

Software Development Patterns
and Antipatterns

https://taylorandfrancis.com

Software Development Patterns
and Antipatterns

Capers Jones

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2022 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Capers Jones to be identified as author of this work has been asserted
by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents
Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilm-
ing, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not avail-
able on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 978-1-032-02912-2 (hbk)
ISBN: 978-1-032-01722-8 (pbk)
ISBN: 978-1-003-19312-8 (ebk)

DOI: 10.1201/9781003193128

Typeset in Garamond
by SPi Technologies India Pvt Ltd (Straive)

http://www.copyright.com

v

Contents

Appreciation and Acknowledgment.. xv

Preface... xvii

Biography... xix

PART 1 � WORST-CASE PATTERNS OF SOFTWARE
DEVELOPMENT� 1

	 1	 Challenges of Software Project Management.......................... 3
Improving Software Project Management Tools and Training........ 7

Initial Education for New Project Managers................................ 8
Continuing Education for Software Project Managers................ 9
Guest Lectures from Visiting Experts (Remotely via

Zoom or Other Tools).. 10
Acquisition and Use of Software Parametric

Estimation Tools... 13
Acquisition and Use of Progress and Milestone

Tracking Tools.. 17
The Use of Formal Project Offices (PMOs) for

Applications >1,000 Function Points................................. 18
Use and Measurement of Effective Quality Control Methods... 19
Elimination of Bad Metrics and Adoption of

Effective Software Metrics... 26
Primary Software Metrics for High Precision............................ 29
Supplemental Software Metrics for High Precision.................. 29
Commissioning Annual Software Benchmark Studies.............. 31
Formal Best Practice Analysis of Software Tools,

Methods, and Quality... 34
Summary and Conclusions on Software Project Management...... 36

vi  ◾  Contents

Suggested Readings on Software Project Management................. 41
Suggested Web Sites... 44

	 2	 Wastage: Lost Time and Money Due to
Poor Software Quality... 47
Introduction.. 47
Analyzing the Work Patterns of Software Engineers and

Programmers... 48
Reuse of Certified Materials for Software Projects........................ 55
Achieving Excellence in Software Quality Control........................ 56

Excellent Quality Control... 56
Average Quality Control... 57
Poor Quality Control.. 58

Summary and Conclusions... 64

	 3	 Root Causes of Poor Software Quality................................... 67
Introduction.. 67
Software Quality Education Curricula... 71
References and Readings in Software Quality Control................. 79

	 4	 Defenses against Breach of Contract Litigation..................... 85
Introduction.. 85
Problem 1: Estimating Errors and Estimate Rejection................... 86
Problem 2: Missing Defensible Objective Benchmarks................. 87
Problem 3: Rapidly Changing Requirements................................. 88
Problem 4: Poor Quality Control... 89
Problem 5: Poor Software Milestone Tracking.............................. 91
Problem 6: Flawed Outsource Agreements that

Omit Key Topics.. 96
Summary and Observations Based on Breach of

Contract Litigation... 97
Suggested Readings.. 98
Web Sites.. 101
Suggested Web Sites... 101

	 5	 The Mess of Software Metrics.. 105
Introduction.. 105
Defining Software Productivity.. 115
Defining Software Quality.. 116
Patterns of Successful Software Measurements and Metrics....... 121
Successful Software Measurement and Metric Patterns.............. 121

Function Points for Normalizing Productivity Data................ 122
Function Points for Normalizing Software Quality................. 122
Defect Potentials Based on all Defect Types........................... 123

Contents  ◾  vii

Defect Removal Efficiency (DRE) Based on All
Defect Types.. 123

Defect Removal Efficiency Including Inspections and
Static Analysis.. 124

Defect Removal Efficiency Based on 90 Days after Release... 124
Activity-Based Benchmarks for Development......................... 125
Activity-Based Benchmarks for Maintenance.......................... 134
Cost of Quality (COQ) for Quality Economics........................ 134
Total Cost of Ownership (TCO) for

Software Economic Understanding................................. 141
Needs for Future Metrics.. 143
Summary and Conclusions... 145
Appendix A: Problems with Cost per Defect Metrics.................. 148

Why Cost per Defect Penalizes Quality................................... 149
Case A: Poor Quality.. 149
Case B: Good Quality... 149
Case C: Zero Defects.. 152
Using Function Point Metrics for Defect Removal

Economics.. 156
The Value of Quality for Large Applications of

10,000 Function Points.. 157
Appendix B: Side-by-Side Comparisons of

79 Languages using LOC and Function Points................... 157
References and Readings... 168

Books and monographs by Capers Jones....................... 168
Monographs by Capers Jones 2012–2020 available from

Namcook Analytics LLC.. 169
Books by Other Authors.. 169
Software Benchmark Providers (listed in alphabetic order)....... 173

	 6	 Variations in Software Costs and Quality by
Application Size��� 175
Introduction.. 175
Summary and Conclusions... 176

	 7	 Advancing Software from a Craft to a Profession���������������� 185
Introduction.. 185
What Are the Indicators of a Profession?.................................... 187
Why Software Engineering in Not Yet a Profession.................... 188

Topic 1: Reduce the Many Software Failures.......................... 189
Topic 2: Reduce Cost and Schedule Overruns........................ 190
Topic 3: Improve Software Quality after Deployment............ 191
Topic 4: Improve Today’s Low Software Development

Productivity and Long Schedules.................................... 192

viii  ◾  Contents

Topic 5: Improve Poor Software Security and
Reduce Cyber-Attacks.. 192

Topic 6: Stop Using Inaccurate and
Invalid Metrics That Distort Reality................................. 193

Topic 7: Adopt Accurate Metrics and
Effective Measurement Practices..................................... 194

Topic 8: Improve Inaccurate and
Optimistic Estimates before Starting Projects................. 195

Topic 9: Eliminate Inaccurate Status Tracking........................ 196
Topic 10: Reduce High Maintenance Costs after

Deployment.. 196
Topic 11: Reduce or Eliminate Litigation from

Unhappy Clients... 197
Topic 12: Improve Undergraduate and

Graduate Software Education.. 198
Topic 13: Improve Post-Graduate and

On-the-Job Software Education....................................... 198
Topic 14: Introduce Software Licensing and

Board Certification... 199
Topic 15: Move from Custom and Manual

Development to Standard Reusable Components........... 200
Topic 16: Develop Effective Methods for Working at

Home Due To Corona Virus.. 201
Summary and Conclusions on Software Professionalism....... 201

References and Readings on Software and
Selected Texts on Medical Practice..................................... 202

PART 2 � BEST-CASE PATTERNS OF SOFTWARE
DEVELOPMENT� 209

	 8	 Corporate Software Risk Reduction in a
Fortune 500 Company... 211
Introduction.. 211
A National Talent Search.. 212
Fact Finding and Software Assessments...................................... 213
Software Applications in Use... 213
The Initial Report to the Chairman.. 216
Corporate Software Risk Factors Found by the

Initial Assessment.. 217
The Corporate Risk Reduction Strategy: Fix Quality First.......... 218
Four-Year Software Risk Reduction Targets................................. 220
Creating a Software Engineering Laboratory............................... 221

Education.. 221

Contents  ◾  ix

Applied Technology... 221
Advanced Technology.. 222
Measurements... 222
Communications... 223
Administration.. 224

Results of the Corporate Risk Reduction Program...................... 224
Cost Justifying a Corporate Risk Reduction Program................. 225

Cost Recovery on the Development Side................................ 228
Cost Recovery on the Maintenance Side................................. 229
Asset Value of a Library of Reusable Artifacts......................... 231
Adding Value through Shorter Development Schedules......... 232
Adding Value through Higher Revenues................................. 233
Adding Value from Disaster Avoidance................................... 233
Adding Value from Reduced Litigation Risk............................ 234
Adding Value from Improved Staff and Management Morale....234
Adding Value from Recruiting and Keeping

Top-Ranked Personnel... 234
Adding Value from Customer Loyalty...................................... 235
Overall Value from Effective Process Improvements.............. 235

Summary and Conclusions... 235
Appendix A: Master List of 210 Corporate Software Risks......... 236
References and Readings... 236

	 9	 Achieving Software Excellence�� 247
Introduction.. 247
Software Sizing, Estimating, and Project Tracking Differences.. 248
Software Quality Differences for Best, Average, and Poor

Projects.. 252
Excellent Quality Control... 254
Average Quality Control... 255
Poor Quality Control.. 256

Reuse of Certified Materials for Software Projects...................... 258
Reusable Software Artifacts Circa 2019....................................... 258
Software Methodologies... 261
Quantifying Software Excellence... 262
The Metaphor of Technical Debt... 265
Stages in Achieving Software Excellence..................................... 267

Stage 1: Quantify Your Current Software Results.................... 268
Stage 2: Begin to Adopt State of the

Art Quality Tools and Methods.. 269
Formal Sizing, Estimating, and Tracking............................. 269
Defect Prevention... 269
Pre-test Defect Removal... 270

x  ◾  Contents

Test Defect Removal... 270
Stage 3: Continuous Improvements Forever........................... 271

Going Beyond Stage 3 into Formal Reuse Programs.................. 273
Summary and Conclusions... 273
References and Readings... 274

10	 Early Sizing and Estimating of Software Projects.......................... 279
Introduction.. 279

1950 to 1959... 280
1960 to 1969... 280
1970 to 1979... 280
1980 to 1989... 281
1990 to 1999... 281
2000 to 2010... 282

The State of the Art of Sizing and Estimating
from 2010 to 2020... 283

Hazards of Older Metrics... 285
Metrics Used with Function Point Analysis................................. 286

Assignment Scope.. 288
Cost per Function Point... 289
Defect Potentials... 289
Defect Removal Efficiency (DRE).. 290
Function Points per Month.. 291
Production Rate.. 291
Requirements Creep... 291
Work Hours per Function Point... 292

Application Sizing Using Pattern Matching................................. 292
Early Risk Analysis... 295
Lifetime Sizing with Software Risk Master™............................... 302
Economic Modeling with Software Risk Master.......................... 302
The Future of Sizing and Estimating Software with

Function Points... 304
Summary and Conclusions... 306
References and Readings... 307
Additional Literature... 307

11	 Optimizing Software Defect Removal Efficiency (DRE)............... 309
Introduction.. 309
Summary and Conclusions... 312
Introduction.. 315

Project Management Tools... 315
Software Engineering Tools... 315
Software Maintenance Engineering Tools............................... 315
Software Quality Assurance Tools... 316

Contents  ◾  xi

Software Testing and Static Analysis Tools.............................. 316
Software Documentation Tools.. 316
Commercial Tools... 316

Performance of Lagging, Average, and Leading Projects............ 319
Average Software Projects.. 320
Leading Software Projects.. 321
Lagging Software Projects.. 321

A Taxonomy of Software Tool Classes... 322
Project Management Tools... 323
Software Engineering Tools... 323
Software Maintenance Engineering Tools............................... 324
Software Quality Assurance Tools... 324
Software Testing and Static Analysis Tools.............................. 324
Software Documentation Tools.. 325

References and Readings... 325

12	 Tool Usage on Best-Case, Average, and
Worst-Case Projects��327
Project Management Tools on Lagging and

Leading Projects.. 328
Software Engineering Tools on Lagging and

Leading Projects.. 330
Software Maintenance Engineering Tools on Lagging and

Leading Projects.. 331
Software Quality Assurance Tools on Lagging and

Leading Projects.. 332
Software Testing Tools on Lagging and Leading Projects........... 335
Software Documentation Tools on Lagging and

Leading Projects.. 337
Overall Tool Differences between Laggards and Leaders........... 337
Summary and Conclusions... 339
References and Readings... 340

13	 Geriatric Care for Aging Software���343
Introduction.. 343
What Is Software Maintenance?... 345

Geriatric Problems of Aging Software..................................... 348
Metrics Problems with Small Maintenance Projects.................... 351

Metrics Problems with ERP Maintenance................................ 352
Best and Worst Practices in Software Maintenance..................... 352

Methodologies That Are Maintenance-Strong and
Maintenance-Weak... 359

Customer Support: A Major Maintenance Weakness............... 362
Software Entropy and Total Cost of Ownership.......................... 362

xii  ◾  Contents

Summary and Conclusions... 364
References and Books by Capers Jones That

Discuss Software Maintenance... 365
Books by Additional Authors... 365
Readings on Software Maintenance... 367

14	 Function Points as a Universal Metric.. 369
Introduction.. 369

The Strengths of Function Point Metrics................................. 371
The Weaknesses of Function Point Metrics............................. 371

A New Method for High-Speed Function Point Analysis............ 372
A Short Summary of Pattern Matching.. 373
Increasing Executive Awareness of Function Points for

Economic Studies.. 374
Topic 1: Sizing Application Growth during

Development and After Release... 375
Topic 2: Predicting Application Size in Multiple Metrics............ 375
Topic 3: Sizing All Known Types of Software Application......... 377
Topic 4: Function Points for Early Analysis of

Software Risks... 379
Topic 5: Function Points for Activity-Based Sizing and

Cost Estimating... 381
Topic 6: Function Points and Methodology Analysis.................. 384
Topic 7: Function Points for Evaluating the

Capability Maturity Model (CMMI®)................................... 384
Topic 8: Function Points for Software Quality Analysis.............. 390
Topic 9: Function Points and Software Maintenance,

Enhancements, and Total Cost of Ownership (TCO)......... 394
Topic 10: Function Points and Forensic Analysis of

Canceled Projects.. 399
Topic 11: Portfolio Analysis with Function Point Metrics........... 402
Topic 12: Industry Studies Using Function Point Metrics........... 402
Topic 13: Global Studies Using Function Point Analysis............ 410
Topic 14: Function Points versus Lines of Code (LOC) for

Software Economic Analysis... 410
Topic 15: Function Points and Software Usage and

Consumption... 424
Patterns of Tools Noted on Successful Software Projects........... 427
Patterns of Tools Noted on Unsuccessful Projects...................... 428
Topic 16: Function Points and Software Outsource Contracts.... 429
Suggested Format for Monthly Status Reports for

Software Projects... 433

Contents  ◾  xiii

Topic 17: Function Points and Venture Funding of
Software Startups.. 437

Topic 18: Function Points for Analysis of Software
Occupation Groups... 439

Topic 19: Data Used by Fortune 500 C-Level Executives............ 441
Topic 20: Combining Function Points with Other Metrics.......... 447
Function Points and Defect Removal Efficiency (DRE)............... 447
Function Points and Natural Metrics such as

“Document Pages”... 452
Function Points and Goal Question Metrics (GQM)................... 456
Function Points and Earned Value Analysis (EVA)...................... 457
Function Points, Story Points, and Velocity on

Agile Projects.. 458
Function Points and Return on Investment (ROI)....................... 458

Case 1: Software Improves Operational Performance............ 459
Case 2: Software Generates Direct and

Indirect Revenues Streams... 460
Summary and Conclusions... 462
References and Readings... 463
Additional Literature... 464

Index��467

https://taylorandfrancis.com

xv

Appreciation and
Acknowledgments

This is my 22nd book. As always thanks to my wife Eileen for support-
ing my book writing over many years.

This book is dedicated to Watts Humphrey who was a pioneer in soft-
ware quality control and effective development patterns. Watts worked
at IBM and then helped create the software assessment program and the
capability maturity model (CMMI) for the Software Engineering Institute
(SEI). Watts was an industry leader in moving organizations from harm-
ful patterns to effective patterns.

Thanks also to the faculty of the University of Florida and to my col-
leagues at IBM.

https://taylorandfrancis.com

xvii

Preface

This book is divided into two sections. The first section discusses harm-
ful patterns and practices that tend to cause schedule delays, cost over-
runs, and poor quality. The observations and data about these harmful
patterns came from consulting studies and benchmarks carried out for
clients of Namcook Analytics LLC who wanted to improve their software
development practices and patterns.

The second section of the book shows optimal patterns that have
proven to be successful for large systems. The successful patterns origi-
nated in companies and organizations that build large mission-critical
software systems such as IBM, AT&T, ITT, Nippon Electric, NASA, and
the Internal Revenue Service (IRS).

Software has been a troubling topic since it first started. There are
seven chronic problems that have plagued software from the beginning:

	 1.	Incomplete and ambiguous user requirements that grow by >2%
per month.

	 2.	Major cost and schedule overruns for large applications >35%
higher than planned.

	 3.	Low defect removal efficiency (DRE) <85% on large systems.
	 4.	Cancelled projects that are not completed: >30% above 10,000

function points.
	 5.	Poor quality and low reliability after the software is delivered: >5

bugs per FP.
	 6.	Breach of contract litigation against software outsource vendors.
	 7.	Expensive maintenance and enhancement costs after delivery.

These are endemic problems for software executives, software engi-
neers, and software customers but they are not insurmountable. There
are technical solutions for all seven. The solutions involve moving from

xviii  ◾  Preface

harmful patterns of software development to effective patterns of soft-
ware development.

Harmful patterns include carelessness in gathering requirements,
failure to use design and code inspections for critical features, and fail-
ure to monitor progress against accumulated costs.

The first beneficial pattern is to match the features of new applica-
tions against libraries of existing software applications to ensure that all
needed requirements will be included.

The second beneficial pattern is to select the optimum kinds of tools,
methodologies, and programming languages for the new application to
ensure optimal development.

The third beneficial pattern is to identify and select as many standard
reusable components as possible. Custom manual software develop-
ment is intrinsically slow and error prone, and using standard reusable
components provides the best overall results.

The fourth beneficial pattern is to measure defect removal efficiency
(DRE) and use methods such as static analysis and inspections that can
increase DRE above 99%.

The fifth beneficial pattern is to carefully monitor progress and accu-
mulated costs during development to ensure that the project will in fact
be delivered on time and within budget. The measures will include func-
tion points completed to date, function points remaining, and growth
of function points due to new requirements added during development.

Early and accurate measurements of accumulated costs and prog-
ress against planned checkpoints can eliminate the expensive cancel-
lations of large applications before they are completed. It is interesting
that the average accumulated cost at the day of cancellation is usually
20% higher than the budgeted cost for the entire application. Cancelled
projects have zero value and cause CEOs to regard software teams as
incompetent and undependable.

xix

Biography

Capers Jones held both managerial and research positions at IBM. He
managed a software quality assurance team at IBM in San Jose, California.
As a software researcher, he designed IBM’s first software cost-estimating
tool in 1973 with Dr. Charles Turk. He received an IBM outstanding
contribution award for improving quality of several IBM products. He
has represented IBM as a speaker at major external software confer-
ences. He has frequent contact with key IBM clients discussing on the
topics of software quality, productivity and quality measurement, and
software process improvement.

Capers Jones is currently VP and CTO of Namcook Analytics, LLC
which is a leading vendor for developing software estimation tools.
Namcook Analytics is also an international software consulting company
with clients in 27 countries. He has also been a keynote speaker at major
software conferences in the United States, Canada, Europe, South Korea,
Singapore, Malaysia, and Japan. He was named software engineering
advisor to governments of South Korea and Malaysia in 2011. Prior to
founding Namcook Analytics, Capers Jones was Assistant Director of
Software Engineering at the ITT Technology Center in Stratford, CT. He
was tasked with helping to introduce state-of-the-art tools and methods
to the 75 major companies owned by ITT that produced software. Some
of the ITT companies included Hartford Insurance, Sheraton Hotels,
Johnson Controls, Continental Baking, and more than 25 telecommuni-
cation companies in the United States and abroad.

https://taylorandfrancis.com

WORST-CASE
PATTERNS OF
SOFTWARE
DEVELOPMENT

1

This section of the book examines common software development
problems that have been observed in many companies and government
agencies. The data comes from consulting studies, breach of contract
lawsuits, and the literature on major software failures.

It is an unfortunate fact of life that harmful development patterns
are still more common than optimal development patterns. Even today
a majority of large software applications run late, exceed their planned
budgets, and have quality problems after release. Look at the reviews of
Microsoft Windows updates to see how troublesome large systems are.

This section considers the factors involved with cost overruns, sched-
ule delays, canceled projects, poor quality, and expensive maintenance
after deployment.

DOI: 10.1201/9781003193128-1

https://taylorandfrancis.com

3DOI: 10.1201/9781003193128-2

Chapter 1

Challenges of Software
Project Management

Project management in every industry is a challenging occupation. But
the challenges and hazards of software project management are greater
than those of most other industries. This fact is proven by the large
number of software project cancellations and the high frequency of
software project cost and schedule overruns. Software projects run late
and exceed their budgets more than any other modern industry except
for defense projects.

Academic training for software project managers is still not very good
even today. Some technology companies have recognized the challenges
of software project management and created effective in-house training
for new software project managers. These companies with effective soft-
ware project management training include IBM and a number of tele-
com companies such as AT&T, ITT, Motorola, Siemens, and GTE. Some
other technology companies such as Google, Microsoft, and Apple also
have effective software project management training. Many of the com-
panies with good software management training build complex physical
devices run by software. Most are also more than 75 years old and have
had software measurement programs for more than 50 years.

A few companies even offer market effective software project man-
agement training. One of these is a subsidiary of Computer Aid Inc.
called the Information Technology Metrics and Productivity Institute
(ITMPI). The non-profit Project Management Institute (PMI) also offers
effective training for software project managers.

4  ◾  Software Development Patterns and Antipatterns

Several years ago, a survey of engineering technology company
CEOs (computers, Telecom, electronics, medical devices, autos, and air-
craft) found that they regarded their software organizations as the least
professional of any of the corporate engineering organizations. This was
due to the fact that software projects had higher cancellation rates, lon-
ger schedule delays, and higher cost overruns than any of the other
engineering organizations.

Lyman Hamilton, a former Chairman of the ITT Corporation, gave
an internal speech to ITT executives in which he mentioned that newly
hired software engineers just out of college needed about 3 years of
internal training before being entrusted with critical projects. Other
kinds of engineers such as mechanical and electrical engineers only
needed about 12 months of internal training.

Hamilton was troubled by several major software failures of projects
that were terminated without being completed. He was also troubled by
the dissatisfaction expressed by customers in the quality of the software
the corporation produced. He was further dissatisfied by the inability of
internal software executives to explain why the problems occurred and
what might be done to eliminate them.

It is interesting that the failing projects were all large systems in the
10,000 function point size range. Failures in this range are common, and
managerial problems are usually a key factor.

Problems, failures, and litigation are directly proportional to the
overall size of software applications measured using function point met-
rics. Table 1.1 shows the approximate distribution of software project
results circa 2020.

As can be seen from Table 1.1, large software projects are distress-
ingly troublesome and have frequent total failures, also a high risk of
litigation. Poor project management is a key contributing factor.

Some leading companies have recognized the difficulty of success-
ful software project management and taken active steps to improve the
situation. Some of these companies include IBM, AT&T, ITT, Motorola,
GTE, and Siemens. Google, Apple, and Microsoft have also attempted
to improve software management although Microsoft has perhaps been
too rigid in some management topics such as employee appraisals.

The companies that are most proactive in software project manage-
ment tend to build complex engineered products such as computers,
medical devices, aircraft controls, and switching systems that depend
upon software to operate. The companies also tend to be mature com-
panies founded over 75 years ago and having effective software mea-
surement programs that are more than 40 years old. Most were early
adapters of function point metrics and also early adapters of parametric
software estimation tools.

C
h

allen
ges o

f So
ftw

are Pro
ject M

an
agem

en
t 

◾ 
5

Table 1.1  Normal Software Results Based on Application Size Circa 2020

Size in
Function
Points

Note: Costs Are Based on $10,000 per Month

Schedule in
Calendar Months

Total
Staffing

Productivity in
Function Points
per Staff Month

Cost in U.S.
Dollars

Odds of
Project Failure

Odds of Outsource
Litigation

1 0.02 1 50.00 $200 0.10% 0.00%

10 0.40 1 25.00 $4,000 1.00% 0.01%

100 3.50 2 14.29 $70,000 2.50% 0.25%

1,000 15.00 6 11.11 $900,000 11.00% 1.20%

10,000 35.00 50 5.71 $17,500,000 31.00% 7.50%

100,000 60.00 575 2.90 $345,000,000 47.50% 23.00%

6  ◾  Software Development Patterns and Antipatterns

The software benchmarks studies carried out by Namcook Analytics
LLC often show a significant number of serious software project man-
agement problems and issues. Table 1.2 summarizes 41 problems noted
in a benchmark study for a Fortune 500 technology corporation.

Fifteen of the 41 problems or about 36.5% were software project
management problems. This distribution is not uncommon.

The author of this book has been an expert witness in litigation for
software projects that either failed without being delivered or operated
so poorly after delivery that the clients sued the vendors. It is interesting
that project management problems were key factors in every lawsuit.
Inaccurate estimation, poor tracking of progress, and poor quality con-
trol are endemic problems of the software industry and far too common
even in 2020. These problems have been part of every breach of con-
tract case where the author of this book worked as an expert witness.

Table 1.2  Corporate Software Risk Factors Found by a Corporate
Benchmark Study

1 Project management: no formal training for new managers

2 Project management: no annual benchmark studies

3 Project management: no annual training in state of the art methods

4 Project management: no training in software cost estimating

5 Project management: no training in software quality estimating

6 Project management: no training in software risk analysis

7 Project management: no training in cyber-attack deterrence

8 Project management: no training in function point metrics

9 Project management: no training in schedule planning

10 Project management: lack of accurate productivity measurements

11 Project management: lack of accurate quality metrics

12 Project management: incomplete milestone and progress tracking

13 Project management: historical data “leaks” by over 50%

14 Project management: managers continue to use inaccurate manual
estimates

15 Project management: no widespread use of accurate parametric
estimation

16 Quality control: no use of requirements models or QFD

17 Quality control: no use of automated proofs for critical features

Challenges of Software Project Management  ◾  7

Improving Software Project
Management Tools and Training
From consulting and benchmark studies carried out among top-tier tech-
nology corporations, they all have taken effective steps to improve and
professionalize software project management. Some of these include at
least 11 steps (Table 1.3).

18 Quality control: no use of cyber-attack inspections

19 Quality control: no use of formal design inspections

20 Quality control: no use of formal code inspections

21 Quality control: no use of static analysis tools

22 Quality control: no use of mathematical test case design (cause-effect
graphs)

23 Quality control: no use of test coverage tools

24 Quality control: defect potentials about 4.75 bugs per function point

25 Quality control: defect removal efficiency (DRE) below 90.00%

26 Maintenance: no use of complexity analysis or cyclomatic complexity

27 Maintenance: no use of renovation tools or work benches

28 Maintenance: no use of code restructuring tools

29 Maintenance: inconsistent use of defect tracking tools

30 Maintenance: no use of inspections on enhancements

31 No reuse program: requirements

32 No reuse program: design

33 No formal reuse program: source code

34 No reuse program: test materials

35 No reuse program: documentation

36 No reuse program: project plans

37 No formal corporate reuse library

38 No corporate contracts with third party reuse companies

39 Office space: small open offices; high noise levels, many interruptions

40 Insufficient meeting/breakout space for team meetings; no large meetings

41 Inadequate corporate responses to 2020 COVID virus

Table 1.2  (Continued)

8  ◾  Software Development Patterns and Antipatterns

Let us now consider each of these 11 steps in sequence.

Initial Education for New Project Managers

In many technology companies, project managers are often selected
from the ranks of technical software engineering personnel. If this is
so, they usually had close to zero management training at the university
level. IBM recognized this as a problem back in the 1950s and intro-
duced an effective training program for newly hired or newly appointed
project managers.

This training is given to all project managers, but this report only
covers software training topics. Since new project management training
lasts for 10 days, there were 10 topics covered (Table 1.4).

Eight of the 10 topics are technical and deal with actual project
issues such as cyber-attacks and risks. Two of the 10 topics deal with
human resources and appraisals, which are of course a critical part of
any manager’s job.

Microsoft has received criticism for their appraisal system, which
uses mathematical curves and requires that only a certain percentage of
employees can be appraised as “excellent.” The problem with this is that
technology companies such as Microsoft tend to have more excellent
employees than ordinary companies do, so this curve tended to cause
voluntary attrition among capable employees who ended up on the
wrong side of the “excellent” barrier.

Table 1.3  Eleven Steps to Effective Software Project Management

1 Formal internal training for new project managers (10 days)

2 Annual training for project managers and technical staff (5 days)

3 Guest lectures from top software professionals (3 days)

4 Acquisition and use of parametric estimation tools

5 Acquisition and use of effective progress and milestone tracking tools

6 Use of formal project offices for applications >5,000 function points

7 Use of and measurement of effective quality control methods

8 Elimination of bad software metrics and adoption of effective metrics

9 Commissioning annual software benchmark studies

10 Formal “best practice” analysis of tools, methods, reuse, and quality

11 Effective use of Zoom and remote work in response to COVID virus

Challenges of Software Project Management  ◾  9

Continuing Education for Software Project Managers

A study of software education methods carried out by Namcook Analytics
LLC found that in-house education in major companies such as IBM and
AT&T was superior to academic or university training for software proj-
ect managers.

IBM and AT&T both employed more than 100 education person-
nel. These educators taught in-house courses to software and other
personnel, and also taught customer courses to clients. The education
groups operated initially as cost centers with no charges for in-house or
customer training. More recently, they have tended to switch to profit-
center operations and do charge for training, at least for some customer
training.

Quite a few technology companies have at least 10 days of train-
ing for new managers and about a week of training each year for both
managers and technical staff. When Capers Jones was a new manager
at IBM, he took this 10-day training series and later taught some of the
IBM project management courses on estimation, measurements, quality
control, and software risk analysis.

Table 1.5 shows the rankings of 15 channels of software project man-
agement education in order of effectiveness.

A composite software project management curriculum derived from
technology companies such as IBM, AT&T, ITT, Microsoft, and Apple is
shown in Table 1.6.

Table 1.4  New Software Project Manager Curriculum

Project Management Courses Days Value

1 Software milestone tracking 1 10

2 Sizing key software deliverables 1 10

3 Software project planning 1 10

4 Cyber-attack defenses 1 10

5 Software risk management 1 10

6 Software cost estimating: automated 1 10

7 Measurement and metrics of software 1 10

8 Software quality and defect estimating 1 10

9 Human resource policies 1 9

10 Appraisals and employee relations 1 9

10  ◾  Software Development Patterns and Antipatterns

Needless to say this curriculum would be spread over a multi-year
period. It is merely a combination of the kinds of software project man-
agement courses available in modern technology companies.

Guest Lectures from Visiting Experts
(Remotely via Zoom or Other Tools)

Over and above software classroom training, some technology compa-
nies have occasional internal seminars for all personnel which feature
industry experts and famous software researchers. IBM, AT&T, and ITT
had large seminars twice a year. One seminar was open only to employ-
ees and discussed some proprietary or confidential information such
as new products and market expansion. The second large seminar was
intended to demonstrate technical excellence to clients and customers,
who were also invited to participate.

Among the well-known experts invited to companies such as AT&T,
IBM, Siemens, and ITT were Al Albrecht (inventor of function points),
Dr. Barry Boehm (inventor of COCOMO), Dr. Fred Brooks (author of
The Mythical Man-Month), Watts Humphrey (creator of the SEI CMMI),

Table 1.5  Ranking Software Management Education Channels

1 In-house education in technology companies

2 Commercial education by professional educators

3 University education – graduate

4 University education – undergraduate

5 In-house education in non-technology companies

6 Mentoring by experienced managers

7 On-the-job training

8 Non-profit education (IEEE, PMI, IFPUG, etc.)

9 Vendor education (management tools)

10 Self-study from work books

11 Self-study from CD-ROMs or DVDs

12 Live conferences with seminars and tutorials

13 On-line education via the Internet and World Wide Web

14 Project management books

15 Project management journals

Challenges of Software Project Management  ◾  11

Table 1.6  Software Project Management Curriculum

Project Management Courses Days Value

1 Software milestone tracking 1.00 10.00

2 Early sizing before requirements 1.00 10.00

3 Sizing key deliverables 1.00 10.00

4 Controlling creeping requirements 1.00 10.00

5 Software project planning 2.00 10.00

6 Cyber-attack defenses 2.00 10.00

7 Cyber-attack recovery 1.00 10.00

8 Software outsourcing pros and cons 1.00 10.00

9 Optimizing multi-country teams 1.00 10.00

10 Best practices in project management 1.00 10.00

11 Software risk management 1.00 10.00

12 Software cost estimating: automated 2.00 10.00

13 Software high-security architecture 1.00 10.00

14 Benchmark sources: ISBSG, Namcook, etc. 1.00 10.00

15 Measurement and metrics of software 2.00 10.00

16 Software quality and defect estimating 1.00 10.00

17 Software defect tracking 1.00 9.75

18 Software benchmark overview 1.00 9.75

19 Function point analysis: high speed 1.00 9.75

20 Human resource policies 1.00 9.60

21 Software change control 1.00 9.50

22 Principles of software reuse 1.00 9.40

23 Appraisals and employee relations 1.00 9.00

24 Software cost tracking 1.00 9.00

25 Software maintenance & enhancement 1.00 9.00

26 Methodologies: agile, RUP, TSP, others 1.00 9.00

27 The capability maturity model (CMMI) 2.00 9.00

28 Overview of management tools 1.00 9.00

29 Testing for project managers 2.00 8.75

(Continued)

12  ◾  Software Development Patterns and Antipatterns

Dr. Larry Putnam (inventor of SLIM), Dr. Jerry Weinberg (author of The
Psychology of Computer Programming), Bill Gates of Microsoft, Donald
Knuth (pioneer of computer algorithms), Admiral Grace Hopper of the
Navy (inventor of COBOL), Ken Thompson (co-developer of UNIX),
Linus Torvalds (developer of Linux), and many more.

Usually these events lasted for about half a day of technical topics, and
then had either a lunch or a reception for the guests based on whether
it was a morning event or an afternoon event. At the reception or lunch,
the audience could meet and chat informally with the visiting experts.

Project Management Courses Days Value

30 Static analysis for project managers 0.50 8.75

31 Inspections for project managers 0.50 8.75

32 Project management body of knowledge 1.50 8.70

33 Software metrics for project managers 1.00 8.50

34 Software cost estimating: manual 1.00 8.00

35 Tools: cost accounting 1.00 8.00

36 Tools: project management 1.00 8.00

37 Tools: human resources 1.00 8.00

38 Tools: cost and quality estimation 1.00 8.00

39 Function points for project managers 0.50 8.00

40 ISO Standards for functional measures 1.00 8.00

41 Principles of agile for managers 1.00 7.75

42 Principles of RUP for managers 1.00 7.75

43 Principles of TSP/PSP for managers 1.00 7.75

44 Principles of DevOps for managers 1.00 7.75

45 Principles of containers for managers 1.00 7.75

46 Earned value measurement (EVM) 1.00 6.75

47 Principles of balanced scorecards 1.00 6.50

48 Six-Sigma for project managers 2.00 6.00

49 Six-Sigma: green belt 3.00 6.00

50 Six-Sigma: black belt 3.00 6.00

Total 60.00 8.82

Table 1.6  (Continued)

Challenges of Software Project Management  ◾  13

Because the guest experts were world famous, these corporate semi-
nars were attended by top software executives as well as software engi-
neers and technical staff. This was a good method for bringing together
all levels of a company to focus on critical software issues.

Having attended a number of these, they were usually very enjoyable
and it was good to meet famous software researchers such as Admiral
Grace Hopper face to face.

Needless to say this kind of event usually takes place in fairly large
companies since they are expensive. However these seminars were also
valuable and benefitted both the executives and technical staffs of IBM,
ITT, AT&T, Microsoft, and other companies that have them.

Acquisition and Use of Software Parametric Estimation Tools

IBM discovered in the early 1970s that manual software cost estimates
became increasingly optimistic and inaccurate as the application size
increased from below 100 function points to more than 10,000 function
points. Since applications grew rapidly in this era, IBM commissioned
Capers Jones and Dr. Charles Turk to build its first parametric estima-
tion tool in 1973. ITT did the same in 1979 and AT&T commissioned a
custom parametric estimation tool for its electronic switching systems
in 1983.

The technology and telecom sectors have been pioneers in the devel-
opment and usage of parametric estimation tools.

Software has achieved a bad reputation as a troubling technology.
Large software projects have tended to have a very high frequency of
schedule over-runs, cost overruns, quality problems, and outright can-
cellations of large systems. While this bad reputation is often deserved,
it is important to note that some large software projects are finished on
time, stay within their budgets, and operate successfully when deployed.

The successful software projects differ in many respects from the
failures and disasters. One important difference is how the successful
projects arrived at their schedule, cost, resource, and quality estimates
in the first place.

It often happens that projects exceeding their planned schedules
or cost estimates did not use state of the art methods for determining
either their schedules or their costs. Although the project is cited for
overruns, the root problem is inadequate planning and estimation.

From large-scale studies first published in Software Engineering Best
Practices (Jones 2010) and The Economics of Software Quality (Jones
& Bonsignour 2011) usage of automated parametric estimating tools,
automated project scheduling tools, and automated defect and qual-
ity estimating tools (all of these are combined in some tools such as

14  ◾  Software Development Patterns and Antipatterns

Software Risk Master (SRM)) are strongly correlated with successful
outcomes.

Conversely, software project failures tended to use casual and man-
ual methods of arriving at initial estimates. Indeed, for many software
failures, there was no formal estimation at all. Analyzing 15 breach of
contract lawsuits for failure, delays, and poor quality witnessed all of
the projects were larger than 10,000 function points and all used manual
estimating methods.

The first software parametric cost estimation tools were created by
researchers who were employed by large enterprises that built large and
complex software systems: IBM, Hughes, RCA, TRW, and the U.S. Air
Force were the organizations whose research led to the development of
commercial parametric cost estimating tools.

Some of the estimating pioneers who developed the first parametric
estimating tools include in alphabetical order: Dr. Barry Boehm (TRW),
Frank Freiman (RCA), Dan Galorath (SEER), Capers Jones (IBM), Dr.
Larry Putnam (Air Force), and Dr. Howard Rubin (academic-SUNY).

In 1973, the author of this book and his colleague Dr. Charles Turk
at IBM San Jose built IBM’s first automated parametric estimation tool
for systems software. This tool was called the “Interactive Productivity
and Quality” (IPQ) tool. This internal IBM tool was proprietary and not
put on the commercial market since it gave IBM competitive advantages.
This tool was developed at IBM’s San Jose complex and soon had over
200 IBM users at over 20 locations around the world.

Today in 2021, most technology and telecom companies use para-
metric estimation tools. These are normally used by project offices or by
special estimating teams that provide estimates as a service to specific
projects.

Some of the major parametric estimation tools today include in
alphabetical order:

	 1.	Constructive Cost Model (COCOMO)
	 2.	CostXpert
	 3.	ExcelerPlan
	 4.	KnowledgePlan
	 5.	SEER
	 6.	SLIM
	 7.	Software Risk Master (SRM)
	 8.	True Price

These commercial parametric estimation tools are widely used by tech-
nology companies, defense contractors, and other large corporations.
They are fairly expensive of over $5,000 per seat for most.

Challenges of Software Project Management  ◾  15

However, there is also the constructive cost model (COCOMO)
developed by Dr. Barry Boehm. This estimating tool is free. Because
COCOMO is free, it is widely used by universities and small companies
that cannot afford the more expensive commercial estimation tools, but
COCOMO does not have wide usage among U.S. technology companies
which need more detailed estimates provided by commercial parametric
tools.

For example the major features of the Software Risk Master (SRM)
commercial software estimation tool include:

	 •	 Sizing logic for specifications, source code, and test cases.
	 •	 Sizing logic for function points and lines of code (LOC).
	 •	 Sizing logic for story points and use-case points.
	 •	 Sizing logic for requirements creep during development and post

release.
	 •	 Activity = level estimation for requirements, design, code, testing,

etc.
	 •	 Sophisticated quality estimates that predict defects and DRE.
	 •	 Support for 60 development methods such as agile, containers,

DevOps, TSP, spiral, etc.
	 •	 Support for development, user costs, and three years of maintenance.
	 •	 Support for IFPUG function point metrics.
	 •	 Support for the new SNAP point metric for non-functional

requirements.
	 •	 Support for other function point metrics such as COSMIC, NESMA,

FISMA, etc.
	 •	 Support for older lines of code (LOC) metrics (both physical and

logical).
	 •	 Support for modern topics such as cyber-defenses and cyber-attack

recovery.
	 •	 Support for proprietary metrics such as feature points and object

points.
	 •	 Support for software reusability of various artifacts.
	 •	 Support for 84 modern languages such as Java, Ruby, mySQL, and

others.
	 •	 Support for systems applications such as operating systems and

telecom.
	 •	 Support for IT applications such as finance and insurance.
	 •	 Support for web-based applications.
	 •	 Support for cloud applications.
	 •	 Support for ERP deployment and customization.
	 •	 Support for including commercial off the shelf software (COTS).
	 •	 Support for software portfolio analysis.

16  ◾  Software Development Patterns and Antipatterns

SRM also supports many advanced functions:

	 •	 Quality and reliability estimation.
	 •	 Numbers of test cases needed and test coverage.
	 •	 Litigation costs for breach of contract.
	 •	 Cyber-attack costs and recovery costs.
	 •	 ERP deployment and modification.
	 •	 Portfolio sizing and annual portfolio maintenance.
	 •	 Risk and value analysis.
	 •	 Measurement modes for collecting historical data.
	 •	 Cost and time to complete estimates mixing historical data with

projected data.
	 •	 Support for software process assessments.
	 •	 Support for results from the five levels of the SEI CMMI.
	 •	 Special estimates such as the odds and costs of outsource litigation.
	 •	 Special estimates such as venture funding for software startups.

Other commercial software parametric estimation tools have similar fea-
tures. The U.S. Air Force used to perform annual trials of commercial
parametric estimation tools. All of the major parametric tools were within
about 10% of one another, and all were significantly more accurate than
manual estimates for large projects above 1,000 function points in size.
Manual estimates were often optimistic on cost and schedules by more
than 50% above 1,000 function points. Parametric estimation tools are
almost never optimistic and usually come within 10% of actual results.

Of course another industry problem is that most companies do not
have accurate results. Among the author’s clients, the average accuracy
of software project historical data is only 37%. The most common “leaks”
from project historical data include business analysts, project managers,
software quality assurance, technical writers, project office personnel,
configuration control, and integration specialists. Measuring only devel-
opers and test personnel such as “design, code, and unit test” or DCUT
is common but fundamentally inaccurate and inadequate for economic
or quality analysis.

One new problem for software estimation was the arrival of the
corona virus in March of 2020. This virus led to closure of many soft-
ware office locations and a switch to working from home using com-
puters for status meetings and progress discussions. The virus will no
doubt have a major negative impact on software productivity rates and
probably a negative impact on software quality. However, as of late
2020, there were very little quantitative data available because many
large projects started in 2020 were not finished so their productivity and
quality can’t be measured until 2021 or later.

Challenges of Software Project Management  ◾  17

Acquisition and Use of Progress and Milestone Tracking Tools

In addition to parametric estimation tools, there are also many commer-
cial project management tools. The phrase “project management tools”
has been applied to a large family of tools whose primary purpose is
sophisticated scheduling for projects with hundreds or even thousands
of overlapping and partially interdependent tasks and large teams in the
hundreds. These tools are able to drop down to very detailed task lev-
els and can even handle the schedules of individual workers. Microsoft
Project and Artemis Views are two samples of project management tools.
The new automated project office (APO) tool of Computer Aid is a mod-
ern project management tool only recently put on the market. There are
also open-source project management and tracking tools such as JIRA.

However, the family of project management tools are for general pur-
pose in nature and do not include specialized software sizing and esti-
mating capabilities as do the software cost estimating tools. Neither do
these general project management tools deal with quality issues such as
DRE. Project management tools are useful, but software requires addi-
tional capabilities to be under full management control.

Project management tools are an automated form of several man-
agement aids developed by the Navy for controlling large and com-
plex weapons systems: the “program evaluation and review technique”
(PERT), critical path analysis, resource leveling, and the classic Gantt
charts. Project management tools used for defense projects also support
earned-value analysis (EVA) although this is seldom used in the civilian
sectors.

Project management tools have no built-in expertise regarding soft-
ware, as do software cost estimating tools. For example, if you wish to
explore the quality and cost impact of an object-oriented programming
language such as Objective C, a standard project management tool is not
the right choice.

By contrast, many software cost estimating tools have built-in tables of
programming languages and will automatically adjust the estimate based
on which language is selected for the application. Project management
tools and software cost estimating tools provide different but comple-
mentary functions. Most software cost estimating tools interface directly
with common project management tools such as Microsoft Project.

Project Management Tools Software Cost Estimating Tools

Work-breakdown structures Sizing logic for function points, code, etc.

Activity-based cost analysis Quality estimates

(Continued)

18  ◾  Software Development Patterns and Antipatterns

Project Management Tools Software Cost Estimating Tools

Earned-value calculations Integral risk estimates

Effort by staff members Staffing predictions (testers, programmers,
etc.)

Cost accumulation Cost estimating

Both kinds of tools are useful for large and complex software proj-
ects and are generally used concurrently by project office personnel.
An average software project using both parametric estimation tools and
project management tools would be a significant project of over 1,000
function points in size. Small projects below 100 function points are
often estimated informally and use only normal corporate cost account-
ing tools rather than sophisticated project management tools.

The Use of Formal Project Offices (PMOs) for
Applications >1,000 Function Points

When software started, most applications were small and below 100
function points in size. During the late 1960s and early 1970s, software
applications such as operating systems and telephone switching sys-
tems grew above 10,000 function points.

These larger applications had development teams that often topped
100 workers and they had over a dozen managers, including some 2nd
and 3rd line managers.

Due to the poor training of most software managers in topics such as
sizing, planning, estimating, and measurement, it soon became obvious
that expert help was needed for these critical tasks.

The project office concept is much older than software and appeared
in the late 1800s for manufacturing and even for agriculture and com-
modity training. Many industries used project offices before software
became important in the 1950s. IBM was a pioneer in the creation and
effective use of software project offices in the late 1960s.

There are a number of levels and kinds of project offices, but for this
report, the main emphasis is on specific software projects that are fairly
large and complex such as 10,000 function points in size.

For these large systems, the main roles played by the software proj-
ect office are the following:

	 1.	Identifying important standards for the project such as ISO or OMG
standards.

	 2.	Identifying important corporate standards such as the IBM stan-
dards for software quality.

Challenges of Software Project Management  ◾  19

	 3.	Identifying and monitoring government mandates such as FAA,
FDA, or Sarbanes-Oxley.

	 4.	Early sizing of project deliverables using one or more parametric
estimation tools.

	 5.	Early prediction of schedules, costs, and staffing using one or more
parametric estimation tools.

	 6.	Early prediction of requirements creep.
	 7.	Early prediction of defect potentials and DRE.
	 8.	Establishing project cost and milestone tracking guidelines for all

personnel.
	 9.	Continuous monitoring of progress, accumulated costs, and sched-

ule adherence.
	 10.	Continuous monitoring of planned vs. actual DRE.

Project offices are a useful and valuable software structure. They usually
contain from 3 to more than 10 people based on the size of the project
being controlled. Among the kinds of personnel employed in software
project, offices are estimating specialists, metric specialists such as certi-
fied function point counters, quality control specialists, and standards
specialists.

Project offices usually have several parametric estimation tools avail-
able and also both general and specialized project tracking tools. Shown
in Table 1.7 are samples of some of the kinds of tools and information
that a project office might utilize in a technology company for a major
software application

As can be seen, software project offices add knowledge and rigor
to topics where ordinary project managers may not be fully trained or
highly experienced.

Use and Measurement of Effective Quality Control Methods

The #1 cost driver for the software industry for more than 50 years has
been “the cost of finding and fixing bugs.” Since bug repairs are the top
cost driver, it is impossible to have an accurate cost estimate without
including quality costs. It is also impossible to have an accurate cost
estimate, or to finish a project on time, unless it uses state of the art
quality control methods.

The #1 reason for software schedule delays and cost overruns for
more than 50 years has been excessive defects present when testing
starts, which stretches out the planned test duration by over 100% and
also raises planned development costs. Without excellent quality con-
trol, software projects will always run late, exceed their budgets, and be
at risk of cancellation if excessive costs make the ROI a negative value.

20  ◾  Software Development Patterns and Antipatterns

Table 1.7  Tools for Software Projects

Tasks Tools Utilized

1 Architecture QEMU

2 Automated test HP QuickTest Professional

3 Benchmarks ISBSG, Namcook SRM, Davids, Q/P Management

4 Coding Eclipse, Slickedit

5 Configuration Perforce

6 Cost estimate Software Risk Master (SRM), SLIM, SEER, COCOMO

7 Cost tracking Automated project office (APO), Microsoft Project

8 Cyclomatic BattleMap

9 Debugging GHS probe

10 Defect tracking Bugzilla

11 Design Projects Unlimited, Visio

12 Earned value DelTek Cobra

13 ERP Microsoft Dynamics

14 Function points 1 Software Risk Master (SRM)

15 Function points 2 Function point workbench

16 Function points 3 CAST automated function points

17 Graphics design Visio

18 Inspections SlickEdit

19 Integration Apache Camel

20 ISO tools ISOXpress

21 Maintenance Mpulse

22 Manual test DevTest

23 Milestone track KIDASA Softare Milestone Professional

24 Progress track Jira, Automated Project Office (APO)

25 Project mgt. Automated project office (APO)

26 Quality estimate Software Risk Master (SRM)

27 Requirements Rational Doors

28 Risk analysis Software Risk Master (SRM)

29 Source code size 1 Software Risk Master (SRM)

30 Source code size 2 Unified code counter (UCC)

Challenges of Software Project Management  ◾  21

Tasks Tools Utilized

31 SQA NASA Goddard ARM tool

32 Static analysis OptimMyth Kiuwin, Coverity, Klocwork

33 Support Zendesk

34 Test coverage Software Verify suite

35 Test library DevTest

36 Value analysis Excel and Value Stream Tracking

ISO and Other Standards Used for Project

IEEE 610.12-1990 Software engineering terminology

IEEE 730-1999 Software assurance

IEEE 12207 Software process tree

ISO/IEC 9001 Software quality

ISO/IEC 9003 Software quality

ISO/IEC 12207 Software engineering

ISO/IEC 25010 Software quality

ISO/IEC 29119 Software testing

ISO/IEC 27034 Software security

ISO/IEC 20926 Function point counting

OMG Corba Common Object Request Broker Architecture

OMG Models Meta models for software

OMG funct. pts. Automated function points (legacy applications)

UNICODE Globalization and internationalization

Professional Certifications Used on Project

Certification used for project = 1

Certification not used for project = 0

(Continued)

Table 1.7  (Continued)

22  ◾  Software Development Patterns and Antipatterns

Professional Certifications Used on Project

Note: Some team members have multiple
certifications.

Certification – Apple 0

Certification – Computer Aid Inc. 0

Certification – Computer Associates 0

Certification – FAA 0

Certification – FDA 0

Certification – Hewlett Packard 0

Certification – IBM 1

Certification – Microsoft 1

Certification – Oracle 0

Certification – PMI 1

Certification – QAI 0

Certification – Red Hat 0

Certification – RSBC 0

Certification – SAP 0

Certification – Sarbanes-Oxley 0

Certification – SEI 0

Certification – Sun 0

Certification – Symantec 0

Certification – TickIT 0

Certification of computing professionals 0

Certified configuration management specialist 1

Certified function point analyst 1

Certified project managers 1

Certified requirements engineers 0

Certified scrum master 1

Certified secure software lifecycle
professional

0

Certified security engineer 0

Table 1.7  (Continued)

Challenges of Software Project Management  ◾  23

It is alarming that in several lawsuits where Capers Jones has been
an expert witness, depositions showed that project managers deliber-
ately cut back on pre-test removal such as inspections and truncated
testing early “in order to meet schedules.” From the fact that the projects
were late and over budget, cutting back on quality control raised costs
and lengthened schedules, but the project managers did not know that
this would happen.

Table 1.8 shows the 16 major cost drivers for software projects in
2021. The cost drivers highlighted in red are attributable to poor soft-
ware quality.

Table 1.8 illustrates an important but poorly understood economic
fact about the software industry. Four of the 16 major cost drivers can
be attributed specifically to poor quality. The poor quality of software
is a professional embarrassment and a major drag on the economy of
the software industry and for that matter a drag on the entire U.S. and
global economies.

Poor quality is also a key reason for cost driver #2. A common reason
for cancelled software projects is because quality is so bad that sched-
ule slippage and cost overruns turned the project return on investment
(ROI) from positive to negative.

Note the alarming location of successful cyber-attacks is in 6th place
(and rising) on the cost-driver list. Since security flaws are another form
of poor quality, it is obvious that high quality is needed to deter suc-
cessful cyber-attacks.

Professional Certifications Used on Project

Certified SEI appraiser 1

Certified software architect 0

Certified software business analyst 1

Certified software development professional 0

Certified software engineers 0

Certified software quality assurance 1

Certified test managers 0

Certified testers 1

Certified webmaster 1

Certified software auditor 1

Total 13

Table 1.7  (Continued)

24  ◾  Software Development Patterns and Antipatterns

Poor quality is also a key factor in cost driver #12 or litigation for
breach of contract. The author of this book has worked as an expert wit-
ness in 15 lawsuits. Poor software quality is an endemic problem with
breach of contract litigation. In one case against a major ERP company,
the litigation was filed by the company’s own shareholders who asserted
that the ERP package quality was so bad that it was lowering stock values!

If you can’t measure a problem, then you can’t fix the problem either.
Software quality has been essentially unmeasured and therefore unfixed
for 50 years. A very useful quality metric developed by IBM around 1970
is that of “defect potentials.”

Software defect potentials are the sum total of bugs found in require-
ments, architecture, design, code, and other sources of error. The
approximate U.S. average for defect potentials is shown in Table 1.9
using IFPUG function points version 4.3.

Table 1.8  U.S. Software Costs in Rank Order

1 The cost of finding and fixing bugs

2 The cost of cancelled projects

3 The cost of producing English words

4 The cost of programming or code development

5 The cost of requirements changes

6 The cost of successful cyber-attacks

7 The cost of customer support

8 The cost of meetings and communication

9 The cost of project management

10 The cost of renovation and migration

11 The cost of innovation and new kinds of software

12 The cost of litigation for failures and disasters

13 The cost of training and learning

14 The cost of avoiding security flaws

15 The cost of assembling reusable components

16 The cost of working from home due to the virus

Note: �No one yet knows the exact cost estimation of the
impact of corona virus on software projects. No
doubt productivity will drop and quality may also,
but it is premature without actual data.

Challenges of Software Project Management  ◾  25

Note that the phrase “bad fix” refers to new bugs accidentally intro-
duced in bug repairs for older bugs. The current U.S. average for bad-fix
injections is about 7%, i.e. 7% of all bug repairs contain new bugs. For
modules that are high in cyclomatic complexity and for “error prone
modules,” bad-fix injections can top 75%. For applications with low cyc-
lomatic complexity, bad fixes can drop below 0.5%.

Defect potentials are of necessity, measured using function point
metrics. The older “lines of code” metric cannot show requirements,
architecture, and design defects not any other defect outside the code
itself. As of today, function points were the most widely used software
metric in the world. There are more benchmarks using function point
metrics than all other metrics put together.

Successful and effective software quality control requires the follow-
ing 15 technical factors:

	 1.	Quality estimation before starting project using parametric estima-
tion tools.

	 2.	Accurate defect tracking from requirements through post-release
maintenance.

	 3.	Effective defect prevention such as requirements models and auto-
mated proofs.

	 4.	Effective pre-test defect removal such as inspections and static
analysis.

	 5.	Effective mathematical test case design using cause-effect graphs
or design of experiments.

	 6.	Effective cyber-attack prevention methods such as security
inspections.

Table 1.9  Average Software Defect Potentials circa
2020 for the United States

•	 Requirements 0.70 defects per function point

•	 Architecture 0.10 defects per function point

•	 Design 0.95 defects per function point

•	 Code 1.15 defects per function point

•	 Security code flaws 0.25 defects per function point

•	 Documents 0.45 defects per function point

•	 Bad fixes 0.65 defects per function point

Total 4.25 defects per function point

26  ◾  Software Development Patterns and Antipatterns

	 7.	Cyclomatic complexity analysis of all code modules in application.
	 8.	Keeping cyclomatic complexity <10 for critical software modules.
	 9.	Automated test coverage analysis for all forms of testing.
	 10.	Achieving defect potentials below 3.00 per function point.
	 11.	Achieving >95% test coverage.
	 12.	Achieving >97% DRE for all applications.
	 13.	Achieving >99% DRE for critical applications.
	 14.	Achieving <1% bad-fix injection (bad fixes are bugs in bug repairs).
	 15.	Reuse of certified materials that approach zero-defect status.

The bottom line is that poor software quality is the main weakness of
the software industry. But poor software quality can be eliminated by
better education for project managers and technical staff, and by using
quality methods of proven effectiveness. The good news is that high
quality is faster and cheaper than poor quality.

Elimination of Bad Metrics and Adoption
of Effective Software Metrics

The software industry has the worst metrics and worst measurement
practices of any industry in human history. It is one of very few indus-
tries that cannot measure its own quality and its own productivity. This
is professionally embarrassing.

Some of the troubling and inaccurate metrics used by the software
industry are the following:

Cost per defect metrics penalize quality and makes the buggiest soft-
ware look cheapest. There are no ISO or other standards for calcu-
lating cost per defect. Cost per defect does not measure the
economic value of software quality. The urban legend that it costs
100 times as much to fix post-release defects as early defects is not
true and is based on ignoring fixed costs. Due to fixed costs of
writing and running test cases, cost per defect rises steadily because
fewer and fewer defects are found. This is caused by a standard
rule of manufacturing economics: “if a process has a high percent-
age of fixed costs and there is a reduction in the units produced, the
cost per unit will go up.” This explains why cost per defects seems
to go up over time even though actual defect repair costs are flat
and do not change very much. There are of course very troubling
defects that are expensive and time consuming, but these are com-
paratively rare.

Defect density metrics measure the number of bugs released to cli-
ents. There are no ISO or other standards for calculating defect

Challenges of Software Project Management  ◾  27

density. One method counts only code defects released. A more
complete method used by the author of this book includes bugs
originating in requirements, architecture, design, and documents
as well as code defects. The author’s method also includes “bad
fixes” or bugs in defect repairs themselves. About 7% of bug repairs
contain new bugs. There is more than 500% variation between
counting only released code bugs and counting bugs from all
sources. For example requirements defects comprise about 20% of
released software problem reports.

Lines of code (LOC) metrics penalize high-level languages and make
low-level languages look better than they are. LOC metrics also
make requirements and design invisible. There are no ISO or other
standards for counting LOC metrics. About half of the papers and
journal articles use physical LOC and half use logical LOC. The dif-
ference between counts of physical and logical LOC can top 500%.
The overall variability of LOC metrics has reached an astounding
2,200% as measured by Joe Schofield, the former president of
IFPUG! LOC metrics make requirements and design invisible and
also ignore requirements and design defects, which outnumber
code defects. Although there are benchmarks based on LOC, the
intrinsic errors of LOC metrics make them unreliable. Due to lack
of standards for counting LOC, benchmarks from different vendors
for the same applications can contain widely different results.
Appendix B provides a mathematical proof that LOC metrics do
not measure economic productivity by showing 79 programming
languages with function points and LOC in a side-by-side format.

SNAP point metrics are a new variation on function points intro-
duced by IFPUG in 2012. The term SNAP is an awkward acronym
for “software non-functional assessment process.” The basic idea
is that software requirements have two flavors: (1) functional
requirements needed by users; (2) non-functional requirements
due to laws, mandates, or physical factors such as storage limits or
performance criteria. The SNAP committee view is that these non-
functional requirements should be sized, estimated, and measured
separately from function point metrics. Thus, SNAP and function
point metrics are not additive, although they could have been.
Having two separate metrics for economic studies is awkward at
best and inconsistent with other industries. For that matter it
seems inconsistent with standard economic analysis in every
industry. Almost every industry has a single normalizing metric
such as “cost per square foot” for home construction or “cost per
gallon” for gasoline and diesel oil. As of 2017, none of the para-
metric estimation tools were fully integrated SNAP and it may be

28  ◾  Software Development Patterns and Antipatterns

that they won’t since the costs of adding SNAP are painfully
expensive. As a rule of thumb, non-functional requirements are
about equal to 15% of functional requirements, although the range
is very wide.

Story point metrics are widely used for agile projects with “user sto-
ries.” Story points have no ISO standard for counting or any other
standard. They are highly ambiguous and vary by as much as 400%
from company to company and project to project. There are few if
any useful benchmarks using story points. Obviously story points
can’t be used for projects that don’t utilize user stories so they are
worthless for comparisons against other design methods.

Technical debt is a new metric and rapidly spreading. It is a brilliant
metaphor developed by Ward Cunningham. The concept of “tech-
nical debt” is that topics deferred during development in the inter-
est of schedule speed will cost more after release than they would
have cost initially. However there are no ISO standards for techni-
cal debt and the concept is highly ambiguous. It can vary by over
500% from company to company and project to project. Worse,
technical debt does not include all of the costs associated with
poor quality and development short cuts. Technical debt omits can-
celed projects, consequential damages or harm to users, and the
costs of litigation for poor quality.

Use case points are used by projects with designs based on “use
cases” which often utilize IBM’s Rational Unified Process (RUP).
There are no ISO standards for use cases. Use cases are ambiguous
and vary by over 200% from company to company and project to
project. Obviously use cases are worthless for measuring projects
that don’t utilize use cases, so they have very little benchmark data.
This is yet another attempt to imitate the virtues of function point
metrics, only with somewhat less rigor and with imperfect count-
ing rules as of 2015.

Velocity is an agile metric that is used for prediction of sprint and
project outcomes. It uses historical data on completion of past
work units combined with the assumption that future work units
will be about the same. Of course it is necessary to know future
work units for the method to operate. The concept of velocity is
basically similar to the concept of using historical benchmarks for
estimating future results. However as of 2017, velocity had no ISO
standards and no certification.

There are no standard work units for velocity and these can be story
points or other metrics such as function points or use case points, or

Challenges of Software Project Management  ◾  29

even synthetic concepts such as “days per task.” If agile projects used
function points, then they could gain access to large volumes of histori-
cal data using activity-based costs, i.e. requirements effort, design effort,
code effort, test effort, integration effort, documentation effort, etc. As
long as agile continues to use quirky and unstandardized metrics with-
out any certification exams, then agile productivity and quality will con-
tinue to be a mystery to clients who will no doubt be dismayed to find
as many schedule delays and cost overruns as they had with waterfall.

As already stated in other chapters, there are 11 primary metrics and
10 supplementary metrics that allow software projects to be measured
with about 1% precision.

The only software metrics that allow quality and productivity to be
measured with 1% precision are these 11 primary software metrics and
10 supplemental metrics:

Primary Software Metrics for High Precision

	 1.	Application size in function points including requirements creep.
	 2.	Size of reusable materials (design, code, documents, etc.).
	 3.	Activity-based costs using function points for normalization.
	 4.	Work hours per month including paid and unpaid overtime.
	 5.	Work hours per function point by activity.
	 6.	Function points per month.
	 7.	Defect potentials using function points (requirements, design,

code, document, and bad fix defect categories).
	 8.	DRE or the percentage of defects removed before release.
	 9.	Delivered defects per function point.
	 10.	Cost of quality (COQ).
	 11.	Total cost of ownership (TCO).

Supplemental Software Metrics for High Precision

	 1.	Software project taxonomy (nature, scope, class type).
	 2.	Occupation groups (business analysts, programmers, testers, man-

agers, QA, etc.).
	 3.	Team experience levels (expert to novice).
	 4.	CMMI level (1–5).
	 5.	Development methodology used on application.
	 6.	Programming language(s) used on application.
	 7.	Complexity levels (problem, data, and code complexity).
	 8.	User effort for internal applications.
	 9.	Documents produced (type, pages, words, illustrations, etc.).
	 10.	Meeting and communication costs.

30  ◾  Software Development Patterns and Antipatterns

What is important are the technical features of the metrics themselves
and not the numbers of metric users. Even if 50,000 companies use
“lines of code,” it is still a bad metric that distorts reality and should be
viewed as professional malpractice. Following are the characteristics of
a sample of current software metrics:

Function
Points

Lines
of

Code
Story
Points

Use-
Case

Points

Software Metric Attributes

  ISO standard? Yes No No No

  OMG standard? Yes No No No

  Professional associations? Yes No No No

  Formal training? Yes No No No

  Certification exam? Yes No No No

  Automated counting? Yes Yes No No

  Required by governments? Yes No No No

  Good for productivity? Yes No Yes No

  Good for quality? Yes No No No

  Good for estimates? Yes No Yes No

  Published conversion rules? Yes No No No

 � Accepted by benchmark
groups?

Yes Yes No No

  Used for IT projects? Yes Yes Yes Yes

  Used for web projects? Yes Yes Yes Yes

  Used for cloud projects? Yes Yes Yes No

  Used for embedded projects? Yes Yes No No

  Used for systems software? Yes Yes No No

  Used for telecom software? Yes Yes No No

  Used for defense software? Yes Yes No No

Productivity Measures

  Activity-based costs? Yes No No No

  Requirements productivity? Yes No No No

  Design productivity? Yes No No No

Challenges of Software Project Management  ◾  31

Function
Points

Lines
of

Code
Story
Points

Use-
Case

Points

  Coding productivity? Yes Yes No No

  Testing productivity? Yes Yes No No

 � Quality assurance
productivity?

Yes No No No

  Technical writer productivity? Yes No No No

 � Project management
productivity?

Yes No No No

  Net productivity of projects Yes Yes Yes Yes

Quality Measures

  Requirements defects? Yes No No No

  Architecture defects? Yes No No No

  Design defects? Yes No No No

  Document defects? Yes No No No

  Coding defects? Yes Yes No No

  Bad fix defects? Yes Yes No No

  Net quality of projects? Yes Yes Yes Yes

As can be seen, function point metrics are the only metrics that can
be used for all software activities and for both quality and productivity
analysis. This chapter uses IFPUG function points version 4.3, but other
function point variations such as COSMIC, FISMA, and NESMA function
points would produce similar but slightly different results.

Commissioning Annual Software Benchmark Studies

Software benchmarks are collections of data on software costs, sched-
ules, staffing, quality, and technology usage that allow companies to
compare results against similar projects in other companies. Usually the
benchmarks are “sanitized” and do not reveal the names of the compa-
nies or projects themselves.

Major corporations should commission software benchmark studies
about once a year in order to judge progress. Some companies such as
IBM can produce their own internal benchmarks with high accuracy,

(Continued)

32  ◾  Software Development Patterns and Antipatterns

but still commission external benchmarks to compare results against
other companies.

However, most companies are incompetent in collecting historical
data. Their data leaks and the average is only about 37% complete.
This is why self-reported benchmark data often has higher productivity
than benchmarks collected by professional benchmark consultants. Self-
reported data “leaks” and is usually incomplete.

A more fundamental problem is that most enterprises simply do not
record data for anything but a small subset of the activities actually per-
formed. In carrying out interviews with project managers and project
teams to validate and correct historical data, the author of this book has
observed the following patterns of incomplete and missing data, using
the 25 activities of a standard chart of accounts as the reference model
(Table 1.10).

Benchmarks performed for projects starting today will also need to
include the negative impacts of the corona virus. No doubt the virus is
lowering productivity and will probably degrade quality, but it is too
soon to know the full impact.

When the author of this book and his colleagues collect benchmark
data, we ask the managers and personnel to try and reconstruct any
missing cost elements. Reconstruction of data from memory is plainly
inaccurate, but it is better than omitting the missing data entirely.

Unfortunately, the bulk of the software literature and many historical
studies only report information to the level of complete projects, rather
than to the level of specific activities. Such gross “bottom line” data can-
not readily be validated and are almost useless for serious economic
purposes.

As of 2020, there were about 40 companies and non-profit organiza-
tions that perform software benchmarks of various kinds. Some of the
many forms of available software benchmarks include:

	 1.	Compensation studies for software occupation groups.
	 2.	Voluntary and involuntary attrition of software personnel.
	 3.	Customer satisfaction for quality, reliability, etc.
	 4.	Cyber-attack statistics for hacking, denial of service, data theft, etc.
	 5.	Software productivity using function points per month and work

hours per function point.
	 6.	Software quality using defect potentials in function points and

DRE.

Challenges of Software Project Management  ◾  33

Table 1.10  Gaps and Omissions Observed in Data for a Software Chart of
Accounts

Activities Performed
Completeness of
Historical Data

1 Requirements Missing or Incomplete

2 Prototyping Missing or Incomplete

3 Architecture Missing or Incomplete

4 Project planning Missing or Incomplete

5 Initial analysis and design Missing or Incomplete

6 Detail design Incomplete

7 Design reviews Missing or Incomplete

8 Coding Complete

9 Reusable code acquisition Missing or Incomplete

10 Purchased package acquisition Missing or Incomplete

11 Code inspections Missing or Incomplete

12 Independent verification and validation Complete

13 Configuration management Missing or Incomplete

14 Integration Missing or Incomplete

15 User documentation Missing or Incomplete

16 Unit testing Incomplete

17 Function testing Incomplete

18 Integration testing Incomplete

19 System testing Incomplete

20 Field testing Missing or Incomplete

21 Acceptance testing Missing or Incomplete

22 Independent testing Complete

23 Quality assurance Missing or Incomplete

24 Installation and training Missing or Incomplete

25 Project management Missing or Incomplete

Total project resources, costs Incomplete

34  ◾  Software Development Patterns and Antipatterns

Usually software benchmarks are commissioned by individual business
units rather than at the corporate level. Some companies spend over
$5,000,000 per year on various kinds of benchmark studies, but may
not realize this because the costs are scattered across various business
and operating units.

The unexpected arrival of the corona virus in 2020 had caused a
reduction in benchmarks for several years, since many software workers
were at home and could probably not contribute benchmark data from
their private home offices.

Table 1.11 shows some 40 software benchmark organizations circa
2020. The great majority of these are located in the United States, South
America, or Europe. Asia is sparse on software benchmarks except for
Japan, South Korea, and Malaysia. South America has large benchmark
organizations in Brazil, and other more local benchmark groups in
Mexico and Peru.

Benchmarks are hard to do with accuracy, but useful when done
well. When done poorly, they add to the confusion about software pro-
ductivity and quality that has blinded the software industry for more
than 50 years.

Formal Best Practice Analysis of Software
Tools, Methods, and Quality

The software literature has many articles and some books on software
best practices. However, these usually lack quantitative data. To the
author of this book, a “best practice” should improve quality or produc-
tivity by at least 10% compared to industry averages. A “worst practice”
might degrade productivity and quality by 10%.

With over 28,000 projects to examine, the author of this book has
published a number of quantitative tables and reports on software best
(and worst) practices. Although we have evaluated about 335 methods
and practices, the list is too big for convenience. A subset of 115 meth-
ods and practices shows best practices at the top and worst practices at
the bottom. Namcook recommends using as many as possible from the
top and avoiding the bottom (Table 1.12).

Because new practices come out at frequent intervals, companies
need to have a formal method and practice evaluation group. At ITT,
the Applied Technology Group evaluated existing and commercial tools,
methods, and practices. The ITT Advanced Technology Group devel-
oped new tools and methods beyond the state of the art.

It is of minor historical interest that the Objective C programming
language selected by Steve Jobs for all Apple software was actually

Challenges of Software Project Management  ◾  35

Table 1.11  Software Benchmark Providers 2020

1 4SUM Partners

2 Bureau of Labor Statistics, Department of Commerce

3 Capers Jones (Namcook Analytics LLC)

4 CAST Software

5 Congressional Cyber Security Caucus

6 Construx

7 COSMIC function points

8 Cyber Security and Information Systems

9 David Consulting Group

10 Economic Research Center (Japan)

11 Forrester Research

12 Galorath Incorporated

13 Gartner Group

14 German Computer Society

15 Hoovers Guides to Business

16 IDC

17 IFPUG

18 ISBSG Limited

19 ITMPI

20 Jerry Luftman (Stevens Institute)

21 Level 4 Ventures

22 Metri Group, Amsterdam

23 Namcook Analytics LLC

24 Price Systems

25 Process Fusion

26 QuantiMetrics

27 Quantitative Software Management (QSM)

28 Q/P Management Group

29 RBCS, Inc.

30 Reifer Consultants LLC

(Continued)

36  ◾  Software Development Patterns and Antipatterns

developed by Dr. Tom Love and Dr. Brad Cox at the ITT Advanced
Technology Group. When Alcatel acquired the ITT telecom research
labs, the ownership of Objective C was transferred to Dr. Love at his
new company.

Summary and Conclusions on
Software Project Management
Software is viewed by a majority of corporate CEOs as the most trouble-
some engineering technology of the modern era. It is true that software
has very high rates of canceled projects and also of cost and schedule
overruns. It is also true that poor project management practices are
implicated in these problems.

However, some companies have been able to improve software proj-
ect management and thereby improve software results. These improve-
ments need better estimates, better metrics and measures, and better
quality control.

Since academic training in software project management is marginal,
the best source of project management training is in-house education in
large companies followed by professional education companies such as
the Information Technology Metrics and Productivity Institute (ITMPI),
and then by non-profit associations such as IFPUG, PMI, ASQ, etc.

The impact of the pandemic of 2020 on software corporations and
projects is severe and no doubt will degrade productivity and quality.

Table 1.11  (Continued)

31 Howard Rubin

32 SANS Institute

33 Software Benchmarking Organization (SBO)

34 Software Engineering Institute (SEI)

35 Software Improvement Group (SIG)

36 Software Productivity Research

37 Standish Group

38 Strassmann, Paul

39 System Verification Associates LLC

40 Test Maturity Model Integrated

Challenges of Software Project Management  ◾  37

Table 1.12  Software Technology Stack Scoring

Methods and Practices in Technology Stack Value Scores

1 Benchmarks (validated historical data from similar
projects)

10.00

2 Defect potential <2.5 10.00

3 Defect removal efficiency (DRE) >99% 10.00

4 Estimates: activity-based cost estimates 10.00

5 Estimates: parametric estimation tools 10.00

6 Estimates: total cost of ownership (TCO) cost estimates 10.00

7 Formal and early quality predictions 10.00

8 Formal and early risk abatement 10.00

9 Inspection of all critical deliverables 10.00

10 Methods: patterns and >85% reuse of key deliverables 10.00

11 Metrics: defect potential measures 10.00

12 Metrics: defect removal efficiency (DRE) measures 10.00

13 Metrics: IFPUG function points 10.00

14 Metrics: SRM pattern matching sizing 10.00

15 Pre-requirements risk analysis 10.00

16 Static analysis of all source code 10.00

17 Automated project office (APO) 9.75

18 Metrics: bad-fix injections 9.70

19 Accurate cost tracking 9.50

20 Accurate defect tracking 9.50

21 Accurate status tracking 9.50

22 Estimates: cost of quality (COQ) estimates 9.25

23 Metrics: COSMIC function points 9.25

24 Metrics: FISMA function points 9.25

25 Metrics: NESMA function points 9.25

26 Metrics: cost of quality (COQ) measures 9.00

27 Metrics: defect detection efficiency (DDE) measures 9.00

28 Reusable test materials 9.00

(Continued)

38  ◾  Software Development Patterns and Antipatterns

Methods and Practices in Technology Stack Value Scores

29 SEMAT usage on project 9.00

30 Test coverage >96% 9.00

31 Defect removal efficiency DRE >95% 8.75

32 Methods: disciplined agile delivery (DAD) 8.65

33 Mathematical test case design 8.60

34 CMMI 5 8.50

35 Methods: TSP/PSP 8.50

36 Test coverage tools used 8.50

37 Metrics: requirements growth before and after release 8.50

38 Metrics: deferred features 8.50

39 Methods: containers 8.40

40 Methods: DevOps 8.40

41 Methods: hybrid: (agile/TSP) 8.25

42 Automated requirements modeling 8.15

43 Methods: Git 8.10

44 Methods: Mashups 8.10

45 Methods: RUP 8.00

46 Methods: evolutionary development (EVO) 8.00

47 Metrics: automated function points 8.00

48 Reusable requirements 8.00

49 Reusable source code 8.00

50 Methods: hybrid (waterfall/agile) 7.80

51 Static analysis of text requirements 7.80

52 Methods: Kanban/Kaizen 7.70

53 Methods: iterative development 7.60

54 CMMI 4 7.50

55 Methods: service oriented models 7.50

56 Metrics: cyclomatic complexity tools 7.50

57 Requirements change tracking 7.50

Table 1.12  (Continued)

Challenges of Software Project Management  ◾  39

Methods and Practices in Technology Stack Value Scores

58 Reusable designs 7.50

59 Automated proofs of correctness 7.50

60 Methods: continuous development 7.40

61 Methods: quality function deployment (QFD) 7.35

62 CMMI 3 7.00

63 Methods: joint application design (JAD) 7.00

64 Methods: spiral development 7.00

65 Requirements change control board 7.00

66 Reusable architecture 7.00

67 Reusable user documents 7.00

68 Methods: extreme Programming 6.90

69 Metrics: FOG/Flesch readability scores 6.85

70 DRE >90% 6.50

71 Methods: agile <1000 function points 6.50

72 Methods: correctness proofs – automated 6.25

73 Automated testing 6.00

74 Certified quality assurance personnel 6.00

75 Certified test personnel 6.00

76 Defect potential 2.5–4.9 6.00

77 Maintenance: data mining 6.00

78 Metrics: earned value analysis (EVA) 6.00

79 Six-Sigma for software 5.50

80 ISO risk standards 5.00

81 Metrics: unadjusted function points 5.00

82 ISO quality standards 4.75

83 Maintenance: ITIL 4.75

84 Metrics: mark II function points 4.00

85 Requirements modeling – manual 3.00

86 Metrics: SNAP non-functional metrics 2.50

(Continued)

Table 1.12  (Continued)

40  ◾  Software Development Patterns and Antipatterns

Methods and Practices in Technology Stack Value Scores

87 CMMI 2 2.00

88 Estimates: phase-based cost estimates 2.00

89 Metrics: story point metrics 2.00

90 Metrics: technical debt measures 2.00

91 Metrics: use case metrics 1.00

92 CMMI 0 (not used) 0.00

93 CMMI 1 −1.00

94 Methods: correctness proofs – manual −1.00

95 Test coverage <90% −1.00

96 Benchmarks (unvalidated self-reported benchmarks) −1.50

97 Testing by untrained developers −2.00

98 Methods: waterfall development −3.00

99 Methods: agile >5,000 function points −4.00

100 Cyclomatic complexity >20 −6.00

101 Metrics: no productivity measures −7.00

102 Methods: pair programming −7.50

103 Methods: Cowboy development −8.00

104 No static analysis of source code −8.00

105 Test coverage not used −8.00

106 Estimates: manual estimation >250 function points −9.00

107 Inaccurate defect tracking −9.00

108 Metrics: cost per defect metrics −9.00

109 Inaccurate status tracking −9.50

110 Defect potential >5.00 −10.00

111 DRE <85% −10.00

112 Inaccurate cost tracking −10.00

113 Metrics: lines of code for economic study −10.00

114 Metrics: no function point measures −10.00

115 Metrics: no quality measures −10.00

Table 1.12  (Continued)

Challenges of Software Project Management  ◾  41

Hopefully, the bright minds of the industry will develop effective methods
for handling teams that work at home or remotely.

Suggested Readings on Software Project Management
Abran, A.; and Robillard, P.N.; “Function Point Analysis, An Empirical Study of

its Measurement Processes”; IEEE Transactions on Software Engineering;
Vol 22, No. 12; December 1996; pp. 895–909.

Abrain, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015.
Abrain, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society;

2010.
Abrain, Alain; Software Maintenance Management: Evolution and Continuous

Improvement; Wiley-IEEE Computer Society; 2008.
Baird, Linda M.; and Brennan, M. Carol; Software Measurement and Estimation:

A Practical Approach; IEEE Computer Society Press/John Wiley & Sons,
Los Alamitos, CA/Hoboken NJ; 2006; ISBN: 0-471-67622-5; 257 pages.

Boehm, Barry et al.; Software Cost Estimating with Cocomo II; Prentice Hall,
Upper Saddle River, NJ; 2000; ISBN: 10-0137025769; 544 pages.

Boehm, Barry; Software Engineering Economics; Prentice Hall, Englewood
Cliffs, NJ; 1981; 900 pages.

Brooks, Fred; The Mythical Man-Month; Addison Wesley, Reading, MA; 1974
rev.; 1995.

Bundshuh, Manfred; and Dekkers, Carol; The IT Measurement Compendium;
Estimating and Benchmarking Success with Functional Size Measurement;
Springer; 2008; ISBN: 10-3540681876; 644 pages.

Cohn, Mike; Agile Estimating and Planning; Prentice Hall PTR, Englewood
Cliffs, NJ; 2005; ISBN: 0131479415.

Crosby, Phil; Quality is Free; New American Library, Mentor Books; New York,
NY; 1979; 270 pages.

DeMarco, Tom; Why Does Software Cost So Much?; Dorset House, New York, NY;
1995; ISBN: 0-9932633-34-X; 237 pages.

Ebert, Christof; Dumke, Reiner; and Schmeitendorf, Andreas; Best Practices in
Software Measurement; Springer; 2004; ISBN: 10-3540208674; 344 pages.

Fleming, Quentin W.; and Koppelman, Joel M.; Earned Value Project
Management; 2nd ed.; Project Management Institute, New York, NY; 2000;
ISBN: 10-1880410273; 212 pages.

Galorath, Daniel D.; and Evans, Michael W.; Software Sizing, Estimation, and
Risk Management: When Performance is Measured Performance Improves;
Auerbach, Philadelphia, AP; 2006; ISBN: 10-0849335930; 576 pages.

Gack, Gary; Managing the Black Hole: The Executive’s Guide to Project Risk;
Business Expert Publishing; 2010.

Garmus, David; and Herron, David; Function Point Analysis; Addison Wesley,
Boston, MA; 2001; ISBN: 0-201069944-3; 363 pages.

Garmus, David; Russac Janet; and Edwards, Royce; Certified Function Point
Counters Examination Guide; CRC Press; 2010.

42  ◾  Software Development Patterns and Antipatterns

Garmus, David; and Herron, David; Measuring the Software Process: A Practical
Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ;
1995.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10-0201631814.

Glass, R.L.; Software Runaways: Lessons Learned from Massive Software Project
Failures; Prentice Hall, Englewood Cliffs, NJ; 1998.

Harris, Michaael; Herron, David; and Iwanicki, Stacia; The Business Value of IT:
Managing Risks, Optimizing Performance, and Measuring Results; CRC
Press (Auerbach), Boca Raton, FL; 2008; ISBN: 13-978-1-4200-6474-2; 266
pages.

Hill, Peter; Jones Capers; and Reifer, Don; The Impact of Software Size on
Productivity; International Software Standards Benchmark Group (ISBSG),
Melbourne, Australia, September 2013.

Humphrey, Watts; Managing the Software Process; Addison Wesley, Reading,
MA; 1989.

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

Jacobsen, Ivar, Griss, Martin; and Jonsson, Patrick; Software Reuse - Architecture,
Process, and Organization for Business Success; Addison Wesley Longman,
Reading, MA; 1997; ISBN: 0-201-92476-5; 500 pages.

Jacobsen, Ivar et al; The Essence of Software Engineering; Applying the SEMAT
Kernel; Addison Wesley Professional, Reading, MA; 2013.

Johnson, James et al; The Chaos Report; The Standish Group, West Yarmouth,
MA; 2000.

Jones, Capers; The Technical and Social History of Software Engineering;
Addison Wesley, Boston, MA; 2014.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York;
2009; ISBN: 978-0-07-162161-8660.

Jones, Capers; Applied Software Measurement; 3rd ed.; McGraw Hill, New York;
March 2008; ISBN: 978-0-07-150244-3; 668 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2007; ISBN
13-978-0-07-148300-1.

Jones, Capers; Program Quality and Programmer Productivity; IBM Technical
Report TR 02.764; IBM, San Jose, CA; January 1977.

Jones, Capers; “Sizing Up Software”; Scientific American Magazine; Vol. 279,
No. 6; December 1998; pp 104–109.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; 659 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;
Version 6; Software Productivity Research, Burlington, MA; June 2006a; 54
pages.

Jones, Capers; “Software Project Management Practices: Failure Versus Success”;
Crosstalk; Vol. 19, No. 6; June 2006b; pp 4–8.

Challenges of Software Project Management  ◾  43

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; ISBN:
1-850-32804-8; 250; 292 pages.

Jones, Capers; “Why Flawed Software Projects are not Cancelled in Time”; Cutter
IT Journal; Vol. 10, No. 12; December 2003; pp. 12–17.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering; 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Kaplan, Robert S.; and Norton, David B.; The Balanced Scorecard; Harvard
University Press, Boston, MA; 2004; ISBN: 1591391342.

Love, Tom; Object Lessons – Lessons Learned in Object-Oriented Development
Projects; SIG Books Inc., New York, NY; 1993; ISBN: 0-9627477-3-4; 266
pages.

Mark, Paulk et al; The Capability Maturity Model; Guidelines for Improving the
Software Process; Addison Wesley, Reading, MA; 1995; ISBN: 0-201-54664-7;
439 pages.

McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software
Engineering; December 1976; pp. 308–320.

McConnell, Steve; Software Estimation – Demystifying the Black Art; Microsoft
Press, Redmond, WA; 2006; ISBN: 10-0-7356-0535-1.

Parthasarathy, M.A.; Practical Software Estimation – Function Point Methods for
Insourced and Outsourced Projects; Addison Wesley, Boston, MA; 2007;
ISBN: 0-321-43910-4; 388 pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach; McGraw
Hill, New York, NY; 1982.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software On-Time
Within Budget; Yourdon Press, Prentice Hall, Englewood Cliffs, NJ; 1992;
ISBN: 0-13-567694-0; 336 pages.

Putnam, Lawrence; and Myers, Ware; Industrial Strength Software – Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; 1997;
ISBN: 0-8186-7532-2; 320 pages.

Robertson, Suzanne; and Robertson, James; Requirements-Led Project
Management; Addison Wesley, Boston, MA; 2005; ISBN: 0-321-18062-3.

Roetzheim, William H.; and Beasley, Reyna A.; Best Practices in Software Cost
and Schedule Estimation; Prentice Hall PTR, Saddle River, NJ; 1998.

Royce, Walker; Software Project Management – A Unified Framework; Addison
Wesley, Boston, MA; 1998.

Strassmann, Paul; Governance of Information Management: The Concept of an
Information Constitution; 2nd ed.; (eBook); Information Economics Press,
Stamford, CT; 2004.

Strassmann, Paul; The Squandered Computer; Information Economics Press,
Stamford, CT; 1997.

Stutzke, Richard D.; Estimating Software-Intensive Systems – Projects, Products,
and Processes; Addison Wesley, Boston, MA; 2005; ISBN: 0-301-70312-2;
917 pages.

Weinberg, Gerald; Quality Software Management – Vol. 2: First-Order Measurement;
Dorset House Press, New York, NY; 1993; ISBN: 0-932633-24-2; 360 pages.

44  ◾  Software Development Patterns and Antipatterns

Wiegers, Karl A.; Creating a Software Engineering Culture; Dorset House Press,
New York, NY; 1996; ISBN: 0-932633-33-1; 358 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley
Longman, Boston, MA; 2002; ISBN: 0-201-73485-0; 232 pages.

Whitehead, Richard; Leading a Development Team; Addison Wesley, Boston,
MA; 2001; ISBN: 10-0201675267; 368 pages.

Yourdon, Ed; Outsource – Competing in the Global Productivity Race; Prentice
Hall PTR, Upper Saddle River, NJ; 2004; ISBN: 0-13-147571-1; 251 pages.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4.

Suggested Web Sites
http://www.IASAhome.org. This is the web site for the non-profit International

Association of Software Architects (IASA). Software architecture is the
backbone of all large applications. Good architecture can lead to applica-
tions whose useful life expectancy is 20 years or more. Questionable
architecture can lead to applications whose useful life expectancy is less
than 10 years, coupled with increasing complex maintenance tasks and
high defect levels. The IASA is working hard to improve both the concepts
of architecture and the training of software architects via a modern and
extensive curriculum.

http://www.IIBA.org. This is the web site for the non-profit International
Institute of Business Analysis. This institute deals with the important link-
age between business knowledge and software that supports business
operations. Among the topics of concern are the Business Analysis Body
of Knowledge (BABOK), training of business analysts, and certification to
achieve professional skills.

http://www.IFPUG.org. This is the web site for the non-profit International
Function Point Users Group. IFPUG is the largest software metrics asso-
ciation in the world, and the oldest association of function point users.
This web site contains information about IFPUG function points them-
selves, and also citations to the literature dealing with function points.
IFPUG also offers training in function point analysis and administers.
IFPUG also administers a certification program for analysts who wish to
become function point counters.

http://www.ISBSG.org. This is the web site for the non-profit International
Software Benchmark Standards Group. ISBSG, located in Australia, col-
lects benchmark data on software projects throughout the world. The data
is self-reported by companies using a standard questionnaire. About 4,000
projects comprise the ISBSG collection as of 2007, and the collection has
been growing at a rate of about 500 projects per year. Most of the data is
expressed in terms of IFPUG function point metrics, but some of the data
is also expressed in terms of COSMIC function points, NESMA function

http://www.IASAhome.org
http://www.IIBA.org
http://www.IFPUG.org
http://www.ISBSG.org

Challenges of Software Project Management  ◾  45

points, Mark II function points, and several other function point variants.
Fortunately the data in variant metrics is identified. It would be statisti-
cally invalid to include attempt to average IFPUG and COSMIC data, or to
mix up any of the function point variations.

http://www.iso.org. This is the web site for the International Organization
for Standardization (ISO). The ISO is a non-profit organization that spon-
sors and publishes a variety of international standards. As of 2007 the ISO
published about a thousand standards a year, and the total published to
date is approximately 17,000. Many of the published standards affect soft-
ware. These include the ISO 9000-9004 quality standards and the ISO
standards for functional size measurement.

http://www.namcook.com. This web site contains a variety of quantitative
reports on software quality and risk factors. It also contains a patented
high-speed sizing tool that can size applications of any size in 90 seconds
or less. It also contains a catalog of software benchmark providers which
currently lists 20 organizations that provide quantitative data about soft-
ware schedules, costs, quality, and risks.

http://www.PMI.org. This is the web site for the Project Management Institute
(PMI). PMI is the largest association of managers in the world. PMI per-
forms research and collects data on topics of interest to managers in every
discipline: software, engineering, construction, and so forth. This data is
assembled into the well known Project Management Body of Knowledge
or PMBOK.

http://www.ITMPI.org. This is the web site for the Information Technology
Metrics and Productivity Institute. ITMPI is a wholly-owned subsidiary of
Computer Aid Inc. The ITMPI web site is a useful portal into a broad
range of measurement, management, and software engineering informa-
tion. The ITMPI web site also provides useful links to many other web
sites that contain topics of interest on software issues.

http://www.sei.cmu.edu. This is the web site for the Software Engineering
Institute (SEI). The SEI is a federally-sponsored non-profit organization
located on the campus of Carnegie Mellon University in Pittsburgh, PA.
The SEI carries out a number of research programs dealing with software
maturity and capability levels, with quality, risks, measurement and met-
rics, and other topics of interest to the software community.

http://www.stsc.hill.af.mil/CrossTalk. This is the web site of both the Air
Force Software Technology Support Center (STSC) and also the CrossTalk
journal, which is published by the STSC. The STSC gathers data and per-
forms research into a wide variety of software engineering and software
management issues. The CrossTalk journal is one of few technical journals
that publish full-length technical articles of 4,000 words or more. Although
the Air Force is the sponsor of STSC and CrossTalk, many topics are also
relevant to the civilian community. Issues such as quality control, estimat-
ing, maintenance, measurement, and metrics have universal relevance.

http://www.iso.org
http://www.namcook.com
http://www.PMI.org
http://www.ITMPI.org
http://www.sei.cmu.edu
http://www.stsc.hill.af.mil

https://taylorandfrancis.com

47DOI: 10.1201/9781003193128-3

Chapter 2

Wastage
Lost Time and Money Due to Poor
Software Quality

Introduction
When the work patterns of software development and maintenance
projects are analyzed, a surprising hypothesis emerges. Software quality
is so poor that productivity is much lower than it should be. Poor qual-
ity shows up in three major software economic problems: (1) cancelled
projects that are never released due to poor quality; (2) schedule delays
due to poor quality extending test duration; and (3) excessive work
on finding and fixing bugs, which often exceeds 60% of total software
effort.

The amount of software effort spent on software projects that will
be canceled due to excessive error content appears to absorb more than
20% of the U.S. software work force. In addition, about 60% of the U.S.
software engineering work time centers on finding and fixing errors,
which might have been avoided. Finally, software schedules for major
applications are about 25% longer than they should be due to poor qual-
ity expanding testing intervals.

Out of a full software engineering working year, only about 48 days
are spent on code development. About 53 days are spent on finding and
fixing bugs in current applications. About 16 days are spent on canceled
projects. About 15 days are spent on inspections and static analysis.

48  ◾  Software Development Patterns and Antipatterns

About 13 days are spent on bug repairs in legacy code, i.e. 97 days per
year are essentially “wastage” spent on bugs that might have been pre-
vented or removed inexpensively. No other major occupation appears to
devote so much effort to canceled projects or to defect repairs as does
software engineering.

Note that the corona virus of 2020 changed software engineering due to many
factors such as working from home and the elimination of group activities
such as inspections or staff meetings, unless they are done via Zoom or
remotely. No doubt software productivity will decline and quality will become
worse, but it is premature to know the actual losses that will accrue.

Software is one of the most labor-intensive occupations of the 21st
century (The Technical and Social History of Software Engineering,
Jones, 2014). Software is also one of the most challenging business
endeavors, since software projects are difficult to control and subject to
a significant percentage of delays and outright cancellations. The pri-
mary reason for both software delays and cancellations is due to the
large numbers of “bugs” or errors whose elimination can absorb more
than 60% of the effort on really large software projects.

When the errors in software schedules and cost estimates are ana-
lyzed carefully, it can be seen that a major source of schedule slippage
and cost overruns is the fact that the applications have so many bugs that
they don’t work or can’t be released (The Economics of Software Quality,
Jones and Bonsignour, 2011). A famous example of this phenomenon
can be seen in the one-year delay in opening the Denver Airport due to
errors in the software controlling the luggage handling system. Problems
with excessive bugs or errors have also caused delays in many software
application releases, even by such well-known companies and govern-
ment agencies as Microsoft and the Department of Defense.

Canceled projects, schedule delays, and cost overruns all have a common
origin: excessive defects that might be prevented, combined with labor-
intensive defect removal methods such as testing and manual inspections.

Analyzing the Work Patterns of Software
Engineers and Programmers
Software engineering is a very labor-intensive occupation. A key reason
for the high labor content of software applications is because these
applications are very complex and hence very error-prone.

Wastage  ◾  49

A large number of severe errors or “bugs” in software applications
have several unfortunate effects on the software industry:

	 1.	A substantial number of software projects are cancelled due to
high error rates.

	 2.	Much of the development work of software engineering is defect
removal.

	 3.	Much of the maintenance work of software engineering is defect
repair.

Using data gathered during Namcook’s software assessments and bench-
mark studies, Table 2.1 shows the approximate number of software
“projects” that are being undertaken in the United States during calen-
dar year 2017. A software “project” is defined as the total effort assigned
to developing or enhancing a specific software application.

Table 2.1 shows how a typical software engineer spends a calendar
year. The background data for Table 2.1 comes from interviews and
benchmarks carried out among the author’s clients and also among soft-
ware personnel at IBM and ITT since the author of this book worked at
both companies.

Note that days spent finding and fixing bugs or working on canceled
projects total to 97 annual work days while code development is only 48
annual work days. Worse, Agile is one of the newer and better method-
ologies. If the project had been done in Waterfall, even more days would
have gone to finding and fixing bugs.

It is obvious that as of 2020, software engineering was out of kilter.
Bug repairs constitute a far larger proportion of the work year than is
satisfactory. It is also obvious that custom designs and manual coding
are intrinsically error-prone and expensive.

What would be the results if instead of developing software as
unique projects using manual labor, it were possible to construct soft-
ware applications using libraries of about 85% standard and certified
reusable components instead of 0% reuse?

Table 2.2 uses the same format as Table 2.1, but makes the assump-
tion that the application is constructed from a library that allows 85% of
the code to be in the form of certified reusable modules rather than hand
coding and custom development (Software Engineering Best Practices,
Jones, 2012).

Because the results in Table 2.2 are outside the envelope of current
software engineering technology circa 2020, the date is changed to 2030
instead of 2020.

50  ◾  Software Development Patterns and Antipatterns

Table 2.1  2020 Distribution of Software Development Effort

(Assumes 1,000 function point projects;
Agile development; 0% reuse; Java)

(Assumes 132 hours per month; monthly costs
of $10,000; CMMI 3; average skills)

Activities
Work
Days

Percent
of Time

Regular weekends 104 28.49%

Testing and defect repairs 53 14.52%

New Code development 48 13.15%

Meetings and status tracking 24 6.58%

Producing paper documents 21 5.75%

Vacations and personal time 20 5.48%

Days spent on canceled projects 16 4.38%

Pre-test inspections/static analysis 15 4.11%

Bug repairs in legacy code 13 3.56%

Travel 12 3.29%

Training and classes 10 2.74%

Slack time between assignments 10 2.74%

Sick leave 10 2.74%

Public holidays 9 2.47%

Total 365 100.00%

Size in function points 1,000

Size in Java statements 53,000

Staff (development, test, mgt, etc.) 7

Schedule in calendar months 15.85

Work hours per function point 20.23

Function points per month 6.52

Costs per function point $1,532.42

Total costs for project $1,532,423

Defect potentials per function point 3.50

Defect potential 3,500

Wastage  ◾  51

Table 2.2 shows the kind of work pattern that software engineering
needs to meet ever-growing business demands for new kinds of reliable
software. The development schedule drops from 16.23 calendar months
to 4.71 calendar months. High severity bugs drop from 39 to 2. These
improvements are urgently needed to place the future of software engi-
neering on a sound economic basis. It is obvious that software engineer-
ing needs to shift work away from defect repairs and failing projects and
put more effort into effective development. Table 2.2 raises annual code
development up to 119 work days per year in 2028 compared to only 48
work days per year in 2020.

Table 2.3 shows a side-by-side comparison between the 2020 and
2030 assumptions with 85% reuse for 2030.

As can be seen, there are major differences in the two scenarios due
mainly to the assumption of 85% reuse circa 2030.

Tables 2.1, 2.2, and 2.3 show individual projects of 1,000 function
points in size. It is also interesting to scale up the results to national
levels. Table 2.4 shows the approximate U.S. software work force and
the number of workers on projects that will be canceled and never deliv-
ered, mainly due to poor quality.

The data on the percent of projects cancelled within each size range
is taken from the author’s book on Patterns of Software Systems Failure
and Success (Jones 1995) and updated using data from the more recent
book, The Economics of Software Quality (Jones and Bonsigour, 2012)
plus newer data from client studies done through mid-2017 as published
in two new books from 2017: Software Methodologies: A Quantified
Comparison (2016); Software National and Industry Comparisons
(2017).

Very few small projects are canceled, but a majority of large systems
are terminated without being completed. Although many reasons are
associated with cancelled projects, the root cause for most is that they
overran both budgets and schedules due to excessive error content. The

Table 2.1  (Continued)

Defect removal efficiency (DRE) 92.50%

Delivered defects per function point 0.26

Delivered defects 263

High-severity defects 39

Security flaws 6

52  ◾  Software Development Patterns and Antipatterns

Table 2.2  2030 Distribution of Software Development Effort

(Assumes 1,000 function point projects;
Agile development; 85% reuse; Java)

(Assumes 132 hours per month; monthly
costs of $10,000; CMMI 3; average skills)

Activities
Work
Days

Percent
of Time

Regular weekends 104 28.49%

Testing and defect repairs 8 2.18%

New Code development 119 32.60%

Meetings and status tracking 24 6.58%

Producing paper documents 21 5.75%

Vacations and personal time 20 5.48%

Days spent on canceled projects 2 0.66%

Pre-test inspections/static analysis 2 0.62%

Bug repairs in legacy code 13 3.56%

Travel 12 3.29%

Training and classes 10 2.74%

Slack time between assignments 10 2.74%

Sick leave 10 2.74%

Public holidays 9 2.47%

Total 365 100.00%

Size in function points 1,000

Size in Java statements 53,000

Staff (development, test, mgt, etc.) 4

Schedule in calendar months 4.71

Work hours per function point 6.14

Function points per month 21.50

Costs per function point $465.11

Total costs for project $465,105

Defect potentials per function point 0.53

Defect potential 525

Wastage  ◾  53

delays and overruns are mainly due to poor quality, which stretches out
testing far beyond expectations.

The next topic of interest is to quantify the staffing associated with
six size plateaus, in order to determine the amount of software effort
that appears to be wasted on projects that do not reach completion.

Table 2.4 shows the approximate numbers of U.S. software person-
nel assigned to the projects within each of the six main size plateaus.
Obviously large systems, some of which have hundreds of software
engineers, absorb the bulk of the available software personnel.

Table 2.4 shows that the software industry has major problems trying
to develop applications >10,000 function points in size. In these larger
size ranges, cancellations are a major economic problem, and the proj-
ects that are not canceled, all run late and exceed their budgets. Less
than 5% of major systems have satisfactory conclusion.

Indeed for large systems that are outsourced, it looks like about
5% end up in court for breach of contract litigation. It is professionally
embarrassing to have the same percentage of lawsuits as we have suc-
cessful project outcomes!

Tables 2.1, 2.2, 2.3, and 2.4 present a troubling picture. Because can-
celled projects are more frequent for large applications than for small,

Table 2.2  (Continued)

Defect removal efficiency (DRE) 97.00%

Delivered defects per function point 0.02

Delivered defects 16

High-severity defects 2

Security flaws 0

Table 2.3  Comparison of the 2020 and 2030 Assumptions with 85% Reuse

Activities

2020 2030 Difference

Work Days Work Days Work Days

Regular weekends 104 104 0

Testing and defect repairs 53 8 −45

New code development 48 119 71

Meetings and status tracking 24 24 0

Producing paper documents 21 21 0

(Continued)

54  ◾  Software Development Patterns and Antipatterns

Table 2.3  (Continued)

Activities

2020 2030 Difference

Work Days Work Days Work Days

Vacations and personal time 20 20 0

Days spent on canceled projects 16 2 −14

Pre-test inspections/static analysis 15 2 −13

Bug repairs in legacy code 13 13 0

Travel 12 12 0

Training and classes 10 10 0

Slack time between assignments 10 10 0

Sick leave 10 10 0

Public holidays 9 9 0

Total 365 365 0

Annual wasted days 97 25 −72

Percent of certified reusable
features

0.00% 85.00% 85.00%

Size in function points 1,000 1,000 0

Size in Java statements 53,000 53,000 0

Staff (development, test, mgt, etc.) 7.00 4.00 −3

Schedule in calendar months 15.85 4.71 −11.14

Work hours per function point 20.23 6.14 −14.09

Function points per month 6.52 21.5 14.98

Costs per function point $1,532 $465 −1067.31

Total costs for project $1,532,423 $465,105 −1067318

Defect potentials per function
point

3.5 0.53 −2.97

Defect potential 3,500 525 −2975

Defect removal efficiency (DRE) 92.50% 97.00% 4.50%

Delivered defects per function
point

0.26 0.02 −0.24

Delivered defects 263 16 −247

High-severity defects 39 2 −37

Security flaws 6 0 −6

Wastage  ◾  55

more than 22% of the available software personnel in the United States
are working on projects that will not be completed!

Reuse of Certified Materials for Software Projects
As long as software applications are custom designed and coded by
hand, software will remain a labor-intensive craft rather than a mod-
ern professional activity. Manual software development even with excel-
lent methodologies cannot be much more than 15% better than average
development due to the intrinsic limits in human performance and legal
limits in the number of hours that can be worked without fatigue.

The best long-term strategy for achieving consistent excellence at
high speed would be to eliminate manual design and coding in favor of
construction from certified reusable components.

It is important to realize that software reuse encompasses many
deliverables and not just source code. A full suite of reusable software
components would include at least the following 10 items (Software
Engineering Best Practices; Jones, 2010).

	 1.	Reusable requirements.
	 2.	Reusable architecture.
	 3.	Reusable design.
	 4.	Reusable code.
	 5.	Reusable project plans and estimates.
	 6.	Reusable test plans.
	 7.	Reusable test scripts.

