Hands-on
DevOps with
Linux
Build and Deploy DevOps Pipelines Using
Linux Commands, Terraform, Docker,
Vagrant, and Kubernetes
Alisson Machado de Menezes
www.bpbonline.com
FIRST EDITION 2021
Copyright © BPB Publications, India
ISBN: 978-93-89423-488
All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.
LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.
Distributors:
BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991
MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297
DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400
BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747
Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai
www.bpbonline.com
Dedicated to
My Family and Friends
About the Author
Alisson Machado de Menezes is an experienced Big Data DevOps Engineer, who for the past ten years has been working in different positions, such as Developer, Operations Analyst, Support Analyst, DevOps Engineer, IT Manager, Technical leader and now diving into Big Data. Has many lectures in Brazil in events like Python Brasil, The Developers Conference, Feira Internacional de Software Livre and for some companies in private. Also gave classes regarding Python Programming, Agile Infrastructure, MongoDB, Openshift, Kubernetes, DevOps and DevSecOps. Has the certifications Linux System Administrator (LPIC-1), Linux Engineer (LPIC-2), Suse Certified Linux Administrator (SUSE CLA), LPIC – OT DevOps Tools Engineer, Exin – DevOps Professional and Studied English in Canada.
In 2019, Alisson moved to Germany starting a new challenge in Europe on the Automotive Marketing to help of Empower mobility for tomorrow, where we are trying to be the pioneers on Electrical Cars.
Outside work, Alisson tries to maintain a blog where he shares some experience on the project which he has been working and when there is time travelling, hiking and try different types of beer.
About the Reviewer
Leonardo Mendes is currently working as a Software Reliability Engineer and core member of the technology innovation team at Cogna. He focuses on FOSS (Free and Open Source Software) projects. He is passionate about training and worked in projects of Education, coordinating the training team in the delivery of Linux, DevOps, Cloud and Big Data training, also participate in the implementation projects, and teaching the courses about Linux, DevOps, Cloud.
He is graduated from Computer Networking and has MBA at Cloud Computing.
Acknowledgement
There are a few people I want to thank for the continued and ongoing support they have given me during the writing of this book. First and foremost, I would like to thank my family, who educated me, taught me how to be independent and strong. Leonardo Mendes, who was the technical reviewer of this book and is one of my best friends. Gabriela Dias, who was the best leader that I had in these ten years of experience in IT and is a great example of a person for me. Juergen Bohn, the boss who brings me to Germany and opened so many doors and uncountable opportunities in Europe. I could have never completed this book without these people in my life.
This book wouldn’t have happened if I hadn’t had the support from BPB Publications, which gave me the support and attention while I was writing.
Finally, I would like to thank God who gave me the intelligence, strength and all the ways for me to be where I am right now.
Preface
DevOps was the most searched word in 2017. In my perspective, we can consider some revolution in IT when we stop creating boundaries among IT teams and start collaborating and working together, aiming for a common objective. Apart from that, we have all the technical stuff which are included in the DevOps mindset, using automation to speed up the time to market and delivery faster, high-quality software and services.
I came into DevOps because of my curiosity regarding everything in IT. I started when I was a teenager, studying cybersecurity, because I wanted to be a Hacker, like all geeks when they start with IT. Then I studied operating systems, computer programming, databases, network, security, etc. These terms prepareded me when DevOps came into the picture.
Today, the DevOps engineers must possess all these skills. In my daily work, for example, I have to create scripts to automate the cloud servers installation, which can be done in many different ways. Mostly, I use Python for my automation when it is something very specific. For more generic scenarios, I use Ansible. I use Jenkins for scheduling automation, creating pipelines, and many other tools.
I also wrote some other courses when I was living in Brazil, which included MongoDB, DevSecOps, Python Development, Docker and OpenShift, and Agile Infrastructure. In the ten years working there, I worked in different companies, in different scenarios, like web hosting, e-commerce development, open-source consultant, EdTech’s, and payment gateways.
Today, my position is Big Data DevOps Engineer, wherein I apply my DevOps knowledge about automation into a Big Data scenario, to create pipelines, and automation to create data lakes, data pipelines, automating governance rules, etc.
The primary goal of this book is to provide the information and skills necessary to work in today’s market as a DevOps Engineer, giving you the basic overview and steps of the most used technologies, based on my ten years of experience:
Chapter 1 This chapter introduces you with the the virtualization concept on your local machine aiming for you to create your labs, test your new technologies, simulate environments without crashing anything in production, and for your studying purposes.
Chapter 2 This chapter explains you about some basic bash commands, because we know that nowadays Linux is not a differential anymore, rather a requirement for those who work with Cloud and High Availability.
Chapter 3 Here, we set up some services, like a database and a web server bringing up the most common installation, what we call Lamp (Linux Apache Mysql PHP).
Chapter 4 Reverse proxy is commonly used when you have just one public IP, and you have different sites running behind a private structure. When you are not using cloud services, like Azure or Amazon, you can either set up your own Nginx and make the load balance, or you can pass your connections to the private servers enforcing the security.
Chapter 5 Docker is one of the leading technologies of a DevOps engineer stack. Here, we will learn the very basics, but enough for you to create your images and commit them to a registry for a deployment.
Chapter 6 Vagrant is also one very useful tool for those who are not using Docker yet. We know that many companies are still using on premise infrastructure. It also needs to be automated. Somehow, this chapter aims to teach you how to create your automation scripts.
Chapter 7 After working on your laptop, this chapter will teach you how to create the labs and infrastructure using Cloud Services and the CLI (Command-line interface), with a focus on automation.
Chapter 8 Multicloud is one topic that we cannot avoid. After learning the command-line interfaces and the differences among the different cloud providers, Terraform will give you a single workflow to create your infrastructure on any provider.
Chapter 9 At this point, we have created a lot of code. Therefore, we need to use Git to save it and also created documentation and different versions of our infrastructure.
Chapter 10 Pipelines is a way to create a workflow on your automation, defining dependencies, step-by-step, Jenkins is the most famous open source tool for it, and in this chapter, we will learn more about it.
Chapter 11 In my perspective, Kubernetes will become the standard way of application deployment, and then I could not write a book without giving you at least the basics of it.
Chapter 12 Once all your infrastructure is ready to be scaled and automated, we need to find a way to centralize the logs because when you have a few servers, you can go one-by-one and check the logs. But when we have planter thousands of servers, creating automated we must centralize the logs in the server for audition purposes and debugging, the Elasticsearch, Fluend, and Kibana are the references for it.
Downloading the coloured images:
Please follow the link to download the
Coloured Images of the book:
https://rebrand.ly/aeb0pwp
Errata
We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.
Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at business@bpbonline.com for more details.
At you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.
BPB is searching for authors like you
If you're interested in becoming an author for BPB, please visit www.bpbonline.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.
The code bundle for the book is also hosted on GitHub at In case there's an update to the code, it will be updated on the existing GitHub repository.
We also have other code bundles from our rich catalog of books and videos available at Check them out!
PIRACY
If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.
If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit
REVIEWS
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!
For more information about BPB, please visit
Table of Contents
1. Getting Started With Linux
Structure
Objectives
What is Linux?
Distributions
Servers
Conclusion
Setting up your environment
Installing the VirtualBox
Installing the Linux System
Installing Your Linux System
Accessing via SSH
Conclusion
2. Working with Bash
Structure
Objectives
What is Bash?
Introduction
Managing files and directories
Structure of directories
Important Files
Managing users and groups
Managing users
Managing groups
Working with Permissions
Changing read and write permissions
Change the owner of files and executing scripts
3. Setting Up a Service
Structure
Objectives
Learning how to install a package
APT
Installing Apache
Installing PHP
Installing MariaDB
Installing WordPress
Conclusion
4. Configuring a Reverse Proxy with Nginx
Structure
Objectives
Installing the Nginx
Installing Python
Creating a simple page using Flask
Configuring the Reverse Proxy
5. Deploying Your Application Using Docker
Structure
Objectives
Introduction to Docker
Installation
Creating Containers
Creating Images with Dockerfile
Conclusion
6. Automating Your Infrastructure as Code
Structure
Objectives
Introduction to Infrastructure as Code
What is Vagrant and How It Works?
Vagrant installing
Usage
Up and running
Setting up a LAMP Server
Setting up the Docker Server
Conclusion
7. Creating Your Infrastructure Using Cloud Services
Structure
Objectives
Cloud and Main Players
AWS
GCP
Azure
Provisioning using AWS
Provisioning using GCP
Provisioning using Azure
Conclusion
8. Working with Terraform
Structure
Objectives
Multicloud
HashiCorp
Introduction to Terraform
Conclusion
9. Working with Git
Structure
Objectives
Git
GitFlow
GitHub
Conclusion
10. Continuous Integration and Continuous Delivery Using Jenkins
Structure
Objectives
Pipelines
Continuous Integration
Continuous Delivery
Pipeline as Code and Jenkins
Conclusion
Questions
11. Deploying and Scaling Your Application Using Kubernetes
Structure
Objectives
Kubernetes
Introduction to Kubernetes
Deploying on Cloud
Conclusion
Questions
12. Logs with Open-Source Tools
Structure
Objectives
EFK
Setup the EFK Stack
Running Fluentd
Visualizing the Logs
Creating alerts
Conclusion
Index
CHAPTER 1
Getting Started With Linux
This chapter will introduce you to the Linux world with a focus on servers. Therefore, I will not explain about it on desktops. You will see explanations about Linux, why you should know it, its basic concepts, and a lot of commands. I am a technical guy, so brace yourself because you are about to see how to set up your lab hands-on!
Structure
In this chapter, we will discuss the following topics:
What is Linux
Distributions
Servers
Setting up your environment
Installing the VirtualBox
Installing a Linux system
Accessing via SSH
Introduction to Bash
Useful commands
Basic files and how to edit them
Customizing your shell
Installing packages
Objectives
After studying this unit, you should be able to:
Understand the basics of Linux
Choose your favorite distribution
Install your virtual machine
Access any remote Linux server
What is Linux?
In my view, if you bought this book, you probably have a basic idea of what is Linux and you already know why you want to learn it. Thus summarizing, Linux is an operating system with an open-source code, and works similar to the famous Windows, but it does not belong to any company. So, how is the code open? Everyone can download the core Linux using this site: and if you are interested to give a look around the source code, it can be found on this link
Linux has this name because of its creator, Linus The first 3 letters are the initials of Linus, and the last 2 come from another OS, called Minix, created by a man, named Andrew
It is common for you to see Linux bound to other initials, like GNU. This happens because when Linus Torvalds was creating Linux, he used many tools that were created by the GNU project, The GNU project began with Richard Stallman, the creator of the Free Software Foundation, What does it mean to license an open-source? It means that every software written by the GNU project has its code open for everyone who wants to work on it. Then, how Linus Torvalds used the tools from the GNU project? He decided to use the same philosophy of the open-source and he released the Linux system with the tools from the GNU project. This explains the term GNU/Linux.
Distributions
Since Linux is open-source, a lot of people and companies created their own versions of Linux, which are called Everyone who has the knowledge in computer programming can make their own Linux distribution. One example is Kurumin Linux, created by a Brazilian programmer, Carlos Morimoto, and can be found on the link, Unfortunately, it is discontinued, because maintaining your own distribution is not an easy task. You have to be concerned about updates, new releases, new software, bug correction, and infinite things that are basically impossible for just one person to take all that effort and without being paid for it. So, it is one important topic for you to decide what distribution you are planning to install in your infrastructure. Imagine the situation where you began with one distribution. A year later, it is discontinued and you have to reinstall your whole infrastructure with more than 300 servers. We, as professionals, cannot let this happen.
Regarding the distribution we want to choose for our infrastructure, there exists several of them, but some are the mostly used, because of the reasons I am going to explain further:
RedHat Enterprise This is the most famous and corporative distribution because of the RedHat Company. It is one of the most famous companies in the Linux world. It has amazing support, frequent updates, and 100% compatibility with the RedHat software, like JBoss, OpenStack, RedHat Enterprise Virtualization Manager, and a lot of more options. But, for using RHEL, it is required to take a subscription with the company and pay for it. Otherwise, you will neither receive any updates, nor will you be able to access to the repository.
Community Enterprise Operating CentOS is the community version of RHEL. It is the most common distribution among the companies that have chosen to not use the paid version and want to use the community version of the RedHat software.
It is the Novell (Microsoft) distribution and is a good option, because, Microsoft is one of the biggest companies around the world. Therefore, the probability of it being discontinued is zero, and you will always have the updates and new software published by the company. It also has a community version called the OpenSUSE which follows the same features of the CentOS.
This is the option for those who are more involved in the community and do not want to be bound to any company, like the distros mentioned previously. Debian is 100% maintained by the community and is one of the oldest distros we have. Also running over a lot of servers, it is very stable and reliable, and is frequently used by the companies and common users.
This distro was made in Africa by Canonical that used to distribute CDs over the whole world for people to get to know more about Linux and run it on their desktops. The final users were the target by Canonical in the beginning. So, I believe that for desktops, Ubuntu is the most used distro, and for servers, it is CentOS. Ubuntu has a version for server which is my favorite distribution. That's why I am writing this book using Ubuntu. But the knowledge you will acquire here can be used for all the distributions.
Servers
Servers are nothing more than computers. They are usually more powerful than PCs, which are created and installed to attend to a purpose. For example, we can install a Linux server for acting, like web server. In other words, to run a website on it, like Facebook, Amazon, or Google. It can also act like a database server where we can install a PostgreSQL, SQL Server, MySQL, Oracle, or another that can be fileserver where the company stores all the data inside it, and in many cases, all of it together. One example of it is what we call the LAMP, Linux Apache MySQL PHP. Usually, we call a server LAMP when we have a Linux system (a webserver, in that case), Apache, a database server (MySQL), and a programming language interpreter, in this case, PHP. We can also call this a stack. Stack means a set of tools that you can use to solve a problem. One of my favorite stacks is NPM, Nginx, Python, and MongoDB. I have been using it to solve many issues in the company that I work. This stack can be installed in a server, which can be virtual or physical, and we will do that in the next chapters.
On-premise is a term often used for server installed within the infrastructure of our companies, many-a-times, in a datacenter, and sometimes, under the system admin desk. The VMs can also run in an on-premise infrastructure when we use tools like OpenStack or oVirt to create them on the top of physical servers. It is a strategy adopted by the companies towards having more resilience, flexibility, and better use of our resources. One example is if you have to switch one or more servers in your datacenter, for the fact that it is very old and is not able to have the same performance as the other servers, you can migrate the VMs from one server to another. Switch the physical machine and after installing a new one, migrate all the VMs back.
Cloud is the name used to describe when the virtual servers are installed inside the infrastructure of something else. In most cases, the companies like AWS, Azure, and GCP have their own on-premise infrastructure and rent it for us. So, we do not need to take care of the maintenance, like switching disks when they fail, switching the server when they are deprecated, or even the electricity and the internet. Furthermore, you can save costs by turning them off after the business day and starting them again the next day. All these providers only charge you for the time that the machine is turned on. Otherwise, you are going to pay only for the storage.
Conclusion
Now that we already have a brief explanation regarding the servers, virtual machines, Linux, and distributions, we are ready to start the hands-on. Let's begin by setting up our first Linux environment and get to know the basics, and so much more.
Setting up your environment
One of the most important tasks for a Linux professional is the skill to set up different types of environment, run web server, databases, file systems, and many different services by different vendors. In this chapter, we will see where to download a Linux distribution from, how to install a virtualization tool to create your testing environments, how to create a base image to make it easier for the creation of new labs, and if you crash your testing environment, what happens very often when we learn new stuff.
To run VMs on your laptop or personal computer, you need to check if your processor arch is 64-bit. This specification can be found at the laptop manufacturer or processor manufacturer. After checking this setting, you need to enable virtualization at your device's BIOS or UEFI. This configuration can be very different according to your equipment, but in most of the cases, it can be found in the Advanced or Security option with the name Intel Virtualization Technology.
Installing the VirtualBox
Nowadays, we have many options for virtualization tools to run on your laptop, like VMware Player, KVM, QEMU, HyperV. But, in my opinion, VirtualBox is the easiest one and has all the features we need to create our labs.
To install the VirtualBox, you need to download its latest version from the official website:
https://www.virtualbox.org/wiki/Downloads
I am using Windows system, so, I am going to download the Windows version. But, if you have the basic knowledge of Linux or you are using MacOS, the steps are basically the same.
After downloading the file, double click and the installation step is basically and The following first window is just explaining that you are about to install the VirtualBox:
Figure 1.1
The second window is important for you to select all the resources, because a lot of times, they are needed mainly when you want to share the files between your PC and the VM, or even configure networks:
Figure 1.2
Following are the basic options about the shortcuts, if you want to add them to your desktop:
Figure 1.3
At this step, the installation will ask you for the Admin Rights, because the VirtualBox will create a bridge interface. This interface is responsible for the communication between the host machine and the VM, and without it, you will not be able to access the internet from your virtual machine:
Figure 1.4
Figure 1.5
Figure 1.6
After the installation completes, you will be able to open the VirtualBox, and the main screen will be as shown in the following figure:
Figure 1.7
Now, we are ready to set up our first Linux environment. The VirtualBox has a lot of options for you to configure and explore. But, I will not focus on it now because we have a Linux system to install.
Installing the Linux System
Since I mentioned earlier that we will use the Ubuntu server to do everything in this book, you can download the latest version from this link:
https://ubuntu.com/download/server
Then, download this file: ubuntu-18.04.3-live-server-amd64.iso
Now, let's start the installation. The first step is to open the VirtualBox, click on and in the new window, type as given in the following example:
Figure 1.8
After clicking on Next, you need to define the amount of memory you want to have in your VM. The Linux system, usually, does not need a lot of memory to work, but, after you install your services and test them, you will need more memory. For now, 1 GB is enough. Then, click on
Figure 1.9
In this part, create a New Disk. The disk is basically a file in your disk where the VM will store all the data. Click on Create and you will see the following window:
Figure 1.10
VDI is the standard type used by the VirtualBox. You can change the type if you intend to import this machine in other Virtualization Tool. for example, is the type used by VMware. Click on
Figure 1.11
This window is very important. In your laboratories, you will always use the Dynamically allocated option, because the VirtualBox will create a small file and will increase the size according to the disk usage.
The Fixed Size is recommended for the production environments, because the Virtualization Tool will reserve that space for your VM. Even if you don't use all the disk space allocated, it will avoid you from having more Virtual Space than the Physical Space. In some cases, when you use the Dynamically allocated size in production environments, you overcome the total space of your Storage, but your virtual machines still have free space. I had experienced this in the past and it is really hard to deal with. One more reason to choose this option is because you avoid your Virtualization Tool to recalculate the disk space after every writes. When you use the Dynamically allocated type for every write, your system will calculate the actual size and how much it needs to increase before it reaches the defined limit:
Figure 1.12
Here, you can define where the VM data will be stored and the disk size. For us, 10 GB is enough to run our tests:
Figure 1.13
Now, your VM is created!
Installing Your Linux System
Once we have all the prerequisites, like creating the VM and defining all the configurations, it's time to install the system. So, double click on your VM. The following screen will sppear:
Figure 1.14
You do not have any operating system installed in this VM. You need to select the ISO download from the Ubuntu website by clicking on the yellow folder:
Figure 1.15
Click on and select the ISO file you had already downloaded. Select it, click on choose, and
Figure 1.16
Now, select your language. I always select English even when I lived in Brazil, Canada, and now in Germany. Selecting this option, for sure, will avoid a lot of problems regarding collation, like punctuation, special characters, etc.:
Figure 1.17
This option depends on your keyboard layout. You will probably need to change it according to the country you are living in the moment. My keyboard has the layout of the US, so I will select this option:
Figure 1.18
Now, you don't need to do anything. Just press because we will use the default configuration. This step is really important because Ubuntu will download some updates during the installation. So, it is important to have an internet connection in your PC and in your VM:
Figure 1.19
If you are doing this during your work time, and if your company has the proxy to access the internet, now is the time for you to configure. So, just put the proxy URL and press
Figure 1.20
Here, you can define the Mirror where Ubuntu will download the updates. If you have an internet connection, it will select the nearest mirror to you. In my case, I have the German repository:
Figure 1.21
Years ago, I would have given you a big explanation about the important directories on Linux, which is the best way to split your disk among the directories and the partitions. But nowadays, it is not that important when we work with the virtual machines. We can consider the Amazon EC2 instances as an example. These do not even have the SWAP partition. If you lack space, just increase more in your root partition and clean your server. Another important thing is the /var directory. I won't go deep into that topic now, but it is the directory where the logs of your Linux system are stored. Therefore, they frequently use a lot of your free space and we have to clean it often. Years ago, I would ask you split it into a different partition. But today, we have tools to ship the logs to a Log and we can just remove the logs every day from the local machine. However, select Use An Entire
Figure 1.22
Now, select the physical device where the operating system will be installed, and press
Figure 1.23
The following screen shows you how your disk has been partitioned. We can see that there is a Physical and it is split into two parts. The boot partition, which is mandatory to boot your system, is where the bootloader is installed.
The root partition, also known as Just select
Figure 1.24
Here, we will create the first user, and then I will define the following data:
Your name: alisson - this is just your real name, but it will not be used for anything.
Your Server's name: devops - this is the hostname of your machine
Pick a username: alisson - this is literally the user which you will use to access the server
Choose a password: devops
Confirm your password: devops
Press
Attention!
The following step is really important. The OpenSSH server is not installed by default, so you have to select the option, and install the OpenSSH server. You can use the key Tab to change the options. Otherwise, you will not be able to access your server from a remote connection:
Figure 1.25
Now that you have selected the right option, press
Figure 1.26
Now, you need to select a Template of installation for your server, like a Nextcloud server. Or, if you intend to run Kubernetes, you can select the But it is not what we want. So, press Tab to change the option to and press
Figure 1.27
Now, your installation has begun. It may take a while because Ubuntu will download the updates and some important packages. You are not obligated to do the updates. But, in my view, it is important for those who are learning Linux to have an updated system. Just wait for the installation to finish, and when Ubuntu asks you for a do that. After the reboot, you will see the following screen:
Figure 1.28
Enter the credentials defined during your installation:
login: alisson
password: devops
Now, you are inside the Linux shell. Starting now, you will be able to run the commands, install packages, and do everything that you want with your server. This access console is exactly what you would do if you were inside a datacenter. Plug a KVM Video to a server and run the commands. I did a lot of that when I was working with Colocation. This is a business model in which you can buy your own physical servers and install inside the datacenter of someone else's. Thus, you will use the datacenter infrastructure, but the server belongs to you.
It is not used much, unless you are working within a datacenter. If you are still logged in into your machine, run the following command:
ip a
The preceding command will show all the network interfaces you have and their IP address, like the following screenshot:
Figure 1.29
We just have 2 IP addresses and 2 interfaces:
Interface: lo
IP Address: 127.0.0.1
This is the local IP address. It is used to make the TCP/IP connection without getting outside of the machine:
Interface: enp0s3
IP Address: 10.0.2.15
This is a NAT interface. We need this interface just to make the internet connection. But, we cannot access the machine from outside using this configuration. It is used just for the installation purposes. We could have changed that before. However, I wanted to show you how to change that configuration and why we need to do it.
To change this configuration, go to the main screen of the VirtualBox. Now, click on the virtual machine, and then, click on Settings | In this part, you will see the value Nat. Change it to the Bridge and in the option select the network interface that you have the internet access to. In my case, it is configured like the following screenshot:
Figure 1.30
After saving the configuration, go back to your VM and run the following command again:
ip a
You will see a new IP address. In my was attached:
Figure 1.31
Accessing via SSH
We have a connection from the outside now. So, how can we connect to that machine using the SSH? In the past, it was common to use tools like Putty to SSH the servers from Windows machines, but in the new versions of Windows, we have PowerShell, which is installed by default and we can use it to access our VM.
Open the PowerShell if you're using Windows or Terminal in Linux/MacOS, and run the following command:
ssh alisson@192.168.178.62
The command follows the structure USER@HOSTNAME. If you do not have a hostname configured, you can use the IP address. After that, press Enter. It will show you the following message:
The authenticity of host '192.168.178.62 (192.168.178.62)' can't be established.
ECDSA key fingerprint is SHA256:GX474/IAL/VeIoiV/r6WoPZHRg3HfFTS3tfvigA9jKM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.178.62' (ECDSA) to the list of known hosts.
It happens because this is the first time you are connecting to that server. You can just type Yes to make sure that you want to connect to it and then, the SSH will ask for your password:
alisson@192.168.178.62's password:
Type the password defined in your installation. In my case, it was DevOps, and you will be able to access the Linux shell again:
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-76-generic x86_64)Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-76-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
System information as of Fri Jan 31 20:04:07 UTC 2020
System load: 0.0 Processes: 88
Usage of /: 39.0% of 9.78GB Users logged in: 1
Memory usage: 15% IP address for enp0s3: 192.168.178.62
Swap usage: 0%
61 packages can be updated.
0 updates are security updates.
Last login: Fri Jan 31 19:41:36 2020
To run a command as administrator (user "root"), use "sudo ".
See "man sudo_root" for details.
alisson@devops:~$
There is a lot of theory and concepts about the SSH connections which are encrypted, and we have the known_hosts files. It is important to know if you want to become a Linux expert, but not that important for us now.
We know that using a password to access the server is not the best practice, because they are a lot reliable and are easily exposed. So, we can create a key pair to secure our access. You can exit from your shell by typing the following command:
logout
Connection to 192.168.178.62 closed.
Or press Ctrl + In your PowerShell console, type the following command:
ssh-keygen
And press Enter for all the options. This command will generate two files for you:
id_rsa is your private key. This should be in your PC, and only you can have this file.
id_rsa.pub is the public key. You will copy this file to every Linux server you want to access without a password.
To copy your public key to our server, run the following command:
scp .\.ssh\id_rsa.pub alisson@192.168.178.62:/home/alisson/id_rsa.pub
alisson@192.168.178.62's password:
id_rsa.pub
100% 398 397.4KB/s 00:00
The file was copied, so access the server again:
ssh alisson@192.168.178.62
alisson@192.168.178.62's password:
Create the .ssh directory and create the authorized_keys file. This file will store all the public keys to access the server using the user
mkdir .ssh
cat id_rsa.pub >> .ssh/authorized_keys
logout
Now, if you try to access the server again, no password will be asked, like the following example:
ssh alisson@192.168.178.62
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-76-generic x86_64)Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-76-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
System information as of Fri Jan 31 20:24:51 UTC 2020
System load: 0.2 Processes: 88
Usage of /: 39.0% of 9.78GB Users logged in: 1
Memory usage: 15% IP address for enp0s3: 192.168.178.62
Swap usage: 0%
61 packages can be updated.
0 updates are security updates.
Last login: Fri Jan 31 20:20:28 2020 from 192.168.178.60
To run a command as administrator (user "root"), use "sudo ".
See "man sudo_root" for details.
alisson@devops:~$
Mission complete! Now we are ready to learn more about the Bash, directories, files, and many more.
Conclusion
This was just the first chapter with the basics on how to install your own Linux server, and create your labs on the top of the VirtualBox. I strongly recommend you to do all these steps again using other Linux distributions and discover which one is your favorite. When I started using Linux, I created my own labs using different distributions, including Slackware, Gentoo, BigLinux, Mandrake, Mandriva. So, feel free to choose your own. In the companies I worked for all these years, most of them used RedHat or CentOS, and they had theirs on on-premises infrastructure. But, since I started to work with Cloud, it has been changing. If you try to create Ubuntu server machine on Amazon, you will see that it is one of the most used distributions.
CHAPTER 2
Working with Bash
This chapter will explain the basics for you to navigate inside your Linux system, the main directories, mostly used commands, important files, managing users and groups, and how the Linux permission system works!
Structure
In this chapter, we will discuss the following topics:
What is Bash?
Introduction
Basic commands
Managing files and directories
Structure of directories
Important files
Customizing your environment
Managing users and groups
Creating and modifying users
Creating and modifying groups
Working with permissions
Changing read and write permissions
Changing the owner of files and executing scripts
Objectives
After studying this unit, you should be able to:
Understand directories infrastructure
Customize your environment using important files
Manage users and groups
Understand the permissions and executing scripts
What is Bash?
Bash is an abbreviation of Bourne Again Shell. It is an improved version of the Legacy Shell that we used to see in older Linux/Unix Systems. In this version, we have many features, like creating functions, controlling jobs in the foreground and background, creating aliases, customizing your environment, putting color in your terminal, new shortcuts, auto-complete, and many other features that we are going to see in this chapter. Just to give you more context about it, Shell is the interface on Linux which is used to administer the system. In other words, it is where we run all the commands.
It is also a programming language. Often among Linux users, we see the term Shell Scripting. What does it mean? It means we can get all the commands used during our work, put all of them together in the same file, give permission to execute it, and automate your daily job. It is a Shell Script. It is basically the Swiss Knife of the Linux administrators. Today, it is frequently challenged by Python, because Python is an object-oriented language and has a lot of features which are very easy to use if we compare it with the Shell Script. Nevertheless, it will always be the favorite tool of all the Linux administrators to automate easy tasks, and at the end of this chapter, I will teach how to create a script using all the commands learned before.
Introduction
In the last chapter, we configured and installed our Linux system and we were able to access it using the SSH tool. The point where we stopped is as follows:
ssh alisson@192.168.178.62
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-76-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
System information disabled due to load higher than 1.0
* Multipass 1.0 is out! Get Ubuntu VMs on demand on your Linux, Windows or
Mac. Supports cloud-init for fast, local, cloud devops simulation.
https://multipass.run/
60 packages can be updated.
6 updates are security updates.
Last login: Mon Feb 10 18:59:46 2020
To run a command as administrator (user "root"), use "sudo ".
