

SQL in a Nutshell
A Desktop Quick Reference

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

Kevin Kline, Regina O. Obe, and Leo S. Hsu

SQL in a Nutshell
by Kevin Kline, Regina O. Obe, and Leo S. Hsu

Copyright © 2021 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Andy Kwan

Development Editor: Rita Fernando

Production Editor: Beth Kelly

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

November 2021: Fourth Edition

Revision History for the Early Release
2021-07-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492088868 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. SQL in a
Nutshell, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492088868

used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-492-08879-0

[FILL IN]

Chapter 1. SQL History and
Implementations

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or
if you notice missing material within this chapter, please reach out to the editor at
rfernando@oreilly.com.

In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd
led to the development of a relational data model product called SEQUEL, or
Structured English Query Language. SEQUEL ultimately became SQL, or
Structured Query Language.

IBM, along with other relational database vendors, wanted a standardized
method for accessing and manipulating data in a relational database.
Although IBM was the first to develop relational database theory, Oracle was
first to market the technology. Over time, SQL proved popular enough in the
marketplace to attract the attention of the American National Standards
Institute (ANSI) in cooperation with the International Standards Organization
(ISO), which released standards for SQL in 1986, 1989, 1992, 1999, 2003,
2006, 2011, and 2016.

Since 1986, various competing languages have allowed developers to access
and manipulate relational data. However, few were as easy to learn or as
universally accepted as SQL. Programmers and administrators now have the
benefit of being able to learn a single language that, with minor adjustments,
is applicable to a wide variety of database platforms, applications, and
products.

SQL in a Nutshell, Fourth Edition, provides the syntax for five common
implementations of SQL:

The ANSI/ISO SQL standard

MySQL version 8 and MariaDB 10.5

Oracle Database 19c

PostgreSQL version 13

Microsoft’s SQL Server 2019

The Relational Model and ANSI SQL
Relational database management systems (RDBMSs) such as those covered
in this book are the primary engines of information systems worldwide, and
particularly of web applications and distributed client/server computing
systems. They enable a multitude of users to quickly and simultaneously
access, create, edit, and manipulate data without impacting other users. They
also allow developers to write useful applications to access their resources
and provide administrators with the capabilities they need to maintain, secure,
and optimize organizational data resources.

An RDBMS is defined as a system whose users view data as a collection of
tables related to each other through common data values. Data is stored in
tables, which are composed of rows and columns. Tables of independent data
can be linked (or related) to one another if they each have unique, identifying
columns of data (called keys) that represent data values held in common. E. F.
Codd first described relational database theory in his landmark paper “A
Relational Model of Data for Large Shared Data Banks,” published in the
Communications of the ACM (Association for Computing Machinery) in
June, 1970. Under Codd’s new relational data model, data was structured
(into tables of rows and columns); manageable using operations such as
selections, projections, and joins; and consistent as the result of integrity rules
such as keys and referential integrity. Codd also articulated rules that

governed how a relational database should be designed. The process for
applying these rules is now known as normalization.

Codd’s Rules for Relational Database Systems
Codd applied rigorous mathematical theories (primarily set theory) to the
management of data, and he compiled a list of criteria a database must meet
to be considered relational. At its core, the relational database concept centers
around storing data in tables. This concept is now so common as to seem
trivial; however, not long ago the goal of designing a system capable of
sustaining the relational model was considered a long shot with limited
usefulness.

Following are Codd’s Twelve Principles of Relational Databases:
1. Information is represented logically in tables.

2. Data must be logically accessible by table, primary key, and column.

3. Null values must be uniformly treated as “missing information,” not as
empty strings, blanks, or zeros.

4. Metadata (data about the database) must be stored in the database just
as regular data is.

5. A single language must be able to define data, views, integrity
constraints, authorization, transactions, and data manipulation.

6. Views must show the updates of their base tables and vice versa.

7. A single operation must be available to do each of the following
operations: retrieve data, insert data, update data, or delete data.

8. Batch and end-user operations are logically separate from physical
storage and access methods.

9. Batch and end-user operations can change the database schema without
having to recreate it or the applications built upon it.

10. Integrity constraints must be available and stored in the metadata, not in
an application program.

11. The data manipulation language of the relational system should not care
where or how the physical data is distributed and should not require
alteration if the physical data is centralized or distributed.

12. Any row processing done in the system must obey the same integrity
rules and constraints that set-processing operations do.

These principles continue to be the litmus test used to validate the
“relational” characteristics of a database platform; a database that does not
meet all of these rules is not fully relational. While these rules do not apply to
applications development, they do determine whether the database engine
itself can be considered truly “relational.” Currently, most commercial
RDBMS products pass Codd’s test. All platforms discussed in the reference
material of SQL in a Nutshell, Fourth Edition satisfy these requirements,
while the most prominent NoSQL data platforms are discovered in Chapter 9.

Understanding Codd’s principles assists developers in the proper
development and design of relational databases (RDBs). The following
sections detail how some of these requirements are met within SQL using
RDBs.

Data structures (rules 1, 2, and 8)
Codd’s rules 1 and 2 state that “information is represented logically in tables”
and that “data must be logically accessible by table, primary key, and
column.” So, the process of defining a table for a relational database does not
require that programs instruct the database how to interact with the
underlying physical data structures. Furthermore, SQL logically isolates the
processes of accessing data and physically maintaining that data, as required
by rule 8: “batch and end-user operations are logically separate from physical
storage and access methods.”

In the relational model, data is shown logically as a two-dimensional table
that describes a single entity (for example, business expenses). Academics
refer to tables as entities and to columns as attributes. Tables are composed

of rows, or records (academics call them tuples), and columns (called
attributes, since each column of a table describes a specific attribute of the
entity). The intersection of a record and a column provides a single value.
However, it is quite common to hear this referred to as a field, from
spreadsheet parlance. The column or columns whose values uniquely identify
each record can act as a primary key. These days this representation seems
elementary, but it was actually quite innovative when it was first proposed.

The SQL standard defines a whole data structure hierarchy beyond simple
tables, though tables are the core data structure. Relational design handles
data on a table-by-table basis, not on a record-by-record basis. This table-
centric orientation is the heart of set programming. Consequently, almost all
SQL commands operate much more efficiently against sets of data within or
across tables than against individual records. Said another way, effective SQL
programming requires that you think in terms of sets of data, rather than of
individual rows.

Figure 1-1 is a description of SQL’s terminology used to describe the
hierarchical data structures used by a relational database: clusters contain sets
of catalogs; catalogs contain sets of schemas; schemas contain sets of
objects, such as tables and views; and tables are composed of sets of columns
and records.

Figure 1-1. SQL3 dataset hierarchy

For example, in a Business_Expense table, a column called Expense_Date
might show when an expense was incurred. Each record in the table describes
a specific entity; in this case, everything that makes up a business expense
(when it happened, how much it cost, who incurred the expense, what it was
for, and so on).

Each attribute of an expense—in other words, each column—is supposed to
be atomic; that is, each column is supposed to contain one, and only one,
value. If a table is constructed in which the intersection of a row and column
can contain more than one distinct value, one of SQL’s primary design
guidelines has been violated. Some of the database platforms discussed in
this book do allow you to place more than one value into a column, via the
VARRAY or TABLE data types or, more common in the last several years,
XML or JSON data types.

Rules of behavior are specified for column values. Foremost is that column
values must share a common domain, better known as a data type. For
example, if the Expense_Date field is defined as having a DATE data type,
the value ELMER should not be placed into that field because it is a string,
not a date, and the Expense_Date field can contain only dates. In addition,
the SQL standard allows further control of column values through the
application of constraints (discussed in detail in Chapter 2) and assertions. A
SQL constraint might, for instance, limit Expense_Date to expenses less than
a year old. Additionally, data access for all individuals and computer
processes is controlled at the schema level by an AuthorizationID or user.
Permissions to access or modify specific sets of data may be granted or
restricted on a per-user basis.

SQL databases also employ character sets and collations. Character sets are
the “symbols” or “alphabets” used by the “language” of the data. For
example, the American English character set does not contain the special
character for ñ in the Spanish character set. Collations are sets of sorting rules
that operate on a character set. A collation defines how a given data
manipulation operation sorts data. For example, an American English

character set might be sorted either by character-order, case-insensitive, or
by character-order, case-sensitive.

NOTE
The ANSI/ISO standard does not say how data should be sorted, only that platforms must
provide common collations found in a given language.

It is important to know what collation you are using when writing SQL code
against a database platform, as it can have a direct impact on how queries
behave, and particularly on the behavior of the WHERE and ORDER BY
clauses of SELECT statements. For example, a query that sorts data using a
binary collation will return data in a very different order than one that sorts
data using, say, an American English collation. This is also very important
when migrating SQL code between database platforms since their default
behavior may vary widely. For example, Oracle is normally case-sensitive,
while Microsoft SQL Server is not case sensitive. So moving an unmodified
query from Oracle to SQL Server might produce a wildly different result set
because Oracle would evaluate “Halloween” and “HALLOWEEN” as two
unequal values, whereas SQL Server would see them as equal, by default.

NULLs (rule 3)
Most databases allow any of their supported data types to store NULL values.
Inexperienced SQL developers tend to think of NULL as zero or blank. In
fact, NULL is neither of these. In SQL, NULL literally means that the value
is unknown or indeterminate. (This question alone—whether NULL should
be considered unknown or indeterminate—is the subject of much academic
debate.) This differentiation enables a database designer to distinguish
between those entries that represent a deliberately placed zero, for example,
and those where either the data is not recorded in the system or a NULL has
been explicitly entered. As an illustration of this semantic difference,
consider a system that tracks payments. If a product has a NULL price, that
does not mean the product is free; instead, a NULL price indicates that the
amount is not known or perhaps has not yet been determined.

NOTE
There is a good deal of differentiation between the database platforms in terms of how
they handle NULL values. This leads to some major porting issues between those
platforms relating to NULLs. For example, an empty string (i.e., a NULL string) is
inserted as a NULL value on Oracle. All the other databases covered in this book permit
the insertion of an empty string into VARCHAR and CHAR columns.

One side effect of the indeterminate nature of a NULL value is that it cannot
be used in a calculation or a comparison. Here are a few brief but very
important rules, from the ANSI/ISO standard, to remember about the
behavior of NULL values when dealing with NULLs in SQL statements:

A NULL value cannot be inserted into a column defined with NOT NULL
constraint.

NULL values are not equal to each other. It is a frequent mistake to
compare two columns that contain NULL and expect the NULL values to
match. (The proper way to identify a NULL value in a WHERE clause or
in a Boolean expression is to use phrases such as “value IS NULL” and
“value IS NOT NULL”.)

A column containing a NULL value is ignored in the calculation of
aggregate values such as AVG, SUM, or MAX COUNT.

When columns that contain NULL values are listed in the GROUP BY
clause of a query, the query output contains a single row for NULL
values. In essence, the ANSI/ISO standard considers all NULLs found to
be in a single group.

DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL
values as indistinguishable from each other. With the ORDER BY clause,
the vendor is free to choose whether NULL values sort high (first in the
result set) or sort low (last in the result set) by default.

Metadata (rules 4 and 10)

Codd’s fourth rule for relational databases states that data about the database
must be stored in standard tables, just as all other data is. Data that describes
the database itself is called metadata. For example, every time you create a
new table or view in a database, records are created and stored that describe
the new table. Additional records are needed to store any columns, keys, or
constraints on the table. This technique is implemented in most commercial
and open source SQL database products. For example, SQL Server uses what
it calls “system tables” to track all the information about the databases, tables,
and database objects in any given database. It also has “system databases”
that keep track of information about the server on which the database is
installed and configured. In addition to system tables, the SQL standard
defines a set of basic metadata available through a widely adopted set of
views referenced in the schema called Information_Schema.

Notably, Oracle (since 2015) and IBM DB2 do not support the SQL standard
information schema.

The language (rules 5 and 11)
Codd’s rules do not require SQL to be used with a relational database. His
rules, particularly rules 5 and 11, only specify how the language should
behave when coupled with a relational database. At one time SQL competed
with other languages (such as Digital’s RDO and Fox/PRO) that might have
fit the relational bill, but SQL won out, for three reasons. First, SQL is a
relatively simple, intuitive, English-like language that handles most aspects
of data manipulation. If you can read and speak English, SQL simply makes
sense. Second, SQL is satisfyingly high-level. A developer or database
administrator (DBA) does not have to spend time ensuring that data is stored
in the proper memory registers or that data is cached from disk to memory;
the database management system (DBMS) handles that task automatically.
Finally, because no single vendor owns SQL, it was adopted across a number
of platforms ensuring broad support and wide popularity.

Views (rule 6)
A view is a virtual table that does not exist as a physical repository of data,
but is instead constructed on the fly from a SELECT statement whenever that

view is queried. Views enable you to construct different representations of
the same source data for a variety of audiences without having to alter the
way in which the data is stored.

NOTE
Some vendors support database objects called materialized views. Don’t let the similarity
of terms confuse you; materialized views are not governed by the same rules as ANSI/ISO
standard views.

Set operations (rules 7 and 12)
Other database manipulation languages, such as the venerable Xbase,
perform their data operations quite differently from SQL. These languages
require you to tell the program exactly how to treat the data, one record at a
time. Since the program iterates down through a list of records, performing
its logic on one record after another, this style of programming is frequently
called row, processing or procedural programming.

In contrast, SQL programs operate on logical sets of data. Set theory is
applied in almost all SQL statements, including SELECT, INSERT, UPDATE,
and DELETE statements. In effect, data is selected from a set called a “table.”
Unlike the row-processing style, set processing allows a programmer to tell
the database simply what is required, not how each individual piece of data
should be handled. Sometimes set processing is referred to as declarative
processing, since a developer declares only what data is wanted (as in
declaration, “Return all employees in the southern region who earn more than
$70,000 per year”) rather than describing the exact steps used to retrieve or
manipulate the data.

NOTE
Set theory was the brainchild of mathematician Georg Cantor, who developed it at the end
of the nineteenth century. At the time, set theory (and Cantor’s theory of the infinite) was
quite controversial. Today, set theory is such a common part of life that it is learned in
elementary school. Things like card catalogs, the Dewey Decimal System, and
alphabetized phone books are all simple and common examples of applied set theory.

Relational databases use relational algebra and tuple relational calculus to mathematically
model the data in a given database and queries acting upon that data. These theories were
also introduced by E. F. Codd along with his twelve rules for relational databases.

Examples of set theory in conjunction with relational databases are detailed
in the following section.

Codd’s Rules in Action: Simple SELECT Examples
Up to this point, this chapter has focused on the individual aspects of a
relational database platform as defined by Codd and implemented under
ANSI/ISO SQL. This following section presents a high-level overview of the
most important SQL statement, SELECT, and some of its most salient points
—namely, the relational operations known as projections, selections, and
joins:

Projection
Retrieves specific columns of data

Selection
Retrieves specific rows of data

Join
Returns columns and rows from two or more tables in a single result set

Although at first glance it might appear as though the SELECT statement
deals only with the relational selection operation, in actuality, SELECT deals
with all three operations.

The following statement embodies the projection operation by selecting the
first and last names of an author, plus their home state, from the authors
table:

 SELECT au_fname, au_lname, state
 FROM authors;

The results from any such SELECT statement are presented as another table
of data:

 au_fname au_lname state
 ---------------- -------------------- ----------------
 Johnson White CA
 Marjorie Green CA
 Cheryl Carson CA
 Michael O'Leary CA
 Meander Smith KS
 Morningstar Greene TN
 Reginald Blotchet-Halls OR
 Innes del Castillo MI

The resulting data is sometimes called a result set, work table, or derived
table, differentiating it from the base table in the database that is the target of
the SELECT statement.

It is important to note that the relational operation of projection, not selection,
is specified using the SELECT clause (that is, the keyword SELECT followed
by a list of expressions to be retrieved) of a SELECT statement. Selection—
the operation of retrieving specific rows of data—is specified using the
WHERE clause in a SELECT statement. WHERE filters out unwanted rows of
data and retrieves only the requested rows. Continuing with the previous
example, the following statement selects authors from states other than
California:

 SELECT au_fname, au_lname, state
 FROM authors
 WHERE state <> 'CA';

Whereas the first query retrieved all authors, the result of this second query is
a much smaller set of records:

 au_fname au_lname state
 ---------------- ------------------------- ------------
 Meander Smith KS
 Morningstar Greene TN
 Reginald Blotchet-Halls OR
 Innes del Castillo MI

By combining the capabilities of projection and selection in a single query,
you can use SQL to retrieve only the columns and records that you need at
any given time.

Joins are the next, and last, relational operation covered in this section. A join
relates one table to another in order to return a result set consisting of related
data from both tables.

NOTE
Different vendors allow you to join varying numbers of tables in a single join operation.
For example, older database platforms topped out at 256 tables join operations in a given
query. Today, most database platforms are limited only by available system resources.

However, keep in mind that your database engine will consume more system resources
and incur more latency the more tables you join in a single query. For example, a single
SELECT statement joining 12 tables will have to consider up to 28,158,588,057,600
possible join orders. Consequently, many experienced SQL developers try to limit their
SELECT statements to no more than 6 joins. When a SELECT statement exceeds 6 joins,
they usually break the query into multiple distinct queries for faster processing.

The ANSI/ISO standard method of performing joins is to use the JOIN clause
in a SELECT statement. An older method, sometimes called a theta join,
analyzes the join search argument in the WHERE clause. The following
example shows both approaches. Each statement retrieves employee
information from the employee base table as well as job descriptions from
the jobs base table. The first SELECT uses the newer, ANSI/ISO JOIN
clause, while the second SELECT uses a theta join:

 -- ANSI style
 SELECT a.au_fname, a.au_lname, t.title_id
 FROM authors AS a
 JOIN titleauthor AS t ON a.au_id = t.au_id
 WHERE a.state <> 'CA';
 -- Theta style
 SELECT a.au_fname, a.au_lname, t.title_id
 FROM authors AS a,
 titleauthor AS t
 WHERE a.au_id = t.au_id
 AND a.state <> 'CA';

Although theta joins are universally supported across the various platforms
and incur no performance penalty, it is considered an inferior coding pattern
because anyone reading or maintaining the query cannot immediately discern
the arguments used to define the join condition from those used as filtering
conditions.

For more information about joins, see the “JOIN Subclause” section in
Chapter 4.

History of the SQL Standard
In response to the proliferation of SQL dialects, ANSI published its first SQL
standard in 1986 to bring about greater conformity among vendors. This was
followed by a second, widely adopted standard in 1989. The International
Standards Organization (ISO) also later approved the SQL standard in 1987.
ANSI/ISO released their first joint update in 1992, also known as SQL:1992,
SQL92, or SQL2. Another release came in 1999, termed SQL:1999, SQL99,
or SQL3. The next update, made in 2003, is referred to as SQL:2003, and so
on.

Each time it revises the SQL standard, ANSI/ISO adds new features and
incorporates new commands and capabilities into the language. For example,
the SQL:99 standard added a group of capabilities that handled object-
oriented data type extensions. Interestingly, though the ANSI/ISO standards
body often defines new parts to the SQL standard, not every part is released
nor, once released, does every part see widespread adoption.

What’s New in SQL:2016
The ANSI/ISO standards body that regulates SQL issued a new standard in
2016, which described an entirely new functional area of behavior for the
SQL standard, namely, how SQL interacts with JSON (JavaScript Object
Notation). Of the 44 new features in this release, half detail JSON
functionality. The SQL:2016 standard defines storage data types, functions
and syntax for ingesting and querying JSON in a SQL database. In the same
way that the SQL:2006 standard defined the details for database behavior

using XML, so SQL:2016 does for JSON.

The next largest set of features released in SQL:2016 support Polymorphic
table functions, which are table functions that enable you to return a result set
without a predefined return data type. Other highlights include the new data
type, DECFLOAT, the function LISTAGG, allowing you to return a group of
rows as a delimited string, and improvements to regular expressions, along
with date and time handling features. Introductory level coverage is provided
for JSON functionality in Chapter 8.

What’s New in SQL:2011
SQL:2011 introduced new features for managing temporal data. These
include a number of new predicates OVERLAPS, EQUALS, PRECEDES,
AS OF SYSTEM_TIME, and several others. Along with these new
constructs, syntax was added for application time periods, bitemporal tables,
and system versioned temporal tables. These features together provided the
capability to do point-in-time reporting and data management. Under this
method of data processing, for example, you could write a query “as-of” 5
months. The query would then return a result set as if you were executing the
SELECT at precisely that point in time, excluding data newer than 5-months
ago that exists in the table which otherwise satisfy the filter arguments of the
query.

What’s New in SQL:2008
Released in the summer of 2008, SQL:2008 solidified improvements and
enhancements that were already well in place across several of the most
prominent relational database platforms. These enhancements added, among
other things, a handful of important statements and improvements to the
Foundation, such as TRUNCATE TABLE, INSTEAD OF triggers, partitioned
JOIN tables, and improvements to CASE, MERGE, and DIAGNOSTIC
statements.

What’s New in SQL:2006

The ANSI/ISO SQL:2006 release was evolutionary over the SQL:2003
release, but it did not include any significant changes to the SQL:2003
commands and functions that were described in the second edition of this
book. Instead, SQL:2006 described an entirely new functional area of
behavior for the SQL standard delineated in Part 14 of the standard.

Briefly, SQL:2006 describes how SQL and XML (the eXtensible Markup
Language) interact. For example, the SQL:2006 standard describes how to
import and store XML data in a SQL database, manipulate that data, and then
publish the data both in native XML form and as conventional SQL data
wrapped in XML form. The SQL:2006 standard provides a means of
integrating SQL application code using XQuery, the XML Query Language
standardized by the World Wide Web Consortium (W3C). Because XML and
XQuery are disciplines in their own right, they are considered beyond the
scope of this book and are not covered here. Introductory level coverage is
provided for this functionality in Chapter 8.

What’s New in SQL:2003 (aka SQL3)
SQL:1999 had two main parts, Foundation:1999 and Bindings:1999. The
SQL3 Foundation section includes all of the Foundation and Bindings
standards from SQL:1999, as well as a new section called Schemata.

The Core requirements of SQL3 did not change from Core SQL:1999, so the
database platforms that conformed to Core SQL:1999 automatically conform
to SQL3. Although the Core of SQL3 had no additions (except for a few new
reserved words), a number of individual statements and behaviors were
updated or modified. Because these updates are reflected in the individual
syntax descriptions of each statement in Chapter 3, we won’t spend time on
them here.

The ANSI/ISO standards body not only adds new elements to the standards,
it may also take elements away. For example, few elements of the Core in
SQL99 were deleted in SQL3, including:

The BIT and BIT VARYING data types

The UNION JOIN clause

The UPDATE . . . SET ROW statement

A number of other features, most of which were or are rather obscure, have
also been added, deleted, or renamed. Many of the new features of the SQL3
standard are currently interesting mostly from an academic standpoint,
because none of the database platforms support them yet. However, a few
new features hold more than passing interest:

Elementary OLAP functions
SQL3 adds an Online Analytical Processing (OLAP) amendment,
including a number of windowing functions to support widely used
calculations such as moving averages and cumulative sums. Windowing
functions are aggregates computed over a window of data:
ROW_NUMBER, RANK, DENSE_RANK, PERCENT_RANK, and
CUME_DIST. OLAP functions are fully described in T611 of the
standard. Some database platforms are starting to support the OLAP
functions. Refer to Chapter 7 for details.

Sampling
SQL3 adds the TABLESAMPLE clause to the FROM clause. This is
useful for statistical queries on large databases, such as a data warehouse.

Enhanced numeric functions
SQL3 adds a large number of numeric functions. In this case, the standard
was mostly catching up with the trend in the industry, since one or more
database platforms already supported the new functions. Refer to Chapter
7 for details.

Levels of Conformance
SQL:1999 is built upon SQL:1992’s levels of conformance. SQL92 first
introduced levels of conformance by defining three categories: Entry,
Intermediate, and Full. Vendors had to achieve at least Entry-level
conformance to claim ANSI/ISO SQL compliance. The U.S. National
Institute of Standards and Technology (NIST) later added the Transitional
level between the Entry and Intermediate levels, so NIST’s levels of

conformance were Entry, Transitional, Intermediate, and Full, while
ANSI/ISO’s were only Entry, Intermediate, and Full. Each higher level of the
standard was a superset of the subordinate level, meaning that each higher
level included all the features of the lower levels of conformance.

Later, SQL99 altered the base levels of conformance, doing away with the
Entry, Intermediate, and Full levels. With SQL99, vendors must implement
all the features of the lowest level of conformance, Core SQL99 (now
commonly called simply ‘Core SQL’), in order to claim (and advertise) that
they are SQL99 compliant. Core SQL99 includes the old Entry SQL92
feature set, features from other SQL92 levels, and some brand new features.
A vendor may also choose to implement additional feature packages
described in the SQL99 standard.

Supplemental Features Packages in the SQL3 Standard
The SQL3 standard represents the ideal, but very few vendors currently meet
or exceed the Core SQL3 requirements. The Core standard is like the
interstate speed limit: some drivers go above it and others go below it, but
few go exactly at the speed limit. Similarly, vendor implementations can vary
greatly.

