellow is or how to run one are former

Google people or individuals trained by former Google people. It has

spread to other engineering organizations through oral tradition in

that way.

The purpose of a Code Yellow is to create momentum. When a

legacy system has performance, stability, or security issues that are

both systemic and entangled with other issues, it can be overwhelm-

ing and demoralizing. Nobody makes things better, because everybody

becomes distracted by the total volume of problems. No single improve-

ment feels like it will make enough of an impact to turn the tide.

Code Yellows have the following critical features that ensure their

success over other project management approaches:

The Code Yellow leader has escalated privileges. The leader gets

to commandeer any and all resources needed for the Code Yellow effort.

This includes people, conference rooms, offices, and so on. The leaders can

pull these resources off of other teams without approval from the normal

chain of command and without lengthy explanation or discussion.

The leader serves as a central point of contact for the effort. Code

Yellow issues are often both systemic and sensitive in nature. The organi-

zation may not know the full scope of the issue when declaring the Code

Yellow. By creating a central point of contact, teams across the organiza-

tion can refer issues to the Code Yellow leader and receive clear and spe-

cific guidance. Unrelated issues can be diagnosed and dispatched easily.

The team is small. Team composition may change as the leader pulls

in experts from other teams and releases them, but the size of the team at

any one point in time stays less than eight people. Those people should

118   Kill It with Fire

be able to implement solutions; they are not simply representatives from

other teams.

 The team is focused. When assigned to a Code Yellow, team mem-

bers are relieved of all other roles and responsibilities so they can focus

their energies 100 percent on the Code Yellow.

The Code Yellow is temporary. Before declaring a Code Yellow, the

organization should set success criteria. At what level of improvement

is the situation no longer critical and the remaining work can be placed

on the road maps of existing teams with proper prioritization? Code

Yellows can last for months, but they should not run for quarters. The

temporary nature of a Code Yellow is what helps conquer the politi-

cal rivalries that otherwise make systemic problems harder to solve. A

Code Yellow guarantees that only resources that are urgently needed

will be commandeered and that they will be returned as soon as the

crisis is over.

An issue warrants a Code Yellow if it is urgent and the scope is

beyond what one cohesive unit of an organization can handle. That usu-

ally means a security or a system reliability problem. Occasionally Code

Yellows can be used for more nuanced issues that affect the organiza-

tion’s overall competitiveness. In 2008, Google called a Code Yellow after

internal studies demonstrated how latency negatively affected users’

long-term behaviors:

One might think that the minuscule amounts of latency involved in the
experiment would be negligible—they ranged between 100 and 400 mil­
liseconds. But even those tiny hiccups in delivering search results acted
as a deterrent to future searches. The reduction in the number of searches
was small but significant, and were measurable even with 100 milli­
seconds (one-tenth of a second) latency. What’s more, even after the
delays were removed, the people exposed to the slower results would take
a long time to resume their previous level of searching.

[. . .]

Coming in Midstream   119  

This Code Yellow kicked off at a TGIF where Hölzle metered the perfor­
mance of various Google products around the world, with a running
ticker on the big screen in Charlie’s Café pinpointing the deficiencies.
“You could hear a pin drop in the room when people were watching how
stunningly slow things were, like Gmail in India,” says Gabriel Stricker,
a Google PR director.1

In 2010, another Code Yellow was called to deal with the aftermath

of Operation Aurora, a Chinese government cyberattack that rooted

Google’s corporate network and allowed Chinese intelligence to steal

information.

In 2015, the Chromium team (the open source project that backs

Google Chrome) called a Developer Productivity Code Yellow to improve

performance so that it would be easier to attract and retain contributors.

All of these are critical issues, but they all look different. They have

different scopes. Only one presented itself as a traditional crisis. But in

each case, the problem would have been difficult for a single team or sol-

itary division to solve. By building a small, empowered team to start off

the response, Google was able to create focus and momentum that made

impossible problems seem solvable.

Code Yellows end when the issue is out of the critical stage, not when

the problem is fully resolved. Part of the Code Yellow should be develop-

ing a plan for executing on long-term improvements, upgrades, and devel-

opment work. How is post–Code Yellow work assigned? Who holds people

accountable? The composition of the Code Yellow team should reflect

this; if the long-term work will involve specific teams, members of those

teams should be part of the Code Yellow. At the end of the Code Yellow,

those members return to their teams and continue the Code Yellow work

as part of their regular road maps.

1	 Steven Levy, In the Plex: How Google Thinks, Works, and Shapes Our Lives (New York:
Simon & Schuster, 2011).

120   Kill It with Fire

It’s worthwhile for leadership to have a high tolerance for risk when

defining the line of criticality. Code Yellows become less effective the

longer and less urgent the work becomes. Having a good plan of how

the work will be completed once normal status is restored and holding

people accountable produces a better outcome than depending on a

small elite team to save you.

Calling a Code Yellow
Code Yellows are declared by the lowest-level leader, not the highest. They

should be declared only by leaders who have authority over all the affected

parts of the organization. In a small organization, Code Yellows are usu-

ally called by someone very senior, but as the organization grows, this

practice becomes inefficient and bureaucratic. By granting the authority

to the lowest-level leader with authority over all affected areas, the orga-

nization is able to continue to move quickly in response to critical issues.

In other words, if the problem is an engineering issue that spans

teams under multiple directors, the person with the authority to call a

Code Yellow is the vice president of engineering to whom those directors

report. If the issue also involves teams of another VP, the person with the

authority is one level up from the VPs.

Sometimes the scope of a Code Yellow changes to affect a larger part

of the organization as the team uncovers more details. In that case, it

is not customary to relitigate the decision to call the Code Yellow itself,

although some adjustments to communication strategy and success cri-

teria may be warranted. Status meetings may be expanded to include

leaders from other groups, for example.

Code Yellows are not generally called by engineering managers or

directors because the scope of their field of influence should be small

enough to manage the problem via other project management strate-

gies. Code Yellows are for systemic problems; a problem that fits entirely

within the domain of a single engineering manager without touching or

affecting any other group is not systemic.

Coming in Midstream   121  

Running a Code Yellow
The Code Yellow leader plays a similar role to that of an incident com-

mander, assigning tasks to team members and serving as the final

decision-maker. They need to have enough technical knowledge and

implementation experience to do so with confidence. They also need

to be able to devote 100 percent of their attention to the Code Yellow.

For these reasons, senior leaders are usually a poor choice to run a Code

Yellow. Clearing their calendars to focus on a Code Yellow blocks other

important things in the organization. They might not understand how

the product or architecture works with the detail necessary to make

quick decisions. However, the leader need not necessarily be from engi-

neering. Product managers can make excellent Code Yellow leaders, as

can staff engineers and principal engineers.

Ideally, the Code Yellow leader should have enough experience with

the organization to know who the experts are, which teams own which

parts of the product, and so on and so forth. This allows them to keep

the team small and limit the amount of discussion around identifying

resources.

When declaring a Code Yellow, it’s important that the wider orga-

nization be made aware of it. If the organization is large, it may not be

necessary to broadcast an announcement about the Code Yellow to all

employees, but every team that might have relevant information or

resources that will be reassigned in the Code Yellow needs to know. This

helps smooth the path for the leader when he or she approaches other

teams.

Because Code Yellows tend to be sensitive, it’s not necessary to pro-

vide a great deal of detail in the announcement. If the Code Yellow was

triggered by issues, tickets, or discussions that are accessible to everyone,

the announcement should link to those internal conversations for ref-

erence. Otherwise, the Code Yellow announcement can just define the

scope as it is known at the time (for example, “We’re declaring a Code

Yellow on application security”).

122   Kill It with Fire

The Code Yellow announcement must clearly identify who the leader

is, generally with a statement like “John Doe may reach out to you about

this.”

Part of the leader’s responsibility during a Code Yellow is handling

communication about the Code Yellow, which includes keeping lead-

ership briefed on progress. Although Code Yellows can be stressful, the

more time the leader spends in status update meetings with senior lead-

ership about the Code Yellow, the less time that person spends working

on resolving the Code Yellow.

Daily 5- to 15-minute standup calls strike a happy medium but are

not required. Some organizations will create either a physical or remote

“war room” where the Code Yellow team members operate. If the orga-

nization’s monitoring tools are robust enough to handle it without sig-

nificant engineering effort, setting up dashboards to track key metrics

around the Code Yellow can help keep everyone focused.

Mess: Leadership Has Lost the Room

Losing the room is a sports term. It means a coach has lost the respect

of his or her players. The team, instead of following orders and working

together, struggles to self-organize.

This book spends a lot of time discussing value and momentum

because success with legacy modernization is less about technical

implementation and more about the morale of the team doing the mod-

ernizing. So, what can you do if the team you’re taking over is so demor-

alized they won’t listen to you long enough to exercise other techniques

presented in this book?

People are often too quick to equate morale issues with character

flaws. Incentives play a much larger role in who’s effective at an organi-

zation than some fanciful notion of their character. Organizations that

refuse to take responsibility for the situations in which they put their

own employees struggle to achieve operational excellence. They discover

Coming in Midstream   123  

they possess a unique ability to find and hire the few bad apples in a pool

of hundreds of candidates. They watch talent with options walk away

and complain about the lack of loyalty, integrity, or mental toughness.

Remember, no one wants to suck at their job. Popular culture sells the

myth about lazy, stupid, uncaring bureaucrats. It’s easy to dismiss people

that way. Buying into the idea that those kinds of problems are really

character flaws means you don’t have to recognize that you’ve created an

environment where people feel trapped. They are caught between con-

flicting incentives with no way to win.

An organization doesn’t have to be part of the government to be a

bureaucracy. When a leader has lost the room, it is usually because the

organization has pushed the engineering team back into a place where it

is not possible to succeed. It’s important not to lose sight of the element

of bad faith in this outcome. Teams don’t reject their leaders because a

project fails or even because a project fails multiple times. Teams reject

their leaders when they feel that success was snatched from them. Either

they made a real contribution that was ignored or credited to someone

else, or their efforts to achieve operational excellence were sabotaged by

the leadership in the organization.

Sometimes you can restore trust and bring a team back from the dead

just by changing the scenery. Remove old leaders when teams lose faith

in them and replace them with new leaders who will gain their trust

rather than assume they have it.

But the longer a situation of bad faith is allowed to continue, the

deeper the psychological roots grow. The lack of trust in an organiza-

tion and its leadership can diminish the trust a team has in themselves.

Being betrayed by your own leadership is traumatic. One of the ways

people process that trauma is by wondering if they deserved it. Removing

rejected leaders might solve superficial problems, but it doesn’t restore

teams back to excellence.

People without confidence self-sabotage. They create self-fulfilling

prophecies and display signs of learned helplessness. For example, I had

124   Kill It with Fire

a team once that experienced a high rate of failed deploys, triggering

some problem in production at least once a week that required a roll-

back. The organization had also been leaning on them to produce more

and more while cutting their staff and restricting their resources. I took

over that team after their old manager was fired, and it was obvious from

our first few conversations that the problem wasn’t their engineering

skills. They had been asked to improve a piece of legacy technology that

had not been updated in a while. It had almost no testing, no monitoring,

and a complex deploy process.

The reason the legacy system had not been updated in a while was

because the organization had been regularly refusing requests to staff a

team for the task or invest anything significant in resources. To top it off,

the whole infrastructure for this system that processed millions of trans-

actions had been maintained for years by one person.

The team members were completely demoralized. They had lost faith

in their ability to ship code safely, so they backed off larger, more creative

solutions to technical challenges that might have helped them. They

became resigned to their situation, as if outages were inevitable.

They didn’t test things. When things went wrong, they didn’t do a

thorough investigation and confirm what the failure points had been.

They avoided those things not because they didn’t understand that they

were important, but because they had lost faith in their own abilities.

After so many failures and years of denied resource requests, they felt

other people in the organization assumed they were bad engineers and

were desperate to avoid confirming that.

That scenario might sound counterintuitive. If they were so scared

of failing, they should have tested more, investigated deeper. Why would

they stick with a process that they knew was bad and would increase their

likelihood of failure? Like Schrödinger’s cat, if they don’t have a proper

process, they could be both alive and dead at the same time. If they don’t

have a proper process, they never have to confront the potential reality

Coming in Midstream   125  

that they are just bad engineers. It is always possible that a better process

would fix all their problems.

However, if they implemented a better process and still failed anyway,

they would lose this mental lifeline they were hanging on to. The team

doomed itself to failure because they were afraid of learning that the

problem the whole time was them—not their process, not the organiza-

tion’s denial of resources, not the inexperienced manager.

The Compounding Problem:
Self-Sabotaging Teams

Confidence comes before success. Success rarely creates confidence.

When teams don’t have confidence in themselves, they will always find

something to debunk successful outcomes. They got lucky. The outcome

wasn’t as good as it should have been or could have been had another

team been in charge. The successful outcome did not outweigh past

failures.

When people can’t accept successful outcomes, they tend to avoid

success completely. They self-sabotage because the status quo is safe.

Confidence problems are always compounding. The only thing that

convinces people to stop belittling themselves is knowing they have the

trust and acceptance of their peers.

Solution: Murder Boards

A murder board is a technique I picked up in government and repurposed

for engineering teams. In government, we used them to prep people for

Congressional testimony or confirmation hearings, but applying them

to a technical challenge was not completely unheard of. NASA’s Ames

Research Center uses them for satellite launches and requesting funding

for research.

126   Kill It with Fire

The way a murder board works is you put together a panel of experts

who will ask questions, challenge assumptions, and attempt to poke

holes in a plan or proposal put in front of them by the person or group

the murder board exercise is intended to benefit. It’s called a murder

board because it’s supposed to be combative. The experts aren’t just

trying to point out flaws in the proposal; they are trying to outright

murder the ideas.

Murder boards are one of those techniques that are really appropriate

only in specific circumstances. To be a productive and beneficial exercise,

it is essential that the murder board precedes an extremely stressful event.

Murder boards have two goals. The first is to prepare candidates for a

stressful event by making sure they have an answer for every question,

a response to every concern, and mitigation strategy for every foreseeable

problem. The second goal of a murder board is to build candidates’ confi-

dence. If they go into the stressful event knowing that they survived the

murder board process, they will know that every aspect of their plan or

testimony has been battle-tested.

I scheduled a murder board for my team with the bad process because

I understood that before anything else could get better, the team mem-

bers needed to learn that their colleagues in engineering did not look

down on them. They needed to see that everyone wanted them to suc-

ceed, that their past experience of having goal posts moved, resources

promised and then taken away, and actions taken in bad faith was over.

They also needed to overcome their fear that they weren’t good

enough to improve their process or that an improved process wouldn’t

affect their odds of success. I asked them to write out their plan to test,

deploy, and monitor one key upcoming change and be prepared to defend

it. They were not thrilled by the idea of doing a murder board. It took me

a while to persuade them the exercise could be good. Part of the reason

they worried was they felt this exercise would invite colleagues to micro-

manage them, talk down to them, or treat them like they were stupid and

could not be trusted.

Coming in Midstream   127  

I argued that this was an opportunity to prove to everyone how dif-

ficult their engineering challenge was. They would leave the murder

board with a new process. If the new process still failed, everyone would

know it was vetted by the best engineers at the organization and that

they couldn’t have done any better. In this way, I used the murder board

to resolve their fear of opening Schrödinger’s box. Failure under a better

process would not prove they were bad engineers. That process had sur-

vived the murder board and still failed.

To accomplish those goals, it is essential that both sides of the murder

board know that the purpose of the exercise is to make the candidate

stronger. There must not be any doubt that everyone is on the same team,

working for the candidate’s benefit. Criticism should be tough, nitpicky,

and unforgiving but delivered only if it is relevant to the stressful event to

come—in this case, a deploy. For that reason, we don’t do murder boards

when there is no upcoming stressful event to ground them.

It is useful to set some boundaries with the board. We do not use the

murder board space to dredge up old failures or grudges. We do not use

the murder board space to put people down or insult them. We don’t use

it to make grand speeches. The board can ask questions, point out flaws,

or provide hypothetical situations. They can provide detailed explana-

tions to elaborate fully on a problem they want to highlight, but they

should avoid doing so and let team members speak in their own words

as much as possible. Most important, the board’s commentary should be

exclusively negative, even if there are strong advantages to the plan being

presented. Murder boards build confidence because they are survived.

Stopping the Bleed

The techniques discussed in this chapter are all about transitioning trou-

bled projects to a state where problems are not compounding in cycles.

If the organization is making changes that will not provide enough value

to justify their expense, boost the value of those changes by turning them

128   Kill It with Fire

into a vehicle of better engineering practices. If the organization is par-

alyzed by missing information and unknown complications, promote

resilience and eliminate the fear of failure. If problems extend beyond

what any one team can solve by itself, allow the organization to tempo-

rarily reorganize itself around the problem. If teams are demoralized to

the point where they are hurting themselves, challenge other parts of the

organization to contribute to their success.

Legacy modernization projects do not fail because one mistake was

made or something went wrong once. They fail because the organiza-

tion deploys solutions that actually reinforce unsuccessful conditions. If

you’re coming into a project in the middle, your most important task as a

leader is figuring out where those cycles are and stopping them.

7
DESIGN AS DESTINY

D esign is not about making things look pretty.

Many software engineers I’ve worked with have never consid-

ered this fact before it was pointed out to them. It’s an easy mistake to

make. The most noticeable output of design thinking is packaging—how

we speak about things, how something looks, what features go where,

and how features behave. When we consider the end results, designers

seem most effective when relegated to polishing up a product in the final

stages. We do ourselves and our teams a disservice when we dismiss the

toolkit of a designer in this way. Design is critical to making good tech-

nical decisions. The US Army/Marine Corps Counterinsurgency Field Manual1

put it best when it advised soldiers:

“Planning is problem solving, while design is problem setting.”

1.	 The U.S. Army/Marine Corps Counterinsurgency Field Manual (Chicago: University of Chi-
cago Press, 2007).

130   Kill It with Fire

Problem-solving versus problem-setting is the difference between

being reactive and being responsive. Reactive teams jump around aimlessly.

Setbacks whittle away their confidence and their ability to coordinate.

Momentum is hard to maintain. Responsive teams, on the other hand,

are calmer and more thoughtful. They’re able to sort new information as it

becomes available into different scopes and contexts. They’re able to change

approaches without affecting their confidence, because design thinking

gives them insight into why the change happened in the first place.

With any large, complex project, odds of success are improved if a

team can frame the problem and adjust to new information. When done

well, problem-setting frees up all members of the team to act autono-

mously, using their intuition and judgment. At a minimum, problem-

setting keeps everybody on the same page about the project’s goals and

what success looks like. Legacy projects that maximize the impact of

design thinking don’t just modernize, they innovate.

If those statements sound familiar, it’s because I’ve already

described several design exercises for problem-setting in earlier chap-

ters. In Chapter 2, I discussed how working from familiar interfaces

increases the likelihood of technology being adopted. In Chapter 3, I

explained how to map a system in terms of complexity and coupling.

In Chapter 5, I introduced troubleshooting difficult technical conver-

sations with scoping. All of these were design exercises. Now it’s time

to dive deeper and explore some variations on the problem setting

approaches I’ve already covered.

The first part of this chapter focuses on applying design techniques

to technical decision-making: how to structure technical conversations,

scope problems, and come to a consensus.

The second part of this chapter focuses on using design techniques

to align incentives. In the previous chapter, I mentioned how conflict-

ing incentives can doom projects and demoralize teams; this chapter

describes how to figure out what the incentives are within the organiza-

tion and how to position teams for success given that information.

Design as Destiny   131  

Designing Technical Conversations

Chapter 5 introduced the concept of scope as a solution to avoid unpro-

ductive meetings, but in reality, the process of managing a major mod-

ernization is all about manipulating scope.

Scope is determined by what problem you want solve, but few

problems exist completely independent from other factors. Deciding

which factors actually have influence over the success or failure of that

marquee problem and which do not requires thorough and regular feed-

back. You will have to become adept at collecting data because the factors

that can complicate a modernization project are many. They include the

historical context, the technical constraints, the skills available through

human capital, and internal politics.

On top of that, some of the information delivered to you by those

feedback loops will be incorrect, or you will interpret them incorrectly.

The simplest form of design exercise is to talk to your user. Doing that is

better than doing nothing, but in unstructured conversations, the quality

of the feedback can vary. Sometimes users don’t know what they want.

Sometimes the user and the researcher use the same words to mean

different things. Sometimes the power dynamics between the user and

the person conducting the interview are so great, the user tells the inter-

viewer what he or she wants to hear.

Design thinking changes the way we address that challenge. It high-

lights how we ask, who we ask, and who does the asking as determining

factors in what information comes to the surface and gets discussed in

the first place.