See "man sudo_root" for details.
alisson@devops:~$
It means we are inside the Linux Shell. Now, we are going to call it Bash because it is the command-line interpreter used. Every operating system has its own command-line interpreter, because it is required to administer the system. In the older versions of Windows, we had MS-DOS. Now, we have the PowerShell. In the older versions of Linux, we had the Shell. Now, we have the Bash and some users are migrating from Bash to Z shell. I will show in the following pages how we can change our CLI Line
Within your server, the most useful command is called
alisson@devops:~$ ls
id_rsa.pub
This command is used to show the files and the directories of Linux. It can be used with different parameters. For example, if I want to show the files and directories in a detailed mode, I can pass the parameter
alisson@devops:~$ ls -l
total 4
-rw-rw-r-- 1 alisson alisson 398 Jan 31 20:18 id_rsa.pub
alisson@devops:~$
The last output shows us more information following that sequence:
Permissions – Number of the Hard Links – User – Group – Size – Last Modification Date – Filename
This kind of information is called the metadata. But why does it have this name? Because, we have a file which contains the data that we use, and this data is about the file that is used the most by the OS. For example, we need not always know the size of a file, but the operating system always needs that kind of information, because it needs to calculate the free and used space on the disk.
If you want to see more about the metadata of a file, use the following command
alisson@devops:~$ stat id_rsa.pub
File: id_rsa.pub
Size: 398 Blocks: 8 IO Block: 4096 regular file
Device: 802h/2050d Inode: 532800 Links: 1
Access: (0664/-rw-rw-r--) Uid: (1000/ alisson) Gid: (1000/ alisson)
Access: 2020-01-31 20:20:23.741638861 +0000
Modify: 2020-01-31 20:18:39.467733742 +0000
Change: 2020-01-31 20:18:39.467733742 +0000
Birth: -
This command will show you all the metadata about the file and in a detailed form.
One very interesting parameter of the ls is the which will show you all the files including the hidden ones. In Linux, all the hidden files starts with a . (dot) in the beginning. For example:
alisson@devops:~$ ls -la
total 40
drwxr-xr-x 5 alisson alisson 4096 Jan 31 20:20 .
drwxr-xr-x 3 root root 4096 Jan 31 19:40 ..
-rw------- 1 alisson alisson 113 Jan 31 20:20 .bash_history
-rw-r--r-- 1 alisson alisson 220 Apr 4 2018 .bash_logout
-rw-r--r-- 1 alisson alisson 3771 Apr 4 2018 .bashrc
drwx------ 2 alisson alisson 4096 Jan 31 19:41 .cache
drwx------ 3 alisson alisson 4096 Jan 31 19:41 .gnupg
-rw-rw-r-- 1 alisson alisson 398 Jan 31 20:18 id_rsa.pub
-rw-r--r-- 1 alisson alisson 807 Apr 4 2018 .profile
drwxrwxr-x 2 alisson alisson 4096 Jan 31 20:20 .ssh
We can see a lot of files now, like the .bashrc or .bash_history or the hidden directory which we used in the first chapter to save our public key to access the server without any password.
If you want to see the content of a file, you can use the command
alisson@devops:~$ cat .bash_logout
~/.bash_logout: executed by bash(1) when login shell exits.
when leaving the console clear the screen to increase privacy
if ["$SHLVL" = 1]; then
[-x /usr/bin/clear_console] && /usr/bin/clear_console -q
fi
Using the command we were able to see the content of the .bash_logout file. This file has some importance, because if we want to execute a command before logging out of the server, we should put in this file.
To display a message on the screen, use the command
alisson@devops:~$ echo Message on Terminal
Message on Terminal
This command is often used to create a file as well:
alisson@devops:~$ echo Creating a file > message.txt
alisson@devops:~$ ls
id_rsa.pub message.txt
alisson@devops:~$ cat message.txt
Creating a file
We can use redirectors at Shell Script to send command outputs to write the files. There exist many redirectors, but the most used are and
If you use after a command, the standard output of the command is redirected to a file that you need to specify. But, if you select an existing file, the redirector will overwrite it.
If you use after a command, the standard output of the command is redirected to a file that you need to specify too. But, if you select an existing file, the redirector will append it and not overwrite it.
To manage files, most commands use the same syntax. If you want to copy, move, or rename a file, you can use COMMAND FILE>
Renaming a file:
alisson@devops:~$ mv message.txt file.txt
alisson@devops:~$ ls
file.txt id_rsa.pub
Copying a file:
alisson@devops:~$ cp file.txt file2.txt
alisson@devops:~$ ls
file2.txt file.txt id_rsa.pub
In the first chapter, we edited a file and called If we want to check this file again, we can access the directory using the command
alisson@devops:~$ cd .ssh/
alisson@devops:~/.ssh$ ls
authorized_keys
And, we can check the file content again:
alisson@devops:~/.ssh$ cat authorized_keys
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQChi8HX26xv9Rk9gz47Qhb+Tu7MRqGIyP xnheIeEgFad/dlqG4w4pY7y5dtx5LNGE9C01varco5dZagqsHplI7M+5ECSvjAuS6b5r kYZwZiZruDXxckcQHFpr2yIz 3DOzKRTUc5Hg5JHF5aymiqyVfTsxL/aI/LDY8Ikh+ INn3S9+b5bZtU+74tA6yuqt h5SCtNSWwMUlv7QL6ONHtQiviAjBe+ksDBBV6thWz2ZIJA/jApSIBJWK9AWmZwq 2hFy9sOZArUDB2Kt6kl3rIZnHpqJ/GMUCxFhtggYamJ5J2H62 77qLFqLZ/8tum9uc5l/lSWYKTDm2+E/prQfmFrxPf9 1511 mxti@avell
If you need to know the directory you are working on, use the following command:
pwd
/home/alisson/.ssh
And if you want to go to the previous directory again, use the command cd using two dots
cd ..
alisson@devops:~$ pwd
/home/alisson
Managing files and directories
After getting to know some basic commands, it is really important for you to know how to navigate among the directories, know the files within them, and what we can do using these files. So, now we will see what the root directory is, where the configuration files are, what these files do for our Linux system, and how we can customize the environment using it.
Structure of directories
To see the basic structure of the directories on Linux, use the following command:
alisson@devops:~$ ls /
bin cdrom etc initrd.img lib lost+found mnt proc run snap swap.img tmp var vmlinuz.old
boot dev home initrd.img.old lib64 media opt root sbin srv sys usr vmlinuz
Here, we have some directories. I will explain just the most important of them:
/: It is the root directory and everything that runs in your Linux system is below this directory.
This directory stores all the configuration files on Linux.
This directory stores the log files and data of some services. For example, if you have a MySQL server installed in your system, you can find all the data stored inside
Here you will find the libraries of your system. We do not have to often access this directory, but it is an important one to know. For example, the kernel modules are stored in
This directory stores the binaries. In other words, the programs are required for your Linux Words. For example, the command it is found in this directory.
Here you can find some binaries, like the But the binaries installed here are not required for your system works. For example, this binary allows you to schedule a task to run in your system, but you can live without that.
In this directory, you can find your kernel installed. My current version is:
This is the current process running. One fact about this directory is it only exists when your Linux is turned on. If you have a dual boot and you try to mount your Linux partition, you will be able to see all the directories, except the because it is your RAM content.
Usually, it becomes empty after your installation. But, when you compile a program, it is a good practice to put the binaries and the configuration files in this directory.
This is exactly like the but the binaries here require administration permissions. For example, if you want to format a partition, you will call the command You cannot run this command as a common user.
In this directory, you will find the home directory of all the common users. The only exception is the user root; its home directory can be found in
Here, you can use to mount network shares; your pendrive, SD card, and another kind of external volumes.
These are the most important directories you can find in your Linux system and they will be a part of your daily work.
Important Files
Now that you already know the important directories, let's get inside of them and see the files that are important for our system to work.
One important file is the /etc/passwd. This file is responsible to store all the Linux users, and we can give a look at its content using the cat command:
alisson@devops:~$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
This was an example of the first 5 lines. Its structure follows the following sequence:
User – password – user id – group id – comment – home folder - shell
The data is separated by a colon It is important to know that the Linux shell has many useful commands to work with these kinds of files.
For example, we could use the command cut to see just the information we want:
alisson@devops:~$ cut -f 1,6,7 -d : /etc/passwd
root:/root:/bin/bash
daemon:/usr/sbin:/usr/sbin/nologin
bin:/bin:/usr/sbin/nologin
sys:/dev:/usr/sbin/nologin
Thus, in the example, I printed just the columns 1, 6, 7 which correspond to the user, the home folder, and the shell.
I am not posting the entire output of the command because I want to save some space. But, you probably are running this on your own virtual machine. So, if you want to show just the first 3 lines of any file, you can use the command head. By default, this command shows the first 10 lines of a file, but we have the -n parameter, where we can define as many lines we want to see.
For example:
alisson@devops:~$ head -n 3 /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
On Linux, it is also possible to concatenate the commands. If you want to see just the first 3 lines and only the columns 1, 6, 7 like we did with the cut command, we can use the pipe This statement has the function of getting the output of the last command and sending it to the next command in the pipeline.
Example:
alisson@devops:~$ head -n3 /etc/passwd | cut -f 1,6,7 -d :
root:/root:/bin/bash
daemon:/usr/sbin:/usr/sbin/nologin
bin:/bin:/usr/sbin/nologin
Therefore, every time that you want to concatenate the commands, you must use the pipe One interesting point is the second columns of the /etc/passwd file. I wrote that it is the password, but we can only see an this character represents the encrypted password. The hash can be found in the file
alisson@devops:~$ sudo head -n3 /etc/shadow
[sudo] password for alisson:
root:*:18113:0:99999:7:::
daemon:*:18113:0:99999:7:::
bin:*:18113:0:99999:7:::
To see the content of this file, you need to run the command sudo before the command head. The sudo command means the substitute users do. In a simple way, we are running the command head as we were another user. If you do not specify the user, by default, the user is root. The password is the same as we set in the installation. If you set the same password as me, it’s
To see your user's password, we can use the command This command will find the line which corresponds with our criteria of the search.
Example:
alisson@devops:~$ sudo grep alisson /etc/shadow
alisson:6aeR.OxEqoVMnyUuq$eYxtbG6V.156mtlsK9QBZcVOjQZBm7NlcKFn5x1y xF4mffuLYd6Wmz2R9V2iKZvuC7fgp96H7.jlQW/o7OenF/:18292:0:99999:7:::
Now you can clearly see the password hash in the second column. Of course, we cannot decrypt it, but if you want to take a Linux certification, you will need to record this file and the structures. However, we can also remove a user's password. You can just edit this file and delete the hash. This way, the user will not have a password and he can set a new one in the future.
Regarding the users, we also have one file on Linux to manage the groups. This file is located in
alisson@devops:~$ head -n 3 /etc/group
root:x:0:
daemon:x:1:
bin:x:2:
This file follows the following sequence:
Group name | password | group id | users
So, the users added into a group will appear in the last column of each line. As I explained earlier, we can use the command grep to find a group and see which users were added into it:
alisson@devops:~$ grep sudo /etc/group
sudo:x:27:alisson
It shows us one interesting thing; the command sudo only allows the users who belong to the sudo group to use the command. Another important file is the This file is responsible to mount our volumes during the boot. Let's give it a look:
alisson@devops:~$ cat /etc/fstab
UUID=75fbe5e6-26ff-4522-abc4-0d8a3ac69c5b / ext4 defaults 0 0
/swap.img none swap sw 0 0
When you work with Linux, it is really important for you to know the structure of the files. So, this file is organized in the following sequence:
Partition – folder – filesystem type – mounting options – backup enable – disk check sequence
Nowadays, this command lets you see the first column with a uuid, which represents a partition. If you want to see where it binds, run the following command:
alisson@devops:~$ blkid
/dev/sda2: UUID="75fbe5e6-26ff-4522-abc4-0d8a3ac69c5b" TYPE="ext4" PARTUUID="7177f53d-2db2-49cb-93a9-21d763cac088"
If you check, it is exactly the same in the If you want to change, you can just replace the uuid in the file to It will work in the same way. The machine's hostname is stored in the
alisson@devops:~$ cat /etc/hostname
devops
If you want to change the hostname, you can just edit this file. We also have the /etc/hosts file that you can map an IP address to a name, as we did in the DNS:
alisson@devops:~$ cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 devops
The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
It is very useful when you are developing a web system and you don't want to type the IP address in the browser every time a really important file is
alisson@devops:~$ sudo cat /etc/sudoers
[sudo] password for alisson:
#
This file MUST be edited with the 'visudo' command as root.
#
Please consider adding local content in /etc/sudoers.d/ instead of
directly modifying this file.
#
See the man page for details on how to write a sudoers file.
#
Defaults env_reset
Defaults mail_badpass
Defaults secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin"
Host alias specification
User alias specification
Cmnd alias specification
User privilege specification
root ALL=(ALL:ALL) ALL
Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL
Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL
See sudoers(5) for more information on "#include" directives:
#includedir /etc/sudoers.d
This file is responsible to manage who can use the sudo command. I explained earlier, the only users in the group sudo can run the command. But, how does the command know which group it needs to use? Because of the following line:
Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL
You can put more groups in this file or you can put the users directly, like the following line:
User privilege specification
root ALL=(ALL:ALL) ALL
One thing that is nice to work with Linux is since all the documentation comes inside the files, like we saw in the the comments explain how and where you have to edit the file. We also have the command man for that:
alisson@devops:~$ man sudo
SUDO(8)
BSD System Manager's Manual
SUDO(8)
NAME
sudo, sudoedit — execute a command as another user
SYNOPSIS
sudo -h | -K | -k | -V
sudo -v [-AknS] [-a type] [-g group] [-h host] [-p prompt] [-u user]
sudo -l [-AknS] [-a type] [-g group] [-h host] [-p prompt] [-U user] [-u user] [command]
sudo [-AbEHnPS] [-a type] [-C num] [-c class] [-g group] [-h host] [-p prompt] [-r role] [-t type] [-T timeout] [-u user] [VAR=value] [-i | -s] [command]
sudoedit [-AknS] [-a type] [-C num] [-c class] [-g group] [-h host] [-p prompt] [-T timeout] [-u user] file …
This is just the first few lines of the file. To quit the man, press The file
alisson@devops:~$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the 'crontab'
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
m h dom mon dow user command
17 * * * * root cd / && run-parts --report /etc/cron.hourly
25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)
47 6 * * 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)
52 6 1 * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.monthly)
#
This is responsible to manage the scheduled tasks. It follows the following structure:
Minute – hour – day of the month – month – day of the week – user - command
So, if you want to schedule the tasks to run every Friday at 07 you can add a line like the following:
00 19 * * 5 root bash /bin/backup.sh
Therefore, every Friday at 7 pm, the user root will run the command backup.sh. This is how we must read a line in the crontab file. This is the main file, but each user has their own and they can be found in the following path:
alisson@devops:~$ sudo ls /var/spool/cron/crontabs/ -la
[sudo] password for alisson:
total 8
drwx-wx--T 2 root crontab 4096 Nov 16 2017 .
drwxr-xr-x 5 root root 4096 Aug 5 2019 ..
We do not have any file inside this directory, because we never created any schedule. But, we can edit the users' crontab for you to see the creation of the file. Type the following command in your terminal:
alisson@devops:~$ crontab -e
no crontab for alisson - using an empty one
Select an editor. To change later, run 'select-editor'.
1. /bin/nano <---- easiest
2. /usr/bin/vim.basic
3. /usr/bin/vim.tiny
4. /bin/ed
Choose 1-4 [1]: 2
crontab: installing new crontab
You can choose option 2, as I did. It will set the VIM as the default text editor for your Wait for the VIM to open and close by pressing Esc, and use the following command:
:wq!
I will explain more about VIM in the next section. Now that you have saved your user you can check the folder again:
alisson@devops:~$ sudo ls /var/spool/cron/crontabs/ -la
total 12
drwx-wx--T 2 root crontab 4096 Feb 17 20:54 .
drwxr-xr-x 5 root root 4096 Aug 5 2019 ..
-rw------- 1 alisson crontab 1089 Feb 17 20:54 alisson
You can see that a file with the same user's name was created. So, every user will have a file in this folder since they created a crontab using the command crontab For Linux systems, it is a requirement to have an SSH connection and the configuration file for this is:
alisson@devops:~$ cat /etc/ssh/sshd_config
$OpenBSD: sshd_config,v 1.101 2017/03/14 07:19:07 djm Exp $
This is the sshd server system-wide configuration file. See
sshd_config(5) for more information.
This sshd was compiled with PATH=/usr/bin:/bin:/usr/sbin:/sbin
The strategy used for options in the default sshd_config shipped with
OpenSSH is to specify options with their default value where
possible, but leave them commented. Uncommented options override the
default value.
#Port 22
#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::
Formerly, we have a short part of the file, in which you are able to change the port, and define which IP addresses will listen for the connections:
alisson@devops:~$ grep Root /etc/ssh/sshd_config
#PermitRootLogin prohibit-password
the setting of "PermitRootLogin without-password".
One important configuration in the preceding file, is in some cases, we are able to login in the server using the root user directly. But, it is not a good practice. However, it is not uncommon to see in an on-premises environment. In the cloud environment, it is never allowed, because everyone in the world can try to access with the root user.
Another important configuration is the following one:
alisson@devops:~$ grep PasswordAuthentication /etc/ssh/sshd_config
#PasswordAuthentication yes
PasswordAuthentication. Depending on your PAM configuration,
PAM authentication, then enable this but set PasswordAuthentication
PasswordAuthentication yes
If you are working with any Cloud provider like Amazon, Azure, or GCP, this configuration is disabled by default, for security reasons. We have added our SSH key in the server in the first chapter. So, if you want, you can edit this file and change the option for
Managing users and groups
Now, you already know some of the important files, and the files responsible to manage users and groups. We could just open these files and edit them to create new users and groups. But, Linux has useful commands which should be used to do that job and make our life easier.
Managing users
To see the users, we have the command
alisson@devops:~$ getent passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
The output is a quite similar as the command but, the difference is that we can look for a specific user, like we did using the command
alisson@devops:~$ getent passwd alisson
alisson:x:1000:1000:alisson:/home/alisson:/bin/bash
Thus, it is up to you which command you want to use. When I am working, I always use the to look for a user or group, and the grep command, to find a line in any file of the Linux system.
To add a new user, run the following command:
alisson@devops:~$ sudo adduser elvis
[sudo] password for alisson:
Adding user 'elvis' …
Adding new group 'elvis' (1001) …
Adding new user 'elvis' (1001) with group 'elvis' …
Creating home directory '/home/elvis' …
Copying files from '/etc/skel' …
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for elvis
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n]
Only the username and password are mandatory. You can leave the other options blank, as I did in the example. I set the password as If you analyze the command output, you can see two things that are important for us to pay attention.
The first is the information about the home directory. The command creates a folder called elvis within the /home folder. As I explained earlier, the home folder is responsible for the user's files.
The second is the where the command adduser gets the default files present in the home folder of the user. We can give it a look with the following command:
alisson@devops:~$ ls /etc/skel/ -la
total 20
drwxr-xr-x 2 root root 4096 Aug 5 2019 .
drwxr-xr-x 91 root root 4096 Feb 18 19:25 ..
-rw-r--r-- 1 root root 220 Apr 4 2018 .bash_logout
-rw-r--r-- 1 root root 3771 Apr 4 2018 .bashrc
-rw-r--r-- 1 root root 807 Apr 4 2018 .profile
These files are responsible to customize the user's environment. We are going to edit them in the last part of this chapter. But, if you want to put more items inside the home folder, you can just add inside the and they will be present for the next user created. Let's test it.
Let's create a skeleton for a hosting server. How does the web server work? Usually, we have the user and in the home folder of each user, you have some folder called, All these folders must be created at the same time as the user is created. So, run the following command:
alisson@devops:~$ sudo mkdir /etc/skel/{public_html, logs, mail, conf}
[sudo] password for alisson:
alisson@devops:~$ ls /etc/skel/
conf logs mail public_html
alisson@devops:~$
So, as you can see, now we have these four folders created inside the /etc/skel. Now, let's create another user to see it working:
alisson@devops:~$ sudo adduser customer01
Adding user 'customer01' …
Adding new group 'customer01' (1002) …
Adding new user 'customer01' (1002) with group 'customer01' …
Creating home directory '/home/customer01' …
Copying files from '/etc/skel' …
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for customer01
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n]
alisson@devops:~$ ls /home/customer01/
conf logs mail public_html
As you can see now, we have these folders created in the home folder of the user. I am setting the same password for all users. But, if you forgot a password and you want to change it, the command to do that is as follows:
alisson@devops:~$ sudo passwd elvis
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Now, type the new password and it is changed.
We are now talking about the hosting servers. So, let's use another example. Imagine your customer did not pay you. So, you need to block this user. To execute this task, you can run the following command:
alisson@devops:~$ sudo passwd -l customer01
passwd: password expiry information changed.
One interesting thing about Linux is if you want to know how it blocks the users, you can give a look at the
alisson@devops:~$ sudo getent shadow customer01
customer01:!6PExBAe3N$6AxVOOJLi/A5ddWOp2I/ZhvB00mpVwq4KQ78/4.QNNcrz2tsGGFu8XXr/TU7NFA/Hg3T2X9.R5v6cCuzbYF8j.:18310:0:99999:7:::
Paying attention to the output is easy. To note one difference, let's compare with a non-blocked user:
alisson@devops:~$ sudo getent shadow alisson
alisson:6aeR.OxEqoVMnyUuq$eYxtbG6V.156mtlsK9QBZcVOjQZBm7NlcKFn5x1 yxF4mffuLYd6Wmz2R9V2iKZvuC7fgp96H7.jlQW/o7OenF/:18292:0:99999:7:::
In the second column, where the password is stored, for a blocked user, you can see that the system puts an exclamation point as the first character. This way, the user can type his password and it will never match with the hash because there is an exclamation point in the beginning.
To unblock the user, type the following command:
alisson@devops:~$ sudo passwd -u customer01
passwd: password expiry information changed.
alisson@devops:~$ sudo getent shadow customer01
customer01:6PExBAe3N$6AxVOOJLi/A5ddWOp2I/ZhvB00mpVwq4KQ78/4.QNNcrz2tsGGFu8XXr/TU7NFA/Hg3T2X9.R5v6cCuzbYF8j.:18310:0:99999:7:::
Now, Linux removed the ! in the beginning of the hash and the user is able to access the shell again. If the customer canceled the service with you, it is possible to remove his user. To execute this task, you need to run the following command:
alisson@devops:~$ sudo userdel elvis
alisson@devops:~$ sudo getent passwd elvis
It is important to remember that removing the user does not mean you will remove his home directory if we check:
alisson@devops:~$ ls /home/
alisson customer01 elvis
You can remove it manually now using the following command.
alisson@devops:~$ sudo rm -rf /home/elvis/
Linux has this behavior to avoid you delete files that you might need in the future. But, if you are sure you want to remove everything, run the following command:
alisson@devops:~$ sudo userdel -r customer01
userdel: customer01 mail spool (/var/mail/customer01) not found
alisson@devops:~$ ls /home/
alisson
Now, everything is deleted.
Managing groups
This task is pretty similar to the user management. We can see all the groups:
alisson@devops:~$ sudo getent group
root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:
adm:x:4:syslog,Alisson
Find a group using a specific name:
alisson@devops:~$ sudo getent group sudo
sudo:x:27:Alisson
Create a new user and add this user to the group
alisson@devops:~$ sudo useradd gabriela
alisson@devops:~$ sudo getent passwd gabriela
gabriela:x:1001:1001::/home/gabriela:/bin/sh
alisson@devops:~$ sudo getent group sudo
sudo:x:27:Alisson
The command I ran showed that I created a user called This user is present in the passwd file and the group sudo just had the user Alisson added. To add the new user, run the following command:
alisson@devops:~$ sudo gpasswd -a gabriela sudo
Adding user gabriela to group sudo
alisson@devops:~$ sudo getent group sudo
sudo:x:27:alisson,gabriela
Perfect! Now, we have 2 users who belong the sudo group and we can switch the user to see if the new one has the same permissions:
alisson@devops:~$ sudo su - gabriela
No directory, logging in with HOME=/
$
One interesting point is if you paid attention, I ran 2 different commands to create a user .Firstly, I ran the adduser and after I ran What is the difference between the commands?
The last output when I changed the user using the command su I received the message of no directory for this user. Therefore, the command useradd does not create the home folder for the user as the adduser does. So, we can use the useradd for the technical user, which does not need a password or home directory, and the adduser for common users. Do I use that in my daily work? No, I use the adduser for everything and after that, I remove the shell and the password, like the following:
alisson@devops:~$ sudo adduser app1 --shell /bin/false
Adding user 'app1' …
Adding new group 'app1' (1002) …
Adding new user 'app1' (1002) with group 'app1' …
Creating home directory '/home/app1' …
Copying files from '/etc/skel' …
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for app1
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n]
alisson@devops:~$ sudo passwd -l app1
passwd: password expiry information changed.
alisson@devops:~$ sudo getent shadow app1
app1:!6ArmlhXou$Ry11spiafwXfqcPkVQ3xJDCd4gbN9vcsw1.9wkDoO4N69. 3vnkHTZl.jPsMJLJmYjJwW4yS.CvvMEA5bGsZVE1:18312:0:99999:7:::
alisson@devops:~$ sudo getent passwd app1
app1:x:1002:1002:,,,:/home/app1:/bin/false
So, if you check the output, you can clearly see that the user has no shell and he is blocked for login. It would be so much easier if I had executed the But, when you develop a vicious circle, it is hard to avoid.
Now, let's get back to the users in the group Deleting the user:
alisson@devops:~$ sudo userdel -r gabriela
userdel: gabriela mail spool (/var/mail/gabriela) not found
userdel: gabriela home directory (/home/gabriela) not found
Creating the user again:
alisson@devops:~$ sudo adduser gabriela
Adding user 'gabriela' …
Adding new group 'gabriela' (1001) …
Adding new user 'gabriela' (1001) with group 'gabriela' …
Creating home directory '/home/gabriela' …
Copying files from '/etc/skel' …
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for gabriela
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Is the information correct? [Y/n]
Adding the user to the group:
alisson@devops:~$ sudo gpasswd -a gabriela sudo
Adding user gabriela to group sudo
alisson@devops:~$
Changing the user:
alisson@devops:~$ sudo su - gabriela
To run a command as administrator (user "root"), use "sudo ".
See "man sudo_root" for details.
gabriela@devops:~$
Now, you are able to see that my shell has changed. Now, I am the user gabriela. To create users or groups, we need to have the sudo permission. Let's try to create a new group called
gabriela@devops:~$ sudo addgroup applications
[sudo] password for gabriela:
Adding group 'applications' (GID 1003) …
Done.
Checking if the group was created:
gabriela@devops:~$ sudo getent group applications
applications:x:1003:
Adding a new user to this group:
gabriela@devops:~$ sudo useradd juergen
gabriela@devops:~$ sudo gpasswd -a juergen applications
#Adding user juergen to group applications:
gabriela@devops:~$ getent group applications
applications:x:1003:juergen
And if you want to delete the group:
gabriela@devops:~$ sudo delgroup applications
Removing group 'applications' …
Done.
Switching back to my user:
gabriela@devops:~$ exit
logout
alisson@devops:~$
And that is it. This was your QuickStart for managing user and groups. Of course, we could go so much deeper in these topics, but I still have to explain how you can customize your environment.
Working with Permissions
The Linux permission system works differently from Windows. We have some numbers associated with the permission. So, for example:
1 – Execution
2 - Writing
4 – Reading
So you always have to make some math to apply for the permission. If you want to assign the execution permission you can set as write permission 2 and reading permission Write + Reading is equal to so the permission is If you want Read + Write + Execution is equal to Let's create a file and check its permissions:
alisson@devops:~$ touch new_file
alisson@devops:~$ ls -la new_file
-rw-rw-r-- 1 alisson alisson 0 Feb 20 19:21 new_file
The command touch is responsible to change the access time of any file. If the file does not exist, it creates one. Checking the output, you can see that we have the permissions: read, but what means that sequence:
user – group – other
In the same line, we can see alisson the first one is the user owner for this file and the second one is the group. By default, all the users created on Linux have a group with the same name as the user.
If you remember the numbers which represent the permission, we can make a calculation, read+write = 4 + 2 = Then we have the following permissions:
664
Therefore, the user can read and write. Users from the same group can also read and write, users who do not belong to the group can just read. Now, we can create a directory and analyze the permissions as we did just now:
alisson@devops:~$ mkdir new_folder
alisson@devops:~$ ls -la | grep new_folder
drwxrwxr-x 2 alisson alisson 4096 Feb 20 19:29 new_folder
Analyzing the permissions, we can see, read + write + execution for the user and group, and read + execution for the others. If we make the following association:
read + write + execution = 4 + 2 + 1 = 7
read + execution = 4 + 1 = 5
Then, we have What can we conclude, then? The default permissions for the files are and for the directories are
Why are the permissions for the directories and the files different? If we paid attention, the only difference is Execution. The files are created without this, just for security. So, we can execute the wrong files, and the folders are created with the execution permission because with this permission, we can open the folders.
Nice, but how can we change the file permissions?
