
Sam’s Teach Yourself C++ in One Hour a Day

Ninth Edition

Siddhartha Rao

[image: Image]

Sam’s Teach Yourself C++ in One Hour a Day, Ninth Edition

Copyright © 2022 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-733468-1

ISBN-10: 0-13-733468-0

Library of Congress Control Number:

ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Mark Taub

Acquisitions Editor

Malobika Chakraborty

Development Editor

Chris Zahn

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor

Kitty Wilson

Indexer

Proofreader

Technical Editor

Adrian Ngo

Editorial Assistant

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

Contents at a Glance

Introduction

Part I: The Basics

Lesson 1. Getting Started

Lesson 2. The Anatomy of a C++ Program

Lesson 3. Using Variables, Declaring Constants

Lesson 4. Managing Arrays and Strings

Lesson 5. Working with Expressions, Statements, and Operators

Lesson 6. Controlling Program Flow

Lesson 7. Organizing Code with Functions

Lesson 8. Pointers and References Explained

Part II: Fundamentals of Object-Oriented C++ Programming

Lesson 9. Classes and Objects

Lesson 10. Implementing Inheritance

Lesson 11. Polymorphism

Lesson 12. Operator Types and Operator Overloading

Lesson 13. Casting Operators

Lesson 14. An Introduction to Macros and Templates

Part III: Learning the Standard Template Library (STL)

Lesson 15. An Introduction to the Standard Template Library

Lesson 16. The STL String Class

Lesson 17. STL Dynamic Array Classes

Lesson 18. STL list and forward_list

Lesson 19. STL set and multiset

Lesson 20. STL map and multimap

Part IV: Lambda Expressions and STL Algorithms

Lesson 21. Understanding Function Objects

Lesson 22. Lambda Expressions

Lesson 23. STL Algorithms

Lesson 24. Adaptive Containers: Stack and Queue

Lesson 25. Working with Bit Flags Using the STL

Part V: Advanced C++ Concepts

Lesson 26. Understanding Smart Pointers

Lesson 27. Using Streams for Input and Output

Lesson 28. Exception Handling

Lesson 29. C++20 Concepts, Ranges, Views, and Adaptors

Lesson 30. C++20 Threads

Lesson 31. C++20 Modules and C++23

Part VI: Appendixes

Appendix A. Working with Numbers: Binary and Hexadecimal

Appendix B. C++ Keywords

Appendix C. Writing Great C++ Code

Appendix D. ASCII Codes

Appendix E. Answers

Table of Contents

Introduction

Who Should Read This Book?

Organization of This Book

Conventions Used in This Book

Sample Code for This Book

Part I: The Basics

Lesson 1. Getting Started

A Brief History of C++

Programming a C++ Application

What’s New in C++20?

Summary

Q&A

Workshop

Lesson 2. The Anatomy of a C++ Program

Parts of the Hello World Program

Preprocessor Directive #include

The Body of Your Program: main()

The Concept of Namespaces

Comments in C++ Code

Functions in C++

Basic Input Using std::cin and Output Using std::cout

Summary

Q&A

Workshop

Lesson 3. Using Variables, Declaring Constants

What Is a Variable?

Common Compiler-Supported C++ Variable Types

Determining the Size of a Variable by Using sizeof()

Automatic Type Inference Using auto

Using typedef to Substitute a Variable’s Type

What Is a Constant?

Keywords You Cannot Use as Variable or Constant Names

Summary

Q&A

Workshop

Lesson 4. Managing Arrays and Strings

What Is an Array?

Multidimensional Arrays

Dynamic Arrays

C-Style Character Strings

C++ Strings: Using std::string

Summary

Q&A

Workshop

Lesson 5. Working with Expressions, Statements, and Operators

Statements

Compound Statements, or Blocks

Using Operators

Summary

Q&A

Workshop

Lesson 6. Controlling Program Flow

Conditional Execution Using if...else

Getting Code to Execute in Loops

Modifying Loop Behavior Using continue and break

Programming Nested Loops

Summary

Q&A

Workshop

Lesson 7. Organizing Code with Functions

The Need for Functions

Using Functions to Work with Different Forms of Data

How Function Calls Are Handled by the Microprocessor

Summary

Q&A

Workshop

Lesson 8. Pointers and References Explained

What Is a Pointer?

Dynamic Memory Allocation

Common Programming Mistakes When Using Pointers

Pointer Programming Best Practices

What Is a Reference?

Summary

Q&A

Workshop

Part II: Fundamentals of Object-Oriented C++ Programming

Lesson 9. Classes and Objects

The Concept of Classes and Objects

The Keywords public and private

Constructors

Destructor

The Copy Constructor

Different Uses of Constructors and the Destructor

The this Pointer

Using sizeof() with a Class

The Keyword struct and Its Differences from class

Declaring a friend of a class

Union: A Special Data Storage Mechanism

Using Aggregate Initialization on Classes and structs

Summary

Q&A

Workshop

Lesson 10. Implementing Inheritance

Basics of Inheritance

Private Inheritance

Protected Inheritance

The Problem of Slicing

Multiple Inheritance

Avoiding Inheritance Using final

Summary

Q&A

Workshop

Lesson 11. Polymorphism

Basics of Polymorphism

Using Virtual Inheritance to Solve the Diamond Problem

Using the Specifier override to Indicate the Intention to Override

Using final to Prevent Function Overriding

Virtual Copy Constructors?

Summary

Q&A

Workshop

Lesson 12. Operator Types and Operator Overloading

What Are Operators in C++?

Unary Operators

Binary Operators

The Function Operator (())

The Move Constructor and Move Assignment Operator for High-Performance Programming

User-Defined Literals

Operators That Cannot Be Overloaded

Summary

Q&A

Workshop

Lesson 13. Casting Operators

The Need for Casting

Why C-Style Casts Are Not Popular with Some C++ Programmers

The C++ Casting Operators

Problems with the C++ Casting Operators

Summary

Q&A

Workshop

Lesson 14. An Introduction to Macros and Templates

The Preprocessor and the Compiler

Using the Macro #define to Define Constants

Using #define to Write Macro Functions

An Introduction to Templates

Summary

Q&A

Workshop

Part III: Learning the Standard Template Library (STL)

Lesson 15. An Introduction to the Standard Template Library

STL Containers

STL Iterators

STL Algorithms

Interaction Between Containers and Algorithms Using Iterators

Choosing the Right Container

STL String Classes

Summary

Q&A

Workshop

Lesson 16. The STL String Class

The Need for String Manipulation Classes

Working with the STL String Class

Template-Based Implementation of an STL String

operator “”s in std::string

Using std::string_view (Amended in C++20)

Summary

Q&A

Workshop

Lesson 17. STL Dynamic Array Classes

The Characteristics of std::vector

Typical Vector Operations

Understanding the Concepts of Size and Capacity

The STL deque Class

Summary

Q&A

Workshop

Lesson 18. STL list and forward_list

The Characteristics of std::list

Basic list Operations

Reversing and Sorting Elements in a List

Summary

Q&A

Workshop

Lesson 19. STL set and multiset

An Introduction to STL Set Classes

Basic STL set and multiset Operations

Pros and Cons of Using STL set and multiset

Summary

Q&A

Workshop

Lesson 20. STL map and multimap

An Introduction to STL Map Classes

Basic std::map and std::multimap Operations

Supplying a Custom Sort Predicate

STL’s Hash Table–Based Key/Value Container

Summary

Q&A

Workshop

Part IV: Lambda Expressions and STL Algorithms

Lesson 21. Understanding Function Objects

Function Objects and Predicates

Typical Applications of Function Objects

Summary

Q&A

Workshop

Lesson 22. Lambda Expressions

What Is a Lambda Expression?

How to Define a Lambda Expression

A Lambda Expression for a Unary Function

A Lambda Expression for a Unary Predicate

A Lambda Expression with State via Capture Lists ([...])

A Lambda Expression for a Binary Function

A Lambda Expression for a Binary Predicate

Summary

Q&A

Workshop

Lesson 23. STL Algorithms

What Are STL Algorithms?

Classification of STL Algorithms

Usage of STL Algorithms

C++20 Constrained Algorithms

Summary

Q&A

Workshop

Lesson 24. Adaptive Containers: Stack and Queue

The Behavioral Characteristics of Stacks and Queues

Using the STL stack Class

Using the STL queue Class

Using the STL Priority Queue

Summary

Q&A

Workshop

Lesson 25. Working with Bit Flags Using the STL

The bitset Class

Using std::bitset and Its Members

The vector<bool> Class

Summary

Q&A

Workshop

Part V: Advanced C++ Concepts

Lesson 26. Understanding Smart Pointers

What Are Smart Pointers?

How Are Smart Pointers Implemented?

Types of Smart Pointers

Popular Smart Pointer Libraries

Summary

Q&A

Workshop

Lesson 27. Using Streams for Input and Output

The Concept of Streams

Important C++ Stream Classes and Objects

Using std::cout for Writing Formatted Data to the Console

Using std::cin for Input

Using std::fstream for File Handling

Using std::stringstream for String Conversions

Summary

Q&A

Workshop

Lesson 28. Exception Handling

What Is an Exception?

What Causes Exceptions?

Implementing Exception Safety via try and catch

Throwing Exceptions of a Type by Using throw

How Exception Handling Works

Class std::exception

A Custom Exception Class Derived from std::exception

Summary

Q&A

Workshop

Lesson 29. C++20 Concepts, Ranges, Views, and Adaptors

Concepts

The Ranges Library, Views, and Adaptors

Summary

Q&A

Workshop

Lesson 30. C++20 Threads

Multithreading

Summary

Q&A

Workshop

Lesson 31. C++20 Modules and C++23

Modules

C++23 Expected Features

Learning C++ Doesn’t Stop Here!

Summary

Q&A

Workshop

Part VI: Appendixes

Appendix A. Working with Numbers: Binary and Hexadecimal

Appendix B. C++ Keywords

Appendix C. Writing Great C++ Code

Appendix D. ASCII Codes

Appendix E. Answers

Introduction

The rapid evolution of C++ has powered this age of machine learning and artificial intelligence. You can use C++20 to program simpler yet more powerful applications than ever before. This book, which analyzes nearly 300 compiling code examples in detail, introduces important C++20 language features and describes their inner workings.

In addition to explaining the basics of C++, this book teaches features of the language that are essential in professional C++ programming. You learn the fundamentals of object-oriented programming; essential Standard Template Library features and algorithms; and C++20 concepts, ranges, views, and adaptors, to mention a few. Whether you are a beginner or a professional programmer, you will find this book to be of immense value and support.

Who Should Read This Book?

To benefit from this book—which starts with the very basics of C++—you just need a desire to learn the C++ language and curiosity about how things works. An existing knowledge of C++ programming is not a prerequisite. You might also find this book helpful if you already know C++ and want to learn about the additions that have been made to the language in recent years. If you are a professional programmer, Part III, “Learning the Standard Template Library (STL),” Part IV, “Lambda Expressions and STL Algorithms,” and Part V, “Advanced C++ Concepts,” are bound to help you create better, more practical C++ applications.

Note

Visit the publisher’s website and register this book at informit.com/register for convenient access to any updates, downloads, or errata that may be available for this book.

Organization of This Book

You can choose where to begin reading this book based on your current level of proficiency with C++. This book is organized into five parts:

• Part I, “The Basics,” gets you started with writing simple C++ applications. In doing so, it introduces you to the keywords that you most frequently see in C++ code.

• Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you object-oriented programming principles such as encapsulation, abstraction, inheritance, and polymorphism. Lesson 9, “Classes and Objects,” also teaches you the importance of programming a copy constructor and using a move constructor to optimize performance. Lesson 12, “Operator Types and Operator Overloading,” introduces you to the C++20 three-way comparison operator, which is referred to as the spaceship operator due to its shape (<=>). Lesson 14, “An Introduction to Macros and Templates,” teaches you how to write powerful generic C++ code.

• Part III, “Learning the Standard Template Library (STL),” helps you write efficient and practical C++ code using STL classes and containers. For example, in this part, you will learn how std::string makes string concatenation operations safe and easy. Lessons 17, “STL Dynamic Array Classes,” and 18, “STL list and forward_list,” teach you how to use standardized dynamic arrays and linked lists so that you don’t need to program your own. You will become familiar with using key/value pairs stored in associative containers such as std::map and std::multimap in Lesson 20, “STL map and multimap.”

• Part IV, “Lambda Expressions and STL Algorithms,” starts by explaining how to program function objects. Lesson 22, “Lambda Expressions,” discusses the implementation of unnamed function objects. You'll learn to use various algorithms that help you perform operations on containers such as finding elements, removing elements, and sorting elements in Lesson 23, “STL Algorithms.”

• Part V, “Advanced C++ Concepts,” starts by explaining smart pointers and exception handling, which significantly contribute to application stability and quality. This part explains key features introduced in C++20. Lesson 29, “C++20 Concepts, Ranges, Views, and Adaptors” teaches you to validate template parameters by using concepts and construct views of elements in a range by using adaptors. Lesson 31, “C++20 Modules and C++23,” teaches you about modules that will replace the traditional header files and ends with a note on language improvements expected to be released in the next version of the C++ standard, C++23.

Conventions Used in This Book

Within the lessons, you'll find the following elements that provide additional information:

Note

These boxes provide additional information related to the surrounding material .

Caution

These boxes alert you to problems or side effects that can occur in special situations.

Tip

These boxes describe best practices in writing C++ programs.

[image: Images]

This book uses different typefaces to differentiate between code and plain English. Throughout the lessons, code, commands, and programming-related terms appear in a computer typeface.

Sample Code for This Book

You can download code samples for free from https://github.com/learncppnow/9E.git.

About the Author

Siddhartha Rao is the vice president in charge of product security at SAP SE, the world’s most trustworthy supplier of enterprise software and cloud services. A software engineer at heart, Siddhartha is convinced that the rapid evolution of C++ has powered this age of machine learning and artificial intelligence. Using C++20, you can program simpler yet more powerful applications than ever before. In authoring this book, Siddhartha has taken care to ensure that this book’s nearly 300 compiling code examples are accompanied by detailed analysis of how they work.

Siddhartha looks forward to your comments, reviews, and feedback!

Acknowledgments

I am thankful to my wife, Clara, and my family for their immense support, and to the editorial staff at Pearson for their spirited engagement in getting this book to you!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: community@informit.com

Reader Services

Register your copy of Sams Teach Yourself C++ in One Hour a Day at informit.com for convenient access to downloads, updates, and corrections as they become available.​ To start the registration process, go to informit.com/register and log in or create an account.* Enter the product ISBN, 9780137334681, and click Submit. Once the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive discounts on future editions of this product.

Part I: The Basics

Lesson 1. Getting Started

Welcome to Sams Teach Yourself C++ in One Hour a Day! You’re ready to get started on becoming a proficient C++ programmer.

In this lesson, you find out

• Why C++ is a standard in software development

• How to enter, compile, and link your first working C++ program

• What’s new in C++20

A Brief History of C++

The purpose of a programming language is to facilitate easy consumption of computational resources. C++ is not a new language but one that is popularly used and continuously evolving. As of this writing, the newest version of C++ is called C++20. It was ratified by the International Organization for Standardization (ISO) and published in December 2020. Previous amendments to the language were labeled C++17 (released in 2017), C++14 (released in 2014), and C++11 (released in 2011).

Connection to C

Initially developed by Bjarne Stroustrup at Bell Labs in 1979, C++ was designed to be a successor to C. In contrast to C, however, C++ was designed to be an object-oriented language that implements concepts such as inheritance, abstraction, polymorphism, and encapsulation. C++ features classes that are used to contain member data and member methods. These member methods are functions that can operate on member data. This organization helps a programmer model data along with the actions to perform on that data. Popular C++ compilers have continued to support C programming, too, offering seamless integration to both worlds, resulting in high backward compatibility.

Note

Knowledge of C programming is not a prerequisite for learning C++. If your goal is to learn an object-oriented programming language like C++, then you can start directly with this book and don’t need to learn a procedural language like C.

Advantages of C++

C++ is considered an intermediate-level programming language. It is versatile and can be used for high-level programming of applications that do not need to be aware of the specifics of the hardware they run on. C++ can also be used for low-level programming of libraries that work close to the hardware, such as device drivers. C++ therefore provides an optimal middle path that helps programmers develop complex applications that do not require any compromises in terms of performance or resource management.

Despite the existence of programming languages such as Java, C#, and others, C++ has not only remained relevant but has flourished and evolved. These other languages are interpreted by a runtime component that manages resources for the programmer. The runtime makes programming relatively easy, but it abstracts system resources to such an extent that the languages are unsuitable for many high-performance computing needs. Therefore, C++ remains the language of choice for situations that demand full control over memory consumption and performance. A tiered architecture where a web server programmed in C++ serves other components programmed in HTML, Java, JavaScript, or .NET is common. C++ is the language of choice for artificial intelligence and machine learning scenarios, device drivers, databases, operating systems, services, and even compilers and interpreters of other programming languages.

Evolution of the C++ Standard

Due to its popularity, years of evolution resulted in C++ being accepted and adopted on many different platforms (operating systems), most using their own C++ compilers. This evolution led to compiler-specific deviations and, therefore, interoperability problems and porting issues. Hence, there emerged a need to standardize the language and provide compiler manufacturers with a standard language specification to work with.

In 1998, the first standard version of C++ was ratified by the ISO Committee in ISO/IEC 14882:1998. Since then, the standard has undergone ambitious changes that have improved the usability of the language and extended the support of the standard library. As mentioned earlier, as of this writing, the current ratified version of the standard is ISO/IEC 14882:2020, popularly called C++20.

Note

The current standard may not be completely supported by all popular compilers. Therefore, this book teaches the newest additions in C++20 and also explains well-supported language features that help you program good, functioning C++ applications.

Who Uses Programs Written in C++?

The list of applications, operating systems, interpreters, web services, databases, and enterprise software applications programmed in C++ is a long one. No matter who you are or how you consume computing resources, chances are that you use software programmed in C++. For example, the V8 JavaScript Engine by Google is programmed in C++. It is an integral part of popular browsers as well as server technologies such as Node.js.

C++ is a language of choice for research work by physicists, mathematicians, and data scientists. The rise of artificial intelligence using machine learning algorithms has been fueled by high-performance computing made possible by C++.

Programming a C++ Application

When you open your favorite browser or word processing application, you are instructing the processor to run an executable of that program. The executable is the finished product that should do what the programmer intended to achieve.

Steps in Building an Executable

Programming using C++ is the first step toward creating an executable that runs on your operating system. The basic steps in creating applications in C++ are the following:

1. Type C++ code using a text editor. This text editor is typically a code editor or an integrated development environment (IDE)

2. Compile code using a C++ compiler that creates a machine language version contained in “object files.”

3. Link the object files by using a linker to get an executable (.exe in Windows, for example).

During the compilation step, code in C++, which is typically contained in text files with the extension .cpp, is converted into byte code that the processor can execute. The compiler converts one code file at a time, generating an object file with an .o or .obj extension and ignoring dependencies on code in another file.

Tip

Popular compilers include g++ by the GNU Project, clang++ by LLVM, and the Microsoft Visual C++ (MSVC) compiler. g++ and clang++ are frequently used in Linux and macOS environments, while MSVC is the compiler of choice for Windows.

As of this writing, no compiler promises full C++20 support, but g++ and MSVC are better than the rest.

A linker is a tool that resolves outstanding dependencies between .obj files. In the event of successful linkage, it creates an executable for the programmer to execute and distribute.

The process of successful compilation and linking is referred to as building an executable.

Tip

Using an online compiler accessible via your browser might be the fastest way to start editing, compiling, and executing simple C++ applications. Search for “online C++ compiler” and try out the options you find. With any compiler, pay attention to C++20 support when compiling new language features introduced in this book.

Analyzing Errors and Debugging

Applications rarely compile and execute as intended on the first run. A huge or complex application programmed in any language—C++ included—needs many runs as part of a testing effort to identify errors in code, called bugs. After the bugs are fixed, the executable is rebuilt, and the testing process continues. Thus, in addition to the three steps—programming, compiling, and linking—software development also involves a step called debugging, in which the programmer analyzes errors in code and fixes them. Good development environments supply tools and features that help with debugging.

Integrated Development Environments

Programmers often use an integrated development environment (IDE) that integrates programming, compiling, linking, and debugging in a unified user interface.

If you wish to program C++ using an IDE, you can install one of the many freely available C++ IDEs and compilers to get your learning started. Some popular IDEs are Eclipse and Code::Blocks for Linux, Xcode for macOS, and Microsoft Visual Studio for Windows.

[image: Images]

Programming Your First C++ Application

Now that you know the tools and the steps involved, it is time to program your first C++ application. You will follow tradition and have your first program display “Hello World!” on the screen.

If you are using Linux or macOS, you can use a text editor that you are familiar with (I used gedit on Ubuntu) to create a file with the contents shown Listing 1.1. Then save it with a name that ends with the extension .cpp, such as Hello.cpp.

If you are using macOS with Xcode, follow these steps to create a new C++ project:

1. Invoke the New Project Wizard via the menu option File, New, Project.

2. Select Command Line Tool and click Next.

3. Choose a product name, such as Hello. Select the language C++ and click Next.

4. Replace any automatically generated content in main.cpp with the code snippet shown in Listing 1.1.

If you are using Windows with Microsoft Visual Studio, follow these steps to create a new C++ project:

1. Invoke the New Project Wizard via the menu option File, New, Project.

2. Select C++, choose the type Console App, and click Next.

3. Give your project a name, such as Hello. Click Create.

4. Replace any automatically generated content in Hello.cpp with the code snippet shown in Listing 1.1.

Listing 1.1 Hello.cpp, the Hello World Program

1: #include <iostream>

2:

3: int main()

4: {

5: std::cout << “Hello World!” << std::endl;

6: return 0;

7: }

This simple application does nothing more than display the customary “Hello World!” greeting on the screen using std::cout. std::endl instructs cout to end that line by inserting a line break, and the application exits by returning 0 to the operating system.

Tip

You might see variants of Line 5 in Listing 1.1 that appear as follows:

5: std::cout << “Hello World!\n”;

The output of the program would not change. "Hello World!\n" includes the line break in the form of \n, so it is not additionally inserted using a cout::endl.

Some code samples in this book use ’\n’ to help fit a line of code within a line on the printed page.

Note

To read a program to yourself, it might help if you know how to pronounce the special characters and keywords.

For instance, you can call #include “hash-include.” You might also call it “sharp-include” or “pound-include,” depending on where you come from.

Similarly, you can read std::cout as “standard-c-out.” endl is “end-line.”

Caution

The devil is in the details: You need to type your code in exactly the same way as shown in the listings. Compilers are strict, and if you mistakenly put a : at the end of a statement where a ; is required, you can expect a compilation failure accompanied by an error report! For the same reason, you should not use word processing software to edit code.

Tip

Code editors like Visual Studio Code are available for Linux, macOS, and Windows for free. If you’re not using an IDE, then Visual Studio Code might be the next best option for editing code.

Building and Executing Your First C++ Application

If you’re using the g++ compiler by GCC, you can open the terminal, navigate to the directory containing hello.cpp, and invoke the compiler and linker by using the command line:

g++ -o hello Hello.cpp -std=c++20

Alternatively, if you are using the clang++ compiler on macOS, you can follow the steps mentioned above and execute the following command line:

clang++ -o hello Hello.cpp

These commands instruct g++ and clang++ to create an executable named hello by compiling your C++ file Hello.cpp.

Enable C++20 Features When Using g++ or clang++

To compile C++20-specific code using g++ or clang++, append the parameter -std=c++20 to the command line:

g++ -o hello Hello.cpp -std=c++20

or

clang++ -o hello Hello.cpp -std=c++20

You will need it when compiling code that uses C++20 features.

If you’re using macOS with Xcode, then you can build and run your application by selecting Product, Run.

Your program composed in Xcode should look similar to the one illustrated in Figure 1.1.

[image: Images]

Figure 1.1 A simple “Hello World” C++ program edited in Xcode 12.5 on macOS.

Tip

To compile C++20 code in Xcode, you need to explicitly enable it by setting C++ Language Dialect to c++20. You can find this option under Build Settings.

If you’re using Microsoft Visual Studio on Windows, press Ctrl+F5 to run your program directly via the IDE. This compiles, links, and executes your application.

Your program composed in Microsoft Visual Studio should look similar to the one illustrated in Figure 1.2.

[image: Images]

Figure 1.2 A simple “Hello World” C++ program edited in Microsoft Visual Studio 2019.

Tip

To compile C++20 code in Microsoft Visual Studio, you need to explicitly enable it by setting the option C++ Language Standard to ISO C++20 Standard. You can find it under Project, Properties.

When you execute ./hello or Hello.exe, you get the following output:

Hello World!

Congratulations! You have started on your way to learning one of the most popular and powerful programming languages of all time!

Significance of the C++ ISO Standard

Listing 1.1 demonstrates that adherence to the C++ ISO standard helps develop code that can be compiled for and executed on multiple operating systems.

The ISO standard for C++ enables consistent compiler support and cross-platform portability of code. Thus you as a developer can address a larger audience of users without needing to program specifically for every OS environment that they prefer.

Understanding Compiler Errors

Compilers are painfully exact in their requirements, but only the good ones make an effort to show you where the mistakes in code are. To see this in action, you can deliberately introduce an error in Listing 1.1 by deleting the semicolon (;) ending Line 5 before the return in Line 6. From a compiler’s point of view, you have started a new statement in Line 6 without ending the previous one in Line 5—and this is against the rules. If you now try to compile the code, you get an error like this:

1.1 Hello World.cpp(6,2): error C2143: syntax error: missing ’;’ before ’return’

This error message from Visual C++ starts with the name of the file that contains the error, the line number where it encountered a new statement before closure of the previous one (6, in this case), and a description of the error and the error number (in this case, C2143). You can fix the problem by adding a semicolon at the beginning of the sixth line, and the program will compile just fine!

Note

Using a semicolon (;) is the valid way to terminate a statement in C++. Line breaks don’t terminate statements in C++ as they do in languages such as VBScript.

C++ therefore allows you to have a statement spanning multiple lines. It is also possible to have multiple statements in a line, with each statement terminated by a semicolon.

What’s New in C++20?

Revisions to the C++ standard have resulted in a language that is simpler to use for programming without compromising on the ability to write high-performance applications.

C++20, which was published by the ISO in December 2020, represents a quantum leap in the modernization of the language. It introduces the three-way comparison operator (also called the spaceship operator), validation of template parameters, a new ranges library that includes views and adapters that facilitate powerful operations on collections, further standardization of multithreading, synchronization support through coroutines, and improved lambda expressions. C++20 also introduces modules—a long-awaited feature that overcomes the drawbacks of including header (.h) files and greatly speeds up the compilation process in large projects. So drastic are the amendments in C++20 that no compiler promises complete C++20 standard support as of this writing, although the ones mentioned are making good progress to that end.

C++ is a language that’s still evolving. Features that are expected in the next revision, which is expected to occur in 2023, are introduced at the end of the book, in Lesson 31, “C++20 Modules and C++23.”

Summary

In this lesson, you learned how to program, compile, link, and execute your first C++ program. This lesson also gave you a brief overview on the evolution of C++ and demonstrated the effectiveness of the standard by showing that the same program can be compiled using different compilers on different operating systems.

Q&A

Q. Can I ignore warning messages from my compiler?

A. Compilers sometimes issue warning messages. Warnings are different from errors in that with a warning, the line in question is syntactically correct and compile-worthy. However, there may be a better way to write the line, and a good compiler will issue a warning with a recommendation for a fix.

You should heed these warnings and improve your programs accordingly. Don’t ignore warning messages unless you are sure that they’re false positives.

Q. How does an interpreted language differ from a compiled language?

A. Languages such as JavaScript, Ruby, and Python are interpreted languages. Such a language uses an interpreter that reads (interprets) code in a script file and performs the desired actions. Compiled languages like C++ use a build step to produce executables containing instructions that execute natively on the processor.

Q. What are runtime errors, and how are they different from compile-time errors?

A. Errors that happen when you execute an application are called runtime errors. You might have experienced the infamous “access violation” on Windows, which is a runtime error caused by a buggy executable. Compile-time errors break the build process. They indicate syntactical problems in code and need to be fixed by the programmer before compilation can proceed.

Q. Why do I need to explicitly enable C++20 features when using g++, clang++, or MSVC? Why aren’t they on by default?

A. Amendments to C++ include new features and improvements to existing ones. Compilers need to ensure backward compatibility and execution stability of existing code. They do so by introducing new features (some still in experimental mode) that support the C++20 standard by using new command-line parameters so that existing build scripts are not jeopardized.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Ignoring syntax, what is the difference between a compiled language like C++ and an interpreted language like JavaScript?

2. What does a linker do?

3. What are the steps in the normal program development cycle?

Exercises

1. Look at the following program and try to guess what it does without running it:

 1: #include <iostream>

 2: int main()

 3: {

 4: int x = 8;

 5: int y = 6;

 6: std::cout << std::endl;

 7: std::cout << x - y << “ “ << x * y << “ “ << x + y;

 8: std::cout << std::endl;

 9: return 0;

10: }

2. Type in the program from Exercise 1 and then compile and link it. What does it do? Does it do what you guessed?

3. What do you think is the error in the following program?

1: include <iostream>

2: int main()

3: {

4: std::cout << “Hello Buggy World “ << std::endl;

5: return 0;

6: }

4. Fix the error in the program in Exercise 3 and then compile, link, and run the program. What does it do?

Lesson 2. The Anatomy of a C++ Program

C++ programs are organized into classes comprising member functions and member variables. Most of this book is devoted to explaining these parts in depth, but to get a sense of how a program fits together, you must see a complete working program.

In this lesson, you learn

• The parts of a C++ program

• How the parts work together

• What a function is and what it does

• Basic input and output operations

Parts of the Hello World Program

Your first C++ program in Lesson 1, “Getting Started,” did nothing more than display a simple “Hello World” statement on the screen. Yet this program contains some of the most important and basic building blocks of a C++ program. You use Listing 2.1 as a starting point to analyze components all C++ programs contain.

Listing 2.1 HelloWorldAnalysis.cpp: Analyzing a Simple C++ Program

 1: // Preprocessor directive that includes header iostream

 2: #include <iostream>

 3:

 4: // Start of your program: function block main()

 5: int main()

 6: {

 7: /* Write to the console output i.e. screen */

 8: std::cout << “Hello World” << std::endl;

 9:

10: // Return a value to the OS

11: return 0;

12: }

This C++ program can be broadly classified into two parts: the preprocessor directives that start with a # and the main body of the program, which starts with int main().

Note

Lines 1, 4, 7, and 10, which start with a // or with a /*, are called comments and are ignored by the compiler. Comments are used to explain the code and are for humans to read.

Preprocessor Directive #include

As the name suggests, a preprocessor is a tool that runs before the actual compilation starts. Preprocessor directives are commands to the preprocessor and always start with a pound sign # (also called a hash symbol). In Line 2 of Listing 2.1, #include <filename> tells the preprocessor to take the contents of the file (iostream, in this case) and include them at the line where the directive is made. iostream is a standard header file that enables the usage of std::cout in Line 8 to display "Hello World" on the screen. In other words, the compiler was able to compile Line 8, which contains std::cout, because the preprocessor included the definition of std::cout in Line 2.

Note

Professionally programmed C++ applications include standard headers supplied by the development environment and those created by the programmer.

Large applications are typically programmed in multiple files wherein some need to include others. So, if a variable or function declared in FileA needs to be used in FileB, you need to include the former in the latter. You would do that by inserting the following include statement in FileB:

#include “...relative path to FileA\FileA”

Use quotes ("") when including a self-programmed header file. Use angle brackets (<>) when including a standard header file—for example, <iostream>, <string>, and <algorithm>.

C++20 Tip

The preprocessor directive #include<file> inserts the entire contents of the header file at the point in code where the inclusion is declared, even if no part of the file being included is relevant to the code being compiled. Large and complex C++ projects comprising many inclusions suffer significantly reduced compilation times.

C++20 has solved this problem by introducing modules. Modules help with efficient code reuse without compromising compilation times. As of this writing, modules are supported by some popular compilers in experimental mode. They are introduced in Lesson 31, “C++20 Modules and C++23.”

The Body of Your Program: main()

Following the preprocessor directive(s) is the body of the program, characterized by the function main(). The execution of a C++ program always starts here. It is a standardized convention that function main() is declared with an int preceding it. int is the return value type of the function main() and stands for integer.

Note

In many C++ applications, you find a variant of the main() function that looks like this:

int main (int argc, char* argv[])

This is also standard compliant and acceptable as main() returns int. The contents of the parenthesis are “arguments” supplied to the program. This variant allows the user to start the program with command-line arguments, such as

program -DoSomethingSpecific

-DoSomethingSpecific is the argument for that program passed by the operating system (OS) as a parameter to it, to be handled within main (int argc, char* argv[]).

Let’s discuss Line 8, which fulfills the actual purpose of this program:

std::cout << “Hello World” << std::endl;

cout (which stands for “console-out” and is pronounced “see-out") is the statement that writes "Hello World" to the display console. cout is a stream defined in the standard std namespace (hence, std::cout), and what you are doing in this line is putting the text "Hello World" into this stream by using the stream insertion operator <<. std::endl is used to end a line, and inserting it into a stream is akin to inserting a carriage return. Note that the stream insertion operator << is used every time a new entity needs to be inserted into the stream.

The good thing about streams in C++ is that different stream types support similar stream semantics to perform different operations with the same text. For example, insertion of the text "Hello World” into a file instead of a console would use the same insertion operator << on an std::fstream instead of std::cout. Thus, working with streams becomes intuitive, and when you are familiar with one stream (such as cout, which writes text to the console), you will find it easy to work with others (such as fstream, which helps save files to the disk).

Streams are discussed in greater detail in Lesson 27, “Using Streams for Input and Output.”

Note

The actual text "Hello World", including the quotes, is called a string literal.

Returning a Value

A function in C++ needs to return a value unless explicitly specified otherwise. main() is a function and always returns an integer. This integer value is returned to the OS and, depending on the nature of your application, can be very useful as most OSes provide for an ability to query on the return value of an application that has terminated naturally. In many cases, one application is launched by another, and the parent application (that launches) wants to know if the child application (that was launched) has completed its task successfully. A programmer can use the return value of main() to convey a success or error state to the parent application.

Note

Programmers conventionally return 0 in the event of success or -1 in the event of an error. However, the return value is an integer, and a programmer has the flexibility to convey many different states of success or failure by using the available range of integer return values.

Caution

C++ is case-sensitive. So, expect compilation to fail if you write Int instead of int and Std::Cout instead of std::cout. This is why word processors aren’t used to edit code!

The Concept of Namespaces

The reason you used std::cout in the program and not just cout is that the artifact (cout) that you want to invoke is in the standard (std) namespace.

So, what exactly are namespaces?

Assume that you didn’t use the standard namespace qualifier std in invoking cout and assume that cout existed in two locations known to the compiler. Which one should the compiler invoke? This conflict will result in a compilation failure. Namespaces solve this problem by giving names to sections of code. In invoking std::cout, you are instructing the compiler to use the cout that is available in the std namespace.

Note

You use the std (pronounced “standard") namespace to invoke functions, streams, and utilities that have been ratified by the ISO standards committee.

Many programmers find it tedious to repeatedly add the std namespace specifier to their code when using cout and other such features contained in the standard namespace. The using namespace declaration, as demonstrated in Listing 2.2, helps you avoid this repetition.

Listing 2.2 The using namespace Declaration

 1: // Preprocessor directive

 2: #include <iostream>

 3:

 4: // Start of your program

 5: int main()

 6: {

 7: // Tell the compiler what namespace to search in

 8: using namespace std;

 9:

10: /* Write to the screen using std::cout */

11: cout << “Hello World” << endl;

12:

13: // Return a value to the OS

14: return 0;

15: }

Analysis

Note Line 8. By telling the compiler that you are using the namespace std, you don’t need to explicitly mention the namespace on Line 11 when using std::cout or std::endl.

A more restrictive variant of Listing 2.2 is shown in Listing 2.3, where you do not include a namespace in its entirety. You explicitly include artifacts that you wish to use.

Listing 2.3 Another Demonstration of the using Keyword

 1: // Preprocessor directive

 2: #include <iostream>

 3:

 4: // Start of your program

 5: int main()

 6: {

 7: using std::cout;

 8: using std::endl;

 9:

10: /* Write to the screen using std::cout */

11: cout << “Hello World” << endl;

12:

13: // Return a value to the OS

14: return 0;

15: }

Analysis

Line 8 in Listing 2.2 has now been replaced by Lines 7 and 8 in Listing 2.3. The difference between using namespace std and using std::cout is that the former allows all artifacts in the std namespace (cout, cin, etc.) to be used without explicit inclusion of the namespace qualifier std::. With the latter, the convenience of not needing to disambiguate the namespace explicitly is restricted to only std::cout.

Comments in C++ Code

Lines 1, 4, 10, and 13 in Listing 2.3 contain text in a spoken language (English, in this case) yet do not interfere with the ability of the program to compile. They also do not alter the output of the program. Such lines are called comments. Comments are ignored by the compiler and are used by programmers to explain their code—hence, they are written in human-readable language.

C++ supports comments in two styles:

• // indicates the start of a comment, which is valid until the end of that line. For example:

// This is a comment and it ends at this line

• /* followed by */ indicates that the contained text is a comment, even if it spans multiple lines:

/* This is also a comment

and it spans two lines */

Note

It might seem strange that a programmer needs to explain code, but the bigger a program gets or the larger the number of programmers working on a particular module gets, the more important it is to write code that can be easily understood. Comments help a programmer document what is being done and why it is being done in a particular manner.

[image: Images]

Functions in C++

Functions help divide the content of an application into functional units that can be invoked in a sequence of your choosing. A function, when invoked, typically returns a value to the invoking/calling function. The most famous function is, of course, int main(). It is recognized by the compiler as the starting point of a C++ application and has to return an int (i.e., an integer).

As a programmer, you have the choice and usually the need to divide your code into logical units by composing functions. Listing 2.4 is a simple application that uses a function to display statements on the screen using std::cout with various parameters.

Input

Listing 2.4 Declaring, Defining, and Calling a Function That Demonstrates Capabilities of std::cout

 1: #include <iostream>

 2: using namespace std;

 3:

 4: // Declare a function

 5: int DemoConsoleOutput();

 6:

 7: int main()

 8: {

 9: // Call i.e. invoke the function

10: DemoConsoleOutput();

11:

12: return 0;

13: }

14:

15: // Define i.e. implement the previously declared function

16: int DemoConsoleOutput()

17: {

18: cout << “This is a simple string literal” << endl;

19: cout << “Writing number five: “ << 5 << endl;

20: cout << “Performing division 10 / 5 = “ << 10 / 5 << endl;

21: cout << “Pi is 22 / 7 = “ << 22.0 / 7 << endl;

22:

23: return 0;

24: }

Output

This is a simple string literal

Writing number five: 5

Performing division 10 / 5 = 2

Pi is 22 / 7 = 3.14286

Analysis

Lines 5, 10, and 16 through 24 are the interesting lines in this listing. Line 5 is called a function declaration, and it basically tells the compiler that you want to create a function called DemoConsoleOutput() that returns an int (integer). This declaration enables the compiler to compile Line 10, where DemoConsoleOutput() is called inside main(). The compiler assumes that the definition (that is, the implementation of the function) is going to come up, which it does later, in Lines 16 through 24.

The function DemoConsoleOutput() demonstrates the capabilities of cout. Note that it prints not only text the same way as it displayed "Hello World" in previous examples, it also displays the results of simple arithmetic computations.

Function DemoConsoleOutput() is required to return an integer, as declared in Line 5, and therefore returns an integer value 0 in Line 12. Similarly, main() returns 0, too. Given that main() has delegated all its activity to the function DemoConsoleOutput(), you can use the return value of the function also in returning from main(), as illustrated in Listing 2.5.

Listing 2.5 Using the Return Value of a Function

 1: #include <iostream>

 2: using namespace std;

 3:

 4: // Function declaration and definition

 5: int DemoConsoleOutput()

 6: {

 7: cout << “This is a simple string literal” << endl;

 8: cout << “Writing number five: “ << 5 << endl;

 9: cout << “Performing division 10 / 5 = “ << 10 / 5 << endl;

10: cout << “Pi is 22 / 7 = “ << 22.0 / 7 << endl;

11:

12: return 0;

13: }

14:

15: int main()

16: {

17: // Function call with return used to exit

18: return DemoConsoleOutput();

19: }

Analysis

The output of this application is the same as the output of the previous listing. However, there are slight differences in the way it is programmed. For example, because you have defined (that is, implemented) the function before main() in Lines 5–13, you don’t need an extra declaration of it. The compiler accepts it as a function declaration and definition in one. main() is a bit shorter, too. Line 18 invokes the function DemoConsoleOutput() and also returns from main() using the return value of the function.

Note

In Listing 2.5, the function DemoConsoleOutput() is not required to make a decision. Therefore, you can declare the function to return type void:

void DemoConsoleOutput()

This variant cannot return a value.

Functions can take parameters, can be recursive, can contain multiple return statements, can be overloaded, can be expanded inline by the compiler, and more. These concepts are introduced in greater detail in Lesson 7, “Organizing Code with Functions.”

Basic Input Using std::cin and Output Using std::cout

Your computer enables you to interact with applications running on it in various forms and allows those applications to interact with you in many forms, too. You interact with applications by using input devices. The keyboard and the mouse are popular examples. You can have information displayed on the screen as text, displayed in the form of graphics, printed on paper using a printer, or simply saved to the file system for later use. This section discusses the very simplest form of input and output in C++: using the console to write and read information.

You use std::cout (pronounced “standard see-out") to write simple text data to the console and use std::cin ("standard see-in") to read text and numbers (entered using the keyboard) from the console. In fact, in displaying "Hello World" on the screen, you have already encountered cout, as seen in Listing 2.1:

8: std::cout << “Hello World” << std::endl;

This statement shows cout followed by the insertion operator << (which helps insert data into the output stream), followed by the string literal "Hello World" to be inserted, followed by a newline in the form std::endl (pronounced “standard end-line"). In addition to inserting a newline, std::endl also flushes the output buffer, making std::cout display all contents immediately.

The use of std::cin is simple, too. cin is used for input and is therefore accompanied by the variable you want to be storing the input data in:

std::cin >> variable;

Thus, cin is followed by the extraction operator >> (which extracts data from the input stream), which is followed by the variable where the data needs to be stored. If the user input needs to be stored in two variables, each containing data separated by a space, then you can store it by using one statement:

std::cin >> variable1 >> variable2;

Note that cin can be used for text as well as numeric inputs from the user, as shown in Listing 2.6.

Input

Listing 2.6 Using cin and cout to Display Number and Text Entered by a User

 1: #include <iostream>

 2: #include <string>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: // Declare a variable to store an integer

 8: int inputNumber;

 9:

10: cout << “Enter an integer: “;

11:

12: // store integer given user input

13: cin >> inputNumber;

14:

15: // The same with text i.e. string data

16: cout << “Enter your name: “;

17: string inputName;

18: cin >> inputName;

19:

20: cout << inputName << “ entered “ << inputNumber << endl;

21:

22: return 0;

23: }

Output

Enter an integer: 42

Enter your name: Siddhartha

Siddhartha entered 42

Analysis

Line 8 shows how a variable named inputNumber is declared to store data of type int. Line 10 uses cout to ask the user to enter a number. The entered number is then stored in the integer variable inputNumber using cin in Line 13. The same exercise is repeated to store the user’s name in variable inputName, which of course is not an integer but a type called string, as seen in Lines 17 and 18. The reason you included header file <string> in Line 2 was to use type std::string later, inside main(). Finally, in Line 20, a cout statement is used to display the entered name with the number and intermediate text to produce the output Siddhartha entered 42.

This simple example demonstrates basic input and output in C++. Don’t worry if the concept of variables is not clear to you yet, as it is explained in good detail in Lesson 3, “Using Variables, Declaring Constants.”

Note

If I had entered a couple of words as my name (for example, Siddhartha Rao) while executing Listing 2.6, cin would’ve still stored only the first word, Siddhartha, in the string. To be able to store entire lines, you use the function getline(), as demonstrated in Listing 4.7 in Lesson 4, “Managing Arrays and Strings.”

Summary

This lesson introduced the basic parts of a simple C++ program. You learned what main() is, got an introduction to namespaces, and learned the basics of console input and output. You will be able to use a lot of these components in every program you write.

Q&A

Q. What does #include do?

A. This is a directive to the preprocessor that runs when you call your compiler. This specific directive causes the contents of the file named in <...> after #include to be inserted at that line as if it were typed at that location in your source code.

Q. What is the problem with #include?

A. Inclusion of many files results in slow compilation times, especially in large projects. This problem has been mitigated in C++20 by the introduction of modules.

Q. What is the difference between // comments and /* comments?

A. The double-slash comments (//) expire at the end of the line. Slash-star (/*) comments are in effect until a closing comment mark (*/) appears. The double-slash comments are also referred to as single-line comments, and the slash-star comments are often referred to as multiline comments. Remember, not even the end of the function terminates a slash-star comment. If you forget the closing comment mark (*/), you will have unintentionally commented away code that follows.

Q. When do you need to program command-line arguments?

A. You use command-line arguments to support options that may alter the execution of a program. For example, the command format in Windows helps format a drive, with a typical use being format c:. Here c: is the command-line argument sent to executable format.exe.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. What is the problem in declaring Int main()?

2. Can comments be longer than one line?

Exercises

1. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can you fix it?

1: #include <iostream>

2: void main()

3: {

4: std::Cout << Is there a bug here?”;

5: }

2. Fix the bugs in Exercise 1 and recompile, link, and run it.

3. Modify Listing 2.4 to demonstrate subtraction (using -) and multiplication (using *).

Lesson 3. Using Variables, Declaring Constants

Variables help a programmer temporarily store data for a finite amount of time. Constants help a programmer define artifacts that are not allowed to change or make changes.

In this lesson, you find out

• How to declare and define variables and constants

• How to assign values to variables and manipulate those values

• How to write the value of a variable to the screen

• How to use the keywords auto and constexpr

What Is a Variable?

Before you actually explore the need for and use of variables in a programming language, take a step back and first think about what a computer contains and how it works.

Memory and Addressing in Brief

A computer, smart phone, or other programmable device contains a microprocessor and a certain amount of memory for temporary storage, called random access memory (RAM). In addition, many devices also allow for data to be persisted on a storage device such as a hard disk. The microprocessor executes instructions comprising your application. In doing so, it uses the RAM to fetch the application binary code to be executed, as well as the data associated with it.

The RAM itself can be visualized as a storage area akin to a row of lockers in a dorm, each locker having a number—that is, an address. To access a location in memory—such as location 578—the processor needs to be programmed using an instruction to fetch a value from the location or write a value to it.

Declaring Variables to Access and Use Memory

The following examples will help you understand what variables are. Assume you are writing a program to multiply two numbers supplied by the user. The user is asked to feed the multiplicand and the multiplier into your program, one after the other, and you need to store each of them so that you can use them later to multiply. Depending on what you want to be doing with the result of the multiplication, you might even want to store that result for later use in your program. Instead of painstakingly specifying memory addresses (such as 578) to store the numbers, you would use variables for the purpose. Defining a variable is simple and follows this pattern:

VariableType VariableName;

or

VariableType VariableName = InitialValue;

The VariableType attribute tells the compiler the nature of data the variable can store, and the compiler reserves the necessary space for it. The name chosen by the programmer is a friendly replacement for the address in the memory where the variable’s value is stored.

Tip

Variable initialization is optional, but it’s a good programming practice.

Listing 3.1 shows how variables are declared, initialized, and used in a program that multiplies two numbers supplied by the user.

Input

Listing 3.1 Using Variables to Store Numbers and the Result of Their Multiplication

 1: #include <iostream>

 2: using namespace std;

 3:

 4: int main ()

 5: {

 6: cout << “This program multiplies two numbers” << endl;

 7:

 8: cout << “Enter the first number: “;

 9: int firstNumber = 0;

10: cin >> firstNumber;

11:

12: cout << “Enter the second number: “;

13: int secondNumber = 0;

14: cin >> secondNumber;

15:

16: // Multiply two numbers, store result in a variable

17: int multiplicationResult = firstNumber * secondNumber;

18:

19: // Display result

20: cout << firstNumber << “ x “ << secondNumber;

21: cout << “ = “ << multiplicationResult << endl;

22:

23: return 0;

24: }

Output

This program multiplies two numbers

Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis

This application asks the user to enter two numbers. The program multiplies these two numbers and displays the result. To use numbers entered by the user, it needs to store them in memory. Variables firstNumber and secondNumber, declared in Lines 9 and 13, do the job of temporarily storing integer values entered by the user. You use std::cin in Lines 10 and 14 to accept input from the user and to store them in the two integer variables. Line 17 performs the multiplication and stores result in variable multiplicationResult. The cout statement in Line 21 is used to display the result on the console.

Let’s analyze a variable declaration further:

9: int firstNumber = 0;

This line declares a variable of type int, which indicates an integer, with the name firstNumber. Zero is assigned to the variable as an initial value.

The compiler does the job of mapping this variable firstNumber to a location in memory and takes care of the associated memory-address bookkeeping for you for all the variables that you declare. The programmer thus works with human-friendly names, while the compiler manages memory addressing and creates the instructions for the microprocessor to execute in working with the RAM.

Tip

Naming variables appropriately is important for writing good, understandable, and maintainable code.

Variable names in C++ can be alphanumeric, but they cannot start with a number. They cannot contain spaces and cannot contain arithmetic operators (such as +, -, and so on) within them. Variable names also cannot be reserved keywords. For example, a variable named return will cause compilation failure.

Variable names may contain the underscore character (_), and it is popularly used in descriptive variable naming.

Declaring and Initializing Multiple Variables of a Type

In Listing 3.1, firstNumber, secondNumber, and multiplicationResult are all of the same type—integers—and are declared in three separate lines. If you wanted to, you could condense the declaration of these three variables to one line of code that looks like this:

int firstNumber = 0, secondNumber = 0, multiplicationResult = 0;

Note

As you can see, C++ makes it possible to declare multiple variables of a type at once and to declare variables at the beginning of a function. However, declaring a variable when it is first needed is often better as it makes the code readable: People tend to notice the type of the variable when the declaration is close to its point of first use.

Caution

Data stored in variables is data stored in RAM. This data is lost when the application terminates unless the programmer explicitly persists the data on a storage medium like a hard disk.

Storing to a file on disk is discussed in Lesson 27, “Using Streams for Input and Output.”

Understanding the Scope of a Variable

The scope of a variable is the region of code within which you can use that variable. An ordinary variable like the ones we have declared so far has a well-defined scope within which it’s valid and can be used. When used outside its scope, a variable’s name will not be recognized by the compiler, and your program won’t compile. Beyond its scope, a variable is an unidentified entity that the compiler knows nothing of.

To better understand the scope of a variable, Listing 3.2 reorganizes the program in Listing 3.1 into a function MultiplyNumbers() that multiplies the two numbers and returns the result.

Input

Listing 3.2 Demonstrating the Scope of the Variables

 1: #include <iostream>

 2: using namespace std;

 3:

 4: void MultiplyNumbers ()

 5: {

 6: cout << “Enter the first number: “;

 7: int firstNumber = 0;

 8: cin >> firstNumber;

 9:

10: cout << “Enter the second number: “;

11: int secondNumber = 0;

12: cin >> secondNumber;

13:

14: // Multiply two numbers, store result in a variable

15: int multiplicationResult = firstNumber * secondNumber;

16:

17: // Display result

18: cout << firstNumber << “ x “ << secondNumber;

19: cout << “ = “ << multiplicationResult << endl;

20: }

21: int main ()

22: {

23: cout << “This program multiplies two numbers” << endl;

24:

25: // Call the function that does all the work

26: MultiplyNumbers();

27:

28: // cout << firstNumber << “ x “ << secondNumber;

29: // cout << “ = “ << multiplicationResult << endl;

30:

31: return 0;

32: }

Output

This program multiplies two numbers

Enter the first number: 51

Enter the second number: 24

51 x 24 = 1224

Analysis

Listing 3.2 does exactly the same activity as Listing 3.1 and produces the same output. The only difference is that the bulk of the work is delegated to a function called MultiplyNumbers(), which is invoked by main(). Note that variables firstNumber and secondNumber cannot be used outside of MultiplyNumbers(). If you uncomment Lines 28 or 29 in main(), you experience compile failure of type undeclared identifier. This is because the scope of the variables such as firstNumber and secondNumber is limited to the function they’re declared in—in this case MultiplyNumbers(). Such variables are therefore called local variables and can be used only within that function.

The curly brace (}) that indicates the end of a function also limits the scope of variables declared after the opening brace. When a function ends, all local variables are destroyed, and the memory they occupy is returned.

In Listing 3.2, therefore, variables declared within MultiplyNumbers() perish when the function ends. If they’re used in main(), compilation fails as the variables have not been declared in there.

Caution

If you declare another set of variables with the same name in main(), you can’t expect them to carry a value that might have been assigned in MultiplyNumbers().

The compiler treats the variables in main() as independent entities even if they share their names with a variable declared in another function, as the two variables in question are limited by their scope.

Global Variables

If the variables used in function MultiplyNumbers() in Listing 3.2 were declared outside the scope of the function MultiplyNumber() instead of within it, then they would be usable in both main() and MultiplyNumbers(). Listing 3.3 demonstrates global variables, which are the variables with the widest scope in a program.

Input

Listing 3.3 Using Global Variables

 1: #include <iostream>

 2: using namespace std;

 3:

 4: // Declare three global integers

 5: int firstNumber = 0;

 6: int secondNumber = 0;

 7: int multiplicationResult = 0;

 8:

 9: void MultiplyNumbers ()

10: {

11: cout << “Enter the first number: “;

12: cin >> firstNumber;

13:

14: cout << “Enter the second number: “;

15: cin >> secondNumber;

16:

17: // Multiply two numbers, store result in a variable

18: multiplicationResult = firstNumber * secondNumber;

19:

20: // Display multiplicationResult

21: cout << “Displaying from MultiplyNumbers(): “;

22: cout << firstNumber << “ x “ << secondNumber;

23: cout << “ = “ << multiplicationResult << endl;

24: }

25: int main ()

26: {

27: cout << “This program multiplies two numbers” << endl;

28:

29: // Call the function that does all the work

30: MultiplyNumbers();

31:

32: cout << “Displaying from main(): “;

33:

34: // This line will now compile and work!

35: cout << firstNumber << “ x “ << secondNumber;

36: cout << “ = “ << multiplicationResult << endl;

37:

38: return 0;

39: }

Output

This program multiplies two numbers

Enter the first number: 65

Enter the second number: -3

Displaying from MultiplyNumbers(): 65 x -3 = -195

Displaying from main(): 65 x -3 = -195

Analysis

Listing 3.3 displays the result of multiplication in two functions, neither of which has declared the variables firstNumber, secondNumber, and multiplicationResult. These variables are global because they have been declared in Lines 5–7, outside the scope of any function. Note Lines 22–23 and 35–36, which use these variables and display their values. Pay special attention to how multiplicationResult is first assigned in MultiplyNumbers() yet is effectively reused in main().

Caution

Indiscriminate use of global variables is considered poor programming practice. This is because global variables can be assigned values in any/every function and can contain an unpredictable state, especially when functions that modify them run in different threads or are programmed by different programmers in a team.

An elegant version of Listing 3.3 would not use global variables but would instead have the function MultiplyNumbers() return the integer result of the multiplication to main().

Naming Conventions

In case you haven’t noticed, we named the function MultiplyNumbers() where every word in the function name starts with a capital letter (called PascalCase), while variables firstNumber, secondNumber, and multiplicationResult were given names where the first word starts with a lowercase letter (called camelCase). This book follows a convention where variable names follow camel casing, while other artifacts, such as function names, follow Pascal casing.

You may come across C++ code wherein a variable name is prefixed with characters that convey the type of the variable. This convention is called the Hungarian notation. So, firstNumber in Hungarian notation would be iFirstNumber, where the prefix i stands for integer. A global integer would be called g_iFirstNumber. Hungarian notation has lost popularity in recent years in part due to improvements in integrated development environments (IDEs) that display the type of a variable—on mouse hover, for instance.

Examples of commonly found bad variable names follow:

int i = 0;

bool b = false;

These variables are considered to be poorly named because their names do not convey their purpose. They would be better named as follows:

int totalCash = 0;

bool isLampOn = false;

Caution

Naming conventions are used to make code readable to programmers, not to compilers. Therefore, choose a convention and use it consistently.

When working as part of a team, it is a good idea to align on the convention to be used before starting a new project. When working on an existing project, adopt the established convention so that your new code remains readable to others.

Common Compiler-Supported C++ Variable Types

In most of the examples thus far, you have defined variables of type int—that is, integers. However, C++ programmers can choose from a variety of fundamental variable types supported directly by the compiler. Choosing the right variable type is important. An integer cannot be used to store values that contain decimals without loss of decimal data. If your program needs to store the value of pi, for instance, you can use the type float or double. Table 3.1 lists the various variable types and the data values they can contain.

Table 3.1 Variable Types

[image: Images]

The following sections explain the important variable types in greater detail.

Using Type bool to Store Boolean Values

C++ provides a type bool that is specially created for containing Boolean values true or false, both of which are reserved words.

Note

Words such as bool are called reserved because you cannot use them in naming variables and functions.

Type bool is particularly useful for storing settings and flags that can be on or off, present or absent, available or unavailable, and the like.

A sample declaration of an initialized Boolean variable is

bool alwaysOn = true;

An expression that evaluates to a Boolean type is

bool deleteFile = (userSelection == “yes");

// evaluates to true if userSelection contains “yes”, else to false

Conditional expressions are explained in Lesson 5, “Working with Expressions, Statements, and Operators.”

Using Type char to Store Character Values

You use type char to store a single character. A sample declaration is

char userInput = ’Y’; // initialized char to ’Y’

Memory is composed of bits and bytes. Bits evaluate to either state 0 or state 1. Bytes are the smallest unit of memory and comprise bits: 1 byte contains 8 bits. Thus bytes contain numeric data in binary format. When a program uses character data as shown in the example above, the compiler converts the character into a numeric representation that can be placed into memory. The numeric representation of Latin characters A–Z, a–z, numbers 0–9, some special keystrokes (for example, DEL), and special characters (such as backspace) has been standardized by the American Standard Code for Information Interchange, also called ASCII.

You can look up the table in Appendix D, “ASCII Codes,” to see that the character Y assigned to variable userInput has the ASCII value 89 in decimal or 01011001 in binary. Thus, the compiler stores 01011001 in the memory space allocated for userInput.

Tip

Visit Appendix A, “Working with Numbers: Binary and Hexadecimal,” to learn about converting numbers between decimal and binary number systems.

The Concept of Signed and Unsigned Integers

Sign implies positive or negative. All numbers you work with using a computer are stored in memory in the form of bits and bytes. A memory location that is 1 byte in size contains 8 bits. Each bit can either be a 0 or 1 (that is, carry one of these two values, at best). Thus, a memory location that is 1 byte in size can contain a maximum of 2 to the power 8 values—that is, 256 unique values. Similarly, a memory location that is 16 bits in size can contain 2 to the power 16 values—that is, 65,536 unique values.

If these values were to be unsigned—that is, assumed to be only positive—then 1 byte could contain integer values ranging from 0 through 255, and 2 bytes could contain values ranging from 0 through 65,535. Referring to Table 3.1, you’ll note that unsigned short is the type that supports this range and comprises 16 bits. Thus, it is quite easy to model positive values in bits and bytes (see Figure 3.1).

[image: Images]

Figure 3.1 Organization of bits in a 16-bit unsigned short integer.

How do you model negative numbers in this space? One way is to “sacrifice” a bit as the sign bit that indicates whether the values contained in the other bits are positive or negative (see Figure 3.2). The sign bit needs to be the most-significant-bit (MSB) as the least-significant-bit is required for storing odd numbers. So, when the MSB contains sign information, it is assumed that 0 is positive and 1 means negative, and the other bytes contain the absolute value.

[image: Images]

Figure 3.2 Organization of bits in a 16-bit signed short integer.

Thus, a signed number that stores 16 bits can contain values ranging from –32,768 through 32,767, and one that stores 8 bits can contain values ranging from –128 through 127. If you look at Table 3.1 again, note that (signed) short is the type that supports positive and negative integer values in a 16-bit space.

Signed Integer Types short, int, long, and long long

Integer types short, int, long, and long long differ in their sizes and the range of values they can contain. int is possibly the most used type and is 32 bits wide on most compilers. It is important to use the right type, based on your projection of the maximum value that a particular variable would be expected to hold.

Declaring a variable of a signed type is simple:

short int gradesInMath = -5; // not your best score

int moneyInBank = -70000; // overdraft

long populationChange = -85000; // reducing population

long long countryGDP_YoY = -70000000000; // GDP lower by 70 billion

Unsigned Integer Types unsigned short, unsigned int, unsigned long, and unsigned long long

Unlike their signed counterparts, unsigned integer variable types have not sacrificed a bit to store sign information, and therefore they support twice as many positive values.

Declaring a variable of an unsigned type is as simple as this:

unsigned short int numColorsInRainbow = 7;

unsigned int numEggsInBasket = 24; // will always be positive

unsigned long numCarsInNewYork = 700000;

unsigned long long countryMedicareExpense = 70000000000;

Note

You use an unsigned variable type when you expect only positive values. So, if you’re counting the number of apples harvested, don’t use int; use unsigned int. The latter can hold twice as many values in the positive range as the former can.

Caution

An unsigned type might not be suitable in every situation. For instance, a banking application is required to store negative account balance to support an overdraft facility. You wouldn’t use an unsigned type in such a case.

Avoiding Overflow Errors by Selecting Correct Data Types

Data types such as short, int, long, unsigned short, unsigned int, unsigned long, and the like have a finite capacity for containing numbers. When you exceed the limit imposed by the type chosen in an arithmetic operation, you create an overflow.

Take unsigned short as an example. Data type short consumes 16 bits and can hence contain values from 0 through 65,535. When you add 1 to 65,535 in an unsigned short, the value overflows to 0. It’s like the odometer of a car that suffers a mechanical overflow when it can support only five digits and the car has traveled 99,999 kilometers (or miles).

In this case, unsigned short was never the right type for such a counter. The programmer would have been better off using unsigned int to support numbers higher than 65,535.

In the case of a signed short integer, which has a range of –32,768 through 32,767, adding 1 to 32,767 may result in the signed integer taking the highest negative value. This behavior is compiler dependent.

Listing 3.4 demonstrates the overflow errors that you can inadvertently introduce via arithmetic operations.

Input

Listing 3.4 Examples of the Ill Effects of Signed and Unsigned Integer Overflow Errors

 1: #include <iostream>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: unsigned short uShortValue = 65535;

 7: cout << “unsigned short 65535 + 1 = “;

 8: cout << ++uShortValue << endl;

 9:

10: short signedShort = 32767;

11: cout << “signed short 32767 + 1 = “;

12: cout << ++signedShort << endl;

13:

14: return 0;

15: }

Output

unsigned short 65535 + 1 = 0

signed short 32767 + 1 = -32768

Analysis

The output indicates that unintentional overflow situations result in unpredictable and unintuitive behavior for the application. Lines 8 and 12 increment an unsigned short and a signed short that have previously been initialized to their maximum supported values, –65,535 and 32,767, respectively. The output demonstrates the values the integers hold after the increment operation—namely an overflow of 65,535 to 0 in the unsigned short and an overflow of 32,767 to –32,768 in the signed short. You wouldn’t expect the result of an increment operation to reduce the value in question, but that is exactly what happens when an integer type overflows. If you were using the values in question to allocate memory, then with the unsigned short, you could reach a point where you would request 0 bytes when your actual need is 65,536 bytes.

Note

The increment operations ++uShortValue and ++signedShort seen in Listing 3.4 at lines 8 and 12 use the prefix increment operator. Operators are explained in detail in Lesson 5.

Floating-Point Types float and double

Floating-point types are used to store real numbers—that is, numbers that can be positive or negative and that can contain decimal values. So, if you want to store the value of pi (22 / 7, or 3.14) in a variable in C++, you use a floating-point type.

Declaring variables of these types follows exactly the same pattern as the int in Listing 3.1. So, a float that allows you to store decimal values would be declared as

float pi = 3.14;

And a double precision float (called simply a double) is defined as

double morePrecisePi = 22.0 / 7;

Tip

You can use chunking separators in the form of a single quotation mark. This improves readability, as demonstrated in the following initializations:

int moneyInBank = -70’000; // -70000

long populationChange = -85’000; // -85000

// -70 billion:

long long countryGDPChange = -70’000’000’000;

double pi = 3.141’592’653’59; // 3.14159265359

Note

The data types mentioned thus far are often referred to as POD (plain old data).

Determining the Size of a Variable by Using sizeof()

Size is the amount of memory that the compiler reserves when a programmer declares a variable to hold the data assigned to it. The size of a variable depends on its type, and C++ has a very convenient operator called sizeof() that tells you the size, in bytes, of a variable or a type.

Tip

You will inevitably encounter size_t, which represents an unsigned integer. It is also the return type of sizeof() that gives you the size of the variable in bytes.

The use of sizeof() is simple. To determine the size of an integer, you invoke sizeof() with parameter int (the type), as shown here and further demonstrated in Listing 3.5:

cout << “Size of an int: “ << sizeof (int);

Input

Listing 3.5 Finding the Sizes of Standard C++ Variable Types

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6: cout << “Computing the size of inbuilt variable types” << endl;

 7:

 8: cout << “sizeof bool: “ << sizeof(bool) << endl;

 9: cout << “sizeof char: “ << sizeof(char) << endl;

10: cout << “sizeof unsigned short int: “ << sizeof(unsigned short) << endl;

11: cout << “sizeof short int: “ << sizeof(short) << endl;

12: cout << “sizeof unsigned long int: “ << sizeof(unsigned long) << endl;

13: cout << “sizeof long: “ << sizeof(long) << endl;

14: cout << “sizeof int: “ << sizeof(int) << endl;

15: cout << “sizeof uns. long long: “<< sizeof(unsigned long long)<< endl;

16: cout << “sizeof long long: “ << sizeof(long long) << endl;

17: cout << “sizeof unsigned int: “ << sizeof(unsigned int) << endl;

18: cout << “sizeof float: “ << sizeof(float) << endl;

19: cout << “sizeof double: “ << sizeof(double) << endl;

20:

21: cout << “The output changes with compiler, hardware and OS” << endl;

22:

23: return 0;

24: }

Output

Computing the size of inbuilt variable types

sizeof bool: 1

sizeof char: 1

sizeof unsigned short int: 2

sizeof short int: 2

sizeof unsigned long int: 4

sizeof long: 4

sizeof int: 4

sizeof uns. long long: 8

sizeof long long: 8

sizeof unsigned int: 4

sizeof float: 4

sizeof double: 8

The output changes with compiler, hardware and OS

Analysis

The output of Listing 3.5 reveals sizes of various types, in bytes, and is specific to my platform: compiler, OS, and hardware. This output in particular is a result of running the program in 32-bit mode (compiled by a 32-bit compiler) on a 64-bit operating system. Note that a 64-bit compiler probably creates different results, and the reason I chose a 32-bit compiler was to be able to run the application on 32-bit as well as 64-bit systems. The output indicates that the size of a variable doesn’t change between unsigned and signed types; the only difference in the two is the MSB, which carries sign information in signed types.

Tip

If you need to use fixed-width integer types, include header <cstdint>. It supplies types where the exact size is specified and assured. These are int8_t or uint8_t for 8-bit, int16_t and uint16_t for 16-bit, int32_t and uint32_t for 32-bit, and int64_t and uint64_t for 64-bit signed and unsigned integer types, respectively.

Avoid Narrowing Conversion Errors by Using List Initialization

When you initialize a variable of a smaller integer type (say, short) by using another variable of a larger type (say, an int), you are risking a narrowing conversion error because the compiler has to fit data stored in a type that can potentially hold much larger numbers into a type that doesn’t have the same capacity (that is, it is narrower). Here’s an example:

int largeNum = 5000000;

short smallNum = largeNum; // compiles OK, yet narrowing error

Narrowing isn’t restricted to conversions between integer types only. You may face narrowing errors if you initialize a float using a double, a float (or double) using an int, or an int using a float. Some compilers may warn, but this warning will not cause an error that stops compilation. In such cases, you may be confronted by bugs that occur infrequently and at execution time.

To prevent errors due to narrowing, use list initialization techniques and insert initialization values/variables within braces {...}. List initialization works as follows:

int largeNum = 5000000;

short anotherNum{ largeNum }; // error! Amend types

int anotherNum{ largeNum }; // OK!

float someFloat{ largeNum }; // error! Type int being narrowed

float someFloat{ 5000000 }; // OK! 5000000 can be accommodated

It might not be immediately apparent, but this feature has the potential to prevent bugs that occur when data stored in a type undergoes a narrowing conversion at execution time. These bugs occur implicitly during an initialization and are tough to solve.

Automatic Type Inference Using auto

In some cases, the type of a variable is apparent, given the initialization value being assigned to it. For example, if a variable is being initialized with the value true, the type of the variable can be best estimated as bool. Compilers give you the option of not having to explicitly specify the variable type when using the keyword auto. In this example, we have left the task of defining an exact type for variable coinFlippedHeads to the compiler:

auto coinFlippedHeads = true;

The compiler checks the value the variable is being initialized to and then decides on the best possible type for this variable. In this particular case, it is clear that an initialization value of true best suits a variable that is of type bool. The compiler thus determines bool as the type that best suits variable coinFlippedHeads and internally treats coinFlippedHeads as a bool, as also demonstrated in Listing 3.6.

Input

Listing 3.6 Using the auto Keyword and Relying on the Compiler’s Type-Inference Capabilities

 1: #include <iostream>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: auto coinFlippedHeads = true;

 7: auto largeNumber = 2500000000000;

 8:

 9: cout << “coinFlippedHeads = “ << coinFlippedHeads << “, “;

10: cout << “sizeof(coinFlippedHeads) = “ << sizeof(coinFlippedHeads);

11: cout << endl << “largeNumber = “ << largeNumber << “, “;

12: cout << “sizeof(largeNumber) = “ << sizeof(largeNumber) << endl;

13:

14: return 0;

15: }

Output

coinFlippedHeads = 1, sizeof(coinFlippedHeads) = 1

largeNumber = 2500000000000, sizeof(largeNumber) = 8

Analysis

Note the use of the auto keyword in Lines 6 and 7, where the two variables have been declared. By using auto, you delegate the decision on the type of variable to the compiler, which uses the initialization value as a ballpark. sizeof() is used in Lines 10 and 12 to check whether the compiler created the types it was expected to, and the output confirms that it really did.

Note

auto requires you to initialize the variable because the compiler uses this initial value in deciding what the type can be.

When you don’t initialize a variable of type auto, you get a compile error.

Even if auto seems to be a trivial feature at first sight, it makes programming a lot easier in cases where the variable is a complex type. The role of auto in writing simpler yet type-safe code is revisited in Lesson 15, “An Introduction to the Standard Template Library,” and later chapters.

Using typedef to Substitute a Variable’s Type

C++ enables you to substitute variable types with something that you might find convenient. You use the keyword typedef for that. Here is an example where a programmer wants to call an unsigned int a descriptive STRICTLY_POSITIVE_INTEGER:

typedef unsigned int STRICTLY_POSITIVE_INTEGER;

STRICTLY_POSITIVE_INTEGER numEggsInBasket = 45;

When this code is compiled, the first line tells the compiler that a STRICTLY_POSITIVE_INTEGER is nothing but an unsigned int. At later stages, when the compiler encounters the already defined type STRICTLY_POSITIVE_INTEGER, it substitutes it for unsigned int and continues compilation.

Note

typedef or type substitution is particularly convenient when dealing with complex types that can have cumbersome syntax, such as types that use templates. Templates are discussed in Lesson 14, “An Introduction to Macros and Templates.”

What Is a Constant?

Imagine that you are writing a program to calculate the area and the circumference of a circle. The formulas are

area = pi * radius * radius;

circumference = 2 * pi * radius

In these formulas, pi is a constant of value 22 / 7. You don’t want the value of pi to change anywhere in your program. You also want to avoid any accidental assignments of possibly incorrect values to pi. C++ enables you to define pi as a constant that cannot be changed after declaration. In other words, after it’s defined, the value of a constant cannot be altered. Assignments to a constant in C++ cause compilation errors.

Thus, constants are like variables in C++ except that they cannot be changed. Much like a variable, a constant also occupies space in memory and has a name to identify the address where the space is reserved. However, the content of this space cannot be overwritten. Constants in C++ can be

• Literal constants

• Declared constants using the const keyword

• Constant expressions using the constexpr keyword

• Enumerated constants using the enum keyword

• Defined constants (although they are not recommended and have been deprecated)

Literal Constants

Literal constants can be of many types: integer, string, and so on. In your first C++ program in Listing 1.1, you displayed “Hello World” using the following statement:

std::cout << “Hello World” << std::endl;

In this code, "Hello World" is a string literal constant. You literally have been using literal constants ever since then! When you declare an integer someNumber, like this:

int someNumber = 10;

the integer variable someNumber is assigned the initial value 10. Here decimal 10 is a part of the code, gets compiled into the application, is unchangeable, and is a literal constant, too. You can initialize the integer by using a literal in octal notation, like this:

int someNumber = 012 // octal 12 evaluates to decimal 10

You can also use binary literals, like this:

int someNumber = 0b1010; // binary 1010 evaluates to decimal 10

Tip

C++ also allows you to define your own literals. For example, you can define temperature as 32.0_F (Fahrenheit) or 0.0_C (Celsius), distance as 16_m (miles) or 10_km (kilometers), and so on.

The suffixes _F, _C, _m, and _km are called user-defined literals and are explained in Lesson 12, “Operator Types and Operator Overloading,” after the prerequisite concepts are explained.

Declaring Variables as Constants Using const

The most important type of constants in C++ are declared by using the keyword const before the variable type. The syntax of a generic declaration looks like this:

const type-name constant-name = value;

Listing 3.7 shows a simple application that displays the value of a constant called pi.

Input

Listing 3.7 Declaring a Constant Called pi

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: const double pi = 22.0 / 7;

 8: cout << “The value of constant pi is: “ << pi << endl;

 9:

10: // Uncomment next line to fail compilation

11: // pi = 345; // error, assignment to a constant

12:

13: return 0;

14: }

Output

The value of constant pi is: 3.14286

Analysis

Note the declaration of the constant pi in Line 7. You use the const keyword to tell the compiler that pi is a constant of type double. If you uncomment Line 11, which assigns a value to a constant, you get a compile failure that says something similar to, “You cannot assign to a variable that is const.” Thus, using constants is a powerful way to ensure that certain data cannot be modified.

Note

It is good programming practice to define variables that are not supposed to change their values as const. The usage of the const keyword indicates that the programmer has thought about ensuring the constant-ness of data where required and protects the application from inadvertent changes to this constant.

This is particularly useful in a multi-programmer environment.

Constants are useful when declaring the length of a static array, which is fixed at compile time. Listing 4.2 in Lesson 4, “Managing Arrays and Strings,” includes an example that demonstrates the use of a const int to define the length of an array.

Constant Expressions Using constexpr

The keyword constexpr instructs the compiler to compute the expression, if possible. For example, a simple function that divides two numbers may be declared as a constexpr:

constexpr double Div_Expr(double a, double b)

{

 return a / b;

}

The function can be used by a variable that is also declared as a constexpr:

constexpr double pi = Div_Expr(22, 7);

// Div_Expr() is executed by compiler, pi assigned at compile time

Thus, constexpr allows for optimization possibilities where some simple computation might be performed by the compiler. In the example above, Div_Expr() is invoked with arguments that are integral constants 22 and 7. Hence, the compiler is able to compute pi. If the arguments were not constants but plain integers, then you would still be able to use Div_Expr(), but the division would be performed at runtime, and you would not be able to assign it to a constexpr:

int a = 22, b = 7;

const double pi = Div_Expr(a, b);

// Div_Expr() executed at runtime because arguments are not constants

C++20 Immediate Functions Using consteval

In the previous section, you saw how Div_Expr() is treated by the compiler as a constant expression when invoked with constants, and you saw how the result of this constant expression is evaluated by the compiler. However, when Div_Expr() is invoked with plain integer variables, the compiler treats it as an ordinary function that is executed at runtime.

C++20 introduces immediate functions that are required to be executed by the compiler. You declare an immediate function by using keyword consteval:

consteval double Div_Eval(double a, double b)

{

 return a / b;

}

Div_Eval() can only be invoked with arguments that are constants themselves. The compiler performs the division and assigns the return value to the point in code where the function is called:

const double pi = Div_Eval(22, 7); // compiler assigns the value of pi

Unlike with Div_Expr(), if you were to invoke DivEval() using plain integers, the compilation would fail:

int a = 22, b = 7;

double pi = Div_Eval(a, b); // fail: consteval func called with non-const arguments

Listing 3.8 demonstrates the use of constexpr and consteval.

Input

Listing 3.8 Using consteval and constexpr to Calculate Pi and Multiples of Pi

 0: #include <iostream>

 1: consteval double GetPi() { return 22.0 / 7; }

 2: constexpr double XPi(int x) { return x * GetPi(); }

 3:

 4: int main()

 5: {

 6: using namespace std;

 7: constexpr double pi = GetPi();

 8:

 9: cout << “constexpr pi evaluated by compiler to “ << pi << endl;

10: cout << “constexpr XPi(2) evaluated by compiler to “ << XPi(2) << endl;

11:

12: int multiple = 5;

13: cout << “(non-const) integer multiple = “ << multiple << endl;

14: cout << “constexpr is ignored when XPi(multiple) is invoked, “;

15: cout << “returns “ << XPi(multiple) << endl;

16:

17: return 0;

18: }

Output

constexpr pi evaluated by compiler to 3.14286

constexpr XPi(2) evaluated by compiler to 6.28571

(non-const) integer multiple = 5

constexpr is ignored when XPi(multiple) is invoked, returns 15.7143

Analysis

In Lines 1 and 2, the program demonstrates the use of consteval and constexpr, respectively. GetPi() in Line 1 is an immediate function. When the compiler encounters GetPi() in Line 7, consteval instructs the compiler to compute the value of pi resulting from the division and initialize constant pi with this value, 3.14286, in Line 7. GetPi() never makes it to the compiled executable. Line 2 contains a constexpr in XPi(int). Its usage in Line 10 results in the compiler substituting XPi(2) with 6.28571 because XPi() has been invoked with a constant, the integer value 2. The same function XPi(), when invoked in Line 15 with the variable multiple, results in the compiler ignoring constexpr and integrating XPi(multiple) into the code as a regular function call.

If you were to change the declaration of XPi() in Line 2 from constexpr to consteval, you would require the compiler to necessarily compute its return value at every usage of XPi() in the code and replace it with the computed value. This would not be possible for the usage of XPi in Line 15 with a non-const integer, and the compilation would fail. This little example therefore also demonstrates the subtle differences between consteval and constexpr.

Tip

The previous code samples define a constant pi to show the syntax involved in declaring constants and constexpr. However, most popular C++ compilers supply you with a reasonably precise value of pi in the constant M_PI. You can use this constant in your programs after including the header file <cmath>.

Enumerations

There are situations in which a particular variable should be allowed to accept only a certain set of values. For example, you might not want the colors of the rainbow to contain turquoise or the directions on a compass to contain left. In both these cases, you need a type of variable whose values are restricted to a certain set defined by you. Enumerations, which are characterized by the keyword enum, are exactly the tool you need in such situations. An enumeration comprises a set of constants called enumerators.

In the following example, the enumeration RainbowColors contains individual colors such as Violet as enumerators:

enum RainbowColors

{

 Violet = 0,

 Indigo,

 Blue,

 Green,

 Yellow,

 Orange,

 Red

};

Here’s another enumeration for the cardinal directions:

enum CardinalDirections

{

 North,

 South,

 East,

 West

};

Enumerations are used as user-defined types. Variables of this type can be assigned a range of values restricted to the enumerators contained in the enumeration. So, if defining a variable that contains the colors of a rainbow, you declare the variable like this:

RainbowColors myFavoriteColor = Blue; // Initial value

In this line of code, you declare myFavoriteColor to be of type RainbowColors. This variable is restricted to store any of the specified VIBGYOR colors and no other values.

Note

The compiler converts the enumerator such as Violet and so on into integers. Each enumerated value specified is one more than the previous value. You have the choice of specifying a starting value, and if this is not specified, the compiler evaluates it to 0. So, North is evaluated as value 0.

If you want, you can also specify an explicit value against each of the enumerated constants by initializing them.

Listing 3.9 demonstrates how enumerated constants are used to hold the four cardinal directions, with an initializing value supplied to the first one.

Input

Listing 3.9 Using Enumerated Values to Indicate Cardinal Wind Directions

 1: #include <iostream>

 2: using namespace std;

 3:

 4: enum CardinalDirections

 5: {

 6: North = 25,

 7: South,

 8: East,

 9: West

10: };

11:

12: int main()

13: {

14: cout << “Displaying directions and their symbolic values” << endl;

15: cout << “North: “ << North << endl;

16: cout << “South: “ << South << endl;

17: cout << “East: “ << East << endl;

18: cout << “West: “ << West << endl;

19:

20: CardinalDirections windDirection = South;

21: cout << “Variable windDirection = “ << windDirection << endl;

22:

23: return 0;

24: }

Output

Displaying directions and their symbolic values

North: 25

South: 26

East: 27

West: 28

Variable windDirection = 26

Analysis

Note that this listing enumerates the four cardinal directions but gives the first direction, North, an initial value of 25 (see Line 6). This automatically ensures that the following constants are assigned values 26, 27, and 28 by the compiler, as demonstrated in the output. In Line 20, you create a variable of type CardinalDirections that is assigned an initial value South. When displayed on the screen in Line 21, the compiler uses the integer value associated with South, which is 26.

Tip

You might want to take a look at Listings 6.4 and 6.5 in Lesson 6, “Controlling Program Flow.” They use enum to enumerate the days of the week contained in the enumeration DaysOfWeek.

Scoped Enumerations

The enumerated type CardinalDirections is defined as an unscoped enumeration. The compiler lets you convert variables of this type into integers, and therefore the following statement would be valid:

int someNumber = South;

This flexibility, however, defeats the very purpose of using enumerations. You’re therefore advised to use scoped enumerations instead. Introduced in 2011 as part of C++11, scoped enumerations are declared using the class or struct keyword following enum:

enum class CardinalDirections

{North, South, East, West};

When declaring a variable of type CardinalDirections, you then use the scope resolution operator :: as follows:

CardinalDirections dir = CardinalDirections::South;

Scoped enumerations are safer because the compiler ensures strict type safety, which makes the following assignments invalid:

int someNumber = CardinalDirections::South; // error

int someNumber = dir; // error

As a scoped enumeration, CardinalDirections ensures that variables of its type can only be assigned directly to other variables of the same type:

CardinalDirections dir2 = dir; // OK

Tip

You might want to briefly visit Listing 9.16 in Lesson 9, “Classes and Objects.” It uses the enum class construct in addition to concepts such as the switch-case construct, struct and union, that you will learn about later on.

Defining Constants by Using #define

First and foremost, don’t use #define if you are writing a program from scratch. The only reason this book explains the definition of constants using #define is to help you understand legacy code that define constants using this format:

#define pi 3.14286

#define is a preprocessor macro. In the example above, it causes all following mentions of pi to be replaced by 3.14286 for the compiler to process. Note that this is a text replacement (read: non-intelligent replacement) done by the preprocessor. The compiler neither knows nor cares about the actual type of the constant in question.

Caution

Defining constants using the preprocessor via #define is deprecated and should not be used.

Keywords You Cannot Use as Variable or Constant Names

Some words are reserved by C++, and you cannot use them as variable names. Keywords have special meaning to the C++ compiler. Keywords include if, while, for, and main. A list of keywords defined by C++ is presented in Table 3.2, as well as in Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, typically documented in its manuals.

Table 3.2 Major C++ Keywords and Reserved Words

[image: Images]

[image: Images]

[image: Images]

Summary

In this lesson, you learned about using memory to store values temporarily in variables and constants. You learned that a variable has a size determined by its type and that the operator sizeof() can be used to determine the size of a variable. You got to know different types of variables, such as bool, int, and so on, and that they are to be used to contain different types of data. The right choice of a variable type is important in effective programming, and the choice of a variable that’s too small for the purpose can result in a wrapping error or an overflow situation. You learned about the keyword auto, which you use to let the compiler decide the data type for you on the basis of the initialization value of the variable.

You also learned about the different types of constants and usage of the most important ones among them, using the keywords const, constexpr, and enum.

Q&A

Q. Why define constants at all if you can use regular variables instead?

A. Constants, especially those declared using the keyword const, give you a way of telling the compiler that the value of a particular variable should be fixed and should not be allowed to change. Consequently, the compiler always ensures that the constant variable is never assigned another value—not even if another programmer picks up your work and inadvertently tries to overwrite the value. So, declaring constants where you know the value of a variable should not change is a good programming practice and increases the quality of your application.

Q. Why should I initialize the value of a variable?

A. If you don’t initialize, you don’t know what the variable contains for a starting value. The starting value is just the contents of the location in the memory that are reserved for the variable. For example, initialization like this:

int myFavoriteNumber = 10;

writes the initial value of your choosing—in this case 10—to the memory location reserved for the variable myFavoriteNumber as soon as it is created.

Q. Why does C++ give me the option of using short int and int and long int? Why not just always use the integer that can store the highest number?

A. C++ is a programming language that is used to program for a variety of applications, many running on devices with little computing capacity or memory resources. A programmer can often save memory or speed or both by choosing the right kind of variable where high values are not needed. If you are programming on a regular desktop or a high-end smart phone, chances are that the performance gained or memory saved in choosing one integer type over another is going to be insignificant; in some cases there may be no difference.

Q. Why should I avoid using global variables frequently? Isn’t it true that they’re usable throughout my application, and I can save some time otherwise lost to passing values around functions?

A. Global variables can be read and assigned globally. The latter is the problem as they can be changed globally. Say that you are working on a project with a few other programmers in a team. You have declared your integers and other variables to be global. If any programmer on your team changes the value of your integer inadvertently in code—which even might be a different .CPP file than the one you are using—the reliability of your code is affected. Therefore, you are advised to use global variables as infrequently as possible.

Q. I am using unsigned integers that are supposed to contain only positive integer values and zero. What happens if I decrement a zero value contained in an unsigned int?

A. You see a wrapping effect. Decrementing an unsigned integer that contains 0 by 1 causes the variable to wrap to the highest value it can hold. Check Table 3.1, where you can see that an unsigned short can contain values from 0 to 65,535. When you declare an unsigned short instantiated to 0 and decrement it, expect it to contain 65,535!

unsigned short myShortInt = 0; // Initial Value

myShortInt = myShortInt - 1; // Decrement by 1

std::cout << myShortInt << std::endl; // Output: 65535!

Note that this is not a problem with short; it is only a problem with an unsigned short. An unsigned integral type is not to be used when negative values are within the specifications.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain that you understand the answers before continuing to the next lesson.

Quiz

1. What is the difference between a signed integer and an unsigned integer?

2. Why should you not use #define to declare a constant?

3. Why would you initialize a variable?

4. Consider the enum below. What is the value of Queen?

enum YourCards {Ace, Jack, Queen, King};

5. What is wrong with this variable name?

int Integer = 0;

Exercises

1. Modify enum YourCards in Quiz Question 4 to demonstrate that the value of Queen can be 45.

2. Write a program that demonstrates that the size of an unsigned integer and a normal integer are the same and that both are smaller in size than a long integer.

3. Write a program to calculate the area and circumference of a circle where the radius is supplied by the user.

4. In Exercise 3, if the area and circumference were to be stored in integers, how would the output be any different?

5. BUG BUSTERS: What is wrong in the following initialization?

auto age;

Lesson 4. Managing Arrays and Strings

In previous lessons, you declared variables used to contain a single int, char, or string, to mention a few instances. However, you may want to declare a collection of objects, such as 20 ints or a string of characters to hold a name.

In this lesson, you learn

• What arrays are and how to declare and use them

• What strings are and how to use character arrays to make them

• A brief introduction to std::string

What Is an Array?

The dictionary definition of an array gets really close to what you need to understand in the context of C++. According to Merriam-Webster, an array is “a group of elements forming a complete unit, for example an array of solar panels.”

The following are characteristics of an array:

• An array is a collection of elements.

• All elements contained in an array are of the same kind.

• This collection forms a complete set.

In C++, arrays enable you to store data elements of a type in memory, in a sequential and ordered fashion.

The Need for Arrays

Imagine that you are writing a program that asks the user to type in five integers and then displays those integers back to the user. One way to do this would be to have your program declare five distinct and unique integer variables and use them to store and display values. The declarations would look like this:

int firstNumber = 0;

int secondNumber = 0;

int thirdNumber = 0;

int fourthNumber = 0;

int fifthNumber = 0;

If a user needs this program to store and display 500 integers at a later stage, you need to declare 500 such integers using this system. This is doable, given generous amounts of patience and time. However, imagine that the user asks you to support 500,000 integers instead of 5. What would you do?

You would do it right and do it smart from the start by declaring an array of five integers, like this:

int myNumbers[5];

Then, if you were required to support 500,000 integers, the code for your array would scale up quite quickly, like this:

int manyNumbers[500’000];

An array of five characters would be defined as

char myCharacters[5];

Such an array is called a static array because the number of elements it contains and the memory the array consumes are fixed at the time of compilation.

Declaring and Initializing Static Arrays

In the preceding lines of code, you declared an array called myNumbers that contains five elements of type int—that is, integer. Array declaration in C++ follows this simple syntax:

ElementType arrayName[constant_number of elements] = {optional initial values};

You can even declare an array and initialize its contents on a per-element basis, as in this integer array, where each of the five integers is initialized to a different integer value:

int myNumbers[5] = {34, 56, -21, 5002, 365};

You can initialize all elements in an array of a numeric type to zero by using an empty initializer list {}, like this:

int myNumbers[5] = {}; // initializes all integers to 0

You can also partially initialize elements in an array, like this:

int myNumbers[5] = {34, 56};

// initialize first two elements to 34 and 56 and the rest to 0

You can define the length of an array (that is, the number of elements in an array) as a constant and use that constant in your array definition:

const int ARRAY_LENGTH = 5;

int myNumbers[ARRAY_LENGTH] = {34, 56, -21, 5002, 365};

This is particularly useful when you need to access and use the length of the array at multiple places in your code. Then, instead of having to correct the length at each of those places, you just change the initialization value at the const int declaration.

You can opt to leave out the number of elements in an array if you know the initial values of the elements in the array:

int myNumbers[] = {2016, 2052, -525}; // array of 3 elements

This code creates an array of three integers with the initial values 2016, 2052, and -525.

Note

The arrays declared so far in the lesson are called static arrays as the length of each array is a constant and fixed by the programmer at compile time. A static array cannot take more data than what the programmer has specified. It also does not consume any less memory if left half used or unused. Arrays where the length is decided at runtime are called dynamic arrays. Dynamic arrays are briefly introduced later in this lesson and are discussed in detail in Lesson 17, “STL Dynamic Array Classes.”

How Data Is Stored in an Array

Think of books placed on a shelf, one next to the other. This is an example of a one-dimensional array, as it expands in only one dimension (that is, the number of books). Each book is an element in the array, and the shelf is akin to the memory that has been reserved to store this collection of books, as shown in Figure 4.1.

[image: Images]

Figure 4.1 Books on a shelf: a one-dimensional array.

Caution

It is not an error that we started numbering the books with 0. As you’ll later see, an index in C++ starts at 0 and not at 1.

Similar to the five books on a shelf, the array myNumbers containing five integers looks similar to Figure 4.2.

[image: Images]

Figure 4.2 Organization of an array of five integers, myNumbers, in memory.

Note that the memory space occupied by the array is composed of five blocks, each of equal size, defined by the type of data to be held in the array—in this case, integer. Recall that you studied the size of an integer in Lesson 3, “Using Variables, Declaring Constants.” The amount of memory reserved by the compiler for the array myNumbers is hence sizeof(int) * 5. In general, the amount of memory reserved by the compiler for an array in bytes is

Bytes consumed by an array = sizeof(element-type) * Number of elements

Accessing Data Stored in an Array

Elements in an array can be accessed using their zero-based index. These indexes are called zero-based because the first element in an array is at index 0. So, the first integer value stored in the array myNumbers is myNumbers[0], the second is myNumbers[1], and so on. The fifth is myNumbers[4]. In other words, the index of the last element in an array is always (Length of array – 1).

When asked to access element at index N, the compiler uses the memory address of the first element (positioned at index 0) as the starting point and then skips N elements by adding the offset computed as N*sizeof(element) to reach the address containing the (N + 1)th element. The C++ compiler does not check if the index is within the defined bounds of the array. You can try fetching the element at index 1001 in an array of only 10 elements, but by doing so, you put the security and stability of your program at risk. The onus of ensuring that an array is not accessed beyond its bounds lies solely on the programmer.

Caution

Accessing an array beyond its bounds results in unpredictable behavior. In many cases, this causes the program to crash. Accessing arrays beyond their bounds should be avoided at all costs.

Listing 4.1 demonstrates how you declare an array of integers, initialize its elements to integer values, and access them to display them onscreen.

Input

Listing 4.1 Declaring an Array of Integers and Accessing Its Elements

 0: #include <iostream>

 1:

 2: using namespace std;

 3:

 4: int main ()

 5: {

 6: int myNumbers[5] = {34, 56, -21, 5002, 365};

 7:

 8: cout << “First element at index 0: “ << myNumbers [0] << endl;

 9: cout << “Second element at index 1: “ << myNumbers [1] << endl;

10: cout << “Third element at index 2: “ << myNumbers [2] << endl;

11: cout << “Fourth element at index 3: “ << myNumbers [3] << endl;

12: cout << “Fifth element at index 4: “ << myNumbers [4] << endl;

13:

14: return 0;

15: }

Output

First element at index 0: 34

Second element at index 1: 56

Third element at index 2: -21

Fourth element at index 3: 5002

Fifth element at index 4: 365

Analysis

Line 6 declares an array of five integers with initial values specified for each of them. The subsequent lines simply display the integers using cout and using the array variable myNumbers with an appropriate index.

Note

To familiarize you with the concept of zero-based indexes used to access elements in arrays, we started numbering lines of code in Listing 4.1 and beyond with the first line being numbered as Line 0.

Modifying Data Stored in an Array

In Listing 4.1, you did not enter user-defined data into the array. The syntax for assigning an integer to an element in that array is quite similar to the syntax for assigning an integer value to an integer variable.

For example, you assign the value 2016 to an integer like this:

int thisYear;

thisYear = 2016;

Assigning the value 2016 to the fourth element in an array looks like this:

myNumbers[3] = 2016; // Assign 2016 to the fourth element

Listing 4.2 demonstrates the use of constants in declaring the lengths of arrays and shows how individual array elements can be assigned values during the execution of the program.

Input

Listing 4.2 Assigning Values to Elements in an Array

 0: #include <iostream>

 1: using namespace std;

 2: constexpr int Square(int number) { return number*number; }

 3:

 4: int main()

 5: {

 6: const int ARRAY_LENGTH = 5;

 7:

 8: // Array of 5 integers, initialized to 5 values

 9: int myNumbers[ARRAY_LENGTH] = {5, 10, 0, -101, 20};

10:

11: // Using a constexpr for array of 5*5=25 integers

12: int moreNumbers[Square(ARRAY_LENGTH)];

13:

14: cout << “Enter index of the element to be changed: “;

15: int elementIndex = 0;

16: cin >> elementIndex;

17:

18: cout << “Enter new value: “;

19: int newValue = 0;

20: cin >> newValue;

21:

22: myNumbers[elementIndex] = newValue;

23: moreNumbers[elementIndex] = newValue;

24:

25: cout << “Element “ << elementIndex << “ in array myNumbers is: “;

26: cout << myNumbers[elementIndex] << endl;

27:

28: cout << “Element “ << elementIndex << “ in array moreNumbers is: “;

29: cout << moreNumbers[elementIndex] << endl;

30:

31: return 0;

32: }

Output

Enter index of the element to be changed: 3

Enter new value: 101

Element 3 in array myNumbers is: 101

Element 3 in array moreNumbers is: 101

Analysis

The length of an array needs to be a constant integer. This can therefore also be specified in the constant ARRAY_LENGTH, used in Line 9, or the constant expression Square() used in Line 12. Thus, the array myNumbers is declared to be 5 elements in length, and the array moreNumbers is declared to be 25. Lines 14–20 ask the user to enter the index of the element in the array to be modified and the new value to be stored at that index. Lines 22 and 23 demonstrate how to modify a specific element in an array, given that index. Lines 26–29 demonstrate how to access elements in an array, given an index. Note that modifying the element at index 3 actually modifies the fourth element in the array, as indexes are zero-based entities. You have to get used to this.

Note

Many novice C++ programmers assign the fifth value at index 5 in an array of five integers. This exceeds the bound of the array as the compiled code tries accessing the sixth element in the array, which is beyond the defined bounds of the array.

This kind of error is called a fence-post error. This error is so named because the number of posts needed to build a fence is always one more than the number of sections in the fence.

Caution

Something fundamental is missing from Listing 4.2: It does not check whether the index entered by the user is within the bounds of the array. The program should actually verify whether elementIndex is within 0 and 4 for array myNumbers and within 0 and 24 for array moreNumbers and reject all other entries. This missing check allows the user to potentially assign and access a value beyond the bounds of the array. Such an entry could potentially cause the application—and the system, in a worst-case scenario—to crash.

Performing such checks is explained in Lesson 6, “Controlling Program Flow.”

Using Loops to Access Array Elements

When working with arrays and their elements in serial order, you should access them (in other words, iterate) using loops. See Lesson 6, and Listing 6.10 in particular, to quickly learn how elements in an array can be efficiently inserted or accessed using a for loop.

[image: Images]

Multidimensional Arrays

The arrays that we have seen thus far have been akin to books on a shelf. There can be more books on a longer shelf and fewer books on a shorter one. The length of the shelf is the only dimension defining the capacity of the shelf, and hence it is one-dimensional. Now, what if we were to use arrays to model an array of solar panels, as shown in Figure 4.3? Solar panels, unlike bookshelves, expand in two dimensions: in length and in breadth.

[image: Images]

Figure 4.3 Array of solar panels on a roof.

As you see in Figure 4.3, six solar panels are placed in a two-dimensional arrangement composed of two rows and three columns. From one perspective, you can see this arrangement as an array of two elements, each element itself being an array of three panels—in other words, an array of arrays. You can use C++ to model two-dimensional arrays, but you are not restricted to just two dimensions. Depending on your need and the nature of the application, you can model multidimensional arrays in memory, too.

Declaring and Initializing Multidimensional Arrays

C++ enables you to declare multidimensional arrays by indicating the number of elements you want to reserve in each dimension. So, a two-dimensional array of integers representing the solar panels in Figure 4.3 is

int solarPanels[2][3];

Note that in Figure 4.3, each panel is assigned an ID ranging from 0 through 5 for the six panels in the solar array. If you were to initialize the integer array in the same order, it would look like the following:

int solarPanels[2][3] = {{0, 1, 2}, {3, 4, 5}};

As you see, the initialization syntax used is actually similar to one where we initialize two one-dimensional arrays. An array comprising three rows and three columns would look like this:

int threeRowsThreeColumns[3][3] = {{-501, 206, 2016}, {989, 101, 206}, {303, 456, 596}};

Note

Even though C++ enables you to model multidimensional arrays, the memory where the array is contained is one dimensional. So, the compiler maps the multidimensional array into the memory space, which expands only in one direction.

If you wanted to, you could also initialize the array called solarPanels as follows, and it would still contain the same values in the respective elements:

int solarPanels[2][3] = {0, 1, 2, 3, 4, 5};

However, the earlier method makes a better example because it’s easier to imagine and understand a multidimensional array as an array of arrays.

Accessing Elements in a Multidimensional Array

Think of a multidimensional array as an array comprising elements that are arrays. So, when dealing with a two-dimensional array comprising three rows and three columns, each containing integers, visualize it as handling an array comprising three elements, where each element is an array comprising three integers.

When you need to access an element in this multidimensional array, you need to use a first subscript [] to address the array where the integer is and a second subscript [] to address that integer in this array. Consider this array:

int threeRowsThreeColumns[3][3] = {{-501, 205, 2016}, {989, 101, 206}, {303, 456, 596}};

This array has been initialized in such a way that you can visualize three arrays, each containing three integers. Here, the integer element with value 205 is at position [0][1]. The element with value 456 is at position [2][1]. Listing 4.3 illustrates how integer elements in this array can be accessed.

Input

Listing 4.3 Accessing Elements in a Multidimensional Array

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int threeRowsThreeColumns[3][3] = \

 6: {{-501, 205, 2016}, {989, 101, 206}, {303, 456, 596}};

 7:

 8: cout << “Row 0: “ << threeRowsThreeColumns[0][0] << “ “ \

 9: << threeRowsThreeColumns[0][1] << “ “ \

10: << threeRowsThreeColumns[0][2] << endl;

11:

12:

13: cout << “Row 1: “ << threeRowsThreeColumns[1][0] << “ “ \

14: << threeRowsThreeColumns[1][1] << “ “ \

15: << threeRowsThreeColumns[1][2] << endl;

16:

17: cout << “Row 2: “ << threeRowsThreeColumns[2][0] << “ “\

18: << threeRowsThreeColumns[2][1] << “ “ \

19: << threeRowsThreeColumns[2][2] << endl;

20:

21: return 0;

22: }

Output

Row 0: -501 205 2016

Row 1: 989 101 206

Row 2: 303 456 596

Analysis

Note how you have accessed elements in the array row-wise, starting with the array that is Row 0 (the first row, with index 0) and ending with the array that is Row 2 (third row, with index 2). As each of the rows is an array, the code for addressing the third element in the first row (row index 0, element index 2) is in Line 10.

Note

In Listing 4.3, the length of the code increases dramatically with the increase in the number of elements in the array or dimensions thereof. This type of code is actually unsustainable in a professional development environment.

You can see a more efficient way to program accessing elements in a multidimensional array in Listing 6.14 in Lesson 6, in which you use a nested for loop to access all elements in such an array.

Dynamic Arrays

Consider an application that stores medical records for hospitals. There is no good way for the programmer to know the upper limits of the number of records the application might need to handle. She can make an assumption that is much higher than the reasonable limit for a small hospital to err on the safe side. In this case, the programmer would be reserving huge amounts of memory without reason and reducing the performance of the system.

The key is to not use static arrays like the ones we have seen thus far but, rather, to choose dynamic arrays that optimize memory consumption and scale up, depending on the demand for resources and memory at execution time. C++ provides you with convenient and easy-to-use dynamic arrays in the form std::vector, as shown in Listing 4.4.

Input

Listing 4.4 Creating a Dynamic Array of Integers and Inserting Values Dynamically

 0: #include <iostream>

 1: #include <vector>

 2:

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: vector<int> dynArray(3); // dynamic array of int

 8:

 9: dynArray[0] = 365;

10: dynArray[1] = -421;

11: dynArray[2] = 789;

12:

13: cout << “Number of integers in array: “ << dynArray.size() << endl;

14:

15: cout << “Enter another element to insert” << endl;

16: int newValue = 0;

17: cin >> newValue;

18: dynArray.push_back(newValue);

19:

20: cout << “Number of integers in array: “ << dynArray.size() << endl;

21: cout << “Last element in array: “;

22: cout << dynArray[dynArray.size() - 1] << endl;

23: return 0;

24:

25: }

Output

Number of integers in array: 3

Enter another element to insert

2017

Number of integers in array: 4

Last element in array: 2017

Analysis

Don’t worry about the syntax in Listing 4.4 as vector and templates have not been explained as yet. Just observe the output and try to correlate it to the code. The initial size of the array, according to the output, is 3, which is consistent with the declaration of the array (std::vector) in Line 7. Knowing this, you still ask the user to enter a fourth number in Line 15, and, interestingly, you are able to insert that number into the back of the array by using push_back() in Line 18. The vector dynamically resizes itself to accommodate more data. This can then be seen in the size of the array, which increases to 4. Note the usage of the familiar static array syntax to access data in the vector. Line 22 accesses the last element (wherever that might be, given a position calculated at runtime) by using the zero-based index, where the last element is at index size() – 1, where size() is the function that returns the total number of elements (integers) contained in the vector.

Note

To use the dynamic array class std::vector, you need to include the header <vector>, as in Line 1 of Listing 4.4.

Vectors are explained in greater detail in Lesson 17.

C-Style Character Strings

A C-style string is a special case of an array of characters. You have already seen some examples of C-style strings in the form of string literals that you have been writing in your code:

std::cout << “Hello World”;

This is equivalent to using the array declaration

char sayHello[] = {’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’, ’\0’};

std::cout << sayHello << std::endl;

Note that the last character in the array is a null character ’\0’. This is called the string-terminating character because it tells the compiler that the string has ended. Such C-style strings are a special case of character arrays in that the last character always precedes the null terminator ’\0’. When you embed a string literal in your code, the compiler does the job of adding ’\0’ after it.

If you inserted ’\0’ anywhere in the middle of the array, it would not change the size of the array; it would only mean that string processing using the array as input would stop at that point. Listing 4.5 demonstrates this point.

Note

’\0’ might look like two characters contained within the single quotes, and it indeed is two characters typed using the keyboard. However, the backslash is a special escape code that the compiler understands, and \0 means null—that is, it asks the compiler to insert a null or zero.

You could not write ’0’ directly because that would be accepted as character zero, which has the nonzero ASCII code 48.

Check the table in Appendix D, “ASCII Codes,” to see this and other ASCII values.

Input

Listing 4.5 Analyzing the Null Terminator in a C-Style String

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: char sayHello[] = {’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’\0’};

 6: cout << sayHello << endl;

 7: cout << “Size of array: “ << sizeof(sayHello) << endl;

 8:

 9: cout << “Replacing space with null” << endl;

10: sayHello[5] = ’\0’;

11: cout << sayHello << endl;

12: cout << “Size of array: “ << sizeof(sayHello) << endl;

13:

14: return 0;

15: }

Output

Hello World

Size of array: 12

Replacing space with null

Hello

Size of array: 12

Analysis

Line 10 is where you replace the space in "Hello World" with the null-terminating character. Note that the array now has two null terminators, but it’s the first one that results in the display of the character array in Line 11 being truncated to just "Hello". Operator sizeof(...) in Lines 7 and 12 indicates that the size of the array has not changed, even if the displayed data changed a lot.

Caution

If you forget to add the ’\0’ when declaring and initializing the character array in Listing 4.5 at Line 5, then expect the output to contain garbled characters after printing "Hello World". This occurs because std::cout does not stop with printing the array until it reaches a null character, even if it means exceeding the bounds of the array.

This mistake can cause your program to crash and, in some cases, can compromise the stability of the system.

C-style strings are fraught with danger. Listing 4.6 demonstrates the risks involved in using such a string.

Input

Listing 4.6 A Risky Application Using C-Style Strings and User Input

 0: #include<iostream>

 1: #include<string.h>

 2: using namespace std;

 3: int main()

 4: {

 5: cout << “Enter a word NOT longer than 20 characters:” << endl;

 6:

 7: char userInput [21];

 8: cin >> userInput;

 9:

10: cout << “Length of your input was: “ << strlen (userInput) << endl;

11:

12: return 0;

13: }

Output

Enter a word NOT longer than 20 characters:

Don’tUseThisProgram

Length of your input was: 19

Analysis

The danger is visible in the output. The program is begging the user to not enter data longer than 20 characters. The reason it does so is that the character buffer declared in Line 7 meant to store user input has a fixed—static—length of 21 characters. Because the last character in the string needs to be a null-terminator (’\0’), the maximum length of text stored by the buffer is 20 characters. However, cin will not verify the length of the character array userInput being used and will therefore exceed its bounds if the user enters a word that is 21 characters or longer.

Tip

A bug wherein the bounds of an array are crossed is called a buffer overflow. In addition to compromising the stability of your application, a buffer overflow is considered a vulnerability that makes your C++ application insecure.

Note the use of strlen() in Line 10 to compute the length of the string. strlen() goes through the character array and counts the number of characters crossed until it reaches the null terminator that indicates the end of the string. This null terminator has been inserted by cin at the end of the user’s input. This behavior of strlen makes it dangerous as it can easily walk past the bounds of the character array if the user has supplied text longer than the mentioned limit. One way to solve this problem would be to implement a check ensuring that the limits of the character buffer aren’t crossed. Listing 6.2 in Lesson 6 implements one such check.

Caution

Applications programmed in C (or in C++ by programmers who have a strong C background) often use string copy functions such as strcpy(), concatenation functions such as strcat(), and strlen() to determine the length of a string, in addition to other functions of this kind.

These functions take C-style strings as input and are dangerous as they seek the null terminator and can exceed the boundaries of the character array they’re using if the programmer has not ensured the presence of the terminating null.

The preferred way, however, is to avoid using character arrays for string operations. Use the C++ standard library class std::string instead.

C++ Strings: Using std::string

C++ standard strings are an efficient and safer way to deal with text input—and to perform string manipulations like concatenations. std::string is not static in size like a char array implementation of a C-style string is and can scale up when more data needs to be stored in it. Listing 4.7 shows the use of std::string to manipulate string data.

Input

Listing 4.7 Using std::string to Initialize, Store User Input, Copy, Concatenate, and Determine the Length of a String

 0: #include <iostream>

 1: #include <string>

 2:

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: string greetString ("Hello std::string!");

 8: cout << greetString << endl;

 9:

10: cout << “Enter a line of text: “ << endl;

11: string firstLine;

12: getline(cin, firstLine);

13:

14: cout << “Enter another: “ << endl;

15: string secondLine;

16: getline(cin, secondLine);

17:

18: cout << “Result of concatenation: “ << endl;

19: string concatString = firstLine + “ “ + secondLine;

20: cout << concatString << endl;

21:

22: cout << “Copy of concatenated string: “ << endl;

23: string aCopy;

24: aCopy = concatString;

25: cout << aCopy << endl;

26:

27: cout << “Length of concat string: “ << concatString.length() << endl;

28:

29: return 0;

30: }

Output

Hello std::string!

Enter a line of text:

I love

Enter another:

C++ strings

Result of concatenation:

I love C++ strings

Copy of concatenated string:

I love C++ strings

Length of concat string: 18

Analysis

Try to understand the output and correlate it to the various elements in code. Don’t let new syntax features bother you at this stage. The program starts by displaying a string that has been initialized in Line 7 to "Hello std::string". It then asks the user to enter two lines of text, which are stored in variables firstLine and secondLine in Lines 12 and 16. The actual concatenation is simple and looks like an arithmetic addition in Line 19, where even a space has been added to the first line. The act of copying is a simple act of assigning in Line 24. Determining the length of the string is done by invoking length() on it in Line 27.

Note

To use a C++ string, you need to include the header string:

#include <string>

This is also visible in Line 1 in Listing 4.7.

To learn the various functions of std::string in detail, take a quick look at Lesson 16, “The STL string Class.” Because you have not learned about classes and templates yet, ignore sections that seem unfamiliar in that lesson and concentrate on understanding the gist of the samples.

Summary

This lesson taught you about the basics of arrays: what they are and where they can be used. You learned how to declare an array, initialize an array, access elements in an array, and write values to elements in an array. You learned how important it is to avoid exceeding the limits, also called bounds, of an array in order to avoid buffer overflows. You also learned the importance of ensuring that input is checked before using it to index elements to ensure that the limits of an array are not crossed.

Dynamic arrays are arrays in which the programmer doesn’t need to worry about fixing the max length of an array at compile time. These arrays allow for better memory management if usage is less than the expected maximum.

You also learned that C-style strings are a special case of char arrays, where the end of the string is marked by the null-terminating character ’\0’. More importantly, though, you learned that C++ offers a far better option in std::string, which provides convenient utility functions that enable you to determine the length, concatenate, and perform similar actions.

Q&A

Q. Given a choice, would you use C-style strings that need a null terminator?

A. Yes, but only if someone places a gun to your head. C++ std::string is a lot safer and supplies features that should make any good programmer stay away from using C-style strings.

Q. Does the length of a string include the null terminator at the end of it?

A. No, it doesn’t. The length of the string "Hello World" is 11, including the space and excluding the (invisible) null character marking the end.

Q. Well, I still want to use C-style strings in char arrays that I define. What should be the size of the array I am using?

A. Here is one of the complications of using C-style strings. The size of the array should be one greater than the size of the largest string it will ever contain. This is essential so that it can accommodate the null character at the end of the largest string. If "Hello World" were the largest string your char array would ever hold, then the length of the array would need to be 11 + 1 = 12 characters. Clearly, this array would be less suited to containing user input because a user may easily exceed its bounds and cause a buffer overflow.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Check the array myNumbers in Listing 4.1. What are the indexes of the first and last elements in that array?

2. If you needed to allow the user to input strings, would you use C-style strings?

3. How many characters does the compiler see in ’\0’?

4. You forget to end your C-style string with a null terminator. What happens when you use it?

5. See the declaration of vector in Listing 4.4 and try composing a dynamic array that contains elements of the type char.

Exercises

1. Declare an array that represents the squares on the chessboard; the array should be an enum that defines the pieces that may possibly occupy the squares.

Hint: The enum will contain enumerators (Pawn, Rook, Bishop, and so on), thereby limiting the range of possible values that the elements in the array can hold. Don’t forget that a cell may also be empty!

2. BUG BUSTERS: What is wrong with this code fragment?

int myNumbers[5];

myNumbers[5] = 450; // Setting the 5th element to value 450

Lesson 5. Working with Expressions, Statements, and Operators

At its heart, a program is a set of commands executed in sequence. These commands are programmed into expressions and statements and use operators to perform specific calculations or actions.

In this lesson, you learn

• What statements are

• What blocks or compound statements are

• What operators are

• How to perform simple arithmetic and logical operations

Statements

Languages—spoken or programmed—are composed of statements that are executed one after another. Let’s analyze the first important statement you learned:

cout << “Hello World” << endl;

A statement using cout displays text onscreen, via the console. Every statement in C++ ends with a semicolon (;), which defines the boundary of the statement. It is similar to the period (.) you add when ending a sentence in English. The next statement can start immediately after the semicolon. Therefore, this line comprises two statements in C++:

cout << “Hello World” << endl; cout << “Another hello” << endl;

However, for the sake of convenience and readability, programmers typically program statements one per line.

Note

Whitespace—including spaces, tabs, line feeds, carriage returns, and so on—typically is not visible to the compiler. Whitespace within string literals, though, make a difference to the output.

The following would be invalid:

cout << “Hello

 World” << endl; // new line in string literal not allowed

Such code typically results in an error indicating that the compiler is missing a closing quote (") and a statement-terminating semicolon (;) in the first line. If you need to spread a statement over two lines for some reason, you can do it by inserting a backslash (\) at the end of the first line:

cout << “Hello \

 World” << endl; // split to two lines is OK

Another way of writing the preceding statement in two lines is to write two string literals instead of just one:

cout << “Hello “

 “World” << endl; // two string literals is also OK

In the preceding example, the compiler notices two adjacent string literals and concatenates them for you.

Note

Splitting a statement into many lines can be useful when you have long text elements or complex expressions composed of many variables that make a statement much longer than most displays allow.

Compound Statements, or Blocks

When you group statements together in braces {...}, you create a compound statement, or a block:

{

 int daysInYear = 365;

 cout << “Block contains an int and a cout statement” << endl;

}

A block typically groups many statements to indicate that they belong together. Blocks are particularly useful when programming conditional if statements or loops, which are explained in Lesson 6, “Controlling Program Flow.”

Using Operators

Operators are tools that C++ provides to enable you to work with data, transform it, process it, and possibly make decisions on the basis of it.

The Assignment Operator (=)

The assignment operator is an operator that you have already been using intuitively in this book:

int daysInYear = 365;

This statement uses the assignment operator to initialize an integer to 365. The assignment operator replaces the value contained by the operand to the left (unimaginatively called the l-value) with the one on the right (called the r-value).

Understanding l-Values and r-Values

An l-value typically refers to a location in memory. A variable such as daysInYear from the preceding example is actually a handle to a memory location and is an l-value. r-values, on the other hand, can be the very content of a memory location.

So, all l-values can be r-values, but not all r-values can be l-values. To understand it better, look at the following example, which doesn’t make any sense and therefore won’t compile:

365 = daysInYear;

Operators to Add (+), Subtract (-), Multiply (*), Divide (/), and Modulo Divide (%)

You can perform an arithmetic operation between two operands by using + for addition, - for subtraction, * for multiplication, / for division, and % for modulo operation:

int num1 = 22;

int num2 = 5;

int addNums = num1 + num2; // 27

int subtractNums = num1 - num2; // 17

int multiplyNums = num1 * num2; // 110

int divideNums = num1 / num2; // 4

int moduloNums = num1 % num2; // 2

Note that the division operator (/) returns the result of division between two operands. In the case of integers, however, the result contains no decimals as integers by definition cannot hold decimal data. The modulo operator (%) returns the remainder of a division operator, and it is applicable only on integer values. Listing 5.1 is a simple program that performs arithmetic functions on two numbers entered by the user.

Input

Listing 5.1 Demonstrating Arithmetic Operators on Integers Entered by the User

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter two integers:” << endl;

 6: int num1 = 0, num2 = 0;

 7: cin >> num1;

 8: cin >> num2;

 9:

10: cout << num1 << “ + “ << num2 << “ = “ << num1 + num2 << endl;

11: cout << num1 << “ - “ << num2 << “ = “ << num1 - num2 << endl;

12: cout << num1 << “ * “ << num2 << “ = “ << num1 * num2 << endl;

13: cout << num1 << “ / “ << num2 << “ = “ << num1 / num2 << endl;

14: cout << num1 << “ % “ << num2 << “ = “ << num1 % num2 << endl;

15:

16: return 0;

17: }

Output

Enter two integers:

365

25

365 + 25 = 390

365 - 25 = 340

365 * 25 = 9125

365 / 25 = 14

365 % 25 = 15

Analysis

Most of the program is self-explanatory. The line of most interest is possibly Line 14, which uses the % modulo operator. This returns the remainder that is the result of dividing num1 (365) by num2 (25).

Operators to Increment (++) and Decrement (--)

Sometimes you need to count in increments of one. This helps control loops where the value of a variable needs to be incremented or decremented every time a loop has been executed.

C++ includes the ++ (increment) and -- (decrement) operators to help you with this task.

You use these operators as follows:

int num1 = 101;

int num2 = num1++; // Postfix increment operator

int num2 = ++num1; // Prefix increment operator

int num2 = num1--; // Postfix decrement operator

int num2 = --num1; // Prefix decrement operator

As this example indicates, there are two different ways to use the incrementing and decrementing operators: before and after the operand. Operators that are placed before the operand are called prefix increment or prefix decrement operators, and those that are placed after are called postfix increment or postfix decrement operators.

To Postfix or to Prefix?

It’s important to understand the difference between prefix and postfix and use the one that works in a given situation. The result of execution of the postfix operators is that the r-value (the variable to the right) is first assigned to the l-value, and after that assignment, the r-value is incremented (or decremented). This means that in cases where a postfix operator has been used, the value of num2 is the old value of num1 (the value before the increment or decrement operation).

Prefix operators have exactly the opposite behavior. The r-value is first incremented and then assigned to the l-value. In cases where a prefix operator has been used, num2 and num1 carry the same value. Listing 5.2 demonstrates the effect of prefix and postfix increment and decrement operators on a sample integer.

Input

Listing 5.2 Demonstrating the Difference Between Postfix and Prefix Operators

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int startValue = 101;

 6: cout << “Start value of integer being operated: “ << startValue << endl;

 7:

 8: int postfixIncrement = startValue++;

 9: cout << “Result of Postfix Increment = “ << postfixIncrement << endl;

10: cout << “After Postfix Increment, startValue = “ << startValue << endl;

11:

12: startValue = 101; // Reset

13: int prefixIncrement = ++startValue;

14: cout << “Result of Prefix Increment = “ << prefixIncrement << endl;

15: cout << “After Prefix Increment, startValue = “ << startValue << endl;

16:

17: startValue = 101; // Reset

18: int postfixDecrement = startValue--;

19: cout << “Result of Postfix Decrement = “ << postfixDecrement << endl;

20: cout << “After Postfix Decrement, startValue = “ << startValue << endl;

21:

22: startValue = 101; // Reset

23: int prefixDecrement = --startValue;

24: cout << “Result of Prefix Decrement = “ << prefixDecrement << endl;

25: cout << “After Prefix Decrement, startValue = “ << startValue << endl;

26:

27: return 0;

28: }

Output

Start value of integer being operated: 101

Result of Postfix Increment = 101

After Postfix Increment, startValue = 102

Result of Prefix Increment = 102

After Prefix Increment, startValue = 102

Result of Postfix Decrement = 101

After Postfix Decrement, startValue = 100

Result of Prefix Decrement = 100

After Prefix Decrement, startValue = 100

Analysis

The results show that the postfix operators were different from the prefix ones in that the l-values being assigned in Lines 8 and 18 contain the original values of the integer before the increment or decrement operations. The prefix operations in Lines 13 and 23, on the other hand, result in the l-value being assigned the incremented or decremented value. This is the most important difference that needs to be kept in perspective when choosing the operator type.