Don’t underestimate the role social dynamics have in skewing the accu-

racy of your information. We know that people behave differently when

they are being observed. We know that people tend to be conflict-averse

and go along with crowds. We know that not every voice on an engineering

team carries the same weight. Design exercises can succeed where normal

technical conversations fail because they account for those influences.

132   Kill It with Fire

If we think of the average technical conversation as being adversarial

in nature with individuals either proposing solutions or challenging the

ideas of others, team members have plenty of opportunities to engage

in unproductive behavior. What makes them look smart in front of the

group won’t necessarily translate to good technical strategy.

But with design, we can change the path to winning the argument.

During a normal team conversation, individual members are looking

either to increase or to maintain their status among the group. And, what

increases their status? Shooting down the ideas of others. Demonstrating

their ability to see some critical flaw everyone else has missed. Develop-

ing a brilliant solution. Of those options, developing a brilliant solution

is the most difficult to accomplish. Shooting down other people’s ideas is

usually much easier. So, environments where team members are jockey-

ing for status can overselect for this behavior.

Now, imagine that we started the conversation by telling the team

we would give them points for coming up with solutions that used a

specific piece of technology. The amount of time spent shooting down

ideas would plummet as everyone focused on curating the longest list of

potential solutions.

That’s the value of design. When we design our conversations, we turn

them into games. We redirect the energy of team members into provid-

ing more and better answers instead of simply being right and their col-

leagues wrong.

How to Run a Design Exercise

My goal in including a chapter on design in this book is not to turn

software engineers into designers. I’m skeptical of the habit of techni-

cal people to assume they can pick up disciplines on the fly that others

have spent years cultivating and studying. I believe that technical people

should focus on bringing technical expertise to the table and seek out

other experts to complement their skills. Therefore, I encourage you to

Design as Destiny   133  

incorporate design thinking into your process by hiring a designer or,

even better, consulting the designers you already employ.

That being said, it is useful to understand how design thinking works.

Design exercises come in various shapes and sizes, but they share these

four distinct phases:

WARM-UP    The warm-up creates a break from the distractions of

everyday life so that the participants in the exercise are focused on

the task at hand. The simplest warm-ups are listing a few sentences

introducing your topic/goal/intention, but more active and compli-

cated exercises might devote more time and energy to warming up.

Posing a simple question for group discussions, pair work, or polling

people for experiences all can be used as warm-ups.

RESEARCH QUESTIONS    When we do a design exercise, we do it

with a specific research question in mind. We have a problem or a deci-

sion to make, and we want to hear other perspectives. Or, we’re about

to invest in a new product, and we want to know if the users will like it.

The most common design exercise for engineering teams is observing

potential users interacting with a product. A good researcher will be

careful not to lead users, not to teach them how to use the product, but

let them interact with it organically and use carefully worded ques-

tions to direct them to functions relevant to the research objective.

FOLLOW-UPS    People often say things we don’t expect in design exer-

cises, requiring us to divert from the structure we’ve set out for a moment

to understand this new piece of information. Follow-up questions or

activities are used to go deeper on individual issues as they appear.

AGGREGATION    At some point—maybe after a single exercise or

after a series of interviews—we need to look at all the data and draw

a conclusion. Just like engineering, design is often an iterative pro-

cess. The conclusion of one exercise may create the research question

for the next. For example, if a user research session reveals that users

134   Kill It with Fire

don’t understand how to interact with the product, future research

sessions will test alternative interfaces until the organization has

found something that works for users.

More About Follow-ups: Why vs. How

Creating effective follow-up questions is an art form unto itself. As with

research questions, be careful that they don’t suggest their own answers

or create ambiguities that might bias the data, but unlike with devising

research questions, it is nearly impossible to anticipate everything you

might want to follow up on ahead of time. You need to write the ques-

tions on the fly.

A good rule of thumb is questions that begin with why produce more

abstract statements, while questions that begin with how generate

answers that are more specific and actionable. Think about how your

answer would be different if the follow-up were “What are the best tools

for the job?” versus “How do you know these tools are the best for the

job?” You might list a bunch of common solutions in the answer to the

first question, convinced that they are good because they are popular.

You are more likely to describe your various experiences with the tools

you actually use when asked the second question.

Both why questions and how questions can be useful. Why questions

broaden the boundaries of the research field by allowing unseen factors

and forces to be introduced into the data. How questions put you in the

minds of users so you can see those factors as they understand them. Why

questions often lead to how questions.

Some Useful Design Exercises for
Engineering Teams

Design is a rich industry full of interesting approaches and philosophies,

more than what a single chapter can capture. To get you started, I’ve

Design as Destiny   135  

provided a few of my favorite exercises for technical conversations. Think

of this as a toolkit. Some of these exercises are loosely adapted from The
Surprising Power of Liberating Structures: Simple Rules to Unleash a Culture
of Innovation by Henri Lipmanowicz and Keith McCandless, which is a

great resource for further learning.2

Exercise: Critical Factors3

This is a brainstorming exercise to do with a team to help prioritize con-

versations around the early stages of a modernization activity. What must

happen for the project goals to be successful? What must not happen?

After everyone has had their say and recorded their ideas, the team edits

the list to make sure everything on it really deserves to be there. A good

way to do that is for the team to discuss each item in terms of whether

the project could succeed if everything else on the list of critical factors

went favorably. The only items that should remain on the list are the fac-

tors that have the ability to take down the entire project by themselves.

After actions: Early technical conversations should focus on achiev-

ing or maintaining good outcomes for these critical factors. In-scope

issues move outcomes along these critical factors in a positive direction.

Out-of-scope issues do not affect these outcomes.

Exercise: The Saboteur4

A similar but inverse brainstorming exercise to the critical factors exer-

cise is asking your team to play saboteur. If you wanted to guarantee that

2.	 Henri Lipmanowicz and Keith McCandless, The Surprising Power of Liberating Structures:
Simple Rules to Unleash a Culture of Innovation (Seattle: Liberating Structures Press, 2016).

3.	 “Min Specs: Specify Only the Absolute ‘Must Dos’ and ‘Must Not Dos’ for Achieving a
Purpose,” Liberating Structures, accessed February 2020, http://www.liberating
structures.com/14-min-specs/.

4.	 “Making Space with TRIZ: Stop Counterproductive Activities and Behaviors to Make
Space for Innovation,” Liberating Structures, accessed February 2020, http://www
.liberatingstructures.com/6-making-space-with-triz/.

http://www.liberatingstructures.com/14-min-specs/
http://www.liberatingstructures.com/14-min-specs/
http://www.liberatingstructures.com/6-making-space-with-triz/
http://www.liberatingstructures.com/6-making-space-with-triz/

136   Kill It with Fire

the project fails, what would you do? How can you achieve the worst pos-

sible outcome? Once this list is generated, the team discusses if there are

any behaviors either internally or from external partners that are close to

items on the saboteur list.

After actions: Some of the behaviors on the saboteur list will be

habits or ineffective processes that need to be changed. Depending on

your results, these items might be worth handling as critical factors.

More likely, though, the saboteur list will show you where the fault lines

are in your team. What distractions are they the most vulnerable to?

How well do they understand their true threats? How do internal politics

manifest among team members? The saboteur exercise should help you

anticipate out-of-scope issues that are likely to be brought up and who

they are likely to come from. Having a sense of that from the beginning

helps keep technical conversations on track. If you’re able to open your

meetings by defining what is and is not in scope, it is much easier to hold

everyone accountable.

Exercise: Shared Uncertainties5

This exercise also starts by asking team members to identify potential

risks and challenges to a project’s success, but this time, you’re looking

for differences in how such risks are perceived. Give each team member a

four-quadrant map with the following axes:

SIMPLE TO COMPLEX    Problems are simple if they are well defined

and understood. They are complicated if their causes are unknown or

if solving them means giving up something else of value.

ORDERLY TO CHAOTIC    Problems are orderly when there isn’t much

debate about the correct way to solve them, although those solutions

5.	 “Critical Uncertainties: Develop Strategies for Operating in a Range of Plausible Yet
Unpredictable Futures,” Liberating Structures, accessed February 2020, http://www
.liberatingstructures.com/30-critical-uncertainties/.

http://www.liberatingstructures.com/30-critical-uncertainties/
http://www.liberatingstructures.com/30-critical-uncertainties/

Design as Destiny   137  

might be long and tedious. They are chaotic when their solutions could

accidentally make the situation worse.

Each team member places challenges somewhere on this map. Then

as a group they compare results. How far apart are they? Where are the

shared anxieties? Is anyone completely out of sync with everyone else?

Depending on your team’s composition, you might want to agree on the

challenges to be mapped in advance or let individuals come up with

the challenges to map as a group. The advantage to not getting everyone

on the same page before mapping is if your team draws from different

organizational units or functions, you can better see knowledge gaps by

not requiring them all to use the same challenges.

After actions: By far the biggest benefit of this exercise is that it intro-

duces alternative perspectives and priorities in a way that is not confron-

tational. In open discussions, different perspectives are often presented

as responses to other people sharing their own perspectives. This makes

the contribution feel like a counterargument and encourages people not

to empathize with or listen to each other.

There’s also an inherent sense of prioritization when overlap and

consensus are high on the team. If a certain challenge is thought to be

orderly and simple by everyone, the team might prefer to consider it out

of scope until strategies are developed around harder problems.

Regarding simple/chaotic and orderly/complex problems, if you have

any of those, they are good issues to focus early conversations around.

They are often the most intimidating and anxiety-inducing.

Exercise: The 15 Percent6

In Chapter 3, I talked about the value of making something 5 percent, 10 per-

cent, or 20 percent better. This exercise asks team members to map out how

6.	 “15% Solutions: Discover and Focus on What Each Person Has the Freedom and
Resources to Do Now,” Liberating Structures, accessed February 2020, http://
www.liberatingstructures.com/7-15-solutions/.

http://www.liberatingstructures.com/7-15-solutions/
http://www.liberatingstructures.com/7-15-solutions/

138   Kill It with Fire

much they can do on their own to move the project toward achieving its

goals. What are they empowered to do? What blockers do they foresee, and

when do they think they become relevant? How far can they go without

approval, and who needs to grant that approval when the time comes?

Have each team member brainstorm an ordered list of actions they can

take right now to make the situation 15 percent better. The number 15 is

arbitrary; don’t quibble over whether the impact of actions would really be

only an 8 percent improvement. The point is these actions don’t need to

come close to solving the problem; they just need to move things forward.

When each team member has a list, the team should discuss the

items, refine them as needed, and make a commitment to execute.

After actions: The best technical conversations are the ones you

don’t need to have. This exercise helps teams figure out where they need

to make decisions versus where they need only advise and support other

team members. Discussing potential blockers and approvers helps focus

the invite lists of whatever conversations do need to be scheduled to the

most relevant people. Nothing produces out-of-scope digressions more

effectively than having people in meetings who don’t need to be there.

Exercises Specifically for Decisions

The exercises described previously all assume that once information is

collected and exposed to the team, the right decisions are self-evident.

It doesn’t always work that way. When you’ve collected all the data as a

team and had a good, thorough discussion about it, here are two addi-

tional exercises that focus on decision-making.

Exercise: Probabilistic Outcome-Based Decision-Making
Probabilistic outcome-based decision-making is better known as betting. It’s

a great technique for decisions that are hard to undo, have potentially

serious impacts, and are vulnerable to confirmation bias. I tend to use

it a lot to run hiring committees, for example. Firing people is difficult;

Design as Destiny   139  

making a wrong hire can destroy a team’s productivity, and people often

see what they want to see in potential candidates.

This is how it works: as a group, we make a list of potential outcomes from

the decision that needs to be made. Outcomes like “We’re able to scale 2× by

doing this” or “We will implement this new feature by this date.” You can mix

both positive and negative outcomes if you like, but I find the conversation

usually goes better if the list of outcomes is either positive or negative.

Then team members place bets as to whether the outcome will come

true. Traditionally, this exercise is run with imaginary money. Depending

on the specific decision to be made, I sometimes ask them to bet with

hours of their time instead of money.

The mechanics of the bet work the same way they do in any other con-

text. If you bet a lot and win, you gain a lot. If you bet a lot and lose, you

lose a lot. Therefore, just asking someone to put a unit value next to an

outcome is forcing them to articulate a confidence level. The wondrous

thing about this design is that if you ask people to rate their confidence

level between 1 and 10, most of them would struggle to answer. It’s the

unit itself, the knowledge of how much a dollar or an hour means to them,

and what it means to lose a certain amount of dollars or time that helps

research subjects articulate their feelings. It doesn’t matter that they will

not lose what they’ve bet, just imagining this much money or that much
time is enough to help people place where their feelings are on a spectrum.

You can do this exercise alone when struggling with your own deci-

sions. When I do it with teams, I like to put everyone’s bets for each out-

come in a shared document or on a whiteboard. Then we discuss how

confident the team feels that the positive outcomes would be reached by

making the decision one way or the other. By this point, the right deci-

sion is usually much more obvious.

Exercise: Affinity Mapping
Affinity mapping is a common design exercise involving clustering ideas

and statements from individuals together visually. This involves a large

140   Kill It with Fire

empty surface, usually a wall or a whiteboard, and generally some mark-

ers and Post-it Notes. You’ve probably done affinity mapping before.

Everyone writes down their thoughts, one per Post-it Note, and puts it

on the wall. Meanwhile, a moderator moves the Post-it Notes around,

assembling them into groups of common ideas or feelings.

Affinity mapping works well for category building, but it can also reveal

the specific circumstances that make reaching a consensus on a particular

decision so difficult. Often in open discussions, people will talk past one

another or assume they mean the same thing when expressing different

concepts. Affinity mapping can reveal how far apart from one another the

group really is and where the biggest points of disagreement actually are.

Team Structure, Organization Structure,
and Incentives

In 1968, Melvin Conway published a paper titled “How Do Committees

Invent?”7 This paper, originally intended for Harvard Business Review but

rejected for being too speculative in nature, outlined the ways the struc-

ture and incentives of an organization influenced the software product

it produced. It received little response but eventually made its way to

the chair of the University of North Carolina at Chapel Hill’s computer

science department, Fred Brooks. At the time, Brooks had been ponder-

ing a question from his exit interview at IBM: Why is it so much harder

to manage software projects than hardware projects? Conway’s insight

linking the structure of software to the structure of the committees that

invented it seemed significant enough for Brooks to repackage the thesis

as “Conway’s law” when he published his guide on effectively managing

software teams, titled The Mythical Man-Month, in 1975.8

7.	 Melvin E. Conway, “How Do Committees Invent?,” Datamation, April 1968, 28–31.

8.	 Frederick Brooks, The Mythical Man-Month (Reading, MA: Addison-Wesley, 1995).

Design as Destiny   141  

Yet, this was not the only useful observation in Conway’s paper. As

it has subsequently been referenced by hundreds of computer science

texts since Brooks’s adoption of it as a universal truth, the more nuanced

observations that supported Conway’s argument have largely been omit-

ted from the conversation. Conway’s law has become a voodoo curse—

something that people believe only in retrospect. Few engineers attribute

their architecture successes to the structures of their organizations, but

when a product is malformed, the explanation of Conway’s law is easily

accepted.

Conway’s original paper outlined not just how organizational struc-

ture influenced technology but also how human factors contributed to

its evolution. Some of his other observations include the following:

●● Individual incentives have a role in design choices. People will

make design decisions based on how a specific choice—using a

shiny new tool or process—will shape their future.

●● Minor adjustments and rework are unflattering. They make the

organization and its future look uncertain and highlight mistakes.

To save face, reorgs and full rewrites become preferable solutions,

even though they are more expensive and often less effective.

●● An organization’s size affects the flexibility and tolerance of its

communication structure.

●● When a manager’s prestige is determined by the number of

people reporting up to her and the size of her budget, the manager

will be incentivized to subdivide design tasks that in turn will be

reflected in the efficiency of the technical design—or as Conway

put it: “The greatest single common factor behind many poorly

designed systems now in existence has been the availability of a

design organization in need of work.”

Conway’s observations are more important in the maintain-

ing of existing systems than they are in the building of new systems.

142   Kill It with Fire

Organizations and products both change, but they do not always change

at the same pace. Figuring out whether to change the organization or

change the design of the technology is just another scaling challenge.

Individual Incentives

How do software engineers get ahead? What does an engineer on one

level need to accomplish for an organization to be promoted to another

level? Such questions are usually delegated to the world of engineering

managers and not incorporated into technical decisions. And yet, the

answers absolutely have technical impacts.

Most of us have encountered this in the wild: a service, a library, or

a piece of a system that is inexplicably different from the rest of the

applications it connects to. Sometimes this is an older component of the

system reimplemented using a different set of tools. Sometimes this is a

new feature. It’s always technology that was trendy at the time the code

was introduced.

When an organization has no clear career pathway for software

engineers, they grow their careers by building their reputations exter-

nally. This means getting drawn into the race of being one of the first

to prove the production-scale benefits of a new paradigm, language,

or technical product. While it’s good for engineering teams to experi-

ment with different approaches as they iterate, introducing and sup-

porting new tools, databases, languages, or infrastructures increases

the complexity of maintaining the system over time. One organization

I worked for had an entire stable of custom-built solutions for things

such as caching, routing, and message handling. Senior management

hated this but felt their complaints—even their instructions that it

stop—did little to course-correct. Culturally, the engineering organi-

zation was flat, with teams formed on an ad hoc basis. Opportunities

to work on interesting technical challenges were awarded based on

personal relationships, so the organization’s regular hack days became

Design as Destiny   143  

critical networking events. Engineering wanted to build difficult and

complex solutions to advertise their skills to the lead engineers who

were assembling teams.

Stern lectures about the importance of choosing the right technol-

ogy for the job did not stop this behavior. It stopped when the organi-

zation hired engineering managers who developed a career ladder. By

defining what the expectations were for every experience level of engi-

neering and hiring managers who would coach and advocate for their

engineers, engineers could earn promotions and opportunities without

the need to show off.

Organizations end up with patchwork solutions because the tech

community rewards explorers. Being among the first with tales of doc-

umenting, experimenting, or destroying a piece of technology builds an

individual’s prestige. Pushing the boundaries of performance by adopt-

ing something new and innovative builds it even more so.

Software engineers are incentivized to forego tried and true

approaches in favor of new frontiers. Left to their own devices, software

engineers will proliferate tools, ignoring feature overlaps for the sake of

that one thing tool X does better than tool Y that is relevant only in that

specific situation.

Well-integrated, high-functioning software that is easy to understand

usually blends in. Simple solutions do not do much to enhance one’s

personal brand. They are rarely worth talking about. Therefore, when an

organization provides no pathway to promotion for software engineers,

they are incentivized to make technical decisions that emphasize their

individual contribution over integrating well into an existing system.

Typically, this manifests itself in one of three different patterns:

●● Creating frameworks, tooling, and other abstraction layers to make

code that is unlikely to have more than one use case theoretically

“reusable”

●● Breaking off functions into new services, particularly middleware

144   Kill It with Fire

●● Introducing new languages or tools to optimize performance for

the sake of optimizing performance (in other words, without any

need to improve an SLO or existing benchmark)

Essentially, engineers are motivated to create named things. If some-

thing can be named, it can have a creator. If the named thing turns out to

be popular, the engineer’s prestige increases, and her career will advance.

This is not to say that good software engineers should never break off

a new service or introduce a new tool or try a new language on a produc-

tion system. There just needs to be a compelling reason why those actions

benefit the system versus benefit the prospects of the individual engineer.

Most of the systems I work on rescuing are not badly built. They

are badly maintained. Technical decisions that highlight individuals’

unique contributions are not always comprehensible to the rest of the

team. For example, switching from language X to language Z may in fact

boost memory performance significantly, but if no one else on the team

understands the new language well enough to continue developing the

code, the gains realized will be whittled away over time by technical debt

that no one knows how to fix.

The folly of engineering culture is that we are often ashamed of sign-

ing up our organization for a future rewrite by picking the right architec-

ture for right now, but we have no misgivings about producing systems

that are difficult for others to understand and therefore impossible to

maintain. This was a constant problem for software engineers answering

the call to public service from organizations like US Digital Service and

18F. When modernizing a critical government system, when should the

team build it using common private sector tools and train the govern-

ment owners on said tools, and when should the solution be built with

the tools the government worker already knew? Wasn’t the newest, great-

est web application stack always the best option? Conway argued against

aspiring for a universally correct architecture. He wrote in 1968, “It is

an article of faith among experienced system designers that given any

Design as Destiny   145  

system design, someone someday will find a better one to do the same

job. In other words, it is misleading and incorrect to speak of the design

for a specific job, unless this is understood in the context of space, time,

knowledge, and technology.”

Minor Adjustments as Uncertainty

Joel Spolsky once described rewriting software as the single worst stra-

tegic mistake any organization could make, but he attributed its nearly

universal appeal to a clever maxim that code is easier to write than read.9

And it’s true; code is easier to write than read. Nearly every software

engineer has had the experience of pulling up an old project and finding

code that she wrote virtually incomprehensible.