Changing read and write permissions
The command used for changing these permissions is chmod. I will show you how we can change it using numbers and letters. The experienced Linux users usually use numbers, but it does not make any difference whether you use numbers or letters. Let’s use an example of the
alisson@devops:~$ ls -la new_file
-rw-rw-r-- 1 alisson alisson 0 Feb 20 19:21 new_file
So, the permission is which means that any user who is not me can read the file content and I do not want to allow it. So, I will change the permission for other users to
alisson@devops:~$ chmod 660 new_file
alisson@devops:~$ ls -la new_file
-rw-rw---- 1 alisson alisson 0 Feb 20 19:21 new_file
I just changed the permissions for So, let's create the content inside this file. Change the user and see how it works:
alisson@devops:~$ echo content not allowed to other > new_file
alisson@devops:~$ cat new_file
content not allowed to other
Let's change the user to
alisson@devops:~$ sudo su - gabriela
[sudo] password for alisson:
gabriela@devops:~$ pwd
/home/gabriela
gabriela@devops:~$ ls -la /home
total 20
drwxr-xr-x 5 root root 4096 Feb 20 19:05 .
drwxr-xr-x 24 root root 4096 Feb 18 18:00 ..
drwxr-xr-x 6 alisson alisson 4096 Feb 20 19:29 alisson
drwxr-xr-x 6 app1 app1 4096 Feb 20 19:00 app1
drwxr-xr-x 6 gabriela gabriela 4096 Feb 20 19:12 gabriela
Now, I will enter in my home folder and try to see the file content:
gabriela@devops:~$ cd /home/alisson/
gabriela@devops:/home/alisson$ cat new_file
cat: new_file: Permission denied
And it works! But, if we remember the managing groups' part, this user has permission to use So, I will add itself in the group and let's see what happens:
gabriela@devops:/home/alisson$ sudo gpasswd -a gabriela alisson
[sudo] password for gabriela:
Adding user gabriela to group Alisson
If we type the command groups, we can see the groups that this user belongs to:
gabriela@devops:/home/alisson$ groups
gabriela sudo
Thus, it means that the new user is not able to be used in this session. Let’s logout and login again, and see if it changes:
gabriela@devops:/home/alisson$ logout
alisson@devops:~$ sudo su - gabriela
gabriela@devops:~$ groups
gabriela sudo alisson
Now, the group is loaded. So, let's try to see the file content again:
gabriela@devops:~$ cd /home/alisson/
gabriela@devops:/home/alisson$ cat new_file
content not allowed to other
And it is possible to see the file content. So this is how the permission works. I show how we can change the permission using the number. If you want to change it using letters, it is basically the same. Let's try:
gabriela@devops:/home/alisson$ cd
touch letters_file
gabriela@devops:~$ ls -la letters_file
-rw-rw-r-- 1 gabriela gabriela 0 Feb 20 19:47 letters_file
To remove all the permission to others:
gabriela@devops:~$ chmod o= letters_file
gabriela@devops:~$ ls -la letters_file
-rw-rw---- 1 gabriela gabriela 0 Feb 20 19:47 letters_file
Then, we can see that I just had to type which means other = and the permissions were set. I could just add the execution permission:
gabriela@devops:~$ chmod o+x letters_file
gabriela@devops:~$ ls -la letters_file
-rw-rw---x 1 gabriela gabriela 0 Feb 20 19:47 letters_file
Or, I can set the permissions to read for all, and write just for the owner:
gabriela@devops:~$ chmod g=rx,o=rx letters_file
gabriela@devops:~$ ls -la letters_file
-rw-r-xr-x 1 gabriela gabriela 0 Feb 20 19:47 letters_file
And if I want to give the write permission to everyone, I will do the following:
gabriela@devops:~$ chmod +w letters_file
gabriela@devops:~$ ls -la letters_file
-rw-rwxr-x 1 gabriela gabriela 0 Feb 20 19:47 letters_file
The same command works for the directories.
Change the owner of files and executing scripts
The same way as chmod is used for permissions, chown is used for ownership. Let me use the same files that we have:
gabriela@devops:~$ ls -la letters_file
-rw-rwxr-x 1 gabriela gabriela 0 Feb 20 19:47 letters_file
The owner is and the group is gabriela too. In the previous example, I have added the user gabriela to the group and then the user was able to access the file. But this time, I will do it differently:
gabriela@devops:~$ chown gabriela:alisson letters_file
gabriela@devops:~$ ls -la letters_file
-rw-rwxr-x 1 gabriela alisson 0 Feb 20 19:47 letters_file
Now, the group owner for this file is If I want to change the user, I can run the command as follows:
gabriela@devops:~$ sudo chown juergen letters_file
[sudo] password for gabriela:
gabriela@devops:~$ ls -la letters_file
-rw-rwxr-x 1 juergen alisson 0 Feb 20 19:47 letters_file
Jurgen is the owner of this file. We can use the command chown to change the user and the group for a file or directory. But we have a command which can also be used to change the group:
gabriela@devops:~$ sudo chgrp gabriela letters_file
gabriela@devops:~$ ls -la letters_file
-rw-rwxr-x 1 juergen gabriela 0 Feb 20 19:47 letters_file
The group is now changed. Therefore, the command chgrp changes only the group, and the command chown changes the owner, or the owner and the group. Thus, to finish this chapter, we are just missing to see how to execute a script. So let's create a simple one:
gabriela@devops:~$ echo "echo this is a simple script"> simple_script.sh
gabriela@devops:~$ ls -la simple_script.sh
-rw-rw-r-- 1 gabriela gabriela 29 Feb 20 20:05 simple_script.sh
Here, we have the script created. To execute it, run it as follows:
gabriela@devops:~$./simple_script.sh
-su: ./simple_script.sh: Permission denied
Permission denied! This happens because, if we analyze the previous command run and check the permissions, there is no which represents the execution permission. Then, set the following permission:
gabriela@devops:~$ chmod +x simple_script.sh
Run the script again:
gabriela@devops:~$./simple_script.sh
this is a simple script
Let's check the permissions one more time:
gabriela@devops:~$ ls -la simple_script.sh
-rwxrwxr-x 1 gabriela gabriela 29 Feb 20 20:05 simple_script.sh
The x is in all the permission groups for the users, groups, and others. So, everyone can execute it. If you still give the execution just for the file owner or for the group, you can use chmod for it, and use the same math to set the permissions.
CHAPTER 3
Setting Up a Service
This chapter will explain how the Linux Package system works, how to install a package, install a service, configure it, and run your first application in your first LAMP (Linux Apache MySQL PHP) server.
Structure
In this chapter, we will discuss the following topics:
Learning how to install a package
APT
Installing the Apache
Configuring your service
Creating a VHost
Installing MySQL
Configuring the service
Creating a database and tables
Deploying your application
Installing PHP
Deploying WordPress
Objectives
After studying this unit, you should be able to:
Understand the Linux package system
Install packages using APT
Setup a web server
Setup a database server
Deploy an application
Learning how to install a package
Most of the Linux distributions have a package manager by default. It can be YUM, APT, Zypper, pacman, slackapt, etc. Each one has its own particularities, but all were made for the same purpose, to install the packages that are basically the Linux programs, via centralized repositories which are distributed all over the world.
In the first chapter, I gave a brief explanation about the Linux distributions and some differences. Some of them are in the package management systems. Now, I am going to give 2 examples of the most famous package managers.
Debian based distributions, like Ubuntu, have the APT Package It connects to a central repository like this: It is just an Apache web server, and in it, are stored several packages which we can choose and install.
RedHat based distributions, like CentOS, have YUM Dog Update which will soon be replaced by the DNF the new substitute of YUM. It also uses a central repository like and also stores several packages.
Now, let's focus on Debian which is our goal here, once we are using Ubuntu.
APT
If you run just the command apt without any parameter, you will see the following output:
alisson@devops:~$ apt
apt 1.6.11 (amd64)
Usage: apt [options] command
apt is a commandline package manager and provides commands for
searching and managing as well as querying information about packages.
It provides the same functionality as the specialized APT tools,
like apt-get and apt-cache, but enables options more suitable for
interactive use by default.
Most used commands:
list - list packages based on package names
search - search in package descriptions
show - show package details
install - install packages
remove - remove packages
autoremove - Remove automatically all unused packages
update - update list of available packages
upgrade - upgrade the system by installing/upgrading packages
full-upgrade - upgrade the system by removing/installing/upgrading packages
edit-sources - edit the source information file
See apt(8) for more information about the available commands.
Configuration options and syntax is detailed in apt.conf(5).
Information about how to configure sources can be found in sources.list(5).
Package and version choices can be expressed via apt_preferences(5).
Security details are available in apt-secure(8).
This APT has Super Cow Powers.
Therefore, the options are self-explained. Let's use them in practice. One interesting thing is the command
top - 18:19:11 up 2 days, 2:34, 1 user, load average: 0.04, 0.03, 0.00
Tasks: 92 total, 1 running, 50 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 1008816 total, 133020 free, 126512 used, 749284 buff/cache
KiB Swap: 2017276 total, 2016752 free, 524 used. 716548 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28427 alisson 20 0 107988 3460 2448 S 0.3 0.3 0:00.14 sshd
28462 alisson 20 0 42788 3940 3344 R 0.3 0.4 0:00.25 top
1 root 20 0 77992 9104 6680 S 0.0 0.9 0:02.58 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0:0H
6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu_wq
7 root 20 0 0 0 0 S 0.0 0.0 0:00.55 ksoftirqd/0
8 root 20 0 0 0 0 I 0.0 0.0 0:19.94 rcu_sched
To exit from the press This command basically shows the current state of your machine, the state of memory, CPU, processes running, etc. There is another version of top which is called htop. It does exactly the same thing. However, it has a better interface, and therefore, before we install that version, run the following command:
alisson@devops:~$ sudo su -
[sudo] password for alisson:
root@devops:~#
The previous command changes your current user to the user root. Until now, we were running the command sudo before every command which needs more permission. Now, we need not type sudo before the command every time because we are already the administrator of this server. Or, you can say that we are the root user.
Sometimes, when we create a server based on an image. The local cache of APT is completely outdated. So, we need to clean it and update using the following commands:
root@devops:~# apt clean
root@devops:~# apt update
Hit:1 http://de.archive.ubuntu.com/ubuntu bionic InRelease
Hit:2 http://de.archive.ubuntu.com/ubuntu bionic-updates InRelease
Hit:3 http://de.archive.ubuntu.com/ubuntu bionic-backports InRelease
Hit:4 http://de.archive.ubuntu.com/ubuntu bionic-security InRelease
Reading package lists… Done
Building dependency tree
Reading state information… Done
65 packages can be upgraded. Run 'apt list --upgradable' to see them.
root@devops:~#
Now, you have the local cache updated. We can try to find the htop and see if it is available to install:
root@devops:~# apt search htop
Sorting… Done
Full Text Search… Done
aha/bionic 0.4.10.6-4 amd64
ANSI color to HTML converter
htop/bionic,now 2.1.0-3 amd64 [installed,automatic]
interactive processes viewer
libauthen-oath-perl/bionic 2.0.1-1 all
Perl module for OATH One Time Passwords
pftools/bionic 3+dfsg-2build1 amd64
build and search protein and DNA generalized profiles
Analyzing the previous output, we can say that htop is available. So, to install the package, we use the following command:
root@devops:~# apt install htop -y
Reading package lists… Done
Building dependency tree
Reading state information… Done
htop is already the newest version (2.1.0-3).
htop set to manually installed.
0 upgraded, 0 newly installed, 0 to remove and 65 not upgraded.
root@devops:~#
The package is installed now. So, run the following command:
CPU[
0.0%] Tasks: 29, 28 thr; 1 running
Mem[||128M/985M] Load average: 0.07 0.02 0.00
Swp[| 524K/1.92G] Uptime: 2 days, 02:45:09
PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command 28771 root 20 0 32468 4868 3764 R 0.0 0.5 0:00.02 htop 1 root 20 0 77992 9104 6680 S 0.0 0.9 0:02.58 /sbin/init maybe-ubiquity
394 root 19 -1 100M 17652 16796 S 0.0 1.7 0:00.36 /lib/systemd/systemd-journald
420 root 20 0 103M 1852 1664 S 0.0 0.2 0:00.00 /sbin/lvmetad -f
421 root 20 0 45836 4476 2888 S 0.0 0.4 0:00.87 /lib/systemd/systemd-udevd
496 systemd-t 20 0 138M 3256 2744 S 0.0 0.3 0:00.00 /lib/systemd/systemd-timesyncd
491 systemd-t 20 0 138M 3256 2744 S 0.0 0.3 0:00.20 /lib/systemd/systemd-timesyncd
672 systemd-n 20 0 80048 5076 4484 S 0.0 0.5 0:00.19 /lib/systemd/systemd-networkd
696 systemd-r 20 0 70636 4916 4356 S 0.0 0.5 0:00.19 /lib/systemd/systemd-resolved
In this simple output, we are able to see some improvements. For example, we now have a bar to indicate the amount of memory used in the server. It is a good tool to analyze the current state of your server, but, it is not used much in the production system because it consumes more memory than the traditional top. So, let’s remove this package using the following command:
apt remove htop
Reading package lists… Done
Building dependency tree
Reading state information… Done
The following packages will be REMOVED:
htop ubuntu-server
0 upgraded, 0 newly installed, 2 to remove and 64 not upgraded.
After this operation, 269 kB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database … 102467 files and directories currently installed.)
Removing ubuntu-server (1.417.3) …
Removing htop (2.1.0-3) …
Processing triggers for mime-support (3.60ubuntu1) …
Processing triggers for man-db (2.8.3-2ubuntu0.1) …
These are all the commands you will probably use in your daily work while installing the packages on Linux. Beside the commands, we also have some important files which are required to install some packages that may not be available in the official repositories.
The first important file is
root@devops:~# cat /etc/apt/sources.list
See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.
deb http://de.archive.ubuntu.com/ubuntu bionic main restricted
deb http://de.archive.ubuntu.com/ubuntu bionic-updates main restricted
Above-mentioned is an example of the first few entries from the sources.list. These are the lines representing the remote repositories where the packages are found. If you want to add a new repository, you can just find the respective line and add at the end of this file, for example:
deb http://ppa.launchpad.net/canonical-kernel-team/unstable/ubuntu bionic main
In the beginning of the URL, you can see that it starts with PPA Packages These are the useful repositories that are not included in the distribution by default, but you may find some packages which you want to use.
Another important directory is: In the beginning, I explained that the APT stores the cache inside the Linux, and if it is too old, we need to clean and update it. This folder also downloads the packages installed in our system, for example:
root@devops:~# apt install htop --download-only
Reading package lists… Done
Building dependency tree
Reading state information… Done
The following NEW packages will be installed:
htop
0 upgraded, 1 newly installed, 0 to remove and 64 not upgraded.
Need to get 80.0 kB of archives.
After this operation, 221 kB of additional disk space will be used.
Get:1 http://de.archive.ubuntu.com/ubuntu bionic/main amd64 htop amd64 2.1.0-3 [80.0 kB]
Fetched 80.0 kB in 0s (451 kB/s)
Download complete and in download only mode
I ran the APT installation just to download the package using the option and if we check the directory:
root@devops:~# ls /var/cache/apt/archives/
htop_2.1.0-3_amd64.deb lock partial
You can see the package there. Now, if you run the following clean command:
root@devops:~# apt clean
root@devops:~# ls /var/cache/apt/archives/
lock partial
The package is not there anymore.
Installing Apache
We installed one basic package to learn how APT works. Now, let's install a real one. The Apache web server is currently the most used web servers in the world. You can deploy any application using it as a Load Balancer, cache for static files, proxy for another web server, and many other options that depend on your usage. To install Apache, use the following command:
root@devops:~# apt install apache2 -y
Reading package lists… Done
Building dependency tree
Reading state information… Done
The following additional packages will be installed:
apache2-bin apache2-data apache2-utils libapr1 libaprutil1 libaprutil1-dbd-sqlite3 libaprutil1-ldap liblua5.2-0 ssl-cert
If the installation ran well for you, it is possible to validate if Apache is installed and running using the following command:
root@devops:~# service apache2 status
apache2.service - The Apache HTTP Server
Loaded: loaded (/lib/systemd/system/apache2.service; disabled; vendor preset: enabled)
Drop-In: /lib/systemd/system/apache2.service.d
└─apache2-systemd.conf
Active: active (running) since Mon 2020-07-06 12:56:38 UTC; 11s ago
Process: 22810 ExecStart=/usr/sbin/apachectl start (code=exited, status=0/SUCCESS)
Pay attention to the part where says it Active (running), or, you can also use the command ss
root@devops:~# ss -ntpl
We can see Apache running on port with the PID PID means process identification. Now, the server is up and running. Let's check the access via browser:
http://192.168.178.62/
Figure 3.1
This is the Apache default page when the server is running on Ubuntu. Usually, this page is different depending on your OS.
Now, you can say that you have setup a web server. However, we know that the websites are not just made using HTML. There is a lot of back-end processing. Usually, it is PHP. Of course, you can develop your website using any of the dozens of programming languages that are available. But, I am still pretty sure that PHP is the most common used for most of the websites.
Installing PHP
In this part, let's install PHP and create a simple page to check if it is installed, and what are the modules available to use with it:
apt install php -y
The installation is simple using APT. When we install PHP and Apache, there are many Apache modules that are installed together. You can run the following command to check them:
root@devops:~# a2enmod
Your choices are: access_compat actions alias allowmethods asis auth_basic auth_digest auth_form authn_anon authn_core authn_dbd authn_dbm authn_file authn_socache authnz_fcgi authnz_ldap authz_core authz_dbd authz_dbm authz_groupfile authz_host authz_owner authz_user autoindex buffer cache cache_disk cache_socache cern_meta cgi cgid charset_lite data dav dav_fs dav_lock dbd deflate dialup dir dump_io echo env expires ext_filter file_cache filter headers heartbeat heartmonitor http2 ident imagemap include info lbmethod_bybusyness lbmethod_byrequests lbmethod_bytraffic lbmethod_heartbeat ldap log_debug log_forensic lua macro mime mime_magic mpm_event mpm_preforkmpm_worker negotiation php7.2 proxy proxy_ajp proxy_balancer proxy_connectproxy_express proxy_fcgi proxy_fdpass proxy_ftp proxy_hcheck proxy_html proxy_http proxy_http2 proxy_scgi proxy_wstunnel ratelimit reflector remoteip reqtimeout request rewrite sed session session_cookie session_crypto session_dbd setenvif slotmem_plain slotmem_shm socache_dbm socache_memcache socache_shmcb speling ssl status substitute suexec unique_id userdir usertrack vhost_alias xml2enc
Which module(s) do you want to enable (wildcards ok)?
There are many options, but the one we are looking for is
root@devops:~# a2enmod php7.2
Considering dependency mpm_prefork for php7.2:
Considering conflict mpm_event for mpm_prefork:
Considering conflict mpm_worker for mpm_prefork:
Module mpm_prefork already enabled
Considering conflict php5 for php7.2:
Module php7.2 already enabled
The command enables the php7.2 module, which is responsible to integrate Apache and PHP. When we access a PHP page via a browser, Apache will call that module which will call the PHP interpreter and run the code. Let's create a simple page as an example:
root@devops:~# vim /var/www/html/info.php
phpinfo();
?>
This code is the simplest code that you can run on PHP to check if everything is running. When you call that page via a browser, you will see the following:
Figure 3.2
Now, you can see via browser, everything which is installed with your PHP installation, and make sure that PHP is running. When we are running a complete application within a web server, PHP and Apache are enough to publish the information and make it available for access everywhere.
However, full systems store and manage data, and in order to do it, we need a Database Management which can be many. We have as much database systems as we have programming languages, and in different categories, SQL, NoSQL, Key Values, etc.
The most popular DBMS running on web servers is MySQL/MariaDB. So, let's install it and test.
Installing MariaDB
The most popular DBMS running on web servers is the MySQL, then let's install it and make a test:
root@devops:~# apt install mariadb-server mariadb-client -y
After the installation completes, run the following command:
mysql
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 30
Server version: 10.1.44-MariaDB-0ubuntu0.18.04.1 Ubuntu 18.04
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]>
Now we are inside the MariaDB console.
In the past, we usually used MySQL. But, after Oracle bought it, a fork called MariaDB was created and it became more and more popular. Its API is completely compatible with MySQL. We will run some commands here and you can use exactly the same in an original MySQL server.
To create a database, you need to run the following command:
MariaDB [(none)]> create database chapter03;
Query OK, 1 row affected (0.00 sec)
MariaDB [(none)]> use chapter03;
Database changed
MariaDB [chapter03]>
You can see that we created a database, called with no tables:
MariaDB [chapter03]> show tables;
Empty set (0.00 sec)
We can create one by running the following command:
MariaDB [chapter03]> create table users(id integer primary key auto_increment, name varchar(50));
Query OK, 0 rows affected (1.77 sec)
We just created a table with 2 columns, one called which will store numbers, and the other called which will receive strings. To check the table structure, use the following command:
I just entered 4 different users, and leonardo to demonstrate how we can see the data stored in a table:
MariaDB * from users;
+----+----------+
| id | name |
+----+----------+
1	alisson
2	gabriela
3	juergen
4	leonardo
+----+----------+
4 rows in set (0.00 sec)
Notice that I just entered the names and the numbers were automatically increased by the database. This is normal when we have an auto-increment column. We did that just to make sure the database server is running. Now, we have a full setup which we call LAMP Apache MariaDB and we are ready to deploy a real application.
For that, we will use WordPress and see how it works. Leave the MariaDB console by pressing Ctrl +
Installing WordPress
The first task is to download WordPress from the official website:
root@devops:~# wget https://wordpress.org/latest.tar.gz
--2020-07-06 13:51:03-- https://wordpress.org/latest.tar.gz
Resolving wordpress.org (wordpress.org)… 198.143.164.252
Connecting to wordpress.org (wordpress.org)|198.143.164.252|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 12238031 (12M) [application/octet-stream]
Saving to: 'latest.tar.gz'
latest.tar.gz 100%[==
==>] 11.67M 359KB/s in 31s
2020-07-06 13:51:35 (380 KB/s) - 'latest.tar.gz' saved [12238031/12238031]
Now, you need to decompress the file inside the Apache folder:
root@devops:~# tar -xf latest.tar.gz -C /var/www/html/
root@devops:~# ls /var/www/html/
index.html index.nginx-debian.html info.php wordpress
See that now we have a WordPress folder within /var/www/html with the following files:
root@devops:~# cd /var/www/html/wordpress/
ls
index.php readme.html wp-admin wp-comments-post.php wp-content wp-includes wp-load.php wp-mail.php wp-signup.php xmlrpc.php
license.txt wp-activate.php wp-blog-header.php wp-config-sample.php wp-cron.php wp-links-opml.php wp-login.php wp-settings.php wp-trackback.php
The important file is the We will rename it to and edit setting the database information for our website. Now, let's do it:
root@devops:/var/www/html/wordpress# mv wp-config-sample.php wp-config.php
root@devops:/var/www/html/wordpress# vim wp-config.php
/** The name of the database for WordPress */
define('DB_NAME', 'database_name_here');
/** MySQL database username */
define('DB_USER', 'username_here');
/** MySQL database password */
define('DB_PASSWORD', 'password_here');
/** MySQL hostname */
define('DB_HOST', 'localhost');
/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');
/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');
Previously, you can see that WordPress is already telling you where you have to replace the values, and then you can edit the file to the following:
/** The name of the database for WordPress */
define('DB_NAME', 'chapter03');
/** MySQL database username */
define('DB_USER', 'devops');
/** MySQL database password */
define('DB_PASSWORD', 'devops');
/** MySQL hostname */
define('DB_HOST', 'localhost');
With all the credentials and configuration set, we have to create the same on MariaDB:
mariadb
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 31
Server version: 10.1.44-MariaDB-0ubuntu0.18.04.1 Ubuntu 18.04
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]> use chapter03
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
MariaDB [chapter03]> grant all privileges on chapter03.* to devops@'%' identified by 'devops';
Query OK, 0 rows affected (0.00 sec)
We just created a user, called devops and granted all the privileges to all the tables in the chapter03 database. Now, you can access it via browser:
http://192.168.178.62/wordpress
Figure 3.3
You can fill the fields with the following parameters:
Site Title: Chapter03
Username: devops
Password: devops
Click on Install and and after that, you need to click on
Figure 3.4
Use the same credentials you set earlier, and you will see the WordPress administration:
Figure 3.5
Conclusion
We just set up the most popular stack on Linux using PHP, Apache, and MariaDB. If you are working with webhosting or as a freelance web developer, it can be very useful for you, because you can create the websites using WordPress and now you know how to set up and manage your server. It was just a prerequisite for the next chapters where we will automate everything.
CHAPTER 4
Configuring a Reverse Proxy with Nginx
This chapter aims to explain how a reverse proxy is used and what it does. You will also learn how to create a simple page in Python using the framework Flask and make it available using the web server Gunicorn.
Structure
In this chapter, we will discuss the following topics:
Installing Nginx
Installing Python
Creating a simple page using Flask
Configuring reverse proxy
Objectives
After studying this unit, you should be able to answer:
What is Nginx and how it works
What is a reverse proxy
The basics of a web page in Python
How to deploy an application using Gunicorn
Installing the Nginx
Nginx, the name is made up by the sound when you pronounce Engine X. It is also one of the most famous web servers, more frequently used as a load balancer or as a proxy pass. One of its own best capabilities is working with threads to respond a lot of requisitions in parallel. It is frequently used with Python applications. It receives the requisitions and passes to another Python server like Gunicorn, as we will see in the following pages.
To begin with, let’s install Nginx by running the following command:
root@devops:~# apt install nginx -y
Reading package lists… Done
Building dependency tree
Reading state information… Done
The following additional packages will be installed:
fontconfig-config fonts-dejavu-core libfontconfig1 libgd3 libjbig0 libjpeg-turbo8 libjpeg8 libnginx-mod-http-geoip libnginx-mod-http-image-filter
libnginx-mod-http-xslt-filter libnginx-mod-mail libnginx-mod-stream libtiff5 libwebp6 libxpm4 nginx-common nginx-core
Suggested packages:
libgd-tools fcgiwrap nginx-doc
The following NEW packages will be installed:
fontconfig-config fonts-dejavu-core libfontconfig1 libgd3 libjbig0 libjpeg-turbo8 libjpeg8 libnginx-mod-http-geoip libnginx-mod-http-image-filter
libnginx-mod-http-xslt-filter libnginx-mod-mail libnginx-mod-stream libtiff5 libwebp6 libxpm4 nginx nginx-common nginx-core
0 upgraded, 18 newly installed, 0 to remove and 72 not upgraded.
Need to get 2,461 kB of archives.
After the installation finishes, you can check all the configuration files in this folder by the following command:
ls /etc/nginx/
conf.d fastcgi_params koi-win modules-available nginx.conf scgi_params sites-enabled uwsgi_params
fastcgi.conf koi-utf mime.types modules-enabled proxy_params sites-available snippets win-utf
Probably, you saw some similarities with Apache. For example, here also, we have the folder sites-enable and So, you already know what these directories do. However, the most important is the that stores the main configuration of the web server. We can use the command grep to check the enabled lines, in other words, the lines which are not commentaries:
grep -v "#" /etc/nginx/nginx.conf
user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;
events {
worker_connections 768;
}
http {
sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 65;
types_hash_max_size 2048;
include /etc/nginx/mime.types;
default_type application/octet-stream;
ssl_prefer_server_ciphers on;
access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;
gzip on;
include /etc/nginx/conf.d/*.conf;
include /etc/nginx/sites-enabled/*;
}
Therefore, this file can show you the important lines, like the number of connections per worker, so each worker will be in charge to respond 768 connections. By default, the value is 1, but we can have at least one per CPU processor. If you want to check how many processors you have in your CPU, run the following command:
root@devops:~# cat /proc/cpuinfo | grep processor
processor : 0
The last command shows you that you have only one processor in your CPU. I ran this command on my VM. Since I have only one processor, if I run in my physical machine, the result is as follows:
alisson@avell:~$ cat /proc/cpuinfo | grep processor
processor : 0
processor : 1
processor : 2
processor : 3
processor : 4
processor : 5
processor : 6
processor : 7 show - show package details
Therefore, in this case, I can configure my Nginx to use 8 workers. If you want to do that, just add the following line below the worker connections:
Worker_processes 8;
Restart your server and the configuration is enabled.
We just saw some important files. Now is the time to test our web server. In the last chapter, we installed Apache web server in the virtual machine. So, probably it is still running. Let's check if there is any process running on port
The last command is printed on the screen. Of all the services that are currently listening in my VM, if Apache is one of them, let's stop it, disable the server, and start
root@devops:~# systemctl stop apache2
root@devops:~# systemctl disable apache2
Synchronizing state of apache2.service with SysV service script with /lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install disable apache2
Now, even if you restart your VM, Apache will be still stopped. To start and enable Nginx, run the following commands:
root@devops:~# systemctl start nginx
root@devops:~# systemctl enable nginx
Synchronizing state of nginx.service with SysV service script with /lib/systemd/systemd-sysv-install.
Executing: /lib/systemd/systemd-sysv-install enable nginx
Open the IP address in the browser to check the index page:
Figure 4.1
It is interesting that it is displaying the Apache example page. This happens because Nginx is using the same folder as Apache for the document root. You can check that using the following command:
root@devops:~# grep -v "#" /etc/nginx/sites-enabled/default
server {
listen 80 default_server;
listen [::]:80 default_server;
root /var/www/html;
index index.html index.htm index.nginx-debian.html;
server_name _;
location / {
try_files $uri $uri/ =404;
}
}
The grep command showed you that the document root is defined as which is the same as Apache. If you want to see the default index page of Nginx, run the following command:
root@devops:~# cp -v /usr/share/nginx/html/index.html /var/www/html/
'/usr/share/nginx/html/index.html' -> '/var/www/html/index.html'
The grep command showed you that the document root is defined as which is the same as Apache. If you want to see the default index page of the Nginx, run the following command:
Figure 4.2
Now, you can see the Nginx default page.
Installing Python
Python, nowadays, is one of the most famous programming languages, mainly in the areas, like Data Science and DevOps. It is frequently used to automate Linux tasks and integrate systems using REST APIs. Some years ago, I worked in a system called BeavOps. I was responsible to make the enrollment of the students for the consulting company I used to work for.
