

 [image: Cover image]
 Book cover of IoT Projects with NVIDIA Jetson Nano

 Agus Kurniawan
IoT Projects with NVIDIA Jetson Nano
AI-Enabled Internet of Things Projects for Beginners
1st ed.
[image: ../images/502249_1_En_BookFrontmatter_Figa_HTML.png]Logo of the publisher

Agus KurniawanFaculty of Computer Science, Universitas Indonesia, Depok, Indonesia

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.​apress.​com/​978-1-4842-6451-5. For more detailed information, please visit http://​www.​apress.​com/​source-code.

				ISBN 978-1-4842-6451-5e-ISBN 978-1-4842-6452-2
https://doi.org/10.1007/978-1-4842-6452-2
© Agus Kurniawan 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

Table of Contents

Chapter 1:​ Introduction to NVIDIA Jetson Nano
1

Introduction
1

NVIDIA Jetson Nano Hardware Specifications
3

What Can We Do with NVIDIA Jetson Nano?​
4

Daily Computer Activities
4

Internet of Things Development
5

AI Development
6

Summary
6

Chapter 2:​ Setting Up and Running
7

Introduction
7

Hardware Preparation
8

Set Up Software
9

Run NVIDIA Jetson Nano
11

Configure NVIDIA Jetson Nano Software
13

Terminal
15

Restart and Shut Down
17

Summary
19

Chapter 3:​ Administering NVIDIA Jetson Nano
21

Introduction
22

Desktop Personalization
22

Working with Terminal
23

pwd
24

ls
24

cd
26

mkdir and rmdir
26

rm
27

touch
27

sudo
27

cp
27

mv
28

which
28

Managing Users
28

Managing Users with GUI
29

Managing Users with Terminal
31

Connecting to a Network
33

Connecting to Wi-Fi Network
34

Wi-Fi Network Card Module
35

Wi-Fi USB Dongle
36

Browsing the Internet
37

Office Administration
38

SSH
39

Access Remote Files over SFTP
41

Update Package Repository
43

Remote Desktop
43

Summary
47

Chapter 4:​ NVIDIA Jetson Nano Programming
49

Introduction
49

Editor Tools
50

C/​C++
54

Python
57

Node.​js
61

Summary
62

Chapter 5:​ NVIDIA Jetson Nano I/​O Programming
63

Introduction
64

Setting Up GPIO
66

GPIO Programming
68

Sensor Programming
73

Actuator Programming
80

Summary
83

Chapter 6:​ NVIDIA Jetson Nano Camera
85

Introduction
86

Camera Interfaces and Modules
86

Set Up Camera Module
88

Install OpenCV for Python3s
90

Displaying Live Video
91

Displaying Video with USB Camera
91

Displaying Video with Camera CSI
94

Taking a Picture
97

Taking a Picture with Camera USB
97

Taking a Picture with Camera CSI
99

Recoding Video
101

Summary
105

Chapter 7:​ Deep-Learning Computation
107

Introduction
107

Setting Up Jetson Inference Library
108

Data Classification
111

Opening an Image File
114

Live Video from Camera CSI
115

Locating Objects with DetectNet
116

Summary
119

Index
121

About the Author

Agus Kurniawanis a lecturer, IT consultant, and author. He has fifteen years of experience in various software and hardware development projects, delivering materials in training and workshops, and technical writing. He has been awarded the Microsoft Most Valuable Professional (MVP) award fifteen years in a row.
Agus is a lecturer and researcher in the field of networking and security systems at the Faculty of Computer Science, Universitas Indonesia, Indonesia. Currently, he is pursuing a PhD in computer science at the Freie Universität in Berlin, Germany. He can be reached on Twitter at @agusk2010.

About the Technical Reviewer

Sai Yamanooris an embedded systems engineer working for an industrial gases company in Buffalo, New York. His interests, deeply rooted in DIY and open source hardware, include developing gadgets that aid behavior modification. He has published two books with his brother, and in his spare time he likes to contribute to building things that improve quality of life. You can find his project portfolio at
http://saiyamanoor.com
.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_1

1. Introduction to NVIDIA Jetson Nano

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

NVIDIA Jetson Nano is an NVIDIA product that can implement IoT solutions with the power of GPU computation. This board has GPIO pins and a GPU core to help developers, makers, and IT users build programs easily. In this chapter, we will get a brief introduction to NVIDIA Jetson Nano.
We will cover the following topics:	Introduction to NVIDIA Jetson Nano

	Exploration of technical specifications of NVIDIA Jetson Nano

	Exploration of NVIDIA Jetson Nano’s functionalities

Introduction
The Nvidia Jetson Nano was announced as a development system in mid-March of 2019. This product is intended for Internet of Things (IoT) makers. The board consists of a CPU with 1.43 GHz and a GPU with 128 cores of the Maxwell generation.
The first model of NVIDIA Jetson that was released for the consumer public can be seen in Figure 1-1. It’s called NVIDIA Jetson Nano A02. Now, NVIDIA has releasee a new model, the NVIDIA Jetson Nano B01. Technically, both models have the same CPU and GPU, but some peripherals are changed. You can see the NVIDIA Jetson Nano B01 in Figure 1-2. In this chapter, we will review the specifications of the NVIDIA Jetson Nano.[image: ../images/502249_1_En_1_Chapter/502249_1_En_1_Fig1_HTML.jpg]
Figure 1-1NVIDIA Jetson Nano A02

[image: ../images/502249_1_En_1_Chapter/502249_1_En_1_Fig2_HTML.jpg]
Figure 1-2NVIDIA Jetson Nano B01

NVIDIA Jetson Nano Hardware Specifications
In general, NVIDIA Jetson Nano has the technical specifications shown in Table 1-1. You can see it has a GPU with 128 cores. This feature is useful if you want to perform high computation on this machine.Table 1-1NVIDIA Jetson Nano Features

	Feature
	Information

	GPU
	128-core Maxwell

	CPU
	Quad-core ARM A57 @ 1.43 GHz

	Memory
	4 GB 64-bit LPDDR4 25.6 GB/s

	Storage
	microSD

	Video Encode
	4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30 (H.264/H.265)

	Video Decode
	4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 30 (H.264/H.265)

	Camera
	2x MIPI CSI-2 DPHY lanes

	Connectivity
	Gigabit Ethernet, M.2 Key E

	Display
	HDMI and display port

	USB
	4x USB 3.0, USB 2.0 Micro-B

	I/O
	GPIO, I2C, I2S, SPI, UART

	Mechanical
	69 mm x 45 mm, 260-pin edge connector

To obtain an NVIDIA Jetson Nano board, you can visit the official website at https://developer.nvidia.com/buy-jetson?product=jetson_nano. You can see NVIDIA distributors that sell NVIDIA Jetson Nano.
You can also obtain this board at your local electronic store. You could probably find it on online stores such as SparkFun or SeeedStudio.
What Can We Do with NVIDIA Jetson Nano?
NVIDIA Jetson Nano is designed for general purposes to address computer problems. Let’s see what we can do.
Daily Computer Activities
We can say the NVIDIA Jetson Nano is a computer of small size. Since NVIDIA Jetson Nano is a computer, we can treat it as an everyday computer. We can browse the internet to look for information.
We also can use it for daily computer activities such as writing documents, creating spreadsheets, and printing documents. We can install office applications from LibreOffice. By default, LibreOffice is already included in the NVIDIA Jetson Nano image. You can see my LibreOffice application in Figure 1-3.
The user must just provide a keyboard, mouse, and monitor so as to make their own personal computer. It’s useful to apply for teaching on classroom or computer lab activities.[image: ../images/502249_1_En_1_Chapter/502249_1_En_1_Fig3_HTML.jpg]
Figure 1-3Running LibreOffice application on NVIDIA Jetson Nano

Internet of Things Development
The primary goal for NVIDIA Jetson Nano is to build IoT solutions. We can add sensor and actuator modules to NVIDIA Jetson Nano devices. The board provides a GPIO interface so as to be attached to external device modules.
Other I/O interfaces such as serial communication, SPI, and I2C can be accessed from our program. This board can leverage your IoT business and projects.
Programming platforms like C/C++ and Python are supported in the NVIDIA Jetson Nano image. Since this image uses operating system–based Ubuntu, we can install various compilers and applications, including web applications and databases.
We will explore these features, IoT, and software applications in Chapters 4 and 5.
AI Development
NVIDIA Jetson Nano has a GPU with 128 cores. This resource can be used for AI applications. We can run Pandas, Numpy, Tensorflow, and Keras on an NVIDIA Jetson Nano board.
We only focus on how to build AI programs. NVIDIA Jetson Nano will take over your computations. To obtain optimized computation, make sure your library and program support GPU cores from NVIDIA Jetson Nano.
If you have interest in computer vision, you can apply NVIDIA Jetson Nano to do that. You can attach external cameras via the CSI interface or USB camera. By installing the OpenCV library, we can utilize NVIDIA Jetson Nano to create great computer vision programs. OpenCV library provides various image and video processing libraries. We can use it on your programs such as C/C++ and Python directly. In addition, OpenCV consists of machine learning libraries like face recognition.
We will explore AI computation on NVIDIA Jetson Nano in Chapters 6 and 7.
Summary
We have explored what NVIDIA Jetson Nano is. We also learned what one does with it.
Next, we will learn how to set up NVIDIA Jetson Nano in order to get started with this board.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_2

2. Setting Up and Running

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

This chapter explores how to set up NVIDIA Jetson Nano in order to run the system. We can install and configure all software on the NVIDIA Jetson Nano device.
We will cover the following topics:	Preparing hardware

	Setting up software

	Running NVIDIA Jetson Nano

	Configuring NVIDIA Jetson Nano software

	Working with Terminal

	Restarting and shutting down

Introduction
NVIDIA Jetson Nano can be treated as a mini computer. You will need some hardware and software stuff, such as mouse, keyboard, and monitor.
Hardware Preparation
We prepare some hardware for NVIDIA Jetson Nano on this section

. Since this board does not have internal storage, you need external storage. The board only supports a microSD card for internal storage. This storage device will be used to store the operating system (OS) and data. You probably need a microSD card reader to enable you to work with your computer to read and write files. Figure 2-1 shows my NVIDIA Jetson Nano, microSD card, and microSD card reader.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig1_HTML.jpg]
Figure 2-1MicroSD card and NVIDIA Jetson Nano

In general, you’ll need some additional hardware to run your NVIDIA Jetson Nano device. The following are required additional devices:	MicroSD card with 16 GB storage size minimum

	MicroSD card reader to write and read files from a computer

	Mouse with USB wired

	Keyboard with USB wired

	Power adapter 5V 2A

	Micro USB cable for power adapter

	Monitor with HDMI connector

You can find these items at local and online stores. Some electronics stores also provide an NVIDIA Jetson Nano package that contains all required hardware to set up the NVIDIA Jetson Nano system environment.
After you complete the hardware requirements, you can prepare the software needed to get the NVIDIA Jetson Nano running. We will set up the software in the next section.
Set Up Software
The NVIDIA Jetson Nano uses its own OS to run its applications. This OS is based on Ubuntu Linux. If you have experience with Ubuntu Linux, you can perform any Ubuntu activity on an NVIDIA Jetson Nano.
You can download the Jetson Nano Developer Kit SD Card Image from https://developer.nvidia.com/jetson-nano-sd-card-image. You will get a ZIP file for the image file.
Next, you will need to flash the NVIDIA image file onto the microSD card. Depending on your OS platform, you can do so using some tools, such as SD Memory Card Formatter for Windows.
For this demo, we use the Etcher tool to flash the NVIDIA image file onto a microSD card. This tool is available for Windows, Linux, and macOS. You can see the form of the Etcher tool in Figure 2-2.
Plug your microSD card with reader into your computer. Now you are ready to flash the NVIDIA Jetson Nano image.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig2_HTML.jpg]
Figure 2-2Etcher application

You can start to flash the image file by selecting image file. Select NVIDIA image file (ZIP file). Then, select your microSD card. If your microSD card is not recognized by your OS, you can format your microSD card with FAT mode. File Allocation Table (FAT) usualy is used in a personal computer with Windows OS.
Now you can start to flash the NVIDIA Jetson Nano image onto your microSD card. Click the Flash! button. You will be asked to give administrator permission to flash the image. This process takes a few minutes to complete.
You will get confirmation after completing the flashing. Figure 2-3 shows a completion of flashing image with the Etcher application.
You can unplug your microSD card from your computer if you have finished flashing the image file. Then, you can put it on the NVIDIA Jetson Nano device.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig3_HTML.jpg]
Figure 2-3Flashing Jetson Nano Developer Kit SD card image

Run NVIDIA Jetson Nano
In this section, we will run NVIDIA Jetson Nano for the first time. After you have flashed the NVIDIA Jetson Nano image onto the microSD card, you can attach the card to the NVIDIA Jetson Nano board. You can put it on the back of the processor module. Figure 2-4 shows an attached microSD card on an NVIDIA Jetson Nano.
You can plug the keyboard, mouse, and monitor into the NVIDIA Jetson Nano device. To power the NVIDIA Jetson Nano device, you can use DC jack power or micro USB power. In my case, I use micro USB power with power adapter 5V, 2A. You can see my configuration in Figure 2-5. I also attached a keyboard and mouse to the board.
If you use a power adapter on the DC jack, please make sure you use a jumper on the Power Select Header from NVIDIA Jetson Nano.
After you have plugged all your peripherals into the NVIDIA Jetson Nano device, you will get a confirmation page. You will be asked to configure your board. We will configure NVIDIA Jetson Nano in the next section.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig4_HTML.jpg]
Figure 2-4Plugging microSD card into NVIDIA Jetson Nano device

[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig5_HTML.jpg]
Figure 2-5Plug in keyboard, mouse, monitor, and power adapter

Configure NVIDIA Jetson Nano Software
After you’ve plugged in a power adapter, you can configure the NVIDIA Jetson Nano for the first time. There are some settings that you should complete; use the keyboard and mouse.
First, you get a form for agreement as shown in Figure 2-6. You should accept this agreement if you want to continue to use the NVIDIA Jetson Nano device. Click the Continue button.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig6_HTML.jpg]
Figure 2-6User agreement on NVIDIA Jetson Nano

Furthermore

, you will be asked to select a language for all text on the NVIDIA Jetson Nano. You also can set keyboard type and time zone for local region. Last, create your account for the NVIDIA Jetson Nano. Enter full name, username, and password, as shown in Figure 2-7. Also, set the authentication model. It’s recommended you use the Require my password to log in option.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig7_HTML.jpg]
Figure 2-7Creating a new account

If your NVIDIA Jetson Nano is connected to the internet through a LAN cable or Wi-Fi module, you can connect to the internet. Then, you can update the NVIDIA Jetson Nano software. We will discuss the NVIDIA Jetson Nano network in the next chapter.
After completing all tasks, you will see the NVIDIA Jetson Nano desktop. This desktop is based on Ubuntu Linux. Figure 2-8 shows the desktop. You can perform normal activities as you would on any computer, such as creating and editing files, browsing the internet, chatting, and so forth.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig8_HTML.jpg]
Figure 2-8NVIDIA Jetson Nano desktop

Terminal
Since the NVIDIA Jetson Nano image is built from Ubuntu, you can use Terminal to perform administration tasks, such as creating/editing files and folders or compiling and executing programs. Mostly, people perform Linux administration with Terminal.
You can find NVIDIA Jetson’s Terminal by clicking Search on the top left. Type “Terminal” so you can see the Terminal application, as shown in Figure 2-9. After clicking the Terminal icon, you will get the Terminal application, as shown in Figure 2-10.
For a demo, you can type this command in Terminal. You will get Linux information inside the board.uname -a