But that doesn’t explain why we see the same behaviors with

infrastructure, data storage, and other products that do not involve

writing code.

One of the major themes that influences how systems degrade

over time is how terrible human beings are at probability. We tend to

overestimate the likelihood of events recurring once we have already

seen them and underestimate the likelihood of events that have not

yet happened. Sidney Dekker, a professor of human factors and system

safety, called the outcome of this cognition problem on system safety

drift.10 Systems do not generally fail all at once; they “drift” into failure

via feedback loops caused by a desire to prevent failure. Let’s suppose

a worker is given a set of checklists with necessary steps to maintain

the system in good working order. If she misses a step and the system

doesn’t fail immediately, her perception of risk changes. Skipping that

9.	 Joel Spolsky, “Things You Should Never Do, Part I,” Joel on Software, April 6, 2000,
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

10.	 Sidney Dekker, Drift into Failure (Abingdon-on-Thames, UK: Routledge, 2018).

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/

146   Kill It with Fire

step becomes not such a big deal, unlikely to cause failure. The more

she skips the step, the more convinced of the safety of her action she

becomes. She overlooks the possibility that she could have just gotten

lucky. The more corners she cuts, the more prone to failure the system

becomes.

At the same time, if the system fails for a reason not represented in

her checklist, she overestimates the odds of such a failure happening

again. The system could have failed because there was a significant flaw,

or it could have failed because of a random series of events unlikely to

recur. Her ability to respond appropriately is determined by her ability

to assess the probability of what has just happened correctly. If she over-

estimates, she will find new steps to add to the checklist to ensure that

an unlikely failure does not recur. Over time, the checklists become more

and more cumbersome and increase the likelihood that either she or one

of her colleagues will skip a step.

The systems we like to rewrite from scratch are usually the systems we

have been ignoring. We don’t know how likely failure is because we pay

attention to them only when they fail and forget about them otherwise.

A hundred errors on a legacy system is not failure-prone if it handles two

million requests over that period. When looking at legacy systems, we

tend to overrepresent failures.

The systems we like to rewrite from scratch also tend to be complex

with many layers of abstraction and integrations. When we change some-

thing on them, it doesn’t always go smoothly, particularly if we’ve slipped

up in our test coverage. The more problems we have making changes, the

more we overestimate future failures. The more a system seems brittle,

failure-prone, and just impossible to save, the more a full rewrite feels

like an easier solution.

Our perception of risk cues up another cognitive bias that makes

rewrites more appealing than incremental improvements on a working

system: whether we are trying to ensure success or avoid failure. When

success seems certain, we gravitate toward more conservative, risk-averse

Design as Destiny   147  

solutions. When failure seems more likely, we switch mentalities com-

pletely. We go bold, take more risks.11

If we are judging odds correctly, this behavior makes sense. Why

not authorize that multimillion-dollar rewrite if the existing system is

doomed?

The problem is we’re most likely not judging the odds correctly.

We’re overemphasizing failure that may be rare and underestimating

both the time it will take to complete the rewrite and the performance

gains of the rewrite itself. We are swapping a system that works and

needs to be adjusted for an expensive and difficult migration to some-

thing unproven.

It’s the minor adjustments to systems that have not been actively

developed in a while that create the impression that failure is inevita-

ble and push otherwise rational engineers toward doing rewrites when

rewrites are not necessary.

Organization Size and Communication

Every working person has experienced how an organization’s size affects

its patterns of communication. When small, an organization commu-

nicates in an open and fluid manner. It is possible for everyone in the

organization to build a relationship with one another. As the organiza-

tion grows, knowing everyone else becomes less and less feasible. Coor-

dination requires trust. Given a choice, we prefer to base our trust on the

character of people we know, but when we scale to a size where that is

not possible anymore, we gradually replace social bonds with process.

Typically this happens when the organization has reached the size of

around 100 to 150 people.

11.	 See the work of Daniel Kahneman and Amos Tversky on the pseudocertainty effect for
more detail, as well as their bestseller book Thinking, Fast and Slow (New York: Farrar,
Straus and Giroux 2011).

148   Kill It with Fire

One of the benefits of microservices, for example, is that it allows

many teams to contribute to the same system independently from one

another. Whereas a monolith would require coordination in the form

of code reviews—a personal, direct interaction between colleagues—

service-oriented architecture scales the same guarantees with process.

Engineers document contracts and protocols; automation is applied to

ensure that those contracts are not violated, and it prescribes a course of

action if they are.

For that reason, engineers who want to “jump ahead” and build some-

thing with microservices from the beginning often struggle. The level of

complexity and abstraction is out of sync with the communication pat-

terns of the organization.

Manager Incentives

An engineering manager is a strange creature in a technical organiza-

tion. How should we judge a good one from a bad one? Unfortunately, far

too often managers advance in their careers by managing more people.

And if the organization isn’t properly controlling for that, system design

will be overcomplicated by the need to broadcast importance.

Opportunities to go from being an engineering manager to a senior

engineering manager come up from time to time as an organization

grows and changes. It’s the difference between handling one team and

handling many. Managers leave, new teams form, and existing teams

grow past their ideal sizes. A good manager could easily earn those oppor-

tunities in the normal course of business. Going from senior manager to

director, though, is more difficult. Going from director to vice president

or higher is even more so. It takes a long time for an organization to reach

that level of growth organically.

Organizations that are unprepared to grow talent end up with manag-

ers who are incentivized to subdivide their teams into more specialized

units before there are either enough people or enough work to maintain

Design as Destiny   149  

such a unit. The manager gets to check off the career-building experience

of running multiple teams, hiring more engineers, and taking on more

ambitious projects, and the needs of the overall architecture are ignored.

Scaling an organization before it needs to be scaled has similar con-

sequences to scaling technology before it needs to be scaled. It restricts

your future technical choices. A complex architecture means the orga-

nization must successfully anticipate a number of future requirements

and determine how code should be best abstracted to create shared ser-

vices based on those predictions. Rarely are all of those predictions right,

but once a shared service is deployed, changing it is difficult.

In the same way, managers sometimes subdivide their team before

there is need to do so. When this happens, they are making predictions

about future needs that may or may not come true. In my last role, our

director of engineering decided the new platform we were building

needed a dedicated team to manage data storage. Predictions about

future scaling challenges supported her conclusions, but to get the head

count for this new team, she had to cut it from teams that were work-

ing on the organization’s existing scaling challenges. Suddenly, new

abstractions around data storage that we didn’t need yet were being

developed, while systems that affected our SLAs had maintenance and

updates deferred.

Carrying existing initiatives to completion was not as attractive of an

accomplishment as breaking new ground. But the problem with design-

ing team structure around the desired future state of the technology is if it

doesn’t come true, the team is thrown into the chaos of a reorganization.

Designing a Team: Applications of
Conway’s Law

The challenge of applying Conway’s law in a proactive and positive

manner is that divisions of work on technical projects can shift depend-

ing on the technical challenge being addressed.

150   Kill It with Fire

Let’s say we have an organization building a system that is composed

of three web services. Each service has its own repository of code, its own

machine images, and its own deployment schedule. Each has a three-tier

structure: an application layer, a data access layer, and a frontend. In the

beginning, the frontend and the application are logically separate but

hosted in the same code repository for convenience. The frontend is just

HTML and some CSS and JavaScript files.

Our engineering teams probably reflect this structure. For each ser-

vice, we have a frontend person and some backend people. We want

the look and feel of these services to be the same because they are one

system, so we have a design org that is separate from the three develop-

ment teams, but it produces style guides and assets used by all of them.

Maybe we assign a specific point of contact on the design team for each

engineering team. We do the same thing for our operations and secu-

rity groups. Their work is overarching and common to all teams, and we

want consistent implementation. We don’t want each engineering silo to

reinvent the wheel.

Now let’s say we want to start using a frontend framework like

React, Angular, or Vue.js. We still want each service to have the same

look and feel, but we also want to minimize duplicate efforts. They

should reuse UI components. Who writes that code? Where does

that code live? Do we move the frontend engineers out of the prod-

uct engineering groups and into a separate group like the design-

ers, security engineers, and operations people, or do we keep them

where they are and establish a matrix division to handle the shared

development work?

The problem with seeing Conway’s law as prescriptive is that tech-

nology is filled with little shifts in perception like this. The technology

in our example has not fundamentally changed, but our groupings of

what belongs with what have changed. We could tell the same story in

reverse: what if we want to transition away from a traditional operations

team to a DevOps model? Do our operations people now get moved to

Design as Destiny   151  

the product engineering teams? Do backend engineers learn the DevOps

tools with operations acting as an oversight authority? Do we keep oper-

ations where it is and just ask them to automate?

Reorgs Are Traumatic

The reorg is the matching misused tool of the full rewrite. As the soft-

ware engineer gravitates toward throwing everything out and starting

over to project confidence and certainty, so too does the software engi-

neers’ manager gravitate toward the reorg to fix all manner of institu-

tional ills.

And like a full rewrite, sometimes this is the appropriate strategy, but

it is not nearly the right strategy as often as it is used. Reorgs are incred-

ibly disruptive. They are demoralizing. They send the message to rank

and file engineers that something is wrong—they built the wrong thing

or the product they built doesn’t work or the company is struggling. It

increases workplace anxiety and decreases productivity. The fact that

reorgs almost always end up with a few odd people out who are subse-

quently let go exacerbates the issue.

They are also easy to get wrong, creating new silos where information

once flowed freely. Organizations are almost always a little behind in

capturing and documenting the state of things in flight. Reorgs orphan

in-progress initiatives, particularly the ones focused on long-term main-

tenance, resulting in information loss and follow-ups dropped.

I think of reorgs as major surgery. If something is seriously wrong,

it’s worthwhile to risk it, but you wouldn’t trust a doctor who wanted to

open you up because a kidney was just an inch too far to the right. Simi-

larly, you shouldn’t hire managers who want to reorg because they read

a blog post that said engineering teams work better when structured

this particular way or that particular way.

Sometimes an organization doesn’t grow in an orderly fashion, and

as a result, teams end up owning a combination of things that don’t go

152   Kill It with Fire

together or sharing ownership of things that more properly should have

one owner. These are the sorts of situations where reorgs make sense.

Conway’s law is a tendency, not a commandment. Large, complex

organizations can develop fluid and resilient communication pathways;

it just requires the right leadership and the right tooling. Reorgs should

be undertaken only in situations where an organization’s structure is

completely and totally out of alignment with its implementation.

Finding the Right Leadership

Modernization projects are ultimately about transitions. You are moving

resources, adjusting processes, and reimagining implementation. The

teams that make sense in the beginning do not always make sense at

the end.

To find the right leadership, look for people who have been success-

ful in a wide variety of different contexts—old systems, new systems, big

bureaucracies, and small startups. Do not hire aspirationally. Do not hire

people whose only experiences are working in companies that reflect

your desired end state. Do not hire based on what you wish were true

about your organization. This is a pretty common mistake. Organizations

that want to grow big recruit executives from big organizations. Organi-

zations that want to migrate to the cloud recruit executives who super-

vised cloud products.

Transitions are inherently ambiguous, and the most important char-

acteristic of any leader who steps into a transition is the ability to adapt

to the changing conditions that ambiguity opens up. You can assess

those skills in interviews, but the best indicator is usually a candidate’s

career path. Candidates who are good at adapting have experiences of

different sizes and industries on their résumés. They might have done

nonprofit or government work. They might have dipped their toes into

different careers or roles. They might have left the working world for a

few years and then successfully come back.

Design as Destiny   153  

Candidates who have spent seven or eight years essentially in the

same type of organization may bring a lot to the table, but they might

also be too attached to one way of doing things. They might not under-

stand why certain approaches work in this situation but not that situa-

tion. They might be bureaucratic, risk-averse, and not willing to rise to

the challenge of a different environment.

Transitions are all about change, but determining what should change

and when it should change are significant questions. We didn’t get where

we are all at once. Why should we get anywhere else that way? Leaders

who are comfortable with ambiguity have a higher likelihood of figuring

out where all the interim phases are between the starting point and the

end state.

Exercise: The Smallest Testable Unit
I developed this exercise for planning failure drills (better known to

some software engineers as chaos experiments). I eventually ended up

repurposing it as an interview question to assess a candidate’s ability to

design a road map for a transition.

We start with a large goal we want to reach. For example, suppose

we have a web application where secrets are kept in a plaintext config-

uration file. Three decades ago, that would have been the right way to

build an application, but now it’s not secure enough. Any number of solu-

tions will improve security, but the organization may not be able to use

all of them. This is a typical problem with legacy modernizations: the

ideal solution is dependent on conditions that are either not present or

not possible. Leaders have to decide whether to compromise on another

solution or invest time and energy resolving the dependencies of the pre-

ferred solution.

You might be familiar with the expression yak shaving. It’s when

every problem has another problem that must be solved before it can be

addressed. In a way, the smallest testable unit exercise is a yak-shaving

exercise. You advance through each stage by asking the question “What

154   Kill It with Fire

do we need to do this, and how can we test that we have it?” For the pre-

vious example, the road map might look like this:

●● We need to move secrets to a secure secret management solution.

To do that, we need to know how many secrets we have, where

they are in code, and who or what needs to use them.

●● We can figure out who needs to use our current secrets by care-

fully logging access to them. To do that, we need a way to aggre-

gate logs and search them. We should take care not to log actual

secrets, just the request for them.

●● We can test whether we have the ability to aggregate and search

logs by having various parts of the application write distinctive

messages to the logs and check where those messages end up. To

do that, we need access to the application source code.

●● We can test whether we have access to the source code by finding

the repository, reading the code, and attempting to submit a change

to it. To do that, we need some kind of version control solution.

And so on, and so forth.

Done well, the candidate plans the roadmap out backward, starting at

the end state and identifying smaller and smaller units of change. With

each step, we are designing tests to find weaknesses in the organization’s

operational excellence that we can resolve. It’s important that our road-

map is structured around proving we have something with a simple test,

rather than steps that assert we do. On large projects, it’s easy for people

to become confused or misreport the ground truth. It is useful to know

how a leader would construct a test to verify information.

A leader with low tolerance for ambiguity either doesn’t see these

blockers or will not acknowledge them, so she sends a top-down directive

mandating the new solution. Engineering whips up a hack or a work-

around to handle the blockers or else just ignores the top-down directive,

and efforts to improve the legacy system stall.

Design as Destiny   155  

Structuring the Team to Account for
Past Failure

Legacy modernizations are never about just one team or one leader. Legacy

systems survive because they are important; processes tend to grow around

important systems, and organizations tend to grow around those processes.

Even if you chose to run one team specifically for the modernization itself,

the work of that one team will rely on and influence other teams.

The three effective structures for modernization are as follows:

Teams that mirror existing components. If there’s a short history

of failure, you may be able to trust the current division of labor to carry

the day. The teams consist of either all or parts of existing teams, so

coordination between them takes the form of a cross-functional meet-

ing group populated by either the leads of each existing component or

someone appointed by the component to represent them. More than any

other structure, this option relies heavily on interpersonal connections.

If cliques and rivalries have begun to form in the organization, it will be

hard to keep the group focused.

Lead team and subgroups. With this model, a lead team shapes the

high-level view of the modernization effort and then dispatches tasks to

the subgroups who are empowered to make any and all decisions on the

details of how they implement those instructions. The more a particu-

lar modernization project has a track record of failure, the more I like to

form a distinction between our effort and business as usual. That means

this structure can take the shape of an architecture group advising busi-

ness components (which we might already have set up), or we can pull

people off their normal teams for a short period of time. It is better to

avoid slotting the same people into the same roles, and you will likely see

an immediate boost of motivation provided the shuffling of roles is made

in good faith and the objectives are clear.

As I mentioned in Chapter 6, nothing says you’re serious about accom-

plishing something more effectively than changing people’s scenery.

156   Kill It with Fire

Consult the “Solution: Code Yellow” on page 116 for more information on

how this structure can work.

One embedded team. When the history of failure is long, sometimes

the best option is to embed people within existing teams for the sole pur-

pose of implementing solutions. In this model, one team decides on the

plan and then dispatches its members to different components around

the organization to work on the solution. The trick to getting this right is

identity. The members of the embedded team must have strong bonds of

camaraderie with each other. They must feel like one team. They should

treat their host teams with compassion and empathy, but they also

should consider the host teams more like clients or customers rather

than as peers.

This is not the same as pulling representatives from every team into

a joint committee. In the committee solution, the individual is bonded

to her home team, while having no particular attachment to her col-

leagues on the committee. With an embedded team, the dynamic should

be reversed.

Implementing these three structures is an exercise in itself to help

figure out organically how the organization should self-organize around

the new system once completed. Conway’s law is ultimately about com-

munication and incentives. The incentive side can be covered by giving

people a pathway to prestige and career advancement that complements

the modernization effort. The only way to design communication path-

ways is actually to give people something to communicate about. In each

case, we allow the vision for the new organization to reveal itself by design-

ing structures that encourage new communication pathways to form in

response to our modernization challenges. As the work continues, those

communication pathways begin to solidify, and we can begin documen-

tation and formalizing new teams or roles. In this way, we sidestep the

anxiety of reorganizing. The workers determine where they belong based

on how they adapt to problems; workers typically left out are given time

and space to learn new skills or prove themselves in different roles, and by

Design as Destiny   157  

the time the new organization structure is ratified by leadership, everyone

already has been working that way for a couple months.

Choose your modernization team structure based on how much

organizational change you think will be needed to make the new system

maintainable.

Leaving teams as they are supposes that the abstractions of the new

system will match those of the old system. There will not be new respon-

sibilities; there will not be new roles. The only things that change from

the old system to the new are implementation details like language or

tool selection. Many migrations will look like this.

Having a lead team with subgroups assumes that there will be over-

arching problems that no one existing team is empowered to fix or has

all the necessary information to fix. By the time the new system is com-

pleted, new teams may have developed around those issues. For example,

the organization might realize that new services need to be developed or

that to enforce good practices across the engineering organization, they

need internal tooling. With this structure, we know some parts of our

engineering group will remain the same, and some parts of it will change,

but we don’t know exactly how.

Finally, the embedded team sets the precedent of injecting expertise

as needed into other teams. I use this structure when the goal state of the

new system is significantly different from the old system. When there’s

that much change, technology and practices that are completely foreign

to existing engineers usually are being introduced. Moving off main-

frames, shutting down a data center in favor of the cloud, rolling out SRE,

or incorporating orchestration are all examples of modernization chal-

lenges where there is likely to be a skills gap on the existing teams. The

expert being injected to advise and assist will start the process of forming

new teams by figuring out how the work the old team needs to do gets

split up. For example, if the modernization effort involves a new piece of

technology, not everyone on the team will need to reach the same profi-

ciency level with it. Rather than a senior manager deciding who will go

158   Kill It with Fire

where, the organization lets the existing team work on it and sees who

develops an aptitude.

What you don’t want to do is draw a new organization chart based

on your vision for how teams will be arranged with the new system. You

don’t want to do this for the same reason that you don’t want to start

product development with everything designed up front. Your concept of

what the new system will look like will be wrong in some minor ways you

can’t possibly foresee. You don’t want to lock in your team to a structure

that will not fit their needs.

Instead, ask yourself who needs to collaborate with whom for various

stages of the modernization project to work, and pick a structure that

makes this communication easy.

Exercise: In-Group/Out-Group
Who needs to communicate with whom may not be clear when you get

started. This is an exercise I use to help reveal where the communication

pathways are or should be. I give everyone a piece of paper with a circle

drawn on it. The instructions are to write down the names of the people

whose work they are dependent on inside the circle (in other words, “If

this person fell behind schedule, would you be blocked?”) and the names

of people who give them advice outside the circle. If there’s no one spe-

cific person, they can write a group or team name or a specific role, like

frontend engineer, instead.

Then I compare the results across each team. In theory, those inside

the circle are people with whom the engineer needs to collaborate

closely. Each result should resemble that engineer’s actual team with

perhaps a few additions or deletions based on current issues playing

out. Outside the circle should be all the other teams. Experts not on

the team should be seen as interchangeable with other experts in the

same field.

Small variations will exist from person to person, but if the visu-

alizations that people produce don’t look like their current teams,

Design as Destiny   159  

you know your existing structure does not meet your communication

needs.

You can modify this exercise to look at the communication needs of

the new system instead of the existing one by focusing the research ques-

tion on a future work stream. Instead of which people might be blockers

or advisors generally, ask people to visualize the in-group and out-group

in terms of a specific modernization task.

Takeaways

This chapter covers a lot of ground. Design thinking is a rich landscape

with lots of insight and strategy of value to the task of legacy moderniza-

tion. I have tried to demonstrate enough of that value to encourage you

to bring a designer into your fold if you don’t already have one. To review,

here are the takeaways you should have from this chapter:

●● Design is problem setting. Incorporating it into your process will

help your teams become more resilient.