That system was receiving a JSON file from the CRM with the student data, the respective course, and the starting and ending date. The mission was to create some routines with this data which will integrate many different tools, like Gitlab, Jenkins, Apache, MongoDB, etc, aiming to create a development environment for the students and with a CI/CD pipeline. That system was completely made up using Python, Flask, and MongoDB to store the data.
To install Python, we basically need two packages:
root@devops:~# apt install python3 python3-pip -y
Reading package lists… Done
Building dependency tree
Reading state information… Done
python3 is already the newest version (3.6.7-1~18.04).
python3 set to manually installed.
So, the options are self-explained. Therefore, let's use them in practice. After the installation finishes, install the Flask framework using
Now, your environment is ready to run a Python application.
Creating a simple page using Flask
Flask is a micro-framework for Python, which is perfect for you to create your APIs. Now, you will learn how to create a simple Hello World using this micro-framework and Python. You will also learn all the steps to deploy your application using Nginx and Gunicorn.
Let's create a file, called app.py with the following content:
from flask import Flask
app = Flask(__name__)
@app.route("/")
def index():
return "DevOps with Linux"
if __name__ == "__main__":
app.run(debug=True,host="0.0.0.0")
Now, run the following command:
root@devops:~# python3 app.py
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 179-281-442
Now, you can see the internal server running. Like we used PHP, the same is applied to Python, and then you can get your IP address. Access from your web browser and you must see a page like that the one following:
Figure 4.3
As the log from the Flask says by itself, this server is just for the development purposes. We must use a WSGI Server Gateway If you want to learn more about that, you can access the PEP 333 page: It explains more details about that topic, but for now, our focus is to deploy the application.
The WSGI server that we will use will be Gunicorn. It is just one of the many options that are available. To install it, run the following command:
Now, we can deploy the application again, but using the WSGI server. To do this, run the following command:
root@devops:~# gunicorn --chdir /root/ app:app -b "0.0.0.0"
[2020-03-23 18:34:13 +0000] [23783] [INFO] Starting gunicorn 20.0.4
[2020-03-23 18:34:13 +0000] [23783] [INFO] Listening at: http://0.0.0.0:8000 (23783)
[2020-03-23 18:34:13 +0000] [23783] [INFO] Using worker: sync
[2020-03-23 18:34:13 +0000] [23786] [INFO] Booting worker with pid: 23786
Notice that the port has changed. Now, you must use the port
Figure 4.4
It’s so simple like that. However, we also want to run this application behind a reverse proxy. So, let's see how we are going to configure that.
Configuring the Reverse Proxy
We have already installed Nginx in our VM and we also know the configuration files. Knowing that, the configuration for the pages can be found in the virtual hosts which are found in the directory:
root@devops:~# ls /etc/nginx/sites-available/default
/etc/nginx/sites-available/default
Then, we can open the file and your file should have the content as follows:
server {
listen 80 default_server;
listen [::]:80 default_server;
server_name _;
location / {
proxy_pass http://localhost:8000/ ;
}
}
Restart the server to enable the configuration:
root@devops:~# systemctl restart nginx
root@devops:~#
If you try to access the server using the default port you will see the following message:
Figure 4.5
It happens because the server behind our proxy is not running yet. So, let's run it and check the changes:
root@devops:~# gunicorn --chdir /root/ app:app
[2020-03-23 18:52:26 +0000] [24025] [INFO] Starting gunicorn 20.0.4
[2020-03-23 18:52:26 +0000] [24025] [INFO] Listening at: http://127.0.0.1:8000 (24025)
[2020-03-23 18:52:26 +0000] [24025] [INFO] Using worker: sync
[2020-03-23 18:52:26 +0000] [24028] [INFO] Booting worker with pid: 24028
This time we do not need to pass the bind option, -b to make the server available to all the IP address. In the current case, the server is just listening to the Therefore, Nginx is open to the world receiving the connections and forwarding it to Gunicorn.
If you try to access again using the default port, you will see that now we are able to see the service run:
Figure 4.6
The environment is ready. Reverse proxies are used for many strategies. One of the most common is caching the static files, like JavaScript, CSS, and HTML. Therefore, all the incoming connections are responded by Nginx and only the dynamic content is forwarded to Gunicorn. This way is less costly for the CPU to process everything. In the future chapters, we will see how to apply the same logic, but using the Cloud services, which are the most common today. But, if you are using on-premises infrastructure, this can be a good strategy to increase the performance.
CHAPTER 5
Deploying Your Application Using Docker
This chapter aims to explain how to install Docker, how to work using it, create new containers, images, networks, and deploy the image inside a server.
Structure
In this chapter, we will discuss the following topics:
Introduction to Docker
Installing Docker and creating containers
Creating images using Dockerfile
Publishing images and deploying it
Objectives
After studying this unit, you should be able to:
Understand what is Docker and how it works
Setup a Docker environment
Create containers and images
Version images and deploying
Introduction to Docker
Docker is a tool set to create containers and version it. For those who have more experience with Linux, they probably already know what a container is by using the command chroot on Linux. In simple words, a container is a directory in your file system that allows you to install another Linux operating system in it. As the command says chroot (change so the new root directory will be the new one that you set. However, an entire operating system needs so much more than just the files. Then, for the networking part, the Docker uses iptables under the hood. To manage some redirects via NAT rules, I will show you the amount of stuff that Docker manages for you by running some simple commands in the following paragraphs.
Installation
Firstly, we need to install Docker in our environment. In the official documentation, you will find all the steps and the detailed instructions. Here, we have a summary of everything:
apt clean
apt-get update
apt-get remove docker docker-engine docker.io containerd runc -y
The preceding commands will remove any previous installation of Docker, if you had one in your machine:
apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common -y
Now, we are just installing some dependencies that are required for your Docker installation, like the which is a requirement to download packages from the https repositories:
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
The following command will add GNU Privacy Guard key to ensure the authenticity of the Docker repository:
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
We are using Ubuntu. So, the preceding command is specifically for Ubuntu environments:
apt-get update -y
apt-get install docker-ce docker-ce-cli containerd.io -y
To conclude, the previous command were to update your local repositories list and install the Docker Community Edition.
Creating Containers
The environment is ready. To ensure that your Docker is running fine, run the following command:
root@devops:~# systemctl status docker
docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
Active: active (running) since Thu 2020-04-02 10:28:47 UTC; 1min 7s ago
Docs: https://docs.docker.com
Main PID: 6464 (dockerd)
Tasks: 9
CGroup: /system.slice/docker.service
└─6464 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock
Now, your Docker installation is active and running. To create one container, you can just type the following command:
root@devops:~# docker run -ti centos /bin/bash
Unable to find image 'centos:latest' locally
latest: Pulling from library/centos
8a29a15cefae: Downloading [===>] 72.58MB/73.23MB
The previous command means that we need to run a new container with a TTY (terminal), which is represented by the parameter and an interactive, represented by the parameter Thus, we can run the commands in the container terminal and see their outputs.
When your container is created, you can see the following output:
root@devops:~# docker run -ti centos /bin/bash
Unable to find image 'centos:latest' locally
latest: Pulling from library/centos
8a29a15cefae: Pull complete
Digest: sha256:fe8d824220415eed5477b63addf40fb06c3b049404242b31982106ac204f6700
Status: Downloaded newer image for centos:latest
[root@595b42fceebc /]#
The last line is the important one:
[root@595b42fceebc /]#
If you compare with our terminal in before running the command:
root@devops:~# docker run -ti centos /bin/bash
You can clearly see that the hostname is changed, which means now we are within the container and all the commands we will run, starting from now, will be running inside the container, and nothing will be installed in the VM environment. The hostname name given to the container 595b42fceebc is the container ID, which is used to manage your container. To exit from your container, type: exit or Ctrl +
[root@595b42fceebc /]#
exit
root@devops:~#
To see your current running containers, type the following command:
We can see zero containers running. It happens because once you type exit or Ctrl + D from your container terminal, the container stops. To see that, type the following command:
Now, you can see your container created. If you give a look, you can see that the value in the column CONTAINER ID is exactly the same as the container hostname when we created it.
However, why does the Docker has this behavior? Why is it that when we exit from a container, the container stops? This happens because in the containers concept, one container is created for one specific purpose, different from the virtual machines. So, we do not need to concern about uptime or maintaining a container. You can just delete it and create a new one. If you want to make changes into a container, you must modify the image, save it, delete the current container, and start a new one with the new version of the image.
In my case, I created a container based on a CentOS image, and I just ran the command which was keeping my container alive. Once that command stops running, the container becomes dead. It also applies for the container configurations. If you want to change a redirect or any other parameters, you must create a new container with those new parameters, save it, and run a new container.
Now, we will create a new container based in the CentOS image, and within this container, we will put a Python application that we learned in the last chapter:
root@devops:~# docker run -ti --name python_app -p 5000:5000 centos /bin/bash
[root@ce7f74b0304a /]#
The creation now was clearly faster than the first one. This happens because the CentOS image is already in our local repository. Therefore, the Docker does not need to download it again.
Install the dependencies in the container with the following command:
[root@ce7f74b0304a /]# yum clean all && yum install python3 python3-pip -y
Failed to set locale, defaulting to C.UTF-8
0 files removed
Failed to set locale, defaulting to C.UTF-8
CentOS-8 - AppStream 11% [=======] 122 kB/s | 767 kB 00:49 ETA
While the download is running, we have a new command now, the This command is respective to APT on Ubuntu, and you can use it to install the packages from remote repositories.
After the download finishes, install the Python modules for the application:
[root@ce7f74b0304a /]# python3 -m pip install flask
Successfully installed Jinja2-2.11.1 MarkupSafe-1.1.1 Werkzeug-1.0.1 click-7.1.1 flask-1.1.1 itsdangerous-1.1.0
Copy the source code used in the previous chapter to the container:
[root@ce7f74b0304a /]# cat <> /srv/app.py
> from flask import Flask
>
> app = Flask(__name__)
>
> @app.route("/")
> def index():
> return "DevOps with Linux"
>
>
> if __name__ == "__main__":
> app.run(debug=True,host="0.0.0.0")
> EOF
Run the application to see if it is working:
[root@ce7f74b0304a /]# python3 /srv/app.py
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 123-083-749
Perfect! Now, you can test if from the web browser:
Figure 5.1
Everything is running fine. Now, we have a container running, with an application inside it. The dependencies were installed and we already know the command to run the application. Now, we need to create a new image based on this one. To create the image, we need to exit the container. So, let's do it:
[root@ce7f74b0304a /]# python3 /srv/app.py
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 123-083-749
192.168.178.60 - - [02/Apr/2020 11:08:54] "GET / HTTP/1.1" 200 -
192.168.178.60 - - [02/Apr/2020 11:08:54] "GET /favicon.ico HTTP/1.1" 404 -
[root@ce7f74b0304a /]# exit
root@devops:~#
The important lines are the last ones, where I type Ctrl + C to stop the application, and Ctrl + D to exit the container:
We now have one container, called If you check the last column, this is the one we wanted to create an image:
root@devops:~# docker commit python_app my_first_image
sha256:866e933c059b90a098cad06a1989d24bf16870caea1d691e2c0d3f4599f1608c
The parameter commit receives the first parameter as one container; it can be a running container or a stopped container, it does not matter; and the second parameter is the image name. Therefore, we are creating a new image called
You can check the images that you have running by the following command:
We can see two images; one is the CentOS image that we downloaded from the Docker Hub, which is the official repository. The other one is my_first_image that we created just now. You can create many instances of your application that you want just by running the following command:
root@devops:~# docker run -ti -p 5000:5000 my_first_image python3 /srv/app.py
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
The parameter -p is mapping the port 5000 from our local machine to the port 5000 of our container.
If you want to publish your image to download into any other server, you can create an account in the Docker Hub and send your image there. In my case, I already have an account, so I will teach you how to send your own image to the hub:
root@devops:~# docker login
Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker ID, head over to https://hub.docker.com to create one.
Username: alissonmenezes
Password:
WARNING! Your password will be stored unencrypted in /root/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
Login Succeeded
The username is what you defined while creating the account. You must use the Docker login, to authenticate into your repository. The username is also used to specify where you will store that image, for example:
root@devops:~# docker tag my_first_image alissonmenezes/my_first_image
root@devops:~# docker push alissonmenezes/my_first_image
The push refers to repository [docker.io/alissonmenezes/my_first_image]
ef02c4bc0109: Pushing [===========================>] 22.67MB/41.69MB ef02c4bc0109: Pushed
Now, my image is published for the whole world. If I check my own profile on Docker Hub, I can see the following:
Figure 5.2
My image is saved and is prepared to run on any Docker installed around the world. So now, I will clean my environment, all the images and containers, and create a new container based on that image downloaded directly from the hub:
root@devops:~# docker system prune
WARNING! This will remove:
- all stopped containers
- all networks not used by at least one container
- all dangling images
- all dangling build cache
Are you sure you want to continue? [y/N] y
Deleted Containers:
06035663ec0423a479cddb0c287637626641c79c93896c6566efb802dc3ea35f
4bbab42a400fc72a339977886cde2e061c9c1dce78305d5cb56336e6f36d5965
adc48c7c0be4d422891b9e44146018c175120aab202a338f88f4a1847b50ba67
ce7f74b0304a9bc08bf0ccdd2832d6907408c0f6a9c80c56a75d3bdbf6738b62
595b42fceebc9e4f9c6e2d23d54a8ecd7eaead266ef114c953b1715d0f58a7ee
Total reclaimed space: 41.69MB
The command, docker system prune is used to clean your environment, deleting all the stopped containers. I will run that and let's validate if the environment is cleaned:
No containers running. Now, let's delete all the images:
root@devops:~# docker image rm $(docker image ls)
Untagged: alissonmenezes/my_fist_image:latest
Untagged: alissonmenezes/my_fist_image@sha256:3c729fd3e1a595ff2bcf0937611732550ebde0c0d1945a87c01f979ca620b9fa
Untagged: my_first_image:latest
Deleted: sha256:866e933c059b90a098cad06a1989d24bf16870caea1d691e2c0d3f4599f1608c
Deleted: sha256:fbf13ca6b28b7113d750e70b57c59e2cfc90ae6b3c7436166161c92eef1dc219
Untagged: centos:latest
Checking if we still have images:
No images. Let's create a container based on the image that we pushed to the hub:
root@devops:~# docker run -ti -p 5000:5000 alissonmenezes/my_fist_image:latest python3 /srv/app.py
Unable to find image 'alissonmenezes/my_fist_image:latest' locally
latest: Pulling from alissonmenezes/my_fist_image
8a29a15cefae: Pull complete
f21402989f68: Pull complete
Digest: sha256:3c729fd3e1a595ff2bcf0937611732550ebde0c0d1945a87c01f979ca620b9fa
Status: Downloaded newer image for alissonmenezes/my_fist_image:latest
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 249-372-527
You can now see that the main objective of Docker is to create images for application purposes using an entire environment. We just created a version of CentOS with Python3 installed, and an application inside it. If you want to create a new version of your application, or update the CentoOS version, or even change the underlying OS, like migrating from CentOS to Alpine, you can do that. Do all the tests, create a new version of the image with the same name, send it to the hub, and download it in to your production/quality/development environment.
Creating Images with Dockerfile
Now that you already know all the steps of how to create an image and how to push it into the hub, we can automate these steps using the Dockerfile. This file helps you to track the modifications made into an image. When you just create a container, install everything and create an image. It is a difficult task to track everything that was installed. Therefore, if you want to create a new version for the same application, you have to track all the dependencies and everything, to ensure that all the earlier dependencies are still present in the new image.
Now, create a file, called Dockerfile, and we will include all the steps running in the container within the file:
root@devops:~# vim Dockerfile
from centos
maintainer alisson.copyleft@gmail.com
run yum clean all
run yum install python3 python3-pip -y
run python3 -m pip install flask
copy app.py /srv/app.py
expose 5000
cmd ["python3","/srv/app.py"]
Earlier, you have the file content, which has exactly all the commands that we ran within the container. The statements are self-explained, thus, you can use:
to specify the base image.
to specify who is maintaining the image.
will execute the commands within the container.
copy one file from the local machine to the container.
publishes the container port.
the command which will ensure the container running.
To create the image based on Dockerfile, run the following command:
root@devops:~# docker build . -t my_new_image
Sending build context to Docker daemon 735.7kB
Step 1/8 : from centos
latest: Pulling from library/centos
8a29a15cefae: Pulling fs layer
The Docker build will look for a Dockerfile inside the current directory. The parameter -t means which will define the image name. So, after the command finishes, you can just create a new container by running the following command:
Successfully built b1b23966bb89
Successfully tagged my_new_image:latest
root@devops:~# docker run my_new_image
* Serving Flask app "app" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 130-050-890
It easy to see that now we did not have to pass any additional parameters, because all of them were already passed in the Dockerfile. The Dockerfile basically did the same steps for us before it created a new container. If you check the output, you will see the following:
Successfully built b1b23966bb89
This is the container ID, and in the end the container was tagged with the name specified in the Docker build:
Successfully tagged my_new_image:latest
You can directly put the repository name and push it there. Now, you already know the basics of Docker and it is the minimum requirement for you start to Dockerize your applications.
Conclusion
To conclude, we could see that working with Docker is an easy task. We just have to apply our previous knowledge in a different area of work. Then, you can create a version of your environment, including Infrastructure as Code, ship it to everywhere you want to, but Docker, in itself, is not enough for the large production environments. For that, we have a chapter about Kubernetes and Docker is a requirement for us to work with it.
CHAPTER 6
Automating Your Infrastructure as Code
This chapter aims to explain how the Infrastructure as Code works, install Vagrant, how to work using it, create new virtual machines in an automated way using the Shell Script, and set up all Infrastructure we did before.
Structure
In this chapter, we will discuss the following topics:
Introduction to Infrastructure as Code
Installing Vagrant and creating virtual machines
Setting up a LAMP server
Setting up a Docker server
Objectives
After studying this unit, you should be able to:
What is Vagrant and how it works
Setup a Docker environment using Vagrant automation
Setting up an Apache server
Benefits of automation
Introduction to Infrastructure as Code
Infrastructure as Code is a technique used to document, version, and maintain the control of your infrastructure in a very similar way as you do with software development. Then, you can create a file describing the desired state of your infrastructure, deploy it on a test environment, validate your code, deploy on a staging environment, and if everything goes well, you can proceed to the production environment. It is possible using pipelines; therefore, you can use the same code for all the environment and change the server's sizes using the variables defined for each of the environments.
What is Vagrant and How It Works?
In the beginning of this book, you will learn how to setup the VirtualBox, download an ISO, create a VM, attach the ISO, and format and install the operating system. However, it is a recurrent task in the daily life of a DevOps engineer. Can you imagine yourself installing 100 VMs every day and destroying them after the working day to save money? It is insane. But, when we use Infrastructure as Code (IaC), this task becomes very easy to do, because you just need to do some clicks, and run some commands to create and destroy everything.
Vagrant is a tool that can be integrated with the Virtual Box. It is responsible to read your code, convert it into Virtual Box commands, and also run the code within the VM. You need not to execute all those steps learned in the first chapter. HashiCorp created Vagrant and they have an official repository of images that you can use to setup your environment. So, you do not need to go to the official website, download the ISO, and setup the machine.
Vagrant installing
You can download Vagrant from the following link:
https://www.vagrantup.com/downloads.html
I am using Windows, so I will download the MSI version.
Figure 6.1
The installation process is simple like any other software to be installed on Windows. You just need to open the MSI file and follow the process,
Figure 6.2
And then, click Finish with all the default options:
Figure 6.3
Now, since the installation is completed, let us learn the basics.
Usage
Firstly, create a folder to store your vagrant files as I did:
I created a folder, called VagrantChaper and I entered that folder. Right now, it is empty. To create your first code, type the following command:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant init
A 'Vagrantfile' has been placed in this directory. You are now
ready to 'vagrant up' your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
'vagrantup.com' for more information on using Vagrant.
PS C:\Users\1511 MXTI\VagrantChapter>
The command vagrant creates a sample file for you with the common configuration for the most of the cases of VMs. Let's have a look in the file content:
PS C:\Users\1511 MXTI\VagrantChapter> cat .\Vagrantfile
-*- mode: ruby -*-
vi: set ft=ruby :
All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.
Vagrant.configure("2") do |config|
The most common configuration options are documented and commented below.
For a complete reference, please see the online documentation at
https://docs.vagrantup.com.
Every Vagrant development environment requires a box. You can search for
boxes at https://vagrantcloud.com/search.
config.vm.box = "base"
Disable automatic box update checking. If you disable this, then
boxes will only be checked for updates when the user runs
'vagrant box outdated'. This is not recommended.
config.vm.box_check_update = false
Create a forwarded port mapping which allows access to a specific port
within the machine from a port on the host machine. In the example below,
accessing "localhost:8080" will access port 80 on the guest machine.
NOTE: This will enable public access to the opened port
config.vm.network "forwarded_port", guest: 80, host: 8080
Create a forwarded port mapping which allows access to a specific port
within the machine from a port on the host machine and only allow access
via 127.0.0.1 to disable public access
config.vm.network "forwarded_port", guest: 80, host: 8080, host_ip: "127.0.0.1"
Create a private network, which allows host-only access to the machine
using a specific IP.
config.vm.network "private_network", ip: "192.168.33.10"
Create a public network, which generally matched to bridged network.
Bridged networks make the machine appear as another physical device on
your network.
config.vm.network "public_network"
Share an additional folder to the guest VM. The first argument is
the path on the host to the actual folder. The second argument is
the path on the guest to mount the folder. And the optional third
argument is a set of non-required options.
config.vm.synced_folder "../data", "/vagrant_data"
Provider-specific configuration so you can fine-tune various
backing providers for Vagrant. These expose provider-specific options.
Example for VirtualBox:
#
config.vm.provider "virtualbox" do |vb|
Display the VirtualBox GUI when booting the machine
vb.gui = true
#
Customize the amount of memory on the VM:
vb.memory = "1024"
end
#
View the documentation for the provider you are using for more
information on available options.
Enable provisioning with a shell script. Additional provisioners such as
Ansible, Chef, Docker, Puppet and Salt are also available. Please see the
documentation for more information about their specific syntax and use.
config.vm.provision "shell", inline: <<-SHELL
apt-get update
apt-get install -y apache2
SHELL
end
In the same folder, you run the following command:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant status
Current machine states:
default not created (virtualbox)
It means that we have one VM, called default, and it is not created yet. So, we will create one.
The sample file has some configurations and many comments giving a brief explanation of what the commands do. This file, with the default configuration, allows you to create just one VM. In this chapter, we will create two virtual machines, one with the LAMP server installed, and other with the Docker installed. I will modify that file and explain the differences between the example file and the new one:
-*- mode: ruby -*-
vi: set ft=ruby :
Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/focal64"
config.vm.box_check_update = false
config.vm.provider "virtualbox" do |vb|
vb.memory = "1024"
end
config.vm.define "lamp" do |lamp|
lamp.vm.network "private_network", ip: "192.168.33.10"
lamp.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
end
config.vm.define "docker" do |docker|
docker.vm.network "private_network", ip: "192.168.33.11"
docker.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
end
config.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
End
The preceding file is my new and modified one. It is cleaner than the example one, and does more stuff. Let's run the vagrant to see if something has changed:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant status
Current machine states:
lamp not created (virtualbox)
docker not created (virtualbox)
Interestingly, now we have two virtual machines, one is called a lamp, and the other is called Docker. Both are not created yet. In the new file, I used a Vagrant resource called multi-machine. It allows you to create more than one machine per file. So, you can have as many machines as you want in the same file.
Now, let's analyze the file and what will happen before we create the VMs:
config.vm.box = "ubuntu/focal64"
config.vm.box_check_update = false
config.vm.provider "virtualbox" do |vb|
vb.memory = "1024"
end
This part with config.vm is the common configuration for all the virtual machines declared in the file. So, all the machines will be created with 1024 MB of RAM. The config.vm.box is the image which will be used in the machine. In our case, we will use the Ubuntu server, version 20.04:
config.vm.define "lamp" do |lamp|
lamp.vm.network "private_network", ip: "192.168.33.10"
lamp.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
end
In this part, we have a local configuration just for the machine It is specifically for the virtual machine, called lamp. Then, in this called, the VM will have the IP address and the command which will be run in the provision of the VM, as in, inside this part: It also applies to the Docker VM:
config.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
In the final part, we have the Inside this block, you can define the command which will run in all the VMs, except which will run only in the lamp VM, and which will run only in the Docker VM. Therefore, we have global configurations that will run in all VMs and local configurations that will run only in the specified VMs.
Up and running
With the file explained and everything configures to create the VMs, type the following command:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant up --provider=virtualbox
Bringing machine 'lamp' up with 'virtualbox' provider…
Bringing machine 'docker' up with 'virtualbox' provider…
==> lamp: Box 'ubuntu/focal64' could not be found. Attempting to find and install…
lamp: Box Provider: virtualbox
lamp: Box Version: >= 0
==> lamp: Loading metadata for box 'ubuntu/focal64'
lamp: URL: https://vagrantcloud.com/ubuntu/focal64
It will take a while because Vagrant will download the box:
==> lamp: Loading metadata for box 'ubuntu/focal64'
lamp: URL: https://vagrantcloud.com/ubuntu/focal64
==> lamp: Adding box 'ubuntu/focal64' (v20200409.0.0) for provider: virtualbox
lamp:Downloading: https://vagrantcloud.com/ubuntu/boxes/focal64/versions/20200409.0.0/providers/virtualbox.box
lamp: Download redirected to host: cloud-images.ubuntu.com
lamp: Progress: 11% (Rate: 1411k/s, Estimated time remaining: 0:06:09)
The box is a Cloud image, but with specific configurations to run on top of Vagrant. As you can see in the logs, Vagrant is downloading the image for VirtualBox. It is also possible to provision using Hyper-V or KVM.
Vagrant Cloud is the official repository to download the images. But, of course, is not the only one. You can also create your images using Packer However, if you don’t, you can search there what images are available for you to create your VMs.
Figure 6.4
After the provision, if you want to check your local boxes, use the following command:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant box list
centos/7 (virtualbox, 1801.02)
fedora/28-cloud-base (virtualbox, 20180425)
ubuntu/bionic64 (virtualbox, 20190807.0.0)
ubuntu/focal64 (virtualbox, 20200409.0.0)
ubuntu/xenial64 (virtualbox, 20180413.0.0)Status: Downloaded newer image for
If you have a fresh installation, you probably have only the Ubuntu/focal64, the one we downloaded:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant status
Current machine states:
lamp running (virtualbox)
docker running (virtualbox)
If everything went well with your provision, run the command vagrant status and it will show you the running VMs. If there is a machine that is not created yet, you can try to run the vagrant up –provider=virtualbox again, and see if it works. If it doesn’t, check your installation and your internet connection.
Suppose, you did not define any password or SSH key to connect to these VMs, then, how do we connect to them? Vagrant is also managing that for us. With the vagrant status, we can see the names of the VMs and use these names to connect using the command, vagrant
PS C:\Users\1511 MXTI\VagrantChapter> vagrant ssh docker
Welcome to Ubuntu Focal Fossa (development branch) (GNU/Linux 5.4.0-21-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
The VM was successfully provisioned, and as you can see with the Ubuntu Focal Fossa version, Vagrant also created as user, called to connect to the VMs, which has permission. So, we can just change the user and run all the commands:
vagrant@ubuntu-focal:~$ sudo su -
root@ubuntu-focal:~#
Now, you can manage everything as we did in the previous chapters. But, let's see how we can provision a LAMP in an automated way.
Setting up a LAMP Server
You already know the commands, and then, we can basically put the commands in the provision section of vagrant file and provision the VM again:
-*- mode: ruby -*-
vi: set ft=ruby :
Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/focal64"
config.vm.box_check_update = false
config.vm.provider "virtualbox" do |vb|
vb.memory = "1024"
end
config.vm.define "lamp" do |lamp|
lamp.vm.network "private_network", ip: "192.168.33.10"
lamp.vm.hostname = "lamp"
lamp.vm.provision "shell", inline: <<-SHELL
sudo apt-get clean
sudo apt update -y
sudo apt install apache2 mysql-server php7.4 -y
SHELL
end
config.vm.define "docker" do |docker|
docker.vm.network "private_network", ip: "192.168.33.11"
docker.vm.hostname = "docker"
docker.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
end
config.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
end
In this case, I changed the including the Shell Script to install PHP, Apache, and MySQL server. Once the VM is created, run the following command:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant provision lamp
==> lamp: Running provisioner: shell…
lamp: Running: inline script
lamp:
lamp: WARNING: apt does not have a stable CLI interface. Use with caution in scripts.
lamp: Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
lamp: Hit:2 http://security.ubuntu.com/ubuntu focal-security InRelease
lamp: Hit:3 http://archive.ubuntu.com/ubuntu focal-updates InRelease
You can follow the provisioning process in your Terminal. After the installation finishes, you can login into the VM:
PS C:\Users\1511 ssh lamp
Welcome to Ubuntu Focal Fossa (development branch) (GNU/Linux 5.4.0-21-generic x86_64)
Check the services running:
Check the IP address, the one defined in the Vagrant file:
vagrant@lamp:~$ ip a
3: enp0s8: mtu 1500 qdisc fq_codel state UP group default qlen 1000
link/ether 08:00:27:69:a5:81 brd ff:ff:ff:ff:ff:ff
inet 192.168.33.10/24 brd 192.168.33.255 scope global enp0s8
valid_lft forever preferred_lft forever
You can check the IP address in the browser and see Apache running:
Figure 6.5
Now, every time you want to provision a new LAMP server, you can directly copy the code, or include a new VM with the provision code and it will work.