Press the Enter key after typing that command. The following is a program output from the umane -a command.Linux JETSON1 4.9.140-tegra #1 SMP PREEMPT Thu Jun 25 21:25:44 PDT 2020 aarch64 aarch64 aarch64 GNU/Linux

[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig9_HTML.jpg]
Figure 2-9Opening Terminal on NVIDIA Jetson Nano

[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig10_HTML.jpg]
Figure 2-10Terminal application

If you want to close the Terminal application, you can type this command:exit

Now you can perform administration tasks using Terminal. We will learn more on this topic in the next chapter.
Restart and Shut Down
Sometimes you want to reboot your NVIDIA Jetson Nano OS after completing system configurations. You can reboot it manually. You can click the Settings icon at the top right of the NVIDIA Jetson Nano desktop. You will get a menu, as shown in Figure 2-11. Select Shut Down from the menu.
After doing so, you will get a confirmation dialog, as shown in Figure 2-12. There are two options: Shut Down and Restart. Select Restart to reboot the NVIDIA Jetson Nano.
You can also reboot NVIDIA Jetson Nano via Terminal. You can open Terminal by pressing the CTRL and T keys simultaneously. After opening Terminal, you can type this command:sudo reboot

The NVIDIA Jetson Nano device will reboot automatically. Make sure you save all data before you perform a reboot.[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig11_HTML.jpg]
Figure 2-11Opening a menu for Shut Down

[image: ../images/502249_1_En_2_Chapter/502249_1_En_2_Fig12_HTML.jpg]
Figure 2-12A confirmation dialog for reboot and shut down

If you don’t need to use the NVIDIA Jetson Nano anymore, you can shut it down. You can do this in the same way as you did the restart task. You just select the Shut Down option on the confirmation dialog (Figure 2-12).
You also can perform a shutdown using Terminal. You can type this command:shutdown

This command will shut down the NVIDIA Jetson Nano by scheduling. It usually takes one minute. If you want to shut down the board without scheduling, you can use the shutdown command with parameter -P. You can type this command in Terminal:sudo shutdown -P now

The now parameter means we shut down the NVIDIA Jetson Nano immediately after executing this command.
Practice by working on the NVIDIA Jetson Nano desktop.
Summary
You have learned how to prepare hardware and software for the NVIDIA Jetson Nano device. We installed the Jetson Nano Developer Kit SD Card Image into a microSD card. Then, we ran and configured the NVIDIA Jetson Nano.
Next, we will continue to work with the NVIDIA Jetson Nano. We will administer the OS on NVIDIA Jetson Nano for basic administration.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_3

3. Administering NVIDIA Jetson Nano

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

The NVIDIA Jetson Nano device is a mini computer with high-end features and GPU capabilities. The board system consists of hardware and software. In this chapter, you will learn to manage the NVIDIA Jetson Nano with administration software.
You will learn some basics of device administration, such as the following:	Desktop personalization

	Terminal

	Managing users

	Connecting a network through Ethernet and Wi-Fi

	Browsing the internet

	Office administration

	SSH and SFTP

	Update package repository

	Remote desktop

Introduction
The NVIDIA Jetson Nano system consists of both hardware and software. The software is built from Ubuntu Linux. In this chapter, we will explore how to manage the NVIDIA Jetson Nano software. You can perform Linux administration tasks on the NVIDIA Jetson Nano device. We don’t cover all Linux administration tasks, but rather focus on essential ones that enable you to manage and address issues on your NVIDIA Jetson Nano device.
Desktop Personalization
The NVIDIA Jetson Nano software uses the Ubuntu desktop as its platform. After completed to run NVIDIA Jetson Nano, you will obtain an Ubuntu desktop. You can customize this desktop with different themes and wallpaper. You can perform this task through the Appearance window, as shown in Figure 3-1. You can find this tool in Settings.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig1_HTML.jpg]
Figure 3-1Customizing NVIDI Jetson Nano desktop

Working with Terminal

In the previous chapter, we learned how to get started with Terminal. Now, you can manage your NVIDIA Jetson Nano via Terminal. You can open Terminal by pressing CTRL + T

. It will look as shown in Figure 3-2.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig2_HTML.jpg]
Figure 3-2Terminal on NVIDIA Jetson Nano

Some basic NVIDIA Jetson Nano Terminal commands include the following:	pwd

	ls

	cd

	mkdir & rmdir & rm

	touch

	sudo

	cp

	mv

	which

We will explore these Linux commands in the next section.
pwd
You can find out the current directory that you are working in using the pwd command. You can type it in Terminal as follows:pwd

Then, you can see your current directory. This is a sample output from the pwd command:$ pwd
/home/agusk

ls
The ls command

 is used to list the files and directories found in the current folder. For instance, you can type this command:$ ls
Desktop Documents Downloads examples.desktop jetson-inference Music Pictures Public Templates Videos

You can also set the -l parameter on the ls command to get the details of the listing result. You can see the following sample of the ls -l command:$ ls -l
total 48
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Desktop
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Documents
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Downloads
-rw-r--r-- 1 agusk agusk 8980 Jul 27 12:15 examples.desktop
drwxrwxr-x 13 agusk agusk 4096 Jul 27 12:53 jetson-inference
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Music
drwxr-xr-x 2 agusk agusk 4096 Jul 28 11:49 Pictures
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Public
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Templates
drwxr-xr-x 2 agusk agusk 4096 Jul 27 12:17 Videos

So far, we have performed the ls command on the current directory. You can specify a target directory as well. For instance, if you want to see a list of the files and directories found in the /var/log folder:$ ls /var/log
alternatives.log btmp installer syslog Xorg.0.log
alternatives.log.1 btmp.1 kern.log syslog.1 Xorg.0.log.old
apt dpkg.log kern.log.1 tallylog Xorg.1.log
auth.log dpkg.log.1 lastlog wtmp Xorg.1.log.old
auth.log.1 gdm3 oem-config.log wtmp.1

cd
This command, cd

, is used to change the current directory to another directory. For a demo, we will navigate to the Document folder from the current home directory.$ pwd
/home/agusk
$ cd Documents/
~/Documents$ pwd
/home/agusk/Documents

mkdir and rmdir
The mkdir command

 is used to create a directory. The rmdir command is used to delete an empty directory. The following is a program sample:$ ls
$ mkdir myfolder
$ ls
myfolder
$ rmdir myfolder/
$ ls
$

If you delete a directory that consists of files or directories using rmdir, you will get an error. For instance, if you tried to delete the test folder, which contains a file, you would see the following error message:$ rmdir test/
rmdir: failed to remove 'test/': Directory not empty

rm
If you want to delete a directory, including its contents, you can use the rm command with the -r parameter. For instance, if you wanted to delete the test folder and its contents, you’d use the following:rm -r test/

touch
The touch command

 allows you to create a new blank file. You can type these commands to try it out:$ touch data
$ ls
data

sudo
This command enables you to perform tasks that require administrative or root permissions. However, please don’t use sudo to perform just any task, due to security issues. For instance, if you wanted to create a folder with the sudo command, you’d type the following:$ sudo mkdir hello

After you executed the command above, you will see a folder, hello, in current folder where you are running this command
cp
You can use the cp command to copy a file from a certain directory to another directory. If you don’t specify a path, sit will just use the current directory. For demo, we want to copy a file on /var/log/auth.log to current directory. We can use dot (.) for current directory with the same file name.$ ls
data
$ cp /var/log/auth.log .
$ ls
auth.log data

mv
The mv command

 is used to move files. This command can also be used to rename files. For instance, if you wanted to rename a data file to be called newdata in the current directory, you would type these commands:$ ls
auth.log data
$ mv data newdata
$ ls
auth.log newdata

which
The which command

 is used to give the full path location of a program. For instance, if you wanted to know a location of the Python program, you’d type the following:$ which python3
/usr/bin/python3

Managing Users
During the initial system configuration process, you must create a new account. You can add additional user accounts on the NVIDIA Jetson Nano device. You can achieve this task with the desktop GUI and Terminal. We will explore these methods in the next section.
Managing Users with GUI
You can create a new user account on the NVIDIA Jetson Nano to allow that user to access the system. Open the User Account pane from Settings. The User Account pane is shown in Figure 3-3.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig3_HTML.jpg]
Figure 3-3A user account

To add a new account, click the Unlock button at the top right. Then, you’ll see a dialog for administrator permission. Enter the administrator password. After that, add or remove users by clicking the + and – icons.
If you click the + icon you will see the dialog shown in Figure 3-4. Select Account Type and fill in Full Name and Username. Click the Add button if you are finished.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig4_HTML.jpg]
Figure 3-4Adding a new account

Now you can see the new account on the list. By default, the new account is disabled. Figure 3-5 shows that the new account, Trainer 1, has disabled status.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig5_HTML.jpg]
Figure 3-5A new account on User Accounts pane

To activate this account, click the Account disabled button. Then, you will see the dialog shown in Figure 3-6. Select an action for this account; for instance, Set a password now. Then, you can enter a password for this account.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig6_HTML.jpg]
Figure 3-6Enabling user account by applying password

You can delete a user account from the NVIDIA Jetson Nano. From the account list on the User Account pane (Figure 3-5), select the account you want to delete and then select the – icon to remove the selected account.
Next, we will see how to manage accounts from the NVIDIA Jetson Nano Terminal.
Managing Users with Terminal
Ubuntu Linux on the NVIDIA Jetson Nano provides the option to manage users using Terminal. You can use the adduser command

 to create a new account. For instance, you can type this command in Terminal:sudo adduser <account>

Change <account> to your new account. After that, you will be asked to fill in the password and user information, as shown in Figure 3-7.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig7_HTML.jpg]
Figure 3-7Adding a new account with Terminal

You can delete a user by using the deluser command. For instance, if you wanted to remove the trainer2 username, you would type this command:sudo deluser trainer2

However, you can also delete a username, including its home directory, with the –remove-home parameter in the deluser command. For instance, if you wanted to delete the trainer2 account and its home directory, you’d type the following:sudo deluser --remove-home trainer2

Connecting to a Network
The NVIDIA Jetson Nano device has a built-in network module with Ethernet. We can plug a LAN cable into the Ethernet port on an NVIDIA Jetson Nano. Figure 3-8 shows my NVIDIA Jetson Nano device with a plugged-in UTP LAN cable. Once the NVIDIA Jetson Nano device is connected to a network, you can verify its IP address using the ifconfig command in Terminal.ifconfig

[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig8_HTML.jpg]
Figure 3-8Connecting a UTP LAN cable to a NVIDIA Jetson Nano

You will see the IP address of your NVIDIA Jetson Nano.
If you do not see the IP address, your network probably does not have a DHCP server. However, you can configure a static IP address on the NVIDIA Jetson Nano using Terminal. You can modify a file in /etc/network/interfaces. Use the nano program. If your NVIDIA Jetson Nano does not have this program, you can install it as follows:sudo apt-get install nano

Now, you can modify a file in /etc/network/interfaces using nano, as follows:sudo nano /etc/network/interfaces

Then, you can write a static IP address. For instance, if you wanted to set your IP address to be 192.168.1.10 and gateway IP address to be 192.168.1.1, you could write these scripts in the /etc/network/interfaces file:iface eth0 inet static
address 192.168.1.10
netmask 255.255.255.0
gateway 192.168.1.1

Save the file. Now NVIDIA Jetson Nano has a static IP address.
Connecting to Wi-Fi Network
The NVIDIA Jetson Nano doesn’t come with built-in Wi-Fi, so you need an additional device if you want to access a Wi-Fi network. There are two options: you can use a Wi-Fi module or a Wi-Fi USB dongle. We will explore these options in the next sections.
Wi-Fi Network Card Module
The NVIDIA Jetson Nano provides an e-connector to enable you to attach your Wi-Fi network card to the board. You can use Intel Dual Band Wireless-Ac 8265 w/Bluetooth 8265.NGWMG on NVIDIA Jetson Nano.
To attach the Wi-Fi network card, you should open the NVIDIA module from the board. Then, put the Wi-Fi network card into the connector. You can see my installation in Figure 3-9.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig9_HTML.jpg]
Figure 3-9Attaching Wi-Fi module into NVIDIA Jetson Nano

Now you can see a list of Wi-Fi SSIDs on your desktop. You can select a Wi-Fi SSID and enter the SSID key if it’s available.
After connecting to the internet over Wi-Fi, you can access resources such as browsing the internet, accessing files over the network, and sending emails via the browser.
Wi-Fi USB Dongle
You can use a Wi-Fi USB dongle on the NVIDIA Jetson Nano to access a Wi-Fi network. Technically, you can use any Wi-Fi USB dongle model, but your Wi-Fi USB dongle has a device driver.
I have tested Netgear and Belkin Wi-Fi USB dongle devices on my NVIDIA Jetson Nano. These devices are supported without installing a driver. Just plug in the dongle to the USB connector. Then you can use this device immediately.
Figure 3-10 shows my Netgear Wi-Fi USB dongle connected to an NVIDIA Jetson Nano. You can connect a Wi-Fi SSID from the Wi-FI SSID list. Enter the SSID key if the Wi-Fi SSD requires authentication.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig10_HTML.jpg]
Figure 3-10Plugging in Wi-Fi USB to NVIDIA Jetson Nano

Browsing the Internet
NVIDIA Jetson Nano comes with an installed Chromium browser. You can use this browser to surf the internet or to just open and send email. Figure 3-11 shows the Chromium browser accessing a website. You can find the Chromium shortcut link on the NVIDIA Jetson Nano device. Click the Chromium icon on the desktop to open the Chromium application.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig11_HTML.jpg]
Figure 3-11Browsing internet with Chromium

If you prefer to use another browser such as FireFox or Chrome, you can install it manually on NVIDIA Jetson Nano. You can download Firefox, Chrome, or Opera through the Chromium browser.
For instance, you can download Firefox from https://www.mozilla.org/en-US/firefox/new. Download and install this browser on your NVIDIA Jetson Nano. You also can install Firefox using Terminal. Type this command:sudo apt install firefox

You will get the Firefox browser on your device. Now you can surf the internet with your favorite browser.
Office Administration
NVIDIA Jetson Nano isn’t only intended for specific purposes; anyone can use this board for daily computer activities such as writing and printing documents.
You can find LibreOffice on NVIDIA Jetson Nano’s desktop. You can write documents and perform data manipulation with Spreadsheet. Figure 3-12 shows the LibreOffice application.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig12_HTML.jpg]
Figure 3-12LibreOffice on NVIDIA Jetson Nano

If you have a printer device, you can attach it to your NVIDIA Jetson Nano. You can register that printer. Then, you print documents through the LibreOffice application.
SSH
NVIDIA Jetson Nano can be managed remotely. You can use SSH to remote access the board. An SSH server has been installed on the NVIDIA Jetson Nano. You can use your SSH client application to access NVIDIA Jetson Nano.
For instance, you can use PuTTY on Windows to access the SSH server. You can download this tool from https://www.putty.org. You can see the PuTTY application in Figure 3-13. You just enter the IP address of the NVIDIA Jetson Nano. Set the SSH option on PuTTY. If finished, you can click the Open button.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig13_HTML.jpg]
Figure 3-13Accessing SSH using PuTTY in Windows

After connecting to the NVIDIA Jetson Nano, you will be challenged for security. Enter the username and password for your registered account on the NVIDIA Jetson Nano. If it succeeds, you will see Terminal, as shown in Figure 3-14.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig14_HTML.jpg]
Figure 3-14Accessing NVIDIA Jetson Nano using PuTTY

If you are working with Linux or macOS, you can access the NVIDIA Jetson Nano using the ssh command on Terminal. For instance, I use agusk as username, and my NVIDIA Jetson Nano has an IP address of 192.168.0.31. We can write this command:ssh agusk@192.168.0.31