●● By themselves, technical conversations tend to incentivize people

to maintain status by criticizing ideas. Design can help mitigate

those effects by giving conversations the structure of a game and

a path to winning.

●● Legacy modernizations are ultimately transitions and require

leaders with high tolerance for ambiguity.

●● Conway’s law doesn’t mean you should design your organization

to look like the technology you want. It means you should pay

attention to how the organization structure incentivizes people to

behave. These forces will determine what the technology looks like.

●● Don’t design the organization; let the organization design itself

by choosing a structure that facilitates the communication teams

will need to get the job done.

160   Kill It with Fire

In the next chapter, I’ll continue to explore the concept of communi-

cation by tackling the issue of breaking changes and how to keep them

from blocking progress forward.

8
BREAKING CHANGES

I n government, we had a saying, “The only thing the government hates

more than change is the way things are.” The same inertia lingers over

legacy systems. It is impossible to improve a large, complex, debt-ridden

system without breaking it. If you’re lucky, the resulting outages will be

resolved quickly and result in minimum data loss, but they will happen.

Another expression that was popular among my colleagues in govern-

ment was “air cover.” To have air cover was to have confidence that the

organization would help your team survive such inevitable breakages. It

was to have someone who trusted and understood the value of change

and could protect the team. As a team lead, my job was to secure that

air cover. When I moved back to the private sector, I applied the same

principles as a manager—networking, relationship building, recruiting,

doing favors—so I could give my team members the safety and security

necessary to do the hard jobs for which I had hired them.

In this chapter, I explore the concept of breaking changes. How do

you sell dangerous changes while being honest about their risks? When

should you break stuff, and how do you recover quickly?

162   Kill It with Fire

But, I want to start with the concept of air cover. Business writers

sometimes refer to “psychological safety,” which is another great way to

describe the same concept. To do effective work, people need to feel safe

and supported. Leadership buy-in is one part of creating the feeling of

air cover, but for air cover to be effective, it has to alter an organization’s

perception of risk.

Risk is not a static number on a spreadsheet. It’s a feeling that can be

manipulated, and while we may justify that feeling with statistics, prob-

abilities, and facts, our perception of level of risk often bears no relation-

ship to those data points.

Being Seen

A year or two ago, I was invited to give a guest lecture on working with

software engineers at Harvard’s Kennedy School for Government. When

it came time to give practical advice, the first slide on my deck said in big

letters, “How do people get seen?”

Being seen is not specifically about praise. It’s more about being

noticed or acknowledged, even if the sentiment expressed in that

acknowledgment is neutral. Just as status-seeking behavior influences

what people say in meetings, looking to be seen influences what risks

people are willing to tolerate. Fear of change is all about perception of

risk. People construct risk assessments based on two vectors: level of

punishment or reward and odds of getting caught.

Of those two, people are more sensitive to changes in odds of getting

caught than level of punishment or reward.1 If you want to deter crime,

increase the perception that the police are effective, and criminals will

be caught. If you want to incentivize behavior, pay attention to what

behaviors get noticed within an organization.

1.	 Daniel S. Nagin, “Deterrence in the Twenty-First Century,” Crime and Justice 42 (2013):
199–263, https://doi.org/10.1086/670398.

https://doi.org/10.1086/670398

Breaking Changes   163  

Organizations can pay a lot of lip service to good behaviors but still

not notice them. Being seen is not about matching an organization’s

theoretical ideals, it’s about what your peers will notice. It’s easy for the

organization’s rhetoric to be disconnected from the values that govern

the work environment. What colleagues pay attention to are the real

values of an organization. No matter how passionate or consistent the

messaging, attention from colleagues will win out over the speeches.

The specific form of acknowledgment also matters a lot. Positive

reinforcement in the form of social recognition tends to be a more effec-

tive motivator than the traditional incentive structure of promotions,

raises, and bonuses. Behavioral economist Dan Ariely attributes this to

the difference between social markets and traditional monetary-based

markets.2 Social markets are governed by social norms (read: peer pres-

sure and social capital), and they often inspire people to work harder and

longer than much more expensive incentives that represent the tradi-

tional work-for-pay exchange. In other words, people will work hard for

positive reinforcement; they might not work harder for an extra thou-

sand dollars.

Ariely’s research suggests that even evoking the traditional market by

offering small financial incentives to work harder causes people to stop

thinking about the bonds between them and their colleagues and makes

them think about things in terms of a monetary exchange3—which is a

colder, less personal, and often less emotionally rewarding space.

The idea that one needs a financial reward to want to do a good job

for an organization is cynical. It assumes bad faith on the part of the

employee, which builds resentment. Traditional incentives have little

positive influence, therefore, because they disrupt what was otherwise

2.	 James Heyman and Dan Ariely, “Effort for Payment: A Tale of Two Markets,” Psychologi-
cal Science 15, no. 11 (2004): 787–793, https://doi.org/10.1111/j.0956-7976.2004.00757.x.

3.	 Dan Ariely, Predictably Irrational: The Hidden Forces That Shape Our Decisions (New York:
HarperCollins, 2008).

https://doi.org/10.1111/j.0956-7976.2004.00757.x

164   Kill It with Fire

a personal relationship based on trust and respect. Behavioralist Alfie

Kohn puts it this way:

Punishment and rewards are two sides of the same coin. Rewards have
a punitive effect because they, like outright punishment, are manipu-
lative. “Do this and you’ll get that” is not really very different from “Do
this or here’s what will happen to you.” In the case of incentives, the
reward itself may be highly desired; but by making that bonus contin-
gent on certain behaviors, managers manipulate their subordinates,
and that experience of being controlled is likely to assume a punitive
quality over time.4

Here’s an example of this in practice. When I worked for USDS, my

boss constantly complained about people doing the exact opposite of

what he told them time and time again was what he wanted them to

do. Specifically, he kept telling teams not to take systems away from

the organizations that owned them. USDS operated, at least in theory,

on a consulting model. We were supposed to assist and advise agen-

cies, not adopt their legacy systems long term without any exit plan. My

boss complained about this approach over and over again. He could not

understand why people kept gravitating toward a strategy that was more

difficult, less likely to succeed, and against his wishes.

Every week, we had a staff meeting where people demoed what they

were working on and gave status updates. Inevitably, USDSers would

censor their updates, wanting to talk about things only once they had

achieved success. This meant product launches. All we talked about

at staff meetings were product launches. Eventually, this convention

became self-reinforcing. People began to think they shouldn’t talk about

a project before it had a launch coming up or a milestone reached, that

the little wins were not worth mentioning.

4.	� Alfie Kohn, “Why Incentive Plans Cannot Work,” Harvard Business Review, September/
October 1993, https://hbr.org/1993/09/why-incentive-plans-cannot-work.

https://hbr.org/1993/09/why-incentive-plans-cannot-work

Breaking Changes   165  

The problem was that most USDS projects involved old systems where

the solutions would take months of untangling, even if the government

bureaucracy wasn’t a factor. Talking only about product launches meant

certain teams might work for a full year on something before their peers

ever heard about their projects.

My boss’s advice of not taking things away from the organizations

that owned them was great advice for long-term sustainability, but it

would mean feelings of isolation as colleagues talked about their work

and you had nothing to contribute, because it would take months to get

to a product launch. What’s the best way to speed that up? Take over the

system, remove or otherwise bypass the government client who owns

it, and bring in a team of bright young USDSers to do all the work. This

got products to launch quicker, but handing them off to the government

stakeholders became close to impossible. They didn’t know anything

about the new system. This is what my boss was trying to prevent, but

people ignored his advice to prioritize the methods that were going to get

them seen by their peers early and often.

When we realized this, we decided to schedule a 10-minute block at

the end of every staff meeting for “kudos.” Kudos were acknowledgments

and congratulations of small wins throughout the organization. Did a

meeting go well? Write a kudos. Did someone go above and beyond the

call of duty to fix something? Write a kudos. Did a team show integrity

and resolve through a project failure? Write a kudos. We would collect all

the kudos in a specific repository throughout the week, and then at the

end of the staff meeting, someone would read them all out loud.

Given a choice between a monetary incentive and a social one, people

will almost always choose the behavior that gets them the social boost. So

when you’re examining why certain failures are considered riskier than

others, an important question to ask yourself is this: How do people get

seen here? What behaviors and accomplishments give them an opportu-

nity to talk about their ideas and their work with their colleagues and be

acknowledged?

166   Kill It with Fire

If you want to improve people’s tolerance for certain types of risks,

change where the organization lands on those two critical vectors of

rewards and acknowledgment. You have four options: increase the

odds that good behavior will get noticed (especially by peers), decrease

the odds that bad outcomes will get noticed, increase the rewards for

good behavior, or decrease the punishment for bad outcomes. All of

these will alter an organization’s perception of risk and make breaking

changes easier.

Note the distinction between good behavior and bad outcomes. When

deciding how they should execute on a given set of tasks, workers consider

two questions: How does the organization want me to behave? And, will I

get punished if things go wrong despite that correct behavior? If you want

people to do the right thing despite the risk, you need to accept that failure.

One of the most famous examples of these principles in play to raise

engineering standards is Etsy’s 3-Arm Sweater award.5 The image of the

3-Arm Sweater is used throughout Etsy to signify a screw-up. It is featured

prominently on its 404 File Not Found page, for example. The 3-Arm Sweater

award is given out to the engineer who triggers the worst outage. Celebrat-

ing failure wasn’t just an annual tradition; Etsy employees had an email list

to broadcast failure stories company-wide.6 Because Etsy wanted to estab-

lish a just culture, where people learned from mistakes together instead of

trying to hide them, the company found ways to integrate the acknowledg-

ment of those behaviors into day-to-day operations. These practices helped

Etsy scale its technology to 40 million unique visitors every month.7

5.	 Howard Greenstein, “Build a Culture That Celebrates Mistakes,” Inc., June 19, 2012,
https://www.inc.com/howard-greenstein/build-a-start-up-tech-culture-that-celebrates-
mistakes.html.

6.	 Ibid.

7.	 Knowledge@Wharton, “Here’s How Etsy Plans to Scale Without Losing Its Crafty,
Handmade Aesthetic,” Business Insider, May 10, 2012, https://www.businessinsider.com/
heres-how-etsy-plans-to-scale-without-losing-its-crafty-handmade-aesthetic-2012-5.

https://www.inc.com/howard-greenstein/build-a-start-up-tech-culture-that-celebrates-mistakes.html
https://www.inc.com/howard-greenstein/build-a-start-up-tech-culture-that-celebrates-mistakes.html
https://www.businessinsider.com/heres-how-etsy-plans-to-scale-without-losing-its-crafty-handmade-aesthetic-2012-5
https://www.businessinsider.com/heres-how-etsy-plans-to-scale-without-losing-its-crafty-handmade-aesthetic-2012-5

Breaking Changes   167  

If you want your team to be able to handle breaking things, pay atten-

tion to what the organization celebrates. Blameless postmortems and

just culture are a good place to start, because they both manipulate how

people perceive failure and establish good engineering practices.

Who Draws the Line?

But, can blameless postmortems ever really be blameless?

In 2008, system safety researcher Sidney Dekker published an arti-

cle titled “Just Culture: Who Gets to Draw the Line?”8 Dekker’s article

addresses whether true “blameless” postmortems, where no one was ever

punished for errors, are the desired end state of just cultures. People want

psychological safety, but they also want accountability. No one wants

to excuse actual negligence, but if there’s a line between mistakes that

should be blameless and those where people should be held accountable,

who should be able to draw it?

A popular exercise with first-year computer science students is to

write a hypothetical program instructing a robot to walk across the room.

Students soon find that the simplest of instructions, when taken liter-

ally, can lead to unexpected results, and the purpose of the exercise is to

teach them something about algorithms as well as what assumptions

computers can and cannot make.

Safety researchers like Dekker view organizational procedures largely

the same way. Prescribed safety, security, and reliability processes are

useful only if operators can exercise discretion when applying them.

When organizations take the ability to adapt away from the software

engineers in charge of a system, any gap in what procedure covers

becomes an Achilles heel.

8.	 Sidney W. A. Dekker, “Just Culture: Who Gets to Draw the Line?” Cognition, Technology
& Work 11 (2008): 177–185, https://doi.org/10.1007/s10111-008-0110-7.

https://doi.org/10.1007/s10111-008-0110-7

168   Kill It with Fire

That’s why the issue of who gets to draw the line is so critical to a just

culture. The closer the line-drawing pattern is to the people who must

maintain the system, the greater the resilience. The further away, the

more bureaucratic and dysfunctional.

Also, the line is never drawn once; it is actively renegotiated. No rule

maker can possibly predict every conceivable situation or circumstance

an organization and its technology might confront. So the line between

blameless behavior and behavior that people should be held accountable

for is redrawn. These corrections can be influenced by cultural, social, or

political forces.

Just as understanding how people get seen is important to construct-

ing incentives that moderate people’s perception of risk, understanding

who gets to draw the line between mistakes that are acceptable and those

that are not is important to understanding how privilege is distributed

around an organization. The highest probability of success comes from

having as many people engaged and empowered to execute as possible.

Those who cannot draw the line or renegotiate the placement of the line

are the organization members with the least privilege and the most in

need of investment to get the full benefit of their efforts.

Building Trust Through Failure

The suggestion that failure should be embraced or that a modernization

team should deliberately break something makes people uncomfortable.

The assumption is that failure is a loss—failure always leaves you worse off.

Or does it?

The science paints a much more complex picture. Although a system

that constantly breaks, or that breaks in unexpected ways without warn-

ing, will lose its users’ trust, the reverse isn’t necessarily true. A system

that never breaks doesn’t necessarily inspire high degrees of trust.

Italian researchers Cristiano Castelfranchi and Rino Falcone have

been advancing a general model of trust in which trust degrades over

Breaking Changes   169  

time, regardless of whether any action has been taken to violate that

trust.9 People take systems that are too reliable for granted. Under Cas-

telfranchi and Falcone’s model, maintaining trust doesn’t mean estab-

lishing a perfect record; it means continuing to rack up observations of

resilience. If a piece of technology is so reliable it has been completely

forgotten, it is not creating those regular observations. Through no fault

of the technology, the user’s trust in it will slowly deteriorate.

Those of us who work in the field of legacy modernization see this

happen all the time. Organizations become gung-ho to remove a system

that has been stable and efficient for decades because it is old, and there-

fore, management has become convinced that a meltdown is imminent.

We also see this happen on more modern systems. Google has repeat-

edly promoted the notion that when services are overperforming their

SLOs, teams are encouraged to create outages to bring the performance

level down.10 The rationale for this is that perfectly running systems

create a false sense of security that lead other engineering teams to stop

building proper fail-safes. This might be true, but a different way to look

at it is that the more a service overperforms, the less confident Google’s

SREs become in overall system stability.

The idea that something is more likely to go wrong only because

there’s been a long gap when nothing has gone wrong is a version of the

gambler’s fallacy. It’s not the lack of failure that makes a system more

likely to fail, it’s the inattention in the maintenance schedule or the fail-

ure to test appropriately or other cut corners. Whether the assumption

that a too reliable system is in danger is sensible depends on what evi-

dence people are calling on to determine the odds of failure.

9.	 Cristiano Castelfranchi and Rino Falcone, Trust Theory (Hoboken, NJ: Wiley, 2009).

10.	 Chris Jones, John Wilkes, and Cody Smith, “Service Level Objectives,” in Site Reliability
Engineering: How Google Runs Production Systems, ed. Betsy Beyer, Chris Jones, Jennifer
Petoff, and Niall Richard Murphy (Sebastopol, CA: O’Reilly Media, 2016). See also “Site
Reliability Engineering,” Google, accessed January 8, 2020, https://landing.google.com/sre/.

https://landing.google.com/sre/

170   Kill It with Fire

 The gambler’s fallacy is one of those logical fallacies that is so perva-

sive, it shows up in all kinds of weird ways. In 1796, for example, a French

philosopher documented how expecting fathers felt anxiety and despair

when other local women gave birth to sons because they were convinced

it lowered their likelihood of having a son within the same period.11

For this reason, the occasional outage and problem with a system—

particularly if it is resolved quickly and cleanly—can actually boost the

user’s trust and confidence. The technical term for this effect is the service
recovery paradox.12

Researchers haven’t been able to pin down the exact nature of the ser-

vice recovery paradox—why it happens in some cases but not others—

therefore, you shouldn’t take things as far as trying to optimize customer

satisfaction by triggering outages. That being said, what we do know is

that recovering fast and being transparent about the nature of the outage

and the resolution often improves relationships with stakeholders. Fac-

toring in the boost to psychological safety and productivity that just cul-

ture creates, technical organizations shouldn’t shy away from breaking

things on purpose. Under the right conditions, the cost of user trust is

minimal, and the benefits might be substantial.

Breaking Change vs. Breaking

Before I go into the nitty-gritty details of deliberately breaking systems, I

should acknowledge that I’m using the phrase breaking change to refer to

all changes that break a system. Breaking change is not normally that broad.

11.	 Greg Barron and Stephen Leider, “The Role of Experience in the Gambler’s Fallacy,”
Journal of Behavioral Decision Making 23, no. 1 (2009): 117–129, https://doi.org/10.1002/
bdm.676.

12.	 Anupam Krishna, G. S. Dangayach, and Sonal Sharma, “Service Recovery Paradox: The
Success Parameters,” Global Business Review 15, no. 2 (June 2014): 263–277, https://doi.
org/10.1177/0972150914523567.

https://doi.org/10.1177/0972150914523567
https://doi.org/10.1177/0972150914523567
https://doi.org/10.1177/0972150914523567
https://doi.org/10.1177/0972150914523567

Breaking Changes   171  

Typically, what we mean when we say breaking change is a violation

of the data contract that impacts external users. A breaking change is

something that requires customers or users to upgrade or modify their

own systems to keep everything working. It is a change that breaks tech-

nology owned by other organizations.

For the sake of convenience, I’m using the expression breaking change

here to refer to any kind of change—internally or externally—that alters

system functionality in a negative way. The rest of this chapter discusses

both the changes we make as part of deprecations and redesigns that

break contacts on external-facing APIs and the changes we make when

seeking to reduce a system’s overall complexity.

Why Break Things on Purpose?

It’s unlikely that any significant legacy modernization project can com-

plete without breaking the system at least once. But, breaking a system

as an unfortunate consequence of other changes, knowing there’s a risk

that a break might occur, and deliberately breaking things on purpose

are different scenarios. I’m arguing that your organization shouldn’t just

embrace resilience over risk aversion, but it should also occasionally

break things on purpose.

What kind of scenarios justify breaking things on purpose? The

most common one when dealing with legacy systems is loss of institu-

tional memory. On any old system, one or two components exist that

no one seems to know exactly what they do. If you are seeking to mini-

mize the system’s complexity and restore context, such knowledge gaps

can’t just be ignored. Mind you, the situations when you can’t figure out

what a component is doing from studying logs or digging up old doc-

umentation tend to be rare, but they do happen. Provided the system

doesn’t control nuclear weapons, turning the component off and seeing

what breaks is a tool that should be available when all other avenues

are exhausted.

172   Kill It with Fire

Having a part of a system that no one understands is a weakness, so

avoiding the issue for fear of breaking things should not be considered

the safer choice. Using failure as a tool to make systems and the organiza-

tions that run them stronger is one of the foundational concepts behind

resilience engineering. It’s important to know how each part of a system

works in a variety of conditions, including how interactions between

parts work. Unfortunately, no one person can hold all of that information

in his or her head. Knowledge about a system must be regularly shared

among the different operational units of a technical organization. An

organization needs processes to expose relevant details and scenarios,

communicate them, and judge their significance. That’s why the second

reason to break things on purpose is to verify that what an organization

believes about its system is actually true. Resilience engineering tests—

also called failure drills—look to trigger failure strategically so that the

true behavior of the system can be documented and verified.

The simplest and least threatening of failure drills is to restore from

backup. Remember, if an organization has never restored from backup,

it does not have working backups. Waiting for an actual outage to figure

that out is not a safer strategy than running a failure drill at a time you’ve

chosen, supervised by your most experienced engineers.

You can justify any failure test the same way. Is it better to wait for

something to fail and hope you have the right resources and expertise

at the ready? Or is it better to trigger failure at a time when you can plan

resources, expertise, and impact in advance? You don’t know that some-

thing doesn’t work the way you intended it to until you try it.

Projecting Impact

Two types of impact are relevant to failure tests. The first is technical

impact: the likelihood of cascading failures, data corruption, or dramatic

changes in security or stability. The second is user impact: How many

people are negatively affected and to what degree?