Table 2.4  U.S. Software Personnel Circa 2020

Size in Function
Points

Total Project
Staff

Canceled
Project Staff

Canceled
Project Percent

1 75,000 375 0.50%

10 119,000 1,190 1.00%

100 250,000 10,000 4.00%

1,000 500,000 60,000 12.00%

10,000 1,580,000 474,000 30.00%

100,000 147,300 61,866 42.00%

1,000,000 50,000 32,500 65.00%

Total 2,909,300 639,931 22.00%

56  ◾  Software Development Patterns and Antipatterns

	 8.	Reusable test cases.
	 9.	Reusable user manuals.
	 10.	Reusable training materials.

These materials need to be certified to near zero-defect levels of quality
before reuse becomes safe and economically viable. Reusing buggy
materials is harmful and expensive. This is why excellent quality control
is the first stage in a successful reuse program.

The need for being close to zero defects and formal certification
adds about 20% to the costs of constructing reusable artifacts and about
30% to the schedules for construction. However, using certified reus-
able materials subtracts over 80% from the costs of construction and
can shorten schedules by more than 60%. The more times materials are
reused, the greater their cumulative economic value.

Achieving Excellence in Software Quality Control
In addition to moving toward higher volumes of certified reusable com-
ponents, it is also obvious from the huge costs associated with finding
and fixing bugs that the software industry needs much better quality
control than was common in 2020.

Excellent Quality Control

Excellent software projects have rigorous quality control methods that
include formal estimation of quality before starting, full defect measure-
ment and tracking during development, and a full suite of defect pre-
vention, pre-test removal, and test stages. The combination of low defect
potentials and high defect removal efficiency (DRE) is what software
excellence is all about.

The most common companies that are excellent in quality control
are usually the companies that build complex physical devices such
as computers, aircraft, embedded engine components, medical devices,
and telephone switching systems (Software Engineering Best Practices;
Jones, 2010). Without excellence in quality, these physical devices will
not operate successfully. Worse, failure can lead to litigation and even
criminal charges. Therefore, all companies that use software to control
complex physical machinery tend to be excellent in software quality.

Examples of organizations noted as excellent for software quality in
alphabetical order include Advanced Bionics, Apple, AT&T, Boeing, Ford
for engine controls, General Electric for jet engines, Hewlett Packard for

Wastage  ◾  57

embedded software, IBM for systems software, Motorola for electronics,
NASA for space controls, the Navy for surface weapons, Raytheon, and
Siemens for electronic components.

Companies and projects with excellent quality control tend to have
low levels of code cyclomatic complexity and high test coverage, i.e. test
cases cover >95% of paths and risk areas.

These companies also measure quality well and all know their DRE
levels. (Any company that does not measure and know their DRE is
probably below 85% in DRE.)

Excellence in software quality also uses pre-test inspections for criti-
cal materials (i.e. critical requirements, design, architecture, and code
segments). Excellence in quality also implies 100% usage of pre-test
static analysis for all new modules, for significant changes to modules
and for major bug repairs. For that matter, static analysis is also valuable
during the maintenance of aging legacy applications.

Excellent testing involves certified test personnel, formal test case
design using mathematical methods such as design of experiments and
a test sequence that includes at least: (1) unit test; (2) function test; (3)
regression test; (4) performance test; (5) usability test; (6) system test;
(7) beta or customer acceptance test. Sometimes additional tests such as
supply-chain or security are also included.

Excellent quality control has DRE levels between about 97% for large
systems in the 10,000 function point size range and about 99.6% for
small projects <1,000 function points in size.

A DRE of 100% is theoretically possible but is extremely rare. The
author of this book has only noted DRE of 100% in 10 projects out of a
total of about 25,000 projects examined. As it happens, the projects with
100% DRE were all compilers and assemblers built by IBM and using
>85% certified reusable materials. The teams were all experts in com-
pilation technology and of course a full suite of pre-test defect removal
and test stages were used as well.

Average Quality Control

In today’s world, Agile is the new average and indeed a long step past
waterfall development. Agile development has proven to be effective for
smaller applications below 1,000 function points in size. Agile does not
scale up well and is not a top method for quality. Indeed both Tables 2.1
and 2.2 utilize Agile since it was so common in 2015.

Agile is weak in quality measurements and does not normally use
inspections, which has the highest DRE of any known form of defect
removal. Inspections top 85% in DRE and also raise testing DRE levels.

58  ◾  Software Development Patterns and Antipatterns

Among the author’s clients that use Agile, the average value for DRE
ranges about 92%–94%. This is certainly better than the 85% to 90%
industry average, but not up to the 99% actually needed to achieve opti-
mal results.

Methods with stronger quality control than Agile include personal
software process (PSP), team software process (TSP), and the rational
unified process (RUP) which often top 97% in DRE) (Applied Software
Measurement, Jones, 2008).

Some but not all agile projects use “pair programming” in which two
programmers share an office and a work station and take turns cod-
ing while the other watches and “navigates.” Pair programming is very
expensive but only benefits quality by about 15% compared to single
programmers. Pair programming is much less effective in finding bugs
than formal inspections, which usually bring 3–5 personnel together to
seek out bugs using formal methods. Critical inspection combined with
static analysis has higher defect removal than pair programming at costs
below 50% of pair programming.

Agile is a definite improvement for quality compared to waterfall
development but is not as effective as the quality-strong methods of TSP
and the RUP.

Average projects usually do not predict defects by origin and do not
measure DRE until testing starts, i.e. requirements and design defects
are under reported and sometimes invisible.

A recent advance since 1984 in software quality control now fre-
quently used by average as well as advanced organizations is that of
static analysis. Static analysis tools can find about 55%–65% of code
defects, which is much higher than most forms of testing.

Many test stages such as unit test, function test, regression test, etc.
are only about 35% efficient in finding code bugs, or find one bug out
of three. This explains why 6–10 separate kinds of testing are needed.

The kinds of companies and projects that are “average” would
include internal software built by hundreds of banks, insurance compa-
nies, retail and wholesale companies, and many government agencies at
federal, state, and municipal levels.

Average quality control has DRE levels from about 85% for large sys-
tems up to 96% for small and simple projects.

Poor Quality Control

Poor quality control is characterized by weak defect prevention and
almost a total omission of pre-test defect removal methods such as static
analysis and formal inspections. Poor quality control is also character-
ized by inept and inaccurate quality measures which ignore front-end

Wastage  ◾  59

defects in requirements and design. There are also gaps in measuring
code defects. For example, most companies with poor quality control
have no idea how many test cases might be needed or how efficient
various kinds of test stages are.

Companies with poor quality control also fail to perform any kind
of up-front quality predictions so they jump into development without
a clue as to how many bugs are likely to occur and what are the best
methods for preventing or removing these bugs. Testing is usually by
untrained, uncertified developers without using any formal test case
design methods.

One of the main reasons for the long schedules and high costs asso-
ciated with poor quality is the fact that so many bugs are found when
testing starts that the test interval stretches out to two or three times
longer than planned (Estimating Software Costs; Jones, 2007).

Some of the kinds of software that are noted for poor quality control
include the Obamacare web site, municipal software for property tax
assessments, and software for programmed stock trading, which has
caused several massive stock crashes. Indeed government software proj-
ects tend to have more poor quality projects than corporate software by
a considerable margin. For example, the author of this book has worked
as an expert witness in lawsuits for poor quality for more state govern-
ment software failures than any other industrial segment.

Poor quality control is often below 85% in DRE levels. In fact for
canceled projects or those that end up in litigation for poor quality, the
DRE levels may drop below 80%, which is low enough to be considered
professional malpractice. In litigation where the author of this book has
been an expert witness, DRE levels in the low 80% range have been the
unfortunate norm.

Table 2.5  Distribution of DRE for 1,000 Projects

DRE Projects Percent

>99.00% 10 0.01

95%–99% 120 12.00

90%–94% 250 25.00

85%–89% 475 47.50

80%–85% 125 12.50

<80.00% 20 2.00

Totals 1,000 100.00

60  ◾  Software Development Patterns and Antipatterns

Table 2.5 shows the ranges in DRE noted from a sample of 1,000
software projects. The sample included systems and embedded soft-
ware, web projects, cloud projects, information technology projects, and
also defense and commercial packages.

As can be seen, high DRE does not occur often. This is unfortunate
because projects that are above 95.00% in DRE have shorter schedules
and lower costs than projects below 85.00% in DRE. The software indus-
try does not measure either quality or productivity well enough to know
this.

However, the most important economic fact about high quality is:
Projects > 97% in DRE have shorter schedules and lower costs than
projects < 90% in DRE. This is because projects that are low in DRE
have test schedules that are at least twice as long as projects with high
DRE due to omission of pre-test inspections and static analysis!

Table 2.6 shows DRE for four application size plateaus and for six
technology combinations.

As can be seen, DRE varies by size and also by technology stack. A
combination of inspections, static analysis, and formal testing has the
highest DRE values for all sizes.

The DRE metric was first developed by IBM circa 1970. It is normally
calculated by measuring all defects found prior to release to customers,

Table 2.6  Software Defect Removal Efficiency (DRE)

Note 1: Defect Removal Efficiency (DRE)
is total removal before release

Average

Note 2: Size is expressed in terms of IFPUG function points 4.3

Cases 100 DRE 1,000 DRE 10,000 DRE 100,000 DRE

1 Inspections,
static analysis,
formal testing

99.60% 98.50% 97.00% 96.00% 97.78%

2 Inspections,
formal testing

98.00% 97.00% 96.00% 94.50% 96.38%

3 Static analysis,
formal testing

97.00% 96.00% 95.00% 93.50% 95.38%

4 Formal testing 93.00% 91.00% 90.00% 88.50% 90.63%

5 Informal testing 87.00% 85.00% 83.00% 80.00% 83.75%

Average 94.92% 93.50% 92.20% 90.50% 92.78%

Wastage  ◾  61

and then customer-reported defects for the first 90 days of usage (The
Economics of Software Quality, Jones and Bonsignour, 2012).

As of 2020, DRE measures were used by dozens of high-technology
companies, but were not widely used by government agencies or
other industry segments such as banks, insurance, and manufacturing.
However, DRE is one of the most useful of all quality measures. Namcook
suggests that all companies and government agencies use “defect poten-
tials” and “defect removal efficiency” on all projects. The phrase “defect
potentials” also originated in IBM circa 1970 and is the sum total of bugs
that originate in requirements, architecture, design, code, documents,
and “bad fixes” or new bugs found in bug repairs themselves.

Formal testing implies certified test personnel and mathematical test
case design such as use of “design of experiments.” Informal testing
implies untrained uncertified developers.

Note that the corona virus will eliminate group inspections in the same room,
and will probably switch to Zoom inspections.

Table 2.7 shows the schedules in calendar months for the same combina-
tions of application size plateaus and also for technology combinations.

As can be seen from Table 2.6, high quality does not add time to
development. High quality shortens schedules because the main rea-
son for schedule delays is too many bugs when testing starts, which
stretches out test schedules by weeks or months (Estimating Software
Costs, Jones, 2007).

Table 2.7  Software Schedules Related to Quality Control

Note 1: Size is expressed in terms of
IFPUG function points 4.3

Average

Note 2: Schedule is expressed in terms of calendar months

Cases 100 1,000 10,000 100,000

1 Inspections, static analysis,
formal testing

5.50 12.88 30.20 70.79 29.84

2 Inspections, formal testing 5.75 13.80 33.11 79.43 33.03

3 Static analysis, formal testing 5.62 13.34 31.62 74.99 31.39

4 Formal testing 6.03 14.79 36.31 89.13 36.56

5 Informal testing 6.31 15.85 39.81 100.00 40.49

Average 5.84 14.13 34.21 82.87 34.26

62  ◾  Software Development Patterns and Antipatterns

Note: Namcook Analytics’ Software Risk Master (SRM) tool can pre-
dict the results of any combination of defect prevention methods, pre-
test defect removal methods, and testing stages. SRM can also predict
the results of 57 development methods, 79 programming languages, and
the impact of all five levels of the CMMI.

Since one of the major forms of “wastage” involves canceled projects,
Table 2.8 shows the impact of high quality on project cancellation rates.
Since many cancelled projects are above 10,000 function points in size,
only data for large systems is shown in Table 2.8.

As can be seen from Table 2.8, poor quality control and lack of pre-
test inspections and static analysis is a major cause of cancelled projects.

Table 2.9 shows the impact of quality control on software out-
source litigation. The author of this book has been an expert witness
in 15 breach of contract cases and has provided data to other testifying
experts in about 50 other cases. In fact data from the author’s book The
Economics of Software Quality (Jones and Bonsignour, 2011) is used in
many lawsuits, sometimes by both sides, because there is no other use-
ful published source of quality data.

As can be seen, poor quality control on outsourced projects has an
alarmingly high probability of ending up in court either because the
projects are cancelled or because of major errors after deployment that
prevent the owners from using the software as intended.

Table 2.10 shows the kinds of industries that are most likely to
be found in each of the five levels of quality control. In general, the

Table 2.8  Impact of Software Quality on Cancellation

Note 1: Size is expressed in terms of IFPUG function points 4.3

Average

Note 2: Projects <10,000 function points
are seldom canceled and not shown

Cases 100 1,000 10,000 100,000

1 Inspections, static
analysis, formal testing

7.00% 14.00% 10.50%

2 Inspections, formal
testing

12.00% 24.00% 18.00%

3 Static analysis, formal
testing

16.00% 32.00% 24.00%

4 Formal testing 43.00% 57.00% 50.00%

5 Informal testing 72.00% 83.00% 77.50%

Average 30.00% 42.00% 36.00%

Wastage  ◾  63

industries with the best quality tend to be those that build complex
physical devices such as medical equipment, aircraft, or telephone
switching systems.

Note that the corona virus of 2020 has delayed court proceedings and is caus-
ing physical changes in court room structures such as plastic walls protecting
the judge, witnesses, and attorneys. Jurors will no longer sit in a jury box side
by side but probably will use Zoom from external locations elsewhere in the
courthouse.

The industries that bring up the bottom with frequently poor quality
control include state, municipal, and federal civilian government groups
(military software is fairly good in quality control), and also stock trad-
ing software. For that matter, tax software is not very good and there are
errors in things like property tax and income tax calculations.

Table 2.10 shows trends but the data is not absolute. Some govern-
ment groups are better than expected, but not very many. Namcook has
data on over 70 industry sectors.

The final table in this chapter is taken from Chapter 7 of the author’s
book The Economics of Software Quality with Olivier Bonsignour; Jones
2011 as the co-author. Table 2.11 shows the approximate distribution of
excellent, average, and poor software quality by application size.

Table 2.9  Impact of Software Quality on Litigation

Note 1: Size is expressed in terms of
IFPUG function points 4.3

Average

Note 2: Data shows % of outsource projects
in breach of contract litigation

Note 3: Most breach of contract litigation
occurs >10,000 function points

Cases 100 1,000 10,000 100,000

1 Inspections, static analysis,
formal testing

2.00% 5.00% 3.50%

2 Inspections, formal testing 4.00% 12.00% 8.00%

3 Static analysis, formal
testing

6.00% 17.00% 11.50%

4 Formal testing 12.00% 24.00% 18.00%

5 Informal testing 24.00% 48.00% 36.00%

Average 9.60% 21.20% 15.40%

64  ◾  Software Development Patterns and Antipatterns

As can be seen, software quality declines as application size increased.
This is due to the intrinsic complexity of large software applications, com-
pounded by the lack of standard certified reusable components. It is also
compounded by the omission of pre-test inspections and static analysis
for many of the large applications above 10,000 function points in size.

Summary and Conclusions
Analysis of the work patterns of the software engineering world reveals
a surprising fact. Much of the work of software engineering is basically
“wasted” because it concerns either working on projects that will not be

Table 2.10  Industries Noted at Each Software Quality Level

Note 1: Hi tech industries have the best quality control at all sizes

Note 2: Defense and avionics have good quality control

Note 3: All forms of civilian government have poor quality control

Note 4: Stock trading has poor quality control

Cases Industries

1 Inspections, static analysis, formal testing Medical devices

Aircraft

Telecomm

2 Inspections, formal testing Airlines

Pharmaceuticals

Defense

3 Static analysis, formal testing Open source

Commercial software

Automotive

4 Formal testing Banks/insurance

Health care

Outsourcers

5 Informal testing Retail

Stock trading

Government (all
levels)

Wastage  ◾  65

completed or working on repairing defects that should not be present
at all.

If the software community can be alerted to the fact that poor soft-
ware engineering economics are due to poor quality, then we might be
motivated to take defect prevention, defect removal, reusability, and risk
analysis more seriously than they are taken today.

The impact of the corona virus on software engineering cannot yet be pre-
dicted in mid-2020. No doubt there will be an impact due to the elimination of
staff meetings and face to face events such as inspections. Possibly Zoom or an
equivalent can substitute but the author’s experience with Zoom is that it is not
yet an effective substitute for live meetings and especially for meetings where
documents need to be shared and reviewed. The author of this book has never
tried Zoom for software code inspection but he doubts if it will be easy.

Table 2.11  Distribution of Software Projects by Quality Levels

Function Points

(Sample = approximately 27,000 software
projects to 2020)

Low Quality Average Quality High Quality

10 25.00% 50.00% 25.00%

100 30.00% 47.00% 23.00%

1,000 36.00% 44.00% 20.00%

10,000 40.00% 42.00% 18.00%

100,000 43.00% 45.00% 12.00%

Average 37.25% 44.50% 18.25%

https://taylorandfrancis.com

67DOI: 10.1201/9781003193128-4

Chapter 3

Root Causes of Poor
Software Quality

Introduction
The software industry has a bad and justified reputation for poor quality
and low reliability. A key reason for poor quality is that quality measure-
ments are embarrassingly bad. Metrics such as cost per defect and lines
of code distort reality and conceal software quality. Software measures
omit important data, use hazardous metrics, and are not sufficient to
show the effectiveness of various quality control methods such as static
analysis, inspections, and testing.

Software quality depends upon two important variables. The first
variable is that of “defect potentials” or the sum total of bugs likely to
occur in requirements, architecture, design, code, documents, and “bad
fixes” or new bugs in bug repairs. The second important measure is
“defect removal efficiency (DRE)” or the percentage of bugs found and
eliminated before release of software to clients.

The metrics of defect potentials and defect removal efficiency (DRE)
were developed by IBM circa 1970 and are widely used by technology
companies and also by insurance companies, banks, and other compa-
nies with large software organizations.

Poor software quality is an endemic problem of the software indus-
try. Many large systems are canceled due to poor quality. Almost all
large systems run late and are over budget due to poor quality. There

68  ◾  Software Development Patterns and Antipatterns

are many lawsuits for poor quality. There are billions of dollars wasted
by software customers due to customer damages caused by poor quality.
There are also rapidly increasing numbers of cyber-attacks most due to
poor software quality. Why do these endemic problems occur?

An important root cause is that most software quality companies
are “one-trick-ponies” that only care about one subject. Some quality
companies sell automated testing, some sell static analysis, some sell
automated proofs, or whatever; no company sells a full suite of soft-
ware quality tools and methods that encompass all sources of software
defects and all forms of software defect removal.

Effective quality control needs a synergistic combination of defect
prevention, pre-test defect removal, and formal testing with certified test
personnel. Worse, most quality companies have zero empirical data as to
the efficacy of their tools and methods. They make vast claims of better
quality but provide no case studies or validated results.

Software quality data should be based on function point metrics
because function points can show defects from all sources such as
requirements, design, etc. Table 3.1 shows approximate U.S. averages
for defect potentials for poor-quality and high-quality software projects.

If drugs and pharmaceutical products were released to the public
with as little validation as software quality tools, the U.S. death rate
would probably be twice what it actually is today.

Following is a list of 56 software topics that include defect origins,
defect prevention methods, and defect removal stages that run from
early requirements to post-delivery for a large system of a nominal
10,000 function points and 1,500 SNAP points in size in Java.

All of these 56 quality control factors are important for large systems
in the 10,000 function point size range. The problem today is that no
known software quality company sells more than one or two of these 56
quality methods or even knows about the others!

Few quality companies and even fewer of their clients know about
the other factors! A narrow focus on testing and basic ignorance of the
suite of effective software defect prevention and defect removal meth-
ods is an endemic and chronic problem of the software industry.

If a reader wanted to learn about all 56 quality factors, he or she
would probably need a dozen courses from at least half a dozen soft-
ware quality training companies because none of them cover the full
spectrum of effective quality tools and methods or even know about
them!

None of the major international standards such as ISO and IEEE stan-
dards on software quality are fully adequate because none of them ask
for quantitative quality data and all ignore basic software quality factors
such as defect potentials and DRE.

Root Causes of Poor Software Quality  ◾  69

Table 3.1  Results of Poor-Quality and High Quality Software

(Nominal 10,000 function points; 1,500 SNAP points)

Poor
Quality

High
Quality

U.S. Software Defect Potentials per Function Point

1 Requirements defects (functional and
non-functional)

0.90 0.30

2 Architecture defects 0.20 0.05

3 Design defects 1.10 0.35

4 Code defects 1.55 0.60

5 Security flaw defects 0.35 0.10

6 Document defects 0.45 0.20

7 Bad fix defects (new bugs in bug repairs) 0.55 0.05

Total 5.10 1.65

Application Defect Removal Efficiency Results

8 Defect removal efficiency (DRE) 91.00% 98.50%

9 Defects removed per function point 4.64 1.63

10 Defects removed – actual total 46,410 16,253

11 Defects delivered per function point 0.46 0.02

12 Defects delivered – actual total 4,590 247

13 High severity defects delivered per function point 0.46 0.02

14 High severity defects delivered – actual total 689 27

15 Security flaws delivered – actual total 55 1

Application Defect Prevention Stages

16 Joint application design (JAD) No Yes

17 Prototype Yes Yes

18 Requirements models (primarily functional) No Yes

19 Quality function deployment (QFD) No Yes

20 Automated proofs No Yes

21 SEMAT (Software Engineering Methods and Theory) No Yes

22 Six-Sigma for software No Yes

(Continued)

70  ◾  Software Development Patterns and Antipatterns

Table 3.1  (Continued)

(Nominal 10,000 function points; 1,500 SNAP points)

Poor
Quality

High
Quality

23 Capability maturity model (CMMI) – defense only No No

Total 1 7

Application Pre-Test Defect Removal Stages

24 Formal inspections of requirements No Yes

25 Formal inspection of architecture (large systems) No Yes

26 Formal inspections of design No Yes

27 Formal inspections of new/changed code No Yes

28 Formal quality assurance reviews No Yes

29 Pair programming (not recommended) No No

30 Independent verification & validation (defense only) No No

31 FOG readability index of requirements, design No Yes

32 Static analysis of application code and changed code No Yes

33 Ethical hackers on high-security software No Yes

34 Cyclomatic complexity analysis and reduction No Yes

35 SANS Institute defect category analysis and removal No Yes

Total 1 10

Application Test Defect Removal Stages

36 Unit test – automated Yes Yes

37 New function test Yes Yes

38 Regression test – automated Yes Yes

39 Stress/performance test Yes Yes

40 Usability test No Yes

41 Component test Yes Yes

42 Independent test (defense only) No No

43 Security test No Yes

44 System test – automated Yes Yes

45 Multi-platform test Yes Yes

46 Global nationalization test Yes Yes

Root Causes of Poor Software Quality  ◾  71

Software Quality Education Curricula
The curricula of the major software quality training companies are
embarrassing because of the gaps, omissions, and topics that are not
covered. Even worse not a single quality education company has actual
quantified data on software defect origins, defect densities, defect pre-
vention, or DRE levels.

You would have to go back almost 200 years in medical education to
find such skimpy knowledge of the basic topics needed to train physi-
cians as we have for training software quality and test personnel today.

You might take quality courses from companies such as Construx,
from CAST, from IBM, from ITMPI, from SQE, from QAI, from the SANS
Institute, from Parasoft, from Smart Bear, and probably from other local
educators but these would probably be single-topic courses such as
static analysis or automated testing. The courses, while useful by them-
selves, would not be part of a full software quality curriculum because
none of the quality companies know enough about software quality to
have effective overall curricula!

(Nominal 10,000 function points; 1,500 SNAP points)

Poor
Quality

High
Quality

47 Beta/acceptance test Yes Yes

Total 9 11

Application Post-Release Quality Stages

48 Static analysis of all code changes/bug repairs No Yes

49 Formal inspection of large changes No Yes

50 Cyber-attack defenses (firewalls, antivirus, etc.) Yes Yes

51 Penetration teams (high security applications) No Yes

52 Maintainability analysis of legacy applications No Yes

53 Test library analysis (defective test case removal) No Yes

54 Error-prone module (EPM) analysis and removal No Yes

55 Race-condition analysis and correction No Yes

56 Cyclomatic complexity analysis and correction No Yes

Total 1 9

Total Quality Control Factors 19 53

Table 3.1  (Continued)

72  ◾  Software Development Patterns and Antipatterns

Worse, these courses even from major quality companies would lack
quantitative data on defect potentials, DRE, bad-fix injections, error-
prone modules, or any other of the critical topics that quality profes-
sionals should know about. The software industry is running blind due
to the widespread lack of quantitative quality data.

Software quality data is available from some benchmark organiza-
tions such as Davids Consulting, Gartner Group, Namcook Analytics
LLC, TIMetricas, Q/P Management Group/QSM, and several others. But
the combined set of clients for all current quality benchmark organiza-
tions is less than 50,000 customers in an industry employing close to
20,000,000 people on a global basis.

Software quality data can be predicted by some parametric software
estimation tools such as Software Risk Master (SRM), KnowledgePlan,
SEER, SLIM, and COCOMO, but the combined market for all of these
parametric tools is less than 25,000 customers in an industry employing
almost 20,000,000 people on a global basis.

In other words, even companies that offer accurate quality data have
comparatively few clients who are interested in that data, even though
it could save companies and governments billions of dollars in reduced
defect repairs and reduced cyber-attack recovery costs!

It is professionally embarrassing about how unsophisticated software
quality education is compared to medical school curricula for training
physicians.

You probably could not take courses on this set of 56 topics from
any university because their curricula tend to deal only with a few of the
more common methods and concentrate primarily on testing. I have yet
to see a university with quantitative data on software defect volumes,
severity levels, origins, or effective defect removal methods with quan-
titative results.

You might take some courses from non-profit associations such as
the American Society for Quality (ASQ), the Society for Information
Management (SIM), or the Project Management Institute (PMI). But no
single organization in 2016 covers more than a small fraction of the
total intellectual content of effective software quality control. None of
the software non-profit organizations have quantitative data on defect
volumes, severity levels, or DRE.

To illustrate the kind of quality education that is needed, Table 3.2
shows a sample curriculum for software quality assurance testing and
Table 3.3 shows a sample curriculum for software test training.

In today’s world, software quality assurance has an expanding role
in cyber defenses and cyber-attack recovery. Software quality assurance

Root Causes of Poor Software Quality  ◾  73

Table 3.2  Software Quality Assurance Curricula

Software Quality Assurance Courses Days Value

1 Hazardous quality metrics: cost per defect 0.50 10.00

2 Hazardous quality metrics: lines of code 0.50 10.00

3 Hazardous quality metrics: technical debt 0.50 10.00

4 Hazardous quality metrics: story points 0.50 10.00

5 Effective quality metrics: function points 0.50 10.00

6 Effective quality metrics: defect removal % 0.50 10.00

7 Effective quality metrics: defect severity levels 0.50 10.00

8 Effective quality metrics: defect origin analysis 0.50 10.00

9 Emerging quality metrics: SNAP points 0.50 10.00

10 Overview of major software failures 1.00 10.00

11 Overview of major software cyber-attacks 1.00 10.00

12 Error prone module (EPM) analysis 1.00 10.00

13 Software defect detection efficiency (DDE) 1.00 10.00

14 Software defect removal efficiency (DRE) 1.00 10.00

15 Software defect tracking 1.00 10.00

16 Software defect prevention (JAD, QFD, etc.) 1.00 10.00

17 Software pre-test defect removal 1.00 10.00

18 Software test defect removal 1.00 10.00

19 Software requirements modeling 1.00 10.00

20 Functional and non-functional requirements 2.00 10.00

21 Software static analysis: text 1.00 10.00

22 Software static analysis: code 1.00 10.00

23 Software correctness proofs: manual 1.00 10.00

24 Software correctness proofs: automated 1.00 10.00

25 Software security and quality in 2016 2.00 10.00

26 Quality benchmarks: Namcook, Q/P, etc. 1.00 10.00

27 Software security inspections 3.00 10.00

28 Security flaw removal (hacking, test, etc.) 3.00 10.00

(Continued)

74  ◾  Software Development Patterns and Antipatterns

Software Quality Assurance Courses Days Value

29 Error prone module (EPM) analysis 2.00 9.95

30 Software test case design 2.00 9.75

31 Software test library management 1.00 9.75

32 Reducing bad-fix injections 1.00 9.75

33 Test case conflicts and errors 1.00 9.75

34 Software requirement inspections 1.00 9.75

35 Software design inspections 2.00 9.50

36 Software code inspections 2.00 9.50

37 Software test inspections 2.00 9.50

38 Defect removal using pair programming 1.00 9.50

39 Defect removal using container development 1.00 9.50

40 Defect removal using DevOps 2.00 9.50

41 Defect removal using TSP/PSP 2.00 9.00

42 Defect removal using Agile 2.00 9.00

43 Defect removal using RUP 2.00 9.00

44 Automated software testing 2.00 9.00

45 Quality assurance of software reuse 1.00 9.00

46 Quality assurance of COTS and ERP 1.00 9.00

47 Quality assurance of open source 1.00 9.00

48 Tools: quality assurance 1.00 9.00

49 Tools: defect prediction 1.00 9.00

50 Defect removal using Waterfall development 1.00 8.00

51 Cost of quality (COQ) 1.00 8.00

52 Overview of the CMMI 1.00 8.00

53 ISO and IEEE quality standards 1.00 7.00

54 Six Sigma: green belt 3.00 7.00

55 Six Sigma: black belt 3.00 7.00

Total 70.50 9.49

Table 3.2  (Continued)

Root Causes of Poor Software Quality  ◾  75

Table 3.3  Software Testing Courses

Software Testing Courses Days Value

1 Test case design optimization 2.00 10.00

2 Test cases – design of experiments 2.00 10.00

3 Test cases – cause/effect graphing 2.00 10.00

4 Test cases and requirements 2.00 10.00

5 Risk-based test case design 2.00 10.00

6 Analysis of gaps and errors in test case designs 2.00 10.00

7 Cyclomatic complexity and test coverage 2.00 10.00

8 Test library control 2.00 10.00

9 Security testing overview 2.00 10.00

10 Advanced security testing 3.00 10.00

11 Test schedule estimating 1.00 10.00

12 Software defect potential estimating 1.00 10.00

13 Defect removal efficiency (DRE) measurement 1.00 10.00

14 Software build planning and control 1.00 10.00

15 Big data test design 2.00 10.00

16 Cloud test design 2.00 10.00

17 Removal of incorrect test cases 1.00 10.00

18 Test coverage analysis 1.00 9.50

19 Identifying error-prone modules (EPM) 2.00 9.50

20 Data base test design 1.00 9.50

21 Test case conflicts and errors 1.00 9.25

22 Static analysis and testing 1.00 9.00

23 Reducing bad-fix injections 1.00 9.00

24 Basic black box testing 1.00 9.00

25 Basic white box testing 1.00 9.00

26 Basic gray box testing 1.00 9.00

27 fundamentals or risk-based testing 1.00 9.00

28 Fundamentals of unit testing 1.00 9.00

(Continued)

76  ◾  Software Development Patterns and Antipatterns

personnel need much more knowledge on security topics than they did
30 years ago.

Today software testing has become a barrier to cyber-attacks so spe-
cial attention is needed for testing software security flaws.

Between software quality assurance training and software test per-
sonnel training, there is a need to expand on both university curricula

Software Testing Courses Days Value

29 Fundamentals of regression testing 1.00 9.00

30 Fundamentals of component testing 1.00 9.00

31 Fundamentals of stress testing 1.00 9.00

32 Fundamentals of virus testing 2.00 9.00

33 Fundamentals of lab testing 1.00 9.00

34 Fundamentals of system testing 2.00 9.00

35 Fundamentals of external beta testing 1.00 9.00

36 Fundamentals of acceptance testing 1.00 9.00

37 Testing web applications 1.00 9.00

38 Tools: automated testing 2.00 9.00

39 Tools: test case design 1.00 9.00

40 Tools: test library control 1.00 9.00

41 Tools: defect tracking 1.00 9.00

42 Tools: complexity analysis 0.50 9.00

43 Tools: test coverage analysis 0.50 9.00

44 Fundamentals of reusable test materials 1.00 9.00

45 Testing Cloud, SOA, and SaaS 2.00 8.80

46 Testing COTS application packages 1.00 8.75

47 Testing ERP applications 1.00 8.75

48 Testing reusable functions 1.00 8.75

49 Supply chain testing 1.00 8.50

50 Function points for test measures 1.00 7.00

Total 67.00 9.31

Table 3.3  (Continued)

Root Causes of Poor Software Quality  ◾  77

and the limited curricula from software quality companies, neither of
which are fully adequate today.

If you wanted to acquire actual supporting tools for these 56 quality
topics, you would probably need to go to at least 15 commercial qual-
ity companies, static analysis companies, and test tool companies and
another half dozen open source quality groups.

Nobody sells all the tools that are needed to control software quality!
Most quality tool vendors don’t even know about effective quality tools
other than the ones they sell. There are no software quality companies
in 2017 that have the depth and breadth of medical companies such as
McKesson or Johnson & Johnson.

The static analysis companies only sell static analysis; the testing
companies only sell test tools; to get quality metrics and measurement
tools you need additional vendors; to get ordinary defect tracking tools
you need still other vendors; to get quality benchmark data you need
another set of vendors; to get software quality predictions via commer-
cial estimating tools you need yet another set of vendors.

The software industry has nothing like a Mayo Clinic where advanced
medical treatments are available for a wide spectrum of medical condi-
tions. In fact software quality control in 2016 is closer to the days 200
years ago when doctors were also barbers and sterile surgical proce-
dures had not yet been discovered. Software has nothing even close to
CAT scans and MRI exams for finding quality and security problems.

No known software company covers the full spectrum of soft-
ware quality tools, technologies, topics, and effective quality methods,
although a few large companies such as IBM, Microsoft, and Hewlett
Packard may sell perhaps a 12 to 15 out of the set of 56.

No university has a truly effective software quality curriculum. In fact
many universities still teach courses using “cost per defect” and “lines of
code” metrics and hence have no accurate quality data available at all,
since these metrics distort reality.

Of course no pharmaceutical company sells medicines for all dis-
eases and no physicians can treat all medical conditions but physicians
at least learn about almost all common medical conditions as a basic
part of their education. There are also specialists available who can deal
with uncommon medical conditions.

Medicine has the Index Medicus that provides an overall description
of the use of thousands of prescription drugs, their side effects, and
dosage. There is no exact equivalent to the Index Medicus for software
bugs and their treatment, but the closest is probably Capers Jones’ and
Olivier Bonsignour’s book on The Economics of Software Quality, pub-
lished in 2012.

78  ◾  Software Development Patterns and Antipatterns

Medicine also has many wide-ranging books such as Control of
Communicable Diseases in Man Published by the U.S. Surgeon General’s
office which show the scope of common infectious diseases such as
polio and smallpox as well as their known treatments. Software has
nothing like the breadth and depth of the medical literature.

A book recommended by the author of this book to all clients and
colleagues is The Social Transformation of American Medicine by Paul
Starr. This book won a Pulitzer Prize in 1982. It also won the Bancroft
Prize. This book provides an excellent guide to how medicine was trans-
formed from a poorly educated craft into one of the top learned profes-
sions in world history.

Surprisingly at one time about 150 years ago, medicine was even
more chaotic than software is today. Medical schools did not require
college degrees or even high-school graduation to enter. Medical stu-
dents never entered hospitals during training because the hospitals used
private medical staff. There was no monitoring of medical malpractice
and quacks could become physicians. There were no medical licenses
or board certifications.

There was no formal evaluation of prescription drugs before release
and harmful substances such as opium could be freely prescribed. (A
Sears-Roebuck catalog in the 1890s offered liquid opium as a balm for
quieting noisy children. This product was available without prescription.)

Paul Starr’s excellent book shows how the American Medical
Association (AMA) transformed itself and also medical practice to
improve medical education and introduce medical licenses and board
certifications.

This book by Paul Starr provides a full guide for the set of steps
needed by the software industry in order to become a true profession.

One of the interesting methods used by the AMA was reciprocal
membership with all state medical societies. This had the effect of rais-
ing AMA membership from below 800 to more than 80,000 which finally
gave physicians enough political clout to lobby for medical licenses. It
would be interesting if the IEEE, SIM, ACM, and other software profes-
sional organizations also had reciprocal memberships instead of more
or less competing.

Poor software quality is a sociological problem as well as a technol-
ogy problem. Starr’s book showed how medicine gradually improved
both the sociology of medical practice and the underlying technology of
medical offices and hospitals over about a 50-year period.

With Starr’s book as a guide, software engineering might be able to
accomplish the same results in less than 25 years instead of the 50 years
required to professionalize medicine.

The three major problems facing the software industry are these:

Root Causes of Poor Software Quality  ◾  79

	 1.	Software has poor quality control due to lack of knowledge of
effective software quality techniques.

	 2.	Software has embarrassingly poor education on software quality
due to lack of empirical data.

	 3.	Software has embarrassingly bad and incomplete quality data due
to use of ineffective and hazardous metrics such as “cost per defect,”
combined with the failure to use effective metrics such as function
points and DRE.

The sad thing about poor software quality is that all three of these
problems are treatable conditions that could be eliminated in less than
10 years if one or more major software companies became proactive in
(1) effective quality metrics and measures, (2) fact-based education with
quantitative data, and (3) expanded quality control that encompassed
effective quality measures, effective defect prevention, effective pre-test
defect removal, and effective formal testing.

The author’s hope is that vaccinations and effective treatments for
poor software quality will be developed soon such as vaccinations for
smallpox and polio were developed, and antibiotics were developed for
many bacterial infections. Dozens of companies worked toward a vac-
cine for COVID-19 which are now available and still expanding in 2021.

There are still untreatable medical conditions, but overall medicine
has made huge advances in prevention and control of hundreds of for-
merly serious and common diseases. Software has not yet made any
major advances in quality control although some modern methods such
as static analysis hold promise.

References and Readings in Software Quality Control
Abrain, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015.
Abrain, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society;

2010.
Abrain, Alain; Software Maintenance Management: Evolution and Continuous

Improvement; Wiley-IEEE Computer Society; 2008.
Abrain, A.; and Robillard, P.N.; “Function Point Analysis: An Empirical Study of

Its Measurement Processes”; IEEE Transactions on Software Engineering,
Vol 22, No. 12; December 1996; pp. 895–909.

Albrecht, Allan; AD/M Productivity Measurement and Estimate Validation; IBM
Corporation, Purchase, NY; May 1984.

Austin, Robert D.; Measuring and Managing Performance in Organizations;
Dorset House Press, New York, NY; 1996; ISBN: 0-932633-36-6; 216 pages.

Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN:
10-0321146530; 240 pages.

80  ◾  Software Development Patterns and Antipatterns

Black, Rex; Managing the Testing Process: Practical Tools and Techniques
for Managing Hardware and Software Testing; Wiley; 2009; ISBN: 10-
0470404159; 672 pages.

Boehm, Barry; Software Engineering Economics; Prentice Hall, Englewood
Cliffs, NJ; 1981; 900 pages.

Brooks, Fred; The Mythical Man-Month, 1974 rev ed.; Addison-Wesley, Reading,
MA; 1995.

Chelf, Ben; and Jetley, Raoul; Diagnosing Medical Device Software Defects Using
Static Analysis; Coverity Technical Report, San Francisco, CA; 2008.

Chess, Brian; and West, Jacob; Secure Programming with Static Analysis;
Addison Wesley, Boston, MA; 2007; ISBN: 13:978-0321424778; 624 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You;
Prentice Hall, Upper Saddle River, NJ; 1995; ISBN: 10-0201633302; 368 pages.

Crosby, Philip B.; Quality Is Free; New American Library, Mentor Books, New
York, NY; 1979; 270 pages.

Charette, Bob; Software Engineering Risk Analysis and Management; McGraw
Hill, New York, NY; 1989.

Charette, Bob; Application Strategies for Risk Management; McGraw Hill, New
York, NY; 1990.

Constantine, Larry L; Beyond Chaos: The Expert Edge in Managing Software
Development; ACM Press; 2001.

DeMarco, Tom; Peopleware: Productive Projects and Teams; Dorset House, New
York, NY; 1999; ISBN: 10-0932633439; 245 pages.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York, NY;
1982; ISBN: 0-917072-32-4; 284 pages.

Everett, Gerald D.; and McLeod, Raymond; Software Testing; John Wiley & Sons,
Hoboken, NJ; 2007; ISBN: 978-0-471-79371-7; 261 pages.

Ewusi-Mensah, Kweku; Software Development Failures; MIT Press, Cambridge,
MA; 2003; ISBN: 0-26205072-2 276 pages.

Flowers, Stephen; Software Failures: Management Failures; Amazing Stories
and Cautionary Tales; John Wiley & Sons; 1996.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects; http://
software.isixsigma.com/library/content/c040915b.asp.

Galorath, Dan; and Evans, Michael; Software Sizing, Estimation, and Risk
Management: When Performance is Measured Performance Improves;
Auerbach; Philadelphia, PA; 2006.

Garmus, David; and Herron, David; Function Point Analysis – Measurement
Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Gibbs, T. Wayt; “Trends in Computing: Software’s Chronic Crisis”; Scientific
American Magazine, Vol. 271, No. 3, International edition; September
1994; pp 72–81.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10: 0201631814.

http://software.isixsigma.com
http://software.isixsigma.com

Root Causes of Poor Software Quality  ◾  81

Harris, Michael D.S., Herron, David; and Iwanacki, Stasia; The Business Value of
IT; CRC Press, Auerbach Publications; 2009.

Hill, Peter R. Practical Software Project Estimation; McGraw Hill; 2010.
Hill, Peter; Jones Capers; and Reifer, Don; The Impact of Software Size on

Productivity; International Software Standards Benchmark Group (ISBSG),
Melbourne, Australia; September 2013.

Howard, Alan (Ed.); Software Metrics and Project Management Tools; Applied
Computer Research (ACR), Phoenix, AZ; 1997; 30 pages.

Humphrey, Watts; Managing the Software Process; Addison Wesley, Reading,
MA; 1989.

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

Jacobsen, Ivar, Griss, Martin; and Jonsson, Patrick; Software Reuse - Architecture,
Process, and Organization for Business Success; Addison Wesley Longman,
Reading, MA; 1997; ISBN: 0-201-92476-5; 500 pages.

Jacobsen, Ivar et al; The Essence of Software Engineering; Applying the SEMAT
Kernel; Addison Wesley Professional; 2013.

Jones, Capers; Software Risk Master (SRM) tutorial; Namcook Analytics LLC,
Narragansett, RI; 2015a.

Jones, Capers; Software Defect Origins and Removal Methods; Namcook
Analytics LLC, Narragansett, RI; 2015b.

Jones, Capers; The Mess of Software Metrics; Namcook Analytics LLC,
Narragansett, RI; 2015c.

Jones, Capers; The Technical and Social History of Software Engineering;
Addison Wesley; 2014.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN: 978-0-13-258220-9; 587 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement, 3rd ed.; McGraw Hill; 2008;
ISBN: 978=0-07-150244-3; 662 pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems
Management Group; 1993a; ISBN: 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide
Perspective; Information Systems Management Group; 1993b; ISBN:
156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall; 1994;
ISBN: 0-13-741406-4; 711 pages.

Jones, Capers; New Directions in Software Management; Information Systems
Management Group; n.d.; ISBN: 1-56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; ISBN: 1-850-
32804-8; 250; 292 pages.

Jones, Capers; “Sizing Up Software”; Scientific American Magazine, Vol. 279,
No. 6; December 1998; pp. 104–111.

82  ◾  Software Development Patterns and Antipatterns

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;
Software Productivity Research Technical Report; Narragansett, RI; 2007a;
65 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success;
International Thomson Computer Press, Boston, MA; 1997a; ISBN: 1-85032-
876-6; 492 pages.

Jones, Capers; Estimating Software Costs, 2nd ed.; McGraw Hill, New York, NY;
2007b; 700 pages.

Jones, Capers; The Economics of Object-Oriented Software; SPR Technical Report;
Software Productivity Research, Burlington, MA; April 1997b; 22 pages.

Jones, Capers; Software Project Management Practices: Failure Versus Success;
Crosstalk; October 2004.

Jones, Capers; Software Estimating Methods for Large Projects; Crosstalk; April
2005.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Land, Susan K; Smith, Douglas B; and Walz, John Z; Practical Support for Lean
Six Sigma Software Process Definition: Using IEEE Software Engineering
Standards; Wiley-Blackwell; 2008; ISBN: 10: 0470170808; 312 pages.

McConnell, Steve; Software Project Survival Guide; Microsoft Press; 1997.
Mosley, Daniel J.; The Handbook of MIS Application Software Testing; Yourdon

Press, Prentice Hall, Englewood Cliffs, NJ; 1993; ISBN: 0-13-907007-9; 354
pages.

Nandyal, Raghav; Making Sense of Software Quality Assurance; Tata McGraw
Hill Publishing, New Delhi, India; 2007; ISBN: 0-07-063378-9; 350 pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach, 6th ed.;
McGraw Hill, New York, NY; 2005; ISBN: 0-07-285318-2.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Royce, Walker E.; Software Project Management: A Unified Framework; Addison
Wesley Longman, Reading, MA; 1998; ISBN: 0-201-30958-0.

Starr, Paul; The Social Transformation of American Medicine; Basic Books;
Perseus Group; 1982; ISBN: 0-465-07834-2. NOTE: This book won a
Pulitzer Prize in 1982 and is highly recommended as a guide for improv-
ing both professional education and professional status. There is much of
value for the software community.

Strassmann, Paul; Information Payoff; Information Economics Press, Stamford,
CT; 1985.

Strassmann, Paul; Governance of Information Management: The Concept of an
Information Constitution, 2nd ed.; (eBook); Information Economics Press,
Stamford, CT; 2004.

Strassmann, Paul; Information Productivity; Information Economics Press,
Stamford, CT; 1999.

Weinberg, Gerald M.; The Psychology of Computer Programming; Van Nostrand
Reinhold, New York, NY; 1971; ISBN: 0-442-29264-3; 288 pages.

Root Causes of Poor Software Quality  ◾  83

Weinberg, Gerald M.; Becoming a Technical Leader; Dorset House, New York,
NY; 1986; ISBN: 0-932633-02-1; 284 pages.

Weinberg, Gerald. Quality Software Management – Vol. 2: First-Order Measurement;
Dorset House Press, New York, NY; 1993; ISBN: 0-932633-24-2; 360 pages.

Wiegers, Karl A.; Creating a Software Engineering Culture; Dorset House Press,
New York, NY; 1996; ISBN: 0-932633-33-1; 358 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley
Longman, Boston, MA; 2002; ISBN: 0-201-73485-0; 232 pages.

Yourdon, Ed; Outsource: Competing in the Global Productivity Race; Prentice
Hall PTR, Upper Saddle River, NJ; 2005; ISBN: 0-13-147571-1; 251 pages.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4; 218 pages.

https://taylorandfrancis.com

85DOI: 10.1201/9781003193128-5

Chapter 4

Defenses Against Breach
of Contract Litigation

Introduction
From working as an expert witness in a number of lawsuits where large
software projects were cancelled or did not operate correctly when
deployed, six major problems occur repeatedly: (1) accurate estimates
are not produced or are overruled; (2) accurate estimates are not sup-
ported by defensible benchmarks; (3) requirement changes are not han-
dled effectively; (4) quality control is deficient; (5) progress tracking
fails to alert higher management to the seriousness of the issues; (6)
contracts themselves omit important topics such as change control and
quality, or include hazardous terms.

Much of the software literature deals with “best practices.” This book
concentrates on “worst practices” or the factors that most often lead to
failure and litigation.

For the purposes of this book, software “failures” are defined as soft-
ware projects which met any of these attributes:

	 1.	Termination of the project due to cost or schedule overruns.
	 2.	Schedule or cost overruns in excess of 50% of initial estimates.
	 3.	Applications which, upon deployment, fail to operate safely.
	 4.	Law suits brought by clients for contractual non-compliance.

Although there are many factors associated with schedule delays and
project cancellations, the failures that end up in court always seem to
have six major deficiencies:

86  ◾  Software Development Patterns and Antipatterns

	 1.	Accurate estimates were either not prepared or were rejected.
	 2.	Accurate estimates were not supported by objective benchmarks.
	 3.	Change control was not handled effectively.
	 4.	Quality control was inadequate.
	 5.	Progress tracking did not reveal the true status of the project.
	 6.	The contracts omitted key topics such as quality and out of scope

changes.

Readers are urged to discuss outsource agreements with their attor-
neys. This book is based on observations of actual cases, but the author
of this book is not an attorney and the book is not legal advice. It is
advice about how software projects might be improved to lower the
odds of litigation occurring.

To begin the discussion of defenses against software litigation, let
us consider the normal outcomes of 15 kinds of U.S. software projects.
Table 4.1 shows the percentage of projects that are likely to be on time,
late, or cancelled without being completed at all due to excessive cost
or schedule overruns or poor quality.

As can be seen, schedule delays and cancelled projects are distress-
ingly common among all forms of software in 2016. This explains why
software is viewed by most CEOs as the least competent and least pro-
fessional form of engineering of the current business world.

Note that the data in Table 4.1 is from benchmark and assessment
studies carried out by the author of this book and colleagues between
1984 and 2016. Unfortunately, recent data since 2010 is not much bet-
ter than older data before 1990. This is due to several reasons: (1) very
poor measurement practices and distressingly bad metrics which prevent
improvements from being widely known; (2) software continues to use
custom designs and manual coding, both of which are intrinsically expen-
sive and error prone. (Until the software industry adopts modern manu-
facturing concepts that utilize standard reusable components instead of
custom-built artifacts, software can never be truly cost effective.)

Let us consider each of these six topics in turn.

Problem 1: Estimating Errors and Estimate Rejection
Although cost estimating is difficult, there are a number of commer-
cial software parametric cost estimating tools that do a capable job:
COCOMO III, CostXpert, ExcelerPlan, KnowledgePlan, True Price, SEER,
SLIM, and the author’s Software Risk Master ™ (SRM) are examples
available in the United States.

In spite of the proven accuracy of parametric estimation tools and
widespread availability, as of 2016 less than 20% of the author’s clients

Defenses Against Breach of Contract Litigation  ◾  87

used any formal estimating methods at all when we first carried out soft-
ware process evaluation studies. It is alarming that 80% of U.S. software
companies and projects in 2016 still lag in formal sizing and the use of
parametric estimation tools.

However just because an accurate estimate can be produced using a
commercial parametric estimating tool that does not mean that clients
or executives will accept it. In fact from information presented during
litigation, about half of the cases did not produce accurate estimates at
all and did not use parametric estimating tools. Manual estimates tend
toward optimism or predicting shorter schedules and lower costs than
actually occur.

Problem 2: Missing Defensible Objective Benchmarks
Somewhat surprisingly, the other half of the cases in litigation had
accurate parametric estimates, but these estimates were rejected and

Table 4.1  Outcomes of U.S. Software Projects Circa 2016

Application Types On-Time Late Canceled

1 Scientific 68.00% 20.00% 12.00%

2 Smart phones 67.00% 19.00% 14.00%

3 Open source 63.00% 36.00% 7.00%

4 U.S. outsource 60.00% 30.00% 10.00%

5 Cloud 59.00% 29.00% 12.00%

6 Web applications 55.00% 30.00% 15.00%

7 Games and entertainment 54.00% 36.00% 10.00%

8 Offshore outsource 48.00% 37.00% 15.00%

9 Embedded software 47.00% 33.00% 20.00%

10 Systems and middleware 45.00% 45.00% 10.00%

11 Information technology (IT) 45.00% 40.00% 15.00%

12 Commercial 44.00% 41.00% 15.00%

13 Military and defense 40.00% 45.00% 15.00%

14 Legacy renovation 30.00% 55.00% 15.00%

15 Civilian government 27.00% 63.00% 10.00%

Total applications 50.13% 37.27% 13.00%

88  ◾  Software Development Patterns and Antipatterns

replaced by arbitrary forced “estimates” based on business needs rather
than team abilities. These pseudo-estimates were not produced using
parametric estimation tools but were arbitrary schedule demands by
clients or top executives based on perceived business needs.

The main reason that the original accurate parametric estimates were
rejected and replaced was the absence of supporting historical bench-
mark data. Without accurate history, even accurate estimates may not
be convincing. A lack of solid historical data makes project managers,
executives, and clients blind to the realities of software development.

Some foreign governments have improved contract accuracy by
mandating function point metrics: the governments of Brazil, Japan,
Malaysia, Mexico, and Italy require function point size and cost informa-
tion for all government software contracts. Eventually, all governments
will probably require function point metrics for contracts, but no doubt
U.S. state governments and the U.S. Federal government will be among
the last to do this since they lag in so many other software disciplines.
The author of this book has been an expert witness in more lawsuits
involving state governments than any other industry. Government soft-
ware problems are often national news such as the delay of Obamacare.

Problem 3: Rapidly Changing Requirements
The average rate at which software requirements change is has been
measured at 2% per month with a range between about 0.5% per cal-
endar month and as high as 4% per calendar month. Thus for a project
with a 12-month schedule, more than 10% of the features in the final
delivery will not have been defined during the requirements phase. For
a 36-month project, almost a third of the features and functions may
have come in as afterthoughts.

The current state of the art for dealing with changing requirements
includes the following:

	 •	 Estimating the number and rate of development changes before
starting.

	 •	 Using function point metrics to quantify changes.
	 •	 A joint client/development change control board or designated

domain experts.
	 •	 Model-based requirements methodologies.
	 •	 Calculating the FOG and Flesch readability indices of requirements.
	 •	 Full time involvement by user representatives for Agile projects.
	 •	 Use of joint application design (JAD) to minimize downstream

changes.

Defenses Against Breach of Contract Litigation  ◾  89

	 •	 The use of quality function deployment (QFD) for quality
requirements.

	 •	 Training in requirements engineering for business analysts and
designers.

	 •	 Use of formal requirements inspections to minimize downstream
changes.

	 •	 Use of formal prototypes to minimize downstream changes.
	 •	 Planned usage of iterative development to accommodate changes.
	 •	 Formal review of all change requests.
	 •	 Revised cost and schedule estimates for all changes >10 function

points.
	 •	 Prioritization of change requests in terms of business impact.
	 •	 Formal assignment of change requests to specific releases.
	 •	 Use of automated change control tools with cross-reference

capabilities.

Unfortunately in projects where litigation occurred, requirements
changes were numerous but their effects were not properly integrated
into cost, schedule, and quality estimates. As a result, unplanned slip-
pages and overruns occurred.

Requirements changes will always occur for large systems. It is not
possible to freeze the requirements of any real-world application, and it
is naïve to think this can occur. Therefore, leading companies are ready
and able to deal with changes, and do not let them become impedi-
ments to progress. For projects developed under contract, the contract
itself must include unambiguous language for dealing with changes.

Problem 4: Poor Quality Control
It is dismaying to observe the fact that two of the most effective tech-
nologies in all of software are almost never used on projects that turn
out to be disasters and end up in court. First, formal design and code
inspections have a 50-year history of successful deployment on large
and complex software systems. All “best in class” software producers
utilize software inspections.

Second, the technology of static analysis has been available since
1984 and has proven itself to be effective in finding code bugs rapidly
and early (although static analysis does not find requirements, architec-
ture, and design problems).

Effective software quality control is the most important single fac-
tor that separates successful projects from delays and disasters. The
reason for this is because finding and fixing bugs is the most expensive

90  ◾  Software Development Patterns and Antipatterns

cost element for large systems, and takes more time than any other
activity.

Both “defect potentials” and “defect removal efficiency” should be
measured for every project. The “defect potentials” are the sum of all
classes of defects, i.e. defects found in requirements, design, source
code, user documents, and “bad fixes” or secondary defects. It would be
desirable to include defects in test cases too, since there may be more
defects in test libraries than in the applications being tested.

The phrase “defect removal efficiency” (DRE) refers to the percent-
age of defects found before delivery of the software to its actual clients
or users. If the development team finds 900 defects and the users find
100 defects in a standard time period after release (normally 90 days),
then it is obvious that the DRE is 90%.

The author of this book strongly recommends that DRE levels be
included in all software outsource and development contracts, with
96% being a proposed minimum acceptable level of DRE. For medical
devices and weapons systems, a higher rate of about 99% DRE should
be written in to the contracts.

The U.S. average today is only about 92%. Agile projects average
about 92%; waterfall are often below 85%. TSP and RUP are among the
quality strong methods that usually top 96% in DRE.

A rate of 96% is a significant improvement over current norms. For
some mission-critical applications, a higher level such as 99.8% might
be required. It is technically challenging to achieve such high levels of
DRE and it can’t be done by testing alone.

Formal inspections and pre-test static analysis plus at least 8 forms
of testing are needed to top 98% in DRE (1 unit test; 2 function test;
3 regression test; 4 component test; 5 performance test; 6 usability test;
7 system test; 8 acceptance or beta test.)

Table 4.2 shows combinations of quality control factors that can lead
to high, average, or poor DRE.

For projects in the 10,000 function point size range, the successful
ones accumulate development totals of around 4.0 defects per function
point and remove about 98% of them before delivery to customers. In
other words, the number of delivered defects is about 0.2 defects per
function point or 800 total latent defects. Of these about, 10% or 80
would be fairly serious defects. The rest would be minor or cosmetic
defects. Stabilization or the number of calendar months to achieve safe
operation of the application would be about 2.5 months.

By contrast, the unsuccessful projects of 10,000 function points that
end up in court accumulate development totals of around 6.0 defects
per function point and remove only about 85% of them before delivery.
The number of delivered defects is about 0.9 defects per function point

Defenses Against Breach of Contract Litigation  ◾  91

or 9,000 total latent defects. Of these about 15% or 1,350 would be
fairly serious defects. This large number of latent defects after delivery
is very troubling for users. The large number of delivered defects is also
a frequent cause of litigation. Stabilization or the number of calendar
month to achieve safe operation of the application might stretch out to
18 months or more.

Unsuccessful projects typically omit design and code inspections
and static analysis, and depend purely on testing. The omission of up-
front inspections and static analysis cause four serious problems: (1) the
large number of defects still present when testing begins slows down
the project to a standstill; (2) the “bad fix” injection rate for projects
without inspections is alarmingly high; (3) the overall DRE associated
with only testing is not sufficient to achieve defect removal rates higher
than about 85%; (4) applications that bypass both inspections and static
analysis have a strong tendency to include error-prone modules.

Problem 5: Poor Software Milestone Tracking
Once a software project is underway, there are no fixed and reliable
guidelines for judging its rate of progress. The civilian software industry

Table 4.2  Ranges of DRE for 1,000 Function Point Applications

Defect Removal Efficiency (DRE) >99% 95% <87%

1 Formal requirement inspections Yes No No

2 Formal design inspections Yes No No

3 Formal code inspections Yes No No

4 Formal security inspections Yes No No

5 Static analysis Yes Yes No

6 Unit test Yes Yes Yes

7 Function test Yes Yes Yes

8 Regression test Yes Yes Yes

9 Integration test Yes Yes Yes

10 Usability test Yes Yes No

11 Security test Yes Yes No

12 System test Yes Yes Yes

13 Acceptance test Yes Yes Yes

92  ◾  Software Development Patterns and Antipatterns

has long utilized ad hoc milestones such as completion of design or com-
pletion of coding. However, these milestones are notoriously unreliable.

Tracking software projects requires dealing with two separate
issues: (1) achieving specific and tangible milestones and (2) expending
resources and funds within specific budgeted amounts.

Because software milestones and costs are affected by requirements
changes and “scope creep,” it is important to measure the increase in
size of requirements changes, when they affect function point totals.
However, there are also requirements changes that do not affect func-
tion point totals, which are termed “requirements churn.” Both creep
and churn occur at random intervals. Churn is harder to measure than
creep and is often measured via “backfiring” or mathematical conver-
sion between source code statements and function point metrics.

There are also “non-functional requirements” often due to outside
influences. These can change abruptly and many are not under control
of software groups. For example, a change in Federal or State laws may
require changes to hundreds of applications including some that are
under development.

As of today there are automated tools available that can assist project
managers in recording the kinds of vital information needed for mile-
stone reports. These tools can record schedules, resources, size changes,
and also issues or problems.

Examples of tracking tools include Automated Project Office (APO),
Microsoft project management suite, OmniTracker, Capterra, Jira, and in
total perhaps 50 others with various capabilities. However in spite of the
availability of these tools, less than 45% of the author’s clients use any
of them in our initial process evaluation studies.

For an industry now more than 65 years of age, it is somewhat sur-
prising that there is no general or universal set of project milestones for
indicating tangible progress. From the author’s assessment and baseline
studies, following are some representative milestones that have shown
practical value.

Note that these milestones assume an explicit and formal review
or inspection connected with the construction of every major software
deliverable. Formal reviews and inspections have the highest DRE levels
of any known kind of quality control activity, and are characteristics of
“best in class” organizations.

The most important aspect of Table 4.3 is that every milestone is
based on completing a review, inspection, or test. Just finishing up a
document or writing code should not be considered a milestone unless
the deliverables have been reviewed, inspected, or tested.

In the litigation where the author of this book worked as an expert
witness, these criteria were not met. Milestones were very informal and

Defenses Against Breach of Contract Litigation  ◾  93

Table 4.3  Representative Tracking Milestones for Large Software Projects

1 Application sizing completed using both function points and
code statements

2 Application risk predictions completed

3 Application size and risk predictions reviewed

4 Requirements document completed

5 Requirements document inspection completed

6 Initial cost estimate completed

7 Initial cost estimate review completed

8 Development plan completed

9 Development plan review completed

10 Cost tracking system initialized

11 Defect tracking system initialized

12 Prototype completed

13 Prototype review completed

14 Complexity analysis of base system (for enhancement projects)

15 Code restructuring of base system (for enhancement projects)

16 Functional specification completed

17 Functional specification review completed

18 Data specification completed

19 Data specification review completed

20 Logic specification completed

21 Logic specification review completed

22 Quality control plan completed

23 Quality control plan review completed

24 Change control plan completed

25 Change control plan review completed

26 Security plan completed

27 Security plan review completed

28 User information plan completed

29 User information plan review completed

(Continued)

94  ◾  Software Development Patterns and Antipatterns

consisted primarily of calendar dates, without any validation of the
materials themselves.

Also, the format and structure of the milestone reports were inad-
equate. At the top of every milestone report problems and issues or “red
flag” items should be highlighted and discussed first. These “red flag”
topics are those which are likely to cause schedule delays, cost over-
runs, or both.

During depositions and review of court documents, it was noted
that software engineering personnel and many managers were aware
of the problems that later triggered the delays, cost overruns, quality
problems, and litigation. At the lowest levels, these problems were often
included in weekly status reports or discussed at team meetings. But for
the higher-level milestone and tracking reports that reached clients and
executives, the hazardous issues were either omitted or glossed over.

A suggested format for monthly progress tracking reports deliv-
ered to clients and higher management would include these sections
(Table 4.4).

30 Code for specific modules completed

31 Code inspection for specific modules completed

32 Code for specific modules unit tested

33 Test plan completed

34 Test plan review completed

35 Test cases for specific test stage completed

36 Test case inspection for specific test stage completed

37 Test stage completed

38 Test stage review completed

39 Integration for specific build completed

40 Integration review for specific build completed

41 User information completed

42 User information review completed

43 Quality assurance sign off completed

44 Delivery to beta test clients completed

45 Delivery to clients completed

Table 4.3  (Continued)

Defenses Against Breach of Contract Litigation  ◾  95

Although the suggested format somewhat resembles the items cal-
culated using the earned value method, this format deals explicitly with
the impact of change requests and also uses function point metrics for
expressing costs and quality data.

An interesting question is the frequency with which milestone prog-
ress should be reported. The most common reporting frequency is
monthly, although exception reports can be filed at any time that it is
suspected that something has occurred that can cause perturbations.
For example, serious illness of key project personnel or resignation of
key personnel might very well affect project milestone completions, and
this kind of situation cannot be anticipated. The same is true of natural
phenomena such as hurricanes or earthquakes which can shut down
businesses.

The simultaneous deployment of software sizing tools, estimating
tools, planning tools, and methodology management tools can provide
fairly unambiguous points in the development cycle that allow prog-
ress to be judged more or less effectively. For example, software sizing

Table 4.4  Suggested Format for Monthly Status Reports for Software
Projects

1 Status of last month’s “red flag” problems

2 New “red flag” problems noted this month

3 Change requests processed this month versus change requests
predicted

4 Change requests predicted for next month

5 Size in function points for this month’s change requests

6 Size in function points predicted for next month’s change requests

7 Schedule impacts of this month’s change requests

8 Cost impacts of this month’s change requests

9 Quality impacts of this month’s change requests

10 Defects found this month versus defects predicted

11 Defects predicted for next month

12 Costs expended this month versus costs predicted

13 Costs predicted for next month

14 Deliverables completed this month versus deliverables predicted

15 Deliverables predicted for next month

96  ◾  Software Development Patterns and Antipatterns

technology can now predict the sizes of both specifications and the
volume of source code needed. Defect estimating tools can predict the
numbers of bugs or errors that might be encountered and discovered.
Although such milestones are not perfect, they are better than the for-
mer approaches.

Project management is responsible for establishing milestones, mon-
itoring their completion, and reporting truthfully on whether the mile-
stones were successfully completed or encountered problems. When
serious problems are encountered, it is necessary to correct the prob-
lems before reporting that the milestone has been completed.

Failing or delayed projects usually lack serious milestone tracking.
Activities are often reported as finished while work was still on-going.
Milestones on failing projects are usually dates on a calendar rather than
completion and review of actual deliverables.

Delivering documents or code segments that are incomplete, contain
errors, and cannot support downstream development work is not the
way milestones are used by industry leaders.

In more than a dozen legal cases involving projects that failed or
were never able to operate successfully, project tracking was inadequate
in every case. Problems were either ignored or brushed aside, rather
than being addressed and solved.

Because milestone tracking occurs throughout software develop-
ment, it is the last line of defense against project failures and delays.
Milestones should be established formally and should be based on
reviews, inspections, and tests of deliverables. Milestones should not be
the dates that deliverables more or less were finished. Milestones should
reflect the dates that finished deliverables were validated by means of
inspections, testing, and quality assurance review.

Problem 6: Flawed Outsource
Agreements that Omit Key Topics
In several of the cases where the author of this book has been an expert
witness, the contracts themselves seemed flawed and omitted key topics
that should have been included. Worse some contracts included topics
that probably should have been omitted. Here are samples:

	 •	 In one case, the contract required that the software delivered
by the vendor should have “zero defects.” Since the application
approached 10,000 function points in size, zero-defect software
is beyond the current state of the art. The software as delivered
did not have very many defects and in fact was much better than

Defenses Against Breach of Contract Litigation  ◾  97

average, but it was not zero-defect software and hence the vendor
was sued.

	 •	 A fixed-price contract had clauses for “out of scope” requirements
changes. In this case, the client unilaterally added 82 major changes
totaling about 3,000 new function points. But the contract did not
define the phrase “out of scope” and the client asserted that the
changes were merely elaborations to existing requirements and did
not want to pay for them.

	 •	 In another fixed-price contract, the vendor added about 5,000
function points of new features very late in development. Here the
client was willing to pay for the added features. However, features
added after design and during coding are more expensive to build
than features during normal development. In this case, the vendor
was asking for additional payments to cover the approximate 15%
increase in costs for the late features. Needless to say there should
be a sliding scale of costs that goes up for features added 3, 6, 9,
12, or more months after the initial requirements are defined and
approved by the client. The fee structure might be something like
increase by 3%, 5%, 7% 12%, and 15% based on calendar month
intervals.

	 •	 In several contracts where the plaintiff alleged poor quality on
the part of the vendor, the contracts did not have any clauses that
specified acceptable quality, such as DRE or maximum numbers
of bugs found during acceptance test. In the absence of any con-
tractual definitions of “poor quality,” such charges are difficult to
prove.

The bottom line is that clients, vendor, and their attorneys should be
sure that all outsource contracts include clauses dealing with require-
ments changes, quality, delivered defects, and also penalties for sched-
ule delays caused by vendor actions.

Note that the author of this book is not an attorney, and this is not
legal advice. But it is obvious that every software outsource contract
should include clauses for quality and for requirements changes, espe-
cially late requirements changes. Attorneys are needed for major out-
source agreements.

Summary and Observations Based on
Breach of Contract Litigation
Successful software projects can result from nothing more than avoid-
ing the more serious mistakes that lead to disaster. A set of basic steps

98  ◾  Software Development Patterns and Antipatterns

can lower the odds of a failing project followed by a lawsuit: (1) use
parametric estimation tools and avoid manual estimates; (2) look at the
actual benchmark results of similar projects; (3) make planning and esti-
mating formal activities; (4) plan for and control creeping requirements;
(5) use formal inspections as milestones for tracking project progress;
(6) include pre-test static analysis and inspections in quality control;
(7) collect accurate measurement data during your current project, to
use with future projects; (8) make sure with your attorneys that con-
tracts have suitable clauses for requirements growth and quality levels
of delivered materials. Omitting these two topics can lead to very expen-
sive litigation later.

Overcoming the risks shown here is largely a matter of opposites,
or doing the reverse of what the risk indicates. Thus a well-formed soft-
ware project will create accurate estimates derived from empirical data
and supported by automated tools for handling the critical path issues.
Such estimates will be based on the actual capabilities of the develop-
ment team and will not be arbitrary creations derived without any rigor.
The plans will specifically address the critical issues of change requests
and quality control. In addition, monthly progress reports will also deal
with these critical issues. Accurate progress reports are the last line of
defense against failures.

Suggested Readings
Abrain, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015.
Abrain, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society;

2010.
Abrain, Alain; Software Maintenance Management: Evolution and Continuous

Improvement; Wiley-IEEE Computer Society; 2008.
Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN:

10: 0321146530; 240 pages.
Black, Rex; Managing the Testing Process: Practical Tools and Techniques

for Managing Hardware and Software Testing; Wiley; 2009; ISBN: 10
0470404159; 672 pages.

Boehm, Barry; Software Engineering Economics; Prentice Hall, Englewood
Cliffs, NJ; 1981; 900 pages.

Brooks, Fred; The Mythical Man-Month, 1995 rev. ed.; Addison Wesley, Reading,
MA; 1974.

Bundschuh, Manfred; and Dekkers, Carol; The IT Metrics Compendium; Springer;
2005.

Charette, Bob; Software Engineering Risk Analysis and Management; McGraw
Hill, New York, NY; 1989.

Defenses Against Breach of Contract Litigation  ◾  99

Charette, Bob; Application Strategies for Risk Management; McGraw Hill, New
York, NY; 1990.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York, NY;
1982; ISBN: 0-917072-32-4; 284 pages.

Ebert, Christof; Dumke, Reinder; and Bundschuh, Manfred; Best Practices in
Software Measurement; Springer; 2004.

Everett, Gerald D.; and McLeod, Raymond; Software Testing – Testing Across the
Entire Software Development Life Cycle; IEEE Press; 2007.

Ewusi-Mensah, Kweku; Software Development Failures; MIT Press, Cambridge,
MA; 2003; ISBN: 0-26205072-2; 276 pages.

Fernandini, Patricia L.; A Requirements Pattern; Addison Wesley, Boston, MA;
2002; ISBN: 0-201-73826-0.

Flowers, Stephen; Software Failures: Management Failures; Amazing Stories
and Cautionary Tales; John Wiley & Sons; 1996.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Galorath, Dan; and Evans, Michael; Software Sizing, Estimation, and Risk
Management: When Performance is Measured Performance Improves;
Auerbach; Philadelphia, PA; 2006.

Garmus, David; and Herron, David; Function Point Analysis – Measurement
Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Garmus, David; and Herron, David; Measuring the Software Process: A Practical
Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ;
1995.

Garmus, David; Russac, Janet; and Edwards, Royce; Certified Function Point
Counters Examination Guide; CRC Press; 2010.

Glass, R.L.; Software Runaways: Lessons Learned from Massive Software Project
Failures; Prentice Hall, Englewood Cliffs, NJ; 1998a.

Gibbs, T. Wayt; “Trends in Computing: Software’s Chronic Crisis”; Scientific
American Magazine, 271, No. 3, International ed.; September 1994;
pp. 72–81.

Gilb, Tom; and Graham, Dorothy; Software Inspection; Addison Wesley, Harlow
UK; 1993; ISBN: 10: 0-201-63181-4.

Glass, R.L.; Software Runaways: Lessons Learned from Massive Software Project
Failures; Prentice Hall, Englewood Cliffs, NJ; 1998b.

Harris, Michael D.S.; Herron, David; and Iwanicki, Stasia; The Business Value of
IT; CRC Press, Auerbach, Boca Raton, FL; 2008; ISBN: 978-14200-6474-2.

Hill, Peter; Jones Capers; and Reifer, Don; The Impact of Software Size on
Productivity; International Software Standards Benchmark Group (ISBSG),
Melbourne, Australia, September 2013.

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

100  ◾  Software Development Patterns and Antipatterns

Johnson, James; et al; The Chaos Report; The Standish Group, West Yarmouth,
MA; 2000.

Jones, Capers; The Technical and Social History of Software Engineering;
Addison Wesley, Boston, MA; 2015 (contains summaries of important soft-
ware industry lawsuits such as anti-trust and patent violations).

Jones, Capers; “Studio 38 in Rhode Island – A Study of Software Risks”; 2012,
published in various Rhode Island newspapers such as the Providence
Journal, South County Independent, Narragansett Times, etc.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN: 10 0-13-258220-1; 587 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement, 3rd ed.; McGraw Hill, New York,
NY; 2008; ISBN: 978-0-07-150244-3; 662 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall,
Englewood Cliffs, NJ; 1994; ISBN: 0-13-741406-4; 711 pages.

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; ISBN: 1-850-
32804-8; 250, 292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success;
International Thomson Computer Press, Boston, MA; 1997; ISBN: 1-85032-
876-6; 492 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007a;
ISBN: 13-978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; ISBN: 0-201-48542-7; 657 pages.

Jones, Capers; “Sizing Up Software”; Scientific American Magazine, Vol. 279,
No. 6; December 1998; pp. 104–111.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;
Software Productivity Research Technical Report, Narragansett, RI; 2007b;
65 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach, 6th ed.;
McGraw Hill, New York, NY; 2005; ISBN: 0-07-285318-2.

Radice, Ronald A.; High Quality Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Robertson, Suzanne; and Robertson, James; Requirements-Led Project
Management; Addison Wesley, Boston, MA; 2005; ISBN: 0-321-18062-3.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley
Longman, Boston, MA; 2002; ISBN: 0-201-73485-0; 232 pages.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4; 218 pages.

Defenses Against Breach of Contract Litigation  ◾  101

Yourdon, Ed; Outsource: Competing in the Global Productivity Race; Prentice
Hall PTR, Upper Saddle River, NJ; 2005; ISBN: 0-13-147571-1; 251 pages.

Web Sites
Information Technology Metrics and Productivity Institute (ITMPI), www.

ITMPI.org
International Software Benchmarking Standards Group (ISBSG), www.ISBSG.

org
International Function Point Users Group (IFPUG), www.IFPUG.org
Namcook Analytics LLC, www.Namcook.com
Namcook Analytics Blog, http://NamcookAnalytics.com
Reifer Consulting, www.Reifer.com
Software Engineering Institute (SEI), www.SEI.cmu.edu
Software Productivity Research (SPR), www.SPR.com

Suggested Web Sites
http://www.IASAhome.org. This is the web site for the non-profit International

Association of Software Architects (IASA). Software architecture is the
backbone of all large applications. Good architecture can lead to applica-
tions whose useful life expectancy is 20 years or more. Questionable
architecture can lead to applications whose useful life expectancy is less
than 10 years, coupled with increasing complex maintenance tasks and
high defect levels. The IASA is working hard to improve both the concepts
of architecture and the training of software architects via a modern and
extensive curriculum.

http://www.IIBA.org. This is the web site for the non-profit International
Institute of Business Analysis. This institute deals with the important link-
age between business knowledge and software that supports business
operations. Among the topics of concern are the Business Analysis Body
of Knowledge (BABOK), training of business analysts, and certification to
achieve professional skills.

http://www.IFPUG.org. This is the web site for the non-profit International
Function Point Users Group. IFPUG is the largest software metrics asso-
ciation in the world, and the oldest association of function point users.
This web site contains information about IFPUG function points them-
selves, and also citations to the literature dealing with function points.
IFPUG also offers training in function point analysis and administers.
IFPUG also administers a certification program for analysts who wish to
become function point counters.

http://www.ITMPI.org
http://www.ITMPI.org
http://www.ISBSG.org
http://www.ISBSG.org
http://www.IFPUG.org
http://www.Namcook.com
http://NamcookAnalytics.com
http://www.Reifer.com
http://www.SEI.cmu.edu
http://www.SPR.com
http://www.IASAhome.org
http://www.IIBA.org
http://www.IFPUG.org

102  ◾  Software Development Patterns and Antipatterns

http://www.ISBSG.org. This is the web site for the non-profit International
Software Benchmark Standards Group. ISBSG, located in Australia, col-
lects benchmark data on software projects throughout the world. The data
is self-reported by companies using a standard questionnaire. About 4,000
projects comprise the ISBSG collection as of 2007, and the collection has
been growing at a rate of about 500 projects per year. Most of the data is
expressed in terms of IFPUG function point metrics, but some of the data
is also expressed in terms of COSMIC function points, NESMA function
points, Mark II function points, and several other function point variants.
Fortunately the data in variant metrics is identified. It would be statisti-
cally invalid to include attempt to average IFPUG and COSMIC data, or to
mix up any of the function point variations.

http://www.iso.org. This is the web site for the International Organization
for Standardization (ISO). The ISO is a non-profit organization that spon-
sors and publishes a variety of international standards. As of 2007 the ISO
published about a thousand standards a year, and the total published to
date is approximately 17,000. Many of the published standards affect soft-
ware. These include the ISO 9000-9004 quality standards and the ISO
standards for functional size measurement.

http://www.namcook.com. This web site contains a variety of quantitative
reports on software quality and risk factors. It also contains a patented
high-speed sizing tool that can size applications of any size in 90 seconds
or less. It also contains a catalog of software benchmark providers which
currently lists 20 organizations that provide quantitative data about soft-
ware schedules, costs, quality, and risks.

http://www.PMI.org. This is the web site for the Project Management Institute
(PMI). PMI is the largest association of managers in the world. PMI per-
forms research and collects data on topics of interest to managers in every
discipline: software, engineering, construction, and so forth. This data is
assembled into the well known Project Management Body of Knowledge
or PMBOK.

http://www.ITMPI.org. This is the web site for the Information Technology
Metrics and Productivity Institute. ITMPI is a wholly-owned subsidiary of
Computer Aid Inc. The ITMPI web site is a useful portal into a broad
range of measurement, management, and software engineering informa-
tion. The ITMPI web site also provides useful links to many other web
sites that contain topics of interest on software issues.

http://www.sei.cmu.edu. This is the web site for the Software Engineering
Institute (SEI). The SEI is a federally-sponsored non-profit organization
located on the campus of Carnegie Mellon University in Pittsburgh, PA.
The SEI carries out a number of research programs dealing with software
maturity and capability levels, with quality, risks, measurement and met-
rics, and other topics of interest to the software community.

http://www.stsc.hill.af.mil/CrossTalk. This is the web site of both the Air
Force Software Technology Support Center (STSC) and also the CrossTalk

http://www.ISBSG.org
http://www.iso.org
http://www.namcook.com
http://www.PMI.org
http://www.ITMPI.org
http://www.sei.cmu.edu
http://www.stsc.hill.af.mil

Defenses Against Breach of Contract Litigation  ◾  103

journal, which is published by the STSC. The STSC gathers data and per-
forms research into a wide variety of software engineering and software
management issues. The CrossTalk journal is one of few technical journals
that publish full-length technical articles of 4,000 words or more. Although
the Air Force is the sponsor of STSC and CrossTalk, many topics are also
relevant to the civilian community. Issues such as quality control, estimat-
ing, maintenance, measurement, and metrics have universal relevance.

https://taylorandfrancis.com

105DOI: 10.1201/9781003193128-6

Chapter 5

The Mess of
Software Metrics

Introduction
The software industry is one of the largest, wealthiest, and most impor-
tant industries in the modern world. The software industry is also trou-
bled by poor quality and very high cost structures due to the expense of
software development, maintenance, and endemic problems with poor
quality control.

Accurate measurements of software development and maintenance
costs and accurate measurement of quality would be extremely valu-
able. But as of 2017, the software industry labors under a variety of non-
standard and highly inaccurate measures were compounded by very
sloppy measurement practices. For that matter, there is little empirical
data about the efficacy of software standards themselves.

The industry also lacks effective basic definitions for “software pro-
ductivity” and “software quality” and uses a variety of ambiguous defini-
tions that are difficult to predict before software is released and difficult
to measure after the software is released. This chapter suggests defini-
tions for both economic software productivity and software quality that
are both predictable and measurable.

Note: The year 2017 marked the 30th anniversary of function point
metrics. Function point metrics are the best available for measuring soft-
ware economic productivity and software quality.

The software industry has become one of the largest and most suc-
cessful industries in history. However, software applications are among
the most expensive and error-prone manufactured objects in history.

106  ◾  Software Development Patterns and Antipatterns

Software needs a careful analysis of economic factors and much bet-
ter quality control than is normally accomplished. In order to achieve
these goals, software also needs accurate and reliable metrics and good
measurement practices. Unfortunately, the software industry has ignored
both.

The software industry has the worst metrics and measurement prac-
tices of any industry in human history. This is one of the reasons why
the software industry has more failing projects than any other industry
and a higher percentage large projects with cost and schedule overruns.
It is also why a survey of CEOs in Fortune 500 companies reveals that
software engineers are the least professional of any kind of engineers.
Basically, the software industry has been running blind for over 60 years
due to harmful metrics such as “cost per defect” and “lines of code”
(LOC) both of which distort reality and conceal progress.

See Appendix A and Appendix B for the mathematical reasons why
LOC and cost per defect do not measure either software development
economic productivity or software quality economic value.

Fortunately, function point metrics do measure both economic pro-
ductivity and software quality. Calendar year 2017 marked the 30th anni-
versary of the International Function Point Users Group (IFPUG), which
has become the largest metrics association in the industry. Other forms
of function point metrics such as COSMIC, FISMA, NESMA, and auto-
mated function points from CAST software are also popular. Collectively,
function points are used for more software benchmarks than all other
metrics combined. Table 5.1 shows comparative sizes in various metrics.

But more work is needed because today over half of software devel-
opment companies and over 70% of government software organizations
still use invalid metrics such as LOC and cost per defect.

Fortunately, a number of countries are starting to mandate function
points for government contracts: Brazil, Malaysia, Italy, South Korea,
and Japan. Others will probably do the same in future years.

This chapter deals with some of the most glaring problems of soft-
ware metrics and suggests a metrics and measurement suite that can
actually explore software economics and software quality with high pre-
cision. The suggested metrics can be predicted prior to development
and then measured after release. The key metrics in this suite include
(1) function points, (2) work hours per function point, (3) defect poten-
tials using function points, (4) defect removal efficiency (DRE), and also
three quality metrics (5) delivered defects per function point; (6) high-
severity defects per function point; and (7) security flaws per function
point.

Supplemental metrics include pre-release and post-release applica-
tion growth using function points and dollar costs per function point
for development, maintenance, cost of quality (COQ), and total cost of

The Mess of Software Metrics  ◾  107

Table 5.1  Variations in Software Size Metrics 2020

(Based on 1,000 IFPUG 4.3 function points and Java language)

(Sizes predicted by Software Risk Master (SRM))

Metrics
Nominal

Size
SNAP
Size

% of
IFPUG

Size

1 Automated code-based function points 1,070 142 107.00%

2 Automated UML-based function points 1,030 137 103.0%

3 Automated text-based function points 1,055 140 105.5%

4 Backfired function points 1,017 135 101.7%

5 Code size (logical statements) 53,000 7,049 NA

6 Code size (physical lines with comments,
blanks)

145,750 19,385 NA

7 COSMIC function points 1,086 144 108.6%

8 Fast function points 970 129 97.0%

9 Feature points 1,000 133 100.0%

10 FISMA function points 1,020 136 102.0%

11 Full function points 1,170 156 117.0%

12 Function points light 967 129 96.7%

13 IFPUG 4.3 1,000 133 100.0%

14 IntegraNova function points 1,090 145 109.0%

15 Mark II function points 1,060 141 106.0%

16 NESMA function points 1,040 138 104.0%

17 Object-oriented function points (OOFP) 735 98 73.5%

18 RICE objects 4,439 590 443.9%

19 SCCQI function points 2,877 383 287.7%

20 Simple function points 975 130 97.5%

21 SNAP non-functional size metrics 133 13.3%

22 SRM pattern matching function points 1,000 133 100.0%

23 Story points 333 44 33.3%

24 Unadjusted function points 890 118 89.0%

25 Use-Case points 200 27 20.0%

26 Weighted micro function points 1,127 134 112.7%

108  ◾  Software Development Patterns and Antipatterns

ownership (TCO). Application size grows at about 1% per month during
development and about 8% per year after release.

SNAP metrics for non-functional requirements are also discussed but
there is very little data even today, although it is growing.

Following are descriptions of the more common software metric top-
ics in alphabetical order:

Backfiring is a term that refers to mathematical conversion between
LOC and function points. This method was first developed by A.J.
Albrecht and colleagues during the original creation of function
point metrics, since the IBM team had LOC data for the projects
they used for function points. IBM used logical code statements for
backfiring rather than physical LOC. There are no ISO standards
for backfiring. Backfiring is highly ambiguous and varies by over
500% from language to language and company to company. A sam-
ple of “backfiring” is the ratio of about 106.7 statements in the
procedure and data divisions of COBOL for one IFPUG function
point. Consulting companies sell tables of backfire ratios for over
1000 languages, but the tables are not the same from vendor to
vendor. Backfiring is not endorsed by any of the function point
associations. Yet probably as many as 100,000 software projects
have used backfiring because it is quick and inexpensive, even
though very inaccurate with huge variances from language to lan-
guage and programmer to programmer.

Benchmarks in a software context often refer to the effort and costs
for developing an application. Benchmarks are expressed in a vari-
ety of metrics such as “work hours per function point,” “function
points per month,” “lines of code per month,” “work hours per
KLOC,” “story points per month,” and many more. Benchmarks
also vary in scope and range from project values, phase values,
activity values, and task values. There are no ISO standards for
benchmark contents. Worse, many benchmarks “leak” and omit
over 50% of true software effort. The popular benchmark of “design,
code, and unit test” termed DCUT contains only about 30% of total
software effort. The most common omissions from benchmarks
include unpaid overtime, management, and the work of part-time
specialists such as technical writers and software quality assurance.
Thus, benchmarks from various sources such as ISBSG, QSM, and
others cannot be directly compared since they do not contain the
same information. The best and most reliable benchmarks feature
activity-based costs and include the full set of development tasks,
i.e. requirements, architecture, business analysis, design, coding,

The Mess of Software Metrics  ◾  109

testing, quality assurance, documentation, project management,
etc.

Cost estimating for software projects is generally inaccurate and
usually optimistic. About 85% of projects circa 2017 used inaccu-
rate manual estimates. The other 15% used the more accurate para-
metric estimating tools of which the following were the most
common estimating tools in 2015, shown in alphabetical order:
COCOMO, COCOMO clones, CostXpert, ExcelerPlan,
KnowledgePlan, SEER, SLIM, Software Risk Master (SRM), and
TruePrice. A study by the author of this book that compared 50
manual estimates against 50 parametric estimates found that only
4 of the 50 manual estimates were within plus or minus 5% and the
average was 34% optimistic for costs and 27% optimistic for sched-
ules. For manual estimates, the larger the projects, the more opti-
mistic the results. By contrast, 32 of the 50 parametric estimates
were within plus or minus 5%, and the deviations for the others
averaged about 12% higher for costs and 6% longer for schedules.
Conservatism is the “fail safe” mode for estimates. The author’s
SRM tool has a patent-pending early sizing feature based on pat-
tern matching that allows it to be used 30 to 180 days earlier than
the other parametric estimation tools. It also predicts topics not
included in the others such as litigation risks, costs of breach of
contract litigation for the plaintiff and defendant, and document
sizes and costs for 20 key document types such as requirements,
design, user manuals, plans, and others. The patent-pending early
sizing feature of SRM produces size in a total of 23 metrics includ-
ing function points, story points, use-case points, logical code
statements, physical LOC, and many others.

Cost per defect metrics penalize quality and makes the buggiest soft-
ware look cheapest. There are no ISO or other standards for calcu-
lating cost per defect. Cost per defect does not measure the
economic value of software quality. The urban legend that it costs
100 times as much to fix post-release defects as early defects is not
true and is based on ignoring fixed costs. Due to fixed costs of
writing and running test cases, cost per defect rises steadily because
fewer and fewer defects are found. This is caused by a standard
rule of manufacturing economics: “If a manufacturing process has
a high percentage of fixed costs and there is a reduction in the
units produced, the cost per unit will go up.” This explains why cost
per defect seems to go up over time even though actual defect
repair costs are flat and do not change very much. There are of
course very troubling defects that are expensive and time

110  ◾  Software Development Patterns and Antipatterns

consuming, but these are comparatively rare. Appendix A explains
the problems of cost per defect metrics.

Defect removal efficiency (DRE) was developed by IBM circa 1970.
The original IBM version of DRE measured internal defects found
by developers and compared them to external defects found by
clients in the first 90 days following release. If developers found 90
bugs and clients reported 10 bugs, the DRE is 90%. This measure
has been in continuous use by hundreds of companies since about
1975. However, there are no ISO standards for DRE. The International
Software Benchmark Standards Group (ISBSG) unilaterally changed
the post-release interval to 30 days in spite of the fact that the lit-
erature on DRE since the 1970s was based on a 90-day time span,
such as the author’s 1991 version of Applied Software Measurement
and his more recent book on The Economics of Software Quality
with Olivier Bonsignour. Those with experience in defects and
quality tracking can state with certainty that a 30-day time window
is too short; major applications sometimes need more than 30 days
of preliminary installation and training before they are actually
used. Of course bugs will be found long after 90 days, but experi-
ence indicates that a 90-day interval is sufficient to judge the qual-
ity of software applications. A 30-day interval is not sufficient.

Earned value management (EVM) is a method of combining sched-
ule, progress, and scope. It originated in the 1960s for government
contracts and has since been applied to software with reasonable
success. Although earned value is relatively successful, it really
needs some extensions to be a good fit for software projects. The
most urgent extension would be to link progress to quality and
defect removal. Finding and fixing bugs is the most expensive soft-
ware activity. It would be easy to include defect predictions and
defect removal progress into the earned value concept. Another
extension for software would be to include the specific documents
that are needed for large software applications. If the earned-value
approach included quality topics, it would be very useful for con-
tracts and software outsource agreements. EVM is in use for defense
software contracts, but the omission of quality is a serious problem
since finding and fixing bugs is the most expensive single cost
driver for software. The U.S. government requires earned value for
many contracts. The governments of Brazil and South Korea require
function points for software contracts. Most projects that end up in
court for breach of contract do so because of poor quality. It is
obvious that combining earned-value metrics, defect and quality
metrics, and function point metrics would be a natural fit to all

The Mess of Software Metrics  ◾  111

software contracts and would probably lead to fewer failures and
better overall performance.

Defect density metrics measure the number of bugs released to cli-
ents. There are no ISO or other standards for calculating defect
density. One method counts only code defects released. A more
complete method used by the author includes bugs originating in
requirements, architecture, design, and documents as well as code
defects. The author’s method also includes “bad fixes” or bugs in
defect repairs themselves. There is more than a 500% variation
between counting only released code bugs and counting bugs from
all sources. For example requirements defects comprise about 20%
of released software problem reports.

Function point metrics were invented by IBM circa 1975 and placed
in the public domain circa 1978. Function point metrics do mea-
sure economic productivity using both “work hours per function
point” and “function points per month.” They also are useful for
normalizing quality data such as “defects per function point.”
However, there are numerous function point variations and they all
produce different results: Automatic, backfired, COSMIC, Fast,
FISMA, IFPUG, Mark II, NESMA, Unadjusted, etc. There are ISO
standards for COSMIC, FISMA, IFPUG, and NESMA. However in
spite of ISO standards, all four produce different counts. Adherents
of each function point variant claim “accuracy” as a virtue, but
there is no cesium atom or independent way to ascertain accuracy
so these claims are false. For example COSMIC function points
produce higher counts than IFPUG function points for many appli-
cations but that does not indicate “accuracy” since there is no
objective way to know accuracy.

Goal/Question metrics (GQM) were invented by Dr. Victor Basili of
the University of Maryland. The concept is appealing. The idea is
to specify some kind of tangible goal or target, and then think of
questions that must be answered to achieve the goal. This is a good
concept for all science and engineering and not just software.
However, since every company and project tends to specify unique
goals, the GQM method does not lend itself to either parametric
estimation tools or to benchmark data collection. It would not be
difficult to meld GQM with function point metrics and other effec-
tive software metrics such as DRE. For example, several useful
goals might be “How can we achieve defect potentials of less than
1.0 per function point?” or “How can we achieve productivity rates
of 100 function points per month?” Another good goal which
should actually be a target for every company and every software

112  ◾  Software Development Patterns and Antipatterns

project in the world would be “How can we achieve more than 99%
in defect removal efficiency (DRE)?”

ISO/IEC standards are numerous and cover every industry, not just
software. However, these standards are issued without any proof of
efficacy. After release, some standards have proven to be useful,
some are not so useful, and a few are being criticized so severely
that some software consultants and managers are urging a recall
such as the proposed ISO/IEC testing standard. ISO stands for the
International Organization for Standards (in French) and IEC stands
for International Electrical Commission. While ISO/IEC standards
are the best known, there are other standard groups such as the
Object Management Group (OMG) which recently published a
standard on automatic function points. Here too there is no proof
of efficacy prior to release. There are also national standards such
as ANSI or the American National Standards Institute, and also mili-
tary standards by the U.S. Department of Defense (DoD) and by
similar organizations elsewhere. The entire topic of standards is in
urgent need of due diligence and of empirical data that demon-
strates the value of specific standards after issuance. In total there
are probably several hundred standards groups in the world with
a combined issuance of over 1000 standards, of which probably 50
apply to aspects of software. Of these only a few have solid empiri-
cal data that demonstrates value and efficacy.

Lines of code (LOC) metrics penalize high-level languages and make
low-level languages look better than they are. LOC metrics also
make requirements and design invisible. There are no ISO or other
standards for counting LOC metrics. About half of the papers and
journal articles use physical LOC and half use logical LOC. The dif-
ference between counts of physical and logical LOC can top 500%.
The overall variability of LOC metrics has reached an astounding
2,200% as measured by Joe Schofield, the former president of
IFPUG! LOC metrics make requirements and design invisible and
also ignore requirements and design defects, which outnumber
code defects. Although there are benchmarks based on LOC, the
intrinsic errors of LOC metrics make them unreliable. Due to lack
of standards for counting LOC, benchmarks from different vendors
for the same applications can contain widely different results.
Appendix B provides a mathematical proof that LOC metrics do
not measure economic productivity by showing 79 programming
languages with function points and LOC in a side-by-side format.

SNAP point metrics are a new variation on function points intro-
duced by IFPUG in 2012. The term SNAP is an awkward acronym

The Mess of Software Metrics  ◾  113

for “software non-functional assessment process.” The basic idea is
that software requirements have two flavors: (1) functional require-
ments needed by users; (2) non-functional requirements due to
laws, mandates, or physical factors such as storage limits or perfor-
mance criteria. The SNAP committee’s view is that these non-
functional requirements should be sized, estimated, and measured
separately from function point metrics. Thus, SNAP and function
point metrics are not additive, although they could have been.
Having two separate metrics for economic studies is awkward at
best and inconsistent with other industries. For that matter, it seems
inconsistent with standard economic analysis in every industry.
Almost every industry has a single normalizing metric such as “cost
per square foot” for home construction or “cost per gallon” for
gasoline and diesel oil. As of 2016, none of the parametric estima-
tion tools had fully integrated SNAP, and it may be that they won’t
since the costs of adding SNAP are painfully expensive. As a rule
of thumb, non-functional requirements are about equal to 15% of
functional requirements, although the range is very wide.

Story point metrics are widely used for agile projects with “user sto-
ries.” Story points have no ISO standard for counting or any other
standard. They are highly ambiguous and vary by as much as 400%
from company to company and project to project. There are few
useful benchmarks using story points. Obviously, story points can’t
be used for projects that don’t utilize user stories so they are worth-
less for comparisons against other design methods. The author’s
Software Risk Master (SRM) estimating tool converts story points to
function points and agile sprints into a standard chart of accounts.
These conversions allow agile to be compared side by side against
DevOps, Iterative, Container development, waterfall, spiral, etc.

Taxonomy of software applications is needed to ensure “apples-to-
apples” benchmark comparisons. Although there are several tax-
onomies for software, the one developed by the author of this
book is useful for sizing, estimating, and benchmark data collec-
tion. It is a standard feature in the author’s Software Risk Master
(SRM) tool. The elements of the SRM taxonomy include: (1) coun-
try code, (2) region code, (3) city code, (4) industry code (we use
the North American Industry Classification code or NAIC code), (5)
project nature; (6) project scope, (7) project class, (8) project type,
(9) project hardware platform, (10) problem complexity, (11) code
complexity, and (12) data complexity. It happens that projects with
identical taxonomies are usually very similar, which makes bench-
mark comparisons interesting and useful. We also include some

114  ◾  Software Development Patterns and Antipatterns

additional topics of interest: (A) methodology chosen from a list of
50; (B) programming languages chosen from a list of 180; (C) proj-
ect CMMI level; (D) team experience of several kinds; (E) project
management experience; (F) client experience; and (G) reusable
materials available.

Technical debt is a new metric and rapidly spreading. It is a brilliant
metaphor developed by Ward Cunningham. The concept of “tech-
nical debt” is that topics deferred during development in the inter-
est of schedule speed will cost more after release than they would
have cost initially. However, there are no ISO standards for techni-
cal debt and the concept is highly ambiguous. It can vary by over
500% from company to company and project to project. Worse,
technical debt does not include all of the costs associated with
poor quality and development short cuts. Technical debt omits can-
celed projects, consequential damages or harm to users, and the
costs of litigation for poor quality.

Use-case points are used by projects with designs based on “use
cases” which often utilize IBM’s Rational Unified Process (RUP).
There are no ISO standards for use cases. Use cases are ambiguous
and vary by over 200% from company to company and project to
project. Obviously use cases are worthless for measuring projects
that don’t utilize use cases, so they have very little benchmark data.
This is yet another attempt to imitate the virtues of function point
metrics, only with somewhat less rigor and with imperfect count-
ing rules as of 2015.

Velocity is an agile metric that is used for prediction of sprint and
project outcomes. It uses historical data on completion of past
work units combined with the assumption that future work units
will be about the same. Of course it is necessary to know future
work units for the method to operate. The concept of velocity is
basically similar to the concept of using historical benchmarks for
estimating future results. However as of 2015, velocity had no ISO
standards and no certification. There are no standard work units,
and these can be story points or other metrics such as function
points or use-case points, or even synthetic concepts such as “days
per task.” If agile projects use function points, then they could gain
access to large volumes of historical data using activity-based costs,
i.e. requirements effort, design effort, code effort, test effort, inte-
gration effort, documentation effort, etc. Story points have too
wide a range of variability from company to company and project
to project; function points are much more consistent across various
kinds of projects. Of course, COSMIC, IFPUG, and the other vari-
ants don’t have exactly the same results.

The Mess of Software Metrics  ◾  115

Defining Software Productivity
For more than 200 years, the standard economic definition of productiv-
ity has been, “Goods or services produced per unit of labor or expense.”
This definition is used in all industries, but has been hard to use in the
software industry. For software there is ambiguity in what constitutes
our “goods or services.”

The oldest unit for software “goods” was a “line of code” or LOC.
More recently, software goods have been defined as “function points.”
Even more recent definitions of goods include “story points” and “use-
case points.” The pros and cons of these units have been discussed and
some will be illustrated in the appendices.

Another important topic taken from manufacturing economics has a
big impact on software productivity that is not yet well understood even
in 2017: fixed costs.

A basic law of manufacturing economics that is valid for all indus-
tries including software is the following:

When a development process has a high percentage of fixed costs, and there is a
decline in the number of units produced, the cost per unit will go up.

When a “line of code” is selected as the manufacturing unit and there
is a switch from a low-level language such as assembly to a high-level
language such as Java, there will be a reduction in the number of units
developed.

But the non-code tasks of requirements and design act like fixed
costs. Therefore, the cost per line of code will go up for high-level lan-
guages. This means that LOC is not a valid metric for measuring eco-
nomic productivity as proven in Appendix B.

For software there are two definitions of productivity that match
standard economic concepts:

	 1.	Producing a specific quantity of deliverable units for the lowest
number of work hours.

	 2.	Producing the largest number of deliverable units in a standard
work period such as an hour, month, or year.

In definition 1, deliverable goods are constant and work hours are
variable.

In definition 2, deliverable goods are variable and work periods are
constant.

The common metrics “work hours per function point” and “work
hours per KLOC” are good examples of productivity definition 1.

116  ◾  Software Development Patterns and Antipatterns

The metrics “function points per month” and “lines of code per month”
are examples of definition 2.

However for “lines of code,” the fixed costs of requirements and
design will cause apparent productivity to be reversed, with low-level
languages seeming better than high-level languages, as shown by the 79
languages listed in Appendix B.

Definition 2 will also encounter the fact that the number of work
hours per month varies widely from country to country. For example,
India works 190 hours per month while the Netherlands work only 115
hours per month. This means that productivity definitions 1 and 2 will
not be the same. A given number of work hours would take fewer cal-
endar months in India than in the Netherlands due to the larger number
of monthly work hours.

Table 5.2 shows the differences between “work hours per function
point” and “function points per month” for 52 countries. The national
work hour column is from the Organization of International Cooperation
and Development (OECD). Table 5.1 assumes a constant value of 15
work hours per function point for an identical application in every
country shown.

No one to date has produced a table similar to Table 5.1 for SNAP
metrics, but it is obvious that work hours per SNAP point and SNAP
points per month will follow the same global patterns as do the older
function point metrics.

Of course differences in experience, methodologies, languages, and
other variables also impact both forms of productivity. Table 5.1 shows
that the two forms are not identical from country to country due to
variations in local work patterns.

Defining Software Quality
As we all know, the topic of “quality” is somewhat ambiguous in every
industry. Definitions for quality can encompass subjective aesthetic
quality and also precise quantitative units such as numbers of defects
and their severity levels.

Over the years software has tried a number of alternate definitions
for quality that are not actually useful. For example, one definition for
software quality has been “conformance to requirements.”

Requirements themselves are filled with bugs or errors that com-
prise about 20% of the overall defects found in software applications.
Defining quality as conformance to a major source of errors is circular
reasoning and clearly invalid. We need to include requirements errors in
our definition of quality.