Setting up the Docker Server
This process is not different from the first one. So, let's edit the Vagrant file again:
-*- mode: ruby -*-
vi: set ft=ruby :
Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/bionic64"
config.vm.box_check_update = false
config.vm.provider "virtualbox" do |vb|
vb.memory = "1024"
end
config.vm.define "lamp" do |lamp|
lamp.vm.network "private_network", ip: "192.168.33.10"
lamp.vm.hostname = "lamp"
lamp.vm.provision "shell", inline: <<-SHELL
sudo apt-get clean
sudo apt update -y
sudo apt install apache2 mysql-server php7.4 -y
SHELL
end
config.vm.define "docker" do |docker|
docker.vm.box = "ubuntu/bionic64"
docker.vm.network "private_network", ip: "192.168.33.11"
docker.vm.hostname = "docker"
docker.vm.provision "shell", inline: <<-SHELL
apt clean
apt-get update
apt-get remove docker docker-engine docker.io containerd runc -y
apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common -y
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
apt-get update -y
apt-get install docker-ce docker-ce-cli containerd.io -y
SHELL
end
config.vm.provision "shell", inline: <<-SHELL
apt-get clean
apt update -y
SHELL
end
Note that I changed the box just for the Docker VM because, in the Docker repo, the support for Focal Fosse was not available yet. But it is also interesting to see how we can create different VMs with different OS versions.
Now, within the provision part of the Docker VM, we have all the installation steps to setup the server. Then, you can start the machine again:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant up docker
Bringing machine 'docker' up with 'virtualbox' provider…
==> docker: Importing base box 'ubuntu/focal64'…
==> docker: Matching MAC address for NAT networking…
==> docker: Setting the name of the VM: VagrantChapter_docker_1586798805547_50415
==> docker: Fixed port collision for 22 => 2222. Now on port 2200.
Run the provision command:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant provision docker
==> docker: Running provisioner: shell…
docker: Running: inline script
docker: WARNING:
docker: apt
docker:
docker: does not have a stable CLI interface.
docker: Use with caution in scripts.
docker: Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Let's check if the installation occurred successfully:
PS C:\Users\1511 MXTI\VagrantChapter> vagrant ssh docker
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-55-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantageSuccessfully installed Jinja2-2.11.1 MarkupSafe-1.1.1 Werkzeug-1.0.1 click-7.1.1 flask-1.1.1 itsdangerous-1.1.0
Checking that the Docker is up and running. If you face some connection issues, it is important to check if the Host Network Manager on VirtualBox is enabled:
Figure 6.6
Check the column DHCP server if it is enabled, and if the IPv4 address is present in the network 192.168.33.0/24 as the following screenshot:
Figure 6.7
Conclusion
In this chapter, we saw the benefits of using a tool like Vagrant, which allows us to write the VM configurations like OS image, IP address, hostname, VM memory, etc. In the provision part, we could write a Shell Script and the script will run during the boot. If it doesn’t, or if you want to run the script again, you can execute the command vagrant Vagrant allows you to use different technologies, like Ansible, Puppet, or Chef to create your provision scripts. I used the Shell Script as an example, but, feel free to test and create your own scripts. Another important thing we learned is the Vagrant file. In this file, you define everything, and you can share the content with your team, so that they will be available to contribute with you to develop your environment.
CHAPTER 7
Creating Your Infrastructure Using Cloud Services
This chapter aims to introduce you to the biggest Cloud players and how we can use it to speed up the provisioning, scalability, and reliability of our Infrastructure.
Structure
In this chapter, we will discuss the following topics:
Cloud and Main Players
Provisioning using AWS
Provisioning using GCP
Provisioning using Azure
Objectives
After studying this unit, you should be able to:
Define Cloud and how to use it
Set up the environment on each player
Create a simple infrastructure using the command line
Check the infrastructure created in the Cloud console
Cloud and Main Players
Until this moment, we have been using our own computer to create everything. However, running the applications in production requires a lot of stuff, such as, high availability, backup, monitoring, redundancy, etc. In the past, many companies had their own data centers or local servers which were turned on 24*7. Hence, it takes a lot of effort to manage everything, because it is not just taking care of the virtual machines or the software; it is necessary to manage the network, storage, energy, no breaks, internet connection, and many other things that are involved in IT. Also, a team with different skills to manage everything is required to have the redundancy of people as well, because, if some employee in the company gets sick, you must have another available, in case something stops working.
When I began working in the IT industry, some of the companies that I worked for were using a service called Colocation, in which you can basically rent a Rack inside a data center, and you can install your servers. Therefore, you just need to manage your servers. The networking, energy and internet part were delegated to the company which was offering the service. After sometime, we began to use the services from a company called SoftLayer. They had their own data center and we could pay and use a physical server for some time when we were renting the server.
After this period, we started working with the AWS, which is a Cloud company. There, we could rent the virtual machines, exactly like the VMs that we have been created in the earlier chapters. There are a lot of benefits of using this service, such as high availability. So, if some physical server fails in their data center, you can just shut down the VM and start the VM in another server, or even pay them to do the backup for you. Thus, only one person can manage an entire infrastructure with hundreds of servers.
AWS
Amazon Web Services is currently the main Cloud player at the moment. They have dozens of services which you can use to deploy your applications, monitor, backup, create VMs, databases, queues, etc. It also allows you to create everything in an automated way using a command line, which is called But, of course, it is not that easy to use all their services. That is why, they have created many courses and certifications, so that the people can get qualified and take the best of what their services can offer.
GCP
Google Cloud Platform is the newest one. They are offering many services like AWS, but, they still do not have all the services as theirs. Nevertheless, they have some unique services, like Big Query, which is one of the most used to query large datasets and store the data on the Cloud. Furthermore, if you are working with machine learning, they have clusters available to take the maximum performance with TensorFlow Projects. GCP is often cheaper than its other big competitors. I am using it for my personal projects.
Azure
This is the Microsoft Cloud platform. So, if you are planning to export your active directory to the Cloud, this is the one. They have unique services, like SQL server, Azure Active Directory, or even the Azure DevOps which have become very famous. Some of the big companies that I worked for in the past used Azure as their main platform, because Microsoft is a reliable company. But, they are the most expensive as well. So, if money is not your problem, and you are using Microsoft products in your applications, this is the right option.
Provisioning using AWS
AWS has its own courses to explain how to use all the services. Then, my goal here is to show you how we can provide the same infrastructure like we did using the VirtualBox and Vagrant. So, I will focus on VMs and how we can install things on it.
Therefore, your first task is to create your own AWS Account. You can visit the following link to do so:
http://console.aws.amazon.com/
After you have created your account and logged in into the console, you will see a page shown in the following figure:
Figure 7.1
This console allows you to create any service that you want. Now, click on Running You will see the following page:
Figure 7.2
My account is empty. I have used more AWS in the past, and currently, I am using Azure in my current job, and am using GCP for personal projects. However, this is the console for you to manage your VMs. It is important for you to know where you can see your virtual machines in the console, because it is easier to see the watch you have. But starting from now, we will create everything using the command line. So, now, install Python and then write the following AWS command line:
https://www.python.org/downloads/
After Python is installed, install the AWS CLI running the following command line:
PS C:\Users\1511 MXTI> python -m pip install awscli --user
Collecting awscli
To check if the AWS CLI was installed successfully, run the following command:
PS C:\Users\1511 MXTI> aws --version
aws-cli/1.18.42 Python/3.8.2 Windows/10 botocore/1.15.42
Everything is working. Now, to configure the access, you need to create an IAM account with the programmatic access. The easiest way is by clicking on Services and typing like the following screenshot:
Figure 7.3
IAM means Identity Access Management. This service is responsible to create and manage users and groups. In the dashboard, click on Add
Figure 7.4
I am creating a new user, called DevOps, with the programmatic access:
Figure 7.5
Select the option policies directly and the policy AdministratorAccess will appear. This policy will enable our user to do everything in our AWS account. This permission is not recommended for production environments. The user must have only the permission required for a specific purpose.
Figure 7.6
After saving your user, you will be redirected to the page with the Access Key and the Secret Save these values because you will never be able to get the Secret Key again. The only way is creating a new user.
Figure 7.7
After following these steps, we can configure the command line and test if we are able to connect to the console. The first task is to add our keys in the local environment:
PS C:\Users\1511 MXTI> aws configure
AWS Access Key ID [None]: YOU_ACCESS_KEY
AWS Secret Access Key [None]: YOUR_SECRET_KEY
Default region name [None]: eu-central-1
Default output format [None]:
In the region name, I have set which is respective to because I am living in Often, people set this option as which is respective to Virginia in the USA. So, it is up to you.
Now, you can check if you have any example, created using the following command:
PS C:\Users\1511 MXTI> aws ec2 describe-instances
{
"Reservations": []
}
I do not have any example, but to create one when you're using the console is an easy task. With just few clicks, you can create one. However, you cannot automate. To automate, you need to use the command line and for that, you should know every single object necessary for your VM.
The first one is creating an SSH Key. It is required to access the VM after creating it.
PS C:\Users\1511 MXTI> aws ec2 create-key-pair --key-name DevopsBook --query'KeyMaterial' --output text YOUR_PRIVATE_KEY
The was used to get only the private key in the format of a plain text. Otherwise, you can have only one string, which creates problems with the file format when you use it.
Copy the private key and save it into a file. In my case, I saved it as which is the standard used by AWS.
Every instance needs an IP address. Otherwise, you will not be able to access it remotely. But, to have an IP address, a subnet is required and in a sequence. Now, let's create a network using the following command:
PS C:\Users\1511 MXTI> aws ec2 create-vpc --cidr-block "192.168.0.0/24"
{
"Vpc": {
"CidrBlock": "192.168.0.0/24",
"DhcpOptionsId": "dopt-891c21e2",
"State": "pending",
"VpcId": "vpc-0825b5c6f6a2a2429",
"OwnerId": "360560397478",
"InstanceTenancy": "default",
"Ipv6CidrBlockAssociationSet": [],
"CidrBlockAssociationSet": [
{
"AssociationId": "vpc-cidr-assoc-07b70a566b3a97801",
"CidrBlock": "192.168.0.0/24",
"CidrBlockState": {
"State": "associated"
}
}
],
"IsDefault": false,
"Tags": []
}
}
Virtual Networks on AWS are called VPC Private I had to specify the CIDR block, which represents the network size, which allows us to have 254 available addresses. Save the VpcId. We will need it later on.
The next step is creating a subnet. Use the following command:
PS C:\Users\1511 MXTI> aws ec2 create-subnet --cidr-block "192.168.0.0/24" --vpc-id vpc-0825b5c6f6a2a2429
{
"Subnet": {
"AvailabilityZone": "eu-central-1a",
"AvailabilityZoneId": "euc1-az2",
"AvailableIpAddressCount": 251,
"CidrBlock": "192.168.0.0/24",
"DefaultForAz": false,
"MapPublicIpOnLaunch": false,
"State": "pending",
"SubnetId": "subnet-0c7889e706674e64f",
"VpcId": "vpc-0825b5c6f6a2a2429",
"OwnerId": "360560397478",
"AssignIpv6AddressOnCreation": false,
"Ipv6CidrBlockAssociationSet": [],
"SubnetArn": "arn:aws:ec2:eu-central-1:360560397478:subnet/subnet-0c7889e706674e64f"
}
}
In the subnet too, I used the same CIDR Block. I want to have only one subnet in my VPC. But, you can create, for example, a VPC with a bigger block like /16 or /8 and split it into many subnets, as many as you want.
For security reasons, we are obligated to create security groups. It is like firewall rules, which will allow the traffic to determine the IP address, networks, and block, or allow ports depending on the protocols. Therefore, let's create it because it is a requirement, for instance:
PS C:\Users\1511 MXTI> aws ec2 create-security-group --group-name devops-book --description "Example used in the book" --vpc-id vpc-0825b5c6f6a2a2429
{
"GroupId": "sg-0da7b308d99365dc3"
}
Save the GroupId. Now, we need to allow all the TCP connections in this group:
PS C:\Users\1511 MXTI> aws ec2 authorize-security-group-ingress --group-id sg-0da7b308d99365dc3 --protocol tcp --port 22 --cidr 0.0.0.0/0
For the port the access can be given from any source and we can assign this SecurityGroup to any instance that we have. And finally, we can create an instance:
PS C:\Users\1511 MXTI> aws ec2 run-instances --count 1 --instance-type t3.micro --key-name DevopsBook --security-group-ids sg-0da7b308d99365dc3 --subnet-id subnet-0c7889e706674e64f --image-id ami-0b418580298265d5c
{
"Groups": [],
"Instances": [
The new parameter here is the Image ID. This represents an ID of an Amazon Machine Image, which is the ISO that we used in the first chapter or the Box we used in the Vagrant chapter. To see the image options, you can give a look in the Amazon Marketplace I am an Ubuntu fan, so, this Image ID represents an Ubuntu version 18.04.
Check if your instance is running with the following command:
PS C:\Users\1511 MXTI> aws ec2 describe-instances --query "Reservations[*].Instances[*].{Instance:InstanceId,State:State}"
[
[
{
"Instance": "i-0d26f9c327b92b630",
"State": {
"Code": 16,
"Name": "running"
}
}
]
]
If we have an instance and it is running, we are able to connect. Usually, when we create an instance using the console, a public DNS is assigned to it. Check if you have one with the following command:
PS C:\Users\1511 MXTI> aws ec2 describe-instances --query "Reservations[*].Instances[*].{Instance:InstanceId,State:State,DNS:PublicDnsName}"
[
[
{
"Instance": "i-0d26f9c327b92b630",
"State": {
"Code": 16,
"Name": "running"
},
"DNS": ""
}
]
]
The instance does not have access to the internet. So, we need to create an Internet Gateway for that using the following command:
PS C:\Users\1511 ec2 create-internet-gateway
{
"InternetGateway": {
"Attachments": [],
"InternetGatewayId": "igw-05d94c382dd27185b",
"Tags": []
}
}
Now, we need to associate the Internet Gateway with the VPC, and all the instances inside the same VPC will have access to the internet.
PS C:\Users\1511 ec2 attach-internet-gateway --internet-gateway-id igw-05d94c382dd27185b --vpc-id vpc-0825b5c6f6a2a2429
Even creating the Internet Gateway and the VPC, it is required to create a default route. Then, all the connections, by default, will try to go through the internet first. You can check the route tables using the following command:
PS C:\Users\1511 ec2 describe-route-tables
{
"RouteTables": [
{
"Associations": [
{
"Main": true,
"RouteTableAssociationId": "rtbassoc-0388bce2f3bf06f9b",
"RouteTableId": "rtb-0ba4bf0ea11f024ee",
"AssociationState": {
"State": "associated"
}
}
],
"PropagatingVgws": [],
"RouteTableId": "rtb-0ba4bf0ea11f024ee",
"Routes": [
{
"DestinationCidrBlock": "192.168.0.0/24",
"GatewayId": "local",
"Origin": "CreateRouteTable",
"State": "active"
}
],
"Tags": [],
"VpcId": "vpc-0825b5c6f6a2a2429",
"OwnerId": "360560397478"
},
},
The route with the ID rtb-0ba4bf0ea11f024ee is associated with the VPC vpc-0825b5c6f6a2a2429, which is the vpc that we created. Therefore, we need to assign a new route so that every connection with the destination to 0.0.0.0/0 will pass through our Internet Gateway, represented by the ID
PS C:\Users\1511 MXTI> aws ec2 create-route --route-table-id rtb-0ba4bf0ea11f024ee --destination-cidr-block 0.0.0.0/0 --gateway-id igw-05d94c382dd27185b
{
"Return": true
}
Now, you can create a public IP address, and see if we can connect using the following command:
PS C:\Users\1511 MXTI> aws ec2 allocate-address
{
"PublicIp": "18.156.153.94",
"AllocationId": "eipalloc-04066542351eff3a4",
"PublicIpv4Pool": "amazon",
"NetworkBorderGroup": "eu-central-1",
"Domain": "vpc"
}
Now, we have the public IP and we need to assign it with the instance:
PS C:\Users\1511 ec2 associate-address --allocation-id eipalloc-04066542351eff3a4 --instance-id i-0d26f9c327b92b630
{
"AssociationId": "eipassoc-07026da6c9093c86a"
}
Let us check the instance one more time:
PS C:\Users\1511 MXTI> aws ec2 describe-instances --query "Reservations[*].Instances[*].{Instance:InstanceId,State:State,DNS:PublicDnsName, IP:PublicIpAddress}"
[
[
{
"Instance": "i-0d26f9c327b92b630",
"State": {
"Code": 16,
"Name": "running"
},
"DNS": "",
"IP": "18.156.153.94"
}
]
]
Now, we have the IP address: with the instance. We still do not have the Public DNS, but, we can try to connect using the IP. Remember the Private Key that you saved when we created the SSH? You will need it now:
PS C:\Users\1511 MXTI> ssh -i devopskey.pem ubuntu@18.156.153.94
The authenticity of host '18.156.153.94 (18.156.153.94)' can't be established.
ECDSA key fingerprint is SHA256:N5kMSWQKVwBLycjjUpzJ/AsRnRbBvDVqagBJunxCXyA.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '18.156.153.94' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-1057-aws x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-1057-aws x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
System information as of Tue Apr 21 19:07:47 UTC 2020
System load: 0.24 Processes: 104
Usage of /: 13.6% of 7.69GB Users logged in: 0
Memory usage: 16% IP address for ens5: 192.168.0.44
Swap usage: 0%
ubuntu@ip-192-168-0-44:~$
Everything is working successfully. A lot of effort is put to create something which we could do in some simple clicks using the dashboard. But, that is the life of a DevOps guy. We need to automate many using the command line, like the REST APIs, sometimes SOAP Interfaces. It does not matter what you have to automate, just do it.
If you want to delete everything, you can access the web interface directly and delete the VM. All the resources will be deleted as well.
Provisioning using GCP
Now is the time to create the same infrastructure using the Google Cloud Platform. The elements are the same in all the platforms. We will need networks, subnets, SSH keys, public IP address, etc. However, the commands and the way we are going to implement it, changes by the platform. Therefore, let's install the Google Cloud Shell and start a walkthrough of it:
https://dl.google.com/dl/cloudsdk/channels/rapid/GoogleCloudSDKInstaller.exe
To install it, double click, then click on and After the installation finishes, you need to create your configuration by running the following command:
PS C:\Users\1511 MXTI> gcloud config configurations create book
Created [book].
Activated [book].
Now, you must configure your Google account to access the platform.
PS C:\Users\1511 MXTI> gcloud init
Welcome! This command will take you through the configuration of gcloud.
Settings from your current configuration [book] are:
core:
disable_usage_reporting: 'True'
Pick configuration to use:
[1] Re-initialize this configuration [book] with new settings
[2] Create a new configuration
[3] Switch to and re-initialize existing configuration: [default]
Please enter your numeric choice: 1
Your current configuration has been set to: [book]
You can skip diagnostics next time by using the following flag:
gcloud init --skip-diagnostics
Network diagnostic detects and fixes local network connection issues.
Checking network connection…done.
Reachability Check passed.
Network diagnostic passed (1/1 checks passed).
Choose the account you would like to use to perform operations for
this configuration:
[1] alisson.machado@stone.com.br
[2] Log in with a new account
Please enter your numeric choice: 2
Your browser has been opened to visit:
I already have one existing configuration. So, I choose the re-initialize the option, and then, I add a new account, because the first email displayed is not my current Google account. This process will open a browser for you and you just need to login to your account. If everything went well with you, the terminal will show you the following message:
You are logged in as: [alisson.copyleft@gmail.com].
Pick cloud project to use:
[1] alisson-187813
[2] saas-205517
[3] Create a new project
Please enter numeric choice or text value (must exactly match list item):
In my case, I will create a new project, called
Please enter numeric choice or text value (must exactly match list item): 3
Enter a Project ID. Note that a Project ID CANNOT be changed later.
Project IDs must be 6-30 characters (lowercase ASCII, digits, or
hyphens) in length and start with a lowercase letter. chapter7-20200423
Waiting for [operations/cp.8418911479956985045] to finish…done.
Your current project has been set to: [chapter7-20200423].
Now, my project is ready to use. To access it, go to click on All and you will see your projects there:
Figure 7.8
On Google, the service name to create the VMs is Google Compute Engine. Using this service, we will be able to create exactly as we did on Amazon.
Firstly, you need to activate the billing in your account. In your Dashboard within the project, click on Go to Compute and there, you have a button, called Enable as shown in the following figure:
Figure 7.9
Click it and wait for a few minutes for the configuration to complete. Once the configuration is done, you can find the image with which you want to create your instance using the following command:
You will find many options. In my case, I will use also need to choose the zone where you want to create your VM:
This time, I will create my VM on the US using the zone In the AWS part, we created an instance with the t3.micro size. On Google, we have a respective, but with a different name:
There are many machine family types which you can use. The difference between families is the purpose for what you want to use your VM. The E2 family was made for the general purpose VMs. So, I will use that only and the smallest size is micro, which corresponds to 2 CPUs and 1 GB of memory.
Sometimes, just setting the image name when you are creating your VM can raise an error. To avoid that, you can put the image link directly, as follows:
PS C:\Users\1511 MXTI> gcloud compute images list –uri
https://www.googleapis.com/compute/v1/projects/centos-cloud/global/images/centos-6-v20200402
https://www.googleapis.com/compute/v1/projects/centos-cloud/global/images/centos-7-v20200420
https://www.googleapis.com/compute/v1/projects/ubuntu-os-cloud/global/images/ubuntu-1804-bionic-v20200414 https://www.googleapis.com/compute/v1/projects/coreos-cloud/global/images/coreos-alpha-2430-0-0-v20200229
Therefore, the image link is as follows:
https://www.googleapis.com/compute/v1/projects/ubuntu-os-cloud/global/images/ubuntu-1804-bionic-v20200414
To create your VM, run the following command:
PS C:\Users\1511 MXTI> gcloud compute instances create vm1 --zone=us-east1-b --machine-type=e2-micro --image=https://www.googleapis.com/compute/v1/projects/ubuntu-os-cloud/global/images/ubuntu-1804-bionic-v20200414
Created [https://www.googleapis.com/compute/v1/projects/chapter7-20200423/zones/us-east1-b/instances/vm1].
The VM is now running with the external IP 25.229.97.23. You can use it to connect to your machine. However, the Google Cloud Shell has a specific command to create the SSH key for you and automatically login into the instance:
PS C:\Users\1511 MXTI> gcloud compute ssh vm1
WARNING: The PuTTY PPK SSH key file for gcloud does not exist.
WARNING: The public SSH key file for gcloud does not exist.
WARNING: The private SSH key file for gcloud does not exist.
WARNING: You do not have an SSH key for gcloud.
WARNING: SSH keygen will be executed to generate a key.
WARNING: Invalid characters in local username [1511 MXTI]. Using username corresponding to active account: [alisson_copyleft]
No zone specified. Using zone [us-east1-b] for instance: [vm1].
Updating project ssh metadata…\Updated [https://www.googleapis.com/compute/v1/projects/chapter7-20200423].
Updating project ssh metadata…done.
Waiting for SSH key to propagate.
The server's host key is not cached in the registry. You
have no guarantee that the server is the computer you
think it is.
The server's ssh-ed25519 key fingerprint is:
ssh-ed25519 255 9c:f6:6d:58:38:8e:d7:c4:df:63:28:8b:b4:c8:53:24
If you trust this host, enter "y" to add the key to
PuTTY's cache and carry on connecting.
If you want to carry on connecting just once, without
adding the key to the cache, enter "n".
If you do not trust this host, press Return to abandon the
connection.
Store key in cache? (y/n)
Previously, you have all the output. Just to show you how it works, once the command finishes, a terminal will open for you where you have already logged in within the VM:
Figure 7.10
And if you want to delete your instance after learning all these steps, you need to run the following command:
PS C:\Users\1511 MXTI> gcloud compute instances delete vm1
No zone specified. Using zone [us-east1-b] for instance: [vm1].
The following instances will be deleted. Any attached disks configured
to be auto-deleted will be deleted unless they are attached to any
other instances or the '--keep-disks' flag is given and specifies them
for keeping. Deleting a disk is irreversible and any data on the disk
will be lost.
- [vm1] in [us-east1-b]
Do you want to continue (Y/n)?
For now, this is enough for you to start with your Infrastructure on GCP.
Provisioning using Azure
As we did with the other Cloud players, we are going to do the same on Azure. The goal of providing the same Infrastructure, in the same way, is to show you the process and make you feel comfortable in choosing the one you prefer.
The first step is installing the Azure command-line by the following link:
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest
The installation process is exactly the same as all the MSI packages. Double click, click and After the installation finishes, you can run the following command to check if it is working:
PS C:\Users\1511 MXTI> az --version
Python location 'C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\python.exe'
Extensions directory 'C:\Users\1511 MXTI\.azure\cliextensions'
Python (Windows) 3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, 02:47:15) [MSC v.1900 32 bit (Intel)]
Now, the Azure CLI is installed successfully. To begin with, run the following command:
PS C:\Users\1511 MXTI> az login
You have logged in. Now let us find all the subscriptions to which you have access…
[
{
"cloudName": "AzureCloud",
"isDefault": true,
"managedByTenants": [],
"name": "Pay-As-You-Go",
"state": "Enabled",
"user": {
"name": "alisson.copyleft@gmail.com",
"type": "user"
}
}
]
The command, az login authenticates your command line with your Azure account.
Similar to Google, where we created one project to separate all the provisioned services by context, we will do the same on Azure, but instead of creating the projects, we will create
But, before creating the we need to know which location we will use. To see the locations available, run the following command:
PS C:\Users\1511 account list-locations
[
{
"displayName": "Central US",
"id": "/subscriptions/55465d5a-355d-43d1-85ce-9e518c812c0c/locations/centralus",
"latitude": "41.5908",
"longitude": "-93.6208",
"name": "centralus",
"subscriptionId": null
},
{
"displayName": "East US",
"id": "/subscriptions/55465d5a-355d-43d1-85ce-9e518c812c0c/locations/eastus",
"latitude": "37.3719",
"longitude": "-79.8164",
"name": "eastus",
"subscriptionId": null
},
]
The command will show all the locations available. In my case, I will use the East US. Now, we can create ResourceGroup with the following command:
PS C:\Users\1511 group create --location eastus --name book
{
"id": "/subscriptions/55465d5a-355d-43d1-85ce-9e518c812c0c/resourceGroups/book",
"location": "eastus",
"managedBy": null,
"name": "book",
"properties": {
"provisioningState": "Succeeded"
},
"tags": null,
"type": "Microsoft.Resources/resourceGroups"
}
Now, we have created one and called the and within it, we will create all the resources required for our instance. One interesting point is, when you delete your resource group, everything underlying it will be deleted as well:
PS C:\Users\1511 MXTI> az vm image list
You are viewing an offline list of images, use --all to retrieve an up-to-date list
[
{
"offer": "openSUSE-Leap",
"publisher": "SUSE",
"sku": "42.3",
"urn": "SUSE:openSUSE-Leap:42.3:latest",
"urnAlias": "openSUSE-Leap",
"version": "latest"
},
{
"offer": "UbuntuServer",
"publisher": "Canonical",
"sku": "18.04-LTS",
"urn": "Canonical:UbuntuServer:18.04-LTS:latest",
"urnAlias": "UbuntuLTS",
"version": "latest"
},
]
The preceding command will show you the images available to create your VM. As always, we will choose the Therefore, you can create the VM by running the following command:
PS C:\Users\1511 vm create -n vm1 -g book --image Canonical:UbuntuServer:18.04-LTS:latest --admin-username ubuntu
{
"fqdns": "",
"id": "/subscriptions/55465d5a-355d-43d1-85ce-9e518c812c0c/resourceGroups/book/providers/Microsoft.Compute/virtualMachines/vm1",
"location": "eastus",
"macAddress": "00-0D-3A-9A-DF-E9",
"powerState": "VM running",
"privateIpAddress": "10.0.0.4",
"publicIpAddress": "52.224.120.36",
"resourceGroup": "book",
"zones": ""
}
For the image name, we usually refer to the URN Resource which is the identification for the image. The parameter, --admin-username is the user who will have the access to run sudo and do the administrative tasks.
The Azure command line is smart enough to get your default SSH-key and add it into the VM. Therefore, to connect, you can just run an SSH command as default and login:
PS C:\Users\1511 ubuntu@52.224.120.36
The authenticity of host '52.224.120.36 (52.224.120.36)' can't be established.
ECDSA key fingerprint is SHA256:F/Tb2nXVw4B3aertXLsde0wUTzNkBzu+aOwFHEFpl/A.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.224.120.36' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 5.0.0-1036-azure x86_64)Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 5.0.0-1036-azure x86_64)
ubuntu@vm1:~$
Now that you have everything up and running, we can delete everything to avoid some unexpected costs, except the ones we are studying:
PS C:\Users\1511 group delete --name book
Are you sure you want to perform this operation? (y/n): y
PS C:\Users\1511 MXTI>
You can be relieved now and be sure that everything we created before will cost.
Conclusion
I showed you how to create a VM in three of the main Cloud players. On Amazon, I showed with so much more details than the other competitors. But I do not mean that it is harder than the other. It was just my explanation. Currently, I am working with Azure. But in the past, I have worked with Amazon and Google as well. Therefore, in my view, a good DevOps engineer should be able to work with all the platforms. The concepts are same and you can deliver the same essential infrastructure. There is another concept which is called Multicloud, which aims to use all the Clouds together and you can retrieve the best from each one, like authenticating your users and services using Azure Active Directory, creating the VMs using Amazon EC2, and query your data using the Big Query on Google.
CHAPTER 8
Working with Terraform
This chapter aims to introduce you to Terraform, a tool to help you with the Multicloud concept, allowing you to create the same infrastructure among all the Cloud players in the same automated way.