Two committees—one within ANSI, the other within ISO, and both
composed of representatives from virtually every RDBMS vendor—drafted
the supplemental feature definitions described in this section. In this
collaborative and somewhat political environment, vendors compromised on
exactly which proposed features and implementations would be incorporated
into the new standard.

New features in the ANSI/ISO standard often are derived from an existing
product or are the outgrowth of new research and development in the
academic community. Consequently, vendor adoption of specific ANSI/ISO
standards can be spotty. A relatively new addition to the SQL3 standard is
SQL/XML (greatly expanded in SQL:2006.) The other parts of the SQL99
standard remain in SQL3, though their names may have changed and they
may have been slightly rearranged.

The nine supplemental features packages, representing different subsets of
commands, are platform-optional. Note that a handful of these parts were
never released and, thus, do not show up in the list below. Also, some
features might show up in multiple packages, while others do not appear in
any of the packages. These packages and their features are described in the
following list:

Part 1, SQL/Framework
Includes common definitions and concepts used throughout the standard.
Defines the way the standard is structured and how the various parts
relate to one another, and describes the conformance requirements set out
by the standards committee.

Part 2, SQL/Foundation
Includes the Core, an augmentation of the SQL99 Core. This is the largest
and most important part of the standard.

Part 3, SQL/CLI (Call-Level Interface)
Defines the call-level interface for dynamically invoking SQL statements
from external application programs. Also includes over 60 routine
specifications to facilitate the development of truly portable shrink-
wrapped software.

Part 4, SQL/PSM (Persistent Stored Modules)
Standardizes procedural language constructs similar to those found in
database platform-specific SQL dialects such as PL/SQL and Transact-
SQL.

Part 9, SQL/MED (Management of External Data)
Defines the management of data located outside of the database platform
using datalinks and a wrapper interface.

Part 10, SQL/OBJ (Object Language Binding)
Describes how to embed SQL statements in Java programs. It is closely
related to JDBC, but offers a few advantages. It is also very different
from the traditional host language binding possible in early versions of

the standard.

Part 11, SQL/Schemata
Defines over 85 views (three more than in SQL99) used to describe the
metadata of each database and stored in a special schema called
INFORMATION_SCHEMA. Updates a number of views that existed in
SQL99.

Part 12, SQL/JRT (Java Routines and Types)
Defines a number of SQL routines and types using the Java programming
language. Several features of Java, such as Java static methods and
classes, are now supported.

Part 14, SQL/XML
Adds a new type called XML, four new operators (XMLPARSE,
XMLSERIALIZE, XMLROOT, and XMLCONCAT), several new functions
(described in Chapter 4), and the new IS DOCUMENT predicate. Also
includes rules for mapping SQL-related elements (like identifiers,
schemas, and objects) to XML-related elements.

Note that parts 5 through 8, and part 12, are not released to the public by
design.

Be aware that an RDBMS platform may claim SQL3 compliance by meeting
Core SQL99 standards, so read the vendor’s fine print for a full description of
its ANSI/ISO conformity features. By understanding what features comprise
the nine packages, users can gain a clear idea both of the capabilities of a
particular RDBMS and of how the various features behave when SQL code is
transported to other database products.

The ANSI/ISO standards—which cover retrieval, manipulation, and
management of data in commands such as SELECT, JOIN, ALTER TABLE,
and DROP—formalize many SQL behaviors and syntax structures across a
variety of platforms. These standards have become even more important as
open source database products, such as MySQL and PostgreSQL, have grown
in popularity and begun being developed by virtual teams rather than large

corporations.

SQL in a Nutshell, Fourth Edition explains the SQL implementation of four
popular RDBMSs. These vendors do not meet all the SQL3 standards; in fact,
all RDBMS platforms play a constant game of tag with the standards bodies.
Often, as soon as vendors close in on the standard, the standards bodies
update, refine, or otherwise change the benchmark. Conversely, the vendors
often implement new features that are not yet a part of the standard but that
boost the effectiveness of their users.

SQL3 Statement Classes
Comparing statement classes further delineates SQL3 from SQL92.
However, the older terms are still used frequently, so readers need to know
them. SQL92 grouped statements into three broad categories:

Data Manipulation Language (DML)
Provides specific data-manipulation commands such as SELECT,
INSERT, UPDATE, and DELETE

Data Definition Language (DDL)
Contains commands that handle the accessibility and manipulation of
database objects, including CREATE and DROP

Data Control Language (DCL)
Contains the permission-related commands GRANT and REVOKE

In contrast, SQL3 supplies seven core categories, now called classes, that
provide a general framework for the types of commands available in SQL.
These statement “classes” are slightly different from the SQL92 statement
categories, because they attempt to identify the statements within each class
more accurately and logically and they provide for the development of new
features and statement classes. Additionally, the new statement classes now
allow some “orphaned” statements that did not fit well into any of the old
categories to be properly classified.

Table 1-1 identifies the SQL3 statement classes and lists some of the

commands in each class, each of which is fully discussed later. At this point,
the key is to remember the statement class titles.

Table 1-1. SQL3 statement classes

Class

 Description

 Example
commands

SQL
connection
statements

Start and end a client connection
 CONNECT,
DISCONNECT

SQL control
statements

Control the execution of a set of SQL statements
 CALL, RETURN

SQL data
statements

May have a persistent and enduring effect upon data
 SELECT,
INSERT, UPDATE,
DELETE

SQL
diagnostic
statements

Provide diagnostic information and raise exceptions
and errors GET

DIAGNOSTICS

SQL schema
statements

May have a persistent and enduring effect on a
database schema and objects within that schema ALTER,

CREATE, DROP

SQL session
statements

Control default behavior and other parameters for a
session

SET statements like SET
CONSTRAINT

SQL
transaction
statements

Set the starting and ending point of a transaction
 COMMIT,
ROLLBACK

Those who work with SQL regularly should become familiar with both the
old (SQL92) and the new (SQL3 and later) statement classes, since both
nomenclatures are still used to refer to SQL features and statements.

SQL Dialects
The constantly evolving nature of the SQL standard has given rise to a
number of SQL dialects among the various vendors and platforms. These
dialects commonly evolve because a given database vendor’s user
community requires capabilities in the database before the ANSI/ISO
committee creates an applicable standard. Occasionally, though, the academic
or research communities introduce a new feature in response to pressures
from competing technologies. For example, many database vendors are
augmenting their current programmatic offerings with either JSON or . In the
future, developers will use these programming languages in concert with
SQL to build SQL programs.

Many of these dialects include conditional processing capabilities (such as
those that control processing through IF . . . THEN statements), control-of-
flow functions (such as WHILE loops), variables, and error-handling
capabilities. Because ANSI/ISO had not yet developed a standard for these
important features at the time users began to demand them, RDBMS
developers and vendors created their own commands and syntax. In fact,
some of the earliest vendors from the 1980s have variances in the most
elementary commands, such as SELECT, because their implementations
predate the standards. When attempting to create SQL code that is
interoperable across database platforms, keep in mind that your mileage may
vary.

Some of these dialects introduced procedural commands to support the
functionality of a more complete programming language. For example, these
procedural implementations contain error-handling commands, control-of-
flow language, conditional commands, variable-handling commands, support
for arrays, and many other extensions. Although these are technically
divergent procedural implementations, they are called dialects here. The
SQL/PSM (Persistent Stored Module) package provides many features
associated with programming stored procedures and incorporates many of the
extensions offered by these dialects.

Some popular dialects of SQL include:

PL/pgSQL
SQL dialect and extensions implemented in PostgreSQL. The acronym
stands for Procedural Language/PostgreSQL.

PL/SQL
Found in Oracle. PL/SQL stands for Procedural Language/SQL and
contains many similarities to the language Ada.

SQL/PSM
MySQL and MariaDB implement the SQL/Persistent Stored Module of
the Core SQL standard. MariaDB also supports PL/SQL.

Transact-SQL
Used by both Microsoft SQL Server and Sybase Adaptive Server, now
owned by SAP. As Microsoft and SAP/Sybase have moved away from
the common platform they shared early in the 1990s, their
implementations of Transact-SQL have also diverged widely. But the
most basic commands are still very similar.

Users who plan to work extensively with a single database system should
learn the intricacies of their preferred SQL dialect or platform.

Chapter 2. Foundational
Concepts

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or
if you notice missing material within this chapter, please reach out to the editor at
rfernando@oreilly.com.

SQL provides an easy, intuitive way to interact with a database. While the
SQL standard does not define the concept of a “database,” it does define all
the functions and concepts needed for a user to create, retrieve, update, and
delete data. It is important to know the types of syntax in the ANSI/ISO SQL
standard and the particular platform-specific syntax guidelines. This chapter
will provide you with a grounding in those areas. For brevity, we will refer to
the ANSI/ISO standard as, simply, SQL or “the SQL standard” in the
remainder of this chapter.

Database Platforms Described in This Book
SQL in a Nutshell, Fourth Edition describes the SQL standard and the
platform-specific implementations of several leading RDBMSs:

MySQL / MariaDB
MySQL is a popular open source DBMS that is known for its ease of use
and good performance. It runs on numerous operating systems, including
most Linux variants. To improve performance, it has a slimmer feature
set than many other DBMSs. Since the purchase of Sun Microsystems by
Oracle, the MySQL user-base has been split into 2-factions - MySQL

(maintained by Oracle) and MariaDb (by MariaDB Foundation whose
head, Monty Widenius, was the original creator of MySQL). This book
covers MySQL 8, now owned by Oracle, and the most popular MySQL
fork MariaDB 10.5. Both have more or less equivalent and compatible
offering of functionality and MariaDb does pull in changes from MySQL
core. Where they deviate most is in the storage engines they offer and
their release cycle. At some point in the near future, MySQL and
MariaDB will be divergent enough to warrant distinct entries throughout
this book. For now, they are maintained as one.

Oracle
Oracle is a leading RDBMS in the commercial sector. Oracle was the first
commercially available SQL database platform, released in the summer of
1979, running on Vax computers as Oracle v2. Since that time, Oracle has
grown to run on a multitude of operating systems and hardware
platforms. Its scalable, reliable architecture has made it the platform of
choice for many users. In this edition, we cover Oracle Database 19c.

PostgreSQL
PostgreSQL is the most feature-rich open source database platform
available. For the last several years, PostgreSQL has seen a steep rise in
popularity with a strongly upward trend. PostgreSQL is best known for its
excellent support for ANSI/ISO standards and robust transaction
processing capabilities, as well as its rich data type and database object
support. In addition to its full set of features, PostgreSQL runs on a wide
variety of operating systems and hardware platforms. This book covers
PostgreSQL 13.

SQL Server
Microsoft SQL Server is a popular RDBMS that runs on the Windows
and Linux operating systems. Its features include ease of use, an all-
inclusive feature set covering OLTP and analytic workloads, low cost,
and high performance. This book covers Microsoft SQL Server 2019.

Categories of Syntax

To begin to use SQL, readers should understand how statements are written.
SQL syntax falls into four main categories. Each category is introduced in the
following list and then explained in further detail in the sections that follow:

Identifiers
Describe a user- or system-supplied name for a database object, such as a
database, a table, a constraint on a table, a column in a table, a view, etc.

Literals
Describe a user- or system-supplied string or value that is not otherwise
an identifier or a keyword. Literals may be strings like “hello”, numbers
like 1234, dates like “Jan 01, 2002”, or Boolean values like TRUE.

Operators
Are symbols specifying an action to be performed on one or more
expressions, most often in DELETE, INSERT, SELECT, or UPDATE
statements. Operators are also used frequently in the creation of database
objects.

Reserved words and keywords
Have special meaning to the database SQL parser. Keywords such as
SELECT, GRANT, DELETE, or CREATE are words that cannot be used
as identifiers within the database platform. These are usually commands
or SQL statements. Reserved words are words that may become reserved
some time in the future. Elsewhere in the book, we use the term keyword
to describe both concepts. You can circumvent the restriction on using
reserved words and keywords as identifiers by using quoted identifiers,
which will be described in a moment. However, this is not recommended
since a single typo could play havok with your code.

Identifiers
In its simplest terms, an identifier is the name of an object you create on your
database platform. However, you can create identifiers at a variety of levels
within a database. So lets start at the top. In ANSI terms, clusters contain sets
of catalogs, catalogs contain sets of schemas, schemas contain sets of objects,

and so on. Most database platforms use corollary terms: instances contain
one or more databases; databases contain one or more schemas; and schemas
contain one or more tables, views, or stored procedures, and the privileges
associated with each object. At each level of this structure, items require
unique names (that is, identifiers) so that they can be referenced by programs
and system processes. This means that each object (whether a database, table,
view, column, index, key, trigger, stored procedure, or constraint) in an
RDBMS must be identified. When issuing the command that creates a
database object, you must specify an identifier (i.e., a name) for that new
object.

There are two important categories of rules that experienced developers keep
in mind when choosing an identifier for a given item:

Naming conventions
Are logical rules of thumb that govern how database designers name
objects. Consistently following these rules ultimately creates better
database structures and enables improved data tracking. These are not so
much SQL requirements as the distilled experience of practiced
programmers.

Identifier rules
Are naming rules set by the SQL standard and implemented by the
platforms. These rules govern characteristics such as how long a name
may be. These identifier conventions are covered for each vendor later in
this chapter.

Naming conventions
Naming conventions establish a standard baseline for choosing object
identifiers. In this section, we present a list of naming conventions (rules for
picking your identifiers) that are based on long years of experience. The SQL
standard has no comment on naming conventions outside of the uniqueness
of an identifier, its length, and the characters that are valid within the
identifier. However, here are some conventions that you should follow:

Select a name that is meaningful, relevant, and descriptive
Avoid names that are encoded, such as a table named XP21, and instead

use human-readable names like Expenses_2021, so that others can
immediately know that the table stores expenses for the year 2021.
Remember that those developers and DBAs maintaining the database
objects you create incur a burden on those maintaining, perhaps long after
you have gone, and the names you use should make sense at a glance.
Each database vendor has limits on object name size, but names generally
can be long enough to make sense to anyone reading them.

Choose and apply the same case throughout
Use either all uppercase or all lowercase for all objects throughout the
database. Some database servers are case-sensitive, so using mixed-case
identifiers might cause problems later. Many ORM products, such as
Entity Framework, default to camelcase notation. This may cause
problems later down the road, if you need to port your application to
database platforms which are case sensitive.For Oracle you should use all
uppercase and for PostgreSQL use all lower case.

Use abbreviations consistently
Once you’ve chosen an abbreviation, use it consistently throughout the
database. For example, if you use EMP as an abbreviation for
EMPLOYEE, you should use EMP throughout the database; do not use
EMP in some places and EMPLOYEE in others.

Use complete, descriptive, meaningful names with underscores for reading
clarity

A column name like UPPERCASEWITHUNDERSCORES is not as easy
to read as UPPERCASE_WITH_UNDERSCORES.

Do not put company or product names in database object names
Companies get acquired, and products change names. These elements are
too transitory to be included in database object names.

Do not use overly obvious prefixes or suffixes
For example, don’t use DB_ as a prefix for a database, and don’t prefix
every view with V_. Simple queries to the system table of the database
can tell the DBA or database programmer what type of object an

identifier represents.

Do not fill up all available space for the object name
If the database platform allows a 32-character table name, try to leave at
least a few free characters at the end. Some database platforms append
prefixes or suffixes to table names when manipulating temporary copies
of the tables.

Do not use quoted identifiers
Quoted identifiers are object names stored within double quotation marks.
(The ANSI standard calls these delimited identifiers.) Quoted identifiers
are also case-sensitive. Encapsulating an identifier within double quotes
allows creation of names that may be difficult to use and may cause
problems later. For example, users could embed spaces, special
characters, mixed-case characters, or even escape sequences within a
quoted identifier, but some third-party tools (and even vendor-supplied
tools) cannot handle special characters in names. Therefore, quoted
identifiers should not be used.

NOTE
Some platforms allow delimiting symbols other than double quotes. For example, SQL
Server uses brackets ([]) to designate quoted identifiers.

There are several benefits to following a consistent set of naming
conventions. First, your SQL code becomes, in a sense, self-documenting,
because the chosen names are meaningful and understandable to other users.
Second, your SQL code and database objects are easier to maintain—
especially for other users who come later—because the objects are
consistently named. Finally, maintaining consistency increases database
functionality. If the database ever has to be transferred or migrated to another
RDBMS, consistent and descriptive naming saves both time and energy.
Giving a few minutes of thought to naming SQL objects in the beginning can
prevent problems later.

Identifier rules
Identifier rules are rules for identifying objects within the database that are
rigidly enforced by the database platforms. These rules apply to normal
identifiers, not quoted identifiers. Rules specified by the SQL standard
generally differ somewhat from those of specific database vendors. Table 2-1
contrasts the SQL rules with those of the RDBMS platforms covered in this
book.

Table 2-1. Table 2-1. Platform-specific rules for regular object identifiers
(excludes quoted identifiers)

Character
istic

Pla
tfor
m

Specification

Identifier
size

 SQ
L

128 characters.

 My
SQ
L

64 characters; aliases may be 255 characters.

 Ora
cle

30 bytes (number of characters depends on the character set); database names
are limited to 8 bytes; database links are limited to 128 bytes.

 Post
gre
SQ
L

63 characters (NAMEDATALEN property minus 1).

 SQ
L
Ser
ver

128 characters; temp tables are limited to 116 characters.

Identifier
may
contain

 SQ
L

Any number or character, and the underscore (_) symbol.

 My
SQ

Any number, character, or symbol. Cannot be composed entirely of numbers.

L

 Ora
cle

Any number or character, and the underscore (_), pound sign (#), and dollar
sign ($) symbols (though the last two are discouraged). Database links may
also contain a period (.).

 Post
gre
SQ
L

Any number or character or _. Unquoted upper case characters are equivalent
to lower case.

 SQ
L
Ser
ver

Any number or character, and the underscore (_), at sign (@), pound sign (#),
and dollar sign ($) symbols.

Identifier
must begin
with

 SQ
L

A letter.

 My
SQ
L

A letter or number. Cannot be composed entirely of numbers.

 Ora
cle

A letter.

 Post
gre
SQ
L

A letter or underscore (_).

 SQ
L
Ser
ver

A letter, underscore (_), at sign (@), or pound sign (#).

Identifier
cannot
contain

 SQ
L

Spaces or special characters.

 My
SQ
L

Period (.), slash (/), or any ASCII(0) or ASCII(255) character. Single quotes
(“) and double quotes (“ “) are allowed only in quoted identifiers. Identifiers
should not end with space characters.

 Ora
cle

Spaces, double quotes (“ “), or special characters.

 Post
gre
SQ
L

Double quotes (“ “).

 SQ
L
Ser
ver

Spaces or special characters.

 Allows
quoted
identifiers

 SQ
L

Yes.

 My
SQ
L

Yes.

 Ora
cle

Yes.

 Post
gre
SQ
L

Yes.

 SQ
L
Ser
ver

Yes.

 Quoted
identifier
symbol

 SQ
L

Double quotes (“ “).

 My
SQ
L

Single quotes (“) or double quotes (“ “) in ANSI compatibility mode.

 Ora
cle

Double-quotes (“ “).

 Post Double-quotes (“ “).

gre
SQ
L

 SQ
L
Ser
ver

Double quotes (“ “) or brackets ([]); brackets are preferred.

Identifier
may be
reserved

 SQ
L

No, unless as a quoted identifier.

 My
SQ
L

No, unless as a quoted identifier.

 Ora
cle

No, unless as a quoted identifier.

 Post
gre
SQ
L

No, unless as a quoted identifier.

 SQ
L
Ser
ver

No, unless as a quoted identifier.

 Schema
addressing

 SQ
L Catalog.schema.object

 My
SQ
L

Database.object.

 Ora
cle

Schema.object.

 Post
gre
SQ
L

Database.schema.object.

 SQ
L
Ser
ver

Server.database.schema.object.

Identifier
must be
unique

 SQ
L

Yes.

 My
SQ
L

Yes.

 Ora
cle

Yes.

 Post
gre
SQ
L

Yes.

 SQ
L
Ser
ver

Yes.

 Case
Sensitivity

 SQ
L

No.

 My
SQ
L

Only if underlying filesystem is case sensitive (e.g., Mac OS or Unix).
Triggers, logfile groups, and tablespaces are always case sensitive.

 Ora
cle

No by default, but can be changed.

 Post
gre
SQ
L

No.

 SQ
L
Ser

No by default, but can be changed.

ver

 Other
rules

 SQ
L

None.

 My
SQ
L

May not contain numbers only.

 Ora
cle

Database links are limited to 128 bytes and may not be quoted identifiers.

 Post
gre
SQ
L

None.

 SQ
L
Ser
ver

Microsoft commonly uses brackets rather than double quotes for quoted
identifiers.

Identifiers must be unique within their scope. Thus, given our earlier
discussion of the hierarchy of database objects, database names must be
unique on a particular instance of a database server, while the names of
tables, views, functions, triggers, and stored procedures must be unique
within a particular schema. On the other hand, a table and a stored procedure
can have the same name, since they are different types of object. The names
of columns, keys, and indexes must be unique on a single table or view, and
so forth. Check your database platform’s documentation for more
information—some platforms require unique identifiers where others may
not. For example, Oracle requires that all index identifiers be unique
throughout the database, while others (such as SQL Server) require that the
index identifier be unique only for the table on which it depends.

Remember, quoted identifiers (object names encapsulated within a special
delimiter, usually double quotes or brackets [LikeThis]) may be used to break
some of the identifier rules specified earlier. One example is that quoted
identifiers are case sensitive—that is, “foo” does not equal “FOO” or “Foo”.

Furthermore, quoted identifiers may be used to bestow a reserved word as a
name, or to allow normally unusable characters and symbols within a name.
For instance, you normally can’t use the percent sign (%) in a table name.
However, you can, if you must, use that symbol in a table name so long as
you always enclose that table name within double quotes. That is, to name a
table expense%%ratios, you would specify the name in quotes:
“expense%%ratios” or [expense%%ratios]. Again, remember that in SQL
such names are sometimes known as “delimited identifiers.”

NOTE
Once you have created an object name as a quoted identifier, we recommend that users
always reference it using its special delimiter. Inconsistency often leads to problematic or
poorly performing code.

Literals
SQL defines a literal value as any explicit numeric value, character string,
temporal value (e.g., date or time), or Boolean value that is not an identifier
or a keyword. SQL databases allow a variety of literal values in a SQL
program. Literal values are allowed for most of the numeric, character,
Boolean, and date data types. For example, SQL Server numeric data types
include (among others) INTEGER, REAL, and MONEY. Thus, numeric
literals can look like:

 30
 −117
 +883.3338
 −6.66
 $70000
 2E5
 7E-3

As these examples illustrate, SQL Server allows signed and unsigned
numerals, in scientific or normal notation. And since SQL Server has a
money data type, even a dollar sign can be included. SQL Server does not
allow other symbols in numeric literals (besides 0 1 2 3 4 5 6 7 8 9 + - $. E

e), however, so exclude commas or periods, in European countries where a
comma is used in place of a period in decimal or monetary values. Most
databases interpret a comma in a numeric literal as a list item separator.
Thus, the literal value 3,000 would likely be interpreted as two values: 3 and,
separately, 000.

 Boolean, character string, and date literals look like:
 TRUE
 'Hello world!'
 'OCT-28-1966 22:14:30:00'

Character string literals should always be enclosed in single quotation marks
(''). This is the standard delimiter for all character string literals. Character
string literals are not restricted just to the letters of the alphabet. In fact, any
character in the character set can be represented as a string literal. All of the
following are string literals:

 '1998'
 '70,000 + 14000'
 'There once was a man from Nantucket,'
 'Oct 28, 1966'

and are compatible with the CHARACTER data type. Remember not to
confuse the string literal ‘1998’ with the numeric literal 1998. Once string
literals are associated with a character data type, it is poor practice to use
them in arithmetic operations without explicitly converting them to a numeric
data type. Some database products will perform automatic conversion of
string literals containing numbers when comparing them against any DATE
or NUMBER data type values, but not all. On some database platforms,
performance declines when you do not explicitly convert such data types.

By doubling the delimiter, you can effectively represent a single quotation
mark in a literal string, if necessary. That is, you can use two quotation marks
each time a single quotation mark is part of the value. This example, taken
from SQL Server, illustrates the idea:

 SELECT 'So he said ''Who''s Le Petomaine?'''

This statement gives the following result:

 So he said 'Who's Le Petomaine?'

Operators
An operator is a symbol specifying an action to be performed on one or more
expressions. Operators are used most often in DELETE, INSERT, SELECT,
and UPDATE statements, but they are also used frequently in the creation of
database objects such as stored procedures, functions, triggers, and views.

Operators typically fall into these categories:

Arithmetic operators
Supported by all databases

Assignment operators
Supported by all databases

Bitwise operators
Supported by MySQL and SQL Server

Comparison operators
Supported by all databases

Logical operators
Supported by all databases

Unary operators
Supported by MySQL, Oracle, and SQL Server

Arithmetic operators
Arithmetic operators perform mathematical operations on two expressions of
any data type in the numeric data type category. See Table 2-2 for a listing of
the arithmetic operators.