You will see the NVIDIA Jetson Nano Terminal. Windows 10 Update April 2018 or later has an SSH client built into the command prompt. You can use the ssh command to access SSH. Figure 3-15 shows the SSH client in the command prompt being used to access NVIDIA Jetson Nano.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig15_HTML.jpg]
Figure 3-15SSH client on Windows 10 Command prompt

Now we can access the NVIDIA Jetson Nano remotely over SSH. We can manage the board, such as installing and updating libraries. We also can run programs over Terminal on SSH.
Access Remote Files over SFTP
We can download and transfer files to the NVIDIA Jetson Nano using SFTP. This is useful when you want to upload programs to the NVIDIA Jetson Nano.
We can use SFTP client with the FileZilla application. This tool is available for Windows, macOS, and Linux. You can download this tool at https://filezilla-project.org.
After downloading the FileZilla application, you can open this tool. Add a new site and then set the IP address of your NVIDIA Jetson Nano. Select SFTP for the protocol. Fill in your username and password. Figure 3-16 shows the FileZilla application for the Windows platform.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig16_HTML.jpg]
Figure 3-16SFTP client with FileZilla application

Click the Connect button if you have filled in the IP address and account information for the NVIDIA Jetson Nano. You can then see your home directory from your account. Figure 3-17 shows FileZilla accessing the NVIDIA Jetson Nano device over the SFTP network.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig17_HTML.jpg]
Figure 3-17Accessing SFTP on NVIDIA Jetson Nano

Now you can download and upload files to your NVIDIA Jetson Nano using FileZilla. You can also create, edit, and delete directories.
Update Package Repository
Some libraries on the NVIDIA Jetson Nano device are probably outdated, so you should update your package repository. You can perform this task in Terminal by typing this command:sudo apt-get update

Make sure your NVIDIA Jetson Nano device is connected to the internet. The repository list is updated. You can upgrade all applications using the following command:sudo apt-get upgrade

Remote Desktop
Sometimes you want to remote your NVIDIA Jetson Nano board from your computer. We can use remote desktop application. You can utilize the remote desktop functionality on the NVIDIA Jetson Nano using the nano server. This library is already installed on the NVIDIA Jetson Nano image. To run nano server, you should log in to the NVIDIA Jetson Nano desktop. Then, open Terminal. Type this command:$ /usr/lib/vino/vino-server

Now a nano server is running. You can see my nano server is running in Figure 3-18. Next, you can open the VNC client application to access the NVIDIA Jetson Nano desktop remotely.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig18_HTML.jpg]
Figure 3-18Running vino-server NVIDIA Jetson Nano desktop

For this demo, I use the VNC Viewer application as the VNC client. You can download this tool at https://www.realvnc.com/. Create a new connection and enter the IP address of the NVIDIA Jetson Nano. Click the OK button when finished. Figure 3-19 shows the VNC Viewer application.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig19_HTML.jpg]
Figure 3-19Setting up VNC viewer for NVIDIA Jetson Nano

If we could connect to the NVIDIA Jetson Nano device, we would see a confirmation dialog, as shown in Figure 3-20. Click the Continue button to access the NVIDIA Jetson Nano desktop.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig20_HTML.jpg]
Figure 3-20Connecting a remote desktop on NVIDIA Jetson Nano

If you obtain an error due to an encryption issue while connecting to the NVIDIA Jetson Nano desktop, you can use require-encryption. You can open Terminal and type this command:gsettings

 set org.gnome.Vino require-encryption false

Now, you can run the nino server again on the NVIDIA Jetson Nano. After that, you can open the VNC client application.
When you try to connect to NVIDIA Jetson Nano over remote desktop, you will obtain a connection confirmation, as shown in Figure 3-21. Click the Accept button if you want to allow for performing remote desktop. After this is accepted, you can obtain theNVIDIA Jetson Nano desktop in VNC viewer application, as shown in Figure 3-22.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig21_HTML.jpg]
Figure 3-21Giving approval to access NVIDIA Jetson Nano desktop

If you are still getting an error, please check the IP Address of NVIDIA Jetson Nano is correct or not. In addition, please check your network router you that it allows to access remote desktop with a certain port.[image: ../images/502249_1_En_3_Chapter/502249_1_En_3_Fig22_HTML.jpg]
Figure 3-22NVIDIA Jetson Nano desktop is connected from VNC client

This is the end of the chapter. You should practice administering NVIDIA Jetson Nano device.
Summary
We have learned how to administer the NVIDIA Jetson Nano device. We used Terminal to manage our system. We also connected the NVIDIA Jetson Nano device to the internet network using Ethernet and a Wi-Fi module. We explored how to access the NVIDIA Jetson Nano device remotely using VNC viewer, SSH, and SFTP.
Next, we will learn how to write programs for the NVIDIA Jetson Nano device.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_4

4. NVIDIA Jetson Nano Programming

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

The NVIDIA Jetson Nano device is designed for developers who want to build programs on the board. In this chapter, we will explore how to build programs on the NVIDIA Jetson Nano. We will review some compilers and interpreters included in the development tools.
In this chapter, we will learn about the following:	Editor tools

	C/C++ programs

	Python programs

	Node.js programs

Next, we will explore editor tools used to write code on the NVIDIA Jetson Nano device.
Introduction
The NVIDIA Jetson Nano device image is built from Ubuntu Linux. To build programs on the NVIDIA Jetson Nano device, we should consider all program constraints of a Linux-based platform. Technically, we should use a Linux-based programming approach if we want to build programs on this board.
All program models will be explained in this chapter. We will discuss a common program language that we will probably use in our project. We will explore some programs in the next section.
Editor Tools
To write programs on the NVIDIA Jetson Nano device, you need a text editor. You can use an official editor from the Ubuntu desktop, such as gedit. However, you also can use vi and nano to write code. You can install nano using this command on Terminal:sudo apt-get install nano

This command will download the nano program to the repository server and then install it on your NVIDIA Jetson Nano. Make sure your board is connected to the internet.
Figure 4-1 shows a nano installation through the NVIDIA Jetson Nano Terminal. Make sure your board is connected to the internet.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig1_HTML.jpg]
Figure 4-1Installing nano program on NVIDIA Jetson Nano

Now you can create a new file with nano. For instance, to create a file, hello.sh, you can type this command:nano hello.sh

Now, obtain the nano editor via Terminal, as shown in Figure 4-2. For this demo, we will write these scripts with nano editor. The program will print “Hello World!!” in Terminal.#!/bin/sh

echo Hello World!!

[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig2_HTML.jpg]
Figure 4-2Writing codes using nano editor

Save these scripts. Now you can run this program. First, change the script file to be an executable file using the chmod 755 command. Then, call ./hello to run the program:chmod 755 hello.sh
./hello

After executing this program, you will see the program output, as shown in Figure 4-3.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig3_HTML.jpg]
Figure 4-3Executing sh program

You can also use Visual Studio Code from Microsoft. You can find further information about Visual Studio Code at https://code.visualstudio.com. This tool is useful when you’re working on the NVIDIA Jetson Nano desktop.
To install Visual Studio Code on NVIDIA Jetson Nano, use the Code program from https://code.headmelted.com. Build Visual Studio Code from source code. Install this tool using Terminal. Open Terminal and then type these commands (please don’t write $).$ sudo -s
$. <(wget -O - https://code.headmelted.com/installers/apt.sh)

First, enter administrator mode by calling sudo -s. This command will download and build the source code of Visual Studio Code. This process will take several minutes. After finishing this process, you can exit administrator mode by typing exit in Terminal:exit

Now you can head back to the NVIDIA Jetson Nano desktop. Open the main menu and search by typing “code.” You will see Code – OSS (Headmelted) as shown in Figure 4-4.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig4_HTML.jpg]
Figure 4-4Visual Studio Code shortcut on main menu

You can open this tool and open a file or folder. For instance, you can open the hello.sh file, as shown in Figure 4-5.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig5_HTML.jpg]
Figure 4-5Visual Studio Code

C/C++
You can build programs for C/C++ on your NVIDIA Jetson Nano. The NVIDIA Jetson Nano image includes GCC compiler, so you can use that for compiling C/C++. To verify your GCC version, open Terminal and type this command:gcc --version

You should see the GCC version in Terminal. Figure 4-6 shows my GCC version on my NVIDIA Jetson Nano.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig6_HTML.jpg]
Figure 4-6Checking GCC version

For this demo, you will write a simple C program, using nano as the editor tool. Create a file, helloc.c. In this program, you will show the text “Hello World\n” in Terminal. \n indicates a new line, so after the program shows “Hello World” the cursor will move on to the new line.
Write this code for implementation in the nano editor tool:#include<stdio.h>

int main()
{
 printf("Hello World\n");
 return 0;
}

Save this code. Figure 4-7 shows the code for the helloc.c file.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig7_HTML.jpg]
Figure 4-7Writing C code using nano

Now you can compile and run this program. In Terminal, call gcc and then run the program as follows:gcc hello.c -o helloc
./helloc

After execution, you should see the text “Hello World” in Terminal. Figure 4-8 shows the compiled and executed program from the helloc.c file.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig8_HTML.jpg]
Figure 4-8Compiling and executing C program

This is a sample program to show how to get started with C programming on the NVIDIA Jetson Nano. For C++ code, you can use GCC or G++ to compile C++ code.
What’s next? You can dive deep to explore building C/C++ programs on your NVIDIA Jetson Nano. You could use learning resources for C/C++ to start to write C/C++ codes.
Python
Python is a scripting programming that most developers use to build data processing and data science implementations. Python can also be used to build hardware programming. There are various Python libraries that provide hardware drive interfaces.
In this section, we will learn how to get started with Python programming on NVIDIA Jetson Nano devices. Python 2.7 and Python 3.x are installed by default via the NVIDIA Jetson Nano image. You can verify this by typing this command in Terminal:python --version

You should see Python 2.7.x listed in Terminal. For Python 3.x, you can use the python3 command, as follows:python3 --version

Now you can use the Python shell so you can write Python scripts and then get the output directly. In this demo, we will use the Python 3 shell. Type this command in Terminal:python3

After execution, you should see the Python shell and see >>> in Terminal, as shown in Figure 4-9. Inside the Python shell >>>, you write these scripts:>>> a = 10
>>> b = 5
>>> c = a * b
>>> c

[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig9_HTML.jpg]
Figure 4-9Running Python shell

After you type this and press the Enter key, you should obtain output from the Python shell, as shown in Figure 4-9.
When working on data processing or data science, most developers use Jupyter Notebook, https://jupyter.org, to write and run Python scripts. You can install Jupyter Notebook on your NVIDIA Jetson Nano. Open Terminal and then type these commands:sudo apt-get install python3-pip
sudo pip3 install jupyter

It takes several minutes to download and install Jupyter Notebook. Make sure your NVIDIA Jetson Nano is connected to the internet. After completing the installation, you can run Jupyter Notebook by typing this command in Terminal:jupyter notebook

If you run this command on the NVIDIA Jetson Nano desktop, you will get a browser that shows the Jupyter Notebook application, as shown in Figure 4-10.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig10_HTML.jpg]
Figure 4-10A sample of program output from Jupyter Notebook

To create a new notebook, click the New dropdown on the right-hand menu. Select Python 3. Then, you’ll see a notebook, as shown in Figure 4-11. Write this Python script for demo practice:a = 10
b = 7
c = a * b
c

[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig11_HTML.jpg]
Figure 4-11Writing and executing Python script on Jupyter Notebook

You can run this code by clicking the Run icon. You should see program output from this code like that shown in Figure 4-11.
You can save this program by clicking the disk icon on the toolbar menu. You can also rename the file by clicking on Title.
What’s next? You can learn more about Python programs. You can use nano, Visual Studio Code, or Jupyter Notebook to write Python scripts. Find public resources or Python documentation to learn the Python programming language.
Node.js
Node.js is a programming language based on JavaScript. It is cross-platform as it is intended to be general purpose. You can build web applications using Node.js.
To install Node.js on your NVIDIA Jetson Nano device, you can type this command:sudo apt-get install nodejs npm

You get a node command for your Node.js application. You can check the node version by typing this command:node --version

You will see the Node.js version on the NVIDIA Jetson Nano. Figure 4-12 shows my Node.js version on my NVIDIA Jetson Nano.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig12_HTML.jpg]
Figure 4-12Checking Node.js version

For this demo, you will write a simple program. You can write Node.js code by creating a file, hellojs.js, in the nano tool. Write this code:console.log("Hello Node.js");

You can see my Node.js code in nano in Figure 4-13.[image: ../images/502249_1_En_4_Chapter/502249_1_En_4_Fig13_HTML.jpg]
Figure 4-13Writing Node.js codes in nano

Save this program. To run it, you can use the node command with the Node.js file as parameter. For instance, to run the hellojs.js file, type this command:node hellojs.js

You should see text “Hello Node.js” on Terminal.
What’s next? You can explore about Node.js programs on NVIDIA Jetson Nano. You can learn the JavaScript programming language, since Node.js uses JavaScript for its language dialect.
Summary
We learned how to write code on the NVIDIA Jetson Nano device. We reviewed editor tools to help you write code. We also have tried to write and run codes for C/C++, Python, and Node.js.
Next, we will learn how to do I/O programming on the NVIDIA Jetson Nano. We focus on GPIO hardware programming.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_5

5. NVIDIA Jetson Nano I/O Programming

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

Both the A02 and B01 models of the NVIDIA Jetson Nano have GPIO pins on the J41 header. We can thus extend some sensors and actuators into NVIDIA Jetson Nano devices. NVIDIA Jetson Nano also provides GPIO pins for UART, PWM, SPI, I2S, and I2C. In this chapter, we will explore GPIO programming on the NVIDIA Jetson Nano, including sensors and actuators.
You will learn about the following topics in this chapter:	Setting up GPIO

	GPIO programming

	Sensor programming

	Actuator programming

You will need some peripherals in order to implement the demos in this chapter. We will explore more in the next section.
Introduction
A general-purpose input/output (GPIO) is an uncommitted digital signal pin on a board. On NVIDIA Jetson Nano, you can find GPIO pins on the J41 header. You can see the pin layout of the NVIDIA Jetson Nano board in Figure 5-1, as indicated by the red arrow.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig1_HTML.jpg]
Figure 5-1GPIO pinout on NVIDIA Jetson Nano

A detail of the GPIO pinout can be seen in Figure 5-2. You can see pins for GPIO, UART, SPI, I2S, and I2C.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig2_HTML.jpg]
Figure 5-2GPIO pins on NVIDIA Jetson Nano

The NVIDIA Jetson Nano GPIO can use from 1.8V to 3.3V. By default, all GPIO pins use 3.3V. Make sure you don’t use a pin input voltage of more than 3.3V. Otherwise, your board will be broken.
Each GPIO pin can be used as an input pin or an output pin. The GPIO number labels are shown on the NVIDIA Jetson Nano board. The GPIO number is useful when you want to access GPIO on the NVIDIA Jetson Nano.
Setting Up GPIO
To access the NVIDIA Jetson Nano GPIO, use the Jetson.GPIO library from Jetson. This library is modified from the RPI GPIO (Raspberry Pi) library. You can build Python applications with Jetson.GPIO to access the NVIDIA Jetson Nano device. You can find the Jetson.GPIO library at https://github.com/NVIDIA/jetson-gpio.
Now you can install Jetson.GPIO on the NVIDIA Jetson Nano using pip from Python. Open Terminal and type this command:$ sudo pip install Jetson.GPIO

If you use Python 3, you will probably use pip3 to install NVIDIA Jetson Nano. Please make sure to use this pip program. Here is how to install Jetson.GPIO with the pip3 program:$ sudo pip3 install Jetson.GPIO

You need to configure security permission on the NVIDIA Jetson Nano in order to run your programs. Create a new gpio user group. Then, add your current account into this gpio group. Type these commands:$ sudo groupadd -f -r gpio
$ sudo usermod -a -G gpio <your_account>

You also need to copy the 99-gpio.rules file into the /etc/udev/rules.d/ folder

. The 99-gpio.rules file is usually available in /usr/local/lib/python3.6/dist-packages/. You can verify using this command (for Python 3, change python for Python 2.7.x):$ python3 -m site

You should see a path of the dist-packages folder from Python. For instance, we have a path for the usr/local/lib/python3.6/dist-packages/ folder, so we can move the 99-gpio.rules file into the /etc/udev/rules.d/ folder with the following command:$ sudo cp /usr/local/lib/python3.6/dist-packages/Jetson/GPIO/99-gpio.rules /etc/udev/rules.d/

After completing this installation, you can verify its success by opening Python shell. For instance, we use Python 3. Type these commands:$ python3
>>> import Jetson.GPIO as GPIO
>>> GPIO.JETSON_INFO
>>> GPIO.VERSION

You should see the Jetson.GPIO library information and version. You can see my library information in Figure 5-3.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig3_HTML.jpg]
Figure 5-3Checking Jetson.GPIO version

If you get any errors when checking the Jetson.GPIO version, you probably have problems in installation.
Now, we can build programs to access the NVIDIA Jetson Nano GPIO pins.
GPIO Programming
The NVIDIA Jetson Nano board has forty GPIO pins. You can see this in Figure 5-2. You can use a GPIO pin in either input mode or output mode. You can’t use it in input and output modes simultaneously.
For this demo, you can use an LED and make it blink. You need the following electronic components:	Breadboard

	LED

	A resistor; you can use 220 or 300 ohm

	Two jumper cables

You can implement the wiring for this blinking LED demo with the following steps:	Connect a resistor to an LED positive pin (the longest pin of the LED).