The Mess of Software Metrics  ◾  117

Table 5.2  Comparison of Work Hours per FP and FP per Month

OECD National
Work Hours
per Month

Work Hours
per Function

Point

Function
Points per

Month

1 India 190.00 15.00 13.47

2 Taiwan 188.00 15.00 13.20

3 Mexico 185.50 15.00 13.17

4 China 186.00 15.00 12.93

5 Peru 184.00 15.00 12.67

6 Colombia 176.00 15.00 12.13

7 Pakistan 176.00 15.00 12.13

8 Hong Kong 190.00 15.00 12.01

9 Thailand 168.00 15.00 11.73

10 Malaysia 192.00 15.00 11.73

11 Greece 169.50 15.00 11.70

12 South Africa 168.00 15.00 11.60

13 Israel 159.17 15.00 11.14

14 Viet Nam 160.00 15.00 11.07

15 Philippines 160.00 15.00 10.93

16 Singapore 176.00 15.00 10.92

17 Hungary 163.00 15.00 10.87

18 Poland 160.75 15.00 10.85

19 Turkey 156.42 15.00 10.69

20 Brazil 176.00 15.00 10.65

21 Panama 176.00 15.00 10.65

22 Chile 169.08 15.00 10.51

23 Estonia 157.42 15.00 10.49

24 Japan 145.42 15.00 10.49

25 Switzerland 168.00 15.00 10.45

26 Czech Republic 150.00 15.00 10.00

27 Russia 164.42 15.00 9.97

(Continued)

118  ◾  Software Development Patterns and Antipatterns

Table 5.2  (Continued)

OECD National
Work Hours
per Month

Work Hours
per Function

Point

Function
Points per

Month

28 Argentina 168.00 15.00 9.91

29 Korea – South 138.00 15.00 9.60

30 United States 149.17 15.00 9.47

31 Saudi Arabia 160.00 15.00 9.44

32 Portugal 140.92 15.00 9.39

33 United Kingdom 137.83 15.00 9.32

34 Finland 139.33 15.00 9.29

35 Ukraine 156.00 15.00 9.20

36 Venezuela 152.00 15.00 9.10

37 Austria 134.08 15.00 8.94

38 Luxembourg 134.08 15.00 8.94

39 Italy 146.00 15.00 8.75

40 Belgium 131.17 15.00 8.74

41 New Zealand 144.92 15.00 8.68

42 Denmark 128.83 15.00 8.59

43 Canada 142.50 15.00 8.54

44 Australia 144.00 15.00 8.50

45 Ireland 127.42 15.00 8.49

46 Spain 140.50 15.00 8.42

47 France 123.25 15.00 8.22

48 Iceland 142.17 15.00 8.00

49 Sweden 135.08 15.00 7.97

50 Norway 118.33 15.00 7.89

51 Germany 116.42 15.00 7.76

52 Netherlands 115.08 15.00 7.67

Average 155.38 15.00 10.13

The Mess of Software Metrics  ◾  119

Another definition for quality has been “fitness for use.” But this defi-
nition is ambiguous and cannot be predicted before the software is
released, or even measured well after release.

It is obvious that a workable definition for software quality must be
unambiguous and capable of being predicted before release and then
measured after release and should also be quantified and not purely
subjective.

Another definition for software quality has been a string of words
ending in “…ility” such as reliability and maintainability. However laud-
able these attributes are, they are all ambiguous and difficult to mea-
sure. Further, they are hard to predict before applications are built.

The quality standard ISO/IEC 9126 includes a list of words such as
portability, maintainability, reliability, and maintainability. It is astonish-
ing that there is no discussion of defects or bugs. Worse, the ISO/IEC
definitions are almost impossible to predict before development and are
not easy to measure after release nor are they quantified. It is obvious
that an effective quality measure needs to be predictable, measurable,
and quantifiable.

Reliability is predictable in terms of mean time to failure (MTTF)
and mean time between failures (MTBF). Indeed, these are standard
predictions from the author’s Software Risk Master (SRM) tool. However,
reliability is inversely proportional to delivered defects. Therefore, the
ISO quality standards should have included defect potentials, DRE, and
delivered defect densities.

An effective definition for software quality that can be both predicted
before applications are built and then measured after applications are
delivered is: “Software quality is the absence of defects which would
either cause the application to stop working, or cause it to produce
incorrect results.”

Because delivered defects impact reliability, maintainability, usabil-
ity, fitness for use, conformance to requirements, and also customer
satisfaction any effective definition of software quality must recognize
the central importance of achieving low volumes of delivered defects.
Software quality is impossible without low levels of delivered defects no
matter what definition is used.

This definition has the advantage of being applicable to all software
deliverables including requirements, architecture, design, code, docu-
ments, and even test cases.

If software quality focuses on the prevention or elimination of
defects, there are some effective corollary metrics that are quite useful.

The “defect potential” of a software application is defined as the
sum total of bugs or defects that are likely to be found in requirements,

120  ◾  Software Development Patterns and Antipatterns

architecture, design, source code, documents, and “bad fixes” or second-
ary bugs found in bug repairs themselves. The “defect potential” metric
originated in IBM circa 1973 and is fairly widely used among technology
companies.

The “defect detection efficiency” (DDE) is the percentage of bugs
found prior to release of the software to customers.

The “defect removal efficiency” (DRE) is the percentage of bugs
found and repaired prior to release of the software to customers.

DDE and DRE were developed in IBM circa 1973 but are widely
used by technology companies in every country. As of 2017, the aver-
age DRE for the United States was about 92.50%. The best in class was
about 99.75%. Worst case results were below 88.00% and projects this
bad often end up in litigation.

DRE is normally measured by comparing internal bugs against cus-
tomer reported bugs for the first 90 days of use. If developers found 90
bugs and users reported 10 bugs, the total is 100 bugs and DRE would
be 90%.

Another corollary metric is that of “defect severity.” This is a very
old metric dating back to IBM in the early 1960s. IBM uses four severity
levels:

	•	Severity 1 Software is inoperable <1%

	•	Severity 2 Major feature disabled or incorrect <15%

	•	Severity 3 Minor error; software is usable <40%

	•	Severity 4 Cosmetic error that does not affect results <35%

To clarify these various terms, Table 5.3 shows defect potentials, and
DRE for an application of 1,000 function points coded in the Java lan-
guage using agile development. Table 5.3 uses even numbers to simplify
the math. The author’s Software Risk Master (SRM) tool predicts the
same kinds of values for actual projects.

All of the values shown in Table 5.3 can be predicted before appli-
cations are developed and then measured after the applications are
released. Thus, software quality can move from an ambiguous and sub-
jective term to a rigorous and quantitative set of measures that can even
be included in software contracts. Note that bugs from requirements
and design cannot be quantified using lines of code or KLOC, which is
why function points are the best choice for quality measurements. It is
possible to retrofit LOC after the fact, but in real life, LOC is not used for
requirements, architecture, and design bug predictions.

Note that Table 5.2 combines non-functional and functional require-
ments defects, which might be separate categories if SNAP metrics are

The Mess of Software Metrics  ◾  121

used. However, in almost 100% of software requirements, documents
studied by the author functional and non-functional requirements are
both combined without any distinction in the requirements themselves.

Patterns of Successful Software
Measurements and Metrics
Since the majority of global software projects are either not measured
at all, only partially measured, or measured with metrics that violate
standard economic assumptions, what does work? Following are discus-
sions of the most successful combinations of software metrics available
today in 2021.

Successful Software Measurement and Metric Patterns
	 1.	Function points for normalizing productivity data.
	 2.	Function points for normalizing quality data.
	 3.	SNAP metrics for non-functional requirements (with caution).

Table 5.3  Software Quality for 1000 Function Points, Java, and Agile
Development

Defect Potentials Number of Bugs Defects per FP

Requirements defects 750 0.75

Architecture defects 150 0.15

Design defects 1,000 1.00

Code defects 1,350 1.35

Document defects 250 0.25

Sub total 3,500 3.50

Bad fixes 150 0.15

Total 3,650 3.65

Defect removal efficiency (DRE) 97.00% 97.00%

Defects removed 3,540 3.54

Defects delivered 110 0.11

High-severity delivered 15 0.02

122  ◾  Software Development Patterns and Antipatterns

	 4.	Defect potentials based on all defect types normalized with func-
tion points.

	 5.	Defect removal efficiency (DRE) based on all defect types.
	 6.	Defect removal efficiency (DRE) including inspections and static

analysis.
	 7.	Defect removal efficiency (DRE) based on a 90-day post-release period.
	 8.	Activity-based benchmarks for development.
	 9.	Activity-based benchmarks for maintenance.
	 10.	Cost of quality (COQ) for quality economics.
	 11.	Total cost of ownership (TCO) for software economics.

Let us consider these 11 patterns of successful metrics.

Function Points for Normalizing Productivity Data

It is obvious that software projects are built by a variety of occupations
and use a variety of activities including

	 1.	Requirements
	 2.	Design
	 3.	Coding
	 4.	Testing
	 5.	Integration
	 6.	Documentation
	 7.	Management

The older LOC metric is worthless for estimating or measuring non-code
work. Function points can measure every activity individually and also
the combined aggregate totals of all activities.

Note that the new SNAP metric for non-functional requirements is
not included. Integrating SNAP into productivity and quality predictions
and measurements is still work in progress. Future versions of this chap-
ter will discuss SNAP.

Function Points for Normalizing Software Quality

It is obvious that software bugs or defects originate in a variety of
sources including but not limited to:

	 1.	Requirements defects
	 2.	Architecture defects
	 3.	Design defects

The Mess of Software Metrics  ◾  123

	 4.	Coding defects
	 5.	Document defects
	 6.	Bad fixes or defects in bug repairs

The older LOC metric is worthless for estimating or measuring non-
code defects but function points can measure every defect source.

Defect Potentials Based on all Defect Types

The term “defect potential” originated in IBM circa 1965 and refers to
the sum total of defects in software projects that originate in require-
ments, architecture, design, code, documents, and “bad fixes” or bugs in
defect repairs. The older LOC metric only measures code defects, and
they are only a small fraction of total defects. The current U.S. average
distribution of defects based on about 26,000 projects is approximately
as follows (Table 5.4):

There are of course wide variations based on team skills, methodolo-
gies, CMMI levels, programming languages, and other variable factors.

Defect Removal Efficiency (DRE) Based on All Defect Types

Since requirements, architecture, and design defects outnumber code
defects, it is obvious that measures of DRE need to include all defect
sources. It is also obvious to those who measure quality that getting rid
of code defects is easier than getting rid of other sources. Following
are representative values for DRE by defect source for an application of
1,000 function points in the C programming language:

Defect Sources
Defect

Potential
DRE

Percent
Delivered
Defects

Requirements defects 1.00 85.00% 0.15

Architecture defects 0.25 75.00% 0.06

Design defects 1.25 90.00% 0.13

Code defects 1.50 97.00% 0.05

Document defects 0.50 95.00% 0.03

Bad fix defects 0.50 80.00% 0.10

Total 5.00 89.80% 0.51

As can be seen, DRE against code defects is higher than against other
defect sources. But the main point is that only function point metrics

124  ◾  Software Development Patterns and Antipatterns

can measure and include all defect sources. The older LOC metric is
worthless for requirements, design, and architecture defects.

Defect Removal Efficiency Including
Inspections and Static Analysis

Serious study of software quality obviously needs to include pre-test
inspections and static analysis as well as coding.

The software industry has concentrated only on code defects and
only on testing. This is short sighted and insufficient. The software
industry needs to understand all defect sources and every form of defect
removal including pre-test inspections and static analysis. The approxi-
mate DRE levels of various defect removal stages are shown in Table 5.5.

Since the costs of finding and fixing bugs in software have been the
largest single expense element for over 60 years, software quality and
defect removal need the kind of data shown in Table 5.5.

Defect Removal Efficiency Based on 90 Days after Release

It is obvious that measuring DRE based only on 30 days after release is
insufficient to judge software quality:

Defects found before release 900

Defects found in 30 days 5 99.45%

Defects found in 90 days 50 94.74%

Defects found in 360 days 75 92.31%

Table 5.4  Average Software Defect Potentials circa 2020 for
the United States

•	 Requirements 0.70 defects per function point

•	 Architecture 0.10 defects per function point

•	 Design 0.95 defects per function point

•	 Code 1.15 defects per function point

•	 Security code flaws 0.25 defects per function point

•	 Documents 0.45 defects per function point

•	 Bad fixes 0.65 defects per function point

Total 4.25 defects per function point

The Mess of Software Metrics  ◾  125

A 30-day interval after release will find very few defects since full
usage may not even have begun due to installation and training. IBM
selected a 90-day interval because that allowed normal usage patterns
to unfold. Of course bugs continue to be found after 90 days and also
the software may be updated. A 90-day window is a good compromise
for measuring the DRE of the original version before updates begin to
accumulate.

A 30-day window may be sufficient for small projects <250 function
points. But anyone who has worked on large systems in the 10,000 to
100,000 function point size range knows that installation and training
normally take about a month. Therefore, full production may not even
have started in the first 30 days.

Activity-Based Benchmarks for Development

Today software development is one of the most labor-intensive and
expensive industrial activities in human history. Building large software
applications costs more than the cost of a 50-story office building or the
cost of an 80,000-ton cruise ship.

Given the fact that large software applications can employ more than
500 personnel in a total of more than 50 occupations, one might think
that the industry would utilize fairly detailed activity-based benchmarks
to explore the complexity of modern software development.

But unfortunately, the majority of software benchmarks in 2017
were single values such as “work hours per function point,” “function
points per month,” or “lines of code per month.” This is not sufficient.
Following are the kinds of activity-based benchmarks actually needed
by the industry in order to understand the full economic picture of mod-
ern software development. Table 5.6 reflects a system of 10,000 function
points and the Java programming language combined with an average
team and iterative development.

Note that in real life, non-code work such as requirements, architec-
ture, and design are not measured using LOC metrics. But it is easy to
retrofit LOC since the mathematics are not complicated. Incidentally, the
author’s Software Risk Master (SRM) tool predicts all four values shown
in Table 5.6 and also shows story points, use-case points, and in fact 23
different metrics.

The “cumulative results” show the most common benchmark form of
single values. However, single values are clearly inadequate to show the
complexity of a full set of development activities.

Note that agile projects with multiple sprints would use a different
set of activities. But to compare agile projects against other kinds of

126 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s
Table 5.5  Software Defect Potentials and Defect Removal Efficiency (DRE)

Note 1: The table how high-quality defect removal operations

Note 2: The table illustrates calculations from Software Risk Master ™ (SRM)

Application type Embedded

Application size in
function points

1,000

Application language Java

Language level 6.00

Source lines per FP 53.33

Source lines of code 53,333

KLOC of code 53.33

Pre-Test Defect
Removal Methods

Pre-Test Defect Removal Activities

Total

Architect Require Design Code Document

Defects per
Function

Point

Defects per
Function

Point

Defects per
Function

Point

Defects per
Function

Point

Defects per
Function

Point

Defect potentials per FP 0.35 0.97 1.19 1.47 0.18 4.16

Defect potentials 355 966 1,189 1,469 184 4,163

1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 25.61%

Defects discovered 18 840 119 73 16 1,066

Bad-fix injection 1 25 4 2 0 32

Defects remaining 337 100 1,066 1,394 168 3,065

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

127
2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 14.93%

Defects discovered 286 10 107 35 20 458

Bad-fix injection 9 0 3 1 1 14

Defects remaining 42 90 956 1,358 147 2,593

3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 37.30%

Defects discovered 4 13 832 95 24 967

Bad-fix injection 0 0 25 3 1 48

Defects remaining 38 77 99 1,260 123 1,597

4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 70.10%

Defects discovered 5 12 20 1,071 12 1,119

Bad-fix injection 0 0 1 32 0 34

Defects remaining 33 65 79 157 110 444

5 Static analysis 2.00% 2.00% 7.00% 87.00% 3.00% 33.17%

Defects discovered 1 1 6 136 3 147

Bad-fix injection 0 0 0 4 0 4

Defects remaining 32 64 73 16 107 292

6 IV & V 10.00% 12.00% 23.00% 7.00% 18.00% 16.45%

Defects discovered 3 8 17 1 19 48

Bad-fix injection 0 0 1 0 1 1

Defects remaining 29 56 56 15 87 243

(Continued)

128 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 28.08%

Defects discovered 3 10 9 2 11 35

Bad-fix injection 0 0 0 0 0 2

Defects remaining 26 46 46 13 76 206

Pre-test DRE 329 920 1,142 1,456 108 3,956

Pre-test DRE % 92.73% 95.23% 96.12% 99.10% 58.79% 95.02%

Defects remaining 26 46 46 13 76 207

Test Defect Removal Stages Test Defect Removal Activities Total

Architect Require Design Code Document

1 Unit testing 2.50% 4.00% 7.00% 35.00% 10.00% 8.69%

Defects discovered 1 2 3 5 8 18

Bad-fix injection 0 0 0 0 0 1

Defects remaining 25 44 43 8 68 188

2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 12.50%

Defects discovered 2 2 9 3 7 23

Bad-fix injection 0 0 0 0 0 1

Defects remaining 23 42 33 5 61 164

3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 5.65%

Defects discovered 0 1 2 2 5 9

Bad-fix injection 0 0 0 0 0 0

Defects remaining 23 41 31 3 56 154

Table 5.5  (Continued)

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

129
4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 16.90%

Defects discovered 1 8 7 1 8 26

Bad-fix injection 0 0 0 0 0 1

Defects remaining 21 33 24 2 48 127

5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 7.92%

Defects discovered 3 1 5 0 1 10

Bad-fix injection 0 0 0 0 0 0

Defects remaining 18 32 19 2 46 117

6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 10.87%

Defects discovered 2 5 4 0 1 13

Bad-fix injection 0 0 0 0 0 0

Defects remaining 16 27 15 2 45 104

7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 29.35%

Defects discovered 2 5 2 0 22 30

Bad-fix injection 0 0 0 0 1 1

Defects remaining 14 22 12 2 23 72

8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 20.85%

Defects discovered 2 3 2 0 8 15

Bad-fix injection 0 0 0 0 0 0

Defects remaining 12 20 10 1 15 57

(Continued)

130 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 11.55%

Defects discovered 1 1 1 0 3 7

Bad-fix injection 0 0 0 0 0 0

Defects remaining 10 19 9 1 12 51

10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 13.60%

Defects discovered 1 2 1 0 3 7

Bad-fix injection 0 0 0 0 0 0

Defects remaining 9 17 8 1 9 44

11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 17.30%

Defects discovered 1 2 1 0 3 8

Bad-fix injection 0 0 0 0 0 0

Defects remaining 8 15 7 1 6 36

12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 17.98%

Defects discovered 1 2 1 0 2 6

Bad-fix injection 0 0 0 0 0 0

Defects remaining 7 13 6 1 3 30

Test defects removed 19 33 40 12 72 177

Testing efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 85.69%

Table 5.5  (Continued)

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

131

Defects remaining 7 13 6 1 3 30

Total defects removed 348 953 1,183 1,468 181 4,133

Total bad-fix injection 10 29 35 44 5 124

Cumulative removal % 98.11% 98.68% 99.52% 99.94% 98.13% 99.27%

Remaining defects 7 13 6 1 3 30

High-severity defects 1 2 1 0 0 5

Security defects 0 0 0 0 0 1

Remaining defects per function
point

0.0067 0.0128 0.0057 0.0009 0.0035 0.0302

Remaining defects per K function
points

6.72 12.80 5.70 0.87 3.45 30.23

Remaining defects per KLOC 0.13 0.24 0.11 0.02 0.06 0.57

132  ◾  Software Development Patterns and Antipatterns

Table 5.6  Example of Activity-based Benchmark

Language Java

Function points 10,000

Lines of code 533,333

KLOC 533

Development Activities

Work
Hours
per FP

FP per
Month

Work
Hours

per KLOC
LOC per
Month

1 Business analysis 0.02 7,500.00 0.33 400,000

2 Risk analysis/sizing 0.00 35,000.00 0.07 1,866,666

3 Risk solution planning 0.01 15,000.00 0.17 800,000

4 Requirements 0.38 350.00 7.08 18,667

5 Requirement. inspection 0.22 600.00 4.13 32,000

6 Prototyping 0.33 400.00 0.62 213,333

7 Architecture 0.05 2,500.00 0.99 133,333

8 Architecture. inspection 0.04 3,000.00 0.83 160,000

9 Project plans/estimates 0.03 5,000.00 0.50 266,667

10 Initial design 0.75 175.00 14.15 9,333

11 Detail design 0.75 175.00 14.15 9,333

12 Design inspections 0.53 250.00 9.91 13,333

13 Coding 4.00 33.00 75.05 1,760

14 Code inspections 3.30 40.00 61.91 2,133

15 Reuse acquisition 0.01 10,000.00 0.25 533,333

16 Static analysis 0.02 7,500.00 0.33 400,000

17 COTS package purchase 0.01 10,000.00 0.25 533,333

18 Open-source acquisition 0.01 10,000.00 0.25 533,333

19 Code security audit 0.04 3,500.00 0.71 186,667

20 Ind. verification &
validation (IV&V).

0.07 2,000.00 1.24 106,667

21 Configuration control 0.04 3,500.00 0.71 186,667

22 Integration 0.04 3,500.00 0.71 186,667

23 User documentation 0.29 450.00 5.50 24,000

The Mess of Software Metrics  ◾  133

development methods, the agile results are converted into a standard
chart of accounts shown by Table 5.4.

Note that there is no current data equivalent to Table 5.4 showing
activity-based costs for SNAP metrics as of 2017. Indeed the IFPUG
SNAP committee has not yet addressed the topic of activity-based costs.

Table 5.6  (Continued)

Language Java

Function points 10,000

Lines of code 533,333

KLOC 533

Development Activities

Work
Hours
per FP

FP per
Month

Work
Hours

per KLOC
LOC per
Month

24 Unit testing 0.88 150.00 16.51 8,000

25 Function testing 0.75 175.00 14.15 9,333

26 Regression testing 0.53 250.00 9.91 13,333

27 Integration testing 0.44 300.00 8.26 16,000

28 Performance testing 0.33 400.00 6.19 21,333

29 Security testing 0.26 500.00 4.95 26,667

30 Usability testing 0.22 600.00 4.13 32,000

31 System testing 0.88 150.00 16.51 8,000

32 Cloud testing 0.13 1,000.00 2.48 53,333

33 Field (Beta) testing 0.18 750.00 3.30 40,000

34 Acceptance testing 0.05 2,500.00 0.99 133,333

35 Independent testing 0.07 2,000.00 1.24 106,667

36 Quality assurance 0.18 750.00 3.30 40,000

37 Installation/training 0.04 3,500.00 0.71 186,667

38 Project measurement 0.01 10,000.00 0.25 533,333

39 Project office 0.18 750.00 3.30 40,000

40 Project management 4.40 30.00 82.55 1,600

Cumulative results 20.44 6.46 377.97 349

134  ◾  Software Development Patterns and Antipatterns

Activity-Based Benchmarks for Maintenance

The word “maintenance” is highly ambiguous and can encompass no
fewer than 25 different kinds of work. In ordinary benchmarks “mainte-
nance” usually refers to post-release defect repairs. However, some com-
panies and benchmarks also include enhancements. This is not a good
idea since the funding for defect repairs and enhancements is from dif-
ferent sources and often the work is done by different teams (Table 5.7).

As with software development, function point metrics provide the
most effective normalization metric for all forms of maintenance and
enhancement work.

The author’s Software Risk Master (SRM) tool predicts maintenance
and enhancement for a three-year period. It can also measure annual
maintenance and enhancements. The entire set of metrics is among the
most complex. However, Table 5.8 illustrates a three-year pattern.

The mathematical algorithms for predicting maintenance and
enhancements can work for 10 year periods, but there is little value in
going past three years since business changes or changes in government
laws and mandates degrade long-range predictions.

Cost of Quality (COQ) for Quality Economics

The cost of quality (COQ) metric is roughly the same age as the soft-
ware industry, having originated in 1956 by Edward Feigenbaum. It was
later expanded by Joseph Juran and then made very famous by Phil
Crosby in his seminal book Quality is Free.

Quality was also dealt with fictionally in Robert M. Pirsig’s famous
book Zen and the Art of Motorcycle Maintenance. This book has become
one of the best-selling books ever published and has been translated
into many natural languages. It has sold over 5,000,000 copies. (By
interesting coincidence Pirsig’s regular work was as a software technical
writer.)

Because COQ originated for manufacturing rather than for software,
it needs to be modified slightly to be effective in a software context.

The original concepts of COQ include:

•	 Prevention costs
•	 Appraisal costs
•	 Internal failure costs
•	 External failure costs
•	 Total costs

The Mess of Software Metrics  ◾  135

Table 5.7  Major Kinds of Work Performed Under the Generic Term
“Maintenance”

1 Major enhancements (new features of >20 function points).

2 Minor enhancements (new features of <5 function points).

3 Maintenance (repairing defects for good will).

4 Warranty repairs (repairing defects under formal contract).

5 Customer support (responding to client phone calls or problem
reports).

6 Error-prone module removal (eliminating very troublesome code
segments).

7 Mandatory changes (required or statutory changes).

8 Complexity or structural analysis (charting control flow plus
complexity metrics).

9 Code restructuring (reducing cyclomatic and essential complexity).

10 Optimization (increasing performance or throughput).

11 Migration (moving software from one platform to another).

12 Conversion (changing the interface or file structure).

13 Reverse engineering (extracting latent design information from
code).

14 Reengineering (transforming legacy application to modern forms).

15 Dead code removal (removing segments no longer utilized).

16 Dormant application elimination (archiving unused software).

17 Nationalization (modifying software for international use).

18 Mass updates such as Euro or Year 2000 Repairs.

19 Refactoring, or reprogramming applications to improve clarity.

20 Retirement (withdrawing an application from active service)

21 Field service (sending maintenance members to client locations).

22 Reporting bugs or defects to software vendors.

23 Installing updates received from software vendors.

24 Processing invalid defect reports.

25 Processing duplicate defect reports.

136 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s
Table 5.8  Three-Year Maintenance, Enhancement, and Support Data

Year 1 Year 2 Year 3

3-Year Total2013 2014 2015

Enhancements (new features)

  Annual enhancement % 8.00% 200 216 233 649

  Application growth in FP 2,500 2,700 2,916 3,149 3,149

  Application growth in LOC 133,333 144,000 155,520 167,962 167,962

  Cyclomatic complexity growth 10.67 10.70 10.74 10.78 10.78

  Enhan. defects per FP 0.01 0.00 0.00 0.00 0.00

  Enhan. defects delivered 21 1 1 1 23

  Enhancement team staff 0 2.02 2.21 2.41 2.22

  Enhancement (months) 0 24.29 26.51 28.94 79.75

  Enhancement (hours) 0 3,206.48 3,499.84 3,820.47 10,526.78

  Enhancement team costs 0 $273,279 $298,282 $325,608 $897,169

  Function points per month 8.23 8.15 8.06 8.14

  Work hours per function point 16.03 16.20 16.38 16.21

  Enhancement $ per FP $1,366.40 $1,380.93 $1,395.78 $1,381.79

Maintenance (defect repairs)

  Number of maintenance sites 1 1 1 1 1

  Clients served per site 74 94 118 149 149

  Number of initial client sites 3 4 5 6 6

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

137
Year 1 Year 2 Year 3

3-Year Total2013 2014 2015

  Annual rate of increase 15.00% 22.51% 22.51% 22.51% 20.63%

  Number of initial clients 100 128 163 207 207

  Annual rate of increase 20.00% 27.51% 27.51% 27.51% 25.63%

  Client sites added 0 1 1 1 3

  Client sites lost 0 0 0 0 0

  Net change 0 1 1 1 3

  Year-end client sites 0 4 5 6 6

  Clients added 0 28 36 46 110

  Clients lost 0 −1 −1 -1 −3

  Net change 0 28 35 45 107

  Year-end clients 0 128 163 207 207

Customer defect/help requests

  Customer satisfaction 0 95.34% 99.42% 100.16% 98.31%

  Customer help requests 0 67 62 60 189

  Customer complaints 0 24 18 15 56

  Enhancement bug reports 0 1 1 1 2

  Original bug reports 0 8 5 3 16

  High severity bug reports 0 1 1 0 2

  Security flaws 0 1 0 0 0

(Continued)

138 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s
Year 1 Year 2 Year 3

3-Year Total2013 2014 2015

  Bad fixes: bugs in repairs 0 0 0 0 0

  Duplicate bug reports 0 8 7 6 22

  Invalid bug reports 0 2 1 1 4

  Abeyant defects 0 0 0 0 0

  Total incidents 0 112 96 86 293

  Complaints per FP 0 0.01 0.01 0.01 0.02

  Bug reports per FP 0 0.00 0.00 0.00 0.01

  High severity bugs per FP 0 0.00 0.00 0.00 0.00

  Incidents per FP 0 0.04 0.04 0.03 0.12

Maintenance and support staff

  Customer support staff 0 0.31 0.33 0.38 0.34

  Customer support (months) 0 3.72 4.01 4.56 12.29

  Customer support (hours) 0 490.80 529.37 601.88 1,622.05

  Customer support costs 0 $17,568 $18,949 $21,545 $58,062

  Customer support $ per FP 0 $6.51 $6.50 $6.84 $6.62

  Maintenance staff 0 1.83 1.80 1.77 1.80

  Maintenance effort (months) 0 21.97 21.56 21.29 64.82

  Maintenance effort (hours) 0 2,899.78 2,846.43 2,810.38 8,556.59

  Maintenance (tech. debt) 0 $247,140 $242,593 $239,521 $729,255

Table 5.8  (Continued)

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

139
Year 1 Year 2 Year 3

3-Year Total2013 2014 2015

  Maintenance $ per FP 0 $91.53 $83.19 $76.06 $83.59

  Management staff 0 0.22 0.22 0.22 0.22

  Management effort (months) 0 2.69 2.66 2.67 8.02

  Management effort (hours) 0 354.92 351.56 352.39 1,058.87

  Management costs 0 $30,249 $29,963 $30,033 $90,245

  Management $ per FP 0 $11.20 $10.28 $9.54 $10.34

  Total maintenance staff 0 2.36 2.35 2.38 2.36

  Total effort (months) 0 28.37 28.24 28.52 85.13

  Total effort (hours) 0 3,745.50 3,727.36 3,764.66 11,237.51

  Total maintenance $ 0 $294,957 $291,505 $291,099 $877,561

  Maintenance $ per FP 0 $117.98 $116.60 $116.44 $117.01

  Maintenance hours per FP 0 1.39 1.28 1.20 1.29

  Maintenance$ per defect 0 $32,865 $50,957 $82,650 $55,490.43

  Maintenance $ per KLOC 0 $2,212 $2,186 $2,183 $6,582

  Maintenance $ per incident 0 $2,637.01 $3,049.51 $3,375.50 $3,020.67

  Incidents per support staff 0 360.99 286.03 226.96 873.98

  Bug reports per staff member 0 11.57 8.52 6.42 26.51

  Incidents per staff month 0 30.08 23.84 18.91 24.28

  Bug reports per staff month 0 0.96 0.71 0.54 0.74

(Continued)

140 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Year 1 Year 2 Year 3

3-Year Total2013 2014 2015

(Maintenance + enhancement)

  Enhancement staff 0 2.02 2.21 2.41 2.22

  Maintenance staff 0 2.36 2.35 2.38 2.36

  Total staff 0 4.39 4.56 4.79 4.58

  Enhancement effort (months) 0 24.29 26.51 28.94 79.75

  Maintenance effort (months) 0 28.37 28.24 28.52 85.13

  Total effort (months) 0 52.67 54.75 57.46 164.88

  Total effort (hours) 0 6,951.97 7,227.19 7,585.12 21,764.29

  Enhancement effort % 0 46.12% 48.43% 50.37% 48.37%

  Maintenance effort % 0 53.88% 51.57% 49.63% 51.63%

  Total effort % 0 100.00% 100.00% 100.00% 100.00%

  Enhancement cost 0 $273,279 $298,282 $325,608 $897,169

  Maintenance cost 0 $294,957 $291,505 $291,099 $877,561

  Total cost 0 $568,237 $589,786 $616,707 $1,774,730

  Enhancement cost % 0 48.09% 50.57% 52.80% 50.55%

  Maintenance cost % 0 51.91% 49.43% 47.20% 49.45%

  Total Cost 0 100.00% 100.00% 100.00% 100.00%

Maintenance + enhancement $ per FP $210.46 $202.26 $195.82 $202.85

Maintenance + enhancement hours per FP 2.57 2.48 2.41 2.49

Table 5.8  (Continued)

The Mess of Software Metrics  ◾  141

For software, a slightly modified set of topics for COQ include:

•	 Defect prevention costs (JAD, QFD, Kaizan, prototypes, etc.),
•	 Pre-test defect removal costs (inspections, static analysis, pair pro-

gramming, etc.),
•	 Test defect removal costs (unit, function, regression, performance,

system, etc.),
•	 Post-release defect repairs costs (direct costs of defect repairs),
•	 Warranty and damage costs due to poor quality (fines, litigation,

indirect costs),

Using round numbers and even values to simplify the concepts, the
COQ results for a 20,000 function point application with average quality
and Java might be:

Defect prevention $1,500,000

Pre-test defect removal $3,000,000

Test defect removal $11,000,000

Post-release repairs $5,500,000

Damages and warranty costs $3,000,000

Total Cost of Quality (COQ) $24,000,000

COQ per function point $1,200

COQ per KLOC $24,000

COQ per SNAP point Unknown as of 2020

If technical debt were included, but if not, the technical debt costs would
probably be an additional $2,500,000. Among the issues with technical
debt is that it focuses attention on a small subset of quality economic
topics and of course does not deal with pre-release quality at all.

No doubt the corona virus of 2020 has had a negative impact on total
cost of ownership due to working at home and not being able to meet
with clients.

Total Cost of Ownership (TCO) for
Software Economic Understanding

Because TCO cannot be measured or known until at least three years
after release, it is seldom included in standard development bench-
marks. The literature of TCO is sparse and there is very little reliable
information. This is unfortunate because software TCO is much larger

142  ◾  Software Development Patterns and Antipatterns

than the TCO of normal manufactured projects. This is due in part to
poor quality control and in part to the continuous stream of enhance-
ments which average about 8% per calendar year after the initial release
and sometimes runs for periods of more than 30 calendar years.

Another issue with TCO is that since applications continue to grow,
after several years, the size will have increased so much that the data
needs to be renormalized with the current size. Table 5.9 illustrates a
typical TCO estimate for an application that was 2,500 function points at
delivery but grew to more than 3,000 function points after a three-year
period:

Note that as of 2020 there is no current data on TCO cost per SNAP
point, nor even on a method for integrating SNAP into TCO calculations

Table 5.9  Software Total Cost of Ownership (TCO) Estimates

Staffing Effort Costs
$ per FP at

Release % of TCO

Development 7.48 260.95 $3,914,201 $1,565.68 46.17%

Enhancement 2.22 79.75 $897,169 $358.87 10.58%

Maintenance 2.36 85.13 $877,561 $351.02 10.35%

Support 0.34 12.29 $58,062 $23.22 0.68%

User costs 4.20 196.69 $2,722,773 $1,089.11 32.12%

Additional costs $7,500 $3.00 0.09%

Total TCO 16.60 634.81 $8,477,266 $3,390.91 100.00%

Function points at
release

2,500

Function points
after 3 years

3,149

Lines of code after
3 years

167,936

KLOC after 3 years 167.94

TCO function
points/staff month

4.96

TCO work hours
per function point

26.61

TCO cost per
function point

$2,692

TCO cost per KLOC $50,479

The Mess of Software Metrics  ◾  143

due to the fact that SNAP has not yet been applied to maintenance,
enhancements, and user costs.

Note that the TCO costs include normal development, enhancement,
maintenance, and customer support but also user costs. For internal
project users participate in requirements, reviews, inspections, and other
tasks so their costs and contributions should be shown as part of TCO.

Note that customer support costs are low because this particular
application had only 100 users at delivery. Eventually users grew to
more than 200 but initial defects declined so number of customer sup-
port personnel was only one person part time. Had this been a high-
volume commercial application with 500,000 users that grew to over
1,000,000 users customer support would have included dozens of sup-
port personnel and grown constantly.

Note that for internal IT and web projects, operational costs can
also be included in total costs of ownership. However, operational
costs are not relevant as TCO metrics for software that is run externally
by external clients, such as software for automotive controls, avionics
packages, medical devices such as cochlear implants, and commercial
software sold or leased by companies such as Apple, Microsoft, IBM,
and hundreds of others. It is also not a part of most open-source TCO
studies.

Because applications grow at about 8% per year after release, the
author of this book suggests renormalizing application size at the end
of every calendar year or every fiscal year. Table 8 shows a total growth
pattern for 10 years. It is obvious that renormalization needs to occur
fairly often due to the fact that all software applications grow over time
as shown in Table 5.10.

During development applications grow due to requirements creep
at rates that range from below 1% per calendar month to more than
10% per calendar month. After release, applications grow at rates that
range from below 5% per year to more than 15% per year. Note that
for commercial software “mid-life kickers” tend to occur about every 4
years. These are rich collections of new features intended to enhance
competiveness.

Needs for Future Metrics
There is little research in the future metrics needs for the software
industry. Neither universities nor corporations have devoted funds or
effort into evaluating the accuracy of current metrics or creating impor-
tant future metrics.

144  ◾  Software Development Patterns and Antipatterns

Table 5.10  SRM Multi-Year Sizing Example

Copyright © 2017–2020 by Capers Jones. All rights reserved.

Nominal application size
in IFPUG function points 10,000

SNAP points 1,389

Language C

Language level 2.50

Logical code statements 1,280,000

Function
Points

SNAP
Points

Logical
Code

1 Size at end of requirements 10,000 1,389 1,280,000

2 Size of requirement creep 2,000 278 256,000

3 Size of planned delivery 12,000 1,667 1,536,000

4 Size of deferred features −4,800 (667) (614,400)

5 Size of actual delivery 7,200 1,000 921,600

6 Year 1 usage 12,000 1,667 1,536,000 Kicker

7 Year 2 usage 13,000 1,806 1,664,000

8 Year 3 usage 14,000 1,945 1,792,000

9 Year 4 usage 17,000 2,361 2,176,000 Kicker

10 Year 5 usage 18,000 2,500 2,304,000

11 Year 6 usage 19,000 2,639 2,432,000

12 Year 7 usage 20,000 2,778 2,560,000

13 Year 8 usage 23,000 3,195 2,944,000 Kicker

14 Year 9 usage 24,000 3,334 3,072,000

15 Year 10 usage 25,000 3,473 3,200,000

Kicker = Extra features added to defeat competitors.

Note: Simplified example with whole numbers for clarity.

Note: Deferred features usually due to schedule deadlines.

The Mess of Software Metrics  ◾  145

Some obvious needs for future metrics include:

	 1.	Since companies own more data than software, there is an urgent need
for a “data point” metric based on the logic of function point metrics.
Currently, neither data quality nor the costs of data acquisition can be
estimated or measured due to the lack of a size metric for data.

	 2.	Since many applications such as embedded software operate in
specific devices, there is a need for a “hardware function point”
metric based on the logic of function points.

	 3.	Since websites are now universal, there is a need for a “website
point” metric based on the logic of function points. This would
measure website contents.

	 4.	Since risks are increasing for software projects, there is a need for
a “risk point” metric based on the logic of function points.

	 5.	Since cyber-attacks are increasing in number and severity, there is
a need for a “security point” metric based on the logic of function
points.

	 6.	Since software value includes both tangible financial value and
also intangible value, there is a need for a “value point” metric
based on the logic of function points.

	 7.	Since software now has millions of human users in every country,
there is a need for a “software usage point” metric based on the
logic of function points.

The goal would be to generate integrated estimates.
Every major university and every major corporation should devote

some funds and effort to the related topics of metrics validation and
metrics expansion. It is professionally embarrassing for one of the larg-
est industries in human history to have the least accurate and most
ambiguous metrics of any industry for measuring the critical topics of
productivity and quality.

Table 5.11 shows a hypothetical table of what integrated data might
look like from a suite of related metrics that include software func-
tion points, hardware function points, data points, risk points, security
points, and value points.

Note that as of 2020, the SNAP metric had not yet fully integrated
into total software economic analysis.

Summary and Conclusions
The current state of software metrics and measurement practices today
is a professional embarrassment. The software industry continues to use

146  ◾  Software Development Patterns and Antipatterns

metrics proven mathematically to be invalid and which violate standard
economic assumptions.

Most universities do not carry out research studies on metrics valid-
ity but merely teach common metrics whether they work or not.

Until the software industry has a workable set of productivity and
quality metrics that are standardized and widely used, progress will

Table 5.11  Example of Multi-Metric Economic Analysis

Development Metrics Number Cost Total

Function points 1,000 $1,000 $1,000,000

Data points 1,500 $500 $750,000

Hardware function points 750 $2,500 $1,875,000

Subtotal 3,250 $1,115 $3,625,000

Annual Maintenance Metrics

  Enhancements (micro function points) 150 $750 $112,500

  Defects (micro function points) 750 $500 $375,000

  Service points 5,000 $125 $625,000

  Data maintenance 125 $250 $31,250

  Hardware maintenance 200 $750 $150,000

Annual subtotal 6,225 $179 $1,112,500

Total cost of ownership (TCO)

  Development (development +5 years
of usage)

3,250 $1,115 $3,625,000

  Maintenance, enhancement, service 29,500 $189 $5,562,500

  Data maintenance 625 $250 $156,250

  Hardware maintenance 1,000 $750 $750,000

Application total TCO 34,375 $294 $10,093,750

Risk and Value Metrics

  Risk points 2,000 $1,250 $2,500,000

  Security points 1,000 $2,000 $2,000,000

Subtotal 3,000 $3,250 $4,500,000

Value points 45,000 $2,000 $90,000,000

Net value 10,625 $7,521 $79,906,250

Return on investment (ROI) $8.92

The Mess of Software Metrics  ◾  147

Table 5.12  Twenty-One Problems that Lack Effective Metrics and Data

1 How does agile quality and productivity compare to other methods?

2 Does agile work well for projects >10,000 function points?

3 How effective is pair programming compared to inspections and
static analysis?

4 Do ISO/IEC quality standards have any tangible results in lowering
defect levels?

5 How effective is the new SEMAT method of software engineering?

6 What are best productivity rates for 100, 1,000, 10,000, and 100,000
function points?

7 What are best quality results for 100, 1,000, 10,000, and 100,000
function points?

8 What are the best quality results for CMMI levels 1, 2, 3, 4, and 5 for
large systems?

9 What industries have the best software quality results?

10 What countries have the best software quality results?

11 How expensive are requirements and design compared to
programming?

12 Do paper documents cost more than source code for defense
software?

13 What is the optimal team size and composition for different kinds of
software?

14 How does data quality compare to software quality?

15 How many delivered high-severity defects might indicate
professional malpractice?

16 How often should software size be renormalized because of
continuous growth?

17 How expensive is software governance?

18 What are the measured impacts of software reuse on productivity
and quality?

19 What are the measured impacts of unpaid overtime on productivity
and schedules?

20 What are the measured impacts of adding people to late software
projects?

21 How does SNAP work for COQ, TCO, and activity-based costs?

148  ◾  Software Development Patterns and Antipatterns

resemble a drunkard’s walk. There are dozens of important topics
that the software industry should know about but lacks effective data.
Table 5.12 shows 21 samples where solid data would be valuable to the
software industry:

These 21 issues are only the tip of the iceberg and dozens of other
important topics are in urgent need of accurate predictions and accurate
measurements. The software industry needs an effective suite of accu-
rate and reliable metrics that can be used to predict and measure eco-
nomic productivity and application quality. Until we have such a suite
of effective metrics, software engineering should not be considered to
be a true profession.

Appendix A: Problems with Cost per Defect Metrics
The cost-per-defect metric has been in continuous use since the

1960s for examining the economic value of software quality. Hundreds
of journal articles and scores of books include stock phrases, such as
“it costs 100 times as much to fix a defect after release as during early
development.”

Typical data for cost per defect varies from study to study but resem-
bles the following pattern:

Defects found during requirements = $250

Defects found during design = $500

Defects found during coding and testing = $1,250

Defects found after release = $5,000

While such claims are often true mathematically, there are three hid-
den problems with cost per defect that are usually not discussed in the
software literature:

	 1.	Cost per defect penalizes quality and is always cheapest where the
greatest numbers of bugs are found.

	 2.	Because more bugs are found at the beginning of development than
at the end, the increase in cost per defect is artificial. Actual time and
motion studies of defect repairs show little variance from end to end.

	 3.	Even if calculated correctly, cost per defect does not measure the true
economic value of improved software quality. Over and above the
costs of finding and fixing bugs, high quality leads to shorter devel-
opment schedules and overall reductions in development costs. These
savings are not included in cost per defect calculations, so the metric
understates the true value of quality by several hundred percent.

The Mess of Software Metrics  ◾  149

The cost per defect metric has very serious shortcomings for economic
studies of software quality. It penalizes high quality and ignores the major
values of shorter schedules, lower development costs, lower maintenance
costs, and lower warranty costs. In general, cost per defect causes more
harm than value as a software metric. Let us consider the cost per defect
problem areas using examples that illustrate the main points.

Why Cost per Defect Penalizes Quality

The well-known and widely cited “cost per defect” measure unfortu-
nately violates the canons of standard economics. Although this met-
ric is often used to make quality economic claims, its main failing is
that it penalizes quality and achieves the best results for the buggiest
applications.

Furthermore, when zero-defect applications are reached, there are
still substantial appraisal and testing activities that need to be accounted
for. Obviously, the “cost per defect” metric is useless for zero-defect
applications.

As with KLOC metrics discussed in Appendix B, the main source of
error is that of ignoring fixed costs. Three examples will illustrate how
“cost per defect” behaves as quality improves.

In all three cases, A, B, and C, we can assume that test personnel
work 40 hours per week and are compensated at a rate of $2,500 per
week or $75.75 per hour using fully burdened costs. Assume that all
three software features that are being tested are 100 function points in
size and 5000 lines of code in size (5 KLOC).

Case A: Poor Quality

Assume that a tester spent 15 hours writing test cases, 10 hours run-
ning them, and 15 hours fixing 10 bugs. The total hours spent was 40
and the total cost was $2,500. Since 10 bugs were found, the cost per
defect was $250. The cost per function point for the week of testing
would be $25.00. The cost per KLOC for the week of testing would be
$500.

Case B: Good Quality

In the second case, assume that a tester spent 15 hours writing test
cases, 10 hours running them, and 5 hours fixing one bug, which was
the only bug discovered.

However since no other assignments were waiting and the tester
worked a full week 40 hours were charged to the project. The total cost
for the week was still $2,500 so the cost per defect has jumped to $2,500.

150  ◾  Software Development Patterns and Antipatterns

If the 10 hours of slack time are backed out, leaving 30 hours for
actual testing and bug repairs, the cost per defect would be $2,273.50
for the single bug. This is equal to $22.74 per function point or $454.70
per KLOC.

As quality improves, “cost per defect” rises sharply. The reason for
this is that writing test cases and running them act like fixed costs. It is
a well-known law of manufacturing economics that:

If a manufacturing cycle includes a high proportion of fixed costs and there is a
reduction in the number of units produced, the cost per unit will go up.

As an application moves through a full test cycle that includes unit test,
function test, regression test, performance test, system test, and accep-
tance test, the time required to write test cases and the time required to
run test cases stays almost constant, but the number of defects found
steadily decreases.

Table 5.13 shows the approximate costs for the three cost elements
of preparation, execution, and repair for the test cycles just cited using
the same rate of $:75.75 per hour for all activities.

What is most interesting about Table 5.12 is that cost per defect rises
steadily as defect volumes come down, even though Table 5.12 uses a
constant value of 5 hours to repair defects for every single test stage! In
other words, every defect identified throughout Table 5.1 had a constant
cost of $378.25 when only repairs are considered.

In fact all three columns use constant values and the only true vari-
able in the example is the number of defects found. In real life, of
course, preparation, execution, and repairs would all be variables. But
by making them constant, it is easier to illustrate the main point: cost
per defect rises as numbers of defects decline.

Since the main reason that cost per defect goes up as defects decline
is due to the fixed costs associated with preparation and execution, it
might be thought that those costs could be backed out and leave only
defect repairs. Doing this would change the apparent results and mini-
mize the errors, but it would introduce three new problems:

	 1.	Removing quality cost elements that may total more than 50% of
total quality costs would make it impossible to study quality eco-
nomics with precision and accuracy.

	 2.	Removing preparation and execution costs would make it impos-
sible to calculate COQ because the calculations for COQ demand
all quality cost elements.

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

151

Table 5.13  Cost per Defect for Six Forms of Testing

(Assumes $75.75 per Staff Hour for Costs)

Writing
Test Cases

Running
Test Cases

Repairing
Defects

Total
Costs

Number of
Defects

$ per
Defect

Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75

Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75

Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75

Performance test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75

System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42

Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75

152  ◾  Software Development Patterns and Antipatterns

	 3.	Removing preparation and execution costs would make it impos-
sible to compare testing against formal inspections, because inspec-
tions do record preparation and execution as well as defect repairs.

Backing out or removing preparation and execution costs would be
like going on a low-carb diet and not counting the carbs in pasta and
bread, but only counting the carbs in meats and vegetables. The num-
bers might look good, but the results in real life would not be good.

Let us now consider cost per function point as an alternative metric
for measuring the costs of defect removal. With the slack removed, the
cost per function point would be $18.75. As can easily be seen, cost per
defect goes up as quality improves, thus violating the assumptions of
standard economic measures.

However, as can also be seen, testing cost per function point declines
as quality improves. This matches the assumptions of standard econom-
ics. The 10 hours of slack time illustrate another issue: when quality
improves defects can decline faster than personnel can be reassigned.

Case C: Zero Defects

In the third case, assume that a tester spent 15 hours writing test cases
and 10 hours running them. No bugs or defects were discovered.

Because no defects were found, the “cost per defect” metric cannot
be used at all. But 25 hours of actual effort were expended writing and
running test cases. If the tester had no other assignments, he or she
would still have worked a 40-hour week and the costs would have been
$2,500.

If the 15 hours of slack time are backed out, leaving 25 hours for
actual testing, the costs would have been $1,893.75. With slack time
removed, the cost per function point would be $18.38. As can be seen
again, testing cost per function point declines as quality improves. Here
too, the decline in cost per function point matches the assumptions of
standard economics.

Time and motion studies of defect repairs do not support the apho-
rism that “it costs 100 times as much to fix a bug after release as before.”
Bugs typically require between 15 minutes and 6 hours for repairing
regardless of where they are found.

There are some bugs that are expensive and may takes several days
to repair, or even longer. These are called “abeyant defects” by IBM.
Abeyant defects are customer-reported defects which the repair cen-
ter cannot recreate, due to some special combination of hardware and
software at the client site. Abeyant defects comprise less than 5% of
customer-reported defects.

The Mess of Software Metrics  ◾  153

Considering that cost per defect has been among the most widely
used quality metrics for more than 50 years, the literature is surprisingly
ambiguous about what activities go into “cost per defect.” More than
75% of the articles and books that use cost per defect metrics do not
state explicitly whether preparation and executions costs are included
or excluded. In fact a majority of articles do not explain anything at
all but merely show numbers without discussing what activities are
included.

Another major gap is that the literature is silent on variations in cost
per defect by severity level. A study done by the author of this book at
IBM showed that these variations in defect repair intervals were associ-
ated with severity levels.

Table 5.14 shows the results of the study. Since these are customer-
reported defects, “preparation and execution” would have been carried
out by customers and the amounts were not reported to IBM. Peak
effort for each severity level is highlighted in blue.

As can be seen, the overall average would be close to perhaps 5
hours, although the range is quite wide.

As a matter of minor interest, the most troublesome bug found by
the author during the time he was a professional programmer was a bug
found during unit test, which took about 18 hours to analyze and repair.
The software application where the bug occurred was an IBM 1401 pro-
gram being ported to the larger IBM 1410 computer. The bug involved
one instruction, which was valid on both the 1401 and 1410. However,
the two computers did not produce the same machine code. Thus, the
bug could not be found by examination of the source code itself, since
that was correct. The error could only be identified by examining the
machine language generated for the two computers.

In Table 5.14, severity 1 defects mean that the software has stopped
working. Severity 2 means that major features are disabled. Severity 3
refers to minor defects. Severity 4 defects are cosmetic in nature and
do not affect operations. Invalid defects are hardware problems or cus-
tomer errors inadvertently reported as software defects. A surprisingly
large amount of time and effort goes into dealing with invalid defects
although this topic is seldom discussed in the quality literature.

Yet another gap in the “cost per defect” literature is that of defect by
origin. In Table 5.15 are shown the typical results by defect origin points
for 20 common defect types.

Table 5.15 shows “find hours” separately from “repair hours.” The
“find” tasks involve analysis of bug symptoms and the hardware/soft-
ware combinations in use when the bug occurred. The “repair” tasks as
the name implies are those of fixing the bug once it has been identified,
plus regression testing to ensure the repair is not a “bad fix.”

154 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Table 5.14  Defect Repair Hours by Severity Levels for Field Defects

Severity 1 Severity 2 Severity 3 Severity 4 Invalid Average

>40 hours 1.00% 3.00% 0.00% 0.00% 0.00% 0.80%

30–39 hours 3.00% 12.00% 1.00% 0.00% 1.00% 3.40%

20–29 hours 12.00% 20.00% 8.00% 0.00% 4.00% 8.80%

10–19 hours 22.00% 32.00% 10.00% 0.00% 12.00% 15.20%

1–9 hours 48.00% 22.00% 56.00% 40.00% 25.00% 38.20%

>1 hour 14.00% 11.00% 25.00% 60.00% 58.00% 33.60%

Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

The Mess of Software Metrics  ◾  155

As can be seen, errors of omission, hardware errors, and data errors
are the most expensive. Note also that errors caused by bad test cases
and by “bad fixes” or secondary bugs in bug repairs themselves are
more expensive than original code bugs. Note that even user errors
and invalid defects require time for analysis and notifying clients of the
situation.

Table 5.15  Defect Repairs by Defect Origins

Defect Origins Find Hours Repair Hours Total Hours

1 Security defects 11.00 24.00 35.00

2 Errors of omission 8.00 24.00 32.00

3 Hardware errors 3.50 28.00 31.50

4 Abeyant defects 5.00 23.00 28.00

5 Data errors 1.00 26.00 27.00

6 Architecture defects 6.00 18.00 24.00

7 Toxic requirements 2.00 20.00 22.00

8 Requirements defects 5.00 16.50 21.50

9 Supply chain defects 6.00 11.00 17.00

10 Design defects 4.50 12.00 16.50

11 Structural defects 2.00 13.00 15.00

12 Performance defects 3.50 10.00 13.50

13 Bad test cases 5.00 7.50 12.50

14 Bad fix defects 3.00 9.00 12.00

15 Poor test coverage 4.50 2.00 6.50

16 Invalid defects 3.00 3.00 6.00

17 Code defects 1.00 4.00 5.00

18 Document defects 1.00 3.00 4.00

19 User errors 0.40 2.00 2.40

20 Duplicate defects 0.25 1.00 1.25

Average 3.78 12.85 16.63

156  ◾  Software Development Patterns and Antipatterns

The term “abeyant defects” originated in IBM circa 1965. It refers to
defects that only occur for one client or one unique configuration of
hardware and software. They are very hard to analyze and to fix.

Using Function Point Metrics for Defect Removal Economics

Because of the fixed or inelastic costs associated with defect removal
operations, cost per defect always increases as the numbers of defects
decline. Because more defects are found at the beginning of a testing
cycle than after release, this explains why cost per defect always goes
up later in the cycle.

An alternate way of showing the economics of defect removal is to
switch from “cost per defect” and use “defect removal cost per function
point.” Table 5.14 uses the same basic information as Table 5.16, but
expresses all costs in terms of cost per function point:

The advantage of “defect removal cost per function point” over
“cost per defect” is that it actually matches the assumptions of stan-
dard economics. In other words, as quality improves and defect vol-
umes decline, cost per function point tracks these benefits and also
declines. High quality is shown to be cheaper than poor quality, while
with cost per defect high quality is incorrectly shown as being more
expensive.

However, quality has more benefits to software applications than
just those associated with defect removal activities. The most significant
benefit of high quality is that it leads to shorter development schedules

Table 5.16  Cost per Function Point for Six Forms of Testing

(Assumes $75.75 per Staff Hour for Costs)
(Assumes 100 Function Points in the Application)

Writing
Test

Cases

Running
Test

Cases
Repairing
Defects

Total $
per F.P.

Number
of Defects

Unit test $12.50 $7.50 $189.38 $209.38 50

Function test $12.50 $7.50 $75.75 $95.75 20

Regression test $12.50 $7.50 $37.88 $57.88 10

Performance test $12.50 $7.50 $18.94 $38.94 5

System test $12.50 $7.50 $11.36 $31.36 3

Acceptance test $12.50 $7.50 $3.79 $23.79 1

The Mess of Software Metrics  ◾  157

and overall cheaper costs for both development and maintenance. The
total savings from high quality are much greater than the improvements
in defect removal expenses.

Let us consider the value of high quality for a large system in the
10,000 function point size range.

The Value of Quality for Large Applications
of 10,000 Function Points

When software applications reach 10,000 function points in size, they
are very significant systems that require close attention to quality con-
trol, change control, and corporate governance. In fact without careful
quality and change control, the odds of failure or cancellation top 35%
for this size range.

Note that as application size increases, defect potentials increase
rapidly and DRE levels decline, even with sophisticated quality control
steps in place. This is due to the exponential increase in the volume of
paperwork for requirements and design, which often leads to partial
inspections rather than 100% inspections. For large systems, test cover-
age declines and the number of test cases mounts rapidly but cannot
usually keep pace with complexity (Table 5.17).

The glaring problem of cost per defect is shown in Table 5.16. Note
that even though high quality reduced total costs by almost 50%, cost
per defect is higher for the high-quality version than it is for the low-
quality version. Note that cost per function point matches the true eco-
nomic value of high quality, while “cost per defect” conceals the true
economic value.

Cost savings from better quality increase as application sizes increase.
The general rule is that the larger the software application, the more
valuable quality becomes. The same principle is true for change control,
because the volume of creeping requirements goes up with application
size.

Appendix B: Side-by-Side Comparisons of 79
Languages using LOC and Function Points
This appendix provides side-by-side comparisons of 79 programming lan-
guages using both function point metrics and LOC metrics. Productivity
is expressed using both hourly and monthly rates. The table assumes a
constant value of 1,000 function points for all 79 languages. However,
the number of LOC varies widely based on the specific language.

158  ◾  Software Development Patterns and Antipatterns

Table 5.17  Quality Value for 10,000 Function Point Applications

(Note: 10,000 Function Points = 1,250,000 C statements)

Average
Quality

Excellent
Quality Difference

Defects per function point 6.00 3.50 −2.50

Defect potential 60,000 35,000 −25,000

Defect removal efficiency 84.00% 96.00% 12.00%

Defects removed 50,400 33,600 −16,800

Defects delivered 9,600 1,400 −8,200

Cost per defect $341 $417 $76

Pre-release

Cost per defect $833 $1,061 $227

Post release

Development schedule (calendar
months)

40 28 −12

Development staffing 67 67 0.00

Development effort (staff months) 2,654 1,836 −818

Development costs $26,540,478 $18,361,525 −$8,178,953

Function points per staff month 3.77 5.45 1.68

LOC per staff month 471 681 209.79

Maintenance staff 17 17 0

Maintenance effort (staff months) 800 117 −683.33

Maintenance costs (year 1) $8,000,000 $1,166,667 -$6,833,333

Total effort (staff months) 3,454 1,953 −1501

Total cost $34,540,478 $19,528,191 −$15,012,287

Total cost per staff member $414,486 $234,338 −$180,147

Total cost per function point $3,454.05 $1,952.82 −$1,501.23

Total cost per LOC $27.63 $15.62 −$12.01

Average cost per defect $587 $739 $152

The Mess of Software Metrics  ◾  159

Also held constant is the assumption for every language that the number
of non-code work hours for requirements, architecture, design, docu-
mentation, and management is even 3,000 hours.

As can be seen, Appendix B provides a mathematical proof that LOC
do not measure economic productivity. In Appendix B and in real life,
economic productivity is defined as “producing a specific quantity of
goods for the lowest number of work hours.”

Function points match this definition of economic productivity, but
LOC metrics reverse true economic productivity and make the lan-
guages with the largest number of work hours seem more produc-
tive than the languages with the lowest number of work hours. Of
course results for a single language will not have the problems shown
in Appendix B.

In the following table, “economic productivity” is shown in green
and is the “lowest number of work hours to deliver 1000 function
points.” Economic productivity is NOT “increasing the number of lines
of code per month.”

Although not shown in the table, it also includes a fixed value of 3,000
hours of non-code work for requirements, design, documents, manage-
ment, and the like. Thus “total work hours” in the table is the sum of
code development + non-code effort. Since every language includes a
constant value of 3,000 hours, this non-code effort is the “fixed cost” that
drives up “cost per unit” when LOC declines. In real life, the non-code
work is a variable, but it simplifies the math and makes the essential
point easier to see: LOC penalizes high-level languages (Table 5.18).

It is obvious that in real life no one would produce 1,000 function
points in machine language, JCL, or some of the other languages in
the table. The table is merely illustrative of the fact that while function
points may be constant and non-code hours are fixed costs, coding effort
is variable and proportional to the amount of source code produced.

In Table 5.17, the exact number of KLOC can vary language to lan-
guage, from team to team, and company to company. But that is irrel-
evant to the basic mathematics of the case. There are three aspects to
the math:

Point 1: When a manufacturing process includes a high proportion
of fixed costs and there is a reduction in the units produced, the
cost per unit will go up. This is true for all industries and all manu-
factured products without exception.

160 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Table 5.18  Side-by-Side Comparison of Function Points and Lines of Code Metrics

Languages
Size in
KLOC

Total Work
Hours

Work Hours
per FP

FP per
Month

Work
Months

Work Hours
per KLOC

LOC per
Month

1 Machine language 640.00 119,364 119.36 1.11 904.27 186.51 708

2 Basic Assembly 320.00 61,182 61.18 2.16 463.50 191.19 690

3 JCL 220.69 43,125 43.13 3.06 326.71 195.41 675

4 Macro Assembly 213.33 41,788 41.79 3.16 316.57 195.88 674

5 HTML 160.00 32,091 32.09 4.11 243.11 200.57 658

6 C 128.00 26,273 26.27 5.02 199.04 205.26 643

7 XML 128.00 26,273 26.27 5.02 199.04 205.26 643

8 Algol 106.67 22,394 22.39 5.89 169.65 209.94 629

9 Bliss 106.67 22,394 22.39 5.89 169.65 209.94 629

10 Chill 106.67 22,394 22.39 5.89 169.65 209.94 629

11 COBOL 106.67 22,394 22.39 5.89 169.65 209.94 629

12 Coral 106.67 22,394 22.39 5.89 169.65 209.94 629

13 Fortran 106.67 22,394 22.39 5.89 169.65 209.94 629

14 Jovial 106.67 22,394 22.39 5.89 169.65 209.94 629

15 GW Basic 98.46 20,902 20.90 6.32 158.35 212.29 622

16 Pascal 91.43 19,623 19.62 6.73 148.66 214.63 615

17 PL/S 91.43 19,623 19.62 6.73 148.66 214.63 615

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

161

Languages
Size in
KLOC

Total Work
Hours

Work Hours
per FP

FP per
Month

Work
Months

Work Hours
per KLOC

LOC per
Month

18 ABAP 80.00 17,545 17.55 7.52 132.92 219.32 602

19 Modula 80.00 17,545 17.55 7.52 132.92 219.32 602

20 PL/I 80.00 17,545 17.55 7.52 132.92 219.32 602

21 ESPL/I 71.11 15,929 15.93 8.29 120.68 224.01 589

22 Javascript 71.11 15,929 15.93 8.29 120.68 224.01 589

23 Basic (interpreted) 64.00 14,636 14.64 9.02 110.88 228.69 577

24 Forth 64.00 14,636 14.64 9.02 110.88 228.60 577

25 haXe 64.00 14,636 14.64 9.02 110.88 228.69 577

26 Lisp 64.00 14,636 14.64 9.02 110.88 228.69 577

27 Prolog 64.00 14,636 14.64 9.02 110.88 228.69 577

28 SH (shell scripts) 64.00 14,636 14.64 9.02 110.88 228.69 577

29 Quick Basic 60.95 14,082 14.08 9.37 106.68 231.04 571

30 Zimbu 58.18 13,579 13.58 9.72 102.87 233.38 566

31 C++ 53.33 12,697 12.70 10.40 96.19 238.07 554

32 Go 53.33 12,697 12.70 10.40 96.19 238.07 554

33 Java 53.33 12,697 12.70 10.40 96.19 238.07 554

34 PHP 53.33 12,697 12.70 10.40 96.19 238.07 554

(Continued)

162 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Languages
Size in
KLOC

Total Work
Hours

Work Hours
per FP

FP per
Month

Work
Months

Work Hours
per KLOC

LOC per
Month

35 Python 53.33 12,697 12.70 10.40 96.19 238.07 554

36 C# 51.20 12,309 12.31 10.72 93.25 240.41 549

37 X10 51.20 12,309 12.31 10.72 93.25 240.41 549

38 Ada 95 49.23 11,951 11.95 11.05 90.54 242.76 544

39 Ceylon 49.23 11,951 11.95 11.05 90.54 242.76 544

40 Fantom 49.23 11,951 11.95 11.05 90.54 242.76 544

41 Dart 47.41 11,620 11.62 11.36 88.03 245.10 539

42 RPG III 47.41 11,620 11.62 11.36 88.03 245.10 539

43 CICS 45.71 11,312 11.31 11.67 85.69 247.44 533

44 DTABL 45.71 11,312 11.31 11.67 85.69 247.44 533

45 F# 45.71 11,312 11.31 11.67 85.69 247.44 533

46 Ruby 45.71 11,312 11.31 11.67 85.69 247.44 533

47 Simula 45.71 11,312 11.31 11.67 85.69 247.44 533

48 Erlang 42.67 10,758 10.76 12.27 81.50 252.13 524

49 DB2 40.00 10,273 10.27 12.85 77.82 256.82 514

50 LiveScript 40.00 10,273 10.27 12.85 77.82 256.82 514

51 Oracle 40.00 10,273 10.27 12.85 77.82 256.82 514

52 Elixir 37.65 9,845 9.84 13.41 74.58 261.51 505

Table 5.18  (Continued)

Th
e M

ess o
f So

ftw
are M

etrics 
◾ 

163

Languages
Size in
KLOC

Total Work
Hours

Work Hours
per FP

FP per
Month

Work
Months

Work Hours
per KLOC

LOC per
Month

53 Haskell 37.65 9,845 9.84 13.41 74.58 261.51 505

54 Mixed Languages 37.65 9,845 9.84 13.41 74.58 261.51 505

55 Julia 35.56 9,465 9.46 13.95 71.70 266.19 496

56 M 35.56 9,465 9.46 13.95 71.70 266.19 496

57 OPA 35.56 9,465 9.46 13.95 71.70 266.19 496

58 Perl 35.56 9,465 9.46 13.95 71.70 266.19 496

59 APL 32.00 8,818 8.82 14.97 66.80 275.57 479

60 Delphi 29.09 8,289 8.29 15.92 62.80 284.94 463

61 Objective C 26.67 7,848 7.85 16.82 59.46 294.32 448

62 Visual Basic 26.67 7,848 7.85 16.82 59.46 294.32 448

63 ASP NET 24.62 7,476 7.48 17.66 56.63 303.69 435

64 Eiffel 22.86 7,156 7.16 18.45 54.21 313.07 422

65 Smalltalk 21.33 6,879 6.88 19.19 52.11 322.44 409

66 IBM ADF 20.00 6,636 6.64 19.89 50.28 331.82 398

67 MUMPS 18.82 6,422 6.42 20.55 48.65 341.19 387

68 Forte 17.78 6,232 6.23 21.18 47.21 350.57 377

69 APS 16.84 6,062 6.06 21.77 45.93 359.94 367

70 TELON 16.00 5,909 5.91 22.34 44.77 369.32 357

(Continued)

164 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Languages
Size in
KLOC

Total Work
Hours

Work Hours
per FP

FP per
Month

Work
Months

Work Hours
per KLOC

LOC per
Month

71 Mathematica9 12.80 5,327 5.33 24.78 40.36 416.19 317

72 TranscriptSQL 12.80 5,327 5.33 24.78 40.36 416.19 317

73 QBE 12.80 5,327 5.33 24.78 40.36 416.19 317

74 X 12.80 5,327 5.33 24.78 40.36 416.19 317

75 Mathematica10 9.14 4,662 4.66 28.31 35.32 509.94 259

76 BPM 7.11 4,293 4.29 30.75 32.52 603.69 219

77 Generators 7.11 4,293 4.29 30.75 32.52 603.69 219

78 Excel 6.40 4,164 4.16 31.70 31.54 650.57 203

79 IntegraNova 5.33 3,970 3.97 33.25 30.07 744.32 177

Average 67.60 15,291 15.29 12.80 115.84 279.12 515

Table 5.18  (Continued)

The Mess of Software Metrics  ◾  165

Point 2: When switching from a low-level programming language to
a high-level programming language, the number of “units” pro-
duced will be reduced.

Point 3: The reduction in LOC metrics for high-level languages in the
presence of the fixed costs for requirements and design will cause
cost per LOC to go up and will also cause LOC per month to come
down for high-level languages.

These three points are nothing more than the standard rules of man-
ufacturing economics applied to software and programming languages.

Table 5.19  Percentages of Coding and Non-Coding Tasks

(Percent of Work Hours for Code and Non-Code)

Languages Non-Code Percent Code Percent

1 Machine language 2.51% 97.49%

2 Basic Assembly 4.90% 95.10%

3 JCL 6.96% 93.04%

4 Macro Assembly 7.18% 92.82%

5 HTML 9.35% 90.65%

6 C 11.42% 88.58%

7 XML 11.42% 88.58%

8 Algol 13.40% 86.60%

9 Bliss 13.40% 86.60%

10 Chill 13.40% 86.60%

11 COBOL 13.40% 86.60%

12 Coral 13.40% 86.60%

13 Fortran 13.40% 86.60%

14 Jovial 13.40% 86.60%

15 GW Basic 14.35% 85.65%

16 Pascal 15.29% 84.71%

17 PL/S 15.29% 84.71%

18 ABAP 17.10% 82.90%

19 Modula 17.10% 82.90%

20 PL/I 17.10% 82.90%

(Continued)

166  ◾  Software Development Patterns and Antipatterns

Table 5.19  (Continued)

(Percent of Work Hours for Code and Non-Code)

Languages Non-Code Percent Code Percent

21 ESPL/I 18.83% 81.17%

22 Javascript 18.83% 81.17%

23 Basic (interpreted) 20.50% 79.50%

24 Forth 20.50% 79.50%

25 haXe 20.50% 79.50%

26 Lisp 20.50% 79.50%

27 Prolog 20.50% 79.50%

28 SH (shell scripts) 20.50% 79.50%

29 Quick Basic 21.30% 78.70%

30 Zimbu 22.09% 77.91%

31 C++ 23.63% 76.37%

32 Go 23.63% 76.37%

33 Java 23.63% 76.37%

34 PHP 23.63% 76.37%

35 Python 23.63% 76.37%

36 C# 24.37% 75.63%

37 X10 24.37% 75.63%

38 Ada 95 25.10% 74.90%

39 Ceylon 25.10% 74.90%

40 Fantom 25.10% 74.90%

41 Dart 25.82% 74.18%

42 RPG III 25.82% 74.18%

43 CICS 26.52% 73.48%

44 DTABL 26.52% 73.48%

45 F# 26.52% 73.48%

46 Ruby 26.52% 73.48%

47 Simula 26.52% 73.48%

48 Erlang 27.89% 72.11%

49 DB2 29.20% 70.80%

50 LiveScript 29.20% 70.80%

The Mess of Software Metrics  ◾  167

(Percent of Work Hours for Code and Non-Code)

Languages Non-Code Percent Code Percent

51 Oracle 29.20% 70.80%

52 Elixir 30.47% 69.53%

53 Haskell 30.47% 69.53%

54 Mixed Languages 30.47% 69.53%

55 Julia 31.70% 68.30%

56 M 31.70% 68.30%

57 OPA 31.70% 68.30%

58 Perl 31.70% 68.30%

59 APL 34.02% 65.98%

60 Delphi 36.19% 63.81%

61 Objective C 38.22% 61.78%

62 Visual Basic 38.22% 61.78%

63 ASP NET 40.13% 59.87%

64 Eiffel 41.92% 58.08%

65 Smalltalk 43.61% 56.39%

66 IBM ADF 45.21% 54.79%

67 MUMPS 46.71% 53.29%

68 Forte 48.14% 51.86%

69 APS 49.49% 50.51%

70 TELON 50.77% 49.23%

71 Mathematica9 56.31% 43.69%

72 TranscriptSQL 56.31% 43.69%

73 QBE 56.31% 43.69%

74 X 56.31% 43.69%

75 Mathematica10 64.35% 35.65%

76 BPM 69.88% 30.12%

77 Generators 69.88% 30.12%

78 Excel 72.05% 27.95%

79 IntegraNova 75.57% 24.43%

Average 29.08% 70.92%

Table 5.19  (Continued)

168  ◾  Software Development Patterns and Antipatterns

The LOC metric originated in the 1950s when machine language and
basic assembly were the only languages in use. In those early days, cod-
ing was over 95% of the total effort so the fixed costs of non-code work
barely mattered. It was only after high-level programming languages
began to reduce coding effort and requirements and design became
progressively larger components that the LOC problems occurred.
Table 5.19 shows the coding and non-coding percentages by language
with the caveat that the non-code work is artificially held constant at
3,000 hours.

As can easily be seen for very low-level languages, the problems of
LOC metrics are minor. But as language levels increase, a higher per-
centage of effort goes to non-code work while coding effort progres-
sively gets smaller. Thus, LOC metrics are invalid and hazardous for
high-level languages.

It might be thought that omitting non-code effort and only showing
coding may preserve the usefulness of LOC metrics, but this is not the
case. Productivity is still producing deliverable for the lowest number of
work hours or the lowest amount of effort.

Producing a feature in 500 lines of Objective-C at a rate of 500 LOC
per month has better economic productivity than producing the same
feature in 1000 lines of Java at a rate of 600 LOC per month.

Objective-C took 1 month or 149 work hours for the feature. Java
took 1.66 months or 247 hours. Even though coding speed favors Java
by a rate of 600 LOC per month to 500 LOC per month for Objective-C,
economic productivity clearly belongs to Objective-C because of the
reduced work effort.

Function points were specifically invented by IBM to measure eco-
nomic productivity. Function point metrics stay constant no matter what
programming language is used. Therefore, function points are not trou-
bled by the basic rule of manufacturing economics that when a process
has fixed costs and the number of units goes down, cost per unit goes
up. Function points are the same regardless of programming languages.
Thus, in today’s world of 2021, function point metrics measure software
economic productivity, but LOC metrics do not.

References and Readings

Books and monographs by Capers Jones
	 1.	 Jones, Capers; The Technical and Social History of Software Engineering.

Addison Wesley, 2014.
	 2.	 Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality. Addison

Wesley, 2012.

The Mess of Software Metrics  ◾  169

	 3.	 Jones, Capers; Software Engineering Best Practices, 1st ed., McGraw Hill, 2010.
	 4.	 Jones, Capers; Applied Software Measurement, 3rd ed., McGraw Hill, 2008.
	 5.	 Jones, Capers; Estimating Software Costs, 2nd ed., McGraw Hill, 2007.
	 6.	 Jones, Capers; Software Assessments, Benchmarks, and Best Practices. Addison

Wesley, 2000.
	 7.	 Jones, Capers; Software Quality – Analysis and Guidelines for Success.

International Thomson Press, 1997.
	 8.	 Jones, Capers; Patterns of Software Systems Failure and Success. International

Thomson Press, 1995.
	 9.	 Jones, Capers; Assessment and Control of Software Risks. Prentice Hall, 1993.
	 10.	 Jones, Capers; Critical Problems in Software Measurement. IS Mgt Group, 1993.

Monographs by Capers Jones 2012–2020
available from Namcook Analytics LLC
	 1.	 Comparing Software Development Methodologies
	 2.	 Corporate Software Risk Reduction
	 3.	 Defenses Against Breach of Contract Litigation
	 4.	 Dynamic Visualization of Software Development
	 5.	 Evaluation of Common Software Metrics
	 6.	 Function Points as a Universal Software Metric
	 7.	 Hazards of “Cost per Defect” Metrics
	 8.	 Hazards of “Lines of Code” Metrics
	 9.	 Hazards of “Technical Debt” Metrics
	 10.	 History of Software Estimation Tools
	 11.	 How Software Engineers Learn New Skills
	 12.	 Software Benchmark Technologies
	 13.	 Software Defect Origins and Removal Methods
	 14.	 Software Defect Removal Efficiency (DRE)
	 15.	 Software Project Management Tools

Books by Other Authors
Abrain, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015.
Abrain, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society;

2010.
Abrain, Alain; Software Maintenance Management: Evolution and Continuous

Improvement; Wiley-IEEE Computer Society, 2008.
Albrecht, Allan; AD/M Productivity Measurement and Estimate Validation; IBM

Corporation, Purchase, NY; May 1984.
Barrow, Dean; Nilson, Susan; and Timberlake, Dawn; Software Estimation

Technology Report; Air Force Software Technology Support Center, Hill Air
Force Base, Utah; 1993.

Boehm, Barry; Software Engineering Economics; Prentice Hall, Englewood
Cliffs, NJ; 1981; 900 pages.

170  ◾  Software Development Patterns and Antipatterns

Brooks, Fred; The Mythical Man Month; Addison-Wesley, Reading, MA; 1995;
295 pages.

Bundschuh, Manfred; and Dekkers, Carol; The IT Measurement Compendium;
Springer-Verlag, Berlin; 2008; 643 pages.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition
Best Practices, Version 1.0; U.S. Department of Defense, Washington, DC;
July 1995; 142 pages.

Chidamber, S.R.; and Kemerer, C.F.: “A Metrics Suite for Object Oriented Design”;
IEEE Transactions on Software Engineering, Vol. 20; 1994; pp. 476–493.

Chidamber, S.R.; Darcy, D.P.; and Kemerer, C.F.; “Managerial Use of Object
Oriented Software Metrics”; Joseph M. Katz Graduate School of Business,
University of Pittsburgh, Pittsburgh, PA; Working Paper # 750; November
1996; 26 pages.

Cohn, Mike; Agile Estimating and Planning; Prentice Hall PTR, Englewood
Cliffs, NJ; 2005; ISBN: 0131479415.

Conte, S.D.; Dunsmore, H.E.; and Shen, V.Y.; Software Engineering Models and
Metrics; The Benjamin Cummings Publishing Company, Menlo Park, CA,
1986; ISBN: 0-8053-2162-4; 396 pages.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York, NY;
1982; ISBN: 0-917072-32-4; 284 pages.

DeMarco, Tom; and Lister, Tim; Peopleware; Dorset House Press, New York, NY;
1987; ISBN: 0-932633-05-6; 188 pages.

DeMarco, Tom; Why Does Software Cost So Much?; Dorset House Press, New
York, NY; 1995; ISBN: 0-932633-34-X; 237 pages.

DeMarco, Tom; Deadline; Dorset House Press, New York, NY; 1997.
Department of the Air Force; Guidelines for Successful Acquisition and

Management of Software Intensive Systems; Vols. 1 and 2; Software
Technology Support Center, Hill Air Force Base, UT; 1994.

Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ;
1989; ISBN: 0-13-332321-8; 185 pages.

Gack, Gary; Managing the Black Hole – The Executives Guide to Project Risk; The
Business Expert Publisher, Thomson, GA; 2010; ISBSG: 10: 1-935602-01-2.

Galea, R.B.; The Boeing Company: 3D Function Point Extensions, Version 2.0,
Release 1.0; Boeing Information Support Services, Seattle, WA; June 1995.

Galorath, Daniel D.; and Evans, Michael W.; Software Sizing, Estimation, and
Risk Management; Auerbach Publications, New York, NY, 2006.

Garmus, David; and Herron, David; Measuring the Software Process: A Practical
Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ;
1995.

Garmus, David; and Herron, David; Function Point Analysis; Addison Wesley
Longman, Boston, MA; 1996.

Garmus, David; Accurate Estimation; Software Development; July 1996; pp 57–65.
Grady, Robert B.; Practical Software Metrics for Project Management and

Process Improvement; Prentice Hall, Englewood Cliffs, NJ; 1992; ISBN:
0-13-720384-5; 270 pages.

The Mess of Software Metrics  ◾  171

Grady, Robert B.; and Caswell, Deborah L.; Software Metrics: Establishing a
Company-Wide Program; Prentice Hall, Englewood Cliffs, NJ; 1987; ISBN:
0-13-821844-7; 288 pages.

Gulledge, Thomas R.; Hutzler, William P.; and Lovelace, Joan S. (Editors); Cost
Estimating and Analysis – Balancing Technology with Declining Budgets;
Springer-Verlag, New York, NY; 1992; ISBN: 0-387-97838-0; 297 pages.

Harris, Michael D.S.; Herron, David; and Iwanacki, Stasia; The Business Value of
IT; CRC Press, Auerbach Publications; 2009.

Hill, Peter R.; Practical Software Project Estimation; McGraw Hill; 2010.
Howard, Alan (Editor); Software Metrics and Project Management Tools; Applied

Computer Research (ACR), Phoenix, AZ; 1997; 30 pages.
Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman,

Reading, MA; 1989.
Humphrey, Watts; Personal Software Process; Addison Wesley Longman,

Reading, MA; 1997.
Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;

Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Kemerer, Chris F.; “An Empirical Validation of Software Cost Estimation Models”;
Communications of the ACM; 30; May 1987; pp. 416–429.

Kemerer, C.F.; “Reliability of Function Point Measurement – A Field Experiment”;
Communications of the ACM, Vol. 36; 1993; pp 85–97.

Keys, Jessica; Software Engineering Productivity Handbook; McGraw Hill, New
York, NY; 1993; ISBN: 0-07-911366-4; 651 pages.

Laird, Linda M.; and Brennan, Carol M.; Software Measurement and Estimation:
A Practical Approach; John Wiley & Sons, Hoboken, NJ; 2006; ISBN:
0-471-67622-5; 255 pages.

Love, Tom; Object Lessons; SIGS Books, New York, NY; 1993; ISBN: 0-9627477
3-4; 266 pages.

Marciniak, John J. (Editor); Encyclopedia of Software Engineering; John Wiley &
Sons, New York, NY; 1994; ISBN: 0-471-54002; in two volumes.

McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software
Engineering; December 1976; pp. 308–320.

McConnell; Software Estimating: Demystifying the Black Art; Microsoft Press,
Redmund, WA; 2006.

Melton, Austin; Software Measurement; International Thomson Press, London,
UK; 1995; ISBN: 1-85032-7178-7.

Mertes, Karen R.; Calibration of the CHECKPOINT Model to the Space and Missile
Systems Center (SMC) Software Database (SWDB); Thesis AFIT/GCA/
LAS/96S-11, Air Force Institute of Technology (AFIT), Wright Patterson
AFB, Ohio; September 1996; 119 pages.

Mills, Harlan; Software Productivity; Dorset House Press, New York, NY; 1988;
ISBN: 0-932633-10-2; 288 pages.

Muller, Monika; and Abram, Alain (Editors); Metrics in Software Evolution; R.
Oldenbourg Vertag GmbH, Munich; 1995; ISBN: 3-486-23589-3.

172  ◾  Software Development Patterns and Antipatterns

Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman,
Lawrence, KS; 1996. (This is a new CD ROM book collection jointly pro-
duced by the book publisher, Prentice Hall, and the journal publisher,
Miller Freeman. This CD ROM disk contains the full text and illustrations
of five Prentice Hall books: Assessment and Control of Software Risks by
Capers Jones; Controlling Software Projects by Tom DeMarco; Function
Point Analysis by Brian Dreger; Measures for Excellence by Larry Putnam
and Ware Myers; and Object-Oriented Software Metrics by Mark Lorenz
and Jeff Kidd.)

Park, Robert E. et al; Software Cost and Schedule Estimating – A Process
Improvement Initiative; Technical Report CMU/SEI 94-SR-03; Software
Engineering Institute, Pittsburgh, PA; May 1994.

Park, Robert E. et al; Checklists and Criteria for Evaluating the Costs and
Schedule Estimating Capabilities of Software Organizations; Technical
Report CMU/SEI 95-SR-005; Software Engineering Institute, Pittsburgh, PA;
January 1995.

Paulk, Mark et al; The Capability Maturity Model; Guidelines for Improving the
Software Process; Addison Wesley, Reading, MA; 1995; ISBN: 0-201-54664-7;
439 pages.

Perlis, Alan J.; Sayward, Frederick G.; and Shaw, Mary (Editors); Software Metrics;
The MIT Press, Cambridge, MA; 1981; ISBN: 0-262-16083-8; 404 pages.

Perry, William E.; Data Processing Budgets – How to Develop and Use Budgets
Effectively; Prentice Hall, Englewood Cliffs, NJ; 1985; ISBN: 0-13-196874-2;
224 pages.

Perry, William E.; Handbook of Diagnosing and Solving Computer Problems;
TAB Books, Inc., Blue Ridge Summit, PA; 1989; ISBN: 0-8306-9233-9; 255
pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach; McGraw
Hill, New York, NY; 1982.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software On Time,
Within Budget; Yourdon Press, Prentice Hall, Englewood Cliffs, NJ; 1992;
ISBN: 0-13-567694-0; 336 pages.

Putnam, Lawrence H.; and Myers, Ware; Industrial Strength Software – Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; 1997;
ISBN: 0-8186-7532-2; 320 pages.

Reifer, Donald (Editor); Software Management, 4th ed.; IEEE Press, Los Alamitos,
CA; 1993; ISBN: 0 8186-3342-6; 664 pages.

Roetzheim, William H.; and Beasley, Reyna A.; Best Practices in Software Cost
and Schedule Estimation; Prentice Hall PTR, Upper Saddle River, NJ; 1998.

Royce, W.E.; Software Project Management: A Unified Framework; Addison
Wesley, Reading, MA; 1999.

Rubin, Howard; Software Benchmark Studies For 1997; Howard Rubin
Associates, Pound Ridge, NY; 1997.

Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric”;
Software Engineering Journal, Vol. 3; 1988; pp. 30–36.

The Mess of Software Metrics  ◾  173

Software Productivity Consortium; The Software Measurement Guidebook;
International Thomson Computer Press; Boston, MA; 1995; ISBN:
1-850-32195-7; 308 pages.

St-Pierre, Denis; Maya, Marcela; Abran, Alain; and Desharnais, Jean-Marc;
Full Function Points: Function Point Extensions for Real-Time Software,
Concepts and Definitions; University of Quebec. Software Engineering
Laboratory in Applied Metrics (SELAM); TR 1997-03; March 1997; 18 pages.

Strassmann, Paul; The Squandered Computer; The Information Economics Press,
New Canaan, CT; 1997; ISBN: 0-9620413-1-9; 426 pages.

Stukes, Sherry; Deshoretz, Jason; Apgar, Henry; and Macias, Ilona; Air Force
Cost Analysis Agency Software Estimating Model Analysis; TR-9545/008-2;
Contract F04701-95-D-0003, Task 008; Management Consulting & Research,
Inc., Thousand Oaks, CA; September 30, 1996.

Stutzke, Richard D.; Estimating Software Intensive Systems; Addison Wesley,
Boston, MA; 2005.

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point
Analysis); John Wiley & Sons, Chichester; 1991; ISBN: 0 471-92985-9; 200
pages.

Thayer, Richard H. (Editor); Software Engineering and Project Management;
IEEE Press, Los Alamitos, CA; 1988; ISBN: 0 8186-075107; 512 pages.

Umbaugh, Robert E. (Editor); Handbook of IS Management, 4th ed., Auerbach
Publications, Boston, MA; 1995; ISBN: 0-7913-2159-2; 703 pages.

Whitmire, S.A.; “3-D Function Points: Scientific and Real-Time Extensions to
Function Points”; Proceedings of the 1992 Pacific Northwest Software
Quality Conference, June 1, 1992.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4; 218 pages.

Zells, Lois; Managing Software Projects – Selecting and Using PC-Based Project
Management Systems; QED Information Sciences, Wellesley, MA; 1990;
ISBN: 0-89435-275-X; 487 pages.

Zuse, Horst; Software Complexity – Measures and Methods; Walter de Gruyter,
Berlin; 1990; ISBN: 3-11-012226-X; 603 pages.

Zuse, Horst; A Framework of Software Measurement; Walter de Gruyter, Berlin;
1997.

Software Benchmark Providers
(listed in alphabetic order)
	 1.	 4SUM Partners, www.4sumpartners.com
	 2.	 Bureau of Labor Statistics, Department of Commerce, www.bls.gov
	 3.	 Capers Jones (Namcook Analytics LLC), www.namcook.com
	 4.	 CAST Software, www.castsoftware.com

http://www.4sumpartners.com
http://www.bls.gov
http://www.namcook.com
http://www.castsoftware.com

174  ◾  Software Development Patterns and Antipatterns

	 5.	 Congressional Cyber Security Caucus, https://cybercaucus-langevin.house.gov
	 6.	 Construx, www.construx.com
	 7.	 COSMIC Function Points, www.cosmicon.com
	 8.	 Cyber Security and Information Systems, https://s2cpat.thecsiac.com/s2cpat/
	 9.	 David Consulting Group, www.davidconsultinggroup.com
	 10.	 Forrester Research, www.forrester.com
	 11.	 Galorath Incorporated, www.galorath.com
	 12.	 Gartner Group, www.gartner.com
	 13.	 German Computer Society, http://metrics.cs.uni-magdeburg.de/
	 14.	 Hoovers Guides to Business, www.hoovers.com
	 15.	 IDC, www.IDC.com
	 16.	 ISBSG Limited, www.isbsg.org
	 17.	 ITMPI, www.itmpi.org
	 18.	 Jerry Luftman (Stevens Institute), http://howe.stevens.edu/index.php?id=14
	 19.	 Level 4 Ventures, www.level4ventures.com
	 20.	 Namcook Analytics LLC, www.namcook.com
	 21.	 Price Systems, www.pricesystems.com
	 22.	 Process Fusion, www.process-fusion.net
	 23.	 QuantiMetrics, www.quantimetrics.net
	 24.	 Quantitative Software Management (QSM), www.qsm.com
	 25.	 Q/P Management Group, www.qpmg.com
	 26.	 RBCS, Inc., www.rbcs-us.com
	 27.	 Reifer Consultants LLC, www.reifer.com
	 28.	 Howard Rubin, www.rubinworldwide.com
	 29.	 SANS Institute, www.sabs.org
	 30.	 Software Benchmarking Organization (SBO), www.sw-benchmark.org
	 31.	 Software Engineering Institute (SEI), www.sei.cmu.edu
	 32.	 Software Improvement Group (SIG), www.sig.eu
	 33.	 Software Productivity Research, www.SPR.com
	 34.	 Standish Group, www.standishgroup.com
	 35.	 Strassmann, Paul, www.strassmann.com
	 36.	 System Verification Associates LLC, http://sysverif.com
	 37.	 Test Maturity Model Integrated, www.experimentus.com

https://cybercaucus-langevin.house.gov
http://www.construx.com
http://www.cosmicon.com
https://s2cpat.thecsiac.com
http://www.davidconsultinggroup.com
http://www.forrester.com
http://www.galorath.com
http://www.gartner.com
http://metrics.cs.uni-magdeburg.de
http://www.hoovers.com
http://www.IDC.com
http://www.isbsg.org
http://www.itmpi.org
http://howe.stevens.edu
http://www.level4ventures.com
http://www.namcook.com
http://www.pricesystems.com
http://www.process�fusion.net
http://www.quantimetrics.net
http://www.qsm.com
http://www.qpmg.com
http://www.rbcs-us.com
http://www.reifer.com
http://www.rubinworldwide.com
http://www.sabs.org
http://www.sw-benchmark.org
http://www.sei.cmu.edu
http://www.sig.eu
http://www.SPR.com
http://www.standishgroup.com
http://www.strassmann.com
http://sysverif.com
http://www.experimentus.com

175DOI: 10.1201/9781003193128-7

Chapter 6

Variations in Software
Costs and Quality by
Application Size

Introduction
Differences in function point size lead to very different kinds of devel-
opment practices and to very different productivity rates at the low end
compared to the high end. For example for some large systems, finding
and fixing bugs and creating paper documents cost more than the code
itself.

For successful results of large systems, early sizing and estimating
using tools such as Software Risk Master (SRM) and careful progress
and cost tracking using tools such as the Automated Project Office
(APO) are required.

In many industries, building large products is not the same as build-
ing small products. Consider the differences in specialization and meth-
ods required to build a rowboat versus building an 80,000-ton cruise
ship.

A rowboat can be constructed by a single individual using only hand
tools. But a large modern cruise ship requires more than 350 workers
including many specialists such a pipe fitters, electricians, steel workers,
painters, and even interior decorators and a few fine artists.

Software follows a similar pattern: building large systems in the
10,000 to 100,000 function point range is more or less equivalent to

176  ◾  Software Development Patterns and Antipatterns

building other large structures such as ships, office buildings, or bridges.
Many kinds of specialists are utilized and the development activities are
quite extensive compared to smaller applications.

Table 6.1 illustrates the variations in development activities noted for
the six size plateaus using the author’s 25-activity checklist for develop-
ment projects.

Below the plateau of 1,000 function points (which is roughly equiva-
lent to 100,000 source code statements in a procedural language such
as COBOL), less than half of the 25 activities are normally performed.
But large systems in the 10,000 to 100,000 function point range perform
more than 20 of these activities.

To illustrate these points, Table 6.2 shows quantitative variations in
results for three size plateaus, 100, 1,000, and 10,000 function points.

As can be seen from Table 6.2 what happens for a small project of
100 function points can be very different from what happens for a large
system of 10,000 function points. Note the presence of many kinds of
software specialists at the large 10,000 function point size and their
absence for the smaller sizes. As application size in function points goes
up, a number of problems get worse (Table 6.3).

The software industry has done well for small projects but not
for large systems. Function point metrics have been widely used for
small applications but are seldom used above 10,000 function points
due to the high cost and lengthy time interval required. There are
several forms of high-speed function points such as pattern matching
for new projects and automated counts for legacy applications, but
manual counts by certified function point personnel remain the most
common.

Summary and Conclusions
There are major differences in software development methods, soft-
ware staffing, software quality, and software productivity between small
applications of 100 function points and large systems of 10,000 function
points or more. Small projects are generally successful and have fairly
good quality and productivity. Large systems fail more often than they
succeed and seldom have good quality and productivity.

Variations in Software Costs and Quality by Application Size  ◾  177

Table 6.1  Development Activities for Six Project Size Plateaus

Activities Performed

Function Points

1 10 100 1,000 10,000 100,000

1 Requirements X X X X X X

2 Prototyping X X X

3 Architecture X X

4 Project plans X X X

5 Initial design X X X X X

6 Detail design X X X X

7 Design reviews X X

8 Coding X X X X X X

9 Reuse acquisition X X X X X X

10 Package purchase X X

11 Code inspections X X X

12 Ind. verif. & valid.

13 Change control X X X

14 Formal integration X X X

15 User documentation X X X X

16 Unit testing X X X X X X

17 Function testing X X X X

18 Integration testing X X X

19 System testing X X X

20 Beta testing X X

21 Acceptance testing X X X

22 Independent testing

23 Quality assurance X

24 Installation/training X X X

25 Project management X X X X

Activities 4 5 9 18 22 23

178  ◾  Software Development Patterns and Antipatterns

Table 6.2  Powers of Ten for 100, 1,000, and 10,000 Function Points

Size in Function Points 100 1,000 10,000

Examples
Medium
Update

Smart
Phone App Local System

Team experience Average Average Average

Methodology Agile Iterative Hybrid

Sample size for this table 150 450 50

CMMI levels (0 = CMMI not
used)

0 1 1

Monthly burdened costs $10,000 $10,000 $10,000

Major Cost Drivers
(rank order)

1 Coding Bug repairs Bug repairs

2 Bug repairs Coding Paperwork

3 Management Paperwork Coding

4 Meetings Management Creep

5 Paperwork Meetings Meetings

6 0 integration Integration Integration

7 0 creep Creep Management

Programming language Java Java Java

Source statements per
function point

53.00 53.00 53.00

Size in logical code statements
(SRM default for LOC)

5,300 53,000 530,000

Size in logical KLOC (SRM
default for KLOC)

5.30 53.00 530.00

Size in physical LOC (not
recommended)

19,345 193,450 1,934,500

Size in physical KLOC (not
recommended)

19.35 193.45 1,934.50

Client planned schedule in
calendar months

5.25 12.50 28.00

Actual Schedule in calendar
months

5.75 13.80 33.11

Plan/actual schedule
difference

0.50 1.30 5.11

Variations in Software Costs and Quality by Application Size  ◾  179

Size in Function Points 100 1,000 10,000

Examples
Medium
Update

Smart
Phone App Local System

Schedule slip percent 9.61% 10.43% 18.26%

Staff size (technical +
management)

1.25 6.50 66.67

Effort in staff months 7.19 89.72 2,207.54

Work hours per month
(U.S. value)

132 132 132

Unpaid overtime per month
(software norms)

0 8 16

Effort in staff hours 949.48 11,843.70 291,395.39

IFPUG Function points per
month

13.90 11.15 4.53

Work hours per function
point

9.49 11.84 29.14

Logical Lines of code
(LOC) per month (Includes
executable statements and
data definitions)

736.83 590.69 240.09

Physical lines of code (LOC)
per month (Includes blank
lines, comments, headers,
etc.)

2,689.42 2,156.03 876.31

Requirements creep (total
percent growth)

1.00% 6.00% 15.00%

Requirements creep
(function points)

1 60 1,500

Probable deferred features to
release 2

0.00 0.00 2,500

Client planned project cost $65,625 $812,500 $18,667,600

Actual total project cost $71,930 $897,250 $22,075,408

Plan/Actual cost difference $6,305 $84,750 $3,407,808

Plan/Actual percent
difference

8.77% 9.45% 15.44%

(Continued)

Table 6.2  (Continued)

180  ◾  Software Development Patterns and Antipatterns

Table 6.2  (Continued)

Size in Function Points 100 1,000 10,000

Examples
Medium
Update

Smart
Phone App Local System

Planned cost per function
point

$656.25 $812.50 $1,866.76

Actual cost per function point $719.30 $897.25 $2,207.54

Defect Potentials and Removal %

Defect Potentials Defects Defects Defects

Requirements defects 5 445 6,750

Architecture defects 0 1 27

Design defects 25 995 14,700

Code defects 175 2,150 30,500

Document defects 11 160 1,650

Bad fix defects 15 336 3,900

Total Defects 231 4,087 57,527

Defects per function point 2.31 4.09 5.75

Defect removal efficiency
(DRE)

97.50% 96.00% 92.50%

Delivered Defects 6 163 4,313

High-severity defects 1 20 539

Security flaws 0 3 81

Delivered Defects per
Function Point

0.06 0.16 0.43

Delivered defects per KLOC 1.09 3.08 8.14

Test Cases for Selected Tests Test Cases Test Cases Test Cases

Unit test 101 1,026 10,461

Function test 112 1,137 11,592

Regression test 50 512 5,216

Component test 67 682 6,955

Performance test 33 341 3,477

Variations in Software Costs and Quality by Application Size  ◾  181

Size in Function Points 100 1,000 10,000

Examples
Medium
Update

Smart
Phone App Local System

System test 106 1,080 11,012

Acceptance test 23 237 2,413

Total 492 5,016 51,126

Test cases per function point 4.92 5.02 5.11

Probable test coverage 95.00% 92.00% 87.00%

Probable peak cyclomatic
complexity

12.00 15.00 >25.00

Document Sizing

Document Sizes Pages Pages Pages

Requirements 40 275 2,126

Architecture 17 76 376

Initial design 45 325 2,625

Detail design 70 574 5,118

Test plans 23 145 1,158

Development plans 6 55 550

Cost estimates 17 76 376

User manuals 38 267 2,111

HELP text 19 191 1,964

Courses 15 145 1,450

Status reports 20 119 1,249

Change requests 18 191 2,067

Bug reports 97 1,048 11,467

Total 423 3,486 32,638

Document set completeness 96.96% 91.21% 78.24%

Document pages per function
point

4.23 3.49 3.26

Project Risks Risk % Risk % Risk %

Cancellation 8.80% 14.23% 26.47%

(Continued)

Table 6.2  (Continued)

182  ◾  Software Development Patterns and Antipatterns

Table 6.2  (Continued)

Size in Function Points 100 1,000 10,000

Examples
Medium
Update

Smart
Phone App Local System

Negative ROI 11.15% 18.02% 33.53%

Cost overrun 9.68% 15.65% 34.00%

Schedule slip 10.74% 18.97% 38.00%

Unhappy customers 7.04% 11.38% 34.00%

Litigation 3.87% 6.26% 11.65%

Technical debt/high COQ 5.00% 16.00% 26.21%

Cyber-attacks 7.00% 9.75% 15.30%

Financial risk 9.00% 21.00% 41.00%

High warranty repairs/low
maintainability

6.00% 14.75% 32.00%

Risk Average 7.83% 14.60% 29.22%

Project Staffing by Occupation
Group

100 1,000 10,000

Programmers 1.91 6.23 43.53

Testers 1.85 5.66 38.58

Designers 0.51 2.13 18.00

Business analysts 0.00 2.13 9.00

Technical writers 0.44 1.05 7.00

Quality assurance 0.46 0.98 5.00

1st line managers 1.21 1.85 7.13

Data base administration 0.00 0.00 3.68

Project Office staff 0.00 0.00 3.19

Administrative support 0.00 0.00 3.68

Configuration control 0.00 0.00 2.08

Project librarians 0.00 0.00 1.72

2nd line managers 0.00 0.00 1.43

Estimating specialists 0.00 0.00 1.23

Architects 0.00 0.00 0.86

Security specialists 0.00 0.00 0.49

Variations in Software Costs and Quality by Application Size  ◾  183

References and Readings
Abran, A.; and Robillard, P.N.; “Function Point Analysis, an Empirical Study of

Its Measurement Processes”; IEEE Transactions on Software Engineering,
Vol. 22, No. 12; December 1996; pp. 895–909.

Bogan, Christopher E.; and English, Michael J.; Benchmarking for Best Practices;
McGraw Hill, New York, NY; 1994; ISBN: 0-07-006375-3; 312 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman,
Reading, MA; 1989.

Size in Function Points 100 1,000 10,000

Examples
Medium
Update

Smart
Phone App Local System

Performance specialists 0.00 0.00 0.49

Function point counters 0.00 0.07 0.49

Human factors specialists 0.00 0.00 0.49

3rd line managers 0.00 0.00 0.36

Total staff 6.37 20.11 148.42

Table 6.3  Problems of Large Software Applications

1 Requirements completeness declines.

2 Requirements changes increase.

3 Document volumes grow rapidly.

4 Document completeness declines.

5 Defect potentials increase.

6 Defect removal efficiency (DRE) declines.

7 Numbers of test cases increase.

8 Test coverage declines.

9 Cyclomatic complexity goes up.

10 Risks of cancellation and delays go up alarmingly.

11 Function point counting costs go up.

12 Many large applications don’t use function points.

Table 6.2  (Continued)

184  ◾  Software Development Patterns and Antipatterns

IFPUG; IFPUG Counting Practices Manual, Release 6; International Function
Point Users Group, Westerville, OH; April 2015; 105 pages.

Jones, Capers; Quantifying Software: Global and Industry Perspectives; CRC
Press; 2017a.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN: 978-0-13-258220-9; 587 pages.

Jones, Capers; A Ten-Year Retrospective of the ITT Programming Technology
Center; Software Productivity Research, Burlington, MA; 1988.

Jones, Capers; A Guide to Selecting Software Measures and Metrics; CRC Press;
2017b.

Jones, Capers; Applied Software Measurement, 3rd ed.; McGraw Hill; 2008.
Jones, Capers; Assessment and Control of Software Risks; Prentice Hall; 1994;

ISBN: 0-13-741406-4; 711 pages.
Jones, Capers; Becoming Best in Class; Software Productivity Research,

Burlington, MA; January 1998; 40 pages.
Jones, Capers; Estimating Software Costs, 2nd ed.; McGraw Hill; New York, NY;

2007.
Jones, Capers; Patterns of Software System Failure and Success; International

Thomson Computer Press, Boston, MA; December 1995; ISBN:
1-850-32804-8; 250; 292 pages.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000 (due in May of 2000); 600 pages.

Jones, Capers; Software Engineering Best Practices, 1st ed.; McGraw Hill; 2010.
Jones, Capers; Software Methodologies, a Quantitative Guide; CRC Press; 2017c.
Jones, Capers; Software Quality – Analysis and Guidelines for Success;

International Thomson Computer Press, Boston, MA; 1997a; ISBN:
1-85032-876-6; 492 pages.

Jones, Capers; The Economics of Object-Oriented Software; Software Productivity
Research, Burlington, MA; April 1997b; 22 pages.

Jones, Capers; The Technical and Social History of Software Engineering,
Addison Wesley; 2014.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

McMahon, Paul; 15 Fundamentals for Higher Performance in Software
Development; PEM Systems; 2014.