Table 2-2. Arithmetic operators

 Arithmetic
operator

 Meaning

+ Addition

− Subtraction

* Multiplication

/ Division

% Modula (SQL Server only); returns the remainder of a division
operation as an integer value

NOTE
In MySQL, Oracle, and SQL Server, the + and − operators can be used to perform
arithmetic operations on date values.

The various platforms also offer their own unique methods for performing arithmetic
operations on date values.

Assignment operators
Except in Oracle, which uses :=, the assignment operator (=) assigns a value
to a variable or the alias of a column heading. In all of the database platforms
covered in this text, the keyword AS may serve as an operator for assigning
table- or column-heading aliases.

Bitwise operators
Both Microsoft SQL Server and MySQL provide bitwise operators (see
Table 2-3) as a shortcut to perform bit manipulations between two-integer
expressions. Valid data types that are accessible to bitwise operators include
BINARY, BIT, INT, SMALLINT, TINYINT, and VARBINARY. PostgreSQL
supports the BIT and BIT VARYING data types; it also supports the bitwise
operators AND, OR, XOR, concatenation, NOT, and shifts left and right.

Table 2-3. Bitwise operators

 Bitwise operator

 Meaning

& Bitwise AND (two operands)

| Bitwise OR (two operands)

^ Bitwise exclusive OR (two operands)

Comparison operators
Comparison operators test whether two expressions are equal or unequal.
The result of a comparison operation is a Boolean value: TRUE, FALSE, or
UNKNOWN. Also, note that the ANSI standard behavior for a comparison
operation where one or more of the expressions is NULL is to return NULL.
For example, the expression 23 + NULL returns NULL, as does the
expression Feb 23, 2022 + NULL. See Table 2-4 for a list of the comparison
operators.

Table 2-4. Comparison operators

 Comparison operator

 Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (not ANSI standard)

!< Not less than (not ANSI standard)

!> Not greater than (not ANSI standard)

Boolean comparison operators are used most frequently in a WHERE clause
to filter the rows that qualify for the search conditions. The following
example uses the greater than or equal to comparison operation:

 SELECT *

 FROM Products
 WHERE ProductID >= 347

Logical operators
Logical operators are commonly used in a WHERE clause to test for the truth
of some condition. They return a Boolean value of either TRUE or FALSE.
Table 2-5 shows a list of logical operators. Note that not all database systems
support all operators.

Table 2-5. Logical operators

 Logical
operator

 Meaning

 ALL

TRUE if all of a set of comparisons are TRUE

 AND

TRUE if both Boolean expressions are TRUE

 ANY

TRUE if any one of a set of comparisons is TRUE

BETWEEN

TRUE if the operand is within a range

 EXISTS

TRUE if a subquery contains any rows

 IN

TRUE if the operand is equal to one of a list of expressions or one or more
rows returned by a subquery

 LIKE

TRUE if the operand matches a pattern

 NOT

Reverses the value of any other Boolean operator

 OR
TRUE if either Boolean expression is TRUE

 SOME

TRUE if some of a set of comparisons are TRUE

Unary operators
Unary operators perform an operation on only one expression of any of the
data types in the numeric data type category. Unary operators may be used on
any numeric data type, though the bitwise operator (~) may be used only on
integer data types (see Table 2-6).

Table 2-6. Unary operators

 Unary
operator

 Meaning

+ Numeric value is positive

− Numeric value is negative

~ A bitwise NOT; returns the complement of the number (not in
Oracle)

Operator precedence
Sometimes operator expressions become rather complex, with multiple levels
of nesting. When an expression has multiple operators, operator precedence
determines the sequence in which the operations are performed. The order of
execution can significantly affect the resulting value.

Operators have different precedence levels. An operator on a higher level is
evaluated before an operator on a lower level. The following listing shows
the operators’ precedence levels, from highest to lowest:

() (parenthetical expressions)

+, −, ~ (unary operators)

*, /, % (mathematical operators)

+, − (arithmetic operators)

=, >, <, >=, <=, <>, !=, !>, !< (comparison operators)

^ (bitwise exclusive OR), & (bitwise AND), | (bitwise OR)

NOT

AND

ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

= (variable assignment)

Operators are evaluated from left to right when they are of equal precedence.
However, parentheses are used to override the default precedence of the
operators in an expression. Expressions within a set of parentheses are
evaluated first, while operations outside the parentheses are evaluated next.

For example, the following expressions in an Oracle query return very
different results:

 SELECT 2 * 4 + 5 FROM dual
 -- Evaluates to 8 + 5, which yields an expression result of 13.
 SELECT 2 * (4 + 5) FROM dual
 -- Evaluates to 2 * 9, which yields an expression result of 18.

In expressions with nested parentheses, the most deeply nested expression is
evaluated first.

This next example contains nested parentheses, with the expression 5 - 3
appearing in the most deeply nested set of parentheses. This expression 5 - 3
yields a value of 2. Then the addition operator (+) adds this result to 4, which
yields a value of 6. Finally, the 6 is multiplied by 2 to yield an expression
result of 12:

 SELECT 2 * (4 + (5 - 3)) FROM dual
 -- Evaluates to 2 * (4 + 2), which further evaluates to 2 * 6,
 -- and yields an expression result of 12.
 RETURN

NOTE
We recommend using parentheses to clarify precedence in all complex queries.

System delimiters and operators
String delimiters mark the boundaries of a string of alphanumeric characters.
Somewhat similar to the way in which keywords and reserved words have
special significance to you database server, system delimiters are those
symbols within the character set that have special significance to your
database server. Delimiters are symbols that are used to judge the order or
hierarchy of processes and list items. Operators are those delimiters used to
judge values in comparison operations, including symbols commonly used
for arithmetic or mathematical operations. Table 2-7 lists the system
delimiters and operators allowed by SQL.

Table 2-2. SQL delimiters and operators

S
y
m
b
ol

Usage Example

+ Addition operator; in SQL Server,
also serves as a concatenation
operator

On all database platforms:
 --- SELECT MAX(emp_id) + 1 FROM employee ---

- Subtraction operator; also serves as
a range indicator in CHECK
constraints

As a subtraction operator:
 --- SELECT MIN(emp_id) - 1 FROM employee ---

 As a range operator, in a CHECK constraint:
 --- ALTER TABLE authors ADD CONSTRAINT
authors_zip_num CHECK (zip LIKE %[0-9]%) ---

* Multiplication operator --- SELECT salary * 0.05 AS bonus FROM employee;
--

/ Division operator --- SELECT salary / 12 AS monthly FROM employee; -
--

= Equality operator --- SELECT * FROM employee WHERE lname =
Fudd ---

<, Inequality operators (!= is a On all platforms:

 > nonstandard equivalent on several
platforms)

 --- SELECT * FROM employee WHERE lname <>
Fudd ---

< Less than operator --- SELECT lname, emp_id, (salary * 0.05) AS bonus
FROM employee WHERE (salary * 0.05) ⇐ 10000
AND exempt_status < 3 ---

<
=

Less than or equal to operator

> Greater than operator --- SELECT lname, emp_id, (salary * 0.025) AS bonus
FROM employee WHERE (salary * 0.025) > 10000
AND exempt_status >= 4 ---

>
=

Greater than or equal to operator

() Used in expressions and function
calls, to specify order of
operations, and as a subquery
delimiter

Expression:
 --- SELECT (salary / 12) AS monthly FROM
employee WHERE exempt_status >= 4 --
 Function call:
 --- SELECT SUM(travel_expenses) FROM
“expense%%ratios” --
 Order of operations:
 --- SELECT (salary / 12) AS monthly, ((salary / 12) /
2) AS biweekly FROM employee WHERE
exempt_status >= 4 --
 Subquery:
 --- SELECT * FROM stores WHERE stor_id IN
(SELECT stor_id FROM sales WHERE ord_date > 01-
JAN-2004) ---

% Wildcard attribute indicator --- SELECT * FROM employee WHERE lname LIKE
Fud% ---

, List item separator --- SELECT lname, fname, ssn, hire_date FROM
employee WHERE lname = Fudd ---

. Identifier qualifier separator --- SELECT * FROM scott.employee WHERE lname
LIKE Fud% ---

‘ Character string indicators --- SELECT * FROM employee WHERE lname LIKE
FUD% OR fname = ELMER ---

“ Quoted identifier indicators --- SELECT expense_date, SUM(travel_expense)
FROM “expense%%ratios” WHERE expense_date
BETWEEN 01-JAN-2004 AND 01-APR-2004 ---

— Single-line comment delimiter (two
dashes followed by a space)

---— Finds all employees like Fudd, Fudge, and
Fudston SELECT * FROM employee WHERE lname
LIKE Fud% ---

/* Beginning multiline comment
delimiter

--- /* Finds all employees like Fudd, Fudge, and
Fudston */ SELECT * FROM employee WHERE
lname LIKE Fud% ---

*/ Ending multiline comment
indicator

Keywords and Reserved Words
Just as certain symbols have special meaning and functionality within SQL,
certain words and phrases have special significance. SQL keywords are words
whose meanings are so closely tied to the operation of the RDBMS that they
should not be used for any other purpose; generally, they are words used in
SQL statements. Reserved words, on the other hand, do not have special
significance now, but they probably will in a future release. Note that these
words can be used as identifiers on most platforms, but they shouldn’t be. For
example, the word “SELECT” is a keyword and should not be used as a table
name. To emphasize the fact that keywords should not be used as identifiers
but nevertheless could be, the SQL standard calls them “non-reserved
keywords.”

NOTE
It is generally a good idea to avoid naming columns or tables after a keyword that occurs
in any major platform, because database applications are frequently migrated from one
platform to another.

Reserved words and keywords are not always words used in SQL statements;
they may also be words commonly associated with database technology. For
example, CASCADE is used to describe data manipulations that allow their
actions, such as a delete or update operation, to “flow down,” or cascade, to
any subordinate tables. Reserved words and keywords are widely published
so that developers will not use them as identifiers that will, either now or at
some later revision, cause a problem.

SQL specifies its own list of reserved words and keywords, as do the
database platforms, because they each have their own extensions to the SQL
command set. The SQL standard keywords, as well as the keywords in the
different vendor implementations, are listed in the Appendix.

ANSI/ISO SQL and Platform-specific Data
Types
A table can contain one or many columns. Each column must be defined with
a data type that provides a general classification of the data that the column
will store. In real-world applications, data types improve efficiency and
provide some control over how tables are defined and how the data is stored
within a table. Using specific data types enables better, more understandable
queries and helps control the integrity of the data.

The tricky thing about ANSI/ISO SQL data types is that they do not always
map directly to identical implementations in different platforms. Although the
various platforms specify “data types” that correspond to the ANSI/ISO SQL
data types, these are not always true ANSI/ISO SQL data types: for example,
MySQL’s implementation of a BIT data type is actually identical to a
CHAR(1) data type value. Nonetheless, each of the platform-specific data
types is close enough to the standard to be both easily understandable and
job-ready.

The official ANSI/ISO SQL data types (as opposed to platform-specific data
types) fall into the general categories described in Table 2-8. Note that the
ANSI/ISO SQL standard contains a few rarely used data types (ARRAY,
MULTISET, REF, and ROW) that are shown only in Table 2-8 and not
discussed elsewhere in the book.

Table 2-3. ANSI/ISO SQL categories and data types

C
at
e
g
o
r
y

Example
data types
and
abbreviati
ons

Description

B
I
N
A
R
Y

BINARY
LARGE
OBJECT
(BLOB)

This data type stores binary string values in hexadecimal format. Binary string
values are stored without reference to any character set and without any length
limit.

B
O
O
L
E
A
N

BOOLEAN This data type stores truth values (either TRUE or FALSE).

C
H
A
R
A
C
T
E
R
st
ri
n
g
ty
p
es

CHAR
 CHARACT
ER
VARYING
(VARCHAR)

These data types can store any combination of characters from the applicable
character set. The varying data types allow variable lengths, while the other
data types allow only fixed lengths. Also, the variable-length data types
automatically trim trailing spaces, while the other data types pad all open
space.

 NATIONAL
CHARACTE
R (NCHAR)
 NATIONAL
CHARACTE
R VARYING
(NCHAR
VARYING)

The national character data types are designed to support a particular
implementation-defined character set.

 CHARACTE
R LARGE
OBJECT
(CLOB)

CHARACTER LARGE OBJECT and BINARY LARGE OBJECT are
collectively referred to as large object string types.

 NATIONAL
CHARACTE
R LARGE
OBJECT
(NCLOB)

Same as CHARACTER LARGE OBJECT, but supports a particular
implementation-defined character set.

D
A
T
A
LI
N
K

DATALINK Defines a reference to a file or other external data source that is not part of the
SQL environment.

I
N
T
E
R
V
A
L

INTERVAL Specifies a set of time values or span of time.

C
O
L
L
E
C
TI
O
N

ARRAY
MULTISET

ARRAY was offered in SQL:1999, and MULTISET was added in SQL:2003.
Whereas an ARRAY is a set-length, ordered collection of elements, MULTISET
is a variable-length, unordered collection of elements. The elements in an
ARRAY and a MULTISET must be of a predefined data type.

J
S
O
N

JSON Added in SQL:2016 Part 13, this data type stores JSON data and can be used
wherever a SQL data type is allowed. It’s implementation is similar to the
XML extension in most ways.

N
U
M
E
R
I
C

INTEGER
(INT)
SMALLINT
BIGINT
NUMERIC(
p,s)
DEC[IMAL]
(p,s)
FLOAT(p,s)
REAL
DOUBLE
PRECISION

These data types store exact numeric values (integers or decimals) or
approximate (floating-point) values. INT, BIGINT, and SMALLINT store exact
numeric values with a predefined precision and a scale of zero. NUMERIC and
DEC store exact numeric values with a definable precision and a definable
scale. FLOAT stores approximate numeric values with a definable precision,
while REAL and DOUBLE PRECISION have predefined precisions. You may
define a precision (p) and scale (s) for a DECIMAL, FLOAT, or NUMERIC
data type to indicate the total number of allowed digits and the number of
decimal places, respectively.
 INT, SMALLINT, and DEC are sometimes referred to as exact numeric types,
while FLOAT, REAL, and DOUBLE PRECISION are sometimes called
approximate numeric types.

T
E
M
P
O
R
A
L

DATE,
TIME
 TIME
WITH TIME
ZONE
 TIMESTAM
P
 TIMESTAM
P WITH
TIME ZONE

These data types handle values related to time. DATE and TIME are self-
explanatory. data types with the WITH TIME ZONE suffix also include a time
zone offset. The TIMESTAMP data types are used to store a value that
represents a precise moment in time. Temporal types are also known as
datetime types.

X
M
L

XML Introduced in SQL:2011 Part 14, this data type stores XML data and can be
used wherever a SQL data type is allowed (e.g., for a column of a table, a field
in a row, etc.). Operations on the values of an XML type assume a tree-based
internal data structure. The internal data structure is based on the XML
Information Set Recommendation (Infoset), using a new document

information item called the XML root information item.

Not every database platform supports every ANSI SQL data type. Table 2-9
compares data types across the five platforms. The table is organized by data
type name.

Be careful to look for footnotes when reading this table, because some
platforms support a data type of a given name but implement it in a different
way than the ANSI/ISO standard and/or other vendors.

NOTE
While the different platforms may support similarly named data types, the details of their
implementations may vary. The sections that follow this table list the specific
requirements of each platform’s data types.

Table 2-4. Comparison of platform-specific data types

Vendor
data
type

MySQL

 Oracle

Postg
reSQL

SQL
Serve
r

SQL
data
type

a b c d e f

g h
 BFILE

 Y

 None

 BIGINT

Y Y

Y
 BIGINT

 BINARY

Y

Y
 BLOB

 BINARY_FLOAT

 Y

 FLOAT BINARY_DOUBLE

 Y

DOUBLE
PRECISION

 BIT

Y Y

Y
 None

 BIT VARYING, VARBIT

 Y

 None
 BLOB

Y Y

 BLOB

 BOOL, BOOLEAN

Y Y

BOOLEAN

 BOX

 Y

 None

 BYTEA

 Y

 BLOB

 CHAR, CHARACTER

Y Y Y

Y

CHARACTER

 CHAR FOR BIT DATA

 None

 CIDR

 Y

 None

 CIRCLE

 Y

 None

 CLOB

 Y

 CLOB

 CURSOR

Y
 None DATALINK

DATALINK

 DATE

Y Y Y

Y
 DATE

 DATETIME

Y

Y

TIMESTAMP

 DATETIMEOFFSET

Y

TIMESTAMP

 DATETIME2

Y

TIMESTAMP
WITH TIME
ZONE

 DBCLOB

 NCLOB

 DEC, DECIMAL

Y Y Y

Y

DECIMAL

 DOUBLE, DOUBLE
PRECISION

Y Y Y

Y
 FLOAT

 ENUM

Y Y

 None
 FLOAT

Y Y Y

Y

DOUBLE
PRECISION

 FLOAT4

 Y

FLOAT(p)

 FLOAT8

 Y

FLOAT(p)

 GRAPHIC

 BLOB

 GEOGRAPHY

Y None
 GEOMETRY

Y None
 HIERARCHYID

Y None
 IMAGE

Y None
 INET

 Y

 None
 INT, INTEGER

Y Y Y

Y

INTEGER

 INT2

 Y

SMALLINT

 INT4

 Y

 INT,
INTEGER

 INTERVAL

 Y

INTERVAL

 INTERVAL DAY TO SECOND

 Y Y

INTERVAL
DAY TO
SECOND

 INTERVAL YEAR TO MONTH

 Y Y

INTERVAL
YEAR TO
MONTH

 LINE

 Y

 None
 LONG

 Y

 None
 LONG VARCHAR

 None
 LONGBLOB

Y

 BLOB

 LONG RAW

 Y

 BLOB

 LONG VARGRAPHIC

 None
 LONGTEXT

Y

 None
 LSEG

 Y

 None
 MACADDR

 Y

 None
 MEDIUMBLOB

Y

 None
 MEDIUMINT

Y

 INT

 MEDIUMTEXT

Y

 None
 MONEY

 Y

Y None Y Y Y

 NATIONAL CHARACTER
VARYING, NATIONAL CHAR
VARYING, NCHAR VARYING,
NVARCHAR

Y

NATIONAL
CHARACTER
VARYING

 NCHAR, NATIONAL CHAR,
NATIONAL CHARACTER

Y Y Y

Y

NATIONAL
CHARACTER

 NCLOB

 Y

 NCLOB

 NTEXT, NATIONAL TEXT

Y
 NCLOB

 NVARCHAR2(n)

 Y

 None
 NUMBER

Y Y Y

Y None
 NUMERIC

Y

NUMERIC

 OID

 Y

 None
 PATH

 Y

 None
 POINT

 Y

 None
 POLYGON

 Y

 None
 RAW

 Y

 None
 REAL

Y Y Y

Y
 REAL

 ROWID

 Y

 None
 ROWVERSION

Y None
 SERIAL, SERIAL4

Y Y

 None SERIAL8, BIGSERIAL Y

 None
 SET

Y

 None
 SMALLDATETIME

Y None
 SMALLINT

Y Y Y

Y

SMALLINT

 SMALLMONEY

Y None
 SQL_VARIANT

Y None
 TABLE

Y None
 TEXT

Y Y

Y None
 TIME

Y Y

Y
 TIME

 TIMESPAN

 TIMESTAMP

Y Y Y

INTERVAL

Y

TIMESTAMP

 TIMESTAMP WITH TIME
ZONE, TIMESTAMPTZ

 Y

TIMESTAMP
WITH TIME
ZONE

 TIMETZ

 Y

 TIME
WITH TIME
ZONE

 TINYBLOB

Y

Y None
 TINYINT

Y

Y None
 TINYTEXT

Y

 None
 UNIQUEIDENTIFIER

Y None
 UROWID

 Y

 None
 VARBINARY

Y

Y
 BLOB

 VARCHAR, CHAR VARYING,
CHARACTER VARYING

Y Y Y

Y

CHARACTER
VARYING(n)

 VARCHAR2

 Y

CHARACTER

 VARCHAR FOR BIT DATA

VARYING

 BIT
VARYING

 VARGRAPHIC

 NCHAR
VARYING

 YEAR

Y

TINYINT

 XML

 Y

Y
 XML

 XMLTYPE

 Y

 Synonym for FLOAT.

 Synonym for REAL.

 Synonym for DOUBLE PRECISION.

 Synonym for DECIMAL(9,2).

 Synonym for DECIMAL.

 Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

 Implemented as a non-date data type.

 Oracle vastly prefers VARCHAR2.

a a

b b

c c

d d

e e

f f

g g

h h

The following sections list platform-specific data types, their ANSI/ISO SQL
data type categories (if any), and pertinent details. Descriptions are provided

a

b

c

d

e

f

g

h

for non-SQL data types.

MySQL Data Types
Both MySQL version 8 and MariaDb 10.5 have support for spatial data.
Spatial data is handled in a variety of classes provided in the OpenGIS
Geometry Model, which is supported by the MyISAM, InnoDB, Aria,
anNDB, and ARCHIVE database engines. Only MyISAM, InnoDB, and Aria
storage engines support both spatial and non-spatial indexes; the other
database engines only support non-spatial indexes.

MySQL numeric data types support the following optional attributes:

UNSIGNED
The numeric value is assumed to be non-negative (positive or zero). For
fixed-point data types such as DECIMAL and NUMERIC, the space
normally used to show a positive or negative condition of the numeric
value can be used as part of the value, providing a little extra numeric
range in the column for these types. (There is no SIGNED optional
attribute.)

ZEROFILL
Used for display formatting, this attribute tells MySQL that the numeric
value is padded to its full size with zeros rather than spaces. ZEROFILL
automatically forces the UNSIGNED attribute as well.

MySQL also enforces a maximum display size for columns of up to 255
characters. Columns longer than 255 characters are stored properly, but only
255 characters are displayed. Floating-point numeric data types may have a
maximum of 30 digits after the decimal point.

The following list enumerates the data types MySQL supports. These include
most of the ANSI/ISO SQL data types, plus several additional data types
used to contain lists of values, as well as data types used for binary large
objects (BLOBs). Data types that extend the ANSI/ISO standard include
TEXT, ENUM, SET, and MEDIUMINT. Special data type attributes that go
beyond the ANSI/ISO standard include AUTO_INCREMENT, BINARY,

FIXED, NULL, UNSIGNED, and ZEROFILL. The data types supported by
MySQL are:

BIGINT[(n)] [UNSIGNED] [ZEROFILL] (ANSI/ISO SQL data type:
BIGINT)

Stores signed or unsigned integers. The signed range is
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. The
unsigned range is 0 to 18,446,744,073,709,551,615. BIGINT may perform
imprecise calculations with very large numbers (63 bits), due to rounding
issues.

BINARY[(n)] (ANSI/ISO SQL data type: BLOB)
Stores binary byte strings of optional length n. Otherwise, similar to the
BLOB data type.

BIT [(n)], BOOL, BOOLEAN (ANSI/ISO SQL data type: BOOLEAN)
Synonyms for TINYINT, usually used to store only 0’s or 1’s. N specifies
the number of bits from 1 to 64. If N is omitted, the default is 1 bit.

BLOB (ANSI/ISO SQL data type: BLOB)
Stores up to 65,535 characters of data. Support for indexing BLOB
columns is found only in MySQL version 3.23.2 or greater (this feature is
not found in any other platform covered in this book). In MySQL, BLOBs
are functionally equivalent to the MySQL data type VARCHAR BINARY
(discussed later) with the default upper limit. BLOBs always require case-
sensitive comparisons. BLOB columns differ from MySQL VARCHAR
BINARY columns by not allowing DEFAULT values. You cannot
perform a GROUP BY or ORDER BY on BLOB columns. Depending on
the storage engine being used, BLOBs also are sometimes stored
separately from their tables, whereas all other data types in MySQL (with
the exception of TEXT) are stored in the table file structure itself.

CHAR(n) [BINARY], CHARACTER(n) [BINARY] (ANSI/ISO SQL data
type: CHARACTER(n))

Contains a fixed-length character string of 1 to 255 characters. CHAR
pads with blank spaces when it stores values but trims spaces upon

retrieval, just as ANSI ANSI/ISO SQL VARCHAR does. The BINARY
option allows binary searches rather than dictionary-order, case-
insensitive searches.

DATE (ANSI/ISO SQL data type: DATE)
Stores a date within the range of 1000-01-01 to 9999-12-31 (delimited by
quotes). MySQL displays these values by default in the format YYYY-
MM-DD, though the user may specify some other display format.

DATETIME (ANSI/ISO SQL data type: TIMESTAMP)
Stores date and time values within the range of 1000-01-01 00:00:00 to
9999-12-31 23:59:59.

DECIMAL[(p[,s])] [UNSIGNED] [ZEROFILL], DEC[(p[,s])] [UNSIGNED]
[ZEROFILL], FIXED [(p[,s])] [UNSIGNED] [ZEROFILL] ANSI/ISO SQL
data type: DECIMAL(PRECISION, SCALE))

Stores exact numeric values as if they were strings, using a single
character for each digit, up to 65 digits in length. Precision is 10 if
omitted, and scale is 0 if omitted. FIXED is a synonym for DECIMAL
provided for backward compatibility with other database platforms.