Breaking Changes   173  

Technical impact will be the harder of the two to project. You should

have some idea of how different parts of the system are coupled and where

the complexity is in your system from exercises in previous chapters; now

you’ll want to put that information into a model of potential failures.

A good way to start is with a 4+1 architectural view model. Developed

by Philippe Kruchten,13 a 4+1 architectural view model breaks an archi-

tectural model into separate diagrams that reflect the concerns of one

specific viewpoint.

●● Logical view maps out how end users experience a system. This

might take the form of a state diagram, where system state

changes (such as updates to the database) are tracked along user

behavior. When the user clicks a particular button, what happens?

What actions could the user take from that point, and how would

the system state adjust?

●● Process view looks at what the system is doing and in what order.

Process views are similar to logical views except the orientation is

flipped. Instead of focusing on what the user is doing, the focus is

on what processes the machine is initiating and why.

●● Development view is the system how software engineers see it. The

architecture is broken out by components reflecting the applica-

tion code structure.

●● Physical view shows us our systems as represented across physical

hardware. What actually gets sent across the network? What else

lives on the same servers?

The +1 in the 4+1 architecture refers to scenarios. Scenarios take a

small sample of features that can be connected to a specific technique or

functionality and focus on it. In other words, these are use cases.

13.	 Philippe Kruchten, “Architectural Blueprints—The ‘4+1’ View Model of Software Archi-
tecture,” IEEE Software 12 no. 6 (November 1995): 42–50.

174   Kill It with Fire

These views are easier to understand by example. Let’s consider a

hypothetical system where users upload scanned documents that are

converted to text files. These text files are tagged automatically based on

their context, but users may edit both this metadata and the transcrip-

tion itself.

The logical view of this system might look like Figure 8-1.

Upload

Document Text data

Text data Verified
text data

Verified tagsTags

Process Edit

Figure 8-1: Logical view, a state machine

We model the state of the data as it goes from document to processed

verified output. Each of the stages is kicked off by a user action, and it’s

easy to see the functional requirements of the system.

The process view, on the other hand, might look something like

Figure 8-2.

Open file
selector window

POST file
to server

Detonate file
in sandbox

Process file

Tokenize stringsExtract tagsLoad edit formSave data

Figure 8-2: Process view, the technical processes being performed

Processing a file begins with triggering the interface to select the file

for the user’s computer. Upon receiving the file, the server downloads it

into a sandbox to ensure it’s safe. While processing, text data is tokenized

Breaking Changes   175  

so that tags of the most common significant words can be extracted. Then

we load that data into an edit form so the user can validate it.

Although the two views describe the same system with the same set

of functions, they highlight different things. The process view contains

requirements around ensuring the file being uploaded is safe and how

the tags are identified that are not visible to the user, but without the

logical view, we might not realize that the intention of the system is

that the data should not be considered final until the user has verified it.

Kruchten developed the 4+1 architectural view model because he

observed that traditional architectural diagrams tried to capture all the

perspectives in one visualization. As a result, instead of enriching and

deepening our ability to reason about a system, knowledge gaps were cre-

ated where one view was emphasized over all others.

For example, the impacts of a broken sandbox are obvious on the pro-

cess view, but they do not even register on the logical view. Whereas the

logical view highlights tags and text as separate things that might break

independently of one another, the process view does not reveal this.

The development and physical views have a similar relationship.

Figure 8-3 shows what this hypothetical system might look like in a devel-

opment view.

Documents Tags

Create Create

Sandbox

Edit

Parse

Tokenize

Edit

Figure 8-3: Development view, how the code is structured

176   Kill It with Fire

Code is organized into two classes: Documents and Tags. Each class

has a set of methods reflecting a Create, Read, Update, and Delete (CRUD)

structure. This system saves the document as soon as we’ve verified that

it’s safe, so that if the parser fails, we don’t lose data. It tokenizes as it

parses and creates tags after.

The physical view might look more like Figure 8-4.

Users access the system from browsers on their computers. The web

application runs on a server that interacts with a separate VM for sand-

boxing, an object store for preprocessed documents, and a database for

post-processed data.

Each of these views is different, and by considering them together,

we get a clearer picture of the different ways that one component of the

system might fail and what that failure would affect.

Once we’ve modeled the system and feel confident that we understand

it, we can flesh out our analysis of potential failures by collecting data from

the running system to try to determine how many stakeholders would be

affected in case of failure and the likelihood of failure happening at all.

Browser

Webserver

Database Object store

Sandbox

Figure 8-4: Physical view, servers in a cloud environment

Breaking Changes   177  

The simplest and most obvious place to start is with the system’s logs.

Is a log produced when this component of the system is active, and do we

know what triggered it, when it was triggered, how long it ran, or other

metadata? If we don’t have logs, can we add them? A week or two of data

will not give you a complete picture, but it will validate what an outage

would impact and clarify the order of magnitude.

Another trick to estimating impact is to consider whether the miti-

gation can actually be automated. We had this issue around templates

once. For security reasons, we wanted to standardize on one templating

language. We needed our users to convert their custom templates and

didn’t want to spend months communicating and negotiating with cus-

tomers, so we built a tool that did the conversion for the customer and

tested that the new templates rendered identically.

Finally, there’s the most extreme method I mentioned before: turn

the component off and see who complains. What if the request leaves

your network and you can’t tell what the receiver is doing with it, if any-

thing? In those cases, you need to chip away at the challenge until you’ve

defined the impact. A micro-outage is similar to “turn it off and see who

complains,” except that you remove the asset only for a small period of

time and do not wait for a complaint to turn it back on.

The Kill Switch

As a result of your analysis, you should have a general idea of what is likely

to go wrong. Given that information, part of the plan before deliberately

breaking a component of a system should be establishing termination cri-

teria. That is to say, if the breakage triggers impacts beyond a certain level,

when and how do you revert the breakage? Having a rollback strategy is

important for any kind of change to an operational system, but it’s effec-

tive only if everyone understands what the tolerance for failure really is.

Setting the criteria and process for undoing the break before anything

is damaged gives people the ability to take on the risk with confidence.

178   Kill It with Fire

Communicating Failure
Of course, it’s not very diplomatic to break something that will affect col-

leagues and users without letting them know. Some level of communi-

cation is usually needed, but how much and with whom depends on the

objectives of the breaking change.

If you are breaking something to test the system’s resilience, provid-

ing too much information can limit the effectiveness of the drill. The

whole point of a failure drill is to test whether procedures for recovery

work as expected. Real failures rarely announce themselves or provide a

detailed description of how they are triggered.

Before a failure drill, it is not necessary to notify external users at

all. In theory, your organization will recover successfully, and users

will experience no negative impacts. Internal stakeholders, including

system users and other engineering teams, should be notified that there

will be a failure drill on a specific part of the system, but they don’t need

to know how long the outage will last, when exactly it will be, or the

nature of the failure to be triggered. If the drill is a routine test of back-

ups and fail-safes, a week’s notice is usually acceptable. If the drill will

affect areas of the system with unclear or complex recovery paths or if

the drill is testing human factors in the recovery process, more notice

is a good idea. You want to give teams enough time to assess the poten-

tial impact on the parts of the system they own and double-check their

mitigation strategies. Typically, I recommend no more than 90 days’

advance notice for the most elaborate failure drills. If you provide too

much time, people will procrastinate to the point where it is as if they

were given no advanced notice at all. If you give too little notice, teams

will need to stop normal development work to be ready in time.

It’s different if you are breaking something with the intention of

decommissioning it or otherwise leaving it permanently altered. In that

case, it is more important to communicate the change to external users.

The traditional way to do this is to set a date for decommissioning the

specific feature or service, declare it deprecated, and notify users a few

Breaking Changes   179  

months in advance. How much time to give users depends on how com-

plex the migration away from the deprecated feature is likely to be. I don’t

think there’s much value in providing years of notice versus months for

the same reason I don’t usually give internal teams more than 90 days of

notice for a failure drill: more time often leads to more procrastination.

If you are particularly unlucky, you might find yourself in a situation

where you cannot inform users with an email, a phone call, or even a

letter. You may not even know exactly who the users are. In those situa-

tions, you either have to get a little creative or take your chances that a

component that looks unused actually is.

Posting a deprecation notice somewhere that users are likely to look

for information is one solution. One time, when we could find no other

way to figure out who was using a specific API, we put a message in the

API itself. Since the attribute we wanted to get rid of happened to be a

string, we just changed the content of the string to a message saying that,

for security reasons, we would no longer be providing that value and to

contact customer support for more information.

But, whatever the method, the most important part of your commu-

nication strategy is that you carry out the breaking change when you said

you were going to do it. If you hesitate or delay, users will simply not bother

migrating at all, and the impact of the breakage will be much more damaging.

Once you set a date for failure, whether it’s a drill or a permanent

decommissioning, you need to honor that commitment.

Failure Is a Best Practice

To summarize, people’s perception of risk is not static, and it’s often not

connected to the probability of failure so much as it is the potential feel-

ing of rejection and condemnation from their peers. Since social pres-

sures and rewards are better incentives than money and promotions,

you can improve your odds of success by learning how to manipulate an

organization’s perception of risk.

180   Kill It with Fire

The first task is to understand what behaviors get individuals within an

organization acknowledged. Those are the activities that people will ulti-

mately prioritize. If they are not the activities that you think will advance

your modernization process, explore constructs, traditions, and—there’s

no better word for it—rituals that acknowledge complementary activities.

The second task is to look at which part of the organization gets to

determine when the operator can exercise discretion and deviate from

defined procedure. Those are the people who set the ratio of blameless-

ness to accountability in handling failure. Those are the people who will

grant air cover and who need to buy in to any breaking change strategy

for it to be successful. Once that air cover is established, anxiety around

failure tends to relax.

Once you know how to manipulate the organization’s perception of

risk, successfully managing the break is all about preparation. While you

will not be able to predict everything that could go wrong, you should be

able to do enough research to give your team the ability to adapt to the

unknown with confidence. At a minimum, everyone should know and

understand the criteria for rolling back a breaking change.

Failure does not necessarily jeopardize user trust. If the situation

is quickly resolved and users receive clear and honest communication

about the problem, the occasional failure can trigger the service recovery

paradox and inspire greater user confidence.

Organizations should not shy away from failure, because failure can

never be prevented. It can only be put off for a while or redirected to

another part of the system. Eventually, every organization will experience

failure. Embracing failure as a source of learning means that your team

gains more experience and ultimately improves their skills mitigating

negative impacts on users. Practicing recovering from failure, therefore,

makes the team more valuable.

9
HOW TO FINISH

W hen I was working for the United Nations (UN), my boss at

the time would regularly start conversations with the words

“When the website is done . . .” to which I would respond, “The website

is never done.” I count among my accomplishments the fact that by

the time I left the UN, people had bought in to the agile, iterative pro-

cess that treats software as a living thing that needs to be constantly

maintained and improved. They stopped saying “When the website is

done . . .”

Technology is never done, but modernization projects can be. This

chapter covers how to define success in a way that makes it clear when

the modernization effort is completed and what to do next. In the begin-

ning of a project, what success looks like can seem obvious, but often

some people in an organization make assumptions about what success

means that are different from the assumptions of others. Getting every-

one on the same page and keeping everyone on the same page is critical

to ensuring that the project crosses the finish line.

182   Kill It with Fire

Revealing Assumptions

A fair number of broken systems end up that way because the units of the

organization involved in the implementation saw their roles and how they

contributed to the larger picture differently from one another. Any kind of

modernization, rearchitecting, or rethinking of an existing technical system

is a long game. Work will stretch on for months or years. For that reason, it is

essential when you work on these projects that everyone on the team is able

to answer this question: How do we know if it’s getting better?

The team should know the long-term answer to that, but they should

also know what better looks like within days or weeks from where they are

now. This kind of work is a slog. To do it well, you have to maintain your own

resilience. You have to be mindful of how people behave when they think

a project is going poorly. The only thing harder than managing your own

doubts is dealing with sabotage from colleagues who don’t understand how

much progress is being made because their expectations of what improve-

ment will look like is different from other members of the team.

Approach 1: Success Criteria

Success doesn’t happen quickly or all at once, which begs the question:

How do you know whether a project is moving in the right direction?

When I set success criteria with my teams (and usually my boss or other

significant stakeholders), we first determine the time frame for evalua-

tion. If two people agree that shipping a feature is an indication of suc-

cess, they can still come into conflict if they disagree on the timeline.

Shipping something in three months is not the same thing as shipping

it in a week. For the person who believes the feature should be shipped

in a week, a deploy much later feels like a warning sign. For the person

who believes it should be shipped in a year, the same deploy is validation.

If you are familiar with objectives and key results (OKRs), success crite-

ria can take on a similar shape. First, you define your goal, and then, you

How to Finish   183  

define how you’ll know that you’ve reached your goal. Except, OKRs usu-

ally focus on signs that the goal is completed, and success criteria should

focus on signs that you’re heading in the right direction.

The value of this strategy is that the criteria chosen indicates the

approach that will be taken without anyone arguing about the approach.

If the success criteria are all about implementing new features, it’s

unlikely the team is going to prioritize resolving any technical debt. If

the success criteria are instead about decreasing the number of errors or

speeding up minimum time to recover, the team has to focus on improv-

ing existing code. Whenever you can avoid having people argue about

principles, philosophies, and other generalities of good engineering

versus bad engineering, take advantage of it.

The same goal can have wildly different success criteria depending

on the team’s model. For example, a consulting model would focus on

the client’s ability to absorb and adopt process and best practices, not

deploys. Consultants don’t have much control over deploys, and the only

way they get control is by not being consultants anymore. As software

engineers, it is easy to fall into the trap of thinking that effective work

will always look like writing code, but sometimes you get much closer to

your desired outcome by teaching others to do the job rather than doing

it yourself.

Example: Adding Continuous Integration/Continuous Deploy

Goal: Move service on to its own deploy pipeline.

Timeline: One quarter.

Success Criteria:

●● Time to deploy drops by 20 percent.

●● Any single person on the Service team can initiate and manage a

deploy.

●● Number of deploys in a week goes up.

184   Kill It with Fire

Approach 2: Diagnosis-Policy-Actions

Developed by Richard Rumelt, this approach draws on the same infor-

mation as success criteria but frames it a bit differently.1 Informa-

tion is represented in three segments: diagnosis, policy, and actions.

Diagnosis is a definition of a problem being fixed. Policy refers to the

boundaries of potential solutions—the rules about what the solution

should involve doing or shouldn’t involve doing. Finally, actions are

the steps the team will take to solve the problem without violating

their policy.

What’s useful about Rumelt’s approach is that it is more focused

on what you’re going to do and how you’re going to do it. This might be

better in situations when there is little consensus around what suc-

cess should look like and no single authority to make that decision,

but you may find this approach more difficult if your team struggles

with road maps. The challenges of legacy modernization can be varied,

intertwined, and politically complex. Teams might not agree on what

success looks like, and they might also disagree on which tasks need to

be executed to untangle problems. Rumelt’s approach is better for sit-

uations when it is easier to reach agreement on the steps forward and

their order, but harder to reach consensus on what signs of improve-

ment will look like.

Example: Upgrading a Database

Diagnosis: Our database software is several versions out of date. The

vendor won’t provide support anymore.

Policy: We want to use blue-green deploys. We will never just turn

one database version off and the other on all at once.

1.	 Richard P. Rumelt, Good Strategy Bad Strategy: The Difference and Why It Matters (New
York: Crown Business, 2011).

How to Finish   185  

Actions:

●● We will back up our data before each upgrade.

●● We will upgrade to 3.2 on this date.

●● We will update to 3.3 on this date.

Comparison

In terms of defining success, success criteria and diagnosis-policy-actions

have different strengths and weaknesses. Success criteria connects mod-

ernization activities more directly to the value add they can demonstrate.

It affords more flexibility in exactly what the team does by not prescribing

a specific approach or set of tasks. It is an excellent exercise to run with

bosses and any other oversight forces that might be inclined to micro-

manage a team. How to do something should be the decision of the people

actually entrusted to do it. For that reason, the diagnosis-policy-actions

approach is too detail oriented to help a team manage up. If the set of

actions needs to be changed later, the team might be reluctant to do it and

seem inconsistent in front of senior leadership. Discretion is so critical

to success; don’t forfeit your team’s right to it by presenting implementa-

tion details for feedback if that’s not requested. What leadership needs to

know is what outcomes you’re pushing for.

On the other hand, sometimes you know what better looks like but

have no idea which set of actions will get you there. Research and exper-

imentation might fail to signal a clear winner among competing road

maps. One side of an organization might say this one thing needs to

be fixed first, while another side might argue a completely different fix

takes priority. If the situation can be resolved only by executive decision,

the diagnosis-policy-action approach is a better fit. The same flexibility

that makes success criteria effective at adapting to new information and

changing tactics will create confusion when the team is undecided about

the day-to-day work.

186   Kill It with Fire

Marking Time

Defining what success looks like helps keep people on the same page, but

since the success criteria and diagnosis-policy-actions approaches cut

challenges into smaller accomplishments, you also need to stop people

from losing faith in the significance of those small accomplishments. If

the team feels like what they’ve succeeded in doing was not worth the

time they invested in it, the effectiveness of your definition of success

will be diminished.

What’s to your advantage here is that the perception of time is just as

variable as perception of risk. Finding a way to mark time is about find-

ing a way to pull people out of day-to-day frustrations that slow down

time and help them focus on the larger picture. My favorite way of mark-

ing time is bullet journaling. I have a book where every day I write down

five things I am going to work on and how long I think they will take.

Throughout the day, I check off those tasks as I complete them and jot

down little notes with significant details. During slow periods, I often

doodle in the margins or decorate pages with stickers I’ve gotten from

vendors.

Whenever I flip two or three weeks back in my bullet journal, I am

shocked by how much has changed. I’ve gotten so much more done

than I realized. The tasks I’ve completed feel like months’ worth of work.

Sometimes I am shocked when looking only one week back in time.

Just as humans are terrible judges of probability, we’re also terrible

judges of time. What feels like ages might only be a few days. By marking

time, we can realign our emotional perception of how things are going.

Find some way to record what you worked on and when so the team can

easily go back and get a full picture of how far they’ve come.

You might be tempted to say, “Oh, well, they can do that with our proj-

ect management system.” Except, project management tools are geared

toward presenting one stream of work at a time. Marking time is more

effective because of the more complete a picture it paints of one specific

How to Finish   187  

point in people’s lives. Knowing that such-and-such ticket was closed on

a certain day doesn’t necessarily take me back to that moment. Some-

times a date is just a date. When you mark time, do so in a way that evokes

memory, that highlights the feeling of distance between that moment

and where the team is now.

Bullet journaling is effective for me because each page is a snapshot

of everything that is on my mind at the time. I record work projects, per-

sonal projects, events and social activities, holidays, and illnesses. Any-

thing that I expect to take up a large part of the day, I write down. Looking

back on a project’s progress with that information gives it a sense of con-

text that I hadn’t considered before. Once I consider it, I realize that I

have not been standing in one place mindlessly banging my head against

a wall. Bit by bit, piece by piece, I have made things better.

Postmortems on Success

For software engineers, a postmortem is a review done after an outage

that explores the timeline of the failure, contributing factors, and the

ultimate resolution in detail. We typically tack on the prefix “blameless”

when referring to postmortems to emphasize that the purpose of doing a

postmortem is to understand what went wrong, not to assign blame to a

particular group or individual who made a mistake.

But postmortems are not specific to failure. If your modernization

plan includes modeling your approach after another successful project,

consider doing a postmortem on that project’s success instead. Remem-

ber that we tend to think of failure as bad luck and success as skill. We

do postmortems on failure because we’re likely to see them as complex

scenarios with a variety of contributing factors. We assume that success

happens for simple, straightforward reasons.

In reality, success is no more or less complex than failure. You should

use the same methodology to learn from success that you use to learn

from failure.

188   Kill It with Fire

Postmortem vs. Retrospective
Right now you might be thinking to yourself that your organization does

do postmortems on success, you just call them retrospectives.

And, that’s true. The post-sprint or post-launch retrospective does

ask many of the same questions as a postmortem. However, I have yet

to work with a technical organization that treated retrospectives and

postmortems the same. In practice, retrospectives are much more infor-

mal. They do not generate reports for others to read—at least, not that

I’ve ever seen. I do not know of any organizations that post their retro-

spectives online for the public to read. I’ve been in a lot of retrospectives

where we’ve captured great information and had deep soul-searching

conversations, but rarely have I seen that output leave the whiteboard

and be shared with other teams.

As an industry, we reflect on success but study failure. Sometimes obses-

sively. I’m suggesting that if you’re modeling your project after another

team or another organization’s success, you should devote some time to

actually researching how that success came to be in the first place.