Note that in the following statements, the prefix or postfix operators make no difference to the output of the program:

startValue++; // Is the same as…

++startValue;

This is because there is no assignment of an initial value, and the end result in both cases is just that the integer startValue is incremented.

Note

You often hear of cases where prefix increment or prefix decrement operators are preferred over their postfix variants on grounds of better performance. That is, ++startValue is preferred over startValue++.

This is true at least theoretically because with the postfix operators, the compiler needs to store the initial value temporarily in case it needs to be assigned. The effect on performance in these cases is negligible with respect to integers, but in the case of certain classes, this argument might have a point. Smart compilers may, however, optimize and reduce the differences in question.

Equality Operators (== and !=)

Often you need to check for a certain condition being fulfilled or not being fulfilled before you proceed to take action. The equality operators == (operands are equal) and != (operands are unequal) help you with exactly that.

The result of an equality check is a bool—that is, true or false:

int personAge = 20;

bool checkEquality = (personAge == 20); // true

bool checkInequality = (personAge != 100); // true

bool checkEqualityAgain = (personAge == 200); // false

bool checkInequalityAgain = (personAge != 20); // false

Relational Operators

In addition to equality checks, you might want to check for inequality of a certain variable against a value. To assist you with that, C++ includes relational operators (see Table 5.1).

Table 5.1 Relational Operators

[image: Images]

As Table 5.1 indicates, the result of a comparison operation is always true or false—in other words, a bool. The following sample code indicates how the relational operators introduced in Table 5.1 can be put to use:

int personAge = 20;

bool checkLessThan = (personAge < 100); // true

bool checkGreaterThan = (personAge > 100); // false

bool checkLessThanEqualTo = (personAge <= 20); // true

bool checkGreaterThanEqualTo = (personAge >= 20); // true

bool checkGreaterThanEqualToAgain = (personAge >= 100); // false

Listing 5.3 is a program that demonstrates the effect of using these operators by displaying the result onscreen.

Input

Listing 5.3 Demonstrating Equality and Relational Operators

 0: #include <iostream>

 1: using namespace std;

 2:

 3:int main()

 4: {

 5: cout << “Enter two integers:” << endl;

 6: int num1 = 0, num2 = 0;

 7: cin >> num1;

 8: cin >> num2;

 9:

10: bool isEqual = (num1 == num2);

11: cout << “equality test: “ << isEqual << endl;

12:

13: bool isUnequal = (num1 != num2);

14: cout << “inequality test: “ << isUnequal << endl;

15:

16: bool isGT = (num1 > num2); // greater than

17: cout << “” << num1 << “ > “ << num2 << “ test: “ << isGT << endl;

18:

19: bool isLT = (num1 < num2); // lesser than

20: cout << “” << num1 << “ < “ << num2 << “ test: “ << isLT << endl;

21:

22: bool isGTE = (num1 >= num2); // greater than or equal to

23: cout << “” << num1 << “ >= “ << num2 << “ test: “ << isGTE << endl;

24:

25: bool isLTE = (num1 <= num2); // lesser than or equal to

26: cout << “” << num1 << “ <= “ << num2 << “ test: “ << isLTE << endl;

27:

28: return 0;

29: }

Output

First run:

Enter two integers:

365

-24

equality test: 0

inequality test: 1

365 > -24 test: 1

365 < -24 test: 0

365 >= -24 test: 1

365 <= -24 test: 0

Next run:

Enter two integers:

101

101

equality test: 1

inequality test: 0

101 > 101 test: 0

101 < 101 test: 0

101 >= 101 test: 1

101 <= 101 test: 1

Analysis

The program displays the binary results of the various operations, with the test result 0 indicating false and 1 indicating true. Note the output that occurs when the two supplied integers are identical: The operators ==, >=, and <= produce identical results.

The fact that the output of equality and relational operators is binary makes these operators perfectly suited for use in statements that help in decision making and as loop condition expressions that ensure a loop executes only so long as the condition evaluates to true. You can learn more about conditional execution and loops in Lesson 6.

Note

The output of Listing 5.3 displays Boolean values containing false as 0. Those containing true are displayed as 1. From a compiler’s point of view, an expression evaluates to false when it evaluates to 0. A check against false is a check against zero. An expression that evaluates to a nonzero value is evaluated as true.

C++20 Three-Way Comparison Operator (<=>)

The three-way comparison operator is a modern addition to C++. Introduced formally in 2020, operator <=> compares two operands and reveals whether one is less than the other, whether one is greater than the other, or whether the two are equal to each other, as shown here:

Type var1 = value1, var2 = value2;

auto resultOfComparison = var1 <=> var2;

In this example,

• If resultOfComparison is less than zero, then var1 is less than var2.

• resultOfComparison is greater than zero, then var1 is greater than var2

• resultOfComparison is zero, then var1 is equal to var2

Since this operator can be used to model both greater-than and less-than comparisons, it is considered to be rather fundamental and has been given higher precedence than various relational operators.

Listing 5.4 is a program that demonstrates the use of the three-way comparison operator.

Input

Listing 5.4 Demonstrating the Use of the Three-Way Comparison Operator (<=>) in Comparing Numbers

 0: #include <iostream>

 1: #include <compare>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: int num1, num2;

 7: cout << “Enter two integers” << endl;

 8: cin >> num1;

 9: cin >> num2;

10:

11: auto resultofComparison = (num1 <=> num2); // introduced in C++20!

12:

13: if (resultofComparison < 0)

14: cout << “num1 is less than num2” << endl;

15: else if (resultofComparison > 0)

16: cout << “num1 is greater than num2” << endl;

17: else // comparison evaluates to zero

18: cout << “They’re equal” << endl;

19:

20: return 0;

21: }

Output

First run:

Enter two integers

101

-5

num1 is greater than num2

Another run:

Enter two integers

-5

10

num1 is less than num2

Last run:

Enter two integers

2020

2020

They’re equal

Analysis

Focus on Line 11, which uses the three-way comparison operator <=>. The result of the comparison is assigned to the variable resultOfComparison. You use auto to let the compiler automatically deduce the type of the result from the nature of operands. For integer operands, as in this example, the result of the operation is stored by the compiler in a variable of type std::strong_ordering. The example demonstrates how one usage of the operator <=> produces results that otherwise needed three operations (<, >, and ==) in Listing 5.3.

Note

Some compilers (notably clang++ as of this writing) require you to include <compare> when using the three-way comparison operator <=>, as shown in Line 1 in Listing 5.4. This header defines the return types std::strong_ordering or std::partial_ordering.

Tip

The <=> operator is informally called the spaceship operator due to its appearance!

Logical Operations NOT, AND, OR, and XOR

Logical NOT operation is supported by the operator ! and works on a single operand. Table 5.2 is the truth table for a logical NOT operation, which, as expected, simply inverses the supplied Boolean flag.

Table 5.2 Truth Table of Logical NOT Operation

[image: Images]

Other operators, such as AND, OR, and XOR, need two operands. Logical AND operation evaluates to true only when each operand evaluates to true. Table 5.3 demonstrates the functioning of a logical AND operation.

Table 5.3 Truth Table of Logical AND Operation

[image: Images]

Logical AND operation is supported by the operator &&.

Logical OR evaluates to true when at least one of the operands evaluates to true, as demonstrated in Table 5.4.

Table 5.4 Truth Table of Logical OR Operation

[image: Images]

Logical OR operation is supported by the operator ||.

The exclusive OR (abbreviated XOR) operation is slightly different from logical OR as it evaluates to true when any one operand (but not both) is true, as demonstrated in Table 5.5.

Table 5.5 Truth Table of Logical XOR Operation

[image: Images]

C++ provides a bitwise XOR in the form of the operator ^. This operator helps evaluate a result that is generated via an XOR operation on the operand’s bits.

Using C++ Logical Operators NOT (!), AND (&&), and OR (||)

Consider these statements:

• “If it is raining AND if there are no buses, I cannot go to work.”

• “If there is a deep discount OR if I am awarded a record bonus, I can buy that car.”

You need such logical constructs in programming where the result of two operations is used in a logical context to decide the future flow of a program. C++ provides logical AND and OR operators that you can use in conditional statements to conditionally change the flow of the program.

Listing 5.5 demonstrates the workings of the logical AND and logical OR operators.

Input

Listing 5.5 Analyzing Logical AND (&&) and Logical OR (||)

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter true(1) or false(0) for two operands:” << endl;

 6: bool op1 = false, op2 = false;

 7: cin >> op1;

 8: cin >> op2;

 9:

10: cout << op1 << “ AND “ << op2 << “ = “ << (op1 && op2) << endl;

11: cout << op1 << “ OR “ << op2 << “ = “ << (op1 || op2) << endl;

12:

13: return 0;

14: }

Output

First run:

Enter true(1) or false(0) for two operands:

1

0

1 AND 0 = 0

1 OR 0 = 1

Next run:

Enter true(1) or false(0) for two operands:

1

1

1 AND 1 = 1

1 OR 1 = 1

Analysis

The program demonstrates the use and function of the logical operators AND and OR in Lines 10 and 11. What the program doesn’t show is how to use them in making decisions.

Listing 5.6 shows a program that executes different lines of code, depending on the values contained in variables. It uses conditional statement processing and logical operators to determine which statements to execute.

Input

Listing 5.6 Logical NOT (!) and Logical AND (&&) Operators in if Statements for Decision Making

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Use boolean values(0 / 1) to answer” << endl;

 6: cout << “Is it raining? “;

 7: bool isRaining = false;

 8: cin >> isRaining;

 9:

10: cout << “Do you have buses on the streets? “;

11: bool busesPly = false;

12: cin >> busesPly;

13:

14: // Conditional statement uses logical AND and NOT

15: if (isRaining && !busesPly)

16: cout << “You cannot go to work” << endl;

17: else

18: cout << “You can go to work” << endl;

19:

20: if (isRaining && busesPly)

21: cout << “Take an umbrella” << endl;

22:

23: if ((!isRaining) && busesPly)

24: cout << “Enjoy the sun and have a nice day” << endl;

25:

26: return 0;

27: }

Output

First run:

Use boolean values(0 / 1) to answer

Is it raining? 1

Do you have buses on the streets? 1

You can go to work

Take an umbrella

Next run:

Use boolean values(0 / 1) to answer

Is it raining? 1

Do you have buses on the streets? 0

You cannot go to work

Last run:

Use boolean values(0 / 1) to answer

Is it raining? 0

Do you have buses on the streets? 1

You can go to work

Enjoy the sun and have a nice day

Analysis

The program in Listing 5.6 shows conditional statements that use the if construct, which has not been introduced to you yet. For now, you can try to understand the behavior of this construct by correlating it against the output. Line 15 contains the logical expression isRaining && !busesPly, which can be read as “Raining AND NO buses.” This uses the logical AND operator to connect the absence of buses (indicated by the logical NOT on presence of buses) to the presence of rain.

Note

If you want to read a little about the if construct that helps in conditional execution, you can quickly visit Lesson 6.

Listing 5.7 uses logical NOT (!) and OR (||) operators to demonstrate conditional processing.

Input

Listing 5.7 Using Logical NOT and Logical OR Operators to Help Decide Whether You Can Buy That Dream Car

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Answer questions with 0 or 1” << endl;

 6: cout << “Is there a discount on your favorite car? “;

 7: bool onDiscount = false;

 8: cin >> onDiscount;

 9:

10: cout << “Did you get a fantastic bonus? “;

11: bool fantasticBonus = false;

12: cin >> fantasticBonus;

13:

14: if (onDiscount || fantasticBonus)

15: cout << “Congratulations, you can buy that car!” << endl;

16: else

17: cout << “Sorry, waiting a while is a good idea” << endl;

18:

19: if (!onDiscount)

20: cout << “Car not on discount” << endl;

21:

22: return 0;

23: }

Output

First run:

Answer questions with 0 or 1

Is there a discount on your favorite car? 0

Did you get a fantastic bonus? 1

Congratulations, you can buy that car!

Car not on discount

Next run:

Answer questions with 0 or 1

Is there a discount on your favorite car? 0

Did you get a fantastic bonus? 0

Sorry, waiting a while is a good idea

Car not on discount

Last run:

Answer questions with 0 or 1

Is there a discount on your favorite car? 1

Did you get a fantastic bonus? 1

Congratulations, you can buy that car!

Analysis

The program recommends buying a car if you get a discount or if you got a fantastic bonus (or both). Otherwise, it recommends waiting. Line 14 uses the if construct followed by an accompanying else in Line 16. The if construct executes the following statement in Line 15 when the condition (onDiscount || fantasticBonus) evaluates to true. This expression contains the logical OR operator and evaluates to true if there is a discount on your favorite car or if you have received a fantastic bonus. When the expression evaluates to false, the statement following else in Line 17 is executed. The listing uses the logical NOT operation in Line 19 to remind you that the car is not discounted.

Bitwise NOT (~), AND (&), OR (|), and XOR (^) Operators

The difference between the logical and bitwise operators is that bitwise operators don’t return a Boolean result true or false, as logical operators do. Instead, they work at a bit level, returning a result wherein individual bits in the operand are modified. C++ allows you to perform operations such as NOT, OR, AND, and exclusive OR (that is, XOR) operations in a bitwise mode, where you can manipulate individual bits by negating them using ~, ORing them using |, ANDing them using &, and XORing them using ^. The latter three are performed against a number (typically a bit mask) of your choosing.

Listing 5.8 demonstrates the use of bitwise operators.

Input

Listing 5.8 Using Bitwise Operators to Perform NOT, AND, OR, and XOR on Individual Bits in an Integer

 0: #include <iostream>

 1: #include <bitset>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter a number (0 - 255): “;

 7: unsigned short inputNum = 0;

 8: cin >> inputNum;

 9:

10: bitset<8> inputBits (inputNum);

11: cout << inputNum << “ in binary is “ << inputBits << endl;

12:

13: bitset<8> bitwiseNOT = (~inputNum);

14: cout << “Bitwise NOT ~” << endl;

15: cout << “~” << inputBits << “ = “ << bitwiseNOT << endl;

16:

17: cout << “Bitwise AND, & with 00001111” << endl;

18: bitset<8> bitwiseAND = (0x0F & inputNum);// 0x0F is hex for 0001111

19: cout << “0001111 & “ << inputBits << “ = “ << bitwiseAND << endl;

20:

21: cout << “Bitwise OR, | with 00001111” << endl;

22: bitset<8> bitwiseOR = (0x0F | inputNum);

23: cout << “00001111 | “ << inputBits << “ = “ << bitwiseOR << endl;

24:

25: cout << “Bitwise XOR, ^ with 00001111” << endl;

26: bitset<8> bitwiseXOR = (0x0F ^ inputNum);

27: cout << “00001111 ^ “ << inputBits << “ = “ << bitwiseXOR << endl;

28:

29: return 0;

30: }

Output

Enter a number (0 - 255): 181

181 in binary is 10110101

Bitwise NOT ~

~10110101 = 01001010

Bitwise AND, & with 00001111

0001111 & 10110101 = 00000101

Bitwise OR, | with 00001111

00001111 | 10110101 = 10111111

Bitwise XOR, ^ with 00001111

00001111 ^ 10110101 = 10111010

Analysis

This program uses bitset—a type you have not seen yet—to make displaying binary data easier. The role of std::bitset here is purely to help with displaying and nothing more. In Lines 10, 13, 18, and 22, you actually assign an integer to a bitset object, which is used to display that same integer data in binary mode. The operations are done on integers. For now, focus on the output, which shows the original integer 181 fed by the user in binary and then proceeds to demonstrate the effects of the bitwise operators ~, &, |, and ^ on this integer. You see that the bitwise NOT used in Line 13 toggles the individual bits. The program also demonstrates how the operators &, |, and ^ work, performing the operations using each bit in the two operands to create the result. Correlate this result with the truth tables introduced earlier, and the workings should become clearer to you.

Note

If you want to learn more about manipulating bit flags in C++, take a look at Lesson 25, “Working with Bit Flags Using STL.” It introduces std::bitset in greater detail.

Bitwise Right Shift (>>) and Left Shift (<<) Operators

Shift operators move entire bit sequences to the right or to the left and thus can help with multiplication or division by multiples of two, in addition to having other uses in an application.

Tip

Multiplication by two is achieved by shifting bits one position to the left. For example, 011 is binary for three. Shifting bits one position to the left gives you 110, which is binary for six! Conversely, shifting bits one position to the right divides by two.

The following is an example of using a shift operator to multiply by two:

int doubledValue = num << 1; // shift bits one position left to double value

The following is an example of using a shift operator to divide by two:

int halvedValue = num >> 1; // shift bits one position right to halve value

Listing 5.9 demonstrates how you can use shift operators to effectively multiply and divide integer values.

Input

Listing 5.9 Using the Bitwise Right Shift Operator (>>) to Quarter and Half and Left Shift (<<) to Double and Quadruple an Input Integer

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter a number: “;

 6: int inputNum = 0;

 7: cin >> inputNum;

 8:

 9: int halfNum = inputNum >> 1;

10: int quarterNum = inputNum >> 2;

11: int doubleNum = inputNum << 1;

12: int quadrupleNum = inputNum << 2;

13:

14: cout << “Quarter: “ << quarterNum << endl;

15: cout << “Half: “ << halfNum << endl;

16: cout << “Double: “ << doubleNum << endl;

17: cout << “Quadruple: “ << quadrupleNum << endl;

18:

19: return 0;

20: }

Output

Enter a number: 16

Quarter: 4

Half: 8

Double: 32

Quadruple: 64

Analysis

The input number is 16, which in binary is 10000. In Line 9, you move it 1 bit right to change it to 01000, which is 8, effectively halving it. In Line 10, you move it 2 bits right, changing 10000 to 00100, which is 4. The left shift operators in Lines 11 and 12 have exactly the opposite effect: You move the left shift operator 1 bit left to get 100000, which is 32, and 2 bits left to get 1000000, which is 64, effectively doubling and quadrupling the number!

Note

Bitwise shift operators don’t rotate values. That is, the value contained in the most significant bit isn’t rotated back to the least significant bit on a left shift or vice versa on a right shift.

Compound Assignment Operators

Compound assignment operators are assignment operators where the operand to the left is assigned the value resulting from the operation.

Consider the following code:

int num1 = 22;

int num2 = 5;

num1 += num2; // num1 contains 27 after the operation

This is similar to what’s expressed in the following line of code:

num1 = (num1 + num2);

Thus, the effect of the += operator is that the sum of the two operands is calculated and then assigned to the operand on the left (which is num1). Table 5.6 provides a quick reference on the many compound assignment operators and explains their working.

Table 5.6 Compound Assignment Operators

[image: Images]

Listing 5.10 demonstrates the effects of using these operators.

Input

Listing 5.10 Using Compound Assignment Operators to Add; Subtract; Divide; Perform Modulus; Shift; and Perform Bitwise OR, AND, and XOR

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter a number: “;

 6: int value = 0;

 7: cin >> value;

 8:

 9: value += 8;

10: cout << “After += 8, value = “ << value << endl;

11: value -= 2;

12: cout << “After -= 2, value = “ << value << endl;

13: value /= 4;

14: cout << “After /= 4, value = “ << value << endl;

15: value *= 4;

16: cout << “After *= 4, value = “ << value << endl;

17: value %= 1000;

18: cout << “After %= 1000, value = “ << value << endl;

19:

20: // Note: henceforth assignment happens within cout

21: cout << “After <<= 1, value = “ << (value <<= 1) << endl;

22: cout << “After >>= 2, value = “ << (value >>= 2) << endl;

23:

24: cout << “After |= 0x55, value = “ << (value |= 0x55) << endl;

25: cout << “After ^= 0x55, value = “ << (value ^= 0x55) << endl;

26: cout << “After &= 0x0F, value = “ << (value &= 0x0F) << endl;

27:

28: return 0;

29: }

Output

Enter a number: 440

After += 8, value = 448

After -= 2, value = 446

After /= 4, value = 111

After *= 4, value = 444

After %= 1000, value = 444

After <<= 1, value = 888

After >>= 2, value = 222

After |= 0x55, value = 223

After ^= 0x55, value = 138

After &= 0x0F, value = 10

Analysis

Note that value is continually modified throughout the program via the various assignment operators. Each operation is performed using value, and the result of the operation is assigned back to it. Hence, at Line 9, the user input 440 is added to 8, which results in 448 and is assigned back to value. In the subsequent operation at Line 11, 2 is subtracted from 448, resulting in 446, which is assigned back to value, and so on.

Using the sizeof() Operator to Determine the Memory Occupied by a Variable

The sizeof() operator determines the amount of memory, in bytes, consumed by a particular type or a variable. You use sizeof() as follows:

sizeof(variable);

or like this:

sizeof(type);

Note

sizeof(...) might look like a function, but it is not a function. sizeof() is an operator. Interestingly, this operator cannot be defined by a programmer and hence cannot be overloaded.

You’ll learn more about defining your own operators in Lesson 12, “Operator Types and Operator Overloading.”

Listing 5.11 demonstrates the use of sizeof() to determine memory space occupied by an array. In addition, you might want to revisit Listing 3.5 to analyze the use of sizeof() in determining memory consumed by the most familiar variable types.

Input

Listing 5.11 Using sizeof() to Determine the Number of Bytes Occupied by an Array of 100 Integers and in Each Element of the Array

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Use sizeof to determine memory used by arrays” << endl;

 6: int myNumbers [100];

 7:

 8: cout << “Bytes used by an int: “ << sizeof(int) << endl;

 9: cout << “Bytes used by myNumbers: “ << sizeof(myNumbers) << endl;

10: cout << “Bytes used by an element: “ << sizeof(myNumbers[0]) << endl;

11:

12: return 0;

13: }

Output

Use sizeof to determine memory used by arrays

Bytes used by an int: 4

Bytes used by myNumbers: 400

Bytes used by an element: 4

Analysis

The program demonstrates how sizeof() is capable of returning the size of an array of 100 integers, in bytes, which is 400 bytes. The program also demonstrates that the size of each element is 4 bytes.

sizeof() can be useful when you need to dynamically allocate memory for N objects, especially of a type created by yourself. You would use the result of the sizeof() operation in determining the amount of memory occupied by each object and then dynamically allocate the memory by using the operator new.

Dynamic memory allocation is explained in detail in Lesson 8, “Pointers and References Explained.”

Operator Precedence and Associativity

You possibly learned something in school about the order of arithmetic operations. You might have learned the acronym BODMAS, which stands for Brackets Orders Division Multiplication Addition Subtraction and indicates the order in which a complex arithmetical expression should be evaluated.

In C++, you use operators and expressions such as the following:

int myNumber = 10 * 30 + 20 - 5 * 5 << 2;

In what order is the expression to be evaluated? That is, which operations are to be resolved before the others? This order is not left to guesswork of any kind. The order in which the various operators are invoked is very strictly specified by the C++ standard. This order is referred to as operator precedence.

Another issue: Should operators of similar precedence be evaluated from right to left or from left to right? This order of evaluation is also defined in C++; it is called operator associativity. See Table 5.7.

Table 5.7 The Precedence of Operators

[image: Images]

[image: Images]

Take another look at the complicated expression used as an example earlier:

int myNumber = 10 * 30 + 20 - 5 * 5 << 2;

In evaluating the result of this expression, you need to use the rules related to operator precedence, as shown in Table 5.7, to understand what value the compiler assigns. Because multiplication has priority over addition and subtraction, which in turn have priority over shift, you can simplify the preceding example to the following:

int myNumber = 300 + 20 - 25 << 2;

As addition and subtraction have priority over shift, you can further simplify to:

int myNumber = 295 << 2;

Finally, you perform the shift operation. Knowing that a shift 1 bit left doubles, and hence a shift 2 bits left quadruples, you can say that the expression evaluates to 295 * 4, which is 1180.

Caution

Use parentheses to make reading code easy.

The expression used earlier is deliberately composed poorly for the purpose of explaining operator precedence. It is easy for the compiler to understand, but you should write code that humans can understand, too.

The earlier expression is much better written this way:

int myNumber = ((10 * 30) - (5 * 5) + 20) << 2; // 1180

[image: Images]

Summary

In this lesson, you learned what C++ statements, expressions, and operators are. You learned how to perform basic arithmetic operations such as addition, subtraction, multiplication, and division in C++. You also got an overview of logical operations such as NOT, AND, OR, and XOR. You learned about the C++ logical operators !, &&, and ||, which help you in conditional statements, and the bitwise operators, such as ~, &, |, and ^, which help you manipulate data, 1 bit at a time.

You learned about operator precedence and how important it is to use parentheses to write code that can also be understood by humans. You took a look at integer overflow and why it must be avoided.

Q&A

Q. Why do some programs use unsigned int if unsigned short takes less memory and compiles, too?

A. unsigned short typically has a limit of 65,535, and if incremented, it overflows to 0. To avoid this behavior, well-programmed applications choose unsigned int when it is not certain that the value will stay well below this limit.

Q. I need to calculate the double of a number after it’s divided by three. Do you see any problem with using the following code to do this?

int result = Number / 3 << 1;

A. Yes! Why didn’t you simply use parentheses to make this line simpler for other programmers to read?

Q. My application divides two integer values 5 and 2:

int num1 = 5, num2 = 2;

int result = num1 / num2;

On execution, the result contains the value 2. Isn’t this wrong?

A. Not at all. Integers are not meant to contain decimal data. The result of this operation is hence 2 and not 2.5. If 2.5 is the result you expect, change all data types to float or double, which are meant to handle floating-point (decimal) operations.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain that you understand the answers before continuing to the next lesson.

Quiz

1. If you are writing an application to divide numbers, which data type would be best: int or float?

2. What is the value of 32 / 7?

3. What is the value of 32.0 / 7?

4. Is sizeof(...) a function?

5. You need to compute the double of a number, add 5 to it, and then double it again. Would the following line do this?

int result = number << 1 + 5 << 1;

6. What is the result of an XOR operation where the XOR operands both evaluate to true?

Exercises

1. Improve on the code in Quiz Question 5, using parentheses to provide clarity.

2. What is the value of result stored by the following expression?

int result = number << 1 + 5 << 1;

3. Write a program that asks the user to input two Boolean values and demonstrates the results of various bitwise operators on them.

Lesson 6. Controlling Program Flow

Most applications behave differently in different situations and with different user input. To program an application to respond differently, you need to code conditional statements that execute different code segments in different situations.

In this lesson, you find out

• How to make your program behave differently in certain conditions

• How to execute a section of code repeatedly in a loop

• How to better control the flow of execution in a loop

Conditional Execution Using if...else

Programs you have seen and composed thus far have a serial order of execution: from the top down. Every line has been executed, with no line ever ignored. However, serial execution of all lines of code in a top-down fashion rarely happens in applications.

Say that you want a program that multiplies two numbers if the user presses m or adds the numbers if the user presses anything else.

As you can see in Figure 6.1, not all code paths are executed in every run. If the user presses m, the code that multiplies the two numbers is executed. If the user enters anything other than m, the code that performs addition is executed. There is never a situation where both operations are executed.

[image: Images]

Figure 6.1 Example of conditional processing that occurs on the basis of user input.

Conditional Programming Using if...else

Conditional execution of code is implemented in C++ using the if...else construct, which looks like this:

if (conditional expression)

 Do something when expression evaluates true;

else // optional

 Do something else when condition evaluates false;

So, an if...else construct that causes a program to multiply if the user enters m and adds otherwise looks like this:

if (userSelection == ’m’)

 result = num1 * num2; // multiply

else

 result = num1 + num2; // add

Note

Note that evaluation of an expression to true in C++ essentially means that the expression does not evaluate to false (where false is zero). So, an expression that evaluates to any nonzero number—negative or positive—is essentially considered to be evaluating to true when used in a conditional statement.

Let’s analyze this construct in Listing 6.1, which enables the user to decide whether to either multiply or divide two numbers and uses conditional processing to generate the desired output.

Input

Listing 6.1 Multiplying or Adding Two Integers on the Basis of User Input

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter two integers: “ << endl;

 6: int num1 = 0, num2 = 0;

 7: cin >> num1;

 8: cin >> num2;

 9:

10: cout << “Enter \’m\’ to multiply, anything else to add: “;

11: char userSelection = ’\0’;

12: cin >> userSelection;

13:

14: int result = 0;

15: if (userSelection == ’m’)

16: result = num1 * num2;

17: else

18: result = num1 + num2;

19:

20: cout << “result is: “ << result << endl;

21:

22: return 0;

23: }

Output

First run:

Enter two integers:

25

56

Enter ’m’ to multiply, anything else to add: m

result is: 1400

Next run:

Enter two integers:

25

56

Enter ’m’ to multiply, anything else to add: a

result is: 81

Analysis

Note the use of if in Line 15 and else in Line 17. You are instructing the compiler to execute multiplication in Line 16 when the expression (userSelection == ’m’) that follows if evaluates to true or to execute addition in Line 18 if the expression evaluates to false. (userSelection == ’m’) is an expression that evaluates to true when the user has entered character m (case-sensitive); otherwise, it evaluates to false. Thus, this simple program models the flowchart in Figure 6.1 and demonstrates how an application can behave differently in different situations.

Note

The else part of the if...else construct is optional and doesn’t need to be used in situations where there is nothing to be executed in the event of failure.

Caution

An inadvertent semicolon in Line 15:

15: if (userSelection == ’m’);

would make the if construct meaningless because it would be terminated by an empty statement (the semicolon). Be careful to avoid this situation, which essentially voids the attempt at conditional processing.

Some good compilers may warn you of an “empty control statement” in such a situation.

Conditional Execution of Statements Within a Block

If you want to execute multiple statements, based on a condition succeeding or failing, you need to enclose them within statement blocks. These are essentially braces {...} enclosing multiple statements to be executed as a block. For example:

if (condition)

{

 // condition success block

 Statement 1;

 Statement 2;

}

else

{

 // condition failure block

 Statement 3;

 Statement 4;

}

Such blocks are also called compound statements.

Listing 6.2 is a safer version of Listing 4.6 from Lesson 4, “Managing Array and Strings.” It uses a compound statement that copies user input into a static character array if the length of user input is within the bounds of the array.

Input

Listing 6.2 Checking for Bounds Before Copying a String into a char Array in a Compound Statement

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter a line of text: “ << endl;

 7: string userInput;

 8: getline (cin, userInput);

 9:

10: char copyInput[20] = {};

11: if (userInput.length() < 20) // check bounds

12: {

13: cout << “Input within bounds, creating copy” << endl;

14: userInput.copy (copyInput, userInput.length());

15: cout << “copyInput contains: “ << copyInput << endl;

16: }

17: else

18: cout << “Bounds exceeded: cannot copy!” << endl;

19:

20: return 0;

21: }

Output

First run:

Enter a line of text:

Input within bounds

Input within bounds, creating copy

copyInput contains: Input within bounds

Next run:

Enter a line of text:

Input is too long for the buffer

Bounds exceeded: cannot copy!

Analysis

Note how the length of the string is checked against the length of the buffer (20) in Line 11 before being copied into it. What is also special about this if check is the presence of a statement block (also called a compound statement) in Lines 12 through 16 that runs in the event of the check evaluating to true.

Tip

C++17 introduced the inclusion of initialization within the if statement. Applying it to lines 10 and 11 in Listing 6.2, you get

if (char copyInput[20] = {}; userInput.length() < 20)

{

 // statements

}

The scope of variable copyInput is now limited to the if statement where it is used. This feature is also supported by switch constructs that are introduced later in this lesson.

Nested if Statements

Often you have situations where you need to validate against a host of different conditions, many of which are dependent on the evaluation of a previous condition. C++ allows you to nest if statements to handle such requirements.

Nested if statements look like this:

if (expression1)

{

 DoSomething1;

 if(expression2)

 DoSomething2;

 else

 DoSomethingElse2;

}

else

 DoSomethingElse1;

Consider an application similar to Listing 6.1, in which the user can instruct the application to divide or multiply by pressing d or m. Now, division should be permitted only when the divisor is nonzero. So, in addition to checking the user input for the intended command, it is also important to check if the divisor is nonzero when the user instructs the program to divide. Listing 6.3 uses a nested if construct.

Input

Listing 6.3 Using Nested if Statements in Multiplying or Dividing a Number

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter two numbers: “ << endl;

 6: float num1 = 0, num2 = 0;

 7: cin >> num1;

 8: cin >> num2;

 9:

10: cout << “Enter ’d’ to divide, anything else to multiply: “;

11: char userSelection = ’\0’;

12: cin >> userSelection;

13:

14: if (userSelection == ’d’)

15: {

16: cout << “You wish to divide!” << endl;

17: if (num2 != 0)

18: cout << num1 << “ / “ << num2 << “ = “ << num1 / num2 << endl;

19: else

20: cout << “Division by zero is not allowed” << endl;

21: }

22: else

23: {

24: cout << “You wish to multiply!” << endl;

25: cout << num1 << “ x “ << num2 << “ = “ << num1 * num2 << endl;

26: }

27:

28: return 0;

29: }

Output

First run:

Enter two numbers:

45

9

Enter ’d’ to divide, anything else to multiply: m

You wish to multiply!

45 x 9 = 405

Next run:

Enter two numbers:

22

7

Enter ’d’ to divide, anything else to multiply: d

You wish to divide!

22 / 7 = 3.14286

Last run:

Enter two numbers:

365

0

Enter ’d’ to divide, anything else to multiply: d

You wish to divide!

Division by zero is not allowed

Analysis

The output is the result of running the program three times with three different sets of input, and as you can see, the program has executed different code paths for each of these three runs. This program has a few changes compared to Listing 6.1:

• The numbers are accepted as floating-point variables, to better handle decimals, which are important when dividing numbers.

• The if condition is different than in Listing 6.1. You no longer check whether the user has pressed m; rather, Line 14 contains an expression (userSelection == ’d’) that evaluates to true when the user presses d. If so, you proceed with division.

• Given that this program divides two numbers, and the divisor is entered by the user, it is important to check whether the divisor is nonzero. This is done using the nested if in Line 17.

Thus, this program demonstrates how nested if constructs can be very useful in performing different tasks, depending on the evaluation of multiple parameters.

Tip

The nested tabs (whitespaces) in the code are optional, but they make a significant contribution to the readability of the nested if constructs. IDEs and code editors help indent code automatically.

Note that if...else constructs can also be grouped together. Listing 6.4 is a program that asks the user for the day of the week and then tells what that day is named after using grouped if...else constructs.

Input

Listing 6.4 Using a Grouped if...else Construct

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: enum DaysOfWeek

 6: {

 7: Sunday = 0,

 8: Monday,

 9: Tuesday,

10: Wednesday,

11: Thursday,

12: Friday,

13: Saturday

14: };

15:

16: cout << “Find what days of the week are named after!” << endl;

17: cout << “Enter a number for a day (Sunday = 0): “;

18:

19: int dayInput = Sunday; // Initialize to Sunday

20: cin >> dayInput;

21:

22: if (dayInput == Sunday)

23: cout << “Sunday was named after the Sun” << endl;

24: else if (dayInput == Monday)

25: cout << “Monday was named after the Moon” << endl;

26: else if (dayInput == Tuesday)

27: cout << “Tuesday was named after Mars” << endl;

28: else if (dayInput == Wednesday)

29: cout << “Wednesday was named after Mercury” << endl;

30: else if (dayInput == Thursday)

31: cout << “Thursday was named after Jupiter” << endl;

32: else if (dayInput == Friday)

33: cout << “Friday was named after Venus” << endl;

34: else if (dayInput == Saturday)

35: cout << “Saturday was named after Saturn” << endl;

36: else

37: cout << “Wrong input, execute again” << endl;

38:

39: return 0;

40: }

Output

First run:

Find what days of the week are named after!

Enter a number for a day (Sunday = 0): 5

Friday was named after Venus

Next run:

Find what days of the week are named after!

Enter a number for a day (Sunday = 0): 9

Wrong input, execute again

Analysis

Note the if-else-if construct used in Lines 22 through 37 to check user input and produce the corresponding output. The output in the second run indicates that the program is able to tell the user when she has entered a number that is outside the expected range 0–6 and hence does not correspond to any day of the week. The advantage of this construct is that it is perfectly suited to validating conditions that are mutually exclusive (for example, Monday can never be a Tuesday, and an invalid input cannot be any day of the week). Another interesting thing to note in this program is the use of the enumeration DaysOfWeek declared in Line 5 and used throughout the if statements. You could instead simply compare user input against integer values such as 0 for Sunday. However, the use of the enumerator Sunday makes the code more readable.

Conditional Processing Using switch-case

The switch-case construct enables you to check a particular expression against a host of possible constants and possibly perform a different action for each of those different values. The new C++ keywords you would find in such constructs are switch case, default, and break.

The following is the syntax of a switch-case construct:

switch(expression)

{

case LabelA:

 DoSomething;

 break;

case LabelB:

 DoSomethingElse;

 break;

// And so on...

default:

 DoStuffWhenExpressionIsNotHandledAbove;

 break;

}

The code evaluates the expression and checks against each of the case labels following it for equality. Each case label needs to be a constant. The program then executes the code following that label. When expression does not evaluate to LabelA, the program checks against LabelB. If that check evaluates to true, the program executes DoSomethingElse. This check continues until the program encounters a break. This is the first time we are using the keyword break. break causes execution to exit the code block. breaks are not compulsory; however, without a break, the execution simply continues checking against the next labels and so on, and you want to avoid that in this case. default is optional, too, and it is executed when the expression does not equate to any of the labels in the switch-case construct.

Tip

switch-case constructs are well suited to being used with enumerators. The keyword enum was introduced in Lesson 3, “Using Variables, Declaring Constants.”

Listing 6.5 is the switch-case equivalent of the program in Listing 6.4 that tells what the days of the week are named after and also uses enumerated constants.

Input

Listing 6.5 Telling What Days of the Week Are Named After Using switch-case, break, and default

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: enum DaysOfWeek

 6: {

 7: Sunday = 0,

 8: Monday,

 9: Tuesday,

10: Wednesday,

11: Thursday,

12: Friday,

13: Saturday

14: };

15:

16: cout << “Find what days of the week are named after!” << endl;

17: cout << “Enter a number for a day (Sunday = 0): “;

18:

19: int dayInput = Sunday; // Initialize to Sunday

20: cin >> dayInput;

21:

22: switch(dayInput)

23: {

24: case Sunday:

25: cout << “Sunday was named after the Sun” << endl;

26: break;

27:

28: case Monday:

29: cout << “Monday was named after the Moon” << endl;

30: break;

31:

32: case Tuesday:

33: cout << “Tuesday was named after Mars” << endl;

34: break;

35:

36: case Wednesday:

37: cout << “Wednesday was named after Mercury” << endl;

38: break;

39:

40: case Thursday:

41: cout << “Thursday was named after Jupiter” << endl;

42: break;

43:

44: case Friday:

45: cout << “Friday was named after Venus” << endl;

46: break;

47:

48: case Saturday:

49: cout << “Saturday was named after Saturn” << endl;

50: break;

51:

52: default:

53: cout << “Wrong input, execute again” << endl;

54: break;

55: }

56:

57: return 0;

58: }

Output

First run:

Find what days of the week are named after!

Enter a number for a day (Sunday = 0): 5

Friday was named after Venus

Next run:

Find what days of the week are named after!

Enter a number for a day (Sunday = 0): 9

Wrong input, execute again

Analysis

Lines 22 through 55 contain the switch-case construct, which produces different output depending on the integer contained in dayInput, as entered by the user. When the user enters the number 5, the application checks the switch expression dayInput that evaluates to 5 against the first four labels that are enumerators Sunday (value 0) through Thursday (value 4), skipping the code below each of them as none of them are equal to 5. It reaches the label Friday, where the expression evaluating to 5 equals the enumerated constant Friday. Thus, it executes the code under Friday until it reaches break in Line 46 and exits the switch construct. In the second run, when an invalid value is entered, the execution reaches default and runs the code under it, displaying the message asking the user to execute again.

This program, which uses switch-case, produces exactly the same output as Listing 6.4, which uses the if-else-if construct. However, the switch-case version looks a little more structured and is possibly well suited to situations where you want to be doing more than just writing a line to the screen.

Tip

Use statement blocks using braces {...} to include multiple statements that need to be executed under a case.

Conditional Execution Using the ?: Operator

C++ has an interesting and powerful operator called the conditional operator, which is similar to a compact if-else construct.

The conditional operator is also called a ternary operator, as it takes three operands:

(conditional expression evaluated to bool) ? expression1 if true : expression2 if false;

Such an operator can be used to compactly evaluate the greater of two given numbers, as seen here:

int max = (num1 > num2) ? num1 : num2; // max contains greater of num1 and num2

Listing 6.6 demonstrates conditional processing using the ?: operator.

Input

Listing 6.6 Using the Conditional Operator (?:) to Find the Max of Two Numbers

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter two numbers” << endl;

 6: int num1 = 0, num2 = 0;

 7: cin >> num1;

 8: cin >> num2;

 9:

10: // using the ternary operator ?:

11: int max = (num1 > num2)? num1 : num2;

12:

13: cout << “The greater of “ << num1 << “ and “ \

14: << num2 << “ is: “ << max << endl;

15:

16: return 0;

17: }

Output

Enter two numbers

365

-1

The greater of 365 and -1 is: 365

Analysis

Line 11 contains the statement of interest. It is a compact statement that makes a decision about which of the two numbers input is larger. This line can also be coded using if-else, as shown here:

int max;

if (num1 > num2)

 max = num1;

else

 max = num2;

You can see that using the conditional operators saves a few lines in this case. Saving lines of code, however, should not be a priority. Some programmers prefer conditional operators, and others don’t. It is important to code conditional operators in a way that can be easily understood.

[image: Images]

Tip

C++17 introduced conditional compilation features using if constexpr. This is an advanced feature that gets the compiler to validate the conditional expression. The section of code within the conditional if constexpr...else statement that is not to be executed is then ignored by the compiler and doesn’t make it to the executable. This optimization helps when using template classes. Templates are introduced in greater detail in Lesson 14, “An Introduction to Macros and Templates.”

Getting Code to Execute in Loops

So far, you have seen how to make a program behave differently when certain variables contain different values; for example, in Listing 6.1 you multiplied when the user pressed m, and otherwise, you added. However, what if the user doesn’t want the program to just end? What if a user wants to perform another add or multiply operation—or maybe five more? In such a case, you need to repeat the execution of existing code.

This is when you need to program a loop.

A Rudimentary Loop Using goto

As the name suggests, goto instructs execution to continue from a particular, labeled, point in code. You can use it to go backward and re-execute certain statements.

The syntax for the goto statement is

SomeFunction()

{

Start: // Called a label

 CodeThatRepeats;

 goto Start;

}

You declare a label called Start and use goto to repeat execution from this point on, as demonstrated in Listing 6.7. Unless you invoke goto given a condition that can evaluate to false under certain circumstances, or unless the code that repeats contains a return statement executed under certain conditions, the piece of code between the goto command and label will repeat endlessly and prevent the program from ending.

Input

Listing 6.7 Asking a User Whether to Repeat Calculations Using goto

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: Start:

 6: int num1 = 0, num2 = 0;

 7:

 8: cout << “Enter two integers: “ << endl;

 9: cin >> num1;

10: cin >> num2;

11:

12: cout << num1 << “ x “ << num2 << “ = “ << num1 * num2 << endl;

13: cout << num1 << “ + “ << num2 << “ = “ << num1 + num2 << endl;

14:

15: cout << “Do you wish to perform another operation (y/n)?” << endl;

16: char repeat = ’y’;

17: cin >> repeat;

18:

19: if (repeat == ’y’)

20: goto Start;

21:

22: cout << “Goodbye!” << endl;

23:

24: return 0;

25: }

Output

Enter two integers:

56

25

56 x 25 = 1400

56 + 25 = 81

Do you wish to perform another operation (y/n)?

y

Enter two integers:

95

-47

95 x -47 = -4465

95 + -47 = 48

Do you wish to perform another operation (y/n)?

n

Goodbye!

Analysis

Note that the primary difference between Listing 6.7 and Listing 6.1 is that Listing 6.1 needs two runs (that is, two separate executions) to enable the user to enter a new set of numbers and see the result of the addition and multiplication. Listing 6.7 does that in one execution cycle by asking the user if she wishes to perform another operation. The code that actually enables this repetition is in Line 20, where goto is invoked if the user enters the character y for yes. Execution of goto in Line 20 results in the program jumping to the label Start declared in Line 5, which effectively reruns the program code.

Caution

Using goto is not the recommended way to program loops because the prolific use of goto can result in unpredictable flow of code, where execution can jump from one line to another in no particular order or sequence—in some cases leaving variables in unpredictable states, too.

A bad case of programming using goto results in what is called spaghetti code. You can avoid goto by using while, do...while, and for loops that are explained in the following pages.

The only reason you were taught goto is so that you understand code that uses it.

The while Loop

The C++ keyword while can help you do what goto did in Listing 6.7 but in a refined manner. Its usage syntax is

while(condition)

{

 // Expression evaluates to true

 StatementBlock;

}

The statement block is executed repeatedly as long as the expression evaluates to true. It is hence important to code in such a way that there are situations where the expression would also evaluate to false; otherwise, the while loop would never end.

Listing 6.8 is equivalent to Listing 6.7 but uses while instead of goto in repeating a calculation cycle.

Input

Listing 6.8 Using a while Loop to Help the User Rerun Calculations

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: char userSelection = ’m’; // initial value

 6:

 7: while (userSelection != ’x’)

 8: {

 9: cout << “Enter the two integers: “ << endl;

10: int num1 = 0, num2 = 0;

11: cin >> num1;

12: cin >> num2;

13:

14: cout << num1 << “ x “ << num2 << “ = “ << num1 * num2 << endl;

15: cout << num1 << “ + “ << num2 << “ = “ << num1 + num2 << endl;

16:

17: cout << “Press x to exit(x) or any other key to recalculate” << endl;

18: cin >> userSelection;

19: }

20:

21: cout << “Goodbye!” << endl;

22:

23: return 0;

24: }

Output

Enter the two integers:

56

25

56 x 25 = 1400

56 + 25 = 81

Press x to exit(x) or any other key to recalculate

r

Enter the two integers:

365

-5

365 x -5 = -1825

365 + -5 = 360

Press x to exit(x) or any other key to recalculate

x

Goodbye!

Analysis

The while loop in Lines 7 through 19 contains most of the logic in this program. Note how the while checks the expression (userSelection != ’x’) and proceeds only if this expression evaluates to true. To enable a first run, you initialized the char variable userSelection to ’m’ in Line 5. This needed to be any value that is not ’x’ (otherwise, the condition would fail at the very first loop, and the application would exit without letting the user do anything constructive). The first run is very simple, but the user is asked in Line 17 if he wishes to perform another set of calculations. Line 18 contains the user’s input and is where you modify the expression that while evaluates, giving the program a chance to continue or to terminate. When the first loop is done, execution returns to evaluating the expression in the while statement at Line 7 and repeats if the user has not pressed x. When the user presses x at the end of a loop, the next evaluation of the expression, at Line 7, results in a false, and the execution exits the while loop, eventually ending the application after displaying a goodbye statement.

Note

A loop is also called an iteration. Statements involving while, do...while, and for are also called iterative statements.

The do...while Loop

There are cases (like the one in Listing 6.8) where you need to ensure that a certain segment of code repeats in a loop and that it executes at least once. This is where the do...while loop is useful.

The syntax of the do...while loop is

do

{

 StatementBlock; // executed at least once

} while(condition); // ends loop when condition evaluates to false

Note how the line containing while(condition) terminates with a semicolon. This is different from the previous while loop, in which a semicolon following while would’ve effectively terminated the loop in the very line, resulting in an empty statement.

Listing 6.9 demonstrates how do...while loops help in executing statements at least once.

Input

Listing 6.9 Using do...while to Repeat Execution of a Block of Code

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: char userSelection = ’x’; // initial value

 6: do

 7: {

 8: cout << “Enter the two integers: “ << endl;

 9: int num1 = 0, num2 = 0;

10: cin >> num1;

11: cin >> num2;

12:

13: cout << num1 << “ x “ << num2 << “ = “ << num1 * num2 << endl;

14: cout << num1 << “ + “ << num2 << “ = “ << num1 + num2 << endl;

15:

16: cout << “Press x to exit(x) or any other key to recalculate” << endl;

17: cin >> userSelection;

18: } while (userSelection != ’x’);

19:

20: cout << “Goodbye!” << endl;

21:

22: return 0;

23: }

Output

Enter the two integers:

654

-25

654 x -25 = -16350

654 + -25 = 629

Press x to exit(x) or any other key to recalculate

m

Enter the two integers:

909

101

909 x 101 = 91809

909 + 101 = 1010

Press x to exit(x) or any other key to recalculate

x

Goodbye!

Analysis

This program is similar in behavior and output to Listing 6.8. Indeed, the only differences are the do keyword in Line 6 and the use of while in Line 18. The execution of code happens serially, one line after another, until the while is reached at Line 18. This is where while evaluates the expression (userSelection != ’x’). When the expression evaluates to true (that is, the user doesn’t press character x to exit), execution of the loop repeats. When the expression evaluates to false (that is, the user presses x), execution quits the loop and continues with wishing goodbye and ending the application.

The for Loop

The for statement is a relatively sophisticated loop in that it allows for an initialization statement executed once (typically used to initialize a counter). It checks for an exit condition (typically using this counter) and performs an action at the end of every loop (typically incrementing or modifying this counter).

The syntax of the for loop is

for (initial expression executed only once;

 exit condition executed at the beginning of every loop;

 loop expression executed at the end of every loop)

{

 DoSomething;

}

The for loop is a feature that enables a programmer to define a counter variable with an initial value, check the value against an exit condition at the beginning of every loop, and change the value of the variable at the end of a loop.

Listing 6.10 demonstrates an effective way to access elements in an array by using a for loop.

Input

Listing 6.10 Using for Loops to Enter Elements in a Static Array and Display the Contents of the Array

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: const int ARRAY_LENGTH = 5;

 6: int myNums[ARRAY_LENGTH] = {0};

 7:

 8: cout << “Populate array of “ << ARRAY_LENGTH << “ integers” << endl;

 9:

10: for (int counter = 0; counter < ARRAY_LENGTH; ++counter)

11: {

12: cout << “Enter an integer for element “ << counter << “: “;

13: cin >> myNums[counter];

14: }

15:

16: cout << “Displaying contents of the array: “ << endl;

17:

18: for (int counter = 0; counter < ARRAY_LENGTH; ++counter)

19: cout << “Element “ << counter << “ = “ << myNums[counter] << endl;

20:

21: return 0;

22: }

Output

Populate array of 5 integers

Enter an integer for element 0: 365

Enter an integer for element 1: 31

Enter an integer for element 2: 24

Enter an integer for element 3: -59

Enter an integer for element 4: 65536

Displaying contents of the array:

Element 0 = 365

Element 1 = 31

Element 2 = 24

Element 3 = -59

Element 4 = 65536

Analysis

There are two for loops in Listing 6.10—in Lines 10 and 18. The first helps enter elements into an array of integers, and the other handles the display. These two for loops are identical in syntax. Both declare an index variable counter to access elements in the array. This variable is incremented at the end of every loop; therefore, it helps access the next element in the next run of the loop. The middle expression in the for loop is the exit condition. It checks whether counter, which is incremented at the end of every loop, is still within the bounds of the array by comparing it against ARRAY_LENGTH. This way, it is also ensured that the for loop never exceeds the length of the array.

Note

A variable such as counter from Listing 6.10 that helps access elements in a collection such as an array is also called an iterator.

The scope of the iterator declared within the for construct is limited to the for loop. Thus, in the second for loop in Listing 6.10, this variable that has been re-declared is effectively a new variable from the compiler’s point of view.

Using the initialization, conditional expression, and the expression to be evaluated at the end of every loop is optional. It is possible to have a for loop without some or any of these, as shown in Listing 6.11.

Input

Listing 6.11 Using a for Loop Without a Loop Expression to Repeat Calculations on User Request

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: // without loop expression (third expression missing)

 6: for(char userSelection = ’m’; (userSelection != ’x’);)

 7: {

 8: cout << “Enter the two integers: “ << endl;

 9: int num1 = 0, num2 = 0;

10: cin >> num1;

11: cin >> num2;

12:

13: cout << num1 << “ x “ << num2 << “ = “ << num1 * num2 << endl;

14: cout << num1 << “ + “ << num2 << “ = “ << num1 + num2 << endl;

15:

16: cout << “Press x to exit or any other key to recalculate” << endl;

17: cin >> userSelection;

18: }

19:

20: cout << “Goodbye!” << endl;

21:

22: return 0;

23: }

Output

Enter the two integers:

56

25

56 x 25 = 1400

56 + 25 = 81

Press x to exit or any other key to recalculate

m

Enter the two integers:

789

-36

789 x -36 = -28404

789 + -36 = 753

Press x to exit or any other key to recalculate

x

Goodbye!

Analysis

This program is identical to Listing 6.8, which uses the while loop, except that it uses the for construct in Line 6. The interesting thing about this for loop is that it contains only the initialization expression and the conditional expression; it ignores the option to change a variable at the end of each loop.

Note

You can initialize multiple variables in a for loop within the first initialization expression that is executed once. A for loop in Listing 6.11 with multiple initializations looks like this:

for (int counter1 = 0, counter2 = 5; // initialize

 counter1 < ARRAY_LENGTH; // check

 ++counter1, --counter2) // increment, decrement

Note the new addition counter2, which is initialized to 5. Interestingly, it is also possible to decrement it in the loop expression—once per loop.

The Range-Based for Loop

C++11 introduced a new variant of the for loop that makes operating over a range of values, such as those contained in an array, simpler to code and to read.

The syntax of the range-based for loop also uses the same keyword, for:

for (VarType varName : sequence)

{

 // Use varName that contains an element from sequence

}

For example, given an array of integers someNums, you would use a range-based for to read elements contained in the array like this:

int someNums[] = { 1, 101, -1, 40, 2040 };

for (int aNum : someNums) // range based for

 cout << “The array elements are “ << aNum << endl;

Tip

You can simplify this for statement further by using the automatic variable type deduction feature via the keyword auto to compose a generic for loop that will work for an array with elements of any type:

for (auto anElement : elements) // range based for

 cout << “Array elements are “ << anElement << endl;

Listing 6.12 demonstrates the range-based for on ranges of different types.

Input

Listing 6.12 Using a Range-Based for Loop over Arrays and a std::string

 0: #include<iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: int someNums[] = { 1, 101, -1, 40, 2040 };

 7:

 8: for (const int aNum : someNums)

 9: cout << aNum << ’ ’;

10: cout << endl;

11:

12: for (auto anElement : { 5, 222, 110, -45, 2017 })

13: cout << anElement << ’ ’;

14: cout << endl;

15:

16: char charArray[] = { ’h’, ’e’, ’l’, ’l’, ’o’ };

17: for (auto aChar : charArray)

18: cout << aChar << ’ ’;

19: cout << endl;

20:

21: double moreNums[] = { 3.14, -1.3, 22, 10101 };

22: for (auto anElement : moreNums)

23: cout << anElement << ’ ’;

24: cout << endl;

25:

26: string sayHello{ “Hello World!” };

27: for (auto anElement : sayHello)

28: cout << anElement << ’ ’;

29: cout << endl;

30:

31: return 0;

32: }

Output

1 101 -1 40 2040

5 222 110 -45 2017

h e l l o

3.14 -1.3 22 10101

H e l l o W o r l d !

Analysis

This listing contains multiple implementations of the range-based for in Lines 8, 12, 17, 22, and 27. Each of these instances uses the loop to display the contents of a range on the screen, one element at a time. What’s interesting is that, while the nature of the range changes from being an array of integers someNums in Line 8 to an unspecified range in Line 12 to an array of char (charArray) in Line 17, and even a std::string in Line 27, the syntax of the range-based for loop remains consistent.

This simplicity of implementation makes the range-based for one of the more popular features introduced by C++ in the past decade.

Modifying Loop Behavior Using continue and break

In a few cases—especially in complicated loops that handle many parameters with many conditions—you cannot program a loop condition efficiently and need to modify program behavior even within the loop. In such cases, continue and break can help you.

continue lets you resume execution from the top of the loop. The code following continue within the block is skipped. Thus, the effect of continue in a while, do...while, or for loop is that it results in the loop condition being reevaluated and the loop block being reentered if the condition evaluates to true.

Note

With a continue within a for loop, the loop expression (the third expression within the for statement typically used to increment the counter) is evaluated before the condition is reevaluated.

On the other hand, break exits the loop’s block, thereby ending the loop when invoked.

Caution

Usually programmers expect all code in a loop to be executed when the loop conditions are satisfied. continue and break modify this behavior and can result in nonintuitive code.

Therefore, continue and break should be used sparingly.

Loops That Don’t End: Infinite Loops

Remember that while, do...while, and for loops have a condition expression that results in a loop terminating when the condition evaluates to false. If you program a condition that always evaluates to true, the loop never ends.

An infinite while loop looks like this:

while(true) // while expression fixed to true

{

 DoSomethingRepeatedly;

}

An infinite do...while loop would be

do

{

 DoSomethingRepeatedly;

} while(true); // do...while expression never evaluates to false

An infinite for loop can be programmed the following way:

for (;;) // no condition supplied = unending for

{

 DoSomethingRepeatedly;

}

Strange as it may seem, such loops do have a purpose. Imagine an operating system that needs to continually check whether you have connected a device such as a USB stick to the USB port. This is an activity that should not stop as long as the OS is running. Such cases warrant the use of loops that never end. Such loops are also called infinite loops as they execute forever, to eternity.

Controlling Infinite Loops

If you want to end an infinite loop (say the OS in the preceding example needs to shut down), you do so by inserting a break (typically used within an if(condition) block).

The following is an example of using break to exit an infinite while:

while(true) // while condition fixed to true

{

 DoSomethingRepeatedly;

 if(condition)

 break; // exit loop when expression evaluates to true

}

Using break inside an infinite do...while:

do

{

 DoSomethingRepeatedly;

 if(condition)

 break; // exit loop when expression evaluates to true

} while(true);

Using break inside an infinite for loop:

for (;;) // no condition supplied i.e. unending for loop

{

 DoSomethingRepeatedly;

 if(condition)

 break; // exit loop when expression evaluates to true

}

Listing 6.13 shows how to program infinite loops using continue and break to control the exit criteria.

Input

Listing 6.13 Using continue to Restart and break to Exit an Infinite for Loop

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: for(;;) // an infinite loop

 6: {

 7: cout << “Enter two integers: “ << endl;

 8: int num1 = 0, num2 = 0;

 9: cin >> num1;

10: cin >> num2;

11:

12: cout << “Do you wish to correct the numbers? (y/n): “;

13: char changeNumbers = ’\0’;

14: cin >> changeNumbers;

15:

16: if (changeNumbers == ’y’)

17: continue; // restart the loop!

18:

19: cout << num1 << “ x “ << num2 << “ = “ << num1 * num2 << endl;

20: cout << num1 << “ + “ << num2 << “ = “ << num1 + num2 << endl;

21:

22: cout << “Press x to exit or any other key to recalculate” << endl;

23: char userSelection = ’\0’;

24: cin >> userSelection;

25:

26: if (userSelection == ’x’)

27: break; // exit the infinite loop

28: }

29:

30: cout << “Goodbye!” << endl;

31:

32: return 0;

33: }

Output

Enter two integers:

560

25

Do you wish to correct the numbers? (y/n): y

Enter two integers:

56

25

Do you wish to correct the numbers? (y/n): n

56 x 25 = 1400

56 + 25 = 81

Press x to exit or any other key to recalculate

r

Enter two integers:

95

-1

Do you wish to correct the numbers? (y/n): n

95 x -1 = -95

95 + -1 = 94

Press x to exit or any other key to recalculate

x

Goodbye!

Analysis

The for loop in Line 5 is different from the one in Listing 6.11 in that this is an infinite for loop that contains no condition expression that is evaluated on every iteration of the loop. In other words, without the execution of a break statement, this loop (and hence this application) never exits. Note the output, which is different from the other output you have seen so far in that it allows the user to make a correction to the input before the program proceeds to calculate the sum and multiplication. This logic is implemented using a continue, given the evaluation of a certain condition in Lines 16 and 17. When the user presses character y when asked whether he wants to correct the numbers, the condition in Line 16 evaluates to true, hence executing the following continue. When continue is encountered, execution jumps to the top of the loop, and the program asks the user again whether he wants to enter two integers. Similarly, at the end of the loop, when the user is asked whether he wants to exit, his input is checked against ’x’ in Line 26, and if the user has pressed x, the following break is executed, ending the infinite loop.

Note

Listing 6.13 uses an empty for(;;) statement to create an infinite loop. You can replace that with while(true) or do...while(true); to generate the same output using a different loop type.

[image: Images]

Programming Nested Loops

Just as you saw nested if statements in the beginning of this lesson, often you need to nest one loop under another. Imagine two arrays of integers. If you want to find the multiple of each number in array1 against each in array2, you use a nested loop to make programming it easy. The first loop iterates array1, and the second iterates array2 under the first.

Listing 6.14 demonstrates the use of nested loops.

Input

Listing 6.14 Using Nested Loops to Multiply Each Element in an Array by Each Element in Another Array

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: const int ARRAY1_LEN = 3;

 6: const int ARRAY2_LEN = 2;

 7:

 8: int myNums1[ARRAY1_LEN] = {35, -3, 0};

 9: int myNums2[ARRAY2_LEN] = {20, -1};

10:

11: cout << “Multiplying each int in myNums1 by each in myNums2:” << endl;

12:

13: for(int index1 = 0; index1 < ARRAY1_LEN; ++index1)

14: for(int index2 = 0; index2 < ARRAY2_LEN; ++index2)

15: cout << myNums1[index1] << “ x “ << myNums2[index2] \

16: << “ = “ << myNums1[index1] * myNums2[index2] << endl;

17:

18: return 0;

19: }

Output

Multiplying each int in myNums1 by each in myNums2:

35 x 20 = 700

35 x -1 = -35

-3 x 20 = -60

-3 x -1 = 3

0 x 20 = 0

0 x -1 = 0

Analysis

The nested for loops in question are in Lines 13 and 14. The first for loop iterates the array myNums1, whereas the second for loop iterates the other array, myNums2. The first for loop executes the second for loop within each iteration. The second for loop iterates over all elements in myNums2 and, in each iteration, multiplies that element by the element indexed via index1 from the first loop above it. So, for every element in myNums1, the second loop iterates over all elements in myNums2, resulting in the first element in myNums1 at offset 0 being multiplied with all elements in myNums2. Then the second element in myNums1 is multiplied by all elements in myNums2. Finally, the third element in myNums1 is multiplied by all elements in myNums2.

Using Nested Loops to Walk a Multidimensional Array

In Lesson 4, you learned about multidimensional arrays. In Listing 4.3, you accessed elements in a two-dimensional array of three rows and three columns. What you did there was to individually access each element in the array, one element per line. There was no automation, and if you wanted to make the array larger, you would need to code a lot more—and also change the array’s dimensions to access its elements. However, using loops can change all that, as demonstrated in Listing 6.15.

Input

Listing 6.15 Using Nested Loops to Iterate Elements in a Two-Dimensional Array of Integers

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: const int NUM_ROWS = 3;

 6: const int NUM_COLUMNS = 4;

 7:

 8: // 2D array of integers

 9: int MyInts[NUM_ROWS][NUM_COLUMNS] = { {34, -1, 879, 22},

10: {24, 365, -101, -1},

11: {-20, 40, 90, 97} };

12:

13: // iterate rows, each array of int

14: for (int row = 0; row < NUM_ROWS; ++row)

15: {

16: // iterate integers in each row (columns)

17: for (int column = 0; column < NUM_COLUMNS; ++column)

18: {

19: cout << “Integer[” << row << “][” << column \

20: << “] = “ << MyInts[row][column] << endl;

21: }

22: }

23:

24: return 0;

25: }

Output

Integer[0][0] = 34

Integer[0][1] = -1

Integer[0][2] = 879

Integer[0][3] = 22

Integer[1][0] = 24

Integer[1][1] = 365

Integer[1][2] = -101

Integer[1][3] = -1

Integer[2][0] = -20

Integer[2][1] = 40

Integer[2][2] = 90

Integer[2][3] = 97

Analysis

Lines 14 through 22 contain two for loops that you use to access and iterate through a two-dimensional array of integers. A two-dimensional array is, in effect, an array of an array of integers. Note how the first for loop accesses the rows (each of which is an array of integers), whereas the second accesses each element in this array—that is, accesses columns therein.

Note

Listing 6.15 uses braces to enclose the nested for only to improve readability. This nested loop works just fine without the braces, too, as the loop statement is just a single statement to be executed (and not a compound statement that necessitates the use of enclosing braces).

Using Nested Loops to Calculate Fibonacci Numbers

The famed Fibonacci series is a set of numbers starting with 0 and 1, where every following number in the series is the sum of the previous two. So, a Fibonacci series starts with a sequence like this:

0, 1, 1, 2, 3, 5, 8,[el]and so on

Listing 6.16 demonstrates how to create a Fibonacci sequence comprising as many numbers as you want (but limited by the data-bearing capacity of the integer holding the final number).

Input

Listing 6.16 Using Nested Loops to Calculate a Fibonacci Sequence

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: const int numsToCalculate = 5;

 6: cout << “This program will calculate “ << numsToCalculate \

 7: << “ Fibonacci Numbers at a time” << endl;

 8:

 9: int num1 = 0, num2 = 1;

10: char wantMore = ’\0’;

11: cout << num1 << “ “ << num2 << “ “;

12:

13: do

14: {

15: for (int counter = 0; counter < numsToCalculate; ++counter)

16: {

17: cout << num1 + num2 << “ “;

18:

19: int num2Temp = num2;

20: num2 = num1 + num2;

21: num1 = num2Temp;

22: }

23:

24: cout << endl << “Do you want more numbers (y/n)? “;

25: cin >> wantMore;

26: }while (wantMore == ’y’);

27:

28: cout << “Goodbye!” << endl;

29:

30: return 0;

31: }

Output

This program will calculate 5 Fibonacci Numbers at a time

0 1 1 2 3 5 8

Do you want more numbers (y/n)? y

13 21 34 55 89

Do you want more numbers (y/n)? y

144 233 377 610 987

Do you want more numbers (y/n)? y

1597 2584 4181 6765 10946

Do you want more numbers (y/n)? n

Goodbye!

Analysis

The outer do...while in Line 13 is basically the query loop that repeats if the user wants to see more numbers. The inner for loop in Line 15 does the job of calculating the next Fibonacci number and displays five numbers at a time. In Line 19, you hold the value in num2 in a temporary variable num2Temp so you can reuse it in Line 21. Note that if you didn’t store this temporary value, you would be assigning the modified value in Line 20 directly to num1, which is not what you want. When the user presses y to get more numbers, the do...while loop executes once more, thereby executing the nested for loop that generates five more Fibonacci numbers.

Summary

This lesson taught you how to code conditional statements that create alternative execution paths and make code blocks repeat in a loop. You learned the if...else construct and how to use switch-case statements to handle different situations in the event that variables contain different values.

In learning about loops, you saw how to use while, do...while, and for constructs. You learned how to make the loops iterate endlessly to create infinite loops and to use continue and break to better control them. Last but not the least, you learned about goto—but were warned against using it due to its ability to create code that cannot be understood.

Q&A

Q. What happens if I omit a break in a switch-case statement?

A. The break statement enables program execution to exit the switch construct. Without it, execution continues evaluating the following case statements.

Q. How do I exit an infinite loop?

A. Use break to exit a loop. Alternatively, use return to exit the function module.

Q. My while loop looks like while(Integer). Does the while loop execute when Integer evaluates to -1?

A. Ideally, a while expression should evaluate to a Boolean value true or false. false is 0. A condition that does not evaluate to 0 is considered to evaluate to true. Because -1 is not 0, the while condition evaluates to true, and the loop is executed. If you want the loop to be executed only for positive numbers, you can use the expression while(Integer>0). This rule is true for all conditional statements and loops.

Q. Is there an empty while loop equivalent to for(;;)?

A. No. while always needs an accompanying conditional expression.

Q. I changed a do...while(exp); to a while(exp); by copying and pasting. Should I anticipate any problems?

A. Yes, big ones! while(exp); is already a valid yet empty while loop due to the null statement (the semicolon) following the while, even if it is followed by a statement block. The statement block in question is executed once—but outside of the loop. Exercise caution when copying and pasting code.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered as well as exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Why should you bother to indent code within statement blocks, nested ifs, and nested loops when it compiles even without indentation?

2. You can implement a quick fix using goto. Why would you want to avoid it?

3. Is it possible to write a for loop where the counter decrements? How would it look?

4. What is the problem with the following loop?

for (int counter=0; counter==10; ++counter)

 cout << counter << “ “;

Exercises

1. Write a for loop to access elements in an array in reverse order.

2. Write a nested loop equivalent of Listing 6.14 that adds elements in two arrays but in reverse order.

3. Write a program similar to Listing 6.16 that displays Fibonacci numbers but that asks the user how many numbers she wants to compute.

4. Write a switch-case construct that tells whether a color is in the rainbow. Use enumerated constants.

5. BUG BUSTERS: What is wrong with this code?

for (int counter=0; counter=10; ++counter)

 cout << counter << “ “;

6. BUG BUSTERS: What is wrong with this code?

int loopCounter = 0;

while(loopCounter <5);

{

 cout << loopCounter << “ “;

 loopCounter++;

}

7. BUG BUSTERS: What is wrong with this code?

cout << “Enter a number between 0 and 4” << endl;

int input = 0;

cin >> input;

switch (input)

case 0:

case 1:

case 2:

case 3:

case 4:

cout << “Valid input” << endl;

default:

 cout << “Invalid input” << endl;

}

Lesson 7. Organizing Code with Functions

So far in this book, you have seen simple programs where all programming effort is contained in main(). This works well for really small programs and applications. The larger and more complex a program gets, the longer the contents of main() become—unless you choose to structure your program using functions.

Functions give you a way to compartmentalize and organize a program’s execution logic. They enable you to split the contents of an application into logical blocks that are invoked sequentially.

A function is a subprogram that optionally takes parameters and returns a value, and it needs to be invoked to perform its task.

In this lesson you learn

• The need for programming functions

• Function prototypes and function definition

• Passing parameters to functions and returning values from them

• Overloading functions

• Recursive functions

• Lambda functions

The Need for Functions

Think of an application that asks the user to enter the radius of a circle and then computes the circumference and area of the circle. One way to do this is to have all the code inside main(). Another way is to break this application into logical blocks, as shown in Listing 7.1: one that computes area and one that computes circumference given radius.

Input

Listing 7.1 Two Functions That Compute the Area and Circumference of a Circle Given Radius

 0: #include <iostream>

 1: using namespace std;

 2:

 3: const double Pi = 3.14159265;

 4:

 5: // Function Declarations (Prototypes)

 6: double Area(double radius);

 7: double Circumference(double radius);

 8:

 9: int main()

10: {

11: cout << “Enter radius: “;

12: double radius = 0;

13: cin >> radius;

14:

15: // Call function “Area”

16: cout << “Area is: “ << Area(radius) << endl;

17:

18: // Call function “Circumference”

19: cout << “Circumference is: “ << Circumference(radius) << endl;

20:

21: return 0;

22: }

23:

24: // Function definitions (implementations)

25: double Area(double radius)

26: {

27: return Pi * radius * radius;

28: }

29:

30: double Circumference(double radius)

31: {

32: return 2 * Pi * radius;

33: }

Output

Enter radius: 6.5

Area is: 132.732

Circumference is: 40.8407

Analysis

main(), which is a function, is compact and delegates activity to functions such as Area() and Circumference() that are invoked in Lines 16 and 19, respectively.

The program demonstrates the following artifacts involved in programming using functions:

• Function prototypes are declared in Lines 6 and 7, so the compiler knows what the terms Area and Circumference mean when used in main().

• Functions Area() and Circumference() are invoked in main() in Lines 16 and 19.

• Function Area() is defined in Lines 25 through 28, and Circumference() is defined in Lines 30 through 33.

Compartmentalizing the computation of area and circumference into different functions can potentially enable reuse as the functions can be invoked repeatedly, as and when required.

What Is a Function Prototype?

Let’s take a look at Listing 7.1 again—Lines 6 and 7 in particular:

double Area(double radius);

double Circumference(double radius);

Figure 7.1 shows what a function prototype is composed of.

[image: Images]

Figure 7.1 Parts of a function prototype.

The function prototype basically tells what a function is called (the name, Area), the list of parameters the function accepts (one parameter, a double called radius), and the return type of the function (a double).

Without the function prototype, on reaching Lines 16 and 19 in main(), the compiler wouldn’t know what the terms Area and Circumference are. The function prototypes tell the compiler that Area and Circumference are functions; each of them takes one parameter of type double and return a value of type double. The compiler then recognizes these statements as valid.

Note

A function can have multiple parameters separated by commas, but it can have only one return type.

When programming a function that does not need to return any value, specify the return type as void.

What Is a Function Definition?

The actual meat and potatoes of a function—the implementation of the function—is called the definition. Analyze the definition of the function Area():

double Area(double radius)

{

 return Pi * radius * radius;

}

A function definition is always composed of a statement block. A return statement is necessary unless the function is declared with return type void. In this case, Area() needs to return a value because the function has been declared as one that returns a double. The statement block contains statements within open and closed braces ({...}) that are executed when the function is called. Area() uses the input parameter radius, which contains the radius as an argument sent by the caller to compute the area of the circle.

What Is a Function Call, and What Are Arguments?

Calling a function is the same as invoking one. When a function declaration contains parameters, the function call needs to send arguments. Arguments are values the function requests within its parameter list. Let’s analyze a call to Area() in Listing 7.1:

cout << “Area is: “ << Area(radius) << endl;

Here, Area(radius) is the function call, and radius is the argument sent to the function Area(). When invoked, execution jumps to the function Area(), which uses the radius sent to compute the area of the circle.

Programming a Function with Multiple Parameters

Say that you are writing a program that computes the surface area of a cylinder, as shown in Figure 7.2.

[image: Images]

Figure 7.2 A cylinder.

You need to use the following formula:

Area of Cylinder = Area of top circle + Area of bottom circle + Area of Side

 = Pi * radius^2 + Pi * radius ^2 + 2 * Pi * radius * height

 = 2 * Pi * radius^2 + 2 * Pi * radius * height

Thus, you need to work with two variables—the radius and the height—to compute the area of the cylinder. When writing the function that computes the surface area of the cylinder, you specify at least two parameters in the parameter list within the function declaration. You do this by separating a pair of individual parameters with a comma, as shown in Listing 7.2.

Input

Listing 7.2 Function That Accepts Two Parameters to Compute the Surface Area of a Cylinder

 0: #include <iostream>

 1: using namespace std;

 2:

 3: const double Pi = 3.14159265;

 4:

 5: // Declaration contains two parameters

 6: double SurfaceArea(double radius, double height);

 7:

 8: int main()

 9: {

10: cout << “Enter the radius of the cylinder: “;

11: double radius = 0;

12: cin >> radius;

13: cout << “Enter the height of the cylinder: “;

14: double height = 0;

15: cin >> height;

16:

17: cout << “Surface area: “ << SurfaceArea(radius, height) << endl;

18:

19: return 0;

20: }

21:

22: double SurfaceArea(double radius, double height)

23: {

24: double area = 2 * Pi * radius * radius + 2 * Pi * radius * height;

25: return area;

26: }

Output

Enter the radius of the cylinder: 3

Enter the height of the cylinder: 6.5

Surface Area: 179.071

Analysis

Line 6 contains the declaration of the function SurfaceArea() with two parameters, radius and height, both of type double, separated by a comma. Lines 22 through 26 show the definition—that is, the implementation of SurfaceArea(). As you can see, the input parameters radius and height are used to compute the value stored in the local variable area, which is then returned to the caller.

Note

Function parameters are like local variables: They are valid within the scope of the function only. So in Listing 7.2, the parameters radius and height within the function SurfaceArea() are copies of variables with similar names within main().

Programming Functions with No Parameters or No Return Values

If you delegate the task of saying “Hello World” to a function that does only that and nothing else, you can do it with a function that doesn’t need any parameters (as it doesn’t need to do anything apart from saying “Hello World"), and you may even be able to do it with one that doesn’t return any value (because you don’t expect anything from such a function that would be useful elsewhere). Listing 7.3 demonstrates one such function.

Input

Listing 7.3 A Function with No Parameters and No Return Values

 0: #include <iostream>

 1: using namespace std;

 2:

 3: void SayHello();

 4:

 5: int main()

 6: {

 7: SayHello();

 8: return 0;

 9: }

10:

11: void SayHello()

12: {

13: cout << “Hello World” << endl;

14: }

Output

Hello World

Analysis

Note that the function prototype in Line 3 declares the function SayHello() as one with a return value of type void; that is, SayHello() doesn’t return a value. Consequently, in the function definition in Lines 11 through 14, there is no return statement. Some programmers prefer to insert a symbolic empty return statement at the end:

void SayHello()

{

 cout << “Hello World” << endl;

 return; // an empty return

}

Function Parameters with Default Values

In samples thus far, you have assumed the value of pi, fixed it as a constant, and never given the user an opportunity to change it. However, the user may be interested in a less or more accurate reading. How do you program a function that would use a default value of pi of your choosing unless another one is supplied?

One way of solving this problem is to supply an additional parameter in the function Area() for pi and supply a value that you choose as a default one. Such an adaptation of the function Area() from Listing 7.1 would look like the following:

double Area(double radius, double pi = 3.14);

Note that the second parameter, pi, is assigned the default value 3.14. This second parameter is therefore an optional parameter for the caller. The function Area() can be invoked as if the second parameter didn’t exist:

Area(radius);

In this case, the second parameter defaults to the value 3.14. However, when required, the same function can be invoked using two arguments:

Area(radius, 3.14159); // more precise pi

Listing 7.4 demonstrates how you can program functions that contain default values for parameters that can be overridden with a user-supplied value, if available and desired.

Input

Listing 7.4 Function That Computes the Area of a Circle, Using Pi as a Second Parameter with Default Value 3.14

 0: #include <iostream>

 1: using namespace std;

 2:

 3: // Function with default argument

 4: double Area(double radius, double pi = 3.14);

 5:

 6: int main()

 7: {

 8: cout << “Enter radius: “;

 9: double radius = 0;

10: cin >> radius;

11:

12: cout << “pi is 3.14, do you wish to change this (y / n)? “;

13: char changePi = ’n’;

14: cin >> changePi;

15:

16: double circleArea = 0;

17: if (changePi == ’y’)

18: {

19: cout << “Enter new pi: “;

20: double newPi = 3.14;

21: cin >> newPi;

22: circleArea = Area (radius, newPi);

23: }

24: else

25: circleArea = Area(radius); // Ignore 2nd param, use default value

26:

27: // Call function “Area”

28: cout << “Area is: “ << circleArea << endl;

29:

30: return 0;

31: }

32:

33: // Function definitions (implementations)

34: double Area(double radius, double pi)

35: {

36: return pi * radius * radius;

37: }

Output

First run:

Enter radius: 1

Pi is 3.14, do you wish to change this (y / n)? n

Area is: 3.14

Next run:

Enter radius: 1

Pi is 3.14, do you wish to change this (y / n)? y

Enter new Pi: 3.1416

Area is: 3.1416

Analysis

In the two runs, the radius entered by the user is the same: 1. In the second run, however, the user opts to change the precision of pi, and hence the area computed is slightly different. Note that in both cases, as seen in Lines 22 and 25, you invoke the same function. Line 25 invokes Area() without the second parameter pi. In this case, the parameter pi in Area() contains the value 3.14, supplied as the default in the declaration in Line 4.

Note

You can have multiple parameters with default values; however, they should all be at the tail end of the parameters list.

Recursion: Functions That Invoke Themselves

In certain cases, you can actually have a function call itself. Such a function is called a recursive function. Note that a recursive function should have a very clearly defined exit condition, where it returns without invoking itself again.

Caution

In the absence of an exit condition or in the event of a bug in an exit condition, your program execution gets stuck at the recursive function that won’t stop invoking itself. This eventually stops when the stack overflows, causing an application crash.

Recursive functions can be useful when determining a number in the Fibonacci sequence, as shown in Listing 7.5. This sequence starts with two numbers, 0 and 1:

F(0) = 0

F(1) = 1

The value of a subsequent number in the series is the sum of the previous two numbers. So, the nth value (for n > 1) is determined by the (recursive) formula:

Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

As a result, the Fibonacci sequence expands to

F(2) = 1

F(3) = 2

F(4) = 3

F(5) = 5

F(6) = 8, and so on.

Input

Listing 7.5 Using Recursive Functions to Calculate a Number in the Fibonacci Sequence

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int GetFibNumber(int fibIndex)

 4: {

 5: if (fibIndex < 2)

 6: return fibIndex;

 7: else // recursion if fibIndex >= 2

 8: return GetFibNumber(fibIndex - 1) + GetFibNumber(fibIndex - 2);

 9: }

10:

11: int main()

12: {

13: cout << “Enter 0-based index of desired Fibonacci Number: “;

14: int index = 0;

15: cin >> index;

16:

17: cout << “Fibonacci number is: “ << GetFibNumber(index) << endl;

18: return 0;

19: }

Output

Enter 0-based index of desired Fibonacci Number: 6

Fibonacci number is: 8

Analysis

The function GetFibNumber(), defined in Lines 3 through 9, is recursive as it invokes itself at Line 8. The exit condition programmed in Lines 5 and 6 ensures that the function will return without recursion if fibIndex is less than 2. Thus, GetFibNumber() invokes itself recursively with ever-reducing values of fibIndex. It ultimately reaches a state where the exit condition is satisfied, the recursion ends, and a Fibonacci value is determined and returned to main().

Functions with Multiple Return Statements

You are not restricted to having only one return statement in a function definition. You can return from any point in the function—and multiple times if you want, as shown in Listing 7.6. Depending on the circumstances and the purpose of the function, this might or might not be poor programming practice.

Input

Listing 7.6 Using Multiple Return Statements in One Function

 0: #include <iostream>

 1: using namespace std;

 2: const double Pi = 3.14159265;

 3:

 4: void QueryAndCalculate()

 5: {

 6: cout << “Enter radius: “;

 7: double radius = 0;

 8: cin >> radius;

 9:

10: cout << “Area: “ << Pi * radius * radius << endl;

11:

12: cout << “Do you wish to calculate circumference (y/n)? “;

13: char calcCircum = ’n’;

14: cin >> calcCircum;

15:

16: if (calcCircum == ’n’)

17: return;

18:

19: cout << “Circumference: “ << 2 * Pi * radius << endl;

20: return;

21: }

22:

23: int main()

24: {

25: QueryAndCalculate ();

26:

27: return 0;

28: }

Output

First run:

Enter radius: 1

Area: 3.14159

Do you wish to calculate circumference (y/n)? y

Circumference: 6.28319

Next run:

Enter radius: 1

Area: 3.14159

Do you wish to calculate circumference (y/n)? n

Analysis

The function QueryAndCalculate() contains multiple return statements: one at Line 17 and one at Line 20. If the user presses n for calculating circumference, the program quits by using the return statement. For all other values, it continues with calculating the circumference and then returning.

Caution

Use multiple returns in a function with caution. It is a lot easier to understand and follow a function that starts at the top and returns at the bottom than one that returns at multiple points in between.

In Listing 7.6, use of multiple returns could be avoided simply by changing the if condition to testing for ’y’, for yes:

if (calcCircum == ’y’)

 cout << “Circumference: “ << 2*Pi*radius << endl;

Using Functions to Work with Different Forms of Data

Functions don’t restrict you to passing values one at a time; you can pass an array of values to a function. You can create two functions with the same name and return value but different parameters. You can program a function such that its parameters are not created and destroyed within the function call; instead, you use references that are valid even after the function has exited in order to manipulate more data or parameters in a function call. In this section, you’ll learn about passing arrays to functions, function overloading, and passing arguments by reference to functions.

Overloading Functions

Functions with the same name and return type but with different parameters or sets of parameters are called overloaded functions. Overloaded functions can be quite useful in applications where a function with a particular name that produces a certain type of output might need to be invoked with different sets of parameters. Say you need to write an application that computes the area of a circle and the area of a cylinder. The function that computes the area of a circle needs a parameter: the radius. The other function that computes the area of the cylinder needs the height of the cylinder in addition to the radius of the cylinder. Both functions need to return data of the same type, containing the area. C++ enables you to define two overloaded functions, both called Area, both returning double, but one that takes only the radius as input and another that takes the height and the radius as input parameters. See Listing 7.7.

Input

Listing 7.7 Using an Overloaded Function to Calculate the Area of a Circle or a Cylinder

 0: #include <iostream>

 1: using namespace std;

 2:

 3: const double Pi = 3.14159265;

 4:

 5: double Area(double radius); // for circle

 6: double Area(double radius, double height); // for cylinder

 7:

 8: int main()

 9: {

10: cout << “Enter z for Cylinder, c for Circle: “;

11: char userSelection = ’z’;

12: cin >> userSelection;

13:

14: cout << “Enter radius: “;

15: double radius = 0;

16: cin >> radius;

17:

18: if (userSelection == ’z’)

19: {

20: cout << “Enter height: “;

21: double height = 0;

22: cin >> height;

23:

24: // Invoke overloaded variant of Area for cylinder

25: cout << “Area of cylinder is: “ << Area (radius, height) << endl;

26: }

27: else

28: cout << “Area of cylinder is: “ << Area (radius) << endl;

29:

30: return 0;

31: }

32:

33: // for circle

34: double Area(double radius)

35: {

36: return Pi * radius * radius;

37: }

38:

39: // overloaded for cylinder

40: double Area(double radius, double height)

41: {

42: // reuse the area of circle

43: return 2 * Area (radius) + 2 * Pi * radius * height;

44: }

Output

First run:

Enter z for Cylinder, c for Circle: z

Enter radius: 2

Enter height: 5

Area of cylinder is: 87.9646

Next run:

Enter z for Cylinder, c for Circle: c

Enter radius: 1

Area of cylinder is: 3.14159

Analysis

Lines 5 and 6 declare the prototype for the overloaded forms of Area(): The first overloaded variant accepts a single parameter: the radius of a circle. The next one accepts two parameters: the radius and height of a cylinder. The function is called overloaded because there are two prototypes with the same name, Area(); with the same return types, double; and different sets of parameters. The definitions of the overloaded functions are in Lines 34 through 44, where the two functions determine the area of a circle given the radius and the area of a cylinder given the radius and height, respectively. Interestingly, as the area of a cylinder is composed of the area of the two circles it contains (one on top and the other on the bottom) in addition to the area of the sides, the overloaded version for the cylinder is able to reuse Area() for the circle, as shown in Line 43.

Passing an Array of Values to a Function

A function that displays an integer can be represented like this:

void DisplayInteger(int Number);

A function that can display an array of integers uses slightly different format:

void DisplayIntegers(int[] numbers, int Length);

The first parameter tells the function that the data being entered is an array, and the second parameter supplies the length of the array, such that you can use the array without crossing its boundaries. See Listing 7.8.

Input

Listing 7.8 Function That Takes an Array as a Parameter

 0: #include <iostream>

 1: using namespace std;

 2:

 3: void DisplayArray(int numbers[], int length)

 4: {

 5: for (int index = 0; index < length; ++index)

 6: cout << numbers[index] << “ “;

 7:

 8: cout << endl;

 9: }

10:

11: void DisplayArray(char characters[], int length)

12: {

13: for (int index = 0; index < length; ++index)

14: cout << characters[index] << “ “;

15:

16: cout << endl;

17: }

18:

19: int main()

20: {

21: int myNums[4] = {24, 58, -1, 245};

22: DisplayArray(myNums, 4);

23:

24: char myStatement[7] = {’H’, ’e’, ’l’, ’l’, ’o’, ’!’, ’\0’};

25: DisplayArray(myStatement, 7);

26:

27: return 0;

28: }

Output

24 58 -1 245

H e l l o !

Analysis

There are two overloaded functions called DisplayArray() here: one that displays the contents of elements in an array of integers and another that displays the contents of an array of characters. In Lines 22 and 25, the two functions are invoked using an array of integers and an array of characters, respectively, as input. Note that in declaring and initializing the array of characters in Line 24, you have intentionally included the null character—as a best practice and a good habit—even though the array is not used as a string in a cout statement or the like (cout << characters;) in this application.

Passing Arguments by Reference

Take another look at the function in Listing 7.1 that computes the area of a circle given the radius:

// Function definitions (implementations)

double Area(double radius)

{

 return Pi * radius * radius;

}

Here, the parameter radius contains a value that is copied into it when the function is invoked in main():

// Call function “Area”

cout << “Area is: “ << Area(radius) << endl;

This means that the variable radius in main() is unaffected by the function call, as Area() works on a copy of the value radius contains, held in radius. There are cases where you might need a function to work on a variable that modifies a value that is available outside the function, too, such as in the calling function. In such cases, you declare a parameter that takes an argument by reference. A form of the function Area() that computes and returns the area as a parameter by reference looks like this:

// output parameter ’result’ by reference

void Area(double radius, double& result)

{

 result = Pi * radius * radius;

}

Note that Area() in this form takes two parameters. Don’t miss the ampersand (&) next to the second parameter, result. This sign indicates to the compiler that the second argument should not be copied to the function; instead, it is a reference to the variable being passed. The return type has been changed to void as the function no longer supplies the area computed as a return value; rather, it supplies the area as an output parameter by reference. Returning values by references is demonstrated in Listing 7.9, which computes the area of a circle.

Input

Listing 7.9 Fetching the Area of a Circle as a Reference Parameter and Not as a Return Value

 0: #include <iostream>

 1: using namespace std;

 2:

 3: const double Pi = 3.1416;

 4:

 5: // output parameter result by reference

 6: void Area(double radius, double& result)

 7: {

 8: result = Pi * radius * radius;

 9: }

10:

11: int main()

12: {

13: cout << “Enter radius: “;

14: double radius = 0;

15: cin >> radius;

16:

17: double areaFetched = 0;

18: Area(radius, areaFetched);

19:

20: cout << “The area is: “ << areaFetched << endl;

21: return 0;

22: }

Output

Enter radius: 2

The area is: 12.5664

Analysis

Note Lines 17 and 18, where the function Area() is invoked with two parameters; the second is one that should contain the result. In Line 6, the function Area() takes the second parameter by reference. Therefore, the variable result used in Line 8 within Area points to the same memory location as the double areaFetched declared in Line 17 within the caller main(). Thus, the result computed in the function Area() in Line 8 is available in main() and displayed on the screen in Line 20.

Note

A function can return only one value by using the return statement. Passing arguments by reference is the best way to get a function to modify multiple values/variables that need to be available at the caller.

How Function Calls Are Handled by the Microprocessor

Although it is not extremely important to know exactly how a function call is implemented on a microprocessor level, you might find it interesting. Understanding this helps you understand why C++ gives you the option of programming inline functions, which are explained later in this section.

A function call essentially means that the microprocessor jumps to executing the next instruction belonging to the called function at a nonsequential memory location. After it is done executing the instructions in the function, it returns to where it left off. To implement this logic, the compiler converts your function call into a CALL instruction for the microprocessor. This instruction is accompanied by the address in memory that the next instruction needs to be taken from; this address belongs to your function routine. When the microprocessor encounters CALL, it saves the position of the instruction to be executed after the function call on the stack and jumps to the memory location contained in the CALL instruction.

Understanding the Stack

The stack is a last-in, first-out memory structure, quite like a stack of plates where you take the plate on top, which was the last one to be placed on the stack. Putting data onto the stack is called a push operation. Getting data out of the stack is called a pop operation. As the stack grows upward, the stack pointer always increments as it grows and points to the top of the stack. See Figure 7.3.

[image: Images]

Figure 7.3 A visual representation of a stack containing three integers.

The nature of the stack makes it optimal for handling function calls. When a function is called, all local variables are instantiated on the stack—that is, pushed onto the stack. When the function ends, the variables are simply popped off it, and the stack pointer returns to where it originally was.

This memory location contains instructions belonging to the function. The microprocessor executes them until it reaches the RET statement (the microprocessor’s code for return programmed by you). The RET statement results in the microprocessor popping that address from the stack stored during the CALL instruction. This address contains the location in the calling function from which the execution needs to continue. Thus, the microprocessor is back to the caller and continues where it left off.

Inline Functions

A regular function call is translated into a CALL instruction, which results in stack operations and microprocessor execution shift to the function and so on. This might sound like a lot of stuff happening under the hood, but it happens quite quickly—in most cases. However, what if a function is a very simple one, like the following?

double GetPi()

{

 return 3.14159;

}

The overhead involved in performing a function call in this case might be quite high for the amount of time spent actually executing GetPi(). This is why C++ compilers enable a programmer to declare such functions as inline. A programmer can use the keyword inline to request that these functions be expanded inline where called:

inline double GetPi()

{

 return 3.14159;

}

Functions that perform simple operations like doubling a number are good candidates for being inlined, too. Listing 7.10 demonstrates one such case.

Input

Listing 7.10 Using an Inline Function That Doubles an Integer

 0: #include <iostream>

 1: using namespace std;

 2:

 3: // define an inline function that doubles

 4: inline long DoubleNum (int inputNum)

 5: {

 6: return inputNum * 2;

 7: }

 8:

 9: int main()

10: {

11: cout << “Enter an integer: “;

12: int inputNum = 0;

13: cin >> inputNum;

14:

15: // Call inline function

16: cout << “Double is: “ << DoubleNum(inputNum) << endl;

17:

18: return 0;

19: }

Output

Enter an integer: 35

Double is: 70

Analysis

The inline keyword is used in Line 4. Compilers typically see this keyword as a request to place the contents of the function DoubleNum() directly where the function has been invoked—in Line 16 in this case—which increases the execution speed of the code.

Classifying functions as inline can result in code bloat, especially if a function being inlined contains many instructions. The inline keyword should be used infrequently; it should be reserved for functions that have a simple task that needs to be executed quickly and with minimal overhead, as demonstrated earlier.

Note

Most modern C++ compilers offer various performance optimization options. Some, such as the MSVC compiler, can optimize for size or speed. Optimizing for size may help in developing software for devices and peripherals where memory may be at a premium. When you optimize for size, the compiler might reject many inline requests, which might bloat code.

When you optimize for speed, the compiler typically sees and takes opportunities to inline code where it would make sense to do so, and it does it for you—sometimes even in cases where you have not explicitly requested it.

Automatic Return Type Deduction

You learned about the keyword auto in Lesson 3, “Using Variables, Declaring Constants.” This keyword, which was introduced in 2014, lets you leave variable type deduction to the compiler, and the compiler handles it on the basis of the initialization value assigned to the variable. The same principle applies to the use of auto in functions. Instead of specifying the return type, you can use auto and let the compiler deduce the return type for you on the basis of return values you program within the function body.

Listing 7.11 demonstrates the use of auto in a function that computes the area of a circle.

Input

Listing 7.11 Using auto as the Return Type of the Function Area()

 0: #include <iostream>

 1: using namespace std;

 2:

 3: const double Pi = 3.14159265;

 4:

 5: auto Area(double radius)

 6: {

 7: return Pi * radius * radius;

 8: }

 9:

10: int main()

11: {

12: cout << “Enter radius: “;

13: double radius = 0;

14: cin >> radius;

15:

16: // Call function “Area”

17: cout << “Area is: “ << Area(radius) << endl;

18:

19: return 0;

20: }

Output

Enter radius: 2

Area is: 12.5664

Analysis

The line of interest is Line 5, which uses auto as the return type of the function Area(). The compiler deduces the return type on the basis of the return expression that uses double. Thus, despite using auto, Area() in Listing 7.11 compiles to the same code as Area() in Listing 7.1 with return type double.

Note

Functions that rely on automatic return type deduction need to be defined (i.e., implemented) before they’re invoked. This is because the compiler needs to know a function’s return type at the point where it is used. If such a function has multiple return statements, they need to all deduce to the same type. Recursive calls need to follow at least one return statement.

Lambda Functions

Lambda functions are also called lambda expressions. This feature, which is a major upgrade since C++11, radically modernizes well-programmed C++ applications.

Tip

This section provides an introduction to a concept that’s not exactly easy for beginners. So, skim through it and try to learn the concept but don’t be disappointed if you don’t grasp it all. The topic is discussed in depth in Lesson 22, “Lambda Expressions.”

Lambda functions, which were introduced in 2011, are frequently used in algorithms that are provided by the Standard Template Library (STL). For example, you might use a lambda function within a sort function that requires you to supply a binary predicate. The binary predicate is a function that compares two arguments and returns true if one is less than the other; otherwise, it returns false, thereby helping in deciding the order of elements in a sort operation. Lambda functions help in compact predicate definitions, as shown in Listing 7.12.

Input

Listing 7.12 Using Lambda Functions to Display Elements in an Array and to Sort Them

 0: #include <iostream>

 1: #include <algorithm>

 2: #include <vector>

 3: using namespace std;

 4:

 5: void DisplayNums(vector<int>& dynArray)

 6: {

 7: for_each (dynArray.begin(), dynArray.end(), \

 8: [](int Element) {cout << Element << “ “;});

 9:

10: cout << endl;

11: }

12:

13: int main()

14: {

15: vector<int> myNums;

16: myNums.push_back(501);

17: myNums.push_back(-1);

18: myNums.push_back(25);

19: myNums.push_back(-35);

20:

21: DisplayNums(myNums);

22:

23: cout << “Sorting them in descending order” << endl;

24:

25: sort (myNums.begin(), myNums.end(),

26: [](int Num1, int Num2) {return (Num2 < Num1); });

27:

28: DisplayNums(myNums);

29:

30: return 0;

31: }

Output

501 -1 25 -35

Sorting them in descending order

501 25 -1 -35

Analysis

The program contains integers pushed into a dynamic array provided by the C++ Standard Library in the form of std::vector in Lines 15 through 19. The function DisplayNums() uses the STL algorithm for_each to iterate through the elements in the array and display the value of each one. In doing so, it uses a lambda function in Line 8. std::sort in Line 25 also uses a binary predicate (Line 26) in the form of a lambda function that returns true if the second number is smaller than the first, effectively sorting the collection in ascending order.

The syntax of a lambda function is the following:

[optional parameters](parameter list){ statements; }

Note

Predicates and their use in algorithms such as sort are discussed at length in Lesson 23, “STL Algorithms.” Listing 23.6 in particular is a code sample that uses a lambda function and a non-lambda variant in an algorithm, allowing you to compare the programming efficiency introduced by lambda functions.

Summary

In this lesson, you learned the basics of modular programming. You learned how functions can help you structure your code better and how they can help you reuse algorithms you write. You learned that functions can take parameters and return values, parameters can have default values that the caller can override, and parameters can contain arguments passed by reference. You learned how to pass arrays, and you also learned how to program overloaded functions that have the same name and return type but different parameter lists.

Last but not the least, you got a sneak preview into what lambda functions are. Lambda functions change how C++ applications are programmed, especially with STL.

Q&A

Q. What happens if I program a recursive function that doesn’t end?

A. Program execution doesn’t end. That might not be bad, per se, for there are while(true) and for(;;) loops that do the same thing; however, a recursive function call consumes more and more stack space, which is finite and runs out, eventually causing an application crash due to a stack overflow.

Q. Why not inline every function? Doing so increases execution speed, right?

A. The benefits of function inlining cannot be taken for granted. Inlining results in function code being inserted at the point where it’s called, which causes code bloat.

Q. Can I supply default parameter values to all parameters in a function?

A. Yes, that is definitely possible and recommended when doing so makes sense.

Q. I have two functions, both called Area. One takes a radius, and the other takes height. I want one to return float and the other to return double. Will this work?

A. For function overloading to work, both functions with the same name must also have the same return type. In this case, your compiler will give you an error message as the name Area has been used twice in what it expects to be two functions with different names.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain that you understand the answers before continuing to the next lesson.

Quiz

1. What is the scope of variables declared in a function’s prototype?

2. What is the nature of the value passed to this function?

int Func(int &someNumber);

3. You have a function that invokes itself. What is such a function called?

4. You have declared two functions, both with the same name and return type but different parameter lists. What are these called?

5. Does the stack pointer point to the top, middle, or bottom of the stack?

Exercises

1. Write overloaded functions that calculate the volume of a sphere and of a cylinder. The formulas are as follows:

Volume of sphere = (4 * Pi * radius * radius * radius) / 3

Volume of a cylinder = Pi * radius * radius * height

2. Write a function that accepts an array of double as input.

3. BUG BUSTERS: What is wrong with the following code?

#include <iostream>

using namespace std;

const double Pi = 3.1416;

void Area(double radius, double result)

{

 result = Pi * radius * radius;

}

int main()

{

 cout << “Enter radius: “;

 double radius = 0;

 cin >> radius;

 double areaFetched = 0;

 Area(radius, areaFetched);

 cout << “The area is: “ << areaFetched << endl;

 return 0;

}

4. BUG BUSTERS: What is wrong with the following function declaration?

double Area(double Pi = 3.14, double radius);

5. Write a function with return type void that still helps the caller calculate the area and circumference of a circle when the radius is supplied.

Lesson 8. Pointers and References Explained

One of the biggest advantages of C++ is that it enables you to write high-level applications that are abstracted from the hardware as well as applications that work close to it. Indeed, C++ enables you to tweak the performance of an application on a bytes and bits level. Understanding how pointers and references work is one step toward being able to write programs that are effective in their consumption of system resources.

In this lesson, you find out

• What pointers are

• What the free store is

• How to use the operators new and delete to allocate and free memory

• How to write stable applications using pointers and dynamic allocation

• What references are

• Differences between pointers and references

• When to use pointers and when to use references

What Is a Pointer?

A pointer is a variable that stores an address in memory. Just as a variable of type int is used to contain an integer value, a pointer variable is used to contain a memory address, as illustrated in Figure 8.1.

[image: Images]

Figure 8.1 Visualizing a pointer.

Thus, a pointer is a variable, and like all other variables, a pointer occupies space in memory (in the case of Figure 8.1, at address 0x101). What’s special about pointers is that the value contained in a pointer (in this case, 0x558) is interpreted as a memory address. So, a pointer is a special variable that points to a location in memory.

Note

Memory locations are typically addressed using hexadecimal notation. This is a number system with base 16—that is, a system featuring 16 distinct symbols from 0 to 9 followed by A through F. By convention, a hexadecimal number is prefixed with 0x. Thus, 0xA is hexadecimal for 10 in decimal, 0xF is hexadecimal for 15, and 0x10 is hexadecimal for 16. For more information, see Appendix A, “Working with Numbers: Binary and Hexadecimal.”

Declaring a Pointer

As a variable, a pointer needs to be declared. You normally declare a pointer to point to a specific value type, such as int. This means that the address contained in the pointer points to a location in the memory that holds an integer. You can also declare a pointer to a block of memory of unspecified type (also called a void pointer).

Like every other variable, a pointer needs to be declared. A pointer declaration uses the following syntax:

PointedType* PointerVariableName;

As is the case with most other variables, unless you initialize a pointer, it will contain a random value. You don’t want a random memory address to be accessed, so you initialize a pointer to NULL. NULL is a value that can be checked against and one that cannot be a memory address:

PointedType* PointerVariableName = NULL; // initializing value

Thus, you could declare a pointer to an integer like this:

int* pointsToInt = NULL;

Caution

A pointer, like all other data types you have learned about, contains a junk value unless it has been initialized. This junk value is particularly dangerous in the case of a pointer because a pointer is expected to contain an address. Uninitialized pointers can result in a program accessing invalid memory locations, resulting in a crash.

Determining the Address of a Variable by Using the Reference Operator (&)

Variables are tools that C++ provides for you to work with data in memory. This concept is explained in detail in Lesson 3, “Using Variables, Declaring Constants.”

If varName is a variable, &varName gives the address in memory where its value is placed.

So, if you have declared an integer, using the syntax that you’re well acquainted with, such as

int age = 30;

&age would be the address in memory where the value (30) is placed. Listing 8.1 demonstrates the concept of the memory address of an integer variable that is used to hold the value it contains.

Input

Listing 8.1 Determining the Addresses of an int and a double

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int age = 30;

 6: const double Pi = 3.1416;

 7:

 8: // Use & to find the address in memory

 9: cout << “Integer age is located at: 0x” << &age << endl;

10: cout << “Double Pi is located at: 0x” << &Pi << endl;

11:

12: return 0;

13: }

Output

Integer age is at: 0x0045FE00

Double Pi is located at: 0x0045FDF8

Analysis

Note how the reference operator (&) is used in Lines 9 and 10 to reveal the addresses of the variable age and the constant Pi. The text 0x has been appended as a convention that is used when displaying hexadecimal numbers.

Note

You know that the amount of memory consumed by a variable is dependent on its type. Listing 3.4 in Lesson 3 uses sizeof() to demonstrate that the size of an integer is 4 bytes (on my system, using my compiler). So, using the preceding output, which says that the integer age is located at address 0x0045FE00, and using the knowledge that sizeof(int) is 4, you know that the 4 bytes located in the range 0x0045FE00 through 0x0045FE03 belong to the integer age.

Note

The reference operator (&) is also called the address-of operator.

Using Pointers to Store Addresses

You have learned how to declare pointers and how to determine the address of a variable. You also know that pointers are variables that are used to hold memory addresses. It’s time to connect these dots and use pointers to store the addresses obtained using the reference operator (&).

Assume a variable declaration of the types you already know:

// Declaring a variable

Type Variable = InitialValue;

To store the address of this variable in a pointer, you would declare a pointer to the same Type and initialize the pointer to the variable’s address by using the reference operator (&):

// Declaring a pointer to Type and initializing to address

Type* pointer = &Variable;

Thus, if you have declared an integer, using the syntax that you’re well acquainted with, such as

int age = 30;

You would declare a pointer to the type int to hold the actual address where age is stored, like this:

int* pointsToInt = &age; // Pointer to integer age

In Listing 8.2 you see how a pointer can be used to store an address fetched using the reference operator (&).

Input

Listing 8.2 Demonstrating the Declaration and Initialization of a Pointer

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int age = 30;

 6: int* pointsToInt = &age; // pointer initialized to &age

 7:

 8: // Displaying the value of pointer

 9: cout << “Integer age is at: 0x” << hex << pointsToInt << endl;

10:

11: return 0;

12: }

Output

Integer age is at: 0x0045FE00

Analysis

Essentially, the output of this code snippet is the same as the output for the code in Listing 8.1 because both of these samples are displaying the same thing—the address in memory where the integer age is stored. The difference here is that the address is first assigned to a pointer in Line 6, and the value of the pointer (now the address) is displayed using cout in Line 9.

Note

Your output might differ in addresses from those you see in these examples. In fact, the address of a variable might change at every run of the application on the very same computer.

Now that you know how to store an address in a pointer variable, it is easy to imagine that the same pointer variable can be reassigned a different memory address and made to point to a different value, as shown in Listing 8.3.

Input

Listing 8.3 Pointer Reassignment to Another Variable

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int age = 30;

 6:

 7: int* pointsToInt = &age;

 8: cout << “pointsToInt points to age now” << endl;

 9:

10: // Displaying the value of pointer

11: cout << “pointsToInt = 0x” << hex << pointsToInt << endl;

12:

13: int dogsAge = 9;

14: pointsToInt = &dogsAge;

15: cout << “pointsToInt points to dogsAge now” << endl;

16:

17: cout << “pointsToInt = 0x” << hex << pointsToInt << endl;

18:

19: return 0;

20: }

Output

pointsToInt points to age now

pointsToInt = 0x002EFB34

pointsToInt points to dogsAge now

pointsToInt = 0x002EFB1C

Analysis

This program demonstrates that one pointer to an integer, pointsToInt, can point to any integer. In Line 7, it has been initialized to &age, hence containing the address of the variable age. In Line 14 the same pointer is assigned &dogsAge, pointing to another location in memory that contains dogsAge. Correspondingly, the output indicates that the value of the pointer—that is, the address being pointed to—changes as the two integers age and dogsAge are, of course, stored in different locations in memory, 0x002EFB34 and 0x002EFB1C, respectively.

Accessing Pointed Data Using the Dereference Operator (*)

If you have a pointer containing a valid address, how do you access that location—that is, get or set data at that location? The answer lies in using the dereference operator (*). Essentially, if you have a valid pointer pData, you use *pData to access the value stored at the address contained in the pointer. The use of the dereference operator (*) is demonstrated by Listing 8.4.

Input

Listing 8.4 Demonstrating the Use of the Dereference Operator (*) to Access Integer Values

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int age = 30;

 6: int dogsAge = 9;

 7:

 8: cout << “Integer age = “ << age << endl;

 9: cout << “Integer dogsAge = “ << dogsAge << endl;

10:

11: int* pointsToInt = &age;

12: cout << “pointsToInt points to age” << endl;

13:

14: // Displaying the value of pointer

15: cout << “pointsToInt = 0x” << hex << pointsToInt << endl;

16:

17: // Displaying the value at the pointed location

18: cout << “*pointsToInt = “ << dec << *pointsToInt << endl;

19:

20: pointsToInt = &dogsAge;

21: cout << “pointsToInt points to dogsAge now” << endl;

22:

23: cout << “pointsToInt = 0x” << hex << pointsToInt << endl;

24: cout << “*pointsToInt = “ << dec << *pointsToInt << endl;

25:

26: return 0;

27: }

Output

Integer age = 30

Integer dogsAge = 9

pointsToInt points to age

pointsToInt = 0x0025F788

*pointsToInt = 30

pointsToInt points to dogsAge now

pointsToInt = 0x0025F77C

*pointsToInt = 9

Analysis

In addition to changing the address stored within a pointer, as shown in Listing 8.3, the program in Listing 8.4 also uses the dereference operator (*) with the same pointer variable pointsToInt to display the different values at these two addresses. Note Lines 18 and 24. In both of these lines, the integer pointed to by pointsToInt is accessed using the dereference operator (*). As the address contained in pointsToInt is changed in Line 20, the same pointer after this assignment accesses the variable dogsAge, displaying 9.

When the dereference operator (*) is used, the application essentially uses the address stored in the pointer as a starting point to fetch from memory 4 bytes that belong to an integer (as this is a pointer to integers, and sizeof(int) is 4). Thus, the validity of the address contained in the pointer is absolutely essential. By initializing the pointer to &age in Line 11, you have ensured that the pointer contains a valid address. When you don’t initialize the pointer, it can contain any random value (that existed in the memory location where the pointer variable is located), and dereference of that pointer usually results in an access violation—which occurs when you use an application to access a memory location that the application was not authorized to access.

Note

The dereference operator (*) is also called the indirection operator.

You used the pointer in Listing 8.4 to read (get) values from the pointed memory location. Listing 8.5 shows what happens when *pointsToInt is used as an l-value—that is, when it is assigned to instead of just being accessed.

Input

Listing 8.5 Manipulating Data Using a Pointer and the Dereference Operator (*)

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int dogsAge = 30;

 6: cout << “Initialized dogsAge = “ << dogsAge << endl;

 7:

 8: int* pointsToAnAge = &dogsAge;

 9: cout << “pointsToAnAge points to dogsAge” << endl;

10:

11: cout << “Enter an age for your dog: “;

12:

13: // store input at the memory pointed to by pointsToAnAge

14: cin >> *pointsToAnAge;

15:

16: // Displaying the address where age is stored

17: cout << “Input stored at 0x” << hex << pointsToAnAge << endl;

18:

19: cout << “Integer dogsAge = “ << dec << dogsAge << endl;

20:

21: return 0;

22: }

Output

Initialized dogsAge = 30

pointsToAnAge points to dogsAge

Enter an age for your dog: 10

Input stored at 0x0025FA18

Integer dogsAge = 10

Analysis

The key step here is in Line 14, where the age input by the user is saved at the location stored in the pointer pointsToAnAge. Line 19, which displays the variable dogsAge, shows the value you stored using the pointer. This is because pointsToAnAge points to dogsAge, as initialized in Line 8. Any change to that memory location where dogsAge is stored, and to which pointsToAnAge points, made using one is going to be reflected in the other.

What Is the Size of a Pointer?

You have learned that a pointer is basically a variable that contains a memory address. Hence, regardless of the type that is being pointed to, the content of a pointer is an address—that is, a number. The length of an address (that is, the number of bytes required to store it) is a constant for a given system. The size a pointer is hence dependent on the compiler and the operating system the program has been compiled for. This size can be computed using operator sizeof(). The size of a pointer is not dependent on the nature of the data being pointed to, as Listing 8.6 demonstrates.

Input

Listing 8.6 Demonstrating That Pointers to Different Types Have the Same Sizes

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “sizeof fundamental types -” << endl;

 6: cout << “sizeof(char) = “ << sizeof(char) << endl;

 7: cout << “sizeof(int) = “ << sizeof(int) << endl;

 8: cout << “sizeof(double) = “ << sizeof(double) << endl;

 9:

10: cout << “sizeof pointers to fundamental types -” << endl;

11: cout << “sizeof(char*) = “ << sizeof(char*) << endl;

12: cout << “sizeof(int*) = “ << sizeof(int*) << endl;

13: cout << “sizeof(double*) = “ << sizeof(double*) << endl;

14:

15: return 0;

16: }

Output

sizeof fundamental types -

sizeof(char) = 1

sizeof(int) = 4

sizeof(double) = 8

sizeof pointers to fundamental types -

sizeof(char*) = 4

sizeof(int*) = 4

sizeof(double*) = 4

Analysis

The output clearly shows that even though sizeof(char) is 1 byte and sizeof(double) is 8 bytes, sizeof(char*) and sizeof(double*) are both 4 bytes. This is because the amount of memory consumed by a pointer that stores an address is the same, regardless of whether the memory at the address contains 1 byte or 8 bytes of data.

Note

The output for Listing 8.6 that shows that the size of a pointer is 4 bytes might be different from what you see on your system. The output was generated when the code was compiled using a 32-bit compiler. If you use a 64-bit compiler and run the program on a 64-bit system, you might see that the size of your pointer variable is 64 bits—that is, 8 bytes.

Dynamic Memory Allocation

When you write a program that contains an array declaration such as

int myNums[100]; // a static array of 100 integers

your program has two problems:

• You are actually limiting the capacity of your program as it cannot store more than 100 numbers.

• You are reducing the performance of the system in cases where only 1 number needs to be stored but space has been reserved for 100.

These problems exist because the memory allocation in an array as declared earlier is static and fixed by the compiler.

To program an application that is able to optimally consume memory resources on the basis of the needs of the user, you need to use dynamic memory allocation. This enables you to allocate more memory when you need more and release memory that you have in excess. C++ supplies two operators, new and delete, to help you better manage the memory consumption of an application. Pointers, as variables that are used to contain memory addresses, play a critical role in efficient dynamic memory allocation.

Using the Operators new and delete to Allocate and Release Memory Dynamically

You use new to allocate new memory blocks. The most frequently used form of new returns a pointer to the requested memory if successful or else throws an exception. When using new, you need to specify the data type for which the memory is being allocated:

Type* pointer = new Type; // request memory for one element

You can also specify the number of elements you want to allocate that memory for (when you need to allocate memory for more than one element):

Type* pointer = new Type[numElements]; // request memory for numElements

Thus, if you need to allocate integers, you use the following code:

int* pointToAnInt = new int; // get a pointer to an integer

int* pointToNums = new int[10]; // pointer to a block of 10 integers

Note

Note that new indicates a request for memory. There is no guarantee that a call for allocation always succeeds because it depends on the state of the system and the availability of memory resources.

Every allocation using new needs to eventually be released using an equal and opposite deallocation via delete:

Type* pointer = new Type; // allocate memory

delete pointer; // release memory allocated above

This rule also applies when you request memory for multiple elements:

Type* pointer = new Type[numElements]; // allocate a block

delete[] pointer; // release block allocated above

Note

Note the usage of delete[] when you allocate a block using new[...] and delete when you allocate just an element using new.

If you don’t release allocated memory after you stop needing it, then that memory remains reserved and allocated for your application. This reduces the amount of system memory available for applications to consume and possibly even makes the execution of the application slower. This is called a leak and should be avoided at all costs.

Listing 8.7 demonstrates dynamic memory allocation and deallocation.

Input

Listing 8.7 Accessing Memory Allocated Using new via the * Operator and Releasing It Using delete

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: // Request for memory space for an int

 6: int* pointsToAnAge = new int;

 7:

 8: // Use the allocated memory to store a number

 9: cout << “Enter your dog’s age: “;

10: cin >> *pointsToAnAge;

11:

12: // use indirection operator* to access value

13: cout << “Age “ << *pointsToAnAge << “ is stored at 0x”

14: << hex << pointsToAnAge << endl;

15:

16: delete pointsToAnAge; // release memory

17:

18: return 0;

19: }

Output

Enter your dog’s age: 9

Age 9 is stored at 0x00338120

Analysis

Line 6 demonstrates the use of the operator new to request space for an integer where you plan to store the dog’s age, as entered by the user. Note that new returns a pointer, and that is the reason it is assigned to one. The age entered by the user is stored in this newly allocated memory using cin and the dereference operator (*) in Line 10. Line 13 displays this stored value using the dereference operator (*) again, and Line 14 displays the address in memory where the value is stored. Note that the address contained in pointsToAnAge in Line 14 is still what was returned by new in Line 6 and hasn’t changed.

Caution

The delete operator cannot be invoked on every address contained in a pointer. Rather, it can be invoked only on an address that has been returned by new.

Thus, the pointers in Listing 8.5 contain valid addresses but should not be released using delete because the addresses were not returned by a call to new.

Note that when you allocate for a range of elements using new[...], you deallocate by using delete[], as demonstrated by Listing 8.8.

Input

Listing 8.8 Allocating Memory Using new[...] and Releasing It Using delete[]

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “How many integers shall I reserve memory for?” << endl;

 7: int numEntries = 0;

 8: cin >> numEntries;

 9:

10: int* myNumbers = new int[numEntries];

11:

12: cout << “Memory allocated at: 0x” << myNumbers << hex << endl;

13:

14: // de-allocate before exiting

15: delete[] myNumbers;

16:

17: return 0;

18: }

Output

How many integers shall I reserve memory for?

5001

Memory allocated at: 0x00C71578

Analysis

The most important lines in this listing are Lines 10 and 15, which use the new[] and delete[] operators, respectively. What makes this sample different from Listing 8.7 is the dynamic allocation of a block of memory that can accommodate as many integers as the user requests. The output shows space requested for 5001 integers. In another run, it might be 20 or 55000. This program will allocate a different amount of memory required in every execution, depending on user input. Such allocations for an array of elements need to be matched by deallocation, with delete[] then used to free memory.

Note

The operators new and delete allocate memory from the free store. The free store is a memory abstraction in the form of a pool of memory where an application can allocate (that is, reserve) memory from and deallocate (that is, release) memory to.

Effects of the Increment (++) and Decrement (--) Operators on Pointers

A pointer contains a memory address. For example, the pointer to an integer in Listing 8.3 contains 0x002EFB34—the address where the integer is placed. The integer itself is 4 bytes long and hence occupies four places in memory, from 0x002EFB34 to 0x002EFB37. Incrementing this pointer using the operator ++ would not result in the pointer pointing to 0x002EFB35 because pointing to the middle of an integer would be pointless.

An increment or decrement operation on a pointer is interpreted by the compiler as a need to point to the next value in the block of memory, assuming it to be of the same type, and not to the next byte (unless the value type is 1 byte large, like a char, for instance).

So, incrementing a pointer such as pointsToInt in Listing 8.3 results in its being incremented by 4 bytes, which is the size of an int. By using ++ on this pointer, you tell the compiler that you want it to point to the next consecutive integer. Hence, after incrementing, the pointer points to 0x002EFB38. Similarly, adding 2 to this pointer result in its moving 2 integers ahead—that is, 8 bytes ahead. A correlation between this behavior displayed by pointers and indexes used in arrays is provided later in this chapter.

Decrementing pointers using the operator -- demonstrates the same effect: The address value contained in the pointer is reduced by the size of the data type it is being pointed to.

What Happens When You Increment or Decrement a Pointer?

When you increment or decrement a pointer, the address contained in the pointer is incremented or decremented by the sizeof() the type being pointed to (and not necessarily a byte). This way, the compiler ensures that the pointer never points to the middle or end of data placed in the memory; it only points to the beginning.

If a pointer has been declared as

Type* pType = Address;

++pType would mean that pType contains (and hence points to) Address + sizeof(Type).

Listing 8.9 illustrates the effect of incrementing pointers or adding offsets to them.