DOUBLE[(p,s)] [ZEROFILL], DOUBLE PRECISION[(p,s)] [ZEROFILL]
(ANSI/ISO SQL data type: DOUBLE PRECISION)

Holds double-precision numeric values and is otherwise identical to the
double-precision FLOAT data type, except for the fact that its allowable
range is −1.7976931348623157E+308 to −2.2250738585072014E-308, 0,
and 2.2250738585072014E-308 to 1.7976931348623157E+308.

ENUM(“val1,” “val2,” . . . n) [CHARACTER SET cs_name] [COLLATE
collation_name] (ANSI/ISO SQL data type: none)

Holds a list of allowable values (expressed as strings but stored as
integers). Other possible values for the data type are NULL, or an empty
string (““) as an error value. Up to 65,535 distinct values are allowed.

FLOAT[(p[,s])] [ZEROFILL] (ANSI/ISO SQL data type: FLOAT(P))

Stores floating-point numbers in the range −3.402823466E+38 to
−1.175494351E-38 and 1.175494351E-38 to 3.402823466E+38. FLOAT
without a precision, or with a precision of <= 24, is single-precision.
Otherwise, FLOAT is double-precision. When specified alone, the
precision can range from 0 to 53. When you specify both precision and
scale, the precision may be as high as 255 and the scale may be as high as
253. All FLOAT calculations in MySQL are done with double precision
and may, since FLOAT is an approximate data type, encounter rounding
errors.

INT[EGER][(n)] [UNSIGNED] [ZEROFILL] [AUTO_INCREMENT]
(ANSI/ISO SQL data type: INTEGER)

Stores signed or unsigned integers. For ISAM tables, the signed range is
from −2,147,483,648 to 2,147,483,647 and the unsigned range is from 0
to 4,294,967,295. The range of values varies slightly for other types of
tables. AUTO_INCREMENT is available to all of the INT variants; it
creates a unique row identity for all new rows added to the table. (Refer
to the section “CREATE/ALTER DATABASE Statement” in Chapter 3
for more information on AUTO_INCREMENT.)

LONGBLOB (ANSI/ISO SQL data type: BLOB)
Stores BLOB data up to 4,294,967,295 characters in length. Note that this
might be too much information for some client/server protocols to
support.

LONGTEXT [CHARACTER SET cs_name] [COLLATE collation_name]
(ANSI/ISO SQL data type: CLOB)

Stores TEXT data up to 4,294,967,295 characters in length (less if the
characters are multibyte). Note that this might be too much data for some
client/server protocols to support.

MEDIUMBLOB (ANSI/ISO SQL data type: none)
Stores BLOB data up to 16,777,215 bytes in length. The first three bytes
are consumed by a prefix indicating the total number of bytes in thevalue.

MEDIUMINT[(n)] [UNSIGNED] [ZEROFILL] (ANSI/ISO SQL data type:

none)
Stores signed or unsigned integers. The signed range is from 8,388,608 to
−8,388,608, and the unsigned range is 0 to 16,777,215.

MEDIUMTEXT [CHARACTER SET cs_name] [COLLATE
collation_name] (ANSI/ISO SQL data type: none)

Stores TEXT data up to 16,777,215 characters in length (less if the
characters are multibyte). The first three bytes are consumed by a prefix
indicating the total number of bytes in the value.

NCHAR(n) [BINARY], [NATIONAL] CHAR(n) [BINARY] (ANSI/ISO
SQL data type: NCHAR(n))

Synonyms for CHAR. The NCHAR data types provide UNICODE support
beginning in MySQL v4.1.

NUMERIC(p,s) (ANSI/ISO SQL data type: DECIMAL(p,s))
Synonym for DECIMAL.

NVARCHAR(n) [BINARY], [NATIONAL] VARCHAR(n) [BINARY],
NATIONAL CHARACTER VARYING(n) [BINARY] (ANSI/ISO SQL data
type: NCHAR VARYING)

Synonyms for VARYING [BINARY]. Hold variable-length character
strings up to 255 characters in length. Values are stored and compared in
a case-insensitive fashion unless the BINARY keyword is used.

REAL(p,s) (ANSI/ISO SQL data type: REAL)
Synonym for DOUBLE PRECISION.

SERIAL
Synonym for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT
UNIQUE. SERIAL is useful as an auto-incrementing primary key.

SET(“val1,” “val2,” . . . n) [CHARACTER SET cs_name] [COLLATE
collation_name] (ANSI/ISO SQL data type: none)

A CHAR data type whose value must be equal to zero or more values

specified in the list of values. Up to 64 items are allowed in the list of
values.

SMALLINT[(n)] [UNSIGNED] [ZEROFILL] (ANSI/ISO SQL data type:
SMALLINT)

Stores signed or unsigned integers. The signed range is from −32,768 to
32,767, and the unsigned range is from 0 to 65,535.

TEXT (ANSI/ISO SQL data type: none)
Stores up to 65,535 characters of data. TEXT data types are sometimes
stored separately from their tables, depending on the storage engine used,
whereas all other data types (with the exception of BLOB) are stored in
their respective table file structures. TEXT is functionally equivalent to
VARCHAR with no specific upper limit (besides the maximum size of the
column), and it requires case-insensitive comparisons. TEXT differs from
a standard VARCHAR column by not allowing DEFAULT values. TEXT
columns cannot be used in GROUP BY or ORDER BY clauses. In
addition, support for indexing TEXT columns is provided only in MySQL
version 3.23.2 and greater.

TIME (ANSI/ISO SQL data type: none)
Stores time values in the range of −838:59:59 to 838:59:59, in the format
HH:MM:SS. The values may be assigned as strings or numbers.

TIMESTAMP (ANSI/ISO SQL data type: TIMESTAMP)
Stores date values in the range of 1970-01-01 00:00:01 to partway
through the year 2038. The values are expressed as the number of seconds
since 1970-01-01 00:00:01. Timestamp values are always displayed in
the format YYYY-MM-DD HH:MM:SS.

TINYBLOB (ANSI/ISO SQL data type: BLOB)
Stores BLOB values of up to 255 bytes, the first byte being consumed by
a prefix indicating the total number of bytes in the value.

TINYINT[(n)] [UNSIGNED] [ZEROFILL] (ANSI/ISO SQL data type:

INTEGER)
Stores very small signed or unsigned integers ranging from -128 to 127, if
signed, and from 0 to 255 if unsigned.

TINYTEXT (ANSI/ISO SQL data type: none)
Stores TEXT values of up to 255 characters (less if they are multibyte
characters). The first byte is consumed by a prefix indicating the total
number of bytes in the value.

VARBINARY(n) (ANSI/ISO SQL data type: BLOB)
Stores variable-length binary byte strings of length n. Otherwise, similar
to the VARCHAR data type.

YEAR (ANSI/ISO SQL data type: none)
Stores the year in a two- or four-digit (the default) format. Two-digit
years allow values of 70 to 69, meaning 1970 to 2069, while four-digit
years allow values of 1901 to 2155, plus 0000. YEAR values are always
displayed in YYYY format but may be assigned as strings or numbers.

Oracle Datatypes
As you’ll see in this section, Oracle supports a rich variety of data types,
including most of the SQL data types and some special data types. The
special data types, however, often require optional components to be
installed. For example, Oracle supports spatial data types, but only if you
have installed the Oracle Spatial add-on. The Oracle Spatial data types,
including SDO_GEOMETRY, SDO_TOPO_GEOMETRY, and
SDO_GEORASTER, are beyond the scope of this book. Refer to the Oracle
Spatial documentation for further details on these types.

Oracle Multimedia data types use object types, similar to Java or C++ classes
for multimedia data. Oracle Multimedia data types include ORDAudio,
ORDImage, ORDVideo, ORDDoc, ORDDicom, SI_Stillimage, SI_Color,
SI_AverageColor, SI_ColorHistogram, SI_PositionalColor, SI_Texture,
SI_FeatureList, and ORDImageSignature.

Oracle also supports “Any Types” data types. These highly flexible data
types are intended for use as procedure parameters and as table columns
where the actual type is unknown. The Any Type data types are ANYTYPE,
ANYDATA, and ANYDATASET.

A complete listing of the Oracle data types follows:

BFILE (ANSI/ISO SQL data type: DATALINK)
Holds a pointer to a BLOB stored outside the database, but present on the
local server, of up to 4 GB in size. The database streams input (but not
output) access to the external BLOB. If you delete a row containing a
BFILE value, only the pointer value is deleted; the actual file structure is
not deleted.

BINARY_DOUBLE (ANSI/ISO SQL data type: FLOAT)
Holds a 64-bit floating-point number.

BINARY_FLOAT (ANSI/ISO SQL data type: FLOAT)
Holds a 32-bit floating-point number.

BLOB (ANSI/ISO SQL data type: BLOB)
Holds a binary large object (BLOB) value of between 8 and 128 terabytes
in size, depending on the database block size. In Oracle, large binary
objects (BLOBs, CLOBs, and NCLOBs) have the following restrictions:

They cannot be selected remotely.

They cannot be stored in clusters.

They cannot compose a varray.

They cannot be a component of an ORDER BY or GROUP BY clause
in a query.

They cannot be used by an aggregate function in a query.

They cannot be referenced in queries using DISTINCT, UNIQUE, or
joins.

They cannot be referenced in ANALYZE . . . COMPUTE or ANALYZE
. . . ESTIMATE statements.

They cannot be part of a primary key or index key.

They cannot be used in the UPDATE OF clause in an UPDATE
trigger.

CHAR(n) [BYTE | CHAR], CHARACTER(n) [BYTE | CHAR] (ANSI/ISO
SQL data type: CHARACTER(n))

Holds fixed-length character data of up to 2,000 bytes in length. BYTE
tells Oracle to use bytes for the size measurement. CHAR tells Oracle to
use characters for the size measurement.

CLOB (ANSI/ISO SQL data type: CLOB)
Stores a character large object (CLOB) value of between 8 and 128
terabytes in size, depending on the database block size. See the
description of the BLOB data type for a list of restrictions on the use of
the CLOB type.

DATE (ANSI/ISO SQL data type: DATE)
Stores a valid date and time within the range of 4712BC-01-01 00:00:00
to 9999AD-12-31 23:59:59.

DECIMAL(p,s) (ANSI/ISO SQL data type: DECIMAL(p,s))
A synonym for NUMBER that accepts precision and scale arguments.

DOUBLE PRECISION (ANSI/ISO SQL data type: DOUBLE PRECISION)
Stores floating-point values with double precision, the same as
FLOAT(126).

FLOAT(n) (ANSI/ISO SQL data type: FLOAT(n))
Stores floating-point numeric values with a binary precision of up to 126.

INTEGER(n) (ANSI/ISO SQL data type: INTEGER)

Stores signed and unsigned integer values with a precision of up to 38.
INTEGER is treated as a synonym for NUMBER.

INTERVAL DAY(n) TO SECOND(x) (ANSI/ISO SQL data type:
INTERVAL)

Stores a time span in days, hours, minutes, and seconds, where n is the
number of digits in the day field (values from 0 to 9 are acceptable, and 2
is the default) and x is the number of digits used for fractional seconds in
the seconds field (values from 0 to 9 are acceptable, and 6 is the default).

INTERVAL YEAR(n) TO MONTH (ANSI/ISO SQL data type:
INTERVAL)

Stores a time span in years and months, where n is the number of digits in
the year field. The value of n can range from0 to 9, with a default of 2.

LONG (ANSI/ISO SQL data type: none)
Stores variable-length character data of up to 2 gigabytes in size. Note,
however, that LONG is not scheduled for long-term support by Oracle.
Use another data type, such as CLOB, instead of LONG whenever
possible.

LONG RAW (ANSI/ISO SQL data type: none)
Stores raw variable-length binary data of up to 2 gigabytes in size. LONG
RAW and RAW are typically used to store graphics, sounds, documents,
and other large data structures. BLOB is preferred over LONG RAW in
Oracle, because there are fewer restrictions on its use. LONG RAW is
deprecated.

NATIONAL CHARACTER VARYING(n), NATIONAL CHAR
VARYING(n), NCHAR VARYING(n) (ANSI/ISO SQL data type: NCHAR
VARYING (n))

Synonyms for NVARCHAR2.

NCHAR(n), NATIONAL CHARACTER(n), NATIONAL CHAR(n)
(ANSI/ISO SQL data type: NATIONAL CHARACTER)

Holds UNICODE character data of 1 to 2,000 bytes in length. Default
size is 1 byte.

NCLOB (ANSI/ISO SQL data type: NCLOB)
Represents a CLOB that supports multibyte and UNICODE values of
between 8 and 128 terabytes in size, depending on the database block
size. See the description of the BLOB data type for a list of restrictions on
the use of the NCLOB type.

NUMBER(p,s), NUMERIC(p,s) (ANSI/ISO SQL data type: NUMERIC(p,s))
Stores a number with a precision of 1 to 38 and a scale of −84 to 127.

NVARCHAR2(n) (ANSI/ISO SQL data type: none)
Represents Oracle’s preferred UNICODE variable-length character data
type. Can hold data of 1 to 4,000 bytes in size.

RAW(n) (ANSI/ISO SQL data type: none)
Stores raw, variable-length binary data of up to 2,000 bytes in size. The
value n is the specified size of the data type. RAW is also deprecated in
Oracle 11g. (See LONG RAW.)

REAL (ANSI/ISO SQL data type: REAL)
Stores floating-point values as single-precision. Same as FLOAT(63).

ROWID (ANSI/ISO SQL data type: none)
Represents a unique, base-64 identifier for each row in a table, often used
in conjunction with the ROWID pseudocolumn.

SMALLINT (ANSI/ISO SQL data type: SMALLINT)
Synonym for INTEGER.

TIMESTAMP(n) {[WITH TIME ZONE] | [WITH LOCAL TIME ZONE]}
(ANSI/ISO SQL data type: TIMESTAMP[WITH TIME ZONE])

Stores a full date and time value, where n is the number of digits (values
from 0 to 9 are acceptable, and 6 is the default) in the fractional part of

the seconds field. WITH TIME ZONE stores whatever time zone you pass
to it (the default is your session time zone) and returns a time value in that
same time zone. WITH LOCAL TIME ZONE stores data in the time zone
of the current session and returns data in the time zone of the user’s
session.

URITYPE (ANSI/ISO SQL data type: XML)
Stores a Uniform Resource Identifier (URI), operating much like a
standard URL which references a document or even a specific point
within a document. This data type is a supertype containing three
subtypes, existing in an inheritance hierarchy: DBURIType,
XDBURIType, and HTTPURIType. You would typically create a table
using the URIType then store DBURITYPE (for DBURIREF values
using an XPath nomenclature to reference data stored elsewhere in the
database or another database), HTTPURITYPE (for HTTP web pages and
files), or XDBURITYPE (for exposing documents in the XML database
hierarchy) in the column. You will typically manipulate this type of data
using the URIFactory Package. Refer to the vendor documentation for
more information on the URIFactory Package.

UROWID[(n)] (ANSI/ISO SQL data type: none)
Stores a base-64 value showing the logical address of the row in its table.
Defaults to 4,000 bytes in size, but you may optionally specify a size of
anywhere up to 4,000 bytes.

VARCHAR(n), CHARACTER VARYING(n), CHAR VARYING(n)
(ANSI/ISO SQL data type: CHARACTER VARYING(n))

Holds variable-length character data of 1 to 4,000 bytes in size.

NOTE
Oracle does not recommend using VARCHAR and has for many years instead encouraged
the use of VARCHAR2.

VARCHAR2(n [BYTE | CHAR]) (ANSI/ISO SQL data type: CHARACTER

VARYING(n))
Holds variable-length character data of up to 4,000 bytes in length, as
defined by n. BYTE tells Oracle to use bytes forthe size measurement.
CHAR tells Oracle to use characters for the size measurement. If you use
CHAR, Oracle internally must still transform that into some number of
bytes, which is then subject to the 4,000-byte upper limit.

XMLTYPE (ANSI/ISO SQL data type: XML)
Stores XML data within the Oracle database. The XML data is accessed
using XPath expressions as well as a number of built-in XPath functions,
SQL functions, and PL/SQL packages. The XMLTYPE data type is a
system-defined type, so it is usable as an argument in functions, or as the
data type of a column in a table or view. When used in a table, the data
can be stored in a CLOB column or object-relationally.

PostgreSQL Data types
The PostgreSQL database supports most ANSI/ISO SQL data types, plus an
extremely rich set of data types that store spatial and geometric data.
PostgreSQL sports a rich set of operators and functions especially for the
geometric data types, including capabilities such as rotation, finding
intersections, and scaling. These have existed for a while and not that widely
used since they pre-date standards for managing spatial data.

OpenGeospatial Standards compliant support is provided via an open source
extension called PostGIS https://postgis.net, which is more commonly used
than the built-in PostgreSQL geometric support. PostGIS sports both a
geometry (flat-earth) and geography (round-earth) model as well as support
for transforming between spatial projections. These types support numerous
subtypes that can be expressed as typmodifiers e.g
geometry(POLYGON,4326) for a polygon column storing WGS 84 long-lat.
PostGIS also supports the newer SQL/MM standards which includes support
for 3-dimensional types such as Triangular Irregular Networks (TINs) and
PolyhedralSurfaces.

PostgreSQL also supports additional versions of existing data types that are
smaller and take up less disk space than their corresponding primary data

types. For example, PostgreSQL offers several variations on INTEGER to
accommodate small or large numbers and thereby consume proportionally
less or more space. Here’s a list of the data types it supports:

BIGINT, INT8 (ANSI/ISO SQL data type: none)
Stores signed or unsigned 8-byte integers within the range of
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

BIGSERIAL
See SERIALS.

BIT (ANSI/ISO SQL data type: BIT)
Stores a fixed-length bit string.

BIT VARYING(n), VARBIT(n) (ANSI/ISO SQL data type: BIT VARYING)
Stores a variable-length bit string whose length is denoted by n.

BOOL, BOOLEAN (ANSI/ISO SQL data type: BOOLEAN)
Stores a logical Boolean (true/false/unknown) value. The keywords
TRUE and FALSE are preferred, but PostgreSQL supports the following
valid literal values for the “true” state: TRUE, t, true, y, yes, and 1. Valid
“false” values are: FALSE, f, false, n, no, and 0.

BOX((x1, y1), (x2, y2)) (ANSI/ISO SQL data type: none)
Stores the values of a rectangular box in a 2D plane. Values are stored in
32 bytes and are represented as ((x1, y1), (x2, y2)), signifying the
opposite corners of the box (upper-right and lower-left corners,
respectively). The outer parentheses are optional.

BYTEA (ANSI/ISO SQL data type: BINARY LARGE OBJECT)
Holds raw, binary data; typically used to store graphics, sounds, or
documents. For storage, this data type requires 4 bytes plus the actual size
of the binary string.

CHAR(n), CHARACTER(n) (ANSI/ISO SQL data type: CHARACTER(n))

Contains a fixed-length character string padded with spaces up to a length
of n. Attempting to insert a value longer than n results in an error (unless
the extra length is composed of spaces, which are then truncated such that
the result fits in n characters).

CIDR(x.x.x.x/y) (ANSI/ISO SQL data type: none)
Describes an IP version 4 (IPv4) network or host address in a 12-byte
storage space. The range is any valid IPv4 network address. Data in CIDR
data types is represented as x.x.x.x/y, where the xs are the IP address and y
is the number of bits in the netmask. CIDR does not accept nonzero bits
to the right of a zero bit in the netmask.

CIRCLE(x, y, r) (ANSI/ISO SQL data type: none)
Describes a circle in a 2D plane. Values are stored in 24 bytes of storage
space and are represented as (x, y, r). The x, y value represents the
coordinates of the center of the circle, while r represents the length of the
radius. Parentheses or arrow brackets may optionally delimit the values
for x, y, and r.

DATE (ANSI/ISO SQL data type: DATE)
Holds a calendar date (year, day, and month) without the time of day in
a4-byte storage space. Dates must be between 4713 BC and 32767 AD.
DATE’s lowest resolution, naturally, is to the day.

DECIMAL[(p,s)], NUMERIC[(p,s)] (ANSI/ISO SQL data type:
DECIMAL(p,s), NUMERIC(p,s))

Stores exact numeric values with a precision (p) in the range of 0 to 9 and
a scale (s) of 0, with no upper limit.

FLOAT4, REAL (ANSI/ISO SQL data type: FLOAT(p))
Stores floating-point numbers with a precision of 0 to 8 and 6 decimal
places.

FLOAT8, DOUBLE PRECISION (ANSI/ISO SQL data type: FLOAT(p), 7
<= p < 16)

Stores floating-point numbers with a precision of 0 to 16 and 15 decimal
places.

INET(x.x.x.x/y) (ANSI/ISO SQL data type: none)
Stores an IP version 4 network or host address in a 12-byte storage space.
The range is any valid IPv4 network address. The xs represent the IP
address, and y is the number of bits in the netmask. The netmask defaults
to 32. Unlike CIDR, INET accepts nonzero bits to the right of the
netmask.

INTEGER, INT, INT4 (ANSI/ISO SQL data type: INTEGER)
Stores signed or unsigned 4-byte integers within the range of
−2,147,483,648 to 2,147,483,647.

INTERVAL(p) (ANSI/ISO SQL data type: none)
Holds general-use time-span values within the range of −178,000,000 to
178,000,000 years in a 12-byte storage space. INTERVAL’s lowest
resolution is to the microsecond. This is a different data type than the
ANSI standard, which requires an interval qualifier such as INTERVAL
YEAR TO MONTH.

JSON (SQL data type: json)
JSON data type stored as plain text. It maintains the fidelity of the data
put in it and adds on JSON validation checking to prevent invalid JSON
data.

JSONB (SQL data type: json)
JSON data type stored as binary. JSONB has richer support for indexing
than JSON and is more compact and faster to pull sub-elements of JSON.
This is the preferred data type for storing JSON data. Unlike JSON, data
added to it is restored for more efficient query handling and does not
allow duplication of keys. In case of duplicates, the last value wins. As
such you will find it may not match exactly what you inserted into it, so
not suitable if you need to maintain the exactness of what was inserted.

LINE((x1, y1), (x2, y2)) (ANSI/ISO SQL data type: none)
Holds line data, without endpoints, in 2D plane values. Values are stored
in 32 bytes and are represented as ((x1, y1), (x2, y2)), indicating the start
and end points of a line. The enclosing parentheses are optional for line
syntax.

LSEG((x1, y1), (x2, y2)) (ANSI/ISO SQL data type: none)
Holds line segment (LSEG) data, with endpoints, in a 2D plane. Values
are stored in 32 bytes and are represented as ((x1, y1), (x2, y2)). The
outer parentheses are optional for LSEG syntax. For those who are
interested, the “line segment” is what most people traditionally think of as
a line. For example, the lines on a playing field are actually line
segments.

NOTE
In true geometric nomenclature, a line stretches to infinity, having no terminus at either
end, while a line segment has end points. PostgreSQL has data types for both, but they are
functionally equivalent.

MACADDR (ANSI/ISO SQL data type: none)
Holds a value for the MAC address of a computer’s network interface
card in a 6-byte storage space. MACADDR accepts a number of industry
standard representations, such as:

08002B:010203

08002B-010203

0800.2B01.0203

08-00-2B-01-02-03

08:00:2B:01:02:03

MONEY, DECIMAL(9,2) (ANSI/ISO SQL data type: none)
Stores U.S.-style currency values in the range of −21,474,836.48 to

21,474,836.47.

NUMERIC[(p,s)], DECIMAL[(p,s)](ANSI/ISO SQL data type: none)
Stores exact numeric values with a precision (p) and scale (s).

OID (ANSI/ISO SQL data type: none)
Stores unique object identifiers.

PATH((x1, y1), . . . n), PATH[(x1, y1), . . . n] (ANSI/ISO SQL data type:
none)

Describes an open and closed geometric path in a 2D plane. Values are
represented as [(x1, y1), . . . n] and consume 4 + 32n bytes of storage
space. Each (x, y) value represents a point on the path. Paths are either
open, where the first and last points do not intersect, or closed, where the
first and last points do intersect. Parentheses are used to encapsulate
closed paths, while brackets encapsulate open paths.

POINT(x, y) (ANSI/ISO SQL data type: none)
Stores values for a geometric point in a 2D plane in a 16-byte storage
space. Values are represented as (x, y). The point is the basis for all other
two-dimensional spatial data types supported in PostgreSQL. Parentheses
are optional for point syntax.

POLYGON((x1, y1), . . . n) (ANSI/ISO SQL data type: none)
Stores values for a closed geometric path in a 2D plane using 4 + 32n
bytes of storage. Values are represented as ((x1,y1), . . . n); the enclosing
parentheses are optional. POLYGON is essentially a closed-path data
type.

SERIAL, SERIAL4 (ANSI/ISO SQL data type: none)
Stores an autoincrementing, unique integer ID for indexing and cross-
referencing. Can contain up to 4 bytes of data (a range of numbers from 1
to 2,147,483,647). Tables defined with this data type cannot be directly
dropped: you must first issue the DROP SEQUENCE command, then
follow up with the DROP TABLE command.