Structure
In this chapter, we will discuss the following topics:
Multicloud
HashiCorp
Introduction to Terraform
Creating the Infrastructure
Objectives
After studying this unit, you should be able to:
Know about HashiCorp tools
Explain what Multicloud is
Use Terraform to provide Infrastructure
Have all your Infrastructure as Code
Multicloud
We learned in the previous chapter that there are many Cloud providers available. The most famous are AWS, GCP, and Azure. But, we also have other options like IBM Cloud, Oracle Cloud, Digital Ocean, etc. Each one of these has its services, which can be the criteria for you to decide among them. However, what can you do when you need the services from each one of them? For example, you must use an Active Directory Authentication, which is only available on Azure, but you also need BigQuery to analyze your data, and it is only available on GCP, and you also need to use the DynamoDB, which is only available on AWS. In the end, you have an on-premises infrastructure based on OpenStack. Therefore, when you need to use many Cloud providers, we call that scenario Multicloud. The challenge now is how to manage all that Infrastructure in the same way, and perhaps, by using the same tools.
HashiCorp
HashiCorp is a company that created many tools to help you with the task of managing infrastructure among different scenarios, like AWS, GCP, Azure, Digital Ocean, etc. We already have experience using their tools; Vagrant is one of the tools from HashiCorp stack which we can use for our development environments. In their stack, you can find the following tools:
Packer This is a tool to create your own Cloud images. In the Vagrant chapter, we used the Ubuntu Cloud image to create our VMs, but if you want to create a custom image with your application or after running a security pipeline.
Vagrant You already know that tool. We have created many Virtual Machines and tested the applications.
Nomad It is an orchestrator to deploy your applications among different environments, like the public Clouds or the private Clouds.
Consul It is commonly used as a Service Discovery and Service Mesh.
Vault It is a tool made to manage your secrets. It is an alternative for the secret services on Cloud like Azure Secret, but, of course, with some differences, like rotate the secrets automatically.
Terraform It is our focus in this chapter. I will show you how to create the Infrastructure in an easy way and have the control among some code files.
Introduction to Terraform
Terraform is a tool to create and manage your Infrastructure as Code like we did using Vagrant, but here, with more details and using public Clouds with focus on productions environments, not just laboratories, as we did earlier.
You can download the open-source version by the following link:
https://www.terraform.io/downloads.html
You just need to unzip the file and include the path in the PATH environment variable. After that, you need to run the following command:
PS C:\Users\1511 MXTI> terraform--version
Terraform v0.12.24
If you have problems with the installation, HashiCorp has a tutorial explaining how to do it step-by-step: https://learn.hashicorp.com/tutorials/terraform/install-cli
The current version is v0.12.24, which is the installation of Terraform.
Now, we can create the files and create our first VM using a Cloud provider. I will do that first using the GCP which is the Cloud provider that I use for my personal projects. Then, the first step is creating a folder where you will store your code.
Of course, it is the best practice to split your code into many files, because it makes the code reusable and easy to manage. But in this, we will just create one virtual machine to learn the Terraform syntax and understand how it works. So, I will create everything in one single file.
To begin with, we need to create a service account which is a username and a password to create resources on my behalf. To access your Google Cloud Console go to IAM & Admin and on Create service create an account called terraform, as shown in the following screenshot:
Figure 8.1
Click on and then select the Role Compute This role will allow the service account to manage all the resources regarding the Compute Engine, which corresponds to our VMs.
Then, you must create a key in the JSON format as shown in the following screenshot:
Figure 8.2
Now, you have the service account configured and ready to use with Terraform. Copy the JSON file, and put it in the same folder where we will create the Terraform code. In the folder that we created, let's create a new file, called infrastructure.tf with the following content:
provider "google" {
credentials = file("terraform_sa.json")
project = "alisson-187813"
region = "us-east1"
}
This code is necessary for Terraform. In this file, you will use the Google providers. Providers are modules created to make the interface between your Terraform code and the platform that you want to interact with. For example, once I had a situation where I had to manage a DNS server on Linux (Bind9). When the way to do it using the Terraform was using the TSIG protocol, I had to import the DNS provider. In the case of Azure, I imported the AzureRM provider. If you want to get to know more about that, I have two posts on my personal blog.
Using Azure and Terraform: http://alissonmachado.com.br/terraform-azure-criando-uma-infraestrutura-basica/
Managing DNS using Terraform and TSIG: http://alissonmachado.com.br/terraform-gerenciando-dns-com-tsig/
Getting back to the code, the providers do not come by default with Terraform. You must download them. You can do it using the following command:
C:\Users\1511 MXTI\ProductionInfrastructure> terraform init
Initializing the backend…
Initializing provider plugins…
- Checking for available provider plugins…
- Downloading plugin for provider "google" (hashicorp/google) 3.20.0…
The following providers do not have any version constraints in configuration, so the latest version was installed.
To prevent automatic upgrades to new major versions that may contain breaking changes, it is recommended to add version = "…" constraints to the corresponding provider blocks in configuration, with the constraint strings suggested below.
* provider.google: version = "~> 3.20"
Terraform has been successfully initialized!
You may now begin working with Terraform. Try running "terraform plan" to see any changes that are required for your infrastructure. All Terraform commands should now work.
If you ever set or change modules or backend configuration for Terraform, rerun this command to reinitialize your working directory. If you forget, other commands will detect it and remind you to do so if necessary.
Now, you are able to create the Infrastructure because you already have the provider installed in your local machine. Therefore, include the following code to create our first instance:
provider "google" {
credentials = file("terraform_sa.json")
project = "alisson-187813"
region = "us-east1"
}
resource "google_compute_instance""chapter8" {
name = "chapter8-instance"
machine_type = "g1-small"
zone = "us-east1-b"
boot_disk {
initialize_params {
image = "ubuntu-1804-bionic-v20200414"
}
}
network_interface {
network = "default"
access_config {
}
}
}
In the preceding code, we defined that we will use a resource called google_compute_instance which corresponds to a VM as we did in the previous chapter. But, now we are doing so using Terraform. This instance will be created using the Ubuntu 1804 image in the zone us-east1-b and the other details, like networking configurations. We will use the default set by Google.
The first thing when we create a new code using Terraform is to run the following command:
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform plan
Refreshing Terraform state in-memory prior to plan…
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.
--
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create
Terraform will perform the following actions:
google_compute_instance.chapter8 will be created
+ resource "google_compute_instance" "chapter8" {
+ can_ip_forward = false
+ cpu_platform = (known after apply)
+ current_status = (known after apply)
+ deletion_protection = false
+ guest_accelerator = (known after apply)
+ id = (known after apply)
+ instance_id = (known after apply)
+ label_fingerprint = (known after apply)
+ machine_type = "g1-small"
+ metadata_fingerprint = (known after apply)
+ min_cpu_platform = (known after apply)
+ name = "chapter8-instance"
+ project = (known after apply)
+ self_link = (known after apply)
+ tags_fingerprint = (known after apply)
+ zone = "us-east1-b"
+ boot_disk {
+ auto_delete = true
+ device_name = (known after apply)
+ disk_encryption_key_sha256 = (known after apply)
+ kms_key_self_link = (known after apply)
+ mode = "READ_WRITE"
+ source = (known after apply)
+ initialize_params {
+ image = "ubuntu/ubuntu-1804-lts"
+ labels = (known after apply)
+ size = (known after apply)
+ type = (known after apply)
}
}
+ network_interface {
+ name = (known after apply)
+ network = "default"
+ network_ip = (known after apply)
+ subnetwork = (known after apply)
+ subnetwork_project = (known after apply)
+ access_config {
+ nat_ip = (known after apply)
+ network_tier = (known after apply)
}
}
+ scheduling {
+ automatic_restart = (known after apply)
+ on_host_maintenance = (known after apply)
+ preemptible = (known after apply)
+ node_affinities {
+ key = (known after apply)
+ operator = (known after apply)
+ values = (known after apply)
}
}
}
Plan: 1 to add, 0 to change, 0 to destroy.
--
Note: You didn't specify an "-out" parameter to save this plan, so Terraform can't guarantee that exactly these actions will be performed if "terraform apply" is subsequently run.
The command Terraform plan will check your project on Google and make a difference to see what is different between your code and the project on Google. In this case, we can see that everything we set will be created because of the plus signal in front of the lines If some resource is going to be destroyed, you will see a minus signal Also, in the last line, you will be able to see the following:
Plan: 1 to add, 0 to change, 0 to destroy.
Then you will be relieved, nothing will be destroyed. Terraform is a great tool, but you need to take care before running the commands, otherwise, you can destroy all your Infrastructure using it. There is a famous sentence about that.
If you want to make mistakes among all your production servers in an automated way, this is DevOps! Continuing with our Infrastructure, now that we are sure nothing will be deleted, we can run the command applied to create the instance:
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform apply
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create
Terraform will perform the following actions:
google_compute_instance.chapter8 will be created
+ resource "google_compute_instance" "chapter8" {
+ can_ip_forward = false
+ cpu_platform = (known after apply)
+ current_status = (known after apply)
+ deletion_protection = false
+ guest_accelerator = (known after apply)
+ id = (known after apply)
+ instance_id = (known after apply)
+ label_fingerprint = (known after apply)
+ machine_type = "g1-small"
+ metadata_fingerprint = (known after apply)
+ min_cpu_platform = (known after apply)
+ name = "chapter8-instance"
+ project = (known after apply)
+ self_link = (known after apply)
+ tags_fingerprint = (known after apply)
+ zone = "us-east1-b"
+ boot_disk {
+ auto_delete = true
+ device_name = (known after apply)
+ disk_encryption_key_sha256 = (known after apply)
+ kms_key_self_link = (known after apply)
+ mode = "READ_WRITE"
+ source = (known after apply)
+ initialize_params {
+ image = "ubuntu-1804-bionic-v20200414"
+ labels = (known after apply)
+ size = (known after apply)
+ type = (known after apply)
}
}
+ network_interface {
+ name = (known after apply)
+ network = "default"
+ network_ip = (known after apply)
+ subnetwork = (known after apply)
+ subnetwork_project = (known after apply)
+ access_config {
+ nat_ip = (known after apply)
+ network_tier = (known after apply)
}
}
+ scheduling {
+ automatic_restart = (known after apply)
+ on_host_maintenance = (known after apply)
+ preemptible = (known after apply)
+ node_affinities {
+ key = (known after apply)
+ operator = (known after apply)
+ values = (known after apply)
}
}
}
Plan: 1 to add, 0 to change, 0 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.
Enter a value: yes
google_compute_instance.chapter8: Creating…
google_compute_instance.chapter8: Still creating… [10s elapsed]
google_compute_instance.chapter8: Creation complete after 14s [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
As you can see, the command plan has already been executed when you run the command apply. To make sure that you know what will change in your infrastructure and you have to type then, the instance will be created.
The instance was created successfully, but we do not have any information about the public IP address which we can use to connect to the instance. To get this information, we need to use a Terraform statement called This includes this part at the end of your current code:
output "name" {
value = google_compute_instance.chapter8.name
}
output "size" {
value = google_compute_instance.chapter8.machine_type
}
output "public_ip" {
value = google_compute_instance.chapter8.network_interface[0].access_config[0].nat_ip
}
The complete file will be like this:
provider "google" {
credentials = file("terraform_sa.json")
project = "alisson-187813"
region = "us-east1"
}
resource "google_compute_instance""chapter8" {
name = "chapter8-instance"
machine_type = "g1-small"
zone = "us-east1-b"
boot_disk {
initialize_params {
image = "ubuntu-1804-bionic-v20200414"
}
}
network_interface {
network = "default"
access_config {
}
}
}
output "name" {
value = google_compute_instance.chapter8.name
}
output "size" {
value = google_compute_instance.chapter8.machine_type
}
output "public_ip" {
value = google_compute_instance.chapter8.network_interface[0].access_config[0].nat_ip
}
Save the file and run the terraform plan to check what will change:
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform plan
Refreshing Terraform state in-memory prior to plan…
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.
google_compute_instance.chapter8: Refreshing state… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
--
No changes. Infrastructure is up-to-date.
This means that Terraform did not detect any differences between your configuration and real physical resources that exist. As a result, no actions need to be performed.
The command says that we will have no changes. This is because we will not change the Infrastructure, but we will change the code to retrieve some information. Thus, you can run the command
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform apply
google_compute_instance.chapter8: Refreshing state… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
Apply complete! Resources: 0 added, 0 changed, 0 destroyed.
Outputs:
name = chapter8-instance
public_ip = 104.196.24.122
size = g1-small
Nothing was changed, added, or destroyed. But, as you can see, the command brought to us the name, the public_ip and the instance size. If you want to see these values again, you can run terraform
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform output
name = chapter8-instance
public_ip = 104.196.24.122
size = g1-small
Even then, we cannot access the instance, because we did not define any SSH key or password. However, we can do it now, by modifying the code again:
resource "google_compute_instance""chapter8" {
name = "chapter8-instance"
machine_type = "g1-small"
zone = "us-east1-b"
boot_disk {
initialize_params {
image = "ubuntu-1804-bionic-v20200414"
}
}
network_interface {
network = "default"
access_config {
}
}
metadata = {
sshKeys = join("",["alisson:",file("id_rsa.pub")])
}
}
The id_rsa.pub I copied from my default SSH key pair, which usually can be found inside the folder:
ls ~/.ssh
Now, the complete code is as follows:
provider "google" {
credentials = file("terraform_sa.json")
project = "alisson-187813"
region = "us-east1"
}
resource "google_compute_instance""chapter8" {
name = "chapter8-instance"
machine_type = "g1-small"
zone = "us-east1-b"
boot_disk {
initialize_params {
image = "ubuntu-1804-bionic-v20200414"
}
}
network_interface {
network = "default"
access_config {
}
}
metadata = {
sshKeys = join("",["alisson:",file("id_rsa.pub")])
}
}
output "name" {
value = google_compute_instance.chapter8.name
}
output "size" {
value = google_compute_instance.chapter8.machine_type
}
output "public_ip" {
value = google_compute_instance.chapter8.network_interface[0].access_config[0].nat_ip
}
As long as we are including more things in our code, Terraform is getting more and more interesting. Let's run the terraform plan to see what the new changes are:
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform plan
Refreshing Terraform state in-memory prior to plan…
The refreshed state will be used to calculate this plan, but will not be
persisted to local or remote state storage.
google_compute_instance.chapter8: Refreshing state… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
--
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
~ update in-place
Terraform will perform the following actions:
google_compute_instance.chapter8 will be updated in-place
~ resource "google_compute_instance" "chapter8" {
can_ip_forward = false
cpu_platform = "Intel Haswell"
current_status = "RUNNING"
deletion_protection = false
enable_display = false
guest_accelerator = []
id = "projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance"
instance_id = "9170008912891805003"
label_fingerprint = "42WmSpB8rSM="
labels = {}
machine_type = "g1-small"
~ metadata = {
+ "sshKeys" = <<~EOT
alisson:ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQChi8HX26xv9Rk9gz47Qhb+Tu7MRqGIyPxnheIeEg Fad/dlqG4w4pY7y5dtx5LNGE9C01varco5dZagqsHplI7M+5ECSvjAuS6b5rkYZwZiZru DXxckcQHFpr2yIz3DOzKRTUc5Hg5JHF5aymiqyVfTsxL/aI/LDY8Ikh+INn3S9+b5 bZtU+74tA6y uqth5SCtNSWwMUlv7QL6ONHtQiviAjBe+ksDBBV6thWz2ZIJA/jApSIBJWK9AWmZwq2hFy9sOZArUDB2Kt 6kl3rIZnHpqJ/GMUCxFhtggYamJ5J2H62 77qLFqLZ/8tum9uc5l/lSWYKTDm2+E/prQfmFrxPf9 alisson
EOT
}
metadata_fingerprint = "bxkbv_NPHas="
name = "chapter8-instance"
project = "alisson-187813"
resource_policies = []
self_link = "https://www.googleapis.com/compute/v1/projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance"
tags = []
tags_fingerprint = "42WmSpB8rSM="
zone = "us-east1-b"
boot_disk {
auto_delete = true
device_name = "persistent-disk-0"
mode = "READ_WRITE"
source = "https://www.googleapis.com/compute/v1/projects/alisson-187813/zones/us-east1-b/disks/chapter8-instance"
initialize_params {
image = "https://www.googleapis.com/compute/v1/projects/ubuntu-os-cloud/global/images/ubuntu-1804-bionic-v20200414"
labels = {}
size = 10
type = "pd-standard"
}
}
network_interface {
name = "nic0"
network = "https://www.googleapis.com/compute/v1/projects/alisson-187813/global/networks/default"
network_ip = "10.142.0.3"
subnetwork = "https://www.googleapis.com/compute/v1/projects/alisson-187813/regions/us-east1/subnetworks/default"
subnetwork_project = "alisson-187813"
access_config {
nat_ip = "104.196.24.122"
network_tier = "PREMIUM"
}
}
scheduling {
automatic_restart = true
on_host_maintenance = "MIGRATE"
preemptible = false
}
shielded_instance_config {
enable_integrity_monitoring = true
enable_secure_boot = false
enable_vtpm = true
}
}
Plan: 0 to add, 1 to change, 0 to destroy.
--
Note: You didn't specify an "-out" parameter to save this plan, so Terraform can't guarantee that exactly these actions will be performed if "terraform apply" is subsequently run.
Finally, we can see the first change. Since the SSH Keys are stored in the instance metadata, when we have an existing resource and we want to modify, the filed change is increased.
Plan: 0 to add, 1 to change, 0 to destroy.
So, one thing changed and nothing was destroyed. This is important. Thus, we can run the terraform
PS C:\Users\1511 MXTI\ProductionInfrastructure> terraform apply
google_compute_instance.chapter8: Refreshing state… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
~ update in-place
Terraform will perform the following actions:
google_compute_instance.chapter8 will be updated in-place
~ resource "google_compute_instance" "chapter8" {
can_ip_forward = false
cpu_platform = "Intel Haswell"
current_status = "RUNNING"
deletion_protection = false
enable_display = false
guest_accelerator = []
id = "projects/alisson-187813/zones/us-eas t1-b/instances/chapter8-instance"
instance_id = "9170008912891805003"
label_fingerprint = "42WmSpB8rSM="
labels = {}
machine_type = "g1-small"
~ metadata = {
+ "sshKeys" = <<~EOT
alisson:ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQChi8HX26xv9Rk9gz47Qhb+Tu7MRqGIyPx nheIeEgFad/dlqG4w4pY7y5dtx5LNGE9C01varco5dZa gqsHplI7M+5ECSvjAuS6 b5rkYZwZiZruDXx ckcQHFpr2yIz3DOzKRTUc5Hg5JHF5aymiqyVfTsxL/aI/LDY8Ikh+INn3S9+b5bZtU+74tA6yuqth5SCtNSW wMUlv7QL6ONHtQiviAjBe+ksD BBV6thWz2ZIJA/jApSIBJWK9AWmZwq2hFy9sOZArUDB2Kt6kl3rIZnHpqJ/GMUCxFhtggYamJ5J2H6277qLFqLZ/8 tum9uc5l/lSWYKTDm2+E/prQfmFrxPf9 alisson
EOT
}
metadata_fingerprint = "bxkbv_NPHas="
name = "chapter8-instance"
project = "alisson-187813"
resource_policies = []
self_link = "https://www.googleapis.com/compute/v1/projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance"
tags = []
tags_fingerprint = "42WmSpB8rSM="
zone = "us-east1-b"
boot_disk {
auto_delete = true
device_name = "persistent-disk-0"
mode = "READ_WRITE"
source = "https://www.googleapis.com/compute/v1/projects/alisson-187813/zones/us-east1-b/disks/chapter8-instance"
initialize_params {
image = "https://www.googleapis.com/compute/v1/projects/ubuntu-os-cloud/global/images/ubuntu-1804-bionic-v20200414"
labels = {}
size = 10
type = "pd-standard"
}
}
network_interface {
name = "nic0"
network = "https://www.googleapis.com/compute/v1/projects/alisson-187813/global/networks/default"
network_ip = "10.142.0.3"
subnetwork = "https://www.googleapis.com/compute/v1/projects/alisson-187813/regions/us-east1/subnetworks/default"
subnetwork_project = "alisson-187813"
access_config {
nat_ip = "104.196.24.122"
network_tier = "PREMIUM"
}
}
scheduling {
automatic_restart = true
on_host_maintenance = "MIGRATE"
preemptible = false
}
shielded_instance_config {
enable_integrity_monitoring = true
enable_secure_boot = false
enable_vtpm = true
}
}
Plan: 0 to add, 1 to change, 0 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.
Enter a value: yes
google_compute_instance.chapter8: Modifying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
google_compute_instance.chapter8: Still modifying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 10s elapsed]
google_compute_instance.chapter8: Modifications complete after 13s [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
Apply complete! Resources: 0 added, 1 changed, 0 destroyed.
Outputs:
name = chapter8-instance
public_ip = 104.196.24.122
size = g1-small
The changes were applied successfully, and then, we can test if the access is working properly:
PS C:\Users\1511 alisson@104.196.24.122
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 5.0.0-1034-gcp x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage
System information as of Mon May 11 13:21:39 UTC 2020
System load: 0.0 Processes: 94
Usage of /: 12.8% of 9.52GB Users logged in: 0
Memory usage: 13% IP address for ens4: 10.142.0.3
Swap usage: 0%
* Ubuntu 20.04 LTS is out, raising the bar on performance, security,
and optimization for Intel, AMD, Nvidia, ARM64, and Z15 as well as
AWS, Azure, and Google Cloud.
https://ubuntu.com/blog/ubuntu-20-04-lts-arrives
0 packages can be updated.
0 updates are security updates.
The programs included with the Ubuntu system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.
Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.
alisson@chapter8-instance:~$
It works! Perfect! We created everything, just managing some lines of code, and now we have an instance up and running, just accessing the console to create the service account. As a final step, I think we can destroy everything using the command terraform destroy and see how it works:
PS C:\Users\1511 destroy
google_compute_instance.chapter8: Refreshing state… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
- destroy
Terraform will perform the following actions:
google_compute_instance.chapter8 will be destroyed
- resource "google_compute_instance" "chapter8" {
- can_ip_forward = false -> null
- cpu_platform = "Intel Haswell" -> null
- current_status = "RUNNING" -> null
- deletion_protection = false -> null
- enable_display = false -> null
- guest_accelerator = [] -> null
- id = "projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance" -> null
- instance_id = "9170008912891805003" -> null
- label_fingerprint = "42WmSpB8rSM=" -> null
- labels = {} -> null
- machine_type = "g1-small" -> null
- metadata = {
- "sshKeys" = <<~EOT
alisson:ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQChi8HX2 6xv9Rk9gz47Qhb+Tu7MRqGIyPxnheIeEgFad/dlqG4w4p Y7y5dtx 5LNGE9C01varco5dZagqsHplI7M +5ECSvjAuS6b5rkYZwZiZruDXxckcQHFpr2yIz3DOzKRTUc5Hg5JHF5aymiqyVfTsxL/aI/LDY8Ikh+INn3S9+b5bZtU+74tA6yuqth5SCtNSWwMUlv7QL6ONHtQiviAj Be+ksDBBV6thWz2ZIJA/jApSIBJWK9AWmZwq2hFy9sOZArUDB2Kt6kl3rIZnHpqJ /GMUCxFhtggYamJ5J2H6277qLFqLZ/8tum9uc5l/lSWYKTDm2+E/prQfmFrxPf9 alisson
EOT
} -> null
- metadata_fingerprint = "lZHcUBfXG-4=" -> null
- name = "chapter8-instance" -> null
- project = "alisson-187813" -> null
- resource_policies = [] -> null
- self_link = "https://www.googleapis.com/compute/v1/projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance" -> null
- tags = [] -> null
- tags_fingerprint = "42WmSpB8rSM=" -> null
- zone = "us-east1-b" -> null
- boot_disk {
- auto_delete = true -> null
- device_name = "persistent-disk-0" -> null
- mode = "READ_WRITE" -> null
- source = "https://www.googleapis.com/compute/v1/projects/alisson-187813/zones/us-east1-b/disks/chapter8-instance" -> null
- initialize_params {
- image = "https://www.googleapis.com/compute/v1/projects/ubuntu-os-cloud/global/images/ubuntu-1804-bionic-v20200414" -> null
- labels = {} -> null
- size = 10 -> null
- type = "pd-standard" -> null
}
}
- network_interface {
- name = "nic0" -> null
- network = "https://www.googleapis.com/compute/v1/projects/alisson-187813/global/networks/default" -> null
- network_ip = "10.142.0.3" -> null
- subnetwork = "https://www.googleapis.com/compute/v1/projects/alisson-187813/regions/us-east1/subnetworks/default" -> null
- subnetwork_project = "alisson-187813" -> null
- access_config {
- nat_ip = "104.196.24.122" -> null
- network_tier = "PREMIUM" -> null
}
}
- scheduling {
- automatic_restart = true -> null
- on_host_maintenance = "MIGRATE" -> null
- preemptible = false -> null
}
- shielded_instance_config {
- enable_integrity_monitoring = true -> null
- enable_secure_boot = false -> null
- enable_vtpm = true -> null
}
}
Plan: 0 to add, 0 to change, 1 to destroy.
Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.
There is no undo. Only 'yes' will be accepted to confirm.
Enter a value: yes
google_compute_instance.chapter8: Destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 10s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 20s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 30s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 40s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 50s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 1m0s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 1m10s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 1m20s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 1m30s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 1m40s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 1m50s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 2m0s elapsed]
google_compute_instance.chapter8: Still destroying… [id=projects/alisson-187813/zones/us-east1-b/instances/chapter8-instance, 2m10s elapsed]
google_compute_instance.chapter8: Destruction complete after 2m19s
Destroy complete! Resources: 1 destroyed.
Perfect! Now, we do not have anything else costing in our GCP account and if you want to create the Infrastructure again, you can just run the command terraform apply. But, with this name you will have the output with the IP address and the SSH key already configured in one shot. If you want to create more instances, just copy and paste the code changing the instance name. The SSH key can be the same for all the instances.
Conclusion
This chapter showed us that it is not necessary to learn the command line of all the Cloud players or even install the SDK for each one of them. Using Terraform, we are able to code the Infrastructure using the Terraform syntax, change the providers to make different integrations, and see what will be changed, created, or destroyed. I really recommend you to explore other providers to integrate with Azure, AWS, Digital Ocean, and play around other providers which are not related to the Cloud player, but they can help you to provide Infrastructure, like the DNS module.
CHAPTER 9
Working with Git
This chapter aims to introduce you to Git, a tool to help you work in the same code, and collaborate with other developers in the same project in a remote way.
Structure
In this chapter, we will discuss the following topics:
Git
GitFlow
GitHub
Objectives
After studying this unit, you should be able to:
Install and use Git with the local repositories
Understand the GitFlow and how it can be applied in the daily work
Share your code with other people using GitHub
Git
Git is a tool created by Linus the creator of the Linux system. The tool was created to help the Linux developers control the development flow among many developers around the world. It helps to solve conflicts, track the modifications, or even revert the configurations that were working before and stopped working in a new version.
To install Git, you can access the following link:
https://git-scm.com/download/win
The installation process is the same that we did for all Windows applications; just and After the installation, you will find a new program called Git which allows you to create your local repos and use the Git commands to create versions of your application:
Figure 9.1
In the next steps, I will show you some basic commands which are enough for you to use Git in your daily work. Of course, it is possible to create an entire book just to explain the Git commands and how to deal with conflicts and different strategies of versioning code. However, let's keep with the basics because “done is better than perfect":
1511 MXTI@avell MINGW64 ~
$ mkdir Chapter09
1511 MXTI@avell MINGW64 ~
$ cd Chapter09/
Aforementioned, you have the output of my Git Bash. Creating a folder, called Chapter09 and get inside that folder. Here, I will create my first repository:
1511 MXTI@avell MINGW64 ~/Chapter09
$ git init
Initialized empty Git repository in C:/Users/1511 MXTI/Chapter09/.git/
The command git init is responsible to initialize any folder of a Git repository. It basically creates a folder, called .git with a pre-defined folder structure which will store the files with the metadata for your code, like what was changed from the current version of the code and your modifications, which files you want to send to the new version, and other things. A repository is a folder where you store and track the modifications of your code.
Now, we can use any text editor to create some code and track the changes. I will use the Visual Studio Code, because it is my favorite. But, feel free to use any according to your preference:
Figure 9.2
I created a new file called code.txt the text editor, just too as an example with some random content. Within the Git repositories, we can track the modifications of any kind of the text file, Python codes, C++ codes, Java, or whatsoever.
The next step is to check what changed since the beginning when I created the repository and created the file, the Visual Studio Code as integration with the PowerShell. Thus, I will use it to run the Git commands.
The first command is git
PS C:\Users\1511 MXTI\Chapter09> git status
On branch master
No commits yet
Untracked files:
(use "git add …" to include in what will be committed)
code.txt
nothing added to commit but untracked files present (use "git add" to track)
In the preceding command, we can see that we are on the branch master and we have one untraced file, called The branches are the versions that you can have of the same project. You can use it in the way that you want, with the name that you want. However, create a flow which helps you to keep a standard of the organization. Otherwise, each project would have a versioning strategy.
GitFlow
Now, when we start working on a project, we have the code files that are already in production, and we cannot work in the main branch, because of the CI/CD pipelines. We need to generate a new version of our software with the complete code.