Input

Listing 8.9 Using Offset Values and Operators to Increment and Decrement Pointers

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “How many integers you wish to enter? “;

 6: int numEntries = 0;

 7: cin >> numEntries;

 8:

 9: int* pointsToInts = new int[numEntries];

10:

11: cout << “Allocated for “ << numEntries << “ integers” << endl;

12: for(int counter = 0; counter < numEntries; ++counter)

13: {

14: cout << “Enter number “<< counter << “: “;

15: cin >> *(pointsToInts + counter);

16: }

17:

18: cout << “Displaying all numbers entered: “ << endl;

19: for(int counter = 0; counter < numEntries; ++counter)

20: cout << *(pointsToInts++) << “ “;

21:

22: cout << endl;

23:

24: // return pointer to initial position

25: pointsToInts -= numEntries;

26:

27: // done with using memory? release

28: delete[] pointsToInts;

29:

30: return 0;

31: }

Output

First run:

How many integers you wish to enter? 2

Allocated for 2 integers

Enter number 0: 8774

Enter number 1: -5

Displaying all numbers entered:

8774 -5

Next run:

How many integers you wish to enter? 5

Allocated for 5 integers

Enter number 0: 543

Enter number 1: 756

Enter number 2: 2017

Enter number 3: -101

Enter number 4: 101010012

Displaying all numbers entered:

543 756 2017 -101 101010012

Analysis

The program asks the user for the number of integers he wants to feed into the system before allocating memory for this in Line 9. This example demonstrates two methods of incrementing pointers. One uses an offset value, as shown in Line 15, where you store user input directly into the memory location, using offset variable counter. The other uses the operator ++, as in Line 20, to increment the address contained in the pointer variable to the next valid integer in the allocated memory. Operators are introduced in Lesson 5, “Working with Expressions, Statements, and Operators.”

Lines 12 through 16 are a for loop where the user is asked to enter the numbers that are then stored in consecutive positions in the memory, using the expression in Line 15. It is here that the zero-based offset value (counter) is added to the pointer, causing the compiler to create instructions that insert the value fed by the user at the next appropriate location for an integer without overwriting the previous value. The for loop in Lines 19 and 20 is similarly used to display those values stored by the previous loop.

The original pointer address returned by new during allocation needs to be used in the call to delete[] during deallocation. As this value contained in pointsToInts has been modified by the operator ++ in Line 20, you bring the pointer back to the original position (address) by using the operator -= in Line 25 before invoking delete[] on that address in Line 28.

Using the const Keyword on Pointers

In Lesson 3, you learned that declaring a variable as const effectively ensures that the value of the variable is fixed as the initialization value for the life of the variable. The value of a const variable cannot be changed, and therefore it cannot be used as an l-value.

Pointers are variables, too, and hence the const keyword that is relevant to variables is relevant to pointers as well. However, a pointer is a special kind of variable as it contains a memory address and is used to modify memory at that address. Thus, when it comes to pointers and constants, you have the following combinations:

• The address contained in the pointer is constant and cannot be changed, but the data at that address can be changed:

int daysInMonth = 30;

int* const pDaysInMonth = &daysInMonth;

*pDaysInMonth = 31; // OK! Data pointed to can be changed

int daysInLunarMonth = 28;

pDaysInMonth = &daysInLunarMonth; // Not OK! Cannot change address!

• Data pointed to is constant and cannot be changed, but the address contained in the pointer can be changed (that is, the pointer can also point elsewhere):

int hoursInDay = 24;

const int* pointsToInt = &hoursInDay;

int monthsInYear = 12;

pointsToInt = &monthsInYear; // OK!

*pointsToInt = 13; // Not OK! Cannot change data being pointed to

int* newPointer = pointsToInt; // Not OK! Cannot assign const to non-const

• Both the address contained in the pointer and the value being pointed to are constant and cannot be changed (most restrictive variant):

int hoursInDay = 24;

const int* const pHoursInDay = &hoursInDay;

*pHoursInDay = 25; // Not OK! Cannot change data being pointed to

int daysInMonth = 30;

pHoursInDay = &daysInMonth; // Not OK! Cannot change address

These different forms of const are particularly useful when passing pointers to functions. It is recommended that function parameters be declared to support the highest possible (restrictive) level of const-ness. This protects your application against unintended modifications using the function’s arguments.

Tip

To easily identify the three const cases mentioned above, read them from right to left.

The first case is a constant pointer to an integer:

int* const pointerCannotChange = &value;

The second case is a pointer to a constant integer:

const int* pointedDataCannotChange = &value;

The third case is a constant pointer to a constant integer:

const int* const ptrAndDataCannotChange = &value;

Passing Pointers to Functions

Using pointers is an effective way to pass memory space that contains relevant data for functions to work on. The memory space shared can also return the result of an operation. When using a pointer with functions, it is important to ensure that the called function is only allowed to modify parameters that you want to let it modify—and not others. For example, a function that calculates the area of a circle given radius sent as a pointer should not be allowed to modify the radius. You can use the keyword const to control what a function is allowed to modify and what it isn’t, as demonstrated in Listing 8.10.

Input

Listing 8.10 Using the const Keyword in Calculating the Area of a Circle

 0: #include <iostream>

 1: using namespace std;

 2:

 3: void CalcArea(const double* const ptrPi, // const pointer to const data

 4: const double* const ptrRadius, // i.e. no changes allowed

 5: double* const ptrArea) // can change data pointed to

 6: {

 7: // check pointers for validity before using!

 8: if (ptrPi && ptrRadius && ptrArea)

 9: *ptrArea = (*ptrPi) * (*ptrRadius) * (*ptrRadius);

10: }

11:

12: int main()

13: {

14: const double Pi = 3.1416;

15:

16: cout << “Enter radius of circle: “;

17: double radius = 0;

18: cin >> radius;

19:

20: double area = 0;

21: CalcArea (&Pi, &radius, &area);

22:

23: cout << “Area is = “ << area << endl;

24:

25: return 0;

26: }

Output

Enter radius of circle: 10.5

Area is = 346.361

Analysis

Lines 3 and 4 demonstrate the form of const where both ptrRadius and ptrPi are supplied as “const pointers to const data” so that neither the pointer address nor the data being pointed to can be modified. ptrArea, declared in Line 5, is evidently the parameter meant to store the output, for the value contained in the pointer (address) cannot be modified, but the data being pointed to can be. Line 8 shows how pointer parameters to a function are checked for validity before they are used. You don’t want a function to calculate the area if the caller inadvertently sends a NULL pointer as any of the three parameters because that would risk an access violation followed by an application crash.

Similarities Between Arrays and Pointers

Don’t you think that the code in Listing 8.9—where the pointer is incremented using a zero-based index to access the next integer in the memory—has too many similarities to the manner in which arrays are indexed? When you declare an array of integers like this:

int myNumbers[5];

you tell the compiler to allocate a fixed amount of memory to hold five integers and give you a pointer to the first element in that array that is identified by the name you assign to the array variable. In other words, myNumbers is a pointer to the first element, myNumbers[0]. Listing 8.11 highlights this correlation.

Input

Listing 8.11 Demonstrating That the Array Variable Is a Pointer to the First Element

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: // Static array of 5 integers

 6: int myNumbers[5];

 7:

 8: // array assigned to pointer to int

 9: int* pointToNums = myNumbers;

10:

11: // Display address contained in pointer

12: cout << “pointToNums = 0x” << hex << pointToNums << endl;

13:

14: // Address of first element of array

15: cout << “&myNumbers[0] = 0x” << hex << &myNumbers[0] << endl;

16:

17: return 0;

18: }

Output

pointToNums = 0x004BFE8C

&myNumbers[0] = 0x004BFE8C

Analysis

This simple program demonstrates that an array variable can be assigned to a pointer of the same type, as shown in Line 9, essentially confirming that an array is akin to a pointer. Lines 12 and 15 demonstrate that the address stored in the pointer is the same as the address where the first element in the array (at index 0) is placed in memory. This program demonstrates that an array is a pointer to the first element in it.

If you need to access the second element via the expression myNumbers[1], you can also access it by using the pointer pointToNums with the syntax *(pointToNums + 1). The third element is accessed in the static array by using myNumbers[2], and the third element is accessed in the dynamic array by using the syntax *(pointToNums + 2).

Because array variables are essentially pointers, it should be possible to use the de-reference operator (*) that you have used with pointers to work with arrays. Similarly, it should be possible to use the array operator ([]) to work with pointers, as demonstrated in Listing 8.12.

Input

Listing 8.12 Accessing Elements in an Array Using the Dereference Operator (*) and Using the Array Operator ([]) with a Pointer

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: const int ARRAY_LEN = 5;

 6:

 7: // Static array of 5 integers, initialized

 8: int myNumbers[ARRAY_LEN] = {24, -1, 365, -999, 2011};

 9:

10: // Pointer initialized to first element in array

11: int* pointToNums = myNumbers;

12:

13: cout << “Display array using pointer syntax, operator*” << endl;

14: for (int index = 0; index < ARRAY_LEN; ++index)

15: cout << “Element “ << index << “ = “ << *(myNumbers + index) << endl;

16:

17: cout << “Display array using ptr with array syntax, operator[]” << endl;

18: for (int index = 0; index < ARRAY_LEN; ++index)

19: cout << “Element “ << index << “ = “ << pointToNums[index] << endl;

20:

21: return 0;

22: }

Output

Display array using pointer syntax, operator*

Element 0 = 24

Element 1 = -1

Element 2 = 365

Element 3 = -999

Element 4 = 2011

Display array using ptr with array syntax, operator[]

Element 0 = 24

Element 1 = -1

Element 2 = 365

Element 3 = -999

Element 4 = 2011

Analysis

The application contains a static array of five integers initialized to five initial values in Line 8. The application displays the contents of this array, using two alternative methods—one using the array variable myNumbers with the indirection operator (*) in Line 15 and the other using the pointer variable with the array operator ([]) in Line 19.

Thus, this program demonstrates that both the array myNumbers and the pointer pointToNums exhibit pointer behavior. In other words, an array declaration is similar to a pointer that is created to operate within a fixed range of memory. Note that you can assign an array to a pointer as in Line 11, but you cannot assign a pointer to an array. This is because, by its very nature, an array like myNumbers is static and cannot be used as an l-value; myNumbers cannot be modified.

Caution

It is important to remember that pointers that are allocated dynamically using the operator new still need to be released using the operator delete, even if you accessed data using syntax commonly used with static arrays.

If you forget this, your application leaks memory, and that’s bad.

Common Programming Mistakes When Using Pointers

C++ lets you allocate memory dynamically so that you can optimize and control the memory consumption of an application. Unlike languages that use a runtime environment, such as C# and Java, C++ does not feature an automatic garbage collector that frees memory resources when they’re no longer required. This incredible control over managing memory resources using pointers is accompanied by a host of opportunities to make mistakes.

Memory Leaks

This is probably one of the most common problems with poorly programmed C++ applications: The longer they run, the larger the amount of memory they consume and the slower the system gets. Memory leaks typically happens when the programmer did not ensure that the application releases memory allocated dynamically using new with a matching call to delete after the block of memory is no longer required.

It is up to you—the programmer—to ensure that all allocated memory is also released by an application. Something like this should never be allowed to happen:

int* pointToNums = new int[5]; // initial allocation

// use pointToNums

...

// forget to release using delete[] pointToNums;

...

// make another allocation and overwrite

pointToNums = new int[10]; // leaks the previously allocated memory

Pointers Pointing to Invalid Memory Locations

When you dereference a pointer using the operator * to access the pointed value, you need to be sure that the pointer contains a valid memory location, or else your program will either crash or misbehave. Logical as this may seem, invalid pointers are quite a common reason for application crashes. Pointers can be invalid for a range of reasons and are primarily due to poor programming and memory management. A typical case where a pointer might be invalid is shown in Listing 8.13.

Input

Listing 8.13 Poor Pointer Hygiene in a Program That Stores a Boolean Value Using Pointers

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: // uninitialized pointer (bad)

 6: bool* isSunny;

 7:

 8: cout << “Is it sunny (y/n)? “;

 9: char userInput = ’y’;

10: cin >> userInput;

11:

12: if (userInput == ’y’)

13: {

14: isSunny = new bool;

15: *isSunny = true;

16: }

17:

18: // isSunny contains invalid value if user entered ’n’

19: cout << “Boolean flag sunny says: “ << *isSunny << endl;

20:

21: // delete being invoked also when new wasn’t

22: delete isSunny;

23:

24: return 0;

25: }

Output

First run:

Is it sunny (y/n)? y

Boolean flag sunny says: 1

Second run:

Is it sunny (y/n)? n

<CRASH!>

Analysis

This sample contains problems that have been intentionally programmed to explain poor pointer hygiene. Do not be surprised if your compiler complains. Note how memory is allocated and assigned to the pointer in Line 14, which is conditionally executed when the user presses y for yes. For all other inputs of the user, this if block is not executed, and the pointer isSunny remains invalid. Thus, when the user presses n in the second run, the application crashes because isSunny contains an invalid memory address, and dereferencing an invalid pointer in Line 19 causes problems.

Similarly, invoking delete on this pointer, as shown in Line 22, which has not been allocated for using new, is equally wrong. If you have a copy of a pointer, you need to be calling delete on only one of them; you also need to avoid having copies of a pointer floating around.

A better (that is, safer and more stable) version of this program would be one where pointers are initialized, used where their values are valid, and released only once and only when valid.

Dangling Pointers (Also Called Stray or Wild Pointers)

Note that any valid pointer is invalid after it has been released using delete. In other words, even the valid pointer isSunny in Listing 8.13 would be invalid after the call to delete in Line 22, and it should not be used after that point.

To avoid this problem, some programmers follow the convention of assigning NULL to a pointer when initializing it or after it has been deleted. They also always check a pointer for validity (by comparing against NULL) before dereferencing it using the operator *.

Having learned some typical problems that occur when using pointers, it’s time to correct the faulty code in Listing 8.13. See Listing 8.14.

Input

Listing 8.14 Safer Pointer Programming: A Correction of Listing 8.13

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Is it sunny (y/n)? “;

 6: char userInput = ’y’;

 7: cin >> userInput;

 8:

 9: // declare pointer and initialize

10: bool* const isSunny = new bool;

11: *isSunny = true;

12:

13: if (userInput == ’n’)

14: *isSunny = false;

15:

16: cout << “Boolean flag sunny says: “ << *isSunny << endl;

17:

18: // release valid memory

19: delete isSunny;

20:

21: return 0;

22: }

Output

First run:

Is it sunny (y/n)? y

Boolean flag sunny says: 1

Next run:

Is it sunny (y/n)? n

Boolean flag sunny says: 0

(Ends without crashing, regardless of user input.)

Analysis

Minor restructuring has made the code safer for all combinations of user input. Note that the pointer is initialized to a valid memory address during declaration in Line 10. Here you use const to ensure that while the data being pointed to can be modified, the pointer value (that is, the address contained) remains fixed and unchangeable. You also initialize the Boolean value being pointed to, to true in Line 11. This data initialization adds not to the stability of the program but to the reliability of the output. These steps ensure that the pointer is valid for the rest of the program, and it is safely deleted in Line 19, for every combination of user input.

Checking Whether an Allocation Request Using new Succeeded

In the code to this point, we have assumed that new will return a valid pointer to a block of memory. Indeed, new usually succeeds unless the application asks for an unusually large amount of memory or the system is in such a critical state that it has no memory to spare. There are applications that need to make requests for large chunks of memory (for example, database applications). Therefore, C++ provides you with two possible methods to ensure that your pointer is valid before you use it. The default method—one that we have been using thus far—is to use exceptions wherein unsuccessful allocations result in an exception of the type std::bad_alloc to be thrown. An exception results in the execution of the application being disrupted, and unless you have programmed an exception handler, the application ends rather inelegantly with the error message “unhandled exception.”

Exceptions are explained in detail in Lesson 28, “Exception Handling.” Listing 8.15 gives you a sneak peek of how exception handling can be used to check for failed memory allocation requests. Don’t be too worried if exception handling seems overwhelming at this stage: It’s mentioned here only for the sake of completeness of the topic of memory allocation. You can revisit this sample after reading Lesson 28.

Input

Listing 8.15 Handling Exceptions and Exiting Gracefully When new Fails

 0: #include <iostream>

 1: using namespace std;

 2:

 3: // remove the try-catch block to see this application crash

 4: int main()

 5: {

 6: try

 7: {

 8: // Request a LOT of memory!

 9: int* pointsToManyNums = new int [0x1fffffff];

10: // Use the allocated memory

11:

12: delete[] pointsToManyNums;

13: }

14: catch (bad_alloc)

15: {

16: cout << “Memory allocation failed. Ending program” << endl;

17: }

18: return 0;

19: }

Output

Memory allocation failed. Ending program

Analysis

This program might execute differently on your computer. My environment could not successfully allocate the requested space for 536,870,911 integers! Without the exception handler (the catch block in Lines 14 through 17), the program would not end gracefully. You can experiment with the behavior of the program in the absence of the exception handler by commenting Lines 6 and 14. When using debug mode binaries built using Microsoft Visual Studio, program execution results in output like that shown in Figure 8.2.

[image: Images]

Figure 8.2 Program crash in the absence of exception handling in Listing 8.15 (with a debug build using the MSVC compiler).

The exception handling try-catch construct thus helps the application make a controlled exit after informing the user that a problem in memory allocation hampers normal execution.

For those who don’t want to rely on exceptions, there is a variant of new called new(nothrow). This variant does not throw an exception when allocation requests fail; rather, it results in the operator new returning NULL. The pointer being assigned, therefore, can be checked for validity against NULL before it is used. See Listing 8.16.

Input

Listing 8.16 Using new(nothrow), Which Returns NULL When Allocation Fails

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: // Request LOTS of memory space, use nothrow

 6: int* pointsToManyNums = new(nothrow) int [0x1fffffff];

 7:

 8: if (pointsToManyNums) // check pointsToManyNums != NULL

 9: {

10: // Use the allocated memory

11: delete[] pointsToManyNums;

12: }

13: else

14: cout << “Memory allocation failed. Ending program” << endl;

15:

16: return 0;

17: }

Output

Memory allocation failed. Ending program

Analysis

Listing 8.16 is the same function as Listing 8.15 except that it uses new(nothrow) in Line 6. As this variant of new returns NULL when memory allocation fails, you check the pointer before using it in Line 8. Both variants of new are good, and the choice is for you to make.

Pointer Programming Best Practices

There are some basic rules you need to keep in mind when it comes to using pointers in applications.

[image: Images]

What Is a Reference?

A reference is an alias for a variable. When you declare a reference, you need to initialize it to a variable. Thus, using a reference variable is just a different way to access the data stored in the variable being referenced.

You declare a reference by using the reference operator (&), as shown in the following statement:

VarType original = Value;

VarType& referenceVariable = original;

To further understand how to declare references and use them, see Listing 8.17.

Input

Listing 8.17 Demonstrating That References Are Aliases for Assigned Values

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: int original = 30;

 6: cout << “original = “ << original << endl;

 7: cout << “original is at address: “ << hex << &original << endl;

 8:

 9: int& ref1 = original;

10: cout << “ref1 is at address: “ << hex << &ref1 << endl;

11:

12: int& ref2 = ref1;

13: cout << “ref2 is at address: “ << hex << &ref2 << endl;

14: cout << “Therefore, ref2 = “ << dec << ref2 << endl;

15:

16: return 0;

17: }

Output

original = 30

original is at address: 0099F764

ref1 is at address: 0099F764

ref2 is at address: 0099F764

Therefore, ref2 = 30

Analysis

The output demonstrates that references—regardless of whether they’re initialized to the original variable as in Line 9 or to a reference as in Line 12—address the same location in memory where the original is contained. Thus, references are true aliases; that is, a reference is just another name for original. Displaying the value using ref2 in Line 14 gets the same value as original in Line 6 because ref2 aliases original and is contained in the same location in memory.

What Makes References Useful?

References enable you to work with the memory location they are initialized to. This makes references particularly useful when programming functions. As you learned in Lesson 7, “Organizing Code with Functions,” a typical function is declared like this:

ReturnType DoSomething(Type parameter);

The function DoSomething() is invoked like this:

ReturnType result = DoSomething(argument); // function call

This code would result in the argument being copied into parameter, which is then used by the function DoSomething(). This copy step can result in overhead if the argument in question consumes a lot of memory. It would be ideal if you could avoid or eliminate the copy step and enable the function to work directly on the data in the caller’s stack. References enable you to do just that.

A version of the function without the copy step looks like this:

ReturnType DoSomething(Type& parameter) // note the reference&

{

 // ...code

 return value;

}

This function would be invoked as follows:

ReturnType result = DoSomething(argument);

As the argument is being passed by reference, parameter is not a copy of argument but rather is an alias of it, much like ref1 in Listing 8.17. In addition, a function that accepts a parameter as a reference can optionally return values using reference parameters.

Note

Copy elision has been guaranteed since C++17. To see what this means, let’s review this code once again:

ReturnType result = DoSomething(argument);

Under normal circumstances, the return value of the function DoSomething() would be copied into result. This is an unnecessary step, and it can be quite an expensive step if ReturnType is a database table, for example. Since C++17, such unnecessary copy steps are elided (that is, eliminated) by default.

See Listing 8.18 to understand how functions can use references instead of return values.

Input

Listing 8.18 Function That Calculates Square Returned in a Parameter by Reference

 0: #include <iostream>

 1: using namespace std;

 2:

 3: void Square(int& number)

 4: {

 5: number *= number;

 6: }

 7:

 8: int main()

 9: {

10: cout << “Enter a number you wish to square: “;

11: int number = 0;

12: cin >> number;

13:

14: Square(number);

15: cout << “Square is: “ << number << endl;

16:

17: return 0;

18: }

Output

Enter a number you wish to square: 5

Square is: 25

Analysis

The function that performs the operation of squaring is in Lines 3 through 6. Note how it accepts the number to be squared as a parameter by reference and returns the result. If you forget to mark the parameter number as a reference (&), the result does not reach the calling function main() because Square()then performs its operations on a local copy of number, which is destroyed when the function exits. By using references, you ensure that Square() is operating in the same address space where number in main() is defined. Thus, the result of the operation is available in main() even after the function Square() has exited.

In this example, Square() modifies the number sent by the caller. If you need both values—the original and the square—you can have the function accept two parameters: one that contains the input and another that supplies the square.

Using the Keyword const on References

You might need to have references that are not allowed to change the value of the original variable being aliased. Using const when declaring such references is the way to achieve that:

int original = 30;

const int& constRef = original;

constRef = 40; // Not allowed: can’t change value in original

int& ref2 = constRef; // Not allowed: ref2 is not const

const int& constRef2 = constRef; // OK, similar types

Passing Arguments by Reference to Functions

One of the major advantages of references is that they allow a called function to work on parameters that have not been copied from the calling function, resulting in significant performance improvements. However, as the called function works using parameters directly on the stack of the calling function, it is often important to ensure that the called function cannot change the value of the variable at the caller’s end. References that are defined as const help you do just that, as demonstrated in Listing 8.19. A const reference parameter cannot be used as an l-value, so any attempt at assigning to it causes a compilation failure.

Input

Listing 8.19 Using a const Reference to Ensure That the Calling Function Cannot Modify a Value Sent by Reference

 0: #include <iostream>

 1: using namespace std;

 2:

 3: void Square(const int& number, int& result)

 4: {

 5: result = number*number;

 6: }

 7:

 8: int main()

 9: {

10: cout << “Enter a number you wish to square: “;

11: int number = 0;

12: cin >> number;

13:

14: int square = 0;

15: Square(number, square);

16: cout << “Square of “ << number << “ = “ << square << endl;

17:

18: return 0;

19: }

Output

Enter a number you wish to square: 27

27^2 = 729

Analysis

In contrast to the program in Listing 8.18, where the variable that sent the number to be squared also held the result, this one uses two variables: one to send the number to be squared and another to hold the result of the operation. To ensure that the number being sent cannot be modified, it has been marked as a const reference using the const keyword, as shown in Line 3. This automatically makes the parameter number an input parameter—one whose value cannot be modified.

As an experiment, you can modify Line 5 to return the square using the same logic shown in Listing 8.18:

number *= number;

You are now certain to face a compilation error that tells you that a const value cannot be modified. Thus, const references indicate that a parameter is an input parameter and ensure that its value cannot be modified. It might seem trivial at first, but in a multi-programmer environment where the person writing the first version might be different from the one enhancing it, using const references will add to the quality of the program.

Summary

In this lesson, you learned about pointers and references. You learned how pointers can be used to access and manipulate memory and how they assist in dynamic memory allocation. You learned about the operators new and delete, which can be used to allocate memory for an element. You learned that their variants new...[] and delete[] help you allocate memory for an array of data. You were introduced to traps in pointer programming and dynamic allocation and found out that releasing dynamically allocated memory is important to avoid leaks. References are aliases and are a powerful alternative to using pointers when passing arguments to functions in that references are guaranteed to be valid. You learned about “const correctness” when using pointers and references, and you will hopefully henceforth declare functions with the most restrictive level of const-ness in parameters as possible.

Q&A

Q. Why dynamically allocate when you can make do with static arrays, where you don’t need to worry about deallocation?

A. Static arrays have a fixed size and will neither scale upward if your application needs more memory nor optimize if your application needs less. This is where dynamic memory allocation makes a difference.

Q. I have two pointers:

int* pointToAnInt = new int;

int* pCopy = pointToAnInt;

Am I not better off calling delete using both to be sure that the memory used is released?

A. Doing that would be wrong. You are allowed to invoke delete only once on the address returned by new. Also, you should ideally avoid having two pointers pointing to the same address because performing delete on any one would invalidate the other. Your program should also not be written in such a way that you have any uncertainty about the validity of pointers used.

Q. When should I use new(nothrow)?

A. If you don’t want to handle the exception std::bad_alloc, you use the nothrow version of the operator new, which returns NULL when the requested allocation fails. If using the nothrow version, remember to check for pointer validity by checking against NULL.

Q. I can call a function to calculate area using the following two methods:

void CalculateArea (const double* const ptrRadius, double* const ptrArea);

void CalculateArea (const double& radius, double& area);

Which variant should I prefer?

A. Use the latter one, which uses references, as references cannot be invalid, whereas pointers can be. In addition, it’s simpler.

Q. I have a pointer:

int number = 30;

const int* pointToAnInt = &number;

I understand that I cannot change the value of number using the pointer pointToAnInt due to the const declaration. Can I assign pointToAnInt to a non-const pointer and then use it to manipulate the value contained in the integer number?

A. No, you cannot change the const-correctness of the pointer:

int* pAnother = pointToAnInt; // error

Q. Why should I bother passing values to a function by reference?

A. You don’t need to so long as it doesn’t affect your program performance much. However, if your function parameters accept objects that are quite heavy (that is, large in bytes), then passing by value would be quite an expensive operation. Your function call would be a lot more efficient in using references. Remember to use const generously, except where the function needs to store a result in a variable.

Q. What is the difference between these two declarations?

int myNumbers[100];

int* myArrays[100];

A. myNumbers is an array of integers—that is, myNumbers is a pointer to a memory location that holds 100 integers and points to the first one, at index 0. It is the static alternative to the following:

int* myNumbers = new int [100]; // dynamically allocated array

// use myNumbers

delete[] myNumbers;

nmyArrays, on the other hand, is an array of 100 pointers, where each pointer is capable of pointing to an integer or an array of integers.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Why can’t you assign a const reference to a non-const reference?

2. Are new and delete functions?

3. What is the nature of the value contained in a pointer variable?

4. What operator would you use to access the data pointed to by a pointer?

Exercises

1. What is displayed when these statements are executed:

0: int number = 3;

1: int* pNum1 = &number;

2:_*pNum1 = 20;

3: int* pNum2 = pNum1;

4: number *= 2;

5: cout << *pNum2;

2. What are the similarities and differences between these three overloaded functions:

int DoSomething(int num1, int num2);

int DoSomething(int& num1, int& num2);

int DoSomething(int* pNum1, int* pNum2);

3. How would you change the declaration of pNum1 in Exercise 1 at Line 1 to make the assignment at Line 3 invalid? (Hint: It has something to do with ensuring that pNum1 cannot change the data pointed to.)

4. BUG BUSTERS: What is wrong with this code?

#include <iostream>

using namespace std;

int main()

{

 int* pointToAnInt = new int;

 pointToAnInt = 9;

 cout << “The value at pointToAnInt : “ << *pointToAnInt;

 delete pointToAnInt;

 return 0;

}

5. BUG BUSTERS: What is wrong with this code?

#include <iostream>

using namespace std;

int main()

{

 int* pointToAnInt = new int;

 int* pNumberCopy = pointToAnInt;

 *pNumberCopy = 30;

 cout << *pointToAnInt;

 delete pNumberCopy;

 delete pointToAnInt;

 return 0;

}

6. What is the output of the program in Exercise 5 when that program is corrected?

Part II: Fundamentals of Object-Oriented C++ Programming

Lesson 9. Classes and Objects

So far you have explored simple programs that start execution at main(), include local and global variables and constants, and feature execution logic organized into function modules that accept parameters and return values. The programming style thus far has been procedural, and you haven’t seen an object-oriented approach yet. In this lesson, you will begin to learn the basics of object-oriented programming using C++.

In this lesson, you learn

• What classes and objects are

• How classes help you consolidate data with functions that work on them

• About constructors, copy constructors, and the destructor

• What move constructors are

• Object-oriented concepts of encapsulation and abstraction

• What the this pointer is about

• What a struct is and how it differs from a class

The Concept of Classes and Objects

Imagine that you are writing a program that models a human being, like yourself. This human being needs to have an identity, including a name, date of birth, place of birth, and gender—information that makes the person unique. In addition, the human should be able to perform certain functions, such as talk and introduce himself or herself, among others. Thus, a human being can be modeled as illustrated in Figure 9.1.

[image: Images]

Figure 9.1 A broad representation of a human.

To model a human in a program, you need a construct that enables you to group within it the attributes that define a human (data) and the activities a human can perform (functions), using the available attributes. Such a construct is called a class.

Declaring a Class

You declare a class by using the keyword class followed by the name of the class and then a statement block {...} that encloses a set of member attributes and member functions within curly braces, terminated by a semicolon (;).

A declaration of a class tells the compiler about the class and its properties. Declaration of a class alone does not make a difference to the execution of a program, as the class needs to be used just the same way as a function would need to be invoked.

A class that models a human looks like this (though you should ignore the syntactic shortcomings for the moment):

class Human

{

 // Member attributes:

 string name;

 string dateOfBirth;

 string placeOfBirth;

 string gender;

 // Member functions:

 void Talk(string textToTalk);

 void IntroduceSelf();

 ...

};

Needless to say, IntroduceSelf() uses Talk() and some of the data attributes that are grouped within the class Human. Thus, in the keyword class, C++ provides a powerful way to create your own data type that allows you to encapsulate attributes and functions that work using those attributes. All attributes of a class—in this case name, dateOfBirth, placeOfBirth, and gender—and all functions declared within it—namely Talk() and IntroduceSelf()—are called members of the class Human.

Encapsulation, which is the ability to logically group data and functions that work using it, is an important property of object-oriented programming.

Note

You might often encounter the term method. A method is essentially a function that is member of a class.

An Object as an Instance of a Class

A class is like a blueprint, and declaring a class alone has no effect on the execution of a program. The real-world avatar of a class at program execution time is an object. To use the features of a class, you typically create an instance of that class, called an object. You use that object to access its member methods and attributes.

Creating an object of type class Human is similar to creating an instance of another type, say double:

double pi= 3.1415; // a variable of type double

Human firstMan; // firstMan: an object of class Human

Alternatively, you can dynamically create an instance of the class Human by using new as you would for another type, say an int:

int* pointsToNum = new int; // an integer allocated dynamically

delete pointsToNum; // de-allocating memory when done using

Human* firstWoman = new Human(); // dynamically allocated Human

delete firstWoman; // de-allocating memory

Accessing Members by Using the Dot Operator (.)

An example of a human would be Adam—a male, born in 1991 in California. You can create an instance called firstMan as seen below:

Human firstMan; // an instance i.e. object of Human

Just like every instance of class Human, firstMan has attributes such as dateOfBirth that can be accessed using the dot operator (.):

firstMan.dateOfBirth = “1991”;

This is because the attribute dateOfBirth belongs to the class Human; it is part of its blueprint, as shown in the class declaration. This attribute exists in reality—that is, at runtime—only when an object has been instantiated. The dot operator (.) helps you access attributes of an object. The same is true for methods such as IntroduceSelf():

firstMan.IntroduceSelf();

If you have a pointer firstWoman to an instance of the class Human, you can either use the pointer operator (->) to access members, as explained in the next section, or use the indirection operator (*) to reference the object following the dot operator:

Human* firstWoman = new Human();

firstWoman->IntroduceSelf(); // same as (*firstWoman).IntroduceSelf();

Note

Naming conventions continue to apply. A class name and member functions are declared in Pascal case (for example, IntroduceSelf()). Class member attributes are in camel case (for example, dateOfBirth).

When you instantiate an object of a class, you declare a variable with the type of that class. You therefore use camel case, which you have been using for variable names thus far (for example, firstMan).

Accessing Members by Using the Pointer Operator (->)

If an object has been instantiated on the free store using new or if you have a pointer to an object, then you use the pointer operator (->) to access the member attributes and functions:

Human* firstWoman = new Human();

firstWoman->dateOfBirth = “1993”;

firstWoman->IntroduceSelf();

delete firstWoman;

Listing 9.1 shows a compile-worthy form of the class Human featuring a new keyword, public.

Input

Listing 9.1 A Compile-Worthy Class Human

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: public:

 7: string name;

 8: int age;

 9:

10: void IntroduceSelf()

11: {

12: cout << “I am “ + name << “ and am “;

13: cout << age << “ years old” << endl;

14: }

15: };

16:

17: int main()

18: {

19: // An object of class Human with attribute name as “Adam”

20: Human firstMan;

21: firstMan.name = “Adam”;

22: firstMan.age = 30;

23:

24: // An object of class Human with attribute name as “Eve”

25: Human firstWoman;

26: firstWoman.name = “Eve”;

27: firstWoman.age = 28;

28:

29: firstMan.IntroduceSelf();

30: firstWoman.IntroduceSelf();

31: }

Output

I am Adam and am 30 years old

I am Eve and am 28 years old

Analysis

Lines 4 through 15 demonstrate the basic C++ class Human. Note the structure of the class Human and how this class has been used in main().

This class contains two member variables: one of type string called name at Line 7 and another of type int called age at Line 8. It also contains the function (also called a method) IntroduceSelf() in Lines 10 through 14. Lines 20 and 25 in main() instantiate two objects of the class Human, named firstMan and firstWoman, respectively. The lines following this instantiation of objects set the member variables of the objects firstMan and firstWoman by using the dot operator. Note that Lines 29 and 30 invoke the same function IntroduceSelf() on the two objects to create two distinct lines in the output. In a way, this program demonstrates how the objects firstMan and firstWoman are unique and individually distinct real-world representatives of an abstract type defined by the class Human.

Did you notice the keyword public in Line 6? It’s time you learned features that help you protect attributes your class should keep hidden from those using it.

The Keywords public and private

Information can be classified into at least two categories: data that you don’t mind the public knowing and data that is private. Gender is an example of information that most people may not mind sharing. However, income may be a private matter.

C++ enables you to model class attributes and methods as public or private. Public class members can be used by anyone in possession of an object of the class. Private class members can be used only within the class (or its “friends"). The C++ keywords public and private help you as the designer of a class decide what parts of the class can be invoked from outside it—for instance, from main()—and which cannot.

What advantages does this ability to mark attributes or methods as private present you as the programmer? Consider the declaration of the class Human and the member attribute age in particular:

class Human

{

private:

 // Private member data:

 int age;

 string name;

public:

 int GetAge()

 {

 return age;

 }

 void SetAge(int humansAge)

 {

 age = humansAge;

 }

// ...Other members and declarations

};

Assume an instance of a Human called eve:

Human eve;

When the user of this instance tries to access member age:

cout << eve.age; // compile error

this user gets a compile error akin to “Error: Human::age—cannot access private member declared in class Human.” The only permissible way to know the age would be to ask for it via the public method GetAge() supplied by the class Human and implemented in a way the programmer of the class thought was an appropriate way to share age:

cout << eve.GetAge(); // OK

GetAge() gives the programmer of the class Human the opportunity to know when age is being queried and share it in a way that suits. In other words, C++ allows the class to control what attributes it wants to expose and how it wants to expose them. If there were no GetAge() public member method implemented by the class Human, the class would effectively ensure that the user cannot query age at all. This feature can be useful in situations that are explained later in this lesson.

Note that Human::age cannot be assigned directly either:

eve.age = 22; // compile error

The only permissible way to set the age is via the method SetAge():

eve.SetAge(22); // OK

This has many advantages. The current implementation of SetAge() does nothing but directly set the member variable Human::age. However, you can use SetAge() to verify that the age being set is nonzero and not negative and thus validate external input:

class Human

{

private:

 int age;

public:

 void SetAge(int humansAge)

 {

 if (humansAge > 0)

 age = humansAge;

 }

};

Thus, C++ enables the designer of the class to control how data attributes of the class are accessed and manipulated.

Abstraction of Data via the Keyword private

C++ empowers you to decide what information remains unreachable to the outside world (that is, unavailable outside the class) via the keyword private. At the same time, it allows you to control access to even information declared private via methods that you have declared as public. Your implementation of a class can therefore abstract member information that classes and functions outside this class don’t need to have access to.

Going back to the example related to Human::age being a private member, you know that even in reality, many people don’t like to reveal their true age. If the class Human were required to tell an age two years younger than the current age, it could do so easily via a public function GetAge() that uses the Human::age parameter, reduces it by two, and supplies the result, as demonstrated by Listing 9.2.

Input

Listing 9.2 A Model of the Class Human Where the True age Is Abstracted from the User, and a Younger age Is Reported

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Human

 4: {

 5: private:

 6: // Private member data:

 7: int age;

 8:

 9: public:

10: void SetAge(int inputAge)

11: {

12: age = inputAge;

13: }

14:

15: // Human lies about his / her age (if over 30)

16: int GetAge()

17: {

18: if (age > 30)

19: return (age - 2);

20: else

21: return age;

22: }

23: };

24:

25: int main()

26: {

27: Human firstMan;

28: firstMan.SetAge(35);

29:

30: Human firstWoman;

31: firstWoman.SetAge(22);

32:

33: cout << “Age of firstMan “ << firstMan.GetAge() << endl;

34: cout << “Age of firstWoman “ << firstWoman.GetAge() << endl;

35:

36: return 0;

37: }

Output

Age of firstMan 33

Age of firstWoman 22

Analysis

Note the public method Human::GetAge() in Line 16. As the actual age contained in the private integer Human::age is not directly accessible, the only resort external users of this class have in querying an object of the class Human for attribute age is via the method GetAge(). Thus, the actual age held in Human::age is abstracted from the outside world. Indeed, our Human lies about its age, and GetAge() returns a reduced value for all humans who are older than 30, as shown in Lines 18 through 21.

Abstraction is an important concept in object-oriented languages. It empowers programmers to decide what attributes of a class need to remain known only to the class and its members, with nobody outside it (with the exception of those declared as its “friends") having access to it.

Constructors

A constructor is a special function (or method) invoked during the instantiation of a class to construct an object. Just like functions, constructors can also be overloaded.

Declaring and Implementing a Constructor

A constructor is a special function that takes the name of a class and returns no value. So, the class Human would have a constructor that is declared like this:

class Human

{

public:

 Human(); // declaration of a constructor

};

This constructor can be implemented either inline within the class or externally outside the class declaration. An implementation (also called definition) inside the class looks like this:

class Human

{

public:

 Human()

 {

 // constructor code here

 }

};

A variant that enables you to define the constructor outside the class’s declaration looks like this:

class Human

{

public:

 Human(); // constructor declaration

};

// constructor implementation (definition)

Human::Human()

{

 // constructor code here

}

Note

:: is called the scope resolution operator. For example, Human::dateOfBirth is referring to variable dateOfBirth declared within the scope of the class Human. Note that ::dateOfBirth refers to another variable with the same name dateOfBirth in a global scope.

When and How to Use Constructors

A constructor is always invoked during object creation, when an instance of a class is constructed. This makes a constructor a perfect place to initialize class member variables such as integers, pointers, and so on to values you choose. Take another look at Listing 9.2. Note that if you forgot to use SetAge(), the integer variable Human::age might contain an unknown value as that variable would not have been initialized. (Try it by commenting out Lines 28 and 31.) Listing 9.3 uses constructors to implement a better version of the class Human, where the variable age has been initialized.

Input

Listing 9.3 Using Constructors to Initialize Class Member Variables

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: private:

 7: string name;

 8: int age;

 9:

10: public:

11: Human() // constructor

12: {

13: age = 1; // initialization

14: cout << “Constructed an instance of class Human” << endl;

15: }

16:

17: void SetName (string humansName)

18: {

19: name = humansName;

20: }

21:

22: void SetAge(int humansAge)

23: {

24: age = humansAge;

25: }

26:

27: void IntroduceSelf()

28: {

29: cout << “I am “ + name << “ and am “;

30: cout << age << “ years old” << endl;

31: }

32: };

33:

34: int main()

35: {

36: Human firstWoman;

37: firstWoman.SetName("Eve");

38: firstWoman.SetAge (28);

39:

40: firstWoman.IntroduceSelf();

41: }

Output

Constructed an instance of class Human

I am Eve and am 28 years old

Analysis

In the output, you see a line that indicates object construction. Now, take a look at main(), which is defined in Lines 34 through 41. You see that the first line in output results from the creation (construction) of the object firstWoman in Line 36. The constructor Human::Human() in Lines 11 through 15 contains the cout statement, which contributes to this output. Note that the constructor initializes the integer age to zero. If you forget to use SetAge() on a newly constructed object, you can rest assured that the constructor will ensure that the value contained in the variable age is not a random integer but a definitive 1.

Note

A constructor that is invoked without arguments is called the default constructor. Programming a default constructor is optional.

If you don’t program any constructor, as shown in Listing 9.1, the compiler creates one for you. (It constructs member attributes but does not initialize plain old data types such as int to any specific value.)

Overloading Constructors

Constructors can be overloaded just as functions can. You can therefore write a constructor that requires Human to be instantiated with a name as a parameter, for example:

class Human

{

public:

 Human()

 {

 // default constructor code here

 }

 Human(string humansName)

 {

 // overloaded constructor code here

 }

};

Listing 9.4 demonstrates the application of overloaded constructors in creating an object of the class Human with a name supplied at the time of construction.

Input

Listing 9.4 A Human Class with Multiple Constructors

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: private:

 7: string name;

 8: int age;

 9:

10: public:

11: Human() // default constructor

12: {

13: age = 0; // initialized to ensure no junk value

14: cout << “Default constructor: name and age not set” << endl;

15: }

16:

17: Human(string humansName, int humansAge) // overloaded

18: {

19: name = humansName;

20: age = humansAge;

21: cout << “Overloaded constructor creates “;

22: cout << name << “ of “ << age << “ years” << endl;

23: }

24: };

25:

26: int main()

27: {

28: Human firstMan; // use default constructor

29: Human firstWoman ("Eve”, 20); // use overloaded constructor

30: }

Output

Default constructor: name and age not set

Overloaded constructor creates Eve of 20 years

Analysis

main() in Lines 26 through 30 is minimalistic and creates two instances of the class Human. firstMan uses the default constructor, and firstWoman uses the overloaded constructor, which supplies the name and age at instantiation. The output is the result of object construction only! You may appreciate that if the class Human had chosen not to support the default constructor, main() would’ve had no option but to construct every object of Human using the overloaded constructor, which takes name and age as a prerequisites—making it impossible to create a human without supplying a name or an age.

Tip

You can choose not to implement the default constructor to enforce object instantiation with parameters that are required by the overloaded constructor, as explained in the next section.

A Class Without a Default Constructor

In Listing 9.5, see how the class Human without the default constructor enforces the availability of a name and age as a prerequisite to instantiating an object.

Input

Listing 9.5 A Class with Overloaded Constructors and No Default Constructor

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: private:

 7: string name;

 8: int age;

 9:

10: public:

11: Human(string humansName, int humansAge)

12: {

13: name = humansName;

14: age = humansAge;

15: cout << “Overloaded constructor creates “ << name;

16: cout << “ of age “ << age << endl;

17: }

18:

19: void IntroduceSelf()

20: {

21: cout << “I am “ << name << “ and am “;

22: cout << age << “ years old” << endl;

23: }

24: };

25:

26: int main()

27: {

28: Human firstMan("Adam”, 25);

29: Human firstWoman("Eve”, 28);

30:

31: firstMan.IntroduceSelf();

32: firstWoman.IntroduceSelf();

33: return 0;

34: }

Output

Overloaded constructor creates Adam of age 25

Overloaded constructor creates Eve of age 28

I am Adam and am 25 years old

I am Eve and am 28 years old

Analysis

This version of the class Human has only one constructor that takes a string and an int as input parameters (see Line 11). There is no default constructor available, and given the presence of an overloaded constructor, the C++ compiler does not generate a default constructor for you. You therefore cannot create an object of the class Human like this:

Human firstMan; // error – no default constructor available

This example also demonstrates the ability to create an object of the class Human with name and age set at instantiation, and no possibility to change them later. This is because the name attribute of Human is stored as a private variable. Human::name cannot be accessed or modified by main() or by any entity that is not a member of the class Human. In other words, the user of the class Human is forced by the overloaded constructor to specify a name (and age) for every object she creates and is not allowed to change that name thereafter. This models a real-world scenario quite well, don’t you think? You were named at birth; people are allowed to know your name, but nobody (except you) has the authority to change it.

Constructor Parameters with Default Values

Just as functions can have parameters with default values specified, so can constructors. What you see in the following code is a slightly modified version of the constructor from Listing 9.5 at Line 11, where the age parameter has a default value of 25:

class Human

{

private:

 string name;

 int age;

public:

 // overloaded constructor (no default constructor)

 Human(string humansName, int humansAge = 25)

 {

 name = humansName;

 age = humansAge;

 cout << “Overloaded constructor creates “ << name;

 cout << “ of age “ << age << endl;

 }

 // ... other members

};

Such a class can be instantiated as follows:

Human adam("Adam"); // adam.age is assigned a default value 25

Human eve("Eve”, 18); // eve.age is assigned 18 as specified

Note

Note that a default constructor is a constructor that can be instantiated without arguments. A constructor with two parameters, both with default values as seen below, is hence a default constructor:

class Human

{

private:

 string name;

 int age;

public:

 // default values for both parameters

 Human(string humansName = “Adam”, int humansAge = 25)

 {

 name = humansName;

 age = humansAge;

 cout << “Overloaded constructor creates “;

 cout << name << “ of age “ << age;

 }

};

The class Human can still be instantiated without arguments:

Human adam; // Human takes default name “Adam”, age 25

Constructors with Initialization Lists

You have seen how useful constructors are in initializing member variables. Another way to initialize members is by using initialization lists. A variant of the constructor in Listing 9.5 using initialization lists would look like this:

class Human

{

private:

 string name;

 int age;

public:

 // two parameters to initialize members age and name

 Human(string humansName, int humansAge)

 :name(humansName), age(humansAge)

 {

 cout << “Constructed a human called “ << name;

 cout << “, “ << age << “ years old” << endl;

 }

// ... other class members

};

Thus, the initialization list is characterized by a colon (:) following the parameter declaration contained in parentheses ((...)), followed by an individual member variable and the value it is initialized to. This initialization value can be a parameter such as humansName or can even be a fixed value. Initialization lists can also be useful in invoking base class constructors with specific arguments. These are discussed again in Lesson 10, “Implementing Inheritance.”

You can see a version of the class Human that features a default constructor with parameters, default values, and an initialization list in Listing 9.6.

Input

Listing 9.6 A Default Constructor That Accepts Parameters with Default Values to Set Members Using Initialization Lists

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: private:

 7: int age;

 8: string name;

 9:

10: public:

11: Human(string humansName = “Adam”, int humansAge = 25)

12: :name(humansName), age(humansAge)

13: {

14: cout << “Constructed a human called “ << name;

15: cout << “, “ << age << “ years old” << endl;

16: }

17: };

18:

19: int main()

20: {

21: Human adam;

22: Human eve("Eve”, 18);

23:

24: return 0;

25: }

Output

Constructed a human called Adam, 25 years old

Constructed a human called Eve, 18 years old

Analysis

The constructor with initialization lists appears in Lines 11 through 16, where you can also see that the parameters have been given default values Adam for name and 25 for age. Hence, when an instance of the class Human called adam is created in Line 21, without arguments, its members are automatically assigned the default values. eve, is supplied with arguments on Line 22; these arguments become values that are assigned to Human::name and Human::age during construction.

Note

It is possible to define a constructor as a constant expression, too, by using the keyword constexpr. In special cases where such a construct would be useful from a performance point of view, you could use it at the constructor declaration:

class Sample

{

const char* someString;

public:

 constexpr Sample(const char* input)

 :someString(input)

 { // constructor code }

};

Tip

A constructor that contains parameters is also called a converting constructor. It implicitly converts the parameter list into the type being constructed. Before C++11, however, only constructors taking a single parameter were said to be converting. This changed with the support of initializer lists in C++11.

To avoid implicit conversions, you use the keyword explicit at the beginning of a constructor declaration.

Destructor

A destructor, like a constructor, is a special function. Whereas a constructor is invoked at object instantiation, a destructor is automatically invoked when an object is destroyed.

Declaring and Implementing a Destructor

A destructor looks like a function that takes the name of a class, and it has a tilde (~) preceding it. So, the class Human would have a destructor that is declared like this:

class Human

{

 ~Human(); // declaration of a destructor

};

This destructor can either be implemented inline in the class or externally, outside the class declaration. An implementation or definition inside the class looks like this:

class Human

{

public:

 ~Human()

 {

 // destructor code here

 }

};

A variant enabling you to define the destructor outside the class’s declaration looks like this:

class Human

{

public:

 ~Human(); // destructor declaration

};

// destructor definition (implementation)

Human::~Human()

{

 // destructor code here

}

As you can see, the declaration of a destructor differs from the declaration of a constructor slightly in that it contains a tilde (~). The role of the destructor is, however, opposite that of the constructor.

When and How to Use a Destructor

A destructor is always invoked when an object of a class is destroyed when it goes out of scope or is deleted via delete. This property makes a destructor the ideal place to reset variables and release dynamically allocated memory and other resources. The constructors, the destructor, and well-programmed operators are widely used in the implementation of utility classes such as std::string (a smarter alternative to char*) and container classes such as std::vector provided by the Standard Template Library (STL).

Note

Operators are explained in Lesson 12, “Operator Types and Operator Overloading.”

Let us analyze the sample class MyBuffer, shown in Listing 9.7, which allocates memory for a dynamic array of integers using new in the constructor and releases it in the destructor.

Input

Listing 9.7 A Simple Class That Encapsulates a Pointer to Ensure Deallocation via the Destructor

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class MyBuffer

 4: {

 5: private:

 6: int* myNums;

 7:

 8: public:

 9: MyBuffer(unsigned int length)

10: {

11: cout << “Constructor allocating for “ << length << “ integers” << endl;

12: myNums = new int[length]; // allocate memory

13: }

14:

15: ~MyBuffer()

16: {

17: cout << “Destructor releasing allocated memory” << endl;

18: delete[] myNums; // free allocated memory

19: }

20:

21: // other set and get functions to work with myNums

22: };

23:

24: int main()

25: {

26: cout << “How many integers would you like to store?” << endl;

27: unsigned int numsToStore = 0;

28: cin >> numsToStore;

29:

30: MyBuffer buf(numsToStore);

31:

32: return 0;

33: }

Output

How many integers would you like to store? 200

Constructor allocates 200 integers

Destructor releasing allocated memory

Another run:

How many integers would you like to store? 200000

Constructor allocates 200000 integers

Destructor releasing allocated memory

Analysis

The class MyBuffer essentially encapsulates the pointer MyBuffer::myNums and relieves you of the task of allocating memory as well as deallocating it in good time. The lines of utmost interest in this case are the constructor (..) in Lines 9 through 13 and the destructor ~MyBuffer() in Lines 15 through 19. The overloaded constructor enforces object creation with a compulsory input parameter length that contains the number of elements to be dynamically allocated. The destructor code does the job of ensuring that the memory allocated in the constructor is automatically returned to the system. It complements new in the constructor and performs delete[]. Note that nowhere in main() is there a new or a delete. In addition to abstracting the implementation of memory management from the user, the class MyBuffer also ensures technical correctness in releasing allocated memory. The destructor ~MyBuffer() is automatically invoked when main ends, and this is demonstrated in the output that executes the cout statements in the destructor.

Lesson 26, “Understanding Smart Pointers,” demonstrates the critical role the destructor plays in working with pointers in a smarter way.

Note

A destructor cannot be overloaded. A class can have only one destructor. If you forget to implement a destructor, the compiler creates and invokes a dummy destructor—that is, an empty one (which does no cleanup of dynamically allocated memory).

The Copy Constructor

In Lesson 7, “Organizing Code with Functions,” you learned that arguments passed to a function like Area() (shown in Listing 7.1) are copied:

double Area(double radius);

So, the argument sent as the parameter radius is copied when Area() is invoked. This rule applies to objects—that is, instances of classes—as well. However, shallow copying is a problem that needs to be addressed.

Shallow Copying and Associated Problems

Classes such as MyBuffer, shown in Listing 9.7, contain a pointer member myNums, which points to memory that is dynamically allocated in the constructor using new and deallocated in the destructor using delete[]. When an object of this class is copied, the pointer member is copied, but the pointed memory is not, resulting in two objects pointing to the same dynamically allocated buffer in memory. When an object is destructed, delete[] deallocates the memory, thereby invalidating the pointer copy held by the other object. Such copies are shallow and are a threat to the stability of the program, as Listing 9.8 demonstrates.

Input

Listing 9.8 The Problem in Passing Objects of a Class Such as MyBuffer by Value

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class MyBuffer

 4: {

 5: private:

 6: int* myNums;

 7:

 8: public:

 9: MyBuffer(unsigned int length)

10: {

11: cout << “Constructor allocates “ << length << “ integers” << endl;

12: myNums = new int[length]; // allocate memory

13: }

14:

15: ~MyBuffer()

16: {

17: cout << “Destructor releasing allocated memory” << endl;

18: delete[] myNums; // free allocated memory

19: }

20:

21: // other set and get functions to work with myNums

22: };

23:

24: void UseMyBuf(MyBuffer copyBuf)

25: {

26: cout << “Copy of buf will be destructed when function ends” << endl;

27: }

28:

29: int main()

30: {

31: cout << “How many integers would you like to store? “;

32: unsigned int numsToStore = 0;

33: cin >> numsToStore;

34:

35: MyBuffer buf(numsToStore);

36: UseMyBuf(buf); // send a copy

37:

38: return 0; // crash, at destruction of buf

39: }

Output

How many integers would you like to store? 25

Constructor allocates 25 integers

Copy of buf will be destructed when function ends

Destructor releasing allocated memory

Destructor releasing allocated memory

[image: Images]

Figure 9.2 Screenshot of crash caused by executing Listing 9.8 (in Microsoft Visual Studio debug mode).

Analysis

The error message when this code is compiled using g++ is a little more clear. It says:

free(): double free detected in tcache 2

Aborted (core dumped)

Apparently, it indicates that memory was freed twice. Why does the class MyBuffer, which worked just fine in Listing 9.7, crash in Listing 9.8? The only difference between Listing 9.7 and 9.8 is that a copy of buf was sent to UseMyBuf(), invoked in Line 36. The compiler generates a copy because the function UseMyBuf() has been declared to take a parameter by value and not by reference. In copying buf, the compiler performs a binary copy of plain old data such as integers, characters, and pointers. So the pointer value contained in buf.myNums has simply been copied; that is, copyBuf.myNums within the function UseMyBuf() points to the same memory location as buf.myNums. This is illustrated in Figure 9.3.

[image: Images]

Figure 9.3 Shallow copy of buf into copyBuf when UseMyBuf() is invoked.

The binary copy does not perform a deep copy of data at the pointed memory location, and you now have two objects of the class MyBuffer, containing pointers to the same location in memory; that is, buf.myNums and copyBuf.myNums point to the same block of memory. Thus, when the function UseMyBuf() ends, copyBuf, which is local to the function, goes out of scope and is destroyed. In the process, the destructor of the class MyBuffer is invoked, and the destructor code in Line 19 in Listing 9.8 releases the memory pointed to by copyBuf.myNums by using delete[]. When main() ends, buf goes out of scope and is destroyed. This time, however, Line 19 repeats a call to delete[] on a memory address that is no longer valid (as it is released and invalidated via the previous destruction of copyBuf). This double delete results in a crash.

Ensuring a Deep Copy Using a Copy Constructor

The copy constructor is an overloaded constructor that you supply. It is invoked by the compiler every time an object of the class is copied. When correctly programmed, it solves the shallow copy problems demonstrated in Listing 9.8.

You declare a copy constructor for the class MyBuffer as follows:

class MyBuffer

{

 MyBuffer(const MyBuffer& copySource); // copy constructor

};

MyBuffer::MyBuffer(const MyBuffer& copySource)

{

 // Copy constructor implementation code

}

Thus, a copy constructor is characterized by a parameter that accepts an object of the same class type by reference. This parameter is an alias of the source object and is the handle you have in writing your custom copy code. You would use the copy constructor to ensure a deep copy of all buffers in the source, as Listing 9.9 demonstrates.

Input

Listing 9.9 Defining a Copy Constructor to Ensure a Deep Copy of Dynamically Allocated Buffers

 0: #include <iostream>

 1: #include <algorithm>

 2: using namespace std;

 3:

 4: class MyBuffer

 5: {

 6: private:

 7: int* myNums;

 8: unsigned int bufLength;

 9:

10: public:

11: MyBuffer(unsigned int length)

12: {

13: bufLength = length;

14: cout << “Constructor allocates “ << length << “ integers” << endl;

15: myNums = new int[length]; // allocate memory

16: }

17:

18: MyBuffer(const MyBuffer& src) // copy constructor

19: {

20: cout << “Copy constructor creating deep copy” << endl;

21: bufLength = src.bufLength;

22: myNums = new int[bufLength];

23: copy(src.myNums, src.myNums + bufLength, myNums); // deep copy

24: }

25:

26: ~MyBuffer()

27: {

28: cout << “Destructor releasing allocated memory” << endl;

29: delete[] myNums; // free allocated memory

30: }

31:

32: void SetValue(unsigned int index, int value)

33: {

34: if (index < bufLength) // check for bounds

35: *(myNums + index) = value;

36: }

37:

38: void DisplayBuf()

39: {

40: for (unsigned int counter = 0; counter < bufLength; ++counter)

41: cout << *(myNums + counter) << “ “;

42:

43: cout << endl;

44: }

45: };

46:

47: void UseMyBuf(MyBuffer copyBuf)

48: {

49: cout << “Displaying copy of buf: “ << endl;

50: copyBuf.DisplayBuf();

51: }

52:

53: int main()

54: {

55: cout << “How many integers would you like to store? “;

56: unsigned int numsToStore = 0;

57: cin >> numsToStore;

58:

59: MyBuffer buf(numsToStore);

60: for (unsigned int counter = 0; counter < numsToStore; ++counter)

61: {

62: cout << “Enter value: “;

63: int valueEntered = 0;

64: cin >> valueEntered;

65: buf.SetValue(counter, valueEntered);

66: }

67:

68: cout << “Numbers in the buffer buf: “;

69: buf.DisplayBuf();

70: UseMyBuf(buf); // function receives a deep copy of buf

71:

72: return 0; // no crash, at destruction of buf

73: } 

Output

How many integers would you like to store? 3

Constructor allocates 3 integers

Enter value: 2020

Enter value: -596

Enter value: 42

Numbers in the buffer buf: 2020 -596 42

Copy constructor creating deep copy

Displaying copy of buf: 2020 -596 42

Destructor releasing allocated memory

Destructor releasing allocated memory

Analysis

Listing 9.9 contains a complete functional version of the class MyBuffer, including the SetValue() and DisplayBuf() functions. The most important part of it is the copy constructor in Lines 18 through 24. This copy constructor is implicitly invoked when line 70 is executed and a copy of buf is sent to the function UseMyBuf(). The copy constructor first allocates memory in the destination using new and then uses STL algorithm std::copy to perform a deep copy. This is illustrated in Figure 9.4.

[image: Images]

Figure 9.4 Illustration of a deep copy of the argument buf into copyBuf when the function UseMyBuf() is invoked.

The output of Listing 9.9 indicates that the memory address being pointed to by buffer is different in the copy; that is, two objects don’t point to the same dynamically allocated memory address. As a result, when the function UseMyBuf() returns and the parameter copyBuf is destroyed, the destructor code does a delete[] on the memory address that was allocated in the copy constructor and that belongs to this object. In doing so, it does not touch memory that is being pointed to by the original buf in main(). So, both functions end, and their respective objects are destroyed successfully without the application crashing.

Note

The copy constructor ensures a deep copy in a case such as a function call:

UseMyBuf(buf);

However, what if you tried copying via assignment?

MyBuffer anotherCopy(numsToStore);

anotherCopy = buf; // assignment doesn’t invoke copy constructor

This would still result in a shallow copy because you haven’t yet supplied a copy assignment operator=. In the absence of this operator, the compiler supplies a default operator that does a shallow copy.

The copy assignment operator is discussed in detail in Lesson 12. Listing 12.9 is an improved MyBuffer that implements the following:

MyBuffer::operator= (const MyBuffer& copySource)

{

 //... copy assignment operator code

}

Caution

Using const in the copy constructor declaration ensures that the copy constructor does not modify the source object being referred to.

In addition, the parameter in the copy constructor is passed by reference as a necessity. If this weren’t a reference, the copy constructor would itself invoke a copy, thus invoking itself again and so on until the system ran out of memory.

[image: Images]

Note

The class MyBuffer with a raw pointer member, int* myNums, is used as an example to explain the need for copy constructors.

If you were to program a class that needs to contain string data for storing names and so on, you could use std::string instead of char* and might not even need a copy constructor, given the absence of raw pointers. This is because the default copy constructor inserted by the compiler would ensure the invocation of all available copy constructors of member objects such as std::string.

Using Move Constructors to Improve Performance

In some cases, objects are subjected to copy steps automatically due to the nature and needs of the C++ language. Consider the following:

class MyBuffer

{

 // pick implementation from Listing 9.9

};

MyBuffer Copy(MyBuffer& source) // function

{

 MyBuffer copyForReturn(source. bufLength); // create copy

 return copyForReturn; // return by value invokes copy constructor

}

int main()

{

 MyBuffer buf1(5);

 MyBuffer buf2(Copy(buf1)); // invokes 2x copy constructor

 return 0;

}

As the comment indicates, in the instantiation of buf2, the copy constructor is invoked twice, and thus a deep copy is performed twice because of the call to the function Copy(buf1), which returns MyBuffer by value. However, this value that is returned is very temporary and is not available outside this expression. So, the copy constructor that is invoked in good faith by the C++ compiler is a burden on performance. This impact becomes significant if the class contains objects of great size.

To avoid such a performance bottleneck, C++ introduced the move constructor in addition to the copy constructor in C++11. The syntax of a move constructor is

// move constructor

MyBuffer(MyBuffer&& moveSource)

{

 if(moveSource.myNums != NULL)

 {

 myNums = moveSource. myNums; // take ownership i.e. ’move’

 moveSource.myNums = NULL; // set the move source to NULL

 }

}

When a move constructor is programmed, the compiler automatically opts to “move” the temporary resource and hence avoid a deep-copy step. With the move constructor implemented, the comment should be appropriately changed to the following:

MyBuffer buf2(Copy(buf1)); // invokes 1x copy, 1x move constructor

The move constructor is usually implemented with the move assignment operator, which is discussed in greater detail in Lesson 12. Listing 12.12 shows a better version of the class MyBuffer that implements the move constructor and the move assignment operator.

Different Uses of Constructors and the Destructor

You have learned a few important and basic concepts in this lesson, such as the concepts of constructors, destructor, and the abstraction of data and methods via keywords such as public and private. These concepts can be used to program classes that control how their instances can be constructed, copied, or destroyed, as well as how they expose data.

Let’s look at a few interesting patterns that help you solve many important design problems.

A Class That Does Not Permit Copying

Say that you are asked to model the constitution of your country. Your constitution permits one president. Your class President risks the following:

President ourPresident;

DoSomething(ourPresident); // duplicate created in passing by value

President clone;

clone = ourPresident; // duplicate via assignment

Clearly, you need to avoid this situation. Beyond modeling a certain constitution, you might be programming an operating system and need to model one local area network, one processor, and so on. In such a situation, you need to ensure that certain resources cannot be copied or duplicated. If you don’t declare a copy constructor, the C++ compiler inserts a default public copy constructor for you. This ruins your design and threatens your implementation. However, the C++ language gives you a solution to this design paradigm.

You can ensure that your class cannot be copied by declaring a private copy constructor. This ensures that the function call DoSomething(ourPresident) will cause a compile failure. To avoid assignment, you declare a private assignment operator.

Thus, the solution is as follows:

class President

{

private:

 President(const President&); // private copy constructor

 President& operator= (const President&); // private copy assignment operator

 // ... other attributes and methods

};

There is no need to implement the private copy constructor or assignment operator. Just declaring them as private is adequate and sufficient in fulfilling your goal of ensuring non-copyable objects of the class President.

A Singleton Class That Permits a Single Instance

The President class just discussed is good, but it cannot stop the creation of multiple presidents via instantiation of multiple objects:

President One, Two, Three;

Individually, these objects are non-copyable, thanks to the private copy constructors, but what you ideally need is a President class that has one, and only one, real-world manifestation; that is, you need to have only one object, and creation of additional ones needs to be prohibited. Welcome to the concept of a singleton class that uses private constructors, a private assignment operator, and a static instance member to create this (controversially) powerful pattern.

Tip

When the keyword static is used on a class’s data member, it ensures that the member is shared across all instances.

When static is used on a method, the method is shared across all instances of the class.

When static is used on a local variable declared within the scope of a function, it ensures that the variable retains its value between function calls.

The keyword static is an essential ingredient in creating a singleton class, as demonstrated in Listing 9.10.

Input

Listing 9.10 A Singleton Class President That Prohibits Copying, Assignment, and Multiple Instance Creation

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class President

 5: {

 6: private:

 7: President() {}; // private default constructor

 8: President(const President&); // private copy constructor

 9: const President& operator=(const President&); // assignment operator

10:

11: string name;

12:

13: public:

14: static President& GetInstance()

15: {

16: // static objects are constructed only once

17: static President onlyInstance;

18: return onlyInstance;

19: }

20:

21: string GetName()

22: { return name; }

23:

24: void SetName(string InputName)

25: { name = InputName; }

26: };

27:

28: int main()

29: {

30: President& onlyPresident = President::GetInstance();

31: onlyPresident.SetName("Abraham Lincoln");

32:

33: // uncomment lines to see how compile failures prohibit duplicates

34: // President second; // cannot access constructor

35: // President* third= new President(); // cannot access constructor

36: // President fourth = onlyPresident; // cannot access copy constructor

37: // onlyPresident = President::GetInstance(); // cannot access operator=

38:

39: cout << “The name of the President is: “;

40: cout << President::GetInstance().GetName() << endl;

41:

42: return 0;

43: }

Output

The name of the President is: Abraham Lincoln

Analysis

Take a quick look at main() in Lines 28 through 43. A host of commented lines show all the combinations possible in creating new instances or copies of a President class that won’t compile. Let’s analyze them one by one. Lines 34 and 35 try object creation on the stack and free store, respectively, using the default constructor, which is unavailable because it’s private, as declared in Line 7:

34: // President second; // cannot access constructor

35: // President* third= new President(); // cannot access constructor

Line 36 is an attempt at creating a copy of an existing object via the copy constructor (as assignment at creation time invokes the copy constructor), which is unavailable in main() because it is declared private in Line 8:

36: // President fourth = onlyPresident; // cannot access copy constructor

Line 37 makes an attempt at creating a copy via assignment, which does not work as the assignment operator is declared private in Line 9:

37: // OnlyPresident = President::GetInstance(); // cannot access operator=

Therefore, main() can never create an instance of the class President, and the only option left is attempted in Line 30, which uses the static function GetInstance() to get an instance of the class President. Because GetInstance() is a static member, it is like a global function that can be invoked without having an object as a handle. GetInstance(), implemented in Lines 14 through 19, uses the static variable onlyInstance to ensure that there is one and only one instance of the class President created. To understand this better, imagine that Line 17 is executed only once (static initialization), and hence GetInstance() returns the only available instance of the class President, regardless of how often President::GetInstance() is invoked.

Caution

Use the singleton pattern only where absolutely necessary, keeping future growth of the application and its features in perspective. Note that its very feature of restricting creation of multiple instances can become an architectural bottleneck when a use case comes up that requires multiple instances of the class.

For example, if your project were to change from modeling a nation to modeling the United Nations, which currently includes 193 member nations, each with its own president, clearly you would have an architectural problem if you used the singleton class President, which permits the existence of only one instance.

A Class That Prohibits Instantiation on the Stack

As explained in Lesson 7, the stack is a last-in, first-out (LIFO) setup in memory that is used to house variables local to a function. Space on the stack is often limited. If you are writing a database that may contain terabytes of data in its internal structures, you might want to ensure that a client of this class cannot instantiate it on the stack; instead, you would want to force it to create instances only on the free store. The key to ensuring this is declaring the destructor private:

class MonsterDB

{

private:

 ~MonsterDB(); // private destructor

 //... members that consume a huge amount of data

};

Declaring a private destructor ensures that you are not allowed to create an instance like this:

int main()

{

 MonsterDB myDatabase; // compile error

 // ... more code

 return 0;

}

This instance, if successfully constructed, would be on the stack. All objects on the stack get popped when the stack is unwound, and therefore the compiler would need to compile and invoke the destructor ~MonsterDB() at the end of main(). However, this destructor is private and therefore inaccessible, resulting in a compile failure.

A private destructor would not stop you from instantiating on the free store using new because such instances are not automatically destructed:

int main()

{

 MonsterDB* myDatabase = new MonsterDB(); // no error

 // ... more code

 return 0;

}

Do you see the memory leak here? Because the destructor is not accessible from main(), you cannot do a delete, either. The class MonsterDB needs to support is a public static member function that destroys the instance. (A class member would have access to the private destructor.) See Listing 9.11.

Input

Listing 9.11 A Database Class MonsterDB That Allows Object Creation Only on the Free Store (Using new)

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class MonsterDB

 4: {

 5: private:

 6: ~MonsterDB() {}; // private destructor prevents instances on stack

 7:

 8: public:

 9: static void DestroyInstance(MonsterDB* pInstance)

10: {

11: delete pInstance; // member can invoke private destructor

12: }

13:

14: void DoSomething() {} // sample empty member method

15: };

16:

17: int main()

18: {

19: MonsterDB* myDB = new MonsterDB(); // on free store

20: myDB->DoSomething();

21:

22: // uncomment next line to see compile failure

23: // delete myDB; // private destructor cannot be invoked

24:

25: // use static member to release memory

26: MonsterDB::DestroyInstance(myDB);

27:

28: return 0;

29: }

Output

The code snippet produces no output.

Analysis

The purpose of the code is just to demonstrate the programming of a class that prohibits instance creation on the stack. A private destructor, as shown in Line 6, is key. The static function DestroyInstance() in Lines 9 through 12 is required for memory deallocation because main() cannot invoke delete on myDB. You can test this by uncommenting Line 23.

Using Constructors to Convert Types

Earlier in this lesson, you learned that constructors can be overloaded—that is, take one or more parameters. Overloading is often used to convert one type to another. Let’s consider the class Human, which features an overloaded constructor that accepts an integer:

class Human

{

 int age;

public:

 Human(int humansAge): age(humansAge) {}

};

// Function that takes a Human as a parameter

void DoSomething(Human person)

{

 cout << “Human sent did something” << endl;

 return;

}

This constructor allows a conversion:

 Human kid(10); // convert integer in to a Human

 DoSomething(kid);

 DoSomething(5); // implicitly convert integer to Human!

So, why does this line work? The compiler knows that the class Human supports a constructor that accepts an integer and performs an implicit conversion for you: It creates an object of type Human using the integer you supplied and sent it as an argument to the function.

To avoid implicit conversions, you use the keyword explicit when declaring the constructor:

class Human

{

 int age;

public:

 explicit Human(int humansAge): age(humansAge) {}

};

Using explicit is not required, but in many cases it is a good programming practice. Listing 9.12 demonstrates a version of the class Human that does not permit implicit conversions.

Input

Listing 9.12 Using the Keyword explicit to Block Unintentional Implicit Conversions

 0: #include<iostream>

 1: using namespace std;

 2:

 3: class Human

 4: {

 5: int age;

 6: public:

 7: // explicit constructor blocks implicit conversions

 8: explicit Human(int humansAge) : age(humansAge) {}

 9: };

10:

11: void DoSomething(Human person)

12: {

13: cout << “Human did something” << endl;

14: return;

15: }

16:

17: int main()

18: {

19: Human kid(10); // explicit conversion is OK

20: Human anotherKid = Human(11); // explicit, OK

21: DoSomething(kid); // OK

22:

23: // Human anotherKid2 = 11; // error: implicit conversion not OK

24: // DoSomething(10); // implicit conversion, not OK

25:

26: return 0;

27: }

Output

Human did something

Analysis

The lines of code that don’t contribute to the output are as significant as those that do. main() in Lines 17 through 27 features variants of object instantiation of the class Human that is declared with an explicit constructor in Line 8. The lines that compile are attempts at explicit conversion, where an int has been used to instantiate a Human. Lines 23 and 24 are variants that involve implicit conversion. These lines, which are commented out, compile when you remove keyword explicit in Line 8. Thus, this example demonstrates how the keyword explicit protects against implicit conversions.

Tip

The problem of implicit conversions and avoiding them using the keyword explicit applies to operators, too. Remember to note the usage of explicit when you program conversion operators in Lesson 12.

The this Pointer

this is a reserved keyword that is applicable within the scope of a class and contains the address of the object. In other words, the value of this is &object. This is an important concept in C++. Within a class member method, when you invoke another member method, the compiler sends the this pointer as an implicit, invisible parameter in the function call:

class Human

{

private:

 void Talk (string statement)

 {

 cout << statement;

 }

public:

 void IntroduceSelf()

 {

 Talk("Bla bla"); // same as Talk(this, “Bla Bla")

 }

};

What you see here is the method IntroduceSelf() using the private member Talk() to print a statement on the screen. In reality, the compiler embeds the this pointer in calling Talk, which is invoked as Talk(this, “Bla bla").

From a programming perspective, this does not have too many applications, except where it is usually optional. For instance, the code to access age within SetAge(), as shown in Listing 9.2, can have a variant:

void SetAge(int humansAge)

{

 this->age = humansAge; // same as: age = humansAge

}

Note

Note that the this pointer is not sent to class methods declared as static because static functions are not connected to instances of the class. Instead, they are shared by all instances.

To use an instance variable in a static function, you explicitly declare a parameter and send the this pointer as an argument.

Using sizeof() with a Class

You have learned the fundamentals of defining your own type by using the keyword class, which enables you to encapsulate data attributes and methods that operate on that data. The operator sizeof(), covered in Lesson 3, “Using Variables, Declaring Constants,” is used to determine the memory requirement of a specific type, in bytes. This operator is valid for classes, too, and basically reports the sum of bytes consumed by each data attribute contained within the class declaration. Depending on the compiler you use, sizeof() might or might not include padding for certain attributes on word boundaries. Note that member functions and their local variables do not play a role in defining sizeof() for a class. See Listing 9.13.

Input

Listing 9.13 The Result of Using sizeof() on Classes and Their Instances

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class MyBuffer

 4: {

 5: private:

 6: int* myNums;

 7:

 8: public:

 9: MyBuffer(unsigned int length)

10: {

11: myNums = new int[length]; // allocate memory

12: }

13:

14: ~MyBuffer()

15: {

16: delete[] myNums; // free allocated memory

17: }

18:

19: // other set and get functions to work with myNums

20: };

21:

22: class Human

23: {

24: private:

25: int age;

26: string gender;

27: string name;

28:

29: public:

30: Human(const string& inputName, int inputAge, string inputGender)

31: : name(inputName), age (inputAge), gender(inputGender) {}

32:

33: int GetAge ()

34: { return age; }

35: };

36:

37: int main()

38: {

39: MyBuffer buf1(5); // buffer initialized to 5 integers

40: MyBuffer buf2(20);// buffer initialized to 20 integers

41:

42: cout << “sizeof(MyBuffer) = “ << sizeof(MyBuffer) << endl;

43: cout << “sizeof(buf1) = “ << sizeof(buf1) << endl;

44: cout << “sizeof(buf2) = “ << sizeof(buf2) << endl;

45:

46: Human firstMan("Adam”, 25, “man");

47: Human firstWoman("Eve”, 25, “woman");

48:

49: cout << “sizeof(Human) = “ << sizeof(Human) << endl;

50: cout << “sizeof(firstMan) = “ << sizeof(firstMan) << endl;

51: cout << “sizeof(firstWoman) = “ << sizeof(firstWoman) << endl;

52:

53: return 0;

54: }

Output

32-bit compiler output:

sizeof(MyBuffer) = 4

sizeof(buf1) = 4

sizeof(buf2) = 4

sizeof(Human) = 60

sizeof(firstMan) = 60

sizeof(firstWoman) = 60

64-bit compiler output:

sizeof(MyBuffer) = 8

sizeof(buf1) = 8

sizeof(buf2) = 8

sizeof(Human) = 88

sizeof(firstMan) = 88

sizeof(firstWoman) = 88

Analysis

In this output, you can see that the result of using sizeof() on a class is the same as using an object of the class. Hence, sizeof(MyBuffer) is the same as sizeof(buf1) because the number of bytes consumed by a class is essentially fixed at compile time. Don’t be surprised that buf1 and buf2 have the same size, in bytes, even though one contains 5 integers and the other 20; MyBuffer::myNums is an int*, a pointer whose size is fixed that is independent of the volume of data being pointed to. The output also demonstrates that a 64-bit compiler reserves more space in memory for the same type compared to a 32-bit compiler. This facilitates computations involving larger address and number ranges.

The Keyword struct and Its Differences from class

struct is a keyword from the days of C, and for all practical purposes, it is treated by a C++ compiler similarly to class. The exceptions are applicable to the access specifiers (public and private) when the programmer has not specified any. Unless specified, members in a struct are public by default (private for a class), and unless specified, a struct features public inheritance from a base struct (private for a class). Inheritance is discussed in detail in Lesson 10.

A struct form of the class Human from Listing 9.13 would be the following:

struct Human

{

private:

 int age;

 string gender;

 string name;

public:

 Human(const string& inputName, int inputAge, string inputGender)

 : name(inputName), age(inputAge), gender(inputGender) {}

 int GetAge()

 {

 return age;

 }

};

As you can see, struct Human is similar to class Human, and instantiation of an object of type struct would be similar to type class as well:

Human firstMan("Adam”, 25, “man"); // an instance of struct Human

Declaring a friend of a class

A class does not permit external access to its data members and methods that are declared private. This rule is waived for classes and functions that are disclosed as friend classes or functions, using the keyword friend, as shown in Listing 9.14.

Input

Listing 9.14 Using the friend Keyword to Allow an External Function DisplayAge() Access to Private Data Members

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: private:

 7: friend void DisplayAge(const Human& person);

 8: string name;

 9: int age;

10:

11: public:

12: Human(string humansName, int humansAge)

13: {

14: name = humansName;

15: age = humansAge;

16: }

17: };

18:

19: void DisplayAge(const Human& person)

20: {

21: cout << person.age << endl;

22: }

23:

24: int main()

25: {

26: Human firstMan("Adam”, 25);

27: cout << “Accessing private member age via friend function: “;

28: DisplayAge(firstMan);

29:

30: return 0;

31: }

Output

Accessing private member age via friend function: 25

Analysis

Line 7 contains a declaration that indicates to the compiler that the function DisplayAge() in the global scope is a friend and therefore is permitted special access to the private members of the class Human. You can comment out Line 7 to see a compile failure at Line 21.

Like functions, external classes can also be designated as trusted friends, as Listing 9.15 demonstrates.

Input

Listing 9.15 Using the friend Keyword to Allow an External Class Utility Access to Private Data Members

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Human

 5: {

 6: private:

 7: friend class Utility;

 8: string name;

 9: int age;

10:

11: public:

12: Human(string humansName, int humansAge)

13: {

14: name = humansName;

15: age = humansAge;

16: }

17: };

18:

19: class Utility

20: {

21: public:

22: static void DisplayAge(const Human& person)

23: {

24: cout << person.age << endl;

25: }

26: };

27:

28: int main()

29: {

30: Human firstMan("Adam”, 25);

31: cout << “Accessing private member age via friend class: “;

32: Utility::DisplayAge(firstMan);

33:

34: return 0;

35: }

Output

Accessing private member age via friend class: 25

Analysis

Line 7 indicates that the class Utility is a friend of the class Human. This friend declaration allows all methods in the class Utility access even to the private data members and methods in the class Human.

Union: A Special Data Storage Mechanism

A union is a special class type in which only one of the non-static data members is active at a time. Thus, a union can accommodate multiple data members, just like a class can, with the exception that only one of them can actually be used.

Declaring a Union

A union is declared using the keyword union, followed by the name of the union and its data members, within braces:

union UnionName

{

 Type1 member1;

 Type2 member2;

...

 TypeN memberN;

};

You could instantiate and use a union like this:

UnionName unionObject;

unionObject.member2 = value; // choose member2 as the active member

Note

Similar to a struct, a union has members that are public by default. Unlike a struct, however, a union cannot be used in an inheritance hierarchy.

In addition, the size of a union is always fixed at the size of the largest member contained in the union—even if that member is inactive in an instance of the union.

Where Would You Use a Union?

Often a union is used as a member of a struct to model a complex data type. In some implementations, the ability of a union to interpret the fixed memory space as another type is used for type conversions or memory reinterpretation—a practice that is controversial and not necessary, given alternatives.

Listing 9.16 demonstrates the declaration and use of unions.

Input

Listing 9.16 Declaration, Instantiation, and Size of Unions

 0: #include <iostream>

 1: using namespace std;

 2:

 3: union SimpleUnion

 4: {

 5: int num;

 6: char alphabet;

 7: };

 8:

 9: struct ComplexType

10: {

11: enum class DataType

12: {

13: Int,

14: Char

15: } Type;

16:

17: union Value

18: {

19: int num;

20: char alphabet;

21:

22: Value() {}

23: ~Value() {}

24: }value;

25: };

26:

27: void DisplayComplexType(const ComplexType& obj)

28: {

29: switch (obj.Type)

30: {

31: case ComplexType::DataType::Int:

32: cout << “Union contains number: “ << obj.value.num << endl;

33: break;

34:

35: case ComplexType::DataType::Char:

36: cout << “Union contains character: “ << obj.value.alphabet << endl;

37: break;

38: }

39: }

40:

41: int main()

42: {

43: SimpleUnion u1, u2;

44: u1.num = 2100;

45: u2.alphabet = ’C’;

46: cout << “sizeof(u1) containing integer: “ << sizeof(u1) << endl;

47: cout << “sizeof(u2) containing character: “ << sizeof(u2) << endl;

48:

49: ComplexType myData1, myData2;

50: myData1.Type = ComplexType::DataType::Int;

51: myData1.value.num = 2017;

52:

53: myData2.Type = ComplexType::DataType::Char;

54: myData2.value.alphabet = ’X’;

55:

56: DisplayComplexType(myData1);

57: DisplayComplexType(myData2);

58:

59: return 0;

60: }

Output

sizeof(u1) containing integer: 4

sizeof(u2) containing character: 4

Union contains number: 2017

Union contains character: X

Analysis

The example demonstrates that sizeof() used with the union objects u1 and u2 returns the same amount of memory reserved for both objects, notwithstanding the fact that u1 is used to hold an integer and u2 a char (a char being smaller than an int). This is because the compiler reserves the amount of memory for a union that is consumed by the largest object it contains. ComplexType, defined in Lines 9 through 25, actually contains the enumeration DataType that is used to indicate the nature of the object stored in the union, in addition to the data member, which is a union called Value. This combination of a struct comprising an enumeration used to hold type information and a union used to hold value information is a popular application of the union. For example, the structure VARIANT, which is popularly used in Windows application programming, follows a similar approach. This combination is used by the function DisplayComplexType(), defined in Lines 27 through 39, which uses the enumeration in executing the right case in the supplied switch-case construct. For example, this union includes a constructor and a destructor; these are optional in Listing 9.16, given that the union contains plain old data types, but it may be required if a union is of another user-defined type, such as class or struct.

Tip

Unions give you the flexibility to store one among many permissible types. However, they do not stop you from accessing the contents of one type as another. That is, unions do not enforce type safety. C++17 introduced the ability to use a type-safe alternative to union called std::variant.

Using Aggregate Initialization on Classes and structs

The following initialization syntax is called an aggregate initialization syntax:

Type objectName = {argument1, ..., argumentN};

Alternatively, it can take this form:

Type objectName {argument1, ..., argumentN};

Aggregate initialization can be applied to an aggregate, and therefore it is important to understand what data types fall under this category.

You already saw examples of aggregate initialization in the initialization of arrays in Lesson 4, “Managing Arrays and Strings”:

int myNums[] = { 9, 5, -1 }; // myNums is int[3]

char hello[6] = { ’h’, ’e’, ’l’, ’l’, ’o’, ’ \0’ };

The term aggregate, however, is not limited to arrays of simple types like integers or characters but extends to classes (and therefore structs and unions), too. There are restrictions imposed by the standard on the specification of a struct or a class that can be called an aggregate. These restrictions can be nuanced, depending on the version of the C++ standard that you refer to. However, it can be safely said that classes/structs can be initialized as aggregates when they fulfill the following criteria: they do not contain a user-defined constructor, they comprise public and non-static data members; they do not contain private or protected data members; they do not contain virtual member functions; they do not use inheritance or only public inheritance (that is, no private, protected, or virtual inheritance).

Tip

Inheritance is explained in detail in Lesson 10, “Implementing Inheritance,” and Lesson 11, “Polymorphism.”

Thus, the following struct fulfills the prerequisites of being an aggregate and, hence, can be initialized as one:

struct Aggregate1

{

 int num;

 double pi;

};

Initialization:

Aggregate1 a1{ 2017, 3.14 };

Another example:

struct Aggregate2

{

 int num;

 char hello[6];

 int impYears[5];

};

Initialization:

Aggregate2 a2 {42, {’h’, ’e’, ’l’, ’l’, ’o’}, {1998, 2003, 2011, 2014, 2017}};

Listing 9.17 demonstrates aggregate initialization applied to classes and structs.

Input

Listing 9.17 Aggregate Initialization on Class Type

 0: #include <iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: class Aggregate1

 5: {

 6: public:

 7: int num;

 8: double pi;

 9: };

10:

11: struct Aggregate2

12: {

13: char hello[6];

14: int impYears[3];

15: string world;

16: };

17:

18: int main()

19: {

20: int myNums[] = { 9, 5, -1 }; // myNums is int[3]

21: Aggregate1 a1{ 2023, 3.14 };

22: cout << “Pi is approximately: “ << a1.pi << endl;

23:

24: Aggregate2 a2{ {’h’, ’e’, ’l’, ’l’, ’o’}, {2017, 2020, 2023}, “world”};

25:

26: // Alternatively

27: Aggregate2 a2_2{’h’, ’e’, ’l’, ’l’, ’o’, ’\0’, 2017, 2020, 2023, “world”};

28:

29: cout << a2.hello << ’ ’ << a2.world << endl;

30: cout << “C++ standard update scheduled in: “ << a2.impYears[2] << endl;

31:

32: return 0;

33: }

Output

Pi is approximately: 3.14

hello world

C++ standard update scheduled in: 2023

Analysis

The example demonstrates how you can use aggregate initialization in instantiating classes (or structs). Aggregate1, defined in Lines 4 through 9, is a class with public data members, and Aggregate2, defined in Lines 11 through 16, is a struct. Lines 21, 24, and 27 demonstrate aggregate initialization on the class and struct, respectively. Note how some members are an array and how a std::string member contained in Aggregate2 has been initialized using this construct in Line 24.

Caution

Aggregate initialization initializes only the first non-static member of a union. The aggregate initialization of the unions declared in Listing 9.16 would be

43: SimpleUnion u1{ 2100 }, u2{ ’C’ };

// In u2, member num (type int) is initialized to ’C’ (ASCII 67)

// Although, you intended to initialize member alphabet (type char)

Therefore, for the sake of clarity, it may be a good idea to avoid using aggregate initialization syntax on a union.

constexpr with Classes and Objects

You were introduced to constexpr in Lesson 3, where you learned that constexpr offers a powerful way to improve the performance of a C++ application. By marking functions that operate on constants or const expressions as constexpr, you instruct the compiler to evaluate those functions and insert their result instead of inserting instructions that compute the result when the application is executed. This keyword can also be used with classes and objects that evaluate as constants, as demonstrated in Listing 9.18. Note that the compiler ignores constexpr when a function or class is used with entities that are not constant.

Input

Listing 9.18 Using constexpr with the Human Class

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Human

 4: {

 5: int age;

 6: public:

 7: constexpr Human(int humansAge):age(humansAge) {}

 8: constexpr int GetAge() const { return age; }

 9: };

10:

11: int main()

12: {

13: constexpr Human somePerson(15);

14: const int hisAge = somePerson.GetAge();

15:

16: Human anotherPerson(45); // not constant expression

17:

18: return 0;

19: }

Output

The code snippet produces no output.

Analysis

Note the slight modification in the class Human in Lines 3 through 9. It now uses constexpr in the declaration of its constructor and the member function GetAge(). This little addition tells the compiler to evaluate the creation and usage of instances of the class Human as a constant expression, where possible. somePerson in Line 13 is declared as a constant instance and used as one in Line 14. Therefore, this instance is likely to be evaluated by the compiler, and the code will be optimized for performance at execution. The instance anotherPerson in Line 16 is not declared to be a constant, and therefore its instantiation or usage may not be treated by the compiler as a constant expression.

Summary

This lesson taught you about one of the most fundamental concepts in C++: the class. You learned how a class encapsulates member data and member functions. You saw how access specifiers such as public and private help you abstract data and functionality that entities external to the class don’t need to see. You learned the concept of copy constructors and the importance of using them to ensure a deep copy of dynamically allocated member data. You saw how move constructors help reduce unnecessary copy steps. You saw some special cases where all these elements come together to help you implement design patterns such as the singleton.

Q&A

Q. What is the difference between an instance of a class and an object of that class?

A. There is essentially no difference. When you instantiate a class, you get an instance that can also be called an object.

Q. What is a better way to access members: using the dot operator (.) or using the pointer operator (->)?

A. If you have a pointer to an object, the pointer operator is the best option. If you have instantiated an object as a local variable on the stack, the dot operator is the best option.

Q. Should I always program a copy constructor?

A. If your class’s data members are well-programmed smart pointers, string classes, or STL containers such as std::vector, then the default copy constructor inserted by the compiler ensures that their respective copy constructors are invoked. However, if your class has raw pointer members (such as int* for a dynamic array instead of std::vector<int>), you need to supply a correctly programmed copy constructor that ensures a deep copy of an array during function calls where an object of the class is passed by value.

Q. My class has only one constructor that has been defined with a parameter with a default value. Is this still a default constructor?

A. Yes. If an instance of a class can be created without arguments, then the class is said to have a default constructor. A class can have only one default constructor.

Q. Why do some code examples in this lesson use functions such as SetAge() to set the integer Human::age? Why not make age public and assign it as needed?

A. From a technical viewpoint, making Human::age a public member would work as well. However, from a design point of view, keeping member data private is a good idea. Using accessor functions such as GetAge() and SetAge() is a refined and scalable way to access this private data, allowing you to perform error checks, for instance, before the value of Human::age is set or reset.

Q. Why is the parameter of a copy constructor one that takes the copy source by reference?

A. For one thing, the compiler expects the copy constructor to be that way. This is because a copy constructor would invoke itself if it accepted the copy source by value, which would result in an endless copy loop.

Q. Are class and struct similar?

A. In principle, yes, they are similar—with minor differences. When you don’t specify the access qualifier (private or public) of a member, class assumes them to be private by default, whereas struct assumes them to be public. The same is true for public and private inheritances.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. When you create an instance of a class using new, where is the class created?

2. A class has a raw pointer int* that contains a dynamically allocated array of integers. Does sizeof() report different sizes, depending on the number of integers in the dynamic array?

3. All your class members are private, and your class does not contain any declared friend class or function. Who can access these members?

4. Can one class member method invoke another?

5. What is a constructor good for?

6. What is a destructor good for?

Exercises

1. BUG BUSTERS: What is wrong in the following class declaration?

Class Human

{

 int age;

 string name;

public:

 Human() {}

}

2. How would the user of the class in Exercise 1 access the member Human::age?

3. Write a better version of the class in Exercise 1 that initializes all parameters using an initialization list in the constructor.

4. Write a Circle class that computes the area and circumference, given a radius that is supplied to the class as a parameter at the time of instantiation. Pi should be contained in a constant private member that cannot be accessed from outside the circle.

Lesson 10. Implementing Inheritance

Object-oriented programming is based on four important concepts: encapsulation, abstraction, inheritance, and polymorphism. Inheritance is a powerful way to reuse attributes and is a stepping stone toward polymorphism.

In this lesson, you find out about

• Inheritance in the context of programming

• The C++ syntax of inheritance

• Public, private, and protected inheritance

• Multiple inheritance

• Problems caused by hiding base class methods and slicing

Basics of Inheritance

What Tom Smith inherits from his forefathers is first and foremost his family name that makes him a Smith. In addition, he inherits certain values that his parents have taught him and a skill at sculpting wood that has been the Smith family occupation for many generations. These attributes collectively identify Tom as a member of the Smith family tree.

In programming parlance, you are often faced with situations where components being managed have similar attributes, differing minutely in details or in behavior. One way to programmatically model this situation is by making every component a class, where each class implements all attributes and re-implements the common ones. Another solution is using inheritance to allow classes that are similar to derive from a base class that contains common attributes and implements common functionality. The derived classes overriding this base functionality implement behavior that makes each class unique; this is often the preferred way. Figure 10.1 illustrates inheritance in the world of object-oriented programming.

[image: Images]

Figure 10.1 Inheritance between classes.

Inheritance and Derivation

Figure 10.1 shows a diagrammatic relationship between a base class and its derived classes. It might not be easy right now to visualize what a base class or a derived class could be. Try to understand that a derived class inherits from the base class and in that sense is a base class (just as Tom is a Smith).

Note

The “is-a” relationship between a derived class and its base class is applicable only to public inheritance. This lesson starts with public inheritance to help you understand the concept of inheritance using the most frequent form of inheritance before moving on to private or protected inheritance.

To make understanding this concept easy, think of a base class Bird. Classes derived from Bird include the classes Crow, Parrot, and Kiwi. A Bird class would define the most basic attributes of a bird, such as “is feathered,” “has wings,” “lays eggs,” “can fly,” and so on. Derived classes such as Crow, Parrot, and Kiwi inherit these attributes and customize them. (For example, a Kiwi class that represents a flightless bird would contain no implementation of Fly().) Table 10.1 demonstrates a few more examples of inheritance.

Table 10.1 Examples of Public Inheritance Taken from Daily Life

[image: Images]

These examples show that when you put on your object-oriented programming glasses, you see examples of inheritance in many objects around you. Fish is a base class for a Tuna because a tuna, like a carp, is a fish. The Fish class presents all fish-like characteristics such as being cold-blooded. However, a tuna differs from carp in the way it looks and swims, as well as in the fact that it is a saltwater fish. Thus, Tuna and Carp inherit common characteristics from a common base class Fish, but they specialize the base class attributes to distinguish themselves from each other. This is illustrated in Figure 10.2.

[image: Images]

Figure 10.2 Hierarchical relationship between Tuna, Carp, and Fish.

A platypus can swim, but it is a special animal with mammalian characteristics such as feeding its young with milk, avian (bird-like) characteristics such as laying eggs, and reptilian characteristics such as being venomous. Thus, you can imagine a class Platypus inheriting from two base classes, Mammal and Bird, to inherit mammalian and avian features. This form of inheritance is called multiple inheritance, and it is discussed later in this lesson.

C++ Syntax of Derivation

How would you inherit the class Carp from the class Fish, or, in general, a class Derived from a class Base? C++ syntax for doing this would be the following:

class Base

{

 // ... base class members

};

class Derived: access-specifier Base

{

 // ... derived class members

};

access-specifier can be public (most frequently used), where a “derived class is a base class” relationship; private; or protected, for a “derived class has a base class” relationship.

An inheritance hierarchical representation for a class Carp that derives from the class Fish would be

class Fish // base class

{

 // ... Fish’s members

};

class Carp:public Fish // derived class

{

 // ... Carp’s members

};

A compile-worthy declaration of a class Carp and a class Tuna that derive from the class Fish is provided in Listing 10.1.

A Note About Terminology

When reading about inheritance, you will come across terms such as inherits from and derives from, which essentially mean the same thing.

Similarly, the base class is also called the superclass. A class that derives from the base class, also known as a derived class, can be called a subclass.

Input

Listing 10.1 A Simple Inheritance Hierarchy Demonstrated Using the Piscean World

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: bool isFreshWaterFish;

 7:

 8: void Swim()

 9: {

10: if (isFreshWaterFish)

11: cout << “Swims in lake” << endl;

12: else

13: cout << “Swims in sea” << endl;

14: }

15: };

16:

17: class Tuna: public Fish

18: {

19: public:

20: Tuna()

21: {

22: isFreshWaterFish = false;

23: }

24: };

25:

26: class Carp: public Fish

27: {

28: public:

29: Carp()

30: {

31: isFreshWaterFish = true;

32: }

33: };

34:

35: int main()

36: {

37: Carp myLunch;

38: Tuna myDinner;

39:

40: cout << “About my food:” << endl;

41:

42: cout << “Lunch: “;

43: myLunch.Swim();

44:

45: cout << “Dinner: “;

46: myDinner.Swim();

47:

48: return 0;

49: }

Output

About my food:

Lunch: Swims in lake

Dinner: Swims in sea

Analysis

Note Lines 37 and 38 in main(), which create instances of the classes Carp and Tuna, respectively, called myLunch and myDinner. Lines 43 and 46 are where you ask your lunch and dinner to swim by invoking the method Swim(). Now, look at the class definitions of Tuna in Lines 17 through 24 and Carp in Lines 26 through 33. As you can see, these classes are compact, with their constructors setting the Boolean flag in the base class Fish::isFreshWaterFish to the appropriate values. This flag is later used in the function Fish::Swim(). Neither of the two derived classes seems to define the method Swim() that you have managed to successfully invoke in main(). This is because Swim() is a public member of the base class Fish that the other classes inherit from, as defined in Lines 8 through 14. This public inheritance in Lines 17 and 26 automatically exposes the base class’s public members, including the method Swim(), through instances of the derived classes Carp and Tuna, which you invoke in main().

The Access Specifier Keyword protected

In Listing 10.1, the class Fish has a public attribute isFreshWaterFish that is set by the derived classes Tuna and Carp to customize (or specialize) the behavior of Fish and adapt it to saltwater and freshwater, respectively. However, Listing 10.1 exhibits a serious flaw: If you want, even main() could tamper with the Boolean flag Fish::isFreshWaterFish, which is public and hence open for manipulation from outside the class Fish:

myDinner.isFreshWaterFish = true; // but Tuna isn’t a fresh water fish!

Apparently, you need a mechanism that allows derived class members to modify chosen attributes of the base class while denying access to these attributes for everyone else. This means that you want the Boolean flag isFreshWaterFish in the class Fish to be accessible to the classes Tuna and Carp but not accessible to main(), which instantiates the classes Tuna or Carp. This is where the keyword protected helps you.

Note

protected, like public and private, is also an access specifier. When you declare a class attribute or function as protected, you are effectively making it accessible to classes that derive (and friends) from it and simultaneously making it inaccessible to everyone else outside the class, including main().

protected is the access specifier you should use if you want a certain attribute in a base class to be accessible to classes that derive from this base class, as demonstrated in Listing 10.2.

Input

Listing 10.2 A Better Fish Class, Using the protected Keyword to Expose Its Member Attribute Only to the Derived Classes

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: protected:

 6: bool isFreshWaterFish; // accessible only to derived classes

 7:

 8: public:

 9: void Swim()

10: {

11: if (isFreshWaterFish)

12: cout << “Swims in lake” << endl;

13: else

14: cout << “Swims in sea” << endl;

15: }

16: };

17:

18: class Tuna: public Fish

19: {

20: public:

21: Tuna()

22: {

23: isFreshWaterFish = false; // set protected member in base

24: }

25: };

26:

27: class Carp: public Fish

28: {

29: public:

30: Carp()

31: {

32: isFreshWaterFish = true;

33: }

34: };

35:

36: int main()

37: {

38: Carp myLunch;

39: Tuna myDinner;

40:

41: cout << “About my food” << endl;

42:

43: cout << “Lunch: “;

44: myLunch.Swim();

45:

46: cout << “Dinner: “;

47: myDinner.Swim();

48:

49: // uncomment line below to see that protected members

50: // are not accessible from outside the class hierarchy

51: // myLunch.isFreshWaterFish = false;

52:

53: return 0;

54: }

Output

About my food

Lunch: Swims in lake

Dinner: Swims in sea

Analysis

Despite the fact that the output of Listing 10.2 is the same as the output of Listing 10.1, there are a good number of fundamental changes to the class Fish, as defined in Lines 3 through 16. The first and most important change is that the Boolean member Fish::isFreshWaterFish is now a protected attribute, and, hence, it is not accessible via main(), as shown in Line 51. (If you uncomment it, you get a compiler error.) All the same, this member of Fish with the access specifier protected is accessible from the derived classes Tuna and Carp, as shown in Lines 23 and 32, respectively. What this little program effectively demonstrates is the use of keyword protected in ensuring that base class attributes that need to be inherited are protected from being accessed outside the class hierarchy.

This is an important aspect of object-oriented programming. You can combine data abstraction and inheritance to ensure that derived classes can safely inherit base class attributes that cannot be tampered with by anyone outside the hierarchical system.

Base Class Initialization: Passing Parameters to the Base Class

What if a base class contains an overloaded constructor that requires arguments at the time of instantiation? How would such a base class be instantiated when the derived class is being constructed? The answer lies in using initialization lists and in invoking the appropriate base class constructor via the constructor of the derived class, as shown in the following code:

class Base

{

public:

 Base(int someNumber) // overloaded constructor

 {

 // Use someNumber

 }

};

Class Derived: public Base

{

public:

 Derived(): Base(25) // instantiate Base with argument 25

 {

 // derived class constructor code

 }

};

This mechanism can be quite useful in the class Fish, where, by supplying a Boolean input parameter to the constructor of Fish that initializes Fish::isFreshWaterFish, this base class Fish can ensure that every derived class is forced to mention whether a fish is a freshwater one or a saltwater one, as shown in Listing 10.3.

Input

Listing 10.3 A Derived Class Constructor with Initialization Lists

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: protected:

 6: bool isFreshWaterFish; // accessible only to derived classes

 7:

 8: public:

 9: // Fish constructor

10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater){}

11:

12: void Swim()

13: {

14: if (isFreshWaterFish)

15: cout << “Swims in lake” << endl;

16: else

17: cout << “Swims in sea” << endl;

18: }

19: };

20:

21: class Tuna: public Fish

22: {

23: public:

24: Tuna(): Fish(false) {} // constructor initializes base

25: };

26:

27: class Carp: public Fish

28: {

29: public:

30: Carp(): Fish(true) {}

31: };

32:

33: int main()

34: {

35: Carp myLunch;

36: Tuna myDinner;

37:

38: cout << “About my food” << endl;

39:

40: cout << “Lunch: “;

41: myLunch.Swim();

42:

43: cout << “Dinner: “;

44: myDinner.Swim();

45:

46: return 0;

47: }

Output

About my food

Lunch: Swims in lake

Dinner: Swims in sea

Analysis

Fish now has a constructor that takes a default parameter that initializes Fish::isFreshWaterFish. Thus, the only way to create an object of Fish is by providing it a parameter that initializes the protected member. This way, the class Fish ensures that the protected member doesn’t contain a random value, especially if a derived class forgets to set it. The derived classes Tuna and Carp are now forced to define a constructor that instantiates the base class instance of Fish with the right parameter (true or false, indicating freshwater or otherwise), as shown in Lines 24 and 30, respectively.

Note

In Listing 10.3, you see that the Boolean member variable Fish::isFreshWaterFish was never accessed directly by a derived class, despite being a protected member, as this variable was set via the constructor of Fish.

To ensure maximum security, if the derived classes don’t need to access a base class attribute, remember to mark the attribute private. Therefore, a superior version of Listing 10.3 would feature Fish::isFreshWaterFish as private, for it is consumed only by the base class Fish. See Listing 10.4.

A Derived Class Overriding the Base Class’s Methods

If the class Derived implements the same functions with the same return values and signatures as in the class Base from which it inherits, it effectively overrides that method in the class Base, as shown in the following code:

class Base

{

public:

 void DoSomething()

 {

 // implementation code... Does something

 }

};

class Derived:public Base

{

public:

 void DoSomething()

 {

 // implementation code... Does something else

 }

};

Thus, if the method DoSomething() were to be invoked using an instance of Derived, it would not invoke the functionality in the class Base.

If the classes Tuna and Carp were to implement their own Swim() method that also exists in the base class as Fish::Swim(), then a call to Swim, as shown in main() from the following excerpt from Listing 10.3 would result in the local implementation of Tuna::Swim() being invoked, which would essentially override the base class’s Fish::Swim() method:

36: Tuna myDinner;

// ...other lines

44: myDinner.Swim();

This is demonstrated by Listing 10.4.

Input

Listing 10.4 The Derived Classes Tuna and Carp Overriding the Method Swim() in the Base Class Fish

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: private:

 6: bool isFreshWaterFish;

 7:

 8: public:

 9: // Fish constructor

10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater){}

11:

12: void Swim()

13: {

14: if (isFreshWaterFish)

15: cout << “Swims in lake” << endl;

16: else

17: cout << “Swims in sea” << endl;

18: }

19: };

20:

21: class Tuna: public Fish

22: {

23: public:

24: Tuna(): Fish(false) {}

25:

26: void Swim()

27: {

28: cout << “Tuna swims real fast” << endl;

29: }

30: };

31:

32: class Carp: public Fish

33: {

34: public:

35: Carp(): Fish(true) {}

36:

37: void Swim()

38: {

39: cout << “Carp swims real slow” << endl;

40: }

41: };

42:

43: int main()

44: {

45: Carp myLunch;

46: Tuna myDinner;

47:

48: cout << “About my food” << endl;

49:

50: cout << “Lunch: “;

51: myLunch.Swim();

52:

53: cout << “Dinner: “;

54: myDinner.Swim();

55:

56: return 0;

57: }

Output

About my food

Lunch: Carp swims real slow

Dinner: Tuna swims real fast

Analysis

The output demonstrates that myLunch.Swim() in Line 51 invokes Carp::Swim(), defined in Lines 37 through 40. Similarly, myDinner.Swim() in Line 54 invokes Tuna::Swim(), defined in Lines 26 through 29. In other words, the implementation of Fish::Swim() in the base class Fish, as shown in Lines 12 through 18, is overridden by the identical function Swim(), which is defined by the classes Tuna and Carp that derive from Fish. The only way to invoke Fish::Swim() is by having main() use the scope resolution operator (::) in explicitly invoking Fish::Swim(), as shown later in this lesson.

Invoking Overridden Methods of a Base Class

In Listing 10.4, you saw an example of the derived class Tuna overriding the Swim() function in Fish by implementing its version of the function. Essentially:

Tuna myDinner;

myDinner.Swim(); // will invoke Tuna::Swim()

If you want to invoke Fish::Swim() in Listing 10.4 via main(), you need to use the scope resolution operator (::) in the following way:

myDinner.Fish::Swim(); // invokes Fish::Swim() using instance of Tuna

Listing 10.5 that follows shortly demonstrates the process of invoking a base class member using an instance of a derived class.

Invoking Methods of a Base Class in a Derived Class

Typically, Fish::Swim() would contain a generic implementation of swimming that is applicable to all fish—tuna and carp included. If your specialized implementations in Tuna:Swim() and Carp::Swim() need to reuse the base class’s generic implementation of Fish::Swim(), you use the scope resolution operator (::), as shown in the following code:

class Carp: public Fish

{

public:

 Carp(): Fish(true) {}

 void Swim()

 {

 cout << “Carp swims real slow” << endl;

 Fish::Swim(); // invoke base class function using operator::

 }

};

This is demonstrated in Listing 10.5.

Input

Listing 10.5 Using the Scope Resolution Operator (::) to Invoke Base Class Functions from a Derived Class and main()

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: private:

 6: bool isFreshWaterFish;

 7:

 8: public:

 9: // Fish constructor

10: Fish(bool isFreshWater) : isFreshWaterFish(isFreshWater){}

11:

12: void Swim()

13: {

14: if (isFreshWaterFish)

15: cout << “Swims in lake” << endl;

16: else

17: cout << “Swims in sea” << endl;

18: }

19: };

20:

21: class Tuna: public Fish

22: {

23: public:

24: Tuna(): Fish(false) {}

25:

26: void Swim()

27: {

28: cout << “Tuna swims real fast” << endl;

29: }

30: };

31:

32: class Carp: public Fish

33: {

34: public:

35: Carp(): Fish(true) {}

36:

37: void Swim()

38: {

39: cout << “Carp swims real slow” << endl;

40: Fish::Swim();

41: }

42: };

43:

44: int main()

45: {

46: Carp myLunch;

47: Tuna myDinner;

48:

49: cout << “Getting my food to swim” << endl;

50:

51: cout << “Lunch: “;

52: myLunch.Swim();

53:

54: cout << “Dinner: “;

55: myDinner.Fish::Swim();

56:

57: return 0;

58: }

Output

Getting my food to swim

Lunch: Carp swims real slow

Swims in lake

Dinner: Swims in sea

Analysis

Carp::Swim() in Lines 37 through 41 demonstrates calling the base class function Fish::Swim() using the scope resolution operator (::). Line 55, on the other hand, shows how you would use the scope resolution operator (::) to invoke the base class method Fish::Swim() from main(), given an instance of the derived class Tuna.

A Derived Class Hiding the Base Class’s Methods

Overriding can take an extreme form where Tuna::Swim() can potentially hide all overloaded versions of Fish::Swim() that are available, even causing compilation failure when the overloaded versions are used; hence, this form is called hidden. See Listing 10.6.

Input

Listing 10.6 Using Tuna::Swim() to Hide the Overloaded Method Fish::Swim(bool)

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: void Swim()

 7: {

 8: cout << “Fish swims... !” << endl;

 9: }

10:

11: void Swim(bool isFreshWaterFish) // overloaded version

12: {

13: if (isFreshWaterFish)

14: cout << “Swims in lake” << endl;

15: else

16: cout << “Swims in sea” << endl;

17: }

18: };

19:

20: class Tuna: public Fish

21: {

22: public:

23: void Swim()

24: {

25: cout << “Tuna swims real fast” << endl;

26: }

27: };

28:

29: int main()

30: {

31: Tuna myDinner;

32:

33: cout << “About my food” << endl;

34:

35: // myDinner.Swim(false);//failure: Tuna::Swim() hides Fish::Swim(bool)

36: myDinner.Swim();

37:

38: return 0;

39: }

Output

About my food

Tuna swims real fast

Analysis

This version of the class Fish is a bit different from the versions you have seen so far. Apart from being a minimal version to explain the problem at hand, this version of Fish contains two overloaded methods for Swim(): one that takes no parameters, shown in Lines 6 through 9, and another that takes a bool parameter, shown in Lines 11 through 17. As Tuna inherits public from Fish, as shown in Line 20, you would not be wrong to expect that both versions of the method Fish::Swim() would be available via an instance of the class Tuna. The fact is, however, that Tuna implementing its own Tuna::Swim(), as shown in Lines 23 through 26, results in the hiding of Fish::Swim(bool) from the compiler. If you uncomment Line 35, you get a compilation failure.

So, if you want to invoke the Fish::Swim(bool) function via an instance of Tuna, you can use any of the following solutions:

• Solution 1: Use the scope resolution operator in main():

myDinner.Fish::Swim();

• Solution 2: Use the keyword using in the class Tuna to unhide Swim() in the class Fish:

class Tuna: public Fish

{

public:

 using Fish::Swim; // unhide all Swim() methods in class Fish

 void Swim()

 {

 cout << “Tuna swims real fast” << endl;

 }

};

• Solution 3: Override all overloaded variants of Swim() in the class Tuna (such as by invoking methods of Fish::Swim(...) via Tuna::Fish(...)):

class Tuna: public Fish

{

public:

 void Swim(bool isFreshWaterFish)

 {

 Fish::Swim(isFreshWaterFish);

 }

 void Swim()

 {

 cout << “Tuna swims real fast” << endl;

 }

};

Order of Construction

When you create an object of the class Tuna that derives from the class Fish, is the constructor of Tuna invoked before or after the constructor of the class Fish? In addition, during the instantiation of objects in the class hierarchy, what is the order of member attributes such as Fish::isFreshWaterFish? Thankfully, the instantiation sequence is standardized. Base class objects are instantiated before the derived class. So, the Fish part of Tuna is constructed first so that member attributes—especially the protected and public ones contained in the class Fish—are ready for consumption when the class Tuna is instantiated. Within the instantiation of the classes Fish and Tuna, the member attributes (such as Fish::isFreshWaterFish) are instantiated before the constructor Fish::Fish() is invoked, ensuring that member attributes are ready before the constructor works with them. The same applies to Tuna::Tuna().

Order of Destruction

When an instance of Tuna goes out of scope, the sequence of destruction is the opposite the sequence of construction. The destructor of the derived class Tuna::~Tuna() is invoked first, followed by the destructor of the base class Fish::~Fish(). Listing 10.7 is a simple example that demonstrates the order of construction and the order of destruction.

Input

Listing 10.7 The Order of Construction and the Order of Destruction of the Base Class and Derived Class and Their Members

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class FishDummyMember

 4: {

 5: public:

 6: FishDummyMember()

 7: {

 8: cout << “FishDummyMember constructor” << endl;

 9: }

10:

11: ~FishDummyMember()

12: {

13: cout << “FishDummyMember destructor” << endl;

14: }

15: };

16:

17: class Fish

18: {

19: protected:

20: FishDummyMember dummy;

21:

22: public:

23: // Fish constructor

24: Fish()

25: {

26: cout << “Fish constructor” << endl;

27: }

28:

29: ~Fish()

30: {

31: cout << “Fish destructor” << endl;

32: }

33: };

34:

35: class TunaDummyMember

36: {

37: public:

38: TunaDummyMember()

39: {

40: cout << “TunaDummyMember constructor” << endl;

41: }

42:

43: ~TunaDummyMember()

44: {

45: cout << “TunaDummyMember destructor” << endl;

46: }

47: };

48:

49: class Tuna: public Fish

50: {

51: private:

52: TunaDummyMember dummy;

53:

54: public:

55: Tuna()

56: {

57: cout << “Tuna constructor” << endl;

58: }

59: ~Tuna()

60: {

61: cout << “Tuna destructor” << endl;

62: }

63:

64: };

65:

66: int main()

67: {

68: Tuna myDinner;

69: }

Output

FishDummyMember constructor

Fish constructor

TunaDummyMember constructor

Tuna constructor

Tuna destructor

TunaDummyMember destructor

Fish destructor

FishDummyMember destructor

Analysis

main() in Lines 66 through 69 is pretty short given the volume of output it generates. Instantiation of the class Tuna is enough to generate these lines of output because of the cout statements inserted into the constructors and destructors of all the classes involved. For the sake of understanding how member variables are instantiated and destroyed, you defined two dummy classes, FishDummyMember and TunaDummyMember, with cout in their constructors and destructors. The classes Fish and Tuna each contain a member of each of these dummy classes, as shown in Lines 20 and 52. The output indicates that when an object of the class Tuna is instantiated, instantiation actually starts at the top of the hierarchy. So, the base class Fish part of the class Tuna is instantiated first, and in the process, the members of the class Fish—that is, Fish::dummy—are instantiated first. This is then followed by the constructor of the class Fish, which is rightfully executed after the member attributes such as dummy have been constructed. After the base class has been constructed, the instantiation of Tuna continues first with instantiation of the member Tuna::dummy, followed by the execution of the constructor code in Tuna::Tuna(). The output demonstrates that the sequence of destruction is exactly the reverse.

Private Inheritance

Private inheritance differs from public inheritance (which is what you have seen up until now) in that the keyword private is used in the line where the derived class declares its inheritance from a base class:

class Base

{

 // ... base class members and methods

};

class Derived: private Base // private inheritance

{

 // ... derived class members and methods

};

Private inheritance of the base class means that all public members and attributes of the base class are private (that is, inaccessible) to anyone with an instance of the derived class. In other words, even public members and methods of the class Base can only be consumed by the class Derived but not by anyone else in possession of an instance of Derived.

This is in sharp contrast to the examples with Tuna and the base class Fish that you have been following since Listing 10.1. main() in Listing 10.1 could invoke the function Fish::Swim() on an instance of Tuna because Fish::Swim() is a public method and because the class Tuna derives from the class Fish using public inheritance.

Thus, for the world outside the inheritance hierarchy, private inheritance essentially does not imply an is-a relationship. As private inheritance allows base class attributes and methods to be consumed only by the subclass that derives from the base class, this relationship is also called a “has-a” relationship. Table 10.2 lists a few examples of private inheritance in some things you see around you in daily life.

Table 10.2 Examples of Private Inheritance Taken from Daily Life

[image: Images]

Listing 10.8 demonstrates private inheritance in a car’s relationship to its motor.

Input

Listing 10.8 A Car Class Related to the Motor Class via Private Inheritance

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Motor

 4: {

 5: public:

 6: void SwitchIgnition()

 7: {

 8: cout << “Ignition ON” << endl;

 9: }

10: void PumpFuel()

11: {

12: cout << “Fuel in cylinders” << endl;

13: }

14: void FireCylinders()

15: {

16: cout << “Vroooom” << endl;

17: }

18: };

19:

20: class Car:private Motor // private inheritance

21: {

22: public:

23: void Move()

24: {

25: SwitchIgnition();

26: PumpFuel();

27: FireCylinders();

28: }

29: };

30:

31: int main()

32: {

33: Car myDreamCar;

34: myDreamCar.Move();

35:

36: return 0;

37: }

Output

Ignition ON

Fuel in cylinders

Vroooom

Analysis

The class Motor, defined in Lines 3 through 18, is simple; it has three public member functions that switch ignition, pump fuel, and fire the cylinders. The class Car, as Line 20 demonstrates, inherits from Motor, using the keyword private. Thus, the public function Car::Move() invokes members from the base class Motor. If you try inserting the following in main():

myDreamCar.PumpFuel(); // cannot access base’s public member

it fails compilation with an error similar to error C2247: Motor::PumpFuel not accessible because ’Car’ uses ’private’ to inherit from ’Motor.’

Note

If another class, RaceCar, had to inherit from Car, then regardless of the nature of inheritance between RaceCar and Car, RaceCar would not have access to any public member or function of the base class Motor. This is because the relationship between Car and Motor is one of private inheritance, meaning that all entities other than Car have private access (that is, no access) to public and protected members of Base when using an instance of Car.

In other words, the most restrictive access specifier is dominant in the compiler’s calculation of whether one class should have access to a base class’s public or protected members.

Protected Inheritance

Protected inheritance differs from public inheritance in that the keyword protected is used in the line where the derived class declares its inheritance from a base class:

class Base

{

 // ... base class members and methods

};

class Derived: protected Base // protected inheritance

{

 // ... derived class members and methods

};

Protected inheritance is similar to private inheritance in the following ways:

• It also signifies a has-a relationship.

• It also lets the derived class access all public and protected members of Base.

• Those outside the inheritance hierarchy with an instance of Derived cannot access public members of Base.

However, protected inheritance is a bit different when it comes to the derived class being inherited from:

class Derived2: protected Derived

{

 // can access public & protected members of Base

};

The protected inheritance hierarchy allows the subclass of the subclass (that is, Derived2) access to public and protected members of the Base class, as shown in Listing 10.9. This would not be possible if the inheritance between Derived and Base were private.