Radice, Ronald A.; High Quality Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Wiegers, Karl A.; Creating a Software Engineering Culture; Dorset House Press,
New York, NY; 1996; ISBN: 0-932633-33-1; 358 pages.

Yourdon, Ed; Death March - The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4; 218 pages.

185DOI: 10.1201/9781003193128-8

Chapter 7

Advancing Software from
a Craft to a Profession

Introduction
As of 2020 software is a major industry, but also a troubling industry.
Software projects have many failures and even more cost and schedule
overruns. Poor software quality remains an endemic problem, in part
because software quality measures are generally incompetent.

Software education is deficient in teaching effective metrics and
effective professional skills. In surveys of corporate CEOs and C-level
executives by the author of this book, software engineering is regarded
as the least professional and most troublesome form of engineering in
major technology companies due to frequent failures and numerous
cost and schedule overruns.

Unlike medical practice and other forms of engineering, the software
industry has been running blind for over 60 years with little or no accu-
rate quantitative data on productivity or quality and no empirical data
that proves the value of software tools, methodologies, or programming
languages. You can hardly be deemed a profession if you can’t measure
economic productivity or quality, or measure the effectiveness of the
tools, languages, and methodologies in common use.

Software quality is weak due to poor quality measures. Since high
quality leads to shorter schedules, lower costs, and reduced risks, qual-
ity improvement via measures of defect potentials and defect removal
efficiency (DRE) is urgently needed.

186  ◾  Software Development Patterns and Antipatterns

Before dealing with the professional status or craft status of software
engineering, the author of this book wants to recommend an important
book that provides key insights into how a minor craft evolved into a
true and major profession.

The book is The Social Transformation of American Medicine, Basic
Books, 1982 by Paul Starr. It won a Pulitzer Prize for non-fiction in 1984
and also a Bancroft Prize in 1984.

In the 19th century, medicine was a craft with sparse and question-
able academic training, no political power, and no licensing or board
certifications. There were few medical schools and they had two-year
curricula.

Medical schools did not require either college degrees or even high
school graduation to attend. Essentially, the ability to pay the fees of
these for-profit medical schools was the only criterion for admission.
Many young physicians did not attend medical schools but worked as
apprentices for older practicing physicians.

While in medical school student physicians never even entered hos-
pitals because hospitals had their own closed groups of physicians and
did not allow external physician at all. Even regular physicians could not
visit their patients once they were admitted to hospitals. In England and
some other countries women were barred from becoming physicians.

There were no state medical licenses and no board certifications.
There were no regulations against medical malpractice, and not even
any way to monitor or report bad medical decisions. Harmful drugs
such as laudanum could be freely prescribed in spite of serious side
effects such as opium addiction. In fact laudanum, liquid opium, was
even available over the counter for calming down noisy children.

Paul Starr’s book on medical transformation starts around 1760
and continues through 1980. At the start of the book, medical doctors
were an offshoot of barbers and had little professional training other
than apprenticeship with older doctors, mainly because of the lack of
American medical schools.

The Wikipedia list of U.S. medical school start dates shows The
University of Pennsylvania medical school starting in 1765, Columbia
University in 1767, Harvard in 1782, Dartmouth in 1797, University of
Maryland in 1807, Yale in 1810, and Brown University in 1811. It was
not until after the Civil War that American medical schools began to
increase in numbers and to top 100 academic medical institutions.

Paul Starr’s book shows the gradual evolution of medical training
and medical professionalism, including the interesting history of the
American Medical Association (AMA).

In a nutshell, the AMA grew from a small inconsequential orga-
nization of a few hundred members to become a major professional

Advancing Software from a Craft to a Profession  ◾  187

association with over 235,000 members circa 2020. One of the methods
used for this rapid growth was for the AMA to reach out to various state
and local medical societies and offer reciprocal memberships.

This technique raised AMA membership from a few hundred phy-
sicians to over 80,000 in a few decades and began to give the AMA
enough mass to lobby state governments for requiring medical licens-
ing. The larger membership also gave the AMA enough power to influ-
ence medical school curricula and to even force the closure of some of
the least competent medical schools.

It would also benefit software to have reciprocal memberships among
the various software associations such as the Project Management Institute
(PMI), the IEEE Software Engineering Society, the Society of Information
Management (SIM), the Association of Computing Machinery (ACM), the
International Function Point Users Group (IFPUG), and quite a few oth-
ers. Reciprocal membership among the various function point groups
(COSMIC, FISMA, IFPUG, NESMA, etc.) would be useful too.

It took almost 100 years for medicine to evolve from a craft into a
leading profession. With Paul Starr’s book as a guide, software engineer-
ing could probably evolve into a true profession in another 25 years or
less, starting today.

What Are the Indicators of a Profession?
The Professional Standards Council says, in paraphrase, that a profes-
sion is “A group of individuals who receive formal education in the
knowledge of a field based on valid research, and who adhere to a
code of ethical behavior.” Professionals should be able to “apply their
training and knowledge with high levels of competence and integ-
rity.” All of us in software would do well to remember the line in the
medical Hippocratic oath, “first do no harm.” We should also remem-
ber Tom DeMarco’s famous line, “you can’t manage what you can’t
measure.”

It is interesting that the Wikipedia list of professionals has over 100
job titles, but software engineering is not listed. Examples of some 15 of
these professions include (Table 7.1).

All of these 15 have formal education based on large bodies of
knowledge, and all require some kind of certification or licenses before
professional work can be performed. Most require continuing education
after starting work to keep current on the latest advances in the fields.

Software in 2020 has dozens of kinds of certification for specific tools
and for general categories such as certified tester or certified quality
assurance. However, there is little empirical data that shows certification

188  ◾  Software Development Patterns and Antipatterns

actually improves job performance, although education certainly should
be helpful.

Why Software Engineering in Not Yet a Profession
Those of us who work in software can be proud of the many accom-
plishments created by software engineers including but not limited to
medical diagnostic software, banking and financial software, operating
systems and embedded software, military and defense software, and
hundreds of other important applications.

However, software also has many canceled projects and a very large
number of cost and schedule overruns. A survey by the author of CEOs
and other C-level executives found that software was regarded by cor-
porate CEOs and other executives as the least professional and least
competent of any form of engineering. If our own CEOs don’t regard us
in software as professional, it is hard to claim that we are.

Lyman Hamilton, a former Chairman of ITT, noted in a public speech
that it took about three years of on-the-job training before graduate
software engineers could be trusted with serious projects, as opposed to

Table 7.1  Fifteen Professions Circa 2020

1 Accountants

2 Air line pilots

3 Anesthesiologists

4 Attorneys

5 Biologists

6 Chemists

7 Clergymen

8 Dentists

9 Engineers

10 Educators – college professors

11 Educators – school teachers

12 Nurses

13 Pharmacists

14 Physicians

15 Physicists

Advancing Software from a Craft to a Profession  ◾  189

about one year for other kinds of engineers such as mechanical, electri-
cal, or telecommunications engineers.

For software to take the step from being a craft to becoming a true
profession, we need to solve a number of critical endemic problems that
have plagued software since the beginning (Table 7.2).

Let us evaluate these 15 professional needs in a bit more detail than
just listing them in a table.

Topic 1: Reduce the Many Software Failures

Software projects are very risky. In fact large software projects seem
to have the highest failure rates of any industry in human history. As
software pioneer Dr. Gerald Weinberg observed years ago, “…if build-
ings were built the way software is built, a woodpecker could destroy
civilization…”

From the author’s examination of about 28,000 successful and unsuc-
cessful software projects, failures are directly proportional to applica-
tion size measured in IFPUG function points as shown in Table 7.3.

Below 1,000 function points, software projects are only slightly risky.
Above 10,000 function points, they have perhaps the highest risk of any

Table 7.2  Fifteen Steps to Achieve Software Engineering Professional Status

1 Reduce the many software failures.

2 Reduce the many software cost and schedule overruns.

3 Improve poor software quality after deployment.

4 Improve poor software productivity and shorten schedules.

5 Improve poor software security and reduce cyber-attacks.

6 Stop using inaccurate and invalid metrics that distort reality.

7 Adopt accurate metrics and measurement practices.

8 Reduce inaccurate and optimistic estimates prior to starting.

9 Eliminate inaccurate status tracking during development.

10 Reduce high maintenance costs after deployment.

11 Reduce or eliminate frequent litigation from unhappy clients.

12 Improve undergraduate and graduate software education.

13 Improve post-graduate and on-the-job software education.

14 Introduce software licensing and board certification.

15 Move from custom manual software to standard reusable components.

190  ◾  Software Development Patterns and Antipatterns

manufactured product in human history. This does not speak well for
the professionalism of software engineering.

Poor quality control is the main cause of software failure. Poor qual-
ity control, combined with unplanned requirements creep, can double
planned schedules and these delays cause return on investment (ROI)
to switch from positive to negative so projects are terminated without
being completed.

Topic 2: Reduce Cost and Schedule Overruns

Of the software projects above 1,000 function points that are not can-
celed, about 70% run late and 60% exceed planned budgets. This is a
key reason that CEOs and other C-level executives don’t trust their soft-
ware engineering teams.

Software cost and schedule estimates are usually excessively optimis-
tic, due in part to the poor accuracy of informal manual estimates rather
than to using accurate parametric estimates.

Poor quality control that stretches out test cycles and unplanned
requirements creep in excess of 1% per calendar month are the two
main causes of cost and schedule overruns.

Incidentally to calculate average U.S. software schedules, a simple
rule of thumb is to raise application size in function points to the 0.4
power. The result will be the schedule in calendar months. For example
1,000 function points raised to the 0.4 power shows a schedule of 15.84
calendar months.

Projects with good technology stacks and expert teams could use a
power exponent of 0.38. Projects with poor technology stacks and nov-
ice teams could use a power exponent of 0.42. Large defense projects

Table 7.3  Software Failure % by Size

Size in IFPUG 4.3 FP Failure Average

1 1.00%

10 1.86%

100 3.21%

1,000 10.14%

10,000 31.29%

100,000 47.57%

1,000,000 82.29%

Average 25.34%

Advancing Software from a Craft to a Profession  ◾  191

which create about three times the volume of paper documents com-
pared to civilian projects might use the 0.44 power, since paperwork is
the #1 cost driver for defense software. Defense projects also have large
volumes of non-functional requirements. One of the advantages of func-
tion point metrics is their ability to quantify software results better than
the older lines of code metric.

It is theoretically possible for large companies to speed up develop-
ment by dividing applications into independent components that can
be built in different locations. It is also theoretically possible to transfer
some aspects of development from location to location at the end of
standard work shifts.

Hospitals operate 24 hours around the clock. One interesting feature
that makes this possible is the accurate patient status data that allows
the incoming team to see what actions were performed by the prior
team.

Software has almost a total lack of accurate status information that
would facilitate moving work from location to location. A few compa-
nies such as IBM and ITT have managed to do this, but both companies
had to make major changes in project status monitoring.

Topic 3: Improve Software Quality after Deployment

A majority of large software systems have marginal to poor quality after
deployment. A majority of companies and government agencies do not
measure software quality or know the effectiveness of various kinds of
defect removal activities such as inspections, static analysis, testing, etc.

A majority of universities have no empirical data on software qual-
ity control and hence are not able to teach state of the art methods to
undergrads. Lack of quality measures and poor understanding of soft-
ware quality control are two key reasons why software engineering is
not yet a true profession but still a craft.

In order to improve software quality, two key factors need to improve:
(1) defect potentials need to be reduced from today’s average of about
4.25 per function point down below 2.50 per function point; (2) defect
removal efficiency (DRE) needs to increase from today’s average of
about 92.5% to over 99.00%.

These quality results are based on observations of about 26,000 soft-
ware projects combined with 15 lawsuits involving poor quality where
the author of this book has been an expert witness.

Testing alone is not sufficient to achieve high quality because most
forms of testing are only about 35% efficient or find one bug out of three.
Static analysis is about 55% efficient and formal inspections are about
85% efficient. A synergistic combination of inspections, static analysis,

192  ◾  Software Development Patterns and Antipatterns

and formal testing can top 99.50% defect removal efficiency (DRE). Even
better, high DRE levels >99.00% also have shorter schedules and lower
costs than low DRE < 85.00%.

Lowering defect potentials require advanced methods such as reuse
of certified components that approach zero defects, requirements mod-
els, and automated proofs of correctness. These can lower defect poten-
tials from over 4.25 bugs per function point down below 2.50 bugs per
function point.

Topic 4: Improve Today’s Low Software
Development Productivity and Long Schedules

Custom software designs and manual coding are intrinsically slow,
expensive, and error prone no matter what methodologies are used and
what programming languages are used. Today in 2017 the U.S. aver-
age for software development productivity is only about 8.00 function
points per staff month or 16.5 work hours per function point and soft-
ware reuse is below 15% on average.

What the software industry needs to achieve are consistent produc-
tivity rates >25.00 function points per staff month or 5.28 work hours
per function point. The only known way of achieving such high produc-
tivity rates is to shift from custom designs and manual coding to ever-
larger percentages of certified reusable components.

Table 7.4 shows the impact of software reuse on a project of a nomi-
nal 1,000 function points in size coded in Java by average teams.

Methodologies such as agile are marginally better than older method-
ologies such as waterfall but are barely 15% better in terms of measured
productivity and measured schedules. Modern languages such as Ruby
and Python and Swift are better than older languages such as Fortran
and COBOL but improve productivity and quality by less than 12%.

The only truly effective way of improving software productivity and
quality at the same time is to eliminate custom designs and manual
development and shift to construction from standard and certified reus-
able components.

Topic 5: Improve Poor Software Security
and Reduce Cyber-Attacks

Software security and cyber-attacks are modern problems that are
becoming more serious every day. The criminals who are attempting
cyber-attacks are no longer individual hackers, but now members of
sophisticated organized crime groups and even worse, operating under

Advancing Software from a Craft to a Profession  ◾  193

the control of hostile military cyber-warfare units in countries such as
North Korea and Iran.

Cyber security is a highly complex topic and every major company
and government organization that builds or runs software needs both
internal security teams and also access to top security consultants, plus
links to government cyber-security specialists at the FBI, Homeland
Security, and also State and Municipal government security groups.

Topic 6: Stop Using Inaccurate and Invalid
Metrics That Distort Reality

The software industry has been running blind for over 60 years with
bad metrics and bad measurement practices. The author of this book
believes that the software industry has the worst metrics and measure-
ment practices of any industry in human history.

It would be surprising if more than 5% of the readers of this book
know their own company’s actual productivity and quality levels at
all using any metric. Less than 1.00% would know their productivity
and quality results within 10% precision using function point metrics.
Bad metrics and bad measurement practices are endemic problems for
software and a professional embarrassment. Software can never be a

Table 7.4  Impact of Software Reuse on Productivity and Quality

Reuse %
Wk hrs
per FP

FP per
Month

Defect
Potential

per FP

Defect
Removal
Percent

Delivered
Defects
per FP

95 2.07 63.63 1.25 99.75 0.003

85 2.70 48.94 1.68 98.25 0.029

75 3.51 37.65 2.10 96.78 0.068

65 4.56 28.96 2.53 95.33 0.118

55 5.93 22.28 2.95 93.90 0.180

45 7.70 17.14 3.38 92.49 0.253

35 10.01 13.18 3.80 91.10 0.338

25 13.02 10.14 4.23 89.74 0.434

15 16.92 7.80 4.65 88.39 0.540

5 22.00 6.00 5.08 87.06 0.656

0 33.00 4.00 5.50 85.76 0.783

194  ◾  Software Development Patterns and Antipatterns

true profession without knowing how to measure results with high
accuracy.

This is too big a topic for a short article. Suffice it to say that the
“lines of code” (LOC) metric penalizes high-level languages and makes
requirements and design invisible. A metric that makes assembly lan-
guage look better than Ruby or Swift is a professional embarrassment.

The “cost per defect” metric penalizes quality and is cheapest for the
buggiest software. Applications with thousands of bugs have lower costs
per defect than applications with only a few bugs.

Fixed costs are the reason for both problems. Every other industry
except software knows that if a development process has a high percent-
age of fixed costs and there is a decline in the number of units produced,
the cost per unit will go up.

If you use LOC as a unit and switch to a high level language, you
reduce the number of units produced. But the work on requirements
and design act like fixed costs and drive up cost per LOC.

If you use bugs as a unit and have effective quality control with static
analysis and formal testing, the fixed costs of writing and running test
cases drive up cost per defect. These are not just casual statements but
have been proven mathematically.

Other hazardous but common software metrics include story points
(undefined and highly erratic), use-case points (undefined and highly
erratic), and technical debt, which no two companies seem to measure
the same way in 2017. The author of this book regards poor metrics as a
sign of professional malpractice, and software can’t be a true profession
until we adopt accurate metrics such as function points.

Topic 7: Adopt Accurate Metrics and
Effective Measurement Practices

As of 2017 the best metrics for understanding software productivity are
work hours per function point. This metric can be applied to individual
activities as well as total projects, i.e. requirements, design, coding, and
everything else can be measured to show the fine details of software
development.

The best metrics for understanding software quality are defect poten-
tials measured using function points combined with defect removal effi-
ciency (DRE). DRE is the percentage of bugs found and eliminated prior
to release of software to customers. The current U.S. average for DRE is
only about 92.50% but best in class projects top 99.50%.

It is a matter of historical interest that all three of these effective
metrics were developed within IBM during the years 1970–1975. IBM
deserves thanks from the software industry for spending money on

Advancing Software from a Craft to a Profession  ◾  195

building a metrics family that allows high accuracy in both estimating
projects before they start and measuring projects after they are delivered.

As to poor measurement practices, self-reported data tends to “leak”
and omit over 50% of true software costs. Among the author’s clients,
the accuracy of self-reported development data is only about 37%.

The major omissions from self-reported data include unpaid over-
time, project management costs, project office costs, and the work of
part-time specialists such as quality assurance and technical writers.

Because self-reported data leaks, the best way of collecting accurate
historical data is to use one of the commercial benchmark organiza-
tions of which there are about 35 in the United States and quite a few
in Europe. These benchmark groups will assist clients in collecting data
for 100% of work performed instead of just a small fraction of work
such as “design, code, and unit test” (DCUT) which is only about 30%
of total effort.

The major cost drivers for software include the costs of finding and
fixing bugs and the costs producing paper documents. These costs
should definitely be part of historical benchmark data, as well as coding
costs and testing costs.

The International Function Point Users Group (IFPUG) introduced a
new metric for non-functional requirements in 2012. This is the SNAP
metric (Software Non-Functional Assessment Process). SNAP is too new
to have much empirical data so it will not be discussed at this time.
Non-functional requirements are things like government mandates such
as Sarbanes-Oxley governance of financial applications. These add sub-
stantial costs but are not user requirements.

Topic 8: Improve Inaccurate and Optimistic
Estimates before Starting Projects

As a disclosure to readers, the author of this book is the developer of 10
software parametric estimation tools. Six of these were proprietary and
built for specific companies such as IBM, ITT, and AT&T. Four of these
have been marketed commercially.

Below about 250 function points in size, manual estimates are done
by experts and parametric estimates by Software Risk Master (SRM).

However as application size grows larger, manual estimates have a
tendency to become progressively optimistic while parametric estimates
tend to hold their accuracy up to 100,000 function points or larger.

If you build software applications below 250 function points, most
forms of estimation are acceptable. But if you build large systems above
10,000 function points in size, you should stop using manual estimates
and switch over to one or more of the commercial parametric estimation

196  ◾  Software Development Patterns and Antipatterns

tools such as SRM. (Some leading companies also have formal software
estimation teams.)

Topic 9: Eliminate Inaccurate Status Tracking

From working as an expert witness in a number of lawsuits where large
software projects were cancelled or did not operate correctly when
deployed, six major problems occur repeatedly: (1) accurate estimates
are not produced or are overruled; (2) accurate estimates are not sup-
ported by defensible benchmarks; (3) requirements changes are not
handled effectively; (4) quality control is deficient; (5) progress tracking
fails to alert higher management to the seriousness of the issues; (6)
contracts themselves omit important topics such as change control and
quality, or include hazardous terms.

Depositions and discovery in these lawsuits found that software
engineers and project managers were aware of the problems that later
caused termination, but that monthly status reports did not alert higher
management or clients to the existence of the problems. In fact in some
cases, project management deliberately concealed the problems, per-
haps in the hope that they could be solved before anyone found out
about them.

The bottom line is that status tracking of large software applications
needs significant improvement compared to 2017 averages. Automated
project tracking tools and the use of project offices for large applica-
tions can improve this problem. But until project tracking reveals prob-
lems instead of concealing them, software cannot be deemed a true
profession.

There are also effective automated project tracking tools available
such as the Automated Project Office (APO) from Computer Aid Inc.

Topic 10: Reduce High Maintenance Costs after Deployment

As many readers know, for large software applications, more than 50%
of total costs of ownership (TCO) occur after release rather than during
development. While some of the costs are due to normal evolution and
growth in functionality, the majority of the post-release costs are due to
bug repairs for latent bugs in the application when it was delivered, plus
the costs of “bad fixes.”

A “bad fix” is a new bug accidentally included in bug repairs. The U.S.
average for bad-fix injection in 2017 was that about 7% of bug repairs
add new bugs. But with modules having high cyclomatic complexity of
over 25, bad-fix injections can top 30%. Bad fixes are an endemic prob-
lem, but completely treatable by using static analysis tools on all bug

Advancing Software from a Craft to a Profession  ◾  197

repairs before integrating them. Unprofessional quality measures and
unprofessional quality control are the causes of bad-fix injections.

Another huge post-release cost is that of dealing with “error-prone”
modules (EPM). IBM discovered that bugs are not randomly distributed
but clump in a small number of very buggy modules. Other companies
such as AT&T and Raytheon also noted EPM, which occur in most large
systems.

In general less than 3% of the modules in an application will contain
over 50% of all bugs. Thus about half of post-release bug repair costs are
for EPM, and they can and should have been eliminated prior to release.

A synergistic combination of defect prevention, pre-test defect
removal such as static analysis and inspections, combined with formal
testing and formal test case design such a using cause–effect graphs can
completely eliminate EPM before software is released. Running cyclo-
matic complexity tools against all modules is important too. It is due
in part to the very poor quality measurement practices of the software
industry and poor quality control that most EPM are not discovered until
too late. In fact quality measures are so bad that many companies have
EPM but don’t even know about them!

To achieve professional status, software should have less than 0.1%
bad-fix injections and have zero error-prone modules (EPM) since both
of these endemic problems have technical solutions available.

Topic 11: Reduce or Eliminate Litigation
from Unhappy Clients

Among the author’s clients who commissioned us to study outsourced
projects, we found that about 70% of the projects were reasonably suc-
cessful and both the vendor and the client were generally satisfied. But
for 30% of the projects, there was considerable dissatisfaction by the
clients for poor quality and schedule delays. For about 5% of the proj-
ects litigation was either about to happen or was in progress when we
examined the projects. For quite a few projects, the author of this book
was an expert witness in actual litigation.

Dissatisfaction and litigation occurs for other kinds of contracts such
as home construction and home repairs, but software has more litiga-
tion than it should. Breach of contract litigation is the topic of this
section, but software also has a lot of patent litigation and even some
criminal litigation for things such as poor governance under Sarbanes-
Oxley rules or causing death or injury as in the case of defective medical
devices or automotive brake systems.

The root causes of breach of contract litigation seem to be four
critical topics, all of which can be eliminated: (1) optimistic cost and

198  ◾  Software Development Patterns and Antipatterns

schedule estimates before starting; (2) very poor status tracking during
development; (3) inadequate quality control so that the application does
not work well after deployment; (4) sloppy change control which tends
to introduce “bad fixes” into software applications.

If software engineering were a true profession, all four of these com-
mon conditions that lead to litigation would be eliminated.

Topic 12: Improve Undergraduate and
Graduate Software Education

About every two years, the author of this book does a study of software
learning channels since there are quite a few of them. The study looks
at effectiveness, convenience, costs, and other parameters. It is interest-
ing that academic education does not rank very high among 17 learning
channels as shown in Table 7.5.

As already noted, graduate software engineers seem to need more
on-the-job training than other forms of engineering before doing major
projects.

The fact that most graduate software engineers don’t know the haz-
ards of common metrics such as cost per defect and lines of code is a
sign that academic training needs to be upgraded. Most graduates also
don’t know the measured defect removal efficiency (DRE) values for
things like formal inspections, static analysis, and testing.

Compare these gaps in software education with what physicians
know about the effectiveness of various medicines and therapy proce-
dures. Software is running blind because poor metrics and poor mea-
surement practices conceal progress and make it difficult to judge the
effectiveness of tools, methods, languages, and other software perfor-
mance factors.

Topic 13: Improve Post-Graduate and On-
the-Job Software Education

A study by the author of this book some years ago on the impact of
post-employment professional education on companies found an inter-
esting result. Companies that provide 10 days of professional internal
training per year show higher software productivity rates and better
quality than companies of the same size and type that provide 0 days of
training per year. In other words, devoting 10 days a year to professional
education benefits software results, even though 10 work days are used
for this purpose.

Some companies provide very impressive internal education pro-
grams for employees that the author thinks are often superior to

Advancing Software from a Craft to a Profession  ◾  199

academic education. Examples of these companies with excellent inter-
nal post-employment professional training include IBM, AT&T, Microsoft,
Amazon, Apple, and Google.

Topic 14: Introduce Software Licensing
and Board Certification

Physicians, lawyers, and many kinds of engineers have licenses and
also various kinds of board certifications. As of 2020 software has many
kinds of certification, but generally no formal state licensing.

Table 7.5  Ranking of Software Learning Channels as of Spring 2020

Average
Score Form of Education

Cost
Ranking

Efficiency
Ranking

Effective­
ness

Ranking
Currency
Ranking

3.00 Web browsing 1 1 9 1

3.25 Webinars/e-learning 3 2 6 2

3.50 Electronic books 4 3 3 4

5.25 In-house training 9 4 1 7

6.00 Self-study from CD/
DVD

4 3 7 10

7.25 Vendor training 13 6 5 5

7.25 Commercial training 14 5 4 6

7.50 Wiki sites 2 9 16 3

8.25 Live conferences 12 8 8 5

9.00 Simulation web sites 8 7 13 8

10.25 Self-study from
books

5 13 12 11

10.25 Journals 7 11 14 9

10.75 On-the-job training 11 10 10 12

11.75 Mentoring 10 12 11 14

12.00 Books 6 14 15 13

12.25 Undergraduate
training

15 15 3 16

12.25 Graduate training 16 16 2 15

200  ◾  Software Development Patterns and Antipatterns

There are computer engineer and software engineer licenses that
may be needed for consulting engineers who work for public agencies
and need to sign or stamp official government documents. These allow
successful applicants to use “P.E.” for “professional engineer” when sign-
ing contracts or reports. However most kinds of software engineering
personnel work under an industrial exemption clause and don’t need
licenses.

The basic issue is when and if software engineering licenses occur,
what kinds of knowledge should be tested as part of the license pro-
cess? Given the endemic problems that software has with poor quality
control and bad metrics, it would be useful for software license exams to
include topics such as knowledge of effective quality control and knowl-
edge of effective quantification of software quality and productivity.

Topic 15: Move from Custom and Manual
Development to Standard Reusable Components

Custom designs for software applications and manual coding by human
programmers are intrinsically expensive, error-prone, and slow regard-
less of which programming languages are used and which development
methodologies are used. Agile may be a bit faster than waterfall, but it
is still slow compared to actual business needs.

The only effective solution for software engineering is to move away
from manual custom development and toward construction of applica-
tions using standard certified and hardened reusable materials. The idea
is to build software more like Ford builds automobiles on an assembly
line rather than like the custom design and manual construction of a
Formula 1 race car.

In fact when software reuse begins to top 75% on average, then
the same thing can happen with software that has already happened
with automotive construction: robotic software development tools can
replace human analysts and human programmers for the portions of
software constructed from standard reusable components. Human anal-
ysis and human programmers will still be needed for creating custom
designs and custom code for novel features, but not for generic applica-
tions constructed from certified reusable components.

An ordinary passenger car and a Formula 1 race car have about
the same number of mechanical parts, but the race car costs at least
10 times more to build due to the large volumes of skilled manual
labor involved. The schedule would be more than 10 times longer as
well. Custom designs and manual construction are intrinsically slow and
expensive in every industry.

Advancing Software from a Craft to a Profession  ◾  201

If you compare the costs and schedules of building an 50-story
office building, a 50,000 ton cruise ship, and a 50,000 function point
software system, the software is much more expensive and also much
slower than the other two. When deployed the software is much less
reliable than the other two and has many more defects that interfere
with use than the other two. Worse, the software is much more likely to
be attacked by external criminals seeking to steal data or interfere with
software operation.

These problems are endemic but not impossible to cure. It is techni-
cally possible today in 2017 to build some software applications from
standard reusable components. It is also possible to raise the immunity
of software to external cyber-attack.

In the future, more and more standard components will expand the
set of applications that can be assembled from certified standard parts
free from security vulnerabilities rather than needing custom design and
laborious manual coding that tend to introduce security flaws. Assembly
from certified components can be more than 10 times faster and cheaper
than the best manual methods such as agile, and also much more secure
than today’s norms where security vulnerabilities are rampant.

Topic 16: Develop Effective Methods for
Working at Home Due To Corona Virus

The arrival of the corona virus in 2020 has disrupted hundreds of indus-
tries and put thousands of people out of work. The software and com-
puting industries should take the lead in developing effective methods
to stay productive and efficient in spite of the virus. Some obvious sug-
gestions would be: improve the capabilities of Zoom meetings and other
online tools so that it is easy to share documents while meetings are
going on. This is necessary for design reviews and code inspections.

Summary and Conclusions on Software Professionalism

The author of this book has worked in software since about 1965 and
has seen quite a few technical advances over the years. For example,
he was at IBM during the period when function point metrics, formal
inspections, and parametric estimation were first started, as well as the
creation of the relational data base model.

He also saw the introduction of the Apple I computer and the intro-
duction of Microsoft Windows, as well as the introduction the early IBM
PC in 1981 followed by many others. He has seen the available program-
ming languages expand from one (basic assembly) to over 1,000. He has

202  ◾  Software Development Patterns and Antipatterns

seen the number of software methodologies grow from one (cowboy)
to over 60 in 2020.

He has also seen the development of Software Engineering Methods
and Theory (SEMAT) which attempts to put software engineering on a
more reliable and repeatable basis by formalizing software development
frameworks and concepts. SEMAT should be a useful approach to creat-
ing larger volumes of standard reusable components. Custom designs
and manual coding will always be expensive and error prone.

In the past, the author of this book has worked as both the editor
of a medical journal and of medical research papers for the Office of
the Surgeon General and also as the editor and technical reviewer of a
number of software journal articles and books for various publishers.

Medical papers devote about a third of the text to discussions of
measures and metrics and include accurate quantified data. Software
papers, on the other hand, devote hardly a paragraph to measures and
metrics and seldom contain accurate quantified data.

As readers know, medical practice has been the top learned profes-
sion for over 100 years. By contrast, software is not even recognized as
a true profession and is still classified as a craft circa 2020.

One reason for the low status of software is that software has failed
to use effective metrics and measures. As a result, software has close to
zero accurate data on software quality and productivity or the effective-
ness of various methodologies and programming languages.

Software’s current lack of a knowledge base of leading indicators for
quality and costs is a professional embarrassment. Diagnosing software
problems in 2017 was closer to medical diagnoses from 1817 before
medicine adopted careful measures and accurate metrics.

From reading Paul Starr’s book on the social transformation of
American medical practice, it was interesting to see that medicine was
as chaotic and inept 200 years ago as software is in 2017.

Medical practices circa 1820 were alarmingly similar to software
practices circa 2020. Both were unlicensed, unregulated, unmeasured,
and both mixed quackery and harmful practices with beneficial prac-
tices without patients or clients having any way of knowing which was
which.

References and Readings on Software and
Selected Texts on Medical Practice
Control of Communicable Diseases in Man; U.S. Public Health Service, pub-

lished annually. This book provided the format for the author’s first book

Advancing Software from a Craft to a Profession  ◾  203

on software risks, Assessment and Control of Software Risks. The format
worked well for both medical diseases and software risks. The format
included frequency of the conditions, severity of the conditions, methods
of prevention, and methods of treatment. A few topics such as quarantine
were not used for software risks, although with cyber-attacks increasing
in frequency and severity quarantine should be considered for software
that has been attacked by viruses or worms both of which are highly
contagious.

Abran, A.; and Robillard, P.N.; “Function Point Analysis: An Empirical Study of
Its Measurement Processes”; IEEE Transactions on Software Engineering,
Vol 22, No. 12; December 1996; pp. 895–909.

Austin, Robert D.; Measuring and Managing Performance in Organizations;
Dorset House Press, New York, NY; 1996; ISBN: 0-932633-36-6; 216 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Techniques
for Managing Hardware and Software Testing; Wiley; 2009; ISBN: 10:
0470404159; 672 pages.

Boehm, Barry; Software Engineering Economics; Prentice Hall, Englewood
Cliffs, NJ; 1981; 900 pages.

Bogan, Christopher E.; and English, Michael J.; Benchmarking for Best Practices;
McGraw Hill, New York, NY; 1994; ISBN: 0-07-006375-3; 312 pages.

Brooks, Fred; The Mythical Man-Month; Addison Wesley, Reading, MA, 1974
rev.; 1995.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition
Best Practices, Version 1.0; July 1995; U.S. Department of Defense,
Washington, DC; 142 pages.

Campbell-Kelly, Martin; A History of the Software Industry: from Airline
Reservations to Sonic the Hedgehog; The MIT Press, Cambridge, MA; 2003;
ISBN: 0-262-03303-8; 372 pages.

Charette, Bob; Application Strategies for Risk Management; McGraw Hill, New
York, NY; 1990.

Charette, Bob; Software Engineering Risk Analysis and Management; McGraw
Hill, New York, NY; 1989.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You;
Prentice Hall, Upper Saddle River, NJ; 1995; ISBN: 10: 0201633302; 368
pages.

Constantine, Larry L.; Beyond Chaos: The Expert Edge in Managing Software
Development; ACM Press, 2001.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New
York, NY; 1979a; 270 pages.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New
York, NY; 1979b; 270 pages.

Curtis, Bill; Hefley, William E.; and Miller, Sally; People Capability Maturity
Model; Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA; 1995.

DeMarco, Tom; and Lister, Tim; Waltzing with Bears: Managing Risks on
Software Projects; Dorset House Press, New York, NY; 2003.

204  ◾  Software Development Patterns and Antipatterns

DeMarco, Tom; Peopleware: Productive Projects and Teams; Dorset House
Prees, New York, NY; 1999; ISBN: 10: 0932633439; 245 pages.

Department of the Air Force; Guidelines for Successful Acquisition and
Management of Software Intensive Systems, Vols. 1–2; Software Technology
Support Center, Hill Air Force Base, UT; 1994.

Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ;
1989; ISBN: 0-13-332321-8; 185 pages.

Gack, Gary; Applying Six Sigma to Software Implementation Projects; http://
software.isixsigma.com/library/content/c040915b.asp.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10: 0201631814.

Grady, Robert B.; and Caswell, Deborah L.; Software Metrics: Establishing a
Company-Wide Program; Prentice Hall, Englewood Cliffs, NJ; 1987; ISBN:
0-13-821844-7; 288 pages.

Grady, Robert B.; Practical Software Metrics for Project Management and
Process Improvement; Prentice Hall, Englewood Cliffs, NJ; 1992; ISBN:
0-13-720384-5; 270 pages.

Grady, Robert B.; Successful Process Improvement; Prentice Hall PTR, Upper
Saddle River, NJ; 1997; ISBN: 0-13-626623-1; 314 pages.

Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman,
Reading, MA; 1989.

IFPUG; IFPUG Counting Practices Manual, Release 6, International Function
Point Users Group, Westerville, OH; April 2015; 105 pages.

Jacobsen, Ivar et al; The Essence of Software Engineering; Applying the SEMAT
Kernel; Addison Wesley Professional, 2013.

Jacobsen, Ivar; Griss, Martin; and Jonsson, Patrick; Software Reuse – Architecture,
Process, and Organization for Business Success; Addison Wesley Longman,
Reading, MA; 1997; ISBN: 0-201-92476-5; 500 pages.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN: 978-0-13-258220-9; 587 pages.

Jones, Capers; A Ten-Year Retrospective of the ITT Programming Technology
Center; Software Productivity Research, Burlington, MA; 1988.

Jones, Capers; A Guide to Selecting Software Measures and Metrics, CRC Press,
2017.

Jones, Capers; Applied Software Measurement, 3rd ed.; McGraw Hill, New York,
NY; 2008.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994;
ISBN: 0-13-741406-4; 711 pages.

Jones, Capers; Becoming Best in Class; Software Productivity Research,
Burlington, MA; January 1998; 40 pages.

Jones, Capers; Estimating Software Costs, 2nd ed.; McGraw Hill, New York, NY;
2007.

http://software.isixsigma.com
http://software.isixsigma.com

Advancing Software from a Craft to a Profession  ◾  205

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; ISBN:
1-850-32804-8; 250, 292 pages.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000 (due in May of 2000); 600 pages.

Jones, Capers; Software Engineering Best Practices, 1st ed.; McGraw Hill, New
York, NY; 2010.

Jones, Capers; Software Quality – Analysis and Guidelines for Success;
International Thomson Computer Press, Boston, MA; 1997a; ISBN:
1-85032-876-6; 492 pages.

Jones, Capers; The Economics of Object-Oriented Software; Software Productivity
Research, Burlington, MA; April 1997b; 22 pages.

Jones, Capers; The Technical and Social History of Software Engineering,
Addison Wesley, 2014.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Keys, Jessica; Software Engineering Productivity Handbook; McGraw Hill, New
York, NY; 1993; ISBN: 0-07-911366-4; 651 pages.

Love, Tom; Object Lessons; SIGS Books, New York, NY; 1993; ISBN: 0-9627477
3-4; 266 pages.

McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software
Engineering; December 1976; pp. 308–320.

McConnell, Steve; Software Project Survival Guide; Microsoft Press; 1997.
McMahon, Paul; and Ambler, Scott; 15 Fundamentals for Higher Performance

in Software Development; PEM Systems; 2014.
Melton, Austin; Software Measurement; International Thomson Press, London,

UK; 1995; ISBN: 1-85032-7178-7.
Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman,

Lawrence, KS; 1996. (This is a new CD ROM book collection jointly pro-
duced by the book publisher, Prentice Hall, and the journal publisher,
Miller Freeman. This CD ROM disk contains the full text and illustrations
of five Prentice Hall books: Assessment and Control of Software Risks by
Capers Jones; Controlling Software Projects by Tom DeMarco; Function
Point Analysis by Brian Dreger; Measures for Excellence by Larry Putnam
and Ware Myers; and Object-Oriented Software Metrics by Mark Lorenz
and Jeff Kidd.)

Myers, Glenford; The Art of Software Testing; John Wiley & Sons, New York, NY;
1979; ISBN: 0-471-04328-1; 177 pages.

Paulk, Mark et al; The Capability Maturity Model; Guidelines for Improving the
Software Process; Addison Wesley, Reading, MA; 1995; ISBN: 0-201-54664-7;
439 pages.

Perry, William E.; Data Processing Budgets – How to Develop and Use Budgets
Effectively; Prentice Hall, Englewood Cliffs, NJ; 1985; ISBN: 0-13-196874-2;
224 pages.

206  ◾  Software Development Patterns and Antipatterns

Perry, William E.; Handbook of Diagnosing and Solving Computer Problems;
TAB Books, Inc., Blue Ridge Summit, PA; 1989; ISBN: 0-8306-9233-9; 255
pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach, 6th ed.;
McGraw Hill, New York, NY; 2005; ISBN: 0-07-285318-2.

Putnam, Lawrence H.; and Myers, Ware; Industrial Strength Software – Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; 1997;
ISBN: 0-8186-7532-2; 320 pages.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software On Time,
Within Budget; Yourdon Press, Prentice Hall, Englewood Cliffs, NJ; 1992;
ISBN: 0-13-567694-0; 336 pages.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Royce, Walker E.; Software Project Management: A Unified Framework; Addison
Wesley Longman, Reading, MA; 1998; ISBN: 0-201-30958-0.

Rubin, Howard (Editor); The Software Personnel Shortage; Rubin Systems, Inc.;
Pound Ridge, NY; 1998.

Rubin, Howard; Software Benchmark Studies for 1997; Howard Rubin Associates,
Pound Ridge, NY; 1997.

Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric”;
Software Engineering Journal, Vol. 3; 1988; pp. 30–36.

Starr, Paul; The Social Transformation of American Medicine; (Pulitzer Prize
and Booker in 1984); Basic Books, 1982. This interesting book summarizes
the steps used by the American Medical Association (AMA) to improve
medical education and raise the professional status of physicians. The
same sequence of steps would benefit software engineering.

Strassmann, Paul; Governance of Information Management: The Concept of an
Information Constitution, 2nd ed.; (eBook); Information Economics Press,
Stamford, CT; 2004.

Strassmann, Paul; Information Payoff; Information Economics Press, Stamford,
Ct; 1985.

Strassmann, Paul; Information Productivity; Information Economics Press,
Stamford, CT; 1999.

Strassmann, Paul; The Squandered Computer; The Information Economics Press,
New Canaan, CT; 1997; ISBN: 0-9620413-1-9; 426 pages.

Stukes, Sherry; Deshoretz, Jason, Apgar, Henry; and Macias, Ilona; Air Force
Cost Analysis Agency Software Estimating Model Analysis; TR-9545/008-2;
Contract F04701-95-D-0003, Task 008; Management Consulting & Research,
Inc.; Thousand Oaks, CA; September 30, 1996.

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point
Analysis); John Wiley & Sons, Chichester; 1991; ISBN: 0 471-92985-9; 200
pages.

Thayer, Richard H. (Editor); Software Engineering and Project Management;
IEEE Press, Los Alamitos, CA; 1988; ISBN: 0 8186-075107; 512 pages.

Umbaugh, Robert E. (Editor); Handbook of IS Management, 4th ed.; Auerbach
Publications, Boston, MA; 1995; ISBN: 0-7913-2159-2; 703 pages.

Advancing Software from a Craft to a Profession  ◾  207

Weinberg, Gerald; Quality Software Management – Vol. 2: First-Order
Measurement; Dorset House Press, New York, NY; 1993; ISBN:
0-932633-24-2; 360 pages.

Weinberg, Gerald M.; The Psychology of Computer Programming; Van Nostrand
Reinhold, New York, NY; 1971; ISBN: 0-442-29264-3; 288 pages.

Weinberg, Gerald M.; Becoming a Technical Leader; Dorset House Press; New
York, NY; 1986; ISBN: 0-932633-02-1; 284 pages.

Wiegers, Karl A.; Creating a Software Engineering Culture; Dorset House Press,
New York, NY; 1996; ISBN: 0-932633-33-1; 358 pages.

https://taylorandfrancis.com

BEST-CASE
PATTERNS OF
SOFTWARE
DEVELOPMENT

2

DOI: 10.1201/9781003193128-9

This section shows patterns that lead to software success. The data
comes from actual companies. The first chapter on Corporate Software
Risk Reduction in a Fortune 500 company was based on a major telecom
company whose chairman was troubled by repeated software failures.

The other chapters in this section deal with methods of achieving
excellence, with measures that can prove excellence to C-level execu-
tives, and with continuing excellence through the maintenance cycle as
well as for software development.

https://taylorandfrancis.com

211DOI: 10.1201/9781003193128-10

Chapter 8

Corporate Software Risk
Reduction in a Fortune
500 Company

Introduction
Due to schedule delays, cost overruns, and several canceled software
projects, the Chairman of a Fortune 500 company decided to bring in
outside experts to identify major software risks and develop solutions
for those risks.

Initially, the new risk abatement team reported directly to the
Chairman, which is unusual but effective. The team visited more than
30 software locations in a dozen countries and met with many software
managers and technical personnel.

As the risk abatement program moved into implementation, the head
of the team became a corporate vice president and reported to the cor-
porate chief technology officer (CTO). The Chairman remained an active
participant and received frequent updates about progress of the risk
abatement program throughout its progress.

The corporation was a conglomerate that had grown by acquisition. The
major software groups did not know much about other groups elsewhere
in the company. Many of the individual units were sophisticated in dealing
with local projects. However, large and complex applications that required
multisite coordination and cooperation were not usually successful.

The risk team identified a number of areas where improvements
would be beneficial both for the individual units and for large multiunit

212  ◾  Software Development Patterns and Antipatterns

applications. Among the proposed solutions were establishing corpo-
rate licenses for tools and methods; standardized quality measurements;
and the introduction of pre-test quality control such as inspections and
static analysis.

The risk abatement program operated for four years and achieved
significant improvements in quality, productivity, and elimination of cost
and schedule overruns.

This report describes the method and operation of the risk abate-
ment program and summarizes the results. The final section of this
report provides quantified data on the economic value of corporate
software process improvement programs.

The chairman of a large manufacturing conglomerate was troubled by
several major software failures of projects that were terminated without
being completed. He was also troubled by the dissatisfaction expressed by
customers in the quality of the software the corporation produced. He was
further dissatisfied by the inability of internal software executives to explain
why the problems occurred and what might be done to eliminate them.

At the time the corporation was about to embark on a very inno-
vative new product line that would include sophisticated hardware
components that were significantly ahead of competitive offerings and
contained many unique and patented features. But in order to be effec-
tive in the market, the software that operated the products needed to
be at state of the art levels in terms of quality, reliability, and security.

The chairman had serious doubts as to whether the software com-
ponents would be able to meet the same quality and reliability criteria
as the hardware components. Without top-quality software, the product
lines could not be successful and might not operate well enough to even
be marketed.

Given the track record of the company over the past five years, the
chairman was also concerned that even if the software could be built
well enough to operate effectively, it might be several years late and
well over budget.

The chairman was both energetic and far sighted, and he recognized
that software throughout the corporation needed to be converted from
a liability into an asset. Following are discussions of the features of the
corporate risk reduction program.

A National Talent Search
For a variety of reasons, the chairman felt that solving the corporation’s
software problems required expertise greater than what was available
internally. To that end, he commissioned a national talent search for

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  213

software executives who had been able to bring large and complex soft-
ware products successfully to market.

An executive from IBM was selected to lead the corporate risk
reduction program, but executives from other technical groups such as
General Electric, the Air Force, and other technology enterprises were
soon recruited.

Fact Finding and Software Assessments
At the time the risk reduction program started, the corporation had
about 250,000 employees working in more than 30 countries. But no
one knew how many software employees the corporation had.

In part this was due to the use of ambiguous job titles such as “mem-
ber of the technical staff” in the more technical units. In part it was due
to the fact that while financial reports from all units were consolidated,
human resource data was largely local.

One of the first tasks of the risk-reduction team was to quickly visit
all corporate locations that built software and carry out a census of soft-
ware personnel, methodologies, tools, and other relevant information.

All of the findings were useful and some were surprising to the chair-
man and other officers. Here are a few typical data points.

At the time the project started, corporate software employment was
about 10,000 total personnel.

Development 3,000

Maintenance 4,000

Support 2,000

Management 1,000

Total 10,000

These software workers were divided among some 50 locations in
20 countries. The top location had about 1,200 software personnel.
Several locations had about 500 software personnel, and the remainder
of the locations had smaller groups of 100 or more, with the very small-
est location having only 10 software personnel.

Software Applications in Use
The corporate portfolio of software applications contained about 5,400
applications.

214  ◾  Software Development Patterns and Antipatterns

Internal Applications

IT 1,500

Systems 900

Embedded 600

Support 400

Manufacturing 400

Sub Total 3,800

COTS Applications 1,300

Open source 100

User developed 200

Sub Total 1,600

Total 5,400

The overall size of the corporate portfolio at the time the risk study
began was just over 7,000,000 function points using the method of the
International Function Point Users Group (IFPUG) as the basis of the
size calculation.

In the original study, size was determined by “backfiring” or math-
ematical conversion between source code counts and function points.
Today in 2021, several methods exist for calculating function points
in legacy applications. The Software Risk Master™ (SRM) tool devel-
oped by the author of this book is one. SRM can also size commercial
packages such as Windows 7, Oracle, Linux, and essentially all others.
Software Risk Master™ only takes about 1 minute and 30 seconds to
size any application.

Other tools can analyze legacy code and extract business rules which
can then be turned into a function point prediction. These data mining
tools take about 5 to 10 minutes per application based on application
size. However, these tools can’t be used on commercial packages such
as Oracle and SAP where the source code is not available. It is not clear
if they support all of the 2,500 programming languages, but they do
support at least 25 of the more common languages.

Another interesting fact that was discovered during the fact-finding
assessments was that the total annual costs for the portfolio were about
$1.5 billion per year. That by itself was not surprising, but several sub
costs were alarming.

In the two years prior to the fact-finding assessment, the company
had major and sometimes unbudgeted expenses for these topics.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  215

Software bug repairs $500,000,000

Cancelled projects $68,000,000

Budget overruns $67,000,000

Cyber attacks $35,000,000

Cyber defenses $30,000,000

Quality litigation $15,000,000

Total $715,000,000

More than 300,000 bugs were reported each year against the various
applications in the corporate portfolio.

It was painfully obvious that quality control and security controls in
software needed immediate improvements since almost 50 cents out of
every dollar spent on software was going to defect repairs or security
problems.

Some other findings were troubling but more easily fixed. A few
samples of these other problems are as follows:

	 •	 There were no corporate licenses or purchase agreements with
vendors of tools or methods. Each location or business unit nego-
tiated their own contracts, so no one was gaining benefits from
economies of scale.

	 •	 There was no corporate and very few unit measurement programs
for either quality or productivity. No one at the corporate level had
any idea of how the corporation compared to other similar cor-
porations, or even how the operating units inside the corporation
compared to each other.

	 •	 More than 75 different programming languages were in use
throughout the corporation in random patterns.

	 •	 More than 25 different development methodologies were in use
throughout the corporation in random patterns.

	 •	 More than 600 tools from more than 75 vendors were in use in
random patterns. IBM was the largest single vendor because of
the numbers of mainframes, but dozens of other companies also
had contracts and provided products and services including SAP,
Oracle, PeopleSoft, Computer Associates, Computer Sciences
Corporation, MicroFocus, Mercury, and many others. Each unit had
their own contracts rather than having a corporate contract that
would provide economies of scale.

	 •	 The number of days of training provided to software personnel and
software managers ranged from 0 to 3 days per year per person.

216  ◾  Software Development Patterns and Antipatterns

	 •	 Software personnel number had been increasing at 5% per year for
the past five years, with no sign of any planned reductions in the
future.

After the risk reduction team finished with the fact finding assessments,
the next step was to prepare a presentation for the chairman, the board,
and senior executives to discuss the logistics of risk reduction and pro-
cess improvement.

The Initial Report to the Chairman
Since the chairman had a strong financial and accounting background,
he understood and demanded accurate quantified data. One of the rea-
sons he brought in outside executives to help in the risk reduction
program was because there was a shortage of accurate quantified data
about software in every aspect: personnel, quality, schedules, costs,
occupation groups, and every other measurable topic either had no data
at all or no reliable data.

The basic message to the chairman and the other corporate execu-
tives was essentially the following:

You have a current software headcount of about 10,000 people. The
headcount has been growing at 5% per year and will continue to grow
at that rate for at least five more years unless you intervene.

In round numbers about 50 cents out of every dollar you spend on
software goes to defect removal, canceled projects, or recovering from
cyber-attacks. Your quality control methods lag the state of the art, as
do your security methods.

If the company continues on the current path in nine years you will
have 15,000 software people and in 15 years you will have 20,000 soft-
ware people. You will still be spending 50 cents out of every dollar on
defect repairs and security problems.

Your ability to successfully develop large applications >10,000
function points is currently inadequate. Small projects <1,000 func-
tion points are often successful. Too many large projects are terminated
without completion and all of the rest of your large projects are at least
12 months late when delivered. Quality lags leading corporations and
this is why you spend 50 cents out of every dollar finding and fixing
bugs.

If you fix quality now by using inspections, static analysis, models,
better development methodologies, quality measurements, and better
test methods and some additional tools you can free up about 40% of

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  217

your current software work force for other tasks. These personnel can
either reduce the corporate backlog to zero or they can assist on critical
projects that might be short handed.

If you fix your quality and security problems you can stop increas-
ing software personnel and reach a steady state at about 9,000 people,
which is all the corporation really needs to support its overall popula-
tion and growth plans.

If you fix your quality and security problems you will not have to
worry that the software side of the company is less competent than the
hardware side. They will both be at state of the art levels. This means
that future hybrid products will not be held back by today’s software
problems.

It will cost about $15,000,000 the first year to improve quality, but
you will get a positive return on this investment by the end of the second
year. Quality can be improved by more than 25% per calendar year for
at least five years in a row, and it is the only effective place to start
because defect repairs are your major cost driver at the corporate level.

Although there was some discussion about logistical topics and the
nature of the methods to be deployed, there was no disagreement to the
essential message. The chairman approved and the risk-reduction activi-
ties commenced at once.

The overall set of internal software risk factors noted during the on-
site assessments included the following 25 problems.

Corporate Software Risk Factors Found by
the Initial Assessment
	 1.	Project management: no annual training in state of the art

methods.
	 2.	Project management: no training in cost estimating.
	 3.	Project management: no training in quality estimating.
	 4.	Project management: no training in risk analysis.
	 5.	Project management: no training in schedule planning.
	 6.	Project management: lack of productivity measurements.
	 7.	Project management: partial quality metrics.
	 8.	Project management: total lack of productivity metrics.
	 9.	Project management: incomplete milestone tracking.
	 10.	Quality control: no use of formal design inspections.
	 11.	Quality control: no use of formal code inspections.
	 12.	Quality control: no use of static analysis tools.
	 13.	Maintenance: no use of complexity analysis.

218  ◾  Software Development Patterns and Antipatterns

	 14.	Maintenance: no use of code restructuring tools.
	 15.	Maintenance: inconsistent use of defect tracking tools.
	 16.	Maintenance: no use of inspections on enhancements.
	 17.	No reuse program: requirements.
	 18.	No reuse program: design.
	 19.	No reuse program: source code.
	 20.	No reuse program: test materials.
	 21.	No reuse program: documentation.
	 22.	No reuse program: project plans.
	 23.	Office space: small open offices; high noise levels, many

interruptions.
	 24.	Insufficient meeting/breakout space for team meetings.
	 25.	No large conference facility for lab meetings.

Unfortunately, these 25 problems are endemic in the software industry.
The same set probably applies to about 85% of Fortune 500 companies
even today in 2021.

Another part of the presentation was a proposal to build a major
software engineering lab that could go beyond basic quality improve-
ments and identify or develop software technologies at or beyond the
current state of the art.

It is the role and structure of this software engineering lab that can
serve as a possible model for other major corporations that are dissatis-
fied with the status quo of software and would like to reduce software
risks on major applications.

The Corporate Risk Reduction
Strategy: Fix Quality First
Because quality control and security control were visible weaknesses,
they needed to be fixed first. That brings up an interesting question:
how do you get a disparate corporate organization of 10,000 people
scattered among some 50 locations to adopt better quality methods and
also start quality measurements?

One of the first steps was to send out several pathfinders to the
major software locations. These pathfinders gave presentations to senior
management at the units which mirrored the corporate message:

You have X number of people and they are increasing at 5% per year.
You are spending half of your budget on bug repairs and that will con-
tinue forever unless we can introduce better quality methods.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  219

We are not trying to force inspections, static analysis, and other new
quality methods on your teams against their wills. We would like you to
try the methods on an experimental basis and let the teams decide if the
results are useful.

If your teams do like the methods we can then provide local training
for everyone. We also have corporate licensing agreements that will give
you a substantial discount compared to your local license agreements
for a number of tools and some methods as well.

If your teams don’t like the methods they don’t have to use them, but
you will be responsible for your total unit achieving the same quality
levels as the units that do use them.

One of the best ways of introducing new methodologies, and especially
methods such as inspections that require training, is to treat them as
experiments with the understanding that if the teams don’t like the
results, they won’t be forced to continue. As this happens, inspections
are so effective that the teams almost always do want to continue.

If a few teams reject the idea at first, they soon notice that everyone
is using the new methods and getting great results, so resistance does
not last for long.

Measurement is a more difficult problem. Companies are very politi-
cal and operating units often have rivalries with other operating units.
A consolidated measurement program that tracked every unit using the
same metrics is an alarming idea. The local managers are all afraid that
they won’t look as good as their rivals, so they will resist any attempt
to measure performance. Their usual argument runs along these lines:

Measurement is very important and of course I support it. But our work is so
different and so complex that I don’t think it will work for us….

Since the risk-reduction team had no direct authority over unit man-
agers, we had no way of insisting that measures take place at the
individual units. However, the chairman had a personal interest in
measurements and he made several calls to reluctant unit managers
that convinced them to participate in the new corporate measurement
program.

A final task for the pathfinders was to ask that each unit with a soft-
ware group appoints a local software technology interface point that
would communicate with the new software research group that was
being formed. The reason for this is to have a firm contact point for
mutual exchanges of technical and logistical information.

The corporate team would pass on new information about corporate
licenses for tools and methodologies, and the unit reps would let the

220  ◾  Software Development Patterns and Antipatterns

corporate group know about tools and methods that they might like to
have evaluated for possible corporate licensing.

The overall targets for the corporate risk reduction program included
the following 20 topics that spanned a four-year risk reduction time
span:

Four-Year Software Risk Reduction Targets
	 1.	Set aside 12 days a year for training in software management

topics.
	 2.	Set aside 10 days a year for training in software process improve-

ment topics.
	 3.	Establish local software “centers for excellence” in major software

units.
	 4.	Budget $10,000 per capita for improved tools and training over 4

years.
	 5.	Achieve Level 3 status on the SEI CMM maturity scale.
	 6.	No more than 5% difference between estimated schedules and real

delivery dates.
	 7.	No more than 5% difference between estimated costs and actual costs.
	 8.	Raise defect removal efficiency above 97% as the corporate

average.
	 9.	Reduce defect potentials below 3.0 per function point as the cor-

porate average.
	 10.	Reduce development schedules or intervals by 50% from require-

ments until delivery.
	 11.	Raise development productivity rates by more than 50%.
	 12.	Reduce development costs by more than 40%.
	 13.	Reduce maintenance costs by 50% for first two years of deployment.
	 14.	Achieve more than 50% reusability by volume for design, code, and

test artifacts.
	 15.	Establish an in-house measurement department in every major

software unit.
	 16.	Publish monthly reports on software quality and defect removal.
	 17.	Publish overall results in an annual “state of the art” report for

group executives.
	 18.	Change the office layouts to provide more small meeting rooms.
	 19.	Attempt to improve the soundproofing of development office

space.
	 20.	Experiment with large-scale in-house webinars in place of lab

meetings.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  221

As can be seen, the corporate risk reduction strategy covered a wide
range of software issues. However, since software engineering is not
very sophisticated in 2021, it is necessary to deal with a wide variety of
endemic problems.

Creating a Software Engineering Laboratory
A major aspect of the risk reduction program was the creation of a
new software engineering laboratory reporting to the corporate vice
president of technology. This lab was intended to provide support to all
software units in North America, Europe, and the Pacific Rim.

This lab would eventually grow to a size of about 150 personnel.
It was divided into a number of operating units with the following
responsibilities:

Education

This was one of the first groups formed and one of the largest with
a peak of about 50 personnel. This group was responsible for train-
ing corporate software groups in every country and every operating
unit. Courses in inspections, design techniques, software reuse, quality
measurements, cost estimating, and many others were included in their
curricula. Eventually, about 30 courses were available for both technical
personnel and management personnel.

The education teams travelled widely to many locations and pro-
vided courses on demand, and also courses that were necessary for
quality improvement such as formal inspections and measurements.

External educators were also hired, and some of the following top
experts in the world were used: Dr. Barry Boehm, Dr. Gerry Weinberg,
Tom Gilb, Dr. Fred Brooks, and a number of others.

Applied Technology

The applied technology unit reached a peak of about 30 research person-
nel. It was responsible for examining and certifying methods and tools
that would be helpful to the corporate software community. Once tools
or methods were certified as being valuable, then corporate licenses
would be drawn up with the assistance of the corporate purchasing and
legal departments.

Examples of applied technology tools and methods included inspec-
tions, static analysis tools, automated test tools, cost estimating tools,

222  ◾  Software Development Patterns and Antipatterns

requirements tools, requirements methods such as joint application
design (JAD) and quality function deployment (QFD), design tools,
design methods such as the unified modeling language (UML), and
many others.

The applied technology group also supported corporate reusability
programs by providing information to each operating unit about the
availability of reusable artifacts that had been developed by every unit.
Essentially, this group produced a catalog of corporate reusable soft-
ware assets.

Advanced Technology

This unit reached a peak of about 20 research personnel. It was respon-
sible for designing and building custom solutions that were in advance
of the normal state of the art. This group built a very powerful object-
oriented language, a proprietary design method, and several other inno-
vative tools and methods.

Measurements

This unit reached a peak of about 12 personnel. One of the most visible
gaps in the software groups throughout the corporation was the almost
total lack of effective productivity and quality measurements. The most
unique production of the measurement group was an annual report
which was created at the same calendar time as the corporate annual
report for shareholders, i.e. in the first quarter after the end of a fiscal
year.

The annual software report summarized progress for every major
operating unit, compared current year results to prior year results, and
discussed plans for the next year. The annual report was distributed to
the CEO, chairman, operating unit presidents, and all C level executives
at the CIO, CTO level, and above. This report was a showcase for prog-
ress and demonstrated that investment in better software methods paid
valuable dividends.

Because this annual report was a critical part of the corporate soft-
ware risk reduction program, the following are some of the topics it
contained:

	 •	 Demographic data of software employment in every operating
unit.

	 •	 Benchmark results for annual productivity by operating unit and
type of software.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  223

	 •	 Benchmark results for annual quality by operating unit and type of
software.

	 •	 Annual volumes of customer-reported defects sorted by several
categories.

	 •	 Annual volumes of identified security flaws and security attacks.
	 •	 Annual expenses for defect repairs.
	 •	 Annual expenses for security problems.
	 •	 Comparisons of current year results to prior year results.
	 •	 Predictions of future year results compared to current year results.

Every company should produce such an annual report for execu-
tives. Although much of the data is proprietary and confidential, these
annual reports are among the most effective tools for long-range risk
reductions.

Communications

This unit reached a peak of about 20 people and fulfilled a variety of
functions. They sponsored two large conferences per year. One con-
ference was technical in nature and only open to corporate software
personnel. This conference discussed proprietary technologies. The sec-
ond conference was more public and selected customers, distinguished
academics, and even some competitors were invited. This second con-
ference was intended to be a showcase that illustrated the corporate
commitment to state of the art software engineering practices.

In addition to conferences, the communications group published
monthly newsletters, initiated a series of technical reports by soft-
ware unit authors, and created a very sophisticated software journal
that was modeled after Scientific American Magazine. This magazine
had a two-fold purpose: (1) to provide a suitable venue for innovative
information created by top researchers within the company and (2) to
impress both clients and competitors with the software engineering
expertise of the corporation. This two-fold purpose attracted new cli-
ents and also made it easy to attract top-gun software engineers away
from competitors.

To encourage employees in various operating units to publish, a cor-
porate policy was put in place that all royalties for technical books and
articles published by corporate employees went to the employees. If
the company tried to keep royalties under the Draconian terms of many
employment agreements, no one would be motivated to write. Allowing
authors to keep royalties is the policy adopted by most of the really
innovative high technology companies.

224  ◾  Software Development Patterns and Antipatterns

In addition, the communications group could help with technical
production issues such as graphics production which not all authors are
comfortable doing.

Administration

Like every operating unit, the software engineering laboratory needed
financial personnel, human resource personnel, secretarial support,
and other standard logistical topics. This group fluctuated in size as
demands increased.

Results of the Corporate Risk Reduction Program
Although there was some resistance to change at the beginning of the
program, it soon began to be accepted because the quality improve-
ments occurred within the first few months and continued to get better
for four years.

Since quality improvements were the initial and primary target of the
risk reduction program, Table 8.1 shows the approximate results for the
program over a four-year period.

There were also improvements in development productivity, mainte-
nance productivity, customer satisfaction, and team morale.

After four years of progress with the corporate risk reduction and
process improvement program, there was a major corporate change.
The corporation sold all of the high-technology business and their oper-
ating units and laboratories to another company. About 50% of total
corporate personnel were part of this divestiture.

Table 8.1  Four-Year Improvement from Inspections and Testing Upgrades

Baseline Defect
Potential

Defect
Removal

Delivered
Defects

Percent
Improvement

Month 0 5.25 83% 0.89 0.00%

Month 12 5.15 87% 0.67 75.01%

Month 24 4.65 92% 0.37 55.56%

Month 36 4.30 96% 0.17 46.24%

Month 48 3.60 98% 0.07 41.86%

Note: Table 8.1 expresses data using IFPUG function points.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  225

The acquiring company decided to keep only the manufacturing facil-
ities and close the research labs since they already had similar research
labs of their own. As a result, the software engineering research lab and
several other technical labs in both the U.S. and Europe were closed.

However, informal contacts with the operating units showed contin-
ued success from the risk reduction program.

The corporate risk reduction team established 50 goals that were
targeted over a four-year period (Table 8.2).

These goals and their schedule timelines were shown and approved
by the chairman and top officers as well as by unit executives.

Cost Justifying a Corporate Risk Reduction Program
A major corporate-wide risk reduction and process improvement pro-
gram is of necessity, an expensive proposition. It requires funding
approval at the highest level. It must also generate a positive return on
investment by the end of the second year, and the ROI should continue
to go up in future years. A well-planned corporate risk reduction pro-
gram in an “average” Fortune 500 company should return at least $10.00
for every $1.00 spent over a four-year time window.

The most obvious value for a risk reduction program will be reduc-
tion in costs for software defect repairs, security attacks, and other nega-
tive cost elements.

However, a successful risk reduction program will have subtle and
less obvious benefits. For example in this case study, the program would
free up about 1,000 personnel from defect repair tasks and make them
available for more productive work such as reducing the corporate
backlog of applications.

Since a successful risk reduction program will lead to shorter sched-
ules, this means quicker revenue streams for commercial products with
software components as key features.

The total direct costs of the software risk reduction program for
the software engineering lab was about $18,000,000 per year. This is a
major expense and therefore needs to demonstrate a positive return on
investment.

The operating unit costs across the 50 units with software were about
$25,000.000 per year or roughly $2,500 per capita. These costs were for
training and the deployment of selected tools and methods (Table 8.3).

As pointed out earlier, risk reduction and software process improve-
ment are not inexpensive. In this case study, a total of $10,000 per capita
was set aside for risk and process improvement expenses such as train-
ing, tool acquisition, consulting fees, etc.

226  ◾  Software Development Patterns and Antipatterns

Table 8.2  Four-Year Sequence of Risk Reduction Tasks

Recommendations/Goals Schedule Months

1 Evaluate security flaws in portfolio 1

2 Use security inspections for new apps 1

3 Evaluate agile before adoption 2

4 Use static analysis where possible 3

5 Include quality in outsource contracts 4

6 Use Code inspections >500 FP 4

7 Use Design inspections >1,000 FP 4

8 Use formal estimates >1,000 FP 6

9 Use formal milestones >1,000 FP 6

10 Deploy TSP/PSP on key projects 6

11 Deploy RUP on key IT projects 6

12 Establish corporate education curricula 6

13 Use formal defect tracking 7

14 Measure defect detection efficiency (DDE) 8

15 Measure defect removal efficiency (DRE) 8

16 Eliminate all error-prone modules 9

17 Use “data mining” on legacy apps 9

18 Use formal change control 9

19 Include quality in executive appraisals 12

20 Measure customer satisfaction 12

21 Measure delivered defects 12

22 Pilot studies of QFD 12

23 Pilot studies of SOA 12

24 Use JAD on IT >1,000 FP 12

25 Use six-sigma for embedded software 12

26 Use six-sigma for systems software 12

27 Achieve >95% defect removal 12

28 Improve defect repair time by 25% 12

29 Train 6 function point counters 12

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  227

The software personnel in the case study were stated to comprise
10,000 workers and managers, which implies that the total expenses for
software process improvement activities amounted to $100,000,000 over
a four-year period.

A cost of $100,000,000 over four years is a large number. That brings
up the question of what kinds of savings will be generated? This ques-
tion can be answered but it is a complex question because the savings
will change every year.

Table 8.4 shows the current costs for various risk-related work activi-
ties and the projected savings from the risk reduction program.

Recommendations/Goals Schedule Months

30 Provide 5 days of management training 12

31 Perform annual assessments 12

32 Perform annual benchmark studies 12

33 Reduce bad fixes to <2% 14

34 Adopt major ISO quality standards 14

35 Provide 10 days of staff training per year 18

36 Adopt function point metrics 18

37 Defect potentials <3.0 per FP 18

38 Provide 3 days of executive training 18

39 Quality improves >15% per year 24

40 Eliminate high-severity defects 24

41 Establish corporate skills inventory 24

42 Average > Level 3 on CMM 36

43 Improvement budget > $10,000 per cap. 36

44 Productivity gains >10% per year 36

45 Reduce Cost overruns <5% 36

46 Reduce Schedule slippage <5% 36

47 Requirements creep <0.5% 36

48 Cancelled projects = 0 48

49 Renovate critical applications 48

50 Achieve CMMI 5 in key units 48

Table 8.2  (Continued)

228  ◾  Software Development Patterns and Antipatterns

As can be seen from Tables 8.3 and 8.4, the corporate risk reduction
program was expected to yield direct savings of about $655,000,000 per
year for a cost of $43,000,000 per year. This is an ROI of about $15 for
every $ 1 expended. However, there are additional and more subtle ben-
efits that can also be calculated.

A software group with a total employment of 10,000 personnel will
normally be able to develop about 420,000 function points per year
and maintain about 1,250,000 function points per year. Although the
situation is more complex in real life, let us assume that 50% of per-
sonnel are on the development side and 50% of the personnel are on
the maintenance side. To further simplify, let us assume that half of the
$100,000,000 for process improvements will go to the development side
and half will go to the maintenance side.

Cost Recovery on the Development Side

Assume that the original baseline average productivity was 7 function
points per staff month for development, which amounts to 84 function

Table 8.3  Annual Costs for the Risk Reduction Program

Annual Costs

Software Research Lab costs $18,000,000

Unit annual costs $25,000,000

Total $43,000,000

Table 8.4  Target Cost Reductions from the Corporate Risk Program

Major Software Risks Annual Costs Target Amount Savings

Excessive bug repairs $500,000,000 $75,000,000 $425,000,000

Cost overruns $68,000,000 $10,000,000 $58,000,000

Schedule overruns $67,000,000 $5,000,000 $62,000,000

Canceled projects $50,000,000 $5,000,000 $45,000,000

Loss of customers $25,000,000 $2,000,000 $23,000,000

Litigation: breach of contract $15,000,000 $0 $15,000,000

Security attacks $30,000,000 $3,000,000 $27,000,000

Total $755,000,000 $100,000,000 $655,000,000

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  229

points per year per person. Assuming 5,000 development personnel and
84 function points per year, the annual rate of new work is 420,000
function points.

Since 5,000 personnel with fully burdened compensation rates of
$120,000 per year have annual expenses of $600,000,000, it can be
seen that the development cost per function point for the organization
amounts to roughly $1,429 per function point for new function points
added to the corporate inventory.

Without the process improvement program, the development group
would have created 1,680,000 new function points over the four-year
period shown in the case study. However, as a result of the improvement
program, assume the average rate went from 7 to about 10 function
points per month over the four-year improvement program.

Thus instead of creating 1,680,000 function points in four years, the
same group of 5,000 development personnel would be able to create
600,000 function per year or 2,400,000 function points in the same four-
year period.

Using only the principles of cost recovery, the 720,000 additional
function points at a value of $1,429 per function point means addi-
tional corporate software assets worth $1,028,880,000 were created as a
byproduct of an investment of $43,000,000 per year. These are not cost
reductions but actual assets that might be added to the corporate books.

Because inspections and static analysis tools make significant
improvements in software quality before testing begins, a major focus
of improved performance will be in the test and quality control areas. It
can be expected that fewer bugs will be found during testing, which can
lead to fewer builds and fewer test runs, and hence fewer test personnel
combined with much quicker test schedules.

Indeed improving quality exerts the greatest overall impact from
process improvements. As a result of process improvements that include
inspections and static analysis, probably 25% of test personnel will
become available for other assignments.

Cost Recovery on the Maintenance Side

An even more significant aspect of cost recovery can be achieved on the
maintenance side of the case study. Of the 5,000 personnel on the main-
tenance side, about 2,500 will be working on enhancements. Obviously,
these personnel will be more productive too, so value will be associated
with their higher output.

The other 2,500 maintenance personnel spend much of their time
on software defect repairs. Now fixing bugs has been a necessary and
expensive activity for software groups ever since the industry began.

230  ◾  Software Development Patterns and Antipatterns

Although bug repairs are needed to stay in business, every dollar spent
on fixing bugs after a product is released is really a subtraction from the
bottom line and should be viewed as a liability.

The greatly improved quality levels associated with the risk reduc-
tion and process improvement program will probably cut down the
number of full-time staff working on bug repairs from 2,500 down to
about 1,500 and hence free up 1,000 personnel for other assignments.

This means that the software risk reduction and process improve-
ment program will unexpectedly free up about 10% of the total soft-
ware employment, or a set of 1,000 experienced personnel, who are
no longer going to be locked into heavy-duty bug repairs and customer
support tasks.

This is the basis of the earlier statement that the corporation only
needed 9,000 software people to support the operating units.

Assuming $120,000 a year for burdened compensation that was stated,
this means a possible savings of $120,000,000 a year. The following are
several options, which the corporate operating unit executives can con-
sider as to how to best utilize the windfall of 1,000 spare personnel:

	 1.	They can be reassigned to development and thereby raise software
production by about 120,000 function points per year. At the
assumed cost of $1,429 per function point, this would supply
added value at a rate of $171,480,000 per year.

	 2.	They could be assigned to maintenance projects not discussed in
this report such as projects which have been put on hold due to
lack of resources. Many companies have projects that are more or
less frozen, and these include many enhancements to legacy appli-
cations. Thus, the windfall of extra maintenance staffing could be
used to modernize many aging applications that might otherwise
continue in some disrepair.

	 3.	They can be “downsized” or transferred to other labs and locations
within the company and removed from local payrolls. However,
since most locations have a shortage of software personnel, this is
unlikely to occur.

Empirical observations indicate that restructuring of aging applications
and removal of error-prone modules can reduce overall maintenance
costs by more than 50%. Expressed in terms of function point metrics,
changes to existing applications can increase from about 15 function
points per staff month to more than 30 function points per staff month.
The number of customer-reported defects repaired per staff month can
increase from about 8 to more than 12. The maintenance assignment

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  231

scope, or amount of software maintained by one specialist, can increase
from less than 1,000 to more than 3,000 function points.

In any case, the significant increase in software quality and resulting
decrease in software defect repairs is one of the most valuable aspects
of the process improvement program. Here too, returns in the vicinity
of $15.00 can be projected for every $1.00 expended, although the exact
ROI must be calculated for each company and each specific situation.

Asset Value of a Library of Reusable Artifacts

A typical Fortune 500 corporation owns a software portfolio or library
that totals somewhere between 250,000 function points to more than
7,500,000 function points of software applications. The corporate port-
folio for this case study totaled to about 7,000,000 function points.

Prior to the commencement of the formal risk reduction and process
improvement program, about 15% of this volume was derived from reus-
able materials. However, much of the normal day to day reuse is in the
form of “private” reuse by individual technical personnel. Private reuse
may be valuable to individual programmers, but much of the value is
invisible in the sense of having any tangible value on corporate books.

As a result of the emphasis on formal reuse as part of the planned
risk reduction and process improvement program, the total volume of
reusable artifacts owned by the enterprise may total to 500,000 function
points after four years.

A library of certified reusable artifacts is a valuable corporate asset.
However, the value of a library of reusable software assets may have tax
consequences in the United States, so companies are advised to seek
legal counsel about the implications of Internal Revenue Service Code
Rule 482.

The essence of Rule 482 is that when one division or affiliate in
a controlled group of related corporations such as a conglomerate or
multinational company provides goods or services to another division,
these goods or services may be treated by the IRS as though they were
taxable income to the receiving division. This is potentially a “stake
through the heart” of a formal corporate reuse program in multinational
corporations.

For example, if Division A of Mega Company in San Jose supplies
1,000 function points of reusable artifacts to Division B in Boston, then
the transfer may be treated as a taxable transaction by the IRS.

Of course, if the enterprise is not a U.S. corporation or if the transfers
are made abroad, such as transferring reusable assets between London
and Paris, then Rule 482 may not apply.

232  ◾  Software Development Patterns and Antipatterns

In any case, a formal library of reusable artifacts is a valuable corpo-
rate asset and that raises questions of how to determine the value. Since
reusable artifacts are more difficult to develop than normal software,
their costs are often about 30% to 50% higher than “normal” artifacts of
the same nature.

Let us assume that the case study company has developed a library
of 100,000 function points of reusable materials at an average cost of
$2,000 per function point. Thus, the replacement value of these artifacts
would amount to $200,000,000.

However, if each of these reusable artifacts is reused an average of
10 times, and each instance of reuse saves 70% of normal development
costs, then the effective value of the library of reusable artifacts would
amount to about $980,000,000. This value assumes a “normal” develop-
ment cost of about $1,400 per function point where each reused func-
tion point saves 70% or $980.

As can be seen, calculating the real value of a library of reusable
artifacts is a fairly complex situation. The replacement costs of the reus-
able assets themselves can be calculated fairly easily. However, the true
business value of the library of reusable artifacts is more complex and
requires analysis of normal development costs, the effectiveness of the
reusable materials in reducing those costs, and the number of times
each artifact is reused during its life expectancy.

These calculations assume reusable artifacts that are of zero-defect
status. If any of the reusable artifacts contain serious flaws or bugs (say
a latent year 2,000 bug embedded in a reusable module), then the value
of the reusable artifact will be degraded by the recall and repair costs.

Adding Value through Shorter Development Schedules

One of the primary benefits of a software risk reduction and process
improvement program is the ability to shorten typical software devel-
opment schedules by 50% to 70% compared to the initial baseline. The
main technology for achieving shorter schedules is of course having
significant volumes of reusable artifacts available.

The direct beneficiaries of the shorter development schedules are the
clients and users of the software applications that result. There may well
be substantial financial benefits accruing from these shorter schedules,
but the quantification of such values must be derived from the nature of
the business activities that can commence earlier or from the business
improvements that result from more rapid turnaround times.

For example, if a company can bring out a new product 50% faster
than their main competitors as a result of their software process

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  233

improvement activities, then no doubt significant business value and
revenues will result. However, quantifying this value requires specific
knowledge about the revenue stream of the product in question and
does not lend itself to abstract generalization.

Adding Value through Higher Revenues

Thus far we have discussed value only in the form of cost recovery
to recoup the $100,000,000 investment in risk reduction and process
improvement by lowering in-house development costs and raising inter-
nal productivity rates.

However if some of the software is part of marketed products, or is
itself commercially marketed, then the software process improvement
program can also generate value by raising revenues.

The following three aspects of the process improvement program
can benefit software-related revenue streams:

	 1.	The shorter development schedules will get products to the market
faster.

	 2.	The higher quality levels will increase market shares.
	 3.	The higher quality levels will reduce maintenance and warranty

costs.

These three phenomena are both known to occur when software pro-
cesses are improved, but their value is too specific to individual products
and to focused markets to allow general rules of thumb to be developed.

Adding Value from Disaster Avoidance

Because many large software projects are cancelled or fail to perform
when installed, an additional value of process improvement is that of
avoiding the consequences of software disasters. Unfortunately, this
kind of value is hard to quantify. When disasters do occur, their costs
are highly visible. But if no disasters occur, then there is no way of being
sure how many might have occurred under less stringent development
practices.

For the U.S. as a whole, cancelled projects cost about 10% more
than successfully completed projects of the same, but obviously pro-
vide zero value combined with massive losses. For large corporations
that are building software applications >10,000 function points in size,
one of the greatest value topics from process improvement is that of
reduced risks of outright failure. For the company cited in this case

234  ◾  Software Development Patterns and Antipatterns

study, cancelled projects would accrue costs of more than $1,600 per
function point as opposed to only $1,400 per function point for success-
ful projects.

Adding Value from Reduced Litigation Risk

The author of this book often works as an expert witness in software
lawsuits where applications either did not get finished or worked so
poorly when deployed as to be unusable. Litigation costs can be enor-
mous, and litigation can absorb hundreds of staff and executive hours
for several years. Here too the value of litigation avoidance is hard to
quantify.

Adding Value from Improved Staff and Management Morale

No one likes to work on poorly planned and carelessly executed proj-
ects. Everyone likes to work on projects that are successful and yield
good customer satisfaction. Therefore another form of value from pro-
cess excellence is very high morale levels on the part of both managers
and staff. This in turn yields very low voluntary attrition rates, and a very
good “team spirit” among the software community. If voluntary employ-
ment declines from 3% per year to less than 1% per year, it is possible to
quantify the savings in recruitment and training costs. However, collect-
ing the data for this kind of value analysis is outside the scope of normal
quality and productivity measurements.

Adding Value from Recruiting and Keeping
Top-Ranked Personnel

One interesting phenomenon was first noted in the 1970s and remains
true in 2011. Technical personnel who quit a company voluntarily are
often the best qualified and have the highest appraisal scores. The fol-
lowing are two reasons for this: (1) top technical personnel are the
most frustrated with poor performance and bad management; (2) top
technical personnel are the ones most likely to be sought by other com-
panies and professional recruiters. Therefore once a company gets a
reputation in the industry as being a high-performance organization,
they can attract the best people in the industry. Of course this means
that companies with excellent technological prowess must also have
good compensation and benefits plans.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  235

Adding Value from Customer Loyalty

Customers quickly learn to avoid vendors with shoddy goods. Conversely,
customers tend to buy multiple products from vendors with excellent
manufacturing and customer support quality levels. Therefore, an invest-
ment in achieving software excellence will yield returns through cus-
tomer loyalty. Here too the data for this kind of value analysis is outside
the scope of normal quality and productivity measurements.

Overall Value from Effective Process Improvements

At the start of the four-year process improvement program, the corpo-
ration had 10,000 personnel and an annual budget of $1,200,000,000.
After a few years 1,000 maintenance personnel became available for
other work due to better quality. This is the basis for the earlier asser-
tion that the company only needed 9,000 software personnel.

The tangible values of the improvement program were to increase
annual function point production from 126,000 function points over a
three-year period to 180,000 function points. The additional function
points have a replacement value of more than $77,000,000.

The maintenance savings due to better quality freed up 100 main-
tenance personnel which indicate savings of $12,000,000 per year or
about $28,000,000 for the three-year period (no savings occur for the
first six months).

The asset value of a library of 100,000 reusable function points is
about $200,000,000. Of course each reusable function point generates
savings of about $980 each time it is utilized. Assuming an average of
10 reuses and reusable function points, the savings would be about
$98,000,000.

Not all risk reduction and process improvement programs are as suc-
cessful as the one discussed in this book. Indeed some are abandoned
or have only minimal value. But a well-planned process improvement
program can generate a wide array of both significant cost savings and
also recurring revenues.

Summary and Conclusions
The phrase “software risk reduction” covers a very wide spectrum of
methodologies, tools, quality control methods, project management
functions, and enhanced volumes of reusable artifacts.

236  ◾  Software Development Patterns and Antipatterns

Although the literature on software risk reduction and process
improvement is quite large and growing larger, much of the informa-
tion is subjective and deals with qualitative factors. If the concept of
risk reduction and software process improvement is going to become a
permanent fixture of the software engineering world, then it must begin
to augment subjective observations with quantitative information based
on empirical baseline and benchmark studies.

This report covers some of the highlights of the economics of risk
reduction software process improvement using a case study approach.
But this report is intended simply to illustrate the basic structure of
software process risk reduction economics. There is a continuing need
for more extensive coverage in the software literature using both case
studies and statistical analysis of software risk reduction and process
improvement results.

Qualitative information is useful but not sufficient. Software risk
reduction process improvements need to be firmly based on solid
empirical findings.

Appendix A: Master List of 210 Corporate
Software Risks
The following list of 210 software risks show how diverse software risks
can be. Not only technical risks but also sociological and ethical risks
are common.

One of the most widespread risk categories is that of “knowledge
risks” or the fact that many software engineers and project managers are
not properly trained for the work at hand (Table 8.A.1).

References and Readings
Gack, Gary; Managing the Black Hole: The Executives Guide to Software

Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Galorath, Dan; Software Sizing, Estimating, and Risk Management: When
Performance is Measured Performance Improves; Auerbach Publishing,
Philadelphia, PA; 2006; ISBN: 10: 0849335930; 576 pages.

Garmus, David; and Herron, David; Function Point Analysis – Measurement
Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  237

Table 8.A.1  Master List of 210 Software Risk for 2020

Severity

Health and Safety Risks

1 Risk of application failure causing death 10.00

2 Risk of application failure causing serious illness or injuries 10.00

3 Risk of application violating FDA or other regulations 9.95

4 Risk of application failure damaging medical activates 9.90

5 Risk of application causing environmental damages 9.80

6 Risk of team fatigue due to excessive overtime 8.00

Security Risks

7 Risk of loss or theft of proprietary source code 10.00

8 Risk of electromagnetic pulse shutting down software 10.00

9 Risk of application failure degrading national security 10.00

10 Risk of data theft from application 10.00

11 Risk of physical security breach at software locations 10.00

12 Risk of poor security flaw removal 9.90

13 Risk of security flaws in application 9.75

14 Risk of poor security flaw prevention 9.60

15 Risk of violating the 25 SANS coding problems 9.50

16 Risk of security flaws in uncertified reused code 9.50

17 Risk of deliberate “back door” traps placed by developers 9.00

18 Risk of theft of intellectual property 8.50

Quality Risks

19 Risk of excessive defect levels: > 6.0 per function point 10.00

20 Risk of defect removal efficiency <85% 10.00

21 Risk of poor data quality with serious errors 9.90

22 Risk of inadequate defect removal methods, low efficiency 9.80

23 Risk of poor estimation of bugs, defect removal efficiency 9.50

24 Risk of premature application release with excessive bugs 9.50

25 Risk of not using pre-test inspections: requirements, design 9.50

(Continued)

238  ◾  Software Development Patterns and Antipatterns

Severity

26 Risk of poor test case and test script design methods 9.40

27 Risk of poor test library controls 9.40

28 Risk of testing with amateurs rather than professionals 9.40

29 Risk of high code complexity that raises “bad fixes” > 10% 9.25

30 Risk of error-prone modules in application 9.25

31 Risk of claiming to use inspections, but only partially 9.00

32 Risk of late and inadequate defect tracking 9.00

33 Risk of poor test coverage 8.75

34 Risk of poor quality in COTS packages 8.75

35 Risk of insufficient Quality Assurance (QA) reviews 8.75

36 Risk of poor quality in reused components 8.50

37 Risk of not using pre-test static analysis of source code 8.50

38 Risk of understaffing Quality Assurance 8.25

39 Risk of poor quality in outsourced projects 8.25

40 Risk of errors or bugs in test cases 8.00

41 Risk of low operational reliability 7.50

42 Risk of poor quality by open-source providers 7.50

43 Risk of duplicate test cases 7.00

Legal Risks

44 Risks of patent litigation from competitors 10.00

45 Risk of Federal anti-trust litigation for dominant applications 10.00

46 Risk of inadequate warranties for quality and security 9.75

47 Risk of Sarbanes Oxley litigation 9.75

48 Risk of incurring contract penalties 9.50

49 Risk of poorly constructed contracts that leave out risks 9.50

50 Risk of poorly constructed contracts that leave out quality 9.50

51 Risk of former employees violating non-compete agreements 9.25

52 Risk of breach of contract litigation on outsourced projects 9.00

53 Risk of application failure causing violations of laws 9.00

Table 8.A.1  (Continued)

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  239

Severity

54 Risk of “cease and desist” warnings of alleged patent flaws 8.25

Traditional Software Risks

55 Risk of toxic requirements that should be avoided 10.00

56 Risk of inadequate progress tracking 9.80

57 Risk of development tasks interfering with maintenance 9.70

58 Risk of maintenance tasks interfering with development 9.50

59 Risk that designs are not kept updated after release 9.25

60 Risk of unstable user requirements growth >1% per month 9.25

61 Risk that requirements are not kept updated after release 9.25

62 Risk of clients forcing arbitrary schedules on team 9.10

63 Risk of omitting formal architecture for large systems 9.10

64 Risk of inadequate change control 9.00

65 Risk of executives forcing arbitrary schedules on team 8.80

66 Risk of not using a project office for large applications 8.75

67 Risk of missing requirements from legacy applications 8.50

68 Risk of missing user requirements due to user uncertainty 8.00

69 Risk of slow application response times 8.00

70 Risk of inadequate maintenance tools and workbenches 8.00

71 Risk of application performance problems 8.00

72 Risk of poor support by open-source providers 7.75

73 Risk of reusing code without test cases or related materials 7.00

74 Risk of excessive feature “bloat” 7.00

75 Risk of inadequate development tools 6.50

76 Risk of poor help screens and poor user manuals 6.00

77 Risk of slow customer support 6.00

78 Risk of inadequate functionality 6.00

Financial Risks

79 Risk of application failure causing major financial loss 10.00

80 Risk of consequential damages > $1,000,000,000 10.00

(Continued)

Table 8.A.1  (Continued)

240  ◾  Software Development Patterns and Antipatterns

Severity

81 Risk of project termination due to poor quality, overruns 10.00

82 Risk of features slipping from planned release 9.60

83 Risk of significant project cost overruns 9.50

84 Risk of project value dipping below project costs 9.50

85 Risk of “leakage” from software cost and historical data 9.00

86 Risk of bankruptcy by vendor 9.00

87 Risk of negative earned value for project 9.00

88 Risk of significant project schedule overruns 8.90

89 Risk of application failure causing moderate financial loss 8.75

90 Risk of cost overruns on outsourced projects 8.50

91 Risk of schedule delays on outsourced projects 8.50

92 Risk of unbudgeted costs from security attacks 8.35

93 Risk of unbudgeted costs from litigation 8.30

94 Risk of inadequate cost accounting 8.00

95 Risk of bankruptcy by client 8.00

96 Risk of application violating standard accounting practices 7.00

Business Risks

97 Risk of missing critical market window 10.00

98 Risk of losing clients due to faulty software 9.95

99 Risk of application failure damaging business data 9.90

100 Risk of application failure damaging distribution 9.85

101 Risk of application failure damaging transportation 9.80

102 Risk of application failure affecting operation of equipment 9.80

103 Risk of application failure damaging retail activities 9.75

104 Risk of competitive applications with better features 9.75

105 Risk of application obsolescence before completion 9.70

106 Risk of application failure damaging law enforcement 9.70

107 Risk of application failure damaging government activities 9.60

108 Risk of application failure damaging communications 9.50

Table 8.A.1  (Continued)

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  241

Severity

109 Risk of poor governance by executives 9.50

110 Risk of application failure damaging manufacturing 9.50

111 Risk of application failure damaging stock values 9.50

112 Risk of application failure shutting down vital equipment 9.25

113 Risk of rubber-stamp phase reviews without real oversight 9.20

114 Risk of poor or missing project historical data 8.50

115 Risk of executive and client dissatisfaction with project 8.50

116 Risk of poor support by COTS vendors 8.25

117 Risk of cost and schedule overruns for ERP deployment 8.25

Social Risks

118 Risk of significant layoffs of project team 10.00

119 Risk of poor managers driving out top technical staff 10.00

120 Risk of termination for cause of key technical personnel 10.00

121 Risk of ignoring learning curve for new methodologies 10.00

121 Risk of voluntary attrition of key technical personnel 9.00

122 Risk of poorly planned organization structures 9.00

123 Risk of team sizes too small for application 9.00

124 Risk of too few personnel per manager (< 5) 9.00

125 Risk of too many personnel per manager (> 15) 9.00

126 Risk of poor organization structures 8.80

127 Risk of low team morale from excessive schedule pressure 8.00

128 Risk of poor communication among supply chain members 8.00

129 Risk of stakeholder disputes that change requirements 7.75

130 Risk of poor communications among team members 7.70

131 Risk of team size too large for application 7.00

132 Risk of low user satisfaction levels 7.00

133 Risk of inadequate user training for complex new software 7.00

134 Risk of poor communications with stakeholders 7.00

135 Risk of major management disagreements 6.50

(Continued)

Table 8.A.1  (Continued)

242  ◾  Software Development Patterns and Antipatterns

Severity

136 Risk of strikes by unionized personnel 8.00

External Risks

137 Risk of natural disaster affecting projects 8.00

138 Risk of loss of stakeholders or clients during development 7.00

139 Risk of accidental loss of key personnel during development 5.75

140 Risk of serious medical problems of key personnel 5.70

Ethical Risks

141 Risk of fraudulent progress/status reports 10.00

142 Risk of project managers ignoring risks 9.50

143 Risk of project managers concealing risks from clients 9.50

144 Risk of non-compete violations by former employees 9.50

145 Risk of false claims by methodology enthusiasts 9.15

146 Risk of false claims of high CMMI levels 9.00

147 Risk of claiming to use a methodology, but not really doing
so

8.50

148 Risk of false claims by outsource vendors 8.00

149 Risk of false claims by COTS vendors 8.00

Knowledge Risks

150 Risk of users not fully understanding their own requirements 10.00

151 Risk of inadequate requirements analysis for large systems 10.00

152 Risk of adopting new methods as a cult rather than a
technology

9.75

153 Risk of effective solutions not being known by managers 9.50

154 Risk of effective solutions not being known by team 9.75

155 Risk of inadequate sizing prior to funding project 9.70

156 Risk of inadequate schedule planning 9.60

157 Risk of late start in deploying risk solutions 9.50

158 Risk of manual estimates for large applications 9.50

159 Risk of excessive optimism in initial plans, estimates 9.50

160 Risk of estimates being rejected due to lack of benchmarks 9.45

Table 8.A.1  (Continued)

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  243

Severity

161 Risk of using unsuitable development methodology 9.40

162 Risk of poor project oversight by clients 9.25

163 Risk of “good enough” fallacy applied to application 9.00

164 Risk of insufficient project management skills 9.00

165 Risk of poorly trained management personnel 9.00

166 Risk of inadequate user-error prevention 9.00

167 Risk of team skills not matching project needs 9.00

168 Risk of poorly trained maintenance personnel 8.60

169 Risk of inadequate defect prevention 8.50

170 Risk of poorly trained development personnel 8.50

171 Risk of poorly trained support personnel 8.40

172 Risk of poorly trained test personnel 8.25

173 Risk of application architectural flaws 8.25

174 Risk of inadequate user guides and HELP screens 8.00

175 Risk of poor usability and poor interfaces 8.00

176 Risk of poorly trained QA personnel 8.00

177 Risk of international misunderstandings for global projects 8.00

178 Risk of inadequate programming languages 7.75

179 Risk of insufficient technical skills 7.25

180 Risk of application violating international standards 5.50

Enterprise Risks

181 Risks of obsolete or cumbersome enterprise architecture 10.00

182 Risks of difficult data migration from legacy applications 10.00

183 Risk of merger or takeover causing layoffs and cancellations 10.00

184 Risks from disconnected “stove pipe” applications 9.00

185 Risks of fragmented software ownership in enterprise 9.00

186 Risks of uncoordinated redundant applications and data 8.00

187 Risks of uncoordinated multinational development groups

(Continued)

Table 8.A.1  (Continued)

244  ◾  Software Development Patterns and Antipatterns

Severity

Merger, Acquisition, and Venture Capital Risks

188 Risk of dilution of ownership due to multiple funding rounds 10.00

189 Risk of cutting R&D after mergers or venture investment 9.50

190 Risk of losing key personnel after mergers. 9.50

191 Risk of bankruptcy within three years of venture funding 9.50

192 Risk of inadequate due diligence prior to completion 9.00

193 Risk of eventual competition by dissatisfied personnel 9.00

194 Risk of poor integration of teams after mergers 9.00

195 Risk of venture-backed boards eliminating key technical staff 8.75

196 Risk of venture-backed boards damaging business prospects 8.50

197 Risk of bankruptcy within three years of mergers 7.50

Technology Risks

198 Risk of hardware changes making application obsolete 9.00

199 Risk of hardware changes requiring extensive rework 8.50

200 Risk of related software changes requiring rework 8.00

201 Risk of supply chain changes requiring rework 7.00

202 Risk of standards changes requiring rework 7.00

203 Risk of unplanned directive to adopt multiple hardware
platforms

7.00

204 Risk of withdrawal of hardware/software platforms 7.00

205 Risk of unplanned directive to adopt multiple software
platforms

7.00

Embedded Software Risks

206 Risk of software problems raising hardware liabilities 10.00

207 Risk of software problems causing unrepairable failures 10.00

208 Risk of software problems causing patent violations 10.00

209 Risk of software problems delaying hardware products 9.00

210 Risk of software raising hardware warranty costs 9.00

Averages 8.85

Table 8.A.1  (Continued)

Corporate Software Risk Reduction in a Fortune 500 Company  ◾  245

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10: 0201631814.

Humphrey, Watts; TSP – Leading a Development Team; Addison Wesley, Boston,
MA; 2006; ISBN: 0-321-34962-8; 307 pages.

Jones, Capers; The Technical and Social History of Software Engineering,
Addison Wesley; 2014.

Jones, Capers; Early Sizing and Early Risk Analysis; Capers Jones & Associates
LLC; Narragansett, RI; July 2011.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley Longman, Boston, MA; 2011; ISBN: 10: 0-13-258220-1; 585
pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, New York, NY;
2008; ISBN: 978-0-07-150244-3; 662 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007a;
ISBN: 13: 978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; ISBN: 0-201-48542-7; 657 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;
Software Productivity Research, Inc.; Burlington, MA; September 2007b;
53 pages; (SPR technical report).

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Radice, Ronald A.; High Quality Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Royce, Walker; Software Project Management – A Unified Framework; Addison
Wesley, Boston, MA; 1999; ISBN: 0-201-30958-0; 406 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley
Longman, Boston, MA; 2002; ISBN: 0-201-73485-0; 232 pages.

https://taylorandfrancis.com

247DOI: 10.1201/9781003193128-11

Chapter 9

Achieving Software
Excellence

As of the year 2021, software applications are the main operational
component of every major business and government organization in
the world. But software quality is still not good for a majority of these
applications. Software schedules and costs are both frequently much
larger than planned. Cyber-attacks are becoming more frequent and
more serious.

This study discusses the proven methods and results for achieving
software excellence. The book also provides quantification of what the
term “excellence” means for both quality and productivity. Formal siz-
ing and estimating using parametric estimation tools, excellent progress
and quality tracking also using special tools, and a comprehensive soft-
ware quality program can lead to shorter schedules, lower costs, and
higher quality at the same time.

Introduction
Software is the main operating tool of business and government in 2019.
But software quality remains marginal; software schedules and costs
remained much larger than desirable or planned. Cancelled projects are
about 35% in the 10,000 function point size range and about 5% of soft-
ware outsource agreements end up in court in litigation. Cyber-attacks
are increasing in numbers and severity. This short study identifies the

248  ◾  Software Development Patterns and Antipatterns

major methods for bringing software under control and achieving excel-
lent results.

The first topic of importance is to show the quantitative differences
between excellent, average, and poor software projects in quantified
form. Table 9.1 shows the essential differences between software excel-
lence, average, and unacceptably poor results for a mid-sized project of
1,000 function points or about 53,000 Java statements.

The data comes from benchmarks performed by Namcook Analytics
LLC. These were covered by non-disclosure agreements so specific
companies are not shown. However, the “excellent” column came from
telecom, high-technology, medical device companies; the average from
insurance and manufacturing; and the poor column from state and local
governments:

As stated the data in Table 9.1 comes from the author’s clients, which
consist of about 750 companies of whom 150 are Fortune 500 compa-
nies. About 40 government and military organizations are also clients,
but the good and average columns in Table 9.1 are based on corporate
results rather than government results. State and local governments pro-
vided data for the poor quality column.

Federal Government and defense software tend to have large over-
head costs and extensive status reporting that are not found in the civil-
ian sector. Some big defense projects have produced so much paperwork
that there were over 1,400 English words for every Ada statement and
the words cost more than the source code.

Note that the data in this report was produced using the Namcook
Analytics Software Risk Master™ (SRM) tool. SRM can operate as an
estimating tool prior to requirements or as a benchmark measurement
tool after deployment.

At this point, it is useful to discuss and explain the main differences
between the best, average, and poor results.

Software Sizing, Estimating, and Project
Tracking Differences
High-quality projects with excellent results all use formal parametric
estimating tools, perform formal sizing before starting, and have accu-
rate status and cost tracking during development.

A comparative study by the author of this book on accuracy differ-
ences between manual estimates and parametric estimates showed that
the manual estimates averaged about 34% optimistic for schedules and
costs.

Achieving Software Excellence  ◾  249

(Continued)

Table 9.1  Comparisons of Excellent, Average, and Poor Software Results

Topics Excellent Average Poor

Monthly Costs

  (Salary + overhead) $10,000 $10,000 $10,000

Size at Delivery

  Size in function points 1,000 1,000 1,000

  Programming language Java Java Java

  Language Levels 6.25 6.00 5.75

  Source statements per function
point

51.20 53.33 55.65

  Size in logical code statements 51,200 53,333 55,652

  Size in KLOC 51.20 53.33 55.65

  Certified reuse percent 20.00% 10.00% 5.00%

Quality

  Defect potentials 2,818 3,467 4,266

  Defects per function point 2.82 3.47 4.27

  Defects per KLOC 55.05 65.01 76.65

  Defect removal efficiency (DRE) 99.00% 90.00% 83.00%

  Delivered defects 28 347 725

  High-severity defects 4 59 145

  Security vulnerabilities 2 31 88

  Delivered per function point 0.03 0.35 0.73

  Delivered per KLOC 0.55 6.50 13.03

Key Quality Control Methods

  Formal estimates of defects Yes No No

  Formal inspections of
deliverables

Yes No No

  Static analysis of all code Yes Yes No

  Formal test case design Yes Yes No

  Testing by certified test
personnel

Yes No No

  Mathematical test case design Yes No No

250  ◾  Software Development Patterns and Antipatterns

Topics Excellent Average Poor

Project Parameter Results

  Schedule in calendar months 12.02 13.80 18.20

  Technical staff + management 6.25 6.67 7.69

  Effort in staff months 75.14 92.03 139.98

  Effort in staff hours 9,919 12,147 18,477

Costs in Dollars $751,415 $920,256 $1,399,770

  Cost per function point $751.42 $920.26 $1,399.77

  Cost per KLOC $14,676 $17,255 $25,152

Productivity Rates

  Function points per staff month 13.31 10.87 7.14

  Work hours per function point 9.92 12.15 18.48

  Lines of code per staff month 681 580 398

Cost Drivers

  Bug repairs 25.00% 40.00% 45.00%

  Paper documents 20.00% 17.00% 20.00%

  Code development 35.00% 18.00% 13.00%

  Meetings 8.00% 13.00% 10.00%

  Management 12.00% 12.00% 12.00%

Total 100.00% 100.00% 100.00%

Methods, Tools, Practices

  Development Methods TSP/PSP Agile Waterfall

  Requirements Methods JAD Embedded Interview

  CMMI Levels 5 3 1

  Work hours per month 132 132 132

  Unpaid overtime 0 0 0

  Team experience Experienced Average Inexperienced

  Formal risk analysis Yes Yes No

  Formal quality analysis Yes No No

  Formal change control Yes Yes No

Table 9.1  (Continued)

Achieving Software Excellence  ◾  251

Worse, manual estimating errors increased with application size.
Below 250 function points, manual and parametric estimates were both
within 5%. Above 10,000 function points, manual estimates were opti-
mistic by almost 40%, while parametric estimates were often within 10%.
Overall parametric estimates usually differed by less than 10% from
actual results for schedules and costs, sometimes less than 5%, and were
almost never optimistic.

The parametric estimation tools included COCOMO, Excelerator,
KnowledgePlan, SEER, SLIM, Software Risk Master, and TruePrice. All of
these parametric tools were more accurate than manual cost and sched-
ule estimates for all size ranges and application types.

High-quality projects also track results with high accuracy for prog-
ress, schedules, defects, and cost accumulation. Some excellent projects
use specialized tracking tools such as Computer Aid’s Automated Project
Office (APO) which was built to track software projects. Others use
general tools such as Microsoft Project which supports many kinds of
projects in addition to software.