SERIAL8, BIGSERIAL (ANSI/ISO SQL data type: none)
Stores an autoincrementing, unique integer ID for indexing and cross-
referencing. Can contain up to 8 bytes of data (a range of numbers from 1
to 9,223,372,036,854,775,807). Tables defined with this data type cannot
be directly dropped: you must first issue the DROP SEQUENCE
command, then follow up with the DROP TABLE command.

SMALLINT (ANSI/ISO SQL data type: SMALLINT)
Stores signed or unsigned 2-byte integers within the range of −32,768 to
32,767. INT2 is a synonym.

TEXT (ANSI/ISO SQL data type: CLOB)
Stores large, variable-length character-string data of up to 1 gigabyte.
PostgreSQL automatically compresses TEXT strings, so the disk size may
be less than the string size.

TIME[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (ANSI/ISO
SQL data type: TIME)

Holds the time of day and stores either no time zone (using 8 bytes of
storage space) or the time zone of the database server (using 12 bytes of
storage space). The allowable range is from 00:00:00.00 to 23:59:59.99.
The lowest granularity is 1 microsecond. Note that time zone information
on most Unix systems is available only for the years 1902 through 2038.

TIMESTAMP[(p)] [WITHOUT TIME ZONE | WITH TIME ZONE]
(ANSI/ISO SQL data type: TIMESTAMP [WITH TIME ZONE | WITHOUT
TIME ZONE])

Holds the date and time and stores either no time zone or the time zone of
the database server. The range of values is from 4713 BC to 1465001 AD.
TIMESTAMP uses 8 bytes of storage space per value. The lowest
granularity is 1 microsecond. Note that time zone information on most
Unix systems is available only for the years 1902 through 2038.

TIMETZ (ANSI/ISO SQL data type: TIME WITH TIME ZONE)
Holds the time of day, including the time zone.

TSQUERY (ANSI/ISO SQL data type: none)__
Used for full text search is a textual way of defining a full text query that
is then applied to a TSVECTOR.

TSVECTOR (ANSI/ISO SQL: none)__
Used for full text search is a binary format consisting of lexemes and
frequency.

VARCHAR(n), CHARACTER VARYING(n) (ANSI/ISO SQL data type:
CHARACTER VARYING(n))

Stores variable-length character strings of up to a length of n. Trailing
spaces are not stored.

SQL Server Data Types
Microsoft SQL Server supports most ANSI/ISO SQL data types, as well as
some additional data types used to uniquely identify rows of data within a
table and across multiple servers, such as UNIQUEIDENTIFIER. These data
types are included in support of Microsoft’s hardware philosophy of “scale-
out” (that is, deploying on many Intel-based servers) rather than “scale-up”
(deploying on a single huge, high-end Unix server or a Windows Data Center
Server).

Similar to the other databases, SQL Server has OpenGeospatial support. It is
most similar to PostGIS in how it implements these types - with a dedicated
geometry type for flat-earth model and geography type for round-earth. It has
the richest support for curved geometries and round-earth than any of the
other databases discussed in this book, but lacks spatial reprojection support
that both PostGIS and Oracle offer that is commonly needed for GIS work.

NOTE
Here’s an interesting side note about SQL Server dates: SQL Server supports dates starting
at the year 1753, and you can’t store dates prior to that year using any of SQL Server’s
date data types. Why not? The rationale is that the English-speaking world started using
the Gregorian calendar in 1753 (the Julian calendar was used prior to September, 1753),
and converting dates prior to Julian to the Gregorian calendar can be quite challenging.

The data types SQL Server supports are:

BIGINT (ANSI/ISO SQL data type: BIGINT)
Stores signed and unsigned integers in the range of
−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, using 8 bytes
of storage space. See INT for IDENTITY property rules that also apply to
BIGINT.

BINARY[(n)] (ANSI/ISO SQL data type: BLOB)
Stores a fixed-length binary value of 1 to 8,000 bytes in size. BINARY
data types consume n + 4 bytes of storage space.

BIT (ANSI/ISO SQL data type: BOOLEAN)
Stores a value of 1, 0, or NULL (to indicate “unknown”). Up to eight BIT
columns on a single table will be stored in a single byte. An additional
eight BIT columns consume one more byte of storage space. BIT columns
cannot be indexed.

CHAR[(n)], CHARACTER[(n)] (ANSI/ISO SQL data type:
CHARACTER(n))

Holds fixed-length character data of 1 to 8,000 characters in length. Any
unused space is, by default, padded with spaces. (You can disable the
automatic padding.) Storage size is n bytes.

CURSOR (ANSI/ISO SQL data type: none)
A special data type used to describe a cursor as a variable or stored
procedure OUTPUT parameter. It cannot be used in a CREATE TABLE
statement. The CURSOR data type is always nullable.

DATE (ANSI/ISO SQL data type: DATE)
Holds a date in the range of January 1, 0001 AD to December 31, 9999
AD.

DATETIME (ANSI/ISO SQL data type: TIMESTAMP)

Holds a date and time within the range of 1753-01-01 00:00:00 through
9999-12-31 23:59:59. Values are stored in an 8-byte storage space.

DATETIME2 (ANSI/ISO SQL data type: TIMESTAMP)
Holds a date and time within the range of January 1, 0001 AD to
December 31, 9999 AD, to an accuracy of 100 nanoseconds.

DATETIMEOFFSET (ANSI/ISO SQL data type: TIMESTAMP)
Holds a date and time within the range of January 1, 0001 AD to
December 31, 9999 AD, to an accuracy of 100 nanoseconds. Also
includes time zone information. Values are stored in a 10-byte storage
space.

DECIMAL(p,s), DEC(p,s), NUMERIC(p,s) (ANSI/ISO SQL data type:
DECIMAL(p,s), NUMERIC(p,s))

Stores decimal values up to 38 digits long. The values p and s define the
precision and scale, respectively. The default value for the scale is 0. The
precision of the data type determines how much storage space it will
consume:

Precision 1-9 uses 5 bytes

Precision 10-19 uses 9 bytes

Precision 20-28 uses 13 bytes

Precision 29-39 uses 17 bytes

See INT for IDENTITY property rules that also apply to DECIMAL

DOUBLE PRECISION (ANSI/ISO SQL data type: none)
Synonym for FLOAT(53).

FLOAT[(n)] (ANSI/ISO SQL data type: FLOAT, FLOAT(n))
Holds floating-point numbers in the range of −1.79E+308 through 1.79E
+308. The precision, represented by n, may be in the range of 1 to 53. The
storage size is 4 bytes for 7 digits, where n is in the range of 1 to 24.
Anything larger requires 8 bytes of storage.

HIERARCHYID (ANSI/ISO SQL data type: none)
Represents a hierarchy or tree structure within the relational data.
Although it may consume more space, HIERARCHYID will usually
consume 5 bytes or less. Refer to the vendor documentation for more
information on this special data type.

IMAGE (ANSI/ISO SQL data type: BLOB)
Stores a variable-length binary value of up to 2,147,483,647 bytes in
length. This data type is commonly used to store graphics, sounds, and
files such as MS-Word documents and MS-Excel spreadsheets. IMAGE
cannot be freely manipulated; both IMAGE and TEXT columns have a lot
of constraints on how they can be used. See TEXT for a list of the
commands and functions that work on an IMAGE data type.

INT [IDENTITY [(seed, increment)] (ANSI/ISO SQL data type: INTEGER)
Stores signed or unsigned integers within the range of −2,147,483,648 to
2,147,483,647 in 4 bytes of storage space. All integer data types, as well
as the decimal type, support the IDENTITY property. An identity is an
automatically incrementing row identifier. Refer to the section
“CREATE/ALTER DATABASE Statement” in Chapter 3 for more
information.

MONEY (ANSI/ISO SQL data type: none)
Stores monetary values within the range of −922,337,203,685,477.5808
to 922,337,203,685,477.5807, in an 8-byte storage space.

NCHAR(n), NATIONAL CHAR(n), NATIONAL CHARACTER(n)
(ANSI/ISO SQL data type: NATIONAL CHARACTER(n))

Holds fixed-length UNICODE data of up to 4,000 characters in length.
The storage space consumed is double the character length inserted into
the field (2 * n).

NTEXT, NATIONAL TEXT (ANSI/ISO SQL data type: NCLOB)
Holds UNICODE text passages of up to 1,073,741,823 characters in
length. See TEXT for rules about the commands and functions available

for NTEXT.

NUMERIC(p,s) (ANSI/ISO SQL data type: DECIMAL(p,s))
Synonym for DECIMAL. See INT for rules about the IDENTITY property
that also apply to this type.

NVARCHAR(n), NATIONAL CHAR VARYING(n), NATIONAL
CHARACTER VARYING(n) (ANSI/ISO SQL data type: NATIONAL
CHARACTER VARYING(n))

Holds variable-length UNICODE data of up to 4,000 characters in length.
The storage space consumed is double the character length inserted into
the field (2 * n). The system setting SET ANSI_PADDING is always
enabled (ON) for NCHAR and NVARCHAR fields in SQL Server.

REAL, FLOAT(24) (ANSI/ISO SQL data type: REAL)
Holds floating-point numbers in the range of −3.40E+38 through 3.40E
+38 in a 4-byte storage space. REAL is functionally equivalent to
FLOAT(24).

ROWVERSION (ANSI/ISO SQL data type: none)
Stores a number that is unique within the database whenever a row in the
table is updated. Called TIMESTAMP in earlier versions.

SMALLDATETIME (ANSI/ISO SQL data type: none)
Holds a date and time within the range of 1900-01-01 00:00 through
2079-06-06 23:59, accurate to the nearest minute. (Minutes are rounded
down when seconds are 29.998 or less; otherwise, they are rounded up.)
Values are stored in 4 bytes.

SMALLINT (ANSI/ISO SQL data type: SMALLINT)
Stores signed or unsigned integers in the range of −32,768 and 32,767, in
2 bytes of storage space. See INT for rules about the IDENTITY property
that also apply to this type.

SMALLMONEY (ANSI/ISO SQL data type: none)

Stores monetary values within the range of −214,748.3648 to
214,748.3647, in 4 bytes of storage space.

SQL_VARIANT (ANSI/ISO SQL data type: none)
Stores values of other SQL Server-supported data types, except TEXT,
NTEXT, ROWVERSION, and other SQL_VARIANT commands. Can store
up to 8,016 bytes of data and supports NULL and DEFAULT values.
SQL_VARIANT is used in columns, parameters, variables, and return
values of functions and stored procedures.

TABLE (ANSI/ISO SQL data type: none)
Special data type that stores a result set for a later process. Used solely in
procedural processing, and cannot be used in a CREATE TABLE
statement. This data type alleviates the need for temporary tables in many
applications. It can reduce the need for stored procedure recompiles, thus
speeding execution of stored procedures and user-defined functions.

TEXT (ANSI/ISO SQL data type: CLOB)
Stores very large passages of text (up to 2,147,483,647 characters in
length). TEXT and IMAGE values are often more difficult to manipulate
than, say, VARCHAR values. For example, you cannot place an index on
a TEXT or IMAGE column. TEXT values valuescan can be manipulated
using the functions DATALENGTH, PATINDEX, SUBSTRING,
TEXTPTR, and TEXTVALID as well as the commands READTEXT, SET
TEXTSIZE, UPDATETEXT, and WRITETEXT.

TIME (ANSI/ISO SQL data type: TIME)
Stores an automatically generated binary number that guarantees
uniqueness in the current database and is therefore different from the
ANSI TIMESTAMP data type. TIME s consume 8 bytes of storage space.
ROWVERSION is now preferred over TIME to uniquely track each row.

TIMESTAMP (ANSI/ISO SQL data type: TIMESTAMP)
Stores the time of day based on a 24-hour clock without time zone
awareness, to an accuracy of 100 nanoseconds, in a 5-byte storage space.

TINYINT (ANSI/ISO SQL data type: none)
Stores unsigned integers within the range 0 to 255 in 1 byte of storage
space. See INT for rules about the IDENTITY property that also apply to
this type.

UNIQUEIDENTIFIER (ANSI/ISO SQL data type: none)
Represents a value that is globally unique across all databases and all
servers. Values are represented as xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxxx,
where each x is a hexadecimal digit in the range 0 to 9 or a to f. The only
operations allowed against UNIQUEIDENTIFIER s are comparisons and
NULL checks. Column constraints and properties are allowed on
UNIQUEIDENTIFIER columns, with the exception of the IDENTITY
property.

VARBINARY[(n)] (ANSI/ISO SQL data type: BLOB)
Describes a variable-length binary value of up to 8,000 bytes in size. The
storage space consumed is equivalent to the size of the data inserted, plus
4 bytes.

VARCHAR[(n)], CHAR VARYING[(n)], CHARACTER VARYING[(n)]
(ANSI/ISO SQL data type: CHARACTER VARYING(n))

Holds fixed-length character data of 1 to 8,000 characters in length. The
amount of storage space required is determined by the actual size of the
value entered in bytes, not the value of n.

XML (ANSI/ISO SQL data type: XML)
Stores XML data in a column or a variable of variable size in storage
space up to but not exceeding 2 gigabytes in size.

Constraints
Constraints allow you to automatically enforce the rules of data integrity and
to filter the data that is placed in a database. In a sense, constraints are rules
that define which data values are valid during INSERT, UPDATE, and
DELETE operations. When a data-modification transaction breaks the rules

of a constraint, the transaction is rejected.

In the ANSI standard, there are four constraint types: CHECK, PRIMARY
KEY, UNIQUE, and FOREIGN KEY. (The RDBMS platforms may allow
more; refer to Chapter 3 for details.)

Scope
Constraints may be applied at the column level or the table level:

Column-level constraints
Are declared as part of a column definition and apply only to that column.

Table-level constraints
Are declared independently from any column definitions (traditionally, at
the end of a CREATE TABLE statement) and may apply to one or more
columns in the table. A table constraint is required when you wish to
define a constraint that applies to more than one column.

Syntax
Constraints are defined when you create or alter a table. The general syntax
for constraints is shown here:

 CONSTRAINT [constraint_name] constraint_type [(column [, ...])]
 [predicate] [constraint_deferment] [deferment_timing]

The syntax elements are as follows:

CONSTRAINT [constraint_name]
Begins a constraint definition and, optionally, provides a name for the
constraint. When you omit constraint_name, the system will create a
name for you automatically. On some platforms, you may omit the
CONSTRAINT keyword as well.

NOTE
System-generated names are often incomprehensible. It is good practice to specify human-

readable, sensible names for constraints.

constraint_type
Declares the constraint as one of the allowable types: CHECK, PRIMARY
KEY, UNIQUE, or FOREIGN KEY. More information about each type of
constraint appears later in this section.

column [, . . .]
Associates one or more columns with the constraint. Specify the columns
in a comma-delimited list, enclosed in parentheses. The column list
should be omitted for column-level constraints. Columns are not used in
every constraint. For example, CHECK constraints do not generally use
column references.

predicate
Defines a predicate for CHECK constraints.

constraint_deferment
Declares a constraint as DEFERRABLE or NOT DEFERRABLE. When a
constraint is deferrable, you can specify that it be checked for a rules
violation at the end of a transaction. When a constraint is not deferrable, it
is checked for a rules violation at the conclusion of every SQL statement.

deferment_timing
Declares a deferrable constraint as INITIALLY DEFERRED or INITIALLY
IMMEDIATE. When set to INITIALLY DEFERRED, the constraint check
time will be deferred until the end of a transaction, even if the transaction
is composed of many SQL statements. In this case, the constraint must
also be DEFERRABLE. When set to INITIALLY IMMEDIATE, the
constraint is checked at the end of every SQL statement. In this case, the
constraint may be either DEFERRABLE or NOT DEFERRABLE. The
default is INITIALLY IMMEDIATE.

Note that this syntax may vary among the different vendor platforms. Check

the individual platform sections in Chapter 3 for more details.

PRIMARY KEY Constraints
A PRIMARY KEY constraint declares one or more columns whose value(s)
uniquely identify each record in the table. It is considered a special case of
the UNIQUE constraint. Here are some rules about primary keys:

Only one primary key may exist on a table at a time.

Columns in the primary key cannot have data types of BLOB, CLOB,
NCLOB, or ARRAY.

Primary keys may be defined at the column level for a single column key
or at the table level if multiple columns make up the primary key.

Values in the primary key column(s) must be unique and not NULL.

In a multicolumn primary key, called a concatenated key, the combination
of values in all of the key columns must be unique and not NULL.

Foreign keys can be declared that reference the primary key of a table to
establish direct relationships between tables (or possibly, though rarely,
within a single table).

The following ANSI standard code includes the options for creating both a
table-and column-level primary key constraint on a table called distributors.
The first example shows a column-level primary-key constraint, while the
second shows a table-level constraint:

 -- Creating a column-level constraint
 CREATE TABLE distributors(dist_id CHAR(4) NOT NULL PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT);
 -- Creating a table-level constraint
 CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,CONSTRAINT pk_dist_id PRIMARY KEY (dist_id));

In the example showing a table-level primary key, we could easily have
created a concatenated key by listing several columns separated by commas.

FOREIGN KEY Constraints
A FOREIGN KEY constraint defines one or more columns in a table as
referencing columns in a unique or primary key in another table. (A foreign
key can reference a unique or primary key in the same table as the foreign
key itself, but such foreign keys are rare.) Foreign keys can then prevent the
entry of data into a table when there is no matching value in the related table.
They are the primary means of identifying the relationships between tables in
a relational database. Here are some rules about foreign keys:

Many foreign keys may exist on a table at a time.

A foreign key can be declared to reference either the primary key or a
unique key of another table to establish a direct relationship between the
two tables.

The full ANSI/ISO SQL syntax for foreign keys is more elaborate than the
general syntax for constraints shown earlier, and it’s dependent on whether
you are making a table-level or column-level declaration:

 -- Table-level foreign key
 [CONSTRAINT [constraint_name]]
 FOREIGN KEY (local_column[, ...])
 REFERENCES referenced_table [(referenced_column[, ...])]
 [MATCH {FULL | PARTIAL | SIMPLE}]
 [ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
 [ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]

 [constraint_deferment] [deferment_timing]
 -- Column-level foreign key
 [CONSTRAINT [constraint_name]]
 REFERENCES referenced_table [(referenced_column[, ...])]
 [MATCH {FULL | PARTIAL | SIMPLE}]
 [ON UPDATE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
 [ON DELETE {NO ACTION | CASCADE | RESTRICT |
 SET NULL | SET DEFAULT}]
 [constraint_deferment] [deferment_timing]

The keywords common to a standard constraint declaration were described
earlier, in the “Syntax” section. Keywords specific to foreign keys are
described in the following list:

FOREIGN KEY (local_column [, . . .])
Declares one or more columns of the table being created or altered that
are subject to the foreign key constraint. This syntax is used only in table-
level declarations and is excluded from column-level declarations. We
recommend that the ordinal positions and data types of the columns in the
local_column list match the ordinal positions and data types of the
columns in the refer enced_column list.

REFERENCES referenced_table [(referenced_column [, . . .])]
Names the table and, where appropriate, the column(s) that hold the valid
list of values for the foreign key. A referenced_column must already be
named in a NOT DEFERRABLE PRIMARY KEY or NOT DEFERRABLE
UNIQUE KEY statement. The table types must also match; for example,
if one is a local temporary table, both must be local temporary tables.

MATCH {FULL | PARTIAL | SIMPLE}
Defines the degree of matching required between the local and referenced
columns in foreign-key constraints when NULLs are present:

FULL
Declares that a match is acceptable when: 1) none of the referencing
columns are NULL and match all of the values of the referenced
column, or 2) all of the referencing columns are NULL. In general,
you should either use MATCH FULL or ensure that all columns

involved have NOT NULL constraints.

PARTIAL
Declares that a match is acceptable when at least one of the referenced
columns is NULL and the others match the corresponding referenced
columns.

SIMPLE
Declares that a match is acceptable when any of the values of the
referencing column is NULL or a match. This is the default.

ON UPDATE
Specifies that, when an UPDATE operation affects one or more
referenced columns of the primary or unique key on the referenced table,
a corresponding action should be taken to ensure that the foreign key does
not lose data integrity. ON UPDATE may be declared independently of or
together with the ON DELETE clause. When omitted, the default for the
ANSI standard is ON UPDATE NO ACTION.

ON DELETE
Specifies that, when a DELETE operation affects one or more referenced
columns of the primary or unique key on the referenced table, a
corresponding action should be taken to ensure that the foreign key does
not lose data integrity. ON DELETE may be declared independently of or
together with the ON UPDATE clause. When omitted, the default for the
ANSI standard is ON DELETE NO ACTION.

NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT
Defines the action the database takes to maintain the data integrity of the
foreign key when a referenced primary or unique key constraint value is
changed or deleted:

NO ACTION
Tells the database to do nothing when a primary key or unique key value
referenced by a foreign key is changed or deleted.

CASCADE
Tells the database to perform the same action (i.e., DELETE or UPDATE)
on the matching foreign key when a primary key or unique key value is
changed or deleted.

RESTRICT
Tells the database to prevent changes to the primary key or unique key
value referenced by the foreign key.

SET NULL
Tells the database to set the value in the foreign key to NULL when a
primary key or unique key value is changed or deleted.

SET DEFAULT
Tells the database to set the value in the foreign key to the default (using
default values you specify for each column) when a primary key or
unique key value is changed or deleted.

As with the code example for primary keys, you can adapt this generic syntax
to both column-level and table-level foreign key constraints. Note that
column-level and table-level constraints perform their function in exactly the
same way; they are merely defined at different levels of the CREATE TABLE
command. In the following example, we create a single-column foreign key
on the salesrep column referencing the empid column of the employee table.
We create the foreign key two different ways, the first time at the column
level and the second time at the table level:

 -- Creating a column-level constraint
 CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,sales_rep INT NOT

NULL REFERENCES employee(empid));

 -- Creating a table-level constraint
 CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
 CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),CONSTRAINT
fk_empidFOREIGN KEY (sales_rep)REFERENCES employee(empid));

UNIQUE Constraints
A UNIQUE constraint, sometimes called a candidate key, declares that the
values in one column, or the combination of values in more than one column,
must be unique. Rules concerning unique constraints include:

Columns in a unique key cannot have data types of BLOB, CLOB,
NCLOB, or ARRAY.

The column or columns in a unique key may not be identical to those in
any other unique keys, or to any columns in the primary key of the table.

A single NULL value, if the unique key allows NULL values, is allowed.

ANSI/ISO SQL allows you to substitute the column list shown in the
general syntax diagram for constraints with the keyword (VALUE).
UNIQUE (VALUE) indicates that all columns in the table are part of the
unique key. The VALUE keyword also disallows any other unique or
primary keys on the table.

In the following example, we limit the number of distributors we do business
with to only one distributor per zip code. We also allow one (and only one)
“catch-all” distributor with a NULL zip code. This functionality can be
implemented easily using a UNIQUE constraint, either at the column or the
table level:

 -- Creating a column-level constraint

 CREATE TABLE distributors
 (dist_id CHAR(4) PRIMARY KEY,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,zip CHAR(5) UNIQUE,
 phone CHAR(12) ,
 sales_rep INT NOT NULL
 REFERENCES employee(empid));
 -- Creating a table-level constraint
 CREATE TABLE distributors
 (dist_id CHAR(4) NOT NULL,
 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2) ,
 zip CHAR(5) ,
 phone CHAR(12) ,
 sales_rep INT ,
 CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),
 CONSTRAINT fk_emp_id FOREIGN KEY (sales_rep)
 REFERENCES employee(empid),CONSTRAINT unq_zip UNIQUE (zip));

CHECK Constraints
CHECK constraints allow you to perform comparison operations to ensure
that values match specific conditions that you set out. The syntax for a check
constraint is very similar to the general syntax for constraints:

 [CONSTRAINT] [constraint_name] CHECK (search_conditions)
 [constraint_deferment] [deferment_timing]

Most of the elements of the check constraint were introduced earlier in this
section. The following element is unique to this constraint:

search_conditions

Specifies one or more search conditions that constrain the values inserted into
the column or table, using one or more expressions and a predicate. Multiple
search conditions may be applied to a column in a single check constraint
using the AND and OR operators (think of a WHERE clause).

A check constraint is considered matched when the search conditions

evaluate to TRUE or UNKNOWN. Check constraints are limited to Boolean
operations (e.g., =, >=, <=, or <>), though they may include any ANSI/ISO
SQL predicate, such as IN or LIKE. Check constraints may be appended to
one another (when checking a single column) using the AND and OR
operators. Here are some other rules about check constraints:

A column or table may have one or more check constraints.

A search condition cannot contain aggregate functions, except in a
subquery.

A search condition cannot use nondeterministic functions or subqueries.

A check constraint can only reference like objects. That is, if a check
constraint is declared on a global temporary table, it cannot then reference
a permanent table.

A search condition cannot reference these ANSI functions:
CURRENT_USER, SESSION_USER, SYSTEM_USER, USER,
CURRENT_PATH, CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP.