Running Postmortems
Before discussing writing postmortems on success, it might be useful to

give an overview of how postmortems are run in technical organizations

in general. The conventional postmortem format has a couple charac-

teristics that are impractical outside incident response. For example, an

outage happens quickly and ideally is resolved within hours, so creating

a detailed timeline of events for that is an easier task than it would be for a

project that has run for months.

A traditional postmortem describes the impact of the outage. The team

discusses and documents what went well, what went poorly, and where

people felt they got lucky. As mentioned, the postmortem often includes a

detailed timeline of events around the incident response. These timelines

break down what happened, when it happened, and who did what. Post-

mortems also do not usually reference people by name to protect them from

How to Finish   189  

blame. Instead, monikers like “SRE 1” or “Software Engineer 2” are used to

identify individuals and the actions they took. The postmortem concludes

with actionable steps for improvement. How can the organization improve

the things that went poorly or build on the things that went well?

Postmortems are written by reviewing communications and inter-

viewing team members. Then a final review meeting is held to present

and verify the gathered information with the full team.

When running a postmortem on success, you have to weigh the

investment of time and energy it will take to get that level of detail when

the timeline stretches out over months instead of hours. Such efforts can

become cumbersome and bureaucratic fast. Traditional postmortems are

written by the software engineers who responded to the incident. These

are people you want working on software, not writing reports.

For that reason, postmortems on success should be run like their

lighter-weight cousin the retrospective, but documented with the phi-

losophy of traditional postmortems. The value of the postmortem is not

its level of detail, but the role it plays in knowledge sharing. Postmortems

are about helping people not involved in the incident avoid the same

mistakes. The best postmortems are also distributed outside the organi-

zation to cultivate trust through transparency.

Postmortems establish a record about what really happened and how

specific actions affected the outcome. They do not document failure; they

provide context. Postmortems on success should serve a similar purpose.

Why was a specific approach or technique successful? Did the final strat-

egy look like what the team had planned at the start? Your timeline in a

postmortem for success should be built around these questions: How did

the organization execute on the original strategy, how did the strategy

change, when did those changes happen, and what triggered them?

Even the biggest successes have challenges that could have gone

better and places where good fortune saved the day. Documenting those

helps people evaluate the suitability of your approach for their own prob-

lems and ultimately reproduce your success.

190   Kill It with Fire

If you’re convinced the strategy from another organization will work

for your issue, don’t wait for those engineers to start doing postmortems.

You can gather most of the information you need by taking people out for

coffee. If there’s an organization whose success you want to copy, spend a

couple weeks interviewing people about their strategy using the postmor-

tem’s key questions.

What went well?

What could have gone better?

Where did you get lucky?

The Tale of Two War Rooms

I examine the contributing factors to success before finalizing a strat-

egy, because I’ve seen organizations learn the wrong lessons from suc-

cess. For example, an organization I was working with had a project

that was hopelessly behind schedule. Not only did team members

not have a realistic end date for even the smallest part of the project,

they did not know why the project kept getting delayed in the first

place. It was a large project that required a couple different organiza-

tional units to work together and share information. My consulting

team was just rolling off a successful project that had faced a simi-

lar challenge. The organization had heard that on our project, we had

arranged for representatives from each organizational unit to work

out of the same room. For several months, instead of reporting to their

offices or cubicles every day, this group sat down together in a large

conference room with their laptops. This was a war room, not a meet-

ing. Over time, the conference room looked more like an open plan

co-working space.

The organization with the failing project decided to copy our strategy

without talking to us or learning much about how this war room worked.

A large conference room was booked for a month, and representatives

How to Finish   191  

from each affected operational unit were pulled in and told they had to

work in that conference room together.

The organization didn’t see the same results that we had, and even-

tually leadership representatives reached out and asked us why. Having

neglected to research our success, they were forced to research their own

failure again.

I understood their frustrations. After all, they had followed our pro-

cess to the letter and gotten different results. Or at least, that’s what the

situation looked like from their perspective, but when they asked for

my thoughts, I noticed they had missed one critical component of that

war room.

They put the wrong people in it.

Working Groups vs. Committees

Throughout this book, I have suggested structures that involve one

small group of people advising, planning for, and, at times, delegating

work to a larger team. These are working groups. It has become popular

as of late to use the term working group instead of the word committee

because committee just sounds bureaucratic to most people. Committees

have a reputation for not getting anything done or, worse, for building

through compromise. A camel, the old expression goes, is a horse built by

committee.

Working groups do not have this baggage, so people will often say

they want to start a working group and turn around and start a commit-

tee instead—as if simply changing the name of a structure somehow

makes the structure a more effective tool. Worse still, most people can

no longer tell the difference between a working group and a committee.

That was what the leaders had missed when they copied our successful

strategy. The people in the war room of our project were a working group.

The people in the war room of the failed project were a committee.

What exactly is the difference?

192   Kill It with Fire

Working groups relax hierarchy to allow people to solve problems

across organizational units, whereas committees both reflect and rein-

force those organizational boundaries and hierarchies. Our war room was

made up of software engineers and network administrators. We brought

people who had to work together to implement the project into the same

room to work next to one another instead of communicating over email,

through bosses, and scheduling any number of conference calls.

The failed war room, on the other hand, was made up of executives.

Rather than bringing together people who are peers but report up to dif-

ferent chains of command, this war room just mimicked the existing

structure and the existing politics of the organization. Worse, the day to

day of most of these executives consisted almost entirely of meetings.

Instead of working shoulder to shoulder with colleagues, they used the

war room as a place to throw their belongings as they ran in and out of

other conference rooms to conduct business as usual.

Working groups are internally facing; the customers for a working

group are the members of the working group itself. People join working

groups to share their knowledge and experience with peers. They are

effective because they establish a space for cross-organizational collab-

oration and troubleshooting. People on the implementation layer of an

organization can bring their challenges to peers who have already expe-

rienced those challenges and hear their stories or bounce ideas off them.

Sometimes this results in recommendations for leadership, but the pri-

mary purpose of a working group is to troubleshoot and evangelize across

an organization or industry. Working groups are typically initiated and

staffed by people on the implementation layer of the organization.

A committee is formed to advise an audience external to the commit-

tee itself, typically someone in senior leadership. Whereas the working

group is open to those who consider themselves operating in the same

space as the working group’s topic area, committees are selected by the

entity they will be advising and typically closed off to everyone else.

That external authority decides the committee’s scope and goals. The

How to Finish   193  

committee reports up to that external authority and exists solely for its

benefit.

Committees also tend to have a lot of procedure around them, but the

absence of chairpeople and Robert’s Rules of Order does not make a com-

mittee a working group.

The model can have a fair amount of variation. A Code Yellow team,

for example, might not be self-selecting, and ignoring its advice might

have serious consequences, but the point of a Code Yellow team is to

reorganize and redistribute resources temporarily across an organiza-

tion. That team ultimately reports up to a leader who is closer to a peer

than an executive. The important takeaway is working groups relax orga-

nizational boundaries while committees reinforce them.

There is little value in having senior managers represent their units

in a war room. Since they are not implementing the technology them-

selves, they cannot speak to what compromises would unblock the

project without going back to their own engineers. Our war room was

successful because it shortened the distance those conversations had to

travel. The failed war room added a game of telephone on top of the exist-

ing barriers to communication. One could never be sure that the message

coming out of that war room was accurate or if the manager representing

you had misunderstood an implementation detail.

Funny story: I would, from time to time, run war rooms filled with

senior executives. It was a tactic I resorted to when the organization was

in such a state of panic that senior leadership members were microman-

aging their teams. Software engineers can’t fix problems if they spend all

their time in meetings giving their managers updates about the prob-

lems. The boot has to be moved off their necks.

In that situation, my team would typically run two war rooms: one

where the engineers were solving problems together and one outfitted

with lots of fancy dashboards where I was babysitting the senior execu-

tives. The most valuable skill a leader can have is knowing when to get

out of the way.

194   Kill It with Fire

Success Is Not Obvious If Undefined

Modernization projects without a clear definition of what success looks

like will find themselves with a finish line that only moves further back

the closer they get to it. Don’t assume that success is obvious. Different

members of your team may have different and competing visions of what

better looks like. Everyone needs to be able to explain how they know

that their efforts are moving the project forward for people to be able to

work together. Projects that need something as extreme as a legacy mod-

ernization effort have no shortage of problems to solve. By defining suc-

cess, you keep the finish line from moving.

In the next chapter, I will explain how to maintain software on a day-

to-day basis to avoid having to run legacy modernizations in the first

place. The finish line of a modernization effort need not be that every-

thing is fixed and the technology is now perfect. I have yet to encounter

a system that could be described that way, and I have worked for organi-

zations as young as six months and as old as 200 years. All technology is

imperfect, so the goal of legacy modernization should not be restoring

mythical perfection but bringing the system to a state where it is pos-

sible to maintain modern best practices around security, stability, and

availability.

10
FUTURE-PROOFING

T he best way to complete a modernization project is by ensuring that

you won’t have to go through the whole process again in a few years.

Future-proofing isn’t about preventing mistakes; it’s about knowing how

to maintain and evolve technology gradually.

 Two types of problems will cause us to rethink a working system as

it ages. The first are usage changes. The second are deteriorations. Scaling
challenges are the change in usage type: we have more traffic or a different

type of traffic from what we had before. Maybe more people are using the

system than were before, or we’ve added a bunch of features that over time

have changed the purpose for which people are using the technology.

Usage changes do not have a constant pace and are, therefore, hard

to predict. A system might never have scaling challenges. A system can

reach a certain level of usage and never go any further. Or it can double or

triple in size in a brief period. Or it can slowly increase in scale for years.

What scaling challenges will look like if they do happen will depend on

a number of factors. Because changes to the system’s usage are hard to

anticipate, they are hard to normalize. This is an advantage. When we

196   Kill It with Fire

normalize something, we stop thinking about it, stop factoring it into our

decisions, and sometimes even forget it exists.

Deteriorations, on the other hand, are inevitable. They represent a nat-

ural linear progression toward an unavoidable end state. Other factors

may speed them up or slow them down, but eventually, we know what

the final outcome will be. For example, no changes in usage were going

to eliminate the 9th of September from the calendar year of 1999. It was

going to happen at some point, regardless of the system behavior of the

machines that were programmed to use 9/9/99 as a null value assigned

to columns when the date was missing.

Memory leaks are another good example of this kind of change. System

usage might influence exactly when the leak creates a major problem, but

low system usage will not change the fact that a memory leak exists that

will eventually be a problem. The only way to escape the problem is to fix it.

Hardware lifecycles are another example. Eventually chips, disks, and

circuit boards all fail and have to be replaced.

These kinds of deteriorations are dangerous because people forget

about them. For a long time, their effects go unnoticed, until one day they

finally and completely break. If the organization is particularly unlucky,

the problem is deeply embedded in the system, and it’s not immediately

clear what has even broken in the first place.

Consider, for example, Y2K. An alarming number of computer pro-

grams were designed with a two-digit year, which became a problem

in the year 2000 when the missing first two digits were different from

what the program assumed they were. Most technical people know the

Y2K story, but did you know that Y2K wasn’t the first short-sighted pro-

gramming mistake of this nature? Nor will it be the last.

Time

It’s unbelievable how often software engineers have screwed up time

in programs. In the 1960s, some programs had only one-digit years.

Future-Proofing   197  

The TOPS-10 operating system had only enough bits to represent dates

between January 1, 1964, and January 4, 1975. Engineers patched this

problem, adding three more bits so that TOPS-10 could represent dates

up to February 1, 2052, but they took those bits from existing data struc-

tures, thinking they were unused. It turns out that some programs on

TOPS-10 had already repurposed those areas of storage, which led to

some wonky bugs.1

How much storage should be dedicated to dates is a constant problem.

It would be unwise and impractical to allocate unlimited storage for time,

and yet any amount of storage eventually will run out. Programmers must

decide how many years will pass before the idea that their program will

still be functioning seems unlikely. At least in the early days of computers,

the tendency was to underestimate the lifecycle of software. It’s easy for

a functioning piece of software to remain in place for 10, 20, 30 years, or

more. But in the early days of computing, two or three decades seemed

like a long time. If time was given only enough space to reach 1975, the fix

might carry it over to 1986. Certain operating systems in 1989 programmed

limits to reach maturity in 1997—and so on, and on, and on.

These programs are still with us, and we haven’t reached all of their

maturity dates just yet. In 2028, a date format created by the World

Computer Corporation will reach its storage limit, and we have no idea

whether any existing systems use it. Of greater concern is the year 2038

when Unix’s 32-bit dates reach their limit. While most modern Unix

implementations have switched to 64-bit dates instead, the Network

Time Protocol’s (NTP) 32-bit date components will overflow on February

7, 2036, giving us a potential preview. NTP handles syncing the clocks

of computers that talk with each other over the internet. Computer

clocks that are too badly out of sync—typically five minutes or more—

have trouble creating secure connections. This requirement goes back to

1.	 Dan Hoey, “Software Alert: DATE-86,” Australian Unix Systems User Group Newsletter 6, no. 4
(January 1986), 37.

198   Kill It with Fire

MIT’s Kerberos version 5 spec in 2005, which used time to keep attackers

from resetting their clocks to continue using expired tickets.

We don’t know what kinds of problems NTP and Unix rollovers will

cause. Most computers are probably long upgraded and will be unaf-

fected. With any luck, the 2038 milestone will pass us by with little fan-

fare, just as Y2K did before it. But time bugs don’t need to trigger global

meltdowns to have dramatic and expensive impacts. Past time bugs have

temporarily cleared pension funds, messed with text messages, crashed

video games, and disabled parking meters. In 2010, 20 million chip and

PIN bank cards became unusable in Germany thanks to a time bug.2 In

2013, NASA lost control of the $330 million Deep Impact probe thanks to

a time bug similar to the 2038 issue.

Time bugs are tricky because they detonate decades, or sometimes

centuries, after they were introduced. IBM mainframes built in the 1970s

reach a rollover point on September 18, 2042. Some Texas Instruments

calculators do not accept dates beyond December 31, 2049. Some Nokia

phones accept dates only up to December 31, 2079. Several program-

ming languages and frameworks use timestamp objects that overflow on

April 11, 2262.

It’s not that programmers don’t know these bugs exist. It’s just hard

to imagine the technology of today sticking around until 2262. At the

same time, people who were programming room-sized mainframes in

the 1960s never thought their code would last for decades, but we now

know programs this old are still in production. By the time the year 2000

came around, that old software (and sometimes the machines that came

with it) had not only not been retired but was also being maintained by

technologists two or three generations divorced from its creation.

Resolving time bugs is usually fairly straightforward—when we know

about them. The problem is we tend to forget that they’re approaching.

2.	 James Wilson, “German Bank Cards Hit by ‘2010’ Bug,” Financial Times, January 5, 2010.

Future-Proofing   199  

We have already seen systems fail thanks to the 2038 bug. Programs in

financial institutions that must calculate out interest payments 20 or 30

years into the future act like early warning detection systems for these

types of errors. Still, organizations must know the state of their legacy

systems (in other words, whether they’ve been patched) and be aware

that these incidents are happening.

Unescapable Migrations

Future-proofing systems does not mean building them so that you never

have to redesign them or migrate them. That is impossible. It means

building and, more important, maintaining to avoid a lengthy modern-

ization project where normal operations have to be reorganized to make

progress. The secret to future-proofing is making migrations and rede-

signs normal routines that don’t require heavy lifting.

Most modern engineering organizations already know how to do this

with usage changes—they monitor for increased activity and scale infra-

structure up or down as needed. If given proper time and prioritization,

they will refactor and redesign components of the system to better reflect

the most likely long-term usage patterns. Making updates to the system

early and often is just a matter of discipline. Those that neglect to devote

a little bit of time to cleaning their technical debt will be forced into

cumbersome and risky legacy modernization efforts instead.

One of my favorite metaphors for setting a cadence for early and

often updates comes from the podcast Legacy Code Rocks (https://www
.legacycode.rocks/). Launching a new feature is like having a house party.

The more house parties you have in your house before you clean things up,

the worse condition your house will be in. Although there isn’t a hard-and-

fast rule here that will work for everyone, automatically scheduling some

time to reevaluate usage changes and technical debt after every n feature

launches will normalize the process of updating the system in ways that

will ensure its long-term health. When people associate refactoring and

https://www.legacycode.rocks/
https://www.legacycode.rocks/

200   Kill It with Fire

necessary migrations with a system somehow being built wrong or break-

ing, they will put off doing them until things are falling apart. When the

process of managing these changes is part of the routine, like getting a

haircut or changing the oil in your car, the system can be future-proofed

by gradually modernizing it.

Deteriorations require a different tact. Sometimes they can be mon-

itored. As batteries age, for example, their performance slides in a way

that can be captured and tracked. Some deteriorations are more sudden.

Time bugs don’t give any warning before they explode. If the organization

has forgotten about it, there’s nothing to monitor.

It would be naive to say that you should never build a deteriorating

change into your system; those issues are often unavoidable. The mis-

take is assuming it is not possible that the system will still be operational

when the issue matures. Technology has a way of extending its life for

much longer than people realize. Some of the control panels for switches

on the New York City subway date back to the 1930s. The Salisbury cathe-

dral clock started running in 1368. There’s a lightbulb over Livermore

California’s Fire Station 6 that has been on since 1901. All around the

world, our day-to-day lives are governed by machines long past their

assumed expiration dates.

Instead, managing deteriorations comes down to these two practices:

●● If you’re introducing something that will deteriorate, build it to

fail gracefully.

●● Shorten the time between upgrades so that people have plenty of

practice doing them.

Failing Gracefully

The reason Y2K and similar bugs do not trigger the end of human civili-

zation is because they do not impact every system affected by them with

uniform intensity. There is a lot of variation in how different machines,

Future-Proofing   201  

different programming languages, and different software will handle

the same problem. Some systems will panic; some will simply move on.

Whether it is better for the system to panic and crash or to ignore the

issue and move on largely depends on whether the failure is in the criti-

cal path of a transaction.

Failing gracefully does not always mean the system avoids crashing.

If a bug breaks a daily batch job calculating accrued interest on bank

accounts, the system recovering from the error by defaulting to zero and

moving on is not failing gracefully. That’s an outcome that if allowed to

fail silently will upset a lot of people very quickly, whereas a panic would

alert the engineering team immediately to the problem so it could be

resolved and the batch job rerun.

How close is the error to a user interface? If the error is something

potentially triggered by user input, failing gracefully means catching the

error and logging the event but ultimately directing the user to try again

with a useful message explaining the problem.

Will the error block other independent processes? Why is it block-

ing other processes? Blocking implies shared resources, which would

suggest that processes are not as independent as originally thought. For

truly independent processes, it is probably okay to log the error but ulti-

mately let the system move on.

Is the error in one step of a larger algorithm? If so, you likely have

no choice but to trigger a panic. If you could eliminate a step in a mul-

tistep process and not affect the final outcome, you should probably

rethink whether those steps are necessary.

Will the error corrupt data? In most cases, bad data is worse than

no data. If a certain error is likely to corrupt data, you must panic upon

the error so the problem can be resolved.

These are good things to consider when programming in unavoid-

able deteriorations. This thought exercise is less useful when you don’t

know that you have no choice but to program in a potential bug. You

can’t know what you don’t know.

202   Kill It with Fire

But, it’s worthwhile to take some time to consider how your software

would handle issues like the date being 20 years off, time moving back-

ward for a second, numbers appearing that are technically impossible

(like 11:59:60 PM), or storage drives suddenly disappearing.

When in doubt, default to panicking. It’s more important that errors

get noticed so that they can be resolved.

Less Time Between Upgrades, Not More

A few years ago, I got one of those cheesy letter boards for my kitchen—

you know, the ones you put inspirational messages on like “Live life in

full bloom” or “Love makes this house a home.” Except, mine says “The

truth is counterintuitive.” Our gut instinct with deteriorations is to push

them as far back as possible if we cannot eliminate them altogether. Per-

sonally, I feel this is a mistake. I know from experience that the more

often engineers have to do things, the better they get at doing them, and

the more likely they are to remember that they need to be done and plan

accordingly.

For example, in 2019 there were two important time bugs. The first

was a rollover of GPS’s epoch; the second was a leap second.

The GPS rollover is a problem identical to the time bugs already

described. GPS represents weeks in a storage block of 10 bytes. That

means it can store up to 1024 values, and 1024 weeks is 19.7 years. As

with Y2K, when GPS gets to week number 1025, it resets to zero, and the

computer has no way of knowing that it shouldn’t backdate everything

by 20 years.

This had happened only once before, in 1999. Although commercial

GPS has been available since the 1980s, it had not really caught on by

1999. The chips that powered the receiver were too expensive, and their

convenience would not be realized until computers became fast enough

to overlay that data with calculations determining routes or associating

physical landmarks with their coordinates. As the helpful bits of GPS

Future-Proofing   203  

were not yet market-ready, consumers were more sensitive to the privacy

concerns of the technology. In 1997, employees for United Parcel Service

(UPS) famously went on strike after UPS tried to install GPS receivers in

all of their trucks.