Average projects with average results sometimes use parametric
estimates but more often use manual estimates. However, some of the
average projects did utilize estimating specialists, who are more accu-
rate than untrained project managers.

Topics Excellent Average Poor

  Formal sizing of project Yes Yes No

  Formal reuse analysis Yes No No

  Parametric estimation tools Yes No No

  Inspections of key materials Yes No No

  Static analysis of all code Yes Yes No

  Formal test case design Yes No No

  Certified test personnel Yes No No

  Accurate status reporting Yes Yes No

  Accurate defect tracking Yes No No

  More than 15% certified reuse Yes Maybe No

  Low cyclomatic complexity Yes Maybe No

  Test coverage >95% Yes Maybe No

Table 9.1  (Continued)

252  ◾  Software Development Patterns and Antipatterns

Project tracking for average projects tends to be informal and use
general-purpose tools such as Excel rather than specialized software
tracking tools such as APO, Jira, Asana and others. Average tracking also
“leaks” and tends to omit topics such as unpaid overtime and project
management.

Poor quality projects almost always use manual estimates. Tracking
of progress is so bad that problems are sometimes concealed rather than
revealed. Poor quality cost tracking has major gaps and omits over 50%
of total project costs. The most common omissions are unpaid overtime,
project managers, and the work of part-time specialists such as business
analysts, technical writers, and software quality assurance.

Quality tracking is embarrassingly bad and omits all bugs found
before testing via static analysis or reviews, and usually omits bugs
found during unit testing. Some poor-quality companies and govern-
ment organizations don’t track quality at all. Many others don’t track
until late testing or deployment.

Software Quality Differences for Best,
Average, and Poor Projects
Software quality is the major point of differentiation between excellent
results, average results, and poor results.

While software executives demand high productivity and short sched-
ules, the vast majority do not understand how to achieve them. Bypassing
quality control does not speed projects up: it slows them down.

The number one reason for enormous schedule slips noted in breach
of contract litigation where the author of this book has been an expert
witness is starting testing with so many bugs that test schedules are at
least double their planned duration.

The major point of this book is: High quality using a synergistic com-
bination of defect prevention, pre-test inspections and static analysis
combined with formal testing is fast and cheap.

Poor quality is expensive, slow, and unfortunately far too com-
mon. Because most companies do not know how to achieve high qual-
ity, poor quality is the norm and at least twice as common as high quality.

High quality does not come from testing alone. It requires defect pre-
vention such as Joint Application Design (JAD), quality function deploy-
ment (QFD) or embedded users; pre-test inspections and static analysis;
and of course formal test case development combined with certified
test personnel. New methods of test case development based on cause–
effect graphs and design of experiments are quite a step forward.

Achieving Software Excellence  ◾  253

The defect potential information in Table 9.1 includes defects from
five origins: requirements defects, design defects, code defects, docu-
ment defects, and “bad fixes” or new defects accidentally included in
defect repairs. The approximate distribution among these five sources
is as follows:

	 1.	Requirements defects 15%

	 2.	Design defects 30%

	 3.	Code defects 40%

	 4.	Document defects 8%

	 5.	Bad fixes 7%

Total Defects 100%

Note that a “bad fix” is a bug in a bug repair. These can sometimes
top 25% of bug repairs for modules with high cyclomatic complexity.

However, the distribution of defect origins varies widely based on the
novelty of the application, the experience of the clients and the devel-
opment team, the methodologies used, and programming languages.
Certified reusable material also has an impact on software defect vol-
umes and origins.

Table 9.2 shows approximate U.S. ranges for defect potentials based
on a sample of 1,500 software projects that include systems software,
web projects, embedded software, and information technology projects
that range from 100 to 100,000 function points.

It is unfortunate that buggy software projects outnumber low-defect
projects by a considerable margin.

Because the costs of finding and fixing bugs have been the #1 cost
driver for the entire software industry for more than 50 years, the most
important difference between excellent and mediocre results is in the
areas of defect prevention, pre-test defect removal, and testing.

All three examples are assumed to use the same set of test stages,
including:

	 1.	Unit test
	 2.	Function test
	 3.	Regression test
	 4.	Component test
	 5.	Performance test
	 6.	System test
	 7.	Acceptance test

254  ◾  Software Development Patterns and Antipatterns

The overall defect removal efficiency (DRE) levels of these 7 test stages
range from below 80% for the worst case up to about 95% for the best
case.

Note that the seven test stages shown earlier are generic and used
on a majority of software applications. Additional forms of testing may
also be used and can be added to SRM for specific clients and specific
projects:

	 1.	Independent testing (mainly government and military software)
	 2.	Usability testing (mainly software with complex user controls)
	 3.	Performance testing (mainly real-time software)
	 4.	Security testing
	 5.	Limits testing
	 6.	Supply-chain testing
	 7.	Nationalization testing (for international projects)

Testing alone is not sufficient to top 95% in DRE. Pre-test inspections
and static analysis are needed to approach or exceed the 99% range of
the best case. Also requirements models and “quality-strong” develop-
ment methods such as team software process (TSP) need to be part of
the quality equation.

Excellent Quality Control

Excellent projects have rigorous quality control methods that include
formal estimation of quality before starting, full defect measurement
and tracking during development, and a full suite of defect prevention,

Table 9.2  Defect Potentials for 1,000 Projects

Defect Potentials Projects Percent

<1.00 5 0.50%

2 to 1 35 3.50%

3 to 2 120 12.00%

4 to 3 425 42.50%

5 to 4 350 35.00%

>5.00 65 6.50%

Total 1,000 100.00%

Achieving Software Excellence  ◾  255

pre-test removal, and test stages. The combination of low defect poten-
tials and high DRE is what software excellence is all about.

The most common companies that are excellent in quality control
are usually the companies that build complex physical devices such
as computers, aircraft, embedded engine components, medical devices,
and telephone switching systems. Without excellence in quality, these
physical devices will not operate successfully. Worse, failure can lead to
litigation and even criminal charges. Therefore, all companies that use
software to control complex physical machinery tend to be excellent in
software quality.

Examples of organizations noted as excellent software quality in
alphabetical order include Advanced Bionics, Apple, AT&T, Boeing, Ford
for engine controls, General Electric for jet engines, Hewlett Packard for
embedded software, IBM for systems software, Motorola for electronics,
NASA for space controls, the Navy for surface weapons, Raytheon, and
Siemens.

Companies and projects with excellent quality control tend to have
low levels of code cyclomatic complexity and high test coverage, i.e. test
cases cover >95% of paths and risk areas.

These companies also measure quality well and all know their DRE
levels. Any company that does not measure and know their DRE is prob-
ably below 85% in DRE.

Excellent quality control has DRE levels between about 97% for large
systems in the 10,000 function point size range and about 99.6% for
small projects <1,000 function points in size.

A DRE of 100% is theoretically possible but is extremely rare. The
author has only noted DRE of 100% in 10 projects out of a total of
about 25,000 projects examined. As it happens the projects with 100%
DRE were all compilers and assemblers built by IBM and using >85%
certified reusable materials. The teams were all experts in compilation
technology and of course a full suite of pre-test defect removal and test
stages were used as well.

Average Quality Control

In today’s world, agile is the new average. Agile development has proven
to be effective for smaller applications below 1,000 function points in
size. Agile does not scale up well and is not a top method for qual-
ity. Agile is weak in quality measurements and does not normally use
inspections, which have the highest DRE of any known form of defect
removal. Disciplined agile development (DAD) can be used successfully
on large systems where vanilla agile/scrum is not effective. Inspections

256  ◾  Software Development Patterns and Antipatterns

top 85% in DRE and also raise testing DRE levels. Among the author’s
clients that use agile, the average value for DRE is about 92% to 94%.
This is certainly better than the 85% to 90% industry average for water-
fall projects, but not up to the 99% actually needed to achieve optimal
results.

Some but not all agile projects use “pair programming” in which two
programmers share an office and a work station and take turns cod-
ing while the other watches and “navigates.” Pair programming is very
expensive but only benefits quality by about 15% compared to single
programmers. Pair programming is much less effective in finding bugs
than formal inspections, which usually bring 3 to 5 personnel together
to seek out bugs using formal methods.

Agile is a definite improvement for quality compared to waterfall
development, but is not as effective as the quality-strong methods of
TSP and the rational unified process (RUP) for larger applications >1,000
function points. An average agile project among the author’s clients is
about 275 function points. DAD is a good choice for larger information
software applications.

Average projects usually do not know defects by origin and do not
measure DRE until testing starts, i.e. requirements and design defects
are under reported and sometimes invisible.

A recent advance in software quality control now frequently used by
average as well as advanced organizations is that of static analysis. Static
analysis tools can find about 55% of code defects, which is much higher
than most forms of testing.

Many test stages such as unit test, function test, regression test, etc.
are only about 35% efficient in finding code bugs, or find one bug out
of three. This explains why 6 to 10 separate kinds of testing are needed.

The kinds of companies and projects that are “average” would
include internal software built by hundreds of banks, insurance compa-
nies, retail and wholesale companies, and many government agencies at
federal, state, and municipal levels.

Average quality control has DRE levels from about 85% for large sys-
tems up to 97% for small and simple projects.

Poor Quality Control

Poor quality control is characterized by weak defect prevention and
almost a total omission of pre-test defect removal methods such as static
analysis and formal inspections. Poor quality control is also character-
ized by inept and inaccurate quality measures which ignore front-end
defects in requirements and design. There are also gaps in measuring
code defects. For example, most companies with poor quality control

Achieving Software Excellence  ◾  257

have no idea how many test cases might be needed or how efficient
various kinds of test stages are.

Companies or government groups with poor quality control also fail
to perform any kind of up-front quality predictions so they jump into
development without a clue as to how many bugs are likely to occur
and what are the best methods for preventing or removing these bugs.

One of the main reasons for the long schedules and high costs asso-
ciated with poor quality is the fact that so many bugs are found when
testing starts that the test interval stretches out to two or three times
longer than planned.

Some of the kinds of software that are noted for poor quality control
include the Obamacare web site, municipal software for property tax
assessments, and software for programmed stock trading, which has
caused several massive stock crashes.

Poor quality control is often below 85% in DRE levels. In fact for
canceled projects or those that end up in litigation for poor quality, the
DRE levels may drop below 80%, which is low enough to be considered
professional malpractice. In litigation where the author of this book has
been an expert witness, DRE levels in the low 80% range have been the
unfortunate norm.

Table 9.3 shows the ranges in DRE noted from a sample of 1,000
software projects. The sample included systems and embedded soft-
ware, web projects, cloud projects, information technology projects, and
also defense and commercial packages.

As can be seen, high DRE does not occur often. This is unfortunate
because projects that are above 95.00% in DRE have shorter sched-
ules and lower costs than projects below 85.00% in DRE. The software

Table 9.3  Distribution of DRE for
1,000 Projects

DRE Projects Percent

>99.00% 10 1.00%

95–99% 120 12.00%

90–94% 250 25.00%

85–89% 475 47.50%

80–85% 125 12.50%

<80.00% 20 2.00%

Total 1,000 100.00%

258  ◾  Software Development Patterns and Antipatterns

industry does not measure either quality or productivity well enough to
know this.

However, the most important economic fact about high quality is:
projects > 97% in DRE have shorter schedules and lower costs than proj-
ects < 90% in DRE. This is because projects that are low in DRE have test
schedules that are at least twice as long as projects with high DRE due
to omission of pre-test inspections and static analysis.

Reuse of Certified Materials for Software Projects
So long as software applications are custom designed and coded by
hand, software will remain a labor-intensive craft rather than a mod-
ern professional activity. Manual software development even with excel-
lent methodologies cannot be much more than 15% better than average
development due to the intrinsic limits in human performance and legal
limits in the number of hours that can be worked without fatigue.

The best long-term strategy for achieving consistent excellence at
high speed would be to eliminate manual design and coding in favor of
construction from certified reusable components.

It is important to realize that software reuse encompasses many
deliverables and not just source code. A full suite of reusable software
components would include at least the following 10 items:

Reusable Software Artifacts Circa 2019
	 1.	Reusable requirements
	 2.	Reusable architecture
	 3.	Reusable design
	 4.	Reusable code
	 5.	Reusable project plans and estimates
	 6.	Reusable test plans
	 7.	Reusable test scripts
	 8.	Reusable test cases
	 9.	Reusable user manuals
	 10.	Reusable training materials

These materials need to be certified to near zero-defect levels of qual-
ity before reuse becomes safe and economically viable. Reusing buggy
materials is harmful and expensive. This is why excellent quality control
is the first stage in a successful reuse program.

Achieving Software Excellence  ◾  259

The need for being close to zero defects and formal certification
adds about 20% to the costs of constructing reusable artifacts and about
30% to the schedules for construction. However, using certified reus-
able materials subtracts over 80% from the costs of construction and
can shorten schedules by more than 60%. The more times materials are
reused, the greater their cumulative economic value.

One caution to readers: reusable artifacts may be treated as taxable
assets by the Internal Revenue Service. It is important to check this topic
out with a tax attorney to be sure that formal corporate reuse programs
will not encounter unpleasant tax consequences.

The three samples in Table 9.1 showed only moderate reuse typical
for the start of 2016.

Excellent project >25% certified reuse

Average project + −10% certified reuse

Poor projects <5% certified reuse

In the future, it is technically possible to make large increases in
the volumes of reusable materials. By around 2025, we should be able
to construct software applications with perhaps 85% certified reusable
materials. In fact some “mashup” projects already achieve 85% reuse,
but the reused materials are not certified and some may contain signifi-
cant bugs and security flaws.

Table 9.4 shows the productivity impact of increasing volumes of
certified reusable materials. Table 9.4 uses whole numbers and generic
values to simplify the calculations.

Software reuse from certified components instead of custom design
and hand coding is the only known technique that can achieve order-
of-magnitude improvements in software productivity. True excellence in
software engineering must derive from replacing costly and error-prone
manual work with construction from certified reusable components.

Because finding and fixing bugs is the major software cost driver,
increasing volumes of high-quality certified materials can convert soft-
ware from an error-prone manual craft into a very professional high-
technology profession. Table 9.5 shows probable quality gains from
increasing volumes of software reuse.

Since the current maximum for software reuse from certified com-
ponents is only in the range of 15% or a bit higher, it can be seen that
there is a large potential for future improvement.

Note that uncertified reuse in the form of mashups or extracting
materials from legacy applications may top 50%. However, uncerti-
fied reusable materials often have latent bugs, security flaws, and even

260  ◾  Software Development Patterns and Antipatterns

Table 9.4  Productivity Gains from Software Reuse

(Assumes 1,000 function points and 53,300 LOC)

Reuse
Percent

Months
of Staff

Function
Points per

Work hours
per Function

Lines of
Code per

Project
CostsEffort Month Point Month

0.00% 100 10.00 13.20 533 $1,000,000

10.00% 90 11.11 11.88 592 $900,000

20.00% 80 12.50 10.56 666 $800,000

30.00% 70 14.29 9.24 761 $700,000

40.00% 60 16.67 7.92 888 $600,000

50.00% 50 20.00 6.60 1,066 $500,000

60.00% 40 25.00 5.28 1,333 $400,000

70.00% 30 33.33 3.96 1,777 $300,000

80.00% 20 50.00 2.64 2,665 $200,000

90.00% 10 100.00 1.32 5,330 $100,000

100.00% 1 1,000.00 0.13 53,300 $10,000

Table 9.5  Quality Gains from Software Reuse

(Assumes 1,000 function points and 53,300 LOC)

Reuse
Percent

Defects per
Function Point

Defect
Potential

Defect Removal
Efficiency

Delivered
Defects

0.00% 5.00 1,000 90.00% 100

10.00% 4.50 900 91.00% 81

20.00% 4.00 800 92.00% 64

30.00% 3.50 700 93.00% 49

40.00% 3.00 600 94.00% 36

50.00% 2.50 500 95.00% 25

60.00% 2.00 400 96.00% 16

70.00% 1.50 300 97.00% 9

80.00% 1.00 200 98.00% 4

90.00% 0.50 100 99.00% 1

100.00% – 1 99.99% 0

Achieving Software Excellence  ◾  261

error-prone modules, so this is not a very safe practice. In several cases,
the reused material was so buggy it had to be discarded and replaced
by custom development.

Several emerging development methodologies such as “mashups” are
pushing reuse values up above 90%. However, the numbers and kinds of
applications built from these emerging methods are small. Reuse needs
to become generally available with catalogs of standard reusable com-
ponents organized by industries, i.e. banking, insurance, telecommuni-
cations, firmware, etc.

Software Methodologies
Unfortunately, selecting a methodology is more like joining a cult than
making an informed technical decision. Most companies don’t actually
perform any kind of due diligence on methodologies and merely select
the one that is most popular.

In today’s world, agile is definitely the most popular. Fortunately,
agile is also a pretty good methodology and much superior to the older
waterfall method. However, there are some caveats about methodologies.

Agile has been successful primarily for smaller applications <1,000
function points in size. It has also been successful for internal applica-
tions where users can participate or be “embedded” with the develop-
ment team to work our requirements issues.

Agile has not scaled up well to large systems >10,000 function points.
Agile has also not been visibly successful for commercial or embedded
applications where there are millions of users and none of them work
for the company building the software so their requirements have to be
collected using focus groups or special marketing studies.

A variant of agile that uses “pair programming” or two programmers
working in the same cubical with one coding and the other “navigating”
has become popular. However, it is very expensive since two people are
being paid to do the work of one person. There are claims that quality is
improved, but formal inspections combined with static analysis achieve
much higher quality for much lower costs.

Another agile variation, extreme programming, in which test cases
are created before the code itself is written has proven to be fairly suc-
cessful for both quality and productivity, compared to traditional water-
fall methods. However, both TSP and RUP are just as good and even
better for large systems. Another successful variation on agile is DAD
which expands the agile concept up above 5,000 function points.

There are more than 80 available methodologies circa 2016 and
many are good; some are better than agile for large systems; some
older methods such as waterfall and cowboy development are at the

262  ◾  Software Development Patterns and Antipatterns

bottom of the effectiveness list and should be avoided on modern
applications.

For major applications in the 10,000 function point size range and
above, the TSP and the RUP have the best track records for success-
ful projects and among the fewest failures. Table 9.6 ranks 50 current
software development methodologies. The rankings show their effec-
tiveness for small projects below 1,000 function points and for large
systems above 10,000 function points. Table 9.1 is based on data from
around 600 companies and 25,000 project results.

The green color highlights the methods with the most successful
project outcomes. In general, the large-system methods are “quality
strong” methodologies that support inspections and rigorous quality
control. Some of these are a bit “heavy” for small projects although qual-
ity results are good. However, the overhead of some rigorous methods
tends to slow down small projects.

Starting in 2014 and expanding fairly rapidly is the new “software
engineering methods and theory” or SEMAT approach. This is not a
“methodology” per se but new way of analyzing software engineering
projects and applications themselves.

SEMAT has little or no empirical data as this book is written but the
approach seems to have merit. The probable impact, although this is not
yet proven, will be a reduction in software defect potentials and perhaps
an increase in certified reusable components.

Unfortunately SEMAT seems to be aimed at custom designs and
manual development of software, both of which are intrinsically expen-
sive and error-prone. SEMAT would be better used for increasing the
supply of certified reusable components. As SEMAT usage expands it
will be interesting to measure actual results, which to date are purely
theoretical.

Quantifying Software Excellence
Because the software industry has a poor track record for measurement,
it is useful to show what “excellence” means in quantified terms.

Excellence in software quality combines defect potentials of no
more than 2.50 bugs per function point combined with DRE of
99.00%. This means that delivered defects will not exceed 0.025 defects
per function point.

By contrast, current average values circa 2021 are about 3.00 to 5.00
bugs per function point for defect potentials and only 90% to 94% DRE,
leading to as many as 0.50 bugs per function point at delivery. There are

Achieving Software Excellence  ◾  263

(Continued)

Table 9.6  Methodology Rankings for Small and Large Software Projects

Small Projects Large Systems

<1,000 Function Points >10,000 Function Points

1 Agile scrum TSP/PSP

2 Crystal Reuse-oriented

3 DSDM Pattern-based

4 Feature driven (FDD) IntegraNova

5 Hybrid Product line engineering

6 IntegraNova Model-driven

7 Lean DevOps

8 Mashup Service-oriented

9 Microsoft solutions Specifications by example

10 Model-driven Mashup

11 Object-oriented Object-oriented

12 Pattern-based Information engineering (IE)

13 Product line engineering Feature driven (FDD)

14 PSP Microsoft solutions

15 Reuse-oriented Structured development

16 Service-oriented modeling Spiral development

17 Specifications by example T-VEC

18 Structured development Kaizen

19 Test-driven development (TDD) RUP

20 CASE Crystal

21 Clean room DSDM

22 Continuous development Hybrid

23 DevOps CASE

24 EVO Global 24 hour

25 Information engineering (IE) Continuous development

26 Legacy redevelopment Legacy redevelopment

27 Legacy renovation Legacy renovation

28 Merise Merise

264  ◾  Software Development Patterns and Antipatterns

projects that top 99.00% percent but the distribution is less than 5% of
U.S. projects top 99% in DRE as of 2021.

Poor projects which are likely to fail and end up in court for poor
quality or breach of contract often have defect potentials of >6.00 per
function point combined with DRE levels <85%. Some poor projects
deliver >0.75 bugs per function point and also excessive security flaws.

Small Projects Large Systems

<1,000 Function Points >10,000 Function Points

29 Open-source Iterative

30 Spiral development Legacy data mining

31 T-VEC Custom by client

32 Kaizen CMMI 3

33 Pair programming Agile scrum

34 Reengineering Lean

35 Reverse engineering EVO

36 XP Open-source

37 Iterative Reengineering

38 Legacy data mining V-Model

39 Prototypes – evolutionary Clean room

40 RAD Reverse engineering

41 RUP Prototypes – evolutionary

42 TSP/PSP RAD

43 V-Model Prince 2

44 Cowboy Prototypes – disposable

45 Prince 2 Test-driven development (TDD)

46 Waterfall Waterfall

47 Global 24 hour Pair programming

48 CMMI 3 XP

49 Prototypes – disposable Cowboy

50 Antipatterns Antipatterns

Table 9.6  (Continued)

Achieving Software Excellence  ◾  265

Excellence in software productivity and development schedules
are not fixed values but varies with the size of the applications. Table 9.7
shows two “flavors” of productivity excellence: (1) the best that can be
accomplished with 10% reuse and (2) the best that can be accomplished
with 50% reuse.

As can be seen from Table 9.7, software reuse is the most important
technology for improving software productivity and quality by really
significant amounts. Methods, tools, CMMI levels, SEMAT, and other
minor factors are certainly beneficial. However, as long as software
applications are custom designed and hand coded, software will remain
an expensive craft and not a true professional occupation.

The Metaphor of Technical Debt
Ward Cunningham’s interesting metaphor of “technical debt” has become
a popular topic in the software industry. The concept of technical debt
is that in order to get software released in a hurry, short cuts and omis-
sions occur that will need to repaired after release, for much greater
cost, i.e. like interest builds up on a loan.

Although the metaphor has merit, it is not yet standardized and
therefore can vary widely. In fact a common question at conferences is
“what do you include in technical debt?”

Table 9.7  Excellent Productivity with Varying Quantities of Certified Reuse

Schedule
Months Staffing

Effort
Months

FP per
Month

With <10% certified reuse

  100 function points 4.79 1.25 5.98 16.71

  1,000 function points 13.80 6.25 86.27 11.59

  10,000 function points 33.11 57.14 1,892.18 5.28

  100,000 function points 70.79 540.54 38,267.34 2.61

With 50% certified reuse

  100 function points 3.98 1.00 3.98 25.12

  1,000 function points 8.51 5.88 50.07 19.97

  10,000 function points 20.89 51.28 1,071.43 9.33

  100,000 function points 44.67 487.80 21,789.44 4.59

266  ◾  Software Development Patterns and Antipatterns

Technical debt is not a part of standard costs of quality. There are
some other topics that are excluded also. The most important and also
the least studied are “consequential damages” or actual financial harm
to clients of buggy software. These show up in lawsuits against vendors
and are known to attorneys and expert witnesses, but otherwise not
widely published.

A major omission from technical debt circa 2016 is the cost of cyber-
attacks and recovery from cyber-attacks. In cases where valuable data
are stolen, cyber-attack costs can be more expensive than total develop-
ment costs for the attacked application.

Another omission from both cost of quality (COQ) and technical are
the costs of litigation and damage awards when software vendors or
outsourcers are sued for poor quality. Table 9.8 puts all of these costs
together to show the full set of costs that might occur for excellent qual-
ity, average quality, and poor quality. Note that Table 9.8 uses “defects
per function point” for the quality results.

As of early 2019 almost 85% of the true costs of poor quality software
were invisible and not covered by either technical debt or standard “cost
of quality” (COQ). No one has yet done a solid study of the damages of
poor quality to clients and users but these costs are much greater than
internal costs.

This is a topic that should be addressed by both the CMMI and the
SEMAT approach, although neither has studied consequential damages.

Table 9.8  Technical Debt and Software Quality for 1,000 Function Points

High
Quality

Average
Quality

Poor
Quality

Defect potential 2 4 6

Removal efficiency 99.00% 92.00% 80.00%

Delivered defects 0.02 0.32 1.2

Post-release defect repair $ $5,000 $60,000 $185,000

Technical debt problems 1 25 75

Technical debt costs $1,000 $62,500 $375,000

Excluded from Technical Debt

  Consequential damages $0.00 $281,250 $2,437,500

  Cyber-attack costs $0.00 $250,000 $5,000,000

  Litigation costs $0.00 $2,500,000 $3,500,000

Total Costs of Quality (COQ) $6,000 $3,153,750 $11,497,500

Achieving Software Excellence  ◾  267

No data has yet been published on the high costs of litigation for
poor quality and project failures, or even the frequency of such litigation.

The author of this book has been an expert witness in 15 cases
for project failure or poor quality, and therefore has better data than
most on litigation frequencies and costs. Also the author’s SRM tool has
a standard feature that predicts probable litigation costs for both the
plaintiff and defendant in breach of contract litigation.

Table 9.8 illustrates two important but poorly understood facts about
software quality economics.

	 1.	High quality software is faster and cheaper to build than poor qual-
ity software; maintenance costs are many times cheaper; and tech-
nical debt is many times cheaper.

	 2.	Poor quality software is slower and more expensive to build than
high-quality software; maintenance costs are many times more
expensive; and technical debt is many times more expensive.

Companies that skimp on quality because they need to deliver software
in a hurry don’t realize that they are slowing down software schedules;
not speeding them up.

High quality also causes little or no consequential damages to cli-
ents, and the odds of being sued are below 1%, as opposed to about 15%
for poor quality software built by outsource vendors. Incidentally state
governments seem to have more litigation for failing projects and poor
quality than any other industry sector.

High-quality projects are also less likely to experience cyber-attacks
because many of these attacks are due to latent security flaws in deployed
software. These flaws might have been eliminated prior to deployment
if security inspections and security testing plus static analysis had been
used.

For software projects, high quality is more than free; it is one of the
best investments companies can make. High quality has a large and
positive return on investment (ROI). Poor quality software projects have
huge risks of failure, delayed schedules, major cost overruns, and more
than double the cost per function point compared to high quality.

Stages in Achieving Software Excellence
Readers are probably curious about the sequence of steps needed to
move from “average” to “excellent” in software quality. They are also
curious about the costs and schedules needed to achieve excellence.
Following are short discussions of the sequence and costs needed for a

268  ◾  Software Development Patterns and Antipatterns

company with about 1,000 software personnel to move from average to
excellent results.

Stage 1: Quantify Your Current Software Results

In order to plan improvements rationally, all companies should know
their current status using effective quantified data points. This means
that every company should measure and know the following topics:

	 1.	Defect potentials
	 2.	Defect severity levels
	 3.	Defects per function point
	 4.	Defect detection efficiency (DDE)
	 5.	Defect removal efficiency (DRE)
	 6.	Cyclomatic complexity of all applications
	 7.	Error-prone modules (EPM) in deployed software
	 8.	Test coverage of all applications
	 9.	Test cases and test scripts per function point
	 10.	Duplicate or incorrect test cases in test libraries
	 11.	Bad-fix injection rates (bugs in defect repairs)
	 12.	The existence or absence of error-prone modules in operational

software
	 13.	Customer satisfaction with existing software
	 14.	Defect repair turnaround
	 15.	Technical debt for deployed software
	 16.	Cost of quality (COQ)
	 17.	Security flaws found before release and then after deployment
	 18.	Current set of defect prevention, pre-test, and test quality methods

in use
	 19.	The set of software development methodologies in use for all

projects
	 20.	Amount of reusable materials utilized for software projects

For a company with 1,000 software personnel and a portfolio of per-
haps 3,000 software applications, this first stage can take from two to
three calendar months. The effort would probably be in the range of
15 to 25 internal staff months, plus the use of external quality consul-
tants during the fact-finding stage.

The most likely results will be the discovery that defect potentials
top 3.5 per function point and DRE is below 92%. Other likely findings
will include <80% test coverage and cyclomatic complexity that might
be >50 for key modules. Probably a dozen or more error-prone mod-
ules will be discovered. Quantitative goals for every software company

Achieving Software Excellence  ◾  269

should be to have defect potentials <2.5 per function point combined
with DRE levels >97% for every software project, and above 99% for
mission-critical software projects. Software reuse will probably be <15%
and mainly be code modules that are picked up informally from other
applications.

The analogy for this stage would be like going to a medical clinic for
a thorough annual medical check-up. The check-up does not cure any
medical problems by itself, but it identifies the problems that physicians
will need to cure, if any exist.

Once the current quality results have been measured and quanti-
fied, it is then possible to plan rational improvement strategies that will
reduce defect potentials and raise DRE to approximate 99% levels.

Stage 2: Begin to Adopt State of the
Art Quality Tools and Methods

Software excellence requires more than just adopting a new method such
as agile and assuming everything will get better. Software excellence is
the result of a web of related methods and tools that are synergistic.

The second stage, which occurs as the first stage is ending, and per-
haps overlaps the last month, is to acquire and start to use proven meth-
ods for defect prevention, pre-test defect removal, and formal testing.

This stage can vary by the nature and size of the software produced.
Real-time and embedded applications will use different tools and meth-
ods compared to web and information technology applications. Large
systems will use different methods than small applications. However, a
nucleus of common techniques is used for all software. These include
the following:

Formal Sizing, Estimating, and Tracking

	 1.	Use parametric estimation tools on projects >250 function points.
	 2.	Carry out formal risk analysis before starting.
	 3.	Use formal tracking of progress, quality, and costs.

Defect Prevention

	 1.	Joint application design (JAD).
	 2.	Quality function deployment (QFD).
	 3.	Requirements models.
	 4.	Formal reuse programs.
	 5.	Formal defect measurements.
	 6.	Data mining of legacy applications for lost requirements.

270  ◾  Software Development Patterns and Antipatterns

	 7.	Training and certification of quality personnel.
	 8.	Acquisition of defect measurements tools and methods.
	 9.	Formal methodology analysis and selection for key projects.
	 10.	Formal quality and defect estimation before projects start.

Pre-test Defect Removal

	 1.	Static analysis of all legacy applications.
	 2.	Static analysis of all new applications.
	 3.	Static analysis of all changes to applications.
	 4.	Inspections of key deliverables for key projects (requirements,

design, code, etc.).
	 5.	Automated proofs of correctness for critical features.

Test Defect Removal

	 1.	Formal test case design, often using design of experiments or
cause–effect graphs.

	 2.	Acquisition of test coverage tools.
	 3.	Acquisition of cyclomatic complexity tools.
	 4.	Review of test libraries for duplicate or defective test cases.
	 5.	Formal training of test personnel.
	 6.	Certification of test personnel.
	 7.	Planning optimal test sequences for every key project.
	 8.	Measuring test coverage for all projects.
	 9.	Measuring cylomatic complexity for all code
	 10.	Formal test and quality measures of all projects

This second stage normally lasts about a year and includes formal train-
ing of managers, development personnel, quality assurance personnel,
test personnel, and other software occupation groups.

Because there is a natural tendency to resist changes, the best way
of moving forward is to treat the new tools and methods as experi-
ments. In other words, instead of directing that certain methods such as
inspections be used, treat them as experiments and make it clear that
if the inspections don’t seem useful after trying them out, the teams
will not be forced to continue with them. This is how IBM introduced
inspections in the 1970s, and the results were so useful that inspections
became a standard method without any management directives.

This second stage will take about a year for a company with 1,000
software personnel and more or less time for larger or smaller organi-
zations. Probably all technical personnel will receive at least a week of
training and so will project managers.

Achieving Software Excellence  ◾  271

Probably the costs during this phase due to training and learning
curves can top $1,000 per staff member. Some costs will be training;
others will be acquisitions of tools. It is difficult to establish a precise
cost for tools due to the availability of a large number of open-source
tools that have no costs.

Improvements in quality will start to occur immediately during stage
2. However due to learning curves, productivity will drop down slightly
for the first 4 months due to having formal training for key personnel. But
by the end of a year, productivity may be 15% higher than when the year
started. Defect potentials will probably drop by 20% and DRE should go
up by >7% from the starting point, and top 95% for every project.

Stage 3: Continuous Improvements Forever

Because stages 1 and 2 introduce major improvements, some interesting
sociological phenomena tend to occur. One thing that may occur is that
the technical and management leaders of stages 1 and 2 are very likely
to get job offers from competitive companies or from other divisions in
large corporations.

It sometimes happens that if the stage 1 and 2 leaders are promoted
or change jobs, their replacements may not recognize the value of the
new tools and methods. For example many companies that use inspec-
tions and static analysis find that defects are much reduced compared
to previous years.

When quality improves significantly unwise managers may say, “why
keep using inspections and static analysis when they are not finding
many bugs?” Of course if the inspections and static analysis stop, the
bug counts will soon start to climb back up to previous levels and DRE
will drop down to previous levels.

In order to keep moving ahead and staying at the top, formal train-
ing and formal measurements are both needed. Annual training is
needed and also formal training of new personnel and new managers.
Companies that provide 5 or more days of training for software person-
nel have higher annual productivity than companies with zero days of
training.

When the ITT Corporation began a successful 4-year improvement
program, one of the things that was part of their success was an annual
report for corporate executives. This report was produced on the same
schedule as the annual corporate financial report to shareholders, i.e. in
the first quarter of the next fiscal year.

The ITT annual reports showed accomplishments for the prior year;
comparisons to earlier years; and projected accomplishments for the fol-
lowing year. Some of the contents of the annual reports included:

272  ◾  Software Development Patterns and Antipatterns

	 1.	Software personnel by division.
	 2.	Software personnel by occupation groups.
	 3.	Year-by-year COQ.
	 4.	Total costs of software ownership (TCO).
	 5.	Changes in software personnel by year for three years.
	 6.	Average and ranges of defect potentials.
	 7.	Average and ranges of DRE.
	 8.	Three-year running averages of defect potentials and DRE.
	 9.	Customer satisfaction year by year.
	 10.	Plans for the next fiscal year for staffing, costs, quality, etc.

ITT was a large corporation with over 10,000 software personnel located
in a number of countries and more than 25 software development labs.
As a result, the overall corporate software report was a fairly large docu-
ment of about 50 pages in size.

For a smaller company with a staffing of about 1,000 personnel, the
annual report would probably be in the 20-page size range.

Once software is up to speed and combines high quality and high
productivity, that opens up interesting business questions about the best
use of the savings. For example, ITT software personnel had been grow-
ing at more than 5% per year for many years. Once quality and pro-
ductivity improved, it was clear that personnel growth was no longer
needed. In fact the quality and productivity were so good after a few
years that perhaps 9,000 instead of 10,000 could build and maintain all
needed software.

Some of the topics that need to be considered when quality and
productivity improve are related to what is the best use of resources no
longer devoted to fixing bugs. Some of the possible uses include:

	 •	 Reduce corporate backlogs to zero by tackling more projects per
year.

	 •	 Move into new kinds of applications using newly available person-
nel no longer locked into bug repairs.

	 •	 Allow natural attrition to lower overall staffing down to match
future needs.

For commercial software companies expanding into new kinds of soft-
ware and tackling more projects per year are the best use of available
personnel that will be freed up when quality improves.

For government software or for companies that are not expand-
ing their businesses, then probably allowing natural attrition to reduce

Achieving Software Excellence  ◾  273

staffing might be considered. For large organizations, transfers to other
business units might occur.

One thing that would be a sociological disaster would be to have
layoffs due to the use of improved technologies that reduced staffing
needs. In this case resistance to changes and improvements would
become a stone wall and progress would stop cold.

Since most companies have large backlogs of applications that are
awaiting development, and since most leading companies have needs to
expand software into new areas, the best overall result would be to use
the available personnel for expansion

Stage three will run for many years. The overall costs per function
point should be about 30% lower than before the improvement program
started. Overall schedules should be about 25% shorter than before the
improvement program started.

Defect potentials will be about 35% lower than when the improve-
ment program started and corporate DRE should top 97% for all projects
and 99% for mission critical projects.

Going Beyond Stage 3 into Formal Reuse Programs
As mentioned previously in this report, custom designs and manual cod-
ing are intrinsically expensive and error-prone no matter what method-
ologies are used and what programming languages are used.

For companies that need peak performance, moving into a full and
formal software reuse program can achieve results even better than
Stage 3.

Summary and Conclusions
Because software is the driving force of both industry and government
operations, it needs to be improved in terms of both quality and produc-
tivity. The most powerful technology for making really large improve-
ments in both quality and productivity will be from eliminating costly
custom designs and labor-intensive hand coding, and moving toward
manufacturing software applications from libraries of well-formed stan-
dard reusable components that approach zero-defect quality levels.

Today’s best combinations of methods, tools, and programming
languages are certainly superior to waterfall or cowboy development
using unstructured methods and low-level languages. But even the best

274  ◾  Software Development Patterns and Antipatterns

current methods still involve error-prone custom designs and labor-
intensive manual coding.

References and Readings
Abran, A.; and Robillard, P.N.; “Function Point Analysis: An Empirical Study of

Its Measurement Processes”; IEEE Transactions on Software Engineering,
Vol. 22, No. 12; December 1996; pp. 895–909.

Austin, Robert D.; Measuring and Managing Performance in Organizations;
Dorset House Press, New York, NY; 1996; ISBN: 0-932633-36-6; 216 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Techniques
for Managing Hardware and Software Testing; Wiley; 2009; ISBN: 10
0470404159; 672 pages.

Bogan, Christopher E.; and English, Michael J.; Benchmarking for Best Practices;
McGraw Hill, New York, NY; 1994; ISBN: 0-07-006375-3; 312 pages.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition
Best Practices; Version 1.0; U.S. Department of Defense, Washington, DC;
July 1995; 142 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You;
Prentice Hall, Upper Saddle River, NJ; 1995; ISBN: 10: 0201633302; 368
pages.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New
York, NY; 1979; 270 pages.

Curtis, Bill; Hefley, William E.; and Miller, Sally; People Capability Maturity
Model; Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA; 1995.

Department of the Air Force; Guidelines for Successful Acquisition and
Management of Software Intensive Systems, Vols. 1–2; Software Technology
Support Center, Hill Air Force Base, UT; 1994.

Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ;
1989; ISBN: 0-13-332321-8; 185 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects; http://
software.isixsigma.com/library/content/c040915b.asp.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10: 0201631814.

Grady, Robert B.; Practical Software Metrics for Project Management and
Process Improvement; Prentice Hall, Englewood Cliffs, NJ; 1992; ISBN:
0-13-720384-5; 270 pages.

Grady, Robert B. & Caswell, Deborah L.; Software Metrics: Establishing a
Company-Wide Program; Prentice Hall, Englewood Cliffs, NJ; 1987; ISBN:
0-13-821844-7; 288 pages.

http://software.isixsigma.com
http://software.isixsigma.com

Achieving Software Excellence  ◾  275

Grady, Robert B.; Successful Process Improvement; Prentice Hall PTR, Upper
Saddle River, NJ; 1997; ISBN: 0-13-626623-1; 314 pages.

Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman,
Reading, MA; 1989.

IFPUG; IFPUG Counting Practices Manual, Release 4, International Function
Point Users Group, Westerville, OH; April 1995; 83 pages.

Jacobsen, Ivar; Griss, Martin; and Jonsson, Patrick; Software Reuse – Architecture,
Process, and Organization for Business Success; Addison Wesley Longman,
Reading, MA; 1997; ISBN: 0-201-92476-5; 500 pages.

Jacobsen, Ivar et al; The Essence of Software Engineering; Applying the SEMAT
Kernel; Addison Wesley Professional; 2013.

Jones, Capers; The Technical and Social History of Software Engineering,
Addison Wesley; 2014.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality,
Addison Wesley Longman, Reading, MA; 2011a.

Jones, Capers; Estimating Software Costs, 2nd ed.; McGraw Hill; New York, NY;
2007.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010a.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011b; ISBN: 978-0-13-258220-9; 587 pages.

Jones, Capers; A Ten-Year Retrospective of the ITT Programming Technology
Center; Software Productivity Research, Burlington, MA; 1988.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd ed.; 2008.
Jones, Capers; Software Engineering Best Practices; McGraw Hill, 1st ed.; 2010b.
Jones, Capers; Assessment and Control of Software Risks; Prentice Hall; 1994;

ISBN: 0-13-741406-4; 711 pages.
Jones, Capers; Patterns of Software System Failure and Success; International

Thomson Computer Press, Boston, MA; December 1995; ISBN: 1-850-
32804-8; 250, 292 pages.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000 (due in May of 2000); 600 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success;
International Thomson Computer Press, Boston, MA; 1997a; ISBN: 1-85032-
876-6; 492 pages.

Jones, Capers; The Economics of Object-Oriented Software; Software Productivity
Research, Burlington, MA; April 1997b; 22 pages.

Jones, Capers; Becoming Best in Class; Software Productivity Research,
Burlington, MA; January 1998; 40 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Keys, Jessica; Software Engineering Productivity Handbook; McGraw Hill,
New York, NY; 1993; ISBN: 0-07-911366-4; 651 pages.

Love, Tom; Object Lessons; SIGS Books, New York, NY; 1993; ISBN: 0-9627477
3-4; 266 pages.

276  ◾  Software Development Patterns and Antipatterns

McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software
Engineering; December 1976; pp. 308–320.

McMahon, Paul; 15 Fundamentals for Higher Performance in Software
Development; PEM Systems; 2014.

Melton, Austin; Software Measurement; International Thomson Press, London,
UK; 1995; ISBN: 1-85032-7178-7.

Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman,
Lawrence, KS; 1996. (This is a new CD ROM book collection jointly pro-
duced by the book publisher, Prentice Hall, and the journal publisher,
Miller Freeman. This CD ROM disk contains the full text and illustrations
of five Prentice Hall books: Assessment and Control of Software Risks by
Capers Jones; Controlling Software Projects by Tom DeMarco; Function
Point Analysis by Brian Dreger; Measures for Excellence by Larry Putnam
and Ware Myers; and Object-Oriented Software Metrics by Mark Lorenz
and Jeff Kidd.)

Paulk, Mark et al; The Capability Maturity Model; Guidelines for Improving the
Software Process; Addison Wesley, Reading, MA; 1995; ISBN: 0-201-54664-
7; 439 pages.

Perry, William E.; Data Processing Budgets – How to Develop and Use Budgets
Effectively; Prentice Hall, Englewood Cliffs, NJ; 1985; ISBN: 0-13-196874-2;
224 pages.

Perry, William E.; Handbook of Diagnosing and Solving Computer Problems;
TAB Books, Inc.; Blue Ridge Summit, PA; 1989; ISBN: 0-8306-9233-9; 255
pages.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software On Time,
Within Budget; Yourdon Press, Prentice Hall, Englewood Cliffs, NJ; 1992;
ISBN: 0-13-567694-0; 336 pages.

Putnam, Lawrence H.; and Myers, Ware; Industrial Strength Software – Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; 1997;
ISBN: 0-8186-7532-2; 320 pages.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Royce, Walker E.; Software Project Management: A Unified Framework; Addison
Wesley Longman, Reading, MA; 1998; ISBN: 0-201-30958-0.

Rubin, Howard; Software Benchmark Studies For 1997; Howard Rubin
Associates, Pound Ridge, NY; 1997.

Rubin, Howard (Editor); The Software Personnel Shortage; Rubin Systems, Inc.;
Pound Ridge, NY; 1998.

Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric”;
Software Engineering Journal, Vol. 3; 1988; pp. 30–36.

Strassmann, Paul; The Squandered Computer; The Information Economics Press,
New Canaan, CT; 1997; ISBN: 0-9620413-1-9; 426 pages.

Stukes, Sherry; Deshoretz, Jason; Apgar, Henry; and Macias, Ilona; Air Force
Cost Analysis Agency Software Estimating Model Analysis; TR-9545/008-2;
Contract F04701-95-D-0003, Task 008; Management Consulting & Research,
Inc.; Thousand Oaks, CA; September 30, 1996.

Achieving Software Excellence  ◾  277

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point
Analysis); John Wiley & Sons, Chichester; 1991; ISBN: 0 471-92985-9; 200
pages.

Thayer, Richard H. (Editor); Software Engineering and Project Management;
IEEE Press, Los Alamitos, CA; 1988; ISBN: 0 8186-075107; 512 pages.

Umbaugh, Robert E. (Editor); Handbook of IS Management, 4th ed.; Auerbach
Publications, Boston, MA; 1995; ISBN: 0-7913-2159-2; 703 pages.

Weinberg, Gerald; Quality Software Management – Vol. 2: First-Order
Measurement; Dorset House Press, New York, NY; 1993; ISBN: 0-932633-
24-2; 360 pages.

Wiegers, Karl A.; Creating a Software Engineering Culture; Dorset House Press,
New York, NY; 1996; ISBN: 0-932633-33-1; 358 pages.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4; 218 pages.

Zells, Lois; Managing Software Projects – Selecting and Using PC-Based Project
Management Systems; QED Information Sciences, Wellesley, MA; 1990;
ISBN: 0-89435-275-X; 487 pages.

Zvegintzov, Nicholas; Software Management Technology Reference Guide;
Dorset House Press, New York, NY; 1994; ISBN: 1-884521-01-0; 240 pages.

https://taylorandfrancis.com

279DOI: 10.1201/9781003193128-12

Chapter 10

Early Sizing and
Estimating of
Software Projects

Introduction
Most methods of software sizing and estimating are based on software
requirements and design documents, or on the source code itself. For
both new applications and enhancements, this means that substan-
tial funds will have been expended before sizing and estimating take
place. Early sizing and estimating pay handsome dividends due to better
results for on-schedule and within-budget projects, as shown in Table
10.1 in this chapter.

Namcook Analytics has developed a new method of early software
sizing and estimating based on pattern matching that can be used prior
to requirements. This new method permits very early estimates and very
early risk analysis before substantial investments are made.

Software sizing and estimating have been weak areas of software
engineering since the industry began. Even today a majority of the
world’s software projects use educated guesses for sizing and inaccurate
and optimistic manual estimates instead of accurate automated para-
metric estimates. Large companies are more sophisticated than small
companies and tend to have more sophisticated sizing and estimating
methods and tools. It is useful to look at sizing and estimating methods
since the software industry began:

280  ◾  Software Development Patterns and Antipatterns

1950 to 1959

Sizing was based on lines of code (LOC) (usually physical). Estimating
was a combination of guesswork and sparse historical data. In this era,
assembly was the only language at the beginning of the decade so LOC
still worked.

1960 to 1969

Sizing was based on LOC. Estimating was still based on guesswork but
some companies such as IBM collected useful historical data that were
helpful in estimation. Projects grew larger so estimating requirements
and design became important. Languages such as COBOL, Algol, and
others were developed and LOC metrics started to encounter problems
such as difficulty in counting LOC for projects with multiple languages.

1970 to 1979

By the end of this decade, over 80 programming languages were in
existence and LOC metrics were proven to be inaccurate and unreliable
by IBM. LOC metrics can’t measure requirements and design, which by
1979 were more expensive than code itself. Also, LOC metrics penalize
high-level languages such as APL and PL/I.

IBM was the first company to perform a formal study of the errors
and problems with LOC metrics, which occurred about 1972 with the
author of this book as the primary IBM researcher. This study and the
proof of LOC failure led IBM to fund the development of function point
metrics.

Due to major problems and proven errors with LOC metrics, IBM
created the function point metric for sizing and estimating software
projects.

In 1973 the author of this book developed IBM’s first parametric
estimation tool, which was coded in APL by Dr. Charles Turk. Also dur-
ing this decade, other estimating pioneers such as Dr. Barry Boehm, Dr.
Howard Rubin, Frank Freiman, and Dr. Larry Putnam developed early
parametric estimation tools.

Function points were put into the public domain by IBM in 1979
and expanded all over the world. By the end of this decade, many lead-
ing organizations such as IBM, ITT, TRW, RCA, and the Air Force used
proprietary parametric estimation tools and also used function point
metrics. The technique of “backfiring” or mathematical conversion from
source code to function points was developed by IBM in this decade
and began to be used for sizing legacy applications.

Early Sizing and Estimating of Software Projects  ◾  281

1980 to 1989

During this decade, function points became a major global metric for siz-
ing and estimating. The author’s SPQR/20 estimation tool released in 1984
was the world’s first parametric estimation tool based on function points.
It was also the first that included sizing for all deliverables (requirements,
design, code, test cases, etc.). The inventor of function point metrics, A.J.
Albrecht, had retired from IBM and came to work for the author.

Only function point metrics support sizing of requirements, design,
user documents, and test cases; this cannot be done using LOC met-
rics. Other parametric estimating tools such as CheckPoint, COCOMO,
Estimacs, KnowledgePlan, SEER, SLIM, etc. also entered the commercial
market.

Most major companies used either commercial or proprietary para-
metric estimation by the end of this decade. The author of this book
designed proprietary estimation tools under contract for several tele-
communication companies and also taught software sizing and estima-
tion at AT&T, Bell Northern, GTE, ITT, Motorola, Nippon Telephone,
Nokia, Pacific Bell, Siemens, Sprint, and others.

The International Function Point User’s Group (IFPUG) was created
in Canada and began to provide certification examinations to ensure
accurate function point counts. IFPUG later moved its headquarters to
the United States.

1990 to 1999

Due to the initial success and value of IFPUG function points, this
decade saw the creation of a number of function point metric “clones”
that differed somewhat in their counting rules. Some of these functional
metric clones include in alphabetical order: COSMIC function points,
engineering function points, fast function points, feature points, FISMA
function points, NESMA function points, story points, unadjusted func-
tion points, and use-case points. Most of these use counting rules similar
to IFPUG but have various additional rules or changed rules. This causes
more confusion than value. It also introduced a need for conversion
rules between the various functional metrics, such as the conversion
rules built into Software Risk Master (SRM).

The International Software Benchmark Standards Group (ISBSG)
was created in 1997 and began to provide software benchmark data
using only function points. Lines-of-code data is hazardous and unreli-
able for benchmarks.

Other benchmark providers also began to offer benchmarks such
as the author’s former company, Software Productivity Research (SPR).

282  ◾  Software Development Patterns and Antipatterns

Two former vice presidents at SPR also formed software benchmark
companies after SPR was sold in 1998.

Although function point metrics were widely used and were accurate
when counted by certified personnel, they were also slow and expen-
sive. An average certified function point counter can count about 500
function points per day, which limited the use of function points to
small projects.

By the end of this decade, most U.S. telecom companies employed
or contracted with between 5 and 12 certified function point counters.

2000 to 2010

Function point metrics had become the global basis of software bench-
marks and were widely used in parametric estimation tools. However,
the slow counting speeds and high costs of manual function point
analysis led to research in easier and faster methods of function point
analysis.

Many companies developed function point tools that provided math-
ematical support for the calculations. These speeded up function point
counting from about 500 function points per day to more than 1,000
function points per day.

Several companies (CAST Software and Relativity Technologies)
developed automated function point counting tools. These tools exam-
ined source code from legacy applications and created function points
based on this code analysis. These tools only work for applications
where code exists, but instead of 500 function points per day they can
top 50,000 function points per day.

In 2012 IFPUG issued the new SNAP metric (software non-functional
assessment process). This metric has been added to the Namcook sizing
method.

The author and Namcook Analytics developed a proprietary sizing
method based on pattern matching that is part of the SRM estimating
tool. This method uses a formal taxonomy and then extracts size data
from the Namcook knowledge base for projects that have the same tax-
onomy pattern.

The Namcook sizing method is included in the SRM estimating tool.
SRM sizing is unique in being able to size and estimate projects before
requirements, or 30–180 days earlier than any other known method.

The SRM method is the fastest available method of sizing and aver-
ages about 1.8 minutes to size any application. Of course measured

Early Sizing and Estimating of Software Projects  ◾  283

speed varies with the sizes of the applications themselves, but SRM can
size at speeds of well over 300,000 function points per day.

SRM sizing is also unique in being able to predict size in a total of
23 metrics at the same time: all forms of function points, logical and
physical LOC, story points, use-case points, and even RICE objects for
ERP packages.

SRM also collects new benchmark data every month, because esti-
mating tools need continuous updates to their knowledge bases to stay
current with technical changes such as cloud computing, SaaS, estimat-
ing social network software, and other technology innovations. In fact
the commercial estimating companies all collect benchmark data for the
same reason.

The State of the Art of Sizing and Estimating
from 2010 to 2020
In 2020, the corona virus pandemic arrived in the United States. Many
companies have shifted to work at home. Group activities such as reviews
and inspections were done remotely via Zoom instead of using face to
face meetings in conference rooms. No doubt productivity declined and
quality lowered as well. It is too soon to know the exact magnitude to
the disruption.

As of 2020, the state of the art varied with the size and sophistication
of the company. Large technology companies such as medical devices,
computers, avionics, telecommunications etc. typically use multiple siz-
ing and estimating methods and look for convergence. Most employ or
use function point counters. Most technology companies use high-end
commercial estimation tools such as SRM or have built their own propri-
etary estimation tools. Some smaller companies and universities use the
open-source COCOMO estimating tool, which is available without cost.

Mid-sized companies and companies in the banking, insurance, and
other areas are not quite as sophisticated as the large technology com-
panies. It is interesting that the Bank of Montreal was the first major
company to use function points and was a founder of IFPUG.

However, a recent survey of over 100 companies found that func-
tion point metrics were now dominant for estimating and benchmarks
in the U.S., Europe, Japan, and Brazil and these countries have many
more function point users than other metrics such as story points or the
older LOC metrics. About 70% of mid-sized companies still use manual

284  ◾  Software Development Patterns and Antipatterns

estimates but about 30% use one or more parametric estimating tools
such as SRM.

Many agile projects use manual estimates combined with the “story
point metric.” Unfortunately, story points have no ISO or OMG standards
and vary by hundreds of percent from company to company. They are
almost useless for benchmarks due to the low quantity of available data
and the poor accuracy of story points for either estimates or measurements.

In 2012, a new metric for non-functional requirements called “SNAP”
was created by IFPUG and is now starting to be used. However as of
2016, this metric is so new that not a great deal of data exists, nor do
all companies use it. This metric needs additional definitions and con-
tinued analysis.

Small companies with less than 100 employees only build small
applications where risks are low. About 90% of these companies use
manual estimates. Most are too small to afford function point consul-
tants and too small to afford commercial estimating tools so they tend to
use backfiring and convert code size into function points. They still need
function points because all reliable benchmarks are based on function
point metrics. Some small companies use COCOMO because it is free,
even though it was originally calibrated for defense software. Table 10.1
shows the economic advantages of using automated sizing and estimat-
ing tools such as SRM.

As can be seen, early sizing and estimating using a tool such as SRM
can lead to much better on-time and within-budget performance than
older manual estimating methods or delayed estimates after require-
ments are completed.

Table 10.1  Results of Early Sizing and Estimating (Assumes 1000 Function
Points and Java Code)

On-Time
Delivery

In
Budget

Delivery

Defect
Removal

Efficiency

$ per
Function

Point

Automated sizing and
estimating before
Requirements

95.00% 95.00% 97.50% $950

Automated sizing and
estimating after Requirements

80.00% 87.00% 92.50% $1,100

Manual sizing and estimating
after requirements

55.00% 60.00% 88.00% $1,350

No formal sizing or estimating 44.00% 38.00% 85.00% $1,800

Early Sizing and Estimating of Software Projects  ◾  285

Hazards of Older Metrics
Even some users of function point metrics are not fully aware of the
problems with older metrics. Following paragraphs are short summaries
of metric hazards in alphabetical order:

Automated function points several companies such as CAST
Software and Relativity Technologies have marketed automated
function point tools that derive function point totals from an analy-
sis of source code. These tools have no published accuracy data.
They also can only be used on legacy software and cannot be used
for early sizing and estimating of new software applications before
code exists.

Cost per defect penalizes quality and is cheapest for the buggiest
software. This phenomenon was discovered circa 1972 by the
author of this book and colleagues at IBM. Cost per defect cannot
be used at all for zero-defect software. The cost per defect for soft-
ware with 1,000 released defects will be much cheaper than the
same software with only 10 defects. Cost per defect is useless for
zero-defect software, which should be the goal of all projects.
Defect removal costs per function point provide a much better
basis for studying software quality economics than cost per defect.

Design, code, and unit test (DCUT) metrics are embarrassingly bad.
The sum total of effort for design, code, and unit test is less than
37% of total software effort. Using DCUT is like measuring only the
costs of the foundations and framing of a house, and ignoring the
walls, roof, electrical systems, plumbing, etc. Only the software
industry would use such a poor metric as DCUT. All projects should
measure every activity: business analysis, requirements, architec-
ture, design, documentation, quality assurance, management, etc.

Lines of code (LOC) metrics cannot measure non-coding work such
as requirements, architecture, design, and documentation which
are more expensive than the code itself. Coding on large systems
may only comprise 30% of total costs. LOC cannot measure bugs in
requirements and design, which often are more numerous than
coding bugs. Even worse, LOC metrics penalize high-level lan-
guages and make low-level languages such as assembly and C look
better than high-level languages such as Visual Basic and Ruby.
Also, many languages use buttons or controls and allow “program-
ming” without even using LOC. LOC has no ISO standard counting
rules (physical and logical code are counted about equally), and
also no certification exams. There are automatic counting tools for
LOC but these vary in what they count. Finally, an average

286  ◾  Software Development Patterns and Antipatterns

application in 2015 uses at least two languages and sometimes up
to a dozen different programming languages. Code counting for
multiple programming languages is very complex and slow. Typical
combinations are Java, HTML, MySQL, and possibly others as well.

Technical debt by Ward Cunningham is a brilliant metaphor but not
yet an effective metric. Technical debt has no ISO standards and no
certification exams. Among the author’s clients, technical debt varies
by more than 200% between companies and projects. Worse, techni-
cal debt only covers about 17% of the total costs of poor quality.
Missing with technical are canceled projects that are never delivered;
consequential damages to users; litigation costs for poor quality; and
court awards to plaintiffs for damages caused by poor quality.

Story point metrics are widely used with agile projects. However,
story points have no ISO standards or OMG standards and no cer-
tification exams. Among the author’s clients story points vary by
more than 400% between companies and projects. There are few if
any benchmarks based on story points.

Use-case metrics are widely used with RUP projects. However use-
case points have no ISO standards and no certification exams.
Among the author’s clients, use-case points vary by more than
100% between companies and projects. There are few if any bench-
marks based on use-case points.

Overall function point metrics provide the most stable and effective
metrics for analyzing software quality economics, software productivity,
and software value. The major forms of function points have ISO stan-
dards and certification exams unlike the older and hazardous metrics
discussed above.

As illustrated elsewhere in this chapter, the detailed metrics used
with function points include but are not limited to the following points
(Table 10.2).

All 30 of these sizing features were included in the SRM sizing meth-
odology as of 2019.

Metrics Used with Function Point Analysis
The counting rules for function points are available from the various
function point associations and are too complicated to discuss here. If a
company wants to learn function point counting, the best methods are
to either hire certified function point counters or send internal person-
nel to learn function point analysis and take a certification exam offered
by the function point associations.

Early Sizing and Estimating of Software Projects  ◾  287

(Continued)

Table 10.2  Software Risk Master (SRM) Function Point and SNAP Usage
Circa 2020

1 Predicting size in function points, SNAP, LOC, and a total of 23 metrics.

2 Early sizing and risk analysis via pattern matching before full requirements.

3 Sizing of internal, COTS, and open-source applications.

4 Sizing and estimating both new projects and legacy repairs and renovations.

5 Sizing and estimating 15 types of software (web, IT, embedded, defense, etc.).

6 Source code sizing for 84 programming languages and combinations of
languages.

7 Sizing requirements creep during development (>1% per calendar month).

8 Sizing post-release requirements growth for up to 10 years (>8% per year).

9 Sizing defect potentials per function point/SNAP point (requirements,
design, code, etc.).

10 Defect prevention efficiency (DPE) for JAD, QFD, modeling, reuse, etc.

11 Defect removal efficiency (DRE) for pre-test and test defect removal
methods.

12 Document sizing for 30 document types (requirements, design,
architecture, etc.).

13 Sizing test cases per function point and per SNAP point for all forms of
testing.

14 Estimating delivered defects per function point and per SNAP point.

15 Activity-based costs for development.

16 Activity-based costs for user effort on internal projects.

17 Activity-based costs for maintenance.

18 Activity-based costs for customer support.

19 Activity-based costs for enhancements.

20 Occupation-group effort for 25 common software skills (coders, testers,
analysts, etc.).

21 Total cost of ownership (TCO) including cyber-attack costs.

22 Cost of quality (COQ) for software applications including cyber-attacks
and litigation.

23 Estimating the newer technical debt metric which is ambiguous in 2016.

24 Risk probabilities for 30 common software risk factors (delays, overruns,
cancellation).

288  ◾  Software Development Patterns and Antipatterns

The current IFPUG counting rule manual is available from the IFPUG
organization and is about 125 pages in size: too big to summarize here.
Counting rules are also available from other function point communities
such as COSMIC, FISMA, NESMA, etc.

Once the function point total for an application is known, then func-
tion points can be used with a variety of useful supplemental metrics to
examine productivity, quality, costs, etc.

The following are some of the leading metrics used with function
points in alphabetical order:

Assignment Scope

This is the amount of work typically assigned to a software team mem-
ber. It can be expressed using function points or natural metrics such as
pages of documents and LOC. For example, a technical writer might be
assigned a user manual of 200 pages. Since software user manuals aver-
age about 0.15 pages per function point that would be an assignment
scope of 30 function points.

Typical assignment scopes using function points for a project of
1,000 function points would be:

Requirements  =  460 function points

Design = 345 function points

Coding = 130 function points

Testing = 150 function points

25 Estimating productivity and quality results for 60 software development
methodologies.

26 Estimating ERP deployment, customization, and training costs.

27 Software litigation costs for failing outsource projects (both plaintiff and
defendant).

28 Estimating venture funding rounds, investment, equity dilution for
software startups.

29 Estimating cyber-attack deterrence and recovery costs (new in 2016).

30 Portfolio sizing for corporate portfolios (>5000 applications,10,000,000
function points, and 1,500,000 SNAP points) including internal, COTS, and
open-source.

Table 10.2  (Continued)

Early Sizing and Estimating of Software Projects  ◾  289

This kind of data is available for 40 activities from Namcook Analytics
LLC. This data is a standard feature of SRM but limited to 7 activities.

Cost per Function Point

As of 2020, cost per function point is one of the most widely used eco-
nomic metrics in the world. Several national governments such as Brazil
and South Korea demand cost per function point in all bids and soft-
ware contracts. India uses cost per function point to attract business to
Indian outsource companies. The cost per function point metric can be
used for full projects and also for individual activities such as require-
ments, design, coding, etc.

There are several cautions about this metric however. For long-range
projects that may take more than 5 years inflation needs to be factored
in. For international projects that may include multiple countries local
costs and currency conversions need to be factored in. In the U.S. as of
2015 development costs per function point range from less than $500
for small internal projects to more than $3,000 for large defense projects.

Cost per function point varies from project to project. Assuming a
cost structure of $10,000 per month and 1,000 function points typical
costs per function point would be:

Requirements  =  $41.79

Design = $66.87

Coding = $393.89

Testing = $236.34

Here too these are standard results from SRM. This kind of data
is available for 40 activities from Namcook Analytics LLC. SRM shows
7 activities.

Defect Potentials

Defect potentials are the sum total of bugs that are likely to be found
in requirements, architecture, design, code user documents, and bad
fixes or secondary bugs in bug repairs. U.S. totals for defect poten-
tials range from <2.00 defects per function point to >6.00 defects per
function point. This metric is also used for specific defect categories.
Requirements defects per function point range from <0.25 per func-
tion point to >1.15 per function point. The full set of defect potentials
include defects in requirements, architecture, design, code, documents,
and “bad fixes” or secondary bugs in defect repairs themselves. There

290  ◾  Software Development Patterns and Antipatterns

are also defects in test cases, but these are very seldom studied so there
is not enough available data to include test-case defects in defect poten-
tials as of 2016.

Defect potentials are ONLY possible with function point metrics
because LOC metrics cannot be used for requirements and design
defects. Typical values for defect potentials in function points circa 2019
are shown in Table 10.3.

As can be seen, defect potentials include bugs in many sources and
not just code. As can be seen, requirements, architecture, and design
defects outnumber code defects. Defect potential estimation is a stan-
dard feature for SRM.

Defect Removal Efficiency (DRE)

This metric does not use function points themselves, but rather shows
the percentage of defect potentials removed before release. Typical val-
ues would be 80% of requirements defects are removed before release
but 98% of code defects. SRM predicts both defect potentials and indi-
vidual removal efficiency levels for requirements defects, architecture
defects, code defects, document defects, and bad-fix injections.

Typical values for DRE are as follows:

Requirements defects  =  75%

Design defects = 85%

Architecture defects = 90%

Code defects = 97%

Table 10.3  Average Software Defect Potentials circa 2020 for
the United States

	 •	Requirements 0.70 defects per function point

	 •	Architecture 0.10 defects per function point

	 •	Design 0.95 defects per function point

	 •	Code 1.15 defects per function point

	 •	Security code flaws 0.25 defects per function point

	 •	Documents 0.45 defects per function point

	 •	Bad fixes 0.65 defects per function point

Total 4.25 defects per function point

Early Sizing and Estimating of Software Projects  ◾  291

Defect removal efficiency is a standard feature of SRM. DRE in SRM
includes (1) pre-test inspections, (2) static analysis, (3) desk checking,
and (4) pair programming.

Test DRE is shown for six kinds of testing: (1) unit, (2) regression, (3)
component, (4) performance, (5) system, and (6) acceptance.

Function Points per Month

This is a common productivity metric but one that needs to be adjusted
for countries, industries, and companies. Work-hours-per-function-point
is more stable from country to country. The typical number of work
hours in the U.S. is 132 hours per month; in India it is about 190 hours
per month; in Germany it is about 116 hours per month. Thus, the same
number of work hours would have different values for function points
per month. Assume a small project took exactly 500 work hours. For
India, this project would take 2.63 months; for the U.S. 3.78 months; for
Germany 4.31 months. The metric of work hours per function point is
stable across all countries, but function points per month (and the older
LOC per month) vary widely from country to country.

Production Rate

This metric is the amount of work a software team member can perform
in a given time period such as an hour, day, week, or month. This metric
can be expressed using function points or natural metrics such as LOC
or pages. For example a technical writer might be able to write 50 pages
per month. A programmer may be able to code 1,000 LOC per month. A
tester may be able to run 500 test cases per month, and so on. The same
activities can also be measured using work hours per function point, or
a combination of function points and natural metrics.

Requirements Creep

Because applications add new requirements and new features during
development, size must be adjusted from time to time. Requirements
grow and change at measured rates of between 1% per calendar month
and about 4% per calendar month. Thus, an application sized at 1,000
function points at the end of requirements may grow to 1,100 function
points by delivery. Software keeps growing after release, and the same
application may grow to 1,500 function points after three or four years
of use. SRM predicts growth and can also measure it. (This is not a fea-
ture of most parametric estimation tools.)

292  ◾  Software Development Patterns and Antipatterns

Work Hours per Function Point

This is a very common metric for software productivity. It has the advan-
tages of being the same in every country and also of being useful with
every software development activity. SRM uses this as a standard metric
for all estimates as shown subsequently:

	 1.	Requirements = 0.60 work hours per function point

	 2.	Design = 0.90 work hours per function point

	 3.	Coding = 5.00 work hours per function point

	 4.	Testing = 3.50 work hours per function point

	 5.	Quality = 0.50 work hours per function point

	 6.	Documents = 0.40 work hours per function point

	 7.	Management = 2.00 work hours per function point

Total = 12.90 work hours per function point

Note: these values are just examples and not intended for use in
actual estimates. There are wide ranges for every activity. Also, the exam-
ple only shows 7 activities, but similar data is available from Namcook
Analytics LLC for 40 activities.

The same metric or work hours per function point can also be used
to measure user costs for internal user effort, training costs for custom-
ers and team members, and even marketing and sales effort for commer-
cial software packages. It can also be used for customer support, bug
repairs, and even project management.

Function points are a powerful and useful metric but need additional
metrics in order to actually estimate and measure real projects.

Application Sizing Using Pattern Matching
The unique Namcook pattern-matching approach is based on the same
methodology as the well-known Trulia and Zillow data bases for real-
estate costs.

With the real-estate data bases, home buyers can find the costs, taxes,
and other information for all listed homes in all U.S. cities. They can
specify “patterns” for searching such as size, lot size, number of rooms,
etc.

The main topics used for software pattern matching in the Namcook
SRM tool are given in Table 10.4.

Early Sizing and Estimating of Software Projects  ◾  293

All of these topics are usually known well before requirements. All of
the questions are multiple choice questions except for the start date and
compensation and burden rates. Default cost values are provided for
situations where such cost information is not known or is proprietary.
This might occur if multiple contractors are bidding on a project and
they all have different cost structures.

The answers to the multiple-choice questions form a “pattern” that is
then compared against a Namcook knowledge base of more than 25,000
software projects. As with the real-estate data bases, software projects
that have identical patterns usually have about the same size and similar
results in terms of schedules, staffing, risks, and effort.

Table 10.4  Patterns for Application Sizing and Risk Analysis

1 Local average team salary and burden rates.

2 Paid and unpaid overtime planned for projects.

3 Planned start date for the project.

4 Desired delivery date for the project.

5 Country or countries where the software will be built.

6 Industry for which the software is intended.

7 Locations where the software will be built (states, cities).

8 Experience levels for clients, team, management.

9 Development methodologies that will be used (Agile, RUP,TSP, etc.)*.

10 CMMI level of the development group*.

11 Programming language(s) that will be used (C#, C++, Java, SQL, etc.)*.

12 Amount of reusable materials available (design, code, tests etc.)*.

13 Nature of the project (new, enhancement, etc.)*.

14 Scope of the project (subprogram, program, departmental system, etc.)*.

15 Class of the project (internal use, open-source, commercial, etc.)*.

16 Type of the project (embedded, web application, client–server, etc.)*.

17 Problem complexity ranging from very low to very high*.

18 Code complexity ranging from very low to very high*.

19 Data complexity ranging from very low to very high*.

20 Number of anticipated users (for maintenance estimates).

* Factors used for pattern analysis for sizing

294  ◾  Software Development Patterns and Antipatterns

Sizing via pattern matching can be used prior to requirements and
therefore perhaps 6 months earlier than most other sizing methods. The
method is also very quick and usually takes less than 5 minutes per
project. With experience, the time required can drop down to less than
2 minutes per project.

The pattern-matching approach is very useful for large applications
>10,000 function points where manual sizing might take weeks or even
months. With pattern matching, the actual size of the application does
not affect the speed of the result and even massive applications in excess
of 100,000 function points can be sized in a few minutes or less.

The method of sizing by pattern matching is metric neutral and does
not depend upon any specific metric. However, due to the fact that a
majority of the author’s clients use function point metrics as defined by
the International Function Point Users Group (IFPUG), the primary met-
ric supported is that of IFPUG function points counting rules 4.2. There
are of course more projects measured using IFPUG function points than
those available using other metrics.

Many additional metrics can also be based on sizing via SRM pattern
matching including but not limited to metrics given in Table 10.5.

The pattern-matching approach depends upon the availability of
thousands of existing projects to be effective. However now that func-
tion point metrics have been in use for more than 48 years, there are
thousands of projects available.

One additional feature of pattern matching is that it can provide size
data on requirements creep and on deferred functions. Thus the pattern-
matching method predicts size at the end of the requirements phase, creep-
ing requirements, size at delivery, and also the probable number of function
points that might have to be deferred to achieve a desired delivery date.

In fact the pattern-matching approach does not stop at delivery but
can continue to predict application growth year by year for up to 10
years after deployment.

The ability to size open-source and commercial applications or even
classified weapons systems is a unique feature of sizing via pattern
matching. Table 10.6 shows 100 software applications sized via pattern
matching with an average speed of about 1.8 minutes per application.

The ability to size open-source and commercial applications or even
classified weapons systems is a unique feature of sizing via pattern
matching and also unique to SRM.

No other sizing method can be used without access to at least pub-
lished requirements. The unique patter-matching size technique of SRM
is the only one that can size software without detailed inner knowledge.
This is because SRM uses external patterns.

Note that SRM sizing is a proprietary trade secret and not available to
the public. However, a visit to the Namcook web site www.Namcook.com

http://www.Namcook.com

Early Sizing and Estimating of Software Projects  ◾  295

includes a trial version that is run-limited but can produce several proj-
ect sizes before the limits are reached.

Early Risk Analysis
One of the main purposes of early sizing is to be able to identify soft-
ware risks early enough to plan and deploy effective solutions. This is
why Namcook calls its sizing and estimating tool “Software Risk Master”
(SRM).

Table 10.5  Metrics Supported by Namcook Pattern Matching

1 IFPUG function points

2 Automated code-based

3 Automated UML-based

4 Backfired function points

5 Non-functional SNAP points based on SNAP rules

6 COSMIC function points

7 FISMA function points

8 NESMA function points

9 Simple function points

10 Mark II function points

11 Unadjusted function points

12 Function points “light”

13 Engineering function points

14 Feature points

15 Use-case points

16 Story points

17 Lines of code (logical statements)

18 Lines of code (physical lines)

19 RICE objects

20 Micro function points

21 Logical code statements

22 Physical lines of code

23 Additional metrics as published

296  ◾  Software Development Patterns and Antipatterns

Table 10.6  Sizes of 100 Software Applications

Note: sizes assume IFPUG 4.3
Note: All sizes by Software Risk Master (SRM)
Copyright © 2019 by Capers Jones. All rights reserved.

Applications (Note: SRM sizing takes
about 1.8 minutes per application
for sizing (patent-pending)

Size in
Function

Points

SNAP
Non-

function
Points

Size in
Logical
Code

IFPUG 4.3 IFPUG Statements

1 IBM Future System FS/1
(circa 1985 not completed)

515,323 108,218 68,022,636

2 Star Wars missile defense 352,330 42,280 32,212,992

3 World-wide military command
and control (WWMCCS)

307,328 56,856 28,098,560

4 U.S. Air Traffic control 306,324 59,121 65,349,222

5 Israeli air defense system 300,655 63,137 24,052,367

6 North Korean border defenses 273,961 50,957 25,047,859

7 Iran’s air defense system 260,100 46,558 23,780,557

8 SAP 253,500 32,070 18,480,000

9 Aegis destroyer C&C 253,088 49,352 20,247,020

10 Oracle 229,434 29,826 18,354,720

11 Windows 10 (all features) 198,050 21,786 12,675,200

12 Obamacare web (all features) 107,350 5,720 12,345,250

13 Microsoft Office Professional
2010

93,498 10,285 5,983,891

14 Airline reservation system 38,392 5,759 6,142,689

15 North Korean Long-Range Missile
controls

37,235 4,468 5,101,195

16 NSA code decryption 35,897 3,590 3,829,056

17 FBI Carnivore 31,111 2,800 3,318,515

18 FBI fingerprint analysis 25,075 3,260 2,674,637

19 NASA space shuttle 23,153 3,010 2,116,878

20 VA Patient monitoring 23,109 3,004 4,929,910

21 Data Warehouse 21,895 2,846 1,077,896

Early Sizing and Estimating of Software Projects  ◾  297

Note: sizes assume IFPUG 4.3
Note: All sizes by Software Risk Master (SRM)
Copyright © 2019 by Capers Jones. All rights reserved.

Applications (Note: SRM sizing takes
about 1.8 minutes per application
for sizing (patent-pending)

Size in
Function

Points

SNAP
Non-

function
Points

Size in
Logical
Code

IFPUG 4.3 IFPUG Statements

22 NASA Hubble controls 21,632 2,163 1,977,754

23 Skype 21,202 3,392 1,130,759

24 Shipboard gun controls 21,199 4,240 1,938,227

25 American Express billing 20,141 3,223 1,432,238

26 M1 Abrams battle tank
operations

19,569 3,131 1,789,133

27 Apple I Phone v6 operations 19,366 2,518 516,432

28 IRS income tax analysis 19,013 2,472 1,352,068

29 Cruise ship navigation 18,896 2,456 1,343,713

30 MRI medical imaging 18,785 2,442 1,335,837

31 Google search engine 18,640 2,423 1,192,958

32 Amazon web site 18,080 2,350 482,126

33 State wide child support 17,850 2,321 952,000

34 Linux 17,505 2,276 700,205

35 FEDEX shipping controls 17,378 2,259 926,802

36 Tomahawk cruise missile 17,311 2,250 1,582,694

37 Denver Airport luggage
(original)

17,002 2,166 1,554,497

38 Inventory management 16,661 2,111 1,332,869

39 EBAY transaction controls 16,390 2,110 1,498,554

40 Patriot missile controls 16,239 2,001 1,484,683

41 IBM IMS data base 15,392 1,939 1,407,279

42 Toyota robotic manufacturing 14,912 1,822 3,181,283

43 Android operating system 14,019 1,749 690,152

44 Quicken 2015 13,811 1,599 679,939

(Continued)

Table 10.6  (Continued)

298  ◾  Software Development Patterns and Antipatterns

Note: sizes assume IFPUG 4.3
Note: All sizes by Software Risk Master (SRM)
Copyright © 2019 by Capers Jones. All rights reserved.

Applications (Note: SRM sizing takes
about 1.8 minutes per application
for sizing (patent-pending)

Size in
Function

Points

SNAP
Non-

function
Points

Size in
Logical
Code

IFPUG 4.3 IFPUG Statements

45 State transportation ticketing 12,300 1,461 656,000

46 State Motor vehicle registrations 11,240 1,421 599,467

47 Insurance claims handling 11,033 1,354 252,191

48 SAS statistical package 10,927 1,349 999,065

49 Oracle CRM Features 10,491 836 745,995

50 DNA Analysis 10,380 808 511,017

51 EZPass vehicle controls 4,751 594 253,400

52 Cat scan medical device 4,575 585 244,000

53 Chinese submarine sonar 4,500 522 197,500

54 Microsoft Excel 2007 4,429 516 404,914

55 Citizens bank on-line 4,017 655 367,224

56 MapQuest 3,969 493 254,006

57 Bank ATM controls 3,917 571 208,927

58 NVIDIA graphics card 3,793 464 151,709

59 Lasik surgery (wave guide) 3,625 456 178,484

60 Sun D-Trace utility 3,505 430 373,832

61 Microsoft Outlook 3,450 416 157,714

62 Microsoft Word 2007 3,309 388 176,501

63 Adobe Illustrator 2,507 280 178,250

64 SpySweeper antispyware 2,227 274 109,647

65 Norton anti-virus software 2,151 369 152,942

66 Microsoft Project 2007 2,108 255 192,757

67 Microsoft Visual Basic 2,068 247 110,300

Table 10.6  (Continued)

Early Sizing and Estimating of Software Projects  ◾  299

Note: sizes assume IFPUG 4.3
Note: All sizes by Software Risk Master (SRM)
Copyright © 2019 by Capers Jones. All rights reserved.

Applications (Note: SRM sizing takes
about 1.8 minutes per application
for sizing (patent-pending)

Size in
Function

Points

SNAP
Non-

function
Points

Size in
Logical
Code

IFPUG 4.3 IFPUG Statements

68 All-in-one printer 1,963 231 125,631

69 AutoCAD 1,900 230 121,631

70 Garmin hand-helc GPS 1,858 218 118,900

71 Intel Math function library 1,768 211 141,405

72 PBX switching system 1,658 207 132,670

73 Motorola cell phone contact list 1,579 196 144,403

74 Seismic analysis 1,564 194 83,393

75 Sidewinder missile controls 1,518 188 60,730

76 Apple I Pod 1,507 183 80,347

77 Property tax assessments 1,492 179 136,438

78 Mozilla Firefox (original) 1,450 174 132,564

79 Google Gmail 1,379 170 98,037

80 Digital camera controls 1,344 167 286,709

81 IRA account management 1,340 167 71,463

82 Consumer credit report 1,332 165 53,288

83 Sun Java compiler 1,310 163 119,772

84 All in one printer driver 1,306 163 52,232

85 Laser printer driver 1,285 162 82,243

86 JAVA compiler 1,281 162 91,096

87 Smart bomb targeting 1,267 150 67,595

88 Wikipedia 1,257 148 67,040

89 Casio atomic watch with compass,
tides

1,250 129 66,667

(Continued)

Table 10.6  (Continued)

300  ◾  Software Development Patterns and Antipatterns

If risks are not identified until after the requirements are complete, it
is usually too late to make changes in development methods.

25 major risks where application size has been proven to be a major
factor in application costs, schedules, and quality include but are not
limited to those shown in the Table 10.7.

All 25 of these software risks are proportional to application size,
so early sizing is a useful precursor for risk avoidance and risk miti-
gation. In estimating mode, SRM predicts the odds of these risks
occurring and in measurement mode can measure their impact on
completed projects.

There are also many risks that are not directly related to proj-
ect size: bankruptcies, theft of intellectual property, cyber-attacks

Note: sizes assume IFPUG 4.3
Note: All sizes by Software Risk Master (SRM)
Copyright © 2019 by Capers Jones. All rights reserved.

Applications (Note: SRM sizing takes
about 1.8 minutes per application
for sizing (patent-pending)

Size in
Function

Points

SNAP
Non-

function
Points

Size in
Logical
Code

IFPUG 4.3 IFPUG Statements

90 Cochlear implant (embedded) 1,250 135 66,667

91 APAR analysis and routing 1,248 113 159,695

92 Computer BIOS 1,215 111 86,400

93 Automobile fuel injection 1,202 109 85,505

94 Anti-lock brake controls 1,185 107 63,186

95 Ccleaner utility 1,154 103 73,864

96 Hearing aid (multi program) 1,142 102 30,448

97 LogiTech cordless mouse 1,134 96 90,736

98 Instant messaging 1,093 89 77,705

99 Twitter (original circa 2009) 1,002 77 53,455

100 Denial of service virus 866 – 79,197

Averages 42,682 6,801 4,250,002

Table 10.6  (Continued)

Early Sizing and Estimating of Software Projects  ◾  301

on applications, loss of key personnel, and many more. In total the
Namcook Analytics LLC master list of current software risks includes
a total of 210 software risk factors. Of course starting in 2020 there
is the new risk of teams catching the corona virus, which is currently
unpredictable.

Table 10.7  Software Risks Related to Application Size

1 Project cancellations

2 Project cost overruns

3 Project schedule delays

4 Creeping requirements (>1% per month)

5 Deferred features due to deadlines (>20% of planned features)

6 High defect potentials

7 Low defect removal efficiency (DRE)

8 Latent security flaws in application when released

9 Error-prone modules (EPM) in applications

10 High odds of litigation for outsource contract projects

11 Low customer satisfaction levels

12 Low team morale due to overtime and over work

13 Inadequate defect tracking which fails to highlight real problems

14 Inadequate cost tracking which omits major expense elements

15 Long learning curves by maintenance and support teams

16 Frequent user errors when learning complex new systems

17 Post-release cyber-attacks (denial of service, hacking, data theft, etc.)

18 High cost of learning to use the application (COL)

19 High cost of quality (COQ)

20 High technical debt

21 High maintenance costs

22 High warranty costs

23 Excessive quantities of rework

24 Difficult enhancement projects

25 High total cost of ownership (TCO)

302  ◾  Software Development Patterns and Antipatterns

Lifetime Sizing with Software Risk Master™
Although this chapter concentrates on quality and the initial release of
a software application, the SRM sizing algorithms actually create 15 size
predictions. The initial prediction is for the nominal size at the end of
requirements. SRM also predicts requirements creep and deferred func-
tions for the initial release.

After the first release, SRM predicts application growth for a
3-year period but internally growth is predicted for 10 years. However
after 3 years, business changes become so critical that Namcook limits
the results to a 3-year window.

To illustrate the full set of SRM size predictions, Table 10.8 shows
a sample application with a nominal starting size of 10,000 function
points. All of the values are in round numbers to make the patterns of
growth clear.

As can be seen from Table 10.8, software applications do not have
a single fixed size, but continue to grow and change for as long as
they are being used by customers or clients. Therefore, productivity and
quality data needs to be renormalized from time to time. Namcook sug-
gests renormalization at the beginning of every fiscal or calendar year.

Economic Modeling with Software Risk Master
Because SRM can predict the results of any methodology used for any
size and kind of software project, it is in fact a general economic model
that can show the total cost of ownership (TCO) and the cost of quality
(COQ) for a variety of software development methods and practices.

For example, SRM can show immediate results in less than one min-
ute for any or all of the more than 60 developments; for any combina-
tion of 84 programming languages; and for work patterns in any of
more than 50 countries.

Following are the 20 most common methodologies used by SRM cus-
tomers as of 2016 in alphabetical order:

	 1.	Agile development
	 2.	Capability Maturity Model Integrated (CMMI)™ – all 5 levels
	 3.	Extreme programming (XP)
	 4.	Feature-driven development (FDD)
	 5.	Formal inspections (combined with other methods)
	 6.	Hybrid development (features from several methods)
	 7.	Information Engineering (IE)
	 8.	Iterative development

Early Sizing and Estimating of Software Projects  ◾  303

Table 10.8  SRM Multi-Year Sizing Example

Copyright © by Capers Jones. All rights reserved.

Patent Application 61434091. February 2012.

Nominal application size in
IFPUG function points

10,000

SNAP points 1,389

Language C

Language level 2.50

Logical code statements 1,280,000

Function
Points

SNAP
Points

Logical
Code

1 Size at end of requirements 10,000 1,389 1,280,000

2 Size of requirement creep 2,000 278 256,000

3 Size of planned delivery 12,000 1,667 1,536,000

4 Size of deferred features −4,800 (667) (614,400)

5 Size of actual delivery 7,200 1,000 921,600

6 Year 1 usage 12,000 1,667 1,536,000 Kicker

7 Year 2 usage 13,000 1,806 1,664,000

8 Year 3 usage 14,000 1,945 1,792,000

9 Year 4 usage 17,000 2,361 2,176,000 Kicker

10 Year 5 usage 18,000 2,500 2,304,000

11 Year 6 usage 19,000 2,639 2,432,000

12 Year 7 usage 20,000 2,778 2,560,000

13 Year 8 usage 23,000 3,195 2,944,000 Kicker

14 Year 9 usage 24,000 3,334 3,072,000

15 Year 10 usage 25,000 3,473 3,200,000

Kicker = Extra features added to defeat competitors.

Note: Simplified example with whole numbers for clarity.

Note: Deferred features usually due to schedule deadlines.

304  ◾  Software Development Patterns and Antipatterns

	 9.	Lean software development (alone or in combination)
	 10.	Mashup software development
	 11.	Model-driven development
	 12.	Open-source development models
	 13.	Personal software process (PSP)
	 14.	Rational unified process (RUP)
	 15.	Reusable components and artifacts (various levels of reuse)
	 16.	SCRUM (alone or with other methods)
	 17.	Spiral development
	 18.	Team software process (TSP)
	 19.	Test driven development (TDD)
	 20.	Waterfall development

It takes less than one minute to switch SRM from one methodology to
another, so it is possible to examine and evaluate 10–20 alternatives
methods in less than half an hour. This is not a feature of most other
parametric estimation tools.

Software Risk Master can also model any level of development team
experience, management experience, tester experience, and even client
experience.

Software Risk Master can also show the results of any of 84 different
programming language or combination of programming languages for
more than 79 languages such as ABAP, Ada, APL, Basic, C, C#, C++, CHILL,
COBOL, Eiffel, Forth, Fortran, HTML, Java, Javascript, Julia, Objective C,
PERL, PHP, PL/I, Python, Ruby, Smalltalk, SQL, Visual Basic, and many
other languages. In theory, SRM could support all 2,500 programming lan-
guages, but there is very little empirical data available for many of these.

To add clarity to the outputs, SRM can show identical data for every
case, such as showing a sample application of 1,000 function points
and then changing methods, programming languages, CMMI levels, and
team experience levels. Using the same data and data formats allows
side-by-side comparisons of different methods and practices.

This allows clients to judge the long-range economic advantages of
various approaches for both development and TCO.

The Future of Sizing and Estimating
Software with Function Points
Every year since 1975 more and more companies have adopted function
point metrics; fewer and fewer companies are using LOC, story points,
cost per defect, and other ambiguous and hazardous metrics.

Early Sizing and Estimating of Software Projects  ◾  305

The governments of Brazil and Korea already use function points for
government software contracts (Korea sent a delegation to Namcook
Analytics to discuss this policy.) Other countries such as Italy and
Malaysia are also planning to use function points for contracts (the
author of this book is an advisor to the Malaysian software testing
organization and knows that Malaysia is considering function points for
contracts).

Outside of the United States, the 25 countries with the most certified
function point counters and the widest usage of function points among
technology companies include:

Countries Expanding Use of Function Points 2019

1 Argentina

2 Australia

3 Belgium

4 Brazil Required for government contracts

5 Canada

6 China

7 Finland

8 France

9 Germany

10 India

11 Italy Required for government contracts

12 Japan Required for government contracts

13 Malaysia Required for government contracts

14 Mexico

15 Norway

16 Peru

17 Poland

18 Singapore

19 South Korea Required for government contracts

20 Spain

21 Switzerland

22 Taiwan

(Continued)

306  ◾  Software Development Patterns and Antipatterns

Countries Expanding Use of Function Points 2019

23 The Netherlands

24 United Kingdom

25 United States

It is interesting that several countries with large numbers of tech-
nology companies have not utilized function point metrics to the same
degree as the 25 countries shown earlier. Some of the countries that
do not seem to have internal function point user groups as of 2019
(although this is uncertain) include in alphabetical order: China, Russia,
Saudi Arabia, and the Ukraine.

Because software is important in all countries and function points
are the best metric for estimating and measuring software quality, costs,
and productivity, it can be expected by about 2025 that every industrial
country in the world will use function point metrics and have internal
function point user groups.

Even today in 2020, Namcook receives requests for function point
data from over 45 countries per year including several such as China,
Colombia, Cuba, Jordan, Pakistan, Russia, Saudi Arabia, and Viet Nam
which are just starting to examine the usefulness of function point metrics.

For economic analysis and quality analysis of software, function
points are the best available metric and already have more benchmark
data than all other metrics combined.

Summary and Conclusions
Large software projects are among the most risky business ventures in
history. The failure rate of large systems is higher than other kinds of
manufactured products. Cost overruns and schedule delays for large
software projects are endemic and occur on more than 75% of large
applications. Indeed about 35% of large systems >10,000 function points
are cancelled and not delivered: one of the most expensive forms of
business failure in history.

Early sizing via pattern matching and function point metrics com-
bined with early risk analysis can improve the success rates of large
software applications due to alerting mangers and software teams to
potential hazards while there is still time enough to take corrective
actions prior to expending significant funds.

(Continued)

Early Sizing and Estimating of Software Projects  ◾  307

References and Readings
Jones, Capers; A Guide to Selecting Software Measures and Metrics; CRC Press;

2017a.
Jones, Capers; Software Methodologies, a Quantitative Guide; CRC Press; 2017b.
Jones, Capers; Quantifying Software: Global and Industry Perspectives; CRC

Press; 2017c.
Jones, Capers; The Technical and Social History of Software Engineering;

Addison Wesley; 2014.
Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;

Addison Wesley Longman, Boston, MA; 2011; ISBN: 10: 0-13-258220-1; 585
pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, New York, NY;
2008; ISBN: 978-0-07-150244-3; 662 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007a;
ISBN: 13: 978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; ISBN: 0-201-48542-7; 657 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;
Software Productivity Research, Inc.; Burlington, MA; September 2007b;
53 pages; (SPR technical report).

Additional Literature
Abran, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015.
Abran, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society;

2010.
Abran, Alain; Software Maintenance Management: Evolution and Continuous

Improvement; Wiley-IEEE Computer Society; 2008.
Abran, Alain; and Dumke, Reiner R.; Innovations in Software Measurement;

Shaker-Verlag, Aachen, DE; 2005; ISBN: 3-8322-4405-0; 456 pages.
Abran, Alain; Bundschuh, Manfred; Dumke, Reiner; Ebert, Christof; and

Zuse, Horst; Software Measurement News; Vol. 13, No. 2; October 2008
(periodical).

Bundschuh, Manfred; and Dekkers, Carol; The IT Measurement Compendium;
Springer-Verlag, Berlin, DE; 2008; ISBN: 978-3-540-68187-8; 642 pages.

Chidamber, S.R. & Kemerer, C.F.; “A Metrics Suite for Object-Oriented Design”; IEEE
Trans. On Software Engineering; Vol. SE20, No. 6; June 1994; pp. 476–493.

Dumke, Reiner; Braungarten, Rene; Büren, Günter; Abran, Alain; and Cuadrado-
Gallego, Juan J.; (editors); Software Process and Product Measurement;
Springer-Verlag, Berlin; 2008; ISBN: 10: 3-540-89402-0; 361 pages.

Ebert, Christof; and Dumke, Reiner; Software Measurement: Establish, Extract,
Evaluate, Execute; Springer-Verlag, Berlin, DE; 2007; ISBN: 978-3-540-
71648-8; 561 pages.

308  ◾  Software Development Patterns and Antipatterns

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects; http://
software.isixsigma.com/library/content/c040915b.asp.

Galorath, Dan; and Evans, Michael; Software Sizing, Estimation, and Risk
Management; Auerbach Publications, Boca Raton, FL; 2006.

Garmus, David; and Herron, David; Measuring the Software Process: A Practical
Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ;
1995.

Garmus, David; and Herron, David; Function Point Analysis – Measurement
Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10: 0201631814.

Harris, Michael D.S., Herron, David; and Iwanicki, Stasia; The Business Value of
IT; CRC Press, Auerbach; Boca Raton, FL; 2008; ISBN: 978-14200-6474-2.

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

Kemerer, C.F.; “Reliability of Function Point Measurement – A Field Experiment”;
Communications of the ACM; Vol. 36; 1993; pp. 85–97.

Parthasarathy, M.A.; Practical Software Estimation – Function Point Metrics for
Insourced and Outsourced Projects; Infosys Press, Addison Wesley, Upper
Saddle River, NJ; 2007; ISBN: 0-321-43910-4.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software On Time,
Within Budget; Yourdon Press, Prentice Hall, Englewood Cliffs, NJ; 1992;
ISBN: 0-13-567694-0; 336 pages.

Putnam, Lawrence H.; and Myers, Ware; Industrial Strength Software – Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; 1997;
ISBN: 0-8186-7532-2; 320 pages.

Royce, Walker; Software Project Management – Unified Framework; Addison
Wesley, Boston, MA; 1999.

Stein, Timothy R.; The Computer System Risk Management Book and Validation
Life Cycle; Paton Press, Chico, CA; 2006; ISBN: 10: 1-9328-09-5; 576 pages.

http://software.isixsigma.com
http://software.isixsigma.com

309DOI: 10.1201/9781003193128-13

Chapter 11

Optimizing Software
Defect Removal
Efficiency (DRE)

Introduction
Note: The corona virus pandemic of 2020 introduced changes into soft-
ware development practices. Team meetings and inspections started
using Zoom or with participants wearing masks for safety.

Software quality depends upon two important variables. The first
variable is that of “defect potentials” or the sum total of bugs likely to
occur in requirements, architecture, design, code, documents, and “bad
fixes” or new bugs in bug repairs. Defect potentials are measured using
function points, since “lines of code” (LOC) cannot deal with require-
ments and design defects.

The second variable is “defect removal efficiency” (DRE) or the per-
centage of bugs found and eliminated before release of software to
clients. Defect potentials and DRE metrics were developed by IBM circa
1973 and are widely used by technology companies. Function point
metrics were also invented by IBM during the same time period.

The metrics of “defect potentials” and “defect removal efficiency
(DRE)” are useful quality metrics developed by IBM circa 1973 and
widely used by technology companies as well as by banks, insurance
companies, and other organizations with large software staffs. These
metrics were selected for Software Risk Master (SRM) because they are
the most accurate for predicting overall software quality results.

310  ◾  Software Development Patterns and Antipatterns

Defect potentials are the sum total of bugs found in requirements,
architecture, design, code, and other sources of error. The approximate
U.S. average for software defect potentials is shown in Table 11.1 using
IFPUG function points version 4.3. Function point metrics were also
invented by IBM in the same time period circa 1973.

Function points were invented by A.J. Albrecht and colleagues at
IBM White Plains. Defect potential and DRE metrics were developed by
Michael Fagan, Ron Radice, Capers Jones, and other IBM personnel at
IBM Kingston and IBM San Jose to validate the effectiveness of inspec-
tions. Function point metrics, defect potential metrics, and DRE metrics
were placed in the public domain by IBM.

Function points have become global metrics and responsibility for
counting rules passed to the International Function Point Users Group
(IFPUG).

Defect potentials and DRE metrics are widely used by technology
companies but do not have a formal user group as of 2017. However,
these metrics are frequently used in software benchmarks produced
by organizations such as the International Software Benchmark Group
(ISBSG) and Namcook Analytics LLC. These metrics are also standard
outputs from the SRM estimation tool, which was used to produce Table
11.3 in this chapter.

Note that the phrase “bad fix” refers to new bugs accidentally intro-
duced in bug repairs for older bugs. The current U.S. average for bad-fix
injections is about 7%, i.e. 7% of all bug repairs contain new bugs. For
modules that are high in cyclomatic complexity and for “error prone
modules,” bad-fix injections can top 75%.

Table 11.1  Average Software Defect Potentials circa 2017 for
the United States

•	Requirements 0.70 defects per function point

•	Architecture 0.10 defects per function point

•	Design 0.95 defects per function point

•	Code 1.15 defects per function point

•	Security code flaws 0.25 defects per function point

•	User Documents 0.45 defects per function point

•	Bad fixes 0.65 defects per function point

Total 4.25 defects per function point

Optimizing Software Defect Removal Efficiency (DRE)  ◾  311

Defect potentials are of necessity measured using function point
metrics. The older “lines of code” metric cannot show requirements,
architecture, and design defects not any other defect outside the code
itself. As of 2015 function points were the most widely used software
metric. There are more benchmarks using function point metrics than
all other metrics put together.

The overall U.S. range in defect potentials runs from about 1.50 per
function point to more than 6.00 per function point. Factors that influ-
ence defect potentials include team skills, development methodologies,
CMMI levels, programming languages, and defect prevention techniques
such as joint application design (JAD) and quality function deployment
(QFD).

Defect removal efficiency is also a powerful and useful metric. Every
important project should top 99% in DRE, but few do. The current U.S.
range in DRE is from below 80% for projects that use no pre-test defect
removal and only a few test stages. The highest measured DRE to date
is about 99.95%, and this level required pre-test inspections, static analy-
sis, and at least 8 test stages. The current U.S. average in DRE is just over
92% which is only marginal. All projects should top 97% and the best
should top 99%.

DRE is measured by keeping track of all bugs found internally dur-
ing development, and comparing these to customer-reported bugs dur-
ing the first 90 days of usage. If internal bugs found during development
total 95 and customers report 5 bugs, DRE is 95%.

Table 11.2 shows U.S. software average DRE ranges by application
size measured in IFPUG function points.

Table 11.2  U.S. Software Average DRE Ranges by
Application Size

Function Points Best Average Worst

1 99.95% 97.00% 94.00%

10 99.00% 96.50% 92.50%

100 98.50% 95.00% 90.00%

1,000 96.50% 94.50% 87.00%

10,000 94.00% 89.50% 83.50%

100,000 91.00% 86.00% 78.00%

Average 95.80% 92.20% 86.20%

312  ◾  Software Development Patterns and Antipatterns

As can be seen, DRE comes down as application size goes up. For
that matter, defect potentials go up with application size. Large systems
above 10,000 function points are very risky due to high defect potentials
and low DRE values.

Table 11.3 shows the approximate DRE values for common pre-test
and test methods although there are variations for each method and also
for the patterns of methods used. Note that Table 11.3 omits architecture
bugs due to the small size of the example of only 1,000 function points.

Table 11.3 assumes top-level experts, the quality-strong “team soft-
ware process” (TSP) methodology, the Java programming language, and
CMMI level 5. Therefore, defect potentials are well below current U.S.
averages.

To illustrate the principles of optimal defect prevention, pre-test
removal, and test defect removal. Table 11.3 shows a sequence of pre-
test and test stages that will top 99% in DRE. Table 11.3 illustrates
1,000 function points and about 53,000 Java statements. Table 11.3 is
taken from the quality output predictions of SRM.

DRE measures can be applied to any combination of pre-test and
testing stages. The U.S. norm is to use static analysis before testing and
six kinds of testing: unit test, function test, regression test, performance
test, system test, and acceptance test. This combination usually results
in about 95% DRE.

Critical software for medical devices, avionics packages, weapons
systems, telecommunications switching systems, operating systems and
other software that controls complex physical devices use full pre-test
inspections and static analysis plus at least eight kinds of testing. These
applications need to top 99% in DRE in order to operate safely.

In order to top 99% in DRE Table 11.2 shows several forms of defect
prevention and includes inspections as an important pre-test removal
method. Formal inspections have the highest DRE of any known method,
and over 50 years of empirical data.

Due to the 2020 corona virus, inspections still need to be done
remotely via Zoom in 2021, which reduces efficiency.

Due to inspections, static analysis, and formal testing by certified test
personnel, the DRE for code defects can top 99.75%. It is harder to top
99% for requirements and design bugs since both resist testing and can
only be found via inspections, or by text static analysis.

Summary and Conclusions
The combination of defect potential and DRE measures provide software
engineering and quality personnel with powerful tools for predicting

Optimizing Software Defect Removal Efficiency (DRE)  ◾  313

(Continued)

Table 11.3  DRE > 99%

Defects

Requirements defect potential 134

Design defect potential 561

Code defect potential 887

Document defect potential 135

Total Defect Potential 1,717

Per function point 1.72

Per KLOC 32.20

Efficiency Remainder Bad Fixes Costs

Defect Prevention

  Joint Application Design
(JAD)

27% 1,262 5 $28,052

  Quality Function
Deployment

30% 888 4 $39,633

  Prototype 20% 713 2 $17,045

  Models 68% 229 5 $42,684

Subtotal 86% 234 15 $127,415

Pre-Test Removal

  Desk check 27% 171 2 $13,225

  Static analysis 55% 78 1 $7,823

  Inspections 93% 5 0 $73,791

Subtotal 98% 6 3 $94,839

Test Removal

  Unit 32% 4 0 $22,390

  Function 35% 2 0 $39,835

  Regression 14% 2 0 $51,578

  Component 32% 1 0 $57,704

  Performance 14% 1 0 $33,366

  System 36% 1 0 $63,747

314  ◾  Software Development Patterns and Antipatterns

and measuring all forms of defect prevention and all forms of defect
removal.

Function point metrics are the best choice for normalizing defect
potentials since they can include the defects found in requirements,
architecture, design, and other non-code defect origins. The older LOC

Defects

  Acceptance 17% 1 0 $15,225

Subtotal 87% 1 0 $283,845

Costs

Pre-Release Costs 1,734 3 $506,099

Post-Release Repairs (Technical
Debt)

1 0 $658

Maintenance Overhead $46,545

Cost of Quality (COQ) $553,302

Defects delivered 1

High severity 0

Security flaws 0

High severity % 11.58%

Delivered per FP 0.001

High severity per FP 0.000

Security flaws per FP 0.000

Delivered Per KLOC 0.014

High severity per KLOC 0.002

Security flaws per KLOC 0.001

Cumulative Removal Efficiency 99.96%

Table 11.3  (Continued)

Optimizing Software Defect Removal Efficiency (DRE)  ◾  315

metric can only measure code defects which are usually less than 50%
of total defects.