	Connect another resistor pin to a GPIO 7 pin on the NVIDIA Jetson Nano.

	Connect the LED negative pin to the GND pin on the NVIDIA Jetson Nano.

You could not use a resistor for this demo because the wiring implementation does not use external voltage of more than 3.3V. You can see my wiring in Figure 5-4. I don’t use a resistor for this demo.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig4_HTML.jpg]
Figure 5-4Attaching an LED to the NVIDIA Jetson Nano

Now you can write a program to turn the LED on and off. Open Terminal on the NVIDIA Jetson Nano. Then, create a file, gpiodemo.py, using nano. You probably could use any text editor to write the program script.$ nano gpiodemo.py

After nano is open, write the following script:import Jetson.GPIO as GPIO
import time

led_pin = 7
GPIO.setmode(GPIO.BOARD)
GPIO.setup(led_pin, GPIO.OUT)

try:
 while 1:
 print("turn on led")
 GPIO.output(led_pin, GPIO.HIGH)
 time.sleep(2)
 print("turn off led")
 GPIO.output(led_pin, GPIO.LOW)
 time.sleep(2)

except KeyboardInterrupt

:
 GPIO.output(led_pin, GPIO.LOW)
 GPIO.cleanup()

print("done")

Save this script into the file gpiodemo.py. You can see my program script in nano in Figure 5-5.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig5_HTML.jpg]
Figure 5-5Writing a GPIO program

You can run your program, gpiodemo.py, in Terminal. You can use Python to run this Python program. Open Terminal and type this command:$ python3 gpiodemo.py

If you get any errors due to security issues, you can run the gpiodemo.py file with the sudo command. Type this command:$ sudo python3 gpiodemo.py

You should see blinking on the LED. You can also see the program output in Terminal. Figure 5-6 shows my program output for the gpiodemo.py program.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig6_HTML.jpg]
Figure 5-6Executing gpiodemo program

How does it work?
This program starts with loading Jetson.GPIO and time modules.import Jetson.GPIO as GPIO
import time

Then, it initializes a GPIO pin on the NVIDIA Jetson Nano. It declares led_pin for pin 7 with the GPIO.BOARD model

. This model uses the GPIO pin number based on the board numbering. The program sets pin 7 as GPIO.OUT mode.led_pin = 7
GPIO.setmode(GPIO.BOARD)
GPIO.setup(led_pin, GPIO.OUT)

To prevent errors, the program implements try…except to catch errors in the code. If there are errors, you can set your LED to off by calling GPIO.output(led_pin, GPIO.LOW). Then, release all resources in use.try:

except KeyboardInterrupt:
 GPIO.output(led_pin, GPIO.LOW)
 GPIO.cleanup()

print("done")

Inside the try...except scripts, you turn on and off the LED. To turn it on, you set the GPIO.HIGH value on pin 7 using the GPIO.output() function

. In these scripts, the LED is turned on and then off. Also, the code sets a delay for two seconds at each action. while 1:
 print("turn on led")
 GPIO.output(led_pin, GPIO.HIGH)
 time.sleep(2)
 print("turn off led")
 GPIO.output(led_pin, GPIO.LOW)
 time.sleep(2)

Now you can practice using some LEDs with GPIO pins on the NVIDIA Jetson Nano board. You can use any GPIO pin on the board.
Next, we will develop sensor devices on the NVIDIA Jetson Nano board.
Sensor Programming
You can attach various sensor modules to the NVIDIA Jetson Nano, but not all sensor interfaces are supported by it. You can use the following supported interface protocols on the NVIDIA Jetson Nano:	Digital I/O

	UART (Serial Communication)

	SPI (Serial Peripheral Interface)

	I2C (Inter-Integrated Circuit)

	I2S (Inter-IC Sound Bus)

As we know, the NVIDIA Jetson Nano does not support analog I/O. This means if you plan to use sensor module-based analog I/O, you should use an additional module such as an ADC (Analog-to-Digital Converter) module that will convert analog sensor data to digital data so the NVIDIA Jetson Nano can process it.
For this demo, use a sensor module–based I2C interface

. The I2C interface uses the device address so NVIDIA Jetson Nano can access data by opening a connection to the I2C address. Each analog sensor from the sensor module-based I2C will be attached to the I2C address.
For testing, I used a PCF8591 AD/DA converter module with sensor and actuator devices. This sensor module can be seen in Figure 5-7. The PCF8591 AD/DA module uses a PCF8591 chip that consists of four analog inputs and an AD converter. The PCF8591 chip also has analog output with a DA converter. Further information about the PCF8591 chip can be found sat https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig7_HTML.jpg]
Figure 5-7PCF8591 AD/DA converter module

You can find it on online stores like Aliexpress. You could probably obtain this module at your local store.
Based on the datasheet documentation for the PCF8591 AD/DA converter module, we know this module uses I2C address on 0x48. The module also consists of three sensors, as follows:	Thermistor. Using channel 0

	Photoresistor. Using channel 1.

	Potentiometer. Using channel 3.

The I2C interface has two pins: SDA and SCL. For data transfer, it uses the SDA pin. The SCL pin is used for clocking. Now attach the PCF8591 AD/DA converter module to your NVIDIA Jetson Nano with the following wiring:	PCF8591 AD/DA module SDA is connected to NVIDIA Jetson Nano SDA pin 3

	PCF8591 AD/DA module SCL is connected to NVIDIA Jetson Nano SCL pin 5.

	PCF8591 AD/DA module VCC is connected to NVIDIA Jetson Nano 3.3V pin.

	PCF8591 AD/DA module GND is connected to NVIDIA Jetson Nano SDA GND pin.

You can see my wiring in Figure 5-8.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig8_HTML.jpg]
Figure 5-8PCF8591 AD/DA converter module connected to NVIDIA Jetson Nano

Now you can detect the I2C address on the PCF8591 AD/DA converter module using the i2cdetect command. This tool is already installed on the NVIDI Jetson Nano image. You can type this command:$ i2cdetect -y -r 1

After executing this command, you should see the I2C address from the PCF8591 AD/DA converter module. For instance, you can see my I2C address is 48 in Figure 5-9. The I2C address shows the value in hex format. It means my I2C address is 0x48.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig9_HTML.jpg]
Figure 5-9Checking I2C module address

Next, build a Python program to read the data from the PCF8591 AD/DA converter module. You will read Thermistor, Photoresistor, and Potentiometer data from this module.
To access the I2C module, use the smbus library. By default, it is already installed on the NVIDIA Jetson Nano, but you can install it manually using this command:$ sudo apt-get install python3-smbus

Now write the Python program for reading the sensor data. You can use any editor. Write this complete Python program to read sensor data from PCF8591 AD/DA converter module:import time, math
import smbus

bus = smbus.SMBus(1)
address = 0x48

def photo():
 val = bus.read_i2c_block_data(address,1,2)
 return val

def potentiometer():
 val = bus.read_i2c_block_data(address,3,2)
 return val

def thermistor():
 val = bus.read_i2c_block_data(address,0,2)
 return val

try:
 while 1:
 val = thermistor()
 print('thermistor: ',val[1])
 time.sleep(1)

 val = photo()
 print('photo: ',val[1])
 time.sleep(1)

 val = potentiometer()
 print('potentiometer: ',val[1])
 time.sleep(1)

except KeyboardInterrupt:
 pass

print("done")

Save this program as sensor.py. Then, you can run this program in the NVIDIA Jetson Nano Terminal. You can open Terminal and navigate to the directory where the sensor.py file is placed. Type this command to execute the sensor program:$ sudo python3 sensor.py

After execution, you should see sensor data. Figure 5-10 shows my program output from the sensor.py application.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig10_HTML.jpg]
Figure 5-10Executing sensor.py application

How does it work?
This program starts by loading the I2C module using smbus. It also loads the time and math modules.import time, math
import smbus

It initializes smbus by calling smbus.SMBus(1). Then, it defines the I2C address of the PCF8591 AD/DA converter module with 0x48:bus = smbus.SMBus(1)
address = 0x48

Next, the program defines three functions—photo(), potentiometer(), and thermistor()—to read sensor data. It uses the read_i2c_block_data() function to read the sensor data by passing the I2C address and channel data.def photo():
 val = bus.read_i2c_block_data(address,1,2)
 return val

def potentiometer():
 val = bus.read_i2c_block_data(address,3,2)
 return val

def thermistor():
 val = bus.read_i2c_block_data(address,0,2)
 return val

Now it uses try-catch to prevent errors. It implements infinite looping to call the preceding functions.try:
 while 1:
 # reading data

except KeyboardInterrupt:
 pass

print("done")

Inside the while-looping, it calls the three functions. The result of the sensor reading is printed to Terminal using the print() function.val = thermistor()
print('thermistor: ',val[1])
time.sleep(1)

val = photo()
print('photo: ',val[1])
time.sleep(1)

val = potentiometer()
print('potentiometer: ',val[1])
time.sleep(1)

Actuator Programming
In this section, you will write a program to interact with the actuator device. For this simple demo, you will use an LED to control the LED brightness. You will set the LED brightness from 0 to 100.
Use the PWM pin to set the brightness value. First, connect an LED to pin 33. Next, write a Python program to access the GPIO.
Open your Python editor. Then, write this complete program as follows:import Jetson.GPIO as GPIO
import time

output_pin = 33 # PWM
GPIO.setmode(GPIO.BOARD)
GPIO.setup(output_pin, GPIO.OUT, initial=GPIO.HIGH)
pwm = GPIO.PWM(output_pin, 50)

val = 25
incr = 5
print("brightness: ", val)
pwm.start(val)
try:
 while 1:
 time.sleep(1)
 if val >= 100:
 incr = -incr
 if val <= 0:
 incr = -incr
 val += incr
 print("brightness: ", val)
 pwm.ChangeDutyCycle(val)

except KeyboardInterrupt:
 pwm.stop()
 GPIO.cleanup()

print("done")

Save this program as actuator.py. Now you can run this program on your NVIDIA Jetson Nano. You can open Terminal and navigate to the directory where the actuator.py file is placed. Type the following command to execute the actuator program:$ sudo python3 actuator.py

After execution, you should see the program output. Figure 5-11 shows my program output from the actuator.py application. You can also see LED brightness changes.[image: ../images/502249_1_En_5_Chapter/502249_1_En_5_Fig11_HTML.jpg]
Figure 5-11Brightness application

How does it work?
First, it imports all required libraries into the program.import Jetson.GPIO as GPIO
import time

It declares the PWM pin and configures this pin to the Jetson.GPIO module

. It uses GPIO.PWM for PWM implementation.output_pin = 33 # PWM
GPIO.setmode(GPIO.BOARD)
GPIO.setup(output_pin, GPIO.OUT, initial=GPIO.HIGH)
pwm = GPIO.PWM(output_pin, 50)

Next, it initializes the brightness value to 25. Then, it starts to run PWM by calling the start() function.val = 25
incr = 5
print("brightness: ", val)
pwm.start(val)

Last, it performs infinite-looping. It sets the LED brightness using the ChangeDutyCycle() function. If use breaks the looping, the program stops the PWM process by calling pwm.stop(). It also clears GPIO resources by calling the GPIO.cleanup() function.try:
 while 1:
 time.sleep(1)
 if val >= 100:
 incr = -incr
 if val <= 0:
 incr = -incr
 val += incr
 print("brightness: ", val)
 pwm.ChangeDutyCycle(val)

except KeyboardInterrupt:
 pwm.stop()
 GPIO.cleanup()

print("done")

Summary
We have learned how to set up GPIO on the NVIDIA Jetson Nano. We also developed programs to implement sensor and actuator programs. We used the I2C protocol to communicate with sensor devices.
Next, we will learn how to work a camera on the NVIDIA Jetson Nano. We will use the CSI camera module.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_6

6. NVIDIA Jetson Nano Camera

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

We can use a camera with the NVIDIA Jetson Nano board. Then, we can make a smart device-based NVIDIA Jetson Nano. In this chapter, we will explore how to access a camera module from the NVIDIA Jetson Nano board and how to attach that camera module. Then, we will install the OpenCV library on the NVIDIA Jetson Nano. Finally, we will develop programs to take pictures and record video.
You will learn about the following topics in this chapter:	Setting up a camera module

	Testing the camera

	Installing the OpenCV library

	Show video streaming from camera

	Taking a picture with the camera

	Recording video

Make sure you have a USB camera or/and camera CSI to implement all demos in this chapter.
Introduction
The NVIDIA Jetson Nano is an Internet of Things (IoT) solution to address your problems for IoT or general purposes. You can attach a camera to the NVIDIA Jetson Nano board. You can build programs such as computer vision or intelligence vision. By applying machine learning libraries on the NVIDIA Jetson Nano, you can make a smart device.
In this chapter, we will explore how to work with a camera on the NVIDIA Jetson Nano board. You can then create Python programs to access the camera from the NVIDIA Jetson Nano.
Camera Interfaces and Modules
Technically, you can attach the camera module over the CSI interface or via USB. If you have the NVIDIA Jetson Nano A02 model, you will have one camera CSI interface. For the NVIDIA Jetson Nano B01 model, you will have two camera CSI interfaces. Figure 6-1 shows the camera CSI interface.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig1_HTML.jpg]
Figure 6-1Camera CSI interface on NVIDIA Jetson Nano

You can get a camera CSI module at your local or online electronic store. You also can use the Raspberry Pi Camera v2. You can buy this module at https://www.raspberrypi.org/products/camera-module-v2/. There is also the Raspberry Pi NoIR camera, which you can see in Figure 6-2.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig2_HTML.jpg]
Figure 6-2Raspberry Pi Camera v2 (image from seeedstudio.com)

You can also use a USB camera, such as a webcam. The NVIDIA Jetson Nano has four USB interfaces, so you can attach a USB camera to one of the board USB interfaces.
Set Up Camera Module
To set up the camera, just attach it to the camera interface on the board. For instance, if you have a camera CSI, you can put it on the CSI interface on the NVIDIA Jetson Nano. You can see my camera CSI in Figure 6-3. Otherwise, you can use a USB camera and attach it to the USB interface of the NVIDIA Jetson Nano.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig3_HTML.jpg]
Figure 6-3Attaching Raspberry Pi NoIR camera to NVIDIA Jetson Nano