Input

Listing 10.9 The RaceCar Class, Which Derives from the Car Class, Which Derives from the Motor Class, Using Protected Inheritance

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Motor

 4: {

 5: public:

 6: void SwitchIgnition()

 7: {

 8: cout << “Ignition ON” << endl;

 9: }

10: void PumpFuel()

11: {

12: cout << “Fuel in cylinders” << endl;

13: }

14: void FireCylinders()

15: {

16: cout << “Vroooom” << endl;

17: }

18: };

19:

20: class Car:protected Motor

21: {

22: public:

23: void Move()

24: {

25: SwitchIgnition();

26: PumpFuel();

27: FireCylinders();

28: }

29: };

30:

31: class RaceCar:protected Car

32: {

33: public:

34: void Move()

35: {

36: SwitchIgnition(); // RaceCar has access to members of

37: PumpFuel(); // base Motor due to “protected” inheritance

38: FireCylinders(); // between RaceCar & Car, Car & Motor

39: FireCylinders();

40: FireCylinders();

41: }

42: };

43:

44: int main()

45: {

46: RaceCar myDreamCar;

47: myDreamCar.Move();

48:

49: return 0;

50: }

Output

Ignition ON

Fuel in cylinders

Vroooom

Vroooom

Vroooom

Analysis

The class Car inherits using protected from Motor, as shown in Line 20. The class RaceCar inherits using protected from the class Car using protected, as shown in Line 31. As you can see, the implementation of RaceCar::Move() uses public methods defined in the base class Motor. This access to the ultimate base class Motor via intermediate base class Car is governed by the relationship between Car and Motor. If this were private instead of protected, RaceCar would have no access to the public members of Motor as the compiler would choose the most restrictive of the relevant access specifiers. Note that the nature of the relationship between the classes Car and RaceCar plays no role in access to the base class Motor, while the relationship between Car and Motor does. So, even if you change protected in Line 31 to public or to private, the fate of compilation of this program would remain unchanged.

Caution

Use private or protected inheritance only when you have to. In most cases where private inheritance is used, such as with Car and Motor, good alternatives exist. In this case, Motor could have been a member attribute of the class Car instead of being a superclass. By having it inherit from the class Motor, you have essentially restricted Car to having only one motor—for no significant gain over having an instance of the class Motor as a private member.

Cars have evolved, and a hybrid car, for instance, has an electric motor in addition to a conventional one. Our inheritance hierarchy for the class Car would be a bottleneck when used with such developments.

Note

Having an instance of Motor as a private member instead of inheriting from it is called composition or aggregation. The class Car might look like this:

class Car

{

private:

 Motor heartOfCar; // private member instead of base class

public:

 void Move()

 {

 heartOfCar.SwitchIgnition();

 heartOfCar.PumpFuel();

 heartOfCar.FireCylinders();

 }

};

This can be good design as it enables you to easily add more motors as member attributes to an existing Car class without changing its inheritance hierarchy or its design.

The Problem of Slicing

What happens when a programmer does the following?

Derived objDerived;

Base objectBase = objDerived;

Or, alternatively, what if a programmer does this?

void UseBase(Base input);

...

Derived objDerived;

UseBase(objDerived); // copy of objDerived will be sliced and sent

In both cases, an object of type Derived is being copied into another object of type Base, either explicitly via assignment or by being passed as an argument. What happens in these cases is that the compiler copies only the Base part of objDerived—and not the complete object. The information contained by the data members belonging to Derived is lost in the process. This is not anticipated, and this unwanted reduction of that part of data that makes Derived a specialization of Base is called slicing.

Caution

To avoid slicing problems, don’t pass parameters by value. Pass them as pointers to the base class or as a reference (optionally using const) to the base class.

Multiple Inheritance

Earlier in this lesson, you learned that in certain cases, multiple inheritance might be relevant, such as with a platypus. A platypus is part mammal, part bird, and part reptile. For such cases, C++ allows a class to derive from two or more base classes:

class Derived: access-specifier Base1, access-specifier Base2

{

 // class members

};

The class diagram for the Platypus class, as illustrated by Figure 10.3, looks different from the diagram for Tuna and Carp (refer to Figure 10.2).

[image: Images]

Figure 10.3 Relationship of the class Platypus to the classes Mammal, Reptile, and Bird.

Thus, the C++ representation of the class Platypus is as follows:

class Platypus: public Mammal, public Reptile, public Bird

{

 // ... platypus members

};

Listing 10.10 uses the Platypus class to demonstrate multiple inheritance.

Input

Listing 10.10 Using Multiple Inheritance to Model a Platypus That Is Part Mammal, Part Bird, and Part Reptile

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Mammal

 4: {

 5: public:

 6: void FeedBabyMilk()

 7: {

 8: cout << “Mammal: Baby says glug!” << endl;

 9: }

10: };

11:

12: class Reptile

13: {

14: public:

15: void SpitVenom()

16: {

17: cout << “Reptile: Shoo enemy! Spits venom!” << endl;

18: }

19: };

20:

21: class Bird

22: {

23: public:

24: void LayEggs()

25: {

26: cout << “Bird: Laid my eggs, am lighter now!” << endl;

27: }

28: };

29:

30: class Platypus: public Mammal, public Bird, public Reptile

31: {

32: public:

33: void Swim()

34: {

35: cout << “Platypus: Voila, I can swim!” << endl;

36: }

37: };

38:

39: int main()

40: {

41: Platypus realFreak;

42: realFreak.LayEggs();

43: realFreak.FeedBabyMilk();

44: realFreak.SpitVenom();

45: realFreak.Swim();

46:

47: return 0;

48: }

Output

Bird: Laid my eggs, am lighter now!

Mammal: Baby says glug!

Reptile: Shoo enemy! Spits venom!

Platypus: Voila, I can swim!

Analysis

Lines 30 through 37 provide a really compact definition of the class Platypus. This class essentially does nothing more than inherit from the three classes: Mammal, Reptile, and Bird. main() in Lines 41 through 44 is able to invoke these three characteristics of the individual base classes using an object of the derived class Platypus that is named realFreak. In addition to invoking the functions inherited from the classes Mammal, Bird, and Reptile, main() in Line 45 invokes Platypus::Swim(). This program demonstrates the syntax of multiple inheritance and also how a derived class exposes all the public attributes (in this case public member functions) of its many base classes.

Avoiding Inheritance Using final

There are instances when you need to ensure that absolutely no class can inherit from a class; that is, you want to be sure a particular class cannot be used as a base class. The specifier final, introduced with C++11, helps you do exactly this. A class declared as final cannot be used as a base class. In Listing 10.10, for instance, the class Platypus represents a well-evolved species. You may therefore want to ensure that this class is final, thereby blocking every possibility to inherit from it. A version of the class Platypus taken from Listing 10.10 and declared as final would look like this:

class Platypus final: public Mammal, public Bird, public Reptile

{

public:

 void Swim()

 {

 cout << “Platypus: Voila, I can swim!” << endl;

 }

};

In addition to being used with classes, final can also be used on member functions to control polymorphic behavior. This is discussed in Lesson 11, “Polymorphism.”

Note

Although a platypus can swim, in Listing 10.10, you still did not inherit Platypus from Fish. This is because a platypus isn’t a fish! That listing does not use inheritance for the convenience of reusing an existing Fish::Swim() function because that would be poor design. Public inheritance should signify an is-a relationship. It should not be used indiscriminately for the purpose of fulfilling goals related to code reuse. Those goals can still be achieved differently.

[image: Images]

[image: Images]

Summary

In this lesson, you learned the basics of inheritance in C++. You learned that public inheritance is an is-a relationship between the derived class and the base class, whereas private and protected inheritances create has-a relationships. You saw the application of the access specifier protected in exposing attributes of a base class only to the derived class but keeping them hidden from classes outside the inheritance hierarchy. You learned that protected inheritance differs from private in that the derived classes of the derived class can access public and protected members of the base class, which is not possible in private inheritance. You learned the basics of overriding methods and hiding them and how to avoid unwanted method hiding via the using keyword. Last but not the least, you became familiar with the specifier final, which ensures that a class cannot be derived from.

You are now ready to answer some questions and then continue to learning about the next major pillar of object-oriented programming: polymorphism.

Q&A

Q. I have been asked to model the class Mammal along with classes for a few mammals, such as Human, Lion, and Whale. Should I use an inheritance hierarchy? If so, which one should I use?

A. Because Human, Lion, and Whale are all mammals and essentially fulfill an is-a (mammal) relationship, you should use public inheritance where the class Mammal is the base class and classes such as Human, Lion, and Whale inherit from it.

Q. What is the difference between the terms derived class and subclass?

A. There is essentially no difference here. These terms are both used to refer to a class that derives from—that is, specializes—a base class.

Q. A derived class uses public inheritance in relating to its base class. Can it access the base class’s private members?

A. No. Private member attributes and functions cannot be accessed outside the class—not even by a derived class. The compiler always ensures that the most restrictive of the applicable access specifiers is in force. An exception to this rule applies to classes and functions that have been declared as friends.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material that was covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. You want some base class members to be accessible to the derived class but not outside the class hierarchy. What access specifier do you use?

2. If you pass an object of a derived class as an argument to a function that takes a parameter of the base class by value, what happens?

3. Which should you favor: private inheritance or composition?

4. How does the using keyword help you in an inheritance hierarchy?

5. The class Derived inherits private from the class Base. Another class, SubDerived, inherits public from the class Derived. Can SubDerived access public members of the class Base?

Exercises

1. In what order are the constructors invoked for the class Platypus, as shown in Listing 10.10?

2. Show how the classes Polygon, Triangle, and Shape are related to each other.

3. The class D2 inherits from the class D1, which inherits from the class Base. To keep D2 from accessing the public members in Base, what access specifier would you use, and where would you use it?

4. What is the nature of inheritance with this code snippet? Would your answer be different if Derived were a struct instead?

class Derived: Base

{

 // ... Derived members

};

5. BUG BUSTERS: What is the problem in this code?

class Derived: public Base

{

 // ... Derived members

};

void SomeFunc (Base value)

{

 // ...

}

Lesson 11. Polymorphism

Having learned the basics of inheritance, creating an inheritance hierarchy, and understanding that public inheritance essentially models an is-a relationship, it’s time to move on to consuming this knowledge in learning the holy grail of object-oriented programming: polymorphism.

In this lesson, you find out

• What polymorphism actually means

• What virtual functions do and how to use them

• What abstract base classes are and how to declare them

• What virtual inheritance means and where you need it

Basics of Polymorphism

”Poly” is Greek for many, and “morph” means form. Polymorphism is a feature of object-oriented languages that allows objects of different types to be treated similarly. This lesson focuses on polymorphic behavior that can be implemented in C++ via the inheritance hierarchy, also known as subtype polymorphism.

Need for Polymorphic Behavior

In Lesson 10, “Implementing Inheritance,” you found out how Tuna and Carp inherit the public method Swim() from Fish, as shown in Listing 10.1. It is, however, possible that both Tuna and Carp provide their own Tuna::Swim() and Carp::Swim() methods to make Tuna and Carp different swimmers. However, as each of them is also a Fish, if a user with an instance of Tuna uses the base class type to invoke Fish::Swim(), he ends up executing only the generic part Fish::Swim() and not Tuna::Swim(), even though that base class instance Fish is a part of an instance of Tuna. This problem is demonstrated in Listing 11.1.

Note

All the code samples in this lesson have been stripped to the bare essentials required to explain the topic in question and to keep the number of lines of code to a minimum to improve readability.

When you are programming, you should program your classes correctly and create inheritance hierarchies that make sense, keeping the design and purpose of the application in perspective.

Input

Listing 11.1 Invoking Methods Using an Instance of the Base Class Fish That Belongs to Tuna

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: void Swim()

 7: {

 8: cout << “Fish swims! “ << endl;

 9: }

10: };

11:

12: class Tuna:public Fish

13: {

14: public:

15: // override Fish::Swim

16: void Swim()

17: {

18: cout << “Tuna swims!” << endl;

19: }

20: };

21:

22: void MakeFishSwim(Fish& inputFish)

23: {

24: // calling Fish::Swim

25: inputFish.Swim();

26: }

27:

28: int main()

29: {

30: Tuna myDinner;

31:

32: // calling Tuna::Swim

33: myDinner.Swim();

34:

35: // sending Tuna as Fish

36: MakeFishSwim(myDinner);

37:

38: return 0;

39: }

Output

Tuna swims!

Fish swims!

Analysis

The class Tuna specializes the class Fish via public inheritance, as shown in Line 12. It also overrides Fish::Swim(). main() makes a direct call to Tuna::Swim() in Line 33 and passes myDinner (of type Tuna) as a parameter to MakeFishSwim(), which interprets it as a reference Fish&, as shown in the declaration in Line 22. In other words, MakeFishSwim(Fish&) doesn’t care if the object sent was a Tuna, handles it as a Fish, and invokes Fish::Swim(). So, the second line of output indicates that the same object Tuna produced the output of a Fish, not indicating any specialization thereof (and could as well be a Carp).

What the user would ideally expect is that an object of type Tuna behaves like a tuna even if the method invoked is Fish::Swim(). In other words, when inputFish.Swim() is invoked in Line 25, the user expects it to execute Tuna::Swim(). Such polymorphic behavior where an object of base class Fish can behave as its actual type; that is, derived class Tuna can be implemented by making Fish::Swim() a virtual function.

Polymorphic Behavior Implemented Using Virtual Functions

You have access to an object of type Fish, via pointer Fish* or reference Fish&. This object could have been instantiated solely as a Fish, or it could be part of a Tuna or Carp that inherits from Fish. You don’t know (and don’t care). You invoke the method Swim() using this pointer or reference, like this:

pFish->Swim();

myFish.Swim();

What you expect is that the object Fish swims as a Tuna if it is part of a Tuna, as a Carp if it is part of a Carp, or as an anonymous Fish if it wasn’t instantiated as part of a specialized class such as Tuna or Carp. You can ensure this by declaring the function Swim() in the base class Fish as a virtual function:

class Base

{

 virtual ReturnType FunctionName (Parameter List);

};

class Derived: public Base

{

 ReturnType FunctionName (Parameter List);

};

Use of the keyword virtual means that the compiler ensures that any overriding variant of the requested base class method is invoked. Thus, if Swim() is declared virtual, invoking myFish.Swim() (myFish being of type Fish&) results in Tuna::Swim() being executed, as demonstrated in Listing 11.2.

Input

Listing 11.2 The Effect of Declaring Fish::Swim() as a virtual Method

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: virtual void Swim()

 7: {

 8: cout << “Fish swims!” << endl;

 9: }

10: };

11:

12: class Tuna:public Fish

13: {

14: public:

15: // override Fish::Swim

16: void Swim()

17: {

18: cout << “Tuna swims!” << endl;

19: }

20: };

21:

22: class Carp:public Fish

23: {

24: public:

25: // override Fish::Swim

26: void Swim()

27: {

28: cout << “Carp swims!” << endl;

29: }

30: };

31:

32: void MakeFishSwim(Fish& inputFish)

33: {

34: // calling virtual method Swim()

35: inputFish.Swim();

36: }

37:

38: int main()

39: {

40: Tuna myDinner;

41: Carp myLunch;

42:

43: // sending Tuna as Fish

44: MakeFishSwim(myDinner);

45:

46: // sending Carp as Fish

47: MakeFishSwim(myLunch);

48:

49: return 0;

50: }

Output

Tuna swims!

Carp swims!

Analysis

The implementation of the function MakeFishSwim(Fish&) has not changed one bit since Listing 11.1. However, the output it produces is dramatically different. For one thing, Fish::Swim() has not been invoked at all because of the presence of overriding variants Tuna::Swim() and Carp::Swim() that have taken priority over Fish::Swim() because the latter has been declared as a virtual function. This is a very important development. It implies that even without knowing the exact type of Fish being handled, the implementation MakeFishSwim() could result in different implementations of Swim() defined in different derived classes being invoked, given only a base class instance.

This is polymorphism: treating different fishes as a common type Fish but ensuring that the right implementation of Swim() supplied by the derived types is executed.

Need for Virtual Destructors

There is a more sinister side to the feature demonstrated by Listing 11.1: unintentionally invoking base class functionality of an instance of type derived, when a specialization is available. What happens when a function calls the operator delete using a pointer of type Base* that actually points to an instance of type Derived?

Which destructor would be invoked? See Listing 11.3.

Input

Listing 11.3 A Function That Invokes the Operator delete on Base*

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: Fish()

 7: {

 8: cout << “Constructed Fish” << endl;

 9: }

10: ~Fish()

11: {

12: cout << “Destroyed Fish” << endl;

13: }

14: };

15:

16: class Tuna:public Fish

17: {

18: public:

19: Tuna()

20: {

21: cout << “Constructed Tuna” << endl;

22: }

23: ~Tuna()

24: {

25: cout << “Destroyed Tuna” << endl;

26: }

27: };

28:

29: void DeleteFish(Fish* pFish)

30: {

31: delete pFish;

32: }

33:

34: int main()

35: {

36: cout << “Allocating a Tuna on the free store:” << endl;

37: Tuna* pTuna = new Tuna;

38: cout << “Deleting the Tuna: “ << endl;

39: DeleteFish(pTuna);

40:

41: cout << “Instantiating a Tuna on the stack:” << endl;

42: Tuna myDinner;

43: cout << “Automatic destruction as it goes out of scope: \n”;

44:

45: return 0;

46: }

Output

Allocating a Tuna on the free store:

Constructed Fish

Constructed Tuna

Deleting the Tuna:

Destroyed Fish

Instantiating a Tuna on the stack:

Constructed Fish

Constructed Tuna

Automatic destruction as it goes out of scope:

Destroyed Tuna

Destroyed Fish

Analysis

main() creates an instance of Tuna on the free store, using new at Line 37, and then releases the allocated memory by using the service function DeleteFish() in Line 39. For the sake of comparison, another instance of Tuna is created as a local variable myDinner on the stack in Line 42 and goes out of scope when main() ends. The output is created by the cout statements in the constructors and destructors of classes Fish and Tuna. Note that while Tuna and therefore Fish were both constructed on the free store because of the operator new in Line 37, the destruction of allocated memory by DeleteFish() in Line 39 was partial. Destructor of Tuna was not invoked during delete; rather, only the destruction of Fish was invoked. This is in stark contrast to the construction and destruction of local member myDinner, where all constructors and destructors are invoked. Lesson 10 demonstrated in Listing 10.7 the correct order of construction and destruction of classes in an inheritance hierarchy, showing that all destructors need to be invoked, including ~Tuna(). Clearly, something is amiss.

This flaw means that the destructor of a deriving class that has been instantiated on the free store using new would not be invoked if delete is called using a pointer of type Base*. This can result in resources not being released, memory leaks, and so on and is a problem that is not to be taken lightly.

To avoid this problem, you use virtual destructors, as illustrated in Listing 11.4.

Input

Listing 11.4 Using Virtual Destructors to Ensure That Destructors in Derived Classes Are Invoked When Deleting a Pointer of Type Base*

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: Fish()

 7: {

 8: cout << “Constructed Fish” << endl;

 9: }

10: virtual ~Fish() // virtual destructor!

11: {

12: cout << “Destroyed Fish” << endl;

13: }

14: };

15:

16: class Tuna:public Fish

17: {

18: public:

19: Tuna()

20: {

21: cout << “Constructed Tuna” << endl;

22: }

23: ~Tuna()

24: {

25: cout << “Destroyed Tuna” << endl;

26: }

27: };

28:

29: void DeleteFish(Fish* pFish)

30: {

31: delete pFish;

32: }

33:

34: int main()

35: {

36: cout << “Allocating a Tuna on the free store:” << endl;

37: Tuna* pTuna = new Tuna;

38: cout << “Deleting the Tuna: “ << endl;

39: DeleteFish(pTuna);

40:

41: cout << “Instantiating a Tuna on the stack:” << endl;

42: Tuna myDinner;

43: cout << “Automatic destruction as it goes out of scope: \n”;

44:

45: return 0;

46: }

Output

Allocating a Tuna on the free store:

Constructed Fish

Constructed Tuna

Deleting the Tuna:

Destroyed Tuna

Destroyed Fish

Instantiating a Tuna on the stack:

Constructed Fish

Constructed Tuna

Automatic destruction as it goes out of scope:

Destroyed Tuna

Destroyed Fish

Analysis

The key improvement in Listing 11.4 over Listing 11.3 is the addition of the keyword virtual in Line 10, where the destructor of base class Fish has been declared. Note that this small change resulted in the compiler essentially executing Tuna::~Tuna() in addition to Fish::~Fish() when the operator delete was invoked on Fish*, which actually points to a Tuna, as shown in Line 31. This output also demonstrates that the sequence and the invocation of constructors and destructors are the same, regardless of whether the object of type Tuna is instantiated on the free store using new, as shown in Line 37, or as a local variable on the stack, as shown in Line 42.

Note

Always declare the base class destructor as virtual:

class Base

{

public:

 virtual ~Base() {}; // virtual destructor

};

This ensures that a pointer Base* cannot be used to invoke delete in such a way that instances of the deriving classes are not correctly destroyed.

How Do Virtual Functions Work? Understanding the Virtual Function Table

Note

This section is not a prerequisite to using polymorphism. Feel free to skip it or read it to feed your curiosity.

The function MakeFishSwim(Fish&) in Listing 11.2 ends up invoking the Carp::Swim() or Tuna::Swim() methods even though the programmer calls Fish::Swim() within it. Clearly, all that the compiler knows is that the function MakeFishSwim() will be invoked with arguments of type Fish&, but the function ends up executing different Swim() methods belonging to different derived classes. The selection of the right Swim() method is evidently a decision made at runtime, using logic that implements polymorphism, which is supplied by the compiler at compile time.

Consider a class Base that declares N virtual functions:

class Base

{

public:

 virtual void Func1()

 {

 // Func1 implementation

 }

 virtual void Func2()

 {

 // Func2 implementation

 }

 // .. so on and so forth

 virtual void FuncN()

 {

 // FuncN implementation

 }

};

The class Derived, which inherits from Base, overrides Base::Func2(), exposing the other virtual functions directly from the class Base:

class Derived: public Base

{

public:

 virtual void Func1()

 {

 // Derived::Func1 overrides Base::Func1()

 }

 // no implementation for Func2()

 virtual void FuncN()

 {

 // FuncN implementation

 }

};

The compiler sees an inheritance hierarchy and understands that Base defines certain virtual functions that have been overridden in Derived. The compiler now creates a table called the virtual function table (VFT) for every class that implements a virtual function. Objects of classes Base and Derived get pointers to VFTs for Base and Derived. A VFT can be visualized as a static array containing function pointers, each pointing to the virtual function (or override) of interest, as illustrated in Figure 11.1.

[image: Images]

Figure 11.1 Visualization of a virtual function table for the classes Derived and Base.

Thus, each table is composed of function pointers, each pointing to the available implementation of a virtual function. In the case of the class Derived, all except one function pointer in its VFT point to local implementations of the virtual method in Derived. Derived has not overridden Base::Func2(), and hence that function pointer points to the implementation in the Base class.

This means that when a user of the class Derived calls

Derived objDerived;

objDerived.Func2();

the compiler ensures a lookup in the VFT of the class Derived and ensures that the implementation Base::Func2() is invoked. This also applies to calls that use methods that have been virtually overridden:

void DoSomething(Base& objBase)

{

 objBase.Func1(); // invoke Derived::Func1

}

int main()

{

 Derived objDerived;

 DoSomething(objDerived);

};

In this case, even though objDerived is being interpreted via objBase as an instance of the class Base, the VFT pointer in this instance is still pointing to the same table created for the class Derived. Thus, Func1(), which is executed via this VFT, is certainly Derived::Func1().

You can see how VFTs help the implementation of (subtype) polymorphism in C++.

The proof of existence of a hidden VFT pointer is demonstrated in Listing 11.5, which compares the sizes of two identical classes—one that has virtual functions and another that doesn’t.

Input

Listing 11.5 Demonstrating the Presence of a Hidden VFT Pointer in Comparing Two Classes Identical Except for a Function Declared Virtual

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class SimpleClass

 4: {

 5: int a, b;

 6:

 7: public:

 8: void DoSomething() {}

 9: };

10:

11: class Base

12: {

13: int a, b;

14:

15: public:

16: virtual void DoSomething() {}

17: };

18:

19: int main()

20: {

21: cout << “sizeof(SimpleClass) = “ << sizeof(SimpleClass) << endl;

22: cout << “sizeof(Base) = “ << sizeof(Base) << endl;

23:

24: return 0;

25: }

Output

32-bit compiler output:

sizeof(SimpleClass) = 8

sizeof(Base) = 12

64-bit compiler output:

sizeof(SimpleClass) = 8

sizeof(Base) = 16

Analysis

This example has been stripped to the bare minimum. You see two classes, SimpleClass and Base, that are identical in the types and number of members. However, Base has the function DoSomething() declared as virtual. The difference in adding this virtual keyword is that the compiler generates a virtual function table for the class Base and a reserved place for a pointer to the VFT in Base as a hidden member. This pointer consumes the 4 extra bytes in my 32-bit system. The output proves that the presence of a hidden pointer inserted by the compiler for a class has at least one virtual function.

Note

C++ also enables you to query a pointer Base* if it is of type Derived* by using casting the operator dynamic_cast and then performing conditional execution on the basis of the result of the query. This process, called runtime type identification (RTTI), should ideally be avoided even though it is supported by most C++ compilers. Needing to know the type of a derived class object behind a base class pointer is commonly considered poor programming practice.

RTTI and dynamic_cast are discussed in Lesson 13, “Casting Operators.”

Abstract Base Classes and Pure Virtual Functions

A base class that cannot be instantiated is called an abstract base class. Such a base class fulfills only one purpose: to be used in an inheritance hierarchy by a class that derives from it. C++ allows you to create an abstract base class using pure virtual functions.

A virtual method is said to be pure virtual when it has a declaration like this:

class AbstractBase

{

public:

 virtual void DoSomething() = 0; // pure virtual method

};

This declaration essentially tells the compiler that DoSomething() needs to be implemented by the class that derives from AbstractBase:

class Derived: public AbstractBase

{

public:

 void DoSomething() // pure virtual fn. must be implemented

 {

 cout << “Implemented virtual function” << endl;

 }

};

Thus, the AbstractBase class has ensured that the Derived class is required to supply an implementation for the virtual method DoSomething(). This functionality, where a base class can enforce support of methods with a specified name and signature in classes that derive from it, is that of an interface. Think of a Fish again. Imagine a Tuna that cannot swim fast because Tuna did not override Fish::Swim(). This would be a failed implementation and a flaw. Making the class Fish an abstract base class with Swim as a pure virtual function ensures that Tuna, which derives from Fish, implements Tuna::Swim() and swims like a Tuna and not like just any Fish. See Listing 11.6.

Input

Listing 11.6 The Fish Class as an Abstract Base Class for Tuna and Carp

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: // define a pure virtual function Swim

 7: virtual void Swim() = 0;

 8: };

 9:

10: class Tuna:public Fish

11: {

12: public:

13: void Swim()

14: {

15: cout << “Tuna swims fast in the sea! “ << endl;

16: }

17: };

18:

19: class Carp:public Fish

20: {

21: void Swim()

22: {

23: cout << “Carp swims slow in the lake!” << endl;

24: }

25: };

26:

27: void MakeFishSwim(Fish& inputFish)

28: {

29: inputFish.Swim();

30: }

31:

32: int main()

33: {

34: // Fish myFish; // Fails, cannot instantiate an ABC

35: Carp myLunch;

36: Tuna myDinner;

37:

38: MakeFishSwim(myLunch);

39: MakeFishSwim(myDinner);

40:

41: return 0;

42: }

Output

Carp swims slow in the lake!

Tuna swims fast in the sea!

Analysis

The first line in main(), Line 34 (which is commented out), is significant. It demonstrates that the compiler does not allow you to create an instance of an abstract base class Fish. It expects something concrete, such as a specialization of Fish—for example, Tuna—which makes sense even in the real-world arrangement of things. Thanks to the pure virtual function Fish::Swim() declared in Line 7, both Tuna and Carp are forced into implementing Tuna::Swim() and Carp::Swim(). Lines 27 through 30, which implement MakeFishSwim(Fish&), demonstrate that even if an abstract base class cannot be instantiated, you can use it as a reference or a pointer. Abstract base classes are thus a very good mechanism for declaring functions that you expect derived classes to implement and fulfill. If a class Trout that derived from Fish forgets to implement Trout::Swim(), the compilation also fails.

Note

Abstract base classes are often simply called ABCs. ABCs help enforce certain design constraints on a program.

Using Virtual Inheritance to Solve the Diamond Problem

In Lesson 10, you saw the curious case of a platypus that is part mammal, part bird, and part reptile. This is an example where a class, Platypus, needs to inherits from the classes Mammal, Bird, and Reptile. However, each of these in turn inherits from a more generic class, Animal, as illustrated in Figure 11.2.

[image: Images]

Figure 11.2 The class diagram of a platypus, demonstrating multiple inheritance.

So, what happens when you instantiate the Platypus class? How many instances of class Animal are instantiated for one instance of Platypus? Listing 11.7 helps answer this question.

Input

Listing 11.7 Checking for the Number of Base Class Animal Instances for One Instance of Platypus

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Animal

 4: {

 5: public:

 6: Animal()

 7: {

 8: cout << “Animal constructor” << endl;

 9: }

10:

11: int age;

12: };

13:

14: class Mammal:public Animal {};

15: class Bird:public Animal {};

16: class Reptile:public Animal {};

17:

18: class Platypus :public Mammal, public Bird, public Reptile

19: {

20: public:

21: Platypus()

22: {

23: cout << “Platypus constructor” << endl;

24: }

25: };

26:

27: int main()

28: {

29: Platypus duckBilledP;

30:

31: // uncomment next line of code to see compile failure because

32: // age is ambiguous: three instances of base Animal per Platypus

33: // duckBilledP.age = 25;

34:

35: return 0;

36: }

Output

Animal constructor

Animal constructor

Animal constructor

Platypus constructor

Analysis

As the output demonstrates, due to multiple inheritance and all three base classes of Platypus inheriting in turn from the class Animal, you have three instances of Animal created automatically for every instance of Platypus, as demonstrated in Line 29. This is ridiculous because Platypus is still one animal that has inherited certain attributes from Mammal, Bird, and Reptile. The problem in the number of instances of base Animal is not limited to memory consumption alone. Animal has an integer member Animal::age (which has been kept public for explanation purposes). When you want to access Animal::age via an instance of Platypus, as shown in Line 33, you get a compilation error simply because the compiler doesn’t know whether you want to set Mammal::Animal::age or Bird::Animal::age or Reptile::Animal::age. It can get even more ridiculous. If you so wanted, you could set all three:

duckBilledP.Mammal::Animal::age = 25;

duckBilledP.Bird::Animal::age = 2;

duckBilledP.Reptile::Animal::age = 5;

Clearly, one platypus should have only one age. However, you want class Platypus to also be Mammal, Bird, and Reptile. The solution is in virtual inheritance. If you expect a derived class to be used as a base class, it may be a good idea to define its relationship to the base class by using the keyword virtual:

class Derived1: public virtual Base

{

 // ... members and functions

};

class Derived2: public virtual Base

{

 // ... members and functions

};

Listing 11.8 shows a better class Platypus (actually, a better class Mammal, class Bird, and class Reptile).

Input

Listing 11.8 Demonstrating How the virtual Keyword in the Inheritance Hierarchy Helps Restrict the Number of Instances of the Base Class Animal to One

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Animal

 4: {

 5: public:

 6: Animal()

 7: {

 8: cout << “Animal constructor” << endl;

 9: }

10:

11: int age;

12: };

13:

14: class Mammal:public virtual Animal {};

15: class Bird:public virtual Animal {};

16: class Reptile:public virtual Animal {};

17:

18: class Platypus final:public Mammal, public Bird, public Reptile

19: {

20: public:

21: Platypus()

22: {

23: cout << “Platypus constructor” << endl;

24: }

25: };

26:

27: int main()

28: {

29: Platypus duckBilledP;

30:

31: // no compile error as there is only one Animal::age

32: duckBilledP.age = 25;

33:

34: return 0;

35: }

Output

Animal constructor

Platypus constructor

Analysis

Do a quick comparison of this output against the output of Listing 11.7, and you see that the number of instances of the Animal class constructed has fallen to one, which is finally reflective of the fact that only one Platypus has been instantiated in Line 29. This is because of the keyword virtual, used in the relationship between classes Mammal, Bird, and Reptile in Lines 14 through 16. It ensures that when these classes are grouped together under Platypus, the common base Animal class exists only in a single instance. This solves a lot of problems; one of them is that Line 32 now compiles. Also note the use of keyword final in Line 18 to ensure that the class Platypus cannot be used as a base class.

Note

A problem caused in an inheritance hierarchy containing two or more base classes that inherit from a common base, which results in the need for ambiguity resolution in the absence of virtual inheritance, is called the diamond problem.

The name diamond problem was possibly inspired by the shape of the class diagram. (Refer to Figure 11.2, which has straight and slanted lines relating Platypus to Animal via Mammal, Bird, and Reptile. As you can see, this forms a diamond shape.)

Note

The virtual keyword in C++ is often used in different contexts for different purposes. (My best guess is that someone wanted to save time on inventing an apt keyword.) Here is a summary:

• A function declared as virtual means that an existing overriding function in a derived class is invoked.

• An inheritance relationship between the classes Derived1 and Derived2 that inherits using virtual from the class Base means that another class, Derived3, which inherits from Derived1 and Derived2, still results in the creation of only one instance of Base during instantiation of type Derived3.

Thus, the same keyword virtual is used to implement two different concepts.

Using the Specifier override to Indicate the Intention to Override

Our versions of the base class Fish have featured a virtual function called Swim(), as shown in the following code:

class Fish

{

public:

 virtual void Swim()

 {

 cout << “Fish swims!” << endl;

 }

};

Assume that the derived class Tuna were to define a function Swim() but with a slightly different signature—one using const inserted unintentionally by a programmer who wants to override Fish::Swim():

class Tuna:public Fish

{

public:

 void Swim() const

 {

 cout << “Tuna swims!” << endl;

 }

};

This function Tuna::Swim() actually does not override Fish::Swim(). The signatures are different due to the presence of const in Tuna::Swim(). Compilation succeeds, however, and the programmer may falsely believe that she has successfully overridden the function Swim() in the class Tuna. Starting in C++11, you can use the specifier override in the method declaration in the derived class, thereby explicitly stating your intention to override the method in the base class:

class Tuna:public Fish

{

public:

 void Swim() const override // Error: no virtual fn with this sig in Fish

 {

 cout << “Tuna swims!” << endl;

 }

};

Thus, override supplies a powerful way of expressing the explicit intention to override a base class virtual function, thereby getting the compiler to check whether

• The base class function is virtual.

• The signature of the base class virtual function exactly matches the signature of the derived class function declared to override.

Using final to Prevent Function Overriding

The specifier final was first presented to you in Lesson 10. A class declared as final cannot be used as a base class. Similarly, a virtual function declared as final cannot be overridden in a derived class.

Thus, a version of the class Tuna that doesn’t allow any further specialization of the virtual function Swim() would look like this:

class Tuna:public Fish

{

public:

 // override Fish::Swim and make this final

 void Swim() override final

 {

 cout << “Tuna swims!” << endl;

 }

};

This version of Tuna can be inherited from, but Swim() cannot be overridden any further:

class BluefinTuna final:public Tuna

{

public:

 void Swim() // Error: Swim() was final in Tuna, cannot override

 {

 }

};

A demonstration of the specifiers override and final is available in Listing 11.9.

Note

We used final in the declaration of the class BluefinTuna as well. This ensures that the class BluefinTuna cannot be used as a base class. Therefore, the following would result in an error:

class FailedDerivation:public BluefinTuna {};

Virtual Copy Constructors?

Well, the question mark at the end of the section title is justified. It is technically impossible in C++ to have virtual copy constructors. However, such a feature would help you create a collection (for example, a static array) of type Base*, with each element being a specialization of that type:

// Tuna, Carp and Trout are classes that inherit public from base class Fish

Fish* pFishes[3];

Fishes[0] = new Tuna();

Fishes[1] = new Carp();

Fishes[2] = new Trout();

Then assigning it into another array of the same type, where the virtual copy constructor ensures a deep copy of the derived class objects as well, ensures that Tuna, Carp, and Trout are copied as Tuna, Carp, and Trout even though the copy constructor is operating on the type Fish*.

Well, that’s a nice dream.

Virtual copy constructors are not possible because the virtual keyword in the context of base class methods being overridden by implementations available in the derived class are about polymorphic behavior generated at runtime. Constructors, however, are not polymorphic in nature as they can construct only a fixed type, and hence C++ does not allow use of the virtual copy constructors.

Having said that, there is a nice workaround in the form of defining your own clone function that allows you to do just that:

class Fish

{

public:

 virtual Fish* Clone() const = 0; // pure virtual function

};

class Tuna:public Fish

{

// ... other members

public:

 Fish* Clone() const // virtual clone function

 {

 return new Tuna(*this); // return new Tuna that is a copy of this

 }

};

Thus, the virtual function Clone() is a simulated virtual copy constructor that needs to be explicitly invoked, as shown in Listing 11.9.

Input

Listing 11.9 Tuna and Carp Classes, Which Support a Clone() Function as a Simulated Virtual Copy Constructor

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: virtual Fish* Clone() = 0;

 7: virtual void Swim() = 0;

 8: virtual ~Fish() {};

 9: };

10:

11: class Tuna: public Fish

12: {

13: public:

14: Fish* Clone() override

15: {

16: return new Tuna (*this);

17: }

18:

19: void Swim() override final

20: {

21: cout << “Tuna swims fast in the sea” << endl;

22: }

23: };

24:

25: class BluefinTuna final:public Tuna

26: {

27: public:

28: Fish* Clone() override

29: {

30: return new BluefinTuna(*this);

31: }

32:

33: // Cannot override Tuna::Swim as it is “final” in Tuna

34: };

35:

36: class Carp final: public Fish

37: {

38: Fish* Clone() override

39: {

40: return new Carp(*this);

41: }

42: void Swim() override final

43: {

44: cout << “Carp swims slow in the lake” << endl;

45: }

46: };

47:

48: int main()

49: {

50: const int ARRAY_SIZE = 4;

51:

52: Fish* myFishes[ARRAY_SIZE];

53: myFishes[0] = new Tuna();

54: myFishes[1] = new Carp();

55: myFishes[2] = new BluefinTuna();

56: myFishes[3] = new Carp();

57:

58: Fish* myNewFishes[ARRAY_SIZE];

59: for (int index = 0; index < ARRAY_SIZE; ++index)

60: myNewFishes[index] = myFishes[index]->Clone();

61:

62: // invoke a virtual method to check

63: for (int index = 0; index < ARRAY_SIZE; ++index)

64: myNewFishes[index]->Swim();

65:

66: // memory cleanup

67: for (int index = 0; index < ARRAY_SIZE; ++index)

68: {

69: delete myFishes[index];

70: delete myNewFishes[index];

71: }

72:

73: return 0;

74: }

Output

Tuna swims fast in the sea

Carp swims slow in the lake

Tuna swims fast in the sea

Carp swims slow in the lake

Analysis

In addition to demonstrating virtual copy constructors via the virtual function Fish::Clone(), Listing 11.9 also demonstrates the use of the keywords override and final—the latter being applied to virtual functions and classes alike. It also features a virtual destructor for the class Fish in Line 8. Lines 52 through 56 in main() demonstrate how a static array of pointers to the base class Fish* has been declared and how individual elements have been assigned to newly created objects of type Tuna, Carp, Tuna, and Carp, respectively. Note how the array myFishes is able to collect seemingly different types that are all related by a common base type Fish. This is already cool, if you compare it against previous arrays in this book that have mostly been of a simple monotonous type int. If that isn’t cool enough for you, keep in mind that you were able to copy into a new array of type Fish* called myNewFishes by using the virtual function Fish::Clone() within a loop, as shown in Line 60. Note that your array is quite small, at only four elements. It could’ve been a lot longer, but its size wouldn’t make much difference to the copy logic, which would only need to adjust the loop-ending condition parameter. Line 64 invokes the virtual function Fish::Swim() on each stored element in the new array, and the output demonstrates that Clone() copied a Tuna as a Tuna and not just a Fish(). Also note that the output of Swim() used on an instance of BluefinTuna was the same as that for a Tuna, because Tuna::Swim() was declared as final. Thus, BluefinTuna was not permitted to override Swim(), and the compiler executed Tuna::Swim() for it.

[image: Images]

Summary

In this lesson, you learned to tap the power of creating inheritance hierarchies in your C++ code by using polymorphism. You learned how to declare and program virtual functions—how they ensure that the derived class implementation overrides the implementation in the base class even if an instance of the base class is used to invoke the virtual method. You saw that pure virtual functions are a special type of virtual functions which ensure that the base class alone cannot be instantiated, making it a perfect place to define interfaces that derived classes must fulfill. Finally, you saw the diamond problem created by multiple inheritance and how virtual inheritance helps you solve it.

Q&A

Q. Why use the virtual keyword with a base class function when code compiles without it?

A. Without the virtual keyword, you are not able to ensure that someone calling objBase.Function() will be redirected to Derived::Function(). Besides, compilation of code is not the only measure of its quality.

Q. Why does a compiler create a virtual function table?

A. A compiler creates a VFT to store function pointers. Such a table ensures that the right virtual function supported in the hierarchy is invoked.

Q. Should a base class always have a virtual destructor?

A. Ideally, yes. Only then can you ensure that when someone does a

Base* pBase = new Derived();

delete pBase;

the delete on a pointer of type Base* results in the destructor ~Derived() being invoked. This occurs when the destructor ~Base() is declared virtual.

Q. What is an abstract base class good for when I can’t even instantiate it as a standalone class?.

A. An ABC is not meant to be instantiated as a standalone object; rather, it is always meant to be derived from. It contains pure virtual functions that define the minimal blueprint of functions that deriving classes need to implement, thus taking the role of an interface.

Q. Given an inheritance hierarchy, do I need to use the keyword virtual on all declarations of a virtual function or just in the base class?

A. It is enough to declare a function as virtual once, but that declaration has to be in the base class.

Q. Can I define member functions and have member attributes in an ABC?

A. Sure you can. Remember that you still cannot instantiate an ABC as it has at least one pure virtual function that needs to be implemented by a deriving class.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. You are modeling shapes—a circle and a triangle—and want every shape to compulsorily implement the functions Area() and Print(). How would you do it?

2. Does every class get its own virtual function table?

3. My class Fish has two public methods, one pure virtual function, and some member attributes. Is it still an abstract base class?

Exercises

1. Demonstrate an inheritance hierarchy that implements Circle and Triangle classes for Quiz Question 1.

2. BUG BUSTERS: What is the problem in the following code?

class Vehicle

{

public:

 Vehicle() {}

 ~Vehicle(){}

};

 class Car: public Vehicle

{

public:

 Car() {}

 ~Car() {}

};

3. In the (uncorrected) code in Exercise 2, what is the order of execution for constructors and destructors if an instance of car is created and destroyed like this:

Vehicle* myRacer = new Car;

delete myRacer;

Lesson 12. Operator Types and Operator Overloading

In addition to encapsulating data and methods, a class can also encapsulate operators that make it easy to operate on instances of the class. You can use these operators to perform operations such as assignment or addition on class objects similar to those on integers that you saw in Lesson 5, “Working with Expressions, Statements, and Operators.” Just like functions, operators can also be overloaded.

In this lesson, you learn:

• Using the keyword operator

• Unary and binary operators

• Conversion operators

• The move assignment operator

• Operators that cannot be redefined

What Are Operators in C++?

On a syntactical level, there is very little that differentiates an operator from a function, save for the use of the keyword operator. An operator declaration looks quite like a function declaration:

return_type operator operator_symbol (...parameter list...);

operator_symbol in this case could be any of the several operator types that a programmer can define: + (addition), && (logical AND), and so on. The operands help the compiler distinguish one operator from another. So, why does C++ provide operators when functions are also supported?

Consider a utility class Date that encapsulates the day, month, and year:

Date holiday (12, 25, 2021); // initialized to Dec 25, 2021

If you want to add a day and get the instance to contain the next day—December 26, 2021—which of these two options would be more intuitive?

• Option 1: Using the increment operator:

++ holiday; // Dec 26, 2021

• Option 2: Using the member function Increment():

holiday.Increment(); // Dec 26, 2021

Clearly, Option 1 scores over method Increment(). The operator-based mechanism facilitates consumption by supplying ease of use and intuitiveness. Implementing the operator < in the class Date would help you compare two instances of the class Date like this:

if(date1 < date2)

{

 // Do something

}

else

{

 // Do something else

}

Operators can be used in more situations than just managing dates. They’re essential to classes such as std::string that provide string concatenation features. Smart pointer classes leverage the operators -> and * in helping a programmer with pointer and memory management.

Note

The effort involved in implementing relevant operators will be rewarded by the ease of consumption of a class.

On a broad level, operators in C++ can be classified into two types: unary operators and binary operators.

Unary Operators

As the name suggests, a unary operator is an operator that functions on a single operand. A unary operator that is implemented in the global namespace or as a static member function of a class uses the following structure:

return_type operator operator_type (parameter_type)

{

 // ... implementation

}

A unary operator that is a (non-static) member of a class has a similar structure but is lacking in parameters because the single parameter that it works on is the instance of the class itself (*this):

return_type operator operator_type()

{

 // ... implementation

}

The unary operators that can be overloaded (or redefined) are shown in Table 12.1.

Table 12.1 Overloadable Unary Operators

[image: Images]

Tip

sizeof() is a unary operator that cannot be overloaded!

Unary Increment (++) and Decrement (--) Operators

A unary prefix increment operator (++) can be programmed using the following syntax within the class declaration:

// Unary increment operator (prefix)

Date& operator ++ ()

{

 // operator implementation code

 return *this;

}

The postfix increment operator (++), on the other hand, has a different return type and an input parameter (which is not always used):

Date operator ++ (int)

{

 // Store a copy of the current state of the object, before incrementing day

 Date copy (*this);

 // increment code operating on ’this’

 // Return state before increment (because, postfix)

 return copy;

}

The prefix and postfix decrement operators have syntax similar to that of the increment operators; however, the declaration of a decrement operator contains a -- instead of a ++. Listing 12.1 shows a simple class Date that allows you to increment days by using the ++ operator.

Input

Listing 12.1 A Calendar Class That Handles Day, Month, and Year and Allows Incrementing and Decrementing of Days

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Date

 4: {

 5: private:

 6: int day, month, year;

 7:

 8: public:

 9: Date (int inMonth, int inDay, int inYear)

10: : month (inMonth), day(inDay), year (inYear) {};

11:

12: Date& operator ++ () // prefix increment

13: {

14: ++day;

15: return *this;

16: }

17:

18: Date& operator -- () // prefix decrement

19: {

20: --day;

21: return *this;

22: }

23:

24: void DisplayDate()

25: {

26: cout << month << “ / “ << day << “ / “ << year << endl;

27: }

28: };

29:

30: int main ()

31: {

32: Date holiday (12, 25, 2021); // Dec 25, 2021

33:

34: cout << “The date object is initialized to: “;

35: holiday.DisplayDate ();

36:

37: ++holiday; // move date ahead by a day

38: cout << “Date after prefix-increment is: “;

39: holiday.DisplayDate ();

40:

41: --holiday; // move date backwards by a day

42: cout << “Date after a prefix-decrement is: “;

43: holiday.DisplayDate ();

44:

45: return 0;

46: }

Output

The date object is initialized to: 12 / 25 / 2021

Date after prefix-increment is: 12 / 26 / 2021

Date after a prefix-decrement is: 12 / 25 / 2021

Analysis

The operators of interest, which are defined in Lines 12 through 22, help in adding or subtracting a day at a time from instances of the class Day, as shown in Lines 37 and 41 in main(). Prefix increment operators, as demonstrated in this example, need to return a reference to the instance after the increment operation is complete.

Note

This version of a date class has a bare minimum implementation to reduce the number of code lines and to explain how the prefix operators ++ and -- are to be implemented. A professional version of this example would implement rollover functionalities for month and year and take into consideration leap years as well.

To support postfix increment or decrement, you simply add the following code to the Date class:

// postfix differs from prefix operator in return-type and parameters

Date operator ++ (int) // postfix increment

{

 Date copy(month, day, year);

 ++day;

 return copy; // copy of instance before increment returned

}

Date operator -- (int) // postfix decrement

{

 Date copy(month, day, year);

 --day;

 return copy; // copy of instance before decrement returned

}

When your version of the Date class supports both prefix and postfix increment and decrement operators, you can use objects of the Date class as follows:

Date holiday (12, 25, 2021); // instantiate

++ holiday; // using prefix increment operator++

holiday ++; // using postfix increment operator++

-- holiday; // using prefix decrement operator --

holiday --; // using postfix decrement operator --

Note

As the implementation of the postfix operators demonstrates, a copy containing the initial state of the object is created before the increment or decrement operation. This copy is returned to the caller.

In other words, if you have a choice between using ++object; and object++; to essentially only increment, you should choose the former to avoid creating a temporary copy that will not be used.

Conversion Operators

Say that you use Listing 12.1 and insert the following line in main():

cout << holiday; // error in absence of conversion operator

The code would result in the following compile failure: error: binary ’<<’ : no operator found which takes a right-hand operand of type ’Date’ (or there is no acceptable conversion). This error essentially indicates that cout doesn’t know how to interpret an instance of Date because the Date class does not support the operators that convert its contents into a type that cout would accept.

cout can work well with a const char*:

std::cout << “Hello world”; // const char* works!

So, getting cout to work with an instance of type Date might be as simple as adding an operator that returns a const char* version:

operator const char*()

{

 // operator implementation that returns a char*

}

Listing 12.2 shows a simple implementation of this conversion operator.

Input

Listing 12.2 Implementing the Conversion Operator const char* for the Date Class

 0: #include <iostream>

 1: #include <sstream> // new include for ostringstream

 2: #include <string>

 3: using namespace std;

 4:

 5: class Date

 6: {

 7: private:

 8: int day, month, year;

 9: string dateInString;

10:

11: public:

12: Date(int inMonth, int inDay, int inYear)

13: : month(inMonth), day(inDay), year(inYear) {};

14:

15: operator const char*()

16: {

17: ostringstream formattedDate; // assists string construction

18: formattedDate << month << “ / “ << day << “ / “ << year;

19:

20: dateInString = formattedDate.str();

21: return dateInString.c_str();

22: }

23: };

24:

25: int main ()

26: {

27: Date holiday (12, 25, 2021);

28:

29: cout << “Holiday is on: “ << holiday << endl;

30:

31: // string strHoliday (holiday); // OK!

32: // strHoliday = Date(11, 11, 2021); // also OK!

33:

34: return 0;

35: }

Output

Holiday is on: 12 / 25 / 2021

Analysis

The benefit of implementing the operator const char*, as shown in Lines 15 to 23, is visible in Line 29 in main(). Now, an instance of the Date class can be used directly in a cout statement because cout understands const char*. The compiler automatically uses the output of the appropriate (and, in this case, the only available) operator in feeding it to cout, which displays the date on the screen. In your implementation of the operator const char*, you use std::ostringstream to convert the member integers into a std::string object, as shown in Line 18. You could instead directly return formattedDate.str(), but you store a copy in the private member Date::dateInString in Line 20 because formattedDate, as a local variable, is destroyed when the operator returns. So, the pointer returned by formattedDate.c_str() would be invalidated on function return. std::string::c_str(), used in Line 21, returns the C-style const char* equivalent of the contents in the string object.

The const char* operator opens up new possibilities in terms of consuming the Date class. It allows you to even assign an instance of the Date class directly to a string:

string strHoliday (holiday);

strHoliday = Date(11, 11, 2021);

Caution

Note that such assignments cause implicit conversions. That is, the compiler uses the available conversion operator (in this case, const char*), thereby permitting unintended assignments that be compiled without errors. To avoid implicit conversions, use the keyword explicit at the beginning of an operator declaration, as follows:

explicit operator const char*()

{

 // conversion code here

}

Using explicit would force a programmer to assert the intention to convert using a cast:

string strHoliday(static_cast<const char*>(holiday));

strHoliday=static_cast<const char*>(Date(11,11,2021));

Casting, including static_cast, is discussed in detail in Lesson 13, “Casting Operators.”

Note

Program as many operators as you think your class would be used with. If an application needs an integer representation of a date, you could program it as follows:

explicit operator int()

{

 return day + month + year;

}

This would allow an instance of Date to be used or transacted as an integer:

FuncTakesInt(static_cast<int>(Date(12, 25, 2021)));

Listing 12.9, later in this lesson, also demonstrates conversion operators used with a string class.

The Dereference Operator (*) and Member Selection Operator (->)

The dereference operator (*) and member selection operator (->) are most frequently used in the programming of smart pointer classes. Smart pointers are utility classes that wrap regular pointers and simplify memory management by resolving ownership and copy issues using operators. In some cases, they can even help improve the performance of an application. Smart pointers are discussed in detail in Lesson 26, “Understanding Smart Pointers.” This lesson takes a brief look at how overloading operators helps in making smart pointers work.

Analyze the use of std::unique_ptr in Listing 12.3 and observe how it uses the operators * and -> to help you use the smart pointer class as you would any normal pointer.

Input

Listing 12.3 Using the Smart Pointer unique_ptr to Manage a Dynamically Allocated Instance of Date Class

 0: #include <iostream>

 1: #include <memory> // new include to use unique_ptr

 2: using namespace std;

 3:

 4: class Date

 5: {

 6: private:

 7: int day, month, year;

 8: string dateInString;

 9:

10: public:

11: Date(int inMonth, int inDay, int inYear)

12: : month(inMonth), day(inDay), year(inYear) {};

13:

14: void DisplayDate()

15: {

16: cout << month << “ / “ << day << “ / “ << year << endl;

17: }

18: };

19:

20: int main()

21: {

22: unique_ptr<int> smartIntPtr(new int);

23: *smartIntPtr = 42;

24:

25: // Use smart pointer type like an int*

26: cout << “Integer value is: “ << *smartIntPtr << endl;

27:

28: unique_ptr<Date> smartHoliday (new Date(12, 25, 2021));

29: cout << “The new instance of date contains: “;

30:

31: // use smartHoliday just as you would a Date*

32: smartHoliday->DisplayDate();

33:

34: return 0; // smart pointers do the deallocation for you

35: }

Output

Integer value is: 42

The new instance of date contains: 12 / 25 / 2021

Analysis

Line 22 declares a smart pointer to type int. This line shows template initialization syntax for the smart pointer class unique_ptr. Similarly, Line 28 declares a smart pointer to an instance of the class Date. Focus on the pattern and ignore the details for the moment.

Note

Don’t worry if this template syntax looks awkward. Templates are introduced in Lesson 14, “An Introduction to Macros and Templates.”

This example demonstrates how a smart pointer allows you to use normal pointer syntax, as shown in Lines 23 and 32. In Line 26, you display the value of the int using *smartIntPtr, and in Line 32, you use smartHoliday->DisplayData() as if these two variables were an int* and a Date*, respectively. The secret lies in the implementation of operators * and -> in the pointer class std::unique_ptr, which makes the pointer smart.

Note

Smart pointer classes can do a lot more than just behave as normal pointers or deallocate memory when they go out of scope. Find out more about this topic in Lesson 26.

To see an implementation of a basic smart pointer class that has overloaded these operators, you may briefly visit Listing 26.1.

Binary Operators

An operator that functions on two operands is called a binary operator. You define a binary operator implemented as a global function or a static member function by using the following syntax:

return_type operator_type (parameter1, parameter2);

You define a binary operator implemented as a class member by using the following syntax:

return_type operator_type (parameter);

The reason the class member version of a binary operator accepts only one parameter is that the second parameter is usually derived from the attributes of the class itself.

Table 12.2 lists binary operators that can be overloaded or redefined in a C++ application.

Table 12.2 Overloadable Binary Operators

[image: Images]

[image: Images]

[image: Images]

The Binary Addition (a+b) and Subtraction (a-b) Operators

Much like the increment/decrement operators, the binary plus and minus, when defined, enable you to add or subtract the value of a supported data type from an object of the class that implements these operators. Take a look at the calendar Date class again. Although you have already implemented the capability to increment Date so that it moves the calendar one day forward, you still do not support the capability to move it, say, five days ahead. To do this, you need to implement the binary operator (+), as the code in Listing 12.4 demonstrates.

Input

Listing 12.4 Calendar Date Class Featuring the Binary Addition Operator

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Date

 4: {

 5: private:

 6: int day, month, year;

 7: string dateInString;

 8:

 9: public:

10: Date(int inMonth, int inDay, int inYear)

11: : month(inMonth), day(inDay), year(inYear) {};

12:

13: Date operator + (int daysToAdd) // binary addition

14: {

15: Date newDate (month, day + daysToAdd, year);

16: return newDate;

17: }

18:

19: Date operator - (int daysToSub) // binary subtraction

20: {

21: return Date(month, day - daysToSub, year);

22: }

23:

24: void DisplayDate()

25: {

26: cout << month << “ / “ << day << “ / “ << year << endl;

27: }

28: };

29:

30: int main()

31: {

32: Date holiday (12, 25, 2021);

33: cout << “Holiday on: “;

34: holiday.DisplayDate ();

35:

36: Date previousHoliday (holiday - 19);

37: cout << “Previous holiday on: “;

38: previousHoliday.DisplayDate();

39:

40: Date nextHoliday(holiday + 6);

41: cout << “Next holiday on: “;

42: nextHoliday.DisplayDate ();

43:

44: return 0;

45: }

Output

Holiday on: 12 / 25 / 2021

Previous holiday on: 12 / 6 / 2021

Next holiday on: 12 / 31 / 2021

Analysis

Lines 13 through 22 contain the implementations of the binary operators + and - that permit the use of simple addition and subtraction syntax, as shown in main() in Lines 36 and 40, respectively.

The binary addition operator would also be useful in a class that manages dynamically allocated memory. In Lesson 9, “Classes and Objects,” you analyzed a simple integer buffer class called MyBuffer that encapsulates memory management, copying, and the like, as shown in Listing 9.9. The MyBuffer class wouldn’t support the concatenation of two buffers using a simple syntax as seen below:

MyBuffer buf1(3); // space for 3 integers

MyBuffer buf2(2); // 2 integers

MyBuffer bigBuf(buf1 + buf2); // error: operator+ not defined

Defining the + operator in this case makes using MyBuffer extremely easy and is hence worth the effort:

MyBuffer operator + (const MyBuffer& bufToAppend)

{

 MyBuffer newBuf(this->bufLength + bufToAppend.bufLength);

 for (unsigned int counter = 0; counter < bufLength; ++counter)

 newBuf.SetValue(counter, *(myNums + counter));

 for (unsigned int counter = 0; counter < bufToAppend.bufLength; ++counter)

 newBuf.SetValue(counter + bufLength, *(bufToAppend.myNums + counter));

 return newBuf;

}

You can see a version of class MyBuffer with the + operator, among others, in Listing 12.12, later in this lesson.

The Addition Assignment (+=) and Subtraction Assignment (-=) Operators

The addition assignment operator allows syntax such as a += b;, which allows you to increment the value of an object a by an amount b. Then, the addition assignment operator can be overloaded to accept different types of parameter b. Listing 12.5 allows you to add an integer value to a Date object.

Input

Listing 12.5 Defining the Operators += and -= to Add or Subtract Days in the Calendar, Given an Integer Input

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Date

 4: {

 5: private:

 6: int day, month, year;

 7:

 8: public:

 9: Date(int inMonth, int inDay, int inYear)

10: : month(inMonth), day(inDay), year(inYear) {}

11:

12: void operator+= (int daysToAdd) // addition assignment

13: {

14: day += daysToAdd;

15: }

16:

17: void operator-= (int daysToSub) // subtraction assignment

18: {

19: day -= daysToSub;

20: }

21:

22: void DisplayDate()

23: {

24: cout << month << “ / “ << day << “ / “ << year << endl;

25: }

26: };

27:

28: int main()

29: {

30: Date holiday (12, 25, 2021);

31: cout << “holiday is on: “;

32: holiday.DisplayDate ();

33:

34: cout << “holiday -= 19 gives: “;

35: holiday -= 19;

36: holiday.DisplayDate();

37:

38: cout << “holiday += 25 gives: “;

39: holiday += 25;

40: holiday.DisplayDate ();

41:

42: return 0;

43: }

Output

holiday is on: 12 / 25 / 2021

holiday -= 19 gives: 12 / 6 / 2021

holiday += 25 gives: 12 / 31 / 2021

Analysis

The addition and subtraction assignment operators of interest are in Lines 12 to 20. They allow you to add and subtract an integer value for days, as in main(), for instance:

35: holiday -= 19;

39: holiday += 25;

Your Date class now allows users to add or remove days from it as if they were dealing with integers by using addition or subtraction assignment operators that take an int as a parameter. You can even provide overloaded versions of the addition assignment operator (+=) that work with an instance of a fictitious class Days:

// operator that adds a Days to an existing Date

void operator += (const Days& daysToAdd)

{

 day += daysToAdd.GetDays();

}

Note

The multiplication assignment *=, division assignment /=, modulus assignment %=, subtraction assignment -=, left-shift assignment <<=, right-shift assignment >>=, XOR assignment ^=, bitwise inclusive OR assignment |=, and bitwise AND assignment &= operators have syntax similar to that of the addition assignment operator shown in Listing 12.5.

Although the ultimate objective of overloading operators is making a class easy and intuitive to use, there are many situations where implementing an operator might not make sense. For example, the calendar class Date has absolutely no use for a bitwise AND assignment operator (&=). No user of this class should ever expect (or even think of) getting useful results from an operation such as greatDay &= 20;.

The Equality (==) and Inequality (!=) Operators

What would you expect when one instance of the class Date is compared to another?

if (date1 == date2)

{

 // Do something

}

else

{

 // Do something else

}

In the absence of an equality operator (==), the compiler simply performs a binary comparison of the two objects and returns true when they are exactly identical. This binary comparison will work for instances of classes containing simple data types (like the Date class as of now), but it will not work if the class in question has a non-static pointer member, such as the int* named myNums in class MyBuffer in Listing 9.9. When two instances of class MyBuffer are compared, a binary comparison of the member attributes would actually compare the member pointer values (MyBuffer::myNums). The two pointers being compared would never be equal. Comparisons involving two instances of MyBuffer would return false consistently because two members that are pointers are being compared, but not the content that they’re pointing to. You solve this problem by defining comparison operators. A generic expression of the equality operator is as follows:

bool operator== (const ClassType& compareTo)

{

 // comparison code here, return true if equal else false

}

The inequality operator can reuse the equality operator:

bool operator!= (const ClassType& compareTo)

{

 // comparison code here, return true if inequal else false

}

The inequality operator can be the inverse (logical NOT) of the result of the equality operator. Listing 12.6 demonstrates comparison operators defined by the calendar class Date.

Input

Listing 12.6 Demonstrating the == and != Operators

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Date

 4: {

 5: private:

 6: int day, month, year;

 7:

 8: public:

 9: Date(int inMonth, int inDay, int inYear)

10: : month(inMonth), day(inDay), year(inYear) {}

11:

12: bool operator== (const Date& compareTo) const

13: {

14: return ((day == compareTo.day)

15: && (month == compareTo.month)

16: && (year == compareTo.year));

17: }

18:

19: bool operator!= (const Date& compareTo) const

20: {

21: return !(this->operator==(compareTo));

22: }

23:

24: void DisplayDate()

25: {

26: cout << month << “ / “ << day << “ / “ << year << endl;

27: }

28: };

29:

30: int main()

31: {

32: Date holiday1 (12, 25, 2021);

33: Date holiday2 (12, 31, 2021);

34:

35: cout << “holiday 1 is: “;

36: holiday1.DisplayDate();

37: cout << “holiday 2 is: “;

38: holiday2.DisplayDate();

39:

40: if (holiday1 == holiday2)

41: cout << “Equality operator: The two are on the same day” << endl;

42: else

43: cout << “Equality operator: The two are on different days” << endl;

44:

45: if (holiday1 != holiday2)

46: cout << “Inequality operator: The two are on different days” << endl;

47: else

48: cout << “Inequality operator: The two are on the same day” << endl;

49:

50: return 0;

51: }

Output

holiday 1 is: 12 / 25 / 2021

holiday 2 is: 12 / 31 / 2021

Equality operator: The two are on different days

Inequality operator: The two are on different days

Analysis

The equality operator (==) is a simple implementation that returns true if the day, month, and year are all equal, as shown in Lines 12 through 17. The inequality operator (!=) reuses the equality operator code, as shown in Line 21, and returns the opposite of it. The presence of these operators helps compare two Date objects, holiday1 and holiday2, in main() in Lines 40 and 45.

The <, >, <=, and >= Operators

The code in Listing 12.6 made the Date class intelligent enough to be able to tell whether two Date objects are equal or unequal. You need to program the less-than (<), greater-than (>), less-than-or-equal-to (<=), and greater-than-or-equal-to (>=) operators to enable conditional checking akin to the following:

if (date1 < date2) {// do something}

or

if (date1 <= date2) {// do something}

or

if (date1 > date2) {// do something}

or

if (date1 >= date2) {// do something}

These operators are demonstrated in Listing 12.7.

Input

Listing 12.7 Demonstrates Implementing the <, <=, >, and >= Operators

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Date

 4: {

 5: private:

 6: int day, month, year;

 7:

 8: public:

 9: Date(int inMonth, int inDay, int inYear)

10: : month(inMonth), day(inDay), year(inYear) {}

11:

12: bool operator< (const Date& compareTo)

13: {

14: if (year < compareTo.year)

15: return true;

16: else if ((year == compareTo.year) && (month < compareTo.month))

17: return true;

18: else if ((year == compareTo.year) && (month == compareTo.month)

19: && (day < compareTo.day))

20: return true;

21: else

22: return false;

23: }

24:

25: bool operator<= (const Date& compareTo)

26: {

27: if (this->operator== (compareTo))

28: return true;

29: else

30: return this->operator< (compareTo);

31: }

32:

33: bool operator > (const Date& compareTo)

34: {

35: return !(this->operator<= (compareTo));

36: }

37:

38: bool operator== (const Date& compareTo)

39: {

40: return ((day == compareTo.day)

41: && (month == compareTo.month)

42: && (year == compareTo.year));

43: }

44:

45: bool operator>= (const Date& compareTo)

46: {

47: if(this->operator== (compareTo))

48: return true;

49: else

50: return this->operator> (compareTo);

51: }

52:

53: void DisplayDate()

54: {

55: cout << month << “ / “ << day << “ / “ << year << endl;

56: }

57: };

58:

59: int main()

60: {

61: Date holiday1 (12, 25, 2016);

62: Date holiday2 (12, 31, 2016);

63:

64: cout << “holiday 1 is: “;

65: holiday1.DisplayDate();

66: cout << “holiday 2 is: “;

67: holiday2.DisplayDate();

68:

69: if (holiday1 < holiday2)

70: cout << “operator<: holiday1 happens first” << endl;

71:

72: if (holiday2 > holiday1)

73: cout << “operator>: holiday2 happens later” << endl;

74:

75: if (holiday1 <= holiday2)

76: cout << “operator<=: holiday1 happens on or before holiday2” << endl;

77:

78: if (holiday2 >= holiday1)

79: cout << “operator>=: holiday2 happens on or after holiday1” << endl;

80:

81: return 0;

82: }

Output

holiday 1 is: 12 / 25 / 2021

holiday 2 is: 12 / 31 / 2021

operator<: holiday1 happens first

operator>: holiday2 happens later

operator<=: holiday1 happens on or before holiday2

operator>=: holiday2 happens on or after holiday1

Analysis

The operators of interest are implemented in Lines 12 through 51 and partially reuse the == operator that you saw in Listing 12.6.

The operators have been consumed inside main() between Lines 68 and 78, so you can see how easy it now is to compare two different dates.

The C++20 Three-Way Comparison Operator (<=>)

C++20 helps you write massively simplified comparison operations by using the three-way comparison operator (<=>) instead of using the =, <, >, !=, <= and >= operators.

The syntax for defining this operator is as follows:

auto operator <=>(const Type& objToCompare)

{

 // comparison code, return type std::strong_ordering

}

This operator was first introduced in a simple example (refer to Listing 5.4 in Lesson 5). Listing 12.8 shows how to define a <=> operator—which is informally called a spaceship operator because of its shape—for the class Date.

Input

Listing 12.8 Programming a <=> Operator for the Class Date to Compare Two Dates

 0: #include <iostream>

 1: #include <compare>

 2: using namespace std;

 3:

 4: class Date

 5: {

 6: private:

 7: int day, month, year;

 8:

 9: public:

10: Date(int inMonth, int inDay, int inYear)

11: : month(inMonth), day(inDay), year(inYear) {}

12:

13: auto operator <=>(const Date& rhs) const

14: {

15: if (year < rhs.year)

16: return std::strong_ordering::less;

17: else if (year > rhs.year)

18: return std::strong_ordering::greater;

19: else

20: {

21: // years are identical, compare months

22: if (month < rhs.month)

23: return std::strong_ordering::less;

24: else if (month > rhs.month)

25: return std::strong_ordering::greater;

26: else

27: {

28: // months are identical, compare days

29: if (day < rhs.day)

30: return std::strong_ordering::less;

31: else if (day > rhs.day)

32: return std::strong_ordering::greater;

33: else

34: return std::strong_ordering::equal;

35: }

36: }

37: }

38: };

39:

40: int main()

41: {

42: cout << “Enter a date: month, day & year” << endl;

43: int month, day, year;

44: cin >> month;

45: cin >> day;

46: cin >> year;

47: Date date1(month, day, year);

48:

49: cout << “Enter another date: month, day & year” << endl;

50: cin >> month;

51: cin >> day;

52: cin >> year;

53: Date date2(month, day, year);

54:

55: auto result = date1 <=> date2;

56:

57: if (result < 0)

58: cout << “Date 1 occurs before Date 2” << endl;

59: else if (result > 0)

60: cout << “Date 1 occurs after Date 2” << endl;

61: else

62: cout << “Dates are equal” << endl;

63:

64: return 0;

65: }

Output

First run:

Enter a date: month, day & year

12

25

2021

Enter another date: month, day & year

1

1

2022

Date 1 occurs before Date 2

Next run:

Enter a date: month, day & year

6

2

2030

Enter another date: month, day & year

1

1

2001

Date 1 occurs after Date 2

Final run:

Enter a date: month, day & year

12

25

2021

Enter another date: month, day & year

12

25

2021

Dates are equal

Analysis

For the sake of simplicity, the class doesn’t validate the user input. Lines 13 through 37 define the spaceship operator for the Date class that is used within main() in Line 55. Note how the definition of class Date in Listing 12.8 is a good 20 lines shorter than the definition in Listing 12.7—without any loss of functionality! This is the power of the three-way comparison operator.

Note

You may resort to using the compiler-defined three-way comparison operator by using the keyword default as follows:

auto operator <=> (const T&) const = default;

This might work for some trivial classes, but it won’t work for our the Date class because of the likelihood that the default comparison will not intelligently compare years, months, and days in that order before producing a result.

The Copy Assignment Operator (=)

There are times when you want to assign the contents of an instance of one class to another class, like this:

Date holiday(12, 25, 2021);

Date anotherHoliday(1, 1, 2022);

anotherHoliday = holiday; // uses copy assignment operator

This assignment invokes the default copy assignment operator that the compiler has built into a class when you have not supplied one. Depending on the nature of the class, the default copy assignment operator might be inadequate, especially if the class is managing a resource that will not be copied. This problem with the default copy assignment operator is similar to the problem with the default copy constructor discussed in Lesson 9. To ensure deep copies, as with the copy constructor, you need to specify an accompanying copy assignment operator:

ClassType& operator= (const ClassType& copySource)

{

 if(this != ©Source) // protection against copy into self

 {

 // copy assignment operator implementation

 }

 return *this;

}

Deep copies are important if a class encapsulates a raw pointer, as does the MyBuffer class in Listing 9.9. To ensure deep copies during assignments, you define a copy assignment operator as shown in Listing 12.9.

Input

Listing 12.9 A Better MyBuffer Class from Listing 9.9 with a Copy Assignment Operator (=)

 0: #include <iostream>

 1: #include <algorithm>

 2: using namespace std;

 3: class MyBuffer

 4: {

 5: private:

 6: int* myNums;

 7: unsigned int bufLength;

 8:

 9: public:

10: MyBuffer(unsigned int length)

11: {

12: bufLength = length;

13: myNums = new int[length]; // allocate memory

14: }

15:

16: MyBuffer& operator= (const MyBuffer& src) // copy assignment

17: {

18: cout << “Copy Assignment creating deep copy” << endl;

19: if (myNums != src.myNums) // avoid copy to self

20: {

21: if (myNums)

22: delete myNums;

23:

24: bufLength = src.bufLength;

25: myNums = new int[bufLength];

26: copy(src.myNums, src.myNums + bufLength, myNums); // deep copy

27: }

28:

29: return *this;

30: }

31:

32: ~MyBuffer()

33: {

34: delete[] myNums; // free allocated memory

35: }

36:

37: void SetValue(unsigned int index, int value)

38: {

39: if (index < bufLength) // check for bounds

40: *(myNums + index) = value;

41: }

42:

43: void DisplayBuf()

44: {

45: for (unsigned int counter = 0; counter < bufLength; ++counter)

46: cout << *(myNums + counter) << “ “;

47:

48: cout << endl;

49: }

50: };

51:

52: int main()

53: {

54: cout << “How many integers would you like to store? “;

55: unsigned int numsToStore = 0;

56: cin >> numsToStore;

57:

58: MyBuffer buf(numsToStore);

59: for (unsigned int counter = 0; counter < numsToStore; ++counter)

60: {

61: cout << “Enter value: “;

62: int valueEntered = 0;

63: cin >> valueEntered;

64: buf.SetValue(counter, valueEntered);

65: }

66:

67: MyBuffer anotherBuf(1); // initialize to contain just 1 int

68: anotherBuf = buf;

69: anotherBuf.DisplayBuf();

70:

71: return 0; // no crash, at destruction of buf

72: }

Output

How many integers would you like to store? 3

Enter value: 101

Enter value: 202

Enter value: 303

Copy Assignment creating deep copy

101 202 303

Analysis

I have purposely omitted the copy constructor in this example to reduce lines of code (but you should insert it when programming such a class; refer to Listing 9.9 as a guide). The copy assignment operator is implemented in Lines 16 through 27 and invoked by Line 68 in main(). It is similar in function to a copy constructor and performs a starting check to ensure that the same object is not both the copy source and destination. After the checks return true, the copy assignment operator for MyBuffer first deallocates its internal buffer myNums and then reallocates space for the text from the copy source and then uses std::copy() to copy, as shown in Line 26. The last line in the output contains the numbers entered by the user, generated using a copy of the initial object used to store them.

Tip

std::copy() is one among many useful algorithms supplied by the Standard Template Library. You need to include the header <algorithm> to use it.

These algorithms are discussed in detail in Lesson 23, “STL Algorithms.”

Caution

When implementing a class that manages a dynamically allocated resource such as an array allocated using new, always ensure that you have implemented (or evaluated the implementation of) the copy constructor and the copy assignment operator in addition to the constructor and the destructor.

Unless you address the issue of resource ownership when an object of a class is copied, your class is incomplete and endangers the stability of the application when used.

Tip

To create a class that cannot be copied, declare the copy constructor and copy assignment operator as private. Declaration as private without implementation is sufficient for the compiler to throw errors on all attempts at copying this class by passing to a function by value or assigning one instance into another.

The Subscript Operator ([])

The operator that allow, array-style ([]) access to a class is called a subscript operator. The typical syntax of a subscript operator is

return_type& operator [] (subscript_type& subscript);

So, when creating a class such as MyBuffer that encapsulates a dynamic array class of characters in a char* buffer, a subscript operator makes it really easy to randomly access individual characters in the buffer:

class MyBuffer

{

 // ... other class members

public:

 /*const*/ char& operator [] (int index) /*const*/

 {

 // return the char at position index in buffer

 }

};

Listing 12.10 demonstrates how the subscript operator ([]) helps a user iterate through the characters contained in an instance of MyBuffer using normal array semantics.

Input

Listing 12.10 Implementing a Subscript Operator ([]) in the MyBuffer Class to Allow Random Access to Characters Contained in MyBuffer::myNums

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class MyBuffer

 4: {

 5: private:

 6: int* myNums;

 7: unsigned int bufLength;

 8:

 9: public:

10: MyBuffer(unsigned int length)

11: {

12: bufLength = length;

13: myNums = new int[length]; // allocate memory

14: }

15:

16: int& operator[] (unsigned int index)

17: {

18: return myNums[index];

19: }

20:

21: // Insert copy constructor & copy assignment operator

22: // from previous listings here

23:

24: ~MyBuffer()

25: {

26: delete[] myNums; // free allocated memory

27: }

28: };

29:

30: int main()

31: {

32: cout << “How many integers would you like to store? “;

33: unsigned int numsToStore = 0;

34: cin >> numsToStore;

35:

36: MyBuffer buf(numsToStore);

37: for (unsigned int counter = 0; counter < numsToStore; ++counter)

38: {

39: cout << “Enter value: “;

40: cin >> buf[counter];

41: }

42:

43: for (unsigned int counter = 0; counter < numsToStore; ++counter)

44: cout << “Value “ << counter << “ is “ << buf[counter] << endl;

45:

46: return 0;

47: }

Output

How many integers would you like to store? 3

Enter value: 101

Enter value: 202

Enter value: -101

Value 0 is 101

Value 1 is 202

Value 2 is -101

Analysis

The program does the simple task of accepting numbers from the user, storing that information in the custom array MyBuffer, and then displaying the numbers from that array. The most important thing to note here is the introduction of the subscript operator ([]) in Lines 16 through 19, which helps with intuitive (that is, array-like) access, as shown in Lines 40 and 44 within main().

Caution

Using the keyword const is important even when programming operators. To ensure that the subscript operator ([]) can be used only to read data and not to change data, you would do well to define the operator as

const int& operator[] (unsigned int index) const

{

 return myNums[index];

}

By using const, you protect the internal member MyBuffer::myNums against direct modification from the outside via operator[]. In addition to classifying the return value as const, you restrict the operator function type to const to ensure that it cannot modify the class’s member attributes.

In general, use the maximum possible const restriction to avoid unintentional data modifications and increase protection of the class’s member attributes.

You can improve on the version shown in Listing 12.10 by implementing a const version of the subscript operator :

const int& operator[] (unsigned int index) const

{

 return myNums[index];

}

This amendment is required to support const instances of the MyBuffer class, such as this:

const MyBuffer constBuf(20);

cout << constBuf[0];

There are other binary operators (refer to Table 12.2) that can be redefined or overloaded but that are not discussed further in this lesson. Their implementation, however, is similar to the implementations of those that have already been discussed.

Other operators, such as the logical operators and the bitwise operators, need to be programmed if the purpose of a class would be enhanced by having them. Clearly, a calendar class such as Date does not necessarily need to implement logical operators, whereas a class that performs numeric functions might need them.

Keep the objective of your class and its use in perspective when overloading operators or writing new ones.

The Function Operator (())

The operator (), which makes objects behave like functions, is called a function operator. Such operators are used in the Standard Template Library (STL), especially with STL algorithms. They can be used to make decisions; such function objects are typically called unary or binary predicates, depending on the number of operands they work on. Listing 12.11 shows a really simple function object to help you understand what gives these objects such an intriguing name.

Input

Listing 12.11 A Function Object Created Using the () Operator

 0: #include <iostream>

 1: #include <string>

 2: using namespace std;

 3:

 4: class Display

 5: {

 6: public:

 7: void operator() (string input) const

 8: {

 9: cout << input << endl;

10: }

11: };

12:

13: int main()

14: {

15: Display displayFuncObj;

16:

17: // equivalent to displayFuncObj.operator () ("Display this string!");

18: displayFuncObj("Display this string!");

19:

20: return 0;

21: }

Output

Display this string!

Analysis

Lines 7 through 10 implement operator(), which is then used inside the function main() in Line 18. Note that the compiler allows the use of the object displayFuncObj as a function in Line 18 by implicitly converting what looks like a function call to a call to operator().

Hence, this operator is also called the function operator (), and the object of Display is also called a function object, or functor. This topic is discussed exhaustively in Lesson 21, “Understanding Function Objects.”

The Move Constructor and Move Assignment Operator for High-Performance Programming

The move constructor and the move assignment operator are performance optimization features that became part of the standard in C++11. They ensure that temporary values (that is, rvalues that don’t exist beyond the statement) are not wastefully copied. This is particularly useful when handling a class that manages a dynamically allocated resource, such as a dynamic array class or a string class.

The Problem of Unwanted Copy Steps

Take a look at the addition operator (+), as implemented in Listing 12.4. Notice that it actually creates a copy and returns it. If the MyBuffer class, as demonstrated in Listing 12.9, supported the addition operator, the following lines of code would be valid examples of easy concatenation:

MyBuffer buf1(5);

MyBuffer buf2(15);

MyBuffer buf3(buf1+buf2); // operator+, copy constructor

MyBuffer bufSum (1);

bufSum = buf1 + buf2 + buf3; // operator+, copy constructor, copy assignment operator=

Thus, the useful operators that help with concatenation and assignment cause performance problems because multiple internal copy steps are required. The copy constructor, for instance, executes a deep copy to a temporary value that does not exist after the expression. This problem has been resolved through the introduction of move constructors and move assignment operators, which help avoid multiple internal resource copy/reassignment steps, thereby enhancing the performance of the copy or assignment steps.

Declaring a Move Constructor and Move Assignment Operator

You would program a move constructor as follows:

class Sample

{

private:

 Type* ptrResource;

public:

 Sample(Sample&& moveSource) // Move constructor, note &&

 {

 ptrResource = moveSource.ptrResource; // take ownership, start move

 moveSource.ptrResource = NULL;

 }

 Sample& operator= (Sample&& moveSource)//move assignment operator, note &&

 {

 if(this != &moveSource)

 {

 delete [] ptrResource; // free own resource

 ptrResource = moveSource.ptrResource; // take ownership, start move

 moveSource.ptrResource = NULL; // free move source of ownership

 }

 }

 Sample(); // default constructor

 Sample(const Sample& copySource); // copy constructor

 Sample& operator= (const Sample& copySource); // copy assignment

};

Thus, the declaration of the move constructor and assignment operator are different from the declaration of the regular copy constructor and copy assignment operator in that the input parameter is of type Sample&&. In addition, as the input parameter is the move source, it cannot be a const parameter as it is modified. Return values remain the same; they are overloaded versions of the constructor and the assignment operator, respectively.

Standard-compliant compilers ensure that for rvalue temporaries, the move constructor is used instead of the copy constructor, and the move assignment operator is invoked instead of the copy assignment operator. In your implementation of these two, you ensure that instead of copying, you are simply moving the resource from the source to the destination. Listing 12.12 demonstrates the effectiveness of these two recent additions in optimizing the class MyBuffer.

Input

Listing 12.12 The MyBuffer Class with a Move Constructor and Move Assignment Operator in Addition to a Copy Constructor and Copy Assignment Operator

 0: #include <iostream>

 1: #include <algorithm>

 2: using namespace std;

 3: class MyBuffer

 4: {

 5: private:

 6: int* myNums;

 7: unsigned int bufLength;

 8:

 9: public:

10: MyBuffer(unsigned int length)

11: {

12: cout << “Constructing new instance with “ \

13: << length << “ elements” << endl;

14: bufLength = length;

15: myNums = new int[length]; // allocate memory

16: }

17:

18: MyBuffer(const MyBuffer& src) // copy constructor

19: {

20: cout << “Copy constructor creating deep copy” << endl;

21: bufLength = src.bufLength;

22: myNums = new int[bufLength];

23: copy(src.myNums, src.myNums + bufLength, myNums); // deep copy

24: }

25:

26: MyBuffer(MyBuffer&& src) // move constructor

27: {

28: cout << “Move constructor transferring ownership” << endl;

29:

30: if (src.myNums != NULL)

31: {

32: bufLength = src.bufLength;

33: myNums = src.myNums; // take ownership

34:

35: src.myNums = NULL;

36: src.bufLength = 0;

37: }

38: }

39:

40: MyBuffer& operator= (const MyBuffer& src) // copy assignment

41: {

42: cout << “Copy Assignment creating deep copy” << endl;

43: if (myNums != src.myNums) // avoid copy to self

44: {

45: if (myNums)

46: delete myNums;

47:

48: bufLength = src.bufLength;

49: myNums = new int[bufLength];

50: copy(src.myNums, src.myNums + bufLength, myNums); // deep copy

51: }

52:

53: return *this;

54: }

55:

56: MyBuffer& operator= (MyBuffer&& src) // move assignment

57: {

58: cout << “Move assignment transferring ownership” << endl;

59:

60: if ((src.myNums != NULL) && (myNums != src.myNums))

61: {

62: delete[] myNums;

63: myNums = src.myNums; // take ownership

64: bufLength = src.bufLength;

65:

66: src.bufLength = 0;

67: src.myNums = NULL;

68: }

69:

70: return *this;

71: }

72:

73: MyBuffer operator + (const MyBuffer& bufToAppend)

74: {

75: cout << “Operator + concatenating” << endl;

76: MyBuffer newBuf(this->bufLength + bufToAppend.bufLength);

77:

78: for (unsigned int counter = 0; counter < bufLength; ++counter)

79: newBuf.SetValue(counter, *(myNums + counter));

80:

81: for (unsigned int counter = 0; counter < bufToAppend.bufLength; ++counter)

82: newBuf.SetValue(counter + bufLength, *(bufToAppend.myNums + counter));

83:

84: return newBuf;

85: }

86:

87: ~MyBuffer()

88: {

89: delete[] myNums; // free allocated memory

90: }

91:

92: void SetValue(unsigned int index, int value)

93: {

94: if (index < bufLength) // check for bounds

95: *(myNums + index) = value;

96: }

97:

98: void DisplayBuf()

99: {

100: for (unsigned int counter = 0; counter < bufLength; ++counter)

101: cout << *(myNums + counter) << “ “;

102:

103: cout << endl;

104: }

105:};

106:

107:int main()

108:{

109: MyBuffer buf1(5);

110: MyBuffer buf2(15);

111:

112: cout << “Concatenation at object instantiation: “ << endl;

113: MyBuffer buf3(buf1 + buf2);

114: MyBuffer bufSum(1);

115:

116: cout << “Concatenation at assignment: “ << endl;

117: bufSum = buf1 + buf2 + buf3;

118:

119: return 0;

120:}

Output

Output without the move constructor and move assignment operator:

Constructing new instance with 5 elements

Constructing new instance with 15 elements

Concatenation at object instantiation:

Operator + concatenating

Constructing new instance with 20 elements

Copy constructor creating deep copy

Constructing new instance with 1 elements

Concatenation at assignment:

Operator + concatenating

Constructing new instance with 20 elements

Copy constructor creating deep copy

Operator + concatenating

Constructing new instance with 40 elements

Copy constructor creating deep copy

Copy Assignment creating deep copy

Output with the move constructor and move assignment operator enabled (MSVC):

Constructing new instance with 5 elements

Constructing new instance with 15 elements

Concatenation at object instantiation:

Operator + concatenating

Constructing new instance with 20 elements

Move constructor transferring ownership

Constructing new instance with 1 elements

Concatenation at assignment:

Operator + concatenating

Constructing new instance with 20 elements

Move constructor transferring ownership

Operator + concatenating

Constructing new instance with 40 elements

Move constructor transferring ownership

Move assignment transferring ownership

Output with the move constructor and move assignment operator enabled (g++):

Constructing new instance with 5 elements

Constructing new instance with 15 elements

Concatenation at object instantiation:

Operator + concatenating

Constructing new instance with 20 elements

Constructing new instance with 1 elements

Concatenation at assignment:

Operator + concatenating

Constructing new instance with 20 elements

Operator + concatenating

Constructing new instance with 40 elements

Move assignment transferring ownership

Analysis

This is a long code sample, but most of it has already been demonstrated in previous examples and lessons. The most important part of this listing is in Lines 26 through 38, which implement the move constructor, and Lines 56 through 71, which contain the move assignment operator. Lines in the output that have been influenced by this addition have been marked in bold. Note that the output changes drastically when compared against the same class without these two entities: The unnecessary deep-copy steps have disappeared. If you look at the implementation of the move constructor and the move assignment operator again, you see that the move semantic is essentially implemented by taking ownership of the resources from the move source src, as shown in Line 33 for the move constructor and Line 63 for the move assignment operator. Then NULL is assigned to the move source pointer in Lines 35 and 67. This assignment to NULL ensures that the destructor of the instance that is the move source essentially does no memory deallocation via delete in Line 89 as the ownership has been moved to the destination object. Note that in the absence of the move constructor, the copy constructor is called, and it does a deep copy of the pointed string. Thus, the move constructor has saved a good amount of processing time in reducing unwanted memory allocations and copy steps.

Note that the move constructor and the move assignment operator are optional; they are not essential to the correct functioning of a program. However, they enable an immense improvement in performance and reduction in resource consumption. Unlike with the copy constructor and the copy assignment operator, the compiler does not add a default implementation of the move constructor or the move assignment operator for you.

Tip

Listing 12.12 also demonstrates that g++ (version 11.11) produces different output than MSVC (version 16.11). g++ elides some construction steps by default. You will get comparable output when you enable maximum optimization in Visual Studio.

User-Defined Literals

Literal constants were introduced in Lesson 3, “Using Variables, Declaring Constants.” Here are some examples of literal constants:

int bankBalance = 10000;

long long companyNetWorth = 50’000’000’000; // 50 billion

double pi = 3.14;

char firstAlphabet = ’a’;

const char* sayHello = “Hello!”;

In this code, 10000, 50’000’000’000, 3.14, ’a’, and "Hello!" are all literal constants. Since C++11, the C standard has included features that allow you to define your own literals. For instance, if you are working on a scientific application that deals with thermodynamics, you might want all your temperatures to be stored using the Kelvin scale. You might then declare all your temperatures like this:

Temperature k1 = 32.15_F;

Temperature k2 = 0.0_C;

By using the literals _F and _C, which you have defined, you make your application a lot simpler to read and, therefore, maintain.

To define your own literal, you define operator “" like this:

ReturnType operator “” YourLiteral(ValueType value)

{

 // conversion code here

}

Note

Depending on the nature of the user-defined literal, the ValueType parameter would be restricted to one of the following:

• unsigned long long int for integral literal

• long double for floating-point literal

• char, wchar_t, char16_t, or char32_t for character literal

• const char* for raw string literal

• const char* together with size_t for string literal

• const wchar_t* together with size_t for string literal

• const char16_t* together with size_t for string literal

• const char32_t* together with size_t for string literal

Listing 12.13 demonstrates a user-defined literal that converts temperatures to the Kelvin scale.

Input

Listing 12.13 Conversion from Fahrenheit and Centigrade to the Kelvin Scale

 0: #include <iostream>

 1: using namespace std;

 2:

 3: struct Temperature

 4: {

 5: double Kelvin;

 6: Temperature(long double kelvin) : Kelvin(kelvin) {}

 7: };

 8:

 9: Temperature operator”” _C(long double celsius)

10: {

11: return Temperature(celsius + 273);

12: }

13:

14: Temperature operator “” _F(long double fahrenheit)

15: {

16: return Temperature((fahrenheit + 459.67) * 5 / 9);

17: }

18:

19: int main()

20: {

21: Temperature k1 = 31.73_F;

22: Temperature k2 = 0.0_C;

23:

24: cout << “k1 is “ << k1.Kelvin << “ Kelvin” << endl;

25: cout << “k2 is “ << k2.Kelvin << “ Kelvin” << endl;

26:

27: return 0;

28: }

Output

k1 is 273 Kelvin

k2 is 273 Kelvin

Analysis

Lines 21 and 22 initialize two instances of Temperature: one using a user-defined literal _F to declare an initial value in Fahrenheit and the other using a user-defined literal to declare an initial value in Celsius (formerly called Centigrade). The two literals are defined in Lines 9 through 17 and do the work of converting the respective units into Kelvin and returning an instance of Temperature. Note that k2 has intentionally been initialized to 0.0_C and not to 0_C because the literal _C has been defined (and is required) to take a long double as input value, and 0 would be interpreted as an integer.

Operators That Cannot Be Overloaded

C++ gives you a lot of flexibility in customizing the behavior of operators and making your classes easy to use. However, it does not allow you to change or alter the behavior of some operators that are expected to perform consistently. The operators that cannot be redefined are shown in Table 12.3.

Table 12.3 Operators That Cannot Be Overloaded or Redefined

[image: Images]

[image: Images]

Summary

In this lesson, you learned how programming operators can make a significant difference in the ease with which your class can be consumed. When programming a class that manages a resource—for example, a dynamic array or a string—you need to supply at least a copy constructor and copy assignment operator, in addition to a destructor. A utility class that manages a dynamic array can do very well with a move constructor and a move assignment operator which ensures that the contained resource is not deep copied for temporary objects. Last but not least, you learned that operators such as ., .*, ::, ?:, and sizeof cannot be redefined.

Q&A

Q. My class encapsulates a dynamic array of integers. What functions and operators should I implement at a minimum?

A. When programming such a class, you need to clearly define the behavior in the scenario where an instance is being copied directly into another via assignment or copied indirectly by being passed to a function by value. You typically implement the copy constructor, copy assignment operator, and destructor. You also implement the move constructor and move assignment operator if you want to tweak the performance of this class in certain cases. To enable array-like access to elements stored inside an instance of the class, you need to overload the subscript operator ([]).

Q. I have an instance object of a class. I want to support this syntax: cout << object;. What operator do I need to implement?

A. You need to implement a conversion operator that allows your class to be interpreted as a type that std::cout can handle up front. One way is to define the operator char*().

Q. I want to create my own smart pointer class. What functions and operators do I need to implement at a minimum?

A. A smart pointer needs to be able to be used as a normal pointer, as in *pSmartPtr or pSmartPtr->Func(). To enable this, you implement the operators * and ->. In addition, to create a smart pointer, you need to take care of automatic resource release/returns by programming the destructor accordingly, and you need to clearly define how copy or assignment works by implementing the copy constructor and copy assignment operator. As an alternative, you could prohibit copying by declaring these as private.

Workshop

The Workshop contains quiz questions to help solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before going to the next lesson.

Quiz

1. In the following snippet, can the subscript operator ([]) return const and non-const variants of return types?

const Type& operator[](int index);

Type& operator[](int index); // is this OK?

2. Would you ever declare the copy constructor or copy assignment operator as private?

3. Would it make sense to define a move constructor and move assignment operator for the class Date?

Exercises

1. Program a conversion operator for the class Date that converts the date it holds into an integer.

2. Program a move constructor and move assignment operator for the class DynamicFloats that encapsulates a dynamically allocated array in the form of a private member float*.

Lesson 13. Casting Operators

Casting is a mechanism by which a programmer can temporarily or permanently change how the compiler interprets an object. (The programmer does not change the object itself but simply changes the interpretation of the object.) Operators that change the interpretation of objects are called casting operators.

In this lesson, you learn

• The need for casting operators

• Why C-style casts are not popular

• The four C++ casting operators

• The concepts of upcasting and downcasting

• Why C++ casting operators are not strongly recommended

The Need for Casting

A perfectly type-safe and type-strong world of well-written C++ applications has no need for casting or for casting operators. However, we live in a world where modules may be programmed by different people who used different environments. Newly programmed code is required to work with legacy code and libraries. To make this interoperability possible, compilers need to be instructed to interpret data in ways that make the application compile and function correctly. This interoperability is achieved using casting operators.

Let’s take a real-world example. C++ compilers support bool as a native type, and they need to support linking to libraries that were programmed years ago in C. Such legacy code and libraries often used an integer type to hold Boolean data because type bool wasn’t supported natively by the compiler back then. A Boolean type back in the day was something akin to

typedef unsigned short BOOL;

A function that returns Boolean data would be declared as

BOOL IsX ();

The programmer of a new C++ application consuming a legacy library needs to make the bool data type that is supported natively by his compiler function with the BOOL data type that is returned by the library. The way to make this interoperability work is by using casts:

bool Result = (bool)IsX(); // C-style cast interprets BOOL as bool

The evolution of C++ resulted in the emergence of C++ casting operators and continued support for the legacy C-style casting operator. You need to understand both casting styles because the world today uses both.

Why C-Style Casts Are Not Popular with Some C++ Programmers

Type safety is one of the attributes that adds quality to programming in C++. Most C++ compilers won’t let you get away with this:

char* staticStr = “Hello World!”;

int* intArray = staticStr; // error: cannot convert char* to int*

—and rightfully so!

Having said that, compilers need to be backward compliant to support legacy code; therefore, they need to permit casting. In doing so, they permit code such as:

int* intArray = (int*)staticStr; // cast one problem away, create another

This C-style cast forces the compiler to interpret the destination as a type that the programmer wanted to assign to. The casting suppresses compile errors even though the types are totally incompatible. In this case, the programmer effectively muzzles the compiler and forces it to obey. In interpreting the char* as an int*, the compiler did not perform any conversion. In other words, in this example, a C-style cast compromised type safety and undermined the quality of the program.

The C++ Casting Operators

Despite the disadvantages of casting, the concept of casting cannot be discarded. In many situations, casts are legitimately required to solve important compatibility issues. In addition, C++ supplies a new casting operator specific to inheritance-based scenarios that did not exist with C programming.

The four C++ casting operators are

• static_cast

• dynamic_cast

• reinterpret_cast

• const_cast

The usage syntax of the casting operators is consistent:

destination_type result = cast_operator<destination_type> (object_to_cast);

Using static_cast

static_cast can be used to convert pointers between related types and perform explicit type conversions for standard data types that would otherwise happen automatically or implicitly. As far as pointers go, static_cast implements a basic compile-time check to ensure that a pointer is being cast to a related type. This is an improvement over a C-style cast, which allows a pointer to one object to be cast to an absolutely unrelated type without any complaint. With static_cast, a pointer can be upcasted to the base type or can be downcasted to the derived type, as the following code sample indicates:

Base* objBase = new Derived();

Derived* objDer = static_cast<Derived*>(objBase); // ok!

// class Unrelated is not related to Base

Unrelated* notRelated = static_cast<Unrelated*>(objBase); // Error

// The cast is not permitted as types are unrelated

Note

Casting Derived* to Base* is called upcasting and can be done without any explicit casting operator:

Derived objDerived;

Base* objBase = &objDerived; // ok!

Casting Base* to Derived* is called downcasting and cannot be done without the use of explicit casting operators:

Derived objDerived;

Base* objBase = &objDerived; // Upcast, ok!

Derived* objDer = objBase; // Error: Downcast, needs explicit casting

However, note that static_cast verifies only that the pointer types are related. It does not perform any runtime checks. So, with static_cast, a programmer could still get away with this bug:

Base* objBase = new Base();

Derived* objDer = static_cast<Derived*>(objBase); // Still no errors!

Here, objDer points to a Base type but not to type Derived. static_cast performs a compile-time check by verifying that the types in question are related—which they are—and it therefore permits the casting. It does not perform a runtime check to ensure that the object being pointed to is of type Derived. Using this pointer objDer to call a method in the derived class objDer->DerivedFunction() would compile, but it would certainly result in unexpected behavior at execution.

In addition to helping in upcasting or downcasting, static_cast can, in many cases, help make implicit casts explicit and bring them to the attention of a programmer or reader:

double Pi = 3.14159265;

int num = static_cast<int>(Pi); // Making an otherwise implicit cast, explicit

In this code, num = Pi also works and would provide the same effect. However, using static_cast brings the nature of conversion to the attention of the reader and indicates (to someone who knows static_cast) that the compiler has performed the necessary adjustments based on the information available at compile time to perform the required type conversion. You also need to use static_cast when using conversion operators or constructors that have been declared using the keyword explicit. Avoiding implicit conversions via the keyword explicit is discussed in Lesson 9, “Classes and Objects,” and Lesson 12, “Operator Types and Operator Overloading.”

Using dynamic_cast and Runtime Type Identification

Dynamic casting, as the name suggests, is the opposite of static casting and actually executes the cast at runtime—that is, at application execution time. The result of a dynamic_cast operation can be checked to see whether the attempt at casting succeeded. The typical usage syntax of the dynamic_cast operator is

destination_type* Dest = dynamic_cast<class_type*>(Source);

if(Dest) // Check for success of the casting operation

 Dest->CallFunc();

For example:

Base* objBase = new Derived();

// Perform a downcast

Derived* objDer = dynamic_cast<Derived*>(objBase);

if(objDer) // Check for success of the cast

 objDer->CallDerivedMethod();

As shown in this short example, given a pointer to a base class object, the programmer can resort to using dynamic_cast to verify the type of the destination object being pointed to before proceeding to use the pointer as such. Note that in this code snippet, it is apparent that the destination object is a derived type. So, the sample is for demonstration only. However, this is not always the case—such as when a pointer of type Derived* is passed to a function that accepts type Base*. The function can use dynamic_cast given a base class pointer to detect the types and then perform operations specific to the types detected. Thus, dynamic_cast helps determine the type at runtime and makes it possible to use a casted pointer when it is safe to do so. See Listing 13.1, which uses the familiar hierarchy of classes Tuna and Carp related to the base class Fish, where the function DetectFishType() dynamically detects whether a Fish* is a Tuna* or a Carp*.

Note

This mechanism of identifying the type of the object at runtime is called runtime type identification (RTTI).

Input

Listing 13.1 Using Dynamic Casting to Tell Whether a Fish Object Is a Tuna or a Carp

 0: #include <iostream>

 1: using namespace std;

 2:

 3: class Fish

 4: {

 5: public:

 6: virtual void Swim()

 7: {

 8: cout << “Fish swims in water” << endl;

 9: }

10:

11: // base class should always have virtual destructor

12: virtual ~Fish() {}

13: };

14:

15: class Tuna: public Fish

16: {

17: public:

18: void Swim()

19: {

20: cout << “Tuna swims real fast in the sea” << endl;

21: }

22:

23: void BecomeDinner()

24: {

25: cout << “Tuna became dinner in Sushi” << endl;

26: }

27: };

28:

29: class Carp: public Fish

30: {

31: public:

32: void Swim()

33: {

34: cout << “Carp swims real slow in the lake” << endl;

35: }

36:

37: void Talk()

38: {

39: cout << “Carp talked Carp!” << endl;

40: }

41: };

42:

43: void DetectFishType(Fish* objFish)

44: {

45: Tuna* objTuna = dynamic_cast <Tuna*>(objFish);

46: if (objTuna) // check success of cast

47: {

48: cout << “Detected Tuna. Making Tuna dinner: “ << endl;

49: objTuna->BecomeDinner();

50: }

51:

52: Carp* objCarp = dynamic_cast <Carp*>(objFish);

53: if(objCarp)

54: {

55: cout << “Detected Carp. Making carp talk: “ << endl;

56: objCarp->Talk();

57: }

58:

59: cout << “Verifying type using virtual Fish::Swim()” << endl;

60: objFish->Swim(); // calling virtual function Swim

61: }

62:

63: int main()

64: {

65: Carp myLunch;

66: Tuna myDinner;

67:

68: DetectFishType(&myDinner);

69: cout << endl;

70: DetectFishType(&myLunch);

71:

72: return 0;

73:}

Output

Detected Tuna. Making Tuna dinner:

Tuna became dinner in Sushi

Verifying type using virtual Fish::Swim()

Tuna swims real fast in the sea

Detected Carp. Making carp talk:

Carp talked Carp!

Verifying type using virtual Fish::Swim()

Carp swims real slow in the lake

Analysis

This example uses a hierarchy in which the classes Tuna and Carp inherit from Fish. For the sake of explanation, not only do the two derived classes implement the virtual function Swim(), but each contains a function that is specific to its type (namely, Tuna::BecomeDinner() and Carp::Talk()). What is special in this example is that, given an instance of the base class Fish*, you are able to dynamically detect whether that pointer points to a Tuna or a Carp. This dynamic detection or runtime type identification happens in the function DetectFishType(), which is defined in Lines 43 through 61. In Line 45, dynamic_cast is used to test the nature of the input base class pointer of type Fish* for type Tuna*. If this Fish* points to a Tuna, the operator returns a valid address; otherwise, it returns NULL. Hence, the result of a dynamic_cast always needs to be checked for validity. After the check in Line 46 succeeds, you know that the pointer objTuna points to a valid Tuna, and you are able to call the function Tuna::BecomeDinner() using it, as shown in Line 49. With the Carp, you use the pointer to invoke the function Carp::Talk(), as shown in Line 56. Before returning, DetectFishType() does a verification of the type by invoking Fish::Swim(), which is virtual and redirects the call to the Swim() method implemented in Tuna or Carp, as applicable.

Caution

The return value of a dynamic_cast operation should always be checked for validity. It is NULL when a cast fails.

Using reinterpret_cast

reinterpret_cast is the closest a C++ casting operator gets to a C-style cast. It really does allow a programmer to cast one object type to another, regardless of whether the types are related; that is, it forces a reinterpretation of type as shown in the following example:

Base* objBase = new Base();

Unrelated* notRelated = reinterpret_cast<Unrelated*>(objBase);

// The code above compiles, yet bad programming!

This cast actually forces the compiler to accept situations that static_cast would normally not permit. It finds usage in applications (such as device drivers, for example) where data needs to be converted to a simple type that an application programming interface (API) can accept. For example, some OS-level APIs require data to be sent as a byte array (that is, as an unsigned char*):

SomeClass* object = new SomeClass();

// Need to send the object as a byte-stream...

unsigned char* bytesFoAPI = reinterpret_cast<unsigned char*>(object);

The cast used in this code has not changed the binary representation of object. No other C++ casting operator would allow such a conversion that compromises type safety. reinterpret_cast is therefore the last resort when performing an otherwise unsafe conversion.

Caution

Refrain from using reinterpret_cast in your applications because it suppresses type safety, allowing a type X to be interpreted as an unrelated type Y.

Using const_cast

const_cast enables you to turn off the const access modifier to an object. You are probably wondering why C++ needs this in the first place. In an ideal situation where programmers write their classes correctly, they remember to use the const keyword frequently and in the right places. The practical world is unfortunately way too different, and code like the following is prevalent:

class SomeClass

{

public:

 // ...

 void DisplayMembers(); //problem - display function isn’t const

};

So, when you program a function such as

void DisplayAllData (const SomeClass& object)

{

 object.DisplayMembers (); // Compile failure

 // reason: call to a non-const member using a const reference

}

You are correct in passing object as a const reference. After all, a display function should be read only and should not be allowed to call non-const member functions; that is, it should not be allowed to call a function that can change the state of the object. However, SomeClass::DisplayMembers()ought to be const, but unfortunately, it is not. Now, so long as SomeClass belongs to you and the source code is in your control, you can make corrective changes to DisplayMembers(). In many cases, however, it might belong to a third-party library, and you would not be able to make changes. In situations such as these, const_cast is your savior.

The code for invoking DisplayMembers() in such a scenario is

void DisplayAllData (const SomeClass& object)

{

 SomeClass& refData = const_cast<SomeClass&>(object);

 refData.DisplayMembers(); // Allowed!

}

Caution

You should use const_cast to invoke non-const functions only as a last resort.

Note that const_cast can also be used with pointers:

void DisplayAllData (const SomeClass* data)

{

 // data->DisplayMembers(); Error: attempt to invoke a non-const function!

 SomeClass* pCastedData = const_cast<SomeClass*>(data);

 pCastedData->DisplayMembers(); // Allowed!

}

Problems with the C++ Casting Operators

Not everyone is happy with the C++ casting operators—not even those who swear by C++. Their reasons range from the syntax being cumbersome and nonintuitive to these operations being redundant. For instance:

double Pi = 3.14159265;

// C++ style cast: static_cast

int num = static_cast<int>(Pi); // result: Num is 3

// C-style cast

int num2 = (int)Pi; // result: num2 is 3

// leave casting to the compiler

int num3 = Pi; // result: num3 is 3. No errors!

All three of these cases achieve the same result. The compiler is intelligent enough to convert such types correctly. This makes the cast syntax look redundant.

Similarly, every valid use of static_cast can be handled equally well by C-style casts:

// using static_cast

Derived* objDer = static_cast <Derived*>(objBase);

// But, this works just as well...

Derived* objDerSimple = (Derived*)objBase;

Thus, the advantage of using static_cast is often overshadowed by its cumbersome syntax.

Looking at other operators, reinterpret_cast is for forcing your way through when static_cast does not work. Ditto for const_cast with respect to modifying the const access modifiers. You can avoid dynamic_cast if your inheritance hierarchy is well designed and you invoke virtual functions using the base class instance. Thus, many experts hold the view that well-programmed, modern C++ applications can do without casting operators. These operators are necessary, however, when addressing interoperability issues with legacy code.

[image: Images]

Summary

In this lesson, you learned the different C++ casting operators, as well as the arguments for and against using them. You also learned that, in general, you should avoid the use of casts.

Q&A

Q. Is it okay to modify the contents of a const object by casting a pointer or reference to it using const_cast?

A. Most definitely not. The result of such an operation is not defined and is certainly not desired.

Q. I need a Bird* but have a Dog* at hand. The compiler does not allow me to use the pointer to the Dog object as a Bird*. However, when I use reinterpret_cast to cast the Dog* to Bird*, the compiler does not complain, and it seems that I can use this pointer to call Bird’s member function, Fly(). Is this okay?

A. Again, definitely not. reinterpret_cast changes only the interpretation of the pointer; it does not change the object being pointed to (which is still a Dog). Calling a Fly() function on a Dog object will not give the results you are looking for, and it could possibly cause an application failure.

Q. I have a Derived object being pointed to by an objBase that is a Base*. I am sure that objBase points to a Derived object, so do I really need to use dynamic_cast?

A. Because you are sure that the object being pointed to is a Derived type, you can improve runtime performance by using static_cast.

Q. C++ provides casting operators, but I am advised to avoid using them as much as possible. Why is that?

A. Casting operators are useful when integrating legacy code, but you don’t need them in well-programmed, modern C++ applications in most cases.

Workshop

The workshop contains quiz questions to help solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before going to the next lesson.

Quiz

1. You have a base class object pointer objBase. What cast would you use to determine whether it is a Derived1 type or a Derived2 type?

2. You have a const reference to an object and have tried calling a public member function that you wrote. The compiler does not allow this because the function in question is not a const member. Would you correct the function, or would you use const_cast?

3. True or false: reinterpret_cast should be used only when static_cast does not work and the cast is known to be required and safe.

4. True or false: Many instances of static_cast-based conversions, especially between simple data types, would be performed automatically by a good C++ compiler.

Exercises

1. BUG BUSTERS: What is the problem in the following code?

void DoSomething(Base* objBase)

{

 Derived* objDer = dynamic_cast <Derived*>(objBase);

 objDer->DerivedClassMethod();

}

2. You have a pointer objFish* that points to an object of class Tuna:

Fish* objFish = new Tuna;

Tuna* objTuna = <what cast?>objFish;

What cast would you use to get a pointer Tuna* to point to this object of type Tuna? Demonstrate using code.

Lesson 14. An Introduction to Macros and Templates

By now, you should have a solid understanding of basic C++ syntax. You are poised to learn language features that help you program C++ applications efficiently.

In this lesson, you learn

• An introduction to the preprocessor

• The #define keyword and macros

• An introduction to templates

• How to write template functions and classes

• The difference between macros and templates

• How to use static_assert to perform compile-time checks

The Preprocessor and the Compiler

Lesson 2, “The Anatomy of a C++ Program,” introduced the preprocessor. The preprocessor, as the name indicates, runs before the compiler does. In other words, you use the preprocessor to influence what is compiled using preprocessor directives. These directives start with a # sign. For example:

// instruct preprocessor to insert contents of iostream here

#include <iostream>

// define a macro constant

#define ARRAY_LENGTH 25

int numbers[ARRAY_LENGTH]; // array of 25 integers

// define a macro function

#define SQUARE(x) ((x) * (x))

const int twentyFive = SQUARE(5);

This lesson focuses on two types of preprocessor directives shown in the code snippet above: one using #define to define a constant and another using #define to define a macro function. The directives instruct the preprocessor to replace every instance of the macro (ARRAY_LENGTH or SQUARE) with the value it defines.

Note

Macros execute text substitution. The preprocessor does nothing intelligent. It simply replaces the identifier with other text—without validating the replacement.

Using the Macro #define to Define Constants

The syntax you use with #define to compose a constant is simple:

#define identifier replacement-text

For example, you define the constant ARRAY_LENGTH to be substituted with 25 as follows:

#define ARRAY_LENGTH 25

This identifier is now replaced by 25 wherever the preprocessor encounters the text ARRAY_LENGTH:

int numbers[ARRAY_LENGTH];

double radiuses[ARRAY_LENGTH];

std::string names[ARRAY_LENGTH];

After the preprocessor runs, the code above is visible to the compiler as follows:

int numbers[25]; // an array of 25 integers

double radiuses[25]; // an array of 25 doubles

std::string names[25];// an array of 25 std::strings

The replacement is applicable to every section of your code, including a for loop such as this one:

for(int index = 0; index < ARRAY_LENGTH; ++index)

 numbers[index] = index;

This for loop is visible to the compiler as

for(int index = 0; index < 25; ++index)

 numbers[index] = index;

To see exactly how such a macro works, review Listing 14.1.

Input

Listing 14.1 Declaring and Using Macros That Define Constants

 0: #include <iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: #define ARRAY_LENGTH 25

 5: #define PI 3.1416

 6: #define MY_DOUBLE double

 7: #define FAV_WHISKY “Jack Daniels”

 8:

 9: int main()

10: {

11: int numbers [ARRAY_LENGTH] = {0};

12: cout << “Array’s length: “ << sizeof(numbers) / sizeof(int) << endl;

13:

14: cout << “Enter a radius: “;

15: MY_DOUBLE radius = 0;

16: cin >> radius;

17: cout << “Area is: “ << PI * radius * radius << endl;

18:

19: string favoriteWhisky (FAV_WHISKY);

20: cout << “My favorite drink is: “ << FAV_WHISKY << endl;

21:

22: return 0;

23: }

Output

Array’s length: 25

Enter a radius: 2.1569

Area is: 14.6154

My favorite drink is: Jack Daniels

Analysis

ARRAY_LENGTH, PI, MY_DOUBLE, and FAV_WHISKY are the four macro constants defined in Lines 4 through 7, respectively. As you can see, ARRAY_LENGTH is used in defining the length of an array at Line 11, which has been confirmed indirectly by using the operator sizeof() in Line 12. MY_DOUBLE is used to declare the variable radius of type double in Line 15, and PI is used to calculate the area of the circle in Line 17. Finally, FAV_WHISKY is used to initialize a std::string object in Line 19 and is directly used in the cout statement in Line 20. All these instances show how the preprocessor simply makes a text replacement.

This simple text replacement by the preprocessor illustrated in Listing 14.1 has drawbacks.

Tip

In executing text substitutions, the preprocessor does not check for the correctness of the substitution (but the compiler always does). You could define FAV_WHISKY in Line 7 in Listing 14.1 like this:

#define FAV_WHISKY 42 // previously “Jack Daniels”

This would result in a compilation error in Line 19 for the std::string instantiation. However, in the absence of Line 19, the compiler would go ahead and print the following:

My favorite drink is: 42

This, of course, wouldn’t make sense, and, most importantly, it would go through undetected. In addition, you wouldn’t have much control over the macro-defined constant PI: Is it a double or a float? The answer is neither. To the preprocessor, PI is just a text substitution element 3.1416. It is not a defined data type.

Constants are best defined using the const keyword with data types instead. Here is a superior alternative:

const int ARRAY_LENGTH = 25;

const double PI = 3.1416;

const char* FAV_WHISKY = “Jack Daniels”;

typedef double MY_DOUBLE; // typedef aliases a type

Using Macros for Protection Against Multiple Inclusion

C++ programmers typically declare their classes and functions in .H files, also called header files. Functions are defined in .CPP files that include the header files using the #include<header> preprocessor directive. If one header file—let’s call it class1.h—declares a class that has another class declared in class2.h as a member, then class1.h needs to include class2.h. If the design were complicated, and the other class required the former as well, then class2.h would include class1.h, too!

For the preprocessor, however, two header files that include each other is a problem that is recursive in nature. To avoid this problem, you can use macros in conjunction with the preprocessor directives #ifndef and #endif.

header1.h, which includes <header2.h>, looks like the following:

#ifndef HEADER1_H _//multiple inclusion guard

#define HEADER1_H_ // preprocessor will read this and following lines once

#include <header2.h>

class Class1

{

 // class members

};

#endif // end of header1.h

header2.h looks similar, but with a different macro definition, and it includes <header1.h>:

#ifndef HEADER2_H_//multiple inclusion guard

#define HEADER2_H_

#include <header1.h>

class Class2

{

 // class members

};

#endif // end of header2.h

Note

#ifndef can be read as “if-not-defined.” It is a conditional processing command that instructs the preprocessor to continue only if the identifier has not been defined. This check ensures that the preprocessor works on the lines that follow only once.

#endif marks the end of this conditional processing instruction for the preprocessor.

Thus, when the preprocessor enters header1.h in the first run and encounters the #ifndef statement, it notices that the macro HEADER1_H_ has not been defined and proceeds. The first line following #ifndef defines the macro HEADER1_H_, ensuring that a second preprocessor run of this file terminates at the first line containing #ifndef, as that condition now evaluates to false. The same is true for header2.h. This simple mechanism is arguably one of the most frequently used macro-based functionalities in the world of C++ programming.

Tip

C++20 introduces modules. Modules provide a modern way of reusing code that was previously contained in header (.H) files. Modules don’t need multiple inclusion guards and drastically reduce the time required for compilation of particularly large code bases. They are introduced in Lesson 31, “C++20 Modules and C++23.”

Using #define to Write Macro Functions

A preprocessor can simply replace text elements identified by a macro, and so a preprocessor is often used to write simple functions, as in this example:

#define SQUARE(x) ((x) * (x))

This code determines the square of a number. Similarly, a macro that calculates the area of a circle looks like this:

#define PI 3.1416

#define AREA_CIRCLE(r) (PI*(r)*(r))

Macro functions are often used for very simple calculations such as these. They appear like regular function calls, but they are expanded inline before compilation. They can therefore help improve code performance in certain cases. Listing 14.2 demonstrates the use of these macro functions.

Input

Listing 14.2 Using Macro Functions That Calculate the Square of a Number, Area of a Circle, and Min and Max of Two Numbers

 0: #include <iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: #define SQUARE(x) ((x) * (x))

 5: #define PI 3.1416

 6: #define AREA_CIRCLE(r) (PI*(r)*(r))

 7: #define MAX(a, b) (((a) > (b)) ? (a) : (b))

 8: #define MIN(a, b) (((a) < (b)) ? (a) : (b))

 9:

10: int main()

11: {

12: cout << “Enter an integer: “;

13: int num = 0;

14: cin >> num;

15:

16: cout << “SQUARE(” << num << “) = “ << SQUARE(num) << endl;

17: cout << “Area of a circle with radius “ << num << “ is: “;

18: cout << AREA_CIRCLE(num) << endl;

19:

20: cout << “Enter another integer: “;

21: int num2 = 0;

22: cin >> num2;

23:

24: cout << “MIN(” << num << “, “ << num2 << “) = “;

25: cout << MIN (num, num2) << endl;

26:

27: cout << “MAX(” << num << “, “ << num2 << “) = “;

28: cout << MAX (num, num2) << endl;

29:

30: return 0;

31: }

Output

Enter an integer: 36

SQUARE(36) = 1296

Area of a circle with radius 36 is: 4071.51

Enter another integer: -101

MIN(36, -101) = -101

MAX(36, -101) = 36

Analysis

Lines 4 through 8 contain a few utility macro functions that return the square of a number, the area of a circle, and the min and max of two numbers. Note how AREA_CIRCLE in Line 6 evaluates the area using a macro constant PI, thus indicating that one macro can reuse another. After all, these are just plaintext replacement commands for the preprocessor. Let’s analyze Line 25, which uses the macro MIN:

cout << MIN (num, num2) << endl;

This line is essentially fed to the compiler in the following format, where the macro is expanded in place:

cout << (((num) < (num2)) ? (num) : (num2)) << endl;

Caution

Note that macros are not type sensitive, and macro functions can therefore cause problems. AREA_CIRCLE, for instance, should ideally be a function that returns double so that you are certain of the return value resolution of the area calculated.

Why All the Parentheses?

Take another look at the macro to calculate a circle’s area:

#define AREA_CIRCLE(r) (PI*(r)*(r))

This calculation has curious syntax. Look at the number of parentheses used. Also, compare this syntax to the following syntax for the function Area() (which was originally presented in Listing 7.1 in Lesson 7, “Organizing Code with Functions"):

double Area(double radius)

{

 return Pi * radius * radius; // look, no parentheses?

}

So, why do you use so many parentheses for the macro but not for the same formula in a function? The reason lies in the way the macro is evaluated: as a text substitution mechanism supported by the preprocessor.

Consider the macro without most of the brackets:

#define AREA_CIRCLE(r) (PI*r*r)

What happens when you invoke this macro using a statement like this:

cout << AREA_CIRCLE (4+6);

The compiler would expand it into

cout << (PI*4+6*4+6); // not the same as PI*10*10

Thus, following the rules of operator precedence where multiplication happens before addition, the compiler actually evaluates the area like this:

cout << (PI*4+24+6); // 42.5664 (which is incorrect)

In the absence of parentheses, plaintext conversion wreaks havoc on the programming logic! Parentheses help avoid this problem:

#define AREA_CIRCLE(r) (PI*(r)*(r))

cout << AREA_CIRCLE (4+6);

The compiler views the expression after substitution as follows:

cout << (PI*(4+6)*(4+6)); // PI*10*10, as expected

The parentheses automatically result in the calculation of an accurate area, making your macro code independent of operator precedence and its effects.