Introduction
From data collected by the author of this book during software assess-
ment and benchmark studies, there are major differences in the patterns
of software tool usage between “leading” and “lagging” enterprises.
Leading enterprises are defined as those in the top quartile of the com-
panies evaluated in terms of software productivity, schedule adherence,
and quality results. Lagging enterprises are those in lower quartile.

The most significant differences noted between laggards and leaders
are in the areas of project management tools, quality assurance tools,
and testing tools. Leaders tend to exceed laggards by a ratio of about
15 to 1 in the volumes of tools associated with project management and
quality control. The function point metric is proving to be a useful ana-
lytical tool for evaluating the capacities of software tool suites.

Function point metrics provide a very useful tool for comparing and
evaluating software tools in all categories. In this chapter, software tools
are categorized as follows:

Project Management Tools

These are tools aimed at the software management community. These
tools are often concerned with predicting the costs, schedules, and qual-
ity levels prior to development of software projects and also collecting
historical data from completed projects.

Software Engineering Tools

The set of software engineering tools are those used by programmers or
software engineering personnel. There are many tools in this family, and
they cover a variety of activities commencing with requirements analysis
and proceeding through design, coding, change control, static analysis,
and personal testing such as unit test.

Software Maintenance Engineering Tools

The tools in this family are aimed at stretching out the lives of aging leg-
acy software applications. These tools are concerned with topics such

316  ◾  Software Development Patterns and Antipatterns

as reverse engineering, code restructuring, defect tracking, reengineer-
ing, and other activities that center on existing applications. More mod-
ern “maintenance workbenches” provide support for full renovation of
legacy applications.

Software Quality Assurance Tools

The tools in the software quality assurance (SQA) set are aimed at defect
prediction, prevention, defect tracking, and the other “traditional” activi-
ties of SQA teams within major corporations.

Software Testing and Static Analysis Tools

The family of testing tools has been expanding rapidly, and the vendors
in this family have been on a wave of mergers and acquisitions. The test
tool market place is expanding fairly rapidly, and new tools are being
marketed at an increasing pace. New kinds of tools such as automated
test tools and static analysis tools have joined the traditional family of
test tools.

Software Documentation Tools

Every software project requires some kind of documentation support, in
terms of user’s guides, reference manuals, HELP text, and other printed
matter. The more sophisticated software projects have a substantial vol-
ume of graphics and illustrations too, and may also use hypertext links
to ease transitions from topic to topic.

Various kinds of software engineering and project management tools
are used by all software professionals between 2 and 7 hours per day,
every day. Because so much of the work of modern software engineer-
ing involves using tools, the usage patterns and effectiveness of tools
needs greater study than the software engineering literature has pro-
vided thus far.

Commercial Tools

There are hundreds or even thousands of commercial tools available
for software development, software project management, maintenance,
testing, quality control and other key activities associated with software
projects. There are also hundreds of proprietary, internal tools which
companies build for their own use but not for sale to others.

Every single working day, software engineers, project managers, tes-
ters, and other software professionals make use of tools between 2 hours

Optimizing Software Defect Removal Efficiency (DRE)  ◾  317

and 7 hours per day, every day. In fact without using various kinds of
tools software engineering would not even exist as an occupation.

However, the software literature has provided very little in the way
of quantitative analysis about either usage patterns or the overall impact
of tools on software productivity and quality. This chapter is an attempt
to bring the issue of tool usage to the attention of software engineering
and project management researchers.

Many commercial software tool vendors make advertising claims
about the power of their tools in terms of increasing software devel-
opment productivity, quality, or shortening schedules. Many of these
claims are not supported by empirical data and most appear to be exag-
gerated in greater or lesser degree. Indeed, the exaggerations by tool
vendors did much to discredit the value of Computer Aided Software
Engineering (CASE) which tended to promise more than it performed.

Considering the importance of software to business and industry, it is
surprising that the topic of software tool usage has been under-reported
in the software literature. Indeed, since about 1990 much of the soft-
ware engineering literature has been devoted to the subject of “software
process improvement” and tools have been regarded as a minor back-
ground issue. Tools alone do not distinguish between leaders and lag-
gards, but tool usage is a significant supplemental factor.

The author’s current company, Namcook Analytics LLC, performs
both qualitative assessments and quantitative benchmark studies for cli-
ents. A part of the analysis is collecting data on the numbers and kinds
of tools utilized for software development, project management, and
other related activities.

In addition, we also record data on software productivity, quality,
schedules, and other quantitative aspects of software performance as
well as qualitative data on the methods and processes utilized. As of
2016, the total number of software projects in our knowledge base is
rapidly pushing past 26,000 and the total number of client organizations
from which we have collected data is approaching 600 companies and
some government agencies.

Table 11.4 shows the variety of tools used by one of the author’s
clients on a large financial application of about 5,000 function points in
size. Table 11.4 shows the many different kinds of tools used circa 2016.

As can be seen, tool usage circa 2018 is complex and involves dozens
of tool vendors.

In analyzing this data, we perform multiple regression studies on the
factors that influence the outcomes of software projects. Although the
software development process is indeed a key issue, tools also exert a
major impact. This chapter discusses some of the differences in the pat-
terns of tool usage noted between “lagging” organizations and “leading”

318  ◾  Software Development Patterns and Antipatterns

Table 11.4  Tools used for Finance Software Project

Tasks Tools Utilized

1 Architecture QEMU

2 Automated test HP QuickTest Professional

3 Benchmarks ISBSG, Namcook, Q/P Mgt Group, Davids

4 Coding Eclipse, Slickedit

5 Configuration Perforce

6 Cost estimate Software Risk Master (SRM), SEER, SLIM

7 Cost tracking Automated project office (APO), MS Project

8 Cyclomatic BattleMap

9 Debugging GHS probe

10 Defect tracking Bugzilla

11 Design Projects Unlimited

12 Earned value DelTek Cobra

13 ERP Microsoft Dynamics

14 Function points 1 Software Risk Master (SRM)

15 Function points 2 Function point workbench

16 Function points 3 CAST automated function points

17 Graphics design Visio

18 Inspections SlickEdit

19 Integration Apache Camel

20 ISO tools ISOXpress

21 Maintenance Mpulse

22 Manual test DevTest

23 Milestone track KIDASA Software Milestone Professional

24 Progress track Jira, Automated project office (APO)

25 Project mgt. Automated project office (APO)

26 Quality estimate Software Risk Master (SRM)

27 Requirements Rational Doors

28 Risk analysis Software Risk Master (SRM)

29 Source code size 1 Software Risk Master (SRM)

Optimizing Software Defect Removal Efficiency (DRE)  ◾  319

organizations. In terms of tool usage, the most significant differences
between laggards and leaders are in the domains of project manage-
ment tools and quality control tools.

Performance of Lagging, Average, and
Leading Projects
Before discussing the impact of tools, it is useful to provide some
background data on the results which we associate with lagging, aver-
age, and leading software projects. In our measurement studies, we
use the function point metric for data normalization, and this chapter
assumes version 4.3 of the function point counting rules published by
the International Function Point Users Group (IFPUG). Function points
have substantially replaced the older “lines of code” (LOC) metric for all
quantitative benchmark studies, since the LOC metric is not useful for
large-scale studies involving multiple programming languages. We have
not yet incorporated the newer SNAP metric for non-functional require-
ments into these studies due to the lack of data and the ambiguity of
the SNAP metric. Neither do we use story points or use-case points since
neither has any ISO standards, and the results vary by over 400% from
company to company.

Note that similar kinds of studies could be done using COSMIC
function points, Finnish function points (FISMA), Netherlands function
points (NESMA), or some of the other functional size variations. The
size results would probably differ by about 15% from the current study.
Other metrics such as story points and use-case points do not seem par-
ticularly well suited for tool analysis.

Tasks Tools Utilized

30 Source code size 2 Unified code counter (UCC)

31 SQA NASA Goddard ARM tool

32 Static analysis Kiuwan

33 Support Zendesk

34 Test coverage Software Verify suite

35 Test library DevTest

36 Value analysis Excel and Value Stream Tracking

Table 11.4  (Continued)

320  ◾  Software Development Patterns and Antipatterns

In our quantitative benchmark studies, as might be expected, the
majority of projects are “average” in terms of productivity, quality, and
schedule results. What this chapter concentrates on are the extreme ends
of the data we collect: the outlying projects that are either much better
than average or much worse than average. There are more insights to
be gained by analysis of the far ends of the spectrum than by examining
the projects that cluster around the center.

Let us consider what it means for a software project to be considered
“average” or “leading” or “lagging” in quantitative terms. Although many
attributes can be included, in this short chapter only six key factors are
discussed.

	 1.	The length of software development schedules.
	 2.	Productivity rates expressed in function points per staff month.
	 3.	Defect potentials expressed in function points.
	 4.	Defect removal efficiency levels.
	 5.	Delivered defect levels.
	 6.	Rank on the capability maturity model (CMMI) of the Software

Engineering Institute (SEI).

In general, the set of leading companies are better in all of these factors
than either the average or lagging groups. That is, their schedules are
shorter, their quality levels are better, and they place higher on the SEI
CMMI.

Average Software Projects

Because schedules vary with project size, the development schedules
of average software projects can be approximated by raising the func-
tion point total of the project to the 0.4 power. This calculation yields
the approximate number of calendar months for development between
start of requirements and delivery to clients. Thus, for a project of 1,000
function points, raising that size to the 0.4 power yields a development
schedule from start of requirements until deployment that would be
roughly 15.8 calendar months.

The defect potential or number of possible bugs that might be found
for average projects totals to about 4.50 bugs per function point. This is
the sum of bugs or defects found in five deliverable artifacts: require-
ments, design, source code, user documents, and “bad fixes” or second-
ary defects introduced while fixing other defects. The cumulative DRE
before delivery to clients is about 85% to perhaps 92%, so the number
of bugs still latent at the time of delivery is about 0.75 bugs per func-
tion point.

Optimizing Software Defect Removal Efficiency (DRE)  ◾  321

Software development productivity rates vary with the size and
nature of the application but are typically in the range of 6 to 10 func-
tion points per staff month for projects in the average zone.

Although the CMMI published by the SEI is based on qualitative
rather than quantitative results, the data shown here for average projects
is representative of projects that are at Level 1 of the CMM, but not far
from Level 2.

Leading Software Projects

Software projects in the upper quartile of our data base have shorter
schedules, higher quality levels, and higher productivity rates simultane-
ously. This is not surprising, because the costs, effort, and time to find
software defects is usually the largest cost driver and the most signifi-
cant barrier to rapid development schedules.

To approximate the development schedule for projects in the
upper quartile, raise the function point total of the application to the
0.35 power to generate the number of calendar months from require-
ments to deployment. For a sample project of 1,000 function points in
size, this calculation yields a result of about 11.2 calendar months from
start of requirements until deployment.

The defect potential or number of possible bugs that might be found
for leading projects is well below average, and runs to less than about
3.0 bugs per function point. The cumulative DRE before delivery to cli-
ents is about 95% to 99%, so the number of bugs still latent at the time
of delivery is about 0.15 bugs per function point or even lower.

The reduced levels of defect potentials stem from better methods of
defect prevention, while the elevated rates of DRE are always due to the
utilization of formal design reviews and code inspections. Testing alone
is insufficient to achieve defect removal rates higher than about 90% so
all of the top-ranked quality organizations utilize inspections also.

Here too the productivity rates vary with the size and nature of the
application but are typically in the range of 10 to 20 function points per
staff month for projects in the upper quartile. The maximum rate can
exceed 30 function points per staff month.

In terms of the CMMI published by the SEI, the data for the upper
quartile shown is representative of projects that are at well into Level 3
of the CMMI, or higher.

Lagging Software Projects

Software projects in the lower quartile of our data base are troublesome,
and there is also a known bias in our data. Many projects that would be

322  ◾  Software Development Patterns and Antipatterns

in the lower quartile if the project went all the way to completion are
cancelled, and hence not studied in any depth. Therefore the projects
discussed here are those which were completed, but which were well
below average in results.

The effect of this situation is to make the lagging projects, as bad as
they are, look somewhat better than would be the case if all of the can-
celled projects were included in the same set. Unfortunately in our con-
sulting work, we are seldom asked to analyze projects that have been
terminated due to excessive cost and schedule overruns. We are often
aware of these projects, but our clients do not ask to have the projects
included in the assessment and benchmark studies that they commis-
sion us to perform.

To approximate the development schedule for projects in the
lower quartile, raise the function point total of the application to the
0.45 power to generate the number of calendar months from require-
ments to deployment. For a sample project of 1,000 function points in
size, this calculation yields a result of about 22.4 calendar months.

The defect potential or number of possible bugs that are found for
lagging projects is well above average, and runs to more than about
7.0 bugs per function point. The cumulative DRE before delivery to
clients is only about 75%, so the number of bugs still latent at the time
of delivery is an alarming 1.75 bugs per function point. Needless to say,
lagging projects have severe quality problems, unhappy users, and hor-
rendous maintenance expenses.

As will be discussed later, the lagging projects usually have no qual-
ity assurance tools or SQA teams, and may also be careless and perfunc-
tory in testing as well.

For laggards too, the productivity rates vary with the size and nature
of the application, but are typically in the range of 1.0 to 5.0 function
points per staff month, although some projects in the lower quartile
achieve only a fraction of a function point per staff month. The mini-
mum rate we’ve measured is 0.13 function points per staff month. The
best results from the laggard group seldom approach 10 function points
per staff month.

In terms of the CMMI published by the SEI, the data for the lower
quartile is representative of projects that are at well back at the rear of
Level 1 of the CMM.

A Taxonomy of Software Tool Classes
This chapter is concerned with fairly specialized tools which sup-
port software projects in specific ways. There are of course scores of

Optimizing Software Defect Removal Efficiency (DRE)  ◾  323

general-purpose tools used by millions of knowledge workers such as
word processors, spreadsheets, data bases, and the like. These general-
purpose tools are important, but are not covered in the following chap-
ter in depth because they are not really aimed at the unique needs of
software projects.

Because tool usage is under-reported in the software literature, there
is no general taxonomy for discussing the full range of tools which can
be applied to software projects or are deployed within software organi-
zations. In this chapter, the author of this book has developed the fol-
lowing taxonomy for discussing software-related tools.

Project Management Tools

These are tools aimed at the software management community. These
tools are often concerned with predicting the costs, schedules, and qual-
ity levels prior to development of software projects. The set of manage-
ment tools also includes tools for measurement and tracking, budgeting,
and other managerial activities that are performed while software proj-
ects are underway. In other words, some project management tools per-
form estimates and point to the future; others measure results and point
to the past. Both kinds are needed.

Note that there are a number of tools available for personnel func-
tions such as appraisals. However, these are generic tools and not aimed
specifically at project management or control of software projects them-
selves and hence are not dealt with in this chapter. There are also payroll
and benefits accumulation tools, but these deal with personnel topics
and not with software engineering so they are not included either.

Software Engineering Tools

The set of software engineering tools are those used by programmers or
software engineering personnel. There are many tools in this family, and
they cover a variety of activities commencing with requirements analysis
and proceeding through design, coding, change control, static analysis,
and personal testing such as unit test.

Examples of the tools in the software engineering family include
design tools, compilers, assemblers, and the gamut of features now
available under the term “programming support environment.”

Numerically, there are more vendors and more kinds of tools within
the software engineering family than any of the other families of
tools discussed in this chapter. The software engineering tools fam-
ily has several hundred vendors and several thousand projects in the
United States alone, and similar numbers in Western Europe. Significant

324  ◾  Software Development Patterns and Antipatterns

numbers of tools and tool vendors also occur in the Pacific Rim and
South America.

Software Maintenance Engineering Tools

The tools in this family are aimed at stretching out the lives of aging leg-
acy software applications. These tools are concerned with topics such
as reverse engineering, code restructuring, defect tracking, reengineer-
ing, and other activities that center on existing applications. More mod-
ern “maintenance workbenches” provide support for full renovation of
legacy applications.

Although the family of maintenance tools is increasing, it has been
an interesting phenomenon that maintenance tools have never been as
plentiful nor as well marketed as software development tools.

The impact of two massive maintenance problems, the year 2000 and
the Euro-currency conversion, triggered a burst of new maintenance
tools circa 1995–1999. For perhaps the first time in software’s history,
the topic of maintenance began to achieve a level of importance equal
to new development.

Software Quality Assurance Tools

The tools in the SQA set are aimed at defect prediction, prevention,
defect tracking, and the other “traditional” activities of SQA teams within
major corporations.

It is an unfortunate aspect of the software industry that the family
of quality-related tools was small during the formative years of the soft-
ware occupation, during the 1960s and 1970s. In recent years, the num-
bers of quality-related tools have been increasing fairly rapidly, although
SQA tools are still found primarily only in large and sophisticated corpo-
rations. Incidentally, as a class, software quality groups are often under-
staffed and underfunded.

Software Testing and Static Analysis Tools

The family of testing tools has been expanding rapidly, and the vendors
in this family have been on a wave of mergers and acquisitions. The test
tool market place is expanding fairly rapidly, and new tools are being
marketed at an increasing pace. New kinds of tools such as automated
test tools and static analysis tools have joined the traditional family of
test tools.

The test tool community is logically related to the SQA community,
but the two groups are not identical in their job functions nor in the

Optimizing Software Defect Removal Efficiency (DRE)  ◾  325

tools which are often utilized, although there are of course duplications
of tools between the two job categories.

In recent years, a new class of tools called “static analysis tool” have
joined traditional testing tools, although usually marketed by companies
outside of traditional testing. Static analysis tools have a high efficiency
in finding bugs and are cost-effective when run prior to testing. In fact,
some of the structural defects found by static analysis tools are very dif-
ficult to find using normal testing tools and methods.

A wave of mergers and acquisitions has been sweeping through the
test and quality tool domain. As a result, test and quality assurance
tools are now starting to be marketed by larger corporations than was
formerly the case, which may increase sales volumes. For many years,
test and quality assurance tools were developed and marketed by com-
panies that tended to be small and undercapitalized.

Software Documentation Tools

Every software project requires some kind of documentation support, in
terms of user’s guides, reference manuals, HELP text, and other printed
matter. The more sophisticated software projects have a substantial vol-
ume of graphics and illustrations too, and may also use hypertext links
to ease transitions from topic to topic.

For modern applications offered in the form of “software as a ser-
vice” (SaaS) or web-enabled office suites such as those by Google, all of
the documentation is now online and available primarily from web sites.

The topic of documentation tools is undergoing profound changes
under the impact of the World Wide Web and the Internet. Also the topic
of work-flow management and newer technologies such as HTML, web
authoring tools, and hypertext links are beginning to expand, the world
of documentation from “words on paper” to a rich multi-media experi-
ence where online information may finally achieve the long-delayed
prominence which has been talked about for almost 50 years.

References and Readings
Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN:

10: 0321146530; 240 pages.
Black, Rex; Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing; Wiley, Hoboken, NJ; 2009;
ISBN: 10: 0470404159; 672 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You;
Prentice Hall, Upper Saddle River, NJ; 1995; ISBN: 10: 0201633302; 368
pages.

326  ◾  Software Development Patterns and Antipatterns

Everett, Gerald D.; and McLeod, Raymond; Software Testing; John Wiley & Sons,
Hoboken, NJ; 2007; ISBN: 978-0-471-79371-7; 261 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10: 0201631814.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN: 978-0-13-258220-9; 587 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8;660 pages.

Jones, Capers; Applied Software Measurement, 3rd ed.; McGraw Hill, New York,
NY; 2008; ISBN: 978-0-07-150244-3; 662 pages.

Jones, Capers; Estimating Software Costs, 2nd ed.; McGraw Hill, New York, NY;
2007; 700 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Nandyal, Raghav; Making Sense of Software Quality Assurance; Tata McGraw
Hill Publishing, New Delhi, India; 2007; ISBN: 0-07-063378-9; 350 pages.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon
Publishing, Andover, MA; 2002; ISBN: 0-9645913-1-6; 479 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley
Longman, Boston, MA; 2002; ISBN: 0-201-73485-0; 232 pages.

327DOI: 10.1201/9781003193128-14

Chapter 12

Tool Usage on
Best-Case, Average, and
Worst-Case Projects

This section of the chapter discusses the ranges and variations of tools
noted on lagging, average, and leading projects. Three primary kinds of
information are reported in this section.

	 1.	Variances in the numbers of tools used in lagging and leading
projects.

	 2.	Variances in the function point totals of the lagging and leading
tool suites.

	 3.	Variances in the daily hours of usage by software engineers and
managers.

The count of the numbers of tools is simply based on assessment and
benchmark results and our interviews with project personnel. Although
projects vary, of course, deriving the counts of tools is reasonably easy
to perform.

The sizes of the tools expressed in function points are more difficult
to arrive at, and have a larger margin of error. For some kinds of tools
such as cost estimating tools, actual sizes are known in both function
point and lines of code forms because the author’s company builds such
tools.

328  ◾  Software Development Patterns and Antipatterns

For many tools, however, the size data is only approximate and
is derived either from “backfiring” which is conversion from lines of
code to function points, or from analogy with tools of known sizes.
The size ranges for tools in this chapter are interesting, but not par-
ticularly accurate. The purpose of including the function point size
data is to examine the utilization of tool features in lagging and lead-
ing projects.

In general, the lagging projects depend to a surprising degree on
manual methods and have rather sparse tool usage in every category
except software engineering, where there are comparatively small dif-
ferences between the laggards and the leaders.

Project Management Tools on Lagging
and Leading Projects
The differences in project management tool usage are both significant
and striking. The lagging projects typically utilize only 3 general kinds of
project management tools, while the leading projects utilize 18. Indeed,
the project management tool family is one of the key differentiating fac-
tors between lagging and leading projects.

In general, the managers on the lagging projects typically use man-
ual methods for estimating project outcomes, although quite a few may
use schedule planning tools such as Microsoft Project. However, project
managers on lagging projects tend to be less experienced in the use of
planning tools and to utilize fewer of the available features. The sparse-
ness of project management tools does much to explain why so many
lagging software projects tend to run late, to exceed their budgets, or to
behave in more or less unpredictable fashions. Table 12.1 shows project
management tool ranges.

It is interesting that project managers on successful project tend to
utilize tools about 4 hours per work day. On average projects the usage
is about 2.5 hours per work day. On lagging projects, barely an hour per
day is devoted to tool usage.

By contrast, the very significant use of project management tools on
the leading projects results in one overwhelming advantage: “No sur-
prises.” The number of on-time projects in the leading set is far greater
than in the lagging set, and all measurement attributes (quality, sched-
ules, productivity, etc.) are also significantly better.

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  329

Table 12.1  Numbers and Size Ranges of Software Project
Management Tools

(Tool sizes are expressed in terms of IFPUG
function points, version 4.3)

Project Management Tools Lagging Average Leading

1 Project planning 1,000 1,250 3,000

2 Project cost estimating 3,000

3 Statistical analysis 3,000

4 Methodology management 750 3,000

5 Reusable feature analysis 2,000

6 Quality estimation 2,000

7 Assessment support 500 2,000

8 Project office support 500 2,000

9 Project measurement 1,750

10 Portfolio analysis 1,500

11 Risk analysis 1,500

12 Resource tracking 300 750 1,500

13 Governance tools 1,500

14 Value analysis 350 1,250

15 Cost variance reporting 500 500 1,000

16 Personnel support 500 500 750

17 Milestone tracking 250 750

18 Budget support 250 750

19 Function point analysis 250 750

20 Backfiring: LOC to FP 300

21 Earned value analysis 250 300

22 Benchmark data collection 300

Subtotal 1,800 4,600 30,000

Tools 4 12 22

330  ◾  Software Development Patterns and Antipatterns

Differences in the software project management domain are among
the most striking in terms of the huge differential of tool usage between
the laggards and leaders. Variances in the number of tools deployed is
about 7 to 1 between the leaders and the laggards, while variances in
the tool capacities expressed in function points has a ratio of approxi-
mately 17 to 1 between the leaders and the laggards. These differences
are far greater than almost any other category of tool.

Software Engineering Tools on
Lagging and Leading Projects
The set of software engineering tools deployed has the smallest variance
of any tool category between the leaders and the laggard classes. In gen-
eral, unless a critical mass of software engineering tools are deployed,
software can’t be developed at all so the basic needs of the software
community have built up a fairly stable pattern of software engineering
tool usage.

Table 12.2 shows the numbers and size ranges of software engineer-
ing tools deployed, but as can easily be seen, the variations are surpris-
ingly small between the lagging, average, and leading categories.

Software engineering is the most intense occupation in terms of tool
usage. There is comparatively little difference between lagging, average,
and leading projects in terms of daily hours of tool usage: somewhere
between 5 and 9 hours per working day, every day.

There are some differences in software engineering tool usage, of
course, but the differences are very minor compared to the much more
striking differences in the project management and quality assurance
categories.

The overall features and sizes of software engineering tools have
been increasing as tool vendors add more capabilities. About 10 years
ago, when the author first started applying function point metrics to
software tools, no software engineering tools were larger than 1,000
function points in size, and the total volume of function points even
among the leading set was only about 10,000 function points. A case can
be made that the power or features of software engineering tools have
tripled over the last 10 years.

As can be seen in Table 12.2, although there are some minor differ-
ences in the tool capacities between the leaders and the laggards, the
differences in the number of software engineering tools deployed are
almost non-existent.

A very common pattern noted among assessment and benchmark
studies is for the software development teams and tool suites to be fairly

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  331

strong, but the project management and quality tool suites to be fairly
weak. This pattern is often responsible for major software disasters,
such as the long delay in opening up the Denver Airport because the
luggage-handling software was too buggy to be put into full production.

Software Maintenance Engineering Tools
on Lagging and Leading Projects
When the focus changes from development to maintenance (defined
here as the combination of fixing bugs and making minor functional
enhancements), the tool differentials between the leaders and the

Table 12.2  Numbers and Size Ranges of Software Engineering Tools

(Tool sizes are expressed in terms of IFPUG
function points, version 4.3)

Software Engineering Tools Lagging Average Leading

1 Compilers 3,500 3,500 3,500

2 Program generators 3,500 3,500

3 Design tools 1,000 1,500 3,000

4 Code editors 2,500 2,500 2,500

5 GUI design tools 1,500 1,500 2,500

6 Assemblers 2,000 2,000 2,000

7 Configuration control 750 1,000 2,000

8 Source code control 750 1,000 1,500

9 Static analysis 1,000 1,500

10 Automated testing 1,000 1,500

11 Data modeling 750 1,000 1,500

12 Debugging tools 500 750 1,250

13 Data base design 750 750 1,250

14 Capture/playback 500 500 750

15 Library browsers 500 500 750

16 Reusable code analysis 750

Subtotal 15,000 22,000 29,750

Tools 12 14 16

332  ◾  Software Development Patterns and Antipatterns

laggards are much more significant than for development software
engineering.

For many years, software maintenance has been severely understated
in the software literature and severely underequipped in the tool mar-
kets. Starting about 10 years ago, the numbers of software personnel
working on aging legacy applications began to approach and in some
cases exceed the numbers of personnel working on brand new applica-
tions. This phenomenon brought about a useful but belated expansion
in software maintenance tool suites. Table 12.3 shows the variations in
software maintenance engineering tools.

Personnel on leading software maintenance projects tend to use tools
more than 4 hours per day. Laggards use tools less than 2 hours per day,
while personnel on average projects use tools about 3 hours per day.

As the overall personnel balance began to shift from new develop-
ment to maintenance, software tool vendors began to wake up to the
fact that a potential market was not being tapped to the fullest degree
possible.

The differences between the leaders and the laggards in the mainte-
nance domain are fairly striking and include about a 4 to 1 differential
in numbers of tools deployed, and a 13 to 1 differential in the function
point volumes of tools between the leaders and the laggards.

The emergence of two massive business problems had a severe
impact on maintenance tools and on maintenance personnel as well.
The year 2000 software problem and the ill-timed Euro-currency conver-
sion work both triggered major increases in software maintenance tools
that can deal with these specialized issues.

Other issues that affect maintenance work include the use of COTS
packages, the use of open-source applications, and the emergence of
Software as a Service. Also the Information Technology Infrastructure
Library (ITIL) has also impacted both maintenance and customer sup-
port tools.

Between about 2000 and 2016, industry maintenance “leaders” tend
to have almost twice the maintenance tool capacities as those available
prior the elevation of maintenance to a major occupation.

Software Quality Assurance Tools on
Lagging and Leading Projects
When the software quality assurance tool suites are examined, one of
the most striking differences of all springs into focus. Essentially, the
projects and companies in the “laggard” set have either no software

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  333

quality assurance function at all or no more than one kind of tool in use,
as shown in Table 12.4.

Quality assurance provides the greatest contrast between tool usage
and lack of tool usage. Quality assurance personnel on leading projects
use tools almost 5 hours per day and only about 2 hours per day on
average projects. For lagging projects, tools might not even be used. If
they are, usage is seldom more than 1 hour per day.

By contrast, the leaders in terms of delivery, schedule control, and
quality all have well-formed independent software quality assurance
groups that are supported by powerful and growing tool suites.

Unfortunately, even leading companies are sometimes understaffed
and underequipped with software quality assurance tools. In part, this is
due to the fact that so few companies have software measurement and
metrics programs in place that the significant business value of achiev-
ing high levels of software quality is often unknown to the management
and executive community.

Table 12.3  Numbers and Size Ranges of Maintenance Engineering Tools

(Tool sizes are expressed in terms of IFPUG function points, version 4.3)

Maintenance Engineering Tools Lagging Average Leading

1 Maintenance work benches 1,500 3,500

2 Reverse engineering 1,000 3,000

3 Reengineering 1,250 3,000

4 ITIL support tools 1,000 3,000

5 Configuration control 500 1,000 2,000

6 Code restructuring 1,500

7 Customer support 750 1,250

8 Debugging tools 750 750 1,250

9 Defect tracking 500 750 1,000

10 Complexity analysis 1,000

11 Error-prone module analysis 500 1,000

12 Incident management 250 500 1,000

13 Reusable code analysis 500 750

Subtotal 1,750 9,500 23,250

Tools 4 11 13

334  ◾  Software Development Patterns and Antipatterns

Several tools in the quality category are identified only by their ini-
tials and need to have their purpose explained. The set of tools identified
as “QFD support” are those which support the special graphics and data
analytic methods of the “quality function deployment” methodology.

The set of tools identified as “TQM support” are those which support
the reporting and data collection criteria of the “total quality manage-
ment” methodology.

The other tools associated with the leaders are the tools of the trade
of the software quality community: tools for tracking defects, tools to
support design and code inspections, quality estimation tools, reliability
modeling tools, and complexity analysis tools.

Complexity analysis tools are fairly common, but their usage is much
more frequent among the set of leading projects than among either
average or lagging projects. Complexity analysis is a good starting point
prior to beginning complex maintenance work such as error-prone
module removal.

Another good precursor tool class prior to starting major mainte-
nance tasks would be to run static analysis tools on the entire legacy

Table 12.4  Numbers and Size Ranges of Software Quality Assurance
Tools

(Tool sizes are expressed in terms of IFPUG
function points, version 4.3)

Quality Assurance Tools Lagging Average Leading

1 Quality estimation tools 2,000

2 Quality measurement tools 750 1,500

3 Six-sigma analysis 1,250

4 Data quality analysis 1,250

5 QFD support 1,000

6 TQM support 1,000

7 Inspection support 1,000

8 Reliability estimation 1,000

9 Defect tracking 250 750 1,000

10 Complexity analysis 500 1,000

Subtotal 250 1,500 12,000

Tools 1 3 10

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  335

application. However, a caveat is that static analysis tools only support
about 25 languages out of the approximate 2,500 programming lan-
guages in existence. Static analysis is available for common languages
such as C, C++, C#, Java, COBOL, FORTRAN, and some others. Static
analysis is not available for the less common languages used for legacy
applications such as JOVIAL, CMS2, CHILL, or CORAL.

Unfortunately, since the laggards tend to have no quality assurance
tools at all, the use of ratios is not valid in this situation. In one sense, it
can be said that the leading projects have infinitely more software qual-
ity tools than the laggards, but this is simply because the lagging set
often have zero quality tools deployed.

Software Testing Tools on Lagging and Leading Projects
Although there are significant differences between the leading and lag-
ging projects in terms of testing tools, even the laggards test their soft-
ware and hence have some testing tools available.

Note that there is some overlap in the tools used for testing and the
tools used for quality assurance. For example, both test teams and soft-
ware quality assurance teams may both utilize complexity analysis tools.

Incidentally, testing by itself has never been fully sufficient to achieve
defect removal efficiency levels in the high 90% range. All of the “best
in class” software quality organizations use a synergistic combination of
requirements inspections, static analysis, design and code inspections,
and multiple testing stages. This combined approach can lead to defect
removal efficiency levels that may top 99% in best-case situations and
always top the current U.S. average of 85% or so (Table 12.5).

Modern testing is highly dependent on tool usage. On leading proj-
ects, test tools are used almost 7 hours per business day; about 5 hours
on average projects; and perhaps 4 hours per day even on lagging proj-
ects. Testing circa 2010 is intensely automated.

The differences in numbers of test tools deployed range by about
3.5 to 1 between the leading and lagging projects. However, the tool
capacities vary even more widely, and the range of tool volumes is
roughly 16 to 1 between the leaders and the laggards.

This is one of the more interesting differentials because all software
projects are tested and yet there are still major variations in numbers of
test tools used and test tool capacities. The leaders tend to employ full-
time and well-equipped testing specialists while the laggards tend to
assign testing to development personnel, who are often poorly trained
and poorly equipped for this important activity.

336  ◾  Software Development Patterns and Antipatterns

For a more extensive discussion of the differences between leaders
and laggards in terms of both quality assurance and testing refer to the
author’s book Software Quality – Analysis and Guidelines for Success
(Jones 1996) and the more recent Software Engineering Best Practices
(Jones 2010).

These books also discuss variations in the numbers and kinds of test-
ing activities performed, and also variations in the use of defect track-
ing tools, use of formal design and code inspections, quality estimation,
quality measurements, and many other differentiating factors.

Unfortunately, none of the major vendors of test tools and only a
few of the vendors of quality assurance tools have any empirical data
on software quality or provide information on defect removal efficiency
levels. The subject of how many bugs can actually be found by various
kinds of review, inspection, and test is the most important single topic
in the test and quality domain, but the only published data on defect
removal tends to come from software measurement and benchmark
companies rather than from test tool and quality tool companies.

Table 12.5  Numbers and Size Ranges of Software Testing Tools

(Tool sizes are expressed in terms of IFPUG
function points, version 4.3)

Testing Tools Lagging Average Leading

1 Test case generation 1,500

2 Automated test tools 1,500

3 Complexity analysis 500 1,500

4 Static analysis tools 500 1,500

5 Data quality analysis 1,250

6 Defect tracking 500 750 1,000

7 Test library control 250 750 1,000

8 Performance monitors 750 1,000

9 Capture/playback 500 750

10 Test path coverage 350

11 Test case execution 350

Subtotal 750 3,750 11,700

Tools 3 6 11

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  337

Software Documentation Tools on
Lagging and Leading Projects
Almost all software projects require documentation, but very few are
documented extremely well. The set of documentation tools is undergo-
ing profound transformation as online publishing and the World Wide
Web begin to supplant conventional paper documents.

Note that some of these tools included here in the documentation
section are also used for requirements, specifications, plans, and other
documents throughout the software development cycle. For example,
almost every knowledge worker today makes use of “word processing”
tools, so these tools are not restricted only to the software documenta-
tion domain.

As online publishing grows, this category is interesting in that the
“average” and “leading” categories are fairly close together in terms of
document tool usage. However, the laggards are still quite far behind
in terms of both numbers of tools and overall capacities deployed
(Table 12.6).

There had not been a great deal of difference in tool usage among
writers and illustrators as of 2018. All three projects, lagging, average,
and leading, tend to use tools between 4 and 6 hours per business day.

As web publishing becomes more common, it is likely that conven-
tional paper documents will gradually be supplanted by online docu-
ments. The advent of the “paperless office” has been predicted for years
but stumbled due to the high costs of storage.

Now that optical storage is exploding in capacities and declining in
costs, optical online storage is now substantially cheaper than paper
storage, so the balance is beginning to shift toward online documenta-
tion and the associated tool suites.

In the documentation domain, the variance between the leaders and
the laggards is 1.5 to 1 in the number of tools deployed, and almost
2 to 1 in the volumes of tools deployed. The differences in the docu-
mentation category are interesting, but not so wide as the differentials
for project management and quality assurance tools.

Overall Tool Differences between Laggards and Leaders
To summarize this analysis of software tool differentials between lag-
ging and leading organizations, Table 12.7 shows the overall numbers of
tools noted in our assessment and benchmark studies. Table 12.7 shows
the largest ratios between leaders and laggards at the top.

338  ◾  Software Development Patterns and Antipatterns

As can be seen, there is roughly a 2.5 to 1 differential in the numbers
of tools deployed on leading projects as opposed to the numbers of
tools on lagging projects. The major differences are in the project man-
agement and quality assurance tools, where the leaders are very well
equipped indeed and the laggards are almost exclusively manual and
lack most of the effective tools for both project management and quality
control purposes.

When tool capacities are considered, the range of difference between
the lagging and leading sets of tools is even more striking, and the range
between leaders and laggards jumps up to about a 4.3 to 1 ratio.

The use of function point totals to evaluate tool capacities is an
experimental method with a high margin of error, but the results are
interesting. Although not discussed in this chapter, the author’s long-
range studies over a 10-year period has found a substantial increase in
the numbers of function points in all tool categories.

Table 12.6  Numbers and Size Ranges of Software
Documentation Tools

(Tool sizes are expressed in terms of
IFPUG function points, version 4.3)

Documentation
Support Tools Lagging Average Leading

1 Word processing 3,000 3,000 3,000

2 Web publishing 2,000 2,500 3,000

3 Desktop publishing 2,500 2,500 2,500

4 Graphics support 500 500 2,500

5 Multimedia support – 750 2,000

6 Grammar checking – – 500

7 Dictionary/thesaurus 500 500 500

8 Hypertext support – 250 500

9 Web publishing 200 400 500

10 Scanning – – 300

11 Spell checking 200 200 200

Subtotal 8,900 10,600 15,500

Tools 7 9 11

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  339

It is not completely clear if the increase in functionality is because
of useful new features, or merely reflects the “bloat” which has become
so common in the software world. For selected categories of tools such
as compilers and programming environments, many of the new features
appear to be beneficial and quite useful.

The added features in many project management tools such as cost
estimating tools, methodology management tools, and project planning
tools are also often giving valuable new capabilities which were long
needed.

For other kinds of tools, however, such as word processing, at least
some of the new features are of more questionable utility and appear to
have been added for marketing rather than usability purposes.

Table 12.8 shows the overall differences in tool capacities using func-
tion point metrics as the basis of the comparison. Table 12.7 shows the
largest differences in function point tool usage at the top.

It is painfully obvious that lagging projects use inaccurate manual
estimates and are very poor in software quality control. No wonder lag-
gards are troubled by cancelled projects, cost overruns, lengthy sched-
ule delays, and very bad quality after deployment.

Summary and Conclusions
Although software tools have been rapidly increasing in terms of num-
bers and features, the emphasis on software process improvement in the
software engineering literature has slowed down research on software
tool usage.

Table 12.7  Ratios Between Tools Used by Lagging Project Compared to
Leading Projects

Total Tools Utilized Lagging Average Leading Ratios

Quality assurance tools 1 3 10 1–10.0

Project management tools 4 12 22 1–5.5

Testing tools 3 6 11 1–3.6

Maintenance tools 4 11 13 1–2.6

Testing tools 3 6 11 1–3.6

Documentation support tools 7 9 11 1–1.4

Total 31 55 83 1–2.5

340  ◾  Software Development Patterns and Antipatterns

Both software processes and software tools have significant roles
to play in software engineering, and a better balance is needed in
research studies that can demonstrate the value of both tools and pro-
cess activities.

The use of function point metrics for exploring software tool capaci-
ties is somewhat experimental, but the results to date have been inter-
esting and this method may well prove to be useful.

Long-range analysis by the author of this book over a 10-year period
using function point analysis has indicated that software tool capacities
have increased substantially, by a range of about 3 to 1. It is not yet
obvious that the expansion in tool volumes has added useful features
to the software engineering world, or whether the expansion simply
reflects the “bloat” that has been noted in many different kinds of soft-
ware applications.

However, modern quality control tools such as static analysis and
modern project management tools such as parametric cost estimates do
add significant value in terms of improved software results.

References and Readings
Garmus, David; and Herron, David; Function Point Analysis – Measurement

Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Howard, Alan (editor); Software Productivity Tool Catalogs; (in seven volumes);
Applied Computer Research (ACR), Phoenix, AZ; 1997; 300 pages.

Table 12.8  Ratio of Tool Features Used by Lagging Project Compared to
Leading Projects

(Tool sizes are expressed in terms of IFPUG function points, version 4.3)

Total Tool Function Points Lagging Average Leading Ratios

Quality assurance tools 250 1,500 12,000 1–48.0

Project management tools 1,800 4,600 30,000 1–16.6

Testing tools 750 3,750 11,700 1–15.6

Maintenance engineering tools 1,750 9,500 23,250 1–13.2

Software engineering tools 15,000 22,000 29,750 1–1.9

Documentation support tools 8,900 10,600 15,500 1–1.7

Total 28,200 51,950 122,200 1–4.3

Tool Usage on Best-Case, Average, and Worst-Case Projects  ◾  341

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

Jones, Capers; Function Point Metrics and Software Usage Patterns; Capers
Jones & Associates, Narragansett, RI; December 2009.

Jones, Capers; The Technical and Social History of Software Engineering;
Addison Wesley Longman, Boston, MA; 2014.

Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley Longman, Boston, MA; 2011; ISBN: 10: 0-13-258220-1; 585
pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement, 3rd ed.; McGraw Hill, New York,
NY; March 2008; ISBN: 978-0-07-150244-3; 668 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007;
ISBN: 13-978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; ISBN: 0-201-48542-7; 657 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall; 1994;
ISBN: 0-13-741406-4; 711 pages.

Jones, Capers; Patterns of Software System Failure and Success; International
Thomson Computer Press, Boston, MA; December 1995; ISBN: 1-850-
32804-8; 250, 292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success;
International Thomson Computer Press, Boston, MA; 1997; ISBN: 1-85032-
876-6; 492 pages.

Jones, Capers; “Sizing Up Software”; Scientific American Magazine, Vol. 279,
No. 6; December 1998; pp. 104–111.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd ed.;
Addison Wesley Longman, Boston, MA; 2003; ISBN: 0-201-72915-6; 528
pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach, 6th ed.;
McGraw Hill, New York, NY; 2005; ISBN: 0-07-285318-2.

https://taylorandfrancis.com

343DOI: 10.1201/9781003193128-15

Chapter 13

Geriatric Care for
Aging Software

Introduction
Software has been a mainstay of business and government operations
for more than 60 years. As a result, all large enterprises utilize aging
software in significant amounts. Some Fortune 500 companies exceed
10,000,000 function points or 500,000,000 in the total volume of their
corporate software portfolios. Much of this software is now more than
15 years old, and some important aging applications such as air traffic
control are more than 35 years old.

Maintenance of aging software tends to become more difficult and
expensive year by year since annual updates gradually destroy the
original structure of the applications and increase its entropy and cylo-
matic complexity. On average the cyclomatic complexity of aging soft-
ware applications increases by as much as 1% per calendar year due to
numerous minor and a few major changes.

Aging software also becomes larger each year as changes increase
function point totals and also total volumes of source code. Aging soft-
ware often has large inclusions of “dead code” that used to perform
useful function but which have been bypassed by newer changes. Dead
code tends to make maintenance more complex and harder to perform.

Another attribute of aging software is that of a steady increase in
“bad fix” injections. Bad fixes are new bugs accidentally included in
repairs of reported bugs. The U.S. average for bad-fix injections is about
1.50% for new applications, but increases steadily over time as system

344  ◾  Software Development Patterns and Antipatterns

structure decays and becomes more complex. After 20 years of continu-
ous usage, software bad fix injections can top 7.00%. In a few extreme
cases, bad fixes on aging legacy applications have topped 20.00% per
year.

Aging software may also contain troublesome regions with very high
error densities called “error-prone modules.” Error prone modules are
so complex and troublesome that they need to be surgically removed
and replaced by modern error-free code segments.

There are also sociological issues with maintenance of aging soft-
ware. Many software engineers prefer to work on new development
because it is more glamorous. Also, some companies unwisely pay main-
tenance engineers lower salaries than development engineers. Because
maintenance is less popular than new development, it has become a
major field of software outsourcing. Over 50% of aging, U.S. software
applications are now maintained by outsource vendors rather than by
an organization’s own software staff. In general, maintenance outsourc-
ing has been successful for both clients and outsource vendors, some of
whom specialize in “managed maintenance.”

Some leading companies such as IBM pay development and mainte-
nance personnel equally and allow transfers back and forth.

Many popular methodologies such as agile are ineffective for han-
dling updates to aging legacy applications. Technologies that can be
useful for providing geriatric care to aging legacy software include fre-
quent and widespread use of static analysis tools, manual inspections
of critical code segments, and identification and surgical removal of
error-prone modules. Maintenance-friendly methodologies such as team
software process (TSP) are also useful.

In today’s world, more than 50% of the global software population
is engaged in modifying existing applications rather than writing new
applications. This fact by itself should not be a surprise, because when-
ever an industry has more than 50 years of product experience, the
personnel who repair existing products tend to outnumber the person-
nel who build new products. For example, there have long been more
automobile mechanics in the United States who repair automobiles than
there are personnel employed in building new automobiles.

The imbalance between software development and maintenance
is opening up new business opportunities for software outsourcing
groups. It is also generating a significant burst of research into tools
and methods for improving software maintenance performance.

Maintenance and renovation of legacy software plays a major role in
“brownfield” development, which involves carefully building new appli-
cations in an environment where they will need to interface with scores
of older applications.

Geriatric Care for Aging Software  ◾  345

Brownfield development is analogous to putting up an office build-
ing in an urban environment where the site is surrounded by other
office buildings whose occupants cannot be disrupted, nor the sur-
rounding structures damaged during new construction.

What Is Software Maintenance?
The word “maintenance” is surprisingly ambiguous in a software context.
In normal usage, it can span some 23 forms of modification to existing
applications. The two most common meanings of the word maintenance
include: (1) defect repairs; (2) enhancements or adding new features to
existing software applications.

Although software enhancements and software maintenance in the
sense of defect repairs are usually funded in different ways and have
quite different sets of activity patterns associated with them, many com-
panies lump these disparate software activities together for budgets and
cost estimates.

The author of this book does not recommend the practice of aggre-
gating defect repairs and enhancements, but this practice is very com-
mon. Consider some of the basic differences between enhancements or
adding new features to applications and maintenance or defect repairs
as shown in Table 13.1.

Because the general topic of “maintenance” is so complicated and
includes so many different kinds of work, some companies merely lump
all forms of maintenance together and use gross metrics such as the

Table 13.1  Key Differences between Maintenance
and Enhancements

Enhancements
New features)

Maintenance
(Defect repairs)

Funding source Clients Absorbed

Requirements Formal None

Specifications Formal None

Inspections Formal None

User documentation Formal None

New function testing Formal None

Regression testing Formal Minimal

346  ◾  Software Development Patterns and Antipatterns

overall percentage of annual software budgets devoted to all forms of
maintenance summed together.

This method is crude but can convey useful information. Organizations
which are proactive in using geriatric tools and services can spend less
than 30% of their annual software budgets on various forms of mainte-
nance, while organizations that have not used any of the geriatric tools
and services can top 60% of their annual budgets on various forms of
maintenance.

The kinds of maintenance tools used by lagging, average, and lead-
ing organizations are shown in Table 13.2. Table 13.2 is part of a larger
study that examined many different kinds of software engineering and
project management tools (1).

It is interesting that the leading companies in terms of maintenance
sophistication not only use more tools than the laggards, but they use
more of their features as well. The function point values in Table 13.2
refer to the capabilities of the tools that are used in day to day main-
tenance operations. The leaders not only use more tools, but they do
more with them.

Before proceeding, let us consider 23 discrete topics that are often
coupled together under the generic term “maintenance” in day to day

Table 13.2  Numbers and Size Ranges of Maintenance Engineering Tools

(Size data expressed in terms of function point metrics)

Maintenance Engineering Lagging Average Leading

Reverse engineering 1,000 3,000

Reengineering 1,250 3,000

Code static analysis 1,500

Configuration control 500 1,000 2,000

Test support 500 1,500

Customer support 750 1,250

Debugging tools 750 750 1,250

Defect tracking 500 750 1,000

Complexity analysis 1,000

Mass update search engines 500 1,000

Function Point Subtotal 1,750 6,500 16,500

Number of Tools 3 8 10

Geriatric Care for Aging Software  ◾  347

discussions, but which are actually quite different in many important
respects (2) (Table 13.3).

Although the 23 maintenance topics are different in many respects,
they all have one common feature that makes a group discussion pos-
sible: They all involve modifying an existing application rather than
starting from scratch with a new application.

Table 13.3  Major Kinds of Work Performed under the Generic Term
“Maintenance”

1 Major Enhancements (new features of >50 function points)

2 Minor Enhancements (new features of <5 function points)

3 Maintenance (repairing customer defects for good will and pro bono)

4 Warranty repairs (repairing defects under formal contract of for a fee)

5 Customer support (responding to client phone calls or problem reports)

6 Error-prone module removal (eliminating very troublesome code segments)

7 Mandatory changes (required or statutory changes such as new tax laws)

8 Complexity or structural analysis (charting control flow plus complexity
metrics)

9 Code restructuring (reducing cyclomatic and essential complexity)

10 Optimization (increasing performance or throughput)

11 Migration (moving software from one platform to another)

12 Conversion (changing the interface or file structure)

13 Reverse engineering (extracting latent design information from code)

14 Reengineering (transforming legacy application to modern forms)

15 Dead code removal (removing segments no longer utilized)

16 Dormant application elimination (archiving unused software)

17 Nationalization (modifying software for international use)

18 Mass updates such as Euro or Year 2000 Repairs

19 Refactoring, or reprogramming applications to improve clarity

20 Retirement (withdrawing an application from active service)

21 Field service (sending maintenance members to client locations)

22 Reporting bugs or defects to software vendors

23 Installing updates received from software vendors

348  ◾  Software Development Patterns and Antipatterns

Each of the 23 forms of modifying existing applications has a differ-
ent reason for being carried out. However, it often happens that several
kinds of modification take place concurrently. For example, enhance-
ments and defect repairs are very common in the same release of an
evolving application. There are also other sequences or patterns for
these modification activities. For example, reverse engineering often
precedes reengineering and the two occur so often together as to almost
comprise a linked set. For releases of large applications and major sys-
tems, the author has observed from 6 to 10 forms of maintenance, all
leading up to the same release.

Geriatric Problems of Aging Software

Once software is put into production, it continues to change in three
important ways as follows:

	 1.	Latent defects still present at release must be found and fixed after
deployment.

	 2.	Applications continue to grow and add new features at a rate of
between 5%and 10% per calendar year, due either to changes in
business needs or to new laws and regulations, or both.

	 3.	The combination of defect repairs and enhancements tends to
gradually degrade the structure and increase the complexity of the
application. The term for this increase in complexity over time is
called “entropy.” The average rate at which software entropy
increases is about 1% to 3% per calendar year.

Because software defect removal and quality control are imperfect,
there will always be bugs or defects to repair in delivered software
applications. The current U.S. average for defect removal efficiency is
only about 90% of the bugs or defects introduced during development
(3) and has only improved slowly over more than 20 years. The actual
values are about 4.5 bugs per function point created during develop-
ment. But the range is from <2.5 to >6.5 bugs per function point. If 90%
of these are found before release, about 0.25–0.65 bugs per function
point will be released to customers.

However, best-in-class organizations combine low defect potentials
with defect removal efficiency (DRE) levels approaching and sometimes
exceeding 99%. Clearly maintenance costs will be much lower for soft-
ware with 99% DRE than for software that is below 90% DRE. Every
company and government organization should measure defect poten-
tials and defect removal efficiency levels.

Geriatric Care for Aging Software  ◾  349

Since defect potentials tend to rise with the overall size of the appli-
cation, and since defect removal efficiency levels tend to decline with the
overall size of the application, the overall volume of latent defects deliv-
ered with the application rises with size. This explains why super-large
applications in the range of 100,000 function points, such as Microsoft
Windows and many enterprise resource planning (ERP) applications,
may require years to reach a point of relative stability. These large sys-
tems are delivered with thousands of latent bugs or defects.

Not only is software deployed with a significant volume of latent
defects, but a phenomenon called “bad fix injection” has been observed
for more than 50 years. Roughly 7% of all defect repairs will contain
a new defect that was not there before. For very complex and poorly
structured applications, these bad-fix injections have topped 20% (3).

Even more alarming, once a bad fix occurs it is very difficult to cor-
rect the situation. Although the U.S. average for initial bad-fix injection
rates is about 7%, the secondary injection rate against previous bad fixes
is about 15% for the initial repair and 30% for the second. A string of up
to five consecutive bad fixes has been observed, with each attempted
repair adding new problems and failing to correct the initial problem.
Finally, the 6th repair attempt was successful.

In the 1970s, the IBM Corporation did a distribution analysis of
customer-reported defects against their main commercial software appli-
cations. The IBM personnel involved in the study, including the author
of the book, were surprised to find that defects were not randomly dis-
tributed through all of the modules of large applications (4).

In the case of IBM’s main operating system, about 5% of the mod-
ules contained just over 50% of all reported defects. The most extreme
example was a large data base application, where 31 modules out of 425
contained more than 60% of all customer-reported bugs. These trouble-
some areas were known as “error-prone modules (EPM).”

Similar studies by other corporations such as AT&T and ITT found that
error-prone modules were endemic in the software domain. More than 90%
of applications larger than 5,000 function points were found to contain
error-prone modules in the 1980s and early 1990s. Summaries of the error-
prone module data from a number of companies were published in the
author’s book Software Quality: Analysis and Guidelines for Success (3).

Fortunately, it is possible to surgically remove error-prone modules
once they are identified. It is also possible to prevent them from occur-
ring. A combination of defect measurements, static analysis of all legacy
code, formal design inspections, formal code inspections, and formal
testing and test-coverage analysis has been proven to be effective in
preventing error-prone modules from coming into existence (5).

350  ◾  Software Development Patterns and Antipatterns

Today, error-prone modules are almost non-existent in organizations
that are higher than level 3 on the capability maturity model integrated
(CMMI) of the Software Engineering Institute. However, they remain
common and troublesome for level 1 organizations, and for organiza-
tions that lack sophisticated quality measurements and quality control.

If the author’s clients are representative of the U.S. as a whole, more
than 50% of U.S. companies still do not utilize the CMMI at all. Of
those who do use the CMMI, less than 15% are at level 3 or higher. This
implies that error-prone modules may exist in more than half of all large
corporations and in a majority of state government software applica-
tions as well.

Once deployed, most software applications continue to grow at
annual rates of between 5% and 10% of their original functionality. Some
applications, such as Microsoft Windows, have increased in size by sev-
eral hundred percent over a 10-year period.

The combination of continuous growth of new features coupled
with continuous defect repairs tends to drives up the complexity levels
of aging software applications. Structural complexity can be measured
via metrics such as cyclomatic and essential complexity using a num-
ber of commercial tools. If complexity is measured on an annual basis
and there is no deliberate attempt to keep complexity low, the rate of
increase is between 1% and 3% per calendar year.

However, and this is an important fact, the rate at which entropy or
complexity increases is directly proportional to the initial complexity of
the application. For example, if an application is released with an aver-
age cyclomatic complexity level of less than 10, it will tend to stay well
structured for at least 5 years of normal maintenance and enhancement
changes.

But if an application is released with an average cyclomatic com-
plexity level of more than 20, its structure will degrade rapidly and its
complexity levels might increase by more than 2% per year. The rate of
entropy and complexity will even accelerate after a few years.

As it happens, both bad-fix injections and error-prone modules
tend to correlate strongly (although not perfectly) with high levels of
complexity. A majority of error-prone modules have cyclomatic com-
plexity levels of 10 or higher. Bad-fix injection levels for modifying high-
complexity applications are often higher than 20%.

In the late 1990s, a special kind of geriatric issue occurred which
involved making simultaneous changes to thousands of software appli-
cations. The first of these “mass update” geriatric issues was the deploy-
ment of the Euro, which required changes to currency conversion
routines in thousands of applications. The Euro was followed almost
immediately by the dreaded year 2000 or Y2K problem (6), which also

Geriatric Care for Aging Software  ◾  351

involved mass updates of thousands of applications. In March of 2007,
another such issue occurred when the starting date of daylight savings
time was changed.

Future mass updates will occur later in the century, when it may be
necessary to add another digit to telephone numbers or area code. Yet
another and very serious mass update will occur if it becomes neces-
sary to add digits to social security numbers in the second half of the
21st century. There is also the potential problem of the Unix time clock
expiration in 2038.

Metrics Problems with Small Maintenance Projects
There are several difficulties in exploring software maintenance costs
with accuracy. One of these difficulties is the fact that maintenance tasks
are often assigned to development personnel who interleave both devel-
opment and maintenance as the need arises. This practice makes it dif-
ficult to distinguish maintenance costs from development costs because
the programmers are often rather careless in recording how time is spent.

Another and very significant problem is that fact that a great deal
of software maintenance consists of making very small changes to soft-
ware applications. Quite a few bug repairs may involve fixing only a
single line of code. Adding minor new features such as perhaps a new
line-item on a screen may require less than 50 source code statements.

These small changes are below the effective lower limit for counting
function point metrics. The function point metric includes weighting
factors for complexity, and even if the complexity adjustments are set to
the lowest possible point on the scale, it is still difficult to count function
points below a level of perhaps 15 function points (7).

An experimental method called “micro function points” is in devel-
opment for small maintenance changes and bug repairs. This method
is similar to standard function points, but drops down to three decimal
places of precision. Thus changes that involve only a fraction of a stan-
dard IFPUG function point can be measured. The micro function point
method became available in 2016 and usage has expanded each year
since then.

Of course the work of making a small change measured with micro
function points may be only an hour or less. But if as many as 10,000
such changes are made in a year, the cumulative costs are not trivial.
Micro function points are intended to eliminate the problem that small
maintenance updates have not been subject to formal economic analysis.

Quite a few maintenance tasks involve changes that are either a
fraction of a function point, or may at most be less than 10 function

352  ◾  Software Development Patterns and Antipatterns

points or about 1000 COBOL source code statements. Although normal
counting of function points is not feasible for small updates and micro
function points are still experimental, it is possible to use the “backfir-
ing” method or converting counts of logical source code statements in
to equivalent function points. For example, suppose an update requires
adding 100 COBOL statements to an existing application. Since it usually
takes about 105 COBOL statements in the procedure and data divisions
to encode 1 function point, it can be stated that this small maintenance
project is “about 1 function point in size.”

If the project takes one work day consisting of six hours, then at
least the results can be expressed using common metrics. In this case,
the results would be roughly “6 staff hours per function point.” If the
reciprocal metric “function points per staff month” is used and there are
20 working days in the month, then the results would be “20 function
points per staff month.”

Metrics Problems with ERP Maintenance

Many large corporations use enterprise resource planning (ERP) pack-
ages such as SAP, Oracle, PeopleSoft, J.D. Edwards, and many others.
These packages are large and complex systems in the size range of
200,000 function points and up.

Worse, dozens or even hundreds of legacy applications need to be
ported into ERP packages when they are deployed. Porting is a form soft-
ware modification that is difficult to count via function points because
no new features are added. Table 13.4 shows size of function points
for porting software applications. The ports were needed for a total of
723 applications out of a portfolio total of 2,366 applications. ERP sizing
and porting are features of Software Risk Master.

As can be seen, ERP and portfolio sizing and estimating are much
more complicated than sizing and estimating individual applications.

Best and Worst Practices in Software Maintenance
Because maintenance of aging legacy software is very labor intensive,
it is quite important to explore the best and most cost effective meth-
ods available for dealing with the millions of applications that currently
exist. The sets of best and worst practices are not symmetrical. For
example, the practice that has the most positive impact on maintenance
productivity is the use of trained maintenance experts. However, the fac-
tor that has the greatest negative impact is the presence of “error-prone
modules” in the application that is being maintained.

Geriatric Care for Aging Software  ◾  353

(Continued)

Table 13.4  ERP Portfolio Porting Measured with Function Points

Corporate Functions
Corporate Functions

ERP
Port?

1 = yes;
0 = no

ERP
Ports

App Size
Funct.

Pts.

ERP Port
Size

Funct.
Pts.

1 Accounts payable 1 18 44,457 3,112

2 Accounts receivable 1 22 55,968 3,918

3 Advertising 0 – –

4 Advisory boards – technical 0 – –

5 Banking relationships 1 38 131,543 9,208

6 Board of directors 0 – –

7 Building maintenance 0 – –

8 Business intelligence 1 21 73,972 5,178

9 Business partnerships 1 18 44,457 3,112

10 Competitive analysis 0 – –

11 Consultant management 0 – –

12 Contract management 1 32 94,868 6,641

13 Customer resource
management

1 56 140,585 9,841

14 Customer support 1 45 67,003 4,690

15 Divestitures 1 10 15,000 1,050

16 Education – customers 0 – –

17 Education – staff 0 – –

18 Embedded software 0 – –

19 Energy consumption
monitoring

0 – –

20 Energy acquisition 0 – –

21 Engineering 0 – –

22 ERP – Corporate 1 63 252,982 17,709

23 Finances (corporate) 1 84 235,591 16,491

24 Finances (divisional) 1 63 170,358 11,925

25 Governance 1 10 25,000 1,750

354  ◾  Software Development Patterns and Antipatterns

Corporate Functions
Corporate Functions

ERP
Port?

1 = yes;
0 = no

ERP
Ports

App Size
Funct.

Pts.

ERP Port
Size

Funct.
Pts.

26 Government certification (if
any)

0 – –

27 Government regulations
(if any)

0 – –

28 Human resources 1 7 11,248 787

29 Insurance 1 6 8,935 625

30 Inventory management 1 45 67,003 4,690

31 Legal department 0 – –

32 Litigation 0 – –

33 Long-range planning 1 7 18,747 1,312

34 Maintenance – product 0 – –

35 Maintenance – buildings 0 – –

36 Manufacturing 1 178 311,199 21,784

37 Market research 0 – –

38 Marketing 1 27 39,911 2,794

39 Measures – customer
satisfaction

0 – –

40 Measures – financial 1 24 35,571 2,490

41 Measures – market share 0 – –

42 Measures – performance 0 – –

43 Measures – quality 0 – –

44 Measures – ROI and
profitability

1 32 47,434 3,320

45 Mergers and acquisitions 1 24 59,284 4,150

46 Office suites 0 – –

47 Open-source tools – general 0 – –

48 Order entry 1 27 39,911 2,794

Table 13.4  (Continued)

Geriatric Care for Aging Software  ◾  355

Corporate Functions
Corporate Functions

ERP
Port?

1 = yes;
0 = no

ERP
Ports

App Size
Funct.

Pts.

ERP Port
Size

Funct.
Pts.

49 Outside services
– manufacturing

0 – –

50 Outside services – legal 0 – –

51 Outside services – marketing 0 – –

52 Outside services – sales 0 – –

53 Outside services
– terminations

0 – –

54 Outsource management 0 – –

55 Patents and inventions 0 – –

56 Payrolls 1 21 52,837 3,699

57 Planning – manufacturing 1 42 63,254 4,428

58 Planning – products 1 10 15,000 1,050

59 Process management 1 12 17,828 1,248

60 Product design 0 – –

61 Product nationalization 0 – –

62 Product testing 1 38 56,376 3,946

63 Project offices 0 – –

64 Project management 0 – –

65 Purchasing 1 30 44,781 3,135

66 Quality control 1 13 20,003 1,400

67 Real estate 0 – –

68 Research and development 0 – –

69 Sales 1 45 67,003 4,690

70 Sales support 1 15 22,444 1,571

71 Security – buildings 0 – –

72 Security – computing and
software

0 – –

(Continued)

Table 13.4  (Continued)

356  ◾  Software Development Patterns and Antipatterns

Table 13.5 illustrates a number of factors which have been found to
exert a beneficial positive impact on the work of updating aging appli-
cations and shows the percentage of improvement compared to average
results.

At the top of the list of maintenance “best practices” is the utilization
of full-time, trained maintenance specialists rather than turning over
maintenance tasks to untrained generalists. Trained maintenance spe-
cialists are found most often in two kinds of companies: (1) large sys-
tems software producers such as IBM; (2) large maintenance outsource
vendors. The curricula for training maintenance personnel can include
more than a dozen topics and the training periods range from 2 weeks
to a maximum of about 4 weeks.

Since training of maintenance specialists is the top factor, Table 13.6
shows a modern maintenance curriculum such as those found in large
maintenance outsource companies.

The positive impact from utilizing maintenance specialists is one of
the reasons why maintenance outsourcing has been growing so rapidly.
The maintenance productivity rate of some of the better maintenance
outsource companies is roughly twice that of their clients prior to the

Corporate Functions
Corporate Functions

ERP
Port?

1 = yes;
0 = no

ERP
Ports

App Size
Funct.

Pts.

ERP Port
Size

Funct.
Pts.

73 Shareholder relationships 1 8 29,449 2,061

74 Shipping/receiving products 1 27 66,518 4,656

75 Software development 0 – –

76 Standards compliance 0 – –

77 Stocks and bonds 1 21 73,972

78 Supply chain management 1 47 70,973

79 Taxes 1 42 105,424

80 Travel 0 – –

81 Unbudgeted costs
– cyber-attacks

0 – –

82 Warranty support 1 7 10,025

Portfolio Total 38 723 1,768,917 123,824

Table 13.4  (Continued)

Geriatric Care for Aging Software  ◾  357

Table 13.5  Impact of Key Adjustment Factors on Maintenance

(Sorted in order of maximum positive impact)

Maintenance Factors Plus Range

Maintenance specialists 35%

High staff experience 34%

Table-driven variables and data 33%

Low complexity of base code 32%

Test coverage tools and analysis 30%

Static analysis of all legacy code 29%

Reengineering tools 27%

High level programming languages 25%

Reverse engineering tools 23%

Complexity analysis tools 20%

Defect tracking tools 20%

“Mass update” specialists 20%

Automated change control tools 18%

Unpaid overtime 18%

Quality measurements 16%

Formal base code inspections 15%

Regression test libraries 15%

Excellent response time 12%

Annual training of >10 days 12%

High management experience 12%

HELP desk automation 12%

No error prone modules 10%

On-line defect reporting 10%

Productivity measurements 8%

Excellent ease of use 7%

User satisfaction measurements 5%

High team morale 5%

Sum 503%

358  ◾  Software Development Patterns and Antipatterns

completion of the outsource agreement. Thus even if the outsource ven-
dor costs are somewhat higher, there can still be useful economic gains.

Let us now consider some of the factors which exert a negative
impact on the work of updating or modifying existing software applica-
tions. Note that the top-ranked factor which reduces maintenance pro-
ductivity, the presence of error-prone modules, is very asymmetrical.

Table 13.6  Sample Maintenance Curricula for Companies Using
Maintenance Specialists

Software Maintenance Courses Days Sequence

Error-prone module removal 2.00 1

Complexity analysis and reduction 1.00 2

Reducing bad-fix injections and error-prone modules
(EPM)

1.00 3

Defect reporting and analysis 0.50 4

Change control 1.00 5

Configuration control 1.00 6

Software maintenance workflows 1.00 7

Mass updates to multiple applications 1.00 8

Maintenance of COTS packages 1.00 9

Maintenance of ERP applications 1.00 10

Regression testing, static analysis, and legacy defect
removal

2.00 11

Test library control 2.00 12

Test case conflicts and errors 2.00 13

Dead code isolation 1.00 14

Function points for maintenance 0.50 15

Reverse engineering 1.00 16

Reengineering 1.00 17

Refactoring 0.50 18

Maintenance of reusable code 1.00 19

Object-oriented maintenance 1.00 20

Maintenance of agile and extreme code 1.00 21

Total 23.50

Geriatric Care for Aging Software  ◾  359

The absence of error-prone modules does not speed up maintenance
work, but their presence definitely slows down maintenance work.

In general, more than 80% of latent bugs found by users in software
applications are reported against less than 20% of the modules. Once
these modules are identified, then they can be inspected, analyzed, and
restructured to reduce their error content down to safe levels.

Table 13.7 summarizes the major factors that degrade software main-
tenance performance. Not only are error-prone modules troublesome,
but many other factors can degrade performance too. For example, very
complex “spaghetti code” is quite difficult to maintain safely. It is also
troublesome to have maintenance tasks assigned to generalists rather
than to trained maintenance specialists.

A very common situation which often degrades performance is lack
of suitable maintenance tools, such as defect tracking software, change
management software, test library software, and so forth. In general, it
is very easy to botch up maintenance and make it such a labor-intensive
activity that few resources are left over for development work.

The last factor, or lack of unpaid overtime, deserves a comment.
Unpaid overtime is very common among software maintenance and
development personnel. In some companies, it amounts to about 15% of
the total work time. Because it is unpaid it is usually unmeasured. That
means side by side comparisons of productivity rates or costs between
groups with unpaid overtime and groups without will favor the group
with unpaid overtime because so much of their work is uncompen-
sated and hence invisible. This is a benchmarking trap for the unwary.
Because excessive overtime is psychologically harmful if continued over
long periods, it is unfortunate that unpaid overtime tends to be ignored
when benchmark studies are performed.

Given the enormous amount of effort that is now being applied to
software maintenance, and which will be applied in the future, it is
obvious that every corporation should attempt to adopt maintenance
“best practices” and avoid maintenance “worst practices” as rapidly as
possible.

Methodologies That Are Maintenance-
Strong and Maintenance-Weak

There were about 60 named software development methodologies
in 2018 as shown in the author’s new book by CRC Press, Software
Methodologies: A Quantitative Guide. The majority of these were devel-
oped mainly for new development or “Greenfield” applications and are
“maintenance weak.” However, some methodologies were envisioned as

360  ◾  Software Development Patterns and Antipatterns

Table 13.7  Impact of Key Adjustment Factors on Maintenance

(Sorted in order of maximum negative impact)

Maintenance Factors Minus Range

Error prone modules −50%

Embedded variables and data −45%

Staff inexperience −40%

High complexity of base code −30%

Lack of test coverage analysis −28%

Manual change control methods −27%

Low level programming languages −25%

No defect tracking tools −24%

No “mass update” specialists −22%

No static analysis of legacy code −18%

No quality measurements −18%

No maintenance specialists −18%

Poor response time −16%

Management inexperience −15%

No base code inspections −15%

No regression test libraries −15%

No help desk automation −15%

No on-line defect reporting −12%

No annual training −10%

No code restructuring tools −10%

No reengineering tools −10%

No reverse engineering tools −10%

No complexity analysis tools −10%

No productivity measurements −7%

Poor team morale −6%

No user satisfaction measurements −4%

No unpaid overtime 0%

Sum −500%

Geriatric Care for Aging Software  ◾  361

providing lifetime support for software applications and therefore are
“maintenance strong” or effective in “brownfield” projects.

Unfortunately, the world’s most popular methodology, Agile, is in
the “maintenance-weak” category. It was designed almost exclusively
for new development and has no solid features for dealing with legacy
applications. A majority of agile users revert to waterfall for their main-
tenance work.

Probably, the best of the older “standard” methodologies for main-
tenance and enhancements work are IBM’s Rational Unified Process
(RUP) and the pair of methods developed by Watts Humphrey and now
endorsed by the Software Engineering Institute: Team Software Process
(TSP) and Personal Software Process (PSP).

However, because maintenance is not as exciting as new develop-
ment, it has become a major growth industry for outsource vendors.
Quite a few of these have developed custom or proprietary mainte-
nance methodologies of their own, such as the “managed maintenance”
approach developed by Computer Aid Inc. (CAI). Other major outsource
vendors with large maintenance contracts include IBM, Accenture, and
CSC but there are many others.

Some of the tool suites used by these maintenance outsource compa-
nies include the following features:

	 1.	Maintenance work benches.
	 2.	Code restructuring tools.
	 3.	Translators from old languages (i.e. COBOL) to modern languages

(i.e. Java).
	 4.	Data mining tools for extracting lost requirements and algorithms

from old code.
	 5.	Automatic function point counting of legacy applications.
	 6.	Cyclomatic complexity analyzers.
	 7.	Static analysis tools for locating hidden bugs in legacy code.
	 8.	Test coverage tools.
	 9.	Security analysis tools to guard against cyber-attacks.
	 10.	Redocumentation tools to refresh obsolete requirements.
	 11.	Estimating tools such as SRM that predict costs and feature growth.

There are also a number of off-shore outsource vendors who promise
lower costs than U.S. vendors. While this may be true, off-shore work
is quite a bit more complicated due to large time-zone differences and
also to the fact that almost daily contact may be needed between the
maintenance teams and the legacy software owners.

Among the author’s clients in the Fortune 500 category, about 65%
of maintenance work is farmed out to vendors and only 35% stays in

362  ◾  Software Development Patterns and Antipatterns

house: mainly mission-critical applications or those that process classi-
fied or highly confidential data such as financial records or competitive
information.

Customer Support: A Major Maintenance Weakness

Many readers of this chapter have probably tried to get customer sup-
port from software vendors. Some companies don’t even provide con-
tacts with customer support personnel; others depend upon user groups
or forums. Very few companies are ranked “good” or “excellent” for cus-
tomer support with Apple often heading the list and IBM usually cited.

The author’s own experiences with contacting customer support are
not good: the average wait for telephone contact with a live person
was more than 12 minutes. About half of the support personnel did not
speak English well enough to understand their comments; about 25%
did not understand the problem and had no effective solutions.

Internal software is usually better than commercial software, but
even so support is often an afterthought and assigned to development
personnel rather than to dedicated support personnel.

The following are five factors that influence how many customer
support personnel will be needed for any given application:

	 1.	The size of the application in function points.
	 2.	The number of customers or users ranging from 1 person to mil-

lions of users.
	 3.	The number of latent bugs or defects in the application when released.
	 4.	The legal liabilities of the software vendor in case of bugs or failures.
	 5.	The prestige and public image sought by the vendor vs. competitors.

Obviously big and complicated applications with hundreds or even
thousands of bugs will need more support personnel than small, simple
software packages with few bugs.

Note: The author’s Software Risk Master (SRM) tool predicts numbers
of customer support personnel for a three-year period after release. It
also predicts numbers of bugs, numbers of incidents, numbers of cus-
tomer calls for help, and other topics that are of significance to those
responsible for geriatric care of released software.

Software Entropy and Total Cost of Ownership
The word “entropy” means the tendency of systems to destabilize and
become more chaotic over time. Entropy is a term from physics and is

Geriatric Care for Aging Software  ◾  363

not a software-related word. However entropy is true of all complex
systems, including software. All known compound objects decay and
become more complex with the passage of time unless effort is exerted
to keep them repaired and updated. Software is no exception. The accu-
mulation of small updates over time tends to gradually degrade the
initial structure of applications and makes changes grow more difficult
over time.

Table 13.8 illustrates the impact of entropy over a 10-year period.
Each year accumulated changes will degrade the application’s structure
and raise cyclomatic complexity. Also, the higher complexity will pro-
gressively lower testing defect removal efficiency (DRE).

Entropy can be stopped or reversed using methods such as refac-
toring or restructuring. Also frequent use of static analysis can help.
Obviously, every software legacy application should have test coverage
tools and also cyclomatic complexity tools available and used often.

For software applications, entropy has long been a fact of life. If
applications are developed with marginal initial quality control, they
will probably be poorly structured and contain error-prone modules.
This means that every year, the accumulation of defect repairs and
maintenance updates will degrade the original structure and make each
change slightly more difficult. Over time, the application will destabilize
and “bad fixes” will increase in number and severity. Unless the appli-
cation is restructured or fully refurbished, eventually it will become so

Table 13.8  Complexity and Entropy Over Time

Year Cyclomatic Complexity Testing DRE

2015 15 92%

2016 16 92%

2017 17 91%

2018 19 90%

2019 20 90%

2020 22 88%

2021 24 87%

2022 26 86%

2023 28 85%

2024 30 84%

364  ◾  Software Development Patterns and Antipatterns

complex that maintenance can only be performed by a few experts who
are more or less locked into the application.

By contrast, leading applications that are well structured initially
can delay the onset of entropy. Indeed, well-structured applications can
achieve declining maintenance costs over time. This is because updates
do not degrade the original structure, as in the case of “spaghetti bowl”
applications where the structure is almost unintelligible when mainte-
nance begins.

The total cost of ownership of a software application is the sum of
six major expense elements: (1) the initial cost of building an applica-
tion; (2) the cost of enhancing the application with new features over
its lifetime; (3) the cost of repairing defects and bugs over the applica-
tion’s lifetime; (4) the cost of customer support for fielding and respond-
ing to queries and customer-reported defects; (5) the cost of periodic
restructuring or “refactoring” of aging applications to reduce entropy
and thereby reduce bad-fix injection rates; (6) removal of error-prone
modules via surgical removal and redevelopment. This last expense ele-
ment will only occur for legacy applications that contain error-prone
modules.

Similar phenomena can be observed outside of software. If you buy
an automobile that has a high frequency of repair as shown in Consumer
Reports and you skimp on lubrication and routine maintenance, you
will fairly soon face some major repair problems – usually well before
50,000 miles.

By contrast, if you buy an automobile with a low frequency of repair
as shown in Consumer Reports and you are scrupulous in maintenance,
you should be able to drive the car more than 100,000 miles without
major repair problems.

Summary and Conclusions
In every industry, maintenance tends to require more personnel than
those building new products. For the software industry, the number of
personnel required to perform maintenance is unusually large and may
soon top 70% of all technical software workers. The main reasons for
the high maintenance efforts in the software industry are the intrinsic
difficulties of working with aging software. Special factors such as “mass
updates” that began with the roll-out of the Euro and the year 2000
problem are also geriatric issues.

Given the enormous efforts and costs devoted to software mainte-
nance, every company should evaluate and consider best practices for
maintenance and should avoid worst practices if at all possible.

Geriatric Care for Aging Software  ◾  365

References and Books by Capers Jones
That Discuss Software Maintenance
Jones, Capers; Software Methodologies: A Quantitative Guide; CRC Press; 2017a.
Jones, Capers; Quantifying Software: Global and Industry Perspectives; CRC

Press; 2017b.
Jones, Capers; A Guide to Software Measures and Metrics; CRC Press; 2017c.
Jones, Capers; The Technical and Social History of Software Engineering;

Addison Wesley; 2014.
Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;

Addison Wesley Longman, Boston, MA; 2011; ISBN: 10: 0-13-258220-1; 585
pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York, NY;
2010; ISBN: 978-0-07-162161-8; 660 pages. (Being translated into Chinese
by IBM China).

Jones, Capers; Applied Software Measurement; McGraw Hill, New York, NY;
2008; ISBN: 978-0-07-150244-3; 662 pages. (Available in English, Japanese,
and Chinese editions)

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007;
ISBN: 13: 978-0-07-148300-1. (Available in English and Japanese editions).

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; ISBN: 0-201-48542-7; 657 pages.

Books by Additional Authors
Boehm, Barry; Software Engineering Economics; Prentice Hall, Englewood

Cliffs, NJ; 1981; 900 pages.
Booch, Grady; Object Solutions: Managing the Object-Oriented Project; Addison

Wesley, Reading, MA; 1995.
Capability Maturity Model Integration; Version 1.1; Software Engineering

Institute; Carnegie-Mellon Univ.; Pittsburgh, PA; March 2003; http://www.
sei.cmu.edu/cmmi/.

Brooks, Fred: The Mythical Man-Month; Addison-Wesley, Reading, MA, 1974,
rev.; 1995.

Charette, Bob; Software Engineering Risk Analysis and Management; McGraw
Hill, New York, NY; 1989.

Charette, Bob; Application Strategies for Risk Management; McGraw Hill, New
York, NY; 1990.

Cohn, Mike; Agile Estimating and Planning; Prentice Hall PTR, Englewood
Cliffs, NJ; 2005; ISBN: 0131479415.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York; 1982;
ISBN: 0-917072-32-4; 284 pages.

Ewusi-Mensah, Kweku; Software Development Failures; MIT Press, Cambridge,
MA; 2003; ISBN: 0-26205072-2; 276 pages.

Gack, Gary; Managing the Black Hole – The Executives Guide to Project Risk; The
Business Expert Publisher, Thomson, GA; 2010; ISBN: 10: 1-935602-01-2.

http://www.sei.cmu.edu
http://www.sei.cmu.edu

366  ◾  Software Development Patterns and Antipatterns

Galorath, Dan; Software Sizing, Estimating, and Risk Management: When
Performance is Measured Performance Improves; Auerbach Publishing,
Philadelphia, PA; 2006; ISBN: 10: 0849335930; 576 pages.

Garmus, David; and Herron, David; Measuring the Software Process: A Practical
Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ;
1995.

Garmus, David; and Herron, David; Function Point Analysis – Measurement
Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Glass, R.L.; Software Runaways: Lessons Learned from Massive Software Project
Failures; Prentice Hall, Englewood Cliffs, NJ; 1998.

Hill, Peter R.; Practical Software Project Estimation; McGraw Hill; 2010.
Harris, Michaael; Herron, David; and Iwanicki, Stacia; The Business Value of IT:

Managing Risks, Optimizing Performance, and Measuring Results; CRC
Press (Auerbach), Boca Raton, FL; 2008; ISBN: 13: 978-1-4200-6474-2; 266
pages.

Humphrey, Watts; Managing the Software Process; Addison Wesley, Reading,
MA; 1989.

International Function Point Users Group (IFPUG); IFPUG Counting Practices
Manual; Release 4; International Function Point Users Group, Westerville,
OH; April 1995; 83 pages.

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

Park, Robert E. et al; Software Cost and Schedule Estimating – A Process
Improvement Initiative; Technical Report CMU/SEI 94-SR-03; Software
Engineering Institute, Pittsburgh, PA; May 1994.

Park, Robert E. et al; Checklists and Criteria for Evaluating the Costs and
Schedule Estimating Capabilities of Software Organizations; Technical
Report CMU/SEI 95-SR-005; Software Engineering Institute, Pittsburgh, PA;
January 1995.

McConnell; Software Estimating: Demystifying the Black Art; Microsoft Press,
Redmund, WA; 2006.

Roetzheim, William H.; and Beasley, Reyna A.; Best Practices in Software Cost
and Schedule Estimation; Prentice Hall PTR, Upper Saddle River, NJ; 1998.

Strassmann, Paul; Information Productivity; Information Economics Press,
Stamford, CT; 1999.

Strassmann, Paul; Information Payoff; Information Economics Press, Stamford,
CT; 1985.

Strassmann, Paul; Governance of Information Management: The Concept of an
Information Constitution, 2nd ed.; (eBook); Information Economics Press,
Stamford, CT; 2004.

Strassmann, Paul; The Squandered Computer; Information Economics Press,
Stamford, CT; 1997.

Stukes, Sherry; Deshoretz, Jason; Apgar, Henry; and Macias, Ilona; Air Force
Cost Analysis Agency Software Estimating Model Analysis; TR-9545/008-2;

Geriatric Care for Aging Software  ◾  367

Contract F04701-95-D-0003, Task 008; Management Consulting & Research,
Inc., Thousand Oaks, CA; September 30, 1996.

Wellman, Frank; Software Costing: An Objective Approach to Estimating and
Controlling the Cost of Computer Software, Prentice Hall, Englewood Cliffs,
NJ; 1992; ISBN: 0-138184364.

Whitehead, Richard; Leading a Development Team; Addison Wesley, Boston,
MA; 2001; ISBN: 10: 0201675267; 368 pages.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle
River, NJ; 1997; ISBN: 0-13-748310-4; 218 pages.

Yourdon, Ed; Outsource: Competing in the Global Productivity Race; Prentice
Hall PTR, Upper Saddle River, NJ; 2005; ISBN: 0-13-147571-1; 251 pages.

Readings on Software Maintenance
Arnold, Robert S.; Software Reengineering; IEEE Computer Society Press, Los

Alamitos, CA; 1993; ISBN: 0-8186-3272-0; 600 pages.
Arthur, Lowell Jay; Software Evolution – The Software Maintenance Challenge;

John Wiley & Sons, New York; 1988; ISBN: 0-471-62871-9; 254 pages.
Gallagher, R.S.; Effective Customer Support; International Thomson Computer

Press, Boston, MA; 1997; ISBN: 1-85032-209-0; 480 pages.
Grubb, Penny; and Takang, Armstrong; Software Maintenance – Concepts and

Practice; World Scientific Pub. Co; 2003; ISBN: 981-238-425-1.
Kan, Stephen H.; Metrics and Models in Software Quality Engineering; Addison

Wesley, Reading, MA; 2003; ISBN: 0-201-72915-6; 528 pages.
McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software

Engineering; December 1976; pp. 308–320.
Muller, Monika; and Abram, Alain (editors); Metrics in Software Evolution;

R. Oldenbourg Vertag GmbH, Munich; 1995; ISBN: 3-486-23589-3.
Parikh, Girish; Handbook of Software Maintenance; John Wiley & Sons, New

York; 1986; ISBN: 0-471-82813-0; 421 pages.
Pigoski, Thomas M.; Practical Software Maintenance – Best Practices for

Managing Your Software Investment; IEEE Computer Society Press, Los
Alamitos, CA; 1997; ISBN: 0-471-17001-1; 400 pages.

Polo, Macario et al; Advances in Software Maintenance, Management,
Technologies, and Solutions; World Scientific Pub. Co.; 1996; ISBN:
981-022826-0.

Sharon, David; Managing Systems in Transition – A Pragmatic View of
Reengineering Methods; International Thomson Computer Press, Boston,
MA; 1996; ISBN: 1-85032-194-9; 300 pages.

Takang, Armstrong; and Grubh, Penny; Software Maintenance Concepts and
Practice; International Thomson Computer Press, Boston, MA; 1997; ISBN:
1-85032-192-2; 256 pages.

https://taylorandfrancis.com

369DOI: 10.1201/9781003193128-16

Chapter 14

Function Points as a
Universal Metric

Introduction
Function point metrics are the most accurate and effective metrics yet
developed for software sizing and also for studying software productiv-
ity, quality, costs, risks, and economic value. The newer SNAP metric
may also add value for the work effort of dealing with non-functional
requirements.

In the future, function point metrics combined with SNAP can easily
become universal metrics used for all software applications and for all
software contracts in all countries. However, there are some logistical
problems with function point metrics that need to be understood and
overcome in order for function point metrics to become the primary
metric for software economic analysis.

The ultimate goal of function point metrics should be to size and
estimate all known types of software applications including but not
limited to:

	 •	 New projects
	 •	 Enhancements to existing software
	 •	 Maintenance changes to existing software
	 •	 Internal software
	 •	 Commercial software
	 •	 Embedded and real time software
	 •	 Artificial Intelligence (AI) projects

370  ◾  Software Development Patterns and Antipatterns

	 •	 Data base, data analytics, and data warehouse projects
	 •	 Large systems >100,000 function points
	 •	 Small changes <1.00 function points
	 •	 Analysis of canceled and failed software projects
	 •	 Analysis of factors in software litigation

As of today, manual function point counting and SNAP counting are
too slow and costly to be used on large software projects above 10,000
function points in size. Also, application size is not constant but grows
at about 2% per calendar month during development and 8% or more
per calendar year for as long as software is in active use so size needs
continuous adjustments.

This chapter discusses a method of high-speed function point and
SNAP counting that can size any application in less than two minutes,
and which can predict application growth during development and for
10 years after release. This new method is based on pattern matching
and was created by Namcook Analytics LLC for use in the Software Risk
Master (SRM) estimation tool.

The main software cost drivers circa 2020 in descending order of
magnitude are as follows:

	 1.	Finding and fixing defects
	 2.	Producing paper documents
	 3.	Coding or programming
	 4.	Dealing with software requirements changes
	 5.	Dealing with non-functional requirements
	 6.	Management
	 7.	Meetings and communications

Function point metrics are the only available metric that can measure
six of the seven cost drivers individually or together for economic analy-
sis of total software projects. The newer SNAP metric measures non-
functional requirements.

The older “lines of code” or LOC metric only measured coding and
did not even measure coding accurately. LOC metrics penalize modern
high-level programming languages as discussed later in topic 14 of this
chapter.

CEOs and other C-level executives want to know much more than
just the coding part of software applications. They want to know the full
cost of applications and their complete schedules from requirements
through delivery. They also want to know multi-year maintenance and
enhancement costs plus total cost of ownership (TCO).

Function Points as a Universal Metric  ◾  371

Function point metrics were invented by A.J. Albrecht and colleagues
at IBM’s White Plains development center circa 1975. Function point
metrics were placed in the public domain by IBM in 1978. Responsibility
for function point counting rules soon transferred to the International
Function Point User’s Group (IFPUG). Their web site is www.IFPUG.org.

Function point metrics were developed by IBM due to serious math-
ematical and economic problems associated with the older “lines of
code” metric or LOC. The LOC metric penalizes high-level program-
ming languages and also cannot be used to evaluate requirements,
design, business analysis, user documentation, or any other non-coding
activities.

In the current era circa 2018, function point metrics were the major
metric for software economic and productivity studies. At least 60,000
software projects have been measured using IFPUG function point met-
rics, including more than 5,000 projects that are publically available
from the International Software Benchmark Standards Group (ISBSG).
Their web site is www.ISBSG.org. See also the author’s blog or http://
Namcookanalytics.com.

The Strengths of Function Point Metrics

	 1.	IFPUG function point metrics have more measured projects than
all other metrics combined.

	 2.	IFPUG function point metrics are endorsed by ISO/IEC standard
20926:2009.

	 3.	Formal training and certification examinations are available for
IFPUG function point counting.

	 4.	Hundreds of certified IFPUG function point counters are available
in most countries.

	 5.	Counts of function points by certified counters usually are within
5% of each other.

	 6.	IFPUG function point metrics are standard features of most para-
metric estimating tools such as KnowledgePlan, SEER, and Software
Risk Master.

	 7.	Function points are increasingly used for software contracts. The
government of Brazil requires function points for all software
contracts.

The Weaknesses of Function Point Metrics

	 1.	Function point analysis is slow. Counting speeds for function points
average perhaps 500 function points per day.

http://www.IFPUG.org
http://www.ISBSG.org
http://Namcookanalytics.com
http://Namcookanalytics.com

372  ◾  Software Development Patterns and Antipatterns

	 2.	Due to the slow speed of function point analysis, function points
are almost never used on large systems >10,000 function points in
size.

	 3.	Function point analysis is expensive. Assuming a daily counting
speed of 500 function points and a daily consulting fee of $1,500
counting, an application of 10,000 function points would require
20 days and cost $30,000. This is equal to a cost of $3.00 for every
function point counted.

	 4.	Application size is not constant. During development, applications
grow at perhaps 2% per calendar month. After development, appli-
cations continue to grow at perhaps 8% per calendar year. Current
counting rules do not include continuous growth.

	 5.	More than a dozen function point, counting variations exist circa
2018 including COSMIC function points, NESMA function points,
FISMA function points, fast function points, backfired function
points, and a number of others. These variations produce function
point totals that differ from IFPUG function points by perhaps
+ or –15%.

A New Method for High-Speed Function Point Analysis
In order to make function point metrics easier to use and more rapid,
the author of this book developed a high-speed function point method
that has been used on several hundred software applications.

The high-speed sizing method is embedded in the Software Risk
Master™ (SRM) sizing and estimating tool under development by
Namcook Analytics LLC. A working version is available on the Namcook
Analytics web site, www.Namcook.com. The version requires a pass-
word from within the site.

The Namcook Analytics high-speed method includes the following
features:

	 1.	From more than 200 trials, sizing speed averages about 1.87 min-
utes per application. This speed is more or less constant between
applications as small as 10 function points or as large as 300,000
function points.

	 2.	The sizing method often comes within 5% of manual counts by
certified counters. The closest match was an SRM predicted size of
1,802 function points for an application sized manually at 1,800
function points.

	 3.	The sizing method can also be used prior to full requirements,
which is the earliest of any known software sizing method.

http://www.Namcook.com

Function Points as a Universal Metric  ◾  373

	 4.	The patent-pending method is based on external pattern matching
rather than internal attributes. As long as an application can be
placed on the SRM taxonomy, the application can be sized.

	 5.	The method can size all types of software including operating sys-
tems, ERP packages, telephone switching systems, medical device
software, web applications, smart-phone applications, and normal
information systems applications.

	 6.	The sizing method is metric neutral and predicts application size in
a total of 15 metrics including IFPUG function points, the new
SNAP metric for non-functional attributes, COSMIC function points,
story points, use-case points, logical code statements, and many
others.

	 7.	The sizing method predicts application growth during develop-
ment and for 5 years of post-release usage.

A Short Summary of Pattern Matching
Today, very few applications are truly new. Most are replacements for
older legacy applications or enhancements to older legacy applications.
Pattern matching uses the size, cost, schedules, and other factors from
legacy applications to generate similar values for new applications.

Software pattern matching as described here is based on a propri-
etary taxonomy developed by the author, Capers Jones. The taxonomy
uses multiple-choice questions to identify the key attributes of software
projects. The taxonomy is used to collect historical benchmark data and
also as basis for estimating future projects. The taxonomy is also used
for sizing applications.

For sizing, the taxonomy includes project nature, scope, class, type,
problem complexity, code complexity, and data complexity. For estimat-
ing, additional parameters such as CMMI level, methodology, and team
experience are also used.

The proprietary Namcook taxonomy used for pattern matching con-
tains 122 factors. With 122 total elements, the permutations of the full
taxonomy total to 214,200,000 possible patterns. Needless to say more
than half of these patterns have never occurred and will never occur.

In the software industry in 2018, the total number of patterns that
occurred with relatively high frequency was much smaller: about 25,000.

The SRM tool uses the taxonomy to select similar projects from its
knowledge base of around 26,000 projects. Mathematical algorithms are
used to derive results for patterns that do not have a perfect match.

However, a great majority of software projects do have matches
because they have been done many times. For example, all banks

374  ◾  Software Development Patterns and Antipatterns

perform similar transactions for customers and therefore have similar
software packages. Telephone switches also have been done many times
and all have similar features.

Pattern matching with a good taxonomy to guide the search is a very
cost-effective way for dealing with application size.

Pattern matching is new for software sizing but common elsewhere.
Two examples of pattern matching are the Zillow data base of real-
estate costs and the Kelley Blue Book of used automobile costs. Both
use taxonomies to narrow down choices and then show clients the end
results of those choices.

Increasing Executive Awareness of
Function Points for Economic Studies
Because of the slow speed of function point analysis and the lack of
data from large applications, function points are a niche metric below
the interest level of most CEOs and especially CEOs of Fortune 500
companies with large portfolios and many large systems including ERP
packages.

In order for function point metrics to become a priority for C level
executives and a standard method for all software contracts, the follow-
ing improvements are needed:

	 1.	Function point size must be available in a few minutes for large
systems; not after weeks of counting.

	 2.	The cost per function point counted must be lower than $0.05 per
function point rather than today’s costs of more than $3.00 per
function point counted.

	 3.	Function point metrics must be able to size applications ranging
from a low of 1 function point to a high of more than 300,000 func-
tion points.

	 4.	Sizing of applications must also deal with the measured rates of
requirements creep during development and the measured rates of
post-release growth for perhaps 10 years after the initial release.

	 5.	Function points must also be applied to maintenance, enhance-
ments, and total costs of ownership (TCO).

	 6.	Individual changes in requirements should be sized in real-time as
they occur. If a client wants a new feature that may be 10 function
points in size, this fact should be established within a few
minutes.

Function Points as a Universal Metric  ◾  375

	 7.	Function points should be used for large-scale economic analysis
of methods, industries, and even countries.

	 8.	Function points should be used to measure consumption and usage
of software as well as production of software.

	 9.	Function points must be applied to portfolio analysis and system
architecture.

	 10.	Function points can and should be used to size and estimate col-
lateral materials such as documentation, test case volumes, and
reusable materials used for applications.

Topic 1: Sizing Application Growth during
Development and After Release
Software application size is not a constant. Software projects grow con-
tinuously during development and also after release. Following are
some examples of the features of the patent-pending sizing method
embedded in Software Risk Master™. Table 14.1 shows an example of
the way SRM predicts growth and post-release changes.

Note that calendar years 2, 4, and 8 show a phenomenon called
“mid-life kickers” or major new features added about every four years to
commercial software applications. Multi-year sizing is based on empiri-
cal data from a number of major companies such as IBM where applica-
tions have been in service for more than 10 years.

Software applications should be resized whenever there are major
enhancements. Individual enhancements should be sized, and all data
should be accumulated starting with the initial delivery. Formal sizing
should also take place at the end of every calendar year or every fiscal
year for applications that are deployed and in active use.

Topic 2: Predicting Application Size in Multiple Metrics
There are so many metrics in use in 2018 that as a professional cour-
tesy to users and other metrics groups SRM predicts size in the metrics
shown in Table 14.2. Assume that the application being sized is known
to be 10,000 function points using IFPUG version 4.2 counting rules.

Because SRM is metric neutral, additional metrics could be added
to the list of supported metrics if new metrics become available in the
future.

376  ◾  Software Development Patterns and Antipatterns

SRM also predicts application size in terms of logical code statements
or “LOC.” However with more than 2,500 programming languages in
existence and the majority of projects using several languages, code
sizing requires that users inform the SRM tool as to which language(s)
will be used. This is done by specifying a percentage of various lan-
guages from an SRM pull-down menu that lists the languages supported.
Currently, SRM supports about 180 languages for sizing, but this is just
an arbitrary number that can easily be expanded.

Table 14.1  SRM Multi-Year Sizing Example

Copyright © by Capers Jones. All rights reserved.

Patent application 61434091. February 2012

Nominal application size in
IFPUG function points

10,000

SNAP points 1,389

Language C

Language level 2.50

Logical code statements 1,280,000

Function
Points

SNAP
Points

Logical
Code

Size at end of requirements 10,000 1,389 1,280,000

Size of requirement creep 2,000 278 256,000

Size of planned delivery 12,000 1,667 1,536,000

Size of deferred features −4,800 (667) (614,400)

Size of actual delivery 7,200 1,000 921,600

  Year 1 usage 12,000 1,667 1,536,000 Kicker

  Year 2 usage 13,000 1,806 1,664,000

  Year 3 usage 14,000 1,945 1,792,000

  Year 4 usage 17,000 2,361 2,176,000 Kicker

  Year 5 usage 18,000 2,500 2,304,000

  Year 6 usage 19,000 2,639 2,432,000

  Year 7 usage 20,000 2,778 2,560,000

  Year 8 usage 23,000 3,195 2,944,000 Kicker

  Year 9 usage 24,000 3,334 3,072,000

  Year 10 usage 25,000 3,473 3,200,000

Function Points as a Universal Metric  ◾  377

Topic 3: Sizing All Known Types
of Software Application
One of the advantages of sizing by means of external pattern matching
rather than sizing by internal attributes is that the any known applica-
tion can be sized. Table 14.3 shows 40 samples of applications size by
the SRM high-speed method.

This list of 40 applications was sized by the author in about 75 min-
utes, which is a rate of 1.875 minutes per application sized. The cost per
function point sized is less than $0.001. As of 2013, SRM sizing was the

Table 14.2  Metrics Supported by SRM Pattern Matching

Alternate Metrics Size % of IFPUG

IFPUG 4.3 10,000 100.00%

Automated code based 10,700 107.00%

Automated UML based 10,300 103.00%

Backfired function points 10,000 100.00%

Cosmic function points 11,429 114.29%

Fast function points 9,700 97.00%

Feature points 10,000 100.00%

FISMA function points 10,200 102.00%

Full function points 11,700 117.00%

Function points light 9,650 96.50%

IntegraNova models 10,900 109.00%

Mark II function points 10,600 106.00%

NESMA function points 10,400 104.00%

RICE objects 47,143 471.43%

SCCQI function points 30,286 302.86%

Simple function points 9,750 97.50%

SNAP non-functional metrics 1,818 18.18%

SRM pattern matching 10,000 100.00%

Story points 5,556 55.56%

Unadjusted function points 8,900 89.00%

Use case points 3,333 33.33%

378  ◾  Software Development Patterns and Antipatterns

Table 14.3  Examples of Software Size via Pattern Matching

Using Software Risk Master™

Applications
Size in IFPUG

Function Points

1 Oracle 229,434

2 Windows 7 (all features) 202,150

3 Microsoft Windows XP 66,238

4 Google docs 47,668

5 Microsoft Office 2003 33,736

6 F15 avionics/weapons 23,109

7 VA medical records 19,819

8 Apple I Phone 19,366

9 IBM IMS data base 18,558

10 Google search engine 18,640

11 Linux 17,505

12 ITT System 12 switching 17,002

13 Denver Airport luggage (original) 16,661

14 Child Support Payments (state) 12,546

15 Facebook 8,404

16 MapQuest 3,793

17 Microsoft Project 1,963

18 Android OS (original version) 1,858

19 Microsoft Excel 1,578

20 Garmin GPS navigation (hand held) 1,518

21 Microsoft Word 1,431

22 Mozilla Firefox 1,342

23 Laser printer driver (HP) 1,248

24 Sun Java compiler 1,185

25 Wikipedia 1,142

26 Cochlear implant (embedded) 1,041

27 Microsoft DOS circa 1998 1,022

Function Points as a Universal Metric  ◾  379

fastest and least expensive method of sizing yet developed. This makes
SRM useful for Agile projects where normal function point analysis is
seldom used.

Because sizing is based on external attributes rather than internal
factors, SRM sizing can take place before full requirements are available;
this is 3 to 6 months earlier than most other sizing methods. Early sizing
leaves time for risk abatement for potentially hazardous projects.

Topic 4: Function Points for Early
Analysis of Software Risks
Software projects are susceptible to more than 200 risks in all, of which
about 50 can be analyzed using function point metrics. As application
size goes up when measured with function point metrics, software risks
also go up.

Table 14.4 shows the comparative risk profiles of four sample proj-
ects of 100, 1,000, 10,000, and 100,000 function points. All four are

Using Software Risk Master™

Applications
Size in IFPUG

Function Points

28 Nintendo Gameboy DS 1,002

29 Casio atomic watch 933

30 Computer BIOS 857

31 SPR KnowledgePlan 883

32 Function Point Workbench 714

33 Norton anti-virus 700

34 SPR SPQR/20 699

35 Golf handicap analysis 662

36 Google Gmail 590

37 Twitter (original circa 2009) 541

38 Freecell computer solitaire 102

39 Software Risk Master™ prototype 38

40 ILOVEYOU computer worm 22

Table 14.3  (Continued)

380  ◾  Software Development Patterns and Antipatterns

Table 14.4  Average Risks for IT Projects by Size

(Predictions by Software Risk Master™)

Risks for 100 function points

  Cancellation 8.36%

  Negative ROI 10.59%

  Cost overrun 9.19%

  Schedule slip 11.14%

  Unhappy customers 36.00%

  Litigation 3.68%

Average Risks 13.16%

Financial Risks 15.43%

  Risks for 1000 function points

  Cancellation 13.78%

  Negative ROI 17.46%

  Cost overrun 15.16%

  Schedule slip 18.38%

  Unhappy customers 36.00%

  Litigation 6.06%

Average Risks 17.81%

Financial Risks 25.44%

Risks for 10,000 function points

  Cancellation 26.03%

  Negative ROI 32.97%

  Cost overrun 28.63%

  Schedule slip 34.70%

  Unhappy customers 36.00%

  Litigation 11.45%

Average Risks 28.29%

Financial Risks 48.04%

Risks for 100,000 function points

  Cancellation 53.76%

Function Points as a Universal Metric  ◾  381

“average” projects using iterative development. All four are assumed to
be at CMMI level 1.

All of the data in Table 14.4 are standard risk predictions from SRM.
Risks would go down with higher CMMI levels, more experienced teams,
and robust methodologies such a RUP or TSP.

Small projects below 1,000 function points are usually completed
without too much difficulty. But large systems above 10,000 function
points are among the most hazardous of all manufactured objects in
human history.

It is an interesting phenomenon that every software breach of con-
tract lawsuit except one where the author of this book worked as an
expert witness were for projects of 10,000 function points and higher.