The following example adds a check constraint to the dist_id and zip
columns. (This example uses generic code run on SQL Server.) The zip code
must fall into the normal ranges for postal zip codes, while the dist_id values
are allowed to contain either four alphabetic characters or two alphabetic and
two numeric characters:

 -- Creating column-level CHECK constraints
 CREATE TABLE distributors(dist_id CHAR(4)CONSTRAINT pk_dist_id
PRIMARY KEYCONSTRAINT ck_dist_id CHECK(dist_id LIKE '[A-Z][A-Z][A-

Z][A-Z]' ORdist_id LIKE '[A-Z][A-Z][0-9][0-9]'),

 dist_name VARCHAR(40),
 dist_address1 VARCHAR(40),
 dist_address2 VARCHAR(40),
 city VARCHAR(20),
 state CHAR(2)
 CONSTRAINT def_st DEFAULT ("CA"),zip CHAR(5)CONSTRAINT
unq_dist_zip UNIQUE

 CONSTRAINT ck_dist_zip CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-

9]'),

 phone CHAR(12),
 sales_rep INT
 NOT NULL DEFAULT USER REFERENCES employee(emp_id))

Chapter 3. Structuring Your Data

Newcomers to SQL usually take one of two learning paths when learning to
program in the language. Developers and analysts usually start with the
SELECT statement and the other DML statements of INSERT, UPDATE,
DELETE, and MERGE. That’s because they are frequently tasked with either
helping to write the front-end applications that access the database, in the
case of developers, or to write reports and retrieve information for better
business decisions, in the case of business analysts. The second learning path,
of DBAs and database architects, starts here with the SQL statements needed
to create a database from whole cloth.

In this chapter, we will explore the various statements you will need to create
a database, populate it with tables, views, and many other important database
objects. From there, we will also detail the statements needed to alter existing
objects, and to remove those objects when required.

How to Use This Chapter
When researching a command in this chapter:

1. Read “SQL Platform Support.”

2. Check the platform support table.

3. Look up the specific SQL statement and read the section on the
standard for SQL syntax and description. Do this even if you are
looking for a specific platform implementation.

4. Finally, read the specific platform implementation information, which
notes the difference between the standard and the vendor-specific
implementation of the standard. You will note that the entry for a
specific platform implementation does not duplicate clauses held in

common with the standard. So it is possible you might need to flip
between the description for the SQL standard and for the vendor
variation to cover all possible details of that command.

Repeat - Any common features between the platform statement of a
command are discussed and compared against the SQL section. Thus, the
subsection on a platform’s implementation of a particular command may not
describe every aspect of that command, since some of its details may be
covered in the preceding standard SQL section. Please note that if there is a
keyword that appears in a command’s syntax but not in its keyword
description, this is because we chose not to repeat descriptions that appear
under the ANSI/ISO entry. In discussion of MySQL, we will also include
MariaDB, a fork of MySQL. For the most part MySQL and MariaDB provide
the fully code-compatible commands. In these cases we will refer to them as
MySQL. We will mention MariaDB in situations where it deviates from
MySQL in an important way.

SQL Platform Support
Table 3-1 provides a listing of the SQL statements, the platforms that support
them, and the degree to which they support them. The following list offers
useful tips for reading Table 3-1, as well as an explanation of what each
abbreviation stands for:

1. The first column contains the SQL commands, in alphabetical order.

2. The SQL statement class for each command is indicated in the second
column.

3. The subsequent columns list the level of support for each vendor:

4. Supported (S)

5. The platform supports the SQL standard for the particular command.

6. Supported, with variations (SWV)

7. The platform supports the SQL standard for the particular command,
using vendor-specific code or syntax.

8. Supported, with limitations (SWL)

9. The platform supports some but not all of the features specified by the
SQL standard for the particular command.

10. Not supported (NS)

11. The platform does not support the particular command according to the
SQL standard.

The sections that follow the table describe the commands in detail. Related
CREATE and ALTER commands (e.g., CREATE DATABASE and ALTER
DATABASE) are discussed together (e.g., in a section titled
“CREATE/ALTER DATABASE Statement”).

Remember that even if a specific SQL command is listed in the table as “Not
supported,” the platform usually has alternative coding or syntax to enact the
same command or function. Therefore, be sure to read the discussion and
examples for each command later in this chapter. Likewise, a few of the
commands in Table 3-1 are not found in the SQL standard; these have been
indicated with the term “Non-ANSI” under the heading “SQL class” in the
table.

Since this book focuses on the implementation of the SQL language,
unsupported ANSI commands are shown in Table 3-1 but are not
documented elsewhere in the book.

Table 3-1. Alphabetical quick SQL command reference

SQL command SQL class MySQL Oracle PostgreSQL SQL Server
ALTER DATABASE SQL-schema SWV SWV SWV SWV

ALTER FUNCTION SQL-schema SWL SWV SWL SWV

ALTER INDEX Non-ANSI SWV SWV SWV SWV

ALTER ROLE SQL-schema NS SWV SWV SWL

ALTER SCHEMA SQL-schema SWL NS SWL SWL

ALTER TABLE SQL-schema SWV SWV SWV SWV

ALTER TYPE SQL-schema NS SWV SWV NS

ALTER VIEW Non-ANSI SWV SWV SWV SWV

CREATE DATABASE Non-ANSI SWV SWV SWV SWV

CREATE DOMAIN SQL-schema NS NS S NS

CREATE INDEX Non-ANSI SWV SWV SWV SWV

CREATE ROLE SQL-schema SWV SWV SWV SWL

CREATE SCHEMA SQL-schema SWL SWV SWL SWL

CREATE TABLE SQL-schema SWV SWV SWV SWV

CREATE TYPE SQL-schema NS SWL SWV SWV

CREATE VIEW SQL-schema SWV SWV SWV SWV

DROP DATABASE Non-ANSI SWV S SWV SWV

DROP DOMAIN SQL-schema NS NS S NS

DROP INDEX Non-ANSI SWV SWV SWV SWV

DROP METHOD SQL-schema NS SWV NS NS

DROP ROLE SQL-schema SVW SWV SWV SWV

DROP SCHEMA SQL-schema SWV SWV SWV SWV

DROP TABLE SQL-schema SWV SWV SWV SWV

DROP TYPE SQL-schema NS S S S

DROP VIEW SQL-schema SWV S S S

SQL Command Reference

CREATE/ALTER DATABASE Statement
The ANSI standard does not actually contain a CREATE DATABASE
statement. However, since it is nearly impossible to operate a SQL database
without this command, we’ve added CREATE DATABASE here. Almost all
database platforms support some version of this command.

 Platform

 Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Syntax

CREATE DATABASE [IF NOT EXISTS] database_name [vendor_specific_options]
ALTER DATABASE database_name vendor_specific_options

Keywords

CREATE DATABASE database_name
Creates a new database named database_name in the current server. For
MySQL DATABASE and SCHEMA are equivalent.

IF NOT EXISTS
Only creates the database if it doesn’t already exist. This is mostly to
prevent raising errors.

database_name
Declares the name of the new database.

ALTER DATABASE database_name
Allows changing settings of an already created database.

vendor_specific_options
Vendors have many different options they tack on which vary
significantly. Refer to the vendor sections for vendor specific details.

Rules at a Glance
This command creates a new, empty database with a specific name. Most
DBMS platforms require the user to possess administrator privileges in order

to create a new database. Once the new database is created, you can populate
it with database objects (such as tables, views, triggers, and so on) and
populate the tables with data.

Depending on the platform, CREATE DATABASE may also create
corresponding files on the filesystem that contain the data and metadata of the
database.

Programming Tips and Gotchas
Since CREATE DATABASE is not an ANSI/ISO statement, it is prone to
rather extreme variation in syntax between platforms and what exactly it
does.

MySQL
In MySQL, CREATE DATABASE essentially creates a new directory that
holds the database objects:

CREATE { DATABASE | SCHEMA } [IF NOT EXISTS] database_name
 [[DEFAULT] CHARACTER SET character_set]
 [[DEFAULT] COLLATE collation_set]
 [[DEFAULT] ENCRYPTION {'Y' | 'N'}]

The following is the syntax for MySQL’s implementation of the ALTER
DATABASE statement:

ALTER { DATABASE | SCHEMA } database_name
{ [[DEFAULT] CHARACTER SET character_set]
 [[DEFAULT] COLLATE collation_set] |
 | [DEFAULT] ENCRYPTION [=] {'Y' | 'N'}
| READ ONLY [=] {DEFAULT | 0 | 1}
 }

where:

{CREATE | ALTER} { DATABASE | SCHEMA } database_name
Creates a database and directory of database_name. The database
directory appears under the MySQL data directory. Tables in MySQL
then appear as files in the database directory. The SCHEMA keyword is
synonymous with DATABASE.

IF NOT EXISTS
Avoids an error if the database already exists.

[DEFAULT] CHARACTER SET character_set
Optionally defines the default character set used by the database. Refer to
the MySQL documentation for a full listing of the available character
sets.

[DEFAULT] COLLATE collation_set
Optionally defines the database collation used by the database. Refer to
the MySQL documentation for a full listing of the available collations.

[DEFAULT] ENCRYPTION ‘Y’ | ‘N’
Optionally defines if the database is encrypted default is not encrypted
‘N’. ‘Y’ defines if the database is encrypted and all tables within will be
encrypted. This setting was introduced in MySQL 8.0.16. This setting can
also be set in default_table_encryption system variable. When set to ‘Y’
all new databases will be encrypted unless the setting is explicitly set in
the CREATE DATABASE clause.

[DEFAULT] READ ONLY 0
Optionally defines if tables in the database should only allow READ.
This setting can be set with ALTER DATABASE and not CREATE
DATABASE. This setting was introduced in MySQL 8.0.16.

Oracle
Oracle provides an extraordinary level of control over database file
structures, far beyond merely naming the database and specifying a path for
the database files. CREATE and ALTER DATABASE are very powerful
commands in Oracle, and some of the more sophisticated clauses are best
used only by experienced DBAs. These commands can be very large and
complex—ALTER DATABASE alone consumes over 50 pages in the Oracle

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_table_encryption

vendor documentation!

Novices should be aware that CREATE DATABASE, when run, erases all data
that is already in existence in the specified datafiles. The Oracle installer
generally performs the CREATE DATABASE step for you, so most users do
not need to do it. It is also highly recommended that you use the Oracle
Database Configuration Assistant (DBCA) when creating new databases and
only resort to the CREATE DATABASE command directly if you need to
script creation of a database.

Following is a subset of the syntax to create a new database in Oracle:

CREATE DATABASE [database_name]
{[USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password]}
[CONTROLFILE REUSE]
[MAXDATAFILES int]
[MAXINSTANCES int]
[CHARACTER SET charset]
[NATIONAL CHARACTER SET charset]
[SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE]
{[LOGFILE definition[, ...]] [MAXLOGFILES int] [[MAXLOGMEMBERS] int]
 [[MAXLOGHISTORY] int] [{ARCHIVELOG | NOARCHIVELOG}] [FORCE LOGGING]
 [SET STANDBY NOLOGGING FOR {DATA AVAILABILITY | LOAD PERFORMANCE}] }
[EXTENT MANAGEMENT {DICTIONARY | LOCAL
 [{AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}]}]
[DATAFILE definition[, ...]]
[SYSAUX DATAFILE definition[, ...]]
[DEFAULT TABLESPACE tablespace_name
 [DATAFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] DEFAULT TEMPORARY TABLESPACE tablespace_name
 [TEMPFILE file_definition]
 EXTENT MANAGEMENT {DICTIONARY |
 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]]}}]
[[{BIGFILE | SMALLFILE}] UNDO TABLESPACE tablespace_name
 [DATAFILE temp_datafile_definition]]
[SET TIME_ZONE = '{ {+ | -} hh:mi| time_zone_region }']

Following is a subset of the syntax to alter an existing database:

ALTER DATABASE [database_name]
[ARCHIVELOG | NOARCHIVELOG] |
 {MOUNT [{STANDBY | CLONE} DATABASE] | OPEN [READ ONLY | READ WRITE]
 [RESETLOGS | NORESETLOGS] | [UPGRADE | DOWNGRADE]} |
 {ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH APPLY]
 [SKIP [STANDBY LOGFILE]] |
 SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |
 PERFORMANCE} |

 REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
 [FOR logminer_session_name] |
 {COMMIT | PREPARE} TO SWITCHOVER TO
 {{[PHYSICAL | LOGICAL] PRIMARY | STANDBY} [WITH[OUT]
 SESSION SHUTDOWN] [WAIT | NOWAIT]} |
 CANCEL} |
 START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]
 [{INITIAL int | NEW PRIMARY dblink_name | {FINISH |
 SKIP FAILED TRANSACTION}}] |
 {STOP | ABORT} LOGICAL STANDBY APPLY |
 [CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY] |
{RENAME GLOBAL_NAME TO database[.domain[.domain ...]] |
 CHARACTER SET character_set |
 NATIONAL CHARACTER SET character_set |
 DEFAULT TABLESPACE tablespace_name |
 DEFAULT TEMPORARY TABLESPACE {GROUP int | tablespace_name} |
 {DISABLE BLOCK CHANGE TRACKING | ENABLE BLOCK CHANGE TRACKING [USING
 FILE 'file'] [REUSE]} |
 FLASHBACK {ON | OFF} |
 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region }' |
 SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE} |
{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name' } |
{GUARD {ALL | STANDBY | NONE}} |
{CREATE DATAFILE 'file'[, ...] [AS {NEW | file_definition[, ...]}] |
 {DATAFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE [FOR DROP | RESIZE int [K | M]] |
 END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE
 [UNLIMITED | int [K | M]]] |
 {TEMPFILE 'file' | TEMPFILE 'file'}[, ...]
 {ONLINE | OFFLINE | DROP [INCLUDING DATAFILES] |
 RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT int [K | M]]}
 [MAXSIZE [UNLIMITED | int [K | M]]] |
 RENAME FILE 'file'[, ...] TO 'new_file_name'[, ...]} |
{[[NO] FORCE LOGGING] | [[NO]ARCHIVELOG [MANUAL]] |
 [ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |
 FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, ...]] COLUMNS |
 [ADD | DROP] [STANDBY] LOGFILE
 {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int |
 logfile_name[, ...]]} [SIZE int [K | M]] | [REUSE] |
 [MEMBER] 'file' [REUSE][, ...] TO logfile_name[, ...]} |
 ADD LOGFILE MEMBER 'file' [REUSE][, ...] TO {[GROUP int |
 logfile_name[, ...]]} |
 DROP [STANDBY] LOGFILE {MEMBER 'file' | {[GROUP int |logfile_name [,
...]]}}
 CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, ...]]}[, ...]
 [UNRECOVERABLE DATAFILE]} |
{CREATE [LOGICAL | PHYSICAL] STANDBY CONTROLFILE AS 'file' [REUSE] |
 BACKUP CONTROLFILE TO
 {'file' [REUSE] | TRACE [AS 'file' [REUSE]]} [{RESETLOGS |
 NORESETLOGS}]} |
{RECOVER
 {[AUTOMATIC [FROM 'location']] |
 {[STANDBY] DATABASE

 {[UNTIL {CANCEL | TIME date | CHANGE int}] |
 USING BACKUP CONTROLFILE} |
 {{[STANDBY] {TABLESPACE tablespace_name[, ...] | DATAFILE
 'file'[, ...]} [UNTIL [CONSISTENT WITH] CONTROLFILE]} |
 TABLESPACE tablespace_name[, ...] | DATAFILE 'file'[, ...]} |
 LOGFILE filename[, ...]} [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL
 int}]} |
 CONTINUE [DEFAULT] |
 CANCEL}
 {MANAGED STANDBY DATABASE
 {[USING CURRENT LOGFILE]
 [DISCONNECT [FROM SESSION]]
 [NODELAY]
 [UNTIL CHANGE int]
 [FINISH]
 [CANCEL]} |
 TO LOGICAL STANDBY {database_name | KEEP IDENTITY}}
{{BEGIN | END} BACKUP}

The syntax elements in Oracle are as follows. First, for CREATE
DATABASE:

{CREATE | ALTER} DATABASE [database_name]
Creates or alters a database with the name database_name. The database
name can be up to 8 bytes in length and may not contain European or
Asian characters. You can omit the database name and allow Oracle to
create the name for you, but beware that the names Oracle creates can be
counterintuitive.

USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY
password

Specifies passwords for the SYS and SYSTEM users. You may specify
neither or both of these clauses, but not just one of them.

CONTROLFILE REUSE
Causes existing control files to be reused, enabling you to specify existing
files in the CONTROL_FILES parameter in INIT.ORA. Oracle will then
overwrite any information those files may contain. This clause is
normally used when recreating a database. Consequently, you probably
don’t want to use this clause in conjunction with MAXLOGFILES,

MAXLOGMEMBER, MAXLOGHISTORY, MAXDATAFILES, or
MAXINSTANCES.

LOGFILE definition
Specifies one or more logfiles for the database. You may define multiple
files all with the same size and characteristics, using the file parameter, or
you may define multiple files each with its own size and characteristics.
The entire log-file definition syntax is rather ponderous, but it offers a
great deal of control:

LOGFILE { ('file'[, ...]) [SIZE int [K | M]]

[GROUP int] [REUSE] }[, ...]

LOGFILE ('file'[, . . .])

Defines one or more files that will act as redo logfiles; file is both the
filename and the path. Any files defined in the CREATE DATABASE
statement are assigned to redo log thread number 1. When specifying
multiple redo logfiles, each filename should be enclosed in single quotes
and separated from the other names by commas. The entire list should be
enclosed in parentheses.

SIZE int [K | M]

Specifies the size of the redo logfile in bytes as an integer value, int.
Alternately, you may define the redo logfile in larger units than bytes by
appending a K (for kilobytes) or an M (for megabytes).

GROUP int

Defines the integer ID, int, of the redo logfile group. The value may be
from 1 to the value of the MAXLOGFILES clause. An Oracle database
must have at least two redo logfile groups. Oracle will create a redo
logfile group for you, with a default size of 100 MB, if you omit this

group ID.

REUSE

Reuses an existing redo logfile.

MAXLOGFILES int
Sets the maximum number of logfiles, int, available to the database being
created. The minimum, maximum, and default values for this clause are
OS-dependent.

MAXLOGMEMBERS int
Sets the maximum number of members (i.e., copies) for a redo logfile
group. The minimum value is 1, while the maximum and default values
for this clause are OS-dependent.

MAXLOGHISTORY int
Sets the maximum number of archived redo logfiles available to a Real
Application Cluster (RAC). You can use the MAXLOGHISTORY clause
only when Oracle is in ARCHIVELOG mode on a RAC. The minimum
value is 0, while the maximum and default values for this clause are OS-
dependent.

ARCHIVELOG | NOARCHIVELOG
Defines how redo logs operate. When used with ALTER DATABASE,
specifying one of these allows the current setting to be changed.
ARCHIVELOG saves data stored in the redo log(s) to an archiving file,
providing for media recoverability. Conversely, NOARCHIVELOG
allows a redo log to be reused without archiving the contents. Both
options provide recoverability, although NOARCHIVELOG (the default)
does not provide media recovery.

FORCE LOGGING

Places all instances of the database into FORCE LOGGING mode, in
which all changes to the database are logged, except for changes to
temporary tablespaces and segments. This setting takes precedence over
any tablespace- or object-level settings.

MAXDATAFILES int
Sets the initial number of datafiles, int, available to the database being
created. Note that the INIT.ORA setting, DB_FILES, also limits the
number of datafiles accessible to the database instance.

MAXINSTANCES int
Sets the maximum number of instances, int, that may mount and open the
database being created. The minimum value is 1, while the maximum and
default values for this clause are OS-dependent.

CHARACTER SET charset
Controls the language character set in which the data is stored. The value
for charset cannot be AL16UTF16. The default value is OS-dependent.

NATIONAL CHARACTER SET charset
Controls the national language character set for data stored in NCHAR,
NCLOB, and NVARCHAR2 columns. The value for charset must be
either AL16UTF16 (the default) or UTF8.

EXTENT MANAGEMENT {DICTIONARY | LOCAL}
Creates a locally managed SYSTEM tablespace (otherwise, the SYSTEM
tablespace will be dictionary-managed). This clause requires a default
temporary tablespace. If you omit the DATAFILE clause you can also
omit the default temporary tablespace, because Oracle will create them
both for you.

DATAFILE definition

Specifies one or more datafiles for the database. (All these datafiles
become part of the SYSTEM tablespace.) You may repeat filenames to
define multiple files with the same size and characteristics. Alternately,
you may repeat the entire DATAFILE clause, with each occurrence
defining one or more files with the same size and characteristics. The
entire datafile definition syntax is rather large, but it offers a great deal of
control:

DATAFILE { ('fiZe1'[, ...]) [GROUP int] [SIZE int [K | M]] [REUSE]

[AUTOEXTEND {OFF | ON [NEXT int [K | M]]}]

[MAXSIZE [UNLIMITED | int [K | M]]] } [,...]

DATAFILE ('fiZe1'[, . . .])

Defines one or more files that will act as the datafile(s), where fiZe1 is
both the filename and the path. For multiple files, each filename should
be enclosed in single quotes and separated from the others by a comma.
The entire list should be enclosed in parentheses.

GROUP int

Defines the integer ID, int, of the datafile group. The value may be from 1
to the value of the MAXLOGFILES clause. An Oracle database must
have at least two datafile groups. Oracle will create them for you, at 100
MB each, if you omit this clause.

SIZE int [K | M]

Specifies the size of the datafile in bytes as an integer value, int.
Alternately, you may define the datafile in large units by appending a K
(for kilobytes) or an M (for megabytes).

REUSE

Reuses an existing datafile.

AUTOEXTEND {OFF | ON [NEXT int [K | M]]}

Enables (ON) the automatic extension of new or existing datafiles or
tempfiles (but does not redo logfiles). NEXT specifies the next increment
of space allocated to the file in bytes, kilobytes (K), or megabytes (M)
when more space is needed.

MAXSIZE [UNLIMITED | int [K | M]]

Specifies the maximum disk space allowed for automatic extension of the
file. UNLIMITED allows the file to grow without an upper limit (except,
of course, the total capacity of the drive). Otherwise, you may define the
maximum size limit as an integer, int, in bytes (the default), kilobytes
with the keyword K, or megabytes with the keyword M.

SYSAUX DATAFILE definition
Specifies one or more datafiles for the SYSAUX tablespace. By default,
Oracle creates and manages the SYSTEM and SYSAUX tablespaces
automatically. You must use this clause if you have specified a datafile
for the SYSTEM tablespace. If you omit the SYSAUX clause when using
Oracle-managed files, Oracle will create the SYSAUX tablespace as an
online, permanent, locally managed tablespace with a single datafile of
100 MB, using automatic segment-space management and logging.

BIGFILE | SMALLFILE
Specifies the default file type of a subsequently created tablespace.
BIGFILE indicates that the tablespace will contain a single datafile or
tempfile of up to 8 exabytes (8 million terabytes) in size, while
SMALLFILE indicates the tablespace is a traditional Oracle tablespace.
The default, when omitted, is SMALL-FILE.

DEFAULT TABLESPACE tablespace_name

Specifies a default permanent tablespace for the database for all non-
SYSTEM users. When this clause is omitted, the SYSTEM tablespace is
the default permanent tablespace for non-SYSTEM users.

DEFAULT TEMPORARY TABLESPACE tablespace_name [TEMPFILE
file_definition]

Defines the name and location of the default temporary tablespace for the
database. Users who are not explicitly assigned to a temporary tablespace
will operate in this one. If you don’t create a default temporary
tablespace, Oracle uses the SYSTEM tablespace. Under ALTER
DATABASE, this clause allows you to change the default temporary
tablespace.

TEMPFILE file_definition

The tempfile definition is optional when the DB_CREATE_FILE_DEST
INIT.ORA parameter is set. Otherwise, you’ll have to define the tempfile
yourself. The TEMPFILE definition syntax is identical to the DATAFILE
definition syntax described earlier in this section.

EXTENT MANAGEMENT {DICTIONARY | LOCAL {AUTOALLOCATE
| UNIFORM [SIZE int [K | M]]}}

Defines the way in which the SYSTEM tablespace is managed. When this
clause is omitted, the SYSTEM tablespace is dictionary-managed. Once
created as a locally managed tablespace, it cannot be converted back to a
dictionary-managed tablespace, nor can any new dictionary-managed
tablespaces be created in the database.

DICTIONARY

Specifies that the Oracle data dictionary manages the tablespace. This is
the default. The AUTOALLOCATE and UNIFORM subclauses are not
used with this clause.

LOCAL

Declares that the tablespace is locally managed. This clause is optional,
since all temporary tablespaces have locally managed extents by default.
Use of this clause requires a default temporary tablespace. If you do not
manually create one, Oracle will automatically create one called TEMP,
of 10 MB in size, with AUTOEXTEND disabled.

AUTOALLOCATE

Specifies that new extents will be allocated as needed by the locally
managed tablespace.

UNIFORM [SIZE int [K | M]]

Specifies that all extents of the tablespace are the same size (UNIFORM),
in bytes, as int. The SIZE clause allows you to configure the size of the
extents to your liking in bytes (the default), in kilobytes using the
keyword K, or in megabytes using the keyword M. The default is 1M.

UNDO TABLESPACE tablespace_name [DATAFILE
temp_datafile_definition]

Defines the name and location for undo data, creating a tablespace named
tablespace_name, but only if you have set the UNDO_MANAGEMENT
INIT.ORA parameter to AUTO. If you don’t use this clause, Oracle
manages undo space via rollback segments. (You may also set the
INIT.ORA parameter to UNDO_TABLESPACE. If you do so, the value
of the parameter and the tablespace_name used here must be identical.)