After attaching the camera to the NVIDIA Jetson Nano, verify it using this command:$ ls /dev/video*

You should see your attached camera. For instance, I attached camera CSI and USB camera devices so you can see my program output in Figure 6-4.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig4_HTML.jpg]
Figure 6-4Checking attached camera devices

Once you have attached your camera module, test it. For camera CSI, you can use the nvarguscamerasrc command. You can learn how to use the camera CSI with the nvarguscamerasrc command at https://github.com/JetsonHacksNano/CSI-Camera.
First, specify which camera CSI will be used. For the NVIDIA Jetson Nano A02 model, only use 0 for single camera, but if you have the NVIDIA Jetson Nano B01 model, you can select camera 0 or 1. For instance, if you attach a camera CSI to CSI interface 0, you can type this command:$ nvarguscamerasrc sensor_id=0

Then, you can show the camera using nvarguscamerasrc. You can type this command:$ gst-launch-1.0 nvarguscamerasrc sensor_id=0 ! \
 'video/x-raw(memory:NVMM),width=3280, height=2464, framerate=21/1, format=NV12' ! \
 nvvidconv flip-method=0 ! 'video/x-raw,width=960, height=720' ! \
 nvvidconv ! nvegltransform ! nveglglessink -e

Change sensor_id=0 to sensor_id=1 if you connect a camera CSI to CSI interface 2. Then, press Enter. You should see a dialog that shows the video from the camera CSI. You can see my program output in Figure 6-5.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig5_HTML.jpg]
Figure 6-5Displaying a live video from camera

Install OpenCV for Python3s
You can create a Python program with which to access the camera on your NVIDIA Jetson Nano. Use the OpenCV library to work with the camera. Technically, you can install OpenCV using this command:$ sudo apt-get install python3-opencv

If you want to install the latest version of OpenCV, you can follow the installation instructions here: https://github.com/jkjung-avt/jetson_nano. First, increase the NVIDIA Jetson Nano’s memory by increasing swap memory. You can type this command:$ sudo nvpmodel -m 0
$ sudo jetson_clocks

Now you can install OpenCV. You can run one of the install_opencv-*.sh files. For instance, if you want to install OpenCV 3.4.8, you can type these commands:$ git clone https://github.com/jkjung-avt/jetson_nano
$ cd jetson_nano
$./install_opencv-3.4.8.sh

It will take several minutes. After installation is complete, verify the OpenCV version by using Python. You can type these commands:$ python3
>>> import cv2
>>> cv2.__version__

You should see the OpenCV version in Terminal. Otherwise, you probably will get errors upon installation. Next, you can build Python programs to access the camera CSI and USB camera.
Displaying Live Video
In this section, you will develop two Python programs to show live video from the camera. The first program uses a camera USB, and the second program uses a camera CSI. After that, you will implement these programs using Python.
Displaying Video with USB Camera
You use OpenCV to show live video from the USB camera. To access the camera, use VideoCapture()

 and pass in the video number. You already have the video ID from Figure 6-4. In my case, I have a USB camera on /dev/video1 so I pass value 1 to VideoCapture().
After you obtain the VideoCapture object, you can read streaming video using the read() function

. To show video streaming, you can use imshow() from OpenCV.
For implementation, create a Python file called camera-usb-demo.py. Write this complete program:import numpy as np
import cv2

change camera no
cap = cv2.VideoCapture(1)

while(True):
 ret, frame = cap.read()
 cv2.imshow('frame',frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

cap.release()
cv2.destroyAllWindows()

This program will run continuously until you press the Q key. To run this program, you can type this command in Terminal:$ sudo python3 camera-usb-demo.py

You should see a dialog that is showing live video from a camera. Figure 6-6 shows the video stream on my NVIDIA Jetson Nano desktop. To close a program, press the Q key.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig6_HTML.jpg]
Figure 6-6Program output for camera-usb-demo.py

You can see that the live video from the camera-usb-demo.py program is in full color. You also can make video stream in grayscale. When you have an image from cv2.read(), you can convert it to grayscale using the cv2.cvtColor() function. You can modify the camera-usb-demo.py program as follows:import numpy as np
import cv2

cap = cv2.VideoCapture(1)

while(True):
 ret, frame = cap.read()

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 cv2.imshow('frame',gray)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

cap.release()
cv2.destroyAllWindows()

Save this program as camera-usb-gray.py. Then, you can run this program by typing this command:$ sudo python3 camera-usb-gray.py

Now you should see live video in grayscale. You can see my program output in Figure 6-7.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig7_HTML.jpg]
Figure 6-7Program output for camera-usb-gray.py

Displaying Video with Camera CSI
You cannot read video from a camera CSI using cv2.VideoCapture(). You should stream video with cvs2.CAP_GSTREAMER. Then, you should retrieve the video using nvarguscamerasrc.
In this section, you will build a Python program to display live video from your camera CSI. Create a function, gstreamer_pipeline(), to retrieve the streaming video. Then, pass this function to cv2.VideoCapture().
For testing, create a Python file, camera-csi-demo.py. Then, declare the gstreamer_pipeline() function

 as follows:import numpy as np
import cv2

def gstreamer_pipeline(
 capture_width=640,
 capture_height=480,
 display_width=640,
 display_height=480,
 framerate=21,
 flip_method=0,
):
 return (
 "nvarguscamerasrc! "
 "video/x-raw(memory:NVMM), "
 "width=(int)%d, height=(int)%d, "
 "format=(string)NV12, framerate=(fraction)%d/1 ! "
 "nvvidconv flip-method=%d ! "
 "video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
 "videoconvert ! "
 "video/x-raw, format=(string)BGR ! appsink"
 % (
 capture_width,
 capture_height,
 framerate,
 flip_method,
 display_width,
 display_height,
)
)

Now, call cv2.VideoCapture()
 and pass gstreamer_pipeline() into the VideoCapture() object. Also set cv2.CAP_GSTREAMER to cv2.VideoCapture(). Next, display a dialog to show live video using cv2.imshow(). The following is the program implementation:cap = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
if cap.isOpened():
 indow_handle = cv2.namedWindow("CSI Camera", cv2.WINDOW_AUTOSIZE)
 while cv2.getWindowProperty("CSI Camera", 0) >= 0:
 ret, frame = cap.read()

 cv2.imshow('CSI Camera',frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break
else:
 print('Cannot open camera')

cap.release()
cv2.destroyAllWindows()

Save this program. You can run it using this command in NVIDIA Jetson Nano’s Terminal:$ sudo python3 camera-csi-demo.py

After execution, you should see a dialog that is showing live video from the camera CSI. Figure 6-8 shows my program output from camera-csi-demo.py.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig8_HTML.jpg]
Figure 6-8Program output for camera-csi-demo.py

Taking a Picture
In this demo, you will take a photo with the camera. You will develop two Python programs. The first program uses the camera USB, and the second program uses the camera CSI. Next, you will implement these programs using Python.
Taking a Picture with Camera USB
To take a picture from the camera USB, you can use the cv2.imwrite() function

 to save a video frame into a file. You can call this after the user presses the Q key. Then, you save a video frame into a file and close the application.
For this demo, you can modify a program from camera-usb-demo.py. Add codes for after the user presses the Q key. The following is a completed program for taking a picture from a camera USB:import numpy as np
import cv2

cap = cv2.VideoCapture(1)

while(True):
 ret, frame = cap.read()
 cv2.imshow('frame',frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 cv2.imwrite('mypicture.png',frame)
 break

cap.release()
cv2.destroyAllWindows()

Save this program as camera-usb-takephoto.py. You can run it using this command in the NVIDIA Jetson Nano Terminal:$ sudo python3 camera-usb-takephoto.py

After execution, you should see a dialog that is showing live video from the USB camera. Then, press the Q key to close the program. You should then see a file, mypicture.png.
You can open this picture file using this command:$ eog mypicture.png

You should have a dialog displaying the mypicture.png file

. Figure 6-9 shows my program output with the mypicture.png file, a result of taking a picture with the USB camera.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig9_HTML.jpg]
Figure 6-9Program output for camera-usb-takephoto.py with opening a photo file

Taking a Picture with Camera CSI
You can take a picture from a camera CSI using cv2.imwrite(). Since you are using a camera CSI, use the gstreamer_pipeline() function

 to obtain live video.
You can modify the camera-usb-takephoto.py program. Use gstreamer_pipeline() to pass to the cv2.VideoCapture() function

. Now, you can create a new file, camera-csi-takephoto.py. This program is modified from the camera-usb-takephoto.py file.import numpy as np
import cv2

def gstreamer_pipeline..
..
..

cap = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
if cap.isOpened():
 indow_handle = cv2.namedWindow("CSI Camera", cv2.WINDOW_AUTOSIZE)
 while cv2.getWindowProperty("CSI Camera", 0) >= 0:
 ret, frame = cap.read()

 cv2.imshow('CSI Camera',frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 cv2.imwrite('mypicture-csi.png',frame)
 break
else:
 print('Cannot open camera')

cap.release()
cv2.destroyAllWindows()

Save this program. You can run it using this command in the NVIDIA Jetson Nano Terminal:$ sudo python3 camera-csi-takephoto.py

After execution, you should see a dialog that is showing live video from the camera CSI. Then, press the Q key to close the program. You should see a file, mypicture-csi.png.
You can open this picture file using this command:$ eog mypicture-csi.png

You should have a dialog displaying the mypicture-csi.png file. Figure 6-10 shows my program output with the mypicture.png file, a result of taking a picture with the USB camera.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig10_HTML.jpg]
Figure 6-10Program output for camera-csi-takephoto.py with opening a photo file

Recoding Video
In this section, you will record a video with the camera into an AVI file. First, implement the USB camera. You can create a Python file called camera-usb-reord.py. For instance, my USB camera is detected as /dev/video1. Declare your VideoCapture as follows:import numpy as np
import cv2

cap = cv2.VideoCapture(1)

Then, obtain the frame width and height from the VideoCapture object

 using the cap.get() function

:w=int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h=int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

Define a VideoWriter object to write streaming video into a file. I use the XVID video format as follows:fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (w,h))

Now, perform a looping. You have a frame from cap.read(). Then, write this frame into a file using out.write():while(cap.isOpened()):
 ret, frame = cap.read()
 if ret==True:
 out.write(frame)
 cv2.imshow('frame',frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):
 break
 else:
 break

cap.release()
out.release()
cv2.destroyAllWindows()

Save this program as camera-usb-record.py. You can run it using this command in NVIDIA Jetson Nano’s Terminal:$ sudo python3 camera-usb-record.py

After execution, you should see a dialog that is showing live video from the USB camera. Then, press the Q key to close the program. You should see a video file, output.avi.
You can open this video file using this command: $ xdg-open output.avi

You should have a dialog that is showing the video file. Figure 6-11 shows my program output from the output.avi file, a result of recording video from the USB camera.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig11_HTML.jpg]
Figure 6-11Program output for camera-usb-record.py with opening a video file

Next, use the camera CSI to record video. You can modify camera-usb-record.py and use gstreamer_pipeline() to pass

 into VideoCapture object. The following is our program to record video from the camera CSI:import numpy as np
import cv2

def gstreamer_pipeline(
...
...

cap = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER)
if cap.isOpened():
 w=int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
 h=int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

 fourcc = cv2.VideoWriter_fourcc(*'XVID')
 out = cv2.VideoWriter('output-csi.avi',fourcc, 20.0, (w,h))

 indow_handle = cv2.namedWindow("CSI Camera", cv2.WINDOW_AUTOSIZE)
 while cv2.getWindowProperty("CSI Camera", 0) >= 0:
 ret, frame = cap.read()

 cv2.imshow('CSI Camera',frame)
 out.write(frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break
else:
 print('Cannot open camera')

cap.release()
cv2.destroyAllWindows()

Save this program as camera-csi-record.py. You can run it using this command in the NVIDIA Jetson Nano terminal:$ sudo python3 camera-csi-record.py

After execution, you should see a dialog that is showing live video from the camera CSI. Then, press the Q key to close the program. You should see a video file, output.avi.
You can open this video file using this command: $ xdg-open output-csi.avi

You should have a dialog that is showing the video file. Figure 6-12 shows my program output from the output.avi file, a result of recording video from the camera CSI.[image: ../images/502249_1_En_6_Chapter/502249_1_En_6_Fig12_HTML.jpg]
Figure 6-12Program output for camera-csi-record.py with opening a video file

This is the end of the chapter. Do more practice demos to work with camera devices on the NVIDIA Jetson Nano.
Summary
We have learned how to use a camera on the NVIDIA Jetson Nano. We started by setting up the camera. Then, we created programs to display live video, take a picture, and record video.
Next, we will learn how to build deep-learning computations.

© Agus Kurniawan 2021
A. KurniawanIoT Projects with NVIDIA Jetson Nanohttps://doi.org/10.1007/978-1-4842-6452-2_7

7. Deep-Learning Computation

Agus Kurniawan1
(1)Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

The NVIDIA Jetson Nano is designed to build smart applications. With a GPU with 128 cores, the NVIDIA Jetson Nano can be used to perform machine learning computations. In this chapter, we will work with the Jetson Inference library.
You will learn about the following topics in this chapter:	Setting up Jetson Inference library

	Performing classification

	Performing live video from camera CSI

	Locating objects with DetectNet

Introduction
The NVIDIA Jetson Nano can be used for machine learning computations. Some Python libraries are also available for the GPU. In this chapter, we will explore the Hello API with the Jetson Inference library to build machine learning applications.
The Jetson Inference library

 is built based on deep-learning algorithms. It’s written in C++ and with an exposed Python binding so you can build Python programs with it.
Next, we will set up the Jetson Inference library on the NVIDIA Jetson Nano. Make sure your board is connected to the internet.
Setting Up Jetson Inference Library
Jetson Inference

 is used for AI library–based deep-learning computations. This library is written in C++ but is also available for Python binding. You can create Python programs using Jetson Inference.
You can read more about the Jetson Inference library at https://github.com/dusty-nv/jetson-inference. Before you set up this library, you need to install all required libraries. You can type these commands in the Terminal of the NVIDIA Jetson Nano:$ sudo apt-get update
$ sudo apt-get install git cmake
$ sudo apt-get install libpython3-dev python3-numpy

Next, build the Jetson Inference library from the source code. Clone Jetson Inference from GitHub. After that, build the library. You can type these commands to clone and build the library:$ git clone https://github.com/dusty-nv/jetson-inference
$ cd jetson-inference
$ git submodule update --init

$ mkdir build
$ cd build
$ cmake ../

During this installation process, you will see a dialog as shown in Figure 7-1. Select some models that you want to use in applications. Make sure your NVIDIA Jetson Nano storage is available. You also will be asked to install PyTorch, as shown in Figure 7-2. Select PyTorch for your Python version.[image: ../images/502249_1_En_7_Chapter/502249_1_En_7_Fig1_HTML.jpg]
Figure 7-1Select model for training data

[image: ../images/502249_1_En_7_Chapter/502249_1_En_7_Fig2_HTML.jpg]
Figure 7-2Installing PyTorch for Python

This process takes several minutes to complete. After it is finished, navigate to the <jetson-inference>/build folder

. Then, install this library using these commands:$ make
$ sudo make install
$ sudo ldconfig

Now Jetson Inference is ready for development. Sometimes you want to modify or add some model data. Then, you can call a download-models program. This tool is available in the <jetson-inference>/tools folder, as shown in Figure 7-3. Type these commands:$ cd jetson-inference/tools
$./download-models.sh

[image: ../images/502249_1_En_7_Chapter/502249_1_En_7_Fig3_HTML.jpg]
Figure 7-3Program tools on Jetson Inferences