Using the assert Macro to Validate Expressions

Although it is good to test every path your code might execute and every potential data input, it might be unrealistic for programmers of large applications to be so meticulous. What is possible, though, is to check for valid expressions or variable values.

The assert macro enables you to do just that. You need to first include <cassert>, and then use assert as seen below:

assert(expression that evaluates to true or false);

A sample use of assert() that validates the contents of a pointer is

#include <cassert>

#include <cstddef>

#include <new>

int main()

{

 char* sayHello = new (std::nothrow) char[25];

 assert(sayHello != NULL); // throws a message if pointer is NULL

 // other code

 delete[] sayHello;

 return 0;

}

assert() ensures that you are notified if the pointer is invalid. For demonstration purposes, I initialized sayHello to NULL, and on execution in debug mode, the program produces the following output when compiled with g++:

int main(): Assertion ’sayHello != NULL’ failed.

In certain configurations such as in Debug mode, Visual Studio might give you a visual alert.

Thus assert() is a handy debugging feature; for instance, you can validate input parameters of functions by using assert(). This is highly recommended and helps you improve the quality of your code over the long term.

Advantages and Disadvantages of Using Macro Functions

Macros enable you to reuse certain utility functions, regardless of the type of variables you are dealing with. Once again consider the following line from Listing 14.2:

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

You can use this macro function MIN on integers:

cout << MIN(25, 101) << endl;

But you can reuse it on double, too:

cout << MIN(0.1, 0.2) << endl;

Note that if MIN() were a normal function, you would program two variants of it: MIN_INT(), which accepted int parameters and returned an int, and MIN_DOUBLE(), which does the same with type double instead. Defining MIN() as a macro reduces the number of lines of code and entices some programmers into using macros to define simple utility functions. These macro functions are expanded inline before compilation, and hence the performance of a simple macro is superior to that of an ordinary function call doing the same task. This is because the function call requires the creation of a call stack, passing arguments, and so on—administrative overload that often takes more CPU time than the calculation of MIN itself.

However, macros do not support any form of type safety, which compromises program quality and is a major disadvantage. In addition, debugging a complicated macro is not easy.

If you need the ability to program generic functions that are type independent yet type safe, you program a template function instead of a macro function. These functions are explained in the next section. If you need to boost performance, you call a function inline. (You have already been introduced to programming inline functions using the keyword inline. Refer to Listing 7.10 in Lesson 7.)

[image: Images]

It’s time to learn generic programming practices using templates!

An Introduction to Templates

Templates are arguably one of the most powerful features of the C++. According to Webster’s dictionary, a template is “something that establishes or serves as a pattern.”

This definition is fairly close to the definition of template in C++ parlance. A template in C++ enables you to define a behavior that you can apply to objects of varying types. This sounds ominously close to what macros let you do; think about the simple macro MAX that determined the greater of two numbers. However, macros are type unsafe, and templates are type safe.

Template Declaration Syntax

You begin the declaration of a template by using the template keyword followed by a type parameter list. The format of this declaration is

template <parameter list>

function or class declaration

The keyword template marks the start of a template declaration, and the template parameter list contains the keyword typename, which defines the template parameter objType, making it a placeholder for the type of the object that the template is being instantiated for:

template <typename T1, typename T2 = T1>

bool TemplateFunction(const T1& param1, const T2& param2);

// A template class

template <typename T1, typename T2 = T1>

class MyTemplate

{

private:

 T1 member1;

 T2 member2;

public:

 T1 GetMember1() {return member1; }

 // ... other methods

};

What you see here is a template function and a template class, each taking two template parameters, T1 and T2, where T2 has been given the default type T1.

The Different Types of Template Declarations

A template declaration can be

• A declaration or definition of a function

• A declaration or definition of a class

• A definition of a member function or a member class of a class template

• A definition of a static data member of a class template

• A definition of a static data member of a class nested within a class template

• A definition of a member template of a class or class template

Template Functions

Imagine a function that would adapt itself to suit parameters of different types, without requiring you to define an overloaded version for each type. Such a function is possible using template syntax! Let’s analyze a sample template declaration that is the equivalent of the previously discussed macro MAX, which returns the greater of two supplied parameters:

template <typename objType>

const objType& GetMax(const objType& value1, const objType& value2)

{

 if (value1 > value2)

 return value1;

 else

 return value2;

}

Sample usage:

int num1 = 25;

int num2 = 40;

int maxVal = GetMax<int>(num1, num2);

double double1 = 1.1;

double double2 = 1.001;

double maxVal = GetMax<double>(double1, double2);

Note the detail <int> that is used in the call to GetMax. It effectively defines the template parameter objType as int. Based on the preceding code, the compiler generates two versions of the template function GetMax, which can be visualized as follows:

const int& GetMax(const int& value1, const int& value2)

{

 //...

}

const double& GetMax(const double& value1, const double& value2)

{

 // ...

}

In reality, however, template functions don’t necessarily need an accompanying type specifier. So, the following function call works perfectly well:

int maxVal = GetMax(num1, num2);

Compilers are intelligent enough to understand that the template function is being invoked for the integer type. With template classes, however, you need to explicitly specify type, as shown in Listing 14.3.

Input

Listing 14.3 A Template Function GetMax That Helps Evaluate the Higher of Two Supplied Values

 0: #include<iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: template <typename Type>

 5: const Type& GetMax(const Type& value1, const Type& value2)

 6: {

 7: if (value1 > value2)

 8: return value1;

 9: else

10: return value2;

11: }

12:

13: template <typename Type>

14: void DisplayComparison(const Type& value1, const Type& value2)

15: {

16: cout << “GetMax(” << value1 << “, “ << value2 << “) = “;

17: cout << GetMax(value1, value2) << endl;

18: }

19:

20: int main()

21: {

22: int num1 = -101, num2 = 2011;

23: DisplayComparison(num1, num2);

24:

25: double d1 = 3.14, d2 = 3.1416;

26: DisplayComparison(d1, d2);

27:

28: string name1("Jack"), name2("John");

29: DisplayComparison(name1, name2);

30:

31: return 0;

32: }

Output

GetMax(-101, 2011) = 2011

GetMax(3.14, 3.1416) = 3.1416

GetMax(Jack, John) = John

Analysis

This example features two template functions: GetMax() in Lines 4 through 11, which is used by DisplayComparison() in Lines 13 through 18. main() demonstrates in Lines 23, 26, and 29 how the same template function has been reused for very different data types: integer, double, and std::string. Not only are these template functions reusable (just like their macro counterparts), but they’re easier to program and maintain and are type safe.

Note that you could also invoke DisplayComparison with the explicit type:

23: DisplayComparison<int>(num1, num2);

However, this is unnecessary when calling template functions. You don’t need to specify the template parameter type(s) because the compiler is able to infer it automatically. When using template classes, though, you do need to specify type.

Templates and Type Safety

The template functions DisplayComparison() and GetMax()in Listing 14.3 are type safe. This means that they would not allow a meaningless call like this one:

DisplayComparison(num1, name1);

Such a call would immediately result in a compile failure.

Template Classes

Lesson 9, “Classes and Objects,” taught you that classes are programming units that encapsulate certain attributes and methods that operate on those attributes. Attributes typically are private members, such as int age in the class Human. Classes are design blueprints, and the real-world representation of a class is an object of the class. So, Tom can be thought of as an object of the class Human with the attribute age containing the value 15, for example. It appears that in this case, age is provided in years. If you were required to store age as the number of seconds since birth for a certain reason unique to your application, then int might be insufficient. To be on the safe side, you might want to use a long long instead. This is where template classes could be handy. Template classes are templatized versions of C++ classes; they are blueprints of blueprints. When using a template class, you are given the option to specify the “type” you are specializing the class for. This enables you to create some humans with template parameter Age as a long long, some with int, and some with Age as an integer of type short.

A simple template class that uses a single template parameter T to hold a member variable of type T can be defined as follows:

template <typename T>

class HoldVarTypeT

{

private:

 T value;

public:

 void SetValue (const T& newValue) { value = newValue; }

 T& GetValue() {return value;}

};

The type of the variable value is T, and T is resolved at the time the template is used—that is, when the template is instantiated. So, let’s look at a sample usage of this template class:

HoldVarTypeT<int> holdInt; // template instantiation for int

holdInt.SetValue(5);

cout << “The value stored is: “ << holdInt.GetValue() << endl;

This example shows how to use this template class to hold and retrieve an object of type int; that is, the Template class is instantiated for a template parameter of type int. Similarly, you can use the same class to deal with strings in a similar manner:

HoldVarTypeT<string> holdStr;

holdStr.SetValue("Sample string");

cout << “The value stored is: “ << holdStr.GetValue() << endl;

Thus, the template class defines a pattern for classes and helps implement that pattern on different data types that the template may be instantiated with.

Tip

Template classes can be instantiated with types other than simple ones like int or classes supplied by the Standard Template Library. You can instantiate a template by using a class that you define. For example, when you add code that defines the template class HoldVarTypeT to Listing 9.1 in Lesson 9, you can instantiate the template for the class Human by appending the following code to main():

HoldVarTypeT<Human> holdHuman;

holdHuman.SetValue(firstMan);

holdHuman.GetValue().IntroduceSelf();

Declaring Templates with Multiple Parameters

You can expand the template parameter list to declare multiple parameters, separated by commas. So, if you want to declare a generic class that holds a pair of objects that can be of different types, you can do so by using the construct shown in the following example (which displays a template class with two template parameters):

template <typename T1, typename T2>

class HoldsPair

{

private:

 T1 value1;

 T2 value2;

public:

 // Constructor that initializes member variables

 HoldsPair (const T1& val1, const T2& val2)

 {

 value1 = val1;

 value2 = val2;

 };

 // ... Other member functions

};

In this example, the class HoldsPair accepts two template parameters named T1 and T2. You can use this class to hold two objects of the same type or of different types, as you can see here:

// A template instantiation that pairs an int with a double

HoldsPair<int, double> pairIntDouble(6, 1.99);

// A template instantiation that pairs an int with an int

HoldsPair<int, int> pairIntDouble(6, 500);

Declaring Templates with Default Parameters

You could modify the previous version of HoldsPair <...> to declare int as the default template parameter type:

template <typename T1=int, typename T2=int>

class HoldsPair

{

 // ... method declarations

};

This is similar in construction to functions that define default input parameter values except for the fact that, in this case, you define default types.

The use of HoldsPair can thus be compacted to

// Pair an int with an int (default type)

HoldsPair<> pairInts (6, 500);

Sample Template Class: HoldsPair

It’s time to further develop the template version of HoldsPair that has been covered so far. Have a look at Listing 14.4.

Input

Listing 14.4 A Template Class with a Pair of Member Attributes

 0: #include <iostream>

 1: using namespace std;

 2:

 3: // template with default params: int & double

 4: template <typename T1=int, typename T2=double>

 5: class HoldsPair

 6: {

 7: private:

 8: T1 value1;

 9: T2 value2;

10: public:

11: HoldsPair(const T1& val1, const T2& val2) // constructor

12: : value1(val1), value2(val2) {}

13:

14: // Accessor functions

15: const T1& GetFirstValue() const

16: {

17: return value1;

18: }

19:

20: const T2& GetSecondValue() const

21: {

22: return value2;

23: }

24: };

25:

26: int main ()

27: {

28: HoldsPair<> pairIntDbl (300, 10.09);

29: HoldsPair<short,const char*>pairShortStr(25,”Learn templates, love C++");

30:

31: cout << “The first object contains -” << endl;

32: cout << “Value 1: “ << pairIntDbl.GetFirstValue() << endl;

33: cout << “Value 2: “ << pairIntDbl.GetSecondValue() << endl;

34:

35: cout << “The second object contains -” << endl;

36: cout << “Value 1: “ << pairShortStr.GetFirstValue() << endl;

37: cout << “Value 2: “ << pairShortStr.GetSecondValue() << endl;

38:

39: return 0;

40: }

Output

The first object contains -

Value 1: 300

Value 2: 10.09

The second object contains -

Value 1: 25

Value 2: Learn templates, love C++

Analysis

This simple program illustrates how to declare the template class HoldsPair to hold a pair of values of types that are dependent on the template’s parameter list. Line 4 contains a template parameter list that defines two template parameters T1 and T2, with default types int and double, respectively. The accessor functions GetFirstValue() and GetSecondValue() can be used to query the values held by the object. Note how GetFirstValue and GetSecondValue get adapted on the basis of the template instantiation syntax to return the appropriate object types. You have managed to define a pattern in HoldsPair that you can reuse to deliver the same logic for different variable types. Thus, templates increase code reusability.

Template Instantiation and Specialization

A template class is a blueprint of a class, and it therefore doesn’t truly exist for the compiler before it has been used in one form or another. That is, as far as the compiler is concerned, a template class you define but don’t consume is code that is simply ignored. However, you instantiate a template class, like HoldsPair, by supplying template arguments like this:

HoldsPair<int, double> pairIntDbl;

Here you are instructing the compiler to create a class for you by using the template and to instantiate it for the types specified as template arguments (int and double in this case). Thus, in the case of templates, instantiation is the act or process of creating a specific type using one or more template arguments.

On the other hand, there may be situations that require you to explicitly define a (different) behavior of a template when instantiated with a specific type. In such cases, you specialize a template (or behavior thereof) for that type. A specialization of the template class HoldsPair when instantiated with template parameters of type int would look like this:

template<> class HoldsPair<int, int>

{

 // implementation code here

};

Needless to say, code that specializes a template must follow the template definition. Listing 14.5 is an example of a template specialization that demonstrates how different a specialized version can be from the template it specializes.

Input

Listing 14.5 Demonstrating Template Specialization

 0: #include <iostream>

 1: using namespace std;

 2:

 3: template <typename T1 = int, typename T2 = double>

 4: class HoldsPair

 5: {

 6: private:

 7: T1 value1;

 8: T2 value2;

 9: public:

10: HoldsPair(const T1& val1, const T2& val2) // constructor

11: : value1(val1), value2(val2) {}

12:

13: // Accessor functions

14: const T1& GetFirstValue() const;

15: const T2& GetSecondValue() const;

16: };

17:

18: // specialization of HoldsPair for types int & int here

19: template<> class HoldsPair<int, int>

20: {

21: private:

22: int value1;

23: int value2;

24: string strFun;

25: public:

26: HoldsPair(const int& val1, const int& val2) // constructor

27: : value1(val1), value2(val2) {}

28:

29: const int & GetFirstValue() const

30: {

31: cout << “Returning integer “ << value1 << endl;

32: return value1;

33: }

34: };

35:

36: int main()

37: {

38: HoldsPair<int, int> pairIntInt(222, 333);

39: pairIntInt.GetFirstValue();

40:

41: return 0;

42: }

Output

Returning integer 222

Analysis

When you compare the behavior of the class HoldsPair in Listing 14.4 to the behavior of the class in this listing, you notice that the template is behaving remarkably different. In fact, the function GetFirstValue() has been modified in the template instantiation for HoldsPair<int,int> to also display the value. A closer look at the specialization code in Lines 18 through 34 shows that this version also has a string member declared in Line 24—a member that is missing in the original template definition of HoldsPair<> in Lines 3 through 16. In fact, the original template definition doesn’t even supply an implementation of the accessor functions GetFirstValue() and GetSecondValue(), and the program still compiles. This is because the compiler was only required to consider the template instantiation for <int, int>—for which you have supplied a specialized implementation that is complete enough. Thus, this sample not only demonstrates template specialization but also how template code is considered or even ignored by the compiler, depending on its use.

Template Classes and static Members

You learned that code in templates begins to exist for the compiler when used and not otherwise. So, how would static member attributes function within a template class? You learned in Lesson 9 that declaring a class member static results in the member being shared across all instances of a class. It’s similar with a template class, too, save for the fact that a static member is shared across all objects of a template class with the same template instantiation. So a static member X within a template class is static within all instances of the class instantiated for int. Similarly, another instance of X is also static within all instances of the class specialized for double, independent of the other template instantiation for int. In other words, you can visualize it as the compiler creating two versions of the static member variable in a template class: X_int for template instantiation as int and X_double for template instantiation as double. Listing 14.6 demonstrates this.

Input

Listing 14.6 The Effect of Static Variables on Template Class and Instances Thereof

 0: #include <iostream>

 1: using namespace std;

 2:

 3: template <typename T>

 4: class TestStatic

 5: {

 6: public:

 7: static T staticVal;

 8: };

 9:

10: // static member initialization

11: template<typename T> T TestStatic<T>::staticVal;

12:

13: int main()

14: {

15: TestStatic<int> intInstance;

16: cout << “Setting staticVal for intInstance to 2021” << endl;

17: intInstance.staticVal = 2021;

18:

19: TestStatic<double> dblnstance;

20: cout << “Setting staticVal for dblnstance to 1011.022” << endl;

21: dblnstance.staticVal = 1011.022;

22:

23: cout << “intInstance.staticVal = “ << intInstance.staticVal << endl;

24: cout << “dblnstance.staticVal = “ << dblnstance.staticVal << endl;

25:

26: return 0;

27: }

Output

Setting staticVal for intInstance to 2021

Setting staticVal for dblnstance to 1011.022

intInstance.staticVal = 2021

dblnstance.staticVal = 1011.02

Analysis

In Lines 17 and 21, you set the member staticVal for an instantiation of the template for type int and type double, respectively. The output demonstrates that the compiler has stored two distinct values in two different static members, though both are called staticVal. Thus, the compiler ensures that the behavior of the static variable remains intact for the instantiation of the template class for a particular type.

Note

Note the static member instantiation syntax for a template class in Line 11 in Listing 14.6:

template<typename T> T TestStatic<T>::staticVal;

Variable Templates

Say that you want to write a generic function that adds two values. The template function Sum() achieves just that:

template <typename T1, typename T2, typename T3>

void Sum(T1& result, T2 num1, T3 num2)

{

 result = num1 + num2;

 return;

}

This function is simple. However, if you were required to write one single function that would be capable of adding any number of values, each passed as an argument, you would need to make use of variable templates, also called variadic templates, in defining such a function. C++ has supported variable templates since C++14. Listing 14.7 demonstrates the use of variable templates in defining such a function.

Input

Listing 14.7 Function Using Variadic Templates Demonstrating Variable Arguments

 0: #include <iostream>

 1: using namespace std;

 2:

 3: template <typename Res, typename ValType>

 4: void Sum(Res& result, ValType& val)

 5: {

 6: result = result + val;

 7: }

 8:

 9: template <typename Res, typename First, typename... Rest>

10: void Sum(Res& result, First val1, Rest... valN)

11: {

12: result = result + val1;

13: return Sum(result, valN ...);

14: }

15:

16: int main()

17: {

18: double dResult = 0;

19: Sum (dResult, 3.14, 4.56, 1.1111);

20: cout << “dResult = “ << dResult << endl;

21:

22: string strResult;

23: Sum (strResult, “Hello “, “World");

24: cout << “strResult = “ << strResult.c_str() << endl;

25:

26: return 0;

27: }

Output

dResult = 8.8111

strResult = Hello World

Analysis

This example illustrates that the function Sum() that you defined using variable templates not only processed completely different argument types, as shown in Lines 19 and 23, but also processed a varying number of arguments. Sum() invoked by Line 19 uses four arguments, while that in Line 23 uses three arguments, of which one is std::string and the following two are const char*. During compilation, the compiler actually creates code for the right kind of Sum() that to suit the call, and it does so recursively until all arguments have been processed.

Note

You might have noticed the use of the ellipsis (...) in Listing 14.7. An ellipsis used with a template tells the compiler that the template class or function may accept an arbitrary number of template arguments of any type.

Variable templates are a powerful addition to C++ that can be applied in mathematical processing as well as to accomplish certain simple tasks. Programmers using variable templates save themselves the repetitive effort of implementing functions in various overloaded versions; thus, they make it possible to create code that is shorter and simpler to maintain.

Note

You can use the operator sizeof...() to determine the number of template arguments passed in a call to a variable template. In Listing 14.7, you could use this operator inside a function like Sum() as shown here:

int arrNums[sizeof...(Rest)];

// length of array evaluated using sizeof...() at compile time

You must not confuse sizeof...() with sizeof(Type). The latter returns the size of a type, while the former returns the number of template arguments sent to a variadic template.

The support of variable templates has also ushered in standard support for tuples. std::tuple is a class template that implements a tuple. It can be instantiated with a varying number of member elements and types. These may be individually accessed using the standard library function std::get. Listing 14.8 demonstrates the instantiation and use of a std::tuple.

Input

Listing 14.8 Instantiating and Using a std::tuple

 0: #include <iostream>

 1: #include <tuple>

 2: #include <string>

 3: using namespace std;

 4:

 5: template <typename tupleType>

 6: void DisplayTupleInfo(tupleType& tup)

 7: {

 8: const int numMembers = tuple_size<tupleType>::value;

 9: cout << “Num elements in tuple: “ << numMembers << endl;

10: cout << “Last element value: “ << get<numMembers - 1>(tup) << endl;

11: }

12:

13: int main()

14: {

15: tuple<int, char, string> tup1(make_tuple(101, ’s’, “Hello Tuple!"));

16: DisplayTupleInfo(tup1);

17:

18: auto tup2(make_tuple(3.14, false));

19: DisplayTupleInfo(tup2);

20:

21: auto concatTup(tuple_cat(tup2, tup1)); // contains tup2, tup1 members

22: DisplayTupleInfo(concatTup);

23:

24: double pi;

25: string sentence;

26: tie(pi, ignore, ignore, ignore, sentence) = concatTup;

27: cout << “Unpacked! Pi: “ << pi << “ and \”” << sentence << “\”” << endl;

28:

29: return 0;

30: }

Output

Num elements in tuple: 3

Last element value: Hello Tuple!

Num elements in tuple: 2

Last element value: 0

Num elements in tuple: 5

Last element value: Hello Tuple!

Unpacked! Pi: 3.14 and “Hello Tuple!”

Analysis

First and foremost, if the code in Listing 14.8 overwhelms you, do not worry! A tuple is used to hold a collection of elements of different types, where required. This example uses the std::tuple class to instantiate different tuples containing varying number and types of elements. Lines 15, 18, and 21 contain three different instantiations of a std::tuple. tup1 contains three members: an int, a char, and a std::string. tup2 contains a double and a bool and also uses the compiler’s automatic type deduction feature via the keyword auto. tup3 is actually a tuple with five members: double, bool, int, char, and string—a result of concatenation using the template function std::tuple_cat.

The template function DisplayTupleInfo() in Lines 5 through 11 demonstrates a use of tuple_size that resolves to the number of elements contained by that specific instantiation of std::tuple during compilation. std::get in Line 10 is the mechanism to access individual values stored in a tuple using their zero-based indexes. Finally, std::tie in Line 26 demonstrates how the contents of a tuple can be unpacked or copied into individual objects. You use std::ignore to instruct tie to ignore the tuple members that were not of any interest to the application.

Using static_assert to Perform Compile-Time Checks

static_assert, introduced in C++11, blocks compilation if a supplied condition is not fulfilled. static_assert is a compile-time assert that can display a custom message on your development environment (or console):

static_assert(expression being validated, “Error message when check fails");

This feature is quite useful with template classes. For example, you might want to ensure that your template class can only be instantiated for integer types. You would then use static_assert() as follows:

static_assert(std::is_integral<T>::value, “Only integers please!");

Introduced by C++11, is_integral<> defined in header <type_traits> checks whether the supplied template parameter is an integer type.

Listing 14.9 shows a template class that uses static_assert to allow compilation for integer types and block the rest.

Input

Listing 14.9 A Template Class That Protests Using static_assert When Instantiated for non-Integer Types

 0: #include<type_traits>

 1:

 2: template <typename T>

 3: class OnlyInt

 4: {

 5: public:

 6: OnlyInt()

 7: {

 8: static_assert(std::is_integral<T>::value, “Only integers please!");

 9: }

10: };

11:

12: int main()

13: {

14: OnlyInt<int> test1; // OK!

15: // OnlyInt<double> test2; // Error!

16:

17: return 0;

18: }

Output

This code produces no output.

Analysis

This example demonstrates how static_assert programmed in Line 8 ensures that the template class OnlyInt<> cannot be instantiated for a double, when you uncomment Line 15. The template instantiation shown in Line 15 is against the intended use of the class. Compilation hence fails, supplying reason:

Only integers please!

Tip

C++20 introduced concepts, which you use to define rules that constrain the instantiation of your templates to certain allowed types. The compiler validates the fulfilment of these rules and delivers a simpler error message when the template uses parameter types that are not permitted.

Concepts are explained in Lesson 29, “C++20 Concepts, Ranges, Views, and Adaptors.”

Using Templates in Practical C++ Programming

An important and powerful application of templates is in the STL, which is a collection of template classes and functions containing generic utility classes and algorithms. These STL template classes enable you to implement dynamic arrays, lists, and key/value pair containers, whereas algorithms, such as std::sort, work on those containers and process the data they contain.

The knowledge of template syntax you gained earlier will greatly assists you in using STL containers and functions that are presented in greater detail in the following lessons of this book. A better understanding of STL containers and algorithms will, in turn, help you write efficient C++ applications that use the STL’s tested and reliable implementation and help you avoid spending time on boilerplate details.

[image: Images]

Summary

In this lesson, you learned more details about working with the preprocessor. Each time you run the compiler, the preprocessor runs first and translates directives such as #define.

The preprocessor does text substitution, although with the use of macros, substitutions can be somewhat complex. Macro functions provide complex text substitution based on arguments passed at compile time to the macro. It is important to put parentheses around every argument in a macro to ensure that the correct substitution takes place.

Templates help you write reusable code that supplies a developer with a pattern that can be used for a variety of data types. They also make for a type-safe replacement of macros. With the knowledge of templates gained in this lesson, you are now poised to learn to use the STL.

Q&A

Q. Why should I use inclusion guards in my header files?

A. Inclusion guards using #ifndef, #define, and #endif protect a header from multiple or recursive inclusion errors, and in some cases they even speed up compilation.

Q. When should I favor macro functions over templates if the functionality in question can be implemented in both?

A. Ideally, you should always favor templates as they allow for generic implementation that is also type safe. Macros don’t allow for type-safe implementations and are best avoided.

Q. Do I need to specify template arguments when invoking a template function?

A. Normally you do not because the compiler can infer this for you, given the arguments used in the function call.

Q. How many instances of static variables exist for a given template class?

A. This is entirely dependent on the number of types for which the template class has been instantiated. So, if your class has been instantiated for an int, a string, and a custom type X, you can expect three instances of your static variable to be available—one per template instantiation.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience in using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers.

Quiz

1. What is an inclusion guard?

2. Consider the following macro:

#define SPLIT(x) x / 5

What is the result if this is called with 20?

3. What is the result if the SPLIT macro in question 2 is called with 10+10?

4. How would you modify the SPLIT macro in question 2 to avoid erroneous results?

Exercises

1. Write a macro that multiplies two numbers.

2. Write a template version of the macro in Quiz Question 2.

3. Implement a template function for swap that exchanges two variables.

4. BUG BUSTERS: How would you improve the following macro, which computes one-quarter of an input value?

#define QUARTER(x) (x / 4)

5. Write a simple template class that holds two arrays of types that are defined via the class’s template parameter list. The size of the array should be 10, and the template class should have accessor functions that allow for the manipulation of array elements.

6. Write a template function Display() that can be invoked with varying numbers and types of arguments and that displays each of them.

Part III: Learning the Standard Template Library (STL)

Lesson 15. An Introduction to the Standard Template Library

Put in simple terms, the Standard Template Library (STL) is a set of template classes and functions that supply a programmer with

• Containers for storing information

• Iterators for accessing the information stored

• Algorithms that comprise utility functions that work on containers using iterators

In this lesson, you get an overview of these three pillars of STL, which are explained in detail in forthcoming lessons.

STL Containers

Containers are STL classes that are used to store data. The STL supplies two types of container classes:

• Sequential containers

• Associative containers

In addition to these, the STL also provides classes called container adapters that are variants of containers with reduced functionality to support specific purposes.

Sequential Containers

As the name suggests, sequential containers are containers used to hold data in a sequential fashion; arrays and lists are examples of sequential containers. Sequential containers are characterized by fast insertion time, but they are relatively slow in find operations.

These are the STL sequential containers:

• std::vector: Operates like a dynamic array and grows at the end. Think of a vector as a shelf of books to which you can add or remove books on one end.

• std::deque: Similar to std::vector except that it allows for new elements to be inserted or removed at the beginning, too.

• std::list: Operates like a doubly linked list. Think of this like a chain, where an element is a link in the chain. You can add or remove links—that is, elements—at any position.

• std::forward_list: Similar to a std::list except that it is a singly linked list of elements that allows you to iterate in only one direction.

The STL vector class is akin to an array and allows for random access of an element; that is, you can directly access or manipulate an element in vector, given its position (index), by using the subscript operator ([]). In addition, vector is a dynamic array and can therefore resize itself to suit an application’s runtime requirements. To keep the property of being able to randomly access an element in the array when given a position, most implementations of vector keep all elements in contiguous locations. Therefore, if vector needs to resize itself, it can often reduce the performance of the application, depending on the type of the object it contains. Lesson 4, “Managing Arrays and Strings,” briefly introduced you to vector in Listing 4.4. This container is discussed extensively in Lesson 17, “STL Dynamic Array Classes.”

You can think of the STL list as STL’s implementation of a regular linked list. Although elements in list cannot be randomly accessed, as they can be in vector, list can organize elements in noncontiguous sections of memory. Therefore, std::list is not subject to the performance issues that are applicable to vector when vector needs to reallocate its internal array. The STL list class is discussed extensively in Lesson 18, “STL list and forward_list.”

Associative Containers

Associative containers are containers that store elements in a sorted order—much like a dictionary. This results in slower insertion times but presents significant advantages when it comes to searching.

The associative containers supplied by STL are

• std::set: Stores unique values sorted on insertion in a container featuring logarithmic complexity.

• std::unordered_set: Stores unique values sorted on insertion in a container featuring near-constant-time complexity.

• std::map: Stores key/value pairs sorted by their unique keys in a container with logarithmic complexity.

• std::unordered_map: Stores key/value pairs sorted by their unique keys in a container with near-constant-time complexity.

• std::multiset: Akin to set and also supports the ability to store multiple items that have the same value; that is, the value doesn’t need to be unique.

• std::unordered_multiset: Akin to unordered_set and also supports the ability to store multiple items that have the same value; that is, the value doesn’t need to be unique. Features constant-time complexity.

• std::multimap: Akin to a map and also supports the ability to store key/value pairs where keys don’t need to be unique.

• std::unordered_multimap: Akin to a unordered_map and also supports the ability to store key/value pairs where keys don’t need to be unique. Features constant-time complexity.

Note

Complexity in this case is an indication of the performance of the container in relation to the number of elements contained by it. Therefore, when we speak of constant-time complexity, as with std::unordered_map, we mean that the performance of the container is unrelated to the number of elements contained by it. Such a container would need as much time to perform on a thousand elements as it would on a million.

Logarithmic complexity, as with std::map, indicates that the performance is proportional to the logarithm of the number of elements contained in the container. Such a container would take twice as long to process a million elements as it would to process a thousand.

Linear complexity means that the performance is proportional to the number of elements. Such a container would be a thousand times slower to process a million elements as it would be to process a thousand.

For a given container, the complexities may be different for differing operations. For example, the element insertion complexity may be constant, while the search complexity is linear. Therefore, having an understanding of how a container may perform in addition to the functionality it will be used with is key to choosing the right container.

The sort criteria for STL containers can be customized by programming predicate functions.

Tip

Some implementations of STL also feature associative containers such as hash_set, hash_multiset, hash_map, and hash_multimap. These are similar to the unordered_* containers, which are supported by the C++ standard. In some scenarios, hash_* and the unordered_* variants can be better at searching as they offer constant time operations (independent of the number of elements in the container). Typically, these containers also supply public methods that are identical to those supplied by their standard counterparts and hence are as easy to use.

Using the standard-compliant variants will result in code that is easier to port across platforms and compilers, and hence it should be preferred. It is also possible that the logarithmic reduction in performance of a standard-compliant container might not significantly affect an application.

Container Adapters

Container adapters are variants of sequential and associative containers that have limited functionality and are intended to fulfill particular purposes. The main adapter classes are

• std::stack: Stores elements in a LIFO (last-in, first-out) order, allowing elements to be inserted (pushed) and removed (popped) at the top.

• std::queue: Stores elements in FIFO (first-in, first-out) order, allowing elements to be removed in the order in which they were inserted.

• std::priority_queue: Stores elements in a sorted order, such that the one whose value is evaluated to be the highest is always first in the queue.

These containers are discussed in detail in Lesson 24, “Adaptive Containers: Stack and Queue.”

STL Iterators

The simplest example of an iterator is a pointer. Given a pointer to the first element in an array, you can increment it and point to the next element or, in many cases, manipulate the element at that location.

Iterators are template classes, too. Think of them as a generalization of pointers. These template classes give a programmer a handle by which to work with elements in STL containers and perform operations on them. The STL supplies some operations called algorithms in the form of template functions. Iterators thus form the connecting bridge between algorithms and the containers they work on.

Iterators supplied by the STL can be broadly classified into the following categories:

• Input iterator: This is an iterator that can be dereferenced to reference an object. The object can be an element in a collection, for instance. Input iterators of the strictest types guarantee read-only access.

• Output iterator: This is an iterator that allows a programmer to change the content of a collection. Output iterators of the strictest types guarantee write-only access.

The basic iterator types mentioned above are further refined into the following categories:

• Forward iterator: This iterator is a refinement of the input and output iterators that allows both input and output. Forward iterators may be constant, allowing for read-only access to the object the iterator points to, and otherwise allow for both read and write operations, making them mutable. A forward iterator would typically be used in a singly linked list.

• Bidirectional iterator: This iterator is a refinement of the forward iterator in that it can be decremented to move backward as well. A bidirectional iterator would typically be used in a doubly linked list.

• Random access iterators: In general, this iterator is a refinement of a bidirectional iterator that allows addition and subtraction of offsets or allows one iterator to be subtracted from another to find the relative separation or distance between the two objects in a collection. A random iterator would typically be used in an array.

Note

At an implementation level, a refinement can be thought of as an inheritance or a specialization.

STL Algorithms

Finding, sorting, reversing, and the like are standard programming requirements that should not need to be programmed by every application. This is precisely why the STL supplies these functions in the form of STL algorithms that work well with containers using iterators to help a programmer with some of the most common requirements.

Some of the most used STL algorithms are

• std::find: Helps find a value in a collection.

• std::find_if: Helps find a value in a collection using a predicate supplied by the programmer.

• std::reverse: Reverses a collection.

• std::remove_if: Helps remove an item from a collection using a predicate supplied by the programmer.

• std::transform: Helps apply a transformation function supplied by the programmer to elements in a container.

These algorithms are template functions in the std namespace and require that the standard header <algorithm> be included.

Interaction Between Containers and Algorithms Using Iterators

Let’s examine how iterators seamlessly connect containers and the STL algorithms by using an example. The program shown in Listing 15.1 uses the STL sequential container std::vector, which is akin to a dynamic array, to store some integers and then find one in the collection by using the algorithm std::find. Note that iterators form a bridge connecting a container to an algorithm. Don’t worry about the complexity of the syntax or functionality. Containers such as std::vector and algorithms such as std::find are discussed in detail in Lesson 17, “STL Dynamic Array Classes,” and Lesson 23, “STL Algorithms,” respectively. If you find this part complicated, you can skip this section for the moment and come back to it after reading those lessons.

Input

Listing 15.1 Finding an Element and Its Position in a Vector

 1: #include <iostream>

 2: #include <vector>

 3: #include <algorithm>

 4: using namespace std;

 5:

 6: int main ()

 7: {

 8: // A dynamic array of integers

 9: vector<int> intArray;

10:

11: // Insert sample integers into the array

12: intArray.push_back(50);

13: intArray.push_back(2991);

14: intArray.push_back(23);

15: intArray.push_back(9999);

16:

17: cout << “The contents of the vector are: “ << endl;

18:

19: // Walk the vector and read values using an iterator

20: vector<int>::iterator arrIterator = intArray.begin();

21:

22: while (arrIterator != intArray.end())

23: {

24: // Write the value to the screen

25: cout << *arrIterator << endl;

26:

27: // Increment the iterator to access the next element

28: ++arrIterator;

29: }

30:

31: // Find an element (say 2991) using the ’find’ algorithm

32: vector<int>::iterator elFound = find(intArray.begin(),

33: intArray.end(), 2991);

34:

35: // Check if value was found

36: if (elFound != intArray.end())

37: {

38: // Determine position of element using std::distance

39: int elPos = distance(intArray.begin(), elFound);

40: cout << “Value “<< *elFound;

41: cout << “ found in the vector at position: “ << elPos << endl;

42: }

43:

44: return 0;

45: }

Output

The contents of the vector are:

50

2991

23

9999

Value 2991 found in the vector at position: 1

Analysis

Listing 15.1 illustrates the use of iterators in walking through vector and as interfaces that help connect algorithms such as find() to containers like vector that contains the data on which the algorithm is meant to operate. The iterator object arrIterator is declared in Line 20 and is initialized to the beginning of the container—that is, the vector using the return value of the member function begin(). Lines 22 through 29 demonstrate how this iterator is used in a loop to locate and display the elements contained in vector, in a manner that is quite similar to how you can display the contents of a static array. The usage of the iterator is consistent across all STL containers. They all feature a function begin() that points to the first element, and a function end() that points to the end of the container after the last element. This also explains why the while loop in Line 22 stops at the element before end() and not at end(). Line 32 demonstrates how find is used to locate a value in vector. The result of the find operation is an iterator as well, and the success of the find is tested by comparing the iterator against the end of the container, as shown in Line 36. If an element is found, it can be displayed by dereferencing that iterator (much as a pointer would be dereferenced). The algorithm distance is applied to compute the offset position of the element found.

If you blindly replace all instances of vector with deque in Listing 15.1, your code will still compile and work perfectly. As you can see, iterators make it very easy to work with algorithms and containers.

Using the Keyword auto to Let a Compiler Define Type

Listing 15.1 shows a number of iterator declarations. They look similar to this:

20: vector<int>::iterator arrIterator = intArray.begin();

This iterator type definition might look intimidating, but you can simplify this line to the following:

20: auto arrIterator = intArray.begin(); // compiler detects type

Note that a variable defined as type auto needs to be initialized (so the compiler can detect type, depending on the type of the value the variable is being initialized to).

Choosing the Right Container

Clearly, an application might have requirements that can be implemented using many STL containers. There is a selection to be made, and that selection is important because a poor choice could result in performance issues and scalability bottlenecks. Therefore, it is important to evaluate the advantages and disadvantages of containers before selecting one. See Table 15.1 for more details.

Table 15.1 Properties of the STL’s Container Classes

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

STL String Classes

STL supplies a template class that is especially designed for string operations. std::basic_string<T> is used popularly in its two template specializations:

• std::string: A char-based specialization of std::basic_string that is used for the manipulation of simple character strings.

• std::wstring: A wchar_t-based specialization of std::basic_string that is used for the manipulation of wide character strings and that is typically used to store Unicode characters that support symbols from different languages.

This utility class is extensively discussed in Lesson 16, “The STL String Class,” where you will see how it makes working with and manipulating strings really simple.

Summary

In this lesson, you learned the concepts on which STL containers, iterators, and algorithms are based. You were introduced to basic_string<T>, which is discussed in detailed in the upcoming lesson. Containers, iterators, and algorithms are some of the most important concepts in the STL, and having a thorough understanding of them will help you efficiently use STL in your applications. Lessons 17 through 25 explain the implementation of these concepts and their application in greater detail.

Q&A

Q. I need to use an array. I don’t know how many elements it needs to contain. What STL container should I use?

A. std::vector or std::deque would be perfectly suited to this requirement. Both manage memory and can dynamically scale themselves to an application’s increasing requirements.

Q. My application has a requirement that involves frequent searches. What kind of container should I choose?

A. An associative container like std::map or std::set or the unordered variants thereof are most suited to requirements that involve frequent searches.

Q. I need to store key/value pairs for quick lookup. However, the use case may result in multiple keys that are not unique. What container should I choose?

A. An associative container of type std::multimap is suited to this requirement. multimap can hold non-unique key/value pairs and can offer the quick lookup that is characteristic of associative containers.

Q. An application needs to be ported across platforms and compilers. There is a requirement for a container that helps in a quick lookup based on a key. Should I use std::map or std::hash_map?

A. Portability is an important constraint, and using standard-compliant containers is necessary. hash_map is not part of the C++ standard and therefore may not be supported across all platforms relevant to your application. Use std::unordered_map instead.

Workshop

The Workshop contains quiz questions to help solidify your understanding of the material covered. Try to answer the quiz questions before checking the answers in Appendix E and be certain you understand the answers before going to the next lesson.

Quiz

1. What would be your choice if you need a container that has to contain an array of objects with insertion possible at the top and at the bottom?

2. You need to store elements for quick lookup. What container would you choose?

3. You need to store elements in a ::set but still also need to have the storage and lookup criteria altered, based on conditions that are not necessarily the value of the elements. Is this possible?

4. What feature in the STL is used to connect algorithms to containers?

5. Would you choose to use the container hash_set in an application that needs to be ported to different platforms and built using different C++ compilers?

Lesson 16. The STL String Class

The Standard Template Library (STL) supplies a container class that aids in string operations and manipulations. The std::string class not only dynamically resizes itself to cater to an application’s requirement but also supplies useful functions (that is, methods that help manipulate a string and that work using it). Thus, it helps programmers make use of standard, portable, and tested functionality in applications and focus on developing features that are critical to their applications.

In this lesson, you learn

• Why string manipulation classes are necessary

• How to work with the STL string class

• How the STL helps you concatenate, append, find, and perform other string operations with ease

• How to use template-based implementation of the STL string class

• The operator “”s, which has been supported by the STL string class since C++14

The Need for String Manipulation Classes

In C++, a string is an array of characters. In Lesson 4, “Managing Arrays and Strings,” a simple character array was defined as following:

char sayHello[] = {’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’\0’};

sayHello is the declaration of a character array (also called a string) of a fixed (that is, static) length. As you see, this buffer can hold a string of limited length; it would soon be overrun if you tried to hold a greater number of characters in it. Resizing this statically allocated array is not possible. To overcome this constraint, C++ supplies dynamic allocation of data. Therefore, a more dynamic representation of a string array is

char* dynamicStr = new char[arrayLen];

dynamicStr is a dynamically allocated character array that can be instantiated to the length as stored in the value arrayLen, which can be determined at runtime, and hence it can be allocated to hold data of variable length. However, should you want to change the length of the array at runtime, you would first have to deallocate the allocated memory and then reallocate to hold the required data.

Things get complicated if these char* strings are used as member attributes of a class. Situations where an object of this class is assigned to another require the presence of a correctly programmed assignment operator and copy constructor. If these are not available, then two objects of the class might contain copies of a pointer, essentially pointing to the same char buffer in memory. The destruction of one object, releasing the buffer, can result in the invalidation of the pointer contained by the other object. This will cause an application malfunction.

String classes solve these problems for you. The STL string classes std::string, which models a character string, and std::wstring, which models a wide character string, help you in the following ways:

• Reduce the effort of string creation and manipulation

• Increase the stability of the application being programmed by internally managing memory allocation details

• Feature copy constructor and assignment operators that automatically ensure that member strings get correctly copied

• Supply useful utility functions that help in truncating, finding, and erasing

• Provide operators that help in comparisons

• Let you focus on your application’s primary requirements rather than on string manipulation details

Note

Both std::string and std::wstring are actually template specializations of the same class—namely std::basic_string<T> for types char and wchar_t, respectively. When you have learned how to use one, you can use the same methods and operators on the other.

You will soon learn some useful helper functions that STL string classes supply, using std::string as an example.

Working with the STL String Class

The most commonly used string functions are

• Copying

• Concatenating

• Finding characters and substrings

• Truncating

• String reversal and case conversions, which are achieved using algorithms provided by the standard library

Tip

To use the class std::string, include the header:

#include <string>

Instantiating the STL string Class and Making Copies

The string class features many overloaded constructors and therefore can be instantiated and initialized in many different ways. For example, you can simply initialize or assign a constant character string literal to a regular STL std::string object:

const char* constCStyleString = “Hello String!”;

std::string strFromConst(constCStyleString);

or

std::string strFromConst = constCStyleString;

The preceding is similar to

std::string str2("Hello String!");

As is apparent, instantiating a string object and initializing it to a value do not require supplying the length of the string or the memory allocation details; the constructor of the STL string class automatically provides this information.

Similarly, it is possible to use one string object to initialize another:

std::string str2Copy(str2);

You can also instruct the constructor of string to accept only the first n characters of the supplied input string:

// Initialize a string to the first 5 characters of another

std::string strPartialCopy(constCStyleString, 5);

You can also initialize a string to contain a specific number of instances of a particular character:

// Initialize a string object to contain 10 ’a’s

std::string strRepeatChars (10, ’a’);

Listing 16.1 illustrates some popularly used std::string instantiation and string copy techniques.

Input

Listing 16.1 STL String Instantiation and Copy Techniques

 0: #include <string>

 1: #include <iostream>

 2:

 3: int main ()

 4: {

 5: using namespace std;

 6: const char* constCStyleString = “Hello String!”;

 7: cout << “Constant string is: “ << constCStyleString << endl;

 8:

 9: std::string strFromConst(constCStyleString); // constructor

10: cout << “strFromConst is: “ << strFromConst << endl;

11:

12: std::string str2("Hello String!");

13: std::string str2Copy(str2);

14: cout << “str2Copy is: “ << str2Copy << endl;

15:

16: // Initialize a string to the first 5 characters of another

17: std::string strPartialCopy(constCStyleString, 5);

18: cout << “strPartialCopy is: “ << strPartialCopy << endl;

19:

20: // Initialize a string object to contain 10 ’a’s

21: std::string strRepeatChars(10, ’a’);

22: cout << “strRepeatChars is: “ << strRepeatChars << endl;

23:

24: return 0;

25: }

Output

Constant string is: Hello String!

strFromConst is: Hello String!

str2Copy is: Hello String!

strPartialCopy is: Hello

strRepeatChars is: aaaaaaaaaa

Analysis

This code example illustrates how you can instantiate an STL string object and initialize it to another string, creating a partial copy or initializing your STL string object to a set of recurring characters. constCStyleString is a C-style character string that contains a sample value, initialized in Line 6. Line 9 displays how easy std::string makes it to create a copy using the constructor. Line 12 copies another constant string into a std::string object str2, and Line 13 demonstrates how std::string has another overloaded constructor that allows you to copy a std::string object, to get str2Copy. Line 17 demonstrates how partial copies can be achieved, and Line 21 shows how std::string can be instantiated and initialized to contain repeating occurrences of the same character. This code example briefly demonstrates how std::string and its numerous copy constructors make it easy for a programmer to create strings, copy them, and display them.

Note

If you were to copy one c-style character strings into another, the equivalent of Line 9 in Listing 16.1 would be this:

const char* constCStyleString = “Hello World!”;

// To create a copy, first allocate memory for one...

char* copy = new char[strlen(constCStyleString) + 1];

strcpy(copy, constCStyleString); // The copy step

// deallocate memory after using copy

delete[] copy;

As you can see, the result is many more lines of code and a higher probability of introducing errors; in addition, you need to worry about memory management and deallocations. STL string does all this for you—and more! You don’t need to use C-style strings at all.

Accessing Character Contents of std::string

The character contents of an STL string class can be accessed via iterators or via array-like syntax where the offset is supplied, using the subscript operator ([]). A C-style representation of string can be obtained via the member function c_str(). See Listing 16.2.

Input

Listing 16.2 Two Ways of Accessing Character Elements of an STL string::operator[] and Iterators

 0: #include <string>

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: string stlString("Hello String"); // sample

 8:

 9: // Access the contents of the string using array syntax

10: cout << “Display elements in string using array-syntax: “ << endl;

11: for(size_t charCounter = 0;

12: charCounter < stlString.length();

13: ++charCounter)

14: {

15: cout << “Character[” << charCounter << “] is: “;

16: cout << stlString[charCounter] << endl;

17: }

18: cout << endl;

19:

20: // Access the contents of a string using iterators

21: cout << “Display elements in string using iterators: “ << endl;

22: int charOffset = 0;

23:

24: for(auto charLocator = stlString.cbegin();

25: charLocator != stlString.cend();

26: ++charLocator)

27: {

28: cout << “Character [” << charOffset ++ << “] is: “;

29: cout << *charLocator << endl;

30: }

31: cout << endl;

32:

33: // Access contents as a const char*

34: cout << “The char* representation of the string is: “;

35: cout << stlString.c_str() << endl;

36:

37: return 0;

38: }

Output

Display elements in string using array-syntax:

Character[0] is: H

Character[1] is: e

Character[2] is: l

Character[3] is: l

Character[4] is: o

Character[5] is:

Character[6] is: S

Character[7] is: t

Character[8] is: r

Character[9] is: i

Character[10] is: n

Character[11] is: g

Display elements in string using iterators:

Character[0] is: H

Character[1] is: e

Character[2] is: l

Character[3] is: l

Character[4] is: o

Character[5] is:

Character[6] is: S

Character[7] is: t

Character[8] is: r

Character[9] is: i

Character[10] is: n

Character[11] is: g

The char* representation of the string is: Hello String

Analysis

This code displays multiple ways of accessing the contents of a string. Iterators are important in the sense that many of a string’s member function return their results in the form of iterators. Lines 11 through 17 display the characters in a string using array-like semantics via the subscript operator ([]), which is implemented by the std::string class. Note that with this operator, you need to supply the offset, as shown in Line 16. Therefore, it is important that you not cross the bounds of the string; that is, you do not read a character at an offset beyond the length of the string. Lines 24 through 30 also print the content of the string character by character—but using iterators.

Tip

Listing 16.2 smartly avoids the tedious iterator declaration in Line 24 by using the keyword auto, thereby telling the compiler to determine the type of iterator charLocator using the return value of std::string::cbegin(). If you were to explicitly program the type, the same line would appear as follows:

25: for(string::const_iterator charLocator = stlString.cbegin();

26: charLocator != stlString.cend();

27: ++charLocator)

28: {

29: cout << “Character[”<<charOffset++ <<”] is: “;

30: cout << *charLocator << endl;

31: }

Concatenating One String to Another

String concatenation can be achieved by using either the += operator or the append() member function:

string sampleStr1("Hello");

string sampleStr2(” String! “);

sampleStr1 += sampleStr2; // use std::string::operator+=

// alternatively use std::string::append()

sampleStr1.append(sampleStr2); // (overloaded for char* too)

Listing 16.3 demonstrates the use of these two variants.

Input

Listing 16.3 Concatenating Strings Using the Addition Assignment Operator (+=) or append()

 0: #include <string>

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: string sampleStr1("Hello");

 8: string sampleStr2(” String!");

 9:

10: // Concatenate

11: sampleStr1 += sampleStr2;

12: cout << sampleStr1 << endl << endl;

13:

14: string sampleStr3(” Fun is not needing to use pointers!");

15: sampleStr1.append(sampleStr3);

16: cout << sampleStr1 << endl << endl;

17:

18: const char* constCStyleString = “ You however still can!”;

19: sampleStr1.append(constCStyleString);

20: cout << sampleStr1 << endl;

21:

22: return 0;

23: }

Output

Hello String!

Hello String! Fun is not needing to use pointers!

Hello String! Fun is not needing to use pointers! You however still can!

Analysis

Lines 11, 15, and 19 show different methods of concatenating to an STL string. Note the use of the += operator used in Line 11 to append from another string object. Lines 15 and 19 demonstrate overloaded variants of the string::append() function, with Line 19 concatenating a C-style character string.

Finding a Character or Substring in a String

The STL string class supplies a find() member function with a few overloaded versions that help find a character or a substring in a given string object:

// Find substring “day” in sampleStr, starting at position 0

size_t charPos = sampleStr.find("day”, 0);

// Check if the substring was found, compare against string::npos

if(charPos != string::npos)

 cout << “First instance of \”day\” was found at position “ << charPos;

else

 cout << “Substring not found.” << endl;

Listing 16.4 demonstrates the use of std::string::find().

Input

Listing 16.4 Using string::find() to Locate a Substring or char

 0: #include <string>

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: string sampleStr("Good day String! Today is beautiful!");

 8: cout << “Sample string is:” << endl << sampleStr << endl << endl;

 9:

10: // Find substring “day” - find() returns position

11: size_t charPos = sampleStr.find("day”, 0);

12:

13: // Check if the substring was found...

14: if(charPos != string::npos)

15: cout << “First instance \”day\” at pos. “ << charPos << endl;

16: else

17: cout << “Substring not found.” << endl;

18:

19: cout << “Locating all instances of substring \”day\”” << endl;

20: size_t subStrPos = sampleStr.find("day”, 0);

21:

22: while(subStrPos != string::npos)

23: {

24: cout << “\”day\” found at position “ << subStrPos << endl;

25:

26: // Make find() search forward from the next character onwards

27: size_t searchOffset = subStrPos + 1;

28:

29: subStrPos = sampleStr.find("day”, searchOffset);

30: }

31:

32: return 0;

33: }

Output

Sample string is:

Good day String! Today is beautiful!

First instance “day” at pos. 5

Locating all instances of substring “day”

”day” found at position 5

”day” found at position 19

Analysis

Lines 11 through 17 display the simplest use of the find() function, where it ascertains whether a particular substring is found in a string. This is done by comparing the result of the find() operation against std::string::npos (which is actually -1) and indicates that the element searched for has not been found. When the find() function does not return npos, it returns the offset that indicates the position of the substring or character in the string. The code thereafter indicates how find() can be used in a while loop to locate all instances of a substring in an STL string. The overloaded version of the find() function used here accepts two parameters: the substring or character to search for and the search offset that indicates the point from which find() should search. You can manipulate the search by using this offset to get find() to search for the next occurrence of the substring, as shown in Line 29.

Note

The STL string also features find functions such as find_first_of(), find_first_not_of(), find_last_of(), and find_last_not_of() that assist programmers in working with strings.

Truncating an STL String

The STL string class features a function called erase() that can erase

• A number of characters when given an offset position and count:

string sampleStr("Hello String! Wake up to a beautiful day!");

sampleStr.erase(13, 28); // Hello String!

• A character when supplied with an iterator pointing to it:

sampleStr.erase(iCharS); // iterator points to a specific character

• A number of characters when given a range supplied by two iterators that bind the range:

sampleStr.erase(sampleStr.begin(), sampleStr.end()); // erase from begin to end

Listing 16.5 demonstrates different applications of the overloaded versions of the string::erase() function.

Input

Listing 16.5 Using string::erase() to Truncate a String Starting at an Offset Position or Given an Iterator

 0: #include <string>

 1: #include <algorithm>

 2: #include <iostream>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: string sampleStr("Hello String! Wake up to a beautiful day!");

 9: cout << “The original sample string is: “ << endl;

10: cout << sampleStr << endl << endl;

11:

12: // Delete characters given position and count

13: cout << “Truncating the second sentence: “ << endl;

14: sampleStr.erase(13, 28);

15: cout << sampleStr << endl << endl;

16:

17: // Find character ’S’ using find() algorithm

18: string::iterator iCharS = find(sampleStr.begin(),

19: sampleStr.end(), ’S’);

20:

21: // If character found, ’erase’ to deletes a character

22: cout << “Erasing character ’S’ from the sample string:” << endl;

23: if(iCharS != sampleStr.end())

24: sampleStr.erase(iCharS);

25:

26: cout << sampleStr << endl << endl;

27:

28: // Erase a range of characters using an overloaded version of erase()

29: cout << “Erasing a range between begin() and end(): “ << endl;

30: sampleStr.erase(sampleStr.begin(), sampleStr.end());

31:

32: // Verify the length after the erase() operation above

33: if(sampleStr.length() == 0)

34: cout << “The string is empty” << endl;

35:

36: return 0;

37: }

Output

The original sample string is:

Hello String! Wake up to a beautiful day!

Truncating the second sentence:

Hello String!

Erasing character ’S’ from the sample string:

Hello tring!

Erasing a range between begin() and end():

The string is empty

Analysis

The listing indicates the three versions of the erase() function. One version erases a set of characters when supplied a staring offset and count, as shown in Line 14. Another version erases a specific character, given an iterator that points to it, as shown in Line 24. The final version erases a range of characters, given a couple of iterators that supply the bounds of the range, as shown in Line 30. As the bounds of the range are supplied by begin() and end() member functions of the string class that effectively include all the contents of the string, calling an erase() on this range clears the string object of its contents. Note that the string class also supplies a clear() function that effectively clears the internal buffer and resets the string object.

Tip

The iterator declarations in Listing 16.5 using auto are wordy:

string::iterator iCharS = find(sampleStr.begin(),

    sampleStr.end(), ’S’);

You can simplify them like this:

auto iCharS = find(sampleStr.begin(),

          sampleStr.end(), ’S’);

The compiler automatically deduces the type of the variable iCharS, given return value type information from std::find().

String Reversal

Sometimes it is important to reverse the contents of a string. Say you want to determine whether a string input by the user is a palindrome. One way to do it would be to reverse a copy of the string and then compare the two strings. You can easily reverse STL strings by using the generic algorithm std::reverse():

string sampleStr("Hello String! We will reverse you!");

reverse(sampleStr.begin(), sampleStr.end());

Listing 16.6 demonstrates the application of the std::reverse() algorithm to std::string.

Input

Listing 16.6 Reversing an STL String by Using std::reverse

 0: #include <string>

 1: #include <iostream>

 2: #include <algorithm>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: string sampleStr("Hello String! We will reverse you!");

 9: cout << “The original sample string is: “ << endl;

10: cout << sampleStr << endl << endl;

11:

12: reverse(sampleStr.begin(), sampleStr.end());

13:

14: cout << “After applying the std::reverse algorithm: “ << endl;

15: cout << sampleStr << endl;

16:

17: return 0;

18: }

Output

The original sample string is:

Hello String! We will reverse you!

After applying the std::reverse algorithm:

!uoy esrever lliw eW !gnirtS olleH

Analysis

The std::reverse() algorithm used in Line 12 works on the bounds of the container that are supplied to it using the two input parameters. In this case, these bounds are the starting and ending bounds of the string object, and the algorithm reverses the contents of the entire string. It would also be possible to reverse a string in parts by supplying the appropriate bounds as input. Note that the bounds should never exceed end().

String Case Conversion

String case conversion can be effected by using the algorithm std::transform(), which applies a user-specified function to every element of a collection. In this case, the collection is the string object itself. Listing 16.7 shows how to switch the case of characters in a string.

Input

Listing 16.7 Converting an STL String to Uppercase by Using std::transform()

 0: #include <string>

 1: #include <iostream>

 2: #include <algorithm>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: cout << “Please enter a string for case-conversion:” << endl;

 9: cout << “> “;

10:

11: string inStr;

12: getline(cin, inStr);

13: cout << endl;

14:

15: transform(inStr.begin(), inStr.end(), inStr.begin(), ::toupper);

16: cout << “The string converted to upper case is: “ << endl;

17: cout << inStr << endl << endl;

18:

19: transform(inStr.begin(), inStr.end(), inStr.begin(), ::tolower);

20: cout << “The string converted to lower case is: “ << endl;

21: cout << inStr << endl << endl;

22:

23: return 0;

24: }

Output

Please enter a string for case-conversion:

> ConverT thIS StrINg!

The string converted to upper case is:

CONVERT THIS STRING!

The string converted to lower case is:

convert this string!

Analysis

Lines 15 and 19 demonstrate how efficiently std::transform() can be used to change the case of the contents of an STL string.

Template-Based Implementation of an STL String

The std::string class, as you have learned, is actually a specialization of the STL template class std::basic_string<T>. The template declaration of the container class basic_string is as follows:

template<class _Elem,

 class _Traits,

 class _Ax>

 class basic_string

In this template definition, the parameter of utmost importance is the first one: _Elem. This is the type collected by the basic_string object. std::string is therefore the template specialization of basic_string for _Elem=char, whereas wstring is the template specialization of basic_string for _Elem=wchar_t.

In other words, the STL string class is defined as

typedef basic_string<char, char_traits<char>, allocator<char> >

 string;

and the STL wstring class is defined as

typedef basic_string<wchar_t, char_traits<wchar_t>, allocator<wchar_t> >

 string;

So, all string features and functions studied so far are actually those supplied by basic_string, and they are therefore also applicable to the STL wstring class.

Tip

You would use std::wstring when programming an application that needs to better support non-Latin characters such as those in Japanese or Chinese.

operator “”s in std::string

Since C++14, the STL has supported operator “”s, which converts the string contained within the quotes, in its entirety, to std::basic_string<t>. This makes certain string operations intuitive and simple, as Listing 16.8 demonstrates.

Input

Listing 16.8 Using operator “”s

 0: #include<string>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: string str1("Conventional string \0 initialization");

 7: cout << “Str1: “ << str1 << “ Length: “ << str1.length() << endl;

 8:

 9: string str2("Initialization \0 using literals”s);

10: cout << “Str2: “ << str2 << “ Length: “ << str2.length() << endl;

11:

12: return 0;

13: }

Output

Str1: Conventional string Length: 20

Str2: Initialization using literals Length: 31

Analysis

Line 6 initializes an instance of std::string from a regular character string literal. Note the null character in the middle of the string, which results in the word "initialization" being completely missed by str1. Line 9 uses operator “”s to demonstrate how the instance str2 can now be used to contain (and therefore also manipulate) character buffers containing null characters, too, for instance.

Caution

Do not confuse the literal operator “”s working with std::string with that in std::chrono, as seen here:

std::chrono::seconds timeInSec(100s); // 100 seconds

std::string timeinText = “100”s; // string “100”

The former indicates time in seconds and is an integer literal, while the latter gives a string.

Using std::string_view (Amended in C++20)

The std::string class can be used to create copies, like this:

string strOriginal("Hello string");

string strCopy(strOriginal);

string strCopy2(strCopy);

string strCopy3;

strCopy3 = strCopy2;

However, if you intend to use copies of strOriginal to just perform read operations, then the copy step in itself is an avoidably expensive operation. The string_view utility class allows you to view the original string without creating a copy of it:

string_strOriginal("Hello string view");

string_view strCopy(strOriginal);

string_view strCopy2(strCopy);

string_view strCopy3(strCopy2);

cout << strCopy3; // Hello string view

string_view provides a plethora of useful methods, as Listing 16.9 shows.

Input

Listing 16.9 Using str::string_view for Basic String Operations

 0: #include<string_view>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: string strOriginal("Use views instead of copies of strings");

 7: string_view fullView(strOriginal); // a full view

 8:

 9: cout << “The full view shows: “ << fullView << endl;

10:

11: cout << “The first instance of ’v’ is at position: “

12: << fullView.find_first_of(’v’) << endl;

13:

14: cout << “Is view starting with \”Use\”: “ <<

15: (fullView.starts_with("Use") ? “true” : “false") << endl; // C++20

16:

17: cout << “Is view ending with \”strings\”: “ <<

18: (fullView.ends_with("strings") ? “true” : “false") << endl; // C++20

19:

20: string_view partialView(strOriginal.c_str(), 9); // partial view

21: cout << “Partial view shows: “ << partialView << endl;

22:

23: return 0;

24: }

Output

The full view shows: Use views instead of copies of strings

The first instance of ’v’ is at position: 4

Is view starting with “Use”: true

Is view ending with “strings”: true

Partial view shows: Use views

Analysis

Usage of the string_view class instead of string is optional, and you should do it only if you wish to optimize performance. Listing 16.9 shows how you can view the string data without actually needing to duplicate it. Lines 12 and 15 demonstrate the use of the methods starts_with() and ends_with(), respectively; these methods were added to string_view in C++20. Lines 20 and 21 demonstrate how a partial view of the original string may be constructed.

Tip

Use the string_view class instead of a duplicate in std::string in any case where you need to be viewing (that is, reading) a string but do not need to be modifying it.

[image: Images]

Summary

In this lesson, you learned that the STL string class is a container supplied by the Standard Template Library that helps with many string manipulation requirements. The advantage of using this class is apparent: This container class supplied by the STL framework implements memory management, string comparison, and string manipulation functions so programmers don’t have to.

Q&A

Q. Can I use a range-based for loop on a std::string object?

A. Yes, you can use it to read one character after another, and it will make your code compact and readable! For example, in the code shown in Listing 16.2, a range version of the for loop in Lines 24 through 30 would be:

for(const auto& charLocator : stlString) // range-based for

{

 cout << “Character[” << charOffset ++ << “] is: “;

 cout << charLocator << endl;

}

Q. I need to reverse a string by using std::reverse(). What header has to be included in order to be able to use this function?

A. <algorithm> is the header that needs to be included for std::reverse() to be available.

Q. What role does std::transform() play in converting a string to lowercase using the tolower() function?

A. std::transform() invokes tolower () for the characters in the string object that are within the bounds supplied to the transform function.

Q. Why do std::string and std::wstring feature exactly the same behavior and member functions?

A. They do so because they are both template specializations of the template class std::basic_string<T>—for T=char and T=wchar_t, respectively.

Q. Is the comparison operator < of the STL string class case-sensitive or is it not case-sensitive?

A. The result of comparison using string class operator < are case-sensitive.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. What STL template class does std::string specialize?

2. If you were to perform a case-insensitive comparison of two strings, how would you do it?

Exercises

1. Write a program to verify whether a word entered by a user is a palindrome. For example, ATOYOTA is a palindrome, as it reads the same backward and forward.

2. Write a program that tells the user the number of vowels in a sentence.

3. Write a program that converts every alternate character of a string into uppercase.

4. Write a program that has four string objects that are initialized to “I,” “Love,” “STL,” and “String.” Append them with a space in between and display the sentence.

5. Write a program that displays the position of every occurrence of the character a in the string "Good day String! Today is beautiful!".

Lesson 17. STL Dynamic Array Classes

Unlike static arrays, dynamic arrays give a programmer flexibility in terms of storing data without needing to know the exact volume of the data when programming an application. Naturally, this is a frequently needed requirement, and the Standard Template Library (STL) supplies a ready-to-use solution in the form of the std::vector class.

In this lesson, you learn

• The characteristics of std::vector

• Typical vector operations

• The concepts of a vector’s size and capacity

• The STL deque class

The Characteristics of std::vector

vector is a template class that supplies the generic functionality of a dynamic array and features the following characteristics:

• You can add elements to the end of the array in constant time; that is, the time needed to insert at the end is not dependent on the size of the array. The same goes for removal of an element at the end.

• The time required for the insertion or removal of elements in the middle of an array is directly proportional to the number of elements behind the element being removed.

• The number of elements held is dynamic, and the vector class manages the memory usage.

A vector is a dynamic array, as illustrated in Figure 17.1.

[image: Images]

Figure 17.1 The internals of a vector.

Tip

To use the class std::vector, include the header

#include <vector>

Typical Vector Operations

The behavioral specifications and public members of the std::vector class are defined by the C++ standard. Consequently, operations on vector that you will learn in this lesson are supported by a variety of C++ programming platforms that are standard compliant.

Instantiating a Vector

vector is a template class that needs to be instantiated in accordance with template instantiation techniques that are covered in Lesson 14, “An introduction to Macros and Templates.” The template instantiation of vector needs to specify the type of the elements that you intend to collect in a dynamic array:

std::vector<int> dynIntArray; // vector containing integers

std::vector<float> dynFloatArray; // vector containing floats

std::vector<Tuna> dynTunaArray; // vector containing Tunas

To declare an iterator that points to an element in the vector, you use

std::vector<int>::const_iterator elementInVec;

If you need an iterator that can be used to modify values or invoke non-const functions, you use iterator instead of const_iterator.

The overloaded constructors provided by std::vector let you specify the number of elements that the vector should be instantiated with and their initial values. You can even use part of a vector in instantiating another vector.

Listing 17.1 demonstrates a few vector instantiations.

Input

Listing 17.1 Different Ways of Instantiating std::vector: Specifying Size, Specifying the Initial Value, and Copying Values

 0: #include <vector>

 1:

 2: int main()

 3: {

 4: // vector of integers

 5: std::vector<int> integers;

 6:

 7: // vector initialized using list initialization

 8: std::vector<int> initVector{ 202, 2017, -1 };

 9:

10: // Instantiate a vector with 10 elements(it can still grow)

11: std::vector<int> tenElements(10);

12:

13: // Instantiate a vector with 10 elements, each initialized to 90

14: std::vector<int> tenElemInit(10, 90);

15:

16: // Initialize vector to the contents of another

17: std::vector<int> copyVector(tenElemInit);

18:

19: // Vector initialized to 5 elements from another using iterators

20: std::vector<int> partialCopy(tenElements.cbegin(),

21: tenElements.cbegin() + 5);

22:

23: return 0;

24: }

Analysis

This code features a template specialization of the vector class for type int; in other words, it instantiates a vector of integers. This vector, named integers, uses the default constructor in Line 5, which is useful when you do not know the minimal size requirements of the container—that is, when you do not know how many integers you want to hold in it. The second form of instantiation, which is shown in Line 8, uses the concept of list initialization introduced in C++11 to initialize initVector with three elements containing the values 202, 2017, and -1, respectively.

The vector instantiations in Lines 11 and 14 are ones where you know you need a vector that contains at least 10 elements. Note that these instantiations do not limit the size the container can grow to but just set the number of elements at initialization time.

Finally, Lines 17 and 20 demonstrate how a vector can be used to instantiate the contents of another vector—in other words, to create one vector object that is a copy of another vector or part of a vector. This is also a construct that works for all STL containers. The last form is the one that uses iterators. partialCopy contains the first five elements from vecWithTenElements.

Note

The fourth construct can work only with objects of like types. So, you could instantiate vecArrayCopy—a vector of integer objects using another vector of integer objects. If one of them were to be a vector of, say, type float, the code would not compile.

Inserting Elements at the End of a Vector by Using push_back()

After you instantiate a vector of integers, the obvious next task is to insert elements (integers) into it. Insertion in a vector happens at the end of the array, and elements are “pushed” to the end of the array using the member function push_back():

vector<int> integers; // declare a vector of type int

// Insert sample integers into the vector:

integers.push_back(50);

integers.push_back(1);

Listing 17.2 demonstrates the use of push_back() to dynamically add elements to std::vector.

Input

Listing 17.2 Inserting Elements in a Vector by Using push_back()

 0: #include <iostream>

 1: #include <vector>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: vector<int> integers;

 7:

 8: // Insert sample integers into the vector:

 9: integers.push_back(50);

10: integers.push_back(1);

11: integers.push_back(987);

12: integers.push_back(1001);

13:

14: cout << “The vector contains “;

15: cout << integers.size() << “ Elements” << endl;

16:

17: return 0;

18: }

Output

The vector contains 4 Elements

Analysis

push_back(), as shown in Lines 9 through 12, is a vector class’s public member function that inserts objects at the end of a dynamic array. Note the use of the function size(), which returns the number of elements held in the vector.

List Initialization

C++ features the class std::initialize_list<>, which, when supported, enables you to instantiate and initialize elements in a container as you would in a static array. std::vector, like most other containers, supports list initialization by allowing you to instantiate a vector with elements in one line (rather than many lines, as in Listing 17.2):

vector<int> integers = {50, 1, 987, 1001};

// alternatively:

vector<int> vecMoreIntegers {50, 1, 987, 1001};

Inserting Elements at a Given Position by Using insert()

You use push_back() to insert elements at the end of a vector. What if you need to insert elements in the middle of a vector? STL containers, including std::vector, feature an insert() function that has many overloads.

In one overload, you can specify the position at which an element can be inserted into the sequence:

// insert an element at the beginning

integers.insert(integers.begin(), 25);

In another overload, you can specify the position as well as the number of elements with a value that needs to be inserted:

// Insert 2 elements of value 45 at the end

integers.insert(integers.end(), 2, 45);

You can also insert the contents of one vector into another at a chosen position:

// Another vector containing 2 elements of value 30

vector<int> another(2, 30);

// Insert two elements from another container in position [1]

integers.insert(integers.begin() + 1,

 another.begin(), another.end());

You use an iterator, often returned by begin() or end(), to tell the insert() function the position where you want the new elements to be placed.

Tip

Note that this iterator can also be the return value of an STL algorithm; for example, you can use the std::find() function to find an element and then insert another element at that position. Insertion will shift the element you found to the right. Algorithms such as find() are discussed in detail in Lesson 23, “STL Algorithms.”

These forms of vector::insert() are demonstrated in Listing 17.3.

Input

Listing 17.3 Using the vector::insert() Function to Insert Elements at a Set Position

 0: #include <vector>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: void DisplayVector(const vector<int>& inVec)

 5: {

 6: for(auto element = inVec.cbegin();

 7: element != inVec.cend();

 8: ++ element)

 9: cout << *element << ’ ’;

10:

11: cout << endl;

12: }

13:

14: int main()

15: {

16: // Instantiate a vector with 4 elements, each initialized to 90

17: vector<int> integers(4, 90);

18:

19: cout << “The initial contents of the vector: “;

20: DisplayVector(integers);

21:

22: // Insert 25 at the beginning

23: integers.insert(integers.begin(), 25);

24:

25: // Insert 2 numbers of value 45 at the end

26: integers.insert(integers.end(), 2, 45);

27:

28: cout << “Vector after inserting elements at beginning and end: “;

29: DisplayVector(integers);

30:

31: // Another vector containing 2 elements of value 30

32: vector<int> another(2, 30);

33:

34: // Insert two elements from another container in position [1]

35: integers.insert(integers.begin() + 1,

36: another.begin(), another.end());

37:

38: cout << “Vector after inserting contents from another vector: “;

39: cout << “in the middle:” << endl;

40: DisplayVector(integers);

41:

42: return 0;

43: }

Output

The initial contents of the vector: 90 90 90 90

Vector after inserting elements at beginning and end: 25 90 90 90 90 45 45

Vector after inserting contents from another vector: in the middle:

25 30 30 90 90 90 90 45 45

Analysis

This code demonstrates how the insert() function allows you to insert values in the middle of a container. The vector object in Line 17 is instantiated to contain four elements, all initialized to 90. Taking this vector as a starting point, you use various overloaded forms of the vector::insert() member function. Line 23 shows how to add one element at the beginning. Line 26 shows how to add two elements of value 45 at the end. Line 35 demonstrates how elements can be inserted from one vector into the middle (in this example, the second position at offset 1) of another.

Although vector::insert() is a versatile function, using push_back() should be your preferred way of adding elements to a vector. This is because using insert() is an inefficient way to add elements to the vector (when adding in a position that is not the end of the sequence) because adding elements in the beginning or the middle makes the vector class shift all subsequent elements backward (after making space for the last ones at the end). Thus, depending on the type of the objects contained in the sequence, the cost of this shift operation can be significant in terms of the copy constructor or copy assignment operator invoked. The vector in Listing 17.3 is used to contain elements of type int that are relatively inexpensive to move around. This might not be the case with many other uses of the vector class, though.

Tip

If a container needs to very frequently have insertions in the middle, you should ideally use std::list, explained in Lesson 18, “STL list and forward_list.”

Accessing Elements in a Vector by Using Array Semantics

Elements in a vector can be accessed using the following methods: via array semantics using the subscript operator ([]), using the member function at(), or using iterators.

Listing 17.1 showed how an instance of vector can be created and initialized for 10 elements:

std::vector<int> tenElements(10);

You can access and set individual elements by using this array-like syntax:

tenElements[3] = 2011; // assign element at index 3 value 2011

Listing 17.4 demonstrates how elements in a vector can be accessed using the subscript operator ([]).

Input

Listing 17.4 Accessing Elements in a Vector by Using Array Semantics

 0: #include <iostream>

 1: #include <vector>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6: vector<int> integers{ 50, 1, 987, 1001 };

 7:

 8: for(size_t index = 0; index < integers.size(); ++index)

 9: {

10: cout << “Element[” << index << “] = “ ;

11: cout << integers[index] << endl;

12: }

13:

14: integers[2] = 2011; // change value of 3rd element

15: cout << “After replacement: “ << endl;

16: cout << “Element[2] = “ << integers[2] << endl;

17:

18: return 0;

19: }

Output

Element[0] = 50

Element[1] = 1

Element[2] = 987

Element[3] = 1001

After replacement:

Element[2] = 2011

Analysis

In Lines 11, 14, and 16, vector is used to access and assign elements the same way you might use a static array using vector’s subscript operator ([]). The subscript operator accepts an element index that is zero-based, just as in a static array. Note how the for loop has been programmed in Line 8 to ensure that the index doesn’t cross the bounds of the vector via comparison with vector::size().

Caution

Accessing elements in a vector by using the subscript operator ([]) is fraught with the same dangers as accessing elements in an array; that is, you should not cross the bounds of the container. If you use [] to access elements in a vector at a position that is beyond the bounds of the vector, the result of the operation will be undefined (that is, anything could happen, possibly even an access violation).

A safer alternative is to use the at() member function:

// gets element at position 2

cout << integers.at(2);

// the vector::at() version of the code above in Listing 17.4, line 11:

cout << integers.at(index);

at() performs a runtime check against the size of the container and throws an exception if you cross the boundaries (which you shouldn’t anyway).

It is safe to use the subscript operator ([])when you can ensure bound integrity, as in the earlier example.

Accessing Elements in a Vector by Using Pointer Semantics

You can access elements in a vector by using pointer-like semantics via iterators, as shown in Listing 17.5.

Input

Listing 17.5 Accessing Elements in a Vector by Using Pointer Semantics (Iterators)

 0: #include <iostream>

 1: #include <vector>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6: vector<int> integers{ 50, 1, 987, 1001 };

 7:

 8: vector<int>::const_iterator element = integers.cbegin();

 9: // auto element = integers.cbegin(); // auto type deduction

10:

11: while(element != integers.end())

12: {

13: size_t index = distance(integers.cbegin(), element);

14:

15: cout << “Element at position “;

16: cout << index << “ is: “ << *element << endl;

17:

18: // move to the next element

19: ++ element;

20: }

21:

22: return 0;

23: }

Output

Element at position 0 is: 50

Element at position 1 is: 1

Element at position 2 is: 987

Element at position 3 is: 1001

Analysis

The iterator in this example behaves like a pointer, as shown in Line 16, where the value stored in the vector is accessed using the dereference operator (*), and Line 19, where the iterator, when incremented using the operator ++, points to the next element. Notice how std::distance() is used in Line 13 to evaluate the zero-based offset position of the element in the vector (that is, position relative to the beginning), given cbegin() and the iterator pointing to the element. Line 9 presents a simpler alternative to the iterator declaration in Line 8, using the automatic type deduction capabilities of the compiler introduced in Lesson 3, “Using Variables, Declaring Constants.”

Removing Elements from a Vector

Just the same way as a vector features insertion at the end via the push_back() function, it also features the removal of an element at the end via the pop_back() function. Removing an element from a vector by using pop_back() takes constant time; that is, the time required is independent of the number of elements stored in the vector. Listing 17.6 demonstrates the use of the function pop_back() to delete elements at the end of a vector.

Input

Listing 17.6 Using pop_back() to Delete the Last Element of a Vector

 0: #include <iostream>

 1: #include <vector>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayVector(const vector<T>& inVec)

 6: {

 7: for(const auto& element : inVec)

 8: cout << element << ’ ’;

 9:

10: cout << endl;

11: }

12:

13: int main()

14: {

15: vector<int> integers;

16:

17: // Insert sample integers into the vector:

18: integers.push_back(50);

19: integers.push_back(1);

20: integers.push_back(987);

21: integers.push_back(1001);

22:

23: cout << “Vector contains “ << integers.size() << “ elements: “;

24: DisplayVector(integers);

25:

26: // Erase one element at the end

27: integers.pop_back();

28:

29: cout << “After a call to pop_back()” << endl;

30: cout << “Vector contains “ << integers.size() << “ elements: “;

31: DisplayVector(integers);

32:

33: return 0;

34: }

Output

Vector contains 4 elements: 50 1 987 1001

After a call to pop_back()

Vector contains 3 elements: 50 1 987

Analysis

The output indicates that the pop_back() function used in Line 27 has reduced the elements in the vector by erasing the last element inserted into it. Line 30 calls size() again to demonstrate that the number of elements in the vector has been reduced by one, as indicated in the output.

Note

The function DisplayVector() in Lines 4 through 11 has taken a template form in Listing 17.6, whereas in Listing 17.3 it accepted only a vector for integers. The template form helps you reuse this function for a vector of any type, for example float:

vector <float> vecFloats;

DisplayVector(vecFloats); // works, as a generic function

This generic form of DisplayVector() would also support a vector of any class that features an operator that returns a value cout would understand. In addition, note how the range-based for loop in Line 7 simplifies the code.

Understanding the Concepts of Size and Capacity

The size of a vector is the number of elements stored in the vector. The capacity of a vector is the total number of elements that can potentially be stored in the vector before it reallocates memory to accommodate more elements. Therefore, a vector’s size is less than or equal to its capacity.

You can query a vector for the number of elements by calling size():

cout << “Size: “ << integers.size();

You can query a vector for its capacity by calling capacity():

cout << “Capacity: “ << integers.capacity();

A vector that needs to frequently reallocate the memory of the internal dynamic array is likely to cause performance issues. This problem might be addressed by using the member function reserve(number). What reserve() essentially does is increase the amount of memory allocated for the vector’s internal array to accommodate the number of elements without needing to reallocate. Depending on the type of the objects stored in the vector, reducing the number of reallocations also reduces the number of times the objects are copied and improves performance. Listing 17.7 demonstrates the difference between size() and capacity().

Input

Listing 17.7 Using size() and capacity()

 0: #include <iostream>

 1: #include <vector>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: // instantiate a vector object that holds 5 integers of default value

 8: vector<int> integers(5);

 9:

10: cout << “Vector of integers was instantiated with “ << endl;

11: cout << “Size: “ << integers.size();

12: cout << “, Capacity: “ << integers.capacity() << endl;

13:

14: // Inserting a 6th element in to the vector

15: integers.push_back(666);

16:

17: cout << “After inserting an additional element... “ << endl;

18: cout << “Size: “ << integers.size();

19: cout << “, Capacity: “ << integers.capacity() << endl;

20:

21: // Inserting another element

22: integers.push_back(777);

23:

24: cout << “After inserting yet another element... “ << endl;

25: cout << “Size: “ << integers.size();

26: cout << “, Capacity: “ << integers.capacity() << endl;

27:

28: return 0;

29: }

Output

Vector of integers was instantiated with

Size: 5, Capacity: 5

After inserting an additional element...

Size: 6, Capacity: 7

After inserting yet another element...

Size: 7, Capacity: 7

Analysis

Line 8 shows the instantiation of a vector of integers that contains five integers at the default value (0). Lines 11 and 12, which display the size and the capacity of the vector, respectively, show that the two are equal at instantiation time. Line 15 inserts a sixth element in the vector. Given that the capacity of the vector was 5 prior to the insertion, there isn’t adequate memory in the internal buffer of the vector to support this new sixth element. In other words, for the vector class to scale itself and store six elements, it needs to reallocate the internal buffer. The implementation of the reallocation logic is smart: To avoid another reallocation on insertion of another element, it preemptively allocates a capacity greater than the requirements of the immediate scenario.

The output shows that when a sixth element is inserted in a vector that has capacity for five elements, the reallocation involved increases the capacity to seven elements. size() always reflects the number of elements in a vector, and it has a value of six at this stage in this example. The addition of a seventh element in Line 22 results in no increase in capacity; the existing allocated memory meets the demand sufficiently. The size and capacity values are equal at this stage, indicating that the vector is used to its full capacity, and insertion of the next element will cause the vector to reallocate its internal buffer, copying existing values before it inserts the new value.

Note

The preemptive increase in the capacity of the vector when the internal buffer is reallocated is not regulated by any clause in the C++ standard. This level of performance optimization may vary depending on the provider of the STL in use, and therefore you may see different output when executing Listing 17.7.

The STL deque Class

deque (pronounced “deck") is an STL dynamic array class that is quite similar in properties to vector except that it allows for the insertion and removal of elements at the front and back of an array. You would instantiate a deque of integers like this:

// Define a deque of integers

std::deque<int> intDeque;

Tip

To use std::deque, include the header <deque>:

#include<deque>

A deque can be visualized as shown in Figure 17.2.

[image: Images]

Figure 17.2 Internals of a deque.

A deque is similar to a vector in that it supports element insertions and deletions at the back via the push_back() and pop_back() functions. Just as with the vector class, you can access elements in the deque class by using array semantics via the subscript operator []. deque is different from vector, however, in that it also permits insertion of elements at the front with push_front() and removal from the front with pop_front(), as demonstrated in Listing 17.8.

Input

Listing 17.8 Instantiating an STL deque Class and Using the push_front() and pop_front() Functions to Insert and Delete Elements at the Front

 0: #include <deque>

 1: #include <iostream>

 2: #include <algorithm>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: // Define a deque of integers

 9: deque<int> intDeque;

10:

11: // Insert integers at the bottom of the array

12: intDeque.push_back(3);

13: intDeque.push_back(4);

14: intDeque.push_back(5);

15:

16: // Insert integers at the top of the array

17: intDeque.push_front(2);

18: intDeque.push_front(1);

19: intDeque.push_front(0);

20:

21: cout << “The contents of the deque after inserting elements “;

22: cout << “at the top and bottom are:” << endl;

23:

24: // Display contents on the screen

25: for(size_t count = 0;

26: count < intDeque.size();

27: ++ count)

28: {

29: cout << “Element [” << count << “] = “;

30: cout << intDeque [count] << endl;

31: }

32:

33: cout << endl;

34:

35: // Erase an element at the top

36: intDeque.pop_front();

37:

38: // Erase an element at the bottom

39: intDeque.pop_back();

40:

41: cout << “The contents of the deque after erasing an element “;

42: cout << “from the top and bottom are:” << endl;

43:

44: // Display contents again: this time using iterators

45: // if on older compilers, remove auto and uncomment next line

46: // deque<int>::iterator element;

47: for(auto element = intDeque.begin();

48: element != intDeque.end();

49: ++ element)

50: {

51: size_t Offset = distance(intDeque.begin(), element);

52: cout << “Element [” << Offset << “] = “ << *element << endl;

53: }

54:

55: intDeque.clear();

56: if(intDeque.empty())

57: cout << “The container is now empty” << endl;

58:

59: return 0;

60: }

Output

The contents of the deque after inserting elements at the top and bottom are:

Element [0] = 0

Element [1] = 1

Element [2] = 2

Element [3] = 3

Element [4] = 4

Element [5] = 5

The contents of the deque after erasing an element from the top and bottom are:

Element [0] = 1

Element [1] = 2

Element [2] = 3

Element [3] = 4

The container is now empty

Analysis

Line 9 instantiates a deque of integers. Note how similar this syntax is to the instantiation of a vector of integers. Lines 12 through 14 display the use of the deque member function push_back() followed by push_front() in Lines 17 through 19. The latter distinguishes the deque from vector. As shown in Line 36, pop_front() deletes the first element in the deque. The mechanism that displays the contents of deque in Lines 25 through 31 uses array-like syntax to access elements using the operator [], whereas Lines 47 through 53 demonstrate the use of iterators with the operator *. You can use a range-based for loop, as demonstrated in Listing 17.6, with std::deque as well. The algorithm std::distance() is used in Line 51 to evaluate the offset position of the element in the deque in the same manner that you have already seen work with a vector in Listing 17.5.

Tip

When you need to empty an STL container such as a vector or a deque—that is, delete all elements contained in it—you use the member function clear().

The following code deletes all elements from the vector integers (refer to Listing 17.7):

integers.clear();

To delete all elements in the deque intDeque, you use the following (refer to Listing 17.8, Line 55):

intDeque.clear();

Note that both vector and deque also feature the member function empty(), which returns true when a container is empty. It doesn’t actually delete existing elements the way clear() does.

[image: Images]

Summary

In this lesson, you learned the basics of using the vector and deque classes for dynamic arrays. The concepts of size and capacity were explained, and you saw how the use of vector can be optimized to reduce the number of reallocations of a vector’s internal buffer, which copies the objects contained and potentially reduces performance. vector is the simplest of the STL’s containers, but it is frequently used and, arguably, among the most efficient container classes.

Q&A

Q. Does the order of the elements stored in a vector change?

A. A vector is a sequential container, which means elements are stored and accessed in it in the very order in which they were inserted.

Q. What function is used to insert elements in a vector, and where is an element inserted?

A. The member function push_back() inserts elements at the end of a vector.

Q. What function gets the number of elements stored in a vector?

A. The member function size() returns the number of elements stored in a vector. Incidentally, this is true for all STL containers.

Q. Does the insertion or removal of elements at the end of a vector take more time if the vector contains more elements?

A. No. Insertion and removal of elements at the end of a vector are constant-time activities.

Q. What is the advantage of using the reserve() member function?

A. reserve() allocates space in the internal buffer of a vector, and insertion of elements does not require the vector to reallocate the buffer and copy the existing contents. Depending on the nature of the objects stored in a vector, reserving space in a vector can result in performance improvements.

Q. Are the properties of the deque class any different from those of the vector class when it comes to insertion of elements?

A. No, the properties of the deque class are similar to those of the vector class when it comes to insertion, which is a constant-time activity for elements added at the end of a sequence and a linear-time activity for elements inserted in the middle. However, the vector class allows insertion only at the end, whereas deque allows insertion at the beginning and the end of the collection.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Can elements be inserted in the middle or at the beginning of a vector in constant time?

2. With a particular vector, size() returns 10, and capacity() returns 20. How many more elements can you insert in this vector without the vector class needing to trigger a buffer reallocation?

3. What does the pop_back() function do?

4. If vector<int> is a dynamic array of integers, vector<Mammal> is a dynamic array of what type?

5. Can elements in a vector be randomly accessed? If so, how?

6. What iterator type allows random access of elements in a vector?

Exercises

1. Write an interactive program that accepts integer input from the user and saves it in a vector. The user should be able to query a value stored in the vector at any time, given an index.

2. Extend the program from Exercise 1 so that it can tell a user whether a value she queries for already exists in the vector.

3. Jack sells jars on eBay. To help him with packaging and shipment, write a program in which he can enter the dimensions of each of these articles, store them in a vector, and have them printed on the screen.

4. Write an application that initializes a deque to the following three strings: "Hello", "Containers are cool!", and "C++ is evolving!". You must display the strings by using a generic function that would work for a deque of any kind. Your application needs to demonstrate the use of list initialization introduced in C++11 and the operator "", which was introduced in C++14.

Lesson 18. STL list and forward_list

The Standard Template Library (STL) offers a doubly linked list: the template class std::list. The main advantages of a linked list are fast and constant time insertion and removal of elements. C++ also supports a singly linked list, the class std::forward_list, which can be traversed in only one direction.

In this lesson, you learn

• How to instantiate list and forward_list

• How to use the STL list classes, including for insertion and removal of elements

• How to reverse and sort elements

The Characteristics of std::list

A linked list is a collection of nodes in which each node, in addition to containing a value or an object of interest, also points to the next node; that is, each node links to the next one and the previous one, as shown in Figure 18.1.

[image: Images]

Figure 18.1 Visual representation of a doubly linked list.

The STL implementation of the list class allows for constant-time insertions at the beginning, end, or middle of a list.

Tip

To use the class std::list, include the header <list>:

#include <list>

Basic list Operations

The template class list in the std namespace is a generic implementation that needs to be template instantiated before you can use any of its useful member functions.

Instantiating a std::list Object

The template instantiation of list needs to specify the type of object that you want to collect in the list. So, the initialization of a list would look like the following:

std::list<int> linkInts; // list containing integers

std::list<float> listFloats; // list containing floats

std::list<Tuna> listTunas; // list containing objects of type Tuna

To declare an iterator that points to an element in the list, you would use

std::list<int>::const_iterator elementInList;

If you need an iterator that can be used to modify values or invoke non-const functions, you use iterator instead of const_iterator.

Given that an implementation of std::list provides a set of overloaded constructors, you can even create lists that are initialized to contain a number of elements of your choosing, each initialized to a value, as demonstrated in Listing 18.1.

Input

Listing 18.1 Different Forms of Instantiating std::list, Specifying Number of Elements and Initial Values

 0: #include <list>

 1: #include <vector>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: // instantiate an empty list

 8: list<int> linkInts;

 9:

10: // instantiate a list with 10 integers

11: list<int> listWith10Integers(10);

12:

13: // instantiate a list with 4 integers, each value 99

14: list<int> listWith4IntegerEach99(4, 99);

15:

16: // create an exact copy of an existing list

17: list<int> listCopyAnother(listWith4IntegerEach99);

18:

19: // a vector with 10 integers, each 2017

20: vector<int> vecIntegers(10, 2017);

21:

22: // instantiate a list using values from another container

23: list<int> listContainsCopyOfAnother(vecIntegers.cbegin(),

24: vecIntegers.cend());

25:

26: return 0;

27: }

Output

The code snippet produces no output

Analysis

This program produces no output and demonstrates the application of the various overloaded constructors in creating a list of integers. Line 8 creates an empty list, whereas Line 11 creates a list that contains 10 integers. Line 14 shows a list, called listWith4IntegersEach99, that contains 4 integers that are each initialized to the value 99. Line 17 creates a list that is an exact copy of the contents of another. Lines 20 through 24 are surprising and curious! They instantiate a vector that contains 10 integers, each containing the value 2017, and then instantiate a list (in Line 23) that contains elements copied from the vector, using const iterators returned by vector::cbegin() and vector::cend(). Listing 18.1 also demonstrates how iterators help decouple the implementation of one container from another, enabling you to use their generic functionality to instantiate a list by using values taken from a vector, as shown in Lines 23 and 24.

Note

On comparing Listing 18.1 against Listing 17.1 from Lesson 17, “STL Dynamic Array Classes,” you will note a remarkable similarity in the way containers of different types have been instantiated. The more you program using STL containers, the more reusable patterns you will see and the easier it will get.

Inserting Elements at the Front or Back of a List

As with a deque, with a list you insert elements at the front (or top, depending on your perspective) by using the member method push_front(). You insert elements at the end by using the member method push_back(). Each of these two methods takes one input parameter, which is the value to be inserted:

linkInts.push_back(-1);

linkInts.push_front(2001);

Listing 18.2 demonstrates the effect of using these two methods on a list of integers.

Input

Listing 18.2 Inserting Elements in a List by Using push_front() and push_back()

 0: #include <list>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++ element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: std::list<int> linkInts{ -101, 42 };

18:

19: linkInts.push_front(10);

20: linkInts.push_front(2011);

21: linkInts.push_back(-1);

22: linkInts.push_back(9999);

23:

24: DisplayContents(linkInts);

25:

26: return 0;

27: }

Output

2011 10 -101 42 -1 9999

Analysis

Line 17 features the template instantiation of a list for type int and uses list initialization syntax ({...}) to ensure that linkInts is constructed with two integers (-101 and 42) linked within it. Lines 19 through 22 demonstrate the use of push_front() and push_back(). The value being supplied as an argument to push_front() takes the first position in the list, whereas that sent via push_back() takes the last position. The output displays the content of the list via the generic template function DisplayContents(), demonstrating the order of the inserted elements (and showing that they aren’t stored in order of insertion).

Note

DisplayContents() in Listing 18.2, Lines 4 through 13, is a more generic version of the method DisplayVector() in Listing 17.6 (note the changed parameter list). Whereas DisplayVector() works only for the vector, generalizing the type of elements stored in a vector, DisplayContents() is truly generic supporting multiple container types.

You can invoke the version of DisplayContents() in Listing 18.2 by using a vector, a list, or a deque as an argument, and it will work just fine.

Inserting Elements in the Middle of a List

std::list can insert elements in the middle of the collection in constant time. This is done using the member function insert().

The list::insert() member function is popularly used in the following three forms:

• Form 1:

iterator insert(const_iterator position, const T& value)

Here the insert function accepts the position of insertion as the first parameter and the value to insert as the second. This function returns an iterator pointing to the recently inserted element in the list.

• Form 2:

void insert(const_iterator position, size_type n, const T& value)

This function accepts the position of insertion as the first parameter, the value to insert as the last parameter, and the number of elements in variable n.

• Form 3:

template <class InputIterator>

void insert(const_iterator pos, InputIterator f, InputIterator l)

This overloaded variant is a template function that accepts, in addition to the position, two input iterators that mark the bounds of the collection to insert into the list. Note that the input type InputIterator is a template-parameterized type and therefore can point to the bounds of any collection—be it an array, a vector, or another list.

Listing 18.3 demonstrates the use of these overloaded variants of the list::insert() function.

Input

Listing 18.3 Various Methods of Inserting Elements in a List

 0: #include <list>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++ element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: list<int> linkInts1;

18:

19: // Inserting elements at the beginning...

20: linkInts1.insert(linkInts1.begin(), 2);

21: linkInts1.insert(linkInts1.begin(), 1);

22:

23: // Inserting an element at the end...

24: linkInts1.insert(linkInts1.end(), 3);

25:

26: cout << “The contents of list 1 after inserting elements:” << endl;

27: DisplayContents(linkInts1);

28:

29: list<int> linkInts2;

30:

31: // Inserting 4 elements of the same value 0...

32: linkInts2.insert(linkInts2.begin(), 4, 0);

33:

34: cout << “The contents of list 2 after inserting ’”;

35: cout << linkInts2.size() << “’ elements of a value:” << endl;

36: DisplayContents(linkInts2);

37:

38: list<int> linkInts3;

39:

40: // Inserting elements from another list at the beginning...

41: linkInts3.insert(linkInts3.begin(),

42: linkInts1.begin(), linkInts1.end());

43:

44: cout << “The contents of list 3 after inserting the contents of “;

45: cout << “list 1 at the beginning:” << endl;

46: DisplayContents(linkInts3);

47:

48: // Inserting elements from another list at the end...

49: linkInts3.insert(linkInts3.end(),

50: linkInts2.begin(), linkInts2.end());

51:

52: cout << “The contents of list 3 after inserting “;

53: cout << “the contents of list 2 at the end:” << endl;

54: DisplayContents(linkInts3);

55:

56: return 0;

57: }

Output

The contents of list 1 after inserting elements:

1 2 3

The contents of list 2 after inserting ’4’ elements of a value:

0 0 0 0

The contents of list 3 after inserting the contents of list 1 at the beginning:

1 2 3

The contents of list 3 after inserting the contents of list 2 at the end:

1 2 3 0 0 0 0

Analysis

begin() and end() are member functions that return iterators pointing to the beginning and the end of the list, respectively. This is generally true for all STL containers, including std::list. The list::insert() function accepts an iterator that marks the position before which items are to be inserted. The iterator returned by the end() function, as used in Line 24, points to after the last element in the list. Therefore, Line 24 inserts integer value 3 before the end as the last value. Line 32 indicates the initialization of a list with four elements placed at the beginning—that is, at the front—each with the value 0. Lines 41 and 42 demonstrate the use of the list::insert() function to insert elements from one list at the end of another. Although this example inserts a list of integers into another list, the range inserted could as well have been within the limits of a vector, supplied by begin() and end(), as also shown in Listing 18.1, or a regular static array.

Erasing Elements from a List

The list member function erase() comes in two overloaded forms: one that erases one element given an iterator that points to it and another that accepts a range and therefore erases a range of elements from the list. You can see the list::erase() function in action in Listing 18.4, which demonstrates how you erase an element or a range of elements from a list.

Input

Listing 18.4 Erasing Elements from a List

 0: #include <list>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++ element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: std::list<int> linkInts{ 4, 3, 5, -1, 2017 };

18:

19: // Store an iterator obtained in using insert()

20: auto val2 = linkInts.insert(linkInts.begin(), 2);

21:

22: cout << “Initial contents of the list:” << endl;

23: DisplayContents(linkInts);

24:

25: cout << “After erasing element ’”<< *val2 << “’:” << endl;

26: linkInts.erase(val2);

27: DisplayContents(linkInts);

28:

29: linkInts.erase(linkInts.begin(), linkInts.end());

30: cout << “Number of elements after erasing range: “;

31: cout << linkInts.size() << endl;

32:

33: return 0;

34: }

Output

Initial contents of the list:

2 4 3 5 -1 2017

After erasing element ’2’:

4 3 5 -1 2017

Number of elements after erasing range: 0

Analysis

When insert() is used to insert a value, as shown in Line 20, it returns an iterator to the newly inserted element. This iterator pointing to an element with value 2 is stored in a variable val2, to be used later in a call to erase() in Line 26 to delete this very element from the list. Line 29 demonstrates the use of erase() to delete a range of elements. You clear a range from begin() to end(), effectively erasing the entire list.

Tip

The quickest and simplest way to empty an STL container, such as std::list, is to call the member function clear().

A simpler Line 29 in Listing 18.4 would therefore be

linkInts.clear();

Note

Listing 18.4 demonstrates in Line 31 that the number of elements in std::list can be determined by using the list method size(), which is very similar to the same method for the vector class. size() is supported by all STL container classes.

Reversing and Sorting Elements in a List

list has a special property: Iterators that point to the elements in a list remain valid despite rearrangement of the elements or insertion of new elements and so on. To keep this important property intact, the list class features sort() and reverse() as member methods even though the STL supplies these as algorithms that will and do work on the list class. The member method versions of these algorithms ensure that iterators pointing to elements in a list are not invalidated when the relative position of an element is disturbed.

Reversing Elements by Using list::reverse()

The list class features the member function reverse(), which takes no parameters and reverses the order of the contents in a list for you:

linkInts.reverse(); // reverse order of elements

The use of reverse() is demonstrated in Listing 18.5.

Input

Listing 18.5 Reversing Elements in a List

 0: #include <list>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++ element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: std::list<int> linkInts{ 0, 1, 2, 3, 4, 5 };

18:

19: cout << “Initial contents of list:” << endl;

20: DisplayContents(linkInts);

21:

22: linkInts.reverse();

23:

24: cout << “Contents of list after using reverse():” << endl;

25: DisplayContents(linkInts);

26:

27: return 0;

28: }

Output

Initial contents of list:

0 1 2 3 4 5

Contents of list after using reverse():

5 4 3 2 1 0

Analysis

As shown in Line 22, reverse() simply reverses the order of elements in the list. It is a simple call without parameters which ensures that iterators pointing to elements in the list, if you keep them, remain valid even after the reversal.

Sorting Elements

The list class member function sort() is available in a version that takes no parameters:

linkInts.sort(); // sort in ascending order

Another version allows you to define your own sort priorities via a binary predicate function as a parameter:

bool SortPredicate_Descending(const int& lhs, const int& rhs)

{

 // define criteria for list::sort: return true for desired order

 return(lhs > rhs);

}

// Use predicate to sort a list:

linkInts.sort(SortPredicate_Descending);

These two variants are demonstrated in Listing 18.6.

Input

Listing 18.6 Sorting a List of Integers in Ascending and Descending Order by Using list::sort()

 0: #include <list>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: bool SortPredicate_Descending(const int& lhs, const int& rhs)

 5: {

 6: // define criteria for list::sort: return true for desired order

 7: return(lhs > rhs);

 8: }

 9:

10: template <typename T>

11: void DisplayContents(const T& container)

12: {

13: for(auto element = container.cbegin();

14: element != container.cend();

15: ++ element)

16: cout << *element << ’ ’;

17:

18: cout << endl;

19: }

20:

21: int main()

22: {

23: list<int> linkInts{ 0, -1, 2011, 444, -5 };

24:

25: cout << “Initial contents of the list are - “ << endl;

26: DisplayContents(linkInts);

27:

28: linkInts.sort();

29:

30: cout << “Order after sort():” << endl;

31: DisplayContents(linkInts);

32:

33: linkInts.sort(SortPredicate_Descending);

34: cout << “Order after sort() with a predicate:” << endl;

35: DisplayContents(linkInts);

36:

37: return 0;

38: }

Output

Initial contents of the list are -

0 -1 2011 444 -5

Order after sort():

-5 -1 0 444 2011

Order after sort() with a predicate:

2011 444 0 -1 -5

Analysis

This example demonstrates the use of the sort() member function on a list of integers. Line 28 displays the use of a sort() function without parameters to sort elements in ascending order by default and compare integers by using the operator < (which, in the case of integers, is implemented by the compiler). However, if you want to override this default behavior, you must supply the sort() function with a binary predicate, as shown in Line 33. The function SortPredicate_Descending(), defined in Lines 4 through 8, is a binary predicate that helps the list class’s sort() function decide whether one element is less than the other. Using this predicate you tell the list what’s to be interpreted as less (which, in this case, is the first parameter being greater than the second), and the list class uses this decision to sort.

Sorting and Removing Elements from a List That Contains Instances of a Class

What if you have a list of a class type, and not a simple built-in type such as int? Say that you have a list of address book entries, where each entry is a class that contains name, address, and so on. How could you ensure that this list is sorted on name?

The answer is one of the following:

• Implement the operator < within the class type that the list contains.

• Supply a sort binary predicate—a function that takes two values as input and returns a Boolean value indicating whether the first value is smaller than the second.

Most practical applications involving STL containers rarely collect integers; instead, they collect user-defined types such as class or struct. Listing 18.7 demonstrates the use of a list where every element is a class type to create a contacts list. It seems rather long at first sight but is mostly simple code.

Input

Listing 18.7 A List of Class Objects: Creating a Contacts List

 0: #include <list>

 1: #include <string>

 2: #include <iostream>

 3: using namespace std;

 4:

 5: template <typename T>

 6: void displayAsContents(const T& container)

 7: {

 8: for(auto element = container.cbegin();

 9: element != container.cend();

10: ++ element)

11: cout << *element << endl;

12:

13: cout << endl;

14: }

15:

16: struct ContactItem

17: {

18: string name;

19: string phone;

20: string displayAs;

21:

22: ContactItem(const string& conName, const string & conNum)

23: {

24: name = conName;

25: phone = conNum;

26: displayAs =(name + “: “ + phone);

27: }

28:

29: // used by list::remove() given contact list item

30: bool operator ==(const ContactItem& itemToCompare) const

31: {

32: return(itemToCompare.name == this->name);

33: }

34:

35: // used by list::sort() without parameters

36: bool operator < (const ContactItem& itemToCompare) const

37: {

38: return(this->name < itemToCompare.name);

39: }

40:

41: // Used by displayAsContents via cout

42: operator const char*() const

43: {

44: return displayAs.c_str();

45: }

46: };

47:

48: bool SortOnphoneNumber(const ContactItem& item1,

49: const ContactItem& item2)

50: {

51: return(item1.phone < item2.phone);

52: }

53:

54: int main()

55: {

56: list <ContactItem> contacts;

57: contacts.push_back(ContactItem("Oprah Winfrey”, “+1 7889 879 879"));

58: contacts.push_back(ContactItem("Bill Gates”, “+1 97 7897 8799 8"));

59: contacts.push_back(ContactItem("Angi Merkel”, “+49 23456 5466"));

60: contacts.push_back(ContactItem("Vlad Putin”, “+7 6645 4564 797"));

61: contacts.push_back(ContactItem("John Travolta”, “91 234 4564 789"));

62: contacts.push_back(ContactItem("Angelina Jolie”, “+1 745 641 314"));

63:

64: cout << “List in initial order: “ << endl;

65: displayAsContents(contacts);

66:

67: contacts.sort();

68: cout << “Sorting in alphabetical order via operator<:” << endl;

69: displayAsContents(contacts);

70:

71: contacts.sort(SortOnphoneNumber);

72: cout << “Sorting in order of phone numbers via predicate:” << endl;

73: displayAsContents(contacts);

74:

75: cout << “After erasing Putin from the list: “ << endl;

76: contacts.remove(ContactItem("Vlad Putin”, “"));

77: displayAsContents(contacts);

78:

79: return 0;

80: }

Output

Sorting in alphabetical order via operator<:

Angelina Jolie: +1 745 641 314

Angi Merkel: +49 23456 5466

Bill Gates: +1 97 7897 8799 8

John Travolta: 91 234 4564 789

Oprah Winfrey: +1 7889 879 879

Vlad Putin: +7 6645 4564 797

Sorting in order of phone numbers via predicate:

Angelina Jolie: +1 745 641 314

Oprah Winfrey: +1 7889 879 879

Bill Gates: +1 97 7897 8799 8

Angi Merkel: +49 23456 5466

Vlad Putin: +7 6645 4564 797

John Travolta: 91 234 4564 789

After erasing Putin from the list:

Angelina Jolie: +1 745 641 314

Oprah Winfrey: +1 7889 879 879

Bill Gates: +1 97 7897 8799 8

Angi Merkel: +49 23456 5466

John Travolta: 91 234 4564 789

Analysis

For a start, focus on main() in Lines 54 through 80. Line 56 instantiates a list of address book items of type ContactItem. Lines 57 through 62 populate this list with names and (fake) telephone numbers of celebrities; Line 56 displays this initial order. Line 67 uses list::sort() without a predicate function. In the absence of a predicate, this sort function seeks the presence of the operator < in ContactItem, which is defined in Lines 36 through 39. ContactItem::operator< helps list::sort() sort its elements in alphabetical order of the stored names (and not based on telephone numbers or using a random logic). To sort the same list based on the phone numbers, you use list::sort() and supply the binary predicate function SortOnPhoneNumber() as an argument in Line 71. This function, implemented in Lines 48 through 52, ensures that the input arguments of type ContactItem are compared to each other on the basis of the phone numbers and not the names. Thus, it helps list::sort() sort the list of celebrities on the basis of their phone numbers, as the output indicates. Finally, Line 76 uses list::remove() to remove a celebrity contact from the list. You supply an object with the celebrity’s name as a parameter. list::remove() compares this object to other elements in the list, using ContactItem::operator==, which is implemented in Lines 30 through 33. This operator returns true if the names match, helping list::remove() decide what the criteria for a match should be.

This example demonstrates how STL’s template version of a linked list can be used to create a list of any object type, and it also shows the importance of operators and predicates.

std::forward_list

Unlike the doubly linked std::list, std::forward_list is a singly linked list—that is, it allows iteration in only one direction, as shown in Figure 18.2.

[image: Images]

Figure 18.2 A visual representation of a singly linked list.

Tip

To use std::forward_list, you need to include the header <forward_list>:

#include<forward_list>

The usage of forward_list is similar to the usage of list, except for the fact that you can move iterators only in one direction, and you have a push_front() function to insert elements but no push_back() function. Of course, you can always use insert() and its overloaded functions to insert an element at a given position.

Listing 18.8 demonstrates some functions of the forward_list class.

Input

Listing 18.8 Basic Insertion and Removal Operations with forward_list

 0: #include<forward_list>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++ element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: forward_list<int> flistIntegers{ 3, 4, 2, 2, 0 };

18: flistIntegers.push_front(1);

19:

20: cout << “Contents of forward_list: “ << endl;

21: DisplayContents(flistIntegers);

22:

23: flistIntegers.remove(2);

24: flistIntegers.sort();

25: cout << “Contents after removing 2 and sorting: “ << endl;

26: DisplayContents(flistIntegers);

27:

28: return 0;

29: }

Output

Contents of forward_list:

1 3 4 2 2 0

Contents after removing 2 and sorting:

0 1 3 4

Analysis

As the example shows, forward_list is similar in function to list. As forward_list doesn’t support bidirectional iteration, you can use operator++, but not operator--, on an iterator. This example demonstrates the use of the function remove() in Line 23 to remove all elements with the value 2. Line 29 demonstrates sort() with the default sort predicate that uses std::less<T>.

The advantage of forward_list is that, because it is a singly linked list, its memory consumption is slightly lower than that of list (as an element needs to know only the next element but not the previous one).

[image: Images]

[image: Images]

Summary

This lesson taught you the properties of the list and forward_list class functions and the different list operations. You now know some of the most useful list functions and can create a list of any object type.

Q&A

Q. Why does the list class provide member functions such as sort() and remove()?

A. The STL list class is required to ensure that iterators pointing to elements in the list should remain valid regardless of the position of the elements in the list. Although STL algorithms work on list too, list’s member functions ensure that the aforementioned property of the list is assured.

Q. I am using a list of type CAnimal, which is a class. What operators should CAnimal define for list member functions to be able to work on it accurately?

A. You must provide the default comparison operator == and the default < operator to any class that can be used in STL containers.

Q. How would I replace the keyword auto with an explicit type declaration in the following line:

list<int> linkInts(10); // list of 10 integers

auto firstElement = linkInts.begin();

A. You would replace auto with the following explicit type declaration:

list<int> linkInts(10); // list of 10 integers

list<int>::iterator firstElement = linkInts.begin();

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Is there any loss in performance when you insert items in the middle of an STL list object compared to at the beginning or the end?

2. Two iterators are pointing to two elements in an STL list object, and then an element is inserted between them. Are these iterators invalidated by the insert action?

3. How can the contents of std::list be cleared?

4. Is it possible to insert multiple elements in a list?

Exercises

1. Write a short program that accepts numbers from the user and inserts them at the top of a list.

2. Using a short program, demonstrate that an iterator pointing to an element in a list continues to remain valid even after another element has been inserted before it, thus changing the relative position of the former element.

3. Write a program that inserts the contents of a vector into an STL list by using the list class’s linsert() function.

4. Write a program that sorts and reverses a list of strings.

Lesson 19. STL set and multiset

The Standard Template Library (STL) offers container classes that help with frequent and quick searches. The classes std::set and std::multiset each contain a sorted set of elements with the ability to find elements given a logarithmic complexity. Their unordered counterparts offer constant-time insertion and search capabilities.

This lesson includes

• How STL set and multiset, unordered_set, and unordered_multiset containers can be of use to you

• Insertion, removal, and search of elements

• Advantages and disadvantages of using these containers

An Introduction to STL Set Classes

set and multiset are containers that facilitate quick lookups of keys in a container that stores them; that is, the keys are the values stored in a one-dimensional container. The difference between set and multiset is that the latter allows for duplicates, whereas the former can store only unique values.

Figure 19.1 is only demonstrative and indicates that set can be used to create a set of unique names, whereas multiset can be used to permit duplicates in a set.

[image: Images]

Figure 19.1 Visual representation of using set and multiset for sets of names.

To facilitate quick searching, STL implementations of set and multiset internally look like a binary tree. This means that elements inserted in a set or a multiset are sorted on insertion for quicker lookups. It also means that, unlike in a vector, where an element at a position can be replaced by another element, an element at a given position in a set cannot be replaced by a new element with a different value. This is because the set places the new element in a potentially different location, in accordance with its value relative to the elements in the internal tree.

Tip

To use the class std::set or the class std::multiset, include the header <set>:

#include <set>

Basic STL set and multiset Operations

STL set and multiset are template classes that need to be instantiated before you can use any of their member functions.

Instantiating a std::set Object

Instantiating a set or a multiset of a type requires a specialization of the template class std::set or std::multiset for that type:

std::set<int> setInts;

std::multiset<int> msetInts;

To define a set or multiset that contains objects of the class Tuna, you would program the following:

std::set<Tuna> tunaSet;

std::multiset<Tuna> tunaMSet;

You would declare an iterator that points to an element in a set or multiset like this:

std::set<int>::const_iterator element;

std::multiset<int>::const_iterator element;

If you need an iterator that can be used to modify values or invoke non-const functions, you use iterator instead of const_iterator.

Given that both set and multiset are containers that sort elements on insertion, they use the default predicate std::less when you don’t supply sort criteria. This ensures that a set contains elements sorted in ascending order.

You create a binary sort predicate by using operator() to define a class that takes two values of the type contained in the set as input and returns true, depending on the criteria. One such sort predicate that sorts in descending order is the following:

// used as a template parameter in set / multiset instantiation

template <typename T>

struct SortDescending

{

 bool operator()(const T& lhs, const T& rhs) const

 {

 return (lhs > rhs);

 }

};

You then supply this predicate in the set or multiset instantiation as follows:

// a set and multiset of integers (using sort predicate)

set<int, SortDescending<int>> setInts;

multiset<int, SortDescending<int>> msetInts;

In addition to these variants, you can create a set or a multiset that copies from another set or multiset or that copies via a supplied range, as demonstrated in Listing 19.1.

Input

Listing 19.1 Different Instantiation Techniques with set and multiset

 0: #include <set>

 1:

 2: // used as a template parameter in set / multiset instantiation

 3: template <typename T>

 4: struct SortDescending

 5: {

 6: bool operator()(const T& lhs, const T& rhs) const

 7: {

 8: return (lhs > rhs);

 9: }

10: };

11:

12: int main()

13: {

14: using namespace std;

15:

16: // a simple set or multiset of integers (using default sort predicate)

17: set<int> setInts1;

18: multiset<int> msetInts1;

19:

20: // set and multiset instantiated given a user-defined sort predicate

21: set<int, SortDescending<int>> setInts2;

22: multiset<int, SortDescending<int>> msetInts2;

23:

24: // creating one set from another, or part of another container

25: set<int> setInts3(setInts1);

26: multiset<int> msetInts3(setInts1.cbegin(), setInts1.cend());

27:

28: return 0;

29: }

Output

This code snippet produces no output

Analysis

This program produces no output but demonstrates the various instantiation techniques for set and multiset, specialized to contain type int. In Lines 17 and 18, you see the simplest form, where the template parameters other than type have been ignored, resulting in the default sort predicate being taken, as implemented in struct (or class) std::less<T>. If you want to override the default sort, you need to specify a predicate like the ones defined in Lines 3 through 10 and used in main() in Lines 21 and 22. This predicate ensures that the sort is in descending order (as the default is ascending order). Finally, Lines 25 and 26 show instantiation techniques where one set is a copy of another, and a multiset instantiates from a range of values taken from a set (but could be a vector or a list or based on any STL container class that returns iterators that describe bounds via cbegin() and cend()).

Inserting Elements in a Set or Multiset

Most set and multiset functions work in a similar fashion. They accept similar parameters and return similar value types. For instance, you can insert elements in both kinds of containers by using the member function insert(), which accepts the value to be inserted or a range taken from another container, as shown here:

setInts.insert(-1);

msetInts.insert(setInts.begin(), setInts.end());

Listing 19.2 demonstrates the insertion of elements in these containers.

Input

Listing 19.2 Inserting Elements in STL set and multiset Containers

 0: #include <set>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: set<int> setInts{ 202, 151, -999, -1 };

18: setInts.insert(-1); // duplicate

19: cout << “Contents of the set: “ << endl;

20: DisplayContents(setInts);

21:

22: multiset<int> msetInts;

23: msetInts.insert(setInts.begin(), setInts.end());

24: msetInts.insert(-1); // duplicate

25:

26: cout << “Contents of the multiset: “ << endl;

27: DisplayContents(msetInts);

28:

29: cout << “Number of instances of ’-1’ in the multiset are: ’”;

30: cout << msetInts.count(-1) << “’” << endl;

31:

32: return 0;

33: }

Output

Contents of the set:

-999 -1 151 202

Contents of the multiset:

-999 -1 -1 151 202

Number of instances of ’-1’ in the multiset are: ’2’

Analysis

Lines 4 through 13 contain the generic template function DisplayContents(), which you have also seen in Lesson 17, “STL Dynamic Array Classes,” and Lesson 18, “STL list and forward_list.” This function writes the contents of an STL container to the console or screen. Lines 17 and 22, as you already know, instantiate a set and a multiset, respectively, with the former using list initialization syntax. Lines 18 and 24 attempt to insert a duplicate value in the set and multiset containers. Line 23 demonstrates how insert() can be used to insert the contents of a set into a multiset, inserting in this case the contents of setInts into msetInts. The output demonstrates that the multiset is able to hold multiple values, while the set isn’t. Line 30 demonstrates the multiset::count() member function, which returns the number of elements in the multiset that hold a particular value.

Tip

Use multiset::count() to find the number of elements in a multiset that have the same value as that supplied as an argument to this function.

Finding Elements in an STL set or multiset Container

Associative containers like set and multiset or map and multimap feature find()—a member function that enables you to find a value given a key:

auto elementFound = setInts.find(-1);

// Check if found...

if(elementFound != setInts.end())

 cout << “Element “ << *elementFound << “ found!” << endl;

else

 cout << “Element not found in set!” << endl;

The use of find() is demonstrated in Listing 19.3. With a multiset that allows multiple elements with the same value, this function finds the first value that matches the supplied key.

Input

Listing 19.3 Using the find Member Function

 0: #include <set>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: set<int> setInts{ 43, 78, -1, 124 };

 7:

 8: // Display contents of the set to the screen

 9: for(auto element = setInts.cbegin();

10: element != setInts.cend();

11: ++ element)

12: cout << *element << endl;

13:

14: // Try finding an element

15: auto elementFound = setInts.find(-1);

16:

17: // Check if found...

18: if(elementFound != setInts.end())

19: cout << “Element “ << *elementFound << “ found!” << endl;

20: else

21: cout << “Element not found in set!” << endl;

22:

23: // finding another

24: auto anotherFind = setInts.find(12345);

25:

26: // Check if found...

27: if(anotherFind != setInts.end())

28: cout << “Element “ << *anotherFind << “ found!” << endl;

29: else

30: cout << “Element 12345 not found in set!” << endl;

31:

32: return 0;

33: }

Output

-1

43

78

124

Element -1 found!