Topic 5: Function Points for Activity-
Based Sizing and Cost Estimating
In order to be useful for software economic analysis, function point met-
rics need to be applied to individual software development activities.
Corporate executives at the CEO level want to know all cost elements, and
not just “design, code, and unit test” or DCUT as it is commonly called.

SRM has a variable focus that allows it to show data ranging from full
projects to 40 activities. Table 14.5 shows the complete set of 40 activi-
ties for an application of 10,000 function points in size.

SRM uses this level of detail for collecting benchmark data from large
applications. In predictive mode prior to requirements, this much detail
is not needed, so a smaller chart of accounts is used.

This chart of accounts works for methods such as waterfall. Other
charts of accounts are used for iterative, agile, and other methods which
segment development into sprints or separate work packages.

(Predictions by Software Risk Master™)

  Negative ROI 68.09%

  Cost overrun 59.13%

  Schedule slip 71.68%

  Unhappy customers 36.00%

  Litigation 23.65%

Average Risks 52.05%

Financial Risks 99.24%

Table 14.4  (Continued)

382  ◾  Software Development Patterns and Antipatterns

Table 14.5  Function Points for Activity-Based Cost Analysis

Development Activities
Work Hours per
Function Point

Burdened Cost
per Function Point

1 Business analysis 0.02 $1.33

2 Risk analysis/sizing 0.00 $0.29

3 Risk solution planning 0.01 $0.67

4 Requirements 0.38 $28.57

5 Requirement inspection 0.22 $16.67

6 Prototyping 0.33 $25.00

7 Architecture 0.05 $4.00

8 Architecture inspection 0.04 $3.33

9 Project plans/estimates 0.03 $2.00

10 Initial design 0.75 $57.14

11 Detail design 0.75 $57.14

12 Design inspections 0.53 $40.00

13 Coding 4.00 $303.03

14 Code inspections 3.30 $250.00

15 Reuse acquisition 0.01 $1.00

16 Static analysis 0.02 $1.33

17 COTS package purchase 0.01 $1.00

18 Open-source acquisition 0.01 $1.00

19 Code security audit 0.04 $2.86

20 Ind. Verif. & Valid. 0.07 $5.00

21 Configuration control 0.04 $2.86

22 Integration 0.04 $2.86

23 User documentation 0.29 $22.22

24 Unit testing 0.88 $66.67

25 Function testing 0.75 $57.14

26 Regression testing 0.53 $40.00

27 Integration testing 0.44 $33.33

Function Points as a Universal Metric  ◾  383

Major applications that have separate components would use a chart
of accounts for each component. All of these could be merged at the
end of the project.

One advantage of activity-based costing with function point metrics
is that it eliminates “leakage” from measurement studies. For too many
studies cover only “design, code, and unit test” or DCUT. These partial
activities are less than 30% of the effort on a large software application.

C-level executives want and should see 100% of the total set of activi-
ties that goes into software projects, not just partial data. From analy-
sis of internal measurement programs, IT projects only collect data on
about 37% of the total effort for software. Only contract software with
charges on a time and material basis approach 100% cost collection,
plus defense applications developed under contract.

A few major companies such as IBM collect data from internal appli-
cations that approach 100% in completeness, but this is fairly rare. The
most common omissions are unpaid overtime, project management, and
the work of part-time specialists such as business analysts, quality assur-
ance, technical writers, function point counters, and the like.

Development Activities
Work Hours per
Function Point

Burdened Cost
per Function Point

28 Performance testing 0.33 $25.00

29 Security testing 0.26 $20.00

30 Usability testing 0.22 $16.67

31 System testing 0.88 $66.67

32 Cloud testing 0.13 $10.00

33 Field (Beta) testing 0.18 $13.33

34 Acceptance testing 0.05 $4.00

35 Independent testing 0.07 $5.00

36 Quality assurance 0.18 $13.33

37 Installation/training 0.04 $2.86

38 Project measurement 0.01 $1.00

39 Project office 0.18 $13.33

40 Project management 4.40 $333.33

Cumulative Results 20.44 $1,548.68

Table 14.4  (Continued)

384  ◾  Software Development Patterns and Antipatterns

Topic 6: Function Points and Methodology Analysis
One topic of considerable interest to both C level executives and also to
academics and software engineers is how various methodologies com-
pare. Software Risk Master™ includes empirical results from more than
30 different software development methodologies; more than any other
benchmark or estimation tool.

Table 14.6 shows the approximate development schedules noted
for 30 different software development methods. The rankings run from
slowest at the top of the table to fastest at the bottom of the table.

Software Risk Master™ also predicts staffing, effort in months and
hours, costs, quality, and 5-years of post-release maintenance and
enhancement. Table 14.6 only shows schedules since that topic is of
considerable interest to CEOs as well as other C level executives.

Note that Table 14.6 assumes close to a zero value for certified reus-
able components. Software reuse can shorten schedules compared those
shown in Table 14.6.

Table 14.6 also assumes an average team and no use of the capa-
bility maturity model. Expert teams and projects in organizations at
CMMI levels 3 or higher will have shorter schedules than those shown
in Table 14.6.

SRM itself handles adjustments in team skills, CMMI levels, method-
ologies, programming languages, and volumes of reuse.

Topic 7: Function Points for Evaluating the
Capability Maturity Model (CMMI®)
Civilian CEOs in many industries such as banking, insurance, commer-
cial software, transportation, and many kinds of manufacturing care lit-
tle or nothing about the Software Engineering Institute’s (SEI) capability
maturity model. In fact many have never even heard of either the SEI
or the CMMI.

In the defense industry, on the other hand, the CMMI is a major topic
because it is necessary to be at CMMI level 3 of higher in order to bid
on some military and defense software contracts. The SEI was formed in
1984 and soon after started doing software process assessments, using a
methodology developed by the late Watts Humphrey and his colleagues.

The original assessment method scored organizations on a 5-point
scale ranging from 1 (very chaotic in software) through 5 (highly profes-
sional and disciplined). The author of this book had a contract with the
U.S. Air Force to explore the value of ascending the various CMM and

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
385

Table 14.6  Application Schedules

Application Size
= (IFPUG 4.2) 10 100 1,000 10,000 100,000

Methods Schedule Months Schedule Months Schedule Months Schedule Months Schedule Months

1 Proofs 2.60 6.76 17.58 45.71 118.85

2 DoD 2.57 6.61 16.98 43.65 112.20

3 Cowboy 2.51 6.31 15.85 39.81 100.00

4 Waterfall 2.48 6.17 15.31 38.02 94.41

5 ISO/IEC 2.47 6.11 15.10 37.33 92.26

6 Pairs 2.45 6.03 14.79 36.31 89.13

7 Prince2 2.44 5.94 14.49 35.32 86.10

8 Merise 2.44 5.94 14.49 35.32 86.10

9 DSDM 2.43 5.92 14.39 34.99 85.11

10 Models 2.43 5.89 14.29 34.67 84.14

11 Clean rm. 2.42 5.86 14.19 34.36 83.18

12 T-VEC 2.42 5.86 14.19 34.36 83.18

13 V-Model 2.42 5.83 14.09 34.04 82.22

14 Iterative 2.41 5.81 14.00 33.73 81.28

15 SSADM 2.40 5.78 13.90 33.42 80.35

(Continued)

386 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Application Size
= (IFPUG 4.2) 10 100 1,000 10,000 100,000

Methods Schedule Months Schedule Months Schedule Months Schedule Months Schedule Months

16 Spiral 2.40 5.75 13.80 33.11 79.43

17 SADT 2.39 5.73 13.71 32.81 78.52

18 Jackson 2.39 5.73 13.71 32.81 78.52

19 EVO 2.39 5.70 13.61 32.51 77.62

20 IE 2.39 5.70 13.61 32.51 77.62

21 OO 2.38 5.68 13.52 32.21 76.74

22 DSD 2.38 5.65 13.43 31.92 75.86

23 RUP 2.37 5.62 13.34 31.62 74.99

24 PSP/TSP 2.36 5.56 13.11 30.90 72.86

25 FDD 2.36 5.55 13.06 30.76 72.44

26 RAD 2.35 5.52 12.97 30.48 71.61

27 Agile 2.34 5.50 12.88 30.20 70.79

28 XP 2.34 5.47 12.79 29.92 69.98

29 Hybrid 2.32 5.40 12.53 29.11 67.61

30 Mashup 2.24 5.01 11.22 25.12 56.23

Average 2.41 5.81 14.03 33.90 81.98

Table 14.6  (Continued)

Function Points as a Universal Metric  ◾  387

CMMI levels to ascertain if there were tangible improvements in quality
and productivity. Twenty companies were visited for the study.

There are tangible improvements in both quality and productivity
gains at the higher CMMI levels from a statistical analysis. However,
some companies that don’t use the CMMI at all have results as good as
companies assessed at CMMI level 5. Tables 14.7.1 through 14.7.4 show
CMMI results for various sizes of projects.

The higher levels of the CMMI have better quality than similar civil-
ian projects, but much lower productivity. This is due in part to the
fact the DoD oversight leads to huge volumes of paper documents.
Military projects create about three times as many pages of require-
ments, specifications, and other documents as do civilian projects of the
same size. Software paperwork costs more than source code for military
and defense applications regardless of CMMI levels. DoD projects also

Table 14.7.1  Quality Results of the Five Levels of the CMMI®

(Results for applications of 1000 function points in size)

CMMI
Level

Defect Potential
per FP

Defect Removal
Efficiency

Delivered
Defects per FP

1 5.25 82.00% 0.95

2 5.00 85.00% 0.75

3 4.75 90.00% 0.48

4 4.50 94.00% 0.27

5 4.00 98.00% 0.08

Table 14.7.2  Quality Results of the Five Levels of the CMMI®

(Results for Applications of 10,000 Function Points in Size)

CMMI
Level

Defect Potential
per FP

Defect Removal
Efficiency

Delivered
Defects per FP

1 6.50 75.00% 1.63

2 6.25 82.00% 1.13

3 5.50 87.00% 0.72

4 5.25 90.00% 0.53

5 4.50 94.00% 0.27

388  ◾  Software Development Patterns and Antipatterns

use independent verification and validation (IV&V) and independent
testing, which seldom occurs in the civilian sector.

Both Namcook Analytics and the SEI express their results using five-
point scales but the significance of the scales runs in the opposite direc-
tion. The Namcook scale was published first in 1986 in Capers Jones’
book Programming Productivity (McGraw Hill) and hence is several
years older than the SEI scale. In fact the author of this book began
doing assessments inside IBM at the same time Watts Humphrey was
IBM’s director of programming, and about 10 years before the SEI was
even incorporated.

Table 14.7.4  Productivity Rates for the
Five Levels of the CMMI®

(Results for Applications of 10,000
Function Points in Size)

CMMI
Level

Function Points
per Month

Work Hours per
Function Point

1 2.50 52.80

2 2.75 48.00

3 3.50 37.71

4 4.25 31.06

5 5.50 24.00

Table 14.7.3  Productivity Rates for the
Five Levels of the CMMI®

(Results for Applications of 1000
Function Points in Size)

CMMI
Level

Function Points
per Month

Work Hours per
Function Point

1 6.00 22.00

2 6.75 19.56

3 7.00 18.86

4 7.25 18.21

5 7.50 17.60

Function Points as a Universal Metric  ◾  389

Namcook
Excellence Scale Meaning

Frequency of
Occurrence

1 = Excellent State of the art 2.0%

2 = Good Superior to most companies 18.0%

3 = Average Normal in most factors 56.0%

4 = Poor Deficient in some factors 20.0%

5 = Very Poor Deficient in most factors 4.0%

The SEI maturity level scale was first published by Watts Humphrey
in 1989 in his well-known book Managing the Software Process
(Humphrey 1989).

SEI Maturity Level Meaning
Frequency of
Occurrence

1 = Initial Chaotic 75.0%

2 = Repeatable Marginal 15.0%

3 = Defined Adequate 8.0%

4 = Managed Good to excellent 1.5%

5 = Optimizing State of the art 0.5%

Simply inverting the Namcook excellence scale or the SEI maturity
scale is not sufficient to convert the scores from one to another. This is
because the SEI scale expresses its results in absolute form, while the
Namcook scale expresses its results in relative form.

Large collections of Namcook data from an industry typically approx-
imate a bell-shaped curve. A collection of SEI capability maturity data is
skewed toward the Initial or chaotic end of the spectrum. However, it is
possible to convert data from the Namcook scale to the equivalent SEI
scale by a combination of inversion and compression of the Namcook
results. Software Risk Master ™ includes bi-directional conversions
between the SEI and Namcook scales.

The Namcook conversion algorithms use two decimal places, so that
scores such as 3.25 or 3.75 are possible. In fact even scores below 1
such as 0.65 are possible. The SEI method itself uses integer values but
the two-decimal precision of the Namcook conversion method is inter-
esting to clients.

390  ◾  Software Development Patterns and Antipatterns

Topic 8: Function Points for Software Quality Analysis
Function points are the best metric for software quality analysis. The
older metric “cost per defect” penalizes quality and also violates stan-
dard economic assumptions. Quality economics are much better ana-
lyzed using function point metrics than any other. A key advantage of
function points for quality analysis is the ability to predict defects in
requirements and design as well as code defects. Requirements and
design defects often outnumber code defects. Table 14.8 shows a typical
defect pattern for a waterfall project of 1,000 function points at CMMI
level 1 coding in the C language.

Table 14.8.1 shows a sample of the full quality predictions from SRM
for an application of 1,000 function points. The table shows a “best case”
example for a project using TSP and being at CMMI level 5.

Function points are able to quantify requirements and design defects,
which outnumber coding defects for large applications. This is not pos-
sible using LOC metrics. Function points are also superior to “cost per
defect” for measuring technical debt and cost of quality (COQ). Both
technical debt and COQ are standard SRM outputs.

Table 14.8.1 is only an example. SRM can also model various ISO
standards, certification of test personnel, team experience levels, CMMI
levels, and in fact a total of about 200 specific quality factors.

For many years, the software industry has used “cost per defect” as
key metric for software quality. In fact, there is an urban legend that “it
costs 100 times as much to fix a bug after release as early in develop-
ment.” Unfortunately, the whole concept of cost per defect is mathemati-
cally flawed and does match standard economics. The urban legend has
values that resemble the following:

Defects found during requirements = $250

Defects found during design = $500

Defects found during coding and testing = $1,250

Defects found after release = $5,000

While such claims are often true mathematically, the following are
three hidden problems with cost per defect that are usually not dis-
cussed in the software literature:

	 1.	Cost per defect penalizes quality and is always cheapest where the
greatest numbers of bugs are found.

	 2.	Because more bugs are found at the beginning of development
than at the end, the increase in cost per defect is artificial. Actual

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
391

Table 14.8  SRM Defect Prediction for Waterfall Development

1,000 function points; inexperienced team; CMMI level 1; Waterfall; C language

106,670 logical code statements; 106.7 KLOC

Defect Potentials Defects Per FP Per KLOC Pre-Test Removal Test Removal Defects Delivered Cumul. Effic.

Requirements 1,065 1.07 9.99 70.00% 54.00% 147 86.20%

Design 1,426 1.43 13.37 76.00% 69.00% 106 92.56%

Code 1,515 1.52 14.20 77.00% 74.00% 91 94.02%

Documents 665 0.66 6.23 79.00% 19.00% 113 82.99%

Bad fixes 352 0.35 3.30 59.00% 61.00% 56 84.01%

Total 5,023 5.02 47.09 74.24% 60.36% 513 89.79%

392  ◾  Software Development Patterns and Antipatterns

Table 14.8.1  SRM Quality Estimate

Output Results

Requirements defect
potential

134

Design defect potential 561

Code defect potential 887

Document defect
potential

135

Total Defect Potential 1,717

Per function point 1.72

Per KLOC 32.20

Efficiency Remainder Bad Fixes Costs

Defect Prevention

  JAD 27% 1,262 5 $28,052

  QFD 30% 888 4 $39,633

  Prototype 20% 713 2 $17,045

  Models 68% 229 5 $42,684

Subtotal 86% 234 15 $127,415

Pre-Test Removal

  Desk check 27% 171 2 $13,225

  Static analysis 55% 78 1 $7,823

  Inspections 93% 5 0 $73,791

Subtotal 98% 6 3 $94,839

Test Removal

  Unit 32% 4 0 $22,390

  Function 35% 2 0 $39,835

  Regression 14% 2 0 $51,578

  Component 32% 1 0 $57,704

  Performance 14% 1 0 $33,366

  System 36% 1 0 $63,747

  Acceptance 17% 1 0 $15,225

Subtotal 87% 1 0 $283,845

Function Points as a Universal Metric  ◾  393

time and motion studies of defect repairs show little variance from
end to end.

	 3.	Even if calculated correctly, cost per defect does not measure the
true economic value of improved software quality. Over and above
the costs of finding and fixing bugs, high quality leads to shorter
development schedules and overall reductions in development
costs. These savings are not included in cost per defect calcula-
tions, so the metric understates the true value of quality by several
hundred percent.

Let us consider the cost per defect problem areas using examples that
illustrate the main points.

As quality improves, “cost per defect” rises sharply. The reason for
this is that writing test cases and running them act like fixed costs. It is
a well-known law of manufacturing economics that:

Output Results

Pre-Release Costs 1,734 3 $506,099

Post-Release Repairs (Technical Debt) 1 0 $658

Maintenance Overhead $46,545

Cost of Quality (COQ) $553,302

Defects delivered 1

High severity 0

Security flaws 0

High severity % 11.58%

Delivered Per FP 0.001

High severity per FP 0.000

Security flaws per FP 0.000

Delivered per KLOC 0.014

High severity per KLOC 0.002

Security flaws per KLOC 0.001

Cumulative Removal Efficiency 99.96%

Table 14.8.1  (Continued)

394  ◾  Software Development Patterns and Antipatterns

If a manufacturing cycle includes a high proportion of fixed costs and there is
a reduction in the number of units produced, the cost per unit will go up.

As an application moves through a full test cycle that includes unit test,
function test, regression test, performance test, system test, and accep-
tance test the time required to write test cases and the time required to
run test cases stays almost constant, but the number of defects found
steadily decreases.

Table 14.8.2 shows the approximate costs for the three cost elements
of preparation, execution, and repair for the test cycles just cited using
the same rate of $75.75 per hour for all activities.

What is most interesting about Table 14.8.2 is that cost per defect
rises steadily as defect volumes come down, even though Table 14.8.2
uses a constant value of 5 hours to repair defects for every single test
stage. In other words, every defect identified throughout Table 14.1 had
a constant cost of $378.25 when only repairs are considered.

In fact all three columns use constant values and the only true vari-
able in the example is the number of defects found. In real life, of
course, preparation, execution, and repairs would all be variables. But
by making them constant, it is easier to illustrate the main point: cost per
defect rises as numbers of defects decline.

Let us now consider cost per function point as an alternative metric
for measuring the costs of defect removal.

An alternate way of showing the economics of defect removal is to
switch from “cost per defect” and use “defect removal cost per function
point.” Table 14.8.3 uses the same basic information as Table 14.8.3, but
expresses all costs in terms of cost per function point.

The advantage of defect removal cost per function point over cost
per defect is that it actually matches the assumptions of standard eco-
nomics. In other words, as quality improves and defect volumes decline,
cost per function point tracks these benefits and also declines. High
quality is shown to be cheaper than poor quality, while with cost per
defect high quality is incorrectly shown as being more expensive.

Topic 9: Function Points and Software Maintenance,
Enhancements, and Total Cost of Ownership (TCO)
Software costs do not end when the software is delivered. Nor does
delivery put an end to the need to monitor both costs and quality. Some
applications have useful lives that can span 20 years or more. These
applications are not fixed, but add new features on an annual basis.

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
395

Table 14.8.2  Cost per Defect for Six Forms of Testing

(Assumes $75.75 per staff hour for costs)

Writing
Test Cases

Running
Test Cases

Repairing
Defects

TOTAL
COSTS

Number of
Defects

$ per
Defect

Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75

Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75

Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75

Performance test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75

System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42

Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75

396  ◾  Software Development Patterns and Antipatterns

Therefore, function point metrics need to continue to be applied to
software projects after release.

Post-release costs are more complex than development costs because
they need to integrate enhancements or adding new features, mainte-
nance or fixing bugs, and customer support or helping clients when
they call or contact a company about a specific application.

The need to keep records for applications that are constantly grow-
ing over time means that normalization of data will need to be cognizant
of the current size of the application. The method used by SRM is to
normalize results for both enhancements and maintenance at the end of
every calendar year, i.e. the size of the application is based on the date
of December 31. The pre-release size is based on the size of the applica-
tion on the day it was first delivered to clients. The sizes of requirements
creep during development are also recorded.

Table 14.9 shows the approximate rate of growth and the mainte-
nance and enhancement effort for five years for an application of a
nominal 1,000 function points when first delivered.

The original development cost for the application was $1,027,348.
The costs for five years of maintenance and enhancements the cost were
$2,081,700 or more than twice the original development cost. The TCO
is the sum of development and the 5-year M&E period. In this example,
the TCO is $3,109,048.

CEOs and other C level executives want to know the “total cost of
ownership” (TCO) of software and not just the initial development costs.

Five-year maintenance and enhancement predictions are standard
outputs from SRM.

Table 14.8.3  Cost per Function Point for Six Forms of Testing

(Assumes $75.75 per staff hour for costs)

(Assumes 100 function points in the application)

Writing
Test

Cases

Running
Test

Cases
Repairing
Defects

Total $
per FP

Number
of

Defects

Unit test $12.50 $7.50 $189.38 $209.38 50

Function test $12.50 $7.50 $75.75 $95.75 20

Regression test $12.50 $7.50 $37.88 $57.88 10

Performance test $12.50 $7.50 $18.94 $38.94 5

System test $12.50 $7.50 $11.36 $31.36 3

Acceptance test $12.50 $7.50 $3.79 $23.79 1

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
397

Table 14.9  Five Years of Software Maintenance and Enhancement for 1000 Function Points

(Maintenance + Enhancement)

Year 1 Year 2 Year 3 Year 4 Year 5 5-Year

2018 2019 2020 2021 2022 Total

Annual enhancements in FP 80 86 93 101 109 469

Application Growth in FP 1,080 1,166 1,260 1,360 1,469 1,469

Application Growth in LOC 57,600 62,208 67,185 67,185 78,364 78,364

Cyclomatic complexity increase 11.09 11.54 12.00 12.48 12.98 12.98

Enhancement staff 0.81 0.88 0.96 1.05 1.15 0.97

Maintenance staff 5.68 5.72 5.85 6.36 7.28 6.18

Total staff 6.49 6.61 6.81 7.41 8.43 7.15

Enhancement effort (months) 9.72 10.61 11.58 12.64 13.80 58.34

Maintenance effort (months) 68.19 68.70 70.20 76.31 87.34 370.74

Total effort (months) 77.91 79.30 81.78 88.95 101.14 429.08

Total effort (hours) 10,283.53 10,467.77 10,794.70 11,741.94 13,350.37 56,638.31

Enhancement effort % 12.47% 13.37% 14.16% 14.21% 13.64% 13.60%

(Continued)

398 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Table 14.9  (Continued)

(Maintenance + Enhancement)

Year 1 Year 2 Year 3 Year 4 Year 5 5-Year

2018 2019 2020 2021 2022 Total

Maintenance effort % 87.53% 86.63% 85.84% 85.79% 86.36% 86.40%

Total effort % 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Enhancement cost $77,733 $84,845 $92,617 $101,114 $110,403 $466,712

Maintenance cost $331,052 $316,674 $304,368 $315,546 $347,348 $1,614,988

Total cost $408,785 $401,518 $396,985 $416,660 $457,751 $2,081,700

Enhancement cost % 19.02% 21.13% 23.33% 24.27% 24.12% 22.42%

Maintenance cost % 80.98% 78.87% 76.67% 75.73% 75.88% 77.58%

Total cost 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Function Points as a Universal Metric  ◾  399

High quality can reduce development costs by about 15% but reduces
maintenance costs by more than 45% per year. The cumulative eco-
nomic value of quality methods such as inspections and static analysis
is much better when demonstrated using TCO than when only using
development.

The TCO of the “average” sample shown here was just over $3,000,000.
The TCO of a high-quality version of the same application that used pre-
test inspections and static analysis would probably have been below
$1,500,000 with the bulk of the saving accruing after release due to
lower customer support and maintenance costs.

Topic 10: Function Points and Forensic
Analysis of Canceled Projects
CEOs of Fortune 500 companies have less respect for their software
organizations than for other technical groups. The main reason for this
is that large software projects are more troublesome to CEOs and corpo-
rate boards than any other manufactured object in history.

Large software projects are canceled far too often and run late and
miss budgets in a majority of cases. Until quality improves along with
estimation and safe completion of large systems, software organizations
will be viewed as a painful necessity rather than a valuable contributor
to the bottom line.

About 35% of large systems >10,000 function points are canceled
and never delivered to end users or clients. These canceled projects are
seldom studied but forensic analysis of failures can lead to important
insights.

The reason that CEOs care about forensic analysis is that many failed
projects end up in litigation. Between the financial loss of the cancella-
tion and possible legal fees for litigation, a failed project of 10,000 func-
tion points is about a $30,000,000 write off. A failure for a major system
of 100,000 function points is about a $500,000,000 write off. This much
wasted money is a top issue for CEO’s.

Because they are terminated, the size of the project at termination
and accumulated costs and resource data may not be available. But SRM
can provide both values.

Note that terminated projects have no downstream “technical debt”
because they are never released to customers. This is a serious omission
from the technical debt metaphor and is one of the reasons why it is
not completely valid for economic analysis (Tables 14.10.1, 14.10.2, and
14.10.3).

400  ◾  Software Development Patterns and Antipatterns

When high-quality projects are canceled, it is usually because of
business reasons. For example, the author of this book was working
on an application when his company bought a competitor that already
had the same kind of application up and running. The company did
not need two identical applications, so the version under development
was canceled. This was a rational business decision and not due to poor
quality or negative ROI.

When low-quality projects are canceled, it is usually because they are
so late and so much over budget that their return on investment (ROI)
turned from positive to strongly negative. The delays and cost overruns

Table 14.10.1  Odds of Cancellation by Size and Quality Level

(Includes negative ROI, poor quality, and change in business need)

Function Points Low Quality Average Quality High Quality

10 2.00% 0.00% 0.00%

100 7.00% 3.00% 2.00%

1,000 20.00% 10.00% 5.00%

10,000 45.00% 15.00% 7.00%

100,000 65.00% 35.00% 12.00%

Average 27.80% 12.60% 5.20%

Table 14.10.2  Probable Month of Cancellation from Start of Project

(Elapsed Months from Start of Project)

Function Points Low Quality Average Quality High Quality

10 1.4 None None

100 5.9 5.2 3.8

1,000 16.0 13.8 9.3

10,000 38.2 32.1 16.1

100,000 82.3 70.1 25.2

Average 45.5 30.3 16.9

Percent 150.10% 100.00% 55.68%

Function Points as a Universal Metric  ◾  401

explain why low-quality canceled projects are much more expensive
than successful projects of the same size and type. Function point met-
rics are the best choice for forensic analysis of canceled projects.

Much of the forensic analysis of disastrous projects takes place in the
discovery and deposition phases of software litigation. From working as
an expert witness in many of these cases, the main reasons for canceled
projects are as follows:

	 1.	Optimistic estimates which predict shorter schedules and lower
costs than reality.

	 2.	Poor quality control which stretches out test schedules.
	 3.	Poor change control in the face of requirements creep which tops

2% per calendar month.
	 4.	Poor and seemingly fraudulent status tracking which conceals seri-

ous problems.

In general poor management practices are the chief culprit for canceled
projects. Managers don’t understand quality and try and bypass pre-test
inspections or static analysis, which later doubles testing durations.

Then managers conceal problems from clients and higher manage-
ment in the false hope that the problems will be solved or go away. The
inevitable results are massive cost overruns, long schedule delays, and
outright cancellation. It is no wonder CEOs have a low regard for the
software groups in their companies.

Table 14.10.3  Probable Effort from Project Start to Point of Cancellation

(Effort in Terms of Person Months)

Function Points Low Quality Average Quality High Quality

10 0.8 None None

100 10.0 7.9 5.4

1,000 120.5 92.0 57.0

10,000 2,866.5 2,110.1 913.2

100,000 61,194.7 45,545.5 13,745.5

Average 21,393.9 15,915.9 4,905.2

Percent 134.42% 100.00% 30.82%

402  ◾  Software Development Patterns and Antipatterns

Topic 11: Portfolio Analysis with
Function Point Metrics
To be useful and interesting to CEOs and other C level executives, func-
tion points should be able to quantify not just individual projects but
also large collections of related projects such as the full portfolio of a
Fortune 500 company.

A full corporate software portfolio is an expensive asset that needs
accurate financial data. In fact the author of this book has worked on
several IRS tax cases involving the asset value of corporate portfolios.
One of these tax cases involved the value of the EDS portfolio at the
time it was acquired by General Motors. Another interesting tax case
involved the asset value of the Charles Schwab software portfolio.

Since portfolios are taxable assets when companies are sold, it is
obvious why they need full quantification. Function points are the best
metric for portfolio quantification, although clearly faster methods are
needed than manual function point analysis. Up until recently “backfir-
ing” or mathematical conversion from source code to function points
was the main method used for portfolio analysis.

Table 14.11 is an example of the special SRM predictions for corpo-
rate portfolios. This prediction shows the size in function points for the
portfolio of a Fortune 500 manufacturing company with 100,000 total
employees.

It is obvious that sizing a full portfolio with more than 2,300 applica-
tions and more than 5,000,000 function points cannot be accomplished by
manual function point counting. At an average counting rate of 500 func-
tion points per day, counting this portfolio would take 10,385 days. At a
cost of $1,500 per day, the expense would be $5,192,197.

This fact alone explains why faster and cheaper function point analy-
sis is a critical step leading to interest in function points by chief execu-
tive officers (CEOs) and other C level executives.

Topic 12: Industry Studies Using
Function Point Metrics
One of the high-interest levels of CEOs and other C level executives is
in the area of how their companies compare to others in the same busi-
ness sector, and how their business sectors compare to other business
sectors. Function point metrics are the best choice for these industry
studies.

Table 14.12 shows approximate productivity and quality results for
68 U.S. industries using function points as the basis of analysis.

Function Points as a Universal Metric  ◾  403

Table 14.11  Portfolio Analysis of a Fortune 500 Manufacturing Company

Corporate Functions

Number of
Applications

Used
Function

Points
Lines of

Code

1 Accounts payable 18 26,674 1,467,081

2 Accounts receivable 22 33,581 1,846,945

3 Advertising 32 47,434 2,134,537

4 Advisory boards – technical 6 8,435 463,932

5 Banking relationships 38 131,543 7,234,870

6 Board of directors 4 6,325 347,900

7 Building maintenance 2 3,557 195,638

8 Business intelligence 21 73,972 4,068,466

9 Business partnerships 18 44,457 2,445,134

10 Competitive analysis 30 74,635 4,104,901

11 Consultant management 3 4,609 253,486

12 Contract management 32 94,868 5,217,758

13 Customer resource management 56 140,585 7,732,193

14 Customer support 45 67,003 3,685,140

15 Divestitures 10 15,000 825,000

16 Education – customers 7 11,248 618,663

17 Education – staff 4 6,325 347,900

18 Embedded software 84 252,419 21,455,576

19 Energy consumption monitoring 4 6,325 347,900

20 Energy acquisition 5 7,097 390,350

21 Engineering 79 276,699 20,752,447

22 ERP – Corporate 63 252,982 17,708,755

23 Finances (corporate) 84 210,349 11,569,183

24 Finances (divisional) 63 157,739 8,675,663

25 Governance 10 25,000 1,375,000

26 Government certification (if any) 24 35,571 1,956,383

27 Government regulations (if any) 13 20,003 1,100,155

28 Human resources 7 11,248 618,663

(Continued)

404  ◾  Software Development Patterns and Antipatterns

Table 14.11  (Continued)

Corporate Functions

Number of
Applications

Used
Function

Points
Lines of

Code

29 Insurance 6 8,935 491,421

30 Inventory management 45 67,003 3,685,140

31 Legal department 24 35,571 1,956,383

32 Litigation 32 47,434 2,608,879

33 Long-range planning 7 18,747 1,031,105

34 Maintenance – product 75 112,484 6,186,627

35 Maintenance – buildings 6 8,435 632,634

36 Manufacturing 178 311,199 23,339,917

37 Market research 38 56,376 3,100,659

38 Marketing 27 39,911 2,195,098

39 Measures – customer satisfaction 4 6,325 347,900

40 Measures – financial 24 35,571 1,956,383

41 Measures – market share 8 12,621 694,151

42 Measures – performance 9 14,161 778,850

43 Measures – quality 10 15,000 825,000

44 Measures – ROI and profitability 32 47,434 2,608,879

45 Mergers and acquisitions 24 59,284 3,260,639

46 Office suites 8 29,449 1,619,686

47 Open-source tools – general 67 100,252 5,513,837

48 Order entry 27 39,911 2,195,098

49 Outside services
– manufacturing

24 35,571 1,956,383

50 Outside services – legal 27 66,518 3,658,497

51 Outside services – marketing 15 22,444 1,234,394

52 Outside services – sales 17 25,182 1,385,013

53 Outside services
– terminations

9 11,141 612,735

54 Outsource management 32 47,434 2,608,879

55 Patents and inventions 19 28,255 1,554,010

Function Points as a Universal Metric  ◾  405

Corporate Functions

Number of
Applications

Used
Function

Points
Lines of

Code

56 Payrolls 21 52,837 2,906,047

57 Planning – manufacturing 42 63,254 3,478,996

58 Planning – products 10 15,000 825,000

59 Process management 12 17,828 980,514

60 Product design 56 140,585 7,732,193

61 Product nationalization 13 30,004 1,650,233

62 Product testing 38 56,376 3,100,659

63 Project offices 32 55,340 3,043,692

64 Project management 10 27,500 1,512,500

65 Purchasing 30 44,781 2,462,941

66 Quality control 13 20,003 1,100,155

67 Real estate 8 12,621 694,151

68 Research and development 106 370,739 20,390,634

69 Sales 45 67,003 3,685,140

70 Sales support 15 22,444 1,234,394

71 Security – buildings 21 31,702 1,743,628

72 Security – computing and
software

32 110,680 6,087,384

73 Shareholder relationships 8 29,449 1,619,686

74 Shipping/receiving products 27 66,518 3,658,497

75 Software development 79 238,298 13,106,416

76 Standards compliance 13 20,003 1,100,155

77 Stocks and bonds 21 73,972 4,068,466

78 Supply chain management 47 70,973 3,903,498

79 Taxes 42 84,339 4,638,662

80 Travel 10 25,000 1,375,000

81 Unbudgeted costs – cyber
attacks

32 86,963 4,782,945

82 Warranty support 7 10,025 551,384

2,366 5,192,567 308,410,789

Table 14.11  (Continued)

406 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s
Table 14.12  Approximate Industry Productivity and Quality Using Function Point Metrics

Industry

Software
Productivity

Defect
Potentials

Removal
Efficiency

Delivered
Defects

2020 2020 2020 2020

1 Government – intelligence 7.20 5.95 99.50% 0.03

2 Manufacturing – medical devices 7.75 5.20 98.50% 0.08

3 Manufacturing – aircraft 7.25 5.75 98.00% 0.12

4 Telecommunications operations 9.75 5.00 97.50% 0.13

5 Manufacturing – electronics 8.25 5.25 97.00% 0.16

6 Manufacturing – telecommunications 9.75 5.50 96.50% 0.19

7 Manufacturing – defense 6.85 6.00 96.25% 0.23

8 Government – military 6.75 6.40 96.00% 0.26

9 Entertainment – films 13.00 4.00 96.00% 0.16

10 Manufacturing – pharmaceuticals 8.90 4.55 95.50% 0.20

11 Smartphone/tablet applications 15.25 3.30 95.00% 0.17

12 Transportation – airlines 8.75 5.00 94.50% 0.28

13 Software (commercial) 15.00 3.50 94.00% 0.21

14 Manufacturing – automotive 7.75 4.90 94.00% 0.29

15 Transportation – bus 8.00 5.10 94.00% 0.31

16 Manufacturing – chemicals 8.00 4.80 94.00% 0.29

17 Banks – investment 11.50 4.60 93.75% 0.29

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
407

Industry

Software
Productivity

Defect
Potentials

Removal
Efficiency

Delivered
Defects

2020 2020 2020 2020

18 Open source development 13.75 4.40 93.50% 0.29

19 Banks – commercial 11.50 4.50 93.50% 0.29

20 Credit unions 11.20 4.50 93.50% 0.29

21 Professional support – medicine 8.55 4.80 93.50% 0.31

22 Government – police 8.50 5.20 93.50% 0.34

23 Entertainment – television 12.25 4.60 93.00% 0.32

24 Manufacturing – appliances 7.60 4.30 93.00% 0.30

25 Software (outsourcing) 14.00 4.65 92.75% 0.34

26 Manufacturing – nautical 8.00 4.60 92.50% 0.35

27 Process control 9.00 4.90 92.50% 0.37

28 Stock/commodity brokerage 10.00 5.15 92.50% 0.39

29 Professional support – law 8.50 4.75 92.00% 0.38

30 Games – computer 15.75 3.00 91.00% 0.27

31 Social networks 14.90 4.90 91.00% 0.44

32 Insurance – life 10.00 5.00 91.00% 0.45

33 Insurance – medical 10.50 5.25 91.00% 0.47

34 Public utilities – electricity 7.00 4.80 90.50% 0.46

(Continued)

408 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s
Table 14.12  (Continued)

Industry

Software
Productivity

Defect
Potentials

Removal
Efficiency

Delivered
Defects

2020 2020 2020 2020

35 Education – university 8.60 4.50 90.00% 0.45

36 Automotive sales 8.00 4.75 90.00% 0.48

37 Hospitals 8.00 4.80 90.00% 0.48

38 Insurance – property and casualty 9.80 5.00 90.00% 0.50

39 Oil extraction 8.75 5.00 90.00% 0.50

40 Consulting 12.70 4.00 89.00% 0.44

41 Public utilities – water 7.25 4.40 89.00% 0.48

42 Publishing (books/journals) 8.60 4.50 89.00% 0.50

43 Transportation – ship 8.00 4.90 88.00% 0.59

44 Natural gas generation 6.75 5.00 87.50% 0.63

45 Education – secondary 7.60 4.35 87.00% 0.57

46 Construction 7.10 4.70 87.00% 0.61

47 Real estate – commercial 7.25 5.00 87.00% 0.65

48 Agriculture 7.75 5.50 87.00% 0.72

49 Entertainment – music 11.00 4.00 86.50% 0.54

50 Education – primary 7.50 4.30 86.50% 0.58

51 Transportation – truck 8.00 5.00 86.50% 0.68

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
409

Industry

Software
Productivity

Defect
Potentials

Removal
Efficiency

Delivered
Defects

2020 2020 2020 2020

52 Government – state 6.50 5.65 86.50% 0.76

53 Manufacturing – apparel 7.00 3.00 86.00% 0.42

54 Games – traditional 7.50 4.00 86.00% 0.56

55 Manufacturing – general 8.25 5.20 86.00% 0.73

56 Retail 8.00 5.40 85.50% 0.78

57 Hotels 8.75 4.40 85.00% 0.66

58 Real estate – residential 7.25 4.80 85.00% 0.72

59 Mining – metals 7.00 4.90 85.00% 0.74

60 Automotive repairs 7.50 5.00 85.00% 0.75

61 Wholesale 8.25 5.20 85.00% 0.78

62 Government – federal civilian 6.50 6.00 84.75% 0.92

63 Waste management 7.00 4.60 84.50% 0.71

64 Transportation – trains 8.00 4.70 84.50% 0.73

65 Food – restaurants 7.00 4.80 84.50% 0.74

66 Mining–coal 7.00 5.00 84.50% 0.78

67 Government – county 6.50 5.55 84.50% 0.86

68 Government – municipal 7.00 5.50 84.00% 0.88

Total/Averages 8.95 4.82 90.39% 0.46

410  ◾  Software Development Patterns and Antipatterns

When looking at Table 14.12, the industries that built complex
physical devices such as computers, airplanes, medical devices, and
telephone switching systems have the best quality. This is because the
physical devices won’t work unless the software works well with almost
zero defects.

For productivity, a different set of industries are at the top including
computer games, social networks, entertainment, some commercial ven-
dors (who work many hours of unpaid overtime) and small tablet and
smartphone applications built by one or two developers.

Topic 13: Global Studies Using Function Point Analysis
In today’s world, software development is a global business. About 60%
of Indian companies and more than 80% of Indian outsource companies
use function points in order to attract outsource business, with con-
siderable success. As already mentioned, Brazil now requires function
points for all government outsource contracts.

Clearly global competition is a topic of critical interest to all C level
executives including CEOs, CFOs, CTOs, CIOs, CROs, and all others.

Function point metrics are the best (and only) metric that is effective
for very large scale global studies of software productivity and quality.
Table 14.13 shows approximate results for 68 countries.

Some of the data in Table 14.13 is provisional and included pri-
marily to encourage more studies of productivity and quality in coun-
tries that lack effective benchmarks circa 2013. For example, China and
Russia are major producers of software but seem to lag India, Brazil, the
Netherlands, Finland, and the United States in adopting modern metrics
and function points.

Topic 14: Function Points versus Lines of Code
(LOC) for Software Economic Analysis
Normally, CEOs and other C level executives don’t care and may not
even know about which programming languages are used for software.
However in 1970 within IBM, a crisis attracted not only the attention of
IBM chairman Thomas J. Watson Jr. but also many other C level execu-
tives and vice presidents such as Bob Evans, Vin Learson, Ted Climis,
and a number of others.

The crisis was due to the fact that more than half of the schedule and
cost estimates in the Systems Development Division and other software

Function Points as a Universal Metric  ◾  411

groups were wrong and always wrong in the direction of excessive
optimism. Worse, the estimates with the largest errors were for projects
using the newest and best programming languages such as APL, PL/S,
and several others. Only estimates for projects coded in assembly lan-
guage were accurate.

This crisis was eventually solved and the solution created two use-
ful new concepts: (1) the development of function point metrics by A.J.
Albrecht and his colleagues at the IBM White Plains lab; (2) the devel-
opment of IBM’s first parametric estimation tool by the author of this
book and Dr. Charles Turk at the IBM San Jose lab. Function points were
created in order to provide a language-independent metric for software
economic analysis. The IBM development planning system (DPS) was
created to estimate projects in any programming language or combina-
tion of languages.

For a number of years, IBM had used ad hoc estimation ratios based
on code development for predicting various non-coding tasks such as
design, documentation, integration, testing, and the like. When modern
languages such as PL/S began to supplant assembly language, it was
quickly discovered that ratios no longer worked.

For example, the coding effort for PL/S was only half the coding
effort for assembly language. The ratio used to predict user documenta-
tion had been 10% of coding effort. But for PL/S projects coding effort
was cut in two and the manuals were as big as ever, so they were all
50% over budget.

In order to restore some kind of order and rationality to estimates
IBM assigned a numeric level to every programming language. Basic
assembly was “level 1” and other languages were assigned values based
on how many assembly statements would be needed to be equivalent to
1 statement in the target language. Thus, Fortran was a level 3 language
because it took 3 assembly statements to provide the functionality of
1 Fortran statement. This method used ratios from basic assembly for
predicting non-coding work.

For several years after the discovery of LOC problems, IBM used LOC
for coding in the true language for coding the application but used basic
assembly language to derive ratios for non-coding work. This was an
awkward method and explains why IBM invested several million dol-
lars in developing both function point metrics and a formal parametric
estimation tool that could handle estimates for applications in all pro-
gramming languages.

IBM executives were not happy about having to use assembly to
show the value of modern languages so they commissioned Al Albrecht
and his colleagues to start work on a metric that would be language
independent. As we all know, function points were the final result.

412 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Table 14.13  Approximate Global Productivity and Quality in Function Points

Approximate
Software Productivity

(FP per Month)

Approximate Defect
Potentials in 2020
(Defects per FP)

Approximate
Defect Removal

Efficiency

Approximate
Delivered Defects in
2020 (Defects per FP)

1 Japan 9.15 4.50 93.50% 0.29

2 India 11.30 4.90 93.00% 0.34

3 Denmark 9.45 4.80 92.00% 0.38

4 Canada 8.85 4.75 91.75% 0.39

5 South Korea 8.75 4.90 92.00% 0.39

6 Switzerland 9.35 5.00 92.00% 0.40

7 United Kingdom 8.85 4.75 91.50% 0.40

8 Israel 9.10 5.10 92.00% 0.41

9 Sweden 9.25 4.75 91.00% 0.43

10 Norway 9.15 4.75 91.00% 0.43

11 Netherlands 9.30 4.80 91.00% 0.43

12 Hungary 9.00 4.60 90.50% 0.44

13 Ireland 9.20 4.85 90.50% 0.46

14 United States 8.95 4.82 90.15% 0.47

15 Brazil 9.40 4.75 90.00% 0.48

16 France 8.60 4.85 90.00% 0.49

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
413

Approximate
Software Productivity

(FP per Month)

Approximate Defect
Potentials in 2020
(Defects per FP)

Approximate
Defect Removal

Efficiency

Approximate
Delivered Defects in
2020 (Defects per FP)

17 Australia 8.88 4.85 90.00% 0.49

18 Austria 8.95 4.75 89.50% 0.50

19 Belgium 9.10 4.70 89.15% 0.51

20 Finland 9.00 4.70 89.00% 0.52

21 Hong Kong 9.50 4.75 89.00% 0.52

22 Mexico 8.65 4.85 88.00% 0.58

23 Germany 8.85 4.95 88.00% 0.59

24 Philippines 10.75 5.00 88.00% 0.60

25 New Zealand 9.05 4.85 87.50% 0.61

26 Taiwan 9.00 4.90 87.50% 0.61

27 Italy 8.60 4.95 87.50% 0.62

28 Jordan 7.85 5.00 87.50% 0.63

29 Malaysia 8.40 4.65 86.25% 0.64

30 Thailand 7.90 4.95 87.00% 0.64

31 Spain 8.50 4.90 86.50% 0.66

32 Portugal 8.45 4.85 86.20% 0.67

33 Singapore 9.40 4.80 86.00% 0.67

(Continued)

414 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s
Table 14.13  (Continued)

Approximate
Software Productivity

(FP per Month)

Approximate Defect
Potentials in 2020
(Defects per FP)

Approximate
Defect Removal

Efficiency

Approximate
Delivered Defects in
2020 (Defects per FP)

34 Russia 8.65 5.15 86.50% 0.70

35 Argentina 8.30 4.80 85.50% 0.70

36 China 9.15 5.20 86.50% 0.70

37 South Africa 8.35 4.90 85.50% 0.71

38 Iceland 8.70 4.75 85.00% 0.71

39 Poland 8.45 4.80 85.00% 0.72

40 Costa Rica 8.00 4.70 84.50% 0.73

41 Bahrain 7.85 4.75 84.50% 0.74

42 Ukraine 9.10 4.95 85.00% 0.74

43 Turkey 8.60 4.90 84.50% 0.76

44 Viet Nam 8.65 4.90 84.50% 0.76

45 Kuwait 8.80 4.80 84.00% 0.77

46 Colombia 8.00 4.75 83.50% 0.78

47 Peru 8.75 4.90 84.00% 0.78

48 Greece 7.85 4.80 83.50% 0.79

49 Syria 7.60 4.95 84.00% 0.79

50 Tunisia 8.20 4.75 83.00% 0.81

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
415

Approximate
Software Productivity

(FP per Month)

Approximate Defect
Potentials in 2020
(Defects per FP)

Approximate
Defect Removal

Efficiency

Approximate
Delivered Defects in
2020 (Defects per FP)

51 Saudi Arabia 8.85 5.05 84.00% 0.81

52 Cuba 7.85 4.75 82.50% 0.83

53 Panama 7.95 4.75 82.50% 0.83

54 Egypt 8.55 4.90 82.75% 0.85

55 Libya 7.80 4.85 82.50% 0.85

56 Lebanon 7.75 4.75 82.00% 0.86

57 Iran 7.25 5.25 83.50% 0.87

58 Venezuela 7.50 4.70 81.50% 0.87

59 Iraq 7.95 5.05 82.50% 0.88

60 Pakistan 7.40 5.05 82.00% 0.91

61 Algeria 8.10 4.85 81.00% 0.92

62 Indonesia 8.90 4.90 80.50% 0.96

63 North Korea 7.65 5.10 81.00% 0.97

64 Nigeria 7.00 4.75 78.00% 1.05

65 Bangladesh 7.50 4.75 77.00% 1.09

66 Burma 7.40 4.80 77.00% 1.10

Average/Total 8.59 4.85 86.27% 0.67

416  ◾  Software Development Patterns and Antipatterns

Table 14.14.1 shows the numeric levels for a variety of common
programming languages. The table also shows the approximate number
of logical source code statements per function point.

For some of the older languages such as COBOL and FORTRAN, the
ratios of source code statements to function points were derived by Al
Albrecht personally and then passed into wider usage outside of IBM.

The values for logical code statements per function point only reflect
average, and the ranges due to individual programming styles can vary
by more than 2 to 1 in both directions. This is why mathematical conver-
sion between logical code and function points is not very accurate, in
spite of being very easy.

At this point, we will discuss a hypothetical software application of
1,000 function points in size. We will also make two simplifying assump-
tions to illustrate the value of function point metrics and the economic
problems of LOC metrics: (1) coding speed will be assumed to be a con-
stant value of 1,000 LOC per staff month for every language; (2) the total
effort for non-coding work such as requirements, design, documenta-
tion, management, etc. will be assumed to be an even 50 staffs months
of effort. Table 14.14.2 shows the total effort for building the hypotheti-
cal application of 1,000 function points using these two assumptions.

Now that we know the total effort for the application of 1,000 func-
tion points in size, how do we measure economic productivity? The
standard definition for economic productivity is “goods or services pro-
duced per unit of labor or expense.” Let us consider the results for the
sum of the coding and non-coding effort using both function points per
staff month and LOC per staff month. Table 14.14.3 shows both values.

As can easily be seen, the LOC data does not match the assumptions
of standard economics and indeed moves in the opposite direction from
real economic productivity. It has been known for many hundreds of
years that when manufacturing costs have a high proportion of fixed
costs and there is a reduction in the number of units produced, the cost
per unit will go up.

The same logic is true for software. When a “Line of Code” is defined
as the unit of production, and there is a migration from low-level pro-
cedural languages to high-level and object-oriented languages, the num-
ber of “units” that must be constructed declines.

The costs of paper documents such as requirements and user manu-
als do not decline and tend to act like fixed costs. This inevitably leads
to an increase in the “Cost per LOC” for high-level languages, and a
reduction in “LOC per staff month” when the paper-related activities are
included in the measurements.

On the other hand, the function point metric is a synthetic metric
totally divorced from the amount of code needed by the application.

Function Points as a Universal Metric  ◾  417

Table 14.14.1  Programming Language “Levels” from IBM

Language Levels Languages
Logical Code Statements

per Function Point

0.50 Machine language 640.00

1.00 Basic Assembly 320.00

1.45 JCL 220.69

1.50 Macro Assembly 213.33

2.00 HTML 160.00

2.50 C 128.00

3.00 Algol 106.67

3.00 Bliss 106.67

3.00 Chill 106.67

3.00 COBOL 106.67

3.00 Coral 106.67

3.00 Fortran 106.67

3.00 Jovial 106.67

3.25 GW Basic 98.46

3.50 Pascal 91.43

3.50 PL/S 91.43

4.00 ABAP 80.00

4.00 Modula 80.00

4.00 PL/I 80.00

4.50 ESPL/I 71.11

4.50 Javascript 71.11

5.00 Forth 64.00

5.00 Lisp 64.00

5.00 Prolog 64.00

5.00 Basic (interpreted) 64.00

5.25 Quick Basic 60.95

6.00 C++ 53.33

6.00 Java 53.33

(Continued)

418  ◾  Software Development Patterns and Antipatterns

Language Levels Languages
Logical Code Statements

per Function Point

6.00 PHP 53.33

6.00 Python 53.33

6.25 C# 51.20

6.50 Ada 95 49.23

6.75 RPG III 47.41

7.00 CICS 45.71

7.00 DTABL 45.71

7.00 Ruby 45.71

7.00 Simula 45.71

8.00 DB2 40.00

8.00 Oracle 40.00

8.50 Mixed Languages 37.65

8.50 Haskell 37.65

9.00 Pearl 35.56

9.00 Speakeasy 35.56

10.00 APL 32.00

11.00 Delphi 29.09

12.00 Objective C 26.67

12.00 Visual Basic 26.67

13.00 ASP NET 24.62

14.00 Eiffel 22.86

15.00 Smalltalk 21.33

16.00 IBM ADF 20.00

17.00 MUMPS 18.82

18.00 Forte 17.78

19.00 APS 16.84

20.00 TELON 16.00

25.00 QBE 12.80

25.00 SQL 12.80

50.00 Excel 6.40

Table 14.14.1  (Continued)

Function Points as a Universal Metric  ◾  419

Table 14.14.2  Development Effort for 1,000 Function Points

(Assumes a constant rate of 1000 lines of code per month)

(Assumes a constant value of 50 months for non-code work)

Languages Coding Months Non-code Months Total Months

Machine language 640 50 690

Basic Assembly 320 50 370

JCL 221 50 271

Macro Assembly 213 50 263

HTML 160 50 210

C 128 50 178

Algol 107 50 157

Bliss 107 50 157

Chill 107 50 157

COBOL 107 50 157

Coral 107 50 157

Fortran 107 50 157

Jovial 107 50 157

GW Basic 98 50 148

Pascal 91 50 141

PL/S 91 50 141

ABAP 80 50 130

Modula 80 50 130

PL/I 80 50 130

ESPL/I 71 50 121

Javascript 71 50 121

Forth 64 50 114

Lisp 64 50 114

Prolog 64 50 114

Basic (interpreted) 64 50 114

Quick Basic 61 50 111

C++ 53 50 103

(Continued)

420  ◾  Software Development Patterns and Antipatterns

(Assumes a constant rate of 1000 lines of code per month)

(Assumes a constant value of 50 months for non-code work)

Languages Coding Months Non-code Months Total Months

Java 53 50 103

PHP 53 50 103

Python 53 50 103

C# 51 50 101

Ada 95 49 50 99

RPG III 47 50 97

CICS 46 50 96

DTABL 46 50 96

Ruby 46 50 96

Simula 46 50 96

DB2 40 50 90

Oracle 40 50 90

Mixed Languages 38 50 88

Haskell 38 50 88

Pearl 36 50 86

Speakeasy 36 50 86

APL 32 50 82

Delphi 29 50 79

Objective C 27 50 77

Visual Basic 27 50 77

ASP NET 25 50 75

Eiffel 23 50 73

Smalltalk 21 50 71

IBM ADF 20 50 70

MUMPS 19 50 69

Forte 18 50 68

APS 17 50 67

TELON 16 50 66

QBE 13 50 63

SQL 13 50 63

Excel 6 50 56

Table 14.14.2  (Continued)

Function Points as a Universal Metric  ◾  421

Table 14.14.3  Function Points versus LOC per
Month for Calculating Economic Productivity Rates

Languages
Function Pts.

per Month
LOC per
Month

Machine language 1.45 927.54

Basic Assembly 2.70 864.86

JCL 3.69 815.29

Macro Assembly 3.80 810.13

HTML 4.76 761.90

C 5.62 719.10

Algol 6.38 680.85

Bliss 6.38 680.85

Chill 6.38 680.85

COBOL 6.38 680.85

Coral 6.38 680.85

Fortran 6.38 680.85

Jovial 6.38 680.85

GW Basic 6.74 663.21

Pascal 7.07 646.46

PL/S 7.07 646.46

ABAP 7.69 615.38

Modula 7.69 615.38

PL/I 7.69 615.38

ESPL/I 8.26 587.16

Javascript 8.26 587.16

Forth 8.77 561.40

Lisp 8.77 561.40

Prolog 8.77 561.40

Basic (interpreted) 8.77 561.40

Quick Basic 9.01 549.36

C++ 9.68 516.13

Java 9.68 516.13

(Continued)

422  ◾  Software Development Patterns and Antipatterns

Languages
Function Pts.

per Month
LOC per
Month

PHP 9.68 516.13

Python 9.68 516.13

C# 9.88 505.93

Ada 95 10.08 496.12

RPG III 10.27 486.69

CICS 10.45 477.61

DTABL 10.45 477.61

Ruby 10.45 477.61

Simula 10.45 477.61

DB2 11.11 444.44

Oracle 11.11 444.44

Mixed Languages 11.41 429.53

Haskell 11.41 429.53

Pearl 11.69 415.58

Speakeasy 11.69 415.58

APL 12.20 390.24

Delphi 12.64 367.82

Objective C 13.04 347.83

Visual Basic 13.04 347.83

ASP NET 13.40 329.90

Eiffel 13.73 313.73

Smalltalk 14.02 299.07

IBM ADF 14.29 285.71

MUMPS 14.53 273.50

Forte 14.75 262.30

APS 14.96 251.97

TELON 15.15 242.42

QBE 15.92 203.82

SQL 15.92 203.82

Excel 17.73 113.48

Table 14.14.3  (Continued)

Function Points as a Universal Metric  ◾  423

Therefore, function point metrics can be used for economic studies
involving multiple programming languages and object-oriented pro-
gramming languages without bias or distorted results. The function
point metric can also be applied to non-coding activities such as require-
ments, design, user documentation, integration, testing, and even proj-
ect management.

When using the standard economic definition of productivity, which
is “goods or services produced per unit of labor or expense” it can be
seen that the function point ranking matches economic productivity
assumptions.

The function point ranking matches economic assumptions because
the versions with the lowest amounts of both effort and costs have the
highest function point productivity rates and the lowest costs per func-
tion point rates.

The LOC rankings, on the other hand, are the exact reversal of real
economic productivity rates. This is the key reason why usage of the
LOC metric is viewed as “professional malpractice” when it is used for
cross-language productivity or quality comparisons involving both high-
level and low-level programming languages.

The phrase “professional malpractice” implies that a trained knowl-
edge worker did something that was hazardous and unsafe and that the
level of training and prudence required to join the profession should
have been enough to avoid the unsafe practice.

Since it is obvious that the “lines of code” metric does not move
in the same direction as economic productivity, and indeed moves in
the opposite direction, it is a reasonable assertion that misuse of LOC
metrics for cross-language comparisons should be viewed as profes-
sional malpractice if a book or published data caused some damage
or harm.

One of the severe problems of the software industry has been the
inability to perform economic analysis of the impact of various tools,
methods, or programming languages. It can be stated that the “lines
of code” or LOC metric has been a significant barrier that has slowed
down the evolution of software engineering, since it has blinded
researchers and prevented proper exploration of software engineering
factors.

Function point metrics, on the other hand, have opened up many
new forms of economic study that were impossible using distorted and
inaccurate metrics such as “lines of code” and “cost per defect.”

The ability of function point metrics to examine programming lan-
guages, methodologies, and other critical software topics is a long step
in the right direction.

424  ◾  Software Development Patterns and Antipatterns

Topic 15: Function Points and Software
Usage and Consumption
One of the newer uses of function point metrics is that of studying soft-
ware usage and consumption as well as studying software development
and maintenance. This field is so new that it has almost no literature
except for a paper published by the author of this book.

It is interesting to start this topic with an overview of how much
software an ordinary U.S. citizen uses and owns on a daily basis.
Table 14.15.1 shows approximate software ownership for a fairly afflu-
ent person holding down a managerial or technical job.

Only about 50 years ago, the amount of software owned by anyone
would have been close to zero. Today we use software every waking
moment, and quite a few devices such a home alarm systems keep
working for us while we are asleep, as do embedded medical devices.

The next set of topics where function points are adding insights are
the amount of software used by the software engineering and man-
agement communities. Table 14.15.2 shows the approximate amount of
software used by software project managers.

Table 14.15.1  U.S. Personal Ownership of Software Circa 2013

Products Function Points Hours Used per Day

Home computer 1,000,000 2.50

Tablet 800,000 3.00

Automobile 350,000 3.00

Smart phone 35,000 2.00

Televisions 35,000 4.00

Social networks 20,000 2.50

Medical devices 12,000 24.00

Audio equipment 10,000 1.50

Electronic books 7,500 1.50

Home alarm system 5,000 24.00

Digital camera 3,500 1.00

Hearing aids 3,000 12.00

Digital watches 2,500 12.00

Sum 2,283,500

Function Points as a Universal Metric  ◾  425

Project managers in leading or sophisticated companies such as IBM,
Google, Microsoft, and the like deploy and use more than 30,000 func-
tion points of project management tools.

The next topic of interest shows the volumes of software tools uti-
lized by software engineers themselves. Because software engineering

Table 14.15.2  Numbers and Size Ranges of Software Project
Management Tools

(Tool sizes are expressed in terms of IFPUG
function points, version 4.2)

Project Management Tools Lagging Average Leading

1 Project planning 1,000 1,250 3,000

2 Project cost estimating 3,000

3 Statistical analysis 3,000

4 Methodology management 750 3,000

5 Reusable feature analysis 2,000

6 Quality estimation 2,000

7 Assessment support 500 2,000

8 Project office support 500 2,000

9 Project measurement 1,750

10 Portfolio analysis 1,500

11 Risk analysis 1,500

12 Resource tracking 300 750 1,500

13 Governance tools 1,500

14 Value analysis 350 1,250

15 Cost variance reporting 500 500 1,000

16 Personnel support 500 500 750

17 Milestone tracking 250 750

18 Budget support 250 750

19 Function point analysis 250 750

20 Backfiring: LOC to FP 300

21 Earned value analysis 250 300

22 Benchmark data collection 300

Subtotal 1,800 4,600 30,000

Tools 4 12 22

426  ◾  Software Development Patterns and Antipatterns

has been highly automated for many years, there is not as large a differ-
ence in Table 14.15.3 as there was in Table 14.15.2.

If we went through the entire suites of tools used for development,
maintenance, testing, quality assurance, technical manuals, and admin-
istration, we would find that leading software development organiza-
tions use about 90 tools that total to more than about 150,000 function
points.

Lagging companies use only about 30 tools at a little more than
25,000 function points.

Average companies use about 50 different tools with a total size of
perhaps 50,000 function points.

Table 14.15.3  Numbers and Size Ranges of Software Engineering Tools

(Tool sizes are expressed in terms of IFPUG
function points, version 4.2)

Software Engineering Tools Lagging Average Leading

1 Compilers 3,500 3,500 3,500

2 Program generators 3,500 3,500

3 Design tools 1,000 1,500 3,000

4 Code editors 2,500 2,500 2,500

5 GUI design tools 1,500 1,500 2,500

6 Assemblers 2,000 2,000 2,000

7 Configuration control 750 1,000 2,000

8 Source code control 750 1,000 1,500

9 Static analysis (code) 1,500 3,000

10 Automated testing 1,000 1,500

11 Data modeling 750 1,000 1,500

12 Debugging tools 500 750 1,250

13 Data base design 750 750 1,250

14 Capture/playback 500 500 750

15 Library browsers 500 500 750

16 Reusable code analysis 750

Subtotal 15,000 22,500 31,250

Tools 12 14 16

Function Points as a Universal Metric  ◾  427

These differences in tool usage patterns also correlate with software
quality and productivity levels. However, other factors such as team
experience, methodologies, and CMMI levels are also correlated with
higher productivity and quality so it is not yet possible to isolate just the
impacts of tools themselves.

From analysis of more than 28,000 software projects, various pat-
terns have been noted of tools and methods that are used by successful
projects. The definition of “success” includes productivity and quality
results >25% better than average for the same size and class of software,
combined with schedules about 15% shorter than average. The patterns
of success are as follows:

Patterns of Tools Noted on Successful Software Projects
	 1.	TSP, RUP, or hybrid as the development methods for large

applications.
	 2.	Agile, XP, iterative, Prince2, or defined methods for small

applications.
	 3.	Achieving > CMMI 3 for defense projects.
	 4.	Early sizing of projects using automated tools.
	 5.	Early risk analysis of projects before starting.
	 6.	Early quality predictions using automated tools.
	 7.	Early use of parametric estimation tools for cost and schedule

predictions.
	 8.	Use of automated project management tools for team assignments.
	 9.	Use of automated project office support tools for large projects.
	 10.	Use of automated requirements modeling tools for critical

projects.
	 11.	Use of certified collections of reusable materials (design, code, test

cases, etc.).
	 12.	Use of static analysis tools for code in all languages supported by

static analysis.
	 13.	Use of inspections and inspection support tools for requirements

and design.
	 14.	Use of certified test personnel for critical applications.
	 15.	Use of cyclomatic complexity code analysis tools.
	 16.	Use of test coverage tools that show requirements and path

coverage.
	 17.	Use of automated test tools for unit, function, regression, and other

tests.
	 18.	Use of formal mathematical test case design methods.

428  ◾  Software Development Patterns and Antipatterns

	 19.	Use of formal change control and change control boards.
	 20.	Accurate status reports that highlight potential problems.

Software projects at the leading edge usually range from about 12 to
more than 25 function points per staff month in terms of productivity.

Defect potentials on leading projects are <3.00 per function point
combined with defect removal efficiency (DRE) levels that average >
97% for all projects and 99% for mission-critical projects.

Excellence in quality control and change control leads to more than
95% of these projects being finished and delivered. Those that are not
delivered are terminated for business reasons such as mergers, acqui-
sitions, or divestitures. More than 90% of projects in this class are on
time and within planned budgets, and about 15% are slightly faster and
below planned budgets.

When you consider the other end of the spectrum or software proj-
ects that have worse than average results, this is what you find. We are
now dealing with the opposite side of a bell-shaped curve, and consid-
ering projects that are <25% worse than average for the same size and
class of software, combined with schedules about 15% longer than aver-
age. The following are the patterns of failing projects:

Patterns of Tools Noted on Unsuccessful Projects
	 1.	Waterfall development methods for large applications.
	 2.	Cowboy or undefined methods for small applications.
	 3.	CMMI 1 for defense projects.
	 4.	No early sizing of projects using automated tools.
	 5.	No early risk analysis of projects before starting.
	 6.	No early quality predictions using automated tools.
	 7.	Manual and optimistic estimation methods for cost and schedule

predictions.
	 8.	No use of automated project management tools for team

assignments.
	 9.	No use of automated project office support tools for large

projects.
	 10.	No use of automated requirements modeling tools for critical

projects.
	 11.	No use of certified collections of reusable materials (design, code,

test cases, etc.).
	 12.	No use of static analysis tools for code in any language.
	 13.	No use of inspections and inspection support tools for require-

ments and design.

Function Points as a Universal Metric  ◾  429

	 14.	No use of certified test personnel for critical applications.
	 15.	No use of cyclomatic complexity code analysis tools.
	 16.	No use of test coverage tools that show requirements and path

coverage.
	 17.	Little use of automated test tools for unit, function, regression, and

other tests.
	 18.	No use of formal mathematical test case design methods.
	 19.	No use of formal change control and change control boards.
	 20.	Inaccurate status reports that conceal potential problems.

Software projects at the trailing edge usually range from about 3 to
perhaps10 function points per staff month in terms of productivity.

Poor quality is the main reason for schedule slips and cost overruns.
Defect potentials are usually >5.00 per function point combined with
DRE levels that almost always average < 85% for all projects and seldom
top 90% even for mission-critical projects. In some cases, DRE on lag-
ging projects drops below 80%. These dismal projects do not use either
inspections or static analysis and terminate testing prematurely due to
not understanding quality economics.

Exploration of software consumption and software tool usage should
be a valuable new form of research for the software engineering and
function point communities.

Topic 16: Function Points and
Software Outsource Contracts
The government of Brazil already requires function point metrics for all
contracts involving software. Both South Korea and Italy may soon do
the same. Function point metrics are an excellent choice for software
outsource agreements.

Some of the topics where function points should be used in contracts
would include, but are not limited to:

	 •	 Cost per function point for fixed-price contracts.
	 •	 Work hours per function point for time and materials contracts.
	 •	 Delivered defect densities expressed in terms of defects per func-

tion point.
	 •	 Function points combined with DRE. Contracts should require that

the vendor top a specific level of DRE such as 97%, measured
by counting internal defects and comparing them to user-reported
defects in the first 90 days of usage.

430  ◾  Software Development Patterns and Antipatterns

SRM includes estimates for both the odds of litigation occurring and
also for the probable legal expenses for both the plaintiff and the defen-
dant. For example if an outsource contract for an application of 10,000
function points goes to court for breach of contract, the probable costs
to the plaintiff will be about $7,500,000 and the probable costs to the
defendant will be about $9,000,000 if the case goes through trial (about
90% settle out of court). Of course whichever side loses will have much
higher costs due to probable damages and perhaps paying court costs
for both sides.

Software Risk Master predicts attorney fees, paralegal fees, and
expert witness fees. It also predicts the lost time for executives and
technical staff when they are involved with discovery and depositions.
SRM also predicts the probable month the litigation will be filed, and
the probable duration of the trial.

About 90% of lawsuits settle out of court. SRM cannot predict out
of court settlements since many of these are sealed and data is not
available.

In the modern era, an increasingly large number of organizations
are moving toward outsourcing or the use of contractors for develop-
ment or maintenance (or both) of their software applications. Although
the general performance of outsourcing vendors and contract software
development organizations is better than the performance of the clients
they serve, it is not perfect.

When software is developed internally within a company and it runs
late or exceeds its budget, there are often significant disputes between
the development organization and the clients who commissioned the
project and are funding it, as well as the top corporate executives.
Although these internal disputes are unpleasant and divisive, they gen-
erally do not end up in court under litigation.

When software is developed by a contractor and runs late or exceeds
the budget, or when it is delivered in less than perfect condition, the dis-
putes have a very high probability of moving to litigation for breach of
contract. From time to time, lawsuits may go beyond breach of contract
and reach the point where clients charge fraud.

As international outsourcing becomes more common, some of these
disputes involve organizations in different countries. When international
laws are involved, the resolution of the disputes can be very expensive
and protracted. For example, some contracts require that litigation be
filed and use the laws of other countries such as Hong Kong or China.

The author of this book has often commissioned to perform inde-
pendent assessments of software projects where there is an anticipa-
tion of some kind of delay, overrun, or quality problem. He has also
been engaged to serve as expert witnesses in a dozen lawsuits involving

Function Points as a Universal Metric  ◾  431

breach of contract between clients and software contractors. He has also
been engaged to work as an expert in software tax cases.

From participating in a number of such assessments and lawsuits,
it is obvious that most cases are remarkably similar. The clients charge
that the contractor breached the agreement by delivering the software
late, by not delivering it at all, or by delivering the software in inoper-
able condition or with excessive errors.

The contractors, in turn, charge that the clients unilaterally changed
the terms of the agreement by expanding the scope of the project far
beyond the intent of the original agreement. The contractors also charge
some kind of non-performance by the clients, such as failure to define
requirements or failure to review delivered material in a timely manner.

The fundamental root causes of the disagreements between clients
and contractors can be traced to the following two problems:

	 •	 Ambiguity and misunderstandings in the contract itself.
	 •	 The historical failure of the software industry to quantify the

dimensions of software projects before beginning them.

Although litigation potentials vary from client to client and contractor
to contractor, the overall results of outsourcing within the United States
approximates the following distribution of results after about 24 months
of operations, as derived from observations among the author’s clients.

Table 14.16.2 shows all projects and all contracts. The odds of litiga-
tion rise steeply with application size.

As of today, the software industry does not really know how to build
large software projects well. Far too many are terminated, don’t work
when delivered, or end up in court for breach of contract. The actual

Table 14.16.1  Approximate Distribution of U.S. Outsource
Results after 24 Months

Results
Percent of
Outsource

Arrangements

  Both parties generally satisfied 70%

  Some dissatisfaction by client or vendor 15%

  Dissolution of agreement planned 10%

Litigation between client and contractor probable 4%

Litigation between client and contractor in progress 1%

432  ◾  Software Development Patterns and Antipatterns

technologies for building large systems exist, but less than5% of com-
panies know them based on on-site discussions with executives and
development teams. This is true of outsource companies as well as com-
mercial developers, in-house IT systems, and even games.

From process assessments performed within several large outsource
companies, and analysis of projects produced by outsource vendors,
our data indicates better than average quality control approaches when
compared to the companies and industries who engaged the outsource
vendors.

Software estimating, contracting, and assessment methodologies have
advanced enough so that the root causes of software outsource con-
tracts can now be overcome. Software estimation is now sophisticated
enough so that a formal estimate using one or more of the commercial
parametric software estimation tools in conjunction with software proj-
ect management tools can minimize or eliminate unpleasant surprises
later due to schedule slippages or cost overruns.

Indeed, old-fashioned purely manual cost and schedule estimates for
major software contracts should probably be considered an example of
professional malpractice. Manual estimates are certainly inadequate for
software contracts or outsource agreements whose value is larger than
about $500,000.

A new form of software contract based on the use of function point
metrics is clarifying the initial agreement and putting the agreement
in quantitative, unambiguous terms. This new form of contract can
also deal with the impact of creeping user requirements in a way that
is agreeable to both parties. As mentioned earlier, the government of
Brazil now requires function point metrics for all software contracts.

For major software contracts involving large systems in excess of
10,000 function points independent assessments of progress at key
points may also be useful.

As stated, the author of this book has been an expert witness in a
dozen breach of contract lawsuits.

Table 14.16.2  Odds of Outsource Litigation by Application Size

10 function points <0.5% chance of litigation

100 function points <1% chance of litigation

1,000 function points <3% chance of litigation

10,000 function points + or – 12% chance of litigation

100,000 function points + or – 25% chance of litigation

Function Points as a Universal Metric  ◾  433

The four most common reasons for breach of contract include the
following:

	 1.	Optimistic estimates by the vendor before starting.
	 2.	Inadequate quality control and bypassing inspections and static

analysis.
	 3.	Inadequate change control in the face of >2% requirements creep

per month.
	 4.	Project managers concealing problems from both clients and their

own executives.

Outsource contracts are often poorly formed and contain clauses that
don’t make sense. For example, a contract between a vendor and a State
government included a clause that required the vendor to deliver “zero
defect” software. This was technically impossible and should not have
been in the contract. The vendor should never have agreed to this, and
the vendor’s lawyer was flirting with professional malpractice to allow
such a clause to remain.

Other cases where function points have been useful in deciding the
issues include the following:

A Canadian case involved 82 major changes which doubled the
size of an application from 10,000 to 20,000 function points. The client
refused to pay claiming that the changes were “elaborations” and not
new features. The court decided that since function points measure fea-
tures, the 82 changes were in fact new features and ordered the defen-
dant to pay the vendor.

An arbitration in Hong Kong involved adding 13,000 function points
to an application late in development. The contract was a fixed-price con-
tract. Since it is a proven fact that late changes cost more than original
work, the vendor was asking for additional fees to recover the higher
costs. Following is the author’s suggested format for a project status report.

Note that the first topic each month will be a discussion of “red flag”
items that might throw off the schedule or costs of the project.

Suggested Format for Monthly Status
Reports for Software Projects
	 1.	Status of last months “red flag” problems.
	 2.	New “red flag” problems noted this month.
	 3.	Change requests processed this month versus change requests

predicted.

434  ◾  Software Development Patterns and Antipatterns

	 4.	Change requests predicted for next month.
	 5.	Size in function points for this month’s change requests.
	 6.	Size in function points predicted for next month’s change requests.
	 7.	Schedule impacts of this month’s change requests.
	 8.	Cost impacts of this month’s change requests.
	 9.	Quality impacts of this month’s change requests.
	 10.	Defects found this month versus defects predicted.
	 11.	Defects predicted for next month.
	 12.	Costs expended this month versus costs predicted.
	 13.	Costs predicted for next month.
	 14.	Deliverables completed this month versus deliverables predicted.
	 15.	Deliverables predicted for next month.

Although the suggested format somewhat resembles the items calcu-
lated using the earned value method, this format deals explicitly with
the impact of change requests and also uses function point metrics for
expressing costs and quality data.

An interesting question is the frequency with which milestone prog-
ress should be reported. The most common reporting frequency is
monthly, although exception reports can be filed at any time that it is
suspected that something has occurred that can cause perturbations. For
example, serious illness of key project personnel or resignation of key
personnel might very well affect project milestone completions and this
kind of situation cannot be anticipated.

It might be thought that monthly reports are too far apart for small
projects that only last six months or less in total. For small projects,
weekly reports might be preferred. However, small projects usually do
not get into serious trouble with cost and schedule overruns, whereas
large projects almost always get in trouble with cost and schedule over-
runs. This chapter concentrates on the issues associated with large proj-
ects. In the litigation where the author of this book has been an expert
witness, every project under litigation except one was larger than 10,000
function points in size.

Daily scrum sessions, while useful and interesting, have no legal
standing in the case of litigation. Due to the absence of minutes or notes
of what transpired, scrum sessions can make litigation complex.

For outsource projects under contract, a formal status report signed
by project managers would be the best technical choice. The author of
this book is not an attorney and this should not be construed as legal
advice for outsource contracts seek the advice of an attorney on the
need for formal written status reports. Table 14.16.3 shows potential
costs for the plaintiff for an application of 10,000 function points in size
that ends up in breach of contract litigation.

Function Points as a Universal Metric  ◾  435

Table 14.16.4 shows the same 10,000 function point application, but
the probable costs for the defendant are shown instead of the plaintiff.

The information in Tables 14.16.1 through 14.16.4 is generic and not
based on any specific case. Defendant costs are often higher than those
of the plaintiff because the downside of losing a major breach of con-
tract lawsuit can be very expensive indeed.

Once again, the author of this book is not an attorney and is not
providing any legal advice. Readers considering litigation for software
projects in trouble should seek legal advice from attorneys. But having
worked as an expert witness in a number of breach of contract cases, it
seems much better to have a good contract before starting and to have

Table 14.16.3  Plaintiff Outsource Litigation Analysis

Project function points 10,000

Consequential damage $25,118,864

Attorney hourly $ $400.00

Paralegal hourly $ $150.00

Expert hourly $ $450.00

Executive hourly $ $200.00

Staff hourly $ $75.00

Planned project duration 34

Probable month of filing 40

Probable trial duration 24

Odds of out of court settlement 83.00%

Plaintiff legal fees $4,000,000

Plaintiff paralegal fees $1,500,000

Plaintiff expert fees $337,500

Plaintiff executive costs $1,500,000

Plaintiff staff costs $412,500

Total $7,750,000

Consequential damages per FP $2,511.89

Litigation $ per FP $775.00

436  ◾  Software Development Patterns and Antipatterns

a successful project outcome. Litigation is costly and time consuming
for both parties. The technologies of software are good enough so that
almost all projects could be successful if the vendors actually know and
use state of the art methods.

For example a way of minimizing the odds of litigation would be to
include a clause in outsource contracts that require the outsource ven-
dor to record development defects and a mandate that DRE should top
97% measured by comparing internal defects and customer-reported
defects, i.e. the vendor should guarantee that at least 97 out of every
100 bugs were removed. This is technically possible, and high levels of

Table 14.16.4  Defendant Litigation Analysis

Project function points 10,000

Damages if suit is lost $57,987,729

Attorney hourly $ $400.00

Paralegal hourly $ $150.00

Expert hourly $ $450.00

Executive hourly $ $200.00

Staff hourly $ $75.00

Planned project duration 34

Probable month of filing 40

Probable trial duration 24

Odds of out of court settlement 83.00%

Plaintiff legal fees $4,800,000

Plaintiff paralegal fees $1,650,000

Plaintiff expert fees $495,000

Plaintiff executive costs $1,700,000

Plaintiff staff costs $487,500

Total $9,132,500

Potential $ if suit is lost $74,870,228

Litigation $ per FP $913.25

$ per FP if suit is lost $7,487

Function Points as a Universal Metric  ◾  437

DRE speed schedules and lower both development and maintenance
costs.

Topic 17: Function Points and Venture
Funding of Software Startups
Every year there are hundreds of new software companies starting up.
Many of these receive funding from venture capitalists. Some of these
companies grow to become hugely successful such as Microsoft, Google,
and Facebook. However, more than 90% of these software startup com-
panies fail.

A common reason for failure is that the startup companies burn
through several rounds of financing because they are late in developing
and bringing their product to market. SRM has a standard feature that
predicts the development costs and schedules for new software appli-
cations. If these applications are venture funded, SRM also has a stan-
dard feature for predicting the number of rounds of venture financing
needed, as well as the equity dilution for the entrepreneurs.

As an example, the State of Rhode Island acted as a venture capitalist
for Curt Schilling’s game company, Studio 38. The state did not perform
due diligence nor did it realize that more than one round of funding
would be needed.

In the aftermath of the Studio 38 bankruptcy, SRM was used to carry
out a retroactive post-mortem. SRM predicted an 88% chance of fail-
ure for Studio 38. It also predicted that the total amount of funding
needed would not just be $75,000,000 for the first release, but instead
$206,000,000 would be needed when post-release maintenance and
quality control costs were included. These risk and cost predictions took
only 7 minutes.

Tables 14.17.1 through 14.17.3 illustrate the risk predictions and
venture funding feature for three software applications, all of 1,000
function points in size. Table 14.17.1 shows a best-case scenario with
a top-gun team using state of the art methods. Table 14.17.2 shows an
average team and average methods. Table 14.17.3 shows an unsophis-
ticated team using unsafe methods. Note that 1,000 function points is
fairly small, but not unusual for the first release of a new commercial
software package.

The investment cost per function point for the best-case scenario is
$919.58 which encompasses both software development and also sup-
port functions such as marketing, sales, administration, and management.

Table 14.17.2 shows exactly the same size and type of software appli-
cation, but developed by an average team.

438  ◾  Software Development Patterns and Antipatterns

The investment cost per function point for the average case is
$2,815.95. This is the investment needed for the total company including
software, marketing, sales, administration, and management. In other
words, function points can be applied to software corporate startups if
software is the main and only product. The CEOs in this case would be
the actual entrepreneurs.

Table 14.17.2  Risks and Venture Funding for an
Average Software Team

Risks Venture Investment

  Cancellation 11.73% $1,656,443

  Negative ROI 14.86% Rounds

  Cost overrun 13.30% 2

  Schedule slip 15.64% Total Equity

  Unhappy clients 17.99% $2,815,954

  Litigation 5.48% Dilution

Average Risks 13.17% 55.50%

Financial Risk 24.50% Ownership

44.50%

Table 14.17.1  Risks and Venture Funding for a Top
Software Team

Risks Venture Investment

  Cancellation 6.73% $574,718

  Negative ROI 8.52% Rounds

  Cost overrun 7.63% 1

  Schedule slip 8.97% Total Equity

  Unhappy clients 10.32% $919,548

  Litigation 3.14% Dilution

Average Risks 7.55% 41.50%

Financial Risk 14.05% Ownership

58.50%

Function Points as a Universal Metric  ◾  439

Table 14.17.3 shows the risks and venture funding for the same size
and type of software project, but with an inexperienced team using
marginal methods.

The investment for the worst-case scenario is shocking $10,551.72.
It is unlikely that professional venture capitalists would put so much
money into such a poorly staffed and organized group. Almost certainly,
the funds would stop before the third round and the company would go
bankrupt without making their initial delivery.

The early failure of venture-backed software companies is harmful
to both the entrepreneurs and to the venture capitalists. Software Risk
Master (SRM) can be used prior to any actual investment and show both
parties the probable schedules, costs, team size, and quality to bring the
first release to market. SRM can also predict post-release enhancements
and maintenance of 5 years. It also predicts numbers of bugs that might
be released and the customer support costs needed to deal with them.

Topic 18: Function Points for Analysis
of Software Occupation Groups
Several years ago, the author of this book was commissioned by AT&T
to perform a study on the various kinds of occupation groups employed
by large organizations that produced software. Some of the participants

Table 14.17.3  Risks and Venture Funding for a
Marginal Software Team

Risks Venture Investment

  Cancellation 17.84% $6,206,913

  Negative ROI 22.60% Rounds

  Cost overrun 20.22% 3

  Schedule slip 23.79% Total Equity

  Unhappy clients 27.36% $10,551,752

  Litigation 8.33% Dilution

Average Risks 20.02% 78.00%

Financial Risk 37.25% Ownership

22.00%

440  ◾  Software Development Patterns and Antipatterns

in the study included AT&T itself, IBM, Ford Motors, Texas Instruments,
the U.S. Navy, and a dozen other somewhat smaller organizations.

The study found a total of 116 different occupations associated with
software. No individual project employs all 116, but several large sys-
tems in large companies have employed 50 different occupations. In
fact for large systems, pure programming may be less than 25% of the
total effort.

The study also encountered the following interesting sociological
phenomena:

	 •	 Not a single Human Resource organization in either corporations
or government agencies actually knew how many software person-
nel were employed. It was necessary to interview unit manage-
ment to find out.

	 •	 A surprising number of engineers building embedded software
refused to be called “software engineers” and insisted on their aca-
demic titles such as electrical engineer, automotive engineer, aero-
nautical engineer or whatever it was. The reason for this is because
“software engineering” does not have the same professional respect
among C level executives as the other forms of engineering.

	 •	 Due to the fact that some software personnel refused to be iden-
tified as software engineers and no HR group knew software
employment, we can assume that the Department of Commerce
statistics on U.S. software employment are probably wrong, and
wrong by undercounting the engineers who refuse to accept soft-
ware engineering job descriptions.

One of the many problems with the older “lines of code” or LOC metric
is that it cannot be used to measure the performance of business ana-
lysts, quality assurance, technical writers, project managers, or any of
the 116 occupation groups other than pure programmers.

Function point metrics, on the other hand, can be used to measure
the performance of all 116 occupations. There are two key methods for
doing this. The first is to use function points to measure the “assignment
scope” or the amount of work assigned to one person in a specific occu-
pation. The second is to use function points to measure the “production
rate” or the amount of work one person can perform in a given time
period such as a calendar month.

Here is a small example just to illustrate the points. Assume the proj-
ect under development is 1,000 function points in size.

To measure the work of software quality assurance specialists (SQA),
assume that the assignment scope is 500 function points. This means

Function Points as a Universal Metric  ◾  441

that two SQA personnel will be needed for the total application of 1,000
function points.

Assume that the production rate of the two SQA personnel is each
250 function points per calendar month. That means that each SQA
person will need two calendar months to complete their analysis of the
quality of their portion of the application.

Putting both sets of measures together, the application of 1,000 func-
tion points needed 2 SQA personnel who together worked for a total
of 4 months. The net productivity for SQA in this case would be 1,000
function points divided by 4 months of effort or 250 function points per
staff month. Using the reciprocal measure of work hours per function
point, the SQA effort would be 1.89 work hours per function point. Note
that these are merely examples to illustrate the math and should not be
used for actual estimates.

The main point is that function point metrics are the only available
metric that can analyze the contributions of all 116 different occupation
groups. Table 14.18 lists the 116 occupations in alphabetical order.

Software engineering is following a similar path as did the older
forms of engineering, and for that matter of medicine and law. The path
includes more and more granular forms of specialization.

As more different kinds of specialists appear and begin to work
on large and complex software applications, pure coding is no longer
the major activity. In fact many large applications create more English
words by far than they do code, and the costs of the words are much
higher. Some military software projects have been measured at creating
about 400 English words for every Ada statement!

Function point metrics are useful in analyzing the overall perfor-
mance of the occupation groups employed on large and complex soft-
ware systems.

As an example of the diversity of occupations on large software
applications, Table 14.19.1 shows the pattern of occupation groups for
a very large system of 100,000 function points. Table 14.19 is a standard
output from SRM.

Although programmers are the largest occupation group with an
average size of 290 personnel, that is only 25.92% of the total personnel
employed. Large systems use many occupations.

Topic 19: Data Used by Fortune 500 C-Level Executives
Large corporations in the Fortune 500 class spend between about
$1,000,000 and $6,000,000 per year for various kinds of benchmarks.

442  ◾  Software Development Patterns and Antipatterns

Table 14.18  Software Specialization Circa 2020

1 Accounting/Financial Specialists

2 Agile coaches

3 Architects (Software)

4 Architects (Systems)

5 Architects (Enterprise)

6 Assessment Specialists

7 Audit Specialists

8 Baldrige Award Specialists

9 Baselining Specialists

10 Benchmarking Specialists

11 Business analysts (BA)

12 Business Process Reengineering (BPR) Specialists

13 Capability Maturity Model Integrated (CMMI) Specialists

14 CASE and tool Specialists

15 Client–Server Specialists

16 CMMI Assessors

17 Complexity Specialists

18 Component Development Specialists

19 Configuration Control Specialists

20 Cost Estimating Specialists

21 Consulting Specialists

22 Curriculum Planning Specialists

23 Customer Liaison Specialists

24 Customer Support Specialists

25 Data Base Administration Specialists

26 Data Center Support Specialists

27 Data quality Specialists

28 Data Warehouse Specialists

29 Decision Support Specialists

30 Development specialists

31 Distributed Systems Specialists

Function Points as a Universal Metric  ◾  443

32 Domain Specialists

33 Earned Value Specialists

34 Education Specialists

35 E-Learning Specialists

36 Embedded Systems Specialists

37 Enterprise Resource Planning (ERP) Specialists

38 Executive Assistants

39 Frame Specialists

40 Expert-System Specialists

41 Function Point Specialists (certified)

42 Generalists (who perform a variety of software-related tasks)

43 Globalization and Nationalization Specialists

44 Graphics Production Specialists

45 Graphical User Interface (GUI) Specialists

46 Human Factors Specialists

47 Information Engineering (IE) Specialists

48 Instructors (Management Topics)

49 Instructors (Software Topics)

50 Integration Specialists

51 Intellectual Property (IP) Specialists

52 Internet specialists

53 ISO Certification Specialists

54 Joint Application Design (JAD) Specialists

55 Kanban Specialists

56 Kaizen Specialists

57 Knowledge specialists

58 Key Process Indicators (KPI) specialists

59 Library Specialists (for project libraries)

60 Litigation support Specialists

61 Maintenance Specialists

62 Marketing Specialists

(Continued)

Table 14.18  (Continued)

444  ◾  Software Development Patterns and Antipatterns

63 Member of the Technical Staff (multiple specialties)

64 Measurement Specialists

65 Metric Specialists

66 Microcode Specialists

67 Model Specialists

68 Multi-Media Specialists

69 Network maintenance Specialists

70 Network Specialists (LAN)

71 Network Specialists (WAN)

72 Network Specialists (Wireless)

73 Neural Net Specialists

74 Object-Oriented Specialists

75 Outsource Evaluation Specialists

76 Package Evaluation Specialists

77 Pattern Specialists

78 Performance Specialists

79 Programming Language Specialists (Java, C#, Ruby, PHP, SQL, etc.)

80 Project Cost Analysis Specialists

81 Project managers

82 Project Office Specialists

83 Project Planning Specialists

84 Process Improvement Specialists

85 Productivity Specialists

86 Quality Assurance Specialists

87 Quality function deployment (QFD) Specialists

88 Quality Measurement Specialists

89 Rapid Application Development (RAD) Specialists

90 Research Fellow Specialists

91 Reliability Specialists

92 Repository Specialists

93 Reengineering Specialists

Table 14.18  (Continued)

Function Points as a Universal Metric  ◾  445

Most companies don’t actually know their benchmark costs because
they are scattered across all operating units. There is no central report-
ing or consolidation of benchmark cost data. Only consultants who visit
a number of business units realize how many different kinds of bench-
marks are used in large companies.

	 •	 Human resource groups use benchmarks on compensation levels.
They also perform internal benchmark studies on morale.

	 •	 Legal groups use benchmarks on patent and other forms of
litigation.

94 Requirements engineer

95 Reverse engineering Specialists

96 Reusability Specialists

97 Reverse Engineering Specialists

98 Risk Management Specialists

99 Sales Specialists

100 Sales Support Specialists

101 Scrum masters

102 Security Specialists

103 Standards Specialists

104 Systems Analysis Specialists

105 Systems Support Specialists

106 Technical Translation Specialists

107 Technical Writing Specialists

108 Test Case Design Specialists

109 Testing Specialists (Automated)

110 Testing Specialists (Manual)

111 Testing Specialists (Model Driven)

112 Total Quality Management (TQM) Specialists

113 Virtual Reality Specialists

114 Web Development Specialists

115 Web Page Design Specialists

116 Web Masters

Table 14.18  (Continued)

446  ◾  Software Development Patterns and Antipatterns

	 •	 Marketing and sales groups use benchmarks on competitive prod-
ucts and market shares. They also carry out proprietary benchmark
studies of customer satisfaction.

	 •	 Manufacturing groups use benchmarks on cost per unit and manu-
facturing speed.

	 •	 Computer operation groups use data center benchmarks.
	 •	 Engineers use many different kinds of hardware benchmarks.
	 •	 Purchasing groups use benchmarks on pricing ranges for standard

parts and devices.

Table 14.19  Occupation Groups and Part-Time Specialists

(Application size = 100,000 function points)

Normal Staff Peak Staff

Programmers 290 434

Testers 256 384

Designers 138 228

Business analysts 138 214

Technical writers 60 84

Quality assurance 51 82

1st line managers 45 63

Data base administration 26 34

Project Office staff 23 31

Administrative support 26 33

Configuration control 15 21

Project librarians 12 17

2nd line managers 9 13

Estimating specialists 9 12

Architects 6 9

Security specialists 3 5

Performance specialists 3 5

Function point counters 3 5

Human factors 3 5

3rd line managers 2 3

Total Staff 1,119 1,680

Function Points as a Universal Metric  ◾  447

	 •	 Software groups use benchmarks on productivity, quality, mainte-
nance, and other topics.

Table 14.19.1 summarizes the interest levels in 70 different kinds of
benchmarks by a sample of C-level executives (CEO and CFO) from
several Fortune 500 companies studied by the author.

This set of corporate benchmark uses many different metrics.
However, function point metrics are used for 33 benchmarks out of the
total of 70 shown. As of 2013, there was no other metric that was more
widely used for software than function point metrics. There is no metric
that is more reliable or more accurate for software economic analysis
than function point metrics. With more than 50,000 software projects
measured using function points, the volume of function point bench-
mark data is larger than all other metrics combined.

	 •	 LOC metrics are useless for requirements and design analysis and
they also penalize high-level languages. They are harmful for eco-
nomic studies covering multiple programming languages.

	 •	 Cost per defect penalizes quality and does not measure the value
of quality.

	 •	 Story points are not standardized and have no major collections of
benchmark data.

	 •	 Use-case points are useful for applications that use the UML and
use-cases, but worthless for other kinds of software.

Function point metrics are the best metric yet developed for understand-
ing software productivity, software quality, and software economics.

Topic 20: Combining Function
Points with Other Metrics
Although function point metrics are powerful and have many uses, they
are not the only useful metric for software projects. This topic illustrates
how function points can be combined with other metrics to improve
overall understanding of software quality and software economics.

Function Points and Defect Removal Efficiency (DRE)
Software quality is the weak link of software engineering. In general
about 50 cents out of every dollar spent on software goes to finding
and fixing bugs. Metrics for evaluating software quality such as “cost

448 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Table 14.19.1  Software Benchmarks Used by Fortune 500 C-Level Executives

Software Benchmarks CEO Interest CFO Interest Best Metrics Used for Benchmarks

1 Competitive practices within industry 10 10 $ per function point

2 Project failure rates (size, methods) 10 10 Function points

3 Risks: Software 10 10 Function points + DRE

4 Patent litigation and results 10 10 Cases won, lost; specific issues

5 Outsource contract success/failure 10 10 Function points, defect removal

6 Risks: corporate/financial 10 10 Dollars/litigation/competition

7 Risks: Legal 10 10 Function points, defect removal

8 Cyber Security attacks (number, type) 10 10 Vulnerabilities; defense

9 Return on investment (ROI) 10 10 Function points, ROI

10 Total cost of ownership (TCO) 10 10 Function points, ROI

11 Customer satisfaction 10 10 Percentage of satisfied clients

12 Data quality 10 10 Data points (hypothetical)

13 Cost of Quality (COQ)/technical debt 10 10 Function points, defect removal

14 Development costs: major projects 10 10 Function points

15 Litigation – canceled projects/poor quality 10 10 No standard metrics

16 Litigation – intellectual property 10 10 No standard metrics

17 Portfolio size, maintenance costs 10 10 Function points

18 Litigation – breach of contract 10 10 No standard metrics

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
449

Software Benchmarks CEO Interest CFO Interest Best Metrics Used for Benchmarks

19 Software development Benchmarks 9 10 Function points

20 Occupation group compensation 9 10 Average $ per occupation

21 ERP installation/customization 9 10 Function points/data points

22 Data center benchmarks 9 10 $ per transaction; transactions
speed

23 Occupation groups by industry, size 9 10 Occupations by industry

24 Employee morale 10 9 Percentage of satisfied workers

25 Team compensation level 10 9 Compensation by occupation

26 Attrition by occupation, size, industry 10 9 Attrition % by job title

27 CMMI assessments within organization 9 9 Key process indicators (KPI)

28 Customer support benchmarks 9 9 Customers served per time unit

29 Enhancement costs 8 10 Function points

30 Skills inventories by occupation 8 9 Skill list

31 Best Practices – maintenance 8 9 Function points

32 Maintenance costs (annual) 8 9 Function points, defect removal

33 Data base size 9 8 Data points (hypothetical_

34 Industry productivity 10 7 Function points

35 Team morale 9 8 Percentage by occupation group

36 ISO standards certification 9 7 No standard metrics

(Continued)

450 
◾ 

So
ftw

are D
evelo

p
m

en
t Pattern

s an
d

 A
n

tip
attern

s

Software Benchmarks CEO Interest CFO Interest Best Metrics Used for Benchmarks

37 Productivity – project 8 8 Function points

38 Technical debt 8 8 Function points, defect removal

39 Application sizes by type 8 8 Function points

40 Best Practices – requirements 6 9 Function points

41 Team attrition rates 7 8 Percentage by job title

42 Best Practices – test efficiency 8 7 Function points, defect removal

43 Coding speed in LOC 7 8 Lines of code (LOC)

44 Litigation – employment contracts 7 8 No standard metrics

45 Code quality (only code – nothing else) 7 7 Lines of code (LOC)

46 Application types 7 7 Taxonomy

47 Cost per defect (caution: unreliable) 6 7 Cost per defect; cost per FP

48 Software maintenance/serviceability 6 7 Function points/complexity

49 Hardware performance benchmarks 6 7 MIPS

50 Country productivity 8 5 Function points

51 Best Practices – pre-test defects 6 6 Function points, defect removal

52 Earned value (EVA) 5 7 Function points

53 Best Practices – defect prevention 5 6 Function points, defect prevention

54 Methodologies: Agile, RUP, TSP, etc. 5 6 Function points

Table 14.19.1  (Continued)

Fu
n

ctio
n

 Po
in

ts as a U
n

iversal M
etric 

◾ 
451

Software Benchmarks CEO Interest CFO Interest Best Metrics Used for Benchmarks

55 Methodology comparisons 5 6 Function points

56 CMMI levels within industries 6 5 Percentage by CMMI levels

57 Test coverage benchmarks 5 6 Requirements, control flow
coverage

58 Best Practices - design 5 5 Function points

59 Productivity - activity 4 6 Function points/activities

60 Standards benchmarks 5 5 Function points, defect removal

61 DCUT benchmarks: function points 3 7 Function points

62 Application class by taxonomy 4 5 Taxonomy

63 Serviceability benchmarks 4 5 Maintenance assignment scope

64 Tool suites used 4 4 Function points by tool types

65 SNAP non- functional size metrics 3 4 SNAP plus normal function points

66 Metrics used by company 3 3 Percentage by metric

67 Programming Languages used 3 3 Language levels

68 Certification benchmarks 3 3 Function points, defect removal

69 DCUT benchmarks: LOC 1 2 Logical code statements

70 Cyclomatic complexity benchmarks 1 1 Cyclomatic complexity

452  ◾  Software Development Patterns and Antipatterns

per defect” have been inaccurate and fail to show true quality econom-
ics. Quality metrics such as “defects per KLOC” ignore requirements
and design defects, which outnumber code defects for large software
systems.

Function point metrics combined with DRE provide the strongest
and most accurate set of quality metrics yet developed. DRE is com-
bined with a function-point value called “defect potential” or the total
numbers of bugs that are likely to be found. Here too this metric origi-
nated in IBM in the early 1970’s. In fact the author of this book was on
one of the original IBM teams that created this metric and collected data
from internal projects.

The DRE metric was developed in IBM in the early 1970s at the same
time IBM was developing formal inspections. In fact this metric was
used to prove the efficiency of formal inspections compared to testing
by itself.

The concept of DRE is to keep track of all bugs found by the develop-
ment teams and then compare those bugs to post-release bugs reported
by customers in a fixed time period of 90 days after the initial release.

If the development team found 900 bugs prior to release and cus-
tomer reported 100 bugs in the first 3 months, then the total volume of
bugs was an even 1,000 so DRE is 90%. This combination is simple in
concept and powerful in impact.

The U.S. average for DRE is just a bit over 85%. Testing alone is not
sufficient to raise DRE much above 90%. To approach or exceed 99% in
DRE, it is necessary to use a synergistic combination of pre-test static
analysis and inspections combined with formal testing using mathe-
matically designed test cases, ideally created by certified test person-
nel. DRE can also be applied to defects found in other materials such
as requirements and design. Table 14.20 illustrates current ranges for
defect potentials and DRE levels in the United States for applications in
the 1,000 function point size range.

Predictions of defect potentials and DRE levels are standard features
of SRM. In fact not only are they standard, but they are also patent-
pending features.

Function Points and Natural Metrics
such as “Document Pages”
A function point is a synthetic metric comprised of five elements that
are essentially invisible to the human eye or at least hard to see without
close examination: inputs, outputs, inquiries, logical files, and interfaces.

Function Points as a Universal Metric  ◾  453

A natural metric is a count of visible objects that are easy to see and
in many cases can even be touched and examined using many senses.
A prime example of a natural metric for software applications is “pages
of documentation.”

Software applications are highly paper driven. In fact some defense
software projects create more than 100 document types containing more
than 1,400 English words for every Ada statement. The cost of the words
is greater than the costs of the code itself.

Table 14.20  Function Points and Defect Removal Efficiency (DRE)

Defect Origins
Defects per

Function Point
Defect Removal
Efficiency (DRE)

Delivered Defects
per Function Point

Best Case

  Requirements 0.50 98.00% 0.01

  Design 0.60 98.00% 0.01

  Code 0.80 99.50% 0.00

  User documents 0.40 99.00% 0.00

  Bad Fixes 0.20 98.00% 0.00

Total 2.50 98.64% 0.03

Average Case

  Requirements 1.00 75.00% 0.25

  Design 1.25 87.00% 0.16

  Code 1.75 95.50% 0.08

  User documents 0.60 91.00% 0.05

  Bad Fixes 0.40 78.00% 0.09

Total 5.00 87.34% 0.63

Worst Case

  Requirements 1.50 70.00% 0.45

  Design 2.00 80.00% 0.40

  Code 2.50 92.00% 0.20

  User documents 1.00 85.00% 0.15

  Bad Fixes 0.75 68.00% 0.24

Total 7.75 81.42% 1.44

454  ◾  Software Development Patterns and Antipatterns

One of the interesting attributes of agile software development is a
sharp reduction in paperwork volumes for requirements and design, due
to having embedded users. Of course even agile cannot reduce paper-
work for FDA or FAA certification, or for large defense contracts where
production of various paper documents are contractually mandated.

Documentation is often produced in multiple languages. For exam-
ple, in Canada both French and English are required. For commercial
products marketed globally, user documents may need to be translated
into 20 languages or more. Translation used to be a major cost element
but automatic translation tools such as Google translate have lowered
the cost.

Software documents are also major sources of error. Software
requirements average about 1.0 defects per function point and design
about 1.25 defects per function point. Summed together requirements
and design defects often outnumber code defects, which average about
1.75 per function point.

Function point metrics are very useful for quantifying both the sizes
of the various documents and also their costs for creation and updates.
Document sizing using function point metrics is a standard feature of
SRM. This feature might have been patented when it was first developed,
but the mathematics for sizing documents using function points was cre-
ated by the author of this book in the 1970s and hence is considered to
be prior art. Table 14.20.1 illustrates a subset of total documentation for
a major system of 10,000 function points in size.

Table 14.20.1 only illustrates a sample of major document types. The
full set of documents is too large for this chapter. Over and above the
normal documentation shown in Table 14.20.1, quite a few special kinds
of documents are needed for software projects that require FDA or FAA
certification. Paperwork is a major software cost driver and function
points are the best metric for quantifying both paperwork volumes and
paperwork costs.