After that, you will see the dialog shown in Figure 7-3. You can select some model data for testing. This tool will download them directly.
Data Classification
In this section, you will explore some program samples from the Jetson Inference library. You will implement data classification using my-recognition.py, a program that can recognize object type based on a data model. This file is available in the <jetson-inference>python/examples folder.
To work with this program, you should download model data, such as googlenet. You can download this data using the download-models.sh tool, in Figure 7-1.
You can open the my-recognition.py file, and then you will have the following completed codes:import jetson.inference
import jetson.utils

import argparse

parse the command line
parser = argparse.ArgumentParser()
parser.add_argument("filename", type=str, help="filename of the image to process")
parser.add_argument("--network", type=str, default="googlenet", help="model to use, can be: googlenet, resnet-18, ect.")
opt = parser.parse_args()

load an image (into shared CPU/GPU memory)
img = jetson.utils.loadImage(opt.filename)

load the recognition network
net = jetson.inference.imageNet(opt.network)

classify the image
class_idx, confidence = net.Classify(img)

find the object description
class_desc = net.GetClassDesc(class_idx)

print out the result
print("image is recognized as '{:s}' (class #{:d}) with {:f}% confidence".format(class_desc, class_idx, confidence * 100))

For this demo, use the image file black_bear.jpg from the <jetson-inference>/examples/my-recognition folder. Copy this file into the <jetson-inference>python/examples folder. Navigate to the <jetson-inference>python/examples folder and run this program by typing this command:$ sudo python3 my-recognition.py black_bear.jpg

When you run this for the first time, it takes several minutes because this application will perform the training process. This program performs object detection, as shown in Figure 7-4.[image: ../images/502249_1_En_7_Chapter/502249_1_En_7_Fig4_HTML.jpg]
Figure 7-4Output program from my-recognition.py

How does it work?
First, load all required libraries. Also, prepare for input parameters from the user:import jetson.inference
import jetson.utils

import argparse

parse the command line
parser = argparse.ArgumentParser()
parser.add_argument("filename", type=str, help="filename of the image to process")
parser.add_argument("--network", type=str, default="googlenet", help="model to use, can be: googlenet, resnet-18, ect.")
opt = parser.parse_args()

Pass the image file from the parameter into the loadImage() function

. Then, load imageNet from the input parameter. If the user does not enter input, set googlenet for the imageNext() parameter.# load an image (into shared CPU/GPU memory)
img = jetson.utils.loadImage(opt.filename)

load the recognition network
net = jetson.inference.imageNet(opt.network)

Now you’ll perform a classification process using the net.Classify() function

. You also obtain the object description by calling the GetClassDesc() function.# classify the image
class_idx, confidence = net.Classify(img)

find the object description
class_desc = net.GetClassDesc(class_idx)

Last, print the result of the classification in Terminal. You will print values such as class_idx, class_desc, and confidence.print("image is recognized as '{:s}' (class #{:d}) with {:f}% confidence".format(class_desc, class_idx, confidence * 100))

Now do more practice exercises by using some picture files to perform the classification process.
Opening an Image File
You can open an image file using Jetson Inference Utils. You can call loadImageRGBA() to load an image file. Then, you display this picture using a glDisplay object. To render an image file to the monitor, call RenderOnce() from glDisplay.
For implementation, you can create a file called jetson-image.py. This program will open black_bear.jpg. You can copy this image file to the current folder of the jetson-image.py file. Now you can write this completed program from jetson-image.py:import jetson.utils

img, width, height = jetson.utils.loadImageRGBA ("black_bear.jpg")
display = jetson.utils.glDisplay()

while display.IsOpen():
 display.RenderOnce(img, width, height)
 display.SetTitle("{:s} | {:d}x{:d} | {:.1f} FPS".format("Camera Viewer", width, height, display.GetFPS()))

Save this program. You can run it by typing this command:$ sudo python3 jetson-image.py

After executing the program, you should see the image of black_bear.jpg on the monitor, as shown in Figure 7-5.[image: ../images/502249_1_En_7_Chapter/502249_1_En_7_Fig5_HTML.jpg]
Figure 7-5Showing image file using Jetson Utils library

Live Video from Camera CSI
You can show live video from a camera CSI using Jetson Inference Utils. You can use gstCamera() and pass the camera CSI’s address. For instance, if your camera CSI is detected as /dev/video0, you can pass the value 0 to gstCamera(). Then, you can display the contents of the camera CSI to the glDisplay object.
To implement, create a file called jetson-csi.py. In this demo, my camera CSI is attached on /dev/video0, so I can write this complete program for jetson-csi.py as follows:import jetson.utils

camera = jetson.utils.gstCamera(640,480,"0")
display = jetson.utils.glDisplay()

camera.Open()
while display.IsOpen():
 img, width, height = camera.CaptureRGBA()
 display.RenderOnce(img, width, height)
 display.SetTitle("{:s} | {:d}x{:d} | {:.1f} FPS".format("Camera Viewer", width, height, display.GetFPS()))

camera.Close()

Save this program. You can run it by typing this command:$ sudo python3 jetson-csi.py

After executing the program, you should see live video from your camera CSI.
Locating Objects with DetectNet
In this section, you will detect an object’s location using the DetectNet object

. You can use an image file as input, or streaming video. For this demo, use the black_bear.jpg file for testing.
Create a Python file called jetson-image-detectnet.py. You can write your program into this file. First, import all required libraries:import jetson.inference
import jetson.utils

Then, load training data using detectNet(),passing in ssd-mobilenet-v2. After that, load black_bear.jpg by calling loadImageRGBA() and glDisplay objects.net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5)
img, width, height = jetson.utils.loadImageRGBA ("black_bear.jpg")
display = jetson.utils.glDisplay()

Now you can detect an image file using the Detect() function.detections = net.Detect(img, width, height)

Next, display the result to monitor as follows:display.RenderOnce(img, width, height)
display.SetTitle("{:s} | {:d}x{:d} | {:.1f} FPS".format("Camera Viewer", width, height, display.GetFPS()))

press ENTER to exit
input()

Save this program. You can run it by typing this command:$ sudo python3 jetson-image-detectnet.py

After executing the program, you should see the black_bear.jpg file with object detection location, as shown in Figure 7-6.[image: ../images/502249_1_En_7_Chapter/502249_1_En_7_Fig6_HTML.jpg]
Figure 7-6Locating objects

If you want to use a camera CSI as the input to DetectNet, you can use gstCamera(). Then, object the image frame from the camera. You can write this completed program for the object:import jetson.inference
import jetson.utils

net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5)
camera = jetson.utils.gstCamera(640,480,"0")
display = jetson.utils.glDisplay()

camera.Open()
while display.IsOpen():
 img, width, height = camera.CaptureRGBA()
 detections = net.Detect(img, width, height)
 display.RenderOnce(img, width, height)
 display.SetTitle("{:s} | {:d}x{:d} | {:.1f} FPS".format("Camera Viewer", width, height, display.GetFPS()))

camera.Close()

Save this program as jetson-csi-detectnet.py. Now you can run it by typing this command:$ sudo python3 jetson-csi-detectnet.py

After having executed the program, you should see live video from the camera CSI along with object-detection location.
This is the end of this chapter. You can practice implementing the Jetson Inference library in your own projects.
Summary
We have learned how to work the Jetson Inference library to perform deep learning computations on the NVIDIA Jetson Nano board. We also accessed camera CSI using Jetson Inference Utils. Next, we performed object classification and object detection location.

Index

A, B

adduser command

Appearance tool

C

Camera
displaying live video
CSI
USB camera
interface/modules
OpenCV, Python3s
recording video
setup module
taking picture
CSI
USB

cap.get() function

C/C++

cv2.imwrite()function

cv2.VideoCapture()

D

Deep learning computations
camera CSI
data classification
DetectNet object
Jetson Inference
open image file

Desktop personalization

E, F

Editor tools

G

General-purpose input/output (GPIO)
actuator programming
definition
pins
programming
sensor programming
setting up

GPIO.BOARD model

GPIO.output() function

gstreamer_pipeline() function

H

Hardware preparation

I

Internet of Things (IoT)

J, K

Jetson Inference library

L

loadImage() function

ls command

M

Managing users

mkdir command

mv command

N, O

net.Classify() function

Node.js

NVIDIA Jetson Nano
A02
AI development
configure software
daily computer activities
definition
first model
hardware specifications
IOT development
network connection
restart/shut down
running
specifications
terminal

NVIDIA Jetson Nano

P, Q

Python

R

read() function

S

Sensor module–based I2C interface

Setting up Software

T, U

Terminal
cd
commands
cp
CTRL + T
ls
mkdir/rmdir
mv
pwd
rm
sudo
touch
which

touch command

V

VideoCapture()

W, X, Y, Z

which command

Wi-Fi network
browsing Internet
card module
office administration
remote desktop
SFTP, access remote files
SSH
update package repository
USB dongle

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig4_HTML.jpg
User Accounts.

9

Chromium
web
Browser

&
“Jetion Allsettings | User Accounts
Support
Forums

. Agus Kurnl: Agus Kurniawan
nVioIA gus Kurnlawan

JetsonZoo 5
Add account
Account Type | Standard

Fullname | Trainer 1|

Username | trainer1

o)
=
=]
o]
d
@
9
£l
-

OEBPS/images/502249_1_En_7_Chapter/502249_1_En_7_Fig5_HTML.jpg
g
§
3
i
§

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig15_HTML.jpg
IC:\Users\Agus Kurniawan>ssh agusk@192.168.0.31

The authenticity of host '192.168.0.31 (192.168.0.31)' can't be established.
ECDSA key fingerprint is SHA256:0tjvvHFnfmSEImtUuqGlk8ZY1Jfn3x40MOcYyFC2hs4.
lAre you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.0.31" (ECDSA) to the list of known hosts.
agusk@192.168.0.31"'s password:

Welcome to Ubuntu 18.84.4 LTS (GNU/Linux 4.9.140-tegra aarché4)

* Documentation: https://help.ubuntu.com
* Management: http: /landscape.canonical.com

* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content that are
not required on a system that users do not log into.

ITo restore this content, you can run the 'unminimize' command.

0 packages can be updated.
0 updates are security updates.

Last login: Mon Jul 27 12:40:37 2020 from 192.168.0.14
agusk@IETSON1 :~$

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig4_HTML.jpg
=

W‘ N mlluud»/”}r

COLLZOGLTLZVON/S
000-0000-0S¥PEL-SPE

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig4_HTML.jpg

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig10_HTML.jpg
A
) mypicture-cskpng

l6ST_ARGUS: Running with following settings:

Canera tndex = 0

Canera mode = 4

Output Stream W = 1280 H = 720 M ©

seconds to Run

Frame Rate = 120.000005
GST_ARGUS: Setup Complete, Starting captures for 0 seconds
|GST_ARGUS: Starting repeat capture requests.
CONSUMER: Producer has connected; continuing.
[WARN:8) OpenCV | GStreamer warning: Cannot query video position: status=e, val
ue=-1, duration=-1
lostandardpaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root’
lGST_ARGUS: Cleantng up

Done Success
GST_ARGUS: Done Success
/Documents/book$ s
camera-record.py gpiodeno.py output

canera-csi-deno.py camera-takephoto.py gpsdemo. py sensor.py
lcanera-csi-record.py camera-usb-demo.py jetson_nano testcan.py
canera-cst-takephoto.py camera-usb-gray.py mypictur
canera-deno. py camera-usb-record.py mypicture.png
canera-gray.py camera-usb-takephoto.py nano_build_opency
agusk@JIETSON1: ~/Documents /book$ eog mypicture-csi.png

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig4_HTML.jpg
® code{ Filter results »

A Applications

Code - 0SS
(headmelted)

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig4_HTML.jpg
agusk@JETSON1: ~

agusk@JETSON1:~$ ls /dev/video*
/dev/video® [dev/videol
agusk@JETSON1:~$

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig3_HTML.jpg
Etcher

7 Flash Complete! _

We hope you enjoyed
using Etcher!

Share on Twitter

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig10_HTML.jpg

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig9_HTML.jpg

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig9_HTML.jpg
P =Dl

Filter results »

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig16_HTML.jpg
FileZilla

File Edit View Transfer Server Bookmarks Help

Host: Site Manager X
Select entry: General Advanced Transfer Settings Charset "
= ;

Wy Sies Protocol: SFTP - SSH File Transfer Protocol v
 jetson-nano
[_ Host: 192.168.137.253 port:
Logon Type: Normal v
Fileg User: agusk
Possword: eesesseses server
a,
54; P—
23 Background color: None ~
84 S _ Comments:
108 ;
B Newste | Newfolder
1640 NewBookmark | Rename
bt Delete Duplicate
56 e
22 files and 1 directd
Connect oK Cancel
Server/Local fi.. Dir.

| Queued files | Failed transfers Successful transfers |

©® Queve: empty @

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig12_HTML.jpg
[c3] agusk@JETSON1: ~/code

agusk@IJETSON1:~/code$ agusk@IETSON1:~/code$
agusk@IETSONL:~/code$ node --version
8.10.0

agusk@JETSON1:~/code$

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig3_HTML.jpg
User Accounts

Chromium

|'s

User Accounts

All Settings User Accounts

Agus Kurniawan
= T

Jetson Zoo

(o)
s
B
B
]
.
Q)
]
£y
A

& Unlock

Agus Kurniawan

count Type ninistrator
Language English (United St

Login Options

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig3_HTML.jpg
[cx] agusk@JETSON1: ~/code

lagusk@JETSON1:~/code$ agusk@IETSON1:~/code$
lagusk@JETSON1:~/code$ nano hello.sh
lagusk@JETSON1:~/code$ ls

hello.sh

lagusk@JETSON1:~/code$ chmod 755 hello.sh
lagusk@JETSON1:~/code$./hello.sh

Hello World!!

lagusk@JETSON1:~/code$

OEBPS/css/sidebar.gif

OEBPS/images/502249_1_En_1_Chapter/502249_1_En_1_Fig3_HTML.jpg
Ubreoffice Writer

> T [tiberationsert_~

| sheett

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig22_HTML.jpg
JETSONO1 (agusk@JETSON1) - VNC Viewer

Cheomium
Web
Erowser

a
-
o

>
wos
Jetson
Support
Forums

<

WO
Jetsonzoo

6://(::]:598
176.6.6.0:5508

TLS* (18)
7Lt (18,

)
e: 'No Auth
g socket to listen for nections on

type:

B
B
o]
(]
5
=
=

28/07/2020 1.
20/07/2020 1
26 1

Authenttcatt,
Authentication’ (1)
800T

authentication b
*No
sise: n) (1Pv4] Got e R At

103 Advertising security type 1

ity type 1

ntication

133

NVIDIA

OEBPS/images/502249_1_En_1_Chapter/502249_1_En_1_Fig2_HTML.jpg

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Introduction to NVIDIA Jetson Nano

 		2. Setting Up and Running

 		3. Administering NVIDIA Jetson Nano

 		4. NVIDIA Jetson Nano Programming

 		5. NVIDIA Jetson Nano I/O Programming

 		6. NVIDIA Jetson Nano Camera

 		7. Deep-Learning Computation

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig11_HTML.jpg
Documents/book$ sudo python3 camera-usb-record.py
[WAR e] OpenCV | GStreamer warning: Cannot query video position: status=e, val
ue=-1, duration=-1
QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root’
agusk@IETSON1:~/Documents/book$S s
actuator.py camera-usb-demo.py gpsdemo.py sensor.py
camera-demo.py camera-usb-gray.py jetson_nano testcam.py
camera-gray.py camera-usb-record.py mypicture.png -
camera-record. py camera-usb-takephoto.py nano_build_opencv S © output.avi
camera-takephoto.py gpiodemo.py output.avi
3 Documents/book$S xdg-open output.avi
~/Documents/book$