Element 12345 not found in set!

Analysis

Lines 15 through 21 display the use of the find() member function. find() returns an iterator that needs to be compared against end(), as shown in Line 18, to verify whether an element was found. If the iterator is valid, you can access the value it points to by using *elementFound.

Note

The example in Listing 19.3 works correctly for a multiset, too; that is, if Line 6 is a multiset instead of a set, it does not change the way the application works. A multiset may hold multiple elements of the same value at contiguous locations, and you can access them by using the iterator returned by find() and advancing it count() – 1 times to access all elements with a particular value. The member method count() was demonstrated in Listing 19.2.

Erasing Elements in an STL set or multiset Container

Associative containers such as set and multiset or map and multimap containers feature erase()—a member method that allows you to delete a value given a key:

setObject.erase(key);

Another form of the erase() function allows the deletion of a particular element given an iterator that points to it:

setObject.erase(element);

You can erase a range of elements from a set or a multiset by using iterators that supply the bounds:

setObject.erase(iLowerBound, iUpperBound);

Listing 19.4 demonstrates the use of erase() in removing elements from a set or multiset.

Input

Listing 19.4 Using the erase() Member Function on a Multiset

 0: #include <set>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& Input)

 6: {

 7: for(auto element = Input.cbegin();

 8: element != Input.cend();

 9: ++ element)

10: cout << *element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: typedef multiset<int> MSETINT;

16:

17: int main()

18: {

19: MSETINT msetInts{ 43, 78, 78, -1, 124 };

20:

21: cout << “multiset contains “ << msetInts.size() << “ elements: “;

22: DisplayContents(msetInts);

23:

24: cout << “Enter a number to erase from the set: “;

25: int input = 0;

26: cin >> input;

27:

28: cout << “Erasing “ << msetInts.count(input);

29: cout << “ instances of value “ << input << endl;

30:

31: msetInts.erase(input);

32:

33: cout << “multiset now contains “ << msetInts.size() << “ elements: “;

34: DisplayContents(msetInts);

35:

36: return 0;

37: }

Output

multiset contains 5 elements: -1 43 78 78 124

Enter a number to erase from the set: 78

Erasing 2 instances of value 78

multiset now contains 3 elements: -1 43 124

Analysis

Note the use of typedef in Line 15. Line 28 demonstrates the use of count() to determine the number of elements with a specific value. The actual erase happens in Line 31, which deletes all elements that match the particular number input by the user.

Tip

The member function erase() is overloaded. When invoked with a value as shown in Listing 19.4, it deletes all elements that evaluate to it. When invoked using an iterator, such as one returned by a find() operation, it deletes that one element, as shown here:

MSETINT::iterator elementFound = msetInts.find(numberToErase);

if(elementFound != msetInts.end())

 msetInts.erase(elementFound);

else

 cout << “Element not found!” << endl;

You can also use erase() to delete a range of values from a multiset:

MSETINT::iterator elementFound = msetInts.find(valueToErase);

if(elementFound != msetInts.end())

 msetInts.erase(msetInts.begin(), elementFound);

This snippet removes all elements from the start to the element of value valueToErase, not including the latter. Both set and multiset can be emptied of their contents by using the member function clear().

Now that you have had an overview of the basic set and multiset functions, it’s time to review an example that features a practical application using this container class. Listing 19.5 shows the simplest implementation of a menu-based telephone directory that enables a user to insert names and telephone numbers, find them, erase them, and display them all.

Input

Listing 19.5 A Telephone Directory Featuring STL set, find(), and erase()

 0: #include <set>

 1: #include <iostream>

 2: #include <string>

 3: using namespace std;

 4:

 5: template <typename T>

 6: void DisplayContents(const T& container)

 7: {

 8: for(auto iElement = container.cbegin();

 9: iElement != container.cend();

10: ++ iElement)

11: cout << *iElement << endl;

12:

13: cout << endl;

14: }

15:

16: struct ContactItem

17: {

18: string name;

19: string phoneNum;

20: string displayAs;

21:

22: ContactItem(const string& nameInit, const string & phone)

23: {

24: name = nameInit;

25: phoneNum = phone;

26: displayAs =(name + “: “ + phoneNum);

27: }

28:

29: // used by set::find() given contact list item

30: bool operator ==(const ContactItem& itemToCompare) const

31: {

32: return(itemToCompare.name == this->name);

33: }

34:

35: // used to sort

36: bool operator <(const ContactItem& itemToCompare) const

37: {

38: return(this->name < itemToCompare.name);

39: }

40:

41: // Used in DisplayContents via cout

42: operator const char*() const

43: {

44: return displayAs.c_str();

45: }

46: };

47:

48: int main()

49: {

50: set<ContactItem> setContacts;

51: setContacts.insert(ContactItem("Oprah Winfrey”, “+1 7889 879 879"));

52: setContacts.insert(ContactItem("Bill Gates”, “+1 97 7897 8799 8"));

53: setContacts.insert(ContactItem("Angi Merkel”, “+49 23456 5466"));

54: setContacts.insert(ContactItem("Vlad Putin”, “+7 6645 4564 797"));

55: setContacts.insert(ContactItem("John Travolta”, “91 234 4564 789"));

56: setContacts.insert(ContactItem("Angelina Jolie”, “+1 745 641 314"));

57: DisplayContents(setContacts);

58:

59: cout << “Enter a name you wish to delete: “;

60: string inputName;

61: getline(cin, inputName);

62:

63: auto contactFound = setContacts.find(ContactItem(inputName, “"));

64: if(contactFound != setContacts.end())

65: {

66: setContacts.erase(contactFound);

67: cout << “Displaying contents after erasing “ << inputName << endl;

68: DisplayContents(setContacts);

69: }

70: else

71: cout << “Contact not found” << endl;

72:

73: return 0;

74: }

Output

Angelina Jolie: +1 745 641 314

Angi Merkel: +49 23456 5466

Bill Gates: +1 97 7897 8799 8

John Travolta: 91 234 4564 789

Oprah Winfrey: +1 7889 879 879

Vlad Putin: +7 6645 4564 797

Enter a name you wish to delete: John Travolta

Displaying contents after erasing John Travolta

Angelina Jolie: +1 745 641 314

Angi Merkel: +49 23456 5466

Bill Gates: +1 97 7897 8799 8

Oprah Winfrey: +1 7889 879 879

Vlad Putin: +7 6645 4564 797

Analysis

This example is similar to Listing 18.7, which sorted a std::list in alphabetical order; however, in the case of std::set, the sort happens on insertion. As the output here indicates, you don’t need to invoke any function to ensure that elements in the set are sorted because they’re sorted on insertion, using the operator <, which is implemented in Lines 36 through 39. You give the user the choice to delete an entry, and Line 63 demonstrates the call to find() to locate that entry, which is deleted in Line 66 using erase().

Tip

This implementation of the telephone directory is based on the STL set class and therefore does not allow for multiple entries containing the same value. If you need your implementation of the directory to allow two people with the same name to be stored, you should instead use the STL multiset class. The code in Listing 19.5 would still work correctly if setContacts were a multiset. To make further use of the multiset class’s capability to store multiple entries of the same value, you use the count() member function to determine the number of items that hold a particular value.

Pros and Cons of Using STL set and multiset

The STL set and multiset classes provide significant advantages in applications that need frequent lookups because their contents are sorted, and it’s therefore quicker to locate items in them. However, to provide this advantage, a container needs to sort elements at insertion time. There is overhead in inserting elements because elements are sorted; this overhead might be a worthwhile compromise if you need to use features and functions such as find() often.

find() makes use of the internal binary tree structure. This sorted binary tree structure results in another implicit disadvantage over sequential containers such as a vector. In a vector, the element pointed to by an iterator (say, one returned by a std::find() operation) can be overwritten by a new value. In the case of a set, however, elements are sorted by the set class according to their respective values, and therefore overwriting an element using an iterator should never be done, even if doing so is programmatically possible.

STL Hash Set Implementation: std::unordered_set and std::unordered_multiset

STL std::set and std::multiset sort elements (which are simultaneously the keys) on the basis of std::less<T> or a supplied predicate. Searching in a sorted container is faster than searching in an unsorted container such as a vector, and std::sort() offers logarithmic complexity. This means that the time spent finding an element in a set is not directly proportional to the number of elements in the set; rather, it is proportional to the log of the number of elements. So, on average, it takes twice as long to search in a set of 10,000 elements as it would take in a set of 100 (as 100^2 = 10,000, or log(10000) = 2 × log(100)).

Yet, this dramatic improvement of performance over an unsorted container (where search time is directly proportional to the number of elements) is sometimes not enough. Programmers and mathematicians alike seek constant-time insertions and sort possibilities, and one of them uses a hash-based implementation, where a hash function is used to determine the sorting index. Elements inserted into a hash set are first evaluated by a hash function that generates a unique index, which is the index of the bucket they’re placed in.

The hash set variant provided by STL is the container class std::unordered_set.

Tip

To use STL std::unordered_set or std::unordered_multiset containers, include

#include<unordered_set>

The use of this class doesn’t change too much in comparison to the use of std::set:

// instantiation:

unordered_set<int> usetInt;

// insertion of an element

usetInt.insert(1000);

// find():

auto elementFound = usetInt.find(1000);

if(elementFound != usetInt.end())

 cout << *elementFound << endl;

However, one very important feature of unordered_set is the availability of a hash function that is responsible for deciding the sorting order:

unordered_set<int>::hasher HFn = usetInt.hash_function();

The decision to use std::unordered_set or a std::set is best made after the performance of the respective containers is measured in simulations involving operations and data volumes that closely resemble real-world usage. Listing 19.6 demonstrates the use of some of the common methods supplied by std::unordered_set.

Input

Listing 19.6 std::unordered_set and the Use of insert(), find(), size(), max_bucket_count(), load_factor(), and max_load_factor()

 0: #include<unordered_set>

 1: #include <iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: void DisplayContents(const T& cont)

 6: {

 7: cout << “Unordered set contains: “;

 8: for(auto element = cont.cbegin();

 9: element != cont.cend();

10: ++ element)

11: cout<< *element << ’ ’;

12:

13: cout << endl;

14:

15: cout << “Number of elements, size() = “ << cont.size() << endl;

16: cout << “Bucket count = “ << cont.bucket_count() << endl;

17: cout << “Max load factor = “ << cont.max_load_factor() << endl;

18: cout << “Load factor: “ << cont.load_factor() << endl << endl;

19: }

20:

21: int main()

22: {

23: unordered_set<int> usetInt{ 1, -3, 2017, 300, -1, 989, -300, 9 };

24: DisplayContents(usetInt);

25: usetInt.insert(999);

26: DisplayContents(usetInt);

27:

28: cout << “Enter int you want to check for existence in set: “;

29: int input = 0;

30: cin >> input;

31: auto elementFound = usetInt.find(input);

32:

33: if(elementFound != usetInt.end())

34: cout << *elementFound << “ found in set” << endl;

35: else

36: cout << input << “ not available in set” << endl;

37:

38: return 0;

39: }

Output

Unordered set contains: 9 1 -3 989 -1 2017 300 -300

Number of elements, size() = 8

Bucket count = 8

Max load factor = 1

Load factor: 1

Unordered set contains: 9 1 -3 989 -1 2017 300 -300 999

Number of elements, size() = 9

Bucket count = 64

Max load factor = 1

Load factor: 0.140625

Enter int you want to check for existence in set: -300

-300 found in set

Analysis

Different compilers or different versions of the STL might produce slightly different output. The code in Listing 19.6 creates an unordered set of integers; inserts values into it using list initialization in Line 23; and then displays contents, including statistics supplied by the methods max_bucket_count(), load_factor(), and max_load_factor(), as shown in Lines 15 through 18. The output indicates that the bucket count is initially at eight, with eight elements in the container, resulting in a load factor of 1, which is the same as the maximum load factor. When a ninth element is inserted into the unordered set, the set reorganizes itself, creates 64 buckets, and re-creates the hash table; the load factor reduces. The rest of the code in main() demonstrates how the syntax for finding elements in an unordered set is similar to that in a set. find() returns an iterator that needs to be checked for the success of find(), as shown in Line 33, before it can be used.

Note

Hashes are typically used in a hash table to look up a value given a key. See the section on std::unordered_map in Lesson 20, “STL map and multimap,” which demonstrates std::unordered_map—the STL implementation of a hash table.

[image: Images]

Summary

In this lesson, you learned about using the STL set and multiset classes, their significant member functions, and their characteristics. You also saw their application in the programming of a simple menu-based telephone directory that features search and erase functions.

Q&A

Q. How would I declare a set of integers to be sorted and stored in order of descending magnitude?

A. set<int> is a set of integers. It takes the default sort predicate std::less<T> to sort items in order of ascending magnitude and can also be expressed as set<int, less <int>>. To sort in order of descending magnitude, define the set as set <int, greater <int>>.

Q. What would happen if, in a set of strings, I inserted the string ”Jack” twice?

A. A set is not meant to be used to contain non-unique values, and the set of strings would contain only one instance of "Jack".

Q. In the preceding example, if I wanted to have two instances of ”Jack”, what would I need to change?

A. By design, a set holds only unique values. You would need to change your selection of container to a multiset.

Q. What multiset member function returns the count of items of a particular value in a container?

A. count(value) is the function of interest.

Q. I have found an element in a set by using the find() function and have an iterator pointing to it. Would I use this iterator to change the value being pointed to?

A. Some STL implementations might allow the user to change the value of an element inside a set via an iterator returned by, for example, find(). However, this is not the correct thing to do. An iterator to an element in the set should be used as a const iterator—even when the STL implementation has not enforced it as such.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. You declare a set of integers as set<int>. What function supplies the sort criteria?

2. Where would you find duplicate elements in a multiset?

3. What set or multiset function supplies the number of elements in a container?

Exercises

1. Extend the telephone directory example in this lesson to find a person’s name, given a phone number. (Hint: Adjust the operators < and == and ensure that items are sorted and compared according to phone numbers.)

2. Define a multiset to store entered words and their meanings; that is, make a multiset work as a dictionary. (Hint: The multiset should be a structure that contains two strings: the word and its meaning.)

3. Demonstrate via a simple program that a set cannot accept duplicate entries, whereas a multiset can.

Lesson 20. STL map and multimap

The Standard Template Library (STL) supports container classes that help with applications that require frequent and quick searches.

This lesson covers

• How STL map and multimap, unordered_map, and unordered_multimap containers can be of use to you

• Inserting, removing, and searching for elements

• Supplying a custom sort predicate

• Basics of how hash tables work

An Introduction to STL Map Classes

map and multimap are key/value pair containers that allow for lookups on the basis of keys, as shown in Figure 20.1.

[image: Images]

Figure 20.1 Visual illustration of a container for pairs, each holding a key and a value.

The difference between map and multimap is that the latter allows for duplicates, whereas the former can only store pairs with unique keys.

To facilitate quick searching, STL implementations of map and multimap internally look like binary trees. This means that elements inserted in a map or a multimap are sorted on insertion. It also means that, unlike in a vector, where an element at a position can be replaced by another, an element in a map at a given position cannot be replaced by a new element of a different value. This is because the map would ideally like to have it placed in a potentially different location, in accordance with its value relative to the elements in the internal tree.

Tip

To use the class std::map or std::multimap, include the header:

#include<map>

Basic std::map and std::multimap Operations

STL map and multimap are template classes that need to be instantiated before you can use any of their member functions.

Instantiating std::map or std::multimap

Instantiating a map or multimap for an integer as a key and a string as a value requires a specialization of the template class std::map or std::multimap. The template instantiation of the map class needs the programmer to specify the key type, the value type, and optionally a predicate that helps the map class to sort the elements on insertion. Therefore, typical map instantiation syntax looks like this:

#include <map>

using namespace std;

...

map <keyType, valueType, Predicate=std::less <keyType>> mapObj;

multimap <keyType, valueType, Predicate=std::less <keyType>> mmapObj;

Thus, the third template parameter is optional. When you supply only the key type and the value type and ignore the third template parameter, std::map and std::multimap default to class std::less<> to define the sort criteria. Thus, a map or multimap that maps an integer to a string looks like this:

std::map<int, string> mapIntToStr;

std::multimap<int, string> mmapIntToStr;

Listing 20.1 illustrates instantiation techniques in greater detail.

Input

Listing 20.1 Instantiating map and multimap Objects That Map an int Key to a string Value

 0: #include<map>

 1: #include<string>

 2:

 3: template<typename keyType>

 4: struct ReverseSort

 5: {

 6: bool operator()(const keyType& key1, const keyType& key2) const

 7: {

 8: return(key1 > key2);

 9: }

10: };

11:

12: int main()

13: {

14: using namespace std;

15:

16: // map and multimap key of type int to value of type string

17: map<int, string> mapIntToStr1;

18: multimap<int, string> mmapIntToStr1;

19:

20: // map and multimap constructed as a copy of another

21: map<int, string> mapIntToStr2(mapIntToStr1);

22: multimap<int, string> mmapIntToStr2(mmapIntToStr1);

23:

24: // map and multimap constructed given a part of another map or multimap

25: map<int, string> mapIntToStr3(mapIntToStr1.cbegin(),

26: mapIntToStr1.cend());

27:

28: multimap<int, string> mmapIntToStr3(mmapIntToStr1.cbegin(),

29: mmapIntToStr1.cend());

30:

31: // map and multimap with a predicate that inverses sort order

32: map<int, string, ReverseSort<int> > mapIntToStr4

33: (mapIntToStr1.cbegin(), mapIntToStr1.cend());

34:

35: multimap<int, string, ReverseSort<int> > mmapIntToStr4

36: (mapIntToStr1.cbegin(), mapIntToStr1.cend());

37:

38: return 0;

39: }

Output

This code snippet produces no output

Analysis

This example demonstrates instantiation and produces no output. Focus on main() in Lines 12 through 39. The simplest map and multimap of an integer key to a string value can be seen in Lines 17 and 18. Lines 25 through 28 demonstrate the creation of a map or a multimap initialized to a range of values from another as input. Lines 31 through 36 demonstrate how to instantiate a map or a multimap with your own custom sort criteria. Note that the default sort (in the previous instantiations) uses std::less<T>, which sorts elements in the increasing order. If you want to change this behavior, you supply a predicate that is a class or a struct that implements operator(). Such a predicate, struct ReverseSort, is in Lines 3 through 10 and has been used in the instantiation of a map in Line 32 and a multimap in Line 35.

Inserting Elements in an STL Map or Multimap

Most functions work in multimap much the same way they work in a map. They accept similar parameters and return similar value types. You can insert elements in both kinds of containers by using the insert member function:

std::map<int, std::string> mapIntToStr1;

// insert pair of key and value using make_pair function

mapIntToStr.insert(make_pair(-1, “Minus One"));

As these two containers maintain elements in key/value pairs, you can also directly supply a std::pair initialized to the key and value to be inserted:

mapIntToStr.insert(pair<int, string>(1000, “One Thousand"));

Alternatively, you can use array-like syntax to insert, which does appear quite user friendly and is supported via the subscript operator ([]):

mapIntToStr[1000000] = “One Million”;

You can also instantiate a multimap as a copy of a map:

std::multimap<int, std::string> mmapIntToStr(mapIntToStr.cbegin(),

 mapIntToStr.cend());

Listing 20.2 demonstrates the various map and multimap instantiation methods.

Input

Listing 20.2 Inserting Elements in map and multimap Containers Using Overloads of insert() and Array Semantics via the [] Operator

 0: #include <map>

 1: #include <iostream>

 2: #include<string>

 3:

 4: using namespace std;

 5:

 6: // Type-define the map and multimap definition for easy readability

 7: typedef map <int, string> MAP_INT_STRING;

 8: typedef multimap <int, string> MMAP_INT_STRING;

 9:

10: template <typename T>

11: void DisplayContents(const T& cont)

12: {

13: for(auto element = cont.cbegin();

14: element != cont.cend();

15: ++element)

16: cout << element->first << “ -> “ << element->second << endl;

17:

18: cout << endl;

19: }

20:

21: int main()

22: {

23: MAP_INT_STRING mapIntToStr;

24:

25: // Insert key-value pairs into the map using value_type

26: mapIntToStr.insert(MAP_INT_STRING::value_type(3, “Three"));

27:

28: // Insert a pair using function make_pair

29: mapIntToStr.insert(make_pair(-1, “Minus One"));

30:

31: // Insert a pair object directly

32: mapIntToStr.insert(pair<int, string>(1000, “One Thousand"));

33:

34: // Use an array-like syntax for inserting key-value pairs

35: mapIntToStr [1000000] = “One Million”;

36:

37: cout << “The map contains “ << mapIntToStr.size();

38: cout << “ key-value pairs. They are: “ << endl;

39: DisplayContents(mapIntToStr);

40:

41: // instantiate a multimap that is a copy of a map

42: MMAP_INT_STRING mmapIntToStr(mapIntToStr.cbegin(),

43: mapIntToStr.cend());

44:

45: // The insert function works the same way for multimap too

46: // A multimap can store duplicates - insert a duplicate

47: mmapIntToStr.insert(make_pair(1000, “Thousand"));

48:

49: cout << endl << “The multimap contains “ << mmapIntToStr.size();

50: cout << “ key-value pairs. They are: “ << endl;

51: DisplayContents(mmapIntToStr);

52:

53: // The multimap can return number of pairs with same key

54: cout << “The number of pairs in the multimap with 1000 as their key: “

55: << mmapIntToStr.count(1000) << endl;

56:

57: return 0;

58: }

Output

The map contains 4 key-value pairs. They are:

-1 -> Minus One

3 -> Three

1000 -> One Thousand

1000000 -> One Million

The multimap contains 5 key-value pairs. They are:

-1 -> Minus One

3 -> Three

1000 -> One Thousand

1000 -> Thousand

1000000 -> One Million

The number of pairs in the multimap with 1000 as their key: 2

Analysis

Note how typedef is used with the template instantiation of map and multimap in Lines 7 and 8. You can do this to make your code look a bit simpler (and reduce clutter caused by template syntax). Lines 10 through 19 are a form of DisplayContents() adapted for map and multimap in which the iterator is used to access first, which indicates the key, and second, which indicates the value. Lines 26 through 32 demonstrate the different ways of inserting a key/value pair into a map using overloaded variants of method insert(). Line 35 demonstrates how you can use array semantics via the operator [] to insert elements in a map. Note that these insert mechanisms work as well for a multimap, as demonstrated in Line 47, where you insert a duplicate into a multimap. Interestingly, the multimap is initialized as a copy of the map, as shown in Lines 42 and 43. The output demonstrates how the two containers have automatically sorted the input key/value pairs in ascending order of keys. The output also demonstrates that the multimap can store two pairs with the same key (in this case 1000). Line 55 demonstrates the use of multimap::count() to determine the number of elements with a supplied key in the container.

Finding Elements in an STL map Container

Associative containers, such as map and multimap, feature the member function find(), which enables you to find a value given a key. The result of a find() operation is always an iterator:

multimap<int, string>::const_iterator pairFound = mapIntToStr.find(key);

You would first check this iterator for the success of find() and then use it to access the found value:

if(pairFound != mapIntToStr.end())

{

 cout << “Key “ << pairFound->first << “ points to Value: “;

 cout << pairFound->second << endl;

}

else

 cout << “Sorry, pair with key “ << key << “ not in map” << endl;

Tip

The iterator declaration can be simplified using the keyword auto:

auto pairFound = mapIntToStr.find(key);

The compiler determines the type of the iterator automatically by inferring it from the declared return value of map::find().

The example in Listing 20.3 demonstrates the use of multimap::find().

Input

Listing 20.3 Using the find() Member Function to Locate a Key/Value Pair in a map Container

 0: #include <map>

 1: #include <iostream>

 2: #include <string>

 3: using namespace std;

 4:

 5: template <typename T>

 6: void DisplayContents(const T& cont)

 7: {

 8: for(auto element = cont.cbegin();

 9: element != cont.cend();

10: ++ element)

11: cout << element->first << “ -> “ << element->second << endl;

12:

13: cout << endl;

14: }

15:

16: int main()

17: {

18: map<int, string> mapIntToStr;

19:

20: mapIntToStr.insert(make_pair(3, “Three"));

21: mapIntToStr.insert(make_pair(45, “Forty Five"));

22: mapIntToStr.insert(make_pair(-1, “Minus One"));

23: mapIntToStr.insert(make_pair(1000, “Thousand"));

24:

25: cout << “The multimap contains “ << mapIntToStr.size();

26: cout << “ key-value pairs. They are: “ << endl;

27:

28: // Print the contents of the map to the screen

29: DisplayContents(mapIntToStr);

30:

31: cout << “Enter the key you wish to find: “;

32: int key = 0;

33: cin >> key;

34:

35: auto pairFound = mapIntToStr.find(key);

36: if(pairFound != mapIntToStr.end())

37: {

38: cout << “Key “ << pairFound->first << “ points to Value: “;

39: cout << pairFound->second << endl;

40: }

41: else

42: cout << “Sorry, pair with key “ << key << “ not in map\n”;

43:

44: return 0;

45: }

Output

First run:

The multimap contains 4 key-value pairs. They are:

-1 -> Minus One

3 -> Three

45 -> Forty Five

1000 -> Thousand

Enter the key you wish to find: 45

Key 45 points to Value: Forty Five

Next run (where find() locates no matching key):

The multimap contains 4 key-value pairs. They are:

-1 -> Minus One

3 -> Three

45 -> Forty Five

1000 -> Thousand

Enter the key you wish to find: 2011

Sorry, pair with key 2011 not in map

Analysis

Lines 20 through 23 in main() populate a map with sample pairs, each mapping an integer key to a string value. When the user supplies a key to be used in finding in the map, Line 35 uses the find() function to look up the supplied key in the map. map::find() always returns an iterator, and it is always wise to check for the success of the find() operation by comparing this iterator to end(), as shown in Line 36. If the iterator is indeed valid, you can use the member second to access the value, as shown in Line 39. In the second run, you input a key 2011 that is not represented in the map, and an error message is displayed to the user.

Caution

Never use the result of a find() operation without first checking the iterator returned for success.

Finding Elements in an STL multimap Container

If Listing 20.3 showed a multimap container, opening the possibility that the container contains multiple pairs with the same key, you would need to find the values that correspond to the repeating key. Hence, in the case of a multimap, you use multimap::count() to find the number of values corresponding to a key and increment the iterator to access those values:

auto pairFound = mmapIntToStr.find(key);

// Check if find() succeeded

if(pairFound != mmapIntToStr.end())

{

 // Find the number of pairs that have the same supplied key

 size_t numPairsInMap = mmapIntToStr.count(1000);

 for(size_t counter = 0;

 counter < numPairsInMap; // stay within bounds

 ++ counter)

 {

 cout << “Key: “ << pairFound->first; // key

 cout << “, Value [” << counter << “] = “;

 cout << pairFound->second << endl; // value

 ++ pairFound;

 }

}

else

 cout << “Element not found in the multimap”;

Erasing Elements from an STL map or multimap Container

map and multimap feature a member function, erase(), which deletes an element from a container. The erase() is invoked with the key as the parameter to delete all pairs with a certain key:

mapObject.erase(key);

Another form of the erase() function allows the deletion of a particular element, given an iterator that points to it:

mapObject.erase(element);

You can erase a range of elements from a map or a multimap by using iterators that supply the bounds:

mapObject.erase(lowerBound, upperBound);

Listing 20.4 illustrates the use of the erase() function.

Input

Listing 20.4 Erasing Elements from a Multimap

 0: #include<map>

 1: #include<iostream>

 2: #include<string>

 3: using namespace std;

 4:

 5: template<typename T>

 6: void DisplayContents(const T& cont)

 7: {

 8: for(auto element = cont.cbegin();

 9: element != cont.cend();

10: ++ element)

11: cout << element->first<< “ -> “ << element->second << endl;

12:

13: cout << endl;

14: }

15:

16: int main()

17: {

18: multimap<int, string> mmapIntToStr;

19:

20: // Insert key-value pairs into the multimap

21: mmapIntToStr.insert(make_pair(3, “Three"));

22: mmapIntToStr.insert(make_pair(45, “Forty Five"));

23: mmapIntToStr.insert(make_pair(-1, “Minus One"));

24: mmapIntToStr.insert(make_pair(1000, “Thousand"));

25:

26: // Insert duplicates into the multimap

27: mmapIntToStr.insert(make_pair(-1, “Minus One"));

28: mmapIntToStr.insert(make_pair(1000, “Thousand"));

29:

30: cout << “The multimap contains “ << mmapIntToStr.size();

31: cout << “ key-value pairs. “ << “They are: \n”;

32: DisplayContents(mmapIntToStr);

33:

34: // Erasing an element with key as -1 from the multimap

35: auto numPairsErased = mmapIntToStr.erase(-1);

36: cout << “Erased “ << numPairsErased << “ pairs with -1 as key.\n”;

37:

38: // Erase an element given an iterator from the multimap

39: auto pair = mmapIntToStr.find(45);

40: if(pair != mmapIntToStr.end())

41: {

42: mmapIntToStr.erase(pair);

43: cout << “Erased a pair with 45 as key using an iterator\n”;

44: }

45:

46: // Erase a range from the multimap...

47: cout << “Erasing the range of pairs with 1000 as key.” << endl;

48: mmapIntToStr.erase(mmapIntToStr.lower_bound(1000),

49: mmapIntToStr.upper_bound(1000));

50:

51: cout << “The multimap now contains “<< mmapIntToStr.size();

52: cout << “ key-value pair(s).” << “They are: \n”;

53: DisplayContents(mmapIntToStr);

54:

55: return 0;

56: }

Output

The multimap contains 6 key-value pairs. They are:

-1 -> Minus One

-1 -> Minus One

3 -> Three

45 -> Forty Five

1000 -> Thousand

1000 -> Thousand

Erased 2 pairs with -1 as key.

Erased a pair with 45 as key using an iterator

Erasing the range of pairs with 1000 as key.

The multimap now contains 1 key-value pair(s).They are:

3 -> Three

Analysis

Lines 21 through 28 insert sample values into a multimap, some of them being duplicates (because a multimap, unlike a map, does support the insertion of pairs with duplicate keys). After pairs have been inserted into the multimap, the code erases items by using the version of the erase() function that accepts a key and erases all items with that key (-1), as shown in Line 35. The return value of map::erase(key) is the number of elements erased, which is displayed on the screen. In Line 39, the iterator returned by find(45) erases a pair from the map with key 45. Lines 48 and 49 demonstrate how pairs with a key can be deleted, given a range specified by lower_bound() and upper_bound().

Supplying a Custom Sort Predicate

The map and multimap template definition includes a third parameter that accepts the sort predicate for the map to function correctly. This third parameter, when not supplied (as in the preceding examples), is substituted with the default sort criterion provided by std::less<>, which essentially compares two objects by using the operator <.

To supply a different sort criterion than the key type supports, you typically program a binary predicate in the form of a class or a struct by using operator():

template<typename keyType>

struct Predicate

{

 bool operator()(const keyType& key1, const keyType& key2) const

 {

 // your sort priority logic here

 }

};

A map that holds a std::string type as the key has a default sort criterion based on the operator < defined by the std::string class, triggered via the default sort predicate std::less<T>; it is therefore case-sensitive. For many applications, such as a telephone directory, it is important to feature an insertion and search operation that is not case sensitive. One way of solving this requirement is to supply the map with a sort predicate that returns either true or false, on the basis of a comparison that is not case-sensitive:

map <keyType, valueType, Predicate> mapObject;

Listing 20.5 illustrates this.

Input

Listing 20.5 Supplying a Custom Sort Predicate: A Telephone Directory

 0: #include<map>

 1: #include<algorithm>

 2: #include<string>

 3: #include<iostream>

 4: using namespace std;

 5:

 6: template <typename T>

 7: void DisplayContents(const T& cont)

 8: {

 9: for(auto element = cont.cbegin();

10: element != cont.cend();

11: ++ element)

12: cout << element->first << “ -> “ << element->second << endl;

13:

14: cout << endl;

15: }

16:

17: struct PredIgnoreCase

18: {

19: bool operator()(const string& str1, const string& str2) const

20: {

21: string str1NoCase(str1), str2NoCase(str2);

22: transform(str1.begin(), str1.end(), str1NoCase.begin(), ::tolower);

23: transform(str2.begin(), str2.end(), str2NoCase.begin(), ::tolower);

24:

25: return(str1NoCase< str2NoCase);

26: };

27: };

28:

29: typedef map<string, string> DIR_WITH_CASE;

30: typedef map<string, string, PredIgnoreCase> DIR_NOCASE;

31:

32: int main()

33: {

34: // Case-sensitive directorycase of string-key plays no role

35: DIR_WITH_CASE dirWithCase;

36:

37: dirWithCase.insert(make_pair("John”, “2345764"));

38: dirWithCase.insert(make_pair("JOHN”, “2345764"));

39: dirWithCase.insert(make_pair("Sara”, “42367236"));

40: dirWithCase.insert(make_pair("Jack”, “32435348"));

41:

42: cout << “Displaying contents of the case-sensitive map:\n”;

43: DisplayContents(dirWithCase);

44:

45: // Case-insensitive mapcase of string-key affects insertion & search

46: DIR_NOCASE dirNoCase(dirWithCase.begin(), dirWithCase.end());

47:

48: cout << “Displaying contents of the case-insensitive map:\n”;

49: DisplayContents(dirNoCase);

50:

51: // Search for a name in the two maps and display result

52: cout << “Please enter a name to search\n> “;

53: string name;

54: cin >> name;

55:

56: auto pairWithCase = dirWithCase.find(name);

57: if(pairWithCase != dirWithCase.end())

58: cout << “Num in case-sens. dir: “ << pairWithCase->second << endl;

59: else

60: cout << “Num not found in case-sensitive dir\n”;

61:

62: auto pairNoCase = dirNoCase.find(name);

63: if(pairNoCase != dirNoCase.end())

64: cout << “Num found in CI dir: “ << pairNoCase->second << endl;

65: else

66: cout << “Num not found in the case-insensitive directory\n”;

67:

68: return 0;

69: }

Output

Displaying contents of the case-sensitive map:

JOHN -> 2345764

Jack -> 32435348

John -> 2345764

Sara -> 42367236

Displaying contents of the case-insensitive map:

Jack -> 32435348

JOHN -> 2345764

Sara -> 42367236

Please enter a name to search

> jack

Num not found in case-sensitive dir

Num found in CI dir: 32435348

Analysis

This code contains two directories with equal content: one that has been instantiated with the default sort predicate, using std::less<T> and the case-sensitive std::string::operator<, and another that has been instantiated with the predicate struct PredIgnoreCase defined in Lines 17 through 27. This predicate compares two strings after reducing them to lowercase, thereby ensuring a case-insensitive comparison that will evaluate "John" and “JOHN" as being equal. The output indicates that when you search the two maps for "jack" the map with the case-insensitive instantiation is able to locate “Jack" in its records, whereas the map with the default instantiation is unable to find this entry. Also note how the case-sensitive map has two entries for John, while the case-insensitive map that identifies "John" and “JOHN" as duplicate elements and therefore stores only one.

Note

In Listing 20.5, struct PredIgnoreCase can also be a class if you add the keyword public for operator(). A struct is akin to a class with members that are public by default and inherit public by default.

This example demonstrates how you can use predicates to customize the behavior of a map. It also implies that the key could potentially be of any type and that the programmer can supply a predicate that defines the behavior of the map for that type. Note that the predicate is a struct that implements operator(). Such objects that double as functions are called function objects or functors. This topic is addressed in further detail in Lesson 21, “Understanding Function Objects.”

Note

std::map is well suited for storing key/value pairs where you can look up a value given a key. A map does probably deliver better performance than an STL vector or list when it comes to searching. However, the performance slows down a bit when the number of elements increases. The operational performance of a map is said to be logarithmic in nature—that is, proportional to the log of the number of elements placed in the map.

In simple terms, logarithmic complexity means that a container such as std::map or std::set takes twice as long to find an element when it contains 10,000 elements as it takes to find an elements when it contains 100 elements (100^2 = 10,000).

An unsorted vector presents linear complexity when it comes to searching, which means it would be 100 times slower if it contained 10,000 elements instead of 100.

So, while logarithmic complexity already looks good, you should remember that insertions in a map (or multimap or set or multiset) get slower, too, as these containers sort on insertion. Thus, the search for faster containers continues, and mathematicians and programmers alike seek the holy grail of containers featuring constant-time insertions and searches. The hash table is one container that promises constant-time insertions and near-constant-time searches (in most cases), given a key, independent of the size of the container.

STL’s Hash Table–Based Key/Value Container

The STL supports a hash map in the form of the class std::unordered_map. To use this template container class, include

#include<unordered_map>

unordered_map promises average constant-time insertion and the removal and lookup of arbitrary elements in a container.

How Hash Tables Work

Although it is not within the scope of this book to discuss hash tables in detail, this section describes the basics of what makes hash tables work.

A hash table can be viewed as a collection of key/value pairs, where given a key, the table can find a value. The difference between a hash table and a simple map is that a hash table stores key/value pairs in buckets, and each bucket has an index that defines its relative position in the table (akin to an array). This index is decided by a hash function that uses the key as input:

index = HashFunction(key, tableSize);

When performing a find() given a key, HashFunction() is used once again to determine the position of the element, and the table returns the value at the position, as an array would return an element stored within it. In cases where HashFunction() is not optimally programmed, more than one element would have the same index and land in the same bucket—which would, internally, be a list of elements. In such cases, called collisions, a search would be slower and not a constant time activity anymore.

Using unordered_map and unordered_multimap

The containers that implement hash tables, std::unordered_map and std::unordered_multimap, are not too different from std::map and std::multimap, respectively. Instantiation, insertion, and find follow similar patterns:

// instantiate unordered_map of int to string:

unordered_map<int, string> umapIntToStr;

// insert()

umapIntToStr.insert(make_pair(1000, “Thousand"));

// find():

auto pairFound = umapIntToStr.find(1000);

cout << pairFound->first << “ - “ << pairFound->second << endl;

// find value using array semantics:

cout << “umapIntToStr[1000] = “ << umapIntToStr[1000] << endl;

However, one important feature of an unordered map is the availability of a hash function that is responsible for deciding the sorting order:

unordered_map<int, string>::hasher hFn =

 umapIntToStr.hash_function();

You can view the priority assigned to a key by invoking the hash function for a key:

size_t hashingVal = hFn(1000);

An unordered map stores key/value pairs in buckets. When the number of key/value pairs contained reaches or nearly reaches the total number of buckets available, it increases this number automatically to manage the load:

cout << “Load factor: “ << umapIntToStr.load_factor() << endl;

cout << “Max load factor = “ << umapIntToStr.max_load_factor() << endl;

cout << “Max bucket count = “ << umapIntToStr.max_bucket_count() << endl;

load_factor() indicates the extent to which buckets in the unordered map have been filled. When load_factor() exceeds max_load_factor() due to an insertion, the map reorganizes itself to increase the number of available buckets and rebuilds the hash table, as demonstrated in Listing 20.6.

Tip

std::unordered_multimap is similar to unordered_map except that it supports multiple pairs with the same key.

Input

Listing 20.6 Instantiating the STL Hash Table Implementation unordered_map, Using insert(), find(), size(), max_bucket_count(), load_factor(), and max_load_factor()

 0: #include<iostream>

 1: #include<string>

 2: #include<unordered_map>

 3: using namespace std;

 4:

 5: template <typename T1, typename T2>

 6: void DisplayUnorderedMap(unordered_map<T1, T2>& cont)

 7: {

 8: cout << “Unordered Map contains: “ << endl;

 9: for(auto element = cont.cbegin();

10: element != cont.cend();

11: ++ element)

12: cout << element->first << “ -> “ << element->second << endl;

13:

14: cout << “Number of pairs, size(): “ << cont.size() << endl;

15: cout << “Bucket count = “ << cont.bucket_count() << endl;

16: cout << “Current load factor: “ << cont.load_factor() << endl;

17: cout << “Max load factor = “ << cont.max_load_factor() << endl;

18: }

19:

20: int main()

21: {

22: unordered_map<int, string> umapIntToStr;

23: umapIntToStr.insert(make_pair(1, “One"));

24: umapIntToStr.insert(make_pair(45, “Forty Five"));

25: umapIntToStr.insert(make_pair(1001, “Thousand One"));

26: umapIntToStr.insert(make_pair(-2, “Minus Two"));

27: umapIntToStr.insert(make_pair(-1000, “Minus One Thousand"));

28: umapIntToStr.insert(make_pair(100, “One Hundred"));

29: umapIntToStr.insert(make_pair(12, “Twelve"));

30: umapIntToStr.insert(make_pair(-100, “Minus One Hundred"));

31:

32: DisplayUnorderedMap<int, string>(umapIntToStr);

33:

34: cout << “Inserting one more element” << endl;

35: umapIntToStr.insert(make_pair(300, “Three Hundred"));

36: DisplayUnorderedMap<int, string>(umapIntToStr);

37:

38: cout << “Enter key to find for: “;

39: int Key = 0;

40: cin >> Key;

41:

42: auto element = umapIntToStr.find(Key);

43: if(element != umapIntToStr.end())

44: cout << “Found! Key pairs with value “ << element->second << endl;

45: else

46: cout << “Key has no corresponding pair value!” << endl;

47:

48: return 0;

49: }

Output

Unordered Map contains:

1 -> One

-2 -> Minus Two

45 -> Forty Five

1001 -> Thousand One

-1000 -> Minus One Thousand

12 -> Twelve

100 -> One Hundred

-100 -> Minus One Hundred

Number of pairs, size(): 8

Bucket count = 8

Current load factor: 1

Max load factor = 1

Inserting one more element

Unordered Map contains:

1 -> One

-2 -> Minus Two

45 -> Forty Five

1001 -> Thousand One

-1000 -> Minus One Thousand

12 -> Twelve

100 -> One Hundred

-100 -> Minus One Hundred

300 -> Three Hundred

Number of pairs, size(): 9

Bucket count = 64

Current load factor: 0.140625

Max load factor = 1

Enter key to find for: 300

Found! Key pairs with value Three Hundred

Analysis

Different compilers or versions of the STL may produce slightly different output. Observe the output and note how unordered_map, which starts with an initial bucket count of eight, populated with eight pairs, resizes itself when a ninth pair is inserted. The bucket count is then increased to 64. Note the use of methods bucket_count(), load_factor(), and max_load_factor() in Lines 15 through 17. Apart from these, note that the rest of this code is similar to the code for std::map. One similarity is the use of find() in Line 42, which returns an iterator. This iterator needs to be checked against end() to confirm success of the operation.

Caution

Don’t rely on the order of elements in an unordered map (hence the name), regardless of the key. The order of an elements in a map depends on many factors, including the elements’ keys, order of insertion, and number of buckets.

unordered_map containers are optimized for search performance, and you should not rely on the order of elements when you iterate through them.

Note

std::unordered_map supplies insertions and searches (in the event of no collisions) that are almost constant time, regardless of the number of elements contained. This, however, doesn’t necessarily make std::unordered_map superior to std::map, which provides logarithmic complexity in all situations. The constant could be a lot longer, making an unordered map slow in cases where the number of elements contained is small.

It is important to base your decision about the type of container to use on the outcomes of benchmark tests that simulate usage in a real scenario.

[image: Images]

Summary

In this lesson, you learned about using the STL map and multimap containers, their significant member functions, and their characteristics. You also learned that these containers have logarithmic complexity and that STL supplies hash table containers in the form of unordered_map and unordered_multimap. The unordered variants of the containers feature insert() and find() operations that offer constant time performance independent of the number of elements contained within. You also learned the importance of being able to customize sort criteria using a predicate, as demonstrated in the directory application in Listing 20.5.

Q&A

Q. How would I declare a map of integers to be sorted or stored in order of descending magnitude?

A. map<int> defines a map of integers. It takes the default sort predicate std::less <T> to sort items in order of ascending magnitude and can also be expressed as map <int, less <int>>. To sort in order of descending magnitude, you define the map as map <int, greater <int> >.

Q. What would happen if in a map of strings I inserted the string ”Jack” twice?

A. A map is not meant to be used to hold non-unique values. So, the map would still contain only one pair with a key called "Jack".

Q. In the preceding example, what would I change if I wanted to have two instances of ”Jack”?

A. By design, a map holds only unique values. You need to change your selection of container to a multimap.

Q. What multimap member function returns the count of items of a particular value in the container?

A. count(value) is the function that does this.

Q. I have found an element in a map by using the find() function, and I have an iterator pointing to it. Would I use this iterator to change the value being pointed to?

A. No. Some STL implementations might allow the user to change the value of an element inside a map via an iterator returned by find(). This, however, is not the correct thing to do. An iterator to an element in the map should be used as a const iterator—even when your implementation of STL has not enforced it as such.

Q. I am using an older compiler that doesn’t support the keyword auto. How should I declare a variable that holds the return value of map::find()?

A. An iterator is always defined using this syntax:

container<Type>::iterator variableName;

So the iterator declaration for a map of integers would be the following:

std::map<int>::iterator pairFound = mapIntegers.find(1000);

if(pairFound != mapIntegers.end())

{ // Do Something }

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. You declare a map of integers as map<int>. What function supplies the sort criteria?

2. Where would you find duplicate elements in a multimap?

3. What map or multimap function supplies the number of elements in the container?

4. Where would you find duplicate elements in a map?

Exercises

1. You need to write an application that works as a telephone directory where the names of the people need not be unique. What container would you choose? Write a definition of the container.

2. The following is a map template definition in your dictionary application:

map<wordProperty, string, fPredicate> mapWordDefinition;

where WordProperty is a structure:

struct WordProperty

{

 string word;

 bool isLatinBase;

};

Define the binary predicate fPredicate, which helps the map sort a key of type WordProperty according to the string attribute it contains.

3. Demonstrate via a simple program that a map cannot accept duplicate entries, whereas a multimap can.

Part IV: Lambda Expressions and STL Algorithms

Lesson 21. Understanding Function Objects

Function objects, or functors, might sound exotic or intimidating, but they are entities of C++ that you have probably seen, if not also used, without even realizing it.

In this lesson, you learn

• What function objects are

• How to use function objects as predicates

• How unary and binary predicates are implemented using function objects

Function Objects and Predicates

On a conceptual level, function objects are objects that work as functions. On an implementation level, however, function objects are objects of a class that implement operator(). Although functions and function pointers can also be classified as function objects, it is the capability of an object of a class that implements operator() to carry state (that is, values in member attributes of the class) that makes it useful with Standard Template Library (STL) algorithms.

Function objects can be classified into the following types:

• Unary function: A function called with one argument; for example, f(x). When a unary function returns a bool, it is called a predicate.

• Binary function: A function called with two arguments; for example, f(x, y). A binary function that returns a bool is called a binary predicate.

Function objects that return a Boolean type are naturally suited for use in algorithms that help in decision making. find() and sort() are two such algorithms that you learned about in previous lessons. A function object that combines two function objects is called an adaptive function object.

Tip

A function object is also called a functor.

Typical Applications of Function Objects

It is possible to explain function objects in pages and pages of theoretical explanations. It is also possible to understand how they look and work by examining tiny sample applications. Let’s take the practical approach and dive straight into the world of C++ programming with function objects!

Unary Functions

A function that operates on a single parameter is a unary function. A unary function can do something very simple—for example, display an element on the screen. This can be programmed as follows:

// A unary function

template <typename elementType>

void FuncDisplayElement(const elementType& element)

{

 cout << element << ’ ’;

};

The function FuncDisplayElement accepts one parameter of templatized type elementType, which it displays using the console output statement std::cout. The following is another version, which contains the implementation of the function in operator() of a class or a struct:

// Struct that can behave as a unary function

template <typename elementType>

struct DisplayElement

{

 void operator()(const elementType& element) const

 {

 cout << element << ’ ’;

 }

};

Tip

Note that DisplayElement is a struct. If it were a class, operator() would need to be given a public access modifier. A struct is akin to a class, and members are public by default.

Either of these implementations can be used with the STL algorithm for_each() to print the contents of a collection to the screen, an element at a time, as shown in Listing 21.1.

Input

Listing 21.1 Displaying the Contents of a Collection on the Screen by Using a Unary Function

 0: #include <algorithm>

 1: #include <iostream>

 2: #include <vector>

 3: #include <list>

 4: using namespace std;

 5:

 6: // struct that behaves as a unary function

 7: template <typename elementType>

 8: struct DisplayElement

 9: {

10: void operator()(const elementType& element) const

11: {

12: cout << element << ’ ’;

13: }

14: };

15:

16: int main()

17: {

18: vector<int> numsInVec{ 0, 1, 2, 3, -1, -9, 0, -999 };

19: cout << “Vector of integers contains: “ << endl;

20:

21: for_each(numsInVec.begin(), // Start of range

22: numsInVec.end(), // End of range

23: DisplayElement<int>()); // Unary function object

24:

25: // Display the list of characters

26: list <char> charsInList{ ’a’, ’z’, ’k’, ’d’ };

27: cout << endl << “List of characters contains: “ << endl;

28:

29: for_each(charsInList.begin(),

30: charsInList.end(),

31: DisplayElement<char>());

32:

33: return 0;

34: }

Output

Vector of integers contains:

0 1 2 3 -1 -9 0 -999

List of characters contains:

a z k d

Analysis

Lines 8 through 14 contain the function object DisplayElement, which implements operator(). The use of this function object is seen with the STL algorithm std::for_each() in Lines 21 through 23. for_each() accepts three parameters: The first is the starting point of the range, the second is the end of the range, and the third parameter is the function that is called for every element in the specified range. In other words, that code invokes DisplayElement::operator() for every element in the vector numsInVec. Lines 29 through 31 demonstrate the same functionality with a list of characters.

Note

In Listing 21.1, you could optionally use FuncDisplayElement instead of struct DisplayElement to the same effect:

for_each(charsInList.begin(),

 charsInList.end(),

 FuncDisplayElement<char>);

Tip

C++11 introduced lambda expressions, which are unnamed function objects.

A lambda expression version of struct DisplayElement<T> from Listing 21.1 compacts the entire code, including the definition of the struct and its usage, in three lines within main(), replacing Lines 21 through 23 with the following:

// Display elements using lambda expression

for_each(numsInVec.begin(), // Start of range

 numsInVec.end(), // End of range

 [](int& Element) {cout << element << ’ ’; }); // lambda

Thus, lambda expressions are a fantastic improvement to C++, and you should not miss learning about them in Lesson 22, “Lambda Expressions.” Listing 22.1 demonstrates the use of lambda functions in a for_each() to display the contents of a container instead of the function object, as shown in Listing 21.1.

The real advantage of using a function object implemented in a struct becomes apparent when you are able to use the object of the struct to store information. This is something FuncDisplayElement cannot do the way a struct can because a struct can have member attributes in addition to operator(). A slightly modified version that makes use of member attributes is the following:

template <typename elementType>

struct DisplayElementKeepCount

{

 int count = 0;

 void operator()(const elementType& element)

 {

 ++ count;

 cout << element << ’ ’;

 }

};

In this snippet, DisplayElementKeepCount is a slight modification of the previous version. operator() is not a const member function anymore as it increments (hence, changes) the member count to keep a count of the number of times it was called to display data. This count is made available via the public member attribute count. The advantage of using such function objects that can also store state is illustrated in Listing 21.2.

Input

Listing 21.2 Using a Function Object That Holds State

 0: #include<algorithm>

 1: #include<iostream>

 2: #include<vector>

 3: using namespace std;

 4:

 5: template<typename elementType>

 6: struct DisplayElementKeepCount

 7: {

 8: int count;

 9:

10: DisplayElementKeepCount() : count(0) {} // constructor

11:

12: void operator()(const elementType& element)

13: {

14: ++ count;

15: cout << element<< ’ ’;

16: }

17: };

18:

19: int main()

20: {

21: vector<int> numsInVec{ 22, 2017, -1, 999, 43, 901 };

22: cout << “Displaying the vector of integers: “<< endl;

23:

24: DisplayElementKeepCount<int> result;

25: result = for_each(numsInVec.begin(),

26: numsInVec.end(),

27: DisplayElementKeepCount<int>());

28:

29: cout << endl << “Functor invoked “ << result.count << “ times”;

30:

31: return 0;

32: }

Output

Displaying the vector of integers:

22 2017 -1 999 43 901

Functor invoked 6 times

Analysis

The biggest difference between this example and Listing 21.1 is the use of DisplayElementKeepCount() as the return value of for_each(). operator(), implemented in struct DisplayElementKeepCount, is invoked by the algorithm for_each() for every element in the container. It displays the element and increments the internal counter stored in the member attribute count. After for_each() is done, you use the object in Line 29 to display the number of times elements were displayed. Note that a regular function used in this scenario instead of the function implemented in a struct would not be able to supply this feature in such a direct way.

Unary Predicates

A unary function that returns a bool is a predicate. Such functions help make decisions for STL algorithms. Listing 21.3 is a sample predicate that determines whether an input element is a multiple of an initial value.

Input

Listing 21.3 Using a Unary Predicate That Determines Whether a Number Is a Multiple of Another

 0: // A struct as a unary predicate

 1: template <typename numberType>

 2: struct IsMultiple

 3: {

 4: numberType Divisor;

 5:

 6: IsMultiple(const numberType& divisor)

 7: {

 8: Divisor = divisor;

 9: }

10:

11: bool operator()(const numberType& element) const

12: {

13: // Check if the divisor is a multiple of the divisor

14: return((element % Divisor) == 0);

15: }

16: };

Output

This code snippet produces no output

Analysis

In this example, operator() returns bool and can work as a unary predicate. The structure has a constructor and is initialized with the divisor in Line 8. This value stored in the object is then used to determine whether the elements sent for comparison are divisible by it, as you can see in the implementation of operator(), using the math operation modulo (%), which returns the remainder of a division operation in Line 14. The predicate compares that remainder to zero to determine whether the number is a multiple.

Listing 21.4 makes use of the predicate from Listing 21.3 to determine whether numbers in a collection are multiples of a divisor input by the user.

Input

Listing 21.4 Using the Unary Predicate IsMultiple with std::find_if() to Find an Element in a Vector That Is a Multiple of a User-Supplied Divisor

 0: #include <algorithm>

 1: #include <vector>

 2: #include <iostream>

 3: using namespace std;

 4: // insert code from Listing 21.3 here

 5:

 6: int main()

 7: {

 8: vector<int> numsInVec{ 25, 26, 27, 28, 29, 30, 31 };

 9: cout << “The vector contains: 25, 26, 27, 28, 29, 30, 31” << endl;

10:

11: cout << “Enter divisor (> 0): “;

12: int divisor = 2;

13: cin >> divisor;

14:

15: // Find the first element that is a multiple of divisor

16: auto element = find_if(numsInVec.begin(),

17: numsInVec.end(),

18: IsMultiple<int>(divisor));

19:

20: if(element != numsInVec.end())

21: {

22: cout << “First element in vector divisible by “ << divisor;

23: cout << “: “ << *element << endl;

24: }

25:

26: return 0;

27: }

Output

The vector contains: 25, 26, 27, 28, 29, 30, 31

Enter divisor (> 0): 4

First element in vector divisible by 4: 28

Analysis

This example starts with a sample container that is a vector of integers. The unary predicate is used in find_if(), as shown in Line 16. The function object IsMultiple() is initialized to a divisor value supplied by the user and stored in the variable Divisor. find_if() works by invoking the unary predicate IsMultiple::operator() for every element in the specified range. When operator() returns true for an element (which happens when that element is divided by 4 and does not produce a remainder), find_if() returns an iterator element to that element. The result of the find_if() operation is compared against the end of the container as returned by method end() to verify that an element was found, as shown in Line 20, and the iterator element is then used to display the value, as shown in Line 23.

Tip

To see how using lambda expressions can compact the program shown in Listing 21.4, take a look at Listing 22.3 in Lesson 22.

Unary predicates find application in many STL algorithms, such as std::partition(), which can partition a range using the predicate, and stable_partition(), which does the same thing while keeping the relative order of the elements partitioned; find functions such as std::find_if(); and functions that help erase elements, such as std::remove_if(), which erases elements in a range that satisfy the predicate.

Binary Functions

Functions of type f(x, y) are particularly useful when they return a value based on the input supplied. Such binary functions can be used for a host of arithmetic activity that involves two operands, such as addition, multiplication, subtraction, and other operations. A sample binary function that returns the multiple of input arguments can be written as follows:

template <typename elementType>

class Multiply

{

public:

 elementType operator()(const elementType& elem1,

 const elementType& elem2)

 {

 return (elem1 * elem2);

 }

};

The implementation of interest is again operator(), which accepts two arguments, multiplies them, and returns the result. Such binary functions are used in algorithms such as std::transform(), where you can use operator() to multiply the contents of two containers. Listing 21.5 demonstrates the use of binary functions in std::transform().

Input

Listing 21.5 Using a Binary Function to Multiply Two Ranges

 0: #include <vector>

 1: #include <iostream>

 2: #include <algorithm>

 3:

 4: template <typename elementType>

 5: class Multiply

 6: {

 7: public:

 8: elementType operator()(const elementType& elem1,

 9: const elementType& elem2)

 10: {

11: return (elem1 * elem2);

12: }

13: };

14:

15: int main()

16: {

17: using namespace std;

18:

19: vector<int> multiplicands{ 0, 1, 2, 3, 4 };

20: vector<int> multipliers{ 100, 101, 102, 103, 104 };

21:

22: // A third container that holds the result of multiplication

23: vector<int> vecResult;

24:

25: // Make space for the result of the multiplication

26: vecResult.resize(multipliers.size());

27: transform(multiplicands.begin(), // range of multiplicands

28: multiplicands.end(), // end of range

29: multipliers.begin(), // multiplier values

30: vecResult.begin(), // holds result

31: Multiply<int>()); // multiplies

32:

33: cout << “The contents of the first vector are: “ << endl;

34: for(size_t index = 0; index < multiplicands.size(); ++ index)

35: cout << multiplicands [index] << ’ ’;

36: cout << endl;

37:

38: cout << “The contents of the second vector are: “ << endl;

39: for(size_t index = 0; index < multipliers.size(); ++index)

40: cout << multipliers [index] << ’ ’;

41: cout << endl;

42:

43: cout << “The result of the multiplication is: “ << endl;

44: for(size_t index = 0; index < vecResult.size(); ++ index)

45: cout << vecResult [index] << ’ ’;

46:

47: return 0;

48: }

Output

The contents of the first vector are:

0 1 2 3 4

The contents of the second vector are:

100 101 102 103 104

The result of the multiplication is:

0 101 204 309 416

Analysis

Lines 4 through 13 contain the class Multiply. This example uses the algorithm std::transform() to multiply the contents of two ranges and store the result in a third range. In this case, the ranges in question are held in std::vector as multiplicands, multipliers, and vecResult. You use std::transform() in Lines 27 through 31 to multiply every element in multiplicands by its corresponding element in multipliers and store the result of the multiplication in vecResult. The multiplication itself is done by the binary function Multiply::operator(), which is invoked for every element in the vectors that make the source and destination ranges. The return value of operator() is held in vecResult.

This example demonstrates the application of binary functions in performing arithmetic operations on elements in STL containers. The next example also uses std::transform(), but it uses this algorithm to convert a string to lowercase using the function tolower().

Binary Predicates

A function that accepts two arguments and returns a bool is a binary predicate. Such functions find application in STL functions such as std::sort(). Listing 21.6 demonstrates the use of a binary predicate that compares two strings after reducing them both to lowercase. Such a predicate can be used in performing a case-insensitive sort on a vector containing elements of type string, for instance.

Input

Listing 21.6 Using a Binary Predicate for a Case-Insensitive String Sort

 0: #include <algorithm>

 1: #include <string>

 2: using namespace std;

 3:

 4: class CompareStringNoCase

 5: {

 6: public:

 7: bool operator()(const string& str1, const string& str2) const

 8: {

 9: string str1LowerCase;

10:

11: // Assign space

12: str1LowerCase.resize(str1.size());

13:

14: // Convert every character to the lower case

15: transform(str1.begin(), str1.end(), str1LowerCase.begin(),

16: ::tolower);

17:

18: string str2LowerCase;

19: str2LowerCase.resize(str2.size());

20: transform(str2.begin(), str2.end(), str2LowerCase.begin(),

21: ::tolower);

22:

23: return (str1LowerCase < str2LowerCase);

24: }

25: };

Output

This code snippet produces no output

Analysis

The binary predicate implemented in operator() first brings the input strings down to lowercase by using the algorithm std::transform(), as shown in Lines 15 and 20, before using the string’s comparison operator, <, to return the result of the comparison.

You can use this binary predicate with the algorithm std::sort() to sort a dynamic array of strings contained in a vector, as demonstrated by Listing 21.7.

Input

Listing 21.7 Using the Function Object Class CompareStringNoCase to Perform a Case-Insensitive Sort on vector<string>

 0: // Insert class CompareStringNoCase from Listing 21.6 here

 1: #include <vector>

 2: #include <iostream>

 3:

 4: template <typename T>

 5: void DisplayContents(const T& container)

 6: {

 7: for(auto element = container.cbegin();

 8: element != container.cend();

 9: ++ element)

 10: cout << *element << endl;

11: }

12:

13: int main()

14: {

15: // Define a vector of string to hold names

16: vector <string> names;

17:

18: // Insert some sample names in to the vector

19: names.push_back("jim");

20: names.push_back("Jack");

21: names.push_back("Sam");

22: names.push_back("Anna");

23:

24: cout << “The names in vector in order of insertion: “ << endl;

25: DisplayContents(names);

26:

27: cout << “Names after sorting using default std::less<>: “ << endl;

28: sort(names.begin(), names.end());

29: DisplayContents(names);

30:

31: cout << “Sorting using predicate that ignores case:” << endl;

32: sort(names.begin(), names.end(), CompareStringNoCase());

33: DisplayContents(names);

34:

35: return 0;

36: }

Output

The names in vector in order of insertion:

jim

Jack

Sam

Anna

Names after sorting using default std::less<>:

Anna

Jack

Sam

jim

Sorting using predicate that ignores case:

Anna

Jack

jim

Sam

Analysis

The output displays the contents of the vector in three stages. The first stage displays the contents of the vector in order of insertion. The second stage, after the use of sort() at Line 28, reorders by using the default sort predicate less<T>, and the output demonstrates that jim is not placed after Jack because this is a case-sensitive sort via string::operator<. The last stage uses the sort predicate class CompareStringNoCase<> in Line 32 (implemented in Listing 21.6), which ensures that jim comes after Jack, despite the difference in case.

Binary predicates are required in a variety of STL algorithms. For example, some of the STL algorithms that need a binary predicate are std::unique(), which erases duplicate neighboring elements; std::sort(), which sorts; std::stable_sort(), which sorts while maintaining relative order; and std::transform(), which can perform an operation on two ranges.

Summary

In this lesson, you got a look into the world of functors (or function objects). You learned that function objects are more useful when implemented in a structure or a class than are simple functions because functors can also be used to hold state-related information. You also learned about predicates, which are a special class of function objects, and saw some practical examples of their utility.

Q&A

Q. A predicate is a special category of a function object. What makes it special?

A. A predicate return a bool and are therefore suits algorithms that need decisions.

Q. What kind of a function object should I use in a call to a function such as remove_if()?

A. You should use a unary predicate that takes the value to be processed as the initial state via the constructor.

Q. What kind of a function object should I use for a map?

A. You should use a binary predicate that helps the map sort elements using a key.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. What is the term used for a unary function that returns a bool result?

2. What would be the utility of a function object that neither modifies data nor returns bool? Explain by using an example.

3. Explain what function objects are.

Exercises

1. Write a unary function that can be used with std::for_each() to display the double of the input parameter.

2. Extend the predicate from Exercise 1 to indicate the number of times it was used.

3. Write a binary predicate that helps sort in ascending order.

Lesson 22. Lambda Expressions

Lambda expressions, which were introduced in C++11 and have been improved in more recent versions of C++, define function objects without requiring a class or a struct with a name. Recent amendments in C++20 add support for template arguments.

In this lesson, you find out

• How to program a lambda expression

• How to use lambda expressions as predicates

• What generic lambda expressions are

• How to program lambda expressions that can hold and manipulate state

What Is a Lambda Expression?

A lambda expression can be visualized as a compact version of an unnamed struct (or class) with a public operator() function. In that sense, a lambda expression is a function object. Before we get into programming lambda functions, let’s revisit a function object from Listing 21.1 (from Lesson 21, “Understanding Function Objects") as an example:

// struct that behaves as a unary function

template <typename elementType>

struct DisplayElement

{

 void operator()(const elementType& element) const

 {

 cout << element << ’ ’;

 }

};

This function object displays the object element on the screen by using cout. It would be used in algorithms such as std::for_each(), as shown in this example:

// Display every integer contained in a vector

for_each(numsInVec.cbegin(), // Start of range

 numsInVec.cend(), // End of range

 DisplayElement<int>()); // Unary function object

A lambda equivalent of struct DisplayElement requires a single line of code:

auto lambda = [](const int& element) {cout << element << ’ ’; };

This is what it looks like when used with for_each():

// Display elements in vector using a lambda expression

for_each(numsInVec.cbegin(), // Start of range

 numsInVec.cend(), // End of range

 lambda); // display elements

Tip

Lambda expressions are also called lambda functions.

How to Define a Lambda Expression

A lambda expression always starts with square brackets ([]). C++20 introduced new capabilities such as support for template arguments to lambda expressions, making them more generic and, hence, more powerful.

Lambda expression syntax can be generalized to:

[optional captured variables]<optional template arguments> optional-lambda-specifiers (arguments)

{ // lambda expression code; }

Capturing Variables

If you want to use variables that are declared outside the body of a lambda expression, you need to capture these variables. The capture list can include multiple variables separated by commas:

[var1, var2] <class Type> (Type& param) { // lambda code here; }

If you need to modify these variables within the lambda expression, you add the specifier mutable:

[var1, var2] <class Type> (Type& param) mutable

{ // lambda code here; }

Caution

A mutable lambda expression allows captured variables ([...]) to be modified within the lambda expression, but these changes are not reflected outside the expression.

If modifications to the captured variables within the lambda expression are required to be reflected outside it, too, then you use references:

[&var1, &var2] <class Type> (Type& param) { // lambda code here; }

Tip

In addition to mutable, the other two specifiers that optionally enhance a lambda expression are constexpr and consteval. constexpr indicates the intention to have the lambda evaluated as a constant expression where possible, whereas consteval makes the lambda an immediate function to be evaluated by the compiler.

Parameters

C++20 allows lambda expressions to be extremely generic—akin to function objects programmed using template classes. You may optionally specify a template parameter list, as shown here:

[var1, var2] <typename Type1, typename Type2> (Type1 param1, Type2 param2)

{ // lambda code here; }

In addition, lambda expressions permit multiple input parameters, separated by commas:

[var1, var2] <class Type> (Type param1, Type param2)

{ // lambda code here; }

With automatic type deduction using the keyword auto, you can program a generic lambda expression that looks like this:

[var1, var2] (auto param1, auto param2)

{ // lambda code here; }

Return Types

A lambda expression that comprises a single return statement does not need to explicitly specify a return value type because the type is automatically deduced by the compiler. To explicitly declare a return type, you use -> as follows:

[var1, var2] <class Type> (Type param1, Type param2) -> ReturnType

{ return (value or expression); }

Finally, the compound statement {} can hold multiple statements, each separated by a ;, as shown here:

[stateVar1, stateVar2](Type1 var1, Type2 var2) -> ReturnType

{

 Statement 1;

 Statement 2;

 return (value or expression);

}

A Lambda Expression for a Unary Function

A simple lambda version of the unary operator(Type) function that takes one parameter would be the following:

[](Type paramName) { // lambda expression code; }

Note that you can pass the parameter by reference if you so wish:

[](Type& paramName) { // lambda expression code here; }

Use Listing 22.1 to study the usage of a lambda function in displaying the contents of a Standard Template Library (STL) container using the algorithm for_each().

Input

Listing 22.1 Displaying Elements in a Container via the Algorithm for_each()Invoked with a Lambda Expression Instead of a Function Object

 0: #include <algorithm>

 1: #include <iostream>

 2: #include <vector>

 3: #include <list>

 4: using namespace std;

 5:

 6: int main()

 7: {

 8: vector<int> numsInVec{ 101, -4, 500, 21, 42, -1 };

 9: cout << “Display elements in a vector using a lambda: “ << endl;

10:

11: // Display the array of integers

12: for_each(numsInVec.cbegin(), // Start of range

13: numsInVec.cend(), // End of range

14: [](const int& element) {cout << element << ’ ’; }); // lambda

15:

16: cout << endl;

17:

18: list<char> charsInList{ ’a’, ’h’, ’z’, ’k’, ’l’ };

19: cout << “Display elements in a list using a lambda: “ << endl;

20:

21: // Display the list of characters

22: for_each(charsInList.cbegin(), // Start of range

23: charsInList.cend(), // End of range

24: [](auto& element) {cout << element << ’ ’; }); // lambda

25:

26: return 0;

27: }

Output

Display elements in a vector using a lambda:

101 -4 500 21 42 -1

Display elements in a list using a lambda:

a h z k l

Analysis

There are two lambda expressions of interest, in Lines 14 and 24. They do similar tasks and are the same except for the type of the input parameter. They have been customized to the nature of the elements within the two containers. The first expression takes one parameter that is an int, as it is used to print one element at a time from a vector of integers’ the second expression accepts a char (automatically deduced by the compiler) as it is used to display elements of type char stored in a std::list.

Tip

You might have noticed that the second lambda expression in Listing 22.1 is slightly different:

for_each(charsInList.cbegin(), // Start of range

 charsInList.cend(), // End of range

 [](auto& element) {cout << element << ’ ’; }); // lambda

This lambda expression uses the compiler’s automatic type deduction capabilities, which are invoked using the keyword auto. The compiler would interpret this lambda expression as

for_each(charsInList.cbegin(), // Start of range

 charsInList.cend(), // End of range

 [](const char& element) {cout << element << ’ ’; });

Note

The code in Listing 22.1 is similar to that in Listing 21.1 except that the latter uses function objects. In fact, Listing 22.1 is a lambda version of the function object DisplayElement<T>.

If you compare the two listings, you can see that lambda functions make C++ code simple and compact.

A Lambda Expression for a Unary Predicate

A predicate helps make decisions. A unary predicate is a unary expression that returns a bool, conveying true or false. Lambda expressions can return values, too. For example, the following code is a lambda expression that returns true for numbers that are even:

[](int& num) {return ((num % 2) == 0); }

The nature of the return value in this case tells the compiler that the lambda expression returns a bool.

You can use a lambda expression that is a unary predicate in algorithms, such as std::find_if(), to find even numbers in a collection. See Listing 22.2 for an example.

Input

Listing 22.2 Finding an Even Number in a Collection Using a Lambda Expression for a Unary Predicate and the Algorithm std::find_if()

 0: #include<algorithm>

 1: #include<vector>

 2: #include<iostream>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: vector<int> numsInVec{ 25, 101, 2017, -50 };

 8:

 9: auto evenNum = find_if(numsInVec.cbegin(),

10: numsInVec.cend(), // range to find in

11: [](const int& num){return ((num % 2) == 0); });

12:

13: if (evenNum != numsInVec.cend())

14: cout << “Even number in collection is: “ << *evenNum << endl;

15:

16: return 0;

17: }

Output

Even number in collection is: -50

Analysis

The lambda function that works as a unary predicate is shown in Line 11. The algorithm find_if() invokes the unary predicate for every element in the range. When the predicate returns true, find_if() reports a find by returning an iterator evenNum to that element. The predicate in this case is the lambda expression that returns true when find_if() invokes it with an integer that is even; that is, the result of a modulo operation with 2 is zero.

Tip

Listings 22.1 and 22.2 demonstrate not only a lambda expression as a unary predicate but also the use of const within a lambda expression.

Remember to use const for input parameters, especially when they’re references, to avoid unintentional changes to the value of elements in a container.

A Lambda Expression with State via Capture Lists ([...])

Listing 22.2 shows a unary predicate that returns true if an integer is divisible by 2—that is, if the integer is an even number. What if you need a more generic function that returns true when the number is divisible by a divisor of the user’s choosing? You need to maintain that “state”—that is, the divisor—in the expression:

int divisor = 2; // initial value

...

auto element = find_if(begin of a range,

 end of a range,

 [divisor](int dividend){return (dividend % divisor) == 0; });

A list of arguments transferred as state variables ([...]) is also called the lambda’s capture list.

Note

The lambda expression shown above is a one-line equivalent of the 16 lines of code in Listing 21.3 that define the unary predicate struct IsMultiple<>.

Listing 22.3 demonstrates the application of a unary predicate, given a state variable, in finding a number in a collection that is a multiple of a divisor supplied by the user.

Input

Listing 22.3 Demonstrating the Use of Lambda Expressions That Hold State to Check Whether One Number Is Divisible by Another

 0: #include <algorithm>

 1: #include <vector>

 2: #include <iostream>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: vector<int> numsInVec{25, 26, 27, 28, 29, 30, 31};

 8: cout << “The vector contains: {25, 26, 27, 28, 29, 30, 31}”;

 9:

10: cout << endl << “Enter divisor (> 0): “;

11: int divisor = 2;

12: cin >> divisor;

13:

14: // Find the first element that is a multiple of divisor

15: vector<int>::iterator element;

16: element = find_if(numsInVec.begin(),

17: numsInVec.end(),

18: [divisor](int dividend){return (dividend % divisor) == 0; });

19:

20: if(element != numsInVec.end())

21: {

22: cout << “First element in vector divisible by “ << divisor;

23: cout << “: “ << *element << endl;

24: }

25:

26: return 0;

27: }

Output

The vector contains: {25, 26, 27, 28, 29, 30, 31}

Enter divisor (> 0): 4

First element in vector divisible by 4: 28

Analysis

The lambda expression that contains state and works as a predicate is shown in Line 18. divisor is the state variable, and it is comparable to IsMultiple::Divisor in Listing 21.3. Hence, state variables are akin to member attributes in a function object class. You are now able to pass states on to your lambda function and customize its usage on the basis of the state.

Note

Listing 22.3 features the lambda expression equivalent of Listing 21.4, without the function object class IsMultiple. This lambda expression eliminated 16 lines of code!

A Lambda Expression for a Binary Function

A binary function takes two parameters and optionally returns a value. A lambda expression equivalent of a binary function would be

[...](Type1& param1Name, Type2& param2Name)

{ // lambda code here; }

Listing 22.4 shows a lambda expression that multiplies two equal-sized vectors element by element, using std::transform(), and stores the result in a third vector.

Input

Listing 22.4 Using a Lambda Expression as a Binary Function to Multiply Elements from Two Containers and Store the Result in a Third

 0: #include <vector>

 1: #include <iostream>

 2: #include <algorithm>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: vector<int> vecMultiplicand{ 0, 1, 2, 3, 4 };

 9: vector<int> vecMultiplier{ 100, 101, 102, 103, 104 };

10:

11: // Holds the result of multiplication

12: vector<int> vecResult;

13:

14: // Make space for the result of the multiplication

15: vecResult.resize(vecMultiplier.size());

16:

17: transform(vecMultiplicand.begin(), // range of multiplicands

18: vecMultiplicand.end(), // end of range

19: vecMultiplier.begin(), // multiplier values

20: vecResult.begin(), // range that holds result

21: [](int a, int b) {return a * b; }); // lambda

22:

23: cout << “The contents of the first vector are: “ << endl;

24: for(size_t index = 0; index < vecMultiplicand.size(); ++index)

25: cout << vecMultiplicand[index] << ’ ’;

26: cout << endl;

27:

28: cout << “The contents of the second vector are: “ << endl;

29: for(size_t index = 0; index < vecMultiplier.size(); ++index)

30: cout << vecMultiplier[index] << ’ ’;

31: cout << endl;

32:

33: cout << “The result of the multiplication is: “ << endl;

34: for(size_t index = 0; index < vecResult.size(); ++index)

35: cout << vecResult[index] << ’ ’;

36:

37: return 0;

38: }

Output

The contents of the first vector are:

0 1 2 3 4

The contents of the second vector are:

100 101 102 103 104

The result of the multiplication is:

0 101 204 309 416

Analysis

The lambda expression in this example is shown in Line 21 as a parameter to std::transform(). This algorithm takes two ranges as input and applies a transformation algorithm that is contained in a binary function (the lambda expression of interest). The return value of the binary function is stored in a target container. The lambda expression accepts two integers as input and returns the result of the multiplication via the return value. This return value is stored by std::transform() in vecResult. The output demonstrates the contents of the two containers and the result of multiplying them element by element.

Note

Listing 22.4 demonstrates the lambda equivalent of the function object class Multiply<> from Listing 21.5.

A Lambda Expression for a Binary Predicate

A function that accepts two parameters and returns either true or false to help make a decision is called a binary predicate. Binary predicates find use in sort algorithms, such as std::sort(), that invoke the binary predicate for any two values in a container to determine which one should be placed after the other. The generic syntax of a binary predicate is

[...](Type1& param1Name, Type2& param2Name) { // return bool expression; }

Listing 22.5 demonstrates a lambda expression being used with template parameters and another being used as a binary predicate with an explicit return type declaration.

Input

Listing 22.5 Using a Lambda Expression as a Binary Predicate in std::sort() to Enable Case-Insensitive Sorting

 0: #include <algorithm>

 1: #include <string>

 2: #include <vector>

 3: #include <iostream>

 4: using namespace std;

 5:

 6: int main()

 7: {

 8: vector <string> namesInVe”{ “”im”, “J”ck”, “”am”, “A”na” };

 9:

10: // template lambda that displays object on screen

11: auto displayElement = []<typename T>(const T& element)

12: { cout << element ’<’’ ’;};

13:

14: cout << “The names in vector in order of insertion: “ << endl;

15: for_each(namesInVec.cbegin(), namesInVec.cend(), displayElement);

16:

17: cout “< “\nOrder after case sensitive sort:”\n”;

18: sort(namesInVec.begin(), namesInVec.end());

19: for_each(namesInVec.cbegin(), namesInVec.cend(), displayElement);

20:

21: cout “< “\nOrder after sort ignoring case:”\n”;

22: sort(namesInVec.begin(), namesInVec.end(),

23: [](const string& str1, const string& str2) -> bool // lambda

24: {

25: string str1LC, str2LC; // LC = lowercase

26: str1LC.resize(str1.size()); // create space to store result

27: str2LC.resize(str2.size());

28:

29: // Convert strings (each character) to the lower case

30: transform(str1.begin(), str1.end(), str1LC.begin(),::tolower);

31: transform(str2.begin(), str2.end(), str2LC.begin(), ::tolower);

32:

33: return(str1LC < str2LC);

34: } // end of lambda

35:); // end of sort

36:

37: for_each(namesInVec.cbegin(), namesInVec.cend(), displayElement);

38:

39: return 0;

40: }

Output

The names in vector in order of insertion:

jim Jack Sam Anna

Order after case sensitive sort:

Anna Jack Sam jim

Order after sort ignoring case:

Anna Jack jim Sam

Analysis

Listing 22.5 is quite novel in that it uses a template lambda expression displayElement, which is defined in Lines 11 and 12 and used by the algorithm for_each() in Lines 15, 19 and 37. displayElement is the lambda equivalent of struct DisplayContents<>, which you have used multiple times (for instance, in Listing 18.2 to display elements in std::list and in Listing 19.2 to display elements in std::set). This one-line lambda expression is generic and powerful.

A rather large lambda expression also spans Lines 23 through 34 as the third parameter of std::sort()! A lambda that spans multiple statements needs to explicitly declare the return value type (bool), as shown in Line 23. This lambda expression implements a binary predicate that assists with case-insensitive sorting by first converting the two strings to be compared to the same case (in this example, to lowercase, as shown in Lines 30 and 31) and then comparing the converted strings with each other. This case-insensitive sort helps place "jim" after "Jack", as shown in the output.

Note

This extraordinarily large lambda expression in Listing 22.5 is a lambda version of class CompareStringNoCase from Listing 21.6, which is used in Listing 21.7.

[image: Images]

Summary

In this lesson, you learned about an important feature that contributes to modern C++ programming: lambda expressions. You saw that lambda expressions are basically unnamed function objects that can take parameters, that have state, that return values, and that can be multiple lines. You learned how to use lambdas instead of function objects in STL algorithms, such as find(), sort(), or transform(). Lambda expressions make programming in C++ fast and efficient, and you should try to use them where applicable.

Q&A

Q. How are the state parameters of a lambda expression transferred: by value or by reference?

A. When a lambda expressions is programmed with a capture list, like this:

[var1, var2, ... varN](Type& param1, ...) { ...expression ;}

the state parameters var1 and var2 are copied (that is, not supplied as a reference). If you want to have them as reference parameters, you use this syntax:

[&Var1, &Var2, ... &varN](Type& param1, ...) { ...expression ;}

In this case, you need to exercise caution as modifications to the state variables supplied within the capture list continue outside the lambda expression.

Q. Can I use the local variables in a function in a lambda expression?

A. You can pass the local variables in the capture list:

[var1, var2, ... varN](Type& param1, ...) { ...expression ;}

If you need to capture all variables, you use this syntax:

[=](Type& Param1, ...) { ...expression ;}

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. How does a compiler recognize the start of a lambda expression?

2. How do you pass state variables to a lambda function?

3. If you need to supply a return value in a lambda expression, how do you do it?

Exercises

1. Write a lambda binary predicate that helps sort elements in a container in descending order.

2. Write a lambda function that, when used in for_each(), adds a user-specified value in a container such as a vector.

Lesson 23. STL Algorithms

An important part of the Standard Template Library (STL) is a set of generic functions, supplied by the header <algorithm>, that help manipulate or work with the contents of a container.

In this lesson, you learn:

• Algorithms that help count, search, find, copy, and remove elements from a container

• How to set values in a range of elements to the return value of a generator function or a predefined constant

• How to sort or partition elements in a range

• How to insert elements at the correct position in a sorted range

• C++20 constrained algorithms

What Are STL Algorithms?

Finding, searching, removing, and counting are some generic algorithmic activities that find application in a broad range of programs. STL solves these and many other requirements with generic template functions that work on containers using iterators. To use STL algorithms, a programmer first has to include the header <algorithm>.

Note

Although most algorithms work via iterators on containers, not all algorithms necessarily work on containers, and hence not all algorithms need iterators. For example, swap() simply accepts a pair of values and swaps them. Similarly, min() and max() work directly on values, too.

Classification of STL Algorithms

STL algorithms can be broadly classified into two types: non-mutating and mutating algorithms.

Non-mutating Algorithms

Algorithms that change neither the order nor the contents of a container are called non-mutating algorithms. Some of the prominent non-mutating algorithms are shown in Table 23.1.

Table 23.1 Quick Reference of Non-mutating Algorithms

[image: Images]

[image: Images]

Mutating Algorithms

Mutating algorithms are algorithms that change the contents or the order of the sequence they are operating on. Some of the most useful mutating algorithms supplied by the STL are described in Table 23.2.

Table 23.2 A Quick Reference of Mutating Algorithms

[image: Images]

[image: Images]

[image: Images]

[image: Images]

Usage of STL Algorithms

The usage of the STL algorithms mentioned in Tables 23.1 and 23.2 is best learned in a hands-on coding session. The code examples that follow give you a chance to practice with and start applying STL algorithms to your programs.

Finding Elements, Given a Value or a Condition

Given a container such as a vector, the STL algorithms find() and find_if() help you find an element that matches a value or fulfills a condition, respectively. The usage of find() follows this pattern:

auto element = find(numsInVec.cbegin(), // Start of range

  numsInVec.cend(), // End of range

   numToFind); // Element to find

// Check if find() succeeded

if(element != numsInVec.cend())

 cout << “Result: Value found!” << endl;

find_if() is similar and requires you to supply a unary predicate (that is, a unary function that returns true or false) as the third parameter:

auto evenNum = find_if(numsInVec.cbegin(), // Start of range

    numsInVec.cend(), // End of range

      [](int element) { return (element % 2) == 0; });

if(evenNum != numsInVec.cend())

 cout << “Result: Value found!” << endl;

Thus, both find functions return an iterator, which you need to compare by using end() or cend() in the container to verify the success of the find operation. If this check is successful, you can use the iterator further. Listing 23.1 demonstrates the use of find() to locate a value in a vector and find_if() to locate the first even value.

Input

Listing 23.1 Using find() to Locate an Integer Value in a Vector and find_if() to Locate the First Even Number Given a Unary Predicate in a Lambda Expression

 0: #include <iostream>

 1: #include <algorithm>

 2: #include <vector>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7: vector<int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };

 8:

 9: cout << “Enter number to find in collection: “;

10: int numToFind = 0;

11: cin >> numToFind;

12:

13: auto element = find(numsInVec.cbegin(), // Start of range

14:        numsInVec.cend(), // End of range

15:        numToFind); // Element to find

16:

17: // Check if find succeeded

18: if(element != numsInVec.cend())

19: cout << “Value “ << *element << “ found!” << endl;

20: else

21: cout << “No element contains value “ << numToFind << endl;

22:

23: cout << “Finding the first even number using find_if: “ << endl;

24:

25: auto evenNum = find_if(numsInVec.cbegin(), // Start range

26:    numsInVec.cend(), // End range

27:           [](int element) { return (element % 2) == 0; });

28:

29: if(evenNum != numsInVec.cend())

30: {

31: cout << “Number ’” << *evenNum << “’ found at position [”;

32: cout << distance(numsInVec.cbegin(), evenNum) << “]” << endl;

33: }

34:

35: return 0;

36: }

Output

First run:

Enter number to find in collection: 42

Value 42 found!

Finding the first even number using find_if:

Number ’0’ found at position [1]

Next run:

Enter number to find in collection: 2016

No element contains value 2016

Finding the first even number using find_if:

Number ’0’ found at position [1]

Analysis

main() starts by initializing a vector of integers to sample values in Line 7. find() in Lines 13 through 15 finds the integer entered by the user. The use of find_if() to locate the first even number in the range is shown in Lines 25 through 27. Line 27 is the unary predicate supplied to find_if() as a lambda expression. This lambda expression returns true when element is divisible by 2, thereby indicating to the algorithm that the element satisfies the criteria being checked for. Note the use of the algorithm std::distance() in Line 32 to find the relative position of an element found against the start of the container.

Caution

Note how Listing 23.1 always checks the iterator returned by find() or find_if() for validity against cend(). This check should never be skipped, as it indicates the success of the find() operation, which should not be taken for granted.

Counting Elements Given a Value or a Condition

std::count() and count_if() are algorithms that help in counting elements in a range. std::count() helps you count the number of elements that match a value (tested via the equality operator, ==):

size_t numZeroes = count(numsInVec.cbegin(), numsInVec.cend(), 0);

cout << “Number of instances of ’0’: “ << numZeroes << endl;

std::count_if() helps you count the number of elements that fulfill a unary predicate supplied as a parameter (which can be a function object or a lambda expression):

// Unary predicate:

template <typename elementType>

bool IsEven(const elementType& number)

{

 return((number % 2) == 0); // true, if even

}

...

// Use the count_if algorithm with the unary predicate IsEven:

size_t numEvenNums = count_if(numsInVec.cbegin(),

       numsInVec.cend(), IsEven<int>);

cout << “Number of even elements: “ << numEvenNums << endl;

The code in Listing 23.2 demonstrates the use of these functions.

Input

Listing 23.2 Using std::count() to Determine the Number of Elements with a Value and count_if() to Determine the Number of Elements That Fulfill a Condition

 0: #include <algorithm>

 1: #include <vector>

 2: #include <iostream>

 3:

 4: // unary predicate for *_if functions

 5: auto IsEven = [](const auto& number) {return((number % 2) == 0); };

 6:

 7: int main()

 8: {

 9: using namespace std;

10: vector<int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };

11:

12: size_t numZeroes = count(numsInVec.cbegin(), numsInVec.cend(), 0);

13: cout << “Number of instances of ’0’: “ << numZeroes << endl;

14:

15: size_t numEvenNums = count_if(numsInVec.cbegin(),

16: numsInVec.cend(), IsEven);

17:

18: cout << “Number of even elements: “ << numEvenNums << endl;

19: cout << “Number of odd elements: “;

20: cout << numsInVec.size() - numEvenNums << endl;

21:

22: return 0;

23: }

Output

Number of instances of ’0’: 1

Number of even elements: 2

Number of odd elements: 4

Analysis

Line 12 uses count() to determine the number of instances of 0 in the vector. Similarly, Line 15 uses count_if() to determine the number of even elements in the vector. It uses the predicate IsEven that is implemented as a lambda expression in Line 5. Note the third parameter, which is a unary predicate IsEven(), defined in Lines 5 through 9. The number of elements in the vector that are odd is calculated by subtracting the return of count_if() from the total number of elements contained in the vector returned by size().

Searching for an Element or a Range in a Collection

Listing 23.1 demonstrates how you can find an element in a container. Sometimes, you need to find a range of values or a pattern. In such situations, you should use search() or search_n(). search() can be used to check if one range is contained in another:

auto range = search(numsInVec.cbegin(), // Start range to search in

        numsInVec.cend(), // End range to search in

        numsInList.cbegin(),// start range to search for

        numsInList.cend()); // End range to search for

search_n() is used to find the first occurrence of n consecutive instances of a specified value in a range:

auto partialRange = search_n(numsInVec.cbegin(), // Start range

  numsInVec.cend(), // End range

  3, // num items to be searched for

  9); // value to search for

Both functions return an iterator to the first instance of the pattern found, and this iterator needs to be checked against end() before it can be used. Listing 23.3 demonstrates the use of search() and search_n().

Input

Listing 23.3 Finding a Range in a Collection by Using search() and search_n()

 0: #include <algorithm>

 1: #include <vector>

 2: #include <list>

 3: #include <iostream>

 4: using namespace std;

 5:

 6: template <typename T>

 7: void DisplayContents(const T& container)

 8: {

 9: for(auto element = container.cbegin();

10: element != container.cend();

11: ++ element)

12: cout << *element << ’ ’;

13:

14: cout << endl;

15: }

16:

17: int main()

18: {

19: vector<int> numsInVec{ 2017, 0, -1, 42, 10101, 25, 9, 9, 9 };

20: list<int> numsInList{ -1, 42, 10101 };

21:

22: cout << “The contents of the sample vector are:\n”;

23: DisplayContents(numsInVec);

24:

25: cout << “The contents of the sample list are:\n”;

26: DisplayContents(numsInList);

27:

28: cout << “search() for the contents of list in vector:\n”;

29: auto range = search(numsInVec.cbegin(), // Start range to search in

30:                        numsInVec.cend(), // End range to search in

31:                        numsInList.cbegin(), // Start range to search for

32:                        numsInList.cend()); // End range to search for

33:

34: // Check if search found a match

35: if(range != numsInVec.end())

36: {

37: cout << “Sequence in list found in vector at position: “;

38: cout << distance(numsInVec.cbegin(), range) << endl;

39: }

40:

41: cout << “Searching {9, 9, 9} in vector using search_n():\n”;

42: auto partialRange = search_n(numsInVec.cbegin(), // Start range

43:           numsInVec.cend(), // End range

44:         3, // Count of item to be searched for

45:         9); // Item to search for

46:

47: if(partialRange != numsInVec.end())

48: {

49: cout << “Sequence {9, 9, 9} found in vector at position: “;

50: cout << distance(numsInVec.cbegin(), partialRange) << endl;

51: }

52:

53: return 0;

54: }

Output

The contents of the sample vector are:

2017 0 -1 42 10101 25 9 9 9

The contents of the sample list are:

-1 42 10101

search() for the contents of list in vector:

Sequence in list found in vector at position: 2

Searching {9, 9, 9} in vector using search_n():

Sequence {9, 9, 9} found in vector at position: 6

Analysis

This example starts with two sample containers—a vector and a list—that are initially populated with sample integer values. search() is used to find the contents of the list in vector, as shown in Line 29. Because you want to search in the entire vector for the contents of the entire list, you supply a range, as returned by the iterators corresponding to the cbegin() and cend() member methods of the two container classes. This actually demonstrates how well iterators connect the algorithms to the containers. The physical characteristics of the containers that supply those iterators are of no significance to algorithms, which search the contents of a list in a vector seamlessly as they only work with iterators. search_n() is used in Line 42 to find the first occurrence of the series {9, 9, 9} in the vector.

Initializing Elements in a Container to a Specific Value

fill() and fill_n() are the STL algorithms that help set the contents of a given range to a specified value. fill() is used to overwrite the elements in a range, given the bounds of the range and the value to be inserted:

vector<int> numsInVec(3);

// fill all elements in the container with value 9

fill(numsInVec.begin(), numsInVec.end(), 9);

As the name suggests, fill_n() reassigns a specified n number of values. It needs a starting position, a count, and the value to fill:

fill_n(numsInVec.begin() + 3, /*count*/ 3, /*fill value*/ -9);

Listing 23.4 demonstrates how these algorithms make it easy to initialize elements in vector<int>.

Input

Listing 23.4 Using fill() and fill_n() to Set Initial Values in a Container

 0: #include <algorithm>

 1: #include <vector>

 2: #include <iostream>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: // Initialize a sample vector with 3 elements

 9: vector<int> numsInVec(3);

10:

11: // fill all elements in the container with value 9

12: fill(numsInVec.begin(), numsInVec.end(), 9);

13:

14: // Increase the size of the vector to hold 6 elements

15: numsInVec.resize(6);

16:

17: // Fill the three elements starting at offset position 3 with value -9

18: fill_n(numsInVec.begin() + 3, 3, -9);

19:

20: cout << “Contents of the vector are: “ << endl;

21: for(size_t index = 0; index < numsInVec.size(); ++ index)

22: {

23: cout << “Element [” << index << “] = “;

24: cout << numsInVec [index] << endl;

25: }

26:

27: return 0;

28: }

Output

Contents of the vector are:

Element [0] = 9

Element [1] = 9

Element [2] = 9

Element [3] = -9

Element [4] = -9

Element [5] = -9

Analysis

Listing 23.4 uses the fill() and fill_n() functions to initialize the contents of the container to two separate sets of values, as shown in Lines 12 and 18. Note the use of the resize() function in Line 15. You use it to create space for a total of six elements. The three new elements are later filled with the value -9, using fill_n() in Line 18. The fill() algorithm works on a complete range, whereas fill_n() can also work on a partial range.

Tip

You might have noticed that code in Listings 23.1, 23.2, and 23.3 uses the constant versions of the iterators; that is, cbegin() and cend() are used in defining the bounds of elements accessed in a container. However, Listing 23.4 deviates by using begin() and end(). This is simply because the purpose of the algorithm fill() is to modify the elements in the container, and this cannot be achieved using constant iterators that don’t allow changes to the element they point to.

Using constant iterators is a good practice, but you can deviate from it when you need to modify the elements they point to.

Using std::generate() to Initialize Elements to a Value Generated at Runtime

Just as the fill() and fill_n() functions fill a collection with specific values, STL algorithms, such as generate() and generate_n(), are used to initialize collections using values returned by a unary function.

You can use generate() to fill a range using the return value of a generator function:

generate(numsInVec.begin(), numsInVec.end(), // range

 rand); // generator function, returns random values

generate_n() is similar to generate() except that you supply the number of elements to be assigned instead of the closing bound of a range:

generate_n(numsInList.begin(), 5, rand);

Thus, you can use these two algorithms to initialize the contents of a container to the contents of a file, for example, or to random values, as shown in Listing 23.5.

Input

Listing 23.5 Using generate() and generate_n() to Initialize Collections to Random Values

 0: #include <algorithm>

 1: #include <vector>

 2: #include <list>

 3: #include <iostream>

 4: #include <ctime>

 5:

 6: int main()

 7: {

 8: using namespace std;

 9: srand(static_cast<int>(time(NULL))); // seed random generator

10:

11: vector<int> numsInVec(5);

12: generate(numsInVec.begin(), numsInVec.end(), // range

13:   rand); // generator function

14:

15: cout << “Elements in the vector are: “;

16: for(size_t index = 0; index < numsInVec.size(); ++ index)

17: cout << numsInVec [index] << “ “;

18: cout << endl;

19:

20: list<int> numsInList(5);

21: generate_n(numsInList.begin(), 3, rand);

22:

23: cout << “Elements in the list are: “;

24: for(auto element = numsInList.begin();

25: element != numsInList.end();

26: ++ element)

27: cout << *element << ’ ’;

28:

29: return 0;

30: }

Output

Elements in the vector are: 41 18467 6334 26500 19169

Elements in the list are: 15724 11478 29358 0 0

Analysis

The use of a random number generator seeded using the current time in Line 9 means that the output is likely to be different on every run of the application. Listing 23.5 uses generate() in Line 12 to populate all elements in the vector and uses generate_n() in Line 21 to populate the first three elements in the list with random values supplied by the generator function rand(). Note that the generate() function accepts a range as an input and then calls the specified function object rand() for every element in the range. generate_n(), in comparison, accepts only the starting position. It then invokes the specified function object, rand(), the number of times specified by the count parameter to overwrite the contents of that many elements. The elements in the container that are beyond the specified offset are left untouched.

Processing Elements in a Range by Using for_each()

The for_each() algorithm applies a specified unary function object to every element in the supplied range. The usage of for_each() is

fnObjType retValue = for_each(start_of_range,

           end_of_range,

           unaryFunctionObject);

This unary function object can also be a lambda expression that accepts one parameter.

The return value indicates that for_each() returns the function object (or functor) used to process every element in the supplied range. The implication of this specification is that using a struct or a class as a function object can help in storing state information, which you can later query when for_each() is done. This is demonstrated in Listing 23.6, which uses the function object to display elements in a range and also uses it to count the number of elements displayed.

Input

Listing 23.6 Displaying the Contents of Sequences by Using for_each()

 0: #include <algorithm>

 1: #include <iostream>

 2: #include <vector>

 3: #include <string>

 4: using namespace std;

 5:

 6: template <typename elementType>

 7: struct DisplayElementKeepcount

 8: {

 9: int count;

10: DisplayElementKeepcount(): count(0) {}

11:

12: void operator()(const elementType& element)

13: {

14: ++ count;

15: cout << element << ’ ’;

16: }

17: };

18:

19: int main()

20: {

21: vector<int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };

22:

23: cout << “Elements in vector are: “ << endl;

24: DisplayElementKeepcount<int> functor =

25: for_each(numsInVec.cbegin(), // Start of range

26: numsInVec.cend(), // End of range

27: DisplayElementKeepcount<int>());// functor

28: cout << endl;

29:

30: // Use the state stored in the return value of for_each!

31: cout << “’” << functor.count << “’ elements displayed” << endl;

32:

33: string str("for_each and strings!");

34: cout << “Sample string: “ << str << endl;

35:

36: cout << “Characters displayed using lambda:” << endl;

37: int numElements = 0;

38: for_each(str.cbegin(),

39: str.cend(),

40: [&numElements](auto c) { cout << c << ’ ’; ++numElements; });

41:

42: cout << endl;

43: cout << “’” << numElements << “’ characters displayed” << endl;

44:

45: return 0;

46: }

Output

Elements in vector are:

2017 0 -1 42 10101 25

’6’ elements displayed

Sample string: for_each and strings!

Characters displayed using lambda:

f o r _ e a c h a n d s t r i n g s !

’21’ characters displayed

Analysis

This example demonstrates the utility of for_each() invoked in Lines 25 and 38, and the function object functor returned by for_each() that is programmed to hold the number of times it was invoked in the member count.

The code features two sample ranges: one contained in a vector of integers, numsInVec, and the other a std::string object str. The first call to for_each() uses DisplayElementKeepCount as the unary predicate, and the second uses a lambda expression. for_each() invokes operator() for every element in the supplied range, which in turn prints the element on the screen and increments an internal counter. The function object is returned when for_each() is done, and the member count determines the number of times the object was used. This facility of storing information (or state) in the object that is returned by the algorithm can be useful in practical programming situations. for_each() in Line 38 does exactly the same as its previous counterpart in Line 25 for std::string, using a lambda expression instead of a function object. Note that the lambda equivalent being used for type char in Line 38 is generic enough that you can use it in its current form in Line 25 for type int, too (with minor modifications to the code around).

Performing Transformations on a Range by Using std::transform()

std::for_each() and std::transform() are similar in that they both invoke a function object for every element in a source range. However, std::transform() has two versions. The first version accepts a unary function and is popularly used to convert a string to upper- or lowercase, using the functions toupper() or tolower():

string str("THIS is a TEst string!");

transform(str.cbegin(), // start source range

 str.cend(), // end source range

 strLowerCaseCopy.begin(), // start destination range

 ::tolower); // unary function

The second version accepts a binary function that allows transform() to process a pair of elements taken from two different ranges:

// sum elements from two vectors and store result in a deque

transform(numsInVec1.cbegin(), // start of source range 1

   numsInVec1.cend(), // end of source range 1

   numsInVec2.cbegin(), // start of source range 2

                sumInDeque.begin(), // store result in a deque

                   plus<int>()); // binary function plus

Both versions of transform() always assign the result of the specified transformation function to a supplied destination range, unlike for_each(), which works on only a single range. The use of std::transform() is demonstrated in Listing 23.7.

Input

Listing 23.7 Using std::transform() with Unary and Binary Functions

 0: #include <algorithm>

 1: #include <string>

 2: #include <vector>

 3: #include <deque>

 4: #include <iostream>

 5: #include <functional>

 6:

 7: int main()

 8: {

 9: using namespace std;

10:

11: string str("THIS is a TEst string!");

12: cout << “The sample string is: “ << str << endl;

13:

14: string strLowerCaseCopy;

15: strLowerCaseCopy.resize(str.size());

16:

17: transform(str.cbegin(), // start source range

18: str.cend(), // end source range

19: strLowerCaseCopy.begin(), // start destination range

20: ::tolower); // unary function

21:

22: cout << “Result of ’transform’ on the string with ’tolower’:\n”;

23: cout << “\”” << strLowerCaseCopy << “\”” << endl << endl;

24:

25: // Two sample vectors of integers...

26: vector<int> numsInVec1{ 2017, 0, -1, 42, 10101, 25 };

27: vector<int> numsInVec2(numsInVec1.size(), -1);

28:

29: // A destination range for holding the result of addition

30: deque<int> sumInDeque(numsInVec1.size());

31:

32: transform(numsInVec1.cbegin(), // start of source range 1

33: numsInVec1.cend(), // end of source range 1

34: numsInVec2.cbegin(), // start of source range 2

35: sumInDeque.begin(), // start of destination range

36: plus<int>()); // binary function

37:

38: cout << “Result of ’transform’ using binary function ’plus’: \n”;

39: cout << “Index Vector1 + Vector2 = Result(in Deque)\n”;

40: for(size_t index = 0; index < numsInVec1.size(); ++ index)

41: {

42: cout << index << “ \t “ << numsInVec1 [index] << “\t+ “;

43: cout << numsInVec2 [index] << “ \t = “;

44: cout << sumInDeque [index] << endl;

45: }

46:

47: return 0;

48: }

Output

The sample string is: THIS is a TEst string!

Result of ’transform’ on the string with ’tolower’:

”this is a test string!”

Result of ’transform’ using binary function ’plus’:

Index Vector1 + Vector2 = Result (in Deque)

0        2017               +  -1         = 2016

1        0           + -1          =               -1

2       -1              + -1         =               -2

3         42            + -1         = 41

4        10101                 + -1         = 10100

5         25            + -1         = 24

Analysis

This example demonstrates both versions of std::transform(): one that works on a single range using the unary function tolower(), shown in Line 20, and another that works on two ranges and uses the binary function plus(), shown in Line 36. The first changes the case of a string, character by character, to lowercase. If you use toupper() instead of tolower(), you effect a case conversion to uppercase. The other version of std::transform(), shown in Lines 32 through 36, acts on elements taken from two input ranges (two vectors in this case) and uses a binary predicate in the form of the STL function plus() (supplied by the header <functional>) to add them. std::transform() takes one pair at a time, supplies it to the binary function plus, and assigns the result to an element in the destination range—one that happens to belong to an std::deque container. Note that the change in container used to hold the result is purely for demonstration purposes, to show how well iterators can be used to abstract containers and their implementation from STL algorithms; transform(), which is an algorithm, deals with ranges and really does not need to know details about the containers that implement these ranges. So, the input ranges happened to be in vector, and the output ranges happened to be in deque, and it all works fine—as long as the bounds that define the range (supplied as input parameters to transform) are valid.

Copy and Remove Operations

STL supplies three prominent copy functions: copy(), copy_if(), and copy_backward(). copy() assigns the contents of a source range to a destination range in the forward direction:

auto lastElement = copy(numsInList.cbegin(), // start source range

           numsInList.cend(), // end source range

           numsInVec.begin()); // start dest range

copy_if() copies an element when a unary predicate supplied by you returns true:

// copy odd numbers from list into vector

copy_if(numsInList.cbegin(), numsInList.cend(),

 lastElement, // copy position in dest range

 [](int element){return((element % 2) == 1);});

copy_backward() assigns the contents to the destination range in the backward direction:

copy_backward(numsInList.cbegin(),

 numsInList.cend(),

 numsInVec.end());

remove(), on the other hand, deletes elements in a container that match a specified value:

// Remove all instances of ’0’, resize vector using erase()

auto newEnd = remove(numsInVec.begin(), numsInVec.end(), 0);

numsInVec.erase(newEnd, numsInVec.end());

remove_if() uses a unary predicate and removes from the container those elements for which the predicate evaluates to true:

// Remove all odd numbers from the vector using remove_if

newEnd = remove_if(numsInVec.begin(), numsInVec.end(),

 [](int num) {return ((num % 2) == 1);}); //predicate

numsInVec.erase(newEnd, numsInVec.end()); // resizing

Listing 23.8 demonstrates the use of the copy and removal functions.

Input

Listing 23.8 Using copy(), copy_if(), remove(), and remove_if() to Copy a List into a Vector and Remove Zeros and Even Numbers

 0: #include <algorithm>

 1: #include <vector>

 2: #include <list>

 3: #include <iostream>

 4: using namespace std;

 5:

 6: template <typename T>

 7: void DisplayContents(const T& container)

 8: {

 9: for_each(container.begin(), container.end(),

10: [](const auto& element) {cout << element << ’ ’; });

11:

12: cout << “| Number of elements: “ << container.size() << endl;

13: }

14:

15: int main()

16: {

17: list<int> numsInList{ 2017, 0, -1, 42, 10101, 25 };

18:

19: cout << “Source(list) contains:” << endl;

20: DisplayContents(numsInList);

21:

22: // Initialize vector to hold 2x elements as the list

23: vector<int> numsInVec(numsInList.size() * 2);

24:

25: auto lastElement = copy(numsInList.cbegin(), // start source range

26: numsInList.cend(), // end source range

27: numsInVec.begin()); // start dest range

28:

29: // copy odd numbers from list into vector

30: copy_if(numsInList.cbegin(), numsInList.cend(),

31: lastElement,

32: [](int element){return((element % 2) != 0);});

33:

34: cout << “Destination(vector) after copy and copy_if:\n”;

35: DisplayContents(numsInVec);

36:

37: // Remove all instances of ’0’, resize vector using erase()

38: auto newEnd = remove(numsInVec.begin(), numsInVec.end(), 0);

39: numsInVec.erase(newEnd, numsInVec.end());

40:

41: // Remove all odd numbers from the vector using remove_if

42: newEnd = remove_if(numsInVec.begin(), numsInVec.end(),

43: [](int element) {return((element % 2) != 0);});

44: numsInVec.erase(newEnd , numsInVec.end()); // resizing

45:

46: cout << “Destination(vector) after remove, remove_if, erase:\n”;

47: DisplayContents(numsInVec);

48:

49: return 0;

50: }

Output

Source(list) contains:

2017 0 -1 42 10101 25 | Number of elements: 6

Destination(vector) after copy and copy_if:

2017 0 -1 42 10101 25 2017 -1 10101 25 0 0 | Number of elements: 12

Destination (vector) after remove, remove_if, erase:

42 | Number of elements: 1

Analysis

The use of copy() is demonstrated in Line 25, where it copies the contents of the list into the vector. copy_if() is used in Line 30 and copies all odd numbers from the source range numsInList into the destination range numsInVec, starting at the iterator position lastElement returned by copy(). remove() in Line 38 rids numsInVec of all instances of 0. remove_if()in Line 42 removes all odd numbers.

Note

Listing 23.8 features a version of the DisplayContainer<> function that differs from the one in Listing 23.3, given its use of for_each() and a lambda expression.

Caution

Listing 23.8 demonstrates that both remove() and remove_if() return an iterator that points to the new end of the container. However, the container numsInVec has not been resized yet. Elements have been deleted by the remove algorithms, and other elements have been shifted forward, but the size has remained unaltered, meaning there are values at the end of the vector. To resize the container (and this is important; otherwise, it has unwanted values at the end), you need to use the iterator returned by remove() or remove_if() in a subsequent call to erase(), as shown in Lines 39 and 44.

Replacing Values and Replacing Elements Given a Condition

replace() and replace_if() are the STL algorithms that can replace elements in a collection that are equivalent to a supplied value or that satisfy a given condition, respectively. replace() replaces elements based on the return value of the comparison operator (==):

cout << “Using ’std::replace’ to replace value 5 by 8” << endl;

replace(numsInVec.begin(), numsInVec.end(), 5, 8);

replace_if() expects a user-specified unary predicate that returns true for every value that needs to be replaced:

cout << “Using ’std::replace_if’ to replace even values by -1” << endl;

replace_if(numsInVec.begin(), numsInVec.end(),

 [](int element) {return ((element % 2) == 0); }, -1);

The use of these functions is demonstrated by Listing 23.9.

Input

Listing 23.9 Using replace() and replace_if() to Replace Values in a Specified Range

 0: #include <iostream>

 1: #include <algorithm>

 2: #include <vector>

 3: using namespace std;

 4:

 5: template <typename T>

 6: void DisplayContents(const T& container)

 7: {

 8: for_each(container.begin(), container.end(),

 9: [](const auto& element) {cout << element << ’ ’; });

10:

11: cout << endl;

12: }

13:

14: int main()

15: {

16: vector<int> numsInVec{232, 5, -98, -3, 5, 0, 987};

17:

18: cout << “The initial contents of vector:\n”;

19: DisplayContents(numsInVec);

20:

21: replace(numsInVec.begin(), numsInVec.end(), 5, 8);

22: cout << “After replacing value 5 by 8\n”;

23: DisplayContents(numsInVec);

24:

25: replace_if(numsInVec.begin(), numsInVec.end(),

26: [](int element) {return((element % 2) == 0); }, -1);

27: cout << “After replacing even values by -1:\n”;

28: DisplayContents(numsInVec);

29:

30: return 0;

31: }

Output

The initial contents of vector:

232 5 -98 -3 5 0 987

After replacing value 5 by 8

232 8 -98 -3 8 0 987

After replacing even values by -1:

-1 -1 -1 -3 -1 -1 987

Analysis

This example creates a vector<int> container with initial values. Line 21 demonstrates the use of replace() to replace all 5s with 8s. Line 25 demonstrates the use of replace_if() with a predicate that identifies even numbers. Each of these even numbers is replaced with -1, as shown in the output.

Sorting and Searching in a Sorted Collection and Erasing Duplicates

Sorting and searching a sorted range are requirements that come up in practical applications. Very often you have an array of information that needs to be sorted, such as for presentation’s sake. You can use STL’s sort() algorithm to sort a container:

sort(numsInVec.begin(), numsInVec.end()); // ascending order

This version of sort() uses std::less<> as a default binary predicate that uses the operator < implemented by the type in the vector. You can supply your own predicate to change the sort order using an overloaded version:

sort(numsInVec.begin(), numsInVec.end(),

 [](int lhs, int rhs) {return (lhs > rhs);}); // descending order

Similarly, duplicates need to be deleted before the collection is displayed. To remove adjacently placed repeating values, you use the algorithm unique():

auto newEnd = unique(numsInVec.begin(), numsInVec.end());

numsInVec.erase(newEnd, numsInVec.end()); // to resize

To search in a sorted container, you use binary_search():

bool elementFound = binary_search(numsInVec.begin(), numsInVec.end(), 2021);

if(elementFound)

 cout << “Element found in the vector!” << endl;

Listing 23.10 demonstrates the STL algorithms std::sort(), which can sort a range; std::binary_search(), which can search a sorted range; and std::unique(), which eliminates duplicate neighboring elements (that become neighbors after a sort() operation).

Input

Listing 23.10 Using sort(), binary_search(), and unique()

 0: #include <algorithm>

 1: #include <vector>

 2: #include <string>

 3: #include <iostream>

 4: using namespace std;

 5:

 6: template <typename T>

 7: void DisplayContents(const T& container)

 8: {

 9: for_each(container.begin(), container.end(),

10: [](const auto& element) {cout << element << ’ ’; });

11: }

12:

13: int main()

14: {

15: vector<string> names{”John”, “jack”, “sean”, “Anna”};

16:

17: // insert a duplicate

18: names.push_back("jack");

19:

20: cout << “The initial contents of the vector are:\n”;

21: DisplayContents(names);

22:

23: cout << “\nThe sorted vector contains names in the order:\n”;

24: sort(names.begin(), names.end());

25: DisplayContents(names);

26:

27: cout << “\nSearching for \”John\” using ’binary_search’:\n”;

28: bool found = binary_search(names.begin(), names.end(), “John");

29:

30: if(found)

31: cout << “Result: \”John\” was found in the vector!\n”;

32: else

33: cout << “Element not found “ << endl;

34:

35: // Erase adjacent duplicates

36: auto newEnd = unique(names.begin(), names.end());

37: names.erase(newEnd, names.end());

38:

39: cout << “The contents of the vector after using ’unique’:\n”;

40: DisplayContents(names);

41:

42: return 0;

43: }

Output

The initial contents of the vector are:

John jack sean Anna jack

The sorted vector contains names in the order:

Anna John jack jack sean

Searching for “John” using ’binary_search’:

Result: “John” was found in the vector!

The contents of the vector after using ’unique’:

Anna John jack sean

Analysis

The listing first sorts the sample vector names in Line 24, before using binary_search() in Line 28 to find "John" in it. Similarly, std::unique() is used in Line 36 to delete the second occurrence of an adjacent duplicate. Note that unique(), like remove(), does not resize the container. It results in values being shifted but not a reduction in the total number of elements. To ensure that you don’t have unwanted or unknown values at the tail end of the container, always follow a call to unique() with vector::erase(), using the iterator returned by unique(), as demonstrated in Line 37.

Caution

Algorithms such as binary_search() are effective only in sorted containers. Use of this algorithm on an unsorted vector can have undesirable consequences.

Note

The usage of stable_sort() is the same as the usage of sort(), which you saw earlier. stable_sort() ensures that the relative order of the sorted elements is maintained. Maintaining relative order comes at the cost of performance—a factor that needs to be kept in mind, especially if the relative ordering of elements is not essential.

Partitioning a Range

std::partition() helps partition an input range into two sections—one that satisfies a unary predicate and another that doesn’t:

bool IsEven(const int& num) // unary predicate

{

 return ((num % 2) == 0);

}

...

partition(numsInVec.begin(), numsInVec.end(), IsEven);

std::partition(), however, does not guarantee the relative order of elements within each partition. To maintain relative order, when that is important, you should use std::stable_partition():

stable_partition(numsInVec.begin(), numsInVec.end(), IsEven);

Listing 23.11 demonstrates the use of these algorithms.

Input

Listing 23.11 Using partition() and stable_partition() to Partition a Range of Integers into Even and Odd Values

 0: #include <algorithm>

 1: #include <vector>

 2: #include <iostream>

 3: using namespace std;

 4:

 5: auto IsEven = [](const int& num) { return((num % 2) == 0); };

 6:

 7: template <typename T>

 8: void DisplayContents(const T& container)

 9: {

10: for_each(container.begin(), container.end(),

11: [](const auto& element) {cout << element << ’ ’; });

12:

13: cout << “| Number of elements: “ << container.size() << endl;

14: }

15:

16: int main()

17: {

18: vector<int> numsInVec{ 2017, 0, -1, 42, 10101, 25 };

19:

20: cout << “The initial contents: “ << endl;

21: DisplayContents(numsInVec);

22:

23: vector<int> vecCopy(numsInVec);

24:

25: cout << “The effect of using partition():” << endl;

26: partition(numsInVec.begin(), numsInVec.end(), IsEven);

27: DisplayContents(numsInVec);

28:

29: cout << “The effect of using stable_partition():” << endl;

30: stable_partition(vecCopy.begin(), vecCopy.end(), IsEven);

31: DisplayContents(vecCopy);

32:

33: return 0;

34: }

Output

The initial contents:

2017 0 -1 42 10101 25 | Number of elements: 6

The effect of using partition():

42 0 -1 2017 10101 25 | Number of elements: 6

The effect of using stable_partition():

0 42 2017 -1 10101 25 | Number of elements: 6

Analysis

The code partitions a range of integers, as contained inside the vector numsInVec, into even and odd values. This partitioning is first done using std::partition(), as shown in Line 26, and is repeated on a copy, using stable_partition() in Line 30. For the sake of being able to compare, you copy the sample range numsInVec into vecCopy; the former is partitioned using partition(), and the latter is partitioned using stable_partition(). The effect of using stable_partition() rather than partition() is apparent in the output. stable_partition() maintains the relative order of elements in each partition. Note that maintaining this order comes with a performance penalty, which might be small, as in this case, or significant, depending on the type of object contained in the range.

Note

stable_partition() is slower than partition(), and therefore you should use it only when the relative order of elements in a container is important.

Inserting Elements in a Sorted Collection

It is important that new elements be inserted in a sorted collection at the correct relative positions. STL supplies functions, such as lower_bound() and upper_bound(), to assist in meeting this need:

auto minInsertPos = lower_bound(names.begin(), names.end(),

   ”Brad Pitt");

// alternatively:

auto maxInsertPos = upper_bound(names.begin(), names.end(),

   ”Brad Pitt");

Hence, lower_bound() and upper_bound() return iterators pointing to the minimal and maximal positions in a sorted range where an element can be inserted without breaking the order of the sort.

Listing 23.12 demonstrates the use of lower_bound() in inserting an element at the minimal position in a sorted list of names.

Input

Listing 23.12 Using lower_bound() and upper_bound() to Insert in a Sorted Collection

 0: #include <algorithm>

 1: #include <list>

 2: #include <string>

 3: #include <iostream>

 4: using namespace std;

 5:

 6: template <typename T>

 7: void DisplayContents(const T& container)

 8: {

 9: for_each(container.begin(), container.end(),

10: [](const auto& element) {cout << element << ’ ’; });

11: }

12:

13: int main()

14: {

15: list<string> names{ “John”, “Brad”, “jack”, “sean”, “Anna” };

16:

17: cout << “Sorted contents of the list are: “ << endl;

18: names.sort();

19: DisplayContents(names);

20:

21: cout << “\nLowest index where \”Brad\” can be inserted is: “;

22: auto minPos = lower_bound(names.begin(), names.end(), “Brad");

23: cout << distance(names.begin(), minPos) << endl;

24:

25: cout << “The highest index where \”Brad\” can be inserted is: “;

26: auto maxPos = upper_bound(names.begin(), names.end(), “Brad");

27: cout << distance(names.begin(), maxPos) << endl;

28:

29: cout << “List after inserting Brad in sorted order: “ << endl;

30: names.insert(minPos, “Brad");

31: DisplayContents(names);

32:

33: return 0;

34: }

Output

Sorted contents of the list are:

Anna Brad John jack sean

Lowest index where “Brad” can be inserted is: 1

The highest index where “Brad” can be inserted is: 2

List after inserting Brad in sorted order:

Anna Brad Brad John jack sean

Analysis

An element can be inserted into a sorted collection at two potential positions: One is returned by lower_bound() and is the lowest (the closest to the beginning of the collection), and the other is the iterator returned by upper_bound() that is the highest (the furthest away from the beginning of the collection). In the case of Listing 23.12, where the string "Brad" that is inserted into the sorted collection already exists in it, the lower and upper bounds are different (otherwise, they would’ve been identical). The use of these functions is shown in Lines 22 and 26, respectively. As the output demonstrates, the iterator returned by lower_bound(), when used in inserting the string into the list, as shown in Line 30, results in the list keeping its sorted state. Thus, these algorithms help you make an insertion at a point in the collection without breaking the sorted nature of the contents. Using the iterator returned by upper_bound() would work fine as well.

Performing Fold Operations Using std::accumulate() in C++20

std::accumulate, introduced in 2020, helps you perform an accumulatory action on elements in a container. The simplest form of accumulate can add or multiply elements, as in this example:

accumulate(container.cbegin(), // start source range

 container.cend(), // end source range

 0, // initial value of the sum

 binaryfunc); // optional, binary function to apply

Tip

To use the algorithm std::accumulate, include this header:

#include <numeric>

Listing 23.13 demonstrates the versatility of this algorithm in delivering the sum and product of all numbers in a container.