DATAFILE temp_datafile_definition

Creates and assigns the datafile, as you have defined it, to the undo
tablespace. Refer to the earlier description of DATAFILE for the full
syntax of this clause. This clause is required if you have not specified a
value for the INIT.ORA parameter DB_CREATE_FILE_DEST.

SET TIME_ZONE = ‘ {{+ | -} hh:mi | time_zone_region }’
Sets the time zone for the database, either by specifying a delta from
Greenwich Mean Time (now called Coordinated Universal Time) or by
specifying a time zone region. (For a list of time zone regions, query the
tzname column of the v $timezone_names view.) If you do not use this
clause, Oracle defaults to the operating-system time zone.

SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE
Sets all tablespaces created by the current CREATE DATABASE or
ALTER DATABASE statement as either BIGFILE or SMALLFILE.
When creating databases, this clause also applies to the SYSTEM and
SYSAUX tablespaces.

And for ALTER DATABASE:

MOUNT [{STANDBY | CLONE}] DATABASE]
Mounts a database for users to access. The STANDBY keyword mounts a
physical standby database, enabling it to receive archived redo logs from
the primary instance. The CLONE keyword mounts a clone database.
This clause cannot be used with OPEN.

OPEN [READ WRITE | READ ONLY] [RESETLOGS | NORESETLOGS]
[UPGRADE | DOWNGRADE]

Opens the database separately from the mounting process. (Mount the
database first.) READ WRITE opens the database in read/write mode,
allowing users to generate redo logs. READ ONLY allows reads of but
disallows changes to redo logs. RESETLOGS discards all redo
information not applied during recovery and sets the log sequence
number to 1. NORESETLOGS retains the logs in their present condition.
The optional UPGRADE and DOWNGRADE clauses tell Oracle to
dynamically modify the system parameters as required for database
upgrade or downgrade, respectively. The default is OPEN READWRITE

NORESETLOGS.

ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [FINISH
APPLY] [SKIP [STANDBY LOGFILE]]

Promotes a standby database to the primary database. You can optionally
specify a PHYSICAL standby, the default, or a LOGICAL standby.
FINISH APPLY initiates the application of the remaining redo log,
bringing the logical standby database to the same state as the primary
database. When it’s finished, the database completes the switchover from
the logical standby to the primary database. Use the SKIP clause to
immediately promote a physical standby and discard any data still
unapplied by the RECOVER MANAGED STANDBY DATABASE
FINISH statement. The clause STANDBY LOGFILE is noise.

SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION |
AVAILABILITY | PERFORMANCE}

Sets the level of protection for data in the primary database. The old terms
PROTECTED and UNPROTECTED equate to MAXIMIZE
PROTECTION and MAXIMIZE PERFORMANCE, respectively.

PROTECTION

Provides the highest level of data protection, but has the greater overhead
and negatively impacts availability. This setting commits transactions
only after all data necessary for recovery has been physically written in at
least one physical standby database that uses the SYNC log transport
mode.

AVAILABILITY

Provides the second highest level of data protection, but the highest level
of availability. This setting commits transactions only after all data
necessary for recovery has been physically written in at least one physical
or logical standby database that uses the SYNC log transport mode.

PERFORMANCE

Provides the highest level of performance, but compromises data
protection and availability. This setting commits transactions before all
data necessary for recovery has been physically written to a standby
database.

REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']
Manually registers redo logfiles from a failed primary server when issued
from a standby server. The logfile may optionally be declared as
PHYSICAL or LOGICAL. The OR REPLACE clause allows updates to
details of an existing archive-log entry.

FOR logminer_session_name
Registers the logfile with a single, specific LogMiner session in an Oracle
Streams environment.

{COMMIT | PREPARE} TO SWITCHOVER TO {[PHYSICAL |
LOGICAL] PRIMARY | STANDBY}

Performs a graceful switchover, moving the current primary database to
standby status and promoting a standby database to primary. (In a RAC
environment, all instances other than the current instance have to be shut
down.) To gracefully switch over, you should issue the command twice
(the first time to prepare the primary and standby databases to begin
exchanging logfiles in advance of the switchover) using PREPARE TO
SWITCHOVER. To demote the primary database and switch over to the
standby, use COMMIT TO SWITCH-OVER. The PHYSICAL clause
puts the primary database into physical standby mode. The LOGICAL
clause puts the primary database into logical standby mode. However,
you must then issue an ALTER DATABASE START LOGICAL
STANDBY APPLY statement.

[WITH[OUT] SESSION SHUTDOWN] [WAIT | NOWAIT]

WITH SESSION SHUTDOWN closes any open application sessions and
rolls back any uncommitted transactions during a switchover of physical
databases (but not logical ones). WITHOUT SESSION SHUTDOWN,
the default, causes the COMMIT TO SWITCHOVER statement to fail if
it encounters any open application sessions. WAIT returns control to the
console after completion of the SWITCHOVER command, while
NOWAIT returns control before the command completes.

START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]
[{INITIAL int | NEW PRIMARY dblink_name} | {FINISH | SKIP FAILED
TRANSACTION}]

Starts to apply redo logs to the logical standby database. IMMEDIATE
tells the Oracle LogMiner to read the redo data in the standby redo
logfiles. NODELAY tells Oracle to ignore a delay for the apply, such as
when the primary database is unavailable or disabled. INITIAL is used
the first time you apply logs to the standby database. NEW PRIMARY is
required after a switchover has completed or after a standby database has
processed all redo logs and another standby is promoted to primary. Use
SKIP FAILED TRANSACTION to skip the last transaction and to restart
the apply. Use FINISH to apply the data in the redo logs if the primary
database is disabled.

[STOP | ABORT] LOGICAL STANDBY APPLY
Stops the application of redo logs to a logical standby server. STOP
performs an orderly stop, while ABORT performs an immediate stop.

CONVERT TO {PHYSICAL | SNAPSHOT} STANDBY
Converts a primary database or snapshot standby database into a physical
standby database (for PHYSICAL), or converts a physical standby
database into a snapshot standby database (for SNAPSHOT).

RENAME GLOBAL_NAME TO database[.domain[.domain . . .]]

Changes the global name of the database, where database is the new name
of up to 8 bytes in length. The optional domain specifications identify the
database’s location in the network. This does not propagate database
name changes to any dependent objects like synonyms, stored procedures,
etc.

{DISABLE | ENABLE} BLOCK CHANGE TRACKING [USING FILE
‘file’] [REUSE]

Tells Oracle to stop or start tracking the physical locations of all database
updates, respectively, and maintain the information in a special file called
the block change tracking file. Oracle will automatically create the file as
defined by the DB_CREATE_FILE_DEST parameter, unless you add the
USING FILE ‘file’ clause, where ‘file’ is the path and name of the file.
REUSE tells Oracle to overwrite an existing block change tracking file of
the same name as ‘file’. The USING and REUSE subclauses are allowed
only with the ENABLE BLOCK clause.

FLASHBACK {ON | OFF}
Places the database into or out of FLASHBACK mode, respectively.
When in flashback mode, an Oracle database automatically creates and
maintains flashback database logs in the flash recovery area. When OFF,
the flashback database logs are deleted and unavailable.

SET TIME ZONE
Specifies the time zone for the server. Refer to the description of the SET
TIME ZONE statement in the discussion of the CREATE TABLE syntax
for more information.

{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE
‘instance_name'}

In RAC environments, you can ENABLE or DISABLE a redo log thread
by number (int). You may optionally specify an instance_name to enable

or disable a thread mapped to a specific database instance of an Oracle
RAC environment. The instance_name may be up to 80 characters long.
The PUBLIC keyword makes the thread available to any instance. When
omitted, the thread is available only when explicitly requested. To enable
a thread, the thread must have at least two redo logfile groups. To disable
a thread, the database must be open but not mounted by an instance using
the thread.

GUARD {ALL | STANDBY | NONE}
Protects the data in a database from changes. ALL prevents users other
than SYS from making any changes. STANDBY prevents all users other
than SYS from making changes in a logical standby. NONE provides
normal security for the database.

CREATE DATAFILE ‘file'[, . . .] [AS {NEW | file_definition}]
Creates a new, empty datafile, replacing an existing one. The value ‘file’
identifies a file (either by filename or file number) that was lost or
damaged without a backup. AS NEW creates a new file in the default
filesystem using an Oracle-supplied name. AS file_definition allows you
to specify a filename and sizing details, as defined under “TEMPFILE
file_definition” section in the preceding list.

DATAFILE ‘file’ | TEMPFILE ‘file'}[, . . .] {ONLINE | OFFLINE [FOR
DROP] | RESIZE int [K | M]] | END BACKUP | AUTOEXTEND {OFF | ON
[NEXT int [K | M]]} [MAXSIZE [UNLIMITED | int [K | M]]]

Changes the attributes, such as the size, of one or more existing datafiles
or tempfiles. You may alter one or more files in a comma-delimited list,
identified in the value ‘file’ by filename or file number. Do not mix
datafile and tempfile declarations; only one or the other should appear in
this clause at a time.

ONLINE

Sets the file online.

OFFLINE [FOR DROP]

Sets the file offline, allowing media recovery. FOR DROP is required to
take a file offline in NOARCHIVELOG mode, but it does not actually
destroy the file. It is ignored in ARCHIVELOG mode.

RESIZE int [K | M]

Sets a new size for an existing datafile or tempfile.

END BACKUP

Described later in the main list, under END BACKUP. Used only with
the DATAFILE clause.

AUTOEXTEND {OFF | ON [NEXT int [K | M]]} [MAXSIZE
[UNLIMITED | int [K | M]]]

Described in the preceding list, under the DATAFILE definition.

DROP [INCLUDING DATAFILES]

Drops not only the tempfile, but all datafiles on the filesystem associated
with the tempfile. Oracle also adds an entry to the alert log for each file
that is erased. Used only with the TEMPFILE clause.

RENAME FILE ‘file'[, . . .] TO ‘new_file_name'[, . . .]
Renames a datafile, tempfile, or redo logfile member from the old name,
file, to the new_file_name. You can rename multiple files at once by
specifying multiple old and new filenames, separated by commas. This
command does not rename files at the operating-system level. Rather, it
specifies new names that Oracle will use to open the files. You need to
rename at the operating-system level yourself.

[NO] FORCE LOGGING
Puts the database into force logging mode (FORCE LOGGING) or takes
it out of force logging mode (NO FORCE LOGGING). In the former,
Oracle logs all changes to the database except in temporary tablespaces or
segments. This database-level FORCE LOGGING setting supersedes all
tablespace-level declarations regarding force logging mode.

[NO]ARCHIVELOG [MANUAL]
Tells Oracle to create redo logfiles, but that the user will handle the
archiving of the redo logfiles explicitly. This is used only with the
ALTER DATABASE statement and only for backward compatibility for
users with older tape backup systems. When this clause is omitted, Oracle
defaults the redo logfile destination to the LOG_ARCHIVE_DEST_n
initialization parameter.

[ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY |
UNIQUE | FOREIGN KEY | FOR PROCEDURAL REPLICATION)[, . . .]
COLUMNS

ADD places additional column data into the log stream whenever an
update is executed. It also enables minimal supplemental logging, which
ensures that Log-Miner can support chained rows and special storage
arrangements such as clustered tables. Supplemental logging is disabled
by default. You can add the clauses PRIMARY KEY COLUMNS,
UNIQUE KEY COLUMNS, FOREIGN KEY COLUMNS, or ALL (to
get all three options) if you need to enable full referential integrity via
foreign keys in another database, such as a logical standby, or FOR
PROCEDURAL REPLICATION for logging PL/SQL calls. In either
case, Oracle places either the primary key columns, the unique key
columns (or, if none exist, a combination of columns that uniquely
identify each row), the foreign key columns, or all three into the log.
DROP tells Oracle to suspend supplemental logging.

[ADD | DROP] [STANDBY] LOGFILE {{[THREAD int | INSTANCE

‘instance_name']} {[GROUP int | logfile_name[, . . .]]} [SIZE int [K | M]] |
[REUSE] | [MEMBER] ‘file’ [REUSE][, . . .]

ADD includes one or more primary or standby redo logfile groups to the
specified instance. THREAD assigns the added files to a specific thread
number (int) on a RAC. When omitted, the default is the thread assigned
to the current instance. GROUP assigns the redo logfile groups to a
specific group within the thread. MEMBER adds the specified ‘file’ (or
files in a comma-delimited list) to an existing redo logfile group. REUSE
is needed if the file already exists. DROP LOGFILE MEMBER drops
one or more redo logfile members, after issuing an ALTER SYSTEM
SWITCH LOGFILE statement.

CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name[, . . .]]}[,
. . .] [UNRECOVERABLE DATAFILE]

Reinitializes one or more (in a comma-delimited list) specified online
redo logs. UNRECOVERABLE DATAFILE is required when any
datafile is offline and the database is in ARCHIVELOG mode.

CREATE {LOGICAL | PHYSICAL} STANDBY CONTROLFILE AS ‘file’
[REUSE]}

Creates a control file that maintains a logical or physical standby
database. REUSE is needed if the file already exists.

BACKUP CONTROLFILE TO {'file’ [REUSE] | TRACE [AS ‘file’
[REUSE]] [{RESETLOGS | NORESETLOGS}]

Backs up the current control file of an open or mounted database. TO
‘file’ identifies a full path and filename for the control file. TO TRACE
writes SQL statements to recreate the control file to a trace file. TO
TRACE AS ‘file’ writes all the SQL statements to a standard file rather
than a trace file. REUSE is needed if the file already exists. RESETLOGS
initializes the trace file with the statement ALTER DATABASE OPEN
RESETLOGS and is valid only when online logs are unavailable.
NORESETLOGS initializes the trace file with the statement ALTER

DATABASE OPEN NORESETLOGS and is valid only when online logs
are available.

RECOVER
Controls media recovery for the database, standby database, tablespace,
or file. In Oracle, the ALTER TABLE command is one of the primary
means of recovering a damaged or disabled database, file, or tablespace.
Use RECOVER when the database is mounted (in exclusive mode), the
files and tablespaces involved are not in use (offline), and the database is
in either an open or closed state. The entire database can be recovered
only when it is closed, but specific files or tablespaces can be recovered
in a database that is open.

AUTOMATIC [FROM ‘location']
Tells Oracle to automatically generate the name of the next archived redo
logfile necessary for continued operation during recovery. Oracle will
prompt you if it cannot find the next file. The FROM ‘location’ clause
tells Oracle where to find the archived redo logfile group. The following
subclauses may be applied to an automatically recovered database.

STANDBY

Specifies that the database or tablespace to recover is a standby type.

DATABASE {[UNTIL {CANCEL | TIME date | CHANGE int}] |
USING BACKUP CONTROLFILE}

Tells Oracle to recover the entire database. The UNTIL keyword tells
Oracle to continue recovery until ALTER DATABASE . . . RECOVER
CANCEL (CANCEL) is issued, until a specified time in the format
YYYY-MMDD:HH24:MI:SS is reached (TIME), or until a specific
system change number is reached (CHANGE int, where int is the
number). The clause USING BACKUP CONTROLFILE enables use of
the backup, rather than current, control file.

[STANDBY] [TABLESPACE tablespace_name[, . . .] | DATAFILE
‘file'[, . . .]]

Recovers one or more specific tablespaces or datafiles, respectively. You
may specify more than one tablespace or datafile using a comma-
delimited list. You may also recover a datafile by datafile number, rather
than by name. The tablespace may be in normal or standby mode. The
standby tablespace or datafile is reconstructed using archived redo
logfiles copied from the primary database and a control file.

UNTIL [CONSISTENT WITH] CONTROLFILE

Tells Oracle to recover an older standby tablespace or datafile by using
the current standby control file. CONSISTENT WITH are noise words.

LOGFILE filename[, . . .]

Continues media recovery by applying one or more redo logfiles that you
specify in a comma-delimited list.

TEST | ALLOW int CORRUPTION | [NO]PARALLEL int

TEST performs a trial recovery, allowing you to foresee any problems.
ALLOW int CORRUPTION tells how many corrupt blocks (int) to
tolerate before causing recovery to abort. int must be 1 for a real
recovery, but may be any number you choose when paired with TEST.
[NO]PARALLEL determines whether parallel recovery of media is used.
NOPARALLEL is the default and enforces serial reading of the media.
PARALLEL with no int value tells Oracle to choose the degree of
parallelism to apply. Specifying int declares the degree of parallelism to
apply.

CONTINUE [DEFAULT]

Determines whether multi-instance recovery continues after interruption.
CONTINUE DEFAULT is the same as RECOVER AUTOMATIC, but it

does not result in a prompt for a filename.

CANCEL

Cancels a managed recovery operation at the next archived log boundary,
if it was started with the USING CANCEL clause.

MANAGED STANDBY DATABASE
Specifies managed physical standby recovery mode on an active
component of a standby database. This command is used for media
recovery only and not to construct a new database, using the following
parameters:

USING CURRENT LOGFILE

Invokes real time apply, which allows recovery of redos from standby
online logs as they are being filled, without first requiring that they be
archived by the standby database.

DISCONNECT [FROM SESSION]

Causes the managed redo process to occur in the background, leaving the
current process available for other tasks. FROM SESSION are noise
words. DISCONNECT is incompatible with TIMEOUT.

NODELAY

Overrides the DELAY attribute LOG_ARCHIVE_DEST_n parameter on
the primary database. When omitted, Oracle delays the application of the
archived redo log according to the attribute.

UNTIL CHANGE int

Conducts a managed recovery up to (but not including) the specified
system change number int.

FINISH

Recovers all available online redo log files immediately in preparation of
the standby assuming the primary database role. The FINISH clause is
known as a terminal recovery and should be used only in the event of a
failure of the primary database.

CANCEL

Stops application of redo applies immediately and returns control as soon
as the redo apply stops.

TO LOGICAL STANDBY {database_name | KEEP IDENTITY}

Converts the physical standby database into a logical standby database.
The database_name identifies the new logical standby database. The
KEEP IDENTITY subclause tells Oracle that the logical standby is used
for a rolling upgrade and is not usable as a general-purpose logical
standby database.

{BEGIN | END} BACKUP
Controls the online backup mode for any datafiles. BEGIN places all
datafiles into online backup mode. The database must be mounted and
open, in archivelog mode with media recovery enabled. (Note that while
the database is in online backup mode the instance cannot be shut down
and individual tablespaces cannot be backed up, taken offline, or made
read-only.) END takes all datafiles currently in online backup mode out
of that mode. The database must be mounted but need not be open.

After that long discussion of specific syntax, it’s important to establish some
Oracle basics.

Oracle allows the use of primary and standby databases. A primary database
is a mounted and open database accessible to users. The primary database
regularly and frequently ships its redo logs to a standby database where they
are recovered, thus making the standby database a very up-to-date copy of the

primary.

Unique to the Oracle environment is the INIT.ORA file, which specifies the
database name and a variety of other options that you can use when creating
and starting up the database. You should always define startup parameters,
such as the name of any control files, in the INIT.ORA file to identify the
control files; otherwise, the database will not start. Starting in Oracle 9.1, you
can use binary parameter files rather than INIT.ORA files.

When a group of logfiles is listed, they are usually shown in parentheses. The
parentheses aren’t needed when creating a group with only one member, but
this is seldom done. Here’s an example using a parenthetical list of logfiles:

CREATE DATABASE publications
LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M
DATAFILE;

That example creates a database called publications with an explicitly
defined logfile clause and an automatically created datafile. The following
example of an Oracle CREATE DATABASE command is much more
sophisticated:

CREATE DATABASE sales_reporting
CONTROLFILE REUSE
LOGFILE
 GROUP 1 ('diskE:log01.log', 'diskF:log01.log') SIZE 15M,
 GROUP 2 ('diskE:log02.log', 'diskF:log02.log') SIZE 15M
MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE
 'diskE:sales_rpt1.dbf' AUTOEXTEND ON,
 'diskF:sales_rpt2.dbf' AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_tblspc
UNDO TABLESPACE undo_tblspc
SET TIME_ZONE = '-08:00';

This example defines log files and data files, as well as all appropriate
character sets. We also define a few characteristics for the database, such as
the use of ARCHIVELOG mode and CONTROLFILE REUSE mode, the time

zone, the maximum number of instances and datafiles, etc. This example also
assumes that the INIT.ORA parameter for DB_CREATE_FILE_DEST has
already been set. Thus, we don’t have to define file definitions for the
DEFAULT TEMPORARY TABLESPACE and UNDO TABLESPACE clauses.

When issued by a user with SYSDBA privileges, this statement creates a
database and makes it available to users in either exclusive or parallel mode,
as defined by the value of the CLUSTER_DATABASE initialization
parameter. Any data that exists in predefined datafiles is erased. You will
usually want to create tablespaces and rollback segments for the database.
(Refer to the vendor documentation for details on the platform-specific
commands CREATE TABLESPACE and CREATE ROLLBACK SEGMENT.)

Oracle has tightened up security around default database user accounts. Many
default database user accounts are now locked and expired during initial
installation. Only SYS, SYSTEM, SCOTT, DBSNMP, OUTLN,
AURORAJISUTILITY$, AURORA$ORB$UNAUTHENTICATED, and
OSE$HTTP$ADMIN are the same in 11g as they were in earlier versions.
You must manually unlock and assign a new password to all locked accounts,
as well as assign a password to SYS and SYSTEM, during the initial
installation.

In the next example, we add more logfiles to the current database, and then
add a datafile:

ALTER DATABASE ADD LOGFILE GROUP 3
 ('diskf: log3.sales_arch_log','diskg:log3.sales_arch_log')
SIZE 50M;
ALTER DATABASE sales_archive
CREATE DATAFILE 'diskF:sales_rpt4.dbf'
AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED;

We can set a new default temporary tablespace, as shown in the next
example:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE sales_tbl_spc_2;

Next, we’ll perform a simple full database recovery:

ALTER DATABASE sales_archive RECOVER AUTOMATIC DATABASE;

In the next example, we perform a more elaborate partial database recovery:

ALTER DATABASE RECOVER STANDBY DATAFILE 'diskF:sales_rpt4.dbf'
UNTIL CONTROLFILE;

Now, we’ll perform a simple recovery of a standby database in managed
standby recovery mode:

ALTER DATABASE RECOVER sales_archive MANAGED STANDBY DATABASE;

In the following example, we gracefully switch over from a primary database
to a logical standby, and promote the logical standby to primary:

-- Demotes the current primary to logical standby database.
ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;
-- Applies changes to the new standby.
ALTER DATABASE START LOGICAL STANDBY APPLY;
-- Promotes the current standby to primary database.
ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

PostgreSQL
PostgreSQL’s implementation of the CREATE DATABASE command creates
a database and a file location for the data files:

CREATE DATABASE database_name [WITH]
 [OWNER [_] database_owner]
 [TEMPLATE [_] tmp_name]
 [ENCODING [_] enc_value]
 [LOCALE [_] locale]
 [LC_COLLATE [_] lc_collate]
 [LC_CTYPE [_] lc_ctype]
 [TABLESPACE [_] tablespace_name]
 [CONNECTION LIMIT [_] int]
 [ALLOW_CONNECTIONS [_] boolean]
 [IS_TEMPLATE [_] boolean]

PostgreSQL’s syntax for ALTER DATABASE is:

ALTER DATABASE database_name [WITH]
 [CONNECTION LIMIT int]
 [OWNER TO new_database_owner]
 [RENAME TO new_database_name]

 [RESET parameter]
 [SET parameter {TO | _} {value | DEFAULT}]
 [LOCALE [_] locale]
 [LC_COLLATE [_] lc_collate]
 [LC_CTYPE [_] lc_ctype]

 {IS_TEMPLATE boolean]
 [ALLOW_CONNECTIONS [_] boolean]

where:

WITH
Is an optional keyword to further define the details of the database. All
options that follow WITH are optional.

OWNER [=] database_owner
Specifies the name of the database owner if it is different from the name
of the user executing the statement.

TEMPLATE [=] tmp_name
Names a template to use for creating the new database. You can omit this
clause to accept the default template (or use the clause TEMPLATE =
DEFAULT). The default is to copy the database template1. You can get
a pristine database (one that contains only required database objects) and
no pre-defined collation by specifying TEMPLATE = template0. If you
use template1 you can not set the LC_COLLATE as this has to be the
same as template1. If you need a different collation from what template1
has, you should use template0.

IS_TEMPLATE [=] boolean
Denotes if this database can be used as a template for new databases.

Although any database can be used as a template by superusers, only
databases marked as IS_TEMPLATE=true can be use by non-super users
with CREATE DATABASE permissions.

ALLOW_CONNECTIONS [=] boolean
Defaults to true. If false then no one can connect to this database.

ENCODING [=] enc_value
Specifies the multibyte encoding method to use in the new database using
either a string literal (such as ‘UTF8’), an integer encoding number, or
DEFAULT for the default encoding.

LOCALE [=] locale
Short-hand for setting both LC_CTYPE and LC_COLLATE. If this is
specified then the other two can not be specified. Defaults to that of the
template database when not specified. Options are C, POSIX. Additional
ones available are region / platform specific. More details about collation
options can be found at -
https://www.postgresql.org/docs/current/collation.html

LC_COLLATE [=] lc_collate
This affects sort order using in SQL ORDER BY and index sort.