When you narrow the focus to a specific type of document, such
as requirements, function point normalization reveals some important
issues that could not easily be studied. Table 14.20.2 shows require-
ments for applications ranging in size from 10 to 100,000 function
points.

As projects grow in size, requirements soon become too big for one
person to read and understand. For a major system of 100,000 func-
tion points, it would take 600 work days to read the requirements, and
nobody could understand more than about 2% of them. This is why seg-
mentation into smaller components is needed for major systems.

Function Points as a Universal Metric  ◾  455

Table 14.20.2  Initial Requirements Size and Completeness

Function
Points

Require
Pages

Pages
per

Funct. Pt.
Complete

Percent

Days
to

Read
Amount

Understood
Require
Defects

10 6 0.60 100.00% 0.10 100% 4

100 40 0.40 99.00% 0.68 100% 26

1,000 275 0.28 91.34% 5.02 93% 171

10,000 2,126 0.21 73.68% 48.09 13% 1,146

100,000 19,500 0.20 31.79% 600.00 2% 7,657

Table 14.20.1  Function Points for Document Prediction

(Application of 10,000 function points in size)

Document Sizes Pages

Pages
per

Funct. Pt.
English
Words

English
Words per
Funct. Pt.

Percent
Complete

Requirements 2,126 0.21 850,306 85.03 73.68%

Architecture 376 0.04 150,475 15.05 78.63%

Initial design 2,625 0.26 1,049,819 104.98 68.71%

Detail design 5,118 0.51 2,047,383 204.74 75.15%

Test plans 1,158 0.12 463,396 46.34 68.93%

Development
Plans

550 0.06 220,000 22.00 76.63%

Cost estimates 376 0.04 150,475 15.05 79.63%

User manuals 2,111 0.21 844,500 84.45 85.40%

HELP text 1,964 0.20 785,413 78.54 86.09%

Courses 1,450 0.15 580,000 58.00 85.05%

Status reports 996 0.10 398,205 39.82 78.63%

Change requests 2,067 0.21 826,769 82.68 78.68%

Bug reports 11,467 1.15 4,586,978 458.70 81.93%

Total 32,384 3.24 12,953,720 1,295.37 78.24%

456  ◾  Software Development Patterns and Antipatterns

There are three key points for large software projects: (1) paperwork
is often the most expensive item produced on large software projects;
(2) some paper documents such as requirements and design contain
many errors or defects that need to be included in quality studies; (3)
function point metrics are the most effective metric for sizing docu-
ments and studying document creation costs, as well as defects or bugs
found in various documents.

For a 10,000 function point software application, the U.S. average is
about 10.43 pages per function points; 2,607 English words per function
point. Total documentation costs are $783.86 per function point which
comprises 24.30% of the total application development costs. Defects
in requirements and design would top 2.25 per function point which is
larger than code defects of about 1.75 defects per function point.

Function Points and Goal Question Metrics (GQM)
The goal, question, metric approach was developed by Dr. Victor Basili
of the University of Maryland. It has become a useful and popular
approach. The essential concept is to start with defining a business goal,
then develop questions about how the goal might be approached, and
then develop metrics that can measure the approach to the goal.

In its original form, the GQM approach was highly individual and
each company or application might have its own set of goals. However
since software projects have been studied for more than 50 years, they
have a known set of major problems that would allow a standard set of
goals and questions to be developed. Function point metrics are congru-
ent with and can be used with many of these standard software goals.
A few examples of common problems and related goals are as follows:

	 •	 Reduce requirements creep >0.5% per calendar month from today’s
rate of >2.0% per calendar month.

	 •	 Reduce software defect potentials from >5.00 defects per function
point to <2.50 defects per function point.

	 •	 Raise software DRE up >99% from today’s value of <86%.
	 •	 Improve customer satisfaction for released software to >97% “satis-

fied” from today’s value of <80% satisfied.
	 •	 Reduce software development costs to < $400 per function point

from today’s average value of > $1,000 per function point.
	 •	 Reduce annual maintenance costs to < $50 per function point from

today’s average value of > $125 per function point.

Function Points as a Universal Metric  ◾  457

	 •	 Reduce cancellation rates for applications >10,000 function points
to <1% from today’s rate of >15%.

These are general goals that deal with common software problems that
occur with high frequency. There may also be unique and specific goals
for individual projects, but all of the goals shown above probably need
to be addressed for every major software project.

Function Points and Earned Value Analysis (EVA)
The earned-value method originated in the 1960s and has become a
popular approach with its own professional association. EVA is used
on many government and defense projects including both software
and hardware. EVA is a large and complex topic, and this chapter only
shows how function points can be congruent with other EVA measures.

The essence of EVA is that prior to starting a major project, a devel-
opment plan is created that shows progress of specific deliverables
on a timeline. This is called Planned Value or PV. As the project gets
under way costs and results are tracked. Successful completion is called
Earned Value of EV. If the project is running late or spending more than
anticipated, the curves for PV and EV will draw apart, indicating that
corrective actions are needed.

For software EVA is not a perfect tool because it omits quality, which
is both a major cost driver for software and the #1 reason for schedule
delays. A modified form of EVA for software would combine standard
EVA tracking with an additional set of quality reports that compared
planned defect removal efficiency (PDRE) with actual defect removal
efficiency (ADRE). For example if the defect estimate for function test
predicted 100 bugs and only 50 were found, it was due to the fact that
quality was better than expected or due to the fact that DRE was lower
than expected?

Companies such as IBM with good defect prediction tools and
sophisticated defect removal methods can easily modify EVA to include
quality cost drivers. The current versions of SRM predict defects found
by every form of removal activity including requirements and design
inspections, static analysis, code inspections, and 18 different forms of
testing. Independent verification and validation (IV&V) is also predicted
for defense projects that require it.

Another use of function points in an EVA context would be to divide
applications into discrete components. For example, an application of
1,000 function points in size might be segmented into 10 components of

458  ◾  Software Development Patterns and Antipatterns

100 function points. Each component would be an EVA unit that could
be inserted into standard EVA calculations.

Function Points, Story Points, and
Velocity on Agile Projects
Function point metrics are not widely used on Agile projects, in part
because manual counting of function points is too slow and expensive
to fit the Agile philosophy. Many agile projects use story points as an
alternate metric, and they use velocity as a tool for predicting comple-
tion of stories in a specific time period such as a week or a month.

The high-speed sizing method of SRM which sizes applications in
about 1.8 minutes is a good match to the agile philosophy. To facili-
tate use by agile projects, SRM can also do bi-directional conversion
between story points and use-case points. It can also predict velocity.

As a small example, assume an application of 1,000 function points
is being built using the agile methodology. That is roughly equivalent to
556 story points, assuming each user story encompasses about 2 func-
tion points. SRM predicts a total of 6 sprints for this project, each of
which would last about 2.38 months. In total, there would probably be
about 71 scrum meetings. Each sprint would develop about 92 stories.
Velocity would be about 39 stories per month.

Since SRM also has a very precise measurement mode, these predic-
tions could be measured and changed by examining many agile proj-
ects. This is needed since unlike function points there is no certification
for counting user stories and no ISO standard for what story points
encompass. Among the author’s clients, story points vary by about 3 to 1
in contents. The bottom line is that function points can easily be added
to the set of methods used by agile projects now that they can be cal-
culated in only a few minutes. They would not replace story points but
they would allow agile projects to be compared against large data bases
such as those maintained by the International Software Benchmark
Standards Group (ISBSG).

Function Points and Return on Investment (ROI)
For CEOs and other kinds of C-level executives, return on investment
or ROI is the top concern for every form of product development
including software projects. The oldest methods of calculating ROI
include accounting rates of return and internal rates of return. Newer
methods include economic value added (EVA), return on assets (ROA),

Function Points as a Universal Metric  ◾  459

return on infrastructure employed (ROIE), and real options valuation
(ROV). An interesting book that discusses these topics in a software
context is The Business Value of IT by Michael Harris, David Herron,
and Stasia Iwanicki. An older book that also contains useful value
data is Software Project Management, A Unified Framework, by Walker
Royce.

In general, software applications provide value in one of the follow-
ing three distinct fashions:

	 1.	The software lowers operational costs and improves worker
performance.

	 2.	The software is marketed and generates both direct and indirect
revenue streams.

	 3.	The software provides intangible value such as aiding medical sci-
ence or improving national security against external attack.

Since this chapter is concerned with using function point metrics to
demonstrate software economic value, only the first two methods will
be discussed; operational efficiency and revenue generation.

Case 1: Software Improves Operational Performance

Let us assume that an insurance company is building a claims manage-
ment system that will improve claims handling by 20% compared to
current methods.

Assume that the software is 10,000 function points in size and was
developed at a cost of $1,000 per function point or $10,000,000 in total.

Assume the insurance company employees 1,000 claims agents, and
their compensation is $60,000 per year or a total of $60,000,000 per
year.

A 20% improvement in agent performance will generate cost savings
of $12,000,000 per year. If you assume that the internal time horizon for
calculating ROI is 5 years, then the application would save $60,000,000
for a cost of $10,000,000. The simple ROI of the project would be $6.00
for every $1.00.

This is not necessarily an exciting ROI but it is good enough for the
company to fund the project. Using function point metrics, the devel-
opment cost of the application was $1,000 per function point, and the
value of the application over a 5-year period was $6,000 per function
point.

This is a simple case to illustrate that function points are useful in
value analysis. In real life maintenance, inflation, changes in numbers of
workers, and many other factors would need to be included.

460  ◾  Software Development Patterns and Antipatterns

For example after the 20% annual increase in performance, the
company might decide to downsize claims agents and lay off 10% of the
staff or 100 agents. This would change the long-range value calculations.
Alternatively, the company’s business might increase by 20% so the full
current staff is still needed.

Case 2: Software Generates Direct and
Indirect Revenues Streams

In this case, let us assume that a new commercial software vendor
funded by venture capital plans to bring out a new application that they
expect will be used by many consumers or customers. Let us assume
that the application is 1,000 function points in size and will be built at a
cost of $1,000 per function point or $1,000,000 in total.

However since the company is new and venture funded, an additional
$1,000,000 will be needed to fund marketing, sales, and management.
A third $1,000,000 will be needed to fund the advertising rollout for the
application, i.e. the venture investment is $3,000,000 or $3,000 per func-
tion point.

The company assumes that this application will be acquired by
1,000,000 customers per year at a cost of $100 per copy or $100,000,000
per year in direct revenues.

The company also assumes that 50% of the customers will request
training in the application, which will be offered for $200 per client.
Here too the annual revenues will be $100,000,000.

IF the project is delivered on time and meets expectations, annual
revenues will be $200,000,000.

This case has the following caveats that need to be considered
carefully:

	 •	 If the application is delivered one month early, it might generate
additional revenues of more than $16,000,000 for that month.

	 •	 If the application is delivered one month late, it might lose rev-
enues of more than $16,000,000 for the month.

	 •	 If the quality of the application is poor and DRE is below 90%, then
potential sales will be reduced by 75%.

	 •	 If the quality of the application is high and DRE is above 97%, then
potential sales will be increased by 25%.

	 •	 If the product is initially successful within a year, “fast followers”
will be offering similar products. The time line for zero competi-
tion is a very narrow band.

Function Points as a Universal Metric  ◾  461

Venture capital horizons are normally only three years so let us consider
what might occur in terms of value over a three-year period.

The best-case scenario is that by means of effective development
utilizing inspections, static analysis, and formal testing, the application
is delivered 1 month early and has a measured DRE level of 98%. Post-
release maintenance will cost $500,000 per year.

In this case, annual revenues will be $250,000,000 per year plus the
extra $16,000,000 for being early. The three-year revenue stream would
total to $786,000,000 which is $786,000 per function point.

When the initial venture investment is $3,000 per function point
plus three years of maintenance total to $4,500,000. When this is com-
pared to the three-year revenue stream, the ROI is $175 for every $1.00
invested. This kind of ROI is the hope of every entrepreneur and every
venture capitalist.

For the best-case scenario, the total venture investment was $4,500 per
function point and the revenue stream amounted to $786,000 per func-
tion point. The entrepreneurs are on their way to billionaire status.
Patents and aggressive patent litigation keep fast followers at bay.

The worst-case scenario is that the company is inept in software
development and tries to deliver early by bypassing pre-test static analy-
sis and inspections to save time. Instead of saving time, the application
is so buggy when test begins that the testing cycle stretches out for an
extra 6 months so the application lost $96,000,000 in first year revenues.

Cumulative DRE is a dismal 83%. Not only that but another round of
venture funding is needed bringing the total investment to $6,000,000.
Post-release maintenance on all of the delivered bugs cost $5,000,000
per year.

Due to shipping late and having poor quality, the total revenues for
three years are only $125,000,000. Between the initial investment of
$6,000,000 and annual maintenance costs of $5,000,000 per year, the
three-year costs for this case are $21,000,000.

If you divide the revenues of $125,000,000 by the costs of $21,000,000,
the ROI for the project is positive but only $5.95 for every dollar invested.
This low ROI is actually below the level that most venture funds would
invest in.

The three-year costs totaled to an alarming $21,000 per function
point. The revenue stream was only $125,000 per function point. While
the company managed to stay in business for three years, which is rare
for venture-funded software companies, it is obvious that poor quality
is reducing market share and raising maintenance costs to unacceptable
levels.

462  ◾  Software Development Patterns and Antipatterns

Worse, the basic idea of the product attracted the attention of “fast
followers” who bring out similar products with extra features at lower
cost and better quality. As a result, revenues erode and market share
plummets.

Within two years, the initial product generated only $10,000,000 per
year in revenues with expenses of $10,000,000 due to poor quality.
The company goes bankrupt in year 5 while the leading fast follower
establishes a strong new market for the basic idea and soon becomes a
billion-dollar company.

The essential point is that function point metrics are useful in value
analysis, but in order to optimize value and make software appealing to
CEOs, other C-level executives, and to the venture capital community,
the software organization needs to understand effective development
practices and also software economics.

Partial measures such as “design, code, and unit test” or DCUT have
no place in economic value analysis, nor do inaccurate measures such
as “lines of code” (LOC), and “cost per defect.” Leakage or failing to mea-
sure 100% of development costs should also be avoided.

The recent “technical debt” metric is an interesting and useful meta-
phor, but woefully incomplete. As currently defined by a majority of
users, “technical debt” only covers about 17% of the total cost of poor
quality.

Technical debt omits the costs of software projects whose quality is
so bad they are canceled and never released. Even more serious, techni-
cal debt omits the costs of litigation and damages against vendors who
are sued for poor quality and lose the lawsuits. The costs of litigation
and damage can be larger than normal “technical debt” costs by more
than 1,000 to 1.

For that matter, expensive and ineffective development methods
such as pair programming should be avoided. Pair programming more
than doubles software costs at no tangible improvement in schedules,
quality, or application value.

Function point metrics can be applied to software size, software
development, software documentation, software quality, software main-
tenance, software outsource contracts, and software venture capital
investment. No other software metric has such a wide range of usefulness.

Summary and Conclusions
Function point metrics are the most powerful metrics yet developed for
studies of software economics, productivity, risks, and quality. They are
much better than older metrics such as “lines of code” and “cost per

Function Points as a Universal Metric  ◾  463

defect.” They are also much better than alternate metrics such as “story
points” and “use-case points.”

However, the slow speed and high costs of manual function point
analysis has caused function points to be viewed by top-executives such
as CEOs as a minor niche metric. In order to be useful to C level execu-
tives, function point metrics need the following:

	 1.	Faster counting by more than an order of magnitude from today’s
averages.

	 2.	Lower costs down below $0.05 per function point counted.
	 3.	Methodology benchmarks for all known methods.
	 4.	Quality benchmarks for defect prevention, pre-test removal, and

testing.
	 5.	Maintenance, enhancement, and TCO benchmarks.
	 6.	Portfolio benchmarks for many companies and government groups.
	 7.	Industry benchmarks for all software-intensive industries.
	 8.	Global benchmarks for all countries that produce software in large

volumes.

This chapter discusses a patent-pending method of sizing software proj-
ects in less than 2 minutes, with function points as one of the default
metrics produced. SRM produces development estimates in about 3 min-
utes; quality estimates in 4 minutes; and maintenance estimates in 4
minutes.

The SRM tool can do more than size. The SRM tool can also predict
the results and risks of any methodology, any level of team experience,
any CMMI level, and programming language (or combination), and any
volume of reusable materials.

Function point metrics might well become the global standard for
software economic analysis once they can be applied to large systems
>10,000 function points; use full activity-based costs instead of partial
project data; are applied to portfolios which might contain thousands
of applications and millions of function points; and to industry and
national software comparisons. There are no other metrics that are as
effective as function points for software economic analysis.

References and Readings
Jones, Capers; “A Short History of Lines of Code Metrics”; Namcook Analytics

Technical Report; Narragansett, RI; 2012a.
This report provides a mathematical proof that “lines of code” metrics

violate standard economic assumptions. LOC metrics make requirements

464  ◾  Software Development Patterns and Antipatterns

and design invisible. Worse, LOC metrics penalize high-level languages.
The report asserts that LOC should be deemed professional malpractice
if used to compare results between different programming languages.
There are other legitimate purposes for LOC, such as merely measuring
coding speed.
Jones, Capers; “A Short History of the Cost Per Defect Metrics”; Namcook

Analytics Technical Report; Narragansett, RI; 2012b.
This report provides a mathematical proof that “cost per defect”

penalizes quality and achieves its lowest values for the buggiest soft-
ware applications. It also points out that the urban legend that “cost
per defect after release is 100 times larger than early elimination” is not
true. The reason for expansion of cost per defect for down-stream defect
repairs is due to ignoring fixed costs. The cost per defect metric also
ignores many economic topics such as the fact that high quality leads
to shorter schedules.
Jones, Capers: “Sizing Up Software”; Scientific American Magazine; Vol. 279,

No. 6, December 1998; pp. 104–111.
Jones, Capers; “Early Sizing and Early Risk Analysis”; Capers Jones & Associates

LLC; Narragansett, RI; July 2011.
Jones, Capers; and Bonsignour, Olivier; The Economics of Software Quality;

Addison Wesley Longman, Boston, MA; 2011; ISBN: 10-0-13-258220-1; 585
pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
NY; 2010; ISBN: 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, New York, NY;
2008; ISBN: 978-0-07-150244-3; 662 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007a;
ISBN: 13: 978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
Wesley Longman, Boston, MA; 2000; ISBN: 0-201-48542-7; 657 pages.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;
Software Productivity Research, Inc., Burlington, MA; September 2007b; 53
pages; (SPR technical report).

Additional Literature
The literature on function point metrics is quite extensive. Following are
some of the more useful books:
Abran, Alain; Software Estimating Models; Wiley-IEEE Computer Society; 2015.
Abran, Alain; Software Metrics and Metrology; Wiley-IEEE Computer Society;

2010.
Abran, Alain; Software Maintenance Management: Evolution and Continuous

Improvement; Wiley-IEEE Computer Society; 2008.

Function Points as a Universal Metric  ◾  465

Abran, Alain; and Dumke, Reiner R; Innovations in Software Measurement;
Shaker-Verlag, Aachen, DE; 2005; ISBN: 3-8322-4405-0; 456 pages.

Abran, Alain; Bundschuh, Manfred; Dumke, Reiner; Ebert, Christof; and
Zuse, Horst; Software Measurement News; Vol. 13, No. 2; October 2008
(periodical).

Bundschuh, Manfred; and Dekkers, Carol; The IT Measurement Compendium;
Springer-Verlag, Berlin, DE; 2008; ISBN: 978-3-540-68187-8; 642 pages.

Chidamber, S.R.; and Kemerer, C.F.; “A Metrics Suite for Object-Oriented Design”;
IEEE Transactions on Software Engineering; Vol. SE20, No. 6; June 1994;
pp. 476–493.

Dumke, Reiner; Braungarten, Rene; Büren, Günter; Abran, Alain; and Cuadrado-
Gallego, Juan J. (editors); Software Process and Product Measurement;
Springer-Verlag, Berlin; 2008; ISBN: 10-3-540-89402-0; 361 pages.

Ebert, Christof; and Dumke, Reiner; Software Measurement: Establish,
Extract, Evaluate, Execute; Springer-Verlag, Berlin, DE; 2007; ISBN:
978-3-540-71648-8; 561 pages.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software
Project Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN: 10:
1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects; http://
software.isixsigma.com/library/content/c040915b.asp.

Galorath, Dan; and Evans, Michael; Software Sizing, Estimation, and Risk
Management; Auerbach Publications, Boca Raton, FL; 2006.

Garmus, David; and Herron, David; Measuring the Software Process: A Practical
Guide to Functional Measurement; Prentice Hall, Englewood Cliffs, NJ;
1995.

Garmus, David; and Herron, David; Function Point Analysis – Measurement
Practices for Successful Software Projects; Addison Wesley Longman,
Boston, MA; 2001; ISBN: 0-201-69944-3; 363 pages.

Gilb, Tom; and Graham, Dorothy; Software Inspections; Addison Wesley,
Reading, MA; 1993; ISBN: 10-0201631814.

Harris, Michael D.S., Herron, David; and Iwanicki, Stasia; The Business Value of
IT; CRC Press, Auerbach, Boca Raton, FL; 2008; ISBN: 978-14200-6474-2.

International Function Point Users Group (IFPUG); IT Measurement – Practical
Advice from the Experts; Addison Wesley Longman, Boston, MA; 2002;
ISBN: 0-201-74158-X; 759 pages.

Kemerer, C.F.; “Reliability of Function Point Measurement – A Field Experiment”;
Communications of the ACM; Vol. 36; 1993; pp. 85–97.

Parthasarathy, M.A.; Practical Software Estimation – Function Point Metrics for
Insourced and Outsourced Projects; Infosys Press, Addison Wesley, Upper
Saddle River, NJ; 2007; ISBN: 0-321-43910-4.

Putnam, Lawrence H.; Measures for Excellence – Reliable Software on Time,
Within Budget; Yourdon Press—Prentice Hall, Englewood Cliffs, NJ; 1992;
ISBN: 0-13-567694-0; 336 pages.

http://software.isixsigma.com
http://software.isixsigma.com

466  ◾  Software Development Patterns and Antipatterns

Putnam, Lawrence H.; and Myers, Ware; Industrial Strength Software - Effective
Management Using Measurement; IEEE Press, Los Alamitos, CA; 1997;
ISBN: 0-8186-7532-2; 320 pages.

Royce, Walker; Software Project Management – Unified Framework; Addison
Wesley, Boston, MA; 1999.

Stein, Timothy R.; The Computer System Risk Management Book and Validation
Life Cycle; Paton Press, Chico, CA; 2006; ISBN: 10-1-9328-09-5; 576 pages.

Stutzke, Richard D.; Estimating Software-Intensive Systems; Addison Wesley,
Upper Saddle River, NJ; 2005; ISBN: 0-201-70312-2; 918 pages.

467

Index

Page numbers in bold refer to table; page numbers followed by ‘n’ refer to notes number.

A

abeyant defects (IBM), 152, 155, 156
Accenture, 361
acceptance testing, 130
activity-based benchmark (example),

132–133
activity-based benchmarks for

maintenance, 134, 135–140
activity-based cost analysis, FPs for,

382–383
activity-based costs, 29, 133, 147, 287
activity-based sizing, 381–383
actual DRE (ADRE), 457
Ada, 162, 166, 248, 304, 418, 420, 422,

441, 453
Advanced Bionics, 56
advertising, 317, 460
Agile, 57–58, 74, 147, 192, 200–201, 226,

293, 344, 381, 386, 427, 442, 450
maintenance-weak methodology, 361
popularity, 261

Agile development, 49, 50, 52, 120, 302
Agile projects, 28–29, 88, 90, 125, 284,

286, 379, 458
Agile scrum, 263
Agile software development, interesting

attribute, 454
Air Force, 14, 16, 213, 280
air traffic control, geriatric software, 343
Albrecht, A. J., 10, 108, 310, 371, 411, 416

inventor of FP metrics (at IBM), 281
Algol language, 160, 165, 280, 417,

419, 421
algorithms, 12, 134, 302, 361, 373, 389
Amazon, 199, 297

American Medical Association (AMA), 78,
186–187

American National Standards Institute, 112
American Society for Quality (ASQ), 36, 72
Android OS, 297, 378
annual maintenance metrics, 146
annual software benchmark studies, 8,

31–34, 35–36
annual software report, 222–223
APL, 163, 167, 280, 304, 411, 418,

420, 422
Apple, 3–4, 9, 56, 143, 199, 362
application defect prevention stages,

69–70
application DRE results, 69
application post-release stages, 71
application pre-test defect removal

stages, 70
application size

normal software results (2020), 5
variations in software costs and quality,

175–176, 177–183
application sizing using pattern matching,

292–295, 295–300
application test defect removal stages,

70–71
applied technology, 221–222
architecture defects, 290
architecture inspection, 127
assembly language, 115, 280, 285, 411
assignment scope, 288–289, 440–441
Association of Computing Machinery

(ACM), 78, 187
AT&T, xvii, 3–4, 10, 13, 56, 195–196, 199,

281, 349
in-house education, 9

468  ◾  Index

attorneys, 63, 86, 97–98, 188, 259, 266,
430, 434, 435–436

automated counts (for legacy
applications), 176

automated FPs, 106
hazards, 285

Automated Project Office (APO), 17, 37,
92, 175, 196, 251–252, 318

automated testing, 68, 74, 221
automated tools, 13, 316, 336, 427–429
automatic FPs, 111
average organizations, 251–252

maintenance engineering tools, 346
software documentation tools, 338
software engineering tools, 331
software engineering tools (numbers

and size ranges), 426
software maintenance engineering

tools, 333
software project management tools, 329
software quality assurance tools, 334
software testing tools, 336
tools utilized, 339
total tool FPs, 340

average software projects, 320–321
avionics, 64, 283, 312, 378

B

backfiring, 92, 111, 214, 280, 284, 328,
329, 352, 372, 377, 402, 425

description, 108
bad fixes, 25, 31, 37, 61, 67, 69, 74, 91,

123, 124, 126–131, 138, 153,
155, 180, 198, 227, 238, 253,
289, 290, 349–350, 358, 363,
391–392, 453

geriatric software, 343–344
US average, 310

Bank of Montreal, 283
bankruptcy, 240, 244, 300, 437, 439, 462
banks and banking, 256, 373–374, 384,

406–407
basic assembly language, 160, 165,

168, 201
Basili, Victor, 111, 456
benchmark costs, 445–447
benchmark data, 281–283, 381
benchmark data collection, 111, 329, 425
benchmarks, 6–7, 98, 196, 222–223, 227,

236, 284, 463

activity-based, 125, 132–133
best metrics, 448–451
description, 108–109
forms, 32
historical data, 87–88

best in class, 89, 92, 120, 194, 335, 348
best-case patterns of software

development, 209–466
achieving software excellence, 247–274
corporate software risk reduction

in Fortune 500 company, 209,
211–236

early sizing and estimating of software
projects, 279–306

FPs as universal metric, 369–466
geriatric care for software, 343–364
optimizing software DRE, 309–325
tool usage on best-case, average, and

worst-case projects, 327–341
best practices, 11, 85, 449–451

software tools, methods, quality, 34–36,
37–40

board certification (professional status
requirement), 199–200

Boehm, Barry, 10, 14–15, 221, 280
Bonsignour, Olivier, 13, 48, 51, 110
brake systems (defective), 197
Brazil, 34, 88, 106, 283, 289, 410, 412,

429, 432
breach of contract litigation, xvii, 1, 6, 14,

16, 24, 53, 63, 228, 252, 267,
381, 430–431, 448

costs, 109
defendant costs, 435, 436
defenses, 85–98
elimination (professional status

requirement), 197–198
most common reasons, 433
odds of out-of-court settlement,

435–436
plaintiff cost analysis, 434, 435
root causes, 197–198, 431

Brooks, Fred, 221
Mythical Man-Month (1974, 1995), 10

brownfield development, 344–345, 361
bug-fixing, 47–49, 50, 52, 54, 110,

229–230, 259, 272, 331
cost driver, 446
costs, 175
largest single expense, 89–90, 124
urban legend, 26, 109, 390, 464

Index  ◾  469

bug repairs, 57, 196–197, 215, 228, 250
containing new bugs (same as “bad

fixes”, qv), 25–27
top cost driver, 19; see also defect

repairs
bug reports, 135, 137–139, 455
bugs, xvii, 24, 51, 58, 96–97, 116, 119–120,

121, 135, 252, 256, 259
unfortunate effects, 49

Business Process Reengineering, 442
business risks, 240–241
Business Value of IT (Harris et al.,

2008), 459

C

C language, 123, 144, 160, 165, 285,
303, 304, 335, 376, 391, 417,
419, 421

C# language, 162, 166, 293, 304, 335,
418, 420, 422, 444

C++ language, 161, 166, 293, 304, 335,
417, 419, 421

C-level executives, 209, 211, 222, 370, 374,
383–384, 396, 402, 410, 447, 458,
462–463

data used by, 441, 445–447, 448–451
lack of respect for software

engineering, 440
software benchmarks used by,

448–451; see also CEOs
Canada, xix, 118, 281, 305, 412,

433, 454
CAST, 71, 106, 282, 285
CEOs, xviii, 4, 36, 86, 106, 381, 399, 401,

438; see also C-level executives
certification examinations, 29, 30, 281,

285–286, 371
certified FP counters, 19, 176, 282, 286,

306, 371–372
certified test personnel, 39, 57, 61, 68,

187, 249, 251, 252, 312, 427,
429, 452

change control, 86, 157, 198, 428–429, 433
change requests, 89, 95, 433–434
changing requirements, 88–89
Chill, 160, 165, 304, 335, 417, 419, 421
China, 306, 410, 414, 430
client sites, 136–137
Climis, Ted, 410
cloud computing, 130, 283, 383

CMMI (Capability Maturity Model
Integrated), xv, 10, 16, 38–40,
50, 52, 62, 70, 74, 220, 227,
264, 266, 302, 350, 389, 442, 449

“average”, “leading”, or “lagging”
software projects, 321–322

FPs for evaluating, 384–389
CMMI levels, 29, 114, 123, 147, 178, 242,

250, 265, 293, 304, 311–312,
373, 381, 384, 387–388, 390,
391, 427–428, 451, 463

COBOL, 12, 108, 160, 165, 176, 192, 280,
335, 352, 361, 416

cochlear implants, 143, 300, 378
code defects, 27, 124, 253, 256, 290,

453, 454
code defects potential, 313, 391–392
code development work, 50, 52–53
code inspections, 89, 91, 127, 132, 201,

336, 457
coding, 33, 55, 390, 411, 416, 440–441

assignment scope using FPs, 289
cost per FP, 289
work hours per FP, 292

coding tasks, versus non-coding tasks,
165–167, 168

Colombia, 117, 306, 414
commercial off the shelf (COTS) software,

15, 74, 76, 238, 241–242,
287–288, 332, 358, 382

applications, 214
package purchase, 132

commercial tools, 316–319
communications, 223–224
competitive advantage, 14
completion of coding milestone, 92
completion of design milestone, 92
complexity analysis, 334–335, 336,

347, 358
Computer Aided Software Engineering

(CASE), 263, 317, 442
Computer Aid Inc. (CAI), 3, 17, 196,

251, 361
Computer Associates, 215
computer games, 407, 410
computer industry, 410
Computer Sciences Corporation, 215
consequential damages, 266
Constructive Cost Model (COCOMO), 10,

14–15, 72, 86, 109, 251, 281,
283–284

470  ◾  Index

Construx, 35, 71
continuous improvement, 271–273
contracts, 90, 197

inclusion of hazardous terms, 196
omissions, 196

Control of Communicable Diseases
(Surgeon General’s Office), 78

Coral, 160, 165, 335, 417, 419, 421
corporate functions, 353–356
corporate software risk factors, 217–218
corporate software risk reduction in

Fortune 500 company, 209,
211–244

cost justification, 225–235
fact finding and software

assessments, 213
four-year targets, 220–221
initial report to chairman, 216–217
national talent search, 212–213
reliable data wanting, 216
results, 224–225, 226–227
software applications in use, 213–216
software engineering laboratory

(creation), 221–225
strategy (fix quality first), 218–220

corporate software risk reduction program
(cost justification), 225–235

adding value from customer
loyalty, 235

adding value from disaster avoidance,
233–234

adding value from improved
morale, 234

adding value from keeping top-ranked
personnel, 234

adding value from reduced litigation
risk, 234

adding value through higher
revenues, 233

adding value through shorter
development schedules, 232–233

annual costs, 228
asset value of library of reusable

artifacts, 231–232
cost recovery of development side,

228–229
cost recovery of maintenance side,

229–231
overall value from effective process

improvements, 235
target cost reductions, 228

corporations, 7, 145
COSMIC FPs, 15, 31, 35, 37, 106, 107,

111, 114, 187, 281, 288, 295,
319, 372–373, 377

cost per defect, 158, 394, 447–452,
450, 462

activities included or excluded, 153
gaps in literature, 153
six forms of testing, 151, 395
variations by severity level, 153, 154

cost per defect metric, 26, 77, 79, 106,
194, 198, 390, 423, 447

description, 109–110
hazards, 285
short history (Jones, 2012), 464
three hidden problems, 148–149,

390–393
cost per defect metric (problems),

148–157
canons of standard economics

(violation), 149
Case A: poor quality, 149
Case B: good quality, 148–152
Case C: zero defects, 152–156
penalization of quality, 149

cost drivers, 250
cost estimating, 381–383
cost estimating tools, 17–18, 221, 339

built-in tables, 17
description, 109

cost per FP metric, 152, 157, 158, 284,
289, 382–383, 429, 460

six forms of testing, 156, 396
cost of learning (COL), 301
cost of quality (COQ), 29, 37, 74, 147,

150, 182, 266, 268, 272, 287,
302, 390, 393, 448

application to software (modified set
of topics), 141

original concepts, 134
cost of quality (COQ) for quality

economics, 134–141
cost overruns, xvii, 1, 3–4, 23, 29, 36, 48,

51, 53, 67, 85–86, 94, 106, 109,
215, 227–228, 328, 380–381,
400–401, 434, 438–439

main reason, 19, 429
reduction (professional status

requirement), 190–191
cost per LOC, 165, 416
cost per unit, 159, 168

Index  ◾  471

CostXpert, 14, 86, 109
court room structures (physical

changes), 63
COVID-19 pandemic (2020–), 7, 16, 32,

34, 36–41, 48, 61, 65, 79, 283,
301, 309, 312

delays to court proceedings, 63
effective methods for working at

home (professional status
requirement), 201

Cowboy, 261–262, 264, 273, 385, 428
Cox, Brad, 36
Crosby, Philip B., Quality is Free (1979), 134
Cuba, 306, 415
Cunningham, W., 28, 114, 265, 286
custom designs, 86, 192, 200–202
customer-reported defects, 152–153, 223,

230, 349, 364, 429, 452
customer satisfaction, 32, 137, 224, 226,

234, 272, 301, 354, 360, 446,
448, 456

customer support, 138–139, 143, 362
cyber-attacks, 8, 9, 11, 15–16, 23, 24, 25,

32, 68, 71, 72, 73, 76, 145, 182,
201, 203, 215, 216, 223, 228,
267, 300, 301, 356, 361, 448

costs, 266, 288
reduction (professional status

requirement), 192–193
cyclomatic complexity, 25–26, 40, 57, 75,

196, 251, 253, 255, 268, 270,
310, 350, 361, 363, 397, 427,
429, 451

geriatric software, 343
cyclomatic complexity analysis, 70–71

D

data acquisition costs, 145
data errors, 155
data mining, 214, 226, 264, 361
data point metric, 145, 146, 448–449
data quality, 145, 147
Davids Consulting, 72
daylight savings time (2007) issue, 351
dead code, 343, 347, 358
debugging, 20, 318, 331, 333, 426
defect density metrics, 26–27

description, 111
defect detection efficiency (DDE), 37, 73,

120, 226, 268

defect drivers, 217
defect origins, 153, 155, 253
defect potentials (IBM quality metric),

24–25, 25, 29, 32, 37, 50,
52, 54, 56, 68, 90, 111,
119–120, 121, 123, 126–131,
157, 180, 183, 185, 191–192,
220, 224, 227, 249, 253, 254,
255, 260, 262, 266, 268–269,
271–273, 301, 309, 312,
348–349, 391, 406–409,
412–415, 428–429, 456

“average”, “leading”, or “lagging”
software projects, 320–322

average software (United States,
2020), 124

based on all defect types, 123, 124
best metric for understanding software

quality, 194
definition, 67, 289, 310, 452
measured using FP metrics, 311
metric used with FPs, 289–290, 290
originated in IBM (circa 1970), 61

defect potentials per FP, 69, 193,
387–388

defect prediction, 316
defect prevention, 65, 68, 79, 252, 313,

316, 392, 450, 463
costs, 141
optimal, 312
state-of-art quality tool, 269–270

defect prevention efficiency (DPE), 287
defect removal, 65, 74, 193, 216, 224,

448–451
monthly reports, 220

defect removal cost per FP, 285
advantage of metric, 394
advantage over “cost per defect”, 156

defect removal economics, 156–157
defect removal efficiency (DRE), xvii–xviii,

17, 19, 26, 29, 32, 37–40, 51–52,
54, 56–57, 60, 68, 71, 73, 75,
79, 97, 111–112, 119–120, 121,
126–131, 157, 158, 180, 183,
185, 191–192, 198, 220, 226,
237, 249, 254–256, 257, 258,
260, 262–273 passim, 284, 287,
290–291, 301, 335–336, 348–349,
363, 387–388, 392–393,
406–409, 412–415, 428–429,
436–437, 448, 456, 460

472  ◾  Index

“average”, “leading”, or “lagging”
software projects, 320–322

based on all defect types, 123–124
best metric for understanding software

quality, 194
combined with FP metric,

447–452, 453
concept, 452
definition, 67, 90, 309
description, 110
including inspections and static

analysis, 124, 126
metric developed by IBM (1970), 60
ninety days after release, 124–125
optimization, 309–325
perfection rare, 57
ranges for 1000 FP applications, 91
sample of 1000 software project, 59

defect repair hours, 154–155, 226
defect repairs, 151, 152, 216, 223,

225, 231, 345, 348, 350, 363,
395–396

costs, 72
by defect origins, 155
versus “enhancements”, 345
small-scale, 351–352; see also

bug-fixing
defect severity levels (IBM), 120
defect tracking, 316, 318, 336, 359
defects discovered, 126–131
defects found after release, 390
defects per FP, 121, 126–131, 158,

180, 249, 260, 262, 266, 391,
412–415, 429, 453

United States (2020), 124
defects per KLOC, 249, 391, 452
defects, pre-test removal, 391
defects remaining, 126–131
defense projects, 3, 17, 190–191, 289, 384,

387, 427–428, 457
paperwork, 248

defense sector, 63, 64, 87
defense software, 284, 453–454
deferred features, 144, 301, 376
deferred functions, 302

size data, 294
delivered defect densities, 119, 429
delivered defects, 123, 224, 260, 262,

266, 391, 406–409, 461
“average”, “leading”, or “lagging”

software projects, 320–322

delivered defects per FP, 193, 387–388,
393, 412–415, 453

DeMarco, Tom, 187
Denver Airport case, 48, 331, 378
Department of Commerce, 440
Department of Defense (DoD), 48, 112,

385, 387
design, 89, 157, 165, 168, 194, 279–280

assignment scope using FPs, 289
cost per FP, 289
work hours per FP, 292

design, code and unit test (DCUT), 16,
108, 195, 285, 381, 383, 451, 462

design defect potential, 313, 391–392
design defects, 27, 253, 256, 290, 390,

452, 453, 454, 456
design inspections, 91, 127, 132, 336, 457
design reviews, 201
design tools, 222
development activities, 132–133

variations for six project size plateaus,
176, 177; see also software
development

development cost per FP, 229, 232
development cost recovery, 228–229
development costs, 148, 157, 158, 220,

233, 351, 383, 396, 399, 456
development effort (2020), 50–51, 54
development effort for thousand FPs,

419–420
development effort (2030 projection),

52–54
development methods, 176, 216, 219
development phase, 291

growth of applications, 143
development plan, 93
development schedules, 51, 148, 156, 233

“average”, “leading”, or “lagging”
software projects, 320–322

DevOps, 12, 15, 38, 74, 113, 263
disaster avoidance, 233–234
disciplined agile delivery (DAD), 38,

255–256, 261
document defects, 253, 290
document defects potential, 313, 391–392
document pages (natural metric), 452–456
document prediction, 455
document sizing, 181
DSD, 386
DSDM, 263, 385
due diligence, 112, 244, 261, 437

Index  ◾  473

E

early risk analysis, 295, 300–301
earned value analysis (EVA), 17, 39, 329,

450, 457–458
earned value management,

description, 110
earned value method, 95, 434
eBay, 297
economic modeling with SRM, 302–304
economic productivity, 112, 168, 185

definition, 159, 416, 423
economic productivity rates, FPs versus

LOC per month, 421–422
economies of scale, 215
effective quality control, 68
effective quality control methods, use and

measurement, 8, 19, 23–26
effective quality metrics, 73
effective software project management

(eleven steps), 8–36
annual software benchmark studies, 8,

31–34, 35–36
best practice analysis, 34–36, 37–40
continuing education for software

project managers, 8, 9–10,
10–12

effective software metrics, 8, 26–31
formal project offices, 8, 18–19, 20–23
guest lectures, 8, 10, 12–13
initial education for new project

managers, 8, 8–9
progress and milestone tracking tools,

8, 17, 18–19
quality control methods, 8, 19, 23–26
software parametric estimation tools,

8, 13–16
embedded application type, 126
embedded software, 57, 87, 145, 226,

244, 253, 257, 403, 440
English words per FP, 455
enhancements, xvii, 93, 135, 142, 229,

279, 301, 331, 348
FP metrics, 134
three-year data, 136–140; see also

software enhancements
enterprise resource planning, (ERP), 16,

24, 74, 76, 288, 318, 349, 403,
443, 449

enterprise risks, 243
entertainment, 406–408, 410
entropy, 348, 350, 362–364

ERP maintenance, metrics problems, 352,
353–356

ERP packages, 373–374
ERP portfolio porting, measured with FPs,

353–356
error-prone modules (EPMs), 71, 73–75,

196, 230, 261, 268, 301, 310,
333, 334, 347, 349–350, 352,
357–358, 359, 363–364

geriatric software, 344
errors of omission, 155
estimate rejection, 86–87
estimates, errors, 86–87

inaccuracy in direct proportion to
application size, 13

ethical risks, 236, 242
Euro-currency-conversion problem, 324,

332, 347, 350, 364
Europe, 34, 225, 283, 323
Evans, Bob, 410
evolutionary development (EVO), 38,

263–264, 386
Excel, 21, 164, 167, 252, 298, 319, 378,

418, 420, 422
Excelerator, 251
ExcelerPlan, 14, 86, 109
execution costs, 152–153
experience, 381, 427
experiments, 270
expert witness fees, 435–436
external risks, 242
extreme programming (XP), 261, 264,

302, 386, 427

F

FAA, 19, 454
Facebook, 378, 437
Fagan, Michael, 310
fast followers, 460–462
fast FPs, 111, 372, 377
FBI, 193, 296
FDA, 19, 237, 454
feature-driven development (FDD), 263,

302, 386
feature points, 377
Feigenbaum, Edward, 134
field (beta) testing, 130, 133, 383
financial risks, 239–240, 380–381
Finland, 118, 305, 410, 413
FISMA FPs, 15, 31, 37, 106, 107, 111, 187,

281, 288, 295, 319, 372

474  ◾  Index

fixed costs, 26, 109, 115, 149–150, 156,
159, 165, 168, 194, 394, 416, 464

fixed-price contracts, 97, 429, 433
Flesch readability index, 39, 88
FOG, 39, 70, 88
Ford, 56, 200
formal estimating, 98, 269
formal project offices, 8, 18–19, 20–23
formal risk analysis, 269
formal sizing, 269
formal tracking, 269
FORTRAN, 160, 165, 192, 304, 335,

411, 416
Fortune 500 corporations, 6, 6–7, 106,

248, 343, 361–362, 374, 399, 402,
403–405, 447

FP analysis, high speed (new method),
372–373

FP analysis (metrics used), 286–292
assignment scope, 288–289
cost per FP, 289
defect potentials, 289–290, 290
DRE, 290–291
FP per month, 291
production rate, 291
requirements creep, 291
work hours per FP, 292

FP counting, 282, 286–288
FP metrics, 4, 68, 88, 92, 106, 145, 176,

227, 230, 280, 284, 319, 346
ability to quantify software results, 191
adoption essential, 194
best available for measuring software

quality, 105
“best choice”, 314
comparison with LOC metrics,

160–164
counting variations, 372
for defect removal economics, 156–157
description, 111
expensiveness, 372, 374
global spread, 283
history, 280–282
improvements required, 462
measure software economic

productivity, 168
put into public domain by IBM

(1979), 280
slow speed, 371–372, 374
strengths, 371
use in comparing software tools, 315

weaknesses, 371–372
“wide range of usefulness”, 462

FPs combined with [other metrics], 447,
452–462

document pages, 452–456
DRE, 447–452, 453
EVA, 457–458
GQM, 456–457
ROI, 458–462
story points and velocity on agile

projects, 458
FPs (function points), xviii, 4–13 passim,

16, 18–19, 25, 27–57 passim,
60–65, 69, 76, 79, 89–97 passim,
108, 115–116, 120, 123, 125, 126,
135–136, 138–140, 141–150
passim, 157, 159, 177–183, 214,
226, 228–235 passim, 248, 251

advantage for quality analysis, 390
best metric for benchmarks, 448–451
countries expanding use of (2019),

305–306
definition, 452
ERP portfolio porting, 353–356
increasing executive awareness,

374–375
languages using, 157–168
most widely used software metric, 25
size data, 328
slow speed, 463
and software consumption, 424–429
universal metric, 369–466
usage (2020), 287–288

FPs per month, 116, 117–118, 125,
132–133, 160–164, 193, 260,
265, 291, 412–415

FPs per staff month, 158, 192, 352, 416,
428–429, 441

“average”, “leading”, or “lagging”
software projects, 320–322

fraud, 242, 401, 430
Freiman, Frank, 14, 280
functionality, 339, 350
functional specification, 93
function testing, 128, 133

G

Galorath, Daniel D., 14
Gartner Group, 72
Gates, Bill, 12

Index  ◾  475

General Electric, 56, 213
General Motors, 402
geriatric care for software, 343–364
Germany, 118, 291, 305, 413
Gilb, Tom, 221
global studies using FP analysis, 410,

412–415
goal question metrics (GQM), 456–457

description, 111–112
good quality (case study), 149–152
Google, 3–4, 199, 297, 299, 324,

378–379, 425, 437, 454
government agencies, 61, 63, 64, 191,

256, 348
governments, 72, 87, 88, 289, 305, 457, 463
government software, 59, 106, 272–273, 350
GTE, 3–4, 281
guest lectures, 8, 10, 12–13
GUI, 331, 426, 443

H

Hamilton, Lyman, 4, 188
hardware, 152–153, 156, 212, 217,

450, 457
hardware errors, 155
hardware FPs, 145, 146
Harris, Michael D. S., 459, 465
hazardous quality metrics, 73
health and safety risks, 237
HELP text, 181, 243, 316, 327, 357,

360, 455
Hewlett Packard, 56, 77
high-quality projects, 248–249, 251,

267, 400
high quality software, 69–71
Hippocratic oath, 187
historical data, 32, 33, 114, 195, 280,

315, 373
Homeland Security, 193
Hong Kong, 430, 433
Hopper, Admiral Grace (USN), 12–13
hospitals, 186, 191
HTML, 160, 165, 286, 304, 325, 417,

419, 421
human resources, 12, 354, 403, 440, 445

appraisals, 4, 8, 9, 11; see also
personnel

Humphrey, Watts, xv, 10, 384, 388
Managing Software Process (1989), 389

hypertext links, 316, 325, 338

I

IBM, xv, xvii, xix, 3–4, 8, 10, 13–14, 22,
28, 49, 57, 71, 77, 108, 111, 143,
153, 191, 194–196, 199, 201, 213,
215, 280, 297, 310, 349, 356,
361, 375, 388, 410, 425, 457

annual software benchmark studies,
31–32

collection of data from internal
applications, 383

customer support, 362
defect severity levels, 120
development of DRE metric (1970), 60
DRE perfection, 57
equal pay for development versus

maintenance personnel (wise
policy), 344

in-house education, 9
introduction of inspections

(1970s), 270
pioneer in creation of software project

offices, 18
standards for software quality, 18

IBM development planning system
(DPS), 411

IBM, Systems Development Division,
410–411

IEEE Software Engineering Society, 187
IFPUG FPs, 107, 108, 111, 114, 144, 179,

189, 190, 224, 281, 295–300,
303, 310–311, 329, 331,
333–334, 336, 338, 351, 373,
375, 376, 425–426

counting rules, 319
metrics, 294

independent testing, 130
independent verification and validation

(IV&V), 132, 388, 457
Index Medicus, 77
India, 116, 117, 289, 291, 410, 412
industry productivity using FP metrics,

406–409
industry studies using FP metrics, 402,

406–409, 410
inflation, 289, 459
information engineering (IE), 263,

302, 386
information technology (IT), 87, 143, 253
Information Technology Infrastructure

Library (ITIL), 39, 332
support tools, 333

476  ◾  Index

Information Technology Metrics and
Productivity Institute (ITMPI), 3,
36, 71

initial estimates, 14, 85–86, 93, 197–198
improvement (professional status

requirement), 195–196
inspections, xviii, 61–64, 96, 124,

126–127, 132, 141, 143, 147,
157, 216, 219, 221, 229, 270–271,
427–429, 461

formal, 58, 70, 90, 98, 152, 198, 256,
302, 452

pre-test, 62, 64
Institute of Electrical and Electronics

Engineers (IEEE), 78
quality standards, 68, 74

insurance, 256, 283, 384, 459
integration testing, 129, 133
intellectual property theft, 300
Interactive Productivity and Quality (IPQ)

tool (Jones and Turk 1973), 14
Internal Revenue Service (IRS), xvii, 231,

259, 297, 402
internal seminars, 10–13
International Electrical Commission (IEC),

112, 147, 371, 385
International FP Users Group (IFPUG), 24,

27, 31, 35, 36, 37, 60–63, 106,
112, 133, 187, 195, 214, 284, 288

founded in Canada, but moved HQ to
USA later, 281

web site, 371; see also SNAP
international law, 430
International Organization for

Standardization, (ISO), 385, 443
International Software Benchmark

Standards Group (ISBSG), 11,
108, 110, 310, 371, 458

history (1997–), 281
Internet, 10, 325
invalid defects, 153, 154
Iran, 193, 296, 415
ISO quality standards, 39, 68, 74,

147, 227
ISO risk standards, 39
ISO standards, 12, 18, 21, 26–28, 30,

108–111, 114, 284–286, 319, 371,
390, 449, 458

description, 112
ISO-IEC 9126 quality standard, 119
ISO tools, 318

Italy, 88, 106, 118, 305, 413, 429
iterative development, 89, 125
ITT, xvii, xix, 3–4, 9–10, 13, 49, 188, 191,

195, 280–281, 349, 378
annual software report, 271–272
four-year improvement program, 271
research laboratories, 36

ITT, Advanced Technology Group, 34, 36
ITT, Applied Technology Group, 34

J

Japan, 34, 88, 106, 283, 412
Java, 15, 50, 52, 54, 68, 107, 115, 120,

125, 126, 132, 161, 166, 168,
178, 192, 248, 286, 293, 312,
335, 361, 417, 420–421, 444

JCL, 159, 160, 165
J. D. Edwards (ERP package), 352
JIRA, 17, 92, 252
Jobs, Steve, 34
Johnson & Johnson (medical

company), 77
joint application design (JAD), 39, 73, 88,

141, 222, 226, 252, 269, 287,
311, 313, 392, 443

Jones, Capers, xix, 296, 310
career

advisor to Malaysian software
testing organization, 305

co-discoverer at IBM of
disadvantages of cost per defect
metric (1972), 285

commissioned by AT&T (analysis
of software occupation groups),
439–440

commissioned to build IBM’s first
parametric estimation tool
(1973), 13–14, 280

contract with Air Force, 384
designed proprietary estimation

tools for telecommunication
companies (1980s), 281

developed of ten software
parametric estimation tools, 195

developed proprietary sizing
method, 282

developed SRM high-speed sizing
method, 372

development of parametric
estimation tool, 411

Index  ◾  477

editor (medical and software
publications), 202

involvement at IBM in originating
defect potential metric (early
1970s), 452

new manager at IBM, 9
primary IBM researcher (1972), 280
professional programmer role, 153
SPQR-20 estimation tool

(1984), 281
SPR company (1990s), 281–282
taught software sizing and

estimation at major corporations
(1980s), 281

worked at IBM and ITT, 49
work on IRS tax cases, 402

interviews for this book, 32
issues

application of FP metrics to
software tools, 330

best practice versus worst
practice, 34

collection of benchmark data, 32
defect density metric, 27
experiences contacting customer

support, 362
experience with Zoom, 65
manual versus parametric

estimates, 248
most troublesome bug found, 153
poor metrics “sign of professional

malpractice”, 194
software pattern matching

(proprietary taxonomy), 373
SRM multi-year sizing example,

144, 303, 376
suggests renormalizing application

size every year, 143
major point of this book, 252
personal

background, 201–202
biography, xix
blog, 371
clients, 16, 195, 197, 248, 256, 286,

294, 317, 361–362, 431, 458
publications

paper on FP metrics for software
consumption, 424

publications (specific)
Applied Software Measurement

(1991, 2008), 110

Assessment and Control of Software
Risks (1994), 203

Economics of Software Quality
(with Bonsignour, 2011), 13, 51,
62–63, 65, 77, 110, 168

Patterns of Software Systems Failure
and Success (1995), 51

Programming Productivity
(1986), 388

Software Engineering Best
Practices, 13, 55–56, 336

Software Methodologies (2017),
51, 359

Software National and Industry
Comparisons (2017), 51

Software Quality, 336, 349; see also
Namcook Analytics

Jordan, 306, 413
JOVIAL, 160, 165, 335, 417, 419, 421
Juran, Joseph, 134

K

Kaizan, 38, 141, 263–264, 443
Kanban, 38, 443
Kelley Blue Book (used automobile

costs), 374
kicker, 303

“mid-life kickers”, 143, 144, 375, 376
KLOC, 108, 115, 120, 126, 131–133,

139, 141, 142, 149–150, 159,
160–164, 178, 250, 313–314,
392–393

KnowledgePlan, 14, 72, 86, 109, 251, 281,
371

knowledge risks, 236, 242–243
Knuth, Donald, 12
KPI, 443, 449

L

lagging companies
definition, 315
software engineering tools, 426

lagging organizations, maintenance
engineering tools, 346

lagging projects, 321–322
daily hours of usage, 327–328, 330,

332, 335, 337
FP totals, 327, 329, 330, 332, 333–334,

336

478  ◾  Index

management tools, 328–330
number of tools used, 327–328, 329,

330, 332, 333–334, 335, 336
overall tool differences with leaders,

337–339, 340
software documentation tools,

337, 338
software engineering tools, 330–331
software maintenance engineering

tools, 331–332, 333
software testing tools, 335–336
software tool usage, 327–341
SQA tools, 332–335
tool features ratios, 340
tool usage ratios, 339

large software projects, xvii, 4, 64, 93–94,
183, 456

expensive cancellations, xviii
value of high quality, 157, 158

latent defects, 90–91, 196, 232, 259,
320–322, 348–349, 359, 362

leading companies software engineering
tools (numbers and size
ranges), 426

leading enterprises, definition, 315
leading organizations, maintenance

engineering tools, 346
leading projects

daily hours of usage, 327, 330, 332,
335, 337

FP totals, 327, 329, 330, 332, 333–334,
336, 338

management tools, 328–330
number of tools used, 327–328,

329, 330, 332, 333–334, 335,
336, 338

overall tool differences with laggards,
337–339, 340

software documentation tools,
337, 338

software engineering tools, 330–331
software maintenance engineering

tools, 331–332, 333
software testing tools, 335–336
software tool usage, 327–341
SQA tools, 332–335
tool features ratios, 340
tool usage ratios, 339

Learson, Vin, 410
legacy applications, 282, 315, 324–325,

332, 373

legacy code, 214, 349
legacy software maintenance

best and worst practices, 352–359,
360, 364

factors that degrade performance,
359, 360

labor-intensity, 352, 359, 364
major weakness (customer

support), 362
legal risks, 238–239
lifetime sizing with SRMTM, 302, 303
Lines of code (LOC) metric, 15, 24, 27,

30–31, 77, 106, 108, 115–116,
120, 136, 142, 178, 191, 194,
283, 287, 288, 290, 314–315,
390, 397, 403–405, 440,
450–451, 462

comparison with FP metrics, 160–164
description, 112
“do not measure software economic

productivity”, 159, 168
drawbacks, 370–371, 447
versus FPs (software economic

analysis), 410–423
hazards, 285–286
history, 280–281
languages using, 157–168
slowed down evolution of software

engineering, 423
Linux, 12, 214, 297, 378
litigation, 197, 215, 266, 354, 380–381,

401, 404, 443, 445, 448, 450
litigation costs, 234, 266, 267, 286, 288,

399, 462
litigation odds, 301, 430, 431

minimization, 436
rise steeply with application size,

431, 432
litigation problems, 86–97

estimating errors and estimate
rejection, 86–87

flawed outsource agreements, 96–97
missing defensive objective

benchmarks, 87–88
quality control (poor), 89–91
rapidly changing requirements, 88–89
software milestone tracking (poor),

91–96
litigation risks, 4, 109, 234, 438–439
LOC per month, 125, 132–133, 160–164,

165, 168, 260, 291

Index  ◾  479

LOC per staff month, 250, 416
LOC rankings reversal of real productivity

rates, 423
local systems, 178–183
logical code, 144, 296–300
logical code statements, 295, 303, 373,

376, 391, 451
same as LOC (qv), 376

logical code statements per FP, 416,
417–418

logical LOC per month, 179
Love, Tom, 36

M

machine language, 159, 160, 165, 168
maintenance, 7, 142, 217–218, 228, 374,

384, 394–399, 447, 450, 459
activity-based benchmarks, 134,

135–140
costs, 370
definition, 331
FP metrics, 134
impact of adjustment factors, 357
major kinds of work, 135
meanings, 345
scope, 345–351
small projects (metrics problems),

351–352, 353–356
three-year data, 136–140
twenty-three discrete topics, 345–346–

348, 347
maintenance cost recovery, 229–231
maintenance costs, xvii, 1, 157, 158, 220,

233, 267, 301, 348, 399, 456
post-release, 437
reduction after deployment

(professional status
requirement), 196–197

maintenance curriculum, 356, 358
maintenance cycle, 209
maintenance engineering tools, 315–316

lagging and leading projects,
331–332, 333

maintenance engineers, lower
salaries, 344

maintenance methodologies (strong and
weak), 359–362

maintenance outsourcing, 361, 430
maintenance productivity, 224, 352,

358–359

maintenance productivity rate, 356
maintenance savings, 235
maintenance specialists (best practice

factor), 356, 357, 359, 360
maintenance tools, 339
maintenance work, 49, 50, 52, 54
maintenance workbenches, 324
Malaysia, xix, 34, 88, 106, 413
managed maintenance, 344, 361
management practices (poor), 401
management training, 8, 227
management, work hours per FP, 292
manual coding, 49, 86, 192, 200–202
manual estimates, 109, 190, 195–196, 251,

283–284, 339, 428, 432
manual FP analysis, 402
manual FP counting, 370
manuals, 56, 109, 181, 239, 258, 288, 316,

325, 411, 416, 426, 455
manual sizing, inefficiency, 294
manual software development, 55, 258
manufacturing, 384, 406–407, 446
manufacturing costs, 416
manufacturing economics, 26, 109,

115, 168
standard rules applied to software,

159–165
well-known law, 393–394

marketing studies, 261
market share, 404, 446, 461–462
Mark II FPs, 107, 111, 295, 377
mashups, 38, 259, 261, 263, 304, 386
mathematics, 8, 134, 194, 280, 282, 390,

416, 464
McKesson (medical company), 77
mean time between failures (MTBF), 119
mean time to failure (MTTF), 119
measurement, 220

importance, 187
measurement data, 98
measurement practices, adoption of

effective (professional status
requirement), 194–195

measurement problem, 219
measurements, 222–223
medical devices, 90, 248, 283, 312, 373,

406, 410
defective, 197
embedded, 424

medical education, 71–72, 77–78
medical papers, 202

480  ◾  Index

medical practice, 185
medical records, 378
medical schools, 186–187
medical science, 459
Mercury, 215
mergers and acquisitions, 244, 324–325,

404, 428
methodology analysis, 384, 385–386
methods, tools, practices, 250–251
metrics expansion (topic), 145
metrics problems, ERP maintenance, 352,

353–356
small maintenance projects, 351–352,

353–356
metrics validation (topic), 145
Mexico, 34, 88
MicroFocus, 215
micro FPs, 351
Microsoft, 3–4, 9, 12–13, 48, 77, 143, 199,

296, 298, 378, 425, 437
appraisal system, 8

Microsoft Project, 17, 251, 328
Microsoft Windows, 1, 349–350
mission-critical projects, xvii, 90, 269, 362,

428–429
money wastage, 47–65
monthly costs, 249
months of staff effort, 260
Motorola, 3–4, 57, 281
MRI, 77, 297
multi-metric economic analysis, 146
multiple metrics, 375–376, 377
municipal software, 59
MySQL, 15, 286

N

Namcook Analytics, xvii, xix, 6, 9, 11, 34,
35, 49, 61, 63, 72, 73, 248, 279,
288, 310, 317, 370, 388

delegation from South Korea, 305
lifetime sizing, 302
master list of software risks, 301
pattern-matching approach, 292
pattern matching (metrics

supported), 295
requests from countries for FP

data, 306
web site, 294–295, 372; see also SRM

Namcook excellence scale, 389
Namcook sizing method, 282

NASA, xvii, 57, 296–297
national security, 459
natural metric, definition, 453
NESMA FPs, 31, 37, 106, 107, 111, 187,

281, 288, 295, 319, 372, 377
Netherlands, 116, 118, 410, 412
newsletters, 223
new software project managers

curriculum, 9
initial education, 8, 8–9

Nintendo Gameboy DS, 379
Nippon Electric, xvii
Nippon Telephone, 281
Nokia, 281
non-coding work, 159, 285, 411, 416, 423
non-functional requirements, 92
non-profit associations, 32, 36, 72
North American Industry Classification, 113
North Korea, 193, 296, 415

O

Obamacare, 59, 88, 296
Objective C language, 17, 34–36, 163,

167, 168, 304, 418, 420, 422
Object Management Group (OMG), 18,

30, 112, 284
object-oriented (OO) languages, 17, 107,

386, 416, 423, 444
OECD, 116, 117
Office of Surgeon General, 202
online publishing, 337
on-the-job education, improvement

(professional status
requirement), 198–199

on-time delivery, xviii, 284
open source, 77, 87, 214, 264, 283,

287–288
open-source applications, 294, 332
open-source tools, 271, 354
operating systems, 312, 373
operational costs, 143
opium, 78, 186
Oracle, 22, 162, 167, 214–215, 296, 298,

352, 378, 418, 420, 422
out of scope changes, 86
outsourced projects, 62, 63, 197
outsource litigation, 16

odds, 5
outsource vendors, xvii, 242, 267, 344,

356, 358, 361, 410, 432, 436

Index  ◾  481

outsourcing, 11, 53, 87, 266–267, 289,
301, 344, 355, 356, 358, 404,
444, 448

outsourcing contracts, 86, 429–437
attorneys required, 97
flawed (key topics omitted), 96–97
inclusion of DRE levels (author’s

recommendation), 90

P

Pacific Bell, 281
pages per FP, 455
pair programming, 58, 70, 256, 264, 462

expensive and inefficient, 261
Pakistan, 117, 306, 415
paperwork, 191, 387, 416
parametric estimates, 109, 190, 195–196,

251, 340
parametric estimation tools, 4, 86–88,

98, 111, 248, 269, 291, 371, 411,
427, 432

acquisition and use, 8, 13–16
history, 280–282

patent litigation, 197, 238, 445, 448
patents, 109, 212, 240, 244, 296, 303,

355, 373, 404, 452, 454, 461, 463
pathfinders, 218–219
pattern matching, 176, 279, 292–295,

295–300, 370
examples of software size, 378–379
external, 377
short summary, 373–374

patterns for application sizing and risk
analysis, 293

patterns of tools
successful and unsuccessful software

projects, 427–429
PeopleSoft, 215, 352
performance testing, 129, 133
personal software process (PSP), 12,

38, 58, 74, 226, 263–264, 304,
361, 386

personnel, 272
recruitment and retention, 234
United States (2020), 55; see also

software employment
Peru, 34, 117, 305, 414
physical LOC, 27, 179, 295
Pirsig, Robert M.: Zen and Art of

Motorcycle Maintenance, 134

planned delivery size, 376
planned DRE (PDRE), 457
Planned Value (PV), 457
planning (formal), 98
Pl/I language, 161, 165, 280, 304, 417,

419, 421
PL/S language, 160, 165, 411, 417,

419, 421
poor quality, xvii, 1, 86, 149, 197
poor quality control, 58–64, 65,

89–91
characteristics, 58–59
impact on cancellation, 62
impact on litigation, 63
software DRE, 60
software schedules, 61

poor quality projects, 252
poor quality software, 69–71

lawsuits, 68
root causes, 67–83

portfolio analysis, 375
FP metrics, 402, 403–405

porting, 153, 352, 353–356
post-release costs, 141, 396, 461
post-release defect repairs, 134, 141
preparation costs, 152–153
pre-release costs, 141, 314
pre-test defect removal, 68, 79, 141, 312,

313, 391–392, 463
methods, 126–131
state-of-art quality tool and

method, 270
pre-test DRE, 128
pre-test inspections, 124, 252, 254,

258, 401
Prince2, 385, 427
problems, lacking effective metrics and

data, 147
problem-solving, 24, 96
process assessments, 432
process improvement, 229–230,

232–233, 317
production rate, 291, 440–441
productivity, 29, 32, 34, 36, 147, 157, 271,

450–451
definition, 115

productivity gains, 227
productivity metrics, 30–31, 146, 215,

222, 234–235
productivity rates, 250
product testing, 355

482  ◾  Index

profession
definition, 187
indicators, 187–188

professional certifications, 21–23
professional education companies, 36
professional education post-employment,

198–199; see also training
professional embarrassments, 23, 26, 53,

67, 71–72, 79, 145, 193–194, 202,
252, 285

professional malpractice, 257, 423, 432,
433, 464

Professional Standards Council, 187
professions, 188
program evaluation and review technique

(PERT), 17
programmers, 291, 446

work patterns, 48–55
programming language levels, 417–418
programming languages, 123, 201–202,

214–215, 243, 249, 253, 304,
444, 451, 463

high-level, 27, 112, 115–116, 159, 165,
168, 194, 280, 285, 416, 447, 464

low-level, 27, 112, 115–116, 165, 168,
273, 285, 416, 423

using LOC and FPs (side-by-side
comparisons), 157–168

programming support environment, 323
progress and milestone tracking tools

(acquisition and use), 8, 17, 18–19
progress reports, accuracy (last line

of defense against project
failures), 98

progress tracking, 86, 196
project failures, 4, 14

odds, 5
project management, 33, 217, 317, 383

challenges, 3–45
improving tools, 7–36
in-house training, 36
problems and issues, 6–7; see also

effective software project
management

project management education, 3
channels (order of effectiveness), 9, 10
curriculum, 11–12

Project Management Institute (PMI), 3, 36,
72, 187

project management tools, 17–18, 315,
323, 331, 337–338, 339, 432

improvement, 7–36

lagging and leading projects, 328–330
numbers and size ranges, 425

project managers, 3, 26, 32, 236, 251–252,
424, 433

continuing education, 8, 9–10, 10–12;
see also software projects

project office concept, 18
roles, 18–19

project risks, 181–182
project staffing, 181, 183
Prolog, 161, 166, 417, 419, 421
Putnam, Lawrence H., 12, 14, 280
Python, 162, 166, 192, 304, 418,

420, 422

Q

QAI, 71
Q-P Management Group, 72, 73
QSM, 72, 108
qualitative data, 317
qualitative information,

not sufficient, 236
quality

definitions, 116, 119
more valuable the larger the software

application (rule), 157
work hours per FP, 292; see also

software quality
quality assurance (QA), 29, 33, 94, 96,

187, 238, 243, 252, 383
formal reviews, 70
software tools, 324

quality assurance tools, 315, 330,
337–338, 339

quality control, 23, 85–86, 142, 150,
190–191, 196, 198, 200, 215,
217–220, 223, 252, 254–255, 315,
348, 355, 363, 401, 405, 428,
433, 460

average, 255–256, 259
excellent, 254–255, 258, 259
poor, 6, 6–7, 256–258, 259
post-release cost, 437

quality control factors, 68, 69–71
quality control inspections, 98
quality control methods, 249

state-of-art, 19
quality control plan, 93
quality function deployment (QFD), 39,

69, 89, 141, 222, 226, 252, 269,
287, 311, 334, 392, 444

Index  ◾  483

quality improvements, 224
quality metrics, 31, 146, 215–216, 222,

234–235
effective, 79

quality risks, 237–238
quantitative data, 34, 68, 72, 79, 317,

319–320

R

RAD, 264, 386
Radice, Ronald A., 310
rational unified process (RUP), 11–12, 28,

38, 58, 74, 90, 114, 226, 256,
261–262, 263–264, 286, 293,
304, 361, 381, 386, 427, 450

Raytheon, 57, 196
RCA, 14, 280
real life, 89, 125, 150, 152, 159, 228, 459
reciprocal memberships, 78, 187
red flag problems, 94, 95, 433
reengineering, 135, 264, 316, 324,

333, 346–347, 348, 357–358,
360, 444

regression test, 57–58, 70, 76, 90, 91,
128, 133, 150, 151, 153, 156,
180, 253, 256, 312, 345, 357–
358, 360, 382, 394, 395–396

requirements, 88, 165, 168, 194, 201,
279–280, 382

assignment scope using FPs, 289
cost per FP, 289
work hours per FP, 292

requirements changes, 92, 97
requirements churn, 92
requirements creep, 143, 144, 157, 179,

190, 227, 302, 303, 374, 376,
396, 401, 432–433, 456

metric used with FPs, 291
size data, 294

requirements defect potential, 313,
391–392

requirements defects, 27, 253, 256, 390,
452, 453, 454, 455, 456

per FP, 289–290, 290
requirements document, 93
requirements errors, 116
requirements growth clauses, 98
requirements inspections, 126, 457
requirements modeling, 427–428
resistance to change, 271, 273

return on investment (ROI), 19, 23, 146,
182, 190, 217, 225, 228, 231,
267, 354, 380–381, 400, 404,
438–439, 448

combined with FPs, 458–462
reusability, 15, 65, 74, 147, 220
reusable artifacts, 231–232
reusable code, 38, 331, 333, 426

maintenance, 358
reusable component libraries, 273
reusable components, xviii, 50, 51, 52–54,

86, 218, 293, 304
adoption (professional status

requirement), 200–201
advantages, 259, 260
certified, 26, 49, 54, 55–57, 64,

192, 200, 231, 249, 251, 253,
255, 258–259, 262, 265, 384,
427–428, 443

reusable software artifacts, 258–261
productivity gains, 259, 260
quality gains, 259, 260

reusable software assets, 222
reusable test materials, 37
reuse, 7, 265, 382

formal programs, 273
impact on productivity and

quality, 193
reverse engineering, 264, 316, 333, 347,

348, 357–358, 445
rework, 301
Rhode Island, 437
RICE objects, 107, 283, 295, 377
risk analysis, 65, 279, 427

patterns, 293
risk metrics, 145, 146
risks, 8, 9
Royce, Walker: Software Project

Management (1999), 459, 466
Rubin, Howard, 14, 280
Ruby (high-level language), 15, 162, 166,

192, 194, 285, 304, 418, 420,
422, 444

Russian Federation, 117, 306, 410, 414

S

sample size, 178
SANS Institute, 70, 71, 237
SAP, 214–215, 352
Sarbanes-Oxley, 19, 195, 197, 238

484  ◾  Index

Saudi Arabia, 118, 306, 415
SCCQI FPs, 107, 377
schedule slips, xvii, 1, 3–4, 29, 36, 47–48,

51, 53, 61, 67, 85–86, 94, 97,
106, 109, 197, 216, 228, 328,
380–381, 400–401, 434, 438–439

main reason, 19, 429, 457
reduction (professional status

requirement), 190–192, 193
Schilling, Curt, 437
Schofield, Joe, 27, 112
Scientific American Magazine, 223
scrum sessions, 263, 304, 434, 458
security, 93, 145, 215, 237
security flaws, 23, 51–52, 54, 69, 73,

76, 124, 131, 137, 155, 201,
223, 226, 259, 264, 267, 290,
301, 393

security testing, 75, 129, 133
SEER, 14, 72, 86, 109, 251, 281, 371
self-reported data, major omissions, 195
Siemens, 3–4, 10, 57, 281
simple FPs, 377
six-sigma, 39, 69, 74, 226, 334
sizing and estimating, automated, 284

automatic tools (advantages), 284
early risk analysis, 295, 300–301
economic modeling with SRM, 302–304
future, 304–306
hazards of older (pre-FP) metrics,

285–286, 287–288
lifetime sizing with SRMTM, 302, 303
manual, 284
metrics used with FP analysis, 286–292
portfolio, 352
state of art (2010 to 2020), 283–284
using pattern matching, 292–295,

295–300
sizing and estimating methods, history

(1950 to 2010), 280–283
skills, 50, 52
SLIM, 12, 14, 72, 86, 109, 251, 281
smartphones, 87, 178–183, 373, 406, 410
SOA, 76, 226
social networks, 283, 407, 410
social risks, 241–242
Society for Information Management

(SIM), 72, 78, 187
sociological issues, 236, 271, 344, 440
software

chronic problems, xvii–xviii, 1

cost drivers, 370
DRE optimization, 309–325
excellent, average, and poor results,

248, 249–251
geriatric care, 343–364
high-quality versus low-quality, 267
main operating tool of business and

government, 247
major cost drivers, 195, 259
new features, 348, 350
normal results (circa 2020), 5
reputation as troubling technology, 13

software applications
“expensive and error-prone”, 105
libraries of existing, xviii
sized via pattern matching, 295,

296–300
in use, 213–216

Software as a Service (SaaS), 76, 283,
325, 332

Software Benchmarking Organization, 36
software benchmark providers (2020),

35–36
software bloat, 339–340
software case studies, generation of

revenue streams, 460–462
improvement of operational

performance, 459–460
software chart of accounts, gaps, 33
software consumption, 424–429
software costs, variations according

to application size, 175–176,
177–183

software development, 209, 405, 410
activity-based benchmarks, 125,

132–133
effective versus harmful patterns, xviii;

see also development activities
software development companies, 106
software development contracts,

inclusion of DRE levels (author’s
recommendation), 90

software development productivity,
192, 224

improvement (professional status
requirement), 192, 193

rates, 220
software documentation tools, 316, 325, 339

lagging and leading projects, 337, 338
software documents, major sources of

error, 454

Index  ◾  485

work hours per FP, 292
software economic analysis, FPs versus

LOC, 410–423
software economics, 447, 462
software economic value, 459
software employment, 47, 176, 213, 216–217,

221–222, 225, 228, 230, 235
probable unreliability of government

statistics, 440; see also software
specialists

software engineering
activities, 49, 50–51
labor-intensive occupation, 48, 55, 125
“should not be considered true

profession”, 148
specialization process, 441
still classified as craft, 202
work time, 47–48

software engineering (sixteen steps to
achieving professional status),
185–202

step 1: reducing software failures,
189–190

step 2: reducing cost and schedule
overruns, 190–191

step 3: improve software quality after
deployment, 191–192

step 4: improve software development
productivity and long schedules,
192, 193

step 5: improve poor software security
and reduce cyber-attacks,
192–193

step 6: stop using metrics that distort
reality, 193–194

step 7: adoption of effective
measurement practices, 194–195

step 8: improvement of estimates
before starting projects, 195–196

step 9: elimination of inaccurate status
tracking, 196

step 10: reduction of maintenance
costs after deployment, 196–197

step 11: elimination of breach of
contract litigation, 197–198

step 12: improvement of university
software education, 198, 199

step 13: improvement of on-the-job
education, 198–199

step 14: software licensing and board
certification, 199–200

step 15: move to standard reusable
components, 200–201

step 16: effective methods for
working at home due to corona
virus, 201

software engineering economics, 65
Software Engineering Institute (SEI,

1984–), xv, 36, 361, 384, 388; see
also CMMI

software engineering laboratory, 218,
221–225

administration, 224
advanced technology, 222
applied technology, 221–222
communications, 223–224
measurements, 222–223
training, 221

Software Engineering Methods and
Theory (SEMAT), 38, 69, 147,
201, 262, 265–266

software engineering tools, 315, 323–324
lagging and leading projects, 330–331
numbers and size ranges, 331, 426

software engineers, 4, 236
accomplishments, 188
reluctance to accept designation, 440
reputation, 106
volumes of software tools utilized, 425
work patterns, 48–55

software enhancements, 345, 374, 384,
394–399

costs, 370
versus “defect repairs”, 345; see also

enhancements
software excellence, 247–274

quantification, 262–265
software excellence stages, 267–273

stage 1: quantification of current
software results, 268–269

stage 2: adoption of state-of-art
methods, 269–271

stage 3: continuous improvement,
271–273

stage 4: formal reuse programs, 273
software failure rate reduction

(professional status
requirement), 189–190

software failures, 1, 209
definition, 85
by size, 190

software goods, definition, 115

486  ◾  Index

Software Improvement Group (SIG), 36
software industry

chronic problem, 68
failure to measure quality and

productivity well enough, 60
main weakness (poor software

quality), 26
steps needed to become true

profession, 78
three major problems, 78–79
worst metrics of any industry, 26, 106

software licensing (professional status
requirement), 199–200

software literature, 34, 316–317, 323,
332, 339

software measurement and metric
patterns (successful), 121–144

activity-based benchmark (example),
132–133

activity-based benchmarks for
development, 125, 132–133

activity-based benchmarks for
maintenance, 134, 135–140

COQ for quality economics, 134–141
defect potentials and DRE, 126–131
defect potentials based on all defect

types, 123, 124
DRE based on all defect types, 123–124
DRE based on 90 days after release,

124–125
DRE including inspections and static

analysis, 124, 126–131
FPs and normalizing productivity

data, 122
FPs for normalizing software quality,

122–123
SRM multi-year sizing example, 144
TCO for software economic

understanding, 141–143, 144
three-year maintenance, enhancement,

and support data, 136–140
work performed under generic term

“maintenance”, 135
software measurement programs, 4
software methodologies, 202, 261–262,

263–264
best practice analysis, 34–36

software metrics, 8, 26–31, 86, 105–168,
200, 202

accurate (professional status
requirement), 194–195

attributes, 30
ceasing to use inaccurate and

invalid (professional status
requirement), 193–194

cost per defect metrics (problems),
148–157

example of multi-metric economic
analysis, 146

high-precision, 29
lacking, 147
needs for future, 143–145
poor (sign of professional

malpractice), 194
primary, 29
supplemental, 29; see also metric

problems
software milestone tracking, 91–96, 98

frequency of reporting, 434
large projects, 93–94
suggested format for monthly status

reports, 95
software non-functional assessment

process (SNAP)
description, 112–113
effectiveness (too early to

pronounce), 284
IFPUG (2012–), 27–28, 39, 68, 69, 73,

107, 108, 116, 120, 122, 133,
142–143, 144, 145, 147, 195,
282, 295–300, 303, 369–370,
373, 376–377, 451

usage (2020), 287–288
software occupation groups, analysis

using FP metrics, 439–441
software portfolio, 231
software productivity, 48, 106, 176, 194,

202, 222, 259, 272, 317,
406–409, 412–415, 447

defining, 115–116, 117–118
effective definition lacking, 105
impact of software reuse, 193

software productivity excellence, 265, 265
software productivity rates, 16

impact of post-employment
professional education, 198–199

Software Productivity Research (SPR), 281
software project cancellations, 3, 23, 24,

36, 47–49, 50, 51, 52, 53, 55, 62,
67, 85, 157, 182–183, 190, 212,
215, 216, 227–228, 233–234,
301, 380–381, 462

Index  ◾  487

effort from project start to point of
cancellation, 401

FPs and forensic analysis, 399–401
odds by size and quality level, 400
probable month of cancellation from

start of project, 400
rates, 4, 457
risk, 438–439

software projects
basic steps to avoid serious mistakes,

97–98
definition, 49
distribution by quality levels, 65
early sizing and estimating, 279–306
historical data, 16
improvement (to lower odds of

litigation), 86
major cost drivers, 23, 24
mission-critical, 269
outcomes, 87
reuse of certified materials, 55–56

software project tools, 20–23
software quality, 4, 16, 32, 36, 68, 147,

176, 202, 212, 231, 447
best metrics, 194
best practice analysis, 34–36
defining, 116–121
effective definition, 119
effective definition lacking, 105
impact of software reuse, 193
improvement after deployment

(professional status
requirement), 191–192

poor, 23–24, 24
poor (loss of time and money), 47–65
poor (true costs), 266
results, 69–71
rigorous set of measures, 120
variations according to application

size, 175–176, 177–183
weakness, 185

software quality assurance (SQA), 128,
319, 440–441

curricula, 71–79
FPs for, 390–394, 395–396
team, xix; see also QA

software quality assurance tools, 316, 324
lagging and leading projects, 332–335

software quality companies, 68
software quality control, 56–64, 79

average, 57–58, 65

excellent, 56–57, 64–65
industries at each level, 64
poor, 58–64, 65
technical success factors, 25–26; see

also quality control
software quality data, 68, 72
software quality differences for best,

average, and poor projects,
252–258

software quality economics, 266, 267
software quality for 1000 FPs, Java, and

Agile development, 121
software quality measure, need for

predictability, measurability,
quantifiability, 119

software quality per thousand FPs, 266
software quality training companies,

68, 71
Software Risk MasterTM (SRM), 14, 20,

37, 62, 72, 86, 107, 109, 113,
119–120, 125, 126, 134, 175,
178, 195–196, 214, 248, 251,
254, 267, 288, 290–292, 294, 300,
309, 312, 318, 352, 361

advanced functions, 16
conversion rules, 281
economic advantages, 284
five years of software maintenance and

enhancement, 397–398
high-end commercial estimation tool,

283–284
high-speed method, 377
high-speed sizing method (features),

372–373
leaves time for risk abatement, 379
lifetime sizing, 302, 303
major features, 15
multi-year sizing example, 303, 376
prediction of customer support

personnel, 362
predictions for corporate portfolios,

402, 403–405
sizes of 100 software applications,

296–300
speed, 304, 463
usage (2020), 287–288; see also

Jones, C.
software risk reduction, 230, 232

implication of phrase, 235–236
software risks

FPs for early analysis, 379–381

488  ◾  Index

master list, 236, 237–244
related to application size, 300, 301

software security improvement
(professional status
requirement), 192–193

software size metrics, variations, 107
software sizing, estimating and project

tracking differences, 248–252;
see also sizing and estimating

software sizing technology, 95–96
software specialists, 442–445

part-time, 383, 446; see also human
resources

software startups, 437–439
common reason for failure, 437

software tax cases, 431
software teams, xviii, 32

best-case, average, or unsophisticated,
437–439

software technology interface point, 219
software technology stack scoring, 37–40
software testing course, 75–76
software testing tools, 316, 324–325

combined approach, 335
lagging and leading projects, 335–336
numbers and size ranges, 336

software tool capacities, 340
software tool classes, taxonomy, 322–325
software tools

best practice analysis, 34–36
finance software project, 318–319
size, 327–328

software tool usage
best-case, average, and worst-case

projects, 327–340
lagging enterprises, 315, 317–319
leading enterprises, 315, 317–319

software usage, 424–429
software usage point metric, 145
software viruses, 203
source code, 55, 92, 96, 153, 159, 258,

279–280, 282, 352
source lines of code, 126
source lines per FP, 126
South America, 324
South Korea, xix, 34, 106, 289, 412, 429
space controls, 57
spaghetti code, 359, 364
SQE, 71
SQL, 293, 304, 418, 420, 422, 444
SRM (FPs as universal metric), 369–466

patterns of tools (successful and
unsuccessful software projects),
427–429

topic 1: sizing application growth
during development and after
release, 375, 376

topic 2: predicting application size in
multiple metrics, 375–376, 377

topic 3: sizing all known types of
software application, 377–379

topic 4: FPs for early analysis of
software risks, 379–381

topic 5: FPs for activity-based sizing
and cost estimating, 381–383

topic 6: FPs and methodology analysis,
384, 385–386

topic 7: FPs for evaluating CMMI,
384–389

topic 8: FPs for SQA, 390–394,
395–396

topic 9: FPs and software maintenance,
enhancements, and TCO,
394–399

topic 10: FPs and forensic analysis of
canceled projects, 399–401

topic 11: portfolio analysis with FP
metrics, 402, 403–405

topic 12: industry studies using FP
metrics, 402, 406–409, 410

topic 13: global studies using FP
analysis, 410, 412–415

topic 14: FPs versus LOC for software
economic analysis, 410–423

topic 15: FPs and software usage and
consumption, 424–429

topic 16: FPs and software outsource
contracts, 429–437

topic 17: FPs and venture funding of
software startups, 437–439

topic 18: FPs for analysis of software
occupation groups, 439–441,
442–446, 448–451

topic 19: data used by Fortune 500
C-level executives, 441, 445–447

topic 20: FPs combined with other
metrics, 447, 452–462

SRM multi-year sizing example, 144
SRM pattern matching, metrics

supported, 377
SRM pattern matching sizing, 37
SRM prototype, 379

Index  ◾  489

SRM quality estimate, 392
SRM sizing, 282–283
SSADM, 385
staff hours, 179

costs, 395–396
per FP, 352

staff inexperience, 250, 360, 391, 439
staff months, 416
standard economics, 27, 113, 115, 121,

146, 149, 152, 156, 390, 396,
416, 423

Starr, Paul: Social Transformation of
American Medicine (1982), 78,
186–187, 202

state governments (United States), 88,
267, 350

state-of-art quality tools and methods,
269–271

defect prevention, 269–270
formal sizing, estimating, tracking, 269
pre-test defect removal, 270
test defect removal, 270

static analysis, xviii, 57–58, 60–64, 68,
70–71, 73, 79, 89, 91, 124, 127,
132, 191, 194, 198, 216, 221,
226, 229, 252, 254, 258, 267,
270–271, 312, 313, 319, 349,
357–358, 360, 361, 363, 382,
392, 399, 401, 427–429, 457, 461

omission (problems caused), 91
pre-test, 90, 98, 452
success rate, 256

static analysis companies, 77
static analysis tools, 316, 324–325,

334–335, 336
discovery of structural defects, 325
geriatric software care, 344

status reports, 428–429, 455
formal, signed by project managers

(best technical choice), 434
suggested monthly format, 433–437

status tracking, 198
elimination of inaccurate (professional

status requirement), 196
stock trading software, 59, 63, 64
story point metrics, 40

description, 113
hazards, 286

story points, 28, 30–31, 107, 115,
125, 283–284, 295, 373, 377,
447, 463

combined with FP metric, 458
erratic metric, 194

structural complexity, 350
Studio 38 (game company), 437
successful software project, definition of

“success”, 427
Swift language, 192, 194
system testing, 129, 133

T

taxonomy of software applications,
description, 113–114

team morale, 224, 234, 241, 301, 357,
360, 449

team software process (TSP), 11–12, 15,
38, 58, 74, 90, 226, 254, 256,
261–262, 263–264, 293, 304,
312, 344, 361, 381, 386, 390,
427, 450

technical debt, 28, 40, 141, 182, 265–267,
301, 390, 399, 448, 462

description, 114
hazards, 286
unsatisfactory metric, 194

technical debt per thousand FPs, 266
technical writers, 291
technology risks, 244
telecommunications, 282–283, 312
telephone systems, 18, 312, 373–374, 410
test cases, 26, 94, 119–120, 149–150,

152, 155, 157, 180–181, 194,
255, 257, 261, 290–291, 336,
395–396, 427, 429, 452

test codes, 281
test coverage tools, 361, 427, 429
test cycles, 150, 190, 392, 394, 395, 461
test defect removal, 128–131, 312

costs, 141
state-of-art quality tool and

method, 270
test-driven development (TDD),

263–264, 304
testing, 47, 53, 57–58, 60, 91, 96, 124,

151, 198, 229, 252, 267, 463
assignment scope using FPs, 289
cost per FP, 289
eight types, 90
formal, 61–64, 68, 79, 194, 252, 312
inefficiency, 191
informal, 61–64

490  ◾  Index

work hours per FP, 292
testing durations, 401
testing excellence, 57
testing tools, 315, 339
test libraries, 90, 359
test removal, 313, 391–392
test schedules, 252

cost savings, 60
test stages, 58, 253–254, 256–257
test tool companies, 77
Thompson, Ken, 12
time, 26, 149–150
time and motion studies, 148, 152
time wastage, 47–65
Torvalds, Linus, 12
total cost of ownership (TCO), 29, 37,

106–108, 141–143, 144,
146–147, 196, 272, 287, 301,
302, 304, 362–364, 370, 374,
394–399, 448, 463

total quality management (TQM), 334, 445
traditional software risks, 239
training, 125, 243, 270–271, 360, 371

in-house, 4, 215, 219–221, 226–227
improvement, 7–36
on-the-job, 188–189
productivity benefits, 271; see also

professional education
translation issues, 454
transportation sector, 384
True Price, 14, 86, 109, 251
TRW, 14, 280
Turk, Charles, xix, 13–14, 280, 411
T-VEC, 263–264, 385
Twitter, 300, 379

U

Ukraine, 118, 306, 414
Unadjusted FPs, 111
unhappy customers, 4, 212, 380–381,

438–439
unified modeling language (UML), 107,

222, 295
United States, xix, 25, 34, 118, 120,

194–195–196, 225, 233, 253, 264,
283, 289, 292, 306, 312, 323,
335, 343, 410, 412

automobile mechanics analogy, 344
defect potentials, 124, 289, 290, 310
distribution of outsource results after

24 months, 431

DRE ranges by application size,
311, 312

economy, 23
federal government, 248
local governments, 248
personal ownership of software

(2013), 424
state governments, 248
work hours per month, 291

United States’ Navy, 17, 57
unit testing, 128, 133, 153
universities, 15, 145–146, 191, 283
university curricula, 76–77
university curricula deficiencies, 72, 77
university software education,

improvement (professional
status requirement), 198, 199

UNIX, 12, 351
unpaid overtime, 357, 359, 360, 383
usability testing, 129
use-case metrics, 40

hazards, 286
use-case points, 28, 30–31, 107, 115,

125, 295, 373, 377, 447,
458, 463

description, 114
erratic metric, 194

user documents, 453
user errors, 155
user information plan, 93
user information review, 94
user stories, 28, 113

V

value metrics, 145, 146
velocity, 28, 458

description, 114
venture capital, 244, 437–439, 460–462
Viet Nam, 117, 306, 414
Visual Basic, 163, 167, 285, 298, 304,

418, 420, 422

W

warranty costs, 141, 233
wastage, 47–65
Waterfall, 29, 49, 58, 90, 113, 192, 200,

256, 261–262, 264, 273, 304,
381, 385, 390, 428

maintenance work, 361
SRM defect prediction, 391

Index  ◾  491

Watson Jr., Thomas J., 410
weapons, 57, 90, 294, 312, 378
web sites, 145
Weinberg, Gerald M., 189, 221

Psychology of Computer Programming
(1971), 12

Wikipedia, 186–187, 299, 378
within-budget delivery, xviii, 284
word processing, 337, 338, 339
work hours per FP, 115–116, 117–118,

125, 132–133, 179, 192,
193, 194–195, 260, 291–292,
382–383, 429, 441

work hours per KLOC, 132–133,
160–164

work hours per month, 116, 117–118
working from home, 48, 283
works hours per FP, 160–164
worst-case patterns of software

development, 1–203
advancing software from craft to

profession, 185–203
breach of contract litigation (defenses),

85–97
poor software quality (root causes),

67–83

software metrics (mess), 105–168
software project management,

challenges, 3–45
variations in software costs and quality

by application size
wastage, 47–65

worst practices, 34, 85

X

XP; see extreme programming

Y

year 2000 maintenance problem, 324, 332,
347, 350, 364

Z

zero defects, 26, 56, 96–97, 149, 192, 232,
258–259, 271, 273, 285, 410, 433

case study, 152–156
Zillow data base (real estate costs),

292, 374
Zoom, 8, 10, 48, 61, 63, 65, 201, 283,

309, 312

https://taylorandfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Appreciation and Acknowledgments
	Preface
	Biography
	Part 1: Worst-Case Patterns of Software Development
	Chapter 1: Challenges of Software Project Management
	Improving Software Project Management Tools and Training
	Initial Education for New Project Managers
	Continuing Education for Software Project Managers
	Guest Lectures from Visiting Experts (Remotely via Zoom or Other Tools)
	Acquisition and Use of Software Parametric Estimation Tools
	Acquisition and Use of Progress and Milestone Tracking Tools
	The Use of Formal Project Offices (PMOs) for Applications >1,000 Function Points
	Use and Measurement of Effective Quality Control Methods
	Elimination of Bad Metrics and Adoption of Effective Software Metrics
	Primary Software Metrics for High Precision
	Supplemental Software Metrics for High Precision
	Commissioning Annual Software Benchmark Studies
	Formal Best Practice Analysis of Software Tools, Methods, and Quality

	Summary and Conclusions on Software Project Management
	Suggested Readings on Software Project Management
	Suggested Web Sites

	Chapter 2: Wastage: Lost Time and Money Due to Poor Software Quality
	Introduction
	Analyzing the Work Patterns of Software Engineers and Programmers
	Reuse of Certified Materials for Software Projects
	Achieving Excellence in Software Quality Control
	Excellent Quality Control
	Average Quality Control
	Poor Quality Control

	Summary and Conclusions

	Chapter 3: Root Causes of Poor Software Quality
	Introduction
	Software Quality Education Curricula
	References and Readings in Software Quality Control

	Chapter 4: Defenses Against Breach of Contract Litigation
	Introduction
	Problem 1: Estimating Errors and Estimate Rejection
	Problem 2: Missing Defensible Objective Benchmarks
	Problem 3: Rapidly Changing Requirements
	Problem 4: Poor Quality Control
	Problem 5: Poor Software Milestone Tracking
	Problem 6: Flawed Outsource Agreements that Omit Key Topics
	Summary and Observations Based on Breach of Contract Litigation
	Suggested Readings
	Web Sites
	Suggested Web Sites

	Chapter 5: The Mess of Software Metrics
	Introduction
	Defining Software Productivity
	Defining Software Quality
	Patterns of Successful Software Measurements and Metrics
	Successful Software Measurement and Metric Patterns
	Function Points for Normalizing Productivity Data
	Function Points for Normalizing Software Quality
	Defect Potentials Based on all Defect Types
	Defect Removal Efficiency (DRE) Based on All Defect Types
	Defect Removal Efficiency Including Inspections and Static Analysis
	Defect Removal Efficiency Based on 90 Days after Release
	Activity-Based

Benchmarks for Development

	Needs for Future Metrics
	Summary and Conclusions
	Why Cost per Defect Penalizes Quality
	Case A: Poor Quality
	Case B: Good Quality
	Case C: Zero Defects

	Using Function Point Metrics for Defect Removal Economics
	The Value of Quality for Large Applications of 10,000 Function Points
	Appendix B: Side-by-SideComparisons of 79Languages using LOC and Function Points
	References and Readings
	Books and monographs by Capers Jones

	Monographs by Capers Jones 2012–2020 available from Namcook Analytics LLC
	Books by Other Authors
	Software Benchmark Providers (listed in alphabetic order)

	Chapter 6: Variations in Software Costs and Quality by Application Size
	Introduction
	Summary and Conclusions
	References and Readings

	Chapter 7: Advancing Software from a Craft to a Profession
	Introduction
	What Are the Indicators of a Profession?
	Why Software Engineering in Not Yet a Profession
	Topic 1: Reduce the Many Software Failures
	Topic 2: Reduce Cost and Schedule Overruns
	Topic 3: Improve Software Quality after Deployment
	Topic 4: Improve Today’s Low Software Development Productivity and Long Schedules
	Topic 5: Improve Poor Software Securityand Reduce Cyber-Attacks
	Topic 6: Stop Using Inaccurate and Invalid Metrics That Distort Reality
	Topic 7: Adopt Accurate Metrics and Effective Measurement Practices
	Topic 8: Improve Inaccurate and Optimistic Estimates before Starting Projects
	Topic 9: Eliminate Inaccurate Status Tracking
	Topic 10: Reduce High Maintenance Costs after Deployment
	Topic 11: Reduce or Eliminate Litigation from Unhappy Clients
	Topic 12: Improve Undergraduate and Graduate Software Education
	Topic 13: Improve Post-Graduateand On-the-JobSoftware Education
	Topic 14: Introduce Software Licensing and Board Certification
	Topic 15: Move from Custom and Manual Development to Standard Reusable Components
	Topic 16: Develop Effective Methods for Working at Home Due To Corona Virus
	Summary and Conclusions on Software Professionalism

	References and Readings on Software and Selected Texts on Medical Practice

	Part 2: Best-Case Patterns of Software Development
	Chapter 8: Corporate Software Risk Reduction in a Fortune 500 Company
	Introduction
	A National Talent Search
	Fact Finding and Software Assessments
	Software Applications in Use
	The Initial Report to the Chairman
	Corporate Software Risk Factors Found by the Initial Assessment
	The Corporate Risk Reduction Strategy: Fix Quality First
	Four-Year Software Risk Reduction Targets
	Creating a Software Engineering Laboratory
	Education
	Applied Technology
	Advanced Technology
	Measurements
	Communications
	Administration

	Results of the Corporate Risk Reduction Program
	Cost Justifying a Corporate Risk Reduction Program
	Cost Recovery on the Development Side
	Cost Recovery on the Maintenance Side
	Asset Value of a Library of Reusable Artifacts
	Adding Value through Shorter Development Schedules
	Adding Value through Higher Revenues
	Adding Value from Disaster Avoidance
	Adding Value from Reduced Litigation Risk
	Adding Value from Improved Staff and Management Morale
	Adding Value from Recruiting and Keeping Top-Ranked Personnel
	Adding Value from Customer Loyalty
	Overall Value from Effective Process Improvements

	Summary and Conclusions
	Appendix A: Master List of 210 CorporateSoftware Risks
	References and Readings

	Chapter 9: Achieving Software Excellence
	Introduction
	Software Sizing, Estimating, and Project Tracking Differences
	Software Quality Differences for Best, Average, and Poor Projects
	Excellent Quality Control
	Average Quality Control
	Poor Quality Control

	Reuse of Certified Materials for Software Projects
	Reusable Software Artifacts Circa 2019
	Software Methodologies
	Quantifying Software Excellence
	The Metaphor of Technical Debt
	Stages in Achieving Software Excellence
	Stage 1: Quantify Your Current Software Results
	Stage 2: Begin to Adopt State of the Art Quality Tools and Methods
	Formal Sizing, Estimating, and Tracking
	Defect Prevention
	Pre-test Defect Removal
	Test Defect Removal

	Stage 3: Continuous Improvements Forever

	Going Beyond Stage 3 into Formal Reuse Programs
	Summary and Conclusions
	References and Readings

	Chapter 10: Early Sizing and Estimating of Software Projects
	Introduction
	1950 to 1959
	1960 to 1969
	1970 to 1979
	1980 to 1989
	1990 to 1999
	2000 to 2010

	The State of the Art of Sizing and Estimating from 2010 to 2020
	Hazards of Older Metrics
	Metrics Used with Function Point Analysis
	Assignment Scope
	Cost per Function Point
	Defect Potentials
	Defect Removal Efficiency (DRE)
	Function Points per Month
	Production Rate
	Requirements Creep
	Work Hours per Function Point

	Application Sizing Using Pattern Matching
	Early Risk Analysis
	Lifetime Sizing with Software Risk Master™
	Economic Modeling with Software Risk Master
	The Future of Sizing and Estimating Software with Function Points
	Summary and Conclusions
	References and Readings
	Additional Literature

	Chapter 11: Optimizing Software Defect Removal Efficiency (DRE)
	Introduction
	Summary and Conclusions
	Introduction
	Project Management Tools
	Software Engineering Tools
	Software Maintenance Engineering Tools
	Software Quality Assurance Tools
	Software Testing and Static Analysis Tools
	Software Documentation Tools
	Commercial Tools

	Performance of Lagging, Average, and Leading Projects
	Average Software Projects
	Leading Software Projects
	Lagging Software Projects

	A Taxonomy of Software Tool Classes
	Project Management Tools
	Software Engineering Tools
	Software Maintenance Engineering Tools
	Software Quality Assurance Tools
	Software Testing and Static Analysis Tools
	Software Documentation Tools

	References and Readings

	Chapter 12: Tool Usage on Best-Case, Average, and Worst-Case Projects
	Project Management Tools on Lagging and Leading Projects
	Software Engineering Tools on Lagging and Leading Projects
	Software Maintenance Engineering Tools on Lagging and Leading Projects
	Software Quality Assurance Tools on Lagging and Leading Projects
	Software Testing Tools on Lagging and Leading Projects
	Software Documentation Tools on Lagging and Leading Projects
	Overall Tool Differences between Laggards and Leaders
	Summary and Conclusions
	References and Readings

	Chapter 13: Geriatric Care for Aging Software
	Introduction
	What Is Software Maintenance?
	Geriatric Problems of Aging Software

	Metrics Problems with Small Maintenance Projects
	Metrics Problems with ERP Maintenance

	Best and Worst Practices in Software Maintenance
	Methodologies That Are Maintenance-Strong and Maintenance-Weak
	Customer Support: A Major Maintenance Weakness

	Software Entropy and Total Cost of Ownership
	Summary and Conclusions
	References and Books by Capers Jones That Discuss Software Maintenance
	Books by Additional Authors
	Readings on Software Maintenance

	Chapter 14: Function Points as a Universal Metric
	Introduction
	The Strengths of Function Point Metrics
	The Weaknesses of Function Point Metrics

	A New Method for High-SpeedFunction Point Analysis
	A Short Summary of Pattern Matching
	Increasing Executive Awareness of Function Points for Economic Studies
	Topic 1: Sizing Application Growth during Development and After Release
	Topic 2: Predicting Application Size in Multiple Metrics
	Topic 3: Sizing All Known Types of Software Application
	Topic 4: Function Points for Early Analysis of Software Risks
	Topic 5: Function Points for Activity-BasedSizing and Cost Estimating
	Topic 6: Function Points and Methodology Analysis
	Topic 7: Function Points for Evaluating the Capability Maturity Model (CMMI ®)
	Topic 8: Function Points for Software Quality Analysis
	Topic 9: Function Points and Software Maintenance, Enhancements, and Total Cost of Ownership (TCO)
	Topic 10: Function Points and Forensic Analysis of Canceled Projects
	Topic 11: Portfolio Analysis with Function Point Metrics
	Topic 12: Industry Studies Using Function Point Metrics
	Topic 13: Global Studies Using Function Point Analysis
	Topic 14: Function Points versus Lines of Code (LOC) for Software Economic Analysis
	Topic 15: Function Points and Software Usage and Consumption
	Patterns of Tools Noted on Successful Software Projects
	Patterns of Tools Noted on Unsuccessful Projects
	Topic 16: Function Points and Software Outsource Contracts
	Suggested Format for Monthly Status Reports for Software Projects
	Topic 17: Function Points and Venture Funding of Software Startups
	Topic 18: Function Points for Analysis of Software Occupation Groups
	Topic 19: Data Used by Fortune 500 C-LevelExecutives
	Topic 20: Combining Function Points with Other Metrics
	Function Points and Defect Removal Efficiency (DRE)
	Function Points and Natural Metrics such as “Document Pages”
	Function Points and Goal Question Metrics (GQM)
	Function Points and Earned Value Analysis (EVA)
	Function Points, Story Points, and Velocity on Agile Projects
	Function Points and Return on Investment (ROI)
	Case 1: Software Improves Operational Performance
	Case 2: Software Generates Direct and Indirect Revenues Streams

	Summary and Conclusions
	References and Readings
	Additional Literature

	Index