Let's commit the first version of the code, which will be shared among all the developers working in the same project:
PS C:\Users\1511 MXTI\Chapter09> git add --all
PS C:\Users\1511 MXTI\Chapter09> git commit -m "uploading the scaffold of the project"
[master (root-commit) f6284bf] uploading the scaffold of the project
1 file changed, 3 insertions(+)
create mode 100644 code.txt
If we run the git status again, nothing is untraced or pending to commit:
PS C:\Users\1511 MXTI\Chapter09> git status
On branch master
nothing to commit, working tree clean
To check the branches you have, run the following command:
PS C:\Users\1511 MXTI\Chapter09> git branch
* master
Now, we need to work on that code without breaking the version in production, which corresponds to the branch master. Then, we will create a new branch, called which is the branch respective to a new version of our software:
PS C:\Users\1511 MXTI\Chapter09> git checkout -b develop
Switched to a new branch 'develop'
We created a new branch. Now, if we run the command git branch again, we can see that another version of our current code is created, which we can modify without changing anything in the current version:
S C:\Users\1511 MXTI\Chapter09> git branch
* develop
master
We created a new branch, then if we run the command git branch again, we can see that another version of our current code was created, which we can modify without changing anything in the current version:
Figure 9.3
In the preceding figure, I have added a new line into our code. This book is about infrastructure. Therefore, I want to show that we can include the new code respective to infrastructure, and we also have the development infrastructure and the production infrastructure, whichever one has their configurations and codes.
I can run the command git status again, and see what has changed:
PS C:\Users\1511 MXTI\Chapter09> git status
On branch develop
Changes not staged for commit:
(use "git add …" to update what will be committed)
(use "git restore …" to discard changes in working directory)
modified: code.txt
no changes added to commit (use "git add" and/or "git commit -a")
Different from the first file, the code.txt is now modified, not untraced as we saw in the first command, which means that it is not a new file and the file was modified. If you want to check what has changed from the old version, you can use the following command:
PS C:\Users\1511 MXTI\Chapter09> git diff code.txt
diff --git a/code.txt b/code.txt
index 70274ce..9c5fd1c 100644
--- a/code.txt
+++ b/code.txt
@@ -1,3 +1,5 @@
Hello!
-This is my first code!
\ No newline at end of file
+This is my first code!
+
+This is the configuration respective to the VMs size.
\ No newline at end of file
Here, we can see the differences between the two versions. Where we have the plus sign, means that the lines were included in the file, with the sign, we have what was removed from the old version. To save this new version and share with the other developers, we must add the file in this new version and commit the changes:
PS C:\Users\1511 MXTI\Chapter09> git add --all
PS C:\Users\1511 MXTI\Chapter09> git commit -m "adding new configurations"
[develop 806990f] adding new configurations
1 file changed, 3 insertions(+), 1 deletion(-)
Now, let's assume that we tested everything and we want to put the development version in production. Now, we need to merge the development code with the production code. To do this, we can use the following command:
PS C:\Users\1511 MXTI\Chapter09> git checkout master
Switched to branch 'master'
PS C:\Users\1511 MXTI\Chapter09> git merge develop
Updating f6284bf..806990f
Fast-forward
code.txt | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
Perfect! Now we have the development version in production. So, we can deploy it and start to work again in the other version. But, let's make the things a little bit more sophisticated. Firstly, we have to go back to the development branch:
PS C:\Users\1511 checkout develop
Switched to branch 'develop'
We can suppose that we want to change the current operating system of the infrastructure. Assuming that it is based on CentOS, we want to change to Ubuntu. However, we cannot change it in the development environment, because it can stop the developers working on their own projects. Therefore, I have to create a new branch based on the development branch which we usually call the feature branch.
PS C:\Users\1511 checkout -b feature-ubuntu
Switched to a new branch 'feature-ubuntu'
Now, I will write the new code:
Figure 9.4
After testing the code in the ephemeral environment which was created based on the development environment and making sure that it is working, we can commit the changes and merge it with the development environment:
PS C:\Users\1511 MXTI\Chapter09> git add --all
PS C:\Users\1511 MXTI\Chapter09> git commit -m "changing the os"
[feature-ubuntu 5b4ce7a] changing the os
1 file changed, 3 insertions(+), 1 deletion(-)
Now, we can change from the feature branch to the development branch and merge the code:
PS C:\Users\1511 MXTI\Chapter09> git checkout develop
Switched to branch 'develop'
PS C:\Users\1511 MXTI\Chapter09> git merge feature-ubuntu
Updating 806990f..5b4ce7a
Fast-forward
code.txt | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
The code was merged successfully and now assuming that we have tested it in the development environment and everything worked seamlessly, it is time to merge with the production environment:
PS C:\Users\1511 MXTI\Chapter09> git checkout master
Switched to branch 'master'
PS C:\Users\1511 MXTI\Chapter09> git merge develop
Updating 806990f..5b4ce7a
Fast-forward
code.txt | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
GitHub
The commands ran in the local machine and in a local environment. It was just the basic steps, but I am pretty sure that with these commands you will be able to do 80% of your work every day. If you cannot, there are many tools to help you with the Git commands, like git or you can even use plugins for Visual Studio Code. We need to have in mind that as bigger as your team is, you will have more conflicts and more changes happening at the same time.
To share our code, we can use many tools, like GitLab, GitHub, Bitbucket. There are dozens of services to help you with it. Let's use the GitHub because it is the most famous. But, for some of my personal projects, I use the Bitbucket, because we can have unlimited private repos.
You can create your own GitHub account for free on their website:
https://github.com/
After creating your account, you will be able to create your first repository, as I am doing in the following screenshot:
Figure 9.5
After creating the repository, the initial page will show some commands in case you have an existing repo and you want to upload it, or if you want to clone the empty repository. In our case, we already have the code with some commits and we want to send it to Git.
The next screenshot will show the initial page. But the most important information is the following one:
https://github.com/AlissonMMenezes/Chapter09.git
Which corresponds to the address of our remote repository:
Figure 9.6
Going back to the Visual Studio Code, I will add the remote URL to my local repository using the following command:
PS C:\Users\1511 MXTI\Chapter09> git remote add
PS C:\Users\1511 MXTI\Chapter09> git remote -v
github https://github.com/AlissonMMenezes/Chapter09.git (fetch)
github https://github.com/AlissonMMenezes/Chapter09.git (push)
Now that we have this configured, I can send the code to the remote repository. We call that action because the command that we will use is the git
PS C:\Users\1511 MXTI\Chapter09> git push github master
Enumerating objects: 9, done.
Counting objects: 100% (9/9), done.
Delta compression using up to 8 threads
Compressing objects: 100% (5/5), done.
Writing objects: 100% (9/9), 789 bytes | 394.00 KiB/s, done.
Total 9 (delta 1), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (1/1), done.
To https://github.com/AlissonMMenezes/Chapter09.git
* [new branch] master -> master
The push command follows that sequence. git push repo_name branch. Now, we push the code to GitHub and the branch master. If we go back to GitHub, it is possible to see the code there:
Figure 9.7
Now, it is so much easier to see what has changed, because we have a graphical interface with the number of commits, the branches and so much more information. Now, you can delete your local repository because your code is safe on GitHub.
I deleted my local repository and let's assume that I am a new developer. Now, I have to fetch the code from GitHub, make my changes, and push it back. However, when we are working in a team, it is a good practice to create a new branch, push my branch, and create a pull request. But, why that? We do that for another developer to do what we call code review. Thus, he will analyze your code and validate if it is in the good practices defined by the company.
As a new developer, the first thing I have to do is clone the repository using the following command:
PS C:\Users\1511 clone https://github.com/AlissonMMenezes/Chapter09.git
Cloning into 'Chapter09'…
remote: Enumerating objects: 9, done.
remote: Counting objects: 100% (9/9), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 9 (delta 1), reused 9 (delta 1), pack-reused 0
Receiving objects: 100% (9/9), done.
Resolving deltas: 100% (1/1), done.
So, now we will create a new branch and edit the file:
PS C:\Users\1511 MXTI\Chapter09> git checkout -b new_feature
Switched to a new branch 'new_feature'
Following this, we have the new code:
Figure 9.8
Now, we can commit and push to GitHub:
PS C:\Users\1511 MXTI\Chapter09> git add –all
PS C:\Users\1511 MXTI\Chapter09> git commit -m "adding new feature"
[new_feature 938b554] adding new feature
1 file changed, 3 insertions(+), 1 deletion(-)
PS C:\Users\1511 MXTI\Chapter09> git push origin new_feature
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 294 bytes | 294.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
remote:
remote: Create a pull request for 'new_feature' on GitHub by visiting:
remote: https://github.com/AlissonMMenezes/Chapter09/pull/new/new_feature
remote:
To https://github.com/AlissonMMenezes/Chapter09.git
* [new branch] new_feature -> new_feature
The code was sent and the GitHub command returned as an URL:
https://github.com/AlissonMMenezes/Chapter09/pull/new/new_feature
That URL will redirect you to the new pull request page based on the branch that we just created. Let's take a look:
Figure 9.9
We can give a title that corresponds to what we've done. For example, it could be the name of your Jira task, something like DASF-158: changing the SSH keys. You can describe what you’ve done if you want, or just give a message for the code reviews. For example, please give a look at the lines between 55 and I am not sure if my logic is correct. Now, you can create the pull
Figure 9.10
This is how a PR looks like. And now, we can merge with the master branch or another branch we want to:
Figure 9.11
Conclusion
That was a really quick and short introduction to Git. But, I am pretty sure that it is enough for your daily tasks. Of course, in the real world, we will face many conflicts. As bigger the team is that you work with, more challenges and more complex will it be to manage the code, the branches, and the reviews. If you are in lucky work startup and you are the DevOps guy who is in charge of all the Cloud Infrastructure, this probably will attend to 100% of your necessities.
CHAPTER 10
Continuous Integration and Continuous Delivery Using Jenkins
This chapter aims to introduce you to the concept of Pipelines, CI (Continuous Integration), and CD (Continuous Delivery). It also gives an introduction to Jenkins, the most famous CI/CD platform and open-source.
Structure
In this chapter, we will discuss the following topics:
Pipelines
Continuous Integration
Continuous Delivery
Pipeline as Code and Jenkins
Objectives
After studying this unit, you should be able to:
Know about DevOps pipelines
Differentiate and how to implement CI/CD
Create your pipelines as code using Groovy and Jenkins
Deploy an application using Vagrant, Docker, and Jenkins
Pipelines
We can define a pipeline as a sequence of steps, which will take one thing from a starting point to an ending point, following a predefined path. In our case, when the code enters the pipeline, we have to check many things, like the code quality, best practices, running tests, generating a ZIP file, and it can be increased as much as you want. At the end of your pipeline, you will have your code with quality, following the best practices and ready to deploy everything in an automated way. It helps you improve the quality of your product or infrastructure, and speed up the process, as no one has to test each part of the pipeline. For some pipelines, the DevOps practices defined specific names, like Continuous Integration and Continuous Delivery.
Continuous Integration
Usually, when we are developing a software, we have many stages where our application goes through before reaching the end customer. Currently, we have these most common stages:
Development: Where the developers can test the applications, fix bugs, and validate new feature requests. In this environment, we can break everything because it will not affect our end customers.
Staging: A copy of the production environment, but just for the business team to validate the business rules if they follow the requirements defined by the clients. In this environment, we can have failures and new improvement requests. Following this is the last stage before it goes to the end customer.
Production: This environment is where the application is in production, with everything validated, tested, and ready for our end customer. Of course, bugs can be found here, but the goal is to deliver the applications as much tested as we can to avoid problems.
The Continuous Integration pipeline is created to connect all the environment. For example, in the development stage, we have to follow some of the following tests:
Unit tests: This test aims to validate the business rules for each part of our code, like classes, methods, functions, or whatsoever. But, these are the simplest tests that you can do in your application. For example, you can receive the task of creating a function where you need to sum 2 numbers. Your test will pass the numbers to that function and check if you are returning the expected result.
Integration tests: Here, you will have to test a business case. For example, you created an API. Your end customer will make a request sending 2 parameters and he is expecting a JSON response with a product data. In this case, we do not need to check what is happening in the source code of your API, we just need to make sure that when we receive those 2 parameters, we will return the JSON with the product data.
End-to-end: This is the hardest test that you have in your application. It will test your entire system, each functionality in detail impersonating a real customer. It takes a lot of time to be developed, so, most of the companies stop at the integration tests.
Quality test: This test is used more to check the quality of your code. If you are following the best practices, if you are creating reusable codes, and not just copying and pasting code everywhere in your code, which will make the maintenance harder.
Of course, those tests that I explained are just common tests that you will find in most of the companies that you will work. However, there are more ways of testing applications. It can vary from project to project and company to company.
Once we pass in all these tests, we have to make our application go to other teams who will also test the application, many times in a manual way, to make sure that the developer understood what the requirements are and how we need to code our product. This is where we have the Continuous Delivery.
Continuous Delivery
In this stage, the developer did all work they were delegated to do. But, of course, we can have many communication problems between the client request and the software delivery.
Therefore, once all the tests were made by the developers, we can assume that we have a new version of our application, which can be called version 0.1. Assuming that it is working, we will create a package of that application and deploy it in the staging environment. In this environment, someone from the business part of the company will validate again if the feature requests are working properly as they requested. This stage is also used for the UX team to validate if your interface is understandable and easy to use. If this version of the application does not fulfill all the requirements, or the developers did not understand how the new feature should work, this version can be discarded and they will work in a new version called, 0.2. For example, and it will pass through all the environments again until it fulfills all the requirements specified by the end customer.
At the end of the day, Continuous Delivery is being able to deploy a version of your application every time a new feature is released. Not accumulating these features will be harder to test, since many are not uncommon for business areas validating the application manually.
Pipeline as Code and Jenkins
We have many tools which can help us with the pipelines and integration between the environment, and indeed Jenkins is the most famous, because of its flexibility that allows us to install many plugins to easily integrate with the Cloud providers and also being open source. Thus, we do not need to pay for a license.
The focus of this book is not especially software development, but Infrastructure as Code. So, all the examples that I will use will be regarding Infrastructure and how we can test and deploy it.
Firstly, we need to setup our Jenkins server. I will setup it using Vagrant. To create a VM with Ubuntu, install Docker, and then, Jenkins will run on top of the Docker:
-*- mode: ruby -*-
vi: set ft=ruby :
Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/bionic64"
config.vm.box_check_update = false
config.vm.provider "virtualbox" do |vb|
vb.memory = "1024"
end
config.vm.define "docker" do |docker|
docker.vm.box = "ubuntu/bionic64"
docker.vm.network "private_network", ip: "192.168.33.11"
docker.vm.hostname = "docker"
docker.vm.provision "shell", inline: <<-SHELL
apt clean
apt-get update
apt-get remove docker docker-engine docker.io containerd runc -y
apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common -y
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
apt-get update -y
apt-get install docker.io -y
SHELL
end
end
The preceding code is just edited a little bit from Then, we already know how to install and run a VM on Vagrant. Now, I have a Docker environment running and to run the Jenkins in a container is very simple. Just run the following command:
root@docker:~# docker run -tdi --restart=always --name jenkins -p 8080:8080 -p 50000:50000 jenkins/jenkins:lts
After the containers start, you can access the Jenkins by the following address:
http://192.168.33.11:8080/login?from=%2F
It will show you the following screen asking for the initial password:
Figure 10.1
You can get the password by running the following command:
docker exec -ti jenkins cat /var/jenkins_home/secrets/initialAdminPassword
a7a1b2c796404bceab99b014f3220a9a
You can just copy the password:
a7a1b2c796404bceab99b014f3220a9a
Paste in the screen and proceed with the installation.
Figure 10.2
It is highly recommended to install the suggested plugins because it will install one of the most important, which is the git plugin. Now, you just need to follow the sequence, and to finalize your installation.
Figure 10.3
The last part of the installation is setting your admin credentials. I have set for user and password. Finally, welcome to Jenkins:
Figure 10.4
Everyone who has worked with Jenkins knows that the UX is not one of Jenkins’ strengths. To work around this problem, there is a very famous plugin, called the Blue Ocean to improve our interface and usability.
Go to Manage Jenkins | Manage Plugins | Available and Search for the Blue Ocean:
Figure 10.5
Install the plugin and restart Jenkins. After everything, you will see a new button, Open Blue Ocean is available:
Figure 10.6
Click on the button and check the new interface:
Figure 10.7
From the initial screen, we can see that it is so much better. Of course, it is not mandatory to use this interface. It is just some sort of fancy feature, but I liked it. Not just for the interface, but it also makes mandatory the usage of a repository to versioning your pipelines. You can click on Create a new Pipeline and check it:
Figure 10.8
In my case, I will select because I have already created a repository for this chapter. Creating the pipeline is pretty simple. You can just follow the steps showed in the screen followed, create an access token on GitHub, and bind it to your installation, like the preceding screenshot:
Figure 10.9
In the bound repository, you must have a file, called Jenkinsfile, in the root. The Jenkins will scan the files looking for that specific one, read the code, and run the pipeline. I already created one with the following code:
pipeline {
agent any;
stages {
stage('Code Quality') {
steps {
sh 'echo checking code quality'
}
}
stage('Unit Tests') {
steps {
sh 'echo Testing the Applications'
}
}
stage('Build') {
steps {
sh 'echo Creating application Package'
}
}
stage('Delivery') {
steps {
sh 'echo Uploading the artifact to a repository'
}
}
stage('Deploy') {
steps {
sh 'echo Deploying the Application'
}
}
}
}
Jenkins uses the Groovy language to write the pipelines. It was a basic scaffold of what are the basics we need to have in our pipeline. Saving everything and checking the interface, you will see that the pipeline ran automatically and successfully:
Figure 10.10
In the code, we just have some echo statements which are representing the real codes. Now, we need to replace them with a real application and real commands to check the application, test the application, and deploy it after all. However, of course, it will not be a complex application. Nevertheless, we will have everything, and here is what the application will do.
Create an API which will receive credit card transactions and to validate the transactions follow these criteria:
Validate if the credit card is active.
Validate if the transaction amount is above the credit card limit.
Validate if the transaction was approved.
The API must receive a JSON request in the following format:
{
"status": true,
"number":123456,
"limit":1000,
"transaction":{
"amount":500
}
}
Now, I developed everything using Flask, because is fast and easy. The API code is as follows:
#!/usr/bin/python3
from flask import Flask, request, jsonify
from functools import wraps
app = Flask(__name__)
def check_card(f):
wraps(f)
def validation(*args, **kwargs):
data = request.get_json()
if not data.get("status"):
response = {"approved":False,
"newLimit":data.get("limit"),
"reason":"Blocked Card"}
return jsonify(response)
if data.get("limit") < data.get("transaction").get("amount"):
response = {"approved":False,
"newLimit":data.get("limit"),
"reason":"Transaction above the limit"}
return jsonify(response)
return f(*args, **kwargs)
return(validation)
@app.route("/api/transaction",methods=["POST"])
@check_card
def transaction():
card = request.get_json()
new_limit = card.get("limit") - card.get("transaction").get("amount")
response = {"approved":True,"newLimit":new_limit}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)
The application is receiving the transactions and the validating via Python decorators. If tested manually, it works. But, it is very exhaustive to test everything every time. That is why, we create automated tests. In this case, I have 3 business rules that were already mentioned and here follows the code for those tests:
#!/usr/bin/python3
import os
import tempfile
import pytest
from app import app
@pytest.fixture
def client():
app.config['TESTING'] = True
client = app.test_client()
yield client
def test_valid_transaction(client):
card = {
"status": True,
"number":123456,
"limit":1000,
"transaction":{
"amount":500
}
}
rv = client.post("/api/transaction",json=card)
assert True == rv.get_json().get("approved")
assert 500 == rv.get_json().get("newLimit")
def test_above_limit(client):
card = {
"status": True,
"number":123456,
"limit":1000,
"transaction":{
"amount":1500
}
}
rv = client.post("/api/transaction",json=card)
assert False == rv.get_json().get("approved")
assert "Transaction above the limit" in rv.get_json().get("reason")
def test_blocked_card(client):
card = {
"status": False,
"number":123456,
"limit":1000,
"transaction":{
"amount":500
}
}
rv = client.post("/api/transaction",json=card)
assert False == rv.get_json().get("approved")
assert "Blocked Card" in rv.get_json().get("reason")
Of course, I also need to install some external module which must be in the requirements.txt file:
pytest
flask
pylint
Now, you have the following three files:
app.py
test_app.py
requirements.txt
This belongs to the application and we have the Jekinsfile, which is not a part of the application, but it is important for the process, in general. The next step is to prepare the Jenkins environment to test the application. Of course, we do not need much, just the Python and the PIP to install the new modules. Then, you can run the following command within the container:
root@docker:~# docker exec -ti -u 0 jenkins apt clean
root@docker:~# docker exec -ti -u 0 jenkins apt update
root@docker:~# docker exec -ti -u 0 jenkins apt install python python-pip -y
The parameter -u is new for us. It says to the Docker for which user we need to run the commands. In our case, the user represented by the UID 0, is the user root, the Jenkins default image. Therefore, the default user is the user Jenkins. We can validate it using the following commands:
root@docker:~# docker exec-ti jenkins whoami
jenkins
root@docker:~# docker exec-ti jenkins id
uid=1000(jenkins) gid=1000(jenkins) groups=1000(jenkins)
Going back to the pipeline topic, now, we need to replace the echo statements in the stages for the real commands which will be used. Then, the pipeline should be as follows:
pipeline {
agent any;
stages {
stage('Preparing the environment') {
steps {
sh 'python -m pip install -r requirements.txt'
}
}
stage('Code Quality') {
steps {
sh 'python -m pylint app.py'
}
}
stage('Tests') {
steps {
sh 'python -m pytest'
}
}
stage('Build') {
steps {
sh 'exit 1'
}
}
stage('Delivery') {
steps {
sh 'exit 1'
}
}
stage('Deploy') {
steps {
sh 'exit 1'
}
}
}
}
Make sure that everything is within your repository, like mine. You can check using the following link:
https://github.com/AlissonMMenezes/Chapter10
Run your pipeline manually. For now, we cannot trigger it automatically, because the Jenkins installation is local, and the GitHub is in the Cloud. However, we will see that in the next chapters.
In order to run the pipeline manually, you can open a new tab:
Figure 10.11
Click on the Run button, by side of the star. In your first attempt, it will raise the following error:
Figure 10.12
This error means the code is not following the code quality standards defined by the pylint. So, we need to fix it in order to go to the next stage of the pipeline. Fixing it is simple. There is a module, called which can fix the code automatically for you. To install it, use the following command:
python -m pip install autopep8
PEP8 is a set of best practices for your Python code. You can check more details about it in by clicking on this link: https://www.python.org/dev/peps/pep-0008/
Fixing the code:
python -m autopep8 --in-place --aggressive --aggressive .\app.py
Most of the code was fixed, although, autopep8 module fixes most of the indentation issues. If you run the pylint again, we can see that not everything was fixed. Therefore, the module cannot refactor your code. This is a developer's duty, but, we will do that here:
PS C:\Users\1511 MXTI\Pictures\Book\DevOps With Linux\Chapter10\VMs> python -m pylint .\app.py
************* Module app
app.py:27:0: C0325: Unnecessary parens after 'return' keyword (superfluous-parens)
app.py:1:0: C0114: Missing module docstring (missing-module-docstring)
app.py:9:0: C0103: Argument name "f" doesn't conform to snake_case naming style (invalid-name)
app.py:9:0: C0116: Missing function or method docstring (missing-function-docstring)
app.py:32:0: C0116: Missing function or method docstring (missing-function-docstring)
app.py:4:0: C0411: standard import "from functools import wraps" should be placed before "from flask import Flask, request, jsonify" (wrong-import-order)
--
Your code has been rated at 7.27/10 (previous run: 7.73/10, -0.45)
After fixing everything required by the pylint module, the code now is as follows:
#!/usr/bin/python3
"""
This code is used as an example for the Chapter10 of the book DevOps With Linux
"""
from functools import wraps
from flask import Flask, request, jsonify
APP = Flask(__name__)
def check_card(func):
"""
This function validates the credit card transactions
"""
wraps(func)
def validation(*args, **kwargs):
"""
This function is a decorator,
which will return the function corresponding to the respective action
"""
data = request.get_json()
if not data.get("status"):
response = {"approved": False,
"newLimit": data.get("limit"),
"reason": "Blocked Card"}
return jsonify(response)
if data.get("limit") < data.get("transaction").get("amount"):
response = {"approved": False,
"newLimit": data.get("limit"),
"reason": "Transaction above the limit"}
return jsonify(response)
return func(*args, **kwargs)
return validation
@APP.route("/api/transaction", methods=["POST"])
@check_card
def transaction():
"""
This function is resposible to expose the endpoint for receiving the incoming transactions
"""
card = request.get_json()
new_limit = card.get("limit") - card.get("transaction").get("amount")
response = {"approved": True, "newLimit": new_limit}
return jsonify(response)
if __name__ == '__main__':
APP.run(debug=True)
It is looking quite better, is it not? Remember that we refactored the code, and then, we need to change our tests as well. In the test source code, we just need to change the following part:
@pytest.fixture
def client():
APP.config['TESTING'] = True
client = APP.test_client()
yield client
We are ready to run the pipeline again. Let's see how is the new behavior:
Figure 10.13
Now it is perfect! We passed the code quality check, the functional tests, and we are blocked at the build step. It makes sense, because I coded it to run an exit 1. For that step, we need to generate a new Docker image. With our application inside, deploy it in the same server that we are running our Jenkins container.
In order to do it, we can set up the VM as a Jenkins node. The address you must access to add a new node is as follows:
http://192.168.33.11:8080/computer/new
I will call that node as Docker server. The remote root directory must be /tmp, and the Labels Docker server as well. The Launch method must by the agent, connect to the master. Then, we will install the agent within the VM and it will be responsible to run the next steps of the pipeline:
Figure 10.14
After configuring and saving the configuration, the Jenkins will make the agent available for you:
http://192.168.33.11:8080/computer/DockerServer/
Figure 10.15
We can just copy and paste the line in the VM:
root@docker:~# apt install openjdk-8-jre-headless -y
root@docker:~# wget http://192.168.33.11:8080/jnlpJars/agent.jar
root@docker:~# java -jar agent.jar -jnlpUrl http://192.168.33.11:8080/computer/DockerServer/slave-agent.jnlp -secret 1309b876151399817cab2ef0da0ea34716ecbc01a44b38a95c93fdd748d72629 -workDir "/tmp"
INFO: Agent discovery successful
Agent address: 192.168.33.11
Agent port: 50000
Identity: 52:84:5b:cb:ed:f7:98:4c:da:b2:64:66:48:de:cf:be
Jun 10, 2020 12:46:41 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Handshaking
Jun 10, 2020 12:46:41 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Connecting to 192.168.33.11:50000
Jun 10, 2020 12:46:41 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Trying protocol: JNLP4-connect
Jun 10, 2020 12:46:42 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Remote identity confirmed: 52:84:5b:cb:ed:f7:98:4c:da:b2:64:66:48:de:cf:be
Jun 10, 2020 12:46:43 PM hudson.remoting.jnlp.Main$CuiListener status
INFO: Connected
The agent is successfully connected. Now, we can continue to code the pipeline and finish the application deployment:
pipeline {
agent any;
stages {
stage('Preparing the environment') {
steps {
sh 'python -m pip install -r requirements.txt'
}
}
stage('Code Quality') {
steps {
sh 'python -m pylint app.py'
}
}
stage('Tests') {
steps {
sh 'python -m pytest'
}
}
stage('Build') {
agent {
node{
label "DockerServer";
}
}
steps {
sh 'docker build https://github.com/AlissonMMenezes/Chapter10.git -t chapter10:latest'
}
}
stage('Deploy') {
agent {
node{
label "DockerServer";
}
}
steps {
sh 'docker run -tdi -p 5000:5000 chapter10:latest'
}
}
}
}
This is the latest version of the pipeline. Let's run it and see if it will work:
Figure 10.16
Great! Now we have a fully functional pipeline, versioned with an application, running tests, code quality, and also Dockerized.
Conclusion
We just learned how to create a pipeline as code using Jenkins, run code quality checks, functional tests, create an image based on a functional application, and deploy it on the top of a Docker server.
We could see that it is not an extremely hard task. Of course, as complex as is your project, more complex will be your pipeline. For example, in the initial steps, we were able to run everything on Jenkins by itself. By the final steps, we had to add a node and run on top of it. We also learned new information about Docker, for example, some parameters to start the container every time that the server has started. It is also possible to build an image using a Dockerfile hosted directly in a remote repository.
I am pretty sure this introduction will give you the start for creating your pipelines which will fit perfectly with your projects.
Questions
What are the benefits of using pipelines?
What are CI and CD?
Why is it a good practice to use the pipeline as a code?
What benefits can we have from the BlueOcean plugin?
When are the Jenkins nodes needed?
CHAPTER 11
Deploying and Scaling Your Application Using Kubernetes
This chapter aims to introduce you to Kubernetes, showing how to create YAML files to deploy, and scale your applications with the most popular and reliable container orchestration tool.
Structure
In this chapter, we will discuss the following topics:
Kubernetes
Introduction to Kubernetes
Deploying on Cloud
Objectives
After studying this unit, you should be able to:
Know about Kubernetes
Explain the benefits of Kubernetes
Create YAML files to deploy your application
Test your application running in the cluster
Kubernetes
Kubernetes is a container orchestration tool. In the previous chapters, we have been using Docker a lot for deploying applications, creating new images, etc. However, imagine if you have more than one hundred containers to manage. It is an impossible task for just one guy. The Docker, by itself, has the Docker Swarm, which helps you with that task. But, it is not commonly adopted by the market, since it misses some features and integrations that we have on Kubernetes. It was created by Google some years ago, based on a project, called Borg, which was also a container orchestration tool. With the release of Docker, that project was adapted to use it, and now it has become the official platform to manage your cluster.
Introduction to Kubernetes
Like the other chapters, our focus is always on how to implement it in the real-world. Let's have a short introduction of how we can setup our local environment to learn Kubernetes, and then, we can setup a real environment and deploy an application. You will see that the commands are same when we run it in our local environment and on the Cloud environment.