So, the impacts of the first GPS rollover were minor, because GPS

was not popular. By 2019, however, the world was a completely different

place. Twenty years is a long time in technology. Not only were virtually

all cellphones equipped with GPS chips, but any number of applications

had been built on top of GPS.

As it turns out, people replace GPS-enabled devices a lot. Mobile app

updates for many users are seamless and automatic. We are so used to

getting new phones every two or three years that the rollover of 2019 was

mainly uneventful. Users with older-model mobile phones experienced

some problems but were encouraged to buy new phones from their ven-

dors instead.

The second time bug of 2019, a leap second, went a slightly different

way. A leap second is exactly what it sounds like: an extra second tacked

on to the year to keep computer clocks in sync with the solar cycle. Unlike

a leap year, leap seconds are not predictable. How many seconds between

sun up and sun down depends on the earth’s rotational speed, which is

changing. Different forces push the earth to speed up, and others push

the earth to slow down.

Here’s a fun fact: one of the many forces changing the speed of the

earth’s rotation is climate change. Ice weighs down the land masses on

Earth, and when it melts, those land masses start to drift up toward the

poles. This makes the earth spin faster and days fractions of a second shorter.

There have been 28 leap seconds between 1972 and 2020, but as some

forces slow the earth down and some forces speed it up, there can be sig-

nificant gaps between years with leap seconds. After the leap second in

1999, it was six years before another was needed. There were no leap sec-

onds between 2009 and 2012. There was a leap second in both 2015 and

2016, but nothing in the next three years.

204   Kill It with Fire

Leap seconds are never fun, but if the reports of problems experi-

enced during each recent leap second can be considered comprehensive,

they are worse after a long gap than they would be otherwise. Even gaps

as short as three years are long enough for new technologies either to be

developed or to get much more traction than they had before. Abstrac-

tions and assumptions are made, and they settle into working systems

and then are forgotten.

The industries around cloud computing and smartphones started to

grow just as a multiyear gap in leap seconds was approaching. By the

time the next leap second event occurred, huge platforms were running

on technologies that had not existed during the last one. These technol-

ogies were built by engineers who may not even have been familiar with

the concept of a leap second in the first place. Some service owners failed

to patch updates to manage the leap second in a timely manner. Reddit,

Gawker Media, Mozilla, and Qantas Airways all experienced problems.

This was followed by another multiyear gap before the leap second

of 2015 created issues for Twitter, Instagram, Pinterest, Netflix, Amazon,

and Beats 1 (now Apple Music 1). By comparison, 2016’s leap second went

out with a whimper. With just a six-month gap, it seems to have triggered

problems only in a small number of machines across CloudFlare’s 102

data centers.

And the 2019 leap second at the end of another multiyear gap? It

cancelled more than 400 flights when Collins Aerospace’s Automatic

dependent surveillance–broadcast (ADS–B) system failed to adjust cor-

rectly. ADS–B was not new, but the FAA had released a rule requiring it

on planes by 2020, so its adoption was much greater than it had been at

the time of the previous leap second.

As a general rule, we get better at dealing with problems the more

often we have to deal with them. The longer the gap between the matu-

rity date of deteriorations, the more likely knowledge has been lost and

critical functionality has been built without taking the inevitable into

account. Although the GPS rollover came at the end of a 20-year gap, it

Future-Proofing   205  

benefited from the accelerated upgrade cycle of devices most likely to be

affected. Few people have 20-year-old cellphones or tablets. Leap sec-

onds, on the other hand, have pretty consistently caused chaos when

there’s a gap between the current one and the last one.

Some deteriorations have such short gaps at scale and don’t need the

organization to do any extra meddling. For example, the average stor-

age drive has a lifespan of three to five years. If you have one drive—for

example, the one in your computer—you can mitigate the risks of this

inevitable failure by regularly backing things up and just replacing the

computer when the drive ultimately fails.

If you are running a data center, you need a strategy to keep drive

failure from crippling operations. You need to back up regularly and

restore almost instantaneously. That might seem like a huge engineer-

ing challenge, but the architecture to create such resilience is built in to

the scale. Data centers don’t have just a few hard drives and three- to five-

year gaps when they need to be replaced. Data centers often have thou-

sands to hundreds of thousands of drives that are failing constantly. In

2008, Google announced it had sorted a petabyte of data in six hours

with 4,000 computers using 48,000 storage drives. A single run always

resulted in at least one of the 48,000 drives dying.3 A formal study of the

issue done at about the same time pegged the annual drive failure rate

at 3 percent.4 At 3 percent failure rate, once you get into the hundreds

of thousands of drives, you start seeing multiple drives failing every day.

While no one would argue that drive failures are pleasant, they do

not trigger outages once data centers reach a scale where handling drive

failure is a regular occurrence. So rather than lengthening the period

3.	 Grzegorz Czajkowski, “Sorting 1PB with MapReduce,” Google Blog, November 21, 2008,
https://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html.

4.	 Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andre Barroso, “Failure Trends in a
Large Disk Drive Population,” Proceedings of the 5th USENIX Conference on File and Stor-
age Technologies, February 2007.

https://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html

206   Kill It with Fire

between inevitable changes, it might be better to shorten it to ensure

engineering teams are building with the assumption of the inevitable

at the forefront of their thoughts and that the teams that would have to

resolve the issue understand what to do.

A Word of Caution About Automation

The second solution people gravitate to if a deteriorating change cannot

be eliminated altogether is to automate its resolution. In some cases, this

kind of automation adds a lot of value with relatively little risk. For exam-

ple, failing regularly to renew TLS/SSL certificates could cause an entire

system to grind to a halt suddenly and without warning. Automating the

process of renewing them means the certificates themselves can have

shorter lifespans, which increases the security benefit of using them.

The main thing to consider when thinking about automating a prob-

lem away is this: If the automation fails, will it be clear what has gone

wrong? In most cases, expired TLS/SSL certificates trigger obvious alerts.

Either the connection is refused, at which point the validity of the cer-

tificate should be on the checklist of likely culprits, or the user receives a

warning that the connection is insecure.

Automation is more problematic when it obscures or otherwise encour-

ages engineers to forget what the system is actually doing under the hood.

Once that knowledge is lost, nothing built on top of those automated activ-

ities will include fail-safes in case of automation failure. The automated

tasks become part of the platform, which is fine if the engineers in charge

of the platform are aware of them and take responsibility for them.

Few programmers consider what would happen should garbage col-

lection suddenly fail to execute correctly. Memory management used to

be a critical part of programming, but now the responsibility is largely

automated away. This works because the concern is always top of mind

for software engineers who develop programming languages that have

automated garbage collection.

Future-Proofing   207  

In other words, automation is beneficial when it’s clear who is

responsible for the automation working in the first place and when fail-

ure states give users enough information to understand how they should

triage the issue. Automation that encourages people to forget about it

creates responsibility gaps. Automation that fails either silently or with

unclear error messages at best wastes a lot of valuable engineering time

and at worst triggers unpredictable and dangerous side effects.

Building Something Wrong the Correct Way

Throughout this book and in this chapter especially, the message has

been don’t build for scale before you have scale. Build something that

you will have to redesign later, even if that means building a monolith to

start. Build something wrong and update it often.

The secret to building technology “wrong” but in the correct way is to

understand that successful complex systems are made up of stable simple

systems. Before your system can be scaled with practical approaches, like

load balancers, mesh networks, queues, and other trappings of distribu-

tive computing, the simple systems have to be stable and performant.

Disaster comes from trying to build complex systems right away and

neglecting the foundation with which all system behavior—planned

and unexpected—will be determined.

A good way to estimate how much complexity your system can

handle is to ask yourself: How large is the team for this? Each addi-

tional layer of complexity will require a monitoring strategy and ulti-

mately human beings to interpret what the monitors are telling them.

Figure a minimum of three people per service. For the purposes of this

discussion, a service is a subsystem that has its own repository of code

(although Google famously keeps all its source code in a monolith

repository), has dedicated resources (either VMs or separate contain-

ers), and is assumed to be loosely coupled from other components of

the system.

208   Kill It with Fire

The minimum on-call rotation is six people. So, a large service with a

team of six can have a separate on-call rotation, or two small services can

share a rotation among their teams. People can, of course, be on multiple

teams, or the same team can run multiple services, but a person cannot

be well versed in an infinite number of topics, so for every additional ser-

vice, expect the level of expertise to be cut in half. In general, I prefer

engineers not take on more than two services, but I will make exceptions

when services are related.

I lay out these restrictions only to give you a framework from which

to think about the capacity of the human beings on which your system

relies to future-proof it. You can change the exact numbers to fit what

you think is realistic if you like. The tendency among engineers is to build

with an eye toward infinite scale. Lots of teams model their systems after

white papers from Google or Amazon when they do not have the team to

maintain a Google or an Amazon. What the human resources on a team

can support is the upper bound on the level of system complexity. Inevi-

tably the team will grow, the usage of the system will grow, and many of

these architectural decisions will have to be revised. That’s fine.

Here’s an example: Service A needs to send data to Service B. The

team maintaining the complete system has about 11 people on it. Four

people are on operations, maintaining the servers and building tooling to

help enforce standards. Four people are on the data science team, design-

ing models and writing the code to implement them, and the remaining

three people build the web services. That three-person team maintains

Service B but also another service elsewhere in the system. The data sci-

ence team maintains Service A, but also two other services.

Both of those teams are a bit overloaded for their staffing levels, but

the usage of the system is low, so the pressure isn’t too great.

So, how should Service A talk to Service B?

The first suggestion is to set up a message queue so that communi-

cation between A and B is decoupled and resilient. That would be the

Future-Proofing   209  

most scalable solution, but it would also require someone to set up the

message queue and the workers, monitor them, and respond when some-

thing goes wrong. Which team is responsible for that? Cynical engineers

will probably say operations. This is usually what happens when teams

cannot support what they are building. Certain parts of the system get

abandoned, and the only people who pay attention to them are the teams

that are in charge of the infrastructure itself (and usually only when

something is on fire).

Although a message queue is more scalable, a simpler solution with

tighter coupling would probably get better results to start. Service A could

just send an HTTP request to Service B. Delegation of responsibilities on

triage is built in. If the error is thrown on the Service B side, the team that

owns Service B is alerted. If it’s thrown on the Service A side, the team

that owns Service A is alerted.

But what about network issues? It’s true that networks sometimes

fail, but if we assume that both of these services are hosted on a major

cloud provider, the chances of a one-off network issue that causes no

other problems are unlikely. Networking issues are not subtle, and they

are generally a product of misconfiguration rather than gremlins.

The HTTP request solution is wrong in the correct way because

migrating from an HTTP request between Service A and Service B to a

message queue later is straightforward. While we are temporarily losing

built-in fault tolerance and accepting a higher scaling burden, it creates

a system that is easier for the current teams to maintain.

The counterexample would be if we swapped the order of the HTTP

request and had Service B poll Service A for new data. While this is

also less complex than a message queue, it is unnecessarily resource-

intensive. Service A does not produce a constant stream of new data,

and by polling Service B, it may spend hours or even days sending mean-

ingless requests. Moving from this to a queue would require significant

changes to the code. There’s little value to building things wrong this way.

210   Kill It with Fire

Feedback Loops

Another way to think about this is to sketch out how maintaining this

system will create feedback loops across engineering. Thinking about

how work gets done in terms of flows, delays, stocks, and goals can help

clarify whether the level of work required to maintain a system of a given

complexity is feasible.

Let’s take another look at the question of Service A and Service B. We

know we have seven people working on these two services and that each

person has an eight-hour workday. Service B’s team is split between that

and another service, so we can assume they have a budget of four hours

per service they own. With three people, that’s about 12 hours per day.

Service A’s team is maintaining a total of three services, so they have a

budget of 2.5 hours per person and 10 hours per service per day. A model

like this might have the following characteristics:

STOCKS    A stock is any element that can accrue or drain over time.

The traditional example of a system model is a bathtub filling with

water. The water is a stock. In this model, technical debt will accrue

for each service constantly regardless of the level of work. Debt will

be paid down by spending work hours. The tasks in our workweek

are also a stock that our teams will burn down as they operate. That

eight-hour day is also a stock. When the system is stable, the eight

hours are fully spent and fully restored each day.

FLOWS    A flow is a change that either increases or decreases a stock.

In the bathtub example, the rate of water coming out of the faucet is

a flow, and if the drain is open, the rate of water coming out of the

bathtub is another flow. In our model, at any time, people can work

more than eight hours a day, but doing so will decrease their ulti-

mate productivity and require them to work less than eight hours a

day later. We can represent this by assuming that we’re borrowing

the extra hours for the next day’s budget. Tasks are completed by

Future-Proofing   211  

spending work hours; we might keep our model simple and say every

task is worth an hour, or we might separate tasks into small, medium,

and large sizes with different number-of-hours costs for each option.

Spending work hours decreases the stock of technical debt or work

tasks, depending on how those hours are applied.

DELAYS    Good systems models acknowledge that not everything is

instantaneous. Delays represent gaps of time in how flows respond.

With our model, new work does not immediately replace old work;

it is planned and assigned in one-week increments. We can view the

period between each task assignment as being a delay.

FEEDBACK    Feedback loops form when the change in stock affects

the nature of the flow, either positively or negatively. In our model,

when people work more than their total eight-hour budget, they lose

future hours. The more hours they work, the more hours they have

to borrow to maintain a stretch of eight-hour days in a row. Eventu-

ally, they have to take time off to normalize. Alternatively, they could

borrow hours by spending more of their budget on Service A or Ser-

vice B, but that means the other services they are responsible for will

be neglected, and their technical debt will accrue unchecked.

Visually, we might represent that model like in Figure 10-1. The solid

lines represent flows, and the dotted lines represent variables that influ-

ence the rate of flows.

Work hours come into the model via our schedule but are affected by

a stock representing burnout. If burnout is high, work hours fall; if work

hours are high, burnout rises. How much of our available work hours

on any given day is devoted to tasks on one service depends on the size

of our team and the number of services or projects the team is trying to

maintain at the same time. The more we are able to devote to work tasks,

the more we ship. When work tasks are completed, whatever extra time

is left is directed to improving our technical debt.

212   Kill It with Fire

Burnout
Resting Number of

services

Work tasks

Shipping

RefactorTech debt

If work
tasks == 0

Work hours

Team size

Schedule

Figure 10-1: Feedback loops in the team’s workload

Although this visual model might just look like an illustration, we can

actually program it for real and use it to explore how our team manages

its work in various conditions. Two tools popular with system thinkers

for these kinds of models are Loopy (https://ncase.me/loopy/). and Insight-

Maker (https://insightmaker.com/). Both are free and open source, and both

allow you to experiment with different configurations and interactions.

For now, let’s just think through a couple scenarios. Suppose we have

a sprint with 24 hours of work tasks for Service A and for Service B. That

shouldn’t be a problem; Service A’s team has a weekly capacity of 50

hours a week for Service A, and Service B’s team has a weekly capacity of

60 hours a week for Service B. With 24 hours of sprint tasks, each team

has plenty of extra time to burn down technical debt.

But what happens if a sprint has 70 hours of work? Service A’s team

could handle that if every one of the team’s four people borrowed five

hours that week from the next week, but the team would have no time

https://ncase.me/loopy/
https://insightmaker.com/

Future-Proofing   213  

to manage technical debt and would have only 30 hours of time for Ser-

vice A the following week.

What if 70 hours of work were the norm for sprints? The teams would

slowly burn out while having no ability to rethink the system design or

manage their debt. The model is unstable, but we can restore equilibrium

by doing one of the following:

●● The team transfers ownership of one of their services to another

team, giving them more hours a day to spend on their tasks for

Service A or Service B.

●● The team allows technical debt to accrue on one or all of their ser-

vices until a service fails.

●● The team works more and more until individuals burn out, at

which point they become unavailable for a period of time.

One of the things that the teams might do to try to reestablish equi-

librium is change the design so that the integration pattern means less

work for Service A’s lower-capacity team. Suppose that instead of con-

necting over HTTP, Service B connected directly to Service A’s database

to get the data it needs. Service A’s team would no longer have to build

an endpoint to receive requests from Service B, which means they could

better balance their workload and manage their maintenance respon-

sibilities, but the model would reach equilibrium at the expense of the

quality of the overall architecture.

If you’re a student of Fred Brooks’s The Mythical Man-Month, you might

object to the premise of this model. It suggests that one possible solution

is to add more people to the team, and we know that software is not suc-

cessfully built in man-hours. More people do not make software projects

go faster.

But the point of this type of model is not to plan a road map or

budget head count. It’s to help people consider the engineering team as a

system of interconnected parts. Bad software is unmaintained software.

214   Kill It with Fire

Future-proofing means constantly rethinking and iterating on the exist-

ing system. People don’t go into building a service thinking that they will

neglect it until it’s a huge liability for their organization. People fail to

maintain services because they are not given the time or resources

to maintain them.

If you know approximately how much work is in an average sprint

and how many people are on the team, you can reason about the like-

lihood that a team of that size will be able to successfully maintain X

number of services. If the answer is no, the design of the architecture is

probably too complex for the current team.

Don’t Stop the Bus

In summary, systems age in two different ways. Their usage patterns

change, which require them to be scaled up and down, or the resources

that back them deteriorate up to the point where they fail. Legacy mod-

ernizations themselves are anti-patterns. A healthy organization run-

ning a healthy system should be able to evolve it over time without

rerouting resources to a formal modernization effort.

To achieve that healthy state, though, we have to be able to see the

levels and hierarchy of the systems of systems we’re building. Our tech-

nical systems are made up of smaller systems that must be stable. Our

engineering team behaves as another system, establishing feedback

loops that determine how much time and energy they can spend on the

upgrades necessary to evolve a technology. The engineering system and

the technical system are not separate from each other.

I once had a senior executive tell me, “You’re right about the seri-

ousness of this security vulnerability, Marianne, but we can’t stop the

bus.” What he meant by this was that he didn’t want to devote resources

to fixing it because he was worried it would slow down new develop-

ment. He was right, but he was right only because the organization had

been ignoring the problem in question for two or three years. Had they

Future-Proofing   215  

addressed it when it was discovered, they could have done so with min-

imum investment. Instead, the problem multiplied as engineers copied

the bad code into other systems and built more things on top of it. They

had a choice: slow down the bus or wait for the wheels to fall off the bus.

Organizations choose to keep the bus moving as fast as possible

because they can’t see all the feedback loops. Shipping new code gets

attention, while technical debt accrues silently and without fanfare. It’s

not the age of a system that causes it to fail, but the pressure of what the

organization has forgotten about it slowly building toward an explosion.

CONCLUSION

T he hard part about legacy modernization is the system around the

system. The organization, its communication structures, its politics,

and its incentives are all intertwined with the technical product in such

a way that to move the product, you must do it by turning the gears of

this other, complex, undocumented system.

Part of the reason legacy modernizations fail so often is that human

beings are incentivized to mute or otherwise remove feedback loops

that establish accountability. We are often unable to stop this because

we insist on talking about that problem as a moral failing instead of an

unconscious bias. Engineering organizations that maintain a separation

between operations and development, for example, inevitably find that

their development teams design solutions so that when they go wrong,

they impact the operations team first and most severely. Meanwhile, their

operations team builds processes that throw barriers in front of develop-

ment, passing the negative consequences of that to those teams. These are

both examples of muted feedback loops. The implementers of a decision

cannot feel the impacts of their decisions as directly as some other group.

218   Kill It with Fire

One of the reasons the DevOps and SRE movements have had

such a beneficial effect on software development is that they seek to

re-establish accountability. If product engineering teams play a role in

running and maintaining their own infrastructure, they are the ones who

feel the impact of their own decisions. When they build something that

doesn’t scale, they are the ones who are awakened at 3 AM with a page.

Making software engineers responsible for the health of their infrastruc-

ture instead of a separate operations team unmutes the feedback loop.

But anyone who has ever tried to run an SRE or DevOps team will tell

you that maintaining the expectation that product engineering teams

should be responsible for their infrastructure is easier said than done.

There will always be a need for specialists on the infrastructure side of

things—either because the organization is running its own data centers

and needs the hardware expertise or because the tools that engineers

interact with to maintain their infrastructure need themselves to be

maintained—and, therefore, there is always someone to dump respon-

sibilities on.

People do not mute feedback loops because they do not care. They

mute feedback loops because human beings can hold only so much infor-

mation in their minds at one point. Keeping a feedback loop open means

listening for information from it, which means first considering what

information might come back and how to interpret it. Developers mute

operations because they usually do not understand the details of how

infrastructure works. Engineers typically mute the feedback loop from

the business side of the organization, because that feedback is delivered

in metrics they’re not trained on and struggle to extract insight from.