Input

Listing 23.13 Using std::accumulate to Determine the Sum and Product of All Elements in a Container

 0: #include<numeric>

 1: #include<vector>

 2: #include<iostream>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: vector<int> integers{ 1, 2, 3, 4 };

 8: int sum = std::accumulate(integers.cbegin(), integers.cend(), 0);

 9: cout << “Sum of elements: “ << sum << endl;

10:

11: int product = std::accumulate(integers.cbegin(), integers.cend(), 1,

12: [](auto mul1, auto mul2) {return mul1 * mul2; });

13:

14: cout << “The product is: “ << product << endl;

15:

16: return 0;

17: }

Output

Sum of elements: 10

The product is: 24

Analysis

Line 8 demonstrates the simplest variant, where std::accumulate performs the default function of adding elements in the container. The initializing value has been supplied as 0, and if you were to give it another value, that would influence the result of the addition as well. In Lines 11 and 12, you see a variant where a binary function has been supplied in the form of a lambda expression that returns the multiple of the supplied two arguments. std::accumulate is a generic implementation and can be used on all STL containers as well as a variety of types.

C++20 Constrained Algorithms

You might have noticed that algorithms introduced so far are required to explicitly specify the range. For instance, when using std::find() in Listing 23.1:

auto element = find(numsInVec.cbegin(), // Start of range

 numsInVec.cend(), // End of range

 numToFind); // Element to find

if(element != numsInVec.cend())

 cout << “Value “ << *element << “ found!” << endl;

This example specifies the range to be operated upon as starting at numsInVec.cbegin() and ending before numsInVec.end().

Beginning with C++20, you can use constrained versions of the algorithms in the namespace std::ranges. You simply supply the container object, without needing to specify the beginning and end of the range when you need the algorithm to work on every element contained, as shown here:

auto element = std::ranges::find(numsInVec, numToFind);

if (element != numsInVec.end())

 cout << “Value “ << *element << “ found!” << endl;

The good news is that many—perhaps even most—algorithms are available in constrained versions, as demonstrated in Listing 23.14.

Input

Listing 23.14 Using C++20 Constrained Algorithms to Find, Sort, Fill, and Modify Elements in a Range

 0: #include<algorithm>

 1: #include<vector>

 2: #include<string>

 3: #include<iostream>

 4: using namespace std;

 5:

 6: template <typename T>

 7: void DisplayContents(const T& container)

 8: {

 9: for (const auto& element : container)

10: cout << element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: vector<int> numsInVec{ 2021, -1, 42, 404949, -981 };

18: cout << “Initial contents of vector: “;

19: DisplayContents(numsInVec);

20:

21: cout << “Enter integer to search for: “;

22: int numToFind = 0;

23: cin >> numToFind;

24:

25: auto element = std::ranges::find(numsInVec, numToFind);

26: if (element != numsInVec.end())

27: cout << “Value “ << *element << “ found!” << endl;

28: else

29: cout << “The number isn’t in the range\n”;

30:

31: std::ranges::sort(numsInVec);

32: cout << “Sorting the range now\n”;

33: DisplayContents(numsInVec);

34:

35: std::ranges::fill(numsInVec, 0);

36: cout << “Reset vector contains: “;

37: DisplayContents(numsInVec);

38:

39: string strHello("Hello C++20 constrained algorithms");

40: cout << “Original string: “ << strHello << endl;

41: std::ranges::for_each(strHello, [](auto& c) {c = ::tolower(c); });

42: cout << “In lower case: “ << strHello << endl;

43:

44: return 0;

45: }

Output

Initial contents of vector: 2021 -1 42 404949 -981

Enter integer to search for: 42

Value 42 found!

Sorting the range now

-981 -1 42 2021 404949

Reset vector contains: 0 0 0 0 0

Original string: Hello to C++20 constrained algorithms

In lower case: hello to c++20 constrained algorithms

Analysis

The example uses ranges::find() in Line 25 to find an integer supplied by you in the range. ranges::sort() in Line 31 organizes the contents of the vector in ascending order. ranges::fill() is used to reset all elements, and ranges::for_each() is used to convert every character in the string to lowercase. What’s special about these constrained algorithms is that they didn’t necessarily require you to specify the starting and ending limits of the range (but you may do so if you need the algorithm to work on a part of the input collection).

[image: Images]

Summary

In this lesson, you learned about one of the most important and powerful aspects of STL: algorithms. You gained insights about the different types of algorithms, and thanks to the listings, you. should not have a clearer understanding of the application of algorithms.

Q&A

Q. Would I use a mutating algorithm, such as std::transform(), on an associative container, such as std::set?

A. Even if it were possible, this should not be done. Associative containers sort elements on insertion, and the relative positions of the elements play an important role in functions such as find() and also in the efficiency of the container. For this reason, mutating algorithms, such as std::transform(), should not be used on STL sets.

Q. I need to set the content of every element of a sequential container to a particular value. Would I use std::transform() to do this?

A. Although std::transform() could be used to do this, fill() and fill_n() are better suited to the task.

Q. Does copy_backward() reverse the contents of the elements in the destination container?

A. No, it doesn’t. The STL algorithm copy_backward() reverses the order in which elements are copied but not the order in which elements are stored; that is, it starts with the end of the range and reaches the top. To reverse the contents of a collection, you should use std::reverse().

Q. Should I use std::sort() on a list?

A. std::sort() can be used on a list in the same way it can be used on any other sequential container. However, the list needs to maintain a special property such that an operation on the list does not invalidate existing iterators—a property that std::sort() cannot guarantee to uphold. For this reason, STL list supplies the sort() algorithm in the form of the member function list::sort(), which should be used because it guarantees that iterators to elements in the list are not invalidated even if their relative positions in the list have changed.

Q. Why is it important to use functions such as lower_bound() or upper_bound() while inserting into a sorted range?

A. These functions supply the first and the last positions, respectively, where an element can be inserted into a sorted collection without disturbing the sort order.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. You need to remove from a list items that meet a specific condition. Would you use std::remove_if() or list::remove_if()?

2. You have a list of a class type ContactItem. How does the list::sort() function sort items of this type in the absence of an explicitly specified binary predicate?

3. How often does the generate() STL algorithm invoke the generator function?

4. What differentiates std::transform() from std::for_each()?

Exercises

1. Write a binary predicate that accepts strings as input arguments and returns a value based on a case-insensitive comparison.

2. Demonstrate how STL algorithms such as copy() use iterators to do their functions without needing to know the nature of the destination collections by copying between two sequences held in two dissimilar containers.

3. You are writing an application that records the characteristics of stars that come up on the horizon, in the order in which they rise. In astronomy, the sizes of stars as well as information on their relative rise and set sequences are important. If you’re sorting this collection of stars on the basis of their sizes, would you use std::sort or std::stable_sort?

Lesson 24. Adaptive Containers: Stack and Queue

The Standard Template Library (STL) features containers that adapt other containers to simulate stack and queue behavior. Containers that internally use other containers and present a distinct behavior are called adaptive containers.

In this lesson, you learn

• The behavioral characteristics of stacks and queues

• Using the STL stack

• Using the STL queue

• Using the STL priority_queue

The Behavioral Characteristics of Stacks and Queues

Stacks and queues are like arrays or lists but present restrictions on how elements are inserted, accessed, and removed. Their behavioral characteristics are decided exactly by the placement of elements on insertion or the position of the element that can be erased from the container.

Stacks

Stacks are LIFO (last-in, first-out) systems in which elements can be inserted or removed at the top of the container. A stack can be visualized as a stack of plates. The last plate added to the stack is going to be the first one taken off. Plates in the middle and at the bottom cannot be inspected. This method of organizing elements, involving addition and removal at the top, is illustrated in Figure 24.1.

[image: Images]

Figure 24.1 Operations on a stack.

This behavior of a stack of plates is simulated in the generic STL container std::stack.

Tip

To use std::stack, include the header

#include <stack>

Queues

Queues are FIFO (first-in, first-out) systems in which an element can be inserted behind the previous one, and the one inserted first gets removed first. A queue can be visualized as a queue of people waiting for stamps at the post office, where those who join the queue earlier leave earlier. This method of organizing elements, involving addition at the back but removal at the front, is illustrated in Figure 24.2.

[image: Images]

Figure 24.2 Operations on a queue.

This behavior of a queue is simulated in the generic STL container std::queue.

Tip

To use std::queue, include the header

#include <queue>

Using the STL stack Class

stack is an STL class that needs to include the header <stack>. It is a generic class that allows insertions and removal of elements at the top and does not permit any access or inspection of elements in the middle. In that sense, std::stack is quite similar in behavior to a stack of plates.

Instantiating a Stack

std::stack is defined by some implementations of the STL as follows:

template <

 class elementType,

 class Container=deque<Type>

> class stack;

The parameter elementType is the type of object that is collected by the stack. The second template parameter, Container, is the stack’s default underlying container implementation class. std::deque is the default for the stack’s internal data storage and can be replaced by std::vector or std::list. Thus, the instantiation of a stack of integers looks like this:

std::stack<int> numsInStack;

If you want to create a stack of objects of any type, such as in the Tuna, you would use the following:

std::stack <Tuna> tunasInStack;

To create a stack that uses a different underlying container, use

std::stack<double, vector <double> > doublesStackedInVec;

Listing 24.1 demonstrates different instantiation techniques.

Input

Listing 24.1 Instantiating an STL Stack

 0: #include <stack>

 1: #include <vector>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: // A stack of integers

 8: stack<int> numsInStack;

 9:

10: // A stack of doubles

11: stack <double> dblsInStack;

12:

13: // A stack of doubles contained in a vector

14: stack<double, vector<double>> doublesStackedInVec;

15:

16: // initializing one stack to be a copy of another

17: stack<int> numsInStackCopy(numsInStack);

18:

19: return 0;

20: }

Output

This code snippet produces no output

Analysis

This example produces no output but demonstrates the template instantiation of the STL stack container. Lines 8 and 11 instantiate two stack objects to hold elements of type int and double, respectively. Line 14 also instantiates a stack of doubles but specifies a second template parameter—the type of collection class that the stack should use internally, a vector. If this second template parameter is not supplied, the stack automatically defaults to using std::deque instead. Finally, Line 17 demonstrates that one stack object can be constructed as a copy of another.

Stack Member Functions

The stack, which adapts another container, such as a deque, list, or vector, implements its functionality by restricting the manner in which elements can be inserted or removed to supply a behavior that is expected strictly from a stack-like mechanism. Table 24.1 describes the public member functions of the stack class and demonstrates their use for a stack of integers.

Table 24.1 Popular Member Functions of std::stack

[image: Images]

As the table indicates, the public member functions of the stack expose only methods that allow insertion and removal at positions that are compliant with a stack’s behavior. That is, even though the underlying container might be a deque, a vector, or a list, the functionality of that container has not been revealed to enforce the behavioral characteristics of a stack.

Insertion and Removal at the Top, Using push() and pop()

Insertion of elements is done by using the member method stack<T>::push():

numsInStack.push(25); // 25 is atop the stack

The stack, by definition, allows access to elements at the top. You use the member method top():

cout << numsInStack.top() << endl;

If you want to remove an element at the top, you can use the function pop() to do so:

numsInStack.pop(); // pop: removes topmost element

Listing 24.2 demonstrates inserting elements in a stack using push() and removing elements using pop().

Input

Listing 24.2 Working with a Stack of Integers

 0: #include <stack>

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6: stack<int> numsInStack;

 7:

 8: // push: insert values at top of the stack

 9: cout << “Pushing {25, 10, -1, 5} on stack in that order:\n”;

10: numsInStack.push(25);

11: numsInStack.push(10);

12: numsInStack.push(-1);

13: numsInStack.push(5);

14:

15: cout << “Stack contains “ << numsInStack.size() << “ elements\n”;

16: while(numsInStack.size() != 0)

17: {

18: cout << “Popping topmost element: “ << numsInStack.top() << endl;

19: numsInStack.pop(); // pop: removes topmost element

20: }

21:

22: if(numsInStack.empty()) // true: due to previous pop()s

23: cout << “Popping all elements empties stack!\n”;

24:

25: return 0;

26: }

Output

Pushing {25, 10, -1, 5} on stack in that order:

Stack contains 4 elements

Popping topmost element: 5

Popping topmost element: -1

Popping topmost element: 10

Popping topmost element: 25

Popping all elements empties stack!

Analysis

This example first inserts numbers into a stack of integers, numsInStack, by using the stack::push() function in Lines 9 through 13. It then proceeds to delete elements by using stack::pop(). As stack permits access to only the topmost element, an element at the top can be accessed using the member method stack::top(), as shown in Line 18. Elements can be deleted from the stack one at a time by using stack::pop(), as shown in Line 19. The while loop around it ensures that the pop() operation is repeated until the stack is empty. As you can see from the order of the elements that were popped, the element inserted last was popped first, demonstrating the typical LIFO behavior of a stack.

Listing 24.2 demonstrates five member functions of the stack class. Note that push_back() and insert(), which are available with all STL sequential containers used as underlying containers by the stack class, are not available as public member functions of a stack. The same is true of iterators that help you peek at elements that are not at the top of the container. The stack exposes only the element at the top and nothing else.

Using the STL queue Class

In the STL, queue is a template class that requires the inclusion of the header <queue>. It is a generic class that allows insertion only at the end and removal of elements only at the front. A queue does not permit any access or inspection of elements in the middle; however, elements at the beginning and the end can be accessed. In a sense, std::queue is quite similar in behavior to a queue of people at the cashier in a supermarket.

Instantiating a Queue

std::queue is defined as

template <

 class elementType,

 class Container = deque<Type>

> class queue;

Here, elementType is the type of elements collected by the queue object. Container is the type of collection that the std::queue class uses to maintain its data. The std::list, vector, and deque are possible candidates for this template parameter, and deque is the default.

The simplest instantiation of a queue of integers would be the following:

std::queue<int> numsInQ;

If you want to create a queue containing elements of type double inside a std::list (instead of a deque, which is the default), use the following:

std::queue<double, list <double>> dblsInQInList;

Just like a stack, a queue can also be instantiated as a copy of another queue:

std::queue<int> copyQ(numsInQ);

Listing 24.3 demonstrates the various instantiation techniques for std::queue.

Input

Listing 24.3 Instantiating an STL Queue

 0: #include <queue>

 1: #include <list>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: // A queue of integers

 8: queue<int> numsInQ;

 9:

10: // A queue of doubles

11: queue <double> dblsInQ;

12:

13: // A queue of doubles stored internally in a list

14: queue <double, list<double>> dblsInQInList;

15:

16: // one queue created as a copy of another

17: queue<int> copyQ(numsInQ);

18:

19: return 0;

20: }

Output

This code snippet produces no output

Analysis

This example demonstrates how the generic STL class queue can be instantiated to create a queue of integers, as shown in Line 8, or a queue for objects of type double, as shown in Line 11. dblsInQInList, as instantiated in Line 14, is a queue that has explicitly specified in the second template parameter that the underlying container to be adapted should be a std::list. In the absence of the second template parameter, as in the first two queues, std::deque is used as the default underlying container for the contents of the queue.

Member Functions of the queue Class

std::queue, like std::stack, bases its implementation on an STL container such as a vector, list, or deque. The queue class exposes only those member functions that implement the behavioral characteristics of a queue. Table 24.2 describes the popular member functions using numsInQ, which Listing 24.3 demonstrates is a queue of integers.

Table 24.2 Popular Member Functions in std::queue

[image: Images]

The STL queue class does not feature functions such as begin() and end(), which are supplied by most STL containers, including the underlying deque, vector, or list containers, as used by the queue class. This is by intention so that the only permissible operations on a queue are those that comply with the queue’s behavioral characteristics.

Insertion at the End and Removal at the Beginning of a Queue via push() and pop()

Insertion of elements in a queue happens at the end and is done using the member method push():

numsInQ.push(5); // elements pushed are inserted at the end

Removal, on the other hand, happens at the beginning and via pop():

numsInQ.pop(); // removes element at front

Unlike stack, queue allows elements at both ends—that is, the front and back of the container—to be inspected:

cout << “Element at front: “ << numsInQ.front() << endl;

cout << “Element at back: “ << numsInQ.back() << endl;

Insertion, removal, and inspection are demonstrated in Listing 24.4.

Input

Listing 24.4 Inserting, Removing, and Inspecting Elements in a Queue of Integers

 0: #include <queue>

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6: queue<int> numsInQ;

 7:

 8: cout << “Inserting {10, 5, -1, 20} into queue\n”;

 9: numsInQ.push(10);

10: numsInQ.push(5); // elements are inserted at the end

11: numsInQ.push(-1);

12: numsInQ.push(20);

13:

14: cout << “Queue contains “ << numsInQ.size() << “ elements\n”;

15: cout << “Element at front: “ << numsInQ.front() << endl;

16: cout << “Element at back: “ << numsInQ.back() << endl;

17:

18: while(numsInQ.size() != 0)

19: {

20: cout << “Deleting element: “ << numsInQ.front() << endl;

21: numsInQ.pop(); // removes element at front

22: }

23:

24: if(numsInQ.empty())

25: cout << “The queue is now empty!” << endl;

26:

27: return 0;

28: }

Output

Inserting {10, 5, -1, 20} into queue

Queue contains 4 elements

Element at front: 10

Element at back: 20

Deleting element: 10

Deleting element: 5

Deleting element: -1

Deleting element: 20

The queue is now empty!

Analysis

In this example, elements are added to numsInQ using push(), which inserts the elements at the end (or back) of the queue in Lines 9 through 12. The methods front() and back() are used to reference elements at the beginning and end positions of the queue, as shown in Lines 15 and 16. The while loop in Lines 18 through 22 displays the element at the beginning of the queue, before removing it using a pop() operation at Line 21. It continues doing this until the queue is empty. The output demonstrates that elements are erased from the queue in the same order in which they were inserted: Elements are inserted at the rear of the queue and deleted from the front.

Using the STL Priority Queue

In the STL, priority_queue is a template class that also requires the inclusion of the header <queue>. priority_queue is different from queue in that the element with the highest value (or the value deemed to be highest by a binary predicate) is available at the front of the queue, and queue operations are restricted to the front.

Instantiating the priority_queue Class

The std::priority_queue class is defined as

template <

 class elementType,

 class Container=vector<Type>,

 class Compare=less<typename Container::value_type>

>

class priority_queue

Here, elementType is the template parameter that conveys the type of elements to be collected in the priority queue. The second template parameter tells the collection class to be internally used by priority_queue for holding data, and the third parameter allows the programmer to specify a binary predicate that helps the queue determine the element that is at the top. In the absence of a specified binary predicate, the priority_queue class uses the default in std::less<>, which compares two objects using the operator <.

The simplest instantiation of a priority queue of integers would be

std::priority_queue<int> numsInPrioQ;

Here is how you can create a priority queue containing elements of type double inside std::deque:

priority_queue<int, deque<int>, greater<int>> numsInDescendingQ;

Just like a stack, a priority queue can be instantiated as a copy of another:

std::priority_queue<int> copyQ(numsInPrioQ);

The instantiation of a priority_queue object is demonstrated in Listing 24.5.

Input

Listing 24.5 Instantiating an STL priority_queue Object

 0: #include <queue>

 1: #include <functional>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: // Priority queue of int sorted using std::less <>(default)

 8: priority_queue<int> numsInPrioQ;

 9:

10: // A priority queue of doubles

11: priority_queue<double> dblsInPrioQ;

12:

13: // A priority queue of integers sorted using std::greater <>

14: priority_queue<int, deque<int>, greater<int>> numsInDescendingQ;

15:

16: // a priority queue created as a copy of another

17: priority_queue<int> copyQ(numsInPrioQ);

18:

19: return 0;

20: }

Output

This code snippet produces no output

Analysis

Lines 8 and 11 demonstrate the instantiation of priority queues for objects of type int and double, respectively. The absence of any other template parameter results in the use of std::vector as the internal container of data, and the default comparison criterion is provided by std::less<>. These queues are therefore so prioritized that the integer of the highest value is available at the front of the priority queue. numsInDescendingQ, however, supplies a deque for the second parameter as the internal container and std::greater as the predicate. This predicate results in a queue where the smallest number is available at the front.

The effect of using the predicate std::greater<T> is illustrated in Listing 24.7, later in this lesson.

Note

Listing 24.5 includes the standard header <functional> to use std::greater<>.

Member Functions of priority_queue

The member functions front() and back(), available in the queue class, are not available in the priority_queue class. Table 24.3 introduces the member functions of the priority_queue class.

Table 24.3 Popular Member Functions in std::priority_queue

[image: Images]

As the table indicates, queue members can only be accessed by using top(), which returns the element with the highest value, and they can be evaluated using the user-defined predicate or by std::less in the absence of a user-defined predicate.

Insertion at the End and Removal at the Beginning of a Priority Queue via push() and pop()

Insertion of elements in a priority queue is done using the member method push():

numsInPrioQ.push(5); // elements are organized in sorted order

Removal, on the other hand, happens at the beginning via pop():

numsInPrioQ.pop(); // removes element at front

The use of priority queue members is demonstrated in Listing 24.6.

Input

Listing 24.6 Working with a Priority Queue Using push(), top(), and pop()

 0: #include <queue>

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: priority_queue<int> numsInPrioQ;

 8: cout << “Inserting {10, 5, -1, 20} into the priority_queue” << endl;

 9: numsInPrioQ.push(10);

10: numsInPrioQ.push(5);

11: numsInPrioQ.push(-1);

12: numsInPrioQ.push(20);

13:

14: cout << “Deleting the “ << numsInPrioQ.size() << “ elements” << endl;

15: while(!numsInPrioQ.empty())

16: {

17: cout << “Deleting topmost element: “ << numsInPrioQ.top() << endl;

18: numsInPrioQ.pop();

19: }

20:

21: return 0;

22: }

Output

Inserting {10, 5, -1, 20} into the priority_queue

Deleting the 4 elements

Deleting topmost element: 20

Deleting topmost element: 10

Deleting topmost element: 5

Deleting topmost element: -1

Analysis

Listing 24.6 inserts sample integers into a priority queue, as shown in Lines 9 through 12, and then erases the element on the top/front by using pop(), as shown in Line 18. The output indicates that the element of greatest value is available at the top of the queue. Usage of priority_queue::pop() therefore effectively deletes the element that evaluates to having the greatest value among all elements in the container, which is also exposed as the value at the top, via the method top()in Line 17. Given that you have not supplied a prioritization predicate, the queue has automatically resorted to sorting elements in descending order (with the highest value at the top).

Listing 24.7 demonstrates the instantiation of a priority queue with std::greater<int> as the predicate. This predicate results in the queue evaluating the smallest number as the element with the greatest value, which is then available at the front of the priority queue.

Input

Listing 24.7 Instantiating a Priority Queue That Holds the Smallest Value at the Top

 0: #include <queue>

 1: #include <iostream>

 2: #include <functional>

 3: int main()

 4: {

 5: using namespace std;

 6:

 7: // Define a priority_queue object with greater<int> as predicate

 8: priority_queue <int, vector<int>, greater<int>> numsInPrioQ;

 9:

10: cout << “Inserting {10, 5, -1, 20} into the priority queue” << endl;

11: numsInPrioQ.push(10);

12: numsInPrioQ.push(5);

13: numsInPrioQ.push(-1);

14: numsInPrioQ.push(20);

15:

16: cout << “Deleting “ << numsInPrioQ.size() << “ elements” << endl;

17: while(!numsInPrioQ.empty())

18: {

19: cout << “Deleting topmost element “ << numsInPrioQ.top() << endl;

20: numsInPrioQ.pop();

21: }

22:

23: return 0;

24: }

Output

Inserting {10, 5, -1, 20} into the priority queue

Deleting 4 elements

Deleting topmost element -1

Deleting topmost element 5

Deleting topmost element 10

Deleting topmost element 20

Analysis

Most of the code and all the values supplied to the priority queue in this example are intentionally the same as those in Listing 24.6. However, the output shows how the two queues behave differently. This elements in the priority queue are compared using the predicate greater<int> in Line 8. As a result of this predicate, the integer with the lowest magnitude is evaluated as greater than others and is therefore placed at the top position. So, the function top() used in Line 19 to displays the smallest integer number in the priority queue, and it is deleted soon after using by a pop() operation in Line 20.

Thus, when elements are popped, this priority queue pops the integers in order of increasing magnitude.

Summary

This lesson explained the use of the three key adaptive containers—the STL stack, queue, and priority_queue containers. These classes adapt sequential containers for their internal storage requirements, but via their member functions they present the behavioral characteristics that make stacks and queues so unique.

Q&A

Q. Can an element in the middle of a stack be modified?

A. No, it cannot be modified because modification would contradict the purpose of a stack, which is supposed to be a last-in, first-out container.

Q. Can I iterate through all the elements of a queue?

A. A queue does not feature iterators, and elements in a queue can be accessed only at the ends by using the member methods front() and back().

Q. Can STL algorithms work with adaptive containers?

A. STL algorithms work using iterators. Because neither the stack class nor the queue class supplies iterators that mark the ends of the ranges, the use of STL algorithms with these containers is not possible.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Can you change the behavior of the priority_queue class for a certain element, such that the element with the greatest value is popped last?

2. You have a priority queue of class Coin. What member operator do you need to define for the priority_queue class to present the coin with the greater value at the top position?

3. You have a stack of class Coin and have pushed six objects into it. Can you access or delete the first coin inserted?

Exercises

1. A queue of people (in class Person) are lining up at the post office. Person contains member attributes that hold age and gender and are defined as

class Person

{

 public:

 int age;

 bool isFemale;

};

Amend this class such that a priority queue containing objects of it would offer elderly people and women (in that order) priority service.

2. Write a program that reverses the user’s string input using the stack class.

Lesson 25. Working with Bit Flags Using the STL

Using bits is an efficient way of storing settings and flags. The Standard Template Library (STL) supplies classes that help organize and manipulate bitwise information. This lesson introduces you to

• The bitset class

• The vector<bool> class

The bitset Class

std::bitset is the STL class designed for handling information in bits and bit flags. std::bitset is not an STL container class because it cannot resize itself. It is a utility class that is optimized for working with a sequence of bits whose length is known at compile time.

Tip

To use the class std::bitset, include the header <bitset>:

#include <bitset>

Instantiating std::bitset

The bitset template class requires you to supply one template parameter that contains the number of bits the instance of the class has to manage:

bitset<4> fourBits; // 4 bits initialized to 0000

You can also initialize the bitset to a bit sequence represented in a char* string literal:

bitset<5> fiveBits("10101"); // 5 bits 10101

Copying from one bitset while instantiating another is quite simple:

bitset<5> fiveBitsCopy(fiveBits);

Some instantiation techniques of the bitset class are demonstrated in Listing 25.1.

Input

Listing 25.1 Instantiating std::bitset

 0: #include <bitset>

 1: #include <iostream>

 2: #include <string>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7:

 8: bitset<4> fourBits; // 4 bits initialized to 0000

 9: cout << “Initial contents of fourBits: “ << fourBits << endl;

10:

11: bitset<5> fiveBits("10101"); // 5 bits 10101

12: cout << “Initial contents of fiveBits: “ << fiveBits << endl;

13:

14: bitset<6> sixBits(0b100001); // binary literal introduced in C++14

15: cout << “Initial contents of sixBits: “ << sixBits << endl;

16:

17: bitset<8> eightBits(255); // 8 bits initialized to long int 255

18: cout << “Initial contents of eightBits: “ << eightBits << endl;

19:

20: // instantiate one bitset as a copy of another

21: bitset<8> eightBitsCopy(eightBits);

21:

23: return 0;

24: }

Output

Initial contents of fourBits: 0000

Initial contents of fiveBits: 10101

Initial contents of sixBits: 100001

Initial contents of eightBits: 11111111

Analysis

This example demonstrates four different ways of constructing a bitset object. The default constructor initializes the bit sequence to 0 in Line 8. A string literal that contains the representation of the desired bit sequence is used in Line 11. Lines 14 and 17 demonstrate the use of a binary literal and an integer to initialize the bitset, while Line 21 demonstrates the use of the copy constructor in initializing from another bitset object. Note that in each of these instances, you have to supply the number of bits that the bitset is supposed to contain as a template parameter. This number is fixed at compile time; it isn’t dynamic. You can’t insert more bits into a bitset than you specified in your code; this is different from a vector, where you can insert more elements than the size planned at compile time.

Tip

Note the use of the binary literal 0b100001 in Line 14. The prefix 0b or 0B tells the compiler that the following digits are a binary representation of an integer.

Using std::bitset and Its Members

The bitset class supplies member functions that help perform insertions into the bitset, set or reset contents, read the bits, or write the bits into a stream. It also supplies operators that help display the contents of a bitset and perform bitwise logical operations, among other things.

Useful Operators in std::bitset

You learned about operators in Lesson 12, “Operator Types and Operator Overloading,” and you also learned that the most important role played by operators is increasing the usability of a class. std::bitset provides operators that make using this class really easy. These operators, listed in Table 25.1, are explained using the sample bitset from Listing 25.1, fourBits.

Table 25.1 Operators Supported by std::bitset

[image: Images]

In addition, std::bitset also features operators such as |=, &=, ^=, and ~=, which help perform bitwise operations on a bitset object.

std::bitset Member Methods

Bits can hold two states: set (1) or reset (0). To help manipulate the contents of a bitset, you can use the member functions listed in Table 25.2, which can help you work with a bit or with all the bits in a bitset.

Table 25.2 Popular Member Methods in std::bitset

[image: Images]

[image: Images]

The use of these member methods and operators is demonstrated in Listing 25.2.

Input

Listing 25.2 Performing Logical Operations Using a Bitset

 0: #include <bitset>

 1: #include <string>

 2: #include <iostream>

 3:

 4: int main()

 5: {

 6: using namespace std;

 7: bitset<8> inputBits;

 8: cout << “Enter a 8-bit sequence: “;

 9:

10: cin >> inputBits; // store user input in bitset

11:

12: cout << “Num 1s you supplied: “ << inputBits.count() << endl;

13: cout << “Num 0s you supplied: “;

14: cout << inputBits.size() - inputBits.count() << endl;

15:

16: bitset<8> inputFlipped(inputBits); // copy

17: inputFlipped.flip(); // toggle the bits

18:

19: cout << “Flipped version is: “ << inputFlipped << endl;

20:

21: cout << “Result of AND, OR and XOR between the two:” << endl;

22: cout << inputBits << “ & “ << inputFlipped << “ = “;

23: cout << (inputBits & inputFlipped) << endl; // bitwise AND

24:

25: cout << inputBits << “ | “ << inputFlipped << “ = “;

26: cout << (inputBits | inputFlipped) << endl; // bitwise OR

27:

28: cout << inputBits << “ ^ “ << inputFlipped << “ = “;

29: cout << (inputBits ^ inputFlipped) << endl; // bitwise XOR

30:

31: return 0;

32: }

Output

Enter a 8-bit sequence: 10110101

Num 1s you supplied: 5

Num 0s you supplied: 3

Flipped version is: 01001010

Result of AND, OR and XOR between the two:

10110101 & 01001010 = 00000000

10110101 | 01001010 = 11111111

10110101 ^ 01001010 = 11111111

Analysis

This interactive program demonstrates how easy it is to perform bitwise operations between two-bit sequences using std::bitset, and it also shows the utility of its stream operators. Shift operators (>> and <<) implemented by std::bitset make writing a bit sequence to the screen and reading a bit sequence from the user in string format a simple task. inputBits contains a user-supplied sequence that is fed into it in Line 10. count(), used in Line 12, tells the number of 1s in the sequence, and the number of 0s is evaluated as the difference between size(), which returns the number of bits in the bitset, and count(), as shown in Line 14. inputFlipped begins as a copy of inputBits and then is flipped using flip(), as shown in Line 17. It then contains the sequence with individual bits flipped—that is, toggled (so that 0s become 1s and vice versa). The rest of the program demonstrates the result of bitwise AND, OR, and XOR operations between the two bitsets.

Note

bitset<> cannot resize itself dynamically. You can use a bitset only where the number of bits to be stored in the sequence is known at compile time.

The STL supplies a programmer with the class vector<bool> (also called bit_vector in some implementations of STL) that overcomes this shortcoming.

The vector<bool> Class

The vector<bool> class is a partial specialization of std::vector and is intended for storing Boolean data. This class is able to dynamically size itself. Therefore, a programmer does not need to know the number of Boolean flags to be stored at compile time.

Tip

To use the class std::vector<bool>, include the header <vector>:

#include <vector>

Instantiating vector<bool>

Instantiating vector<bool> is similar to instantiating vector, with some convenient overloads:

vector<bool> boolFlags1;

For instance, you can create a vector with 10 Boolean values to start with, each initialized to 1 (that is, true):

vector<bool> boolFlags2(10, true);

You can also create an object as a copy of another:

vector<bool> boolFlags2Copy(boolFlags2);

Some of the instantiation techniques for vector<bool> are demonstrated in Listing 25.3.

Input

Listing 25.3 Instantiating vector<bool>

 0: #include <vector>

 1:

 2: int main()

 3: {

 4: using namespace std;

 5:

 6: // Instantiate an object using the default constructor

 7: vector <bool> boolFlags1;

 8:

 9: // Initialize a vector with 10 elements with value true

10: vector <bool> boolFlags2(10, true);

11:

12: // Instantiate one object as a copy of another

13: vector <bool> boolFlags2Copy(boolFlags2);

14:

15: return 0;

16: }

Output

This code snippet produces no output.

Analysis

This example presents some of the ways in which a vector<bool> object can be constructed. Line 7 uses the default constructor. Line 10 demonstrates the creation of an object that is initialized to contain 10 Boolean flags, each holding the value true. Line 13 demonstrates how one vector<bool> can be constructed as a copy of another.

vector<bool> Functions and Operators

The vector<bool> class features the function flip(), which toggles the state of the Boolean values in the sequence; its function is similar to that of bitset<>::flip().

Otherwise, the vector<bool> class is quite similar to std::vector in the sense that you can, for example, even push back flags into the sequence. Listing 25.4 demonstrates the use of the vector<bool> class in further detail.

Input

Listing 25.4 Using the vector<bool> Class

 0: #include <vector>

 1: #include <iostream>

 2: #include <algorithm>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: vector<bool> boolFlags{ true, true, false }; // 3 bool flags

 8: boolFlags [0] = true;

 9: boolFlags [1] = true;

10: boolFlags [2] = false;

11:

12: boolFlags.push_back(true); // insert a fourth bool at the end

13:

14: cout << “The contents of the vector are: “ << endl;

15: for (size_t index = 0; index < boolFlags.size(); ++ index)

16: cout << boolFlags [index] << ’ ’;

17:

18: cout << endl;

19: boolFlags.flip();

20:

21: cout << “The contents of the vector are: “ << endl;

22: for_each(boolFlags.cbegin(), boolFlags.cend(),

23: [](const auto& b) {cout << b << ’ ’; });

24:

25: cout << endl;

26:

27: return 0;

28: }

Output

The contents of the vector are:

1 1 0 1

The contents of the vector are:

0 0 1 0

Analysis

In this example, the Boolean flags in the vector have been accessed using the operator [], as shown in Lines 7 through 9, just the way a regular vector would be accessed. The function flip() in Line 18 toggles individual bit flags, essentially converting all 0s to 1s and vice versa. Note the use of push_back() in Line 11. Even though you initialize boolFlags to contain three flags in Line 6, you can add more to it dynamically in Line 11. Adding more flags than the number specified at compile time is something you cannot do with std::bitset. Line 22 uses the for_each() algorithm instead of the for loop in Line 15 to display individual bits on the screen, thereby taking advantage of the iterator support provided by vector<bool>.

Tip

You can instantiate boolFlags in Listing 25.4 with initial values by using list initialization:

vector <bool> boolFlags{ true, true, false };

Summary

In this lesson, you learned about the most effective tool for handling bit sequences and bit flags: the std::bitset class. You also gained knowledge about the vector<bool> class, which allows you to store Boolean flags—the number of which does not need to be known at compile time.

Q&A

Q. Given a situation in which the number of bits to be stored is known, which of the two classes bitset or vector<bool> should I use to hold my binary flags?

A. You should use std::bitset because it is best suited for this requirement.

Q. I have a std::bitset object called myBitSet that contains a certain number of stored bits. How would I determine the number of bits that are at value 0 (or false)?

A. bitset::count() supplies the number of bits at value 1. This number, when subtracted from bitset::size() (which indicates the total number of bits stored), would give you the number of 0s in the sequence.

Q. Can I use iterators to access the individual elements in a vector<bool>?

A. Yes. Because vector<bool> is a partial specialization of std::vector, iterators are supported, as demonstrated in Listing 25.4.

Q. Can I specify the number of elements to be held in a vector<bool> at compile time?

A. Yes, you can specify the number of elements to be held in a vector<bool> at compile time by either specifying the number in the overloaded constructor or by using the vector<bool>::resize() function in a later instance.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Can a bitset expand its internal buffer to hold a variable number of elements?

2. Why is bitset not classified as an STL container class?

3. Would you use std::vector to hold a number of bits that is fixed and known at compile time?

Exercises

1. Write a bitset class that contains 4 bits. Initialize it to a number, display the result, and add it to another bitset object. (The catch: Bitsets don’t allow bitsetA = bitsetX + bitsetY.)

2. Demonstrate how you would toggle (that is, switch) the bits in a bitset.

Part V: Advanced C++ Concepts

Lesson 26. Understanding Smart Pointers

C++ programmers do not necessarily need to use plain pointer types when managing memory on the heap (or the free store); they can make use of smart pointers.

In this lesson, you learn

• What smart pointers are and why you need them

• How smart pointers are implemented

• Different smart pointer types

• Why you should not use the deprecated std::auto_ptr

• The C++ Standard Library smart pointer std::unique_ptr

• Popular smart pointer libraries

What Are Smart Pointers?

Put simply, a smart pointer is a class that uses overloaded operators to help you use it like a conventional pointer. However, it adds value by ensuring proper and timely destruction of dynamically allocated data and facilitates a well-defined object life cycle.

The Problem with Using Conventional (Raw) Pointers

Unlike other programming languages, C++ supplies full flexibility in terms of memory allocation, deallocation, and management. Unfortunately, this flexibility is a double-edged sword. On one side, it makes C++ a powerful language, but on the other, it requires a programmer to meticulously manage memory and resources. Without rigorous management, problems such as memory leaks crop up. These can be difficult to diagnose and fix, and are best avoided at the outset.

Consider this example:

SomeClass* ptrData = anObject.GetData();

/*

 Questions: Is object pointed by ptrData dynamically allocated using new?

 If so, who calls delete? Caller or the called?

 Answer: No idea!

*/

ptrData->DoSomething();

In this code, there is no obvious way to tell whether the memory pointed to by ptrData

• Was allocated on the heap and, therefore, eventually needs to be deallocated

• Should be deallocated by the caller

• Will automatically be destroyed by the object’s destructor

Although such ambiguities can be partially solved by inserting comments and enforcing good coding practices, these mechanisms are much too loose to efficiently prevent all errors related to abuse of dynamically allocated data and pointers.

How Do Smart Pointers Help?

As you have already seen in this lesson, there are problems with using conventional pointers and memory management techniques. However, as a C++ programmer, you are not forced to use those pointers and techniques when you need to manage data on the heap/free store. You can choose a smarter way to allocate and manage dynamic data—by adopting the use of smart pointers in your programs:

smart_pointer<SomeClass> spData = anObject.GetData();

// Use a smart pointer like a conventional pointer!

spData->Display();

(*spData).Display();

// Don’t have to worry about de-allocation

// (the smart pointer’s destructor does it for you)

Smart pointers behave like conventional pointers (which we can call raw pointers), but smart pointers supply useful features via their overloaded operators and destructors to ensure that dynamically allocated data is destroyed in a timely manner.

How Are Smart Pointers Implemented?

This question can for the moment be simplified to ask specifically about the example in the preceding section: “How did the smart pointer spData function like a conventional pointer?” The answer is this: Smart pointer classes overload the dereferencing operator (*) and the member selection operator (->) so that you can use them as conventional pointers. (Operator overloading was discussed previously in Lesson 12, “Operator Types and Operator Overloading.")

In addition, a smart pointer class is typically a template class that contains a generic implementation of its functionality. As template classes, these classes are versatile and can be specialized to manage objects of any type.

Listing 26.1 shows a sample implementation of a simple smart pointer class.

Input

Listing 26.1 The Minimal Essential Components of a Smart Pointer Class

 0: template <typename T>

 1: class smart_pointer

 2: {

 3: private:

 4: T* rawPtr;

 5: public:

 6: smart_pointer(T* pData) : rawPtr(pData) {} // constructor

 7: ~smart_pointer() {delete rawPtr;}; // destructor

 8:

 9: // copy constructor

10: smart_pointer(const smart_pointer & anotherSP);

11: // copy assignment operator

12: smart_pointer& operator=(const smart_pointer& anotherSP);

13:

14: T& operator*() const // dereferencing operator

15: {

16: return *(rawPtr);

17: }

18:

19: T* operator->() const // member selection operator

20: {

21: return rawPtr;

22: }

23: };

Output

This code snippet produces no output

Analysis

This example illustrates the implementation of the two operators * and ->, as declared in Lines 14 through 17 and 19 through 22, which help this class function as a pointer in the conventional sense. For instance, to use the smart pointer on an object of the class Tuna, you would instantiate it like this:

smart_pointer<Tuna> smartTuna(new Tuna);

smartTuna->Swim();

// Alternatively:

(*smartTuna).Swim();

This class smart_pointer doesn’t display or implement any functionality that would make this pointer class very smart or make using it more beneficial than using a conventional pointer. The constructor, as shown in Line 6, accepts a pointer that is saved as the internal pointer object in the smart_pointer class. The destructor frees this pointer, allowing for automatic memory release.

Note

The implementations that make a smart pointer really “smart” are the implementations of the copy constructor, the assignment operator, and the destructor. They determine the behavior of the smart pointer object when it is passed across functions, when it is assigned, or when it goes out of scope (that is, gets destroyed). So, before looking at a complete smart pointer implementation, you should understand some smart pointer types.

Types of Smart Pointers

The management of a memory resource (that is, the ownership model implemented) is what sets smart pointer classes apart. Smart pointers decide what they do with a resource when they are copied and assigned to it. The simplest implementations often result in performance issues, but the fastest ones might not suit all applications. It is therefore important that you understand how smart pointers function before you use them.

Smart pointers are classified on the basis of their memory resource management strategies:

• Deep copy

• Copy on write (COW)

• Reference counted

• Reference linked

• Destructive copy

Let’s take a brief look at each of these strategies before studying the smart pointer supplied by the C++ Standard Library: std::unique_ptr.

Deep Copy

In a smart pointer that implements deep copy, every smart pointer instance holds a complete copy of the object that is being managed. Whenever the smart pointer is copied, the object pointed to is also copied (hence the term deep copy). When the smart pointer goes out of scope, it releases the memory it points to (via the destructor).

Although a deep-copy smart pointer does not seem to be useful when passing objects by value, its advantage becomes apparent in the treatment of polymorphic objects, where it can avoid slicing, as shown here:

// Example of Slicing When Passing Polymorphic Objects by Value

// Fish is a base class for Tuna and Carp, Fish::Swim() is virtual

void MakeFishSwim(Fish aFish) // attention: parameter type

{

 aFish.Swim(); // virtual function

}

// ... Some function

Carp freshWaterFish;

MakeFishSwim(freshWaterFish); // Carp will be ’sliced’ to Fish

// Slicing: only the Fish part of Carp is copied and passed

Tuna marineFish;

MakeFishSwim(marineFish); // Slicing again

You can resolve slicing issues by choosing a deep-copy smart pointer, as shown in Listing 26.2.

Input

Listing 26.2 Using a Deep-Copy Smart Pointer to Pass Polymorphic Objects by Their Base Types

 0: template <typename T>

 1: class deepcopy_smart_ptr

 2: {

 3: private:

 4: T* object;

 5: public:

 6: //... other functions

 7:

 8: // copy constructor of the deepcopy pointer

 9: deepcopy_smart_ptr(const deepcopy_smart_ptr& source)

10: {

11: // Clone() is virtual: ensures deep copy of Derived class object

12: object = source->Clone();

13: }

14:

15: // copy assignment operator

16: deepcopy_smart_ptr& operator=(const deepcopy_smart_ptr& source)

17: {

18: if(object)

19: delete object;

20:

21: object = source->Clone();

22: }

23: };

Output

This code snippet produces no output

Analysis

As you can see, deepcopy_smart_ptr implements a copy constructor in Lines 9 through 13 that allows a deep copy of the polymorphic object via the Clone() function, which the class needs to implement. Similarly, it implements a copy assignment operator in Lines 16 through 22. For the sake of simplicity, we assume in this example that the virtual function implemented by the base class Fish is called Clone(). Typically, smart pointers that implement deep-copy models have this function supplied as either a template parameter or a function object.

Thus, the smart pointer is passed as a pointer to base class type Fish:

deepcopy_smart_ptr<Carp> freshWaterFish(new Carp);

MakeFishSwim(freshWaterFish); // Carp will not be ’sliced’

The deep copy implemented in the smart pointer’s constructor kicks in to ensure that the object being passed is not sliced, even though syntactically only the base part of it is required by the destination function MakeFishSwim().

The disadvantage of the deep-copy mechanism is performance. This might not be a factor for some applications, but for many others, it might inhibit the programmer from using a smart pointer for the application. Instead, the programmer might simply pass a base type pointer (conventional pointer, Fish*) to functions such as MakeFishSwim(). Other pointer types try to address this performance issue in various ways.

Copy on Write

Copy on write (COW, as it is popularly called) is a mechanism that attempts to optimize the performance of deep-copy smart pointers by sharing pointers until the first attempt at writing to the object is made. On the first attempt at invoking a non-const function, a COW pointer typically creates a copy of the object on which the non-const function is invoked, whereas other instances of the pointer continue sharing the source object.

COW has its fair share of fans. For those who swear by COW, implementing the operators * and -> in their const and non-const versions is key to the functionality of the COW pointer. The latter creates a copy.

Tip

When you chose a pointer implementation that follows the COW philosophy, be sure that you understand the implementation details before you proceed to use the implementation. Otherwise, you might land in a situation where you have a copy too few or a copy too many.

Reference-Counted Smart Pointers

Reference counting is a mechanism that keeps a count of the number of users of an object. When the count reduces to zero, the object is released. Reference counting is a very good mechanism for sharing objects without having to copy them.

Such smart pointers, when copied, need to have the reference count of the object in question incremented. There are at least two popular ways to keep this count:

• Reference count maintained in the object being pointed to

• Reference count maintained by the pointer class in a shared object

The first variant, where the reference count is maintained in the object, is called intrusive reference counting because the object needs to be modified. The object in this case maintains, increments, and supplies the reference count to any smart pointer class that manages it. The second variant, where the reference count is maintained in a shared object, is a mechanism where the smart pointer class can keep the reference count on the free store (a dynamically allocated integer, for example) and, when copied, the copy constructor increments this value.

The reference-counting mechanism requires you to work with smart pointers only and does not rely on any raw pointer copies. A raw pointer pointing to an object that is being managed by a reference-counted smart pointer can cause problems when the smart pointer releases the object. The raw pointer continues pointing to the part of the memory that is no longer valid. Similarly, reference counting can cause issues peculiar to their situation: Two objects that hold a pointer to each other are never released because their cyclic dependency holds their reference counts at a minimum of 1.

Tip

std::shared_ptr is a popular reference-counted smart pointer that retains shared ownership of the object being pointed to (that is, managed). std::weak_ptr is often used in tandem with shared_ptr. weak_ptr holds a weak reference to the object—that is, it can be used to view the object but not to execute operations that require ownership. Consequently, an object being observed through a weak_ptr may be deleted by anyone else. To gain temporary ownership of the object, the weak_ptr must be converted into a shared_ptr first.

Reference-Linked Smart Pointers

Reference-linked smart pointers are smart pointers that don’t proactively count the number of references using the object; rather, they just need to know when the number comes down to zero so that the object can be released.

These smart pointers are called reference linked because their implementation is based on a double-linked list. When you create a new smart pointer by copying an existing one, the copy is appended to the list. When a smart pointer goes out of scope or is destroyed, the destructor de-indexes the smart pointer from this list. Reference linking also suffers from the problem caused by cyclic dependency that also affects reference-counted pointers.

Destructive Copy

Destructive copy is a mechanism whereby a smart pointer, when copied, transfers complete ownership of the object being handled to the destination and resets itself:

destructive_copy_smartptr<SampleClass> smartPtr(new SampleClass());

SomeFunc(smartPtr); // Ownership transferred to SomeFunc

// Don’t use smartPtr in the caller any more!

This mechanism is obviously not intuitive to use. However, the advantage supplied by destructive copy smart pointers is that they ensure that at any point in time, only one active pointer points to an object. So, destructive copy is a good mechanism for returning pointers from functions, and you can use the “destructive” properties of smart pointers to your advantage.

The implementation of destructive copy pointers deviates from the implementation of other pointers, as shown in Listing 26.3.

Caution

std::auto_ptr is by far the most popular (or notorious, depending on how you look at it) pointer that follows the principles of destructive copy. Such a smart pointer is useless after it has been passed to a function or copied into another pointer.

std::auto_ptr was deprecated in C++11. Use std::unique_ptr instead.

Input

Listing 26.3 A Sample Destructive Copy Smart Pointer

 0: template <typename T>

 1: class destructivecopy_ptr

 2: {

 3: private:

 4: T* object;

 5: public:

 6: destructivecopy_ptr(T* input):object(input) {}

 7: ~destructivecopy_ptr() { delete object; }

 8:

 9: // copy constructor

10: destructivecopy_ptr(destructivecopy_ptr& source)

11: {

12: // Take ownership on copy

13: object = source.object;

14:

15: // destroy source

16: source.object = 0;

17: }

18:

19: // copy assignment operator

20: destructivecopy_ptr& operator=(destructivecopy_ptr& source)

21: {

22: if(object != source.object)

23: {

24: delete object;

25: object = source.object;

26: source.object = 0;

27: }

28: }

29: };

30:

31: int main()

32: {

33: destructivecopy_ptr<int> num(new int);

34: destructivecopy_ptr<int> copy = num;

35:

36: // num is now invalid

37: return 0;

38: }

Output

This code snippet produces no output

Analysis

Listing 26.3 demonstrates the implementation of a destructive-copy smart pointer. Lines 10 through 17 and 20 through 28 contain the copy constructor and the copy assignment operator, respectively. These functions invalidate the source when making a copy; that is, the copy constructor sets the pointer contained by the source to NULL after copying it—hence the name destructive copy. The assignment operator does the same thing. Thus, num is actually invalidated in Line 34 when it is assigned to another pointer. This behavior is counterintuitive to the act of assignment.

Caution

The copy constructor and copy assignment operators that are critical to the implementation of destructive-copy smart pointers as shown in Listing 26.3 also attract a lot of criticism. Unlike most C++ classes, this smart pointer class cannot have the copy constructor and assignment operator accept const references, as it needs to invalidate the source after copying it. This is a deviation from traditional copy-constructor and assignment-operator semantics, and it also makes using the smart pointer class counterintuitive. Few programmers expect the copy source or the assignment source to be damaged after a copy or assignment step. The fact that such smart pointers destroy the source also makes them unsuitable for use in STL containers such as std::vector, or any other dynamic collection class that you might use. These containers need to copy your content internally and end up invalidating the pointers.

So, for more than one reason, you are advised to avoid using destructive-copy smart pointers in your programs.

Tip

Use std::unique_ptr instead of the deprecated std::auto_ptr. However, note that std::unique_ptr cannot be passed by value due to its private copy constructor and copy assignment operator. It can only be passed as a reference argument.

Using std::unique_ptr

std::unique_ptr was introduced in C++11, and is different from auto_ptr in the sense that it does not allow copy or assignment.

Tip

To use the class std::unique_ptr, include this header:

#include <memory>

unique_ptr is a simple smart pointer similar to what’s shown in Listing 26.1, but with an explicitly deleted (that is, disabled) copy constructor and assignment operator. Therefore, it’s not possible to create a copy when passing as an argument to a function by value or via assignment. Listing 26.4 demonstrates the use of unique_ptr.

Input

Listing 26.4 Using std::unique_ptr

 0: #include <iostream>

 1: #include <memory> // include this to use std::unique_ptr

 2: using namespace std;

 3:

 4: class Fish

 5: {

 6: public:

 7: Fish() {cout << “Fish: Constructed!” << endl;}

 8: ~Fish() {cout << “Fish: Destructed!” << endl;}

 9:

10: void Swim() const {cout << “Fish swims in water” << endl;}

11: };

12:

13: void MakeFishSwim(const unique_ptr<Fish>& inFish)

14: {

15: inFish->Swim();

16: }

17:

18: int main()

19: {

20: unique_ptr<Fish> smartFish(new Fish);

21:

22: smartFish->Swim();

23: MakeFishSwim(smartFish); // OK, as MakeFishSwim accepts reference

24:

25: unique_ptr<Fish> copySmartFish;

26: // copySmartFish = smartFish; // error: operator= is disabled

27:

28: return 0;

29: }

Output

Fish: Constructed!

Fish swims in water

Fish swims in water

Fish: Destructed!

Analysis

Follow the construction and destruction sequence, which is visible in the output. Note that even though the object pointed to by smartFish was constructed in main(), as expected, it was destroyed (and automatically so) even without your having invoked the operator delete. This is the behavior of unique_ptr: The pointer that goes out of scope releases the object on it owns via the destructor. Note in Line 23 how you can pass smartFish as an argument to MakeFishSwim(). This is not a copy step because MakeFishSwim() accepts the parameter by reference, as shown in Line 13. If you were to remove the reference symbol & from Line 13, you would immediately encounter a compile error caused by the private copy constructor. Similarly, assignment of one unique_ptr object to another, as shown in Line 26, is not permitted due to a private copy assignment operator.

In a nutshell, unique_ptr is safer to use than auto_ptr as it does not invalidate the source smart pointer object during a copy or an assignment. However, it allows simple memory management by releasing the object at the time of destruction.

Tip

Listing 26.4 demonstrates that unique_ptr doesn’t support copy:

copySmartFish = smartFish; // error: operator= is private

It does, however, support move semantics. Therefore, an option that would work is

unique_ptr<Fish> sameFish(std::move(smartFish));

// smartFish is empty henceforth

If you were to write a lambda expression that needed to capture unique_ptr, you would use the std::move() function (introduced in C++14) in your lambda capture:

std::unique_ptr<char> alphabet(new char);

*alphabet = ’s’;

auto lambda = [capture = std::move(alphabet)]() { std::cout << *capture << endl; };

// alphabet is empty henceforth as contents have been ’moved’

lambda();

Don’t be frustrated if the preceding code seems too exotic; it is complicated and covers a use case that most professional programmers would possibly never come across.

Tip

When programming multithreaded applications, use std::shared_ptr together with std::atomic<T> for thread-safe operations on shared data. C++20 introduces partial template specialization via std::atomic<std::shared_ptr<T> > for thread-safe object sharing using a smart pointer.

Popular Smart Pointer Libraries

It’s pretty apparent that the version of the smart pointer shipped with the C++ Standard Library is not going to meet every programmer’s requirements. This is precisely why there are many smart pointer libraries out there.

Boost (www.boost.org) supplies some well-tested and well-documented smart pointer classes, among many other useful utility classes. You can find information on Boost smart pointers and downloads at http://www.boost.org/libs/smart_ptr/smart_ptr.htm.

[image: Images]

Summary

In this lesson, you learned the basics of smart pointers. You saw how using the right smart pointers can help reduce allocation and object ownership–related problems. You also explored the different smart pointer types and learned that it is important to know the behavior of a smart pointer class before adopting it in an application. You now know that you should not use std::auto_ptr as it invalidates the source during a copy or an assignment. You also learned about smart pointer classes such as std::unique_ptr.

Q&A

Q. I need a vector of pointers. Should I choose auto_ptr as the object type to be held in the vector?

A. As a rule, you should never use std::auto_ptr. It has been deprecated. A single copy or assignment operation can render the source object unusable.

Q. What two operators does a class always need to load in order to be called a smart pointer class?

A. A class always need to load the operators * and ->. They help use objects of the class with regular pointer semantics.

Q. I have an application in which Class1 and Class2 each hold member attributes that point to objects of the other’s type. Should I use a reference-counted pointer in this scenario?

A. You probably shouldn’t do this because of the cyclic dependency that will keep the reference count from going down to zero and that will consequently keep objects of the two classes permanently in the heap.

Q. A string class dynamically manages character arrays on the free store. Is a string class therefore a smart pointer, too?

A. No, it isn’t. A string class typically doesn’t implement the operators * and -> and therefore cannot be classified as a smart pointer.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. Where would you look before writing your own smart pointer for an application?

2. Would a smart pointer slow down an application significantly?

3. Where can reference-counted smart pointers hold the reference count data?

4. Should the linked list mechanism used by reference-linked pointers be singly or doubly linked?

Exercises

1. BUG BUSTERS: What is the error in the following code?

std::auto_ptr<SampleClass> object(new SampleClass());

std::auto_ptr<SampleClass> anotherObject(object);

object->DoSomething();

anotherObject->DoSomething();

2. Use the unique_ptr class to instantiate a Carp that inherits from Fish. Pass the object as a Fish pointer and comment on slicing, if any.

3. BUG BUSTERS: What is the error in the following code?

std::unique_ptr<Tuna> myTuna(new Tuna);

unique_ptr<Tuna> copyTuna;

copyTuna = myTuna;

Lesson 27. Using Streams for Input and Output

You have actually been using streams all through this book, starting with Lesson 1, “Getting Started,” in which you displayed “Hello World” on the screen by using std::cout. It’s time to give this part of C++ its due attention and examine streams from a practical point of view.

In this lesson, you find out

• What streams are and how they are used

• How to write to and read from files by using streams

• Useful C++ stream operations

The Concept of Streams

Say that you are developing a program that reads from the disk, writes data to the display, reads user input from the keyboard, and saves data on the disk. Wouldn’t it be useful if you could treat all read activities and write activities using similar patterns, regardless of what device or location the data is coming from or going to? This is exactly what C++ streams offer you!

Streams offer a consistent way of programming read and write logic (in other words, input and output). You use the same stream syntax in reading data from the disk as you would in accepting user input from the keyboard. Similarly, you use the same stream syntax in writing data to the display as you would in writing data to the disk. You need to use the right stream class, and the implementation within the class takes care of device- and OS-specific details.

To see how streams work, we can refer to a relevant line from your first C++ program, Listing 1.1 in Lesson 1:

std::cout << “Hello World!” << std::endl;

That’s right: std::cout is a stream object of the class ostream for console output. To use std::cout in Listing 1.1, you included the header <iostream>, which supplies this and other functionality, such as std::cin, which allows you to read from a stream.

So, what do I mean when I say that streams allow consistent and device-specific access? If you were to write "Hello World!" to a text file, you would use this syntax on the file stream object fsHello:

fsHello << “Hello World!” << endl; // “Hello World!” into a file stream

As you can see, after you’ve chosen the right stream class in C++, writing "Hello World!" to a file isn’t too different from writing it to the display.

Tip

The operator <<, which you use when writing into a stream, is called the stream insertion operator. You use it when writing to the display, to a file, and so on.

The operator >>, which you use when writing a stream into a variable, is called the stream extraction operator. You use it when reading input from the keyboard, from a file, and so on.

In this lesson, you study streams from a practical point of view.

Important C++ Stream Classes and Objects

C++ provides a set of standard classes and headers that help you perform some important and commonly used I/O operations. Table 27.1 lists commonly used C++ stream classes.

Table 27.1 Commonly Used C++ Stream Classes in the std Namespace

[image: Images]

Note

cout, cin, and cerr are global objects of the stream classes ostream, istream, and ostream, respectively. As global objects, they’re initialized before main() starts.

When using a stream class, you have the option of specifying manipulators that perform specific actions for you. std::endl is one such manipulator that you have been using throughout this book to insert a newline character:

std::cout << “This lines ends here” << std::endl;

Table 27.2 describes a few other manipulators.

Table 27.2 Frequently Used Manipulators in the std Namespace for Working with Streams

[image: Images]

Using std::cout for Writing Formatted Data to the Console

std::cout, which you use for writing to the standard output stream, is possibly the most used stream in this book thus far. It’s time to revisit cout and use some manipulators to change the way you align and display data.

Changing the Display Number Format by Using std::cout

It is possible to ask cout to display an integer in hexadecimal notation or in octal notation. Listing 27.1 demonstrates the use of cout to display an input number in various formats.

Input

Listing 27.1 Displaying an Integer in Decimal, Octal, and Hexadecimal Formats by Using cout and the <iomanip> Flag

 0: #include <iostream>

 1: #include <iomanip>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter an integer: “;

 7: int input = 0;

 8: cin >> input;

 9:

 10: cout << “Integer in octal: “ << oct << input << endl;

 11: cout << “Integer in hexadecimal: “ << hex << input << endl;

 12:

 13: cout << “Integer in hex using base notation: “;

 14: cout<<setiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);

 15: cout << input << endl;

 16:

 17: cout << “Integer after resetting I/O flags: “;

 18: cout<<resetiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);

 19: cout << input << endl;

 20:

 21: return 0;

 22: }

Output

Enter an integer: 253

Integer in octal: 375

Integer in hexadecimal: fd

Integer in hex using base notation: 0XFD

Integer after resetting I/O flags: 253

Analysis

This example uses the manipulators presented in Table 27.2 to change the way cout displays the same integer object input that is supplied by the user. Note how the manipulators oct and hex are used in Lines 10 and 11. In Line 14, you tell setiosflags() to display the numbers in hex, using uppercase letters, resulting in cout displaying the integer input 253 as 0XFD. The effect of resetioflags() used in Line 18 is demonstrated by the integer being displayed by cout using decimal notation again.

Another way to change the radix used in displaying integer to decimal would be the following:

cout << dec << input << endl; // displays in decimal

It is also possible to format the manner in which cout displays numbers such as pi: You can specify the precision by using fixed-point notation to indicate the number of places after the decimal to show, or you can display a number using scientific notation. This and more is demonstrated by Listing 27.2.

Input

Listing 27.2 Using cout to Display Pi and a Circle’s Area Using Fixed-Point and Scientific Notations

 0: #include <iostream>

 1: #include <iomanip>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: const double Pi = (double)22.0 / 7;

 7: cout << “Pi = “ << Pi << endl;

 8:

 9: cout << endl << “Setting precision to 7: “ << endl;

10: cout << setprecision(7);

11: cout << “Pi = “ << Pi << endl;

12: cout << fixed << “Fixed Pi = “ << Pi << endl;

13: cout << scientific << “Scientific Pi = “ << Pi << endl;

14:

15: cout << endl << “Setting precision to 10: “ << endl;

16: cout << setprecision(10);

17: cout << “Pi = “ << Pi << endl;

18: cout << fixed << “Fixed Pi = “ << Pi << endl;

19: cout << scientific << “Scientific Pi = “ << Pi << endl;

20:

21: cout << endl << “Enter a radius: “;

22: double radius = 0.0;

23: cin >> radius;

24: cout << “Area of circle: “ << 2*Pi*radius*radius << endl;

25:

26: return 0;

27: }

Output

Pi = 3.14286

Setting precision to 7:

Pi = 3.142857

Fixed Pi = 3.1428571

Scientific Pi = 3.1428571e+000

Setting precision to 10:

Pi = 3.1428571429e+000

Fixed Pi = 3.1428571429

Scientific Pi = 3.1428571429e+000

Enter a radius: 9.99

Area of circle: 6.2731491429e+002

Analysis

The output demonstrates how increasing the precision to 7 in Line 10 and to 10 in Line 16 changes the display of the value of pi. Also note how the manipulator scientific results in the calculated area of the circle being displayed as 6.2731491429e+002.

Aligning Text and Setting Field Width by Using std::cout

You can use manipulators such as setw() to set the width of a field, in characters. Then, any insertion made to the stream is right-aligned in the specified width. Similarly, you can use setfill()to determine what character fills the empty area in such a situation, as demonstrated in Listing 27.3.

Input

Listing 27.3 Setting the Width of a Field via setw() and the Fill Characters by Using setfill() Manipulators

 0: #include <iostream>

 1: #include <iomanip>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Hey - default!” << endl;

 7:

 8: cout << setw(35); // set field width to 25 columns

 9: cout << “Hey - right aligned!” << endl;

 10:

 11: cout << setw(35) << setfill(’*’);

 12: cout << “Hey - right aligned!” << endl;

 13:

 14: cout << “Hey - back to default!” << endl;

 15:

 16: return 0;

 17: }

Output

Hey - default!

 Hey - right aligned!

***************Hey - right aligned!

Hey - back to default!

Analysis

The output demonstrates the effect of setw(35) supplied to cout in Line 8 and setfill(’*’) supplied together with setw(35) in Line 11. You see that the latter results in the free space preceding the text being displayed with asterisks, as specified in setfill().

Using std::cin for Input

std::cin is versatile and enables you to read input into the plain old data types, such as int, double, and char*, and you can also read lines or characters from the screen by using methods such as getline().

Using std::cin for Input into a Plain Old Data Type

You can feed integers, doubles, and chars directly from the standard input via cin. Listing 27.4 demonstrates the use of cin in reading simple data types from the user.

Input

Listing 27.4 Using cin to Read Input into an int, a Floating-Point Number Using Scientific Notation into a double, and Three Letters into a char

 0: #include<iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter an integer: “;

 6: int inputNum = 0;

 7: cin >> inputNum;

 8:

 9: cout << “Enter the value of Pi: “;

10: double Pi = 0.0;

11: cin >> Pi;

12:

13: cout << “Enter three characters separated by space: “ << endl;

14: char char1 = ’\0’, char2 = ’\0’, char3 = ’\0’;

15: cin >> char1 >> char2 >> char3;

16:

17: cout << “The recorded variable values are: “ << endl;

18: cout << “inputNum: “ << inputNum << endl;

19: cout << “Pi: “ << Pi << endl;

20: cout << “The three characters: “ << char1 << char2 << char3 << endl;

21:

22: return 0;

23: }

Output

Enter an integer: 32

Enter the value of Pi: 0.314159265e1

Enter three characters separated by space:

c + +

The recorded variable values are:

inputNum: 32

Pi: 3.14159

The three characters: c++

Analysis

The most interesting part about Listing 27.4 is that you entered the value of pi using exponential notation, which is reflected in the output, and cin fills that data into double Pi. Note that you can fill three-character variables within a single line, as shown in Line 15.

Using std::cin::get for Input into the char* Buffer

Just as cin allows you to write directly into an int, you can do the same with a C-style char array:

cout << “Enter a line: “ << endl;

char charBuf[10]; // can contain max 10 chars

cin >> charBuf; // Danger: user may enter more than 10 chars

When writing into a C-style string buffer, it is very important not to exceed the bounds of the buffer to avoid a crash or a security vulnerability. So, a better way of reading into a C-style char buffer is this:

cout << “Enter a line: “ << endl;

char charBuf[10] = {0};

cin.get(charBuf, 9); // stop inserting at the 9th character

Listing 27.5 demonstrates this safer way of inserting text into a C-style buffer.

Input

Listing 27.5 Inserting Text into a char Buffer Without Exceeding Its Bounds

 0: #include<iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter a line: “ << endl;

 7: char charBuf[10];

 8: cin.get(charBuf, 10);

 9: cout << “charBuf: “ << charBuf << endl;

10:

11: return 0;

12: }

Output

Enter a line:

Testing if I can cross the bounds of the buffer

charBuf: Testing i

Analysis

As the output indicates, in this case you only take the first nine characters input by the user into the char buffer due to the use of cin::get in Line 8. This is the safest way to deal with buffers of a given length.

Tip

If possible, don’t use char arrays at all! Use std::string instead of char* or char[].

Using std::cin for Input into std::string

cin is a versatile tool, and you can even use it to scan a string from a user directly into a std::string:

std::string input;

cin >> input; // stops insertion at the first space

Listing 27.6 demonstrates using cin for input into std::string.

Input

Listing 27.6 Inserting Text into std::string by Using cin

 0: #include<iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter your name: “;

 7: string name;

 8: cin >> name;

 9: cout << “Hi “ << name << endl;

10:

11: return 0;

12: }

Output

Enter your name: Siddhartha Rao

Hi Siddhartha

Analysis

The output perhaps surprises you as it displays only my first name and not the entire input string. So what happened? Apparently, cin stops insertion when it encounters the first whitespace.

To allow a user to enter a complete line, including spaces, you need to use getline():

string name;

getline(cin, name);

This use of getline() with cin is demonstrated in Listing 27.7.

Input

Listing 27.7 Reading a Complete Line Input by a User by Using getline() and cin

 0: #include<iostream>

 1: #include<string>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter your name: “;

 7: string name;

 8: getline(cin, name);

 9: cout << “Hi “ << name << endl;

10:

11: return 0;

12: }

Output

Enter your name: Siddhartha Rao

Hi Siddhartha Rao

Analysis

getline(), as shown in Line 8, does the job of ensuring that whitespace characters are not skipped. The output now contains the complete line fed by the user.

Using std::fstream for File Handling

std:fstream is a class that C++ provides for (relatively) platform-independent file access. std::fstream inherits from std::ofstream for writing a file and std::ifstream for reading one.

In other words, std::fstream provides you with both read and write functionality.

Tip

To use the class std::fstream or its base classes, include this header:

#include <fstream>

Opening and Closing a File Using open() and close()

To use an fstream, ofstream, or ifstream class, you need to open a file by using the method open():

fstream myFile;

myFile.open("HelloFile.txt”,ios_base::in|ios_base::out|ios_base::trunc);

if(myFile.is_open()) // check if open() succeeded

{

 // do reading or writing here

 myFile.close();

}

open() takes two arguments. The first is the path and name of the file being opened. (If you don’t supply a path, it assumes the current directory settings for the application.) The second argument is the mode in which the file is being opened. The modes chosen allow the file to be created even if one exists (ios_base::trunc) and allow you to read and write into the file (in | out).

Note the use of is_open() to test whether open() succeeded.

Caution

Closing a stream by using close() is essential to saving a file.

There is an alternative way of opening a file stream, which is via the constructor:

fstream myFile("HelloFile.txt”,ios_base::in|ios_base::out|ios_base::trunc);

Alternatively, if you want to open a file for writing only, use the following:

ofstream myFile("HelloFile.txt”, ios_base::out);

If you want to open a file for reading, use this:

ifstream myFile("HelloFile.txt”, ios_base::in);

Tip

Regardless of whether you use the constructor or the member method open(), it is recommended that you check for the successful opening of the file by using is_open() before continuing to use the corresponding file stream object.

A file stream can be opened in various modes:

• ios_base::app: Appends to the end of existing files rather than truncating them

• ios_base::ate: Places you at the end of the file, but you can write data anywhere in the file

• ios_base::trunc: Causes existing files to be truncated; this is the default

• ios_base::binary: Creates a binary file; the default is text

• ios_base::in: Opens a file for read operations only

• ios_base::out: Opens a file for write operations only

Creating and Writing a Text File by Using open() and the Operator <<

After you have opened a file stream, you can write to it using insertion operator <<, as Listing 27.8 demonstrates.

Input

Listing 27.8 Creating a New Text File and Writing Text into It by Using ofstream

 0: #include<fstream>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: ofstream myFile;

 7: myFile.open("HelloFile.txt”, ios_base::out);

 8:

 9: if(myFile.is_open())

10: {

11: cout << “File open successful” << endl;

12:

13: myFile << “My first text file!” << endl;

14: myFile << “Hello file!”;

15:

16: cout << “Finished writing to file, will close now\n”;

17: myFile.close();

18: }

19:

20: return 0;

21: }

Output

File open successful

Finished writing to file, will close now

Content of file HelloFile.txt:

My first text file!

Hello file!

Analysis

Line 7 opens the file in mode ios_base::out—that is, exclusively for writing. In Line 9 you test if open() succeeded and then proceed to write to the file stream using the insertion operator << as shown in Lines 13 and 14. Finally, you close at Line 17 and return.

Note

Listing 27.8 demonstrates how you are able to write into a file stream the same way as you would write to the standard output (console) using cout.

This indicates how streams in C++ allow for a similar way of handling different devices, writing text to the display via cout in the same way one would write to a file via ofstream.

Reading a Text File by Using open() and the Operator >>

You can read a file by using fstream and open it by using the flag ios_base::in or by using ifstream. Listing 27.9 shows how to read text from the file HelloFile.txt, created in Listing 27.8.

Input

Listing 27.9 Reading Text from the File HelloFile.txt (Created in Listing 27.8)

 0: #include<fstream>

 1: #include<iostream>

 2: #include<string>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: ifstream myFile;

 8: myFile.open("HelloFile.txt”, ios_base::in);

 9:

10: if(myFile.is_open())

11: {

12: cout << “File open successful. It contains: \n”;

13: string fileContents;

14:

15: while(myFile.good())

16: {

17: getline(myFile, fileContents);

18: cout << fileContents << endl;

19: }

20:

21: cout << “Finished reading file, will close now\n”;

22: myFile.close();

23: }

24: else

25: cout << “open() failed: check if file is in right folder\n”;

26:

27: return 0;

28: }

Output

File open successful. It contains:

My first text file!

Hello file!

Finished reading file, will close now

Note

Because Listing 27.9 reads the text file "HelloFile.txt" created using Listing 27.8, you need to move that file into this project’s working directory.

Analysis

As always, you use is_open() to verify whether the call to open() in Line 8 succeeded. You read the file, one line at a time, for as long as the method good() in Line 15 returns true. Note the use of the extraction operator (>>) in reading the contents of the file directly into a string that is then displayed using cout in Line 18. You use getline() in this example to read input from a file stream in exactly the same way as in Listing 27.7, where you used it to read input from the user, one complete line at a time.

Writing to and Reading from a Binary File

The process of writing to a binary file is not too different from what you have learned thus far. It is important to use ios_base::binary flag as a mask when opening the file. You typically use ofstream::write or ifstream::read to write to or read from a binary file, as Listing 27.10 demonstrates.

Input

Listing 27.10 Writing a struct to a Binary File and Reconstructing It

0: #include<fstream>

 1: #include<iomanip>

 2: #include<string>

 3: #include<iostream>

 4: using namespace std;

 5:

 6: struct Human

 7: {

 8: char name[20] = “John”;

 9: int age = 40;

10: char DOB[20] = “1981 Sep 1”;

11: };

12:

13: int main()

14: {

15: Human aPerson;

16:

17: ofstream fsOut ("MyBinary.bin”, ios_base::out | ios_base::binary);

18: if (fsOut.is_open())

19: {

20: cout << “Writing one Human to a binary file” << endl;

21: fsOut.write(reinterpret_cast<char*>(&aPerson), sizeof(aPerson));

22: fsOut.close();

23: }

24:

25: ifstream fsIn ("MyBinary.bin”, ios_base::in | ios_base::binary);

26: if(fsIn.is_open())

27: {

28: Human readHuman;

29: fsIn.read((char*)&readHuman, sizeof(readHuman));

30:

31: cout << “Reading information from binary file: “ << endl;

32: cout << “Name = “ << readHuman.name << endl;

33: cout << “Age = “ << readHuman.age << endl;

34: cout << “Date of Birth = “ << readHuman.DOB << endl;

35: }

36:

37: return 0;

38: }

Output

Writing one Human to a binary file

Reading information from binary file:

Name = John

Age = 40

Date of Birth = 1981 Sep 1

Analysis

In Lines 15 through 23, you create an instance of struct Human and persist it to the disk in the binary file MyBinary.bin using ofstream. This information is then read using another stream object of type ifstream in Lines 25 through 35. The output of attributes such as name is via the information that has been read from the binary file. This example also demonstrates the use of ifstream and ofstream for reading and writing a file using ifstream::read and ofstream::write, respectively. Note the use of reinterpret_cast in Line 21, which instructs the compiler to interpret the struct* as char*. In Line 29, you use the C-style cast version instead of reinterpret_cast.

Note

Typically, I would persist struct Human with all its attributes using an extensible format like XML or a more readable format like JSON. I didn’t do that here because this listing is for demonstration purposes only.

If struct Human were to be delivered in the version shown in Listing 27.10 and after delivery if you were to add new attributes to it (like numChildren, for instance), you would need to worry about ifstream::read functionality being able to correctly read binary data created using the older versions.

Using std::stringstream for String Conversions

Say that you have a string, and it contains a string value 45. How do you convert this string value into an integer with the value 45? And how do you do the opposite: convert an integer into a string? One of the most useful utilities provided by C++ is class stringstream, which enables you to perform a host of conversion activities.

Tip

To use class std::stringstream, include this header:

#include <sstream>

Listing 27.11 demonstrates some simple stringstream operations.

Input

Listing 27.11 Converting an Integer Value into a String Representation and Vice Versa by Using std::stringstream

 0: #include<fstream>

 1: #include<sstream>

 2: #include<iostream>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: cout << “Enter an integer: “;

 8: int input = 0;

 9: cin >> input;

 10:

 11: stringstream converterStream;

 12: converterStream << input;

 13: string inputAsStr;

 14: converterStream >> inputAsStr;

 15:

 16: cout << “Integer Input = “ << input << endl;

 17: cout << “String gained from integer = “ << inputAsStr << endl;

 18:

 19: stringstream anotherStream;

 20: anotherStream << inputAsStr;

 21: int copy = 0;

 22: anotherStream >> copy;

 23:

 24: cout << “Integer gained from string, copy = “ << copy << endl;

 25:

 26: return 0;

 27: }

Output

Enter an integer: 45

Integer Input = 45

String gained from integer = 45

Integer gained from string, copy = 45

Analysis

In this example, you ask the user to enter an integer value. You insert this integer into the stringstream object, as shown in Line 12, using the operator <<. Then, you use the extraction operator (>>) in Line 14 to convert the integer into a string. After that, you use the string as a starting point and get an integer representation copy of the numeric value held in the string inputAsStr.

[image: Images]

Summary

This lesson taught you about C++ streams from a practical perspective. You learned that you have been using streams such as the I/O streams cout and cin since the very beginning of this book. You now know how to create simple text files and how to read or write from them. You learned how stringstream can help you convert simple types such as integers into strings and vice versa.

Q&A

Q. I see that I can use fstream for both writing to and reading to a file, so when should I use ofstream and ifstream?

A. If your code or module needs to only be reading from a file, you should use ifstream. Similarly, if it needs to only write to a file, you should use ofstream. fstream would work in both cases, but for the sake of ensuring data and code integrity, it is better to have a restrictive policy similar to using const (which is also not required).

Q. When should I use cin.get(), and when should I use cin.getline()?

A. cin.getline() ensures that you capture an entire line entered by a user, including whitespace. cin.get() helps you capture user input one character at a time.

Q. When should I use stringstream?

A. Use stringstream to convert integers and other simple types into strings and vice versa, as demonstrated in Listing 27.11.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. You need to only write to a file. What stream should you use?

2. How do you use cin to get a complete line from the input stream?

3. You need to write std::string objects to a file. Should you choose ios_base::binary mode?

4. You opened a stream using open(). Why bother using is_open()?

Exercises

1. BUG BUSTERS: What is the error in the following code?

fstream myFile;

myFile.open("HelloFile.txt”, ios_base::out);

myFile << “Hello file!”;

myFile.close();

2. BUG BUSTERS: What is the error in the following code?

ifstream myFile("SomeFile.txt");

if(myFile.is_open())

{

 myFile << “This is some text” << endl;

 myFile.close();

}

Lesson 28. Exception Handling

This lesson teaches you how to deal with extraordinary situations that disrupt the flow of a program. The lessons thus far have mostly taken an exceedingly positive approach, assuming that memory allocations will succeed, files will be found, and so on. Reality doesn’t always work that way.

In this lesson, you learn

• What an exception is

• How to handle exceptions

• How exception handling helps you deliver stable C++ applications

What Is an Exception?

Say that a program allocates memory, reads and writes data, saves to a file—the works. It executes flawlessly on your awesome development environment, and you are proud of the fact that your application doesn’t leak a byte, though it manages a gigabyte! You ship your application, and the customer deploys it on a landscape of 1000 workstations. Some of the computers are 10 years old. It doesn’t take much time for the first complaint to reach you. Some users complain about an “access violation,” and others say they are getting an “unhandled exception.”

Your application was doing well inside your environment, so why all the problems now?

The fact is that the world out there is very heterogeneous. No two computers, even if they have the same hardware configuration, are alike. The software running on each computer and the state of the machine determine the amount of resources that are available at a particular time. Memory allocation that works perfectly in your environment could fail in another environment. Such failures result in exceptions.

Exceptions disrupt the normal flow of an application. After all, if there is no memory available, there may be no way your application can achieve what it set out to do. However, your application can handle an exception and display a friendly error message to the user, perform any minimal rescue operation needed, and exit gracefully.

Handling exceptions help avoid those “unhandled exception” screens and error messages. Let’s see what tools C++ provides for dealing with exceptions.

What Causes Exceptions?

Exceptions can be caused by external factors, such as a system with insufficient resources, or by factors internal to an application, such as a pointer that is used despite containing an invalid value or a divide-by-zero error. Some modules are designed to communicate errors by throwing exceptions to the caller.

Note

To protect your code against exceptions, you “handle” exceptions, thereby making your code “exception safe.”

Implementing Exception Safety via try and catch

try and catch are the most important keywords in C++ when it comes to implementing exception safety. To make statements exception safe, you enclose them within a try block and use a catch block to handle the exceptions that emerge out of the try block:

void SomeFunc()

{

 try

 {

 int* numPtr = new int;

 *numPtr = 999;

 delete numPtr;

 }

 catch(...) // ... catches all exceptions

 {

 cout << “Exception in SomeFunc()” << endl;

 }

}

Using catch(...) to Handle All Exceptions

In Lesson 8, “Pointers and References Explained,” I mentioned that the default form of new returns a valid pointer to a location in memory when it succeeds but throws an exception when it fails. Listing 28.1 demonstrates how you can make memory allocations exception safe by using new and handle situations where the computer is not able to allocate the memory you requested.

Input

Listing 28.1 Using try and catch to Ensure Exception Safety in Memory Allocation

 0: #include <iostream>

 1: using namespace std;

 2:

 3: int main()

 4: {

 5: cout << “Enter number of integers you wish to reserve: “;

 6: try

 7: {

 8: int input = 0;

 9: cin >> input;

 10:

 11: // Request memory space and then return it

 12: int* numArray = new int[input];

 13: delete[] numArray;

 14: }

 15: catch (...)

 16: {

 17: cout << “Exception occurred. Got to end, sorry!” << endl;

 18: }

 19: return 0;

 20: }

Output

Enter number of integers you wish to reserve: -1

Exception occurred. Got to end, sorry!

Analysis

In this example, I used -1 as the number of integers to reserve. This input is ridiculous, but users do ridiculous things all the time. In the absence of the exception handler, the program would encounter a very ugly end. But thanks to the exception handler, you see that the output displays a decent message: Got to end, sorry!

Listing 28.1 demonstrates the use of try and catch blocks. catch() takes parameters, just like a function does, and ... means that this catch block accepts all kinds of exceptions. In this case, however, you might want to specifically isolate exceptions of type std::bad_alloc as these exceptions are thrown when new fails. Catching a specific type will help you handle that type of problem in particular; you can, for instance, show the user a message telling what exactly went wrong.

Catching Exceptions of a Type

The exception in Listing 28.1 was thrown from the C++ Standard Library. Such exceptions are of a known type, and catching exceptions of a particular type is good for you because it means you can pinpoint the reason for the exception, do better cleanup, or at least show a precise message to the user, as Listing 28.2 does.

Input

Listing 28.2 Catching Exceptions of Type std::bad_alloc

 0: #include <iostream>

 1: #include <exception> // to catch exception bad_alloc

 2: using namespace std;

 3:

 4: int main()

 5: {

 6: cout << “Enter number of integers you wish to reserve: “;

 7: try

 8: {

 9: int input = 0;

 10: cin >> input;

 11:

 12: // Request memory space and then return it

 13: int* numArray = new int [input];

 14: delete[] numArray;

 15: }

 16: catch (std::bad_alloc& exp)

 17: {

 18: cout << “Exception encountered: “ << exp.what() << endl;

 19: cout << “Got to end, sorry!” << endl;

 20: }

 21: catch(...)

 22: {

 23: cout << “Exception encountered. Got to end, sorry!” << endl;

 24: }

 25: return 0;

 26: }

Output

Enter number of integers you wish to reserve: -1

Exception encountered: bad array new length

Got to end, sorry!

Analysis

Compare the output of Listing 28.2 to the output of Listing 28.1. The code in Listing 28.2 can supply a more precise reason for the abrupt ending of the application: bad array new length. This listing has an additional catch block (yes, two catch blocks). One of them traps exceptions of the type catch(bad_alloc&), shown in Lines 16 through 20, which is thrown by new.

Tip

In general, you can insert as many catch() blocks as you like, one after another, depending on the exceptions you expect and the blocks that would help.

In Listing 28.2, catch(...) catches all the exception types that have not been explicitly caught by other catch statements.

Throwing Exceptions of a Type by Using throw

When you caught std::bad_alloc in Listing 28.2, you actually caught an object of class std::bad_alloc thrown by new. It is possible to throw an exception of your own choosing. All you need is the keyword throw:

void DoSomething()

{

 if(something_unwanted)

 throw object;

}

Let’s study the use of throw in a custom-defined exception in Listing 28.3, which divides two numbers.

Input

Listing 28.3 Throwing a Custom Exception at an Attempt to Divide by Zero

 0: #include<iostream>

 1: using namespace std;

 2:

 3: double Divide(double dividend, double divisor)

 4: {

 5: if(divisor == 0)

 6: throw “Dividing by 0 is a crime”;

 7:

 8: return (dividend / divisor);

 9: }

 10:

 11: int main()

 12: {

 13: cout << “Enter dividend: “;

 14: double dividend = 0;

 15: cin >> dividend;

 16: cout << “Enter divisor: “;

 17: double divisor = 0;

 18: cin >> divisor;

 19:

 20: try

 21: {

 22: cout << “Result is: “ << Divide(dividend, divisor);

 23: }

 24: catch(const char* exp)

 25: {

 26: cout << “Exception: “ << exp << endl;

 27: cout << “Sorry, can’t continue!” << endl;

 28: }

 29:

 30: return 0;

 31: }

Output

Enter dividend: 2021

Enter divisor: 0

Exception: Dividing by 0 is a crime

Sorry, can’t continue!

Analysis

This example not only demonstrates that you can catch exceptions of type const char*, as shown in Line 24, but also that you caught an exception thrown in a called function Divide() in Line 6. Note that you did not include all of main() within try {}; you only included the part of it that you expected to throw. This is generally a good practice, as exception handling can reduce the execution performance of your code.

How Exception Handling Works

In Listing 28.3, you threw an exception of type char* in the function Divide() that was caught in the catch(char*) handler in the calling function main().

Where an exception is thrown, using throw, the compiler inserts a dynamic lookup for a compatible catch(Type) that can handle the exception. The exception handling logic first checks whether the line throwing the exception is within a try block. If so, it seeks the catch(Type) that can handle the exception of this type. If the throw statement is not within a try block or if there is no compatible catch() for the exception type, the exception handling logic looks in the calling function. So, the exception handling logic climbs the stack, calling one function after another, seeking a suitable catch(Type) that can handle the exception. At each step in the stack unwinding procedure, the variables local to that function are destroyed, in reverse sequence of their construction. This is demonstrated in Listing 28.4.

Input

Listing 28.4 The Destruction Order of Local Objects in the Event of an Exception

0: #include <iostream>

1: using namespace std;

2:

3: struct StructA

4: {

5: StructA() {cout << “StructA constructor” << endl; }

6: ~StructA() {cout << “StructA destructor” << endl; }

7: };

8:

9: struct StructB

10: {

11: StructB() {cout << “StructB constructor” << endl; }

12: ~StructB() {cout << “StructB destructor” << endl; }

13: };

14:

15: void FuncB() // throws

16: {

17: cout << “In Func B” << endl;

18: StructA objA;

19: StructB objB;

20: cout << “About to throw up!” << endl;

21: throw “Throwing for the heck of it”;

22: }

23:

24: void FuncA()

25: {

26: try

27: {

28: cout << “In Func A” << endl;

29: StructA objA;

30: StructB objB;

31: FuncB();

32: cout << “FuncA: returning to caller” << endl;

33: }

34: catch(const char* exp)

35: {

36: cout << “FuncA: Caught exception: “ << exp << endl;

37: cout << “Handled it, will not throw to caller” << endl;

38: // throw; // uncomment this line to throw to main()

39: }

40: }

41:

42: int main()

43: {

44: cout << “main(): Started execution” << endl;

45: try

46: {

47: FuncA();

48: }

49: catch(const char* exp)

50: {

51: cout << “Exception: “ << exp << endl;

52: }

53: cout << “main(): exiting gracefully” << endl;

54: return 0;

55: }

Output

main(): Started execution

In Func A

StructA constructor

StructB constructor

In Func B

StructA constructor

StructB constructor

About to throw up!

StructB destructor

StructA destructor

StructB destructor

StructA destructor

FuncA: Caught exception: Throwing for the heck of it

Handled it, will not throw to caller

main(): exiting gracefully

Analysis

In Listing 28.4, main() invokes FuncA(), which invokes FuncB(), which throws an exception in Line 21. Both calling functions FuncA() and main() are exception safe as they both have a catch(const char*) block implemented. FuncB(), which throws the exception, has no catch() blocks, and hence the catch block within FuncA() at Lines 34 through 39 is the first handler for the thrown exception from FuncB(), as FuncA() is the caller of FuncB(). Note that FuncA() decided that this exception is not of a serious nature and did not propagate it to main(). Hence, main() continues as if no problem happened. If you uncomment Line 38, the exception is thrown to the caller of FuncB()—that is, main()receives it, too.

The output also indicates the order in which objects are created (the same order in which their instantiations were coded) and the order in which they’re destroyed as soon as an exception is thrown (in the reverse order of instantiations). This happens not only in FuncB(), which threw the exception, but also in FuncA(), which invoked FuncB() and handled the thrown exception.

Caution

Listing 28.4 demonstrates how destructors of local objects are invoked when an exception is thrown.

If the destructor of an object invoked due to an exception also throws an exception, it results in an abnormal termination of your application. This is why you are advised to not throw exceptions from destructors.

Class std::exception

In catching std::bad_alloc in Listing 28.2, you actually caught an object of class std::bad_alloc thrown by new. std::bad_alloc is a class that inherits from the C++ standard class std::exception, declared in the header <exception>.

std::exception is the base class for the following important exceptions:

• bad_alloc: Thrown when a request for memory using new fails

• bad_cast: Thrown by dynamic_cast when you try to cast a wrong type (that is, a type that has no inheritance relationship)

• ios_base::failure: Thrown by the functions and methods in the iostream library

Class std::exception, which is the base class, supports he very useful and important virtual method what(), which gives a more descriptive explanation about the nature of the problem causing the exception. In Listing 28.2, exp.what() in Line 18 gives the information bad array new length to tell you what went wrong. You can make use of std::exception being a base class for many exceptions types and create one catch(const exception&) that can catch all exceptions that have std::exception as the base:

void SomeFunc()

{

 try

 {

 // code made exception safe

 }

 catch (const std::exception& exp) // catch bad_alloc, bad_cast, etc

 {

 cout << “Exception encountered: “ << exp.what() << endl;

 }

}

A Custom Exception Class Derived from std::exception

You can throw an exception of whatever type you want. However, there is a benefit in inheriting from std::exception: All existing exception handlers with catch(const std::exception&) that work for bad_alloc, bad_cast, and the like will automatically scale up to catch your new exception class as well because it has the base class in common with them. This is demonstrated in Listing 28.5.

Input

Listing 28.5 The Class CustomException, Which Inherits from std::exception

 0: #include <exception>

 1: #include <iostream>

 2: #include <string>

 3: using namespace std;

 4:

 5: class CustomException: public std::exception

 6: {

 7: string reason;

 8: public:

 9: // constructor, needs reason

10: CustomException(const char* why):reason(why) {}

11:

12: // redefining virtual function to return ’reason’

13: virtual const char* what() const throw()

14: {

15: return reason.c_str();

16: }

17: };

18:

19: double Divide(double dividend, double divisor)

20: {

21: if(divisor == 0)

22: throw CustomException("CustomException: Division by 0");

23:

24: return (dividend / divisor);

25: }

26:

27: int main()

28: {

29: cout << “Enter dividend: “;

30: double dividend = 0;

31: cin >> dividend;

32: cout << “Enter divisor: “;

33: double divisor = 0;

34: cin >> divisor;

35: try

36: {

37: cout << “Result is: “ << Divide(dividend, divisor);

38: }

39: catch(exception& exp)// catch CustomException, bad_alloc, etc

40: {

41: cout << exp.what() << endl;

42: cout << “Sorry, can’t continue!” << endl;

43: }

44:

45: return 0;

46: }

Output

Enter dividend: 2021

Enter divisor: 0

CustomException: Division by 0

Sorry, can’t continue!

Analysis

This example is an improvement to Listing 28.3, which throws a simple char* exception on divide by zero. In here, we instantiate an object of class CustomException, defined in Lines 5 through 17, that inherits from std::exception, and throw it in Line 22 when an attempt to divide by zero is encountered. Note how the custom exception class implements the virtual function what() in Lines 13 through 16, essentially returning the reason the exception was thrown. The catch(exception&) logic in main() in Lines 39 through 43 handles not only the class CustomException but also other exceptions of type bad_alloc that have the same base class exception.

Note

Note the declaration of the virtual method CustomException::what() in Line 13 in Listing 28.5:

virtual const char* what() const throw()

It ends with throw(), which means that this function itself is not expected to throw an exception—which is a very important and relevant restriction on a class used as an exception object. If you still insert a throw within this function, you can expect a compiler warning.

If a function ends with throw(int), it means that the function is expected to throw an exception of type int.

[image: Images]

Summary

In this lesson, you learned an important part of practical C++ programming. Making your applications stable beyond your own development environment is important for customer satisfaction and intuitive user experiences, and exception handling is a necessary part of ensuring this stability. You found out that code that allocates resources or memory can fail and hence needs to be made exception safe. You learned about the C++ exception class std::exception and that if you need to program a custom exception class, you ideally want to inherit from std::exception.

Q&A

Q. Why should I raise exceptions instead of returning an error?

A. You may not always have the luxury of being able to return an error. If a call to new fails, you need to handle exceptions thrown by new to prevent your application from crashing. In addition, if an error is very severe and makes the future functioning of your application impossible, you should consider throwing an exception.

Q. Why should my exception class inherit from std::exception?

A. Inheriting from std::exception is not compulsory, but it helps you reuse all those catch() blocks that already catch exceptions of type std::exception. You can write your own exception class that doesn’t inherit from anything else, but then you have to insert new catch(MyNewExceptionType&) statements at all the relevant points.

Q. I have a function that throws an exception. Does it need to be caught at the very same function that throws the exception?

A. Not at all. Just ensure that the exception type thrown is caught at one of the calling functions in the call stack.

Q. Can a constructor throw an exception?

A. Constructors actually have no choice! They don’t have return values, and throwing an exception is the best way to demonstrate disagreement.

Q. Can a destructor throw an exception?

A. Technically, yes. However, this is a bad practice as destructors are also called when the stack is unwound due to an exception. So, a destructor invoked due to an exception throwing an exception itself can clearly result in quite an ugly situation for an already unstable application trying to make a clean exit.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. What is std::exception?

2. What type of exception is thrown when an allocation using new fails?

3. Is it acceptable to allocate a million integers in an exception handler (that is, a catch block) to back up existing data, for instance?

4. How would you catch an exception object of class MyException that inherits from std::exception?

Exercises

1. BUG BUSTERS: What is wrong with the following code?

class SomeIntelligentStuff

{

 bool isStuffGoneBad;

public:

 ~SomeIntelligentStuff()

 {

 if(isStuffGoneBad)

 throw “Big problem in this class, just FYI”;

 }

};

2. BUG BUSTERS: What is wrong with the following code?

int main()

{

 int* millionNums = new int[1000000];

 // do something with the million integers

 delete[] millionNums;

}

3. BUG BUSTERS: What is wrong with the following code?

int main()

{

 try

 {

 int* millionNums = new int[1000000];

 // do something with the million integers

 delete[] millionNums;

 }

 catch(exception& exp)

 {

 int* anotherMillion = new int[1000000];

 // take back up of millionNums and save it to disk

 }

}

Lesson 29. C++20 Concepts, Ranges, Views, and Adaptors

You have already learned the basics of C++ programming. In fact, you have gone beyond theoretical boundaries in understanding how using the Standard Template Library (STL), templates, and the Standard Library can help you write efficient and compact code. It is time to look at the new additions in C++20.

In this lesson, you learn

• The basics of concepts

• Defining your own concepts

• The basics of ranges, views, and adaptors

• Using adaptors to create views on ranges

Tip

As of this writing, popular compilers do not fully support C++20. GNU g++ and MSVC currently provide the most support for the features presented in this lesson. Compiler support is constantly improving, and it is important to use the latest version of your favorite compiler, especially when using new C++ features, such as those described in this lesson.

You also need to explicitly activate supported C++20 features. When using g++ or clang++, add -std=c++20 to the command line. MSVC users can enable /std:c++20 via the option C++ Language Standard under Project Properties.

Concepts

In Lesson 14, “An Introduction to Macros and Templates”, you learned the basics of generic programming using templates. You learned that template classes can support attributes of different types and that template functions can be used with parameters of different types, depending on the instantiation, as seen below:

template <typename T>

double DivideNums(T dividend, T divisor)

{

 return (dividend / divisor);

}

Template instantiation works like this:

double pi = DivideNums(22.0, 7.0); // for float, float

It’s clear that DivideNums() returns the result of the division of two numbers. Say that you try to instantiate this template function for two elements of type string:

std::string str1, str2;

double crazyCompileErrror = DivideNums(str1, str2);

You end up getting a compiler error, indicating that the type string does not support the operator /. However, what you ideally need is for the compiler to deny compilation at the outset and indicate that the function DivideNums() can be used only with numeric types. That is, you want to limit the template instantiation of DivideNums() to numeric types, preferably floating point, and you want the compiler to validate that for you. C++20 introduces concepts, which help you do exactly that.

You use concepts to define constraints governing the types that a template class or function can be instantiated with. The compiler validates concepts for you and enforces them. Furthermore, the Standard Library supplies basic concepts such as std::floating_point, which helps you constrain the template instantiation in this particular case:

template <std::floating_point T> // concept constraining T

double DivideNums(T dividend, T divisor)

{

 return (dividend / divisor);

}

If you were to now use the function DivideNums() for a non-numeric type such as std::string, the compiler wouldn’t even start by seeking the operator / in the class std::string. It would supply a simpler error message, telling you at the outset that the constraints defined for DivideNums() haven’t been met. Trivial as this feature may seem at first, concepts represent a massive improvement because they enable easy and safe use of template classes.

Tip

To use C++20 concepts, include this header:

#include<concepts>

Using Concepts Provided by the Standard Library

Listing 29.1 presents a full-fledged program using the concept std:: floating_point to constrain the parameters used in DivideNums to floating-point types (namely float and double).

Input

Listing 29.1 Using a Simple Concept to Constrain the Parameter Type of a Template Function to Floating Point

 0: #include<concepts>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: template <std::floating_point T> // enforce floating point

 5: double DivideNums(T dividend, T divisor)

 6: {

 7: return (dividend / divisor);

 8: }

 9:

10: int main()

11: {

12: cout << “Pi = “ << DivideNums(22.0, 7.0); // OK

13: // cout << “Pi = “ << DivideNums(22, 7); // err: not floating pt

14:

15: return 0;

16: }

Output

Pi = 3.14286

Analysis

Listing 29.1 shows the concept std::floating_point used in Line 4. It constrains T to a floating-point type. The template instantiation of DivideNums() will be validated by the compiler for floating-point types. If you were to uncomment Line 13, you would face a compilation failure, as intended, because this line invokes DivideNums() using arguments that are not floating-point numbers.

Table 29.1 describes some popular concepts provided by the Standard Library.

Table 29.1 Key Concepts Provided by the Standard Library

[image: Images]

Defining Custom Concepts by Using the Keyword requires

One of the drawbacks of the template function DivideNums() in Listing 29.1 is that it expects both dividend and divisor to be of the same floating-point type T. That is, you cannot use it to divide 22.0 by 7 or 22 by 7.0, although both operations should definitely be possible. You could solve this problem by defining a concept that combines floating_point and integral types:

template <typename T>

concept AnyNumericType = floating_point<T> || integral<T>;

Furthermore, to ensure that the dividend and divisor are allowed to be of different types, you could use keyword requires in defining the template function:

template <typename T1, typename T2>

requires AnyNumericType<T1> && AnyNumericType<T2>

double DivideAnyNumericType(T1 dividend, T2 divisor)

{

 return (dividend / divisor);

}

Listing 29.2 integrates these ideas into an example that shows how you can use concepts in constraining one or the other or both parameters of a function. It also uses a variadic template function to display on the screen.

Input

Listing 29.2 Combining Multiple Concepts, Using Different Constraints for Different Parameters

 0: #include<concepts>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: template <typename T>

 5: concept AnyNumericType = floating_point<T> || integral<T>;

 6:

 7: template <integral T>

 8: double DivideOnlyInts(T dividend, T divisor)

 9: {

10: return (dividend / divisor);

11: }

12:

13: template <typename T1, typename T2>

14: requires AnyNumericType<T1> && AnyNumericType<T2>

15: double DivideAnyNumType(T1 dividend, T2 divisor)

16: {

17: return (dividend / divisor);

18: }

19:

20: template <typename T1, typename T2>

21: requires same_as<T1, T2>

22: double DivideIdenticalTypes(T1 dividend,T2 divisor)

23: {

24: return (dividend / divisor);

25: }

26:

27: void DisplayNums() { cout << endl; }

28:

29: template <typename T, typename... Types>

30: void DisplayNums(T num1, Types... numN)

31: {

32: cout << num1 << ’ ’;

33: DisplayNums(numN ...);

34: }

35:

36: int main()

37: {

38: double q1 = DivideOnlyInts(22, 7); // OK

39: // double q2 = DivideOnlyInts(22.0, 7); // error: 22.0 isn’t integral

40:

41: double q3 = DivideAnyNumType(22.0, 7); // OK

42: double q4 = DivideAnyNumType(22.0, 7.0); // OK

43: double q5 = DivideAnyNumType(22.0, ’7’); // OK: type char is numeric

44: // double q6 = DivideAnyNumType("22.0”, 7); // error: char* isn’t numeric

45:

46: double q7 = DivideIdenticalTypes(22.0, 7.0); // OK

47: double q8 = DivideIdenticalTypes(22.0, 7.0); // OK

48: // double q9 = DivideIdenticalTypes(22.0, 7); // error: unidentical types

49:

50: DisplayNums("q1 =”, q1, “q3 =”, q3, “q4 =”, q4);

51: DisplayNums("q5 =”, q5, “q7 =”, q7, “q8 =”, q8);

52:

53: return 0;

54: }

Output

q1 = 3 q3 = 3.14286 q4 = 3.14286

q5 = 0.4 q7 = 3.14286 q8 = 3.14286

Analysis

This example gets rid of the constraint from Listing 29.1 that both parameters of the function that divides two numbers need to be of the same type. It defines a new concept, AnyNumericType, in Lines 4 and 5 that permits the parameter type that fulfills the concept to be either an integral type or a floating-point type. This concept is then used in the template function DivideAnyNumType(), defined in Lines 13 through 18, which accepts a dividend and a divisor of different types, as long as they’re numeric types that fulfill the concept AnyNumType.

In addition, this example demonstrates the concept std::same_as in the function DivideIdenticalTypes(), which is defined in Lines 20 through 25. Commented Line 48 demonstrates how std::same_as is used to enforce the use of identical types in the two parameters and produce a compilation error if is a floating-point type and the other an integral type.

Tip

Note the use of variadic templates in the function DisplayNums(), which is defined in Lines 27 through 34 and used in Lines 50 and 51. This function is used to display types that are string literals and a double.

The compiler identifies the ellipsis (...) as an instruction to expand DisplayNums() and generate a compile-time recursive version that prints all arguments on the screen.

Using Concepts with Classes and Objects

Thus far in the lesson, you have used concepts with template functions to learn the basics of concepts. Using concepts with classes is not too different. You use templates with classes to generically program the nature of member attributes contained by the classes and the behavior of methods contained in the classes. You can use concepts to validate and constrain the types that these template classes can be instantiated with, as shown in Listing 29.3.

Input

Listing 29.3 Using Concepts to Constrain and Validate Template Parameters Used with Classes

 0: #include<concepts>

 1: using namespace std;

 2:

 3: template <typename T>

 4: concept AnyNumericType = floating_point<T> || integral<T>;

 5:

 6: template<AnyNumericType T1, AnyNumericType T2>

 7: class Person

 8: {

 9: public:

10: T1 age;

11: T2 yearsEmployed;

12:

13: Person(T1 num1, T2 num2) : age(num1), yearsEmployed(num2) {}

14: };

15:

16: int main()

17: {

18: Person<int, double> p1(21, 3.4); // OK

19: Person<double, float> p2(32.6, 3.4f); // OK

20:

21: // Person<string, double> p3("lara”, 3.4); // error: “lara” isn’t numeric

22:

23: return 0;

24: }

Output

This code snippet produces no output.

Analysis

Line 6 demonstrates the use of the now-familiar concept AnyNumericType<> (which was initially used in Listing 29.2) to constrain the types with which the class Person<> can be instantiated. Basically, you are ensuring that the compiler verifies that Person<> is instantiated for only numeric types because you do not want the attributes age or yearsEmployed to contain anything else. In the absence of constraints imposed by the concept AnyNumericType<>, you can compile even Line 21, which instantiates an instance with age as "lara". This is not what you would ideally want.

Thus, concepts give the designer of a template class a powerful tool for ensuring that the class is instantiated in accordance with its intended use and function.

Listing 29.4 demonstrates how to ensure that the object being passed to a function is of a type that is related to Base. Remember from Lesson 10, “Implementing Inheritance,” that public derivation gives you an is-a relationship between the derived class and the base class. derived_from<> validates exactly this relationship, evaluating to false for private inheritance as well as for unrelated types.

Input

Listing 29.4 Using the Concept derived_from

 0: #include<concepts>

 1: #include<iostream>

 2: using namespace std;

 3:

 4: class Base {};

 5: class PublicDerived : public Base {};

 6: class PrivateDerived : private Base {};

 7: class Unrelated {};

 8:

 9: template<derived_from<Base> T>

10: void ProcessBaseTypesOnly(T& input)

11: {

12: cout << “Processing an instance of Base” << endl;

13: }

14:

15: int main()

16: {

17: static_assert(derived_from<PublicDerived, Base> /* == true */);

18: static_assert(derived_from<PrivateDerived, Base> == false);

19: static_assert(derived_from<Unrelated, Base> == false);

20:

21: PublicDerived d1;

22: PrivateDerived d2;

23: Unrelated u;

24: ProcessBaseTypesOnly(d1); // OK, d1 is also type Base

25: // ProcessBaseTypesOnly(d2); // Error: d2 isn’t a Base

26: // ProcessBaseTypesOnly(u); // Error: u is unrelated to Base

27:

28: return 0;

29: }

Output

Processing an instance of Base

Analysis

This example uses static_assert to demonstrate what the compiler agrees with and what it doesn’t (see Lines 17 through 19). Furthermore, you can see the concept derived_from<T> in Line 9, where it is used to constrain the parameter type of the function ProcessBaseTypesOnly(). Because of this concept and the constraints it imposes, Line 24 will compile, but Lines 25 and 26 won’t.

The Ranges Library, Views, and Adaptors

When learning about containers in Lesson 15, “An Introduction to the Standard Template Library,” you saw that STL containers consistently support the following methods:

• begin(): This method returns the beginning of the container (that is, it points to the first element).

• end(): This method returns the end of the container, after the last element.

A range is an abstraction of a collection. Any collection that fulfills the properties mentioned above is also a range. C++20 introduces a new library, the ranges library, which uses this abstraction and further develops on it to provide alternatives to STL algorithms in the form of views and adaptors.

Tip

To use the ranges library, include this header:

#include<ranges>

The ranges library features concepts such as ranges::range, which you can use to validate a collection as a range. Ranges are classified on the basis of known properties of the collections and provide concepts that can validate range type. The prominent ones among them are input_range, output_range, forward_range, bidirectional_range, and random_access_range, as demonstrated by Listing 29.5.

Input

Listing 29.5 Using std::ranges to Validate Popular Containers as Ranges and Types of Ranges

 0: #include<ranges>

 1: #include<vector>

 2: #include<list>

 3: #include<set>

 4: #include<map>

 5: #include<stack>

 6: #include<forward_list>

 7: using namespace std;

 8:

 9: int main()

10: {

11: static_assert(ranges::range<int[5]>);

12: static_assert(ranges::range<vector<int>>);

13: static_assert(ranges::range<list<int>>);

14: static_assert(ranges::range<set<int>>);

15: static_assert(ranges::range<map<int, int>>);

16:

17: static_assert(ranges::forward_range<vector<int>>);

18: static_assert(ranges::random_access_range<vector<int>>);

19: static_assert(ranges::bidirectional_range<vector<int>>);

20:

21: // static_assert(ranges::range<stack<int>>); // error: stack isn’t a range

22: // static_assert(ranges::bidirectional_range<forward_list<int>>); // error

23: // static_assert(ranges::random_access_range<set<int>>); // error

24:

25: return 0;

26: }

Output

This code snippet produces no output.

Analysis

This example uses static_assert to get the compiler to validate the concepts std::ranges::range, std::ranges::forward_range, std::ranges::random_access_range, and std::ranges::bidirectional_range. Lines 11 through 19 demonstrate that typical STL containers such as vector, list, set, and map fulfill the criteria of a range. In Line 21, you see that stack doesn’t. This is because the stack container has modified the behavior of an underlying container (such as vector) to restrict certain freedoms in implementing last-in, first-out (LIFO) functionality. It doesn’t support iterations and doesn’t feature the methods begin() and end(), and hence it cannot be a range. Similarly, Line 22 demonstrates that forward_list isn’t accepted as a bidirectional range, and Line 23 demonstrates that std::set doesn’t permit random access to elements within it.

Having seen what ranges are, let us now visit views and adaptors and use them in combination with ranges.

Views and Adaptors

Views are ranges that also assure constant-time copies, moves, and assignments. Therefore, a view is a special kind of range. Every view is a range, but not every range qualifies as a view.

In Lesson 16, “The STL String Class,” you learned how std::string_view helps give a peek into a string, substring, or character without the expensive task of creating copies. C++20 views fulfill a similar objective over ranges (or collections). You can use a view to operate an algorithm on a range. Such algorithms are called adaptors. An adaptor returns a view comprising data resulting from the execution of the adaptor.

Say that you want to construct a view that comprises the elements in an input collection, in reverse order. Listing 29.6 demonstrates the use of the adaptor std::views::reverse to view a collection in reverse—that is, with the last element first.

Input

Listing 29.6 Viewing a Collection in the Reverse Order

 0: #include<ranges>

 1: #include<vector>

 2: #include<iostream>

 3: using namespace std;

 4:

 5: int main()

 6: {

 7: vector<int> nums{ 1, 5, 202, -99, 42, 50 };

 8:

 9: // create a view using adaptor reverse

10: auto viewReverse = nums | std::views::reverse;

11:

12: cout << “View of collection in reverse: “;

13: // range-based for: because, a view is also a range

14: for (int num : viewReverse)

15: cout << num << ’ ’;

16:

17: cout << endl << “Original collection (unchanged): “;

18: for (int num : nums)

19: cout << num << ’ ’;

20:

21: return 0;

22: }

Output

View of collection in reverse: 50 42 -99 202 5 1

Original collection (unchanged): 1 5 202 -99 42 50

Analysis

This example demonstrates the creation of a view called viewReverse, using the adaptor std::views::reverse. You first print the view on the screen and then print the contents of the original vector container, demonstrating that the creation of the view does not alter the original collection in any way. If you were to use the algorithm std::reverse() instead, you would alter the collection. Furthermore, Line 14 uses the range-based for loop on viewReverse because, as explained earlier, a view is a special case of a range. Remember that all views are ranges, but some ranges are not views.

Adaptors Provided by the Ranges Library

In Listing 29.6, you saw how to use the adaptor std::views::reverse to generate a view of a collection in the reverse order of element insertion. Table 29.2 lists some common adaptors provided by the STL.

Table 29.2 Common Adaptors

[image: Images]

Listing 29.7 shows how to use these adaptors to generate different views on a collection.

Input

Listing 29.7 Using Range Adaptors to Generate Views on a Given Collection

 0: #include<ranges>

 1: #include<vector>

 2: #include<iostream>

 3:

 4: using namespace std;

 5:

 6: template<ranges::view T>

 7: void DisplayView(T& view)

 8: {

 9: for (auto element : view)

10: cout << element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: vector<int> nums{ 1, 5, 202, -99, 42, 50 };

18:

19: // Adaptor all creates a view comprising all elements

20: auto viewAllElements = nums | std::views::all;

21: cout << “View of all elements in the collection: “;

22: DisplayView(viewAllElements);

23:

24: // Adaptor filter creates a view comprising even numbers

25: auto viewOnlyEven = nums | \

26: std::views::filter([](auto num) {return ((num % 2) == 0); });

27: cout << “View of even numbers in collection: “;

28: DisplayView(viewOnlyEven);

29:

30: // Adaptor reverse creates a view of elements in reverse order

31: auto viewReverse = nums | std::views::reverse;

32: cout << “View of collection in reverse: “;

33: DisplayView(viewReverse);

34:

35: // Adaptor drop creates a view of elements without first 3

36: auto viewSkip3 = nums | std::views::drop(3);

37: cout << “View of collection ignoring first 3 elements: “;

38: DisplayView(viewSkip3);

39:

40: // Adaptor take creates a view comprising first 3 elements

41: auto viewFirst3 = nums | std::views::take(3);

42: cout << “View of first 3 elements: “;

43: DisplayView(viewFirst3);

44:

45: // Adaptor transform creates a view comprising -1, 0 or 1

46: auto viewTransform = nums | \

47: std::views::transform([](auto num) {return (num % 2); });

48: cout << “Transformed view “;

49: DisplayView(viewTransform);

50:

51: return 0;

52: }

Output

View of all elements in the collection: 1 5 202 -99 42 50

View of even numbers in collection: 202 42 50

View of collection in reverse: 50 42 -99 202 5 1

View of collection ignoring first 3 elements: -99 42 50

View of first 3 elements: 1 5 202

Transformed view 1 1 0 -1 0 0

Analysis

The code in this example is quite self-explanatory. It starts with a simple collection called nums, in the form vector<int>, that is initialized to contain some sample numbers. You then create different views of this collection by using the adaptors all, filter, reverse, drop, take, and transform.

In this example, note how the function DisplayView() is programmed. By using the concept ranges::view, you tell the compiler that this function can only be used with arguments that are a view. If you were to pass a range (such as the vector nums) to this function, the compiler would protest.

Tip

C++20 views feature lazy initialization. The performance cost of defining a view is negligible, and not influenced by the size of the range it is intended to be operated upon. Lazy initialization means that the expense of execution is incurred when a view is used for the first time. Furthermore, a composite view can be created by combining (or chaining) multiple adaptors to each other by using the pipe symbol (|). These features make views and adaptors superior to STL algorithms.

Combining Multiple Adaptors

Say that you need to reverse elements and identify the even numbers among them. Generating such a view is a one-step process when you combine the adaptors reverse and filter as follows:

auto lambdaIsEven = [](auto num) {return ((num % 2) == 0); };

auto viewEvenInRev = nums | views::reverse | views::filter(lambdaIsEven);

If you now intend to further restrict the view to only two elements, you need to add the adaptor take to your chain:

auto viewEvenInReverseTopTwo = nums | views::reverse

 | views::filter(lambdaIsEven) | views::take(2);

Listing 29.8 demonstrates the use of these adaptors.

Input

Listing 29.8 Combining Adaptors by Using the Pipe Symbol (|)

 0: #include<ranges>

 1: #include<vector>

 2: #include<iostream>

 3: using namespace std;

 4:

 5: // concept ranges::view limits parameter type to view

 6: template<ranges::view T>

 7: void DisplayView(T& view)

 8: {

 9: for (auto element : view)

10: cout << element << ’ ’;

11:

12: cout << endl;

13: }

14:

15: int main()

16: {

17: vector<int> nums{ 1, 5, 202, -99, 42, 50 };

18: auto viewAllElements = nums | std::views::all;

19: cout << “View of all elements in the collection: “;

20: DisplayView(viewAllElements);

21:

22: auto lambdaIsEven = [](auto num) {return ((num % 2) == 0); };

23: auto viewEvenInRev = nums | views::reverse | views::filter(lambdaIsEven);

24: cout << “View even numbers in reverse: “;

25: DisplayView(viewEvenInRev);

26:

27: auto viewEvenInReverseTopTwo = nums | views::reverse

28: | views::filter(lambdaIsEven) | views::take(2);

29: cout << “View first two even numbers in reverse: “;

30: DisplayView(viewEvenInReverseTopTwo);

31:

32: return 0;

33: }

Output

View of all elements in the collection: 1 5 202 -99 42 50

View even numbers in reverse: 50 42 202

View first two even numbers in reverse: 50 42

Analysis

Lines 18, 23, and 27 demonstrates how adaptors are combined to give you the view you seek. Using adaptors is a new way of programming in C++, and it might seem foreign at first. However, you’ll come to appreciate the fact that you can quickly use adaptors to implement the same logic that would require multiple steps using algorithms. Using algorithms would require more lines of code and might be slow as well. Views and adaptors have made C++ code more intuitive and can save you a good number of lines of code and processing steps as well!

Summary

This lesson familiarized you with the dramatic changes introduced with C++20, including concepts, ranges, views, and adaptors. These new features are not required to write good C++ programs, but they represent a major modernization to the language. In the next few years, you will see more and more C++ code adopting these changes, and you’re now set up to understand such code and develop your skills further. Don’t stop at the examples in this book; explore the ranges library online to develop your skills further.

Q&A

Q. I am not able to compile the examples in this lesson. What am I doing wrong?

A. As of this writing, not every compiler consistently and completely supports C++20 features. This code has been successfully tested using g++ Version 12.0 and MSVC Version 16.10. You have to specifically enable C++20 language features in your compiler, as mentioned earlier in this lesson.

Q. Why use concepts when you can use DisplayView() (as shown in Listing 27.8) without concepts?

A. You can program DisplayView() to accept an auto parameter without using a concept to restrict the parameter type, like this:

void DisplayView(auto& view)

If you used this parameter, the code in Listing 29.8 would compile. You would even save a line of code. The use of concepts is optional. When things go wrong, though, and DisplayView() is used for types that are not necessarily views, the compiler may deliver complicated error messages. Concepts help the designer of a template class or function enforce the use of that class or function within specified constraints. Any failure to meet these defined constraints (that is, concepts) will result in simpler compiler error messages that accelerate the correction process.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to provide you with experience using what you’ve learned. Try to answer the quiz and exercise questions before checking the answers in Appendix E and be certain you understand the answers before continuing to the next lesson.

Quiz

1. What header would you include to use concepts to help validate a type as integral?

2. Are all views ranges, and are all ranges also views?

3. What do you call the logic (algorithm) that acts on a collection to create a view?

Exercises

1. BUG BUSTERS: If you replace Line 20 in Listing 29.8 with the following code, it won’t compile:

DisplayView(nums);

Why is this the case?

2. What changes would you need to make to the declaration of DisplayView() so that the code in Listing 29.8, with the change shown in Exercise 1, will compile?

3. Compose a view that consists of the square of three elements taken from the end of a collection.

Lesson 30. C++20 Threads

The ability to write high-performance applications is one reason why C++ is often chosen over other programming languages. The time has come to learn how recent developments in C++ help you program multithreaded applications for high-performance computing.

In this lesson, you learn

• The basics of threads and multithreading

• C++20 multithreading support improvements

Multithreading

Multithreaded applications take advantage of processor capabilities to perform certain tasks concurrently. The threads run in parallel, allowing the OS to utilize multiple cores. Although it is beyond the scope of this book to discuss threads and multithreading in detail, I introduce this topic and give you a head start toward high-performance computing.

What Is a Thread?

Application code always runs in a thread. A thread is a synchronous execution entity in which instructions are executed one after another. The code inside main() is considered to execute the main thread of the application. In this main thread, you can create new threads that can run in parallel. Applications that are composed of one or more threads running in parallel, in addition to the main thread, are called multithreaded applications.

The OS dictates how threads are to be created. You create threads by calling application programming interfaces (APIs) supplied by the OS. Different OSs support different APIs for multithreading, and there have been many attempts at wrapper libraries that support portable thread creation and synchronization. C++20 has standardized the creation and simple synchronization of threads. You can therefore use platform-independent C++ code in creating multithreaded applications.

Why Program Multithreaded Applications?

Multithreading is useful in scenarios where certain activities need to be executed in parallel. Imagine that you are one among 100,000 users using a popular shopping portal at a given moment. The web server, of course, cannot keep thousands of users waiting. The web server creates multiple threads to service multiple users at the same time. If the web server is running on a multiple-core processor or a multiple-processor cloud, the multithreaded architecture gets to extract the best out of the available infrastructure and provide optimal user experience.