< output.avi

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig5_HTML.jpg

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig11_HTML.jpg
Chromium Web Browser

Forums

|
ek

Jetsonzoo

SHuan = B @ 4 135 %

© 5O Apress Home - Chromlum

+

c and ads. to peovide
S00a) Media feanires and 10 analyss our ratic. We also

share information about your use of out 3
media, advertsing and analy

ot out social
dance wih

partners in
our Privacy Poby. You can manage your prefer
Manage Cookies

The publisher dedicated to mee(mg’ einf'or'l;n n needs 0
professionals, deveiopers, and tach enthusiastsworldwide,
| I L

NVIDIA

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig17_HTML.jpg
[setson-nano2 - sftp://agusk@®192.168.137.253 - FileZilla
File Edit View Transfer Server Bookmarks Help

S ETTRORO L FAs

Host: Usemname:

Status: Retrieving directory listing...
Status: Listing directory /home/agusk

Password: Port:

=g

Status: Directory listing of “/home/agusk" successful

ite: \Agus | e y |Remote site:| /home/agusk 2
+ 1 images /
(&1 e-book-epub (=~ 2 home
4 & Cryptography + 1 agusk
| 4 1 ilmudata v
Filename. Filesi.. Filetype Last mo.. ~ [Filename Files.. Filet.. lastm.. Per.. Own.. ~
© iCloud Ph... File folder 7/27/20.. 1 cache .. dren.. agus...
. 7/27/20... 1 compiz dnx... agus..
& img-2-1JPG 54, 10/13/2... 1 config - drex.. agus..
® img-2-10... 236.. PNGFile 7/22/20.. 1 dbus .. drwx... root ...
& img-2-2jpg 7/22/20... 1 gnupg . k... agus...
3jpg 7/22/20... 1 Jocal . drex.. agus..
limg-Z-l b... 10/13/2.. T . dnx.. agus..
W img-2-4jpg 7/27/20... T opki .. drex... agus...
7/26/20... | Desktop . drwx.. agus..
7727/20... ' Docume... . drwx.. agus..
7/21/200... | ¥ Downloa.. : . drvx.. agus.. v
22 files and 1 directory. Total size: 108,546,798 bytes (¢ files and 17 directories. Total size: 17,906 bytes
ServerjLocal fi.. Dir.. Remote file Size Pri.. Status

| Queued files Failed transfers Successful transfers |

RO Queue: empty e

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig2_HTML.jpg
ﬁ balenaEicher

O — A

sd-blob-b01.img APPLE SD ...SB Device

Remove Change

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig13_HTML.jpg
[+] agusk@JETSON1: ~/code

GNU nano 2.9.3 hellojs.js Modified

console.log(Hello Node Ys

} Get Help MO Write Out @N Where Is @4 Cut Text @B Justify @@ Cur Pos
1 Exit B Read File @\ Replace Bl Uncut Text@ll To Spell @M Go To Line

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig14_HTML.jpg
£ agusk@JETSONO1: ~ -

2 login as: agusk
£ agusk@192.168.0.31's password:
Welcome to Ubuntu 18.04.4 LTS (GNU/Linux 4.9.140-tegra aarché4)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages and content that are
not required on a system that users do not log into.

To restore this content, you can run the 'unminimize' command.

0 packages can be updated.
0 updates are security updates.

Last login: Mon Jul 27 11:17:10 2020 from 192.168.0.14
agusk@JETSONOL:~$ []

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig10_HTML.jpg
Chromium Web Browser

Z Home Page-Selector cre X

<> C @ localhost:8888/tree
-t
_ Jupyter

Files Running Clusters

DD E e

0o~ |m

O O code

(m}

[Desktop

O Documents

(m}

O Downloads

o

0 jetson-inference

0O 0o

0O Music

O Pictures

0 Public

0|0

0 Templates

D videos

o

[examples.desktop

(]

Select items to perform actions on them.

Home Page - Select or create a notebook - Chromium

Quit

Upload
Name ¥ | | Last Modified

23 minutes ago

3years ago

4 hours ago

4 hours ago

2days ago

3years ago

30 minutes ago

3years ago

3years ago

3years ago

3years ago

Logout

New~ | &

File size

8.98kB

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig5_HTML.jpg
@@ @ hello.sh - code - Code - 0SS (headmelted)

@ EXPLORER hello.sh %
\/ OPEN EDITORS

3 hello.sh
X 7 hello.sh

1 #1/bin/sh

2
3 echo Hello World!!
4

> OUTLINE
> TIMELINE

OEBPS/css/envelope.png

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig2_HTML.jpg
agusk@JETSONT1: ~

agusk@JIETSON1:~S]

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig2_HTML.jpg
[63] agusk@JETSON1: ~/code

GNU nano 2.9.3 hello.sh Modified

#!/bin/sh

echo Hello World!!

WS Get Help Q€ Write Out @ Where Is @Y Cut Text @8] Justify @@ Cur Pos
B Exit B Read File @\ Replace @l Uncut Textjgg] To Linter gl Go To Line

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig8_HTML.jpg

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig12_HTML.jpg
H
H

ubunte
-

4 Geoctye, wx pe A
wartto dose lﬂmmnndmut
| comouter

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig2_HTML.jpg
Name Pin | Pin |Name
3.3VDC 1 2 |s.0vDC
e 3 | 4 |sovbc
225 |6 | s faw
AUDIO_MCLK 7 8 mxﬁggf
o |+ |0 e
UART_2_RTS | 11 | 12 [12S_4_SCLK
SPI_2_SCK 13 | 14 |GND

LCD_TE 15 | 16 |sPi_2_cst
3.3VDC 17 | 18 |sPI_2_Cso0
SPI_1_MOSI 19 | 20 |GND
SPI_1_MISO 21 | 22 |[SPI_2_MISO
SPI_1_SCK 23 | 24 [SPI_1_CSO
GND 25 | 26 [SPI_1_CS1
12C_1_SDA 27 | 28 [12c_1_scL
CAM_AF_EN 29 | 30 |GND
GPIO_PZ0 31 | 32 |LCD_BL_PWM
GPIO_PE6 33 | 34 |GND
12S_4_LRCK 35 | 36 |UART_2_CTS
SPI_2_MOSI 37 | 38 [12s_4_SDIN
GND 39 | 40 [12s_4_sDoUT

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig5_HTML.jpg
DEG G &

User Accounts.

(o)

B

Chromium
web
Browser

User Accounts

AllSettings User Accounts
Support
Forums

Agus Kurnlawan

nVIDIA
Jetson Zoo

Trainer 1
trainert

~

Account Type
Language
Login Options
Password
Automatic Login

Last Login

Trainer 1

Standard

English (United States)

Account disabled

& Lock

History

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig8_HTML.jpg
nax 10.625000; Exposure Range min 13000, max 683769600;

e ntn 1.000000,

GST_ARGUS: 1920 x 1080 FR = 29.999999 fps Duration = 33333334 ; Analog Gain rang

e min 1.000000, max 10.625000; Exposure Range min 13060, max 683769000;

GST_ARGUS: 1280 x 720 FR = 59.999999 fps Duration = 16666667 ; Analog Galn

nin 1.600000, max 10.625600; Exposure Range min 13000, max 683769000;

GST_ARGUS: 1286 x 720 FR = 120.000005 fps Duration = 8333333 ; Analog Gain

nin 1.000000, max 10.625600; Exposure Range min 13000, max 683769000;

GST_ARGUS : Runﬂing with following settings:
Camera index
Camera mode =
Output Strean H 1280 H = 720
seconds to Run
Frane Rate = 120.600005
GST_ARGUS: Setup Complete, Starting captures for © seconds
GST_ARGUS: Starting repeat capture requests
[CONSUMER: Producer has connected; continuing

ue=-1, duratiol
ostandardPaths: XDG_RUNTIME_DIR not set,

[WARN:0) OpenCV | GStreamer warning: Cannot query video position: statuss

defaulting to '/tmp/runtime-root

range

range

, val

© csl camera

«% t 4 @R P OAH

(x=87, y=457) ~ R:71 G:70

OEBPS/images/978-1-4842-6452-2_CoverFigure.jpg
_Z v
.7 \‘&‘*3”’"/
G - A /7

loT Projeéts
with NVIDIA
Jetson Nano

Al-Enabled Internet of Things
Projects for Beginners

Agus Kurniawan

\ Apress®

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig8_HTML.jpg
|
i ®}si oii}: wiiillng}
PEecead>lla

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig5_HTML.jpg
GNU nano 2.9.3 gpiodemo.py Modified

import Jetson.GPIO as GPIO
import time

led_pin = 7
IGPIO. setmode (GPIO.BOARD)
GPIO.setup(led_pin, GPIO.OUT)

ftry :

while 1:
print("turn on led")
GPIO.output(led_pin, GPIO.HIGH)
time.sleep(2)
print("turn off led")
GPIO.output(led_pin, GPIO.LOW)
time.sleep(2)

Q¢ Get Help H® Write Out @ Where Is @Y Cut Text [Justify ge Cur Pos
@4 Exit Bil Read File @\ Replace @l Uncut Textjll] To Linter gl Go To Line

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig8_HTML.jpg

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig8_HTML.jpg
[c3] agusk@JETSON1: ~/code

agusk@JETSON1:~/code$ agusk@IETSON1:~/code$
agusk@JETSON1:~/code$ 1s

helloc.c hello.sh

agusk@IETSON1:~/code$ gcc helloc.c -o helloc
agusk@JETSON1:~/code$./hello

helloc hello.sh

agusk@JETSON1:~/code$./helloc

Hello World

agusk@JETSON1:~/code$

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig5_HTML.jpg
Terminal

8
B
-]
B
-]
7
i
9

rLocations

e nta 1,000008,

os 2261
e nin 1,600008,

ST_ARCu
e nin 1,c00808,

os1_ancus: 128
nin 1,000000,
ost_arcus: 1286
nn 1,000809,
ost
e (e
Ganara rode

SEETES - IR

5000; Exposure Range min 13689,

48 TR - 26,000001 fps Duration = 357142
nax 19,625000; Cxposure Range mln 11689, m

1929 x 1085 FR - 29,999959 fps Duration = 3111134 : Analog Galn rs

max 10,625000; Exposure Range min 13980, max 883763000

9 x 720 ¥R = 59,099999 fps Duration = 16086687 0g Galn range

max. 1,625000; Exposure Range min 13308, max 643709000;

9 x 720 F% = 120,000005 fps Duration = 8333333 ; Analog Gain range
X 16,625000; Exposure Range min 13898, mox 683709000;

unntng wieh followtng setting
:

ean = 3264 H = 2464

Run =

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig1_HTML.jpg
Appearance

@

=
=}
B
]
i

9
@
A

Chromium

Appearance

Allsettings Appearance

nViDiA Background
JetsonZoo

Theme

Launcher icon size

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig7_HTML.jpg
] agusk@JETSON1: ~

agusk@IJETSON1:~$ agusk@IETSON1:~$
agusk@IETSON1:~$ sudo adduser trainer2

[sudo] password for agusk:

Adding user “trainer2’ 5

Adding new group "trainer2' (1002) ...

Adding new user “trainer2' (1082) with group "trainer2
Creating home directory °/home/trainer2’
Copying files from " /etc/skel®

[Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Changing the user information for trainer2
[Enter the new value, or press ENTER for the default
Full Name []: Trainer 2

Room Number []:

Work Phone []:

Home Phone []:

Other []:

[[s the information correct? [Y/n] y

Adding new user “trainer2' to extra groups ...
Adding user “trainer2' to group “audio’

Adding user “trainer2' to group "crypto’

Adding user “trainer2' to group “gdm'

Adding user “trainer2' to group "gpio'

Adding user “trainer2' to group "i2c'

Adding user “trainer2' to group trusty'
Adding user “trainer2' to group “video'

Adding user “trainer2' to group ‘weston-launch'
agusk@JETSON1:~$

OEBPS/images/502249_1_En_7_Chapter/502249_1_En_7_Fig2_HTML.jpg
&%) agusk@JETSON1: ~/jetson-inference/build

If you want to train DNN models on your Jetson, this tool will download and
install PyTorch. Select the desired versions of pre-built packages below,
or see for instructions to build from source.

You can skip this step and select Skip if you don't want to install PyTorch.
T4 Navigate Menu

Space to Select
Enter to Continue

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig2_HTML.jpg

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig1_HTML.jpg

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig7_HTML.jpg
E%] agusk @JETSON1: ~/code O X

Modified

GNU nano 2.9.3

include<stdio.h>
nt main()

printf("Hello World\n");
0;

Q¢ Get Help MO Write Out @ Where Is @4 Cut Text @Bl Justify a¢ Cur Pos
W Exit @i Read File @\ Replace @l Uncut Text@l To Spell @M Go To Line v

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig12_HTML.jpg
5 QA E-ZNE BE-Q
Uberationseri| v (12 v B Z U § A A L L-&- iz

S .
a
4
©
9
»

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig7_HTML.jpg
System Configuration

Who are you?

Your pame

Your computer'sname: | JETSON1

Pick 8 Username

Choose

® o 0o ® o600

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig7_HTML.jpg

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig1_HTML.jpg
[3] agusk@JETSONT: ~

lagusk@IETSON1:~$ sudo apt-get install nano
[sudo] password for agusk:
Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer required:
apt-clone archdetect-deb bogl-bterm busybox-static cryptsetup-bin
dpkg-repack girl.2-timezonemap-1.0 girl.2-xkl-1.0 grub-common
kde-window-manager kinit kio kpackagetool5 kwayland-data kwin-common
kwin-data kwin-x11 libdebian-installer4 libkdecorations2-5v5
libkdecorations2private5v5 libkfSactivities5 libkfS5attica5
libkfScompletion-data libkfS5completion5 libkfS5declarative-data
libkf5declarative5 libkf5doctools5 libkf5globalaccel-data libkf5globalaccel5
libkf5globalaccelprivate5 libkf5idletime5 libkf5jobwidgets-data
libkf5jobwidgets5 libkfSkcmutils-data libkfSkcmutils5 libkfSkiocore5

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig10_HTML.jpg
H
3

055 agusk@IETSONI: -

Jetsonzoo

=]
B
B
-]
jod
8
B
A

NVIDIA

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig1_HTML.jpg
L3
L35
L3
132

\

(R

L)

Ry

i

IS PN

=4

=39 938

=" %0 GND
ELI V]
3 38
oND 33
2 3
43 0w 29
Y
} 5, 26 6D

{
]

Saan
22
N0 19
18 3v3
1615
N0 13
1z 1

|
1
|
1
]
]
1
1

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig13_HTML.jpg
Category:

— Session
Logging
= Terminal
Keyboard
Bell
Features
~/Window
Appearance
Behaviour
Translation
+/Selection
Colours
~/Connection
Data
Proxy
Telnet
Rlogin
+SSH
Serial

About

Basic options for your PuTTY session

Specify the destination you want to connect to

Host Name (or IP address)
192.168.0.31

Connection type:

Port

22

ORaw OTelnet ORlogin @ ssH O Serial

Load, save or delete a stored session

Saved Sessions
jetson-nano

Default Settings
cloudera
cloudera165
etson-nano

Close window on exit:

Load
Save

Delete

OAways (O Never (@ Only on clean exit

Help Open

Cancel

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig11_HTML.jpg

OEBPS/images/502249_1_En_2_Chapter/502249_1_En_2_Fig6_HTML.jpg
System Configuration