Each group is capable of learning the language of the other, but how

many disciplines should a single person be expected to master to do her

job? When running a system, engineers must consider resource usage,

capacity projections, test coverage, inheritance structure, lines of code,

and more. Is it any wonder most restrict their scope to the massive tech-

nical complexity directly relevant to what their job actually is?

Conclusion   219  

A high-functioning organization cannot have all feedback loops open

all the time. It must decide which loops have the biggest impact on oper-

ational excellence. Throughout this book, I have emphasized thinking

about modernization projects not in terms of technical correctness but

in terms of value add because it re-establishes the most important feed-

back loop: Is the technology serving the needs of its users?

Meetings, reports, and dialogues are the least efficient feedback loops.

Feedback loops are most effective when the operator feels the impact,

rather than just hearing about it. That’s because people are naturally

inclined to misinterpret information to suit what they already want to

believe. It is more difficult to do that when the feedback is delivered in the

form of inconvenience, disruption, interruptions, and additional work.

Nevertheless, since we cannot have all feedback loops open all the

time, traditional communication can help fill in where impacts are not

serious enough to warrant an open loop. Designing a modernization

effort is about iteration, and iteration is about feedback. Therefore, the

real challenge of legacy modernization is not the technical tasks, but

making sure the feedback loops are open in the critical places and com-

munication is orderly everywhere else.

As a general rule, the discretion to make decisions should be dele-

gated to the people who must implement those decisions. If you are not

contributing code or being woken up in the middle of the night to answer

a page, have the good sense to remember that no matter how important

your job is, you are not the implementor. You do not operate the system,

but you can find the operators and make sure they have the air cover they

need to be successful. Empower the operators.

It should go without saying that this requires trust. Teams are ulti-

mately governed by trust. Leaders of large organizations do not like hear-

ing this, because it means they will be held accountable for outcomes

that are beyond their control. It is easier to cling to a popular strategy that

offers guarantees. That way, if it fails, it can be passed off as a freak occur-

rence no leader could have prevented. There are no silver bullets with

220   Kill It with Fire

legacy modernization; every technique in this book could fail under the

wrong conditions. I’ve done my best to describe the right conditions, and

the vulnerabilities of each approach, but I am limited by my knowledge

and experience, which are not (and never will be) infinite. The person in

the best position to find a working strategy is the person on the ground

watching the gears of the system turn.

Dealing with this reality gets easier when you accept failure. Failure

is inevitable when attempting to change complex systems in production.

There are too many moving parts, too many unknowns, and too much

that needs to be fixed. Getting every single decision right is impossi-

ble. Modern engineering teams use stats like service level objectives,

error budgets, and mean time to recovery to move the emphasis away

from avoiding failure and toward recovering quickly. Don’t forget: a per-

fect record can always be broken, but resilience is an accomplishment

that lasts. Embracing failure as an organization diminishes the risk of

empowering the operator and gets better performance from engineers.

We cannot completely eliminate failure, because there’s a level of

complexity where a single person—no matter how intelligent—cannot

comprehend the full system. With legacy systems, we have an additional

complication in the fact that some context of the system has been lost.

Requirements, assumptions, and the technical limitations of the time

are all undocumented. There may be abstractions buried in the platform

that trip us up. Modernization teams need to rediscover the require-

ments and assumptions of the original system and update them for

the new system, but there are limitations on how much understanding

even the best modernization team can excavate. Ultimately, old software

cannot be used as a specification for a new version.

Technology, at its core, is an artifact of human thought. So when mod-

ernizing old technology, what humans think matters quite a lot. Software

engineers are smart, but they fall victim to trends and fads the same as

any other profession. Pay attention to how they are incentivized. What

earns them the acknowledgment of their peers? What gets people seen is

Conclusion   221  

what they will ultimately prioritize, even if those behaviors are in open

conflict with the official instructions they receive from management.

Technology advances in cycles with old paradigms constantly being

dusted off to capture neglected segments of the market. Newer is not

necessarily better. Good technology isn’t about having the most modern,

most scalable, fastest, or most secure implementation; it’s about serving

the needs of the user.

But, we also want a world where software engineers strive to make tech-

nology faster, better, and more secure. The only way we get both technology

that serves the user and strives to improve continuously is by defining suc-

cess up front. What does it mean to bring value, and how do we know when

value has increased?

In the end, technology is never finished being built. The legacy modern-

ization projects of today were the finished systems of yesterday. Computer

systems cannot be expected to go unchanged for decades, because rarely

is a computer isolated from the outside world. The inputs will change, the

output methods will change, the networks and protocols will change, and

the program that doesn’t change becomes a time bomb.

The best way to handle legacy modernization projects is not to need

them in the first place. If the appropriate time and resources are bud-

geted for it, systems can be maintained in such a way that they evolve

with the industry. The organizations that accomplish this ultimately

understand that the organization’s scale is the upper bound of system

complexity. Systems that are more complex than the team responsible

for them can maintain are neglected and eventually fall apart.

To most software engineers, legacy systems may seem like torturous

dead-end work, but the reality is systems that are not used get turned off.

Working on legacy systems means working on some of the most critical

systems that exist—computers that govern millions of people’s lives in

enumerable ways. This is not the work of technical janitors, but battle-

field surgeons. It has been the greatest honor to serve among them.

INDEX

Numbers
3-Arm Sweater award, 166
4+1 architectural view model, 173–176
18F, 144
20 percent projects, 99

A
abstraction, 39, 64, 102, 146, 157, 204
abstract syntax tree, 71
Accelerated Mobile Pages (AMP), 8
ACM (Association for Computing

Machinery), 30
Adobe Acrobat, 67
ADS-B (automatic dependent

surveillance), 204
affinity mapping, 139–140
agile development, 75, 181
air cover, 161
alignable and nonalignable difference,

3–4, 9, 18, 21, 22
Amazon, 69, 204, 208
ambiguity, 34, 83, 90, 152
AOL, 13
application programming interface

(API), 64, 66, 102, 108
Ariely, Dan, 163
artificial consistency, 35, 101
ASR-33 Teletype, 26
Association for Computing Machinery

(ACM), 30
AT&T, 13, 23–25
automatic dependent surveillance

(ADS-B), 204
automation, 69, 99, 206–207

B
baudot code, 20
Beats 1, 204
Bell Labs, 21, 23
Bell Systems, 23
Berkeley Software Distribution (BSD), 25
biases

confirmation, 138
gambler’s fallacy, 169
self-serving, 60

Big Data, 15
blue-green deploys, 56–57, 184
breaking change, 170–171, 179
Brooks, Fred, 33, 140, 213
bullet journaling, 186–187
business logic, 65

C
Canaday, Rudd, 23
Castelfranchi, Cristiano, 168
cellphones, 8

data usage, 14
DynaTAC 800, 5
HTC Dream, 7
IBM Simon, 5
iPhone, 6
Nokia, 198
Nokia N95, 6
size, 5–7

chaos experiments. See failure drills
chief information officer (CIO), 15
CloudFlare, 204
Code Yellow, 116–122, 156, 193
Collins Aerospace, 204

Italicized page numbers indicate definitions of terms.

224   Kill It with Fire

column width, 18
commercial cloud, 3, 15, 69, 86
Committee on Data Systems Languages

(CODASYL), 29
compiler design, 71
complexity, 41, 46–50, 61, 103, 108, 137,

146, 173, 207
compliance, 90
configuration management, 65
containerization, 65
continuous integration, 72, 183
contract testing, 110
control flow graphs, 72
conventions, 106
Conway, Melvin, 140, 144
Conway’s law, 98, 140–141, 149–152,

156, 159
costs, 9
coupling, 46–50, 56, 64, 66, 85, 101,

103, 173
cross-compatibility, 64, 69

D
databases, 36
data contracts, 102–110, 171
data flow graphs, 72
Deep Impact probe, the, 198
Dekker, Sidney, 145, 167
delays, 211
Department of Justice, 24
Department of Treasury, 15
Department of Veterans Affairs, 68
dependencies, 68, 111, 115

graphs, 71
management, 64

deprecations, 179
development environments, 72
development view, 173
DevOps, 150, 218
diagnosis-policies-actions, 184–187
drift, 145–146

E
ECMA Office Open XML

specification, 61
encoding, 20

enterprise architects, 77
enterprise service buses (ESB), 7–8
Etsy, 166
Excel, 61

F
FAA (Federal Aviation

Administration), 204
Facebook, 114
failovers, 55
failure drills, 114, 153, 172, 178
Falcone, Rino, 168
Feathers, Michael, 55
feature parity, 79
Federal Aviation Administration

(FAA), 204
feedback loops, 210–211, 218–219
filetypes

PDF, 67
fixed-point, 70
Flickr, 102
floating-point, 70
flows, 210
Fog Creek Software, 33
Ford, Neal, 105
formal methods, 109

Alloy, 110
Petri nets, 110
TLA+, 110

formal specification, 109–110
Fowler, Chad, 33
frameworks

Angular.js, 150
Node.js, 36, 68
React.js, 36, 150
Vue.js, 150

G
garbage collection, 44, 206
Gawker Media, 204
Glidden, Carlos, 19
GNU, 25
Google, 113, 117–118, 169, 205, 207

Chrome 119
GPS, 202–204
Groupon, 102

Index   225  

H
Hadoop, 15
hard cutoff, 57
hardware lifecycles, 196
Harvard Business Review, 140
Harvard’s Kennedy School for

Government, 162
Hölzle, Urs, 119
hooks, 65
HTTPS (HyperText Transfer Protocol

Secure), 114
human factors, 145

I
IBM, 19, 140, 198

Simon, 5
incentives, 34, 122, 140–144, 148–156,

163–165
incident commander, 121
incident response, 109, 188
InsightMaker, 212
Instagram, 204
International Telegraph Alphabet No. 1.

See baudot code
internet service providers (ISPs), 13
internet, the

home vs. work access, 12
pricing, 12–13

iPhones, 10
iteration in place, 55–56

J
just culture, 166–168

K
Kafka, 7
keyboards, 19
Kohn, Alfie, 164
Kruchten, Philippe, 173

L
leap second, 203–205
Legacy Code Rocks, 199
Linux, 22–25, 32, 65
Lipmanowicz, Henri, 135

logical view, 173
looms, weaving, 20
Loopy, 212
Lotus 1-2-3, 61

M
magnetic tape, 23
mainframes, 1, 12, 40, 66, 157, 198

comparison to cloud computing 2,
9–11, 17

punch cards, 18
Unisys ClearPath Dorados, 2

maintenance mode, 54
McCandless, Keith, 135
mean time to recovery (MTTR), 113, 220
memory leaks, 196
mere-exposure effect, 22, 34
message queues, 208–209
microservices, 101, 148
Microsoft, 33

Excel, 61
Exchange Server, 67
Internet Explorer, 67

microswitch, 26
middleware, 143
migrations, 65–69, 87, 104
minimum viable product (MVP), 32, 39,

76, 79
mobile phones. See cellphones
momentum, 75–90, 117, 122, 130
monoliths, 50–51, 56, 85–87, 101–108, 148
Moravec, Hans, 63
morse code, 20
Mozilla, 204
MTTR (mean time to recovery), 113, 220
Multics, 21
murder boards, 125–127
MVP (minimum viable product), 32, 39,

76, 79
Mythical Man-Month, The, 140, 213

N
NASA, 198
NASA’s Ames Research Center, 125
National Science Foundation

Network, 10

226   Kill It with Fire

Netflix, 204
networks, 13

nationalization, 11
nines of availability, 113
normal accidents, 46

O
Obama administration, the, 79
objectives and key results (OKRs), 182
object-oriented, 70
object relational mapping (ORM), 105
observability, 52
on-call rotations, 109, 208
Operation Aurora, 119
opportunity costs, 90–94
optimizing, 83, 105
ORM (object relational mapping), 105
overgrowth, 64

P
performance, 42–44, 52, 92, 113, 144
Perrow, Charles, 46
personal computer (PC), 10
Pew Research, 5
physical view, 173
Pinterest, 204
platform as a service (PaaS), 69
POSIX, 27
postmortem, 100, 167–168, 187–190
probabilistic outcome-based

decision-making, 138
problem setting, 129–130, 159
processing power, 13
process view, 173
programming languages, 36

ALGOL60, 28–31
Assembly, 29, 40, 66
bash, 65
BASIC, 30
BCPL, 28
C, 28, 31
COBOL, 28–31, 39–41, 61, 70
CoffeeScript, 70
CPL, 31
CSS, 150
FORTRAN, 30

HTML, 150
Java, 30, 68, 70
JavaScript, 36, 67, 70, 150
JCL, 65
Lisps, 31
Python, 30, 69
SQL, 65, 105
Typescript, 70

protocols, 67
FTP, 67
HTTP, 209
NTP, 197
SMTP, 67
TCP/IP, 67
TLS/SSL, 206

pull requests, 23

Q
Qantas Airways, 204
QWERTY, 27

R
railroad tickets, 18
Reddit, 204
refactoring, 51–52, 71, 103
reorgs, 141, 151–152, 156
research institutions, 11
resilience, 112, 169
resilience engineering, 172
responsibility gaps, 99, 207
resulting, 60
retrospectives, 188
reverse engineering, 71
rewrites, 34, 54–55, 145–147
risk, 34, 88, 146, 162–171
Ritchie, Dennis, 23
Robert’s Rules of Order, 193
Rumelt, Richard, 184

S
SaaS (software as a service), 95
Salus, Peter, 23
sandbox, 174–175
scaling, 62–63, 78, 110, 149, 195
Schrödinger’s cat, 124
SDK (software development kits), 67

Index   227  

second system syndrome, 33
security, 89
Selectric, 27
Service Dominate Logic (S-D Logic), 8
service level agreements (SLAs), 94
service level objectives (SLOs), 94, 106,

113, 144, 149, 169, 220
service-oriented architecture (SOA),

101, 148
service recovery paradox, 170
shell scripts, 65
Sholes, Christopher Latham, 19
site reliability engineering (SRE), 99, 113,

150, 157, 218
Slack, 102
SLAs (service level agreements), 94
SLOs (service level objectives), 94, 106,

113, 144, 149, 169, 220
SOA (service-oriented architecture),

101, 148
software as a service (SaaS), 95
software development kits (SDK), 67
software renovation, 71
Soule, Samuel W., 19
source code, 23
split in place, 56
Spolsky, Joel, 33, 145
SRE (site reliability engineering), 218
Stack Overflow, 33
Stallman, Richard, 25–26
standards, 11, 66, 77, 103, 107
static analysis, 69, 71–72
stocks, 210
storage capacity, 13
stored procedures, 65
Stricker, Gabriel, 119
success criteria, 83, 182–185
supercomputers, 10
Surprising Power of Liberating

Structures, 135
system stability, 89, 169

T
tabulating machines, 18–20

technical debt, 38–40, 55, 79, 106, 210–215
telegraphs, 19–21
testing, 51, 55, 57, 70, 85, 109, 124
Texas Instruments, 198
Thompson, Ken, 23
TOPS-10, 197
Torvalds, Linus, 25
trade-offs, 42, 83
transpilers, 69–71
true but irrelevant, 82
trust, 54, 100, 108, 123, 168–170, 219
Twitter, 62, 204
typewriters, 19

U
United Nations (UN), 181
United Parcel Service (UPS), 203
University of Cambridge, 31
University of North Carolina at Chapel

Hill, 140
Unix, 21–27, 197
UNIX-HATERS Handbook, The, 26
US Army/Marine Corps Counterinsurgency

Field Manual, The, 129
US Digital Service (USDS), 68, 144,

164–165

V
virtual machines (VM), 49–50, 85–87,

111, 176

W
Working Effectively with Legacy Code, 55
working groups, 191–193
World Computer Corporation, 197

Y
Y2K, 196, 200
yak shaving, 153
YouTube, 102

Z
Zajonc, Robert, 22, 34

Kill It with Fire is set in Faustina Pro and Din Pro. The book was printed

and bound by Sheridan Books, Inc. in Chelsea, Michigan. The paper is 60#

Finch Offset, which is certified by the Forest Stewardship Council (FSC).

	Introduction
	Chapter 1: Time Is a Flat Circle
	Leveraging What Came Before
	The User as the Market Co-Creator
	The Mainframe and the Cloud
	The Flat-Rate Internet
	Migrating for Value, Not for Trends

	Chapter 2: Cannibal Code
	Alignable Differences and User Interfaces
	Unix Eats the World
	Inheritance Paths
	Leveraging Interfaces When Approaching Legacy Systems
	Beware Artificial Consistency

	Chapter 3: Evaluating Your Architecture
	Problem 1: Technical Debt
	Example: The General Ledger
	Problem 2: Performance Issues
	Example: Case Flow Management
	Problem 3: Stability Issues
	Example: Custom Configuration
	Stages of a Modernization Plan
	No Silver Bullets
	Full Rewrite
	Iteration in Place
	Split in Place
	Blue-Green
	The Hard Cutoff
	Putting It Together

	Chapter 4: Why Is It Hard?
	The Curse of Hindsight
	Easy and Also Impossible
	Overgrowth: The Application and Its Dependencies
	Shifting Vertically: Moving from One Abstraction Layer to Another
	Shifting Horizontally: Moving from One Application to Another
	Shifting from Client to Server
	Shifting Down the Dependency Tree

	Cutting Back the Overgrowth
	Automation and Conversion
	Transpiling Code
	Static Analysis

	A Guide to Not Making Things Harder

	Chapter 5: Building and Protecting Momentum
	Momentum Builder: The Bliss of Measurable Problems
	Anatomy of the Measurable Problem

	Momentum Killer: The Team Cannot Agree
	Step 1: Define a Scope
	Step 2: Check for Conflicting Optimization Strategies
	Step 3: Perform Time-Boxed Experiments

	Momentum Killer: A History of Failure
	Momentum Builder: Inspiring Urgency
	Protecting Momentum: A Quota on Big Decisions
	Protecting Momentum: Calculating Opportunity Costs
	The Cost of Not Adding New Features
	The Cost of Not Fixing Something Else
	The Cost of Not Deprecating in Favor of a Different Solution

	Chapter 6: Coming in Midstream
	Finding the Bleed
	Mess: Fixing Things That Are Not Broken
	Figuring Out Whether Something Needs to Be Fixed
	But . . . What About Conventions?
	When Does Breaking Up Add Value?

	The Compounding Problem: Diminishing Trust
	Solution: Formal Methods
	Mess: Forgotten and Lost Systems
	The Compounding Problem: Crippling Risk Avoidance
	Solution: Chaos Testing
	Mess: Institutional Failures
	The Compounding Problem: No Owners
	Solution: Code Yellow
	Calling a Code Yellow
	Running a Code Yellow

	Mess: Leadership Has Lost the Room
	The Compounding Problem: Self-Sabotaging Teams
	Solution: Murder Boards
	Stopping the Bleed

	Chapter 7: Design as Destiny
	Designing Technical Conversations
	How to Run a Design Exercise
	More About Follow-ups: Why vs. How
	Some Useful Design Exercises for Engineering Teams
	Exercise: Critical Factors3
	Exercise: The Saboteur4
	Exercise: Shared Uncertainties5
	Exercise: The 15 Percent6

	Exercises Specifically for Decisions
	Exercise: Probabilistic Outcome-Based Decision-Making
	Exercise: Affinity Mapping

	Team Structure, Organization Structure, and Incentives
	Individual Incentives
	Minor Adjustments as Uncertainty
	Organization Size and Communication
	Manager Incentives
	Designing a Team: Applications of Conway’s Law
	Reorgs Are Traumatic
	Finding the Right Leadership
	Exercise: The Smallest Testable Unit

	Structuring the Team to Account for Past Failure
	Exercise: In-Group/Out-Group

	Takeaways

	Chapter 8: Breaking Changes
	Being Seen
	Who Draws the Line?
	Building Trust Through Failure
	Breaking Change vs. Breaking
	Why Break Things on Purpose?
	Projecting Impact
	The Kill Switch
	Communicating Failure
	Failure Is a Best Practice

	Chapter 9: How to Finish
	Revealing Assumptions
	Approach 1: Success Criteria
	Example: Adding Continuous Integration/Continuous Deploy

	Approach 2: Diagnosis-Policy-Actions
	Example: Upgrading a Database

	Comparison
	Marking Time
	Postmortems on Success
	Postmortem vs. Retrospective
	Running Postmortems

	The Tale of Two War Rooms
	Working Groups vs. Committees
	Success Is Not Obvious If Undefined

	Chapter 10: Future-Proofing
	Time
	Unescapable Migrations
	Failing Gracefully
	Less Time Between Upgrades, Not More
	A Word of Caution About Automation
	Building Something Wrong the Correct Way
	Feedback Loops
	Don’t Stop the Bus

	Conclusion
	Index