Another common example of multithreading is an application that does some work in addition to interacting with the user, such as via a progress bar. Such applications are often divided into a user interface thread, which displays and updates the user interface and accepts user input, and a worker thread, which does the work in the background. A tool that defragments your disk is one such application. After you press the start button, a worker thread is created that starts with the scan and defragmenting activity. At the same time, the user interface thread displays progress and also gives you the option to cancel the defragmentation. Note that for the user interface thread to show progress, the worker thread that does the defragmentation needs to regularly communicate what is happening. Similarly, for the worker thread to stop working when you cancel, the user interface thread needs to communicate a stop message.

Note

A multithreaded application typically needs threads to “talk” to each other so that the application can function as a unit. Sequence is important, too. In the preceding example, you want the user interface thread to end after the defragmenting worker thread has ended—and not before. In such situations, one thread needs to wait on another.

The act of making threads wait on one another is called thread synchronization.

Using the C++20 Thread Library

C++2020 has simplified programming of multithreaded applications through the helper class std::jthread.

Tip

To use multithreading functionalities, include this header:

#include<thread>

Listing 30.1 shows a simple application comprising a main thread and a worker thread. It displays a line on the screen at one-second intervals.

Note

As of this writing, popular compilers do not consistently support the C++20 features explained in this lesson. Be sure to use the latest versions of your favorite compiler when trying the code examples provided in this lesson. Do not let compiler errors dishearten you. Use this lesson to understand the features so that you’re ready to consume them as soon as they’re better supported by your compiler.

Tip

Remember to explicitly activate supported C++20 features. When using g++ or clang++, add -std=c++20 to the command line. MSVC users can enable /std:c++20 via the option C++ Language Standard under Project Properties.

Input

Listing 30.1 A Simple Multithreading Application Using std::jthread

 0: #include <thread>

 1: #include <stop_token>

 2: #include <iostream>

 3: using namespace std;

 4:

 5: void ThreadFunction(std::stop_token stopSoon)

 6: {

 7: while (true)

 8: {

 9: cout << “Worker thread: Hello!\n”;

10: std::this_thread::sleep_for(1s);

11:

12: if (stopSoon.stop_requested())

13: {

14: cout << “Worker thread: asked to end, bye\n”;

15: break;

16: }

17: }

18: }

19:

20: int main()

21: {

22: cout << “Main thread: Starting a worker thread\n”;

23:

24: // Construct a thread object (it starts execution too)

25: jthread thSayHello(ThreadFunction);

26:

27: // pause the main thread for 5 seconds

28: this_thread::sleep_for(5s);

29:

30: cout << “Main thread: Sending a stop request to worker\n”;

31: // send a stop “request” to child thread (not a kill)

32: thSayHello.request_stop();

33:

34: if (thSayHello.joinable())

35: {

36: cout << “Main thread: Waiting on worker to end\n”;

37: thSayHello.join(); // waiting on thread to end

38: cout << “Main thread: wait has ended. Exiting now\n”;

39: }

40:

41: return 0;

42: }

Output

Main thread: Starting a worker thread

Worker thread: Hello!

Worker thread: Hello!

Worker thread: Hello!

Worker thread: Hello!

Worker thread: Hello!

Main thread: Sending a stop request to worker

Main thread: Waiting on worker to end

Worker thread: asked to end, bye

Main thread: wait has ended. Exiting now

Analysis

The program in this example comprises two parts: main() and ThreadFunction(). main() executes the main thread of the application. It instantiates a worker thread that executes ThreadFunction() in parallel. ThreadFunction(), defined in Lines 5 through 18, does nothing but output Worker thread: Hello! on the screen every second. It’s programmed to keep doing this forever until a stop signal is received, in the form std::stop_token.stop_requested(). The main thread triggers the execution of the worker thread in Line 25, where ThreadFunction is passed as a parameter to the constructor of jthread.

In Line 32, the main thread sends a signal requesting the worker to end. If ThreadFunction() chose not to handle the stop token in Line 12, this request is ignored. The method joinable() returns false if it was invoked from the same thread object. It helps ensure that a thread doesn’t use join() on itself. For demonstration purposes, method joinable() is queried in Line 34 from the main thread on the worker thread object even though joinable() is certain to return true in this simple program. The actual act of getting main() to wait on the worker thread is executed in Line 37, using join().

Obviously, this is a very simple application that demonstrates the basics of instantiating a thread and waiting on it. Practical applications include sharing data between threads and therefore come with the added challenge of ensuring data integrity.

How Can Threads Transact Data?

Threads can share variables. Threads have access to globally placed data. A thread can be created with a pointer to a shared object (struct or class) with data in it, as shown in Figure 30.1.

[image: Images]

Figure 30.1 Worker and user interface threads sharing data.

Different threads can communicate by accessing or writing data that is stored in a location in memory that can be accessed by all the threads and is therefore shared. In the previously mentioned example of the defragmenter where the worker thread knows the progress and the user interface thread needs to be informed of it, the worker thread can constantly store the progress, in percentage, as an integer that the user interface thread uses to display the progress.

This is a simple case, though: One thread creates information and the other consumes it. What would happen if multiple threads wrote to and read from the same location? Some threads might start reading data when some other threads have not finished writing it. The integrity of the data in question would be compromised. This is why we need thread synchronization.

Using Mutexes and Semaphores to Synchronize Threads

Threads are OS-level entities, and the objects that you use to synchronize them are supplied by the OS, too. Most operating systems provide you with semaphores and mutexes for performing thread synchronization activity.

You use a mutex—that is, a mutual exclusion synchronization object—to ensure that one thread has access to a piece of code at a time. In other words, a mutex is used to bracket a section of code where a thread has to wait until another thread that is currently executing it is done and releases the mutex. The next thread acquires the mutex, does its job, and releases it. C++ supplies you with an implementation of a mutex in the class std::mutex, which is available via the header <mutex>.

By using semaphores, you can control the number of threads that execute a section of code. A semaphore that allows access to only one thread at a time is also called a binary semaphore.

C++20 Coroutines

C++20 introduces coroutines as an alternative that helps with efficient thread synchronization. Coroutines are functions that can be paused; that is, their execution can be suspended and restarted when suitable. The other thing that sets them apart from regular functions is that they do not use a stack. When suspended, a coroutine stores the state necessary to resume reliably outside the stack (for example, heap or free store).

Summary

Multithreading isn’t a necessity in every scenario, and the decision to use it must be taken carefully, keeping the objectives of the application in perspective. Programming multithreaded applications requires patience and thoroughness. This lesson familiarized you with key terms related to multithreading so that you can continue your learning through hands-on practice assisted by online resources.

Q&A

Q. I am quite happy with the performance of my application. Should I still implement multithreaded capabilities?

A. No, not at all. Multithreading isn’t required in every application. Only applications that need to perform tasks concurrently or that serve many users in parallel need multithreading.

Workshop

The Workshop contains exercises to help solidify your understanding of the material covered. Try to complete the exercises before checking the answers in Appendix E.

Exercise

1. What would happen to the worker thread in Listing 30.1 if the main thread didn’t use join()?

Lesson 31. C++20 Modules and C++23

You are now familiar with C++ programming. You have learned recent additions that modernize the language: lambda expressions, automatic type deductions, ranges, views, and adaptors to mention a few. We’ll now visit modules that have been introduced by the standard in C++20 but are yet to be consistently supported by popular compilers as of this writing. Before we close this lesson, we also briefly visit the amendments that C++23 is expected to bring.

In this lesson, you learn

• C++20 modules that are poised to replace header files

• New features expected in C++23

• Improving your C++ skills beyond this book

Modules

Modules are an advancement of one of the most primitive yet well-established C++ features: header files. By now, you’re undoubtedly familiar with syntax such as

#include<header>

For instance:

#include<iostream>

The Problem with #include<header>

#include<header> is a relic inherited from C. This directive is executed by the preprocessor and inserts the entire contents of <header> at the point in code where the inclusion is declared. When multiple headers are included, the preprocessor goes about inserting the text content inline, in the order of insertion. Headers often include other headers, and the preprocessor just adds to the burden on the compiler. This rather simple inclusion logic as a precursor to compilation brings a bunch of problems:

• It is unintelligent, and artifacts common to multiple headers are included repeatedly.

• It causes code explosion because code that is not relevant to the program being compiled also gets included and evaluated by the compiler.

• It slows down compilation time significantly and increases the probability of errors caused by duplicate artifact definition.

• The order of inclusion is important because other preprocessor directives such as #define MACRO with #ifdef and #ifndef influence the code that is to be compiled.

C++20 Modules

Modules are compartmentalized sections of code, where each module has a unique name. Modules can export functions, variables, and classes. They need to be imported in order for the artifacts that are exported to be consumed. A variant of the "Hello World!" program created using modules is demonstrated in Listing 31.1.

Caution

As of this writing, C++20 module support in popular compilers is incomplete and often buggy.

The modularization of standard headers such as <iostream> has not yet been standardized. This standardization is earmarked for completion in C++23.

So, don’t be surprised if Listing 31.1 doesn’t and cannot compile in your favorite environment. For now, you just need to understand the subject matter and should not worry about implementation details.

Input

Listing 31.1 A Simple "Hello World!" Program Using Modules (Compiler Compatibility Limited to MSVC)

0: import std.core; // module containing core utilities like cout

1:

2: int main()

3: {

4: std::cout << “Hello World!” << std::endl;

5: return 0;

6: }

Output

Hello World!

Analysis

The special thing about this program is that it uses modules, which are some of the newest introductions to C++. Note that this example doesn’t include the header <iostream>. The keyword import instructs the compiler to include the module std.core. In the current implementation of MSVC, the module std.core supplies all the core functions, including those supplied by <iostream>.

Programming a Module

A module has two key parts:

• The module interface unit: This is the file where the module declares artifacts that are visible outside the module (that is, artifacts that are exported from the module). It is characterized by the declaration

export module ModuleName;

For instance, a module called MyFirstModule in the file MyFirstModule.ixx would be declared like this:

// file MyFirstModule.ixx (extension ixx for MSVC)

export module MyFirstModule;

Functions and variables that the module chooses to expose to its consumers are declared in the module interface unit using the keyword export:

export int AddIntegers(int a, int b);

void FuncNotVisibleOutsideModule(); // not exported

Functions, classes, and variables that are not exported from the module continue to be visible and usable within the module but are not available outside it.

Tip

Header files cannot be included in a module unit. You can import like this them instead (don’t forget the semicolon!):

import <header>;

• The module implementation unit: This defines (that is, implements) the functions and artifacts that are declared in the module interface unit:

// file MyFirstModule.cpp

module MyFirstModule;

int AddIntegers(int a, int b)

{

 return (a + b);

}

Tip

Headers can be included in the global module fragment. When a module interface unit starts with

export module; // no module name supplied

the code that follows is said to be part of the global module fragment:

// file MyFirstModule.ixx

export module;

#include <header> // in global module fragment

export module MyFirstModule;

export int AddIntegers(int a, int b); // in module MyFirstModule

You use the global module fragment to include header files that may be required.

Consuming a Module

After you create the module MyFirstModule, you want to consume the functions it exposes. You need to import a module in the location where you need to be using it:

// main.cpp

import MyFirstModule;

int main()

{

 int sum = AddIntegers(500, 50); // exported by MyFirstModule

 // FuncNotVisibleOutsideModule(); // error: not exported, hence unavailable

 return 0;

}

Tip

An example showing modules with multiple files and demonstrating module definition, export, and import is available in Listing 31.1 and among the code files that you can download.

Why import Module; is Superior to the Preprocessor include<header>

Importing modules is more efficient than using the preprocessor to include header files for several reasons:

• Modules are compiled individually, unlike header files, which are inserted by the preprocessor as text within the contents of the .CPP file at the point of header inclusion.

• There are no dependencies between modules; therefore, the order of module import is irrelevant. (In contrast, in many cases, the order of header inclusion is relevant.)

• Only artifacts that are exported by a module are relevant outside it, and other artifacts are not. This helps speed up compilation.

C++23 Expected Features

One of the great things about C++ is that the Standards Committee is active and constantly improves the language. Building on the radical amendments introduced in C++20, the next wave of improvements to the standard is expected to complete support for these features in C++23.

Note

The features discussed in this section are likely to make it to the C++ standard but aren’t currently part of it. C++23 may not necessarily support every feature introduced here.

Key features that are expected to make it to the 2023 revision to C++ include:

• A modular standard library: When learning modules, you probably noticed the disclaimers related to importing std.core. Although modularized versions of the Standard Library have been introduced, compilers don’t yet have clear guidance on the names of the modules and what they’re required to support or export. The expectation is that C++23 will provide clarity on modularizing the Standard Library, and the changes then will be consistent across compilers and platforms.

• Library support for coroutines: Coroutines, introduced in C++20, help with thread synchronization. However, missing library support is going to hamper adoption. This barrier is expected to be lifted in C++23.

C++23 is expected to complete features introduced by C++20, such as full ranges support with relevant algorithms, including those from <numeric>. C++23 is also expected to add support for networking applications. There might be support added for executors, which are expected to govern the execution of code (functions, methods, and so on), including scheduling and processor details.

Learning C++ Doesn’t Stop Here!

Throughout these lessons, you have made great progress in learning C++. The best way to continue is to code and code some more! C++ is a sophisticated language. The more you program, the greater the understanding you will have of how it all works behind the scenes. Visit Appendix C, “Writing Great C++ Code,” to learn best practices that will help you program good, maintainable C++ code. Visit online resources and be an active participant in development communities!

Online Documentation

You are encouraged to learn more about the signatures of STL containers, their methods, algorithms, ranges, views, and adaptors by using online resources and documents. One popular site with structured resources is www.cppreference.com.

Communities for Guidance and Help

To take advantage of the rich and vibrant online communities around C++, consider these suggestions:

• Enroll at sites such as Stack Overflow (www.stackoverflow.com) and CodeGuru (www.codeguru.com), and when you have technical queries, you can get answers from those communities.

• Participate in open source C++ projects and contribute to GitHub.

• Program together with other experienced programmers.

• Be curious, learn, and share.

Summary

This concluding lesson is an invitation to keep learning more C++ on your own. You are now familiar with basic and advanced concepts of the language. You know that good code requires more than the adoption of the newest language features. You’ve learned that you typically don’t need to reinvent the wheel but can use Standard Library algorithms and features. You are ready for the world of professional programming in C++, and we wish you all the best!

Q&A

Q. I am not able to compile modules. What do I need to change?

A. As of this writing, the implementation of C++20 modules is inconsistent across compilers. You need to consult your compiler documentation. For example, when using Visual Studio, you need to ensure that the optional component on C++ modules is installed, ensure that your project is configured for C++20 (/std:c++20), and ensure that the experimental mode is switched on (/experimental:module).

Q. Why have modules been introduced in the book if the compiler support is not yet complete?

A. Modules introduced in C++20 are here to stay. It takes a while for compilers to adopt the newest standard and support new features. In exercising ample caution to ensure that stable builds are not broken, new features are introduced using switches like -std=c++20 in g++ and clang++, or /std:c++20 in MSVC that have to be explicitly enabled.

Workshop

The Workshop contains exercises to help solidify your understanding of the material covered. Try to complete the exercises before checking the answers in Appendix E.

Exercise

1. BUG BUSTERS: What is the error in the following code?

// module interface file Calculations.ixx

export module Calculations;

int AddNums(int a, int b)

{

 return (a + b);

}

// main.cpp

import Calculations;

int main()

{

 int sum = AddNums(3, 4);

 return 0;

}

Part VI: Appendixes

Appendix A. Working with Numbers: Binary and Hexadecimal

Understanding how the binary and hexadecimal number systems work is not critical to programming better applications in C++, but it helps you to better understand what happens under the hood.

Decimal Numeral System

Numbers that we use on a daily basis are in the range of 0 through 9. This set of numbers is called the decimal numeral system. Because this system is composed of 10 unique digits, it’s a system with a base of 10.

Hence, as the base is 10, the zero-based position of each digit denotes the power of 10 that the digit is multiplied with. For example, in the number 957, the zero-based position of 7 is 0, that of 5 is 1, and that of 9 is 2. These position indexes become powers of the base 10, as shown in the following example:

957 = 9 × 102 + 5 × 101 + 7 × 100 = 9 × 100 + 5 × 10 + 7

Remember that any number to the power 0 is 1 (so, 100 is the same as 10000 as both evaluate to 1).

Note

In the decimal system, powers of 10 are important. Digits in a number are multiplied by 10, 100, 1000, and so on to determine the magnitude of the number.

Binary Numeral System

A system with a base of 2 is called a binary system. The binary numeral system allows only two states and is represented by the numbers 0 and 1. These numbers in C++ typically evaluate to false and true (true being nonzero).

Just as numbers in the decimal system are evaluated to powers of base 10, those in binary are evaluated to powers of their base 2:

101 (binary) = 1 × 22 + 0 × 21 + 1 × 20 = 4 + 0 + 1 = 5 (decimal)

So, the decimal equivalent of binary 101 is 5.

Note

Digits in a binary number are multiplied by powers of 2—such as 4, 8, 16, 32, and so on—to determine the magnitude of the number. The power is decided by the zero-based place of the digit in question.

To understand the binary numeral system better, examine Table A.1, which lists the various powers of 2.

Table A.1 Powers of 2

[image: Images]

Why Do Computers Use Binary?

The binary system has been in widespread use for a comparatively short period of time. Its use has been accelerated by the development of electronics and computers. The evolution of electronics and electronic components resulted in a system that detected states of a component as being ON (that is, under a significant potential difference or voltage) or OFF (that is, no or low potential difference).

These ON and OFF states were conveniently interpreted as 1 and 0, completely representing the binary number set and making it the method of choice for performing arithmetic calculations. Logical operations, such as NOT, AND, OR, and XOR, as covered in Lesson 5, “Working with Expressions, Statements, and Operators” (in Tables 5.2 through 5.5), were easily supported by the development of electronic gates, resulting in the binary system being wholeheartedly adopted as conditional processing became easy.

What Are Bits and Bytes?

A bit is a basic unit in a computational system that contains a binary state. Thus, a bit is said to be “set” if it contains state 1 or “reset” if it contains state 0. A collection of bits is a byte. The number of bits in a byte is theoretically not fixed and is a hardware-dependent number. However, most computational systems assume 8 bits in a byte—for the simple, convenient reason that 8 is a power of 2. Assuming 8 bits in a byte also allows the transmission of up to 28 different values, allowing for 255 distinct values. These 255 distinct values are enough for the display or transaction of all characters in the ASCII character set—and more.

How Many Bytes Make a Kilobyte?

1024 bytes (210 bytes) make a kilobyte. Similarly, 1024 kilobytes make a megabyte. 1024 megabytes make a gigabyte. 1024 gigabytes make a terabyte.

Hexadecimal Numeral System

The hexadecimal numeral system has a base of 16. A digit in the hexadecimal system can be in the range 0 through 9 and A through F. For example, 10 in decimal is equivalent to A in hexadecimal, and 15 in decimal is equivalent to F in hexadecimal. Table A.2 shows how the hexadecimal digits translate to decimal.

Table A.2 Decimal and Hexadecimal Equivalents

[image: Images]

Just as numbers in a decimal system are evaluated to powers of base 10 and numbers in binary are evaluated to powers of their base 2, those in hexadecimal are evaluated to powers of base 16. Consider this example:

0x31F = 3 × 162 + 1 × 161 + F × 160 = 3 × 256 + 16 + 15 (in decimal) = 799

Note

By convention, hexadecimal numbers are represented with the prefix 0x.

Why Do We Need Hexadecimal?

Computers use the binary numeral system, and the state of each unit of memory in a computer is a 0 or a 1. However, if we humans were to interact with computer- or programming-specific information using 0s and 1s, we would need a lot of space to record even small pieces of information. A hexadecimal representation can very efficiently represent the state of 4 bits in a digit by using a maximum of two hexadecimal digits to represent the state of a byte. For example, instead of writing 1111 in binary, you are a lot more efficient writing F in hexadecimal.

Note

A less-used number system is the octal numeral system. This is a system with base 8, comprising the numbers 0 through 7.

Converting to a Different Base

When dealing with numbers, you might sometimes need to view a number in a different base. For instance, you might need to know the value of a binary number in decimal or the value of a decimal number in hexadecimal.

Earlier in this appendix, you saw how numbers can be converted from binary or hexadecimal into decimal. The following section gives you a look at converting binary and hexadecimal numbers into decimal.

The Generic Conversion Process

When converting a number in one system to another system, you successively divide with the base, starting with the number being converted. Each remainder fills places in the destination numeral system, starting with the lowest place. The next division uses the quotient of the previous division operation with the base as the divisor.

This continues until the remainder is within the destination numeral system and the quotient is 0.

This process is also called the breakdown method.

Converting Decimal to Binary

To convert decimal 33 into binary, you subtract the highest power of 2 possible (that is, 32):

Place 1: 33 / 2 = quotient 16, remainder 1

Place 2: 16 / 2 = quotient 8, remainder 0

Place 3: 8 / 2 = quotient 4, remainder 0

Place 4: 4 / 2 = quotient 2, remainder 0

Place 5: 2 / 2 = quotient 1, remainder 0

Place 6: 1 / 2 = quotient 0, remainder 1

Therefore, the binary equivalent of 33 (reading places) is 100001.

Similarly, the binary equivalent of 156 is

Place 1: 156 / 2 = quotient 78, remainder 0

Place 2: 78 / 2 = quotient 39, remainder 0

Place 3: 39 / 2 = quotient 19, remainder 1

Place 4: 19 / 2 = quotient 9, remainder 1

Place 5: 9 / 2 = quotient 4, remainder 1

Place 6: 4 / 2 = quotient 2, remainder 0

Place 7: 2 / 2 = quotient 1, remainder 0

Place 9: 1 / 0 = quotient 0, remainder 1

Therefore, the binary equivalent of 156 is 10011100.

Converting Decimal to Hexadecimal

The process of converting decimal to hexadecimal is the same as for converting decimal to binary—but you divide by base 16 instead of 2.

So, to convert decimal 5211 to hex:

Place 1: 5211 / 16 = quotient 325, remainder B16 (1110 is B16)

Place 2: 325 / 16 = quotient 20, remainder 5

Place 3: 20 / 16 = quotient 1, remainder 4

Place 4: 1 / 16 = quotient 0, remainder 1

Therefore, 521110 = 145B16.

Tip

To better understand how different number systems work, you can write a simple C++ program similar to Listing 27.1 in Lesson 27, “Using Streams for Input and Output.” It uses std::cout with manipulators for displaying an integer in hex, decimal, and octal notations.

To display an integer in binary, you can use std::bitset, as explained in Lesson 25, “Working with Bit Flags Using the STL,” deriving inspiration from Listing 25.1.

Appendix B. C++ Keywords

Keywords are reserved in a compiler for use by the C++ language. You cannot define classes, variables, or functions that have the following keywords as their names.

alignas

alignof

and

and_eq

asm

auto

bitand

bitor

bool

break

case

catch

char

char8_t

char16_t

char32_t

class

compl

concept

const

consteval

constexpr

constinit

const_cast

continue

decltype

default

delete

do

double

dynamic_cast

else

enum

explicit

export

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

noexcept

not

not_eq

nullptr

operator

or

or_eq

private

protected

public

register

reinterpret_cast

requires

return

short

signed

sizeof

static

static_assert

static_cast

struct

switch

template

this

thread_local

throw

true

try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while

xor

xor_eq

Note

Lesson 10, “Implementing Inheritance,” and Lesson 11, “Polymorphism,” introduce two identifiers: final and override. These are not reserved C++ keywords, and you can name your objects and functions after them. However, they carry special meanings when accompanying certain constructs, as explained in Lessons 10 and 11. Similarly, import and module, introduced in Lesson 31, “C++20 Modules and C++23,” are also identifiers.

Appendix C. Writing Great C++ Code

C++ has evolved significantly since it was first conceived. In addition, standardization efforts made by major compiler manufacturers and the availability of utilities and functions help you write compact and clean C++ code. It is indeed easy to program readable and reliable C++ applications.

Here is a short list of best practices that help you create good C++ applications:

• Give your variables names that make sense (to others as well as to you). Thoughtfully named variables increase the maintainability of code.

• Always initialize a pointer value to a valid address, such as the address returned by the operator new.

• Never take the success of the operator new for granted. Code that performs resource allocation should always be made exception safe (that is, bracketed within try with corresponding catch() blocks).

• When using arrays, never cross the bounds of the array buffer. Doing so is called a buffer overflow and can be exploited as a security vulnerability.

• Don’t use char* string buffers or functions such as strlen() and strcpy(). std::string is safer and provides many useful utility methods, including methods that help you find the length, copy, and append.

• Use a static array only when you are certain of the number of elements it will contain. If you are not certain of the number, use a dynamic array such as std::vector.

• When declaring and defining functions that take non-POD (plain old data) types as input, consider declaring parameters as reference parameters to avoid the unnecessary copy step when the function is called.

• If a class contains a raw pointer member (or members), give thought to how memory resource ownership needs to be managed in the event of a copy or an assignment. That is, consider programming the copy constructor and copy assignment operator.

• When writing a utility class that manages dynamically allocated resources, remember to program the move constructor and the move assignment operator for better performance.

• Remember to make your code const correct. A get() function should ideally not be able to modify the class’s members and hence should be a const. Similarly, function parameters should be const references unless you want to change the values they contain.

• Avoid using raw pointers. Instead, use the appropriate smart pointers where possible.

• When programming a utility class, make the effort to support operators that will make consuming and using the class easy.

• Given an option, choose a template version over a macro. Templates offer type safety and are generic.

• When programming a class that will be collected in a container, such as a vector or a list, or a class that will be used as a key element in a map, remember to support the operator <, which helps define the default sort criteria.

• If a lambda function gets too large, consider making a function object of it. A class with operator() as the functor is reusable and provides a single point of maintenance.

• Never throw from the destructor of a class.

• Comment your code adequately.

• Use constants such as std::numbers::pi that are supplied by C++20 in the header <numbers> instead of defining your own.

This is not an exhaustive list, but it covers some of the most important points that will help you write good and maintainable C++ code.

Appendix D. ASCII Codes

Computers work using bits and bytes, which are essentially numbers. To represent character data in this numeric system, the standard American Standard Code for Information Interchange (ASCII) is prevalently used. ASCII assigns 7-bit numeric codes to Latin characters A–Z, a–z, numbers 0–9, some special keystrokes (for example, Delete), and special characters (such as backspace).

7 bits allow for 128 combinations, with the first 32 (0–31) reserved as control characters used to interface with peripherals such as printers.

ASCII Table of Printable Characters

ASCII codes 32–127 are used for printable characters such as 0–9, A–Z, and a–z, as well as a few others, such as space. Table D.1 shows the decimal and hexadecimal values reserved for these symbols.

Table D.1 Printable Characters

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

Appendix E. Answers

Answers for Lesson 1

Quiz

1. A compiled language like C++ helps create executables—that is, instructions that run natively on a processor. An interpreted language like JavaScript needs an interpreter at runtime. An interpreter is a tool that reads the content of the script file and performs the desired actions.

2. A compiler takes C++ code files as input and generates the corresponding object files in machine language. In doing so, dependencies on functions and libraries used by other code files remain unresolved. The linker then takes over and generates an executable that is the final output of the build process, wherein all dependencies are resolved and linked.

3. Code. Compile to create object file. Link to create an executable. Execute to test. Debug. Fix errors in code. Deploy, especially in a cloud environment. Repeat. In many cases, compilation and linking are completed as one step.

Exercises

1. Display the result of subtracting y from x, multiplying the two, and adding the two.

2. Output should be

2 48 14

3. A preprocessor command to include iostream, as seen in Line 1, should start with #, as in this example:

#include <iostream>

4. It displays the following:

Hello Buggy World

Answers for Lesson 2

Quiz

1. Code in C++ is case-sensitive. Int is not acceptable to the compiler as an integer type int.

2. Yes.

/* if you comment using this C-style syntax

then you can span your comment over multiple lines */

Exercises

1. It fails because case-sensitive C++ compilers don’t know what std::Cout is or why the string following it doesn’t start with an opening quote ("). In addition, the declaration of main should always return an int.

2. Here is the corrected version:

#include <iostream>

int main()

{

 std::cout << “Is there a bug here?”; // no bug anymore

 return 0;

}

3. This program, derived from Listing 2.4, demonstrates subtraction and multiplication:

#include <iostream>

using namespace std;

// Function declaration

int DemoConsoleOutput();

int main()

{

 // Call i.e. invoke the function

 DemoConsoleOutput();

 return 0;

}

// Function definition

int DemoConsoleOutput()

{

 cout << “10 - 5 = “ << 10 - 5 << endl;

 cout << “10 * 5 = “ << 10 * 5 << endl;

 return 0;

}

Output

10 - 5 = 5

10 * 5 = 50

Answers for Lesson 3

Quiz

1. In a signed integer, the most-significant-bit (MSB) functions as the sign bit and indicates whether the value of the integer is positive or negative. An unsigned integer, in comparison, is used to contain only positive integer values.

2. #define is a preprocessor directive that directs the compiler to do a text replacement wherever the defined value is seen. However, it is not type safe, and using #define is a primitive way of defining constants. Therefore, it is to be avoided.

3. To ensure that it contains a definite, non-random value.

4. 2.

5. There is nothing wrong syntactically, but the name is nondescriptive and not reader friendly. Although this statement would compile, code like this becomes difficult to maintain and should be avoided. An integer is better declared using a name that reveals its purpose. For example:

int age = 0;

Exercises

1. There are many ways of achieving this, including the following:

enum YourCards {Ace = 43, Jack, Queen, King};

// Ace is 43, Jack is 44, Queen is 45, King is 46

// Alternatively..

enum YourCards {Ace, Jack, Queen = 45, King};

// Ace is 0, Jack is 1, Queen is 45 and King is 46

2. See Listing 3.4 and adapt it (reduce it) to get the answer to this question.

3. Here is a program that asks you to enter the radius of a circle and then calculates the area and circumference for you:

#include <iostream>

using namespace std;

int main()

{

 const double Pi = 3.1416;

 cout << “Enter circle’s radius: “;

 double radius = 0;

 cin >> radius;

 cout << “Area = “ << Pi * radius * radius << endl;

 cout << “Circumference = “ << 2 * Pi * radius << endl;

 return 0;

}

Output

Enter circle’s radius: 4

Area = 50.2656

Circumference = 25.1328

4. You get a compilation warning (not an error) if you store the result of calculating area and circumference in an integer. The output looks like this:

Enter circle’s radius: 4

Area = 50

Circumference = 25

5. auto is a construct with which the compiler automatically deduces the type of variable by using the value it is being initialized to. The code in question does not contain an initialization and hence fails compilation. Here is an improvement:

auto age = 21; // initialized to 21

Answers for Lesson 4

Quiz

1. 0 and 4 are the zero-based indexes of the first and last elements of an array with five elements.

2. No. They are unsafe, especially in handling user input, giving the user an opportunity to enter a string longer than the length of the array.

3. One null-terminating character.

4. It depends on how you use it. If you use it in a cout statement, for instance, the display logic reads successive characters, seeking a terminating null, and crosses the bounds of the array, possibly causing your application to crash.

5. That would simply replace the int in the vector’s declaration by char:

vector<char> dynArrChars(3);

Exercises

1. This example initializes for rooks, but it’s enough for you to get an idea:

int main()

{

 enum Square

 {

 Empty = 0,

 Pawn,

 Rook,

 Knight,

 Bishop,

 King,

 Queen

 };

 Square chessBoard[8][8]; // 8 rows x 8 columns

 // Initialize the squares containing rooks

 chessBoard[0][0] = chessBoard[0][7] = Rook;

 chessBoard[7][0] = chessBoard[7][7] = Rook;

 return 0;

}

2. To set the fifth element of an array, you need to access the element at index 4 (that is, myNums[4]) because arrays use a zero-based index.

Answers for Lesson 5

Quiz

1. Integer types cannot contain decimal values that are possibly relevant for the user who wants to divide two numbers. So, you would use float.

2. As the compiler interprets them to be an integer, it is 4.

3. As the numerator is 32.0 and not 32, the compiler interprets this to be a floating-point operation and creates a result in a float that is akin to 4.571.

4. No. sizeof is an operator.

5. It does not work as intended because the addition operator has priority over shift, resulting in a shift of 1 + 5 = 6 bits instead of just 1 bit.

6. The result of XOR is false, as also indicated in Table 5.5.

Exercises

1. Here is a correct solution:

int result = ((number << 1) + 5) << 1;

2. The result contains the number shifted 7 bits left, as the operator + takes priority over the operator <<.

3. Here is a program that stores two Boolean values entered by the user and demonstrates the result of using bitwise operators on them:

#include <iostream>

using namespace std;

int main()

{

 cout << “Enter a boolean value true(1) or false(0): “;

 bool value1 = false;

 cin >> value1;

 cout << “Enter another boolean value true(1) or false(0): “;

 bool value2 = false;

 cin >> value2;

 cout << “Result of bitwise operators on these operands: “ << endl;

 cout << “Bitwise AND: “ << (value1 & value2) << endl;

 cout << “Bitwise OR: “ << (value1 | value2) << endl;

 cout << “Bitwise XOR: “ << (value1 ^ value2) << endl;

 return 0;

}

Output

Enter a boolean value true(1) or false(0): 1

Enter another boolean value true(1) or false(0): 0

Result of bitwise operators on these operands:

Bitwise AND: 0

Bitwise OR: 1

Bitwise XOR: 1

Answers for Lesson 6

Quiz

1. You indent not for sake of the compiler but for the sake of other programmers (humans) who might need to read or understand your code.

2. You avoid it to keep your code from getting unintuitive and expensive to maintain.

3. See the code in the solution to Exercise 1 that uses the decrement operator.

4. Because the condition in the for statement is not satisfied, the loop won’t execute even once, and the cout statement it contains is never executed.

Exercises

1. You need to be aware that array indexes are zero based, and the last element is at index Length – 1:

#include <iostream>

using namespace std;

int main()

{

 const int ARRAY_LEN = 5;

 int myNums[ARRAY_LEN]= {-55, 45, 9889, 0, 45};

 for(int index = ARRAY_LEN - 1; index >= 0; --index)

 cout << “myNums[” << index << “] = “ << myNums[index] << endl;

 return 0;

}

Output

myNums[4] = 45

myNums[3] = 0

myNums[2] = 9889

myNums [1] = 45

myNums [0] = -55

2. One nested loop equivalent of Listing 6.13 that adds elements in two arrays in the reverse order is provided here:

#include <iostream>

using namespace std;

int main()

{

 const int ARRAY1_LEN = 3;

 const int ARRAY2_LEN = 2;

 int myNums1[ARRAY1_LEN] = {35, -3, 0};

 int MyInts2[ARRAY2_LEN] = {20, -1};

 cout << “Adding each int in myNums1 by each in MyInts2:” << endl;

 for(int index1 = ARRAY1_LEN - 1; index1 >= 0; --index1)

 for(int index2 = ARRAY2_LEN - 1; index2 >= 0; --index2)

 cout << myNums1[index1] << “ + “ << MyInts2[index2] \

 << “ = “ << myNums1[index1] + MyInts2[index2] << endl;

 return 0;

}

Output

Adding each int in myNums1 by each in myNums2:

0 + -1 = -1

0 + 20 = 20

-3 + -1 = -4

-3 + 20 = 17

35 + -1 = 34

35 + 20 = 55

3. You need to replace the constant integer numsToCalculate with a value fixed at 5 with code that asks the user the following:

cout << “How many Fibonacci numbers you wish to calculate: “;

int numsToCalculate = 0; // no const

cin >> numsToCalculate;

4. The following is a switch-case construct using enumerated constants that tells if a color is in the rainbow:

#include <iostream>

using namespace std;

int main()

{

 enum Colors

 {

 Violet = 0,

 Indigo,

 Blue,

 Green,

 Yellow,

 Orange,

 Red,

 Crimson,

 Beige,

 Brown,

 Peach,

 Pink,

 White,

 };

 cout << “Here are the available colors: “ << endl;

 cout << “Violet: “ << Violet << endl;

 cout << “Indigo: “ << Indigo << endl;

 cout << “Blue: “ << Blue << endl;

 cout << “Green: “ << Green << endl;

 cout << “Yellow: “ << Yellow << endl;

 cout << “Orange: “ << Orange << endl;

 cout << “Red: “ << Red << endl;

 cout << “Crimson: “ << Crimson << endl;

 cout << “Beige: “ << Beige << endl;

 cout << “Brown: “ << Brown << endl;

 cout << “Peach: “ << Peach << endl;

 cout << “Pink: “ << Pink << endl;

 cout << “White: “ << White << endl;

 cout << “Choose one by entering code: “;

 int YourChoice = Blue; // initial

 cin >> YourChoice;

 switch(YourChoice)

 {

 case Violet:

 case Indigo:

 case Blue:

 case Green:

 case Yellow:

 case Orange:

 case Red:

 cout << “Bingo, your choice is a Rainbow color!” << endl;

 break;

 default:

 cout << “The color you chose is not in the rainbow” << endl;

 break;

 }

 return 0;

}

Output

Here are the available colors:

Violet: 0

Indigo: 1

Blue: 2

Green: 3

Yellow: 4

Orange: 5

RED: 6

Crimson: 7

Beige: 8

Brown: 9

Peach: 10

Pink: 11

White: 12

Choose one by entering code: 4

Bingo, your choice is a Rainbow color!

5. The programmer unintentionally made an assignment to 10 in the for loop condition statement.

6. The while statement is followed by the null statement ; on the same line. Thus, the intended loop following the while is never reached, and because loopCounter, which governs the while is never incremented, the while does not end, and the statements following it are never executed.

7. There is a missing break statement under case 4 (which means the default case always executes).

Answers for Lesson 7

Quiz

1. The scope of these variables is the life of the function.

2. someNumber is a reference to the variable in the calling function. It does not hold a copy.

3. A recursive function.

4. Overloaded functions.

5. Top! Visualize a stack of plates; the one at the top is available for withdrawal, and that is what the stack pointer points to.

Exercises

1. The function prototypes would look like this:

double Volume(double radius); // sphere

double Volume (double radius, double height); // cylinder

The function implementations (definitions) use the respective formulas supplied in the question and return the area to the caller as a return value.

2. Let Listing 7.8 inspire you. The function prototype is as follows:

void ProcessArray(double numbers[], int length);

3. The parameter result ought to be a reference for the function Area() to be effective:

void Area(double radius, double &result)

4. The default parameter should be listed at the end; otherwise, you will have a compile error. Alternatively, all parameters should have default values specified.

5. The function needs to return its output data by reference to the caller:

void Calculate(double radius, double &Area, double &Circumference)

{

 Area = 3.14 * radius * radius;

 Circumference = 2 * 3.14 * radius;

}

Answers for Lesson 8

Quiz

1. If the compiler let you do that, it would be an easy way to break exactly what const references were meant to protect: the data being referred to that cannot be changed.

2. They’re operators.

3. A memory address.

4. The operator *.

Exercises

1. 40.

2. In the first overloaded variant, the arguments are copied to the called function. In the second variant, they’re not copied as they’re references to the variables in the caller, and the function can change them. The third variant uses pointers, which (unlike references) can be NULL or invalid, and validity needs to be ensured in such a system.

3. Use the const keyword:

1: const int* pNum1 = &number;

4. It is assigning an integer to a pointer directly (that is, overwriting the contained memory address by an integer value). This is the correct version:

*pointToAnInt = 9; // previously: pointToAnInt = 9;

5. There is a double delete on the same memory address returned by new to pNumber and duplicated in pNumberCopy. Remove one delete.

6. 30.

Answers for Lesson 9

Quiz

1. On the free store. This is the same as it would be if you allocated for an int using new.

2. sizeof() calculates the size of a class on the basis of the declared data members. As sizeof(pointer) is constant and independent of the mass of data being pointed to, the sizeof(Class) containing one such pointer member isn’t affected by the number of integers being pointed to.

3. None except member methods of the same class.

4. Yes, it can.

5. A constructor is typically used to initialize data members and resources.

6. Destructors are typically used for releasing resources and deallocating memory.

Exercises

1. C++ is case-sensitive. A class declaration should start with class, not Class, and it should end with a semicolon (;), as shown here:

class Human

{

 int Age;

 string Name;

public:

 Human() {}

};

2. Remember that members of a class, unlike those in a struct, are private by default. As Human::Age is a private member and as there is no public accessor function, there is no way that the user of this class can access Age.

3. Here is a version of the class Human with an initialization list in the constructor:

class Human

{

 int Age;

 string Name;

public:

 Human(string inputName, int inputAge)

 : Name(inputName), Age(inputAge) {}

};

4. Note that pi has not been exposed outside the class, as required:

#include <iostream>

using namespace std;

class Circle

{

 const double Pi;

 double radius;

public:

 Circle(double InputRadius) : radius(InputRadius), Pi(3.1416) {}

 double GetCircumference()

 {

 return 2*Pi*radius;

 }

 double GetArea()

 {

 return Pi*radius*radius;

 }

};

int main()

{

 cout << “Enter a radius: “;

 double radius = 0;

 cin >> radius;

 Circle myCircle(radius);

 cout << “Circumference = “ << myCircle.GetCircumference() << endl;

 cout << “Area = “ << myCircle.GetArea() << endl;

 return 0;

}

Answers for Lesson 10

Quiz

1. Use the access specifier protected to ensure that members of the base class are visible to the derived class.

2. The base part of the derived class object gets copied and passed as an argument. The resulting behavior due to “slicing” can be unpredictable. Avoid slicing by ensuring that functions accept parameters by reference instead of by value. This avoids the copy step and the slicing that is a result of copying.

3. Composition for design flexibility.

4. Use it to unhide base class methods.

5. No. The first class that specializes Base—that is, the class Derived—has a private inheritance relationship with Base. Thus, public members of the class Base are private to the class SubDerived and hence are not accessible.

Exercises

1. Construction occurs in the order mentioned in the class declaration: Mammal, Bird, Reptile, and Platypus. Destruction occurs in the reverse order.

2. Like this:

class Shape

{

 // ... Shape members

};

class Polygon: public Shape

{

 // ... Polygon members

};

class Triangle: public Polygon

{

 // ... Triangle members

};

3. The inheritance relationship between the classes D1 and Base should be private to restrict the class D2 from accessing the public members of Base.

4. Classes inherit private by default. If Derived were a struct, the inheritance would be public.

5. SomeFunc() accepts a parameter of type Base by value. Calling SomeFunc() using an instance of Derived will result in slicing, which leads to instability and unpredictable output:

Derived objectDerived;

SomeFunc(objectDerived); // slicing problems

You would solve this problem by ensuring that SomeFunc() accepts the parameter by reference:

void SomeFunc(Base& value) // avoids copy and slicing

{

 // ...

}

Answers for Lesson 11

Quiz

1. Declare an abstract base class Shape with Area() and Print() as pure virtual functions, thereby forcing Circle and Triangle to implement pure virtual functions. Circle and Triangle are then forced to comply with your criteria requiring support for Area() and Print().

2. No. It creates virtual function tables only for classes that contain virtual functions.

3. Yes. It still cannot be instantiated. As long as a class has at least one pure virtual function, it remains an abstract base class (ABC), regardless of the presence or absence of other fully defined functions or parameters.

Exercises

1. The inheritance hierarchy using an abstract base class Shape for the classes Circle and Triangle is shown here:

#include<iostream>

using namespace std;

class Shape

{

public:

 virtual double Area() = 0;

 virtual void Print() = 0;

 virtual ~Shape() {};

};

class Circle

{

 double radius;

public:

 Circle(double inputRadius) : radius(inputRadius) {}

 double Area()

 {

 return 3.1415 * radius * radius;

 }

 void Print()

 {

 cout << “Circle says hello!” << endl;

 }

};

class Triangle

{

 double base, height;

public:

 Triangle(double inputBase, double inputHeight) : base(inputBase), height(inputHeight) {}

 double Area()

 {

 return 0.5 * base * height;

 }

 void Print()

 {

 cout << “Triangle says hello!” << endl;

 }

};

int main()

{

 Circle myRing(5);

 Triangle myWarningTriangle(6.6, 2);

 cout << “Area of circle : “ << myRing.Area() << endl;

 cout << “Area of triangle : “ << myWarningTriangle.Area() << endl;

 myRing.Print();

 myWarningTriangle.Print();

 return 0;

}

There is a missing virtual destructor! Correct the code to

virtual ~Vehicle(){}

3. Without a virtual destructor, the constructor sequence would be Vehicle() followed by Car(), whereas the nonvirtual destructor would result only in ~Vehicle() being invoked. The destructor ~Car() isn’t invoked.

Answers for Lesson 12

Quiz

1. You can program two implementations of the operator []: one defined as a const function and the other not. In this case, the C++ compiler picks the const version for const instances of the class:

const Type& operator[](int index) const;

Type& operator[](int Index);

2. Yes, but only if you don’t want your class to allow copying or assignment. Such a restriction would be necessary when programming a singleton—that is, a class that permits the existence of only one instance. Listing 9.10 in Lesson 9, “Classes and Objects,” demonstrates a singleton class.

3. Because there are no dynamically allocated resources contained within the class Date that cause redundant memory allocation and deallocation cycles within the copy constructor or copy assignment operator, this class is not a good candidate for a move constructor or move assignment operator.

Exercises

1. The conversion operator int() can be as shown here:

class Date

{

 int day, month, year;

public:

 explicit operator int()

 {

 return ((year * 10000) + (month * 100) + day);

 }

 // constructor etc

};

2. Use the move constructor and move assignment operators from Listing 12.12 as inspiration. Modify code defining the class MyBuffer to manage a pointer to float instead of int.

Answers for Lesson 13

Quiz

1. dynamic_cast.

2. Correct the function, of course. Using const_cast and casting operators in general should be a last resort.

3. True.

4. Yes, true.

Exercises

1. The result of a dynamic_cast operation should always be checked for validity:

void DoSomething(base* pBase)

{

 Derived* objDerived = dynamic_cast <Derived*>(pBase);

 if(objDerived) // check for validity

 objDerived->DerivedClassMethod();

}

2. Use static_cast as you know that the object being pointed to is of type Tuna. Using Listing 13.1 as a base, here is what main() would look like:

int main()

{

 Fish* objFish = new Tuna;

 Tuna* objTuna = static_cast<Tuna*>(objFish);

 // Tuna::BecomeDinner will work only using valid Tuna*

 objTuna->BecomeDinner();

 // virtual destructor in Fish ensures invocation of ~Tuna()

 delete objFish;

 return 0;

}

Answers for Lesson 14

Quiz

1. A preprocessor construct that keeps you from recursively including header files.

2. 4.

3. 10 + 10 / 5 = 10 + 2 = 12.

4. Use parentheses:

#define SPLIT(x) ((x) / 5)

Exercises

1. Here it is:

#define MULTIPLY(a,b) ((a)*(b))

2. This is the template version of the macro in the answer to Quiz Question 4:

template<typename T> double Split(const T& input)

{

 return (input / 5);

}

3. The template version of swap would be:

template <typename T>

void Swap(T& x, T& y)

{

 T temp = x;

 x = y;

 y = temp;

}

4. #define QUARTER(x) ((x)/ 4)

5. The template class definition would look like this:

template <typename Array1Type, typename Array2Type>

class TwoArrays

{

private:

 Array1Type Array1 [10];

 Array2Type Array2 [10];

public:

 Array1Type& GetArray1Element(unsigned int index){return Array1[index];}

 Array2Type& GetArray2Element(unsigned int index){return Array2[index];}

};

6. Here is a full sample containing a Display() function that features variable templates:

#include <iostream>

using namespace std;

void Display()

{

}

template <typename First, typename ...Last> void Display(First a, Last... U)

{

 cout << a << endl;

 Display(U...);

}

int main()

{

 Display(’a’);

 Display(3.14);

 Display(’a’, 3.14);

 Display(’z’, 3.14567, “The power of variadic templates!");

 return 0;

}

Output

a

3.14

a

3.14

z

3.14567

The power of variadic templates!

Answers for Lesson 15

Quiz

1. std::deque. Only a deque simulates a dynamic array and also allows constant-time insertions at the beginning and at the end of the container. std::vector does not allow insertions at the beginning and is therefore not suitable.

2. You would use std::set. Alternatively, you could use std::map if you have key/value pairs. If the keys are required to be non-unique, too, then you can choose std::multiset or std::multimap.

3. Yes. When you instantiate a std::set template, you can optionally supply a second template parameter that is a binary predicate that the set class uses as the sort criterion. Program this binary predicate to criteria that are relevant to your requirements. It needs to be strict-weak ordering compliant.

4. These are called iterators. Iterators form the bridge between algorithms and containers so that algorithms (which are generic) can work on containers without having to know (that is, be customized for) every container type possible.

5. hash_set is not a C++ Standard-compliant container. So, you should not use it in any application that has portability listed as one of its requirements. Use std::unordered_set instead.

Answers for Lesson 16

Quiz

1. std::basic_string <T>

2. Copy the two strings into two string objects. Convert each copied string into either lowercase or uppercase. Return the result of comparison of the converted copied strings.

Exercises

1. The program needs to use std::reverse():

#include <string>

#include <iostream>

#include <algorithm>

int main()

{

 using namespace std;

 cout << “Please enter a word for palindrome-check:” << endl;

 string strInput;

 cin >> strInput;

 string strCopy(strInput);

 reverse(strCopy.begin(), strCopy.end());

 if(strCopy == strInput)

 cout << strInput << “ is a palindrome!” << endl;

 else

 cout << strInput << “ is not a palindrome.” << endl;

 return 0;

}

2. Use std::find():

#include <string>

#include <iostream>

using namespace std;

// Find the number of character ’chToFind’ in string “strInput”

int GetNumCharacters(string& strInput, char chToFind)

{

 int nNumCharactersFound = 0;

 size_t nCharOffset = strInput.find(chToFind);

 while(nCharOffset != string::npos)

 {

 ++nNumCharactersFound;

 nCharOffset = strInput.find(chToFind, nCharOffset + 1);

 }

 return nNumCharactersFound;

}

int main()

{

 cout << “Please enter a string:” << endl << “> “;

 string strInput;

 getline(cin, strInput);

 int nNumVowels = GetNumCharacters(strInput, ’a’);

 nNumVowels += GetNumCharacters(strInput, ’e’);

 nNumVowels += GetNumCharacters(strInput, ’i’);

 nNumVowels += GetNumCharacters(strInput, ’o’);

 nNumVowels += GetNumCharacters(strInput, ’u’);

 // DIY: handle capitals too..

 cout << “The number of vowels in that sentence is:” << nNumVowels;

 return 0;

}

3. Use the function toupper():

#include <string>

#include <iostream>

#include <algorithm>

int main()

{

 using namespace std;

 cout << “Please enter a string for case-conversion:” << endl;

 cout << “> “;

 string strInput;

 getline(cin, strInput);

 cout << endl;

 for(size_t nCharIndex = 0

 ; nCharIndex < strInput.length()

 ; nCharIndex += 2)

 strInput[nCharIndex] = toupper(strInput[nCharIndex]);

 cout << “The string converted to upper case is: “ << endl;

 cout << strInput << endl << endl;

 return 0;

}

4. This can be simply programmed as

#include <string>

#include <iostream>

int main()

{

 using namespace std;

 const string str1 = “I”;

 const string str2 = “Love”;

 const string str3 = “STL”;

 const string str4 = “String.”;

 string strResult = str1 + “ “ + str2 + “ “ + str3 + “ “ + str4;

 cout << “The sentence reads:” << endl;

 cout << strResult;

 return 0;

}

5. Use std::string::find():

#include <iostream>

#include <string>

int main()

{

 using namespace std;

 string sampleStr("Good day String! Today is beautiful!");

 cout << “Sample string is: “ << sampleStr << endl;

 cout << “Locating all instances of character ’a’” << endl;

 auto charPos = sampleStr.find(’a’, 0);

 while(charPos != string::npos)

 {

 cout << “’” << ’a’ << “’ found”;

 cout << “ at position: “ << charPos << endl;

 // Make the ’find’ function search forward from the next character onwards

 size_t charSearchPos = charPos + 1;

 charPos = sampleStr.find(’a’, charSearchPos);

 }

 return 0;

}

Output

Sample string is: Good day String! Today is beautiful!

Locating all instances of character ’a’

’a’ found at position: 6

’a’ found at position: 20

’a’ found at position: 28

Answers for Lesson 17

Quiz

1. No, they can’t. Elements can only be added at the back (that is, the end) of a vector sequence in constant time. Insertion at the beginning or the middle of a vector is a linear-time activity.

2. 10 more. At the 11th insertion, you trigger a reallocation.

3. Deletes the last element; that is, removes the element at the back.

4. Type Mammal.

5. Via the subscript operator ([]) or the method at().

6. Random-access iterator.

Exercises

1. One solution is

#include <vector>

#include <iostream>

using namespace std;

char DisplayOptions()

{

 cout << “What would you like to do?” << endl;

 cout << “Select 1: To enter an integer” << endl;

 cout << “Select 2: Query a value given an index” << endl;

 cout << “Select 3: To display the vector” << endl;

 cout << “Select 4: To quit!” << endl << “> “;

 char ch;

 cin >> ch;

 return ch;

}

int main()

{

 vector<int> vecData;

 char chUserChoice = ’\0’;

 while((chUserChoice = DisplayOptions()) != ’4’)

 {

 if(chUserChoice == ’1’)

 {

 cout << “Please enter an integer to be inserted: “;

 int dataInput = 0;

 cin >> dataInput;

 vecData.push_back(dataInput);

 }

 else if(chUserChoice == ’2’)

 {

 cout << “Please enter an index between 0 and “;

 cout << (vecData.size() - 1) << “: “;

 size_t index = 0;

 cin >> index;

 if(index < (vecData.size()))

 {

 cout<<”Element [”<<index<<”] = “<<vecData[index];

 cout << endl;

 }

 }

 else if(chUserChoice == ’3’)

 {

 cout << “The contents of the vector are: “;

 for(size_t index = 0; index < vecData.size(); ++ index)

 cout << vecData [index] << ’ ’;

 cout << endl;

 }

 }

 return 0;

}

2. There are many possible solutions. The simplest one is to use the std::find() algorithm:

auto elementFound = std::find(vecData.begin(),

 vecData.end(), value);

if(elementFound != vecData.end())

 cout << “Element found!” << endl;

3. Here is a possible solution:

#include <vector>

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

char DisplayOptions()

{

 cout << “What would you like to do?” << endl;

 cout << “Select 1: To enter length & breadth “ << endl;

 cout << “Select 2: Query a value given an index” << endl;

 cout << “Select 3: To display dimensions of all packages” << endl;

 cout << “Select 4: To quit!” << endl << “> “;

 char ch;

 cin >> ch;

 return ch;

}

class Dimensions

{

 int length, breadth;

 string strOut;

public:

 Dimensions(int inL, int inB) : length(inL), breadth(inB) {}

 operator const char*()

 {

 stringstream os;

 os << “Length “s << length << “, Breadth: “s << breadth << endl;

 strOut = os.str();

 return strOut.c_str();

 }

};

int main()

{

 vector <Dimensions> vecData;

 char chUserChoice = ’\0’;

 while((chUserChoice = DisplayOptions()) != ’4’)

 {

 if(chUserChoice == ’1’)

 {

 cout << “Please enter length and breadth: “ << endl;

 int length = 0, breadth = 0;

 cin >> length;

 cin >> breadth;

 vecData.push_back(Dimensions(length, breadth));

 }

 else if(chUserChoice == ’2’)

 {

 cout << “Please enter an index between 0 and “;

 cout <<(vecData.size() - 1) << “: “;

 size_t index = 0;

 cin >> index;

 if(index <(vecData.size()))

 {

 cout << “Element [” << index << “] = “ << vecData[index];

 cout << endl;

 }

 }

 else if(chUserChoice == ’3’)

 {

 cout << “The contents of the vector are: “;

 for(size_t index = 0; index < vecData.size(); ++index)

 cout << vecData[index] << ’ ’;

 cout << endl;

 }

 }

 return 0;

}

Note the use of vector to store instances of the class Dimensions. Also note how Dimensions implements the operator const char* so that std::cout can directly work on instances of it.

4. List initializations, introduced in 2011, make the code compact:

#include <deque>

#include <string>

#include <iostream>

using namespace std;

template<typename T>

void DisplayDeque(deque<T> inDQ)

{

 for(auto element = inDQ.cbegin();

 element != inDQ.cend();

 ++element)

 cout << *element << endl;

}

int main()

{

 deque<string> strDq{ “Hello”s, “Containers are cool”s, “C++ is evolving!”s };

 DisplayDeque(strDq);

 return 0;

}

Answers for Lesson 18

Quiz

1. Elements can be inserted in the middle of the list as they can be at either end. There is no gain or loss in performance due to position.

2. The specialty of the list is that operations such as these don’t invalidate existing iterators.

3. theList.clear();

or

theList.erase(theList.begin(), theList.end());

4. Yes, an overloaded version of the insert() function enables you to insert a range from a source collection.

Exercises

1. This is like the solution for Exercise 1 for vector in Lesson 17, “STL Dynamic Array Classes.” The only change is that you use the list::insert() function as

List.insert(List.begin(), dataInput);

2. Store iterators to two elements in a list. Insert an element in the middle, using the list’s insert() function. Use the iterators to demonstrate that they are still able to fetch the values they pointed to before the insertion.

3. A possible solution is

#include <vector>

#include <list>

#include <iostream>

using namespace std;

int main()

{

 vector<int> vecData{ 0, 10, 20, 30 };

 list<int> linkInts;

 // Insert contents of vector into beginning of list

 linkInts.insert(linkInts.begin(),

 vecData.begin(), vecData.end());

 cout << “The contents of the list are: “;

 list<int>::const_iterator element;

 for(element = linkInts.begin();

 element != linkInts.end();

 ++element)

 cout << *element << “ “;

 return 0;

}

4. A possible solution is

#include <list>

#include <string>

#include <iostream>

using namespace std;

int main()

{

 list <string> names;

 names.push_back("Jack");

 names.push_back("John");

 names.push_back("Anna");

 names.push_back("Skate");

 cout << “The contents of the list are: “;

 list <string>::const_iterator element;

 for(element = names.begin(); element != names.end(); ++element)

 cout << *element << “ “;

 cout << endl;

 cout << “The contents after reversing are: “;

 names.reverse();

 for(element = names.begin(); element != names.end(); ++element)

 cout << *element << “ “;

 cout << endl;

 cout << “The contents after sorting are: “;

 names.sort();

 for(element = names.begin(); element != names.end(); ++element)

 cout << *element << “ “;

 cout << endl;

 return 0;

}

Answers for Lesson 19

Quiz

1. The default sort criterion is specified by std::less<>, which effectively uses the operator < to compare two integers and returns true if the first is less than the second.

2. Given that a multiset sorts elements on insertion, you would find the two elements of equal value together, one after another.

3. size(), as is the case with all other STL containers.

Exercises

1. One solution is

#include <set>

#include <iostream>

#include <string>

using namespace std;

template <typename T>

void DisplayContents(const T& container)

{

 for(auto iElement = container.cbegin();

 iElement != container.cend();

 ++iElement)

 cout << *iElement << endl;

 cout << endl;

}

struct ContactItem

{

 string name;

 string phoneNum;

 string displayAs;

 ContactItem(const string& nameInit, const string & phone)

 {

 name = nameInit;

 phoneNum = phone;

 displayAs =(name + “: “ + phoneNum);

 }

 // used by set::find() given contact list item

 bool operator ==(const ContactItem& itemToCompare) const

 {

 return(itemToCompare.phoneNum == this->phoneNum);

 }

 // used to sort

 bool operator <(const ContactItem& itemToCompare) const

 {

 return(this->phoneNum < itemToCompare.phoneNum);

 }

 // Used in DisplayContents via cout

 operator const char*() const

 {

 return displayAs.c_str();

 }

};

int main()

{

 set<ContactItem> setContacts;

 setContacts.insert(ContactItem("Oprah Winfrey”, “+1 7889 879 879"));

 setContacts.insert(ContactItem("Bill Gates”, “+1 97 7897 8799 8"));

 setContacts.insert(ContactItem("Angi Merkel”, “+49 23456 5466"));

 setContacts.insert(ContactItem("Vlad Putin”, “+7 6645 4564 797"));

 setContacts.insert(ContactItem("John Travolta”, “91 234 4564 789"));

 setContacts.insert(ContactItem("Angelina Jolie”, “+1 745 641 314"));

 DisplayContents(setContacts);

 cout << “Enter a number you wish to search: “;

 string input;

 getline(cin, input);

 auto contactFound = setContacts.find(ContactItem("”, input));

 if(contactFound != setContacts.end())

 cout << “The number belongs to “ <<(*contactFound).name << endl;

 else

 cout << “Contact not found” << endl;

 return 0;

}

2. The structure and the multiset definition would be

#include <set>

#include <iostream>

#include <string>

using namespace std;

struct PAIR_WORD_MEANING

{

 string word;

 string meaning;

 PAIR_WORD_MEANING(const string& sWord, const string& sMeaning)

 : word(sWord), meaning(sMeaning) {}

 bool operator<(const PAIR_WORD_MEANING& pairAnotherWord) const

 {

 return(word < pairAnotherWord.word);

 }

 bool operator==(const string& key)

 {

 return(key == this->word);

 }

};

int main()

{

 multiset <PAIR_WORD_MEANING> msetDictionary;

 PAIR_WORD_MEANING word1("C++”, “A programming language");

 PAIR_WORD_MEANING word2("Programmer”, “A geek!");

 msetDictionary.insert(word1);

 msetDictionary.insert(word2);

 cout << “Enter a word you wish to find the meaning of” << endl;

 string input;

 getline(cin, input);

 auto element = msetDictionary.find(PAIR_WORD_MEANING(input, “"));

 if(element != msetDictionary.end())

 cout << “Meaning is: “ <<(*element).meaning << endl;

 return 0;

}

3. One solution is

#include <set>

#include <iostream>

using namespace std;

template <typename T>

void DisplayContent(const T& cont)

{

 for(auto element = cont.cbegin(); element != cont.cend(); ++element)

 cout << *element << “ “;

}

int main()

{

multiset<int> msetIntegers;

msetIntegers.insert(5);

msetIntegers.insert(5);

msetIntegers.insert(5);

set<int> setIntegers;

setIntegers.insert(5);

setIntegers.insert(5);

setIntegers.insert(5);

cout << “Displaying the contents of the multiset: “;

DisplayContent(msetIntegers);

cout << endl;

cout << “Displaying the contents of the set: “;

DisplayContent(setIntegers);

cout << endl;

return 0;

}

Answers for Lesson 20

Quiz

1. The default sort criterion is specified by std::less<>.

2. Next to each other.

3. size(). In fact, this member function would tell you the number of elements in every container supplied by the STL.

4. You would not find duplicate elements in a map.

Exercises

1. An associative container that allows duplicate entries. For example, std::multimap:

std::multimap<string, string> mapNamesToNumbers;

2. An associative container that allows duplicate entries. For example:

struct fPredicate

{

 bool operator< (const WordProperty& lsh, const WordProperty& rsh) const

 {

 return (lsh.word < rsh.word);

 }

};

3. Take a hint from the similarly solved Exercise 3 in Lesson 19, “STL set and multiset.”

Answers for Lesson 21

Quiz

1. A unary predicate.

2. It can display data, count elements, or return a value computed using supplied input. See the use of std::transform() in Listing 21.7 with the function tolower(), which returns the lowercase equivalent of a supplied character.

3. All entities that exist during the runtime of an application are objects. In this case, even structures and classes can be made to work as functions—hence the term function objects. Note that functions can also be available via function pointers, which are function objects, too.

Exercises

1. A solution is

#include<vector>

#include<iostream>

#include<algorithm>

using namespace std;

template <typename elementType = int>

struct Double

{

 void operator()(const elementType element) const

 {

 cout << element * 2 << ’ ’;

 }

};

int main()

{

 vector<int> numsInVec;

 for(int count = 0; count < 10; ++count)

 numsInVec.push_back(count);

 cout << “Displaying the vector of integers: “ << endl;

 // Display the array of integers

 for_each(numsInVec.begin(), // Start of range

 numsInVec.end(), // End of range

 Double<>()); // Unary function object

 return 0;

}

2. Add a member integer that is incremented every time operator() is used. Note that such a functor cannot be a const function.

#include<vector>

#include<iostream>

#include<algorithm>

using namespace std;

template <typename elementType = int>

struct Double

{

 int count = 0;

 void operator()(const elementType element)

 {

 ++count;

 cout << element * 2 << ’ ’;

 }

};

int main()

{

 vector<int> numsInVec;

 for(int count = 0; count < 10; ++count)

 numsInVec.push_back(count);

 cout << “Displaying the vector of integers: “ << endl;

 Double<int> doubleElement;

 // Display the array of integers

 doubleElement = for_each(numsInVec.begin(), // Start of range

 numsInVec.end(), // End of range

 Double<>()); // Unary function object

 cout << “\nFunctor called: “ << doubleElement.count << “ times\n”;

 return 0;

}

3. The binary predicate is as follows:

template <typename elementType>

template <typename elementType>

class SortAscending

{

public:

 bool operator() (const elementType& num1,

 const elementType& num2) const

 {

 return (num1 < num2);

 }

};

This predicate can be used as

#include<iostream>

#include<vector>

#include<algorithm>

int main()

{

 std::vector<int> numsInVec;

 // Insert sample numbers: 100, 90... 20, 10

 for(int sample = 10; sample > 0; --sample)

 numsInVec.push_back(sample * 10);

 std::sort(numsInVec.begin(), numsInVec.end(),

 SortAscending<int>());

 for(size_t index = 0; index < numsInVec.size(); ++index)

 std::cout << numsInVec[index] << ’ ’;

 return 0;

}

Answers for Lesson 22

Quiz

1. A lambda starts with square brackets: [...].

2. Via a capture list: [var1, var2, ...](Type& param) { ...; }

3. Like this:

[var1, var2, ...](Type& param) -> ReturnType { ...; }

Exercises

1. One solution for the lambda is

sort(container.begin(),container.end(),

 [](auto& lhs, auto& rhs) {return(lhs > rhs);});

The working sample that contains it:

#include<iostream>

#include<algorithm>

#include<vector>

using namespace std;

int main()

{

 vector<int> vecNumbers{25, -5, 122, 2021, -10001};

 // template lambda that displays element on screen

 auto displayElement = []<typename T>(const T& element)

 { cout << element << ’ ’;};

 cout << “Elements in vector in initial order:\n”;

 for_each(vecNumbers.cbegin(), vecNumbers.cend(), displayElement);

 sort(vecNumbers.begin(), vecNumbers.end());

 cout << “\nElements in vector after sort using default predicate:\n”;

 for_each(vecNumbers.cbegin(), vecNumbers.cend(), displayElement);

 sort(vecNumbers.begin(), vecNumbers.end(),

 [](auto& lhs, auto& rhs) {return(lhs > rhs); }); // change sort order

 cout << “\nElements in vector after sort in descending order:\n”;

 for_each(vecNumbers.cbegin(), vecNumbers.cend(), displayElement);

 return 0;

}

2. This is what the lambda would look like:

[=](int& element) {element += num; }

The working sample that contains it:

#include<iostream>

#include<algorithm>

#include<vector>

using namespace std;

int main()

{

 vector<int> vecNumbers{25, -5, 122, 2021, -10001};

 // template lambda that displays element on screen

 auto displayElement = []<typename T>(const T& element)

 { cout << element << ’ ’;};

 cout << “Elements in vector in initial order:\n”;

 for_each(vecNumbers.cbegin(), vecNumbers.cend(), displayElement);

 cout << “\nEnter number to add to all elements: “;

 int num = 0;

 cin >> num;

 for_each(vecNumbers.begin(), vecNumbers.end(),

 [=](int& element) {element += num; });

 cout << “\nElements after adding the supplied number:\n”;

 for_each(vecNumbers.cbegin(), vecNumbers.cend(), displayElement);

 return 0;

}

Answers for Lesson 23

Quiz

1. Use the std::list::remove_if() function because it ensures that existing iterators to elements in the list (that were not removed) remain valid.

2. list::sort() (or even std::sort()) in the absence of an explicitly supplied predicate resorts to a sort using std::less<>, which in turn uses the operator < to sort objects in a collection.

3. Once per element in the range supplied.

4. for_each() accepts a unary predicate and returns the function object that can be used to contain state information. std::transform() can work with unary or binary predicates and features an overloaded version that can therefore work on two input ranges.

Exercises

1. Here is one solution:

struct CaseInsensitiveCompare

{

 bool operator() (const string& str1, const string& str2) const

 {

 string str1Copy(str1), str2Copy(str2);

 transform(str1Copy.begin(),

 str1Copy.end(), str1Copy.begin(), tolower);

 transform(str2Copy.begin(),

 str2Copy.end(), str2Copy.begin(), tolower);

 return (str1Copy < str2Copy);

 }

};

2. Here is the demonstration:

#include <vector>

#include <algorithm>

#include <list>

#include <string>

#include <iostream>

using namespace std;

int main()

{

 list <string> listNames;

 listNames.push_back("Jack");

 listNames.push_back("John");

 listNames.push_back("Anna");

 listNames.push_back("Skate");

 vector <string> vecNames(4);

 copy(listNames.begin(), listNames.end(), vecNames.begin());

 vector <string> ::const_iterator iNames;

 for_each(vecNames.begin(), vecNames.end(),

 [](const auto& name) {cout << name << ’ ’; });

 return 0;

}

Note how std::copy() works in copying contents from std::list to std::vector, without requiring you to really know the types of the collections involved. It simply works using iterators.

3. The difference between std::sort() and std::stable_sort() is that the latter maintains the relative positions of the elements. In this case, the application needs to store data in the sequence of occurrence, and therefore you would choose stable_sort() to maintain the relative ordering between the celestial events.

Answers for Lesson 24

Quiz

1. Yes, by supplying a binary predicate as a template instantiation parameter.

2. The class Coin needs to implement the operator <.

3. No, you can only use elements at the top of the stack. You can’t access the first coin because it is at the bottom of the stack.

Exercises

1. The binary predicate could be operator<:

class Person

{

public:

 int age = 0;

 bool isFemale = false;

 Person(int ageIn, bool isFemaleIn) : age(ageIn), isFemale(isFemaleIn) {};

 bool operator<(const Person& anotherPerson) const

 {

 if (age > anotherPerson.age)

 return false;

 else if (isFemale && (!anotherPerson.isFemale))

 return false;

 return true;

 }

};

2. Push individual characters into a stack. As you pop data, you effectively reverse the contents because a stack is a LIFO type of container.

Answers for Lesson 25

Quiz

1. No. The number of bits bitset can hold is fixed at compile time.

2. Because bitset can’t resize itself dynamically the way STL containers can; and also because it doesn’t support iterators in the way STL containers do.

3. No. std::bitset is best suited for this purpose and performs better.

Exercises

1. std::bitset featuring instantiation, initialization, display, and addition (by converting to unsigned long) is demonstrated here:

#include <bitset>

#include <iostream>

using namespace std;

int main()

{

 // Initialize the bitset to 1001

 bitset<4> fourBits("1001");

 cout << “fourBits: “ << fourBits << endl;

 // Initialize another bitset to 0010

 bitset<4> fourMoreBits("0010");

 cout << “fourMoreBits: “ << fourMoreBits << endl;

 bitset<8> addResult(fourBits.to_ulong() + fourMoreBits.to_ulong());

 cout << “The result of the addition is: “ << addResult;

 return 0;

}

2. Call the flip() function on any of the bitset objects in the preceding example:

addResult.flip();

cout << “The result of the flip is: “ << addResult << endl;

Answers for Lesson 26

Quiz

1. I would look at www.boost.org. I hope you would, too!

2. No, typically well-programmed (and correctly chosen) smart pointers would not.

3. When intrusive, objects that they own need to hold it; otherwise, they can hold this information in a shared object on the free store.

4. The list needs to be traversed in both directions, so it needs to be doubly linked.

Exercises

1. object->DoSomething(); will cause problems because the pointer lost ownership of the object during the previous copy step. This is why auto_ptr was deprecated and should never be used.

2. The code would look like this:

#include <memory>

#include <iostream>

using namespace std;

class Fish

{

public:

 Fish() {cout << “Fish: Constructed!” << endl;}

 ~Fish() {cout << “Fish: Destructed!” << endl;}

 void Swim() const {cout << “Fish swims in water” << endl;}

};

class Carp: public Fish

{

};

void MakeFishSwim(const unique_ptr<Fish>& inFish)

{

 inFish->Swim();

}

int main()

{

 unique_ptr<Fish> myCarp(new Carp); // note this

 MakeFishSwim(myCarp);

 return 0;

}

As there is no copy step involved, given that MakeFishSwim() accepts the argument as a reference, there is no question of slicing. Also, note the instantiation syntax of the variable myCarp. If MakeFishSwim() were to accept the parameter by value instead of by reference, the compilation would fail because unique_ptr doesn’t support a copy constructor and protects you from slicing errors.

3. unique_ptr does not allow copy or assignment. The copy constructor and copy assignment operator are explicitly marked as deleted.

Answers for Lesson 27

Quiz

1. Use ofstream to only write to a file.

2. You would use cin.getline(). See Listing 27.7.

3. You wouldn’t because std::string contains text information, and you can stay with the default mode, which is text; there is no need for binary.

4. To check whether open() succeeded. If it fails, you may want to show an error and suspend file processing.

Exercises

1. You opened the file but didn’t check for the success of open() using is_open() before using the stream or closing it.

2. You cannot insert into ifstream, which is designed for input and not output and hence does not support the stream insertion operator (<<).

Answers for Lesson 28

Quiz

1. A class just like any other but created expressly as a base class for some other exception classes, such as bad_alloc.

2. std::bad_alloc.

3. That’s a bad idea because it’s possible that the exception was thrown in the first place due to a lack of memory.

4. Use the same catch(std::exception& exp) that you can also use for type bad_alloc.

Exercises

1. Never throw in a destructor.

2. You forgot to make the code exception safe; it is missing a try and catch block.

3. Don’t allocate in a catch block! Assume that the data allocated within try is lost and continue with damage control.

Answers for Lesson 29

Quiz

1. To use concepts, use #include<concepts> and enable the compiler settings specific to C++20.

2. Views are a special case of ranges that feature constant time copy, move, and assignment. All views are ranges, but not all ranges fulfill the criteria for being views.

3. Adaptors.

Exercises

1. It won’t compile because DisplayView() has been constrained by the concept ranges::view to accept parameters that are views, as shown below:

template<ranges::view T>

void DisplayView(T& view)

{

 for (auto element : view)

 cout << element << ’ ’;

 cout << endl;

}

The variable nums is type vector<int>. It is a range, but it is not a view.

2. If you want DisplayView() to work with collections/ranges like vector<int>, you need to modify the governing concept accordingly (and change the name, too, perhaps):

template<ranges::range T>

void DisplayRange(T& view)

{

 for (auto element : view)

 cout << element << ’ ’;

 cout << endl;

}

3. The view would combine reverse, transform, and take:

auto viewSquare3Rev = nums | views::reverse | views::take(3)

 | views::transform([](auto num) {return num * num; });

A working example:

#include<ranges>

#include<vector>

#include<iostream>

using namespace std;

// concept ranges::view limits parameter type to view

template<ranges::view T>

void DisplayView(T& view)

{

 for (auto element : view)

 cout << element << ’ ’;

 cout << endl;

}

int main()

{

 vector<int> nums{ 1, 5, 202, -99, 42, 50 };

 auto viewAllElements = nums | std::views::all;

 cout << “View of all elements in the collection: “;

 DisplayView(viewAllElements);

 auto viewSquare3Rev = nums | views::reverse | views::take(3)

 | views::transform([](auto num) {return num * num; });

 cout << “View square of numbers, ignoring first three: “;

 DisplayView(viewSquare3Rev);

 return 0;

}

Answers for Lesson 30

Exercise

1. If main() doesn’t call join() in Listing 30.1, the main thread is likely to terminate before the worker thread.

Answers for Lesson 31

Exercise

1. The bug is that AddNums() isn’t exported from the module and hence cannot be accessed in main(). Fix the issue by using the keyword export:

// module interface file Calculations.ixx

export module Calculations;

export int AddNums(int a, int b)

{

 return (a + b);

}

OEBPS/Images/593tab01.jpg
Function

Description

Example

ush ()

Inserts an element at the
back of the queue (that is,
@t the last position)

unsInQ.push (10) ;

Removes the element at
the front of the queue
(that is, at the first
position)

umsInQ.pop () ;

Returns a reference to the
element at the front of the|
queue

lcout << "Element at
front: " <<
umsInQ. front () ;

Returns a reference to the
element at the back of the|
queue (that is, the last
inserted element)

lcout << "Element at

[Tests whether the queue
is empty; returns a
Boolean value

[Lf (nunsIng. empty ()

cout <<
lempty "

Queue is

Returns the number of
elements in the queue

size t numElements =
umsInQ.size();

OEBPS/Images/fmtab01.jpg
DO

DON'T

DO use the “Do/Don't” boxes to find a
quick summary of fundamental
principles in a lesson.

DON'T overlook the useful information
offered in these boxes.

OEBPS/Images/06fig01.jpg
Start

Numil = 25
Num2 = 56

Ask
user’s
choice

User enters
'm?

Result =
Num1 * Num2

Result =
Num1 + Num2

k

Display
Result

End

OEBPS/Images/693tab01.jpg
Binary
Representation

0 =1 1

1 2= 10

2 27=4 100

3 2= 1000

4 27=16 10,000

5 2°=32 100,000

6 =64 1,000,000
7 27=128 10,000,000

OEBPS/Images/15tab01.jpg
Container

|[Advantages

Disadvantages

Sequential Containers

std: :vector

Quick (constant
time) insertion at
the end.

Resizing can result in
performance loss.

|Array-like access.

Search time is
proportional to the
number of elements
in the container.

[nsertion only at the
lend.

|All advantages of
fthe vector and
jalso offers
constant-time
insertion at the
lbeginning of the
container.

Disadvantages of

ector with respect
fto performance and
isearch are applicable
to deque.

Unlike vector,

ldeque by
ispecification does
not need to feature
the reserve ()
function, which
lallows a programmer
to reserve memory
ispace to be used—a
feature that prevents
frequent resizing to
improve

performance.

OEBPS/Images/10tab03a.jpg
DO remember that private
inheritance means that even
classes deriving from the
derived class have no
access to any member of
the base class.

DO remember that
protected inheritance means
that classes deriving from
the derived class have
access to the public and
protected methods of the
base class. However, an
object of the derived class
cannot be used to access
public members of the base
class.

OEBPS/Images/629tab01.jpg
Class/Object

Description

cout

IStandard output stream, typically
redirected to the console

[Standard input stream, typically used to
read data into variables

IStandard output stream for errors

[Input and output stream class for file
loperations; inherits from ofstream and
ifstream

of stream

Output stream class for file operations—|
tthat is, used to create files

ifstream

[Input stream class for file operations—
tthat is, used to read files

stringsstream

[Input and output stream class for string
loperations; inherits from
istringstream and ostringstream;
ftypically used to perform conversions
from (or to) string and other types

OEBPS/Images/14tab02.jpg
DO

DON'T

DO use templates for the
implementation of generic
concepts.

DO choose templates over
macros.

IDON'T forget to use the
principles of const
correctness when
lprogramming template
functions and classes.

IDON'T forget that a static
Imember contained within a
ftemplate class is static for
levery type specialization of
the class.

OEBPS/Images/659tab01.jpg
DO

DON'T

DO remember to catch
exceptions of type
std::exception.

DO remember to inherit a
custom exception class (if
any) from

St SXC?Et‘ n.
DO throw exceptions—but
with discretion. They're
not a substitute for return
values.

DON'T throw exceptions
from destructors.

DON'T take memory
allocations for granted;
code that uses new should
always be exception safe
and within a try block with
catch(std: :exceptions).

DON'T insert any heavy
logic or resource allocations
inside a catch () block. You
don't want to cause new
exceptions when you're
handling one.

OEBPS/Images/07fig03.jpg
INTEGER 3

INTEGER 2

INTEGER 1

Stack Pointer

(always points to the top
where the next element
can be inserted, i.e.,
"pushed")

OEBPS/Images/630tab01.jpg
Manipulator

Output Manipulators

end1l

Inserts a newline character and
flushes the stream buffer

Inserts a null character

Radix Manipulators

dec

[[nstructs a stream to interpret
input or display output in decimal

[Instructs a stream to interpret
input or display output in
hexadecimal

[Instructs a stream to interpret
input or display output in octal

Representation
Manipulators

[[nstructs a stream to display in
fixed-point notation

scientific

[[nstructs a stream to display in
scientific notation

Manipulators Supplied
by Header <iomanip>

setprecision

[Sets decimal point precision as a
parameter

[Sets field width as a parameter

setfill

[Sets fill character as a parameter

[Sets the radix/base, akin to using|
ldec, hex, or oct as a parameter

setiosflag

[Sets flags via a mask input
parameter of type
std::ios base::fmtflags

resetiosflag

Restores defaults for a particular
type specified by the type
contained in

std::ios base::fmtflags

OEBPS/Images/07fig02.jpg
Radius

Height

OEBPS/Images/694tab01.jpg
Hexadecimal
(continued)

8 8

Decimal

Hexadecimal

~N| o v & wl N = o
Nl o| v & wl N = o
—

N
MmOl Of @ >

OEBPS/Images/07fig01.jpg
double Area(double radius);

I —

Return
value

type

Function Function p'arameter'(s) - optional:
name Parameter list comprised of type and
optionally name, separated by comma
in event of multiple parameters

OEBPS/Images/14tab01.jpg
DO

DON'T

DO use macros as
infrequently as possible.

DO use const variables
instead of macros where
possible.

DO remember that macros
are not type safe, and the
preprocessor performs no
type checking.

DON'T forget to envelop
variables in a macro
function definition with
parentheses (

DON'T forget to sprinkle
your code with a generous
number of assert ()
statements; they don't
make it to the release
version and are good at
improving the quality of
your code.

OEBPS/Images/02tab01.jpg
DO

DON'T

DO add comments
explaining the working of
complicated algorithms
and complex parts of
your program.

DO compose comments
using language that other
programmers can
understand.

DO review comments
after updating code to
ensure that they continue
to be relevant.

DON'T use comments to
explain or repeat the
obvious.

DON'T write obscure code
and use comments to
explain it because comments
won't adequately
compensate for poor coding
practices.

OEBPS/Images/24fig02.jpg
Insertions
(at back)

Element
N

Element

Element
1

Element

Removals
(at front)

OEBPS/Images/16tab01.jpg
DO

DON'T

DO preferentially use
std::string class
where string operations
are required.

DON'T use C-style character
strings (char*) unless
absolutely unavoidable.

DO use
std::string::length()

DON'T use insecure functions
such as strlen() to compute

to compute the length of
a string.

the length of a string.

DO familiarize yourself
with the different ways
of copying and
concatenating strings
using methods and
operators in the
std::string class.

DON'T use insecure functions
like strepy () or strcat () to
copy or concatenate strings
respectively.

OEBPS/Images/24fig01.jpg
Insertions
(at top)

Element N

Element 2

Element 1

Element 0

= » Removals

(from top)

OEBPS/Images/13tab01.jpg
Do

DON'T

DO remember that casting
a Derived* to a Base* is
called upcasting and is
inherently safe.

DO remember that casting
a Base~ directly to a
Derived* is called
downcasting, and it can be
unsafe unless you use
dynamic cast and check
for success.

DO remember that the
objective of creating an
inheritance hierarchy is
typically to have virtual
functions that, when
invoked, use base class
pointers to ensure that the
available derived class
versions are invoked.

DON'T forget to check a
pointer for validity after
using dynamic cast.
DON'T design an

application around RTTI
using dynamic cast; use
well-implemented virtual
functions instead.

OEBPS/Images/19fig01.jpg
“Steve”

“Jill

“Amanda”

A set of strings

“Steve”
“Jack”

“Jack”

“dir

“Amanda”

OEBPS/Images/08fig02.jpg
Exception Unhandled

Unhandled exception at 0x76B2B512 in 8.15_

NewWithoutExceptionHandler.exe: Microsoft C++ exception:

std::bad_alloc at memory location 0x004FFCC8.

Copy Details | Start Live Share session...

b Exception Settings

OEBPS/Images/646tab01.jpg
DO

DON'T

DO use ifstream when
you only intend to read
from a file.

DO use ofstream when
you only intend to write
to a file.

DO remember to check
whether a file stream has
been opened successfully
via is open() before
inserting into or
extracting from the
stream.

DON'T forget to close a file
stream by using method
close () after you are done
using it.

DON'T forget that extracting
from cin to a string via cin
>> strData; typically results
in strbata containing text
until the first whitespace and
not containing the entire
line.

DON'T forget that the
function getline(cin,
strData) ; fetches an entire
line from the input stream,
including whitespace.

OEBPS/Images/495tab01.jpg
Do

DON'T

DO remember that STL
set and multiset
containers are optimized
for situations that involve
frequent searches.

DO remember that
multiset allows
multiple elements (keys)
of the same value,
whereas std: :set permits
only unique values.

DO use

multiset unt (value)
to find the number of
elements of a particular
value.

DO remember that

ize() finds
the number of elements in
a container.

DON'T forget to program
the operators < and == for
classes that can be collected
in containers such as set or
multiset. The former
becomes the sort predicate,
and the latter is used for
functions such as
set::find().

DON'T use std: :set or
std::multiset in scenarios
with frequent insertions and
infrequent searches.
std::vector OF std::1ist
is usually better suited to
such cases.

OEBPS/Images/08fig01.jpg
Memory
Addresses

Pointer at address
0x101 contains value
0x558

Data in memory at
address 0x558

ox101

0x558

OEBPS/Images/550tab01.jpg
Igorithm

Description

Counting Algorithms

count ()

Finds all elements in a range
whose values match a supplied
value

count if ()

Finds all elements in a range
whose values satisfy a supplied
condition

earch Algorithms

search ()

Searches for the first
loccurrence of a given sequence
within a target range, either on
{the basis of element equality
(that is, with the operator
lor using a specified binary
predicate

search n()

ISearches a specified target
range for the first occurrence of
o number of elements of a
given value or those that satisfy
la given predicate

OEBPS/Images/588tab01.jpg
Function

IDescription

Example

ush ()

Inserts an element at the
ttop of the stack

umsInStack.push (25) ;

Removes the element at
tthe top of the stack

ums InStack.pop ()

[Tests whether the stack
lis empty; returns bool

lif
(numsInStack.empty())

DoSomething () ;

Returns the number of
felements in the stack

size t numElements =
umsInStack.size(

(Gets a reference to the
ftopmost element in the
istack

cout << "Element at
the top = " <<
ums InStack.top()

OEBPS/Images/10fig02.jpg
class Fish

* Can swim, lays eggs
* Seawater or freshwater

class Tuna

* Can swim fast, lays eggs
* Seawater (marine) fish

class Carp

* Swims slowly, lays eggs
* Freshwater fish

OEBPS/Images/10fig01.jpg
(also called Super Class)

class Base

class Derived1

(Inherits from Base, hence also
called subclass of Base)

class Derived2

(Inherits from Base, hence also
called subclass of Base)

OEBPS/Images/10fig03.jpg
class Mammal class Bird class Reptile

+ Feeds young milk « Lays eggs * Webbed feet
+ Covered with hair/fur « Has a beakibill « Venomous

class Platypus

* Can swim

Inherited Attributes
Feeds young milk
Covered with hair/fur
Lays eggs

Has a beakibill
Webbed feet
Venomous

OEBPS/Images/05tab07a.jpg
[[nequality relational
(associativity: left to right)

10 Equality
(associativity: left to right)

11 Bitwise AND ls
(associativity: left to right)

12 Bitwise exclusive OR P
(associativity: left to right)

13 Bitwise OR [l
(associativity: left to right)

14 lLogical AND 56
(associativity: left to right)

15 lLogical OR [l
(associativity: left to right)

16 [Conditional 2:
(associativity: right to left)

17 |Assignment
(associativity: right to left)

18 IComma

(associativity: left to right)

OEBPS/Images/12tab04.jpg
DO

DON'T

DO program as many
operators as needed to make
a class easy to consume—
but not more.

DO mark conversion
operators as explicit to
avoid implicit conversions.

DO always program a copy
assignment operator (with a
copy constructor and
destructor) in a class that
contains pointer members.

DO program a move
assignment operator and
move constructor for classes
that manage dynamically
allocated resources, such as
an array of data.

DON'T rely on the default
copy assignment operator
and copy constructor
supplied by the compiler
as they perform deep
copies of pointers that
are members of the class.

DON'T rely on the
compiler to create a
move assignment
operator or move
constructor. The compiler
does not automatically
create them for you but
instead falls back on the
regular copy assignment
operator and copy
constructor.

OEBPS/Images/12tab02.jpg
Operator Symbol

Name

[Comma

Inequality

Modulus

Modulus/assignment

Bitwise AND

lLogical AND

Bitwise AND/assignment

Multiplication

Multiplication/assignment

iAddition

[Addition/assignment

Subtraction

Subtraction/assignment

OEBPS/Images/12tab03.jpg
Operator

IDescription

IMember selection

Pointer-to-member selection

IScope resolution

IConditional ternary operator

sizeof

Gets the size of an object/class
type

OEBPS/Images/12tab01.jpg
Operator Symbol Name

[Increment

Decrement

Pointer dereference

Member selection

Logical NOT

|Address-of

One's complement

Unary plus

Unary negation

Conversion operators [Conversion into other types

OEBPS/Images/18tab01.jpg
DO

DON'T

DO choose std: :1ist over
std: :vector if you need to
frequently insert or delete
elements, especially in the
middle; whereas a vector
needs to resize its internal
buffer to allow array
semantics and causes
expensive copy operations,
a list just links or unlinks
elements.

DO remember that you can
insert in the beginning or
end of a list by using the
push front () member
method or the

push back () member
method, respectively.

DO remember to program
the operators < and == in a
class that will be collected
in an STL container such as
a list to supply the default
sort or remove predicate.

DON'T use a list when you
have infrequent insertions
or deletions at the ends
and no insertions or
deletions in the middle; a
vector or deque can be
significantly faster in these
cases.

DON'T forget to supply a
predicate function if you
want to use sort () or
remove () on the list with
non-default criteria.

DON'T confuse the method
clear () with the method
empty () ; the latter is used
to check if the container is
empty (in which case it
returns true) and makes
no changes.

OEBPS/Images/09fig01.jpg
Human Being

Data
* Gender
+ Date of birth
* Place of birth
* Name
Methods
* IntroduceSelf()

OEBPS/Images/703tab01.jpg
41 29 Close parenthesis (or
close bracket)

42 2A Asterisk

43 2B Plus

44 2C Comma

45 2D Hyphen

46 2E Period, dot, or full stop

47 2F Slash (or divide)

48 30 Zero

49 31 One

50 32 Two

51 33 Three

52 34 Four

53 35 Five

54 36 Six

55 37 Seven

56 38 Eight

57 39 Nine

58 3A Colon

59 3B Semicolon

60 3C Less than (or open

angled bracket)

OEBPS/Images/09fig02.jpg
Exception Thrown

9.8 ShallowCopy.exe has triggered a breakpoint.

iCopy Details: | start Live Share session...

OEBPS/Images/09fig03.jpg
buf

int* myNums

memory allocated using

copyBuf

int* myNums

new at the constructor

pointer value copied during the function call

integers

i.e.copyBuf .myNums pointsto same

location as buf . myNums

OEBPS/Images/09fig04.jpg
buf

int* myNums

memory allocated using

copyBuf

int* myNums

new at the constructor

memory allocated using

integers {2020, -596, 42}
T

i
i
| memory
I
i

new at the copy constructor

integers {2020, -596, 42}

OEBPS/Images/03fig02.jpg
L T T T 1R A T 1T R | = -32768

(¥ J
Y

15 bits contain absolute value

Sign Bit
0: Indicates positive integer
1: Indicates negative integer

OEBPS/Images/03fig01.jpg
s P N A M I M I R O I R Y

|
16 bits

= 65535

OEBPS/Images/03tab03.jpg
Reserved Words

land loitor Inot_eq =
land_eq lcomp1. for or_eq
bbitand [not lor_eq

OEBPS/Images/03tab02.jpg
Keywords

asm le1se Inew lthis
lauto lenum loperator lthrow
ool lexplicit rivate lerue
break lexport rotected |try
case lextern ublic ltypedet
lcatch false register leypeid
lchar f1oat [reinterpret_ [typename
lcast
class for lreturn junion
fconst. friend Jshort. nsigned
lconstexpr lgoto lsigned lusing
lcontinue e lsizeof virtual
default linline lstatic oid
delete int static_cast [volatile
o [Long Jstruct char_t
Houble utable lswitch hile
dynamic_cast [namespace ltemplate

OEBPS/Images/03tab04.jpg
DO

DON'T

DO give variables
descriptive names, even if
doing so makes them long.

DO check whether your
team is following certain
naming conventions and
follow them.

DO initialize variables: Use
list initialization to avoid
narrowing conversion
errors.

DON'T give variables
names that are too short or
that contain just a
character.

DON'T give variables
names that use exotic
acronyms known only to
you.

DON'T give variables
names that are reserved
C++ keywords as they
won't compile.

OEBPS/Images/18fig01.jpg
Link
Prev

Data

Link
Next

Link
Prev

Data

Link
Next

Node N

Node N + 1

OEBPS/Images/9780137334674.jpg
NINTH
EDITION

C++20

Coverage

SamsTeach Yourself

@ Pearson

OEBPS/Images/18fig02.jpg
Data

Link l >

Next

Data

Link l_,,

Next

Data

Link
Next

Node 1

Node 2

Node N

OEBPS/Images/552tab01.jpg
function to a specified count of
alues in a specified range.

Modifying Algorithms

for each()

Performs an operation on every
lelement in a range. When the
ispecified argument modifies the
range, for each becomes a
mutating algorithm.

transform()

|Applies a specified unary function on
levery element in the specified
range.

Copy Algorithms

copy ()

(Copies one range into another.

backward ()

(Copies one range into another,
larranging elements in the
destination range in the reverse
order.

Removal Algorithms

remove ()

Removes an element of a specified
alue from a specified range.

remove if ()

Removes an element that satisfies a
ispecified unary predicate from a
ispecified range.

(Copies all elements from a source
range to a destination range, except
fthose of a specified value.

(Copies all elements from a source
range to a destination range except
fthose that satisfy a specified unary
predicate.

OEBPS/Images/03tab01.jpg
Type Values
0ol [true OF false
lchar 256 character values

unsigned short int

0 to 65,535

lshort int

32,768 to 32,767

nsigned long int

0 to 4,294,967,295

llong int -2,147,483,648 to
2,147,483,647
nsigned long long 0 to

18,446,744,073,709,551,615

[— -9,223,372,036,854,775,808
lto 9,223,372,036,854,775,807

int (16 bit) 32,768 to 32,767

int (32 bit) -2,147,483,648 to

2,147,483,647

unsigned int (16 bit)

0 to 65,535

unsigned int (32 bit)

0 to 4,294,967,295

float

1.2e-38 to 3.4e38

double

[2.2e-308 to 1.8e308

llong double

2.2e-308 to 1.8e308

((This is the same as a double
ariable type on Microsoft
isual C++ [MSVC] but is

isupported differently on other

platforms.)

OEBPS/Images/09tab01.jpg
DO

DON'T

DO always program a copy
constructor and copy
assignment operator when
your class contains raw
pointer members (int*
and the like).

DO always program the
copy constructor with a
const reference source
parameter.

DO use the keyword
explicit while declaring
constructors that should
not be permit implicit
conversions.

DON'T use raw pointers as
class members unless
absolutely unavoidable.

OEBPS/Images/517tab01.jpg
DO

DON'T

DO use map when you
need a key/value pair
where keys are unique.

DO use multimap in
when you need a
key/value pair where
keys can repeat (for
example, a telephone

directory).

DO remember that both
map and multimap, like
other STL containers,
feature the member
method size (), which
finds the number of pairs
a container contains.

DO use unordered map
or unordered multimap

when constant-time
insertions and searches
are absolutely essential
(typically when the
number of elements is
very high).

DON'T forget that
multimap::count (key) can
determine the number of
pairs indexed using a key
available in the container.

DON'T forget to check the
result of a £ind () operation
by comparing it against the

end of a container.

OEBPS/Images/625tab01.jpg
DO

DON'T

DO use smart pointer
classes to manage
memory and resources.

DON'T use deprecated
smart pointers such as the

std::auto ptr. Use
unique ptr instead.

OEBPS/Images/606tab01a.jpg
to ulong ()

Returns the unsigned long

alue corresponding to the
fcontents of the bitset

nsigned long value
fourBits.to ulong()

to ullong () Returns the unsigned long

nsigned long long

[Long value corresponding alue

tto the contents of the [fourBits.to ullong();
itset

Returns true if all bits are

iset to true; otherwise,
returns false

if (fourBits.all())

{/* do something*/}

Returns true if any one bit
is set to true; otherwise,
returns false

if (fourBits.any())

{/* do something*/}

Returns true if no bits are

iset to true; otherwise,
returns false

pLE(fourBits.none())

{/* do something*/}

OEBPS/Images/597tab01.jpg
Function

Description

Example

ush ()

Inserts an element into
tthe priority queue

numsInPrioQ.push (10) ;

Removes the element at
tthe top of the queue (that
is, the largest element in
the queue)

nums InPrioQ.pop () ;

Returns a reference to the
largest element in the
iqueue (which also holds
[the topmost position)

lelement in the
[priority gueue is: "
K< numsInPrioQ.top():

[Tests whether the priority
lqueue is empty; returns a
lboolean value

Lf (numsInPrioQ.empty (

1BR

cout << "The queue]
is empty

Returns the number of
lelements in the priority
queue

size t numElements =
numsInPrioQ.size();

OEBPS/Images/546tab01.jpg
DO

DON'T

DO remember that unless
specified, state variables
supplied within a capture
list (1) are not modifiable

within the lambda

expression unless you use
the specifier mutable.

DO use const generously
when defining parameter
types to ensure higher
integrity.

DON'T forget that lambda
expressions are unnamed
representations of a class or
a struct with operator ().

DON'T forget to explicitly
mention the return type
when a lambda expression
includes multiple
statements within the
statement block ({1}).

OEBPS/Images/15tab01a.jpg
S et

Constant time
insertion at the
front, middle, or
lend of the list.

Elements cannot be
laccessed randomly
given an index, as in
lan array.

Removal of
elements from a
list is a constant-
time activity,
regardless of the
position of the

|Accessing elements
can be slower than
with vector because
lelements are not
stored in adjacent
imemory locations.

element.
Insertion or Search time is
removal of proportional to the

elements does not
invalidate iterators
that point to other
elements in the
pist.

number of elements
in the container.

std: : forwar

ISingly linked list
class that allows
iteration only in
one direction.

|Allows insertion only
at the front of the
list via

ush front ().

OEBPS/Images/15tab01b.jpg
ssociative Containers

std::set

Search is not
directly
lproportional to the
inumber of
elements in the
icontainer; rather,
it is proportional to
the logarithm
fthereof and hence
is often
significantly faster
fthan with
isequential
containers.

Insertion of
elements is slower
than in sequential
icounterparts, as
elements are sorted
at insertion.

std: :unorde

[Search, insertion,
and removal in this
ttype of container
lare nearly
independent of the
inumber of
elements in the
container.

|As elements are
weakly ordered, you
cannot rely on their
relative positions
within the container.

std: :multis

Should be used
when a set needs
fto contain non-
unique values, too.

[[nsertions may be
slower than in a
isequential container
las elements (pairs)
jare sorted on
insertion.

OEBPS/Images/706tab01.jpg
102 66 Lowercase f
103 67 Lowercase g
104 68 Lowercase h
105 69 Lowercase i
106 6A Lowercase j
107 6B Lowercase k
108 6C Lowercase |
109 6D Lowercase m
110 6E Lowercase n
111 6F Lowercase o
112 70 Lowercase p
113 71 Lowercase q
114 72 Lowercase r
115 73 Lowercase s
116 74 Lowercase t
117 75 Lowercase u
118 76 Lowercase v
119 77 Lowercase w
120 78 Lowercase x
121 79 Lowercase y
122 7A Lowercase z

OEBPS/Images/15tab01c.jpg
std: :unorde

Should be
ppreferred over
unordered set
when you need to
contain non-unique
alues, too.

Elements are weakly
lordered, so you
icannot rely on their
relative position
within the container.

Performance is
similar to
unordered set—
tthat is, constant
average time for
isearch, insertion,
and removal of
lelements,
lindependent of size
lof container.

Key/value pairs
container that
offers search
lperformance
lproportional to the
logarithm of the
inumber of
elements in the
container and
hence often
significantly faster
than sequential
containers.

Elements (pairs) are
isorted on insertion,
hence insertion will
be slower than in a
isequential container
of pairs.

OEBPS/Images/15tab01d.jpg
std: :unorde

Offers the
ladvantage of near
constant time
isearch, insertion,
and removal of
lelements,
independent of the
size of the
container.

Elements are weakly
ordered and hence
not suited to cases
where order is
important.

std::multim

[To be selected over

requirements call
for a key/value
lpairs container that
holds elements
with non-unique
keys.

Insertion of
elements will be
slower than in a
isequential equivalent
as elements are
sorted on insertion.

std: :unorde
red multima

[To be selected over
ultimap when
ou need a
key/value pairs
container where
lkeys can be non-
unique.

[s a weakly ordered
icontainer, so you
cannot use it when
ou need to rely on
tthe relative order of
elements.

{Allows constant
laverage time
linsertion, search,
and removal of
elements,
lindependent of the
size of the
container.

OEBPS/Images/553tab01.jpg
unique ()

ICompares adjacent elements in a
range and removes the following
duplicates. An overloaded version
works using a binary predicate.

(Copies all but adjacent duplicate
lelements from a specified source
range to a specified destination
range.

Replacement Algorithi

ms

replace ()

Replaces every element in a

ispecified range that matches a

ispecified value with a replacement
alue.

replace if()

Replaces every element in a
ispecified range that matches a
ispecified value, as determined by a
predicate, with a replacement value.

Sort Algorithms

sort ()

ISorts elements in a range by using a|
ispecified sort criterion, which is a
binary predicate that supplies a
istrict weak ordering. sort might
ichange relative positions of
lequivalent elements.

stable sort()

Works much like sort but preserves
lorder, too.

partial sort()

[Sorts a specified number of
lelements in a range.

(Copies elements from a specified
lsource range to a destination range
tthat holds them in a sort order.

Partitioning Algorithms

OEBPS/Images/606tab01.jpg
Function

Description

[Example

set ()

Sets all bits in the sequence|
to1

/7

fourBits.set () ;

lsequence now
lcontains: '1111"'

set (N, val=1)

Sets the nth bit with the
alue specified in val (the
default is 1)

fourBits.set (2, 0);
// sets third bit to
o

reset () Resets all bits in the fourBits.reset(); //
isequence to 0 lsequence contains:
10000
(Clears the nth bit fourBits.reset(2); //

the third bit is now
10

[Toggles all bits in the
sequence

fourBits.flip(); //
0101 changes to 1010

Returns the number of bits
in the sequence

lsize t numBits =
fourBits.s

lceturns 4

count ()

Returns the number of bits
fthat hold true

size t numBitsSet
fourBits.count () ;

lsize t numBitsReset =

fourBits.size() -

fourBits.count ()

OEBPS/Images/06tab02.jpg
DO

DON'T

DO use do. ..while when
the logic in the loop needs
to be executed at least
once.

DO use while,
do...while, or for loops
with well-defined condition
expressions.

DO indent code in a
statement block contained
in a loop to improve
readability.

DON'T use goto.

DON'T use continue and
break indiscriminately.

DON'T program infinite
loops terminated using
break unless absolutely
necessary.

OEBPS/Images/06tab01.jpg
DO

DON'T

DO use enumerators in
switch expressions to
make code readable.

DO remember to handle
default, unless doing so
is deemed totally
unnecessary.

DO check whether you
inadvertently forgot to
insert break in each
case statement.

DON'T add two cases with
the same label as it won't
make sense and won't
compile.

DON'T complicate your case
statements by including
cases without break and
relying on sequence. Doing
so will break functionality in
the future when you move
the case statements without

paying adequate attention to
sequence.

DON'T use complicated
conditions or expressions
when using conditional
operators (2:).

OEBPS/Images/05tab02.jpg
Operand Result of NOT (Operand)

ltrue

false

OEBPS/Images/05tab03.jpg
Operand 1 Operand 2 Result of Operand1l

IAND Operand2

false false false
true false false
false ltrue false

true true [true

OEBPS/Images/05tab01.jpg
Operator Name

Description

Less than (<)

Evaluates to true if one
foperand is less than the other
(opl < op2); otherwise,
evaluates to false

Greater than (>)

Evaluates to true if one
foperand is greater than the
fother (opl > op2);

fotherwise, evaluates to false|

Less than or equal to (<=)

Evaluates to true if one
loperand is less than or equal
fto another; otherwise,
levaluates to false

Greater than or equal to
(>=)

Evaluates to true if one
foperand is greater than or
lequal to another; otherwise,
levaluates to false

OEBPS/Images/583tab01.jpg
DO

DON'T

DO remember to use a
container's erase ()
member method after
using the algorithms
remove (), remove if(),

DON'T forget to sort a
container using sort ()
before calling unique () to
remove repeating adjacent
values. sort () ensures that

or unique () to resize the
container.

DO always check the
iterator returned by the
find(), find if (),

search(), Of search n()

functions for validity
before using it by
comparing against the
end of the container.

DO choose

stable partition()
over partition() and
stable sort() over
sort () when the relative
ordering of sorted
elements is important

all elements of a value are
aligned adjacent to each
other, making unigue ()
effective.

DON'T insert elements into
a sorted container at
randomly chosen positions.
Rather, insert them using
positions returned by
lower bound() or

upper bound () to ensure
that the sorted order of
elements remains
undisturbed.

DON'T forget that
binary search() is used
only on a sorted container.

OEBPS/Images/08tab01.jpg
DO

DON'T

DO always initialize pointer
variables, or else they will
contain junk values. These
junk values are interpreted
as address locations that
your application is not
authorized to access. If you
cannot initialize a pointer to
a valid address returned by
new during variable
declaration, initialize to
NULL.

DO ensure that your
application is programmed in
such a way that pointers are
used when their validity is
assured, or else your
program might encounter a
crash.

DO remember to release
memory allocated using new
by using delete, or else
your application will leak
memory and reduce system
performance.

DON'T access a block of
memory or use a pointer
after it has been released
using delete.

DON'T invoke delete on
a memory address more
than once.

DON'T leak memory by
forgetting to invoke
delete when done using
an allocated block of
memory.

OEBPS/Images/10tab02.jpg
Base Class Examples of Derived

Classes

ar (Car has a Motor)

Mammal (Mammal has a Heart)

Lamp (Lamp has a Bulb)

OEBPS/Images/10tab03.jpg
Do

DON'T

DO use a public inheritance
hierarchy to establish an is-
a relationship.

DO use a private or
protected inheritance
hierarchy to establish a has-
a relationship—but only
after evaluating other
design options.

DO remember that private
members in the base class
cannot be accessed by any
class deriving from it,
notwithstanding the nature
of the inheritance.

DO remember that public
inheritance means that
classes deriving from the
derived class have access to
the public and protected
members of the base class.
An object of the derived
class can be used to access
public members of the base
class.

DON'T create an
inheritance hierarchy just
to reuse a trivial function.

DON'T use inheritance
indiscriminately. Doing so
can cause architectural
bottlenecks that restrict
the scalability of your
application.

DON'T program derived
class functions that hide
those in the base class by
having the same name but
a different set of input
parameters.

DON'T pass objects of a
class as arguments to
functions by value;
instead, use references to
avoid slicing errors.

OEBPS/Images/05tab08.jpg
DO

DON'T

DO use parentheses to make
your code and expressions
readable.

DO use the right variable
types and ensure that your
code will never reach overflow
situations.

DO understand that all I-
values (for example, variables)
can be r-values, but not all r-
values (for example, "Hello
World") can be |-values.

DON'T program
complicated expressions
that rely on the
operator precedence
table; your code needs
to be human readable,
too.

DON'T confuse
++variable and
variable++ or think
they're the same.
They're different when
used in assignments.

OEBPS/Images/05tab06.jpg
Operator lUse [Equivalent

ddition assignment |numl += num2; [uml = numl +
um2 ;

Subtraction uml -= num2; |numl = numl -

assignment num2 ;

Multiplication uml *= num2; [ouml = numl *

assignment num2 ;

Division assignment juml /= num2; jnuml = numl /
Inum2 ;

Modulo assignment num2; fuml = numl %
um2;

Bitwise left-shift uml <<= num2;numl = numl <<

assignment um2 ;

Bitwise right-shift uml >>= num2;numl = numl >>

assignment Inum2 ;

Bitwise AND puml &= num2; fuml = numl §&

assignment um2 ;

Bitwise OR uml |= num2; [puml = numl |

assignment num2 ;

Bitwise XOR uml "= num2; puml = numl "~

assignment num2 ;

OEBPS/Images/05tab07.jpg
Rank [Name [Operator

1 IScope resolution o
(associativity: left to right)

2 Member selection, subscripting, ->
increment, and decrement 0
(associativity: left to right) et -

3 sizeof, prefix increment and h+ ——
decrement, complement, and, not, |, |
lunary minus and plus, address-of —
land dereference, new, new(], e
delete, delete[], casting s *
(associativity: right to left) O

4 Member selection for pointer x>
(associativity: left to right)

5 Multiply, divide, modulo * /8
(associativity: left to right)

6 |Add, subtract -
(associativity: left to right)

7 Bitwise shift left, bitwise shift right [<< >>
(associativity: left to right)

8 IC++20 three-way comparison [<=>

OEBPS/Images/605tab01.jpg
Operator

Description

[Example

Inserts a text
representation of the bit
isequence into the output!
istream

lcout << fourBits;

Inserts a string into the
bitset object

"0101" >> fourBits;

Performs a bitwise AND
foperation

bitset<d>
result (fourBitsl &
fourBits2);

Performs a bitwise OR
foperation

itset<4>
lresult (fourBitsl |
fourBits2) ;

Performs a bitwise XOR
foperation

itset<4>
result (fourBitsl ~
fourBits2) ;

Performs a bitwise NOT
foperation

bitset<4>
result (~fourBitsl);

Performs a bitwise right
shift

fourBits >>= (2); //
IShift two bits to the
right

Performs a bitwise left
shift

fourBits <<= (2); //
Shift bits two
[positions left

Returns a reference to
the nth bit in the
sequence

fourBits (2]
sets the third bit to 0

ool flag
fourBits[2]; // reads
the third bit

OEBPS/Images/05tab04.jpg
Operand 1 Operand 2 IResult of Operand1 OR
[Operand2

false false false

true false [true

false [true ltrue

true ltrue true

OEBPS/Images/10tab01.jpg
Base Class [Examples of Derived Classes
Fish IGoldfish, Carp, Tuna (Tuna is @ Fish)
lamma 1 [Human, Elephant, Lion, Platypus

(Platypus is a Mammal)

Bird crow, Parrot, Ostrich, Kiwi, Platypus
(Platypus is a Bird, too!)

Shape ICircle, Polygon (Polygon is @ Shape)

Polygon [Triangle, Octagon (Octagon is a Polygon,

which in turn is a Shape)

OEBPS/Images/05tab05.jpg
Operand 1 [Operand 2 Result of Operand1
IOR Operand2

false false false

true false true

false ltrue ltrue

true [true false

OEBPS/Images/707tab01.jpg
123 7B Opening brace

124 7C Vertical bar (or pipe)

125 7D Closing brace

126 7E Equivalency sign (or
tilde)

127 7F Delete

OEBPS/Images/704tab01.jpg
61 3D Equals
62 3E Greater than (or close
angled bracket)
63 3F Question mark
64 40 At symbol
65 41 Uppercase A
66 42 Uppercase B
67 43 Uppercase C
68 44 Uppercase D
69 45 Uppercase E
70 46 Uppercase F
71 47 Uppercase G
72 48 Uppercase H
73 49 Uppercase 1
74 4A Uppercase J
75 4B Uppercase K
76 4C Uppercase L
77 4D Uppercase M
78 4E Uppercase N
79 4F Uppercase O
80 50 Uppercase P

OEBPS/Images/18tab01a.jpg
DO remember that you can
always determine the
number of elements in a
list by using the

list ize () method, as
with any other STL
container class.

DO remember that you can
empty a list by using the
list::clear() method, as
with any other STL
container class.

OEBPS/Images/673tab01.jpg
Adaptor

View elements in a collection
in the reverse order (that is,
last element first)

View all elements in a
collection

View only elements that
satisfy a supplied predicate p

View elements in the
collection, ignoring the first n
elements

View the first n elements in a
collection

View the result of a
transforming function £
applied individually to
elements in the supplied
range

OEBPS/Images/11fig01.jpg
Instance Base VFT for Base (Ease Funct()

VET Pointer virtual Func1) 9|

base implementation

Other members

virtual Func2() Base:Func2()

I/ base implementation

Base::FuncN()
T 2 A

base implementation

1

Instance Derived VFT for Derived

Derved:Funct()

VFT Pointer vittual Func1() | —— 3.

Il overrides Base:Funci()
Other members !

virtual Func2()

Derived::FuncN()

virtual FuneN() 1/ Overrides Base:FuncN()
1

OEBPS/Images/17fig02.jpg
Insertion at
front

<
—_—
<

Element
(0]

Element
1

Insertion at
back

OEBPS/Images/665tab01.jpg
Concept

Description

integral

Validates an integral type.
Examples include int, long,
and unsigned and signed
variants of int and long.

signed integral

Validates a signed integral
type. Examples include int,

long, and long long.

unsigned integral

Validates an unsigned
integral type. Examples
include unsigned int and
unsigned long.

floating point

Validates a floating-point
type. Examples include float
and double.

same as

Validates that one type is the
same as another

derived from

Validates that one type is
derived from another

convertible to

Validates that one type can
be converted to another

OEBPS/Images/11fig02.jpg
class Animal

+ Can move
A
class Mammal class Bird class Reptile
« Feeds young milk « Lays eggs « Webbed feet
 Covered with hair/fur + Has a beak/bill * Venomous
Inherited Attributes Inherited Attributes Inherited Attributes
* Can move + Can move + Can move

class Platypus

Can swim

Inherited Attributes
Can move

Feeds young milk
Covered with hair/fur
Lays eggs

Has a beak/bill
Webbed feet
Venomous

OEBPS/Images/551tab01.jpg
Searches for the first element in
the range that matches the
ispecified value

find if ()

[Searches for the first element in
la range that satisfies the
ispecified condition

find end()

[Searches for the last occurrence
of a particular subrange in a
isupplied range

find first of()

[Searches for the first
loccurrence of any element
isupplied in one range within a
target range; or, in an
loverloaded version, searches
ffor the first occurrence of an
lelement that satisfies a supplied
ffind criterion

adjacent find()

Searches for two elements in a
collection that are either equal
jor satisfy a supplied condition

Comparison Algorithms

equal ()

(Compares two elements for
lequality or uses a specified
binary predicate to determine
lequality

Locates the first difference
position in two ranges of
lelements using a specified
binary predicate

lexicographical compa

(Compares the elements
between two sequences to
determine which is the lesser of
tthe two

OEBPS/Images/17fig01.jpg
Element
[0

Element
[

Element
121

Insertion at
back

OEBPS/Images/551tab02.jpg
Igorithm Description

nitialization Algorithms

£ill() |Assigns the specified value to every

lelement in the specified range.

|Assigns the specified value to the
first n elements in the specified
range.

generate ()

|Assigns the return value of a
ispecified function object to each
lelement in the supplied range.

generate n() |Assigns the value generated by a

OEBPS/Images/pub.jpg
SAMS

OEBPS/Images/20fig01.jpg
Key Value

Pair
Key Value
Pair
'
i
i
i
i
i
i
Key Value
Pair

Map (Container of Key-Value Pairs, Sorted by Key)

OEBPS/Images/17tab01.jpg
DO

DON'T

DO use the dynamic arrays
vector or deque when you
don't know the number of
elements you need to store.

DO remember that a vector
can grow only at one end
via the function

push back().

DO remember that a deque
can grow on both ends via
the functions push back ()
and push front ().

DON'T access a dynamic
array beyond its bounds.

DON'T access a vector or
a deque by using the
subscript operator ([]) if
you are not certain of
being within bounds; use
the member function at ()
instead.

OEBPS/Images/11tab01.jpg
DO

DON'T

DO remember to mark base
class functions that need to
be overridden by the derived

class as virtual.

DO remember that pure
virtual functions make your
class an abstract base class,
and these functions must be
implemented by a deriving
class.

Do mark functions in derived
classes that are intended to
override base functionality
using the keyword override.

DO use virtual inheritance to
solve the diamond problem.

DON'T forget to supply
your base class with a
virtual destructor.

DON'T forget that the
compiler does not allow
you to create a
standalone instance of an
abstract base class.

DON'T forget that virtual
inheritance is about
ensuring that the
common base in a
diamond hierarchy has
only one instance.

DON'T confuse the
function of the keyword
virtual when used in
creating an inheritance
hierarchy with the same
keyword used in declaring
base class functions.

OEBPS/Images/04fig01.jpg

OEBPS/Images/702tab01.jpg
Symbol Decimal | Hexade | Description
cimal
32 20 Space
! 33 21 Exclamation point
" 34 22 Double quotes (or
speech marks)
35 23 Number
$ 36 24 Dollar
% 37 25 Percent sign
& 38 26 Ampersand
i 39 27 Single quote
(40 28 Open parenthesis (or

open bracket)

OEBPS/Images/04fig02.jpg

OEBPS/Images/04fig03.jpg
Row 0

Row 1

Column0 Column1 Column2
Panel Panel Panel
0 1 2
Panel Panel Panel
3 4 5

OEBPS/Images/01fig02.jpg
5

50 Souton-1.1 el 1 f 1 proect int main()

2 e
o8 oo sed:ccout << Hello World™ < sed: sendl

OEBPS/Images/01fig01.jpg
®00 ©) B W Thee)ziyMec Fsnednmingheto:halo

=ERQAGEDE B <>
B et 0) B) oS
T rincluse <tostresm>

S ine min)
i q

Hetto ver1s
Progran snded with exit codes ©

@ 800

OEBPS/Images/705tab01.jpg
81 51 Uppercase Q
82 52 Uppercase R
83 53 Uppercase S
84 54 Uppercase T
85 55 Uppercase U
86 56 Uppercase V
87 57 Uppercase W
88 58 Uppercase X
89 59 Uppercase Y
90 5A Uppercase Z
91 5B Opening bracket
92 5C Backslash

93 5D Closing bracket
94 5E Caret (or circumflex)
95 5F Underscore

96 60 Grave accent
97 61 Lowercase a
98 62 Lowercase b
929 63 Lowercase ¢
100 64 Lowercase d
101 65 Lowercase e

OEBPS/Images/12tab02a.jpg
Pointer-to-member selection

Division

Division/assignment

Less than

Left shift

lLeft shift/assignment

lLess than or equal to

|Assignment, copy assignment, and
Imove assignment

Equality

(Greater than

OEBPS/Images/30fig01.jpg
Worker Thread

Defrags Disk

Ul Th
Shared Object
wiites float Progress reads
reads writes

bool Cancel

read

Displays Progress

OEBPS/Images/04tab01.jpg
DO

DON'T

DO remember that the first
element in an array is
accessed at index 0.

DO always ensure that your
arrays are used within their
defined boundaries.

DON'T ever access the
Nth element using index N
in an array of N elements.
Use index (N - 1).

OEBPS/Images/01tab01.jpg
DO

DON'T

DO save your C++ files
with the .cpp extension.

DO use a simple text
editor, a code editor, or

an IDE to program code.

DON'T use a .c extension for
C++ file because some
compilers compile such files
as C rather than C++
programs.

DON'T use word processors
to write code because
autocorrect and text
formatting can cause
compiler errors.

OEBPS/Images/554tab01.jpg
partition ()

(Given a specified range, splits
lelements into two sets within the
range: Elements that satisfy a unary
predicate come first and the rest
lafter. Might not maintain the
relative order of elements in a set.

stable

Partitions an input range into two
sets—as partition does—but
maintains relative ordering.

Igorithms That Work on Sorted Containers

search ()

Determines whether an element
lexists in a sorted collection.

lower bound ()

Returns an iterator pointing to the
first position where an element can
potentially be inserted in a sorted
collection based on its value or on a
isupplied binary predicate.

Returns an iterator pointing to the
last position where an element can
potentially be inserted into a sorted
collection based on its value or on a
isupplied binary predicate.

OEBPS/Images/12tab02b.jpg
(Greater than or equal to

Right shift

Right shift/assignment

[Exclusive OR

[Exclusive OR/assignment

Bitwise inclusive OR

Bitwise inclusive OR/assignment

lLogical OR

ISubscript operator