First of all, we will install minikube. It is a tool to set up a local Kubernetes environment on the top of a Virtual Box, like we have been doing along with the book:
wget https://github.com/kubernetes/minikube/releases/download/v1.11.0/minikube-windows-amd64.exe -O minikube.exe
If you are using another OS, you can follow the official documentation: https://kubernetes.io/docs/tasks/tools/install-minikube/
Then, we can start the cluster:
PS C:\Users\1511 start
* minikube v1.11.0 on Microsoft Windows 10 Pro 10.0.19041 Build 19041
* Automatically selected the virtualbox driver
* Downloading VM boot image …
* Starting control plane node minikube in cluster minikube
* Downloading Kubernetes v1.18.3 preload …
* Creating virtualbox VM (CPUs=2, Memory=6000MB, Disk=20000MB) …
* Preparing Kubernetes v1.18.3 on Docker 19.03.8 …
* Verifying Kubernetes components…
* Enabled addons: default-storageclass, storage-provisioner
* Done! kubectl is now configured to use "minikube"
We also need to install the a command which we will use to manage your cluster, for and If you are using another operating system, you can follow the official documentation: https://kubernetes.io/docs/tasks/tools/install-minikube/
PS C:\Users\1511 MXTI> wget https://storage.googleapis.com/kubernetes-release/release/v1.18.3/bin/linux/amd64/kubectl -O kubectl.exe
To begin with, we can run a simple command to see how many clusters we have configured in our environment:
PS C:\Users\1511 config get-clusters
NAME
Minikube
For now, it is just the minikube. But we will have more, one important thing to know is where the kubectl get this informationfrom:
PS C:\Users\1511 'C:\Users\1511 MXTI\.kube\config'
After the minikube installs the k8s cluster, it configures within the config file, inside of .kube folder which is located in your home directory. All the authenticate information is located within that file. If you want to know everything running inside your cluster, you can run the following command:
I used the parameter to get pods, and another parameter –all-namespaces. It shows us all the running containers in the cluster among all the namespaces. For now, we just have one, called Before we move on with more commands, it is important to understand namespace, and not just it.
POD: It represents a set of one or more containers running.
NAMESPACE: It is the logical separation among the objects. For example, in the same cluster I can have, dev – stg – namespaces, each one running on different versions of the same application, or it could be, and You can divide your cluster in as many namespaces as you want.
SERVICE: This is a resource which you will use to connect the external world with your pods. If you remember the Docker chapter, we had to map the host port 8080 to the container port 8080. But it was for only one container. On Kubernetes, we have a POD which can have one or more containers that can be destroyed and recreated at any time. However, we cannot lose the port mapping, that is, the SERVICE job, where we configure a NODE Port, which will redirect to a POD port, exactly in the same way we did with Docker. It was one of the usages of the services, but, we can also have other implementations, like a load balancer, which has a clusterIP that will receive the incoming connections and forward it to the containers.
DEPLOYMENT: It is a set of rules to make sure that you have a specific number of running containers. All the containers are running the same image, and if any container dies, it will be recreated. In other words, it will create your PODs automatically, and the REPLICASET will ensure the running containers.
INGRESS: This resource can be compared to a Virtual Host, like we did in the Apache chapter. Here, we will have a which will point to SERVICE, which will point to a If you are not using a DNS, the INGRESS is not mandatory.
The aforementioned items are called the Kubernetes objects. There are so many more objects that we can explore to understand more about Kubernetes, but we could write a whole book just explaining it. For now, I think it is enough to deploy some micro-services at last. If you are deploying stateful applications, you will probably have to extend your reading to
So, now we can create the first NAMESPACE and start to play around some objects:
PS C:\Users\1511 create namespace chapter11
namespace/chapter11 created
PS C:\Users\1511 MXTI> .\kubectl.exe get ns
NAME STATUS AGE
chapter11 Active 11s
default Active 38m
kube-node-lease Active 38m
kube-public Active 38m
kube-system Active 38m
Notice that we can use the full form of the parameters, and also the short form, like, when I listed the namespaces, I used just the
The INGRESS is a separate resource from Kubernetes. When you are using it on the Cloud, some give it to you already installed. But, in an on-premises environment, you usually have to install. For our local environment, we will have to install it using the following command:
PS C:\Users\1511 addons enable ingress
* The 'ingress' addon is enabled
To run your first application in the cluster, run the following command:
PS C:\Users\1511 addons enable ingress
PS C:\Users\1511 --namespace=chapter11 run python -dti --port=8080 --image=alissonmenezes/python:latest -l app=python
This command will download the python_app:v1 from my personal repository alissonmenezes and expose the port If you want to check if the pod is running, you can use the following command:
PS C:\Users\1511 get pods --namespace=chapter11
NAME READY STATUS RESTARTS AGE
python 1/1 Running 1 6m43s
Now we have one pod running with one container in it. However, we want to access the application, but at this moment it is available only inside the cluster. The other applications inside the cluster are already capable of accessing it, but for us, from the outside, we will have to create a service for it:
PS C:\Users\1511 --namespace=chapter11 create service clusterip python --tcp=80:8080
service/python created
We just created the SERVICE with clusterip type. It does not expose the NODE port, and we need the ingress to make the mapping from the outside to the inside of the cluster. Create a file called app.yaml with the following content:
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: python
namespace: chapter11
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
backend:
serviceName: python
servicePort: 80
The INGRESS is composed of Nginx server, which we call the “Ingress Controller”. It is basically doing a proxy pass of the incoming connections from any addresses or names being forwarded to a service, called Python.
To apply the file, you must use the following command:
PS C:\Users\1511 apply -f .\app.yaml
ingress.extensions/python created
To get the minikube IP address, run the following command:
PS C:\Users\1511 ip
192.168.99.101
If you type this address on your web browser, you must see the following page:
Figure 11.1
The application is running!
We have successfully created everything using the commands and just the Ingress using a YAML file. However, it is possible to create everything just using the files that are the most used way to deploy everything on Kubernetes, because we can version the files and run it on the pipeline as we did in the previous chapter.
We can create everything in one file as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
name: python
namespace: chapter11
labels:
app: python
spec:
replicas: 1
selector:
matchLabels:
app: python
template:
metadata:
labels:
app: python
spec:
containers:
- name: python
image: alissonmenezes/python:latest
ports:
- containerPort: 8080

apiVersion: v1
kind: Service
metadata:
labels:
app: python
name: python
namespace: chapter11
spec:
ports:
- name: http
port: 80
protocol: TCP
targetPort: 8080
selector:
app: python
type: ClusterIP

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: python
labels:
app: python
namespace: chapter11
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
backend:
serviceName: python
servicePort: 80
To make sure that everything will run properly, you can delete everything:
PS C:\Users\1511 delete all -l app=python --all-namespaces
pod "python-779879dbb6-w57pr" deleted
Apply the file with the whole content:
PS C:\Users\1511 apply -f .\app.yaml
deployment.apps/python created
service/python created
ingress.extensions/python unchanged
Now, you already know the basics. Let's see it deploying in a real environment.
Deploying on Cloud
In order to deploy on the Cloud, we will use exactly the same app.yaml that we have been using until now. But firstly, we need to create the Kubernetes cluster. I will use the GCP for it.
I have created a project, called where I will provision the cluster:
PS C:\Users\1511 config set project chapter11-280417
Updated property [core/project].
Define where the compute nodes will be created:
PS C:\Users\1511 config set compute/zone us-central1-c
Updated property [compute/zone].
Define where the compute nodes will be created:
PS C:\Users\1511 container clusters create chapter11 --num-nodes=1
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION NUM_NODES STATUS
chapter11 us-central1-c 1.14.10-gke.36 35.193.191.37 n1-standard-1 1.14.10-gke.36 1 RUNNING
Once the cluster is running, we need to login into the cluster using the following command:
PS C:\Users\1511 container clusters get-credentials chapter11
Fetching cluster endpoint and auth data.
kubeconfig entry generated for chapter11.
And just like that, everything is perfect. Now, we can work exactly as we worked with
PS C:\Users\1511 config get-clusters
NAME
minikube
gke_chapter11-280417_us-central1-c_chapter11
By running the same command, we can see that we have another cluster configured, called When we ran the command the gke was set by default, and now, we do not need to think about running the commands in one cluster or another.
We also can check what is running with the following command:
PS C:\Users\1511 get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system event-exporter-v0.2.5-599d65f456-v2h9f 2/2 Running 0 4m50s
kube-system fluentd-gcp-scaler-bfd6cf8dd-c4b6c 1/1 Running 0 4m42s
kube-system fluentd-gcp-v3.1.1-pj6pp 2/2 Running 0 3m51s
kube-system heapster-gke-7bff5f7474-9vgtb 3/3 Running 0 3m42s
kube-system kube-dns-5995c95f64-742kn 4/4 Running 0 4m53s
kube-system kube-dns-autoscaler-8687c64fc-w7w2d 1/1 Running 0 4m41s
kube-system kube-proxy-gke-chapter11-default-pool-e3952147-h0gc 1/1 Running 0 4m41s
kube-system l7-default-backend-8f479dd9-tpmk6 1/1 Running 0 4m53s
kube-system metrics-server-v0.3.1-5c6fbf777-4xmlf 2/2 Running 0 4m5s
kube-system prometheus-to-sd-692dh 2/2 Running 0 4m41s
kube-system stackdriver-metadata-agent-cluster-level-79974b544-8n5gg 2/2 Running 0 3m58s
There are so many more pods running. If we compare with one example is the which is the Google tool to retrieve the logs from your cluster. Let's create the namespace:
PS C:\Users\1511 create namespace chapter11
namespace/chapter11 created
In the case of Google Kubernetes Engine, they have a Load Balancer as a service and it can be attached to our Kuberntes SERVICE. Thus, the service will have an external address, and we can point the DNS directly to it. In this case, we do not need the Ingress. Therefore, let's change this:
apiVersion: apps/v1
kind: Deployment
metadata:
name: python
namespace: chapter11
labels:
app: python
spec:
replicas: 1
selector:
matchLabels:
app: python
template:
metadata:
labels:
app: python
spec:
containers:
- name: python
image: alissonmenezes/python:latest
ports:
- containerPort: 8080
As you can see the last line from the service part. Deploy the application:
PS C:\Users\1511 apply -f .\app.yaml
deployment.apps/python created
service/python created
Check if the pods are running with the following command:
PS C:\Users\1511 get pods -n chapter11
NAME READY STATUS RESTARTS AGE
python-5bb87bbb45-6hwv7 1/1 Running 0 23s
Then, check if the service already has an external IP:
PS C:\Users\1511 get svc -n chapter11
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
python LoadBalancer 10.47.252.232 34.71.206.1 80:31693/TCP 68s
You must see the following page:
Figure 11.2
In the end, if you do not want to spend more money running this, you can delete the cluster by running the following command:
PS C:\Users\1511 container clusters delete chapter11
The following clusters will be deleted.
- [chapter11] in [us-central1-c]
Do you want to continue (Y/n)? y
Deleting cluster chapter11…|
Conclusion
This chapter introduced to you the basic steps of Kubernetes. It was a very short introduction. As I mentioned earlier, it is possible to write an entire book about Kubernetes. The goal here is just to deploy an application as an example and see how it works in your local environment and on the cloud using GKE.
I recommend you to read more about Kubernetes and Istio. You will discover amazing things, like fine-grain routes, A/B tests, canary deployment, going deep into the deployment strategies, and so much more.
I have a post in my personal blog giving a short introduction to Istio. You can translate the page using Google Chrome and see what we are doing.
https://alissonmachado.com.br/istio-e-minikube-teste-a-b/
Questions
What is the tool used to orchestrate a large number of containers?
What is the name of the Kubernetes object to map a node port to a container port?
What is the Kubernetes object that represents one or more containers?
What is the Kubernetes command to apply a YAML file?
What does Ingress do?
CHAPTER 12
Logs with Open-Source Tools
This chapter aims to introduce you to the EFK stack, showing how you can retrieve the application logs, send them to a centralized server, and visualize in a dashboard.
Structure
In this chapter, we will discuss the following topics:
EFK stack
Setup the EFK stack
Shipping and centralizing logs with Fluentd and Elasticsearch
Visualizing logs with Kibana
Objectives
After studying this unit, you should be able to:
Know about EFK stack
Send logs to an elasticsearch using Fluentd
Search for the logs using Kibana
Create alerts
EFK
Elasticsearch, Fluentd, and Kibana; this stack is famous around the Kubernetes environments. Often, we can see a DaemonSet of FluentD running on all the nodes retrieving the logs and sending them to an Elasticsearch Server which will index the logs and parse them, thus, making it easy to search the specific events based on your criteria. Kibana is the web interface that can be connected to an elasticsearch in order to visualize the data. Otherwise, we would have to make requests to the elasticsearch API. Kibana also gives us many features, like creating graphics based on logs. Thus, we can create visualizations of how many errors the application raised in the last two hours. Or, in another example, we could count the HTTP status codes and order them based on the number of requests. 40 requests returned status 400, 500 requests return status 200, 10 requests returned status 500, etc.
Setup the EFK Stack
We will have the following scenario; we are going to set up the elastichsearch and Kibana in a virtual machine using Vagrant and the Fluentd will run within our minikube cluster to ship the logs from the running applications to the remote server, and we will visualize it in a centralized way.
The Vagrant file is as follows:
-*- mode: ruby -*-
vi: set ft=ruby :
All Vagrant configuration is done below. The "2" in Vagrant.configure
configures the configuration version (we support older styles for
backwards compatibility). Please don't change it unless you know what
you're doing.
Vagrant.configure("2") do |config|
config.vm.box = "ubuntu/bionic64"
config.vm.define "efk" do |efk|
efk.vm.network "private_network", ip: "192.168.99.50"
efk.vm.hostname = "efk"
config.vm.provider "virtualbox" do |v|
v.memory = 4096
end
efk.vm.provision "shell", inline: <<-SHELL
apt clean
wget -qO - https://artifacts.elastic.co/GPG-KEY-Elasticsearch | apt-key add -
apt-get install apt-transport-https -y
echo "deb https://artifacts.elastic.co/packages/7.x/apt stable main" | tee -a /etc/apt/sources.list.d/elastic-7.x.list
apt-get update
apt-get install Elasticsearch kibana -y
#sed -i "s/#network.host: 192.168.0.1/network.host: 0.0.0.0/g" /etc/Elasticsearch/Elasticsearch.yml
#sed -i "s/#discovery.seed_hosts: \[\"host1\", \"host2\"\]/discovery.seed_hosts: \[\]/g" /etc/Elasticsearch/Elasticsearch.yml
#sed -i "s/#server.host: \"localhost\"/server.host: \"0.0.0.0\"/g" /etc/kibana/kibana.yml
#/etc/init.d/kibana restart
#/etc/init.d/Elasticsearch start
SHELL
end
end
Provision your VM using the following command:
vagrant up --provision
When the server is ready, we have to change some configurations. First, enable the elasticsearch to listen to all the addresses by the following command:
sed -i "s/#network.host: 192.168.0.1/network.host: 0.0.0.0/g" /etc/Elasticsearch/Elasticsearch.yml
Second, change the seed hosts by the following command:
sed -i "s/#discovery.seed_hosts: \[\"host1\", \"host2\"\]/discovery.seed_hosts: \[\]/g" /etc/Elasticsearch/Elasticsearch.yml
Third, you must define that it is a single node cluster by the following command:
echo "discovery.type: single-node">> /etc/Elasticsearch/Elasticsearch.yml
Fourth, change the Kibana configuration to listen to all the addresses as well by the following command:
sed -i "s/#server.host: \"localhost\"/server.host: \"0.0.0.0\"/g" /etc/kibana/kibana.yml
Then, you can restart the services by running the following command:
root@efk:~# /etc/init.d/kibanarestart
d/Elasticsearch start
kibana started
root@efk:~# /etc/init.d/Elasticsearchstart
[….] Starting Elasticsearch (via systemctl): Elasticsearch.service
If you did all the steps correctly, you can check the service ports using the command ss
Figure 12.1
The Kibana is running on port 5601. Now, you can use the following address to check the interface.
http://192.168.99.50:5601
Figure 12.2
The server takes a while to start. If it takes about 10 minutes, do not worry.
At this moment, we do not have to do anything else in this server, so, let's go to the minikube and run the FluentD to ship the logs. After that, we will come back to the Kibana server and see the logs.
Running Fluentd
First of all, let's setup the minikube environment with the following command:
PS C:\Users\1511 MXTI\Documents\Blog\EKF> minikube delete
* Deleting "minikube" in virtualbox …
* Removed all traces of the "minikube" cluster.
PS C:\Users\1511 MXTI\Documents\Blog\EKF> minikube.exestart
* minikube v1.11.0 on Microsoft Windows 10 Pro 10.0.19041 Build 19041
* Automatically selected the virtualbox driver
* Starting control plane node minikube in cluster minikube
* Creating virtualbox VM (CPUs=2, Memory=6000MB, Disk=20000MB) …
* Preparing Kubernetes v1.18.3 on Docker 19.03.8 …
* Verifying Kubernetes components…
* Enabled addons: default-storageclass, storage-provisioner
* Done! kubectl is now configured to use "minikube"
I deleted my existing environment and started a fresh environment to make sure that we have exactly the same environment. With the Kubernetes environment running, we will set up the DaemonSet using the following file:
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: fluentd
namespace: kube-system
labels:
k8s-app: fluentd-logging
version: v1
spec:
selector:
matchLabels:
name: fluentd
template:
metadata:
labels:
name: fluentd
k8s-app: fluentd-logging
version: v1
kubernetes.io/cluster-service: "true"
spec:
containers:
- name: fluentd
image: fluent/fluentd-kubernetes-daemonset:v1-debian-Elasticsearch
env:
- name: FLUENT_ELASTICSEARCH_HOST
value: "192.168.99.50"
- name: FLUENT_ELASTICSEARCH_SSL_VERIFY
value: "false"
- name: FLUENT_ELASTICSEARCH_PORT
value: "9200"
- name: FLUENT_ELASTICSEARCH_SCHEME
value: "http"
- name: FLUENT_UID
value: "0"
- name: FLUENT_LOGSTASH_FORMAT
value: "true"
- name: FLUENT_LOGSTASH_PREFIX
value: "fluentd"
- name: FLUENTD_SYSTEMD_CONF
value: "disable"
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers
It is a Kubernetes object which is responsible to run the same pod on every node of the cluster. The difference between a normal pod and a DaemonSet is that a pod is mandatory on every node, if you are deploying an application, not necessary you have to run the application on all nodes:
kubectl apply -f .\fluentd.yaml
daemonset.apps/fluentd configured
The preceding command will run the DaemonSet in your cluster. To check if it is running, you can run the following command:
PS C:\Users\1511 MXTI\DataLake> kubectl get daemonset -n kube-system
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
fluentd 1 1 1 1 1 7m26s
kube-proxy 1 1 1 1 1 kubernetes.io/os=linux 13h
It is important to check the logs, because starting from now, the logs must be sent to the elasticsearch server:
PS C:\Users\1511 MXTI\DataLake> kubectl logs daemonset/fluentd -n kube-system
Visualizing the Logs
Now, we can go back to the Kibana dashboard, because the logs must have already been shipped to the server. The next goal is to visualize them. In the initial page, click on the option Explore on my Then, click on the top left and discover the logs:
Figure 12.3
Now, we can create an index that matches with all the logs stored. We can do that once that cluster is used only for this Kubernetes environment. If you will use the same elasticsearch for all the logs of the company, it would be better to create different indexes for each case:
Figure 12.4
We must define the Index Pattern as which will get all the logs:
Figure 12.5
You can select the time filter as a timestamp. If we go again to the discovery part and select logs from 3 months ago, we will be able to see that the logs are already in the Elasticsearch. Of course, we do not need to put 3 months ago, but I just wanted to make sure that we will see all the present logs:
Figure 12.6
If you look on the left side, you can find some Kubernetes elements. You can play around that because, now, we do not need to access the Kubernetes cluster to access the logs.
Let's deploy an application and see how we can check the logs:
Kubectl create ns chapter11
Create a namespace, called Chapter11: Deploying and Scaling your Application using because we will use the same application used in the last chapter. The yaml file for the application is as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
name: python
namespace: chapter11
labels:
app: python
spec:
replicas: 1
selector:
matchLabels:
app: python
template:
metadata:
labels:
app: python
spec:
containers:
- name: python
image: alissonmenezes/python:latest
ports:
- containerPort: 8080

apiVersion: v1
kind: Service
metadata:
labels:
app: python
name: python
namespace: chapter11
spec:
ports:
- name: http
port: 80
protocol: TCP
targetPort: 8080
selector:
app: python
type: ClusterIP

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: python
labels:
app: python
namespace: chapter11
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
backend:
serviceName: python
servicePort: 80 Run the following command now:
PS C:\Users\1511 MXTI\Documents\Blog\EKF> minikube.exe ip
192.168.99.102
The Kubernetes IP is 192.168.99.102. We will use it to access the application. Make sure that you have enabled the ingress with the following command:
PS C:\Users\1511 MXTI\DataLake> minikube.exe addons enable ingress
* The 'ingress' addon is enabled
If we access the application on the browser, we will see the following page:
Figure 12.7
If we go to the applications logs on Kubernetes, we can see the following:
PS C:\Users\1511 MXTI\DataLake> kubectl logs deploy/python -n chapter11
* Running on http://0.0.0.0:8080/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 954-738-244
172.17.0.6 - - [28/Jun/2020 10:22:16] "GET / HTTP/1.1" 200 -
172.17.0.6 - - [28/Jun/2020 10:22:17] "GET /favicon.ico HTTP/1.1" 404 -
172.17.0.6 - - [28/Jun/2020 10:22:18] "GET / HTTP/1.1" 200 -
172.17.0.6 - - [28/Jun/2020 10:22:18] "GET / HTTP/1.1" 200 -
It means that we generated some logs, and then we can see those on the Kibana. Let's give a look. First, we need the pod name:
PS C:\Users\1511 MXTI\DataLake> kubectl get pods -n chapter11
NAME READY STATUS RESTARTS AGE
python-779879dbb6-wrw2g 1/1 Running 0 44m
And the query on Kibana will be like this:
kubernetes.pod_name:python-779879dbb6-wrw2g
The syntax is: key : value. Then, the first parameter is the respective element that you want to filter. The colon, : , represents the equal and in the end, you have the value used as a criteria.
The Kibana page you will see will be like the following screenshot:
Figure 12.8
Let's analyze the log because we have an important information to check:
Figure 12.9
Pay attention, the pod_name matches with the criteria, and the log has the logline that we saw on the Kubernetes. Now, we are sure that the logs were sent to elasticsearch. We can visualize them on Kibana and now, we can create a specific visualization to simplify the log analysis.
Creating alerts
With the logs within the elasticsearch and we know how to find them, let's create some alerts which will notify us when an event happens. The event can be defined by you, can return a status status or for example, part of an error message.
In our case, every time that someone tries to access a non-existing page, it will return the 404 status and it will send a notification. In order to do that, we will use a tool called It is a tool in Python which will connect to our elasticsearch, will read the logs, and send the notifications.
Within the EFK stack, let's install it.
root@efk:~# apt install python3-pip -y
root@efk:~# python3 -m pip install elastalert
Sometimes, we may face an issue because of the other modules version. The most important module for the ElastAlert is the PyYAML. So, let's upgrade it to make sure that we are using the latest version:
root@efk:~# python3 -m pip install PyYAML --upgrade
Once ElastAlert is installed, we need to connect it with elasticsearch. To do it, run the following command:
root@efk:~# elastalert-create-index
Enter Elasticsearch host: 127.0.0.1
Enter Elasticsearch port: 9200
Use SSL? t/f: f
Enter optional basic-auth username (or leave blank):
Enter optional basic-auth password (or leave blank):
Enter optional Elasticsearch URL prefix (prepends a string to the URL of every request):
New index name? (Default elastalert_status)
New alias name? (Default elastalert_alerts)
Name of existing index to copy? (Default None)
Elastic Version: 7.8.0
Reading Elastic 6 index mappings:
Reading index mapping 'es_mappings/6/silence.json'
Reading index mapping 'es_mappings/6/elastalert_status.json'
Reading index mapping 'es_mappings/6/elastalert.json'
Reading index mapping 'es_mappings/6/past_elastalert.json'
Reading index mapping 'es_mappings/6/elastalert_error.json'
New index elastalert_status created
Done!
So, the next step is to create the which is the file where the elasticsearch server is configured:
root@efk:~# cat config.yaml
rules_folder: rules
run_every:
minutes: 1
buffer_time:
minutes: 15
es_host: 127.0.0.1
es_port: 9200
writeback_index: elastalert_status
writeback_alias: elastalert_alerts
alert_time_limit:
days: 2
Now, we need to create a rule. The ElastAlert will run the query every minute checking if we have the logs which match the criteria. Create a folder, called rules with the following command:
root@efk:~# ls
config.yaml rules
root@efk:~# mkdir rules
root@efk:~# pwd
/root
Within the rules folder, create a file, called alert_404.yml with the following content:
es_host: 192.168.99.50
es_port: 9200
name: Alerting 404
type: frequency
index: "*"
num_events: 1
timeframe:
hours: 24
filter:
- query:
wildcard:
log: "404"
alert:
- slack:
slack_webhook_url: "https://hooks.slack.com/services/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"
I created a workspace on Slack, where I created a web hook. If you want to know more about that, you can check the documentation later on. But, for now, the most important thing is to see if it is working. So, let's run the ElastAlert with the following command:
root@efk:~# elastalert --rule rules/alert_404.yml --verbose
1 rules loaded
INFO:elastalert:Starting up
INFO:elastalert:Disabled rules are: []
INFO:elastalert:Sleeping for 9.999665 seconds
Now, you can try to access a non-existing page, like the following screenshot:
Figure 12.10
This access should generate a log with the 404 status. You probably saw a log like this on
INFO:elastalert:Queried rule Alerting 404 from 2020-06-30 18:54 UTC to 2020-06-30 18:57 UTC: 2 / 2 hits
INFO:elastalert:Ran Alerting 404 from 2020-06-30 18:54 UTC to 2020-06-30 18:57 UTC: 2 query hits (2 already seen), 0 matches, 0 alerts sent
INFO:elastalert:Background configuration change check run at 2020-06-30 18:57 UTC
INFO:elastalert:Background alerts thread 0 pending alerts sent at 2020-06-30 18:57 UTC
It means that our alert is working and I should have received a notification on Slack:
Figure 12.11
As you saw in the preceding image, I received the notification on Slack with the logs where I can see the error and check what is happening with the application.
Of course, you can explore more ElastAlert and configure different types of alerts, using email, for example. However, many companies now are changing from email to Slack or similar tools. That is why, I used it as an example.
Conclusion
This chapter was a short explanation of how we can set up an environment using the EFK stack and Kubernetes. The same steps work on Cloud or on-premises environments. This whole chapter aimed to show you a short explanation about everything that is possible to do using the DevOps technologies. For each chapter, we could have written a whole book. However, in my view, it is very important to have a general overview about different topics, because, you will be able to think what is possible to do and what the people are using for different cases. And after that, you can go deep in each one of the solutions represented here or find their alternatives.
Index
A
Advanced Package Tool (APT)
Amazon Web Services (AWS)
about 120
provisioning
Apache
installing 65
autopep8 module 203
Azure
about 121
provisioning
B
Bash
C
CI, development stages
end-to-end test 189
integration test 189
quality test 189
unit test 188
CI, stages
development 188
production 188
staging 188
Cloud
about 120
deploying
code.txt file 174
Command Line Interpreter (CLI) 31
Consul
about 146
reference link 146
Continuous Delivery (CD) 189
Continuous Integration (CI) 189
D
Dandified Yum (DNF) 58
Database Management System 67
deployment 214
directories
managing 35
structure 36
distributions 3
distributions, Linux
Community Enterprise Operating System (CentOS) 3
Debian 3
RedHat Enterprise Linux 3
SUSE 3
Ubuntu 3
Docker
about 88
container, creating
images, creating with Dockerfile
installing 88
Docker server
setting up
E
EFK Stack
alerts, creating
Fluentd, running 229
logs, visualizing
setting up
ElastAlert tool 235
Elasticsearch, Fluentd, and Kibana (EFK) 224
F
files
importance
managing 35
Flask
used, for creating simple page
G
Git
GitFlow
GitHub
about
URL 178
Git installation
reference link 172
GNU project
reference link 2
Google Cloud Platform (GCP) 120
provisioning
Google Cloud Shell
reference link 133
groups
managing
H
HashiCorp 146
I
Infrastructure as Code (IaC) 102
ingress 214
K
Keyboard Video Mouse (KVM) 22
Kubernetes
Kubernetes objects 214
kube-system 214
Kurumin Linux
reference link 2
L
lamp 108
LAMP server
setting up
Linux
about 2
distributions 3
reference link 2
servers 4
Linux environment
accessing, via SSH
Linux system, installing
setting up 5
VirtualBox, installing 9
Linux permission system
file owner, modifying 56
read and write permissions, modifying
scripts, executing 56
working with 53
Linux system
installing
M
MariaDB
installing
metadata 32
Minix 2
multicloud 146
N
namespace 214
Nginx
installing
Nomad
about 146
reference link 146
P
package installation
learning 58
Packer
about 146
URL 110
PEP 333 page
reference link 83
Personal Packages Archines (PPA) 63
PHP
installing 67
pipeline
as code
as Jenkins
defining 188
pod 214
Pull Request (PR) 185
Python
installing 81
simple page, creating with Flask
R
Reverse Proxy
configuring 85
S
servers 4
service 214
SoftLayer 120
T
Terraform
about 170
reference link 146
U
Ubuntu server
reference link 9
users
managing
V
Vagrant
about 146
installing
reference link 102
running
usage
working 102
Vagrant Cloud
URL 110
Vault
about 146
reference link 146
VirtualBox
installing
reference link 5
W
Web Server Gateway Interface (WSGI) 83
WordPress
installing
Y
Yellow Dog Update Manager (YUM) 58
Table of Contents