Please review and accept the following licenses

NVIDIA End User License Agreements

1acceptthe terms of these licenses

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig6_HTML.jpg
User Accounts
&

chromium

nvioA

nvioiA
Jetson Allsettings | User Acc
Support
Forums

nVIDIA
Jetson Zoo

Trainer 1
G

1 FleELET 11

.
Trainer 1

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig19_HTML.jpg
File View Help

Siee—
vncc by RealviN Enter

AKURWIN

[JETSONO1 - Properties - o

General Options Expert

NG server: [EPRIEERETEER
Name: JETSONO1
Labels

To nest labels, separate names with a forward slash (/)

Enter a label name, or press Down to apply existing labels

Security
Encryption: Prefer off v
[Authenticate using single sign-on (SSO) if possible

[JAuthenticate using a smartcard or certificate store if possible

Privacy
[Update desktop preview automatically

j & signin.. ~

OEBPS/images/502249_1_En_7_Chapter/502249_1_En_7_Fig3_HTML.jpg
agusk@JETSON1: ~/jetson-inference/tools

-- Copying examples/detectnet.py -> detectnet-console.py

-- Copying examples/detectnet.py -> detectnet-camera.py

-- Copying examples/segnet.py -> segnet-console.py

-- Copying examples/segnet.py -> segnet-camera.py

-- Configuring done

-- Generating done

-- Build files have been written to: /home/agusk/jetson-inference/build
agusk@JETSON1:~/jetson-inference/build$ cd ..
agusk@JETSON1:~/jetson-inference$ 1ls

build CHANGELOG.md data LICENSE.md README.md
c CMakelLists. txt docs plugins tools
calibration CMakePreBuild.sh examples python utils

agusk@JETSON1:~/jetson-inference$ cd tools
agusk@JETSON1:~/jetson-inference/tools$ 1s

benchmark-models.sh depthnet-batch.sh resize-images2.sh
bvlc_googlenet.caffemodel depth-viewer resize-images.sh
camera-capture download-models.rc seg-img-tool
cat-dog-dataset.sh download-models.sh segnet-batch.sh
cityscapes-prep2.sh imagenet-download.py synthia-all-prepare.sh
cityscapes-prep.sh imagenet-subset.sh synthia-seq-prepare.sh
CMakeLists.txt install-pytorch.rc synthia-seq-remap-labels.sh
coco2kitti.py install-pytorch.sh trt-bench
depallet-images.sh make-legends.sh trt-console

agusk@JETSON1:~/jetson-inference/tools$S

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig11_HTML.jpg
[+ agusk@JETSON1: ~/Documents/book

agusk@JETSON1 : ~/Documents/book$
agusk@JETSON1:~/Documents/book$ sudo python3 actuator.py
brightness:

brightness:

brightness:

brightness:
brightness:
brightness:

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig7_HTML.jpg
agusk@IETSON1:~$ cd Documents/

agusk@IETSON1:~/Documents$ s

auth.log book CSI-Camera newdata tralning Untitled.ipynb
agusk@IETSON1:~/Documents$ cd book/

2gusk@IETSON1: ~/Docunents /book$ s

actuator.py canera-record.py gpsdenc.py sensor.py
camera-demo.py camera-takephoto.py jetson_nano testcan.py
camera-gray.py gpiodeno.py nano_build_opency
agusk@IETSON1:~/Documents/book$ s

actuator.py camera-usb-demo. py gpsdenio. py

camera-deno.py camera-usb-gray.py jetson_nano

camera-gray.py camera-usb-record.py nano_build_opency

canera-record. py canera-usb- lakephute py sensor.py

canera-takephoto.py gpiodemo.p: testcan.py

agusk@IETSON1: -/nocuwents/books sudo python3 camera-usb-demo.py

[sudo] password for agusk:

[WARN:@] Opencv. | Gstreamer warning: Cannot query video position: status=9, val
ue=-1, duratio

Qstandardpaths: xoc RUNTIME_DIR not set, defaulting to '/tmp/runtime-root
agusk@IETSON1:~/Documents/bookS sudo python3 camera-usb-gray.

[WARN:8] OpenCV | GStreamer warning: Cannot query video position: status=e, val (B4
ue=-1, duration=-1 G2
standardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root

(x=15, y=49) -

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig21_HTML.jpg
GNOME Desktop Sharing

e

Chromium
web
Browser

>
nviDiA
Jetson
Developer
Zone

A
nvioiA
Jetson
support
Forums

>
nVIDIA
JetsonZoo

®
B
B
B
e
.
5

5900 in (all)

28/07/2020 1
28/07/2020
28/07/2020
28/07/2020
28/67/2020
28/07/2020
28/07/2020

interface
4:48:18

18
18
18
18
18

:03
03
o3

:03
o3

:03

Listening IPv6://[
Listening IPv4://0.0.0.0:5900

Clearing securityTypes

Advertising security type: 'TLS' (18)
Clearing securityTypes

Advertising security type: 'TLS' (18)

sing rity type: 'No Au tcatton' (1

[1Pv4] Got connection fron client AKURBOOT.mshome.net
other clients:

Client Protocol Version 3.7

Advertising security type 18

Advertising security type 1

Client returned security type 1

(1)

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig6_HTML.jpg
turn
turn
turn
turn
turn
turn
turn
turn

agusk@JETSON1:~/Documents/book$ agusk@IETSON1:~/Documents/book$
agusk@IETSONL:~/Documents/book$ 1s

gpiodemo. py
agusk@IETSONL:~/Documents/book$ sudo python3 gpiodemo.py

on led
off led
on led
off led
on led
off led
on led
off led

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig3_HTML.jpg
[c3] agusk@JETSON1: ~

'/usr/local/lib/python3.6/dist-packages/Pillow-7.2.0-py3.6-1linux-aarché4.egg

'/usr/lib/python3/dist-packages’,
'/usr/lib/python3.6/dist-packages"’,

USER_BASE: '/home/agusk/.local' (exists)

USER_SITE: '/home/agusk/.local/lib/python3.6/site-packages’ (exists)

ENABLE_USER_SITE: True

agusk@IETSON1:~$ sudo cp /usr/local/lib/python3.6/dist-packages/Jetson/GPI0/99-g

pio.rules /etc/udev/rules.d/

agusk@JETSON1:~$ python3

Python 3.6.9 (default, Jul 17 2020, 12:50:27)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import Jetson.GPIO as GPIO

>>> GPIO.JETSON_INFO

{'P1_REVISION': 1, "RAM': '4096M', 'REVISION': 'Unknown', 'TYPE': 'Jetson Nano',
'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM AS57'}

>>> GPIO.VERSION

12.0.8"

>>>

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig3_HTML.jpg

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig6_HTML.jpg
[6+] agusk@JETSON1: ~/code

lagusk@JETSON1:~/code$ agusk@IETSON1:~/code$

lagusk@JETSON1:~/code$ gcc --version

lgcc (Ubuntu/Linaro 7.5.0-3ubuntul~18.04) 7.5.0

Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

lagusk@JETSON1:~/code$

OEBPS/images/502249_1_En_BookFrontmatter_Figa_HTML.png
APICSS®

OEBPS/images/502249_1_En_7_Chapter/502249_1_En_7_Fig1_HTML.jpg
3] agusk@JETSON1: ~/jetson-inference/build

Keys:
T4 Navigate Menu
Space to Select Models
Enter to Continue

AlexNet
GoogleNet
GoogleNet-12
ResNet-18
ResNet-50
ResNet-101
ResNet-152
VGG-16
VGG-19

POVLONOUVDWN
VVVVVVVYVY

(244 MB)
(54 MB)
(42 MB)
(47 MB)
(102 MB)
(179 MB)
(242 MB)
(554 MB)
(575 MB)

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig9_HTML.jpg
[c3] agusk@JETSON1: ~/code

agusk@JETSON1:~/code$ agusk@IETSON1:~/code$

agusk@JETSON1:~/code$ python3

Python 3.6.9 (default, Jul 17 2020, 12:50:27)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

p>> a = 10
D> D=5

D>> c =a *b
>>> ¢

50

>>> exit()

agusk@IETSON1:~/code$

OEBPS/images/502249_1_En_7_Chapter/502249_1_En_7_Fig4_HTML.jpg
agusk@JETSONT1: ~/jetson-inference/python/examples

[TRT] binding 1
-- index 1
-- name 'prob'
-- type FP32
-- in/out OUTPUT
-- # dims 3
-- dim #0 1000 (SPATIAL)
-- dim #1 1 (SPATIAL)
-- dim #2 1 (SPATIAL)
[TRT]
[TRT] binding to input © data binding index: ©
[TRT] binding to input 0 data dims (b=1 c=3 h=224 w=224) size=602112
[TRT] binding to output © prob binding index: 1
[TRT] binding to output 0 prob dims (b=1 c=1000 h=1 w=1) size=4000

[TRT]

[TRT] device GPU, /usr/local/bin/networks/bvlc_googlenet.caffemodel initializ
ed.

[TRT] imageNet -- loaded 1000 class info entries

[TRT] imageNet -- networks/bvlc_googlenet.caffemodel initialized.

class 0295 - 0.989746 (American black bear, black bear, Ursus americanus, Euarc
tos americanus)

image is recognized as 'American black bear, black bear, Ursus americanus, Euarc
tos americanus' (class #295) with 98.974609% confidence
agusk@JETSON1:~/jetson-inference/python/examples$ l

OEBPS/images/502249_1_En_7_Chapter/502249_1_En_7_Fig6_HTML.jpg
G

e
[eed
D
[=)]

s
©
s Q-
Qo

N

w\l 5 .\\\\u) V/V/.u/r

v

© B ea EEIGE!E:

NVIDIA Jetson

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig6_HTML.jpg
© & © agusk@JETSON1: ~/Documents/book
SoN1:~$ s /dev/video*
/dev/videol
Ni:~§ cd Documents/
/Documents$ s
book ' CSI-Camera newdata
/bocunents$ cd book/
/Documents/book$ 1s
canera-record.py
canera-takephoto.py
gpiodeno.py
/Docunents/book$ s
camera-usb-demo.py
camera-usb-gray.py
camera-usb-record.py nano_build_opency
camera- usb takephoto.py sensor.py
gptodeno testcan.py
o Stunent=)Buaketsido python3 camera-usb-demo.py
[Sido) password. for agus
[WARN:0] OpenCV | GStreamer warning: Cannot query video position:
ue=-1, duration=-1
ostandardpaths:

training Untitled.ipynb

actuator.py gpsdemo. py
canera-dero. py jetson_nano

nano_build_opencv

sensor.py
testcam.py

gpsdeno.py
jetson_nano

status=

XDG_RUNTIME DIR not set, defaulting to '/tmp/runtime-root'

,» val

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig1_HTML.jpg

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig9_HTML.jpg
[c3] agusk@JETSON1: ~/Documents/book

lagusk@JETSON1 : ~/Documents/book$ agusk@IETSON1:~/Documents/book$
lagusk@JETSON1 :~/Documents/book$ i2cdetect -y -r 1
Q-4 20 3 6 N6 78 ton railltbl e Wd er &F

po: S o o e e et et e e i e e
TN s S e e S e Tl S g e iy
DAL o i o e e s e e e e e s et
EZNT e R e B e hr e e e e
ot o i R AR Tt s
S oSS ot Sor s nnl ans Cie e S o an it cn
608 - = o e e o e e

70: -- -- -- -- -- - - --
lagusk@JETSON1 : ~/Documents/book$

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig9_HTML.jpg
agusk@IETSON1: ~/Documents/book$ sudo python3 camera-usb-takephoto.py ;-,.,\e-t—;-/
[WARN:©] OpenCV | GStreamer warning: Cannot query video position: status=e, val <"
ue=-1, duration=-1
QStandardPaths
{ 1s
camera-usb-gray.py mypicture
camera-usb-record.py nano_build
camera-usb-takephoto.py sensor.py
gpiodeno.py testcan.py
camera-takephoto.py gpsdemo.py
jcamera-usb-demo.py jetson_nano
agusk@IETSON1: ~/Documents /book$ eog mypicture.png

mypicture.png

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig20_HTML.jpg
File View Help

VNCCONNCCT ¢roc 5 NC Server address or search & sinin. v

8 encryption X

0 Unencrypted connection

The connection to this VNC Server will not be encrypted.

VNC Server: 192.168.137.253:5900 (TCP)

Your i ials will be securely, but all
data while the is in progress may be
susceptible to interception by third parties.

[JDon't warn me about this again.

Continue

Stop

OEBPS/images/502249_1_En_1_Chapter/502249_1_En_1_Fig1_HTML.jpg

OEBPS/images/502249_1_En_6_Chapter/502249_1_En_6_Fig12_HTML.jpg
Canera node 4

Output Stream W = 1280 H = 720
seconds to Run =0

Frane Rate = 120.800005
GST_ARGUS: Setup Complete, Starting captures for 8 seconds

GST_ARGUS: Starting repeat capture requests.

[CONSUMER: Producer has connected; continuing.

[WARN:0] OpenCV | GStreamer warning: Cannot query video position: status=e, val
ue=-1, duration=-1

0StandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-root’
GST_ARGUS: Cleaning up

[CONSUMER: Done Success.

GST_ARGUS: Done Success

3gusk@IETSON1:~/Documents/books s

actuator.py camera-usb-demo.py nypicture.png
camera-csi-deno.py canera-usb-gray.py nano_build_opencv
camera-csi-record.py camera-usb-record.py output.avi
camera-csi-takephoto.py camera-usb-takephoto.py output-csi.avi
camera-demo. py gpiodemo. py sensor.py
camera-gray.py gpsdeno.py testcan.py
camera-record. py jetson_nano

camera-takephoto.py mypicture-csi.png

agusk@IETSONL
lagusk@IETSONL

/Docunents/books xdg-open output-cst.avi
/Documents /books.

O SO output-cslavi

< output-csi.avi

OEBPS/images/502249_1_En_4_Chapter/502249_1_En_4_Fig11_HTML.jpg
Chromium Web Browser

Untitled - Jupyter Notebook - Chrof

& untitled - Jupyter Notebc X

> C ® localhost:8888/notebooks/code/Untitled.ipynbZkernel_name=python3 w O
: Jupyter Untitled Last Checkpoint: a minute ago (unsaved changes) @ Logout
File Edit View nset Cell Kemel Widgets Help Tusted | # |Python3 O
+ %< @ B4 V| HRin B |C| M| coe v =
In [1]:

out[1]: 70

In []:

OEBPS/images/502249_1_En_3_Chapter/502249_1_En_3_Fig18_HTML.jpg
Terminal
Searchyour computer

Chromium

nviola

Jetson
Support
Forums

nVIDIA
Jetson Zoo

PACGEDD DM

28/07/2626 14:
|

//o.vo.o.sseo
8 Autoprobing selected port 5900
Advertising security type: 'TLS' (18)
8 Re-binding socket to listen for VNC connections on TCP port

interface

8 Clearing securityTypes

:48:18 Advertising security type: 'TLS' (18)

8 Clearing securityTypes
8 Advertising security type: 'TLS' (18)

:48:18 Advertising authentication type: 'No Authentication' (1)

8 Re-binding socket to listen for VNC connections on TCP port
{nterface
48:18 Listening IPv6://[::]:5900

8 Listening IPv4://6.0.0.0:5900

8 Clearing securityTypes

8 Advertising security type: 'TLS' (18)
8 Advertising authentication type: 'No Authentication'
:18 Advertising security type: 'No Authentication' (1)

OEBPS/images/502249_1_En_5_Chapter/502249_1_En_5_Fig10_HTML.jpg
[63] agusk@JETSON1: ~/Documents/book

agusk@JETSON1:~/Documents/book$ agusk@IETSON1:~/Documents/book$
agusk@JETSON1:~/Documents/book$ sudo python3 sensor.py
tthermistor: 106

photo: 125

potentiometer: 106

ithermistor: 78

photo: 125

potentiometer: 106