LC_CTYPE [=] lc_ctype
Affects categorization of characters (upper / lower) and digits. Defaults to
template database setting when not specified and locale is not specified.

TABLESPACE [=] tablespace_name
Specifies the name of the tablespace associated with the database. This
corresponds to a physical location on disk. PostgreSQL provides a
command CREATE TABLESPACE for creating these. In CREATE
DATABASE only the name of the table space is used, not the actual path.

For example, to create the database sales_revenue in the
/home/teddy/private_db directory:

https://www.postgresql.org/docs/current/collation.html

CREATE DATABASE sales_revenue
WITH TABLESPACE = ssd_2;

CONNECTION LIMIT [=] int
Specifies how many concurrent connections to the database are allowed.
A value of −1 means no limit.

RENAME TO new_database_name
Assigns a new name to the database.

RESET parameter | SET parameter {TO | =} {value | DEFAULT}
Assigns (using SET) or reassigns (using RESET) a value for a parameter
defining the database.

PostgreSQL has many variables that control the query planner, how much
memory can be used, etc. These are called GRAND UNIFIED CUSTOM
VARIABLES (GUCs). Many GUCs can be set at the server level,
database level, user or session level using the SET command. To set a
GUC at the database level, you’d use the ALTER DATABASE command
as follows:

ALTER DATABASE nutshell
SET work_mem='100MB';

To reset back to default for the server, you’d do:

ALTER DATABASE nutshell RESET work_mem;

SQL Server
SQL Server offers a lot of control over the OS file system structures that hold
the database and its objects. SQL Server’s CREATE DATABASE statement
syntax looks like this:

CREATE DATABASE database_name
[CONTAINMENT = {NONE | PARTIAL}]
[ON

 [PRIMARY] file_definition[, ...]]
 [, FILEGROUP filegroup_name file_definition[, ...]]
 [LOG ON file_definition[, ...]]
[COLLATE collation_name]
[FOR { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER | ERROR_BROKER_CONVERSATIONS}]
|
 ATTACH_REBUILD_LOG }
[WITH
 [FILESTREAM (<filestream_options> [,...n])]
 [DEFAULT_FULLTEXT_LANGUAGE = { lcid | language_name | language_alias }]
 [DEFAULT_LANGUAGE = { lcid | language_name | language_alias }]
 [NESTED_TRIGGERS {ON | OFF}]
 [TRANSFORM_NOISE_WORDS {ON | OFF}]
 {DB_CHAINING {ON | OFF}]
 [TRUSTWORTHY {ON | OFF]]
 [TWO_DIGIT_YEAR_CUTOFF two_digit_year_cutoff]
 [PERSISTENT_LOG_BUFFER = ON (DIRECTORY_NAME='<Filepath>')
[AS SNAPSHOT OF source]

Following is the syntax for ALTER DATABASE:

ALTER DATABASE database_name
{ADD FILE file_definition[, ...] [TO FILEGROUP filegroup_name]
| ADD LOG FILE file_definition[, ...]
| REMOVE FILE file_name
| ADD FILEGROUP filegroup_name
| REMOVE FILEGROUP filegroup_name
| MODIFY FILE file_definition
| MODIFY NAME = new_database_name
| MODIFY FILEGROUP filegroup_name
 {NAME = new_filegroup_name | filegroup_property
 {READONLY | READWRITE | DEFAULT}}
| SET {state_option | cursor_option
| auto_option | sql_option | recovery_option}
 [, ...] [WITH termination_option]
| COLLATE collation_name}

Parameter descriptions are as follows:

{CREATE | ALTER} DATABASE database_name
Creates a database (or alters an existing database) with the name
database_name. The name cannot be longer than 128 characters. You
should limit the database name to 123 characters when no logical
filename is supplied, since SQL Server will create a logical filename by
appending a suffix to the database name.

[CONTAINMENT = {NONE | PARTIAL}]
Specifies the either a non-contained database (NONE) or a partially
contained database (PARTIAL).

{ON | ADD} file_definition[, . . .]
Defines the disk file(s) that store(s) the data components of the database
for CREATE DATABASE, or adds disk file(s) for ALTER DATABASE.
ON is required for CREATE DATABASE only if you wish to provide
one or more file definitions. The syntax for file_definition is:

{[PRIMARY] ([NEW][NAME = file_name]
[, FILENAME = {'os_file_name' | 'filestream_name'}]
[, SIZE = int [KB | MD | GB | TB]][, MAXSIZE = { int | UNLIMITED }]
[, FILEGROWTH = int][, OFFLINE])}[, ...]

where:

PRIMARY
Defines the file_definition as the primary file. Only one primary file
is allowed per database. (If you don’t define a primary file, SQL
Server defaults primary status to the file that it autocreates, in the
absence of any user-defined file, or to the first file that you define.)
The primary file or group of files (also called a filegroup) contains the
logical start of the database, all the database system tables, and all
other objects not contained in user filegroups.

[NEW]NAME = file_name
Provides the logical name of the file defined by the file_definition for
CREATE DATABASE. Use NEWNAME for ALTER DATABASE to
define a new logical name for the file. In either case, the logical name
must be unique within the database. This clause is optional when using
FOR ATTACH.

FILENAME = {'os_file_name'| ‘filestream_name'}

Specifies the operating system path and filename for the file defined by
file_definition. The file must be in a noncompressed directory on the
filesystem. For raw partitions, specify only the drive letter of the raw
partition.

SIZE = int [KB | MB | GB | TB]

Sets the size of the file defined by the file_definition. This clause is
optional, but it defaults to the file size for the primary file of the model
database, which is usually very small. Logfiles and secondary datafiles
default to a size of 1 MB. The value of int defaults to megabytes;
however, you can explicitly define the size of the file using the suffixes
for kilobyte (KB), megabyte (MB), gigabyte (GB), and terabyte (TB).
The size cannot be smaller than 512 KB or the size of the primary file of
the model database.

MAXSIZE = { int | UNLIMITED }

Defines the maximum size to which the file may grow. Suffixes, as
described under the entry for SIZE, are allowed. The default,
UNLIMITED, allows the file to grow until all available disk space is
consumed. Not required for files on raw partitions.

FILEGROWTH = int

Defines the growth increment for the file each time it grows. Suffixes, as
described under the entry for SIZE, are allowed. You may also use the
percentage (%) suffix to indicate that the file should grow by a percentage
of the total disk space currently consumed. If you omit the
FILEGROWTH clause, the file will grow in 10% increments, but never
less than 64 KB. Not required for files on raw partitions.

OFFLINE

Sets the file offline, making all objects in the filegroup inaccessible. This
option should only be used when the file is corrupted.

[ADD] LOG {ON | FILE} file_definition
Defines the disk file(s) that store(s) the log component of the database for
CREATE DATABASE, or adds disk file(s) for ALTER DATABASE.
You can provide one or more file_definitions for the transaction logs in a
comma-delimited list. Refer to the earlier section under the keyword ON
for the full syntax of file_definition.

REMOVE FILE file_name
Removes a file from the database and deletes the physical file. The file
must be emptied of all content first.

[ADD] FILEGROUP filegroup_name [CONTAINS FILESTREAM]
[DEFAULT] [CONTAINS MEMORY_OPTIMIZED_DATA]
[file_definition [,...N]]

Defines any user filegroups used by the database, and their file
definitions. All databases have at least one primary filegroup (though
many databases only use the primary filegroup that comes with SQL
Server by default). Adding filegroups and then moving files to those
filegroups allows greater control over disk I/O. (However, we recommend
that you do not add filegroups without careful analysis and testing).
Where:

CONTAINS FILESTREAM

Defines the file_definition of the filegroup stores FILESTREAM BLOBS
in the file system

DEFAULT

Defines the specified filegroup as the default filegroup for the database.

CONTAINS MEMORY_OPTIMIZED_DATA

Defines the file_definition of the filegroup stores memory-optimized

tables in the file system

REMOVE FILEGROUP filegroup_name
Removes a filegroup from the database and deletes all the files in the
filegroup. The files and the filegroup must be empty first.

MODIFY FILE file_definition
Changes the definition of a file. This clause is very similar to the [ADD]
LOG {ON | FILE} clause. For example: MODIFY FILE (NAME =
file_name, NEWNAME = new_file_name, SIZE = . . .).

MODIFY NAME = new_database_name
Changes the database’s name from its current name to
new_database_name.

MODIFY FILEGROUP filegroup_name {NAME = new_filegroup_name |
filegroup_property}

Used with ALTER DATABASE, this clause has two forms. One form
allows you to change a filegroup’s name, as in MODIFY FILEGROUP
filegroup_name NAME = new_filegroup_name. The other form allows
you to specify a fil egroup_property for the filegroup, which must be one
of the following:

READONLY

Sets the filegroup to read-only and disallows updates to all objects within
the filegroup. READONLY can only be enabled by users with exclusive
database access and cannot be applied to the primary filegroup. You may
also use READ_ONLY.

READWRITE

Disables the READONLY property and allows updates to objects within

the filegroup. READWRITE can only be enabled by users with exclusive
database access. You may also use READ_WRITE.

DEFAULT

Sets the filegroup as the default filegroup for the database. All new tables
and indexes are assigned to the default filegroup unless explicitly
assigned elsewhere. Only one default filegroup is allowed per database.
(By default, the CREATE DATABASE statement sets the primary
filegroup as the default filegroup.)

SET {state_option | cursor_option | auto_option | sql_option |
recovery_option}[, . . .]

Controls a wide variety of behaviors for the database. These are discussed
in the rules and information later in this section.

WITH termination_option
Used after the SET clause, WITH sets the rollback behavior for
incomplete transactions whenever the database is in transition. When this
clause is omitted, transactions must commit or roll back on their own with
the database state changes. There are two termination_option settings:

ROLLBACK AFTER int [SECONDS] | ROLLBACK IMMEDIATE

Causes the database to roll back in int number of seconds, or
immediately. SECONDS is a noise word and does not change the
behavior of the ROLLBACK AFTER clause.

NO_WAIT

Causes database state or option changes to fail if a change cannot be
completed immediately, without waiting for the current transaction to
independently commit or roll back.

COLLATE collation_name
Defines or alters the default collation used by the database.
collation_name can be either a SQL Server collation name or a Windows
collation name. By default, all new databases receive the collation of the
SQL Server instance. (You can execute the query SELECT * FROM
::fn_helpcollations() to see all the collation names available.) To change
the collation of a database, you must be the only user in the database, no
schema-bound objects that depend on the current collation may exist in
the database, and the collation change must not result in the duplication of
any object names in the database.

FOR { ATTACH [WITH {ENABLE_BROKER | NEW_BROKER |
ERROR_BROKER_CONVERSATIONS}] | ATTACH_REBUILD_LOG }

Places the database in special startup mode. FOR ATTACH creates the
database from a set of pre-existing operating system files (almost always
database files created previously). Because of this, the new database must
have the same code page and sort order as the previous database. You
only need the file_definition of the first primary file or those files that
have a different path from the last time the database was attached. The
FOR ATTACH_REBUILD_LOG clause specifies that the database is
created by attaching an existing set of OS files, rebuilding the log in the
process in case any logfiles are missing. In general, you should use the
sp_attach_db system stored procedure instead of the CREATE
DATABASE FOR ATTACH statement unless you need to specify more
than 16 file_definitions.

Service Broker options may be specified when using the FOR ATTACH
clause:

ENABLE_BROKER

Specifies that Service Broker is enabled for the database.

NEW_BROKER

Creates a new service_broker_guid and ends all conversation endpoints
with a cleanup.

ERROR_BROKER_CONVERSATIONS

Terminates all Service Broker conversations with an error indicating that
a database has been attached or restored. The broker is disable during the
operation and then re-enabled afterward.

WITH

 FILESTREAM NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL } |
DIRECTORY_NAME =
'directory_name' }

Filestreams are used for storing unstructured data such as documents and
images. Attaching a database that contains a FILESTREAM option of
“Directory name”, into a SQL Server instance will prompt SQL Server to
verify that the Database_Directory name is unique. If it is not, the attach
operation fails with the error, “FILESTREAM Database_Directory name
<name> is not unique in this SQL Server instance”. To avoid this error,
the optional parameter, directory_name, should be passed into this
operation. Filestream supports a number of modes of transactional access:

OFF - nontransaction access is disabled
READ_ONLY - only read only non-transactional access is allowed
FULL - Full non-transactional access to FILESTREAM FileTables is enabled.

DEFAULT_FULLTEXT_LANGUAGE = <lcid> | <language name> |
<language alias>

Specifies the default language option used in a fll-text index when no
language is otherwise specified by the CREATE or ALTER FULLTEXT
INDEX statement.

DEFAULT_LANGUAGE = <lcid> | <language name> | <language alias>

Specifies the default language server option when using SQL Server

Management Studio or Transact-SQL, applying that option to all newly
created logins. This setting applies for logins associated with the database
unless overridden by user CREATE / ALTER LOGIN.

NESTED_TRIGGERS = { OFF | ON}

Specifies the nested trigger configuration open when using SQL Server
Management Studio or Transact-SQL. In particular, this setting controls
whether AFTER triggers can cascade. 0 indicates no cascading triggers,
while 1 indicates that triggers can cascade up to 32 levels deep.
INSTEAD OF triggers can always cascade regardless of this setting.

TWO_DIGIT_YEAR_CUTOFF two_digit_year_cutoff

Specifies the default interpretation by SQL Server when handling two-
digit years. Normally, SQL Server accepts a default type span of 1950
through 2049. In this case, the two-digit year of 51 would be interpreted
by SQL Server as 1951, but 41 would be interpreted as 2041, since it
spans the century mark. You can instead manually specify any year
between 1753 through 9999 as your two digit year cutoff, if needed. The
default value is backward compatible.

TRANSFORM_NOISE_WORDS = { OFF | ON}
When set to ON, this option transforms noise words (for example, “the”
in a string “the product”) and suppresses error messages if noise words
cause a Boolean operation on a full-text query to return zero rows. Most
useful with full-text queries use the CONTAINS predicate of NEAR
operation.

DB_CHAINING {OFF | ON }
Specifies that the database can be involved in a cross-database ownership
chain (with DB_CHAINING ON). When omitted, the default is OFF,
which disallows cross-database ownership chains. Not allowed on master,
model, and tempdb databases.

TRUSTWORTHY {ON | OFF}]
Setting TRUSTWORTHY ON specifies that database routines (such as
views, functions, or procedures) that use an impersonation context can
access resources outside of the database. When omitted, the default is
OFF, which disallows accessing external resources from within a routine
running in an impersonation context. TRUSTWORTHY is set OFF
whenever a database is attached. Not allowed on master, model, and
tempdb databases.

PERSISTENT_LOG_BUFFER=ON (DIRECTORY_NAME='<Filepath>')
Creates the transaction log buffer on a high-speed volume backed by a
disk device using Storage Class Memory , such as NVDIMM-N
nonvolatile storage. Due to the performance requirements of a persistent
log buffer, make sure to follow the documented specifications closely.

CONTAINS MEMORY_OPTIMIZED_DATA
Specifies that the filegroup of the CREATE / ALTER statement stores
memory_optimized tables on the file system. SQL Server allows only on
memory optimized data filegroup per database. Refer to the vendor
documentation about memory-optimized databases and workloads.

AS SNAPSHOT OF source
Declares that the database being created is a snapshot of the source
database. Both source and snapshot must exist on the same instance of
SQL Server.

The CREATE DATABASE command should be issued from the master
system database. You can, in fact, issue the command CREATE DATABASE
database_name, with no other clauses, to get a very small, default database.

SQL Server uses files, formerly called devices, to act as a repository for
databases. Files are grouped into one or more filegroups, with at least a
PRIMARY filegroup assigned to each database. A file is a predefined block of

space created on the disk structure. A database may be stored on one or more
files or filegroups. SQL Server also allows the transaction log to be placed in
a separate location from the database using the LOG ON clause. These
functions allow sophisticated file planning for optimal control of disk I/O.
For example, we can create a database called sales_report with a data and
transaction logfile:

USE master
GO
CREATE DATABASE sales_report
ON
(NAME = sales_rpt_data, FILENAME =
 'c:\mssql\data\salerptdata.mdf',
 SIZE = 100, MAXSIZE = 500, FILEGROWTH = 25)
LOG ON
(NAME = 'sales_rpt_log',
 FILENAME = 'c:\mssql\log\salesrptlog.ldf',
 SIZE = 25MB, MAXSIZE = 50MB,
 FILEGROWTH = 5MB)
GO

When a database is created, all objects in the model database are copied into
the new database. All of the empty space within the file or files defined for
the database is then initialized (i.e., emptied out), which means that creating a
new and very large database can take a while, especially on a slow disk.

A database always has at least a primary datafile and a transaction logfile, but
it may also have secondary files for both the data and log components of the
database. SQL Server uses default filename extensions: .mdf for primary
datafiles, .ndf for secondary files, and .ldf for transaction logfiles. The
following example creates a database called sales_archive with several very
large files that are grouped into a couple of filegroups:

USE master
GO
CREATE DATABASE sales_archive
ON
PRIMARY (NAME = sales_arch1, FILENAME = 'c:\mssql\data\archdata1.mdf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch2,
 FILENAME = 'c:\mssql\data\archdata2.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sales_arch3,
 FILENAME = 'c:\mssql\data\archdat3.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB)

FILEGROUP sale_rpt_grp1
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi1dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp1_1_data,
 FILENAME = 'c:\mssql\data\SG1Fi2dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
FILEGROUP sale_rpt_grp2
(NAME = sale_rpt_grp2_1_data, FILENAME = 'c:\mssql\data\SRG21dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
 (NAME = sale_rpt_grp2_2_data, FILENAME = 'c:\mssql\data\SRG22dt.ndf',
 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),
LOG ON
 (NAME = sales_archlog1,
 FILENAME = 'd:\mssql\log\archlog1.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%),
 (NAME = sales_archlog2,
 FILENAME = 'd:\ mssql\log\archlog2.ldf',
 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%)
GO

The FOR ATTACH clause is commonly used for situations like a salesperson
traveling with a database on a thumbdrive. This clause tells SQL Server that
the database is attached from an existing operating system file structure, such
as a DVD-ROM or thumb drive. When using FOR ATTACH, the new
database inherits all the objects and data of the parent database, not the model
database.

The following examples show how to change the name of a database, file, or
filegroup:

-- Rename a database
ALTER DATABASE sales_archive MODIFY NAME = sales_history
GO
-- Rename a file
ALTER DATABASE sales_archive MODIFY FILE
NAME = sales_arch1,
NEWNAME = sales_hist1
GO
-- Rename a filegroup
ALTER DATABASE sales_archive MODIFY FILEGROUP
sale_rpt_grp1
NAME = sales_hist_grp1
GO

There may be times when you want to add new free space to a database,
especially if you have not enabled it to auto-grow:

USE master
GO
ALTER DATABASE sales_report ADD FILE
(NAME = sales_rpt_added01, FILENAME = 'c:\mssql\data\salerptadded01.mdf',
 SIZE = 50MB, MAXSIZE = 250MB, FILEGROWTH = 25MB)
GO

When you alter a database, you can set many behavior options on the
database. State options (shown as state_option in the earlier syntax diagram)
control how users access the database. Following is a list of valid state
options:

SINGLE_USER | RESTRICTED_USER | MULTI_USER
Sets the number and type of users with access to the database.
SINGLE_USER mode allows only one user to access the database at a
time. RESTRICTED_USER mode allows access only to members of the
system roles db_owner, dbcreator, or sysadmin . MULTI_USER, the
default, allows concurrent database access from all users who have
permission.

OFFLINE | ONLINE
Sets the database to offline (unavailable) or online (available).

READ_ONLY | READ_WRITE
Sets the database to READ_ONLY mode, where no modifications are
allowed, or to READ_WRITE mode, where data modifications are
allowed. READ_ONLY databases can be very fast for query-intensive
operations, since almost no locking is needed.

Cursor options control default behavior for cursors in the database. In the
ALTER DATABASE syntax shown earlier, you can replace cursor_option
with any of the following:

CURSOR_CLOSE_ON_COMMIT { ON | OFF }
When set to ON, any open cursors are closed when a transaction commits
or rolls back. When set to OFF, any open cursors remain open when
transactions are committed and close when a transaction rolls, back unless

the cursor is INSENSITIVE or STATIC.

CURSOR_DEFAULT { LOCAL | GLOBAL }
Sets the default scope of all cursors in the database to either LOCAL or
GLOBAL. (See later in this chapter for more details.)

In the SET clause, auto_option controls the automatic file-handling behaviors
of the database. The following are valid replacements for auto_option:

AUTO_CLOSE { ON | OFF }
When set to ON, the database automatically shuts down cleanly and frees
all resources when the last user exits. When set to OFF, the database
remains open when the last user exits. The default is OFF.

AUTO_CREATE_STATISTICS { ON | OFF }
When set to ON, statistics are automatically created when SQL Server
notices they are missing during query optimization. When set to OFF,
statistics are not created during optimization. The default is ON.

AUTO_SHRINK { ON | OFF }
When set to ON, the database files may automatically shrink (the
database periodically looks for an opportunity to shrink files, though the
time is not always predictable). When set to OFF, files will shrink only
when you explicitly and manually shrink them. The default is OFF.

AUTO_UPDATE_STATISTICS { ON | OFF }
When set to ON, out-of-date statistics are reassessed during query
optimization. When set to OFF, statistics are reassessed only by explicitly
and manually recompiling them using the SQL Server command
UPDATE STATISTICS.

The sql_options clause controls the ANSI compatibility of the database. You
can use the standalone SQL Server command SET ANSI_DEFAULTS ON to

enable all the ANSI SQL92 behaviors at one time, rather than using the
individual statements below. In the SET clause, you can replace sql_option
with any of the following:

ANSI_NULL_DEFAULT { ON | OFF }
When set to ON, the CREATE TABLE statement causes columns with no
nullability setting to default to NULL. When set to OFF, the nullability of
a column defaults to NOT NULL. The default is OFF.

ANSI_NULLS { ON | OFF }
When set to ON, comparisons to NULL yield UNKNOWN. When set to
OFF, comparisons to NULL yield NULL if both non-UNICODE values
are NULL. The default is OFF.

ANSI_PADDING { ON | OFF }
When set to ON, strings are padded to the same length for insert or
comparison operations on VARCHAR and VARBINARY columns.
When set to OFF, strings are not padded. The default is ON. (We
recommend that you do not change this!)

ANSI_WARNINGS { ON | OFF }
When set to ON, the database warns when problems like “divide by zero”
or “NULL in aggregates” occur. When set to OFF, these warnings are not
raised. The default is OFF.

ARITHABORT { ON | OFF }
When set to ON, divide-by-zero and overflow errors cause a query or
Transact-SQL batch to terminate and roll back any open transactions.
When set to OFF, a warning is raised but processing continues. The
default is ON. (We recommend that you do not change this!)

CONCAT_NULL_YIELDS_NULL { ON | OFF }

When set to ON, returns a NULL when a NULL is concatenated to a
string. When set to OFF, NULLs are treated as empty strings when
concatenated to a string. The default is OFF.

NUMERIC_ROUNDABORT { ON | OFF }
When set to ON, an error is raised when a numeric expression loses
precision. When set to OFF, losses of precision result in rounding of the
result from the numeric expression. The default is OFF.

QUOTED_IDENTIFIER { ON | OFF }
When set to ON, double quotation marks identify an object identifier that
contains special characters or is a reserved word (e.g., a table named
SELECT). When set to OFF, identifiers may not contain special
characters or reserved words, and all occurrences of double quotation
marks signify a literal string value. The default is OFF.

RECURSIVE_TRIGGERS { ON | OFF }
When set to ON, triggers can fire recursively. That is, the actions taken
by one trigger may cause another trigger to fire, and so on. When set to
OFF, triggers cannot cause other triggers to fire. The default is OFF.

Recovery options control the recovery model used by the database. Use any
of the following in place of recovery_option in the ALTER DATABASE
syntax:

RECOVERY { FULL | BULK_LOGGED | SIMPLE }
When set to FULL, database backups and transaction logs provide full
recoverability even for bulk operations like SELECT . . . INTO,
CREATE INDEX, etc. FULL is the default for SQL Server 2000
Standard Edition and Enterprise Edition. FULL provides the most
recoverability, even from a catastrophic media failure, but uses more
space. When set to BULK_LOGGED, logging for bulk operations is
minimized. Space is saved and fewer I/O operations are incurred, but risk

of data loss is greater than under FULL. When set to SIMPLE, the
database can only be recovered to the last full or differential backup.
SIMPLE is the default for SQL Server 2000 Desktop Edition and
Personal Edition.

TORN_PAGE_DETECTION { ON | OFF }
When set to ON, SQL Server can detect incomplete I/O operations at the
disk level by checking each 512-byte sector per 8K database page. (Torn
pages are usually detected in recovery.) The default is ON.

For example, we may want to change some behavior settings for the
sales_report database without actually changing the underlying file structure:

ALTER DATABASE sales_report SET ONLINE, READ_ONLY,
AUTO_CREATE_STATISTICS ON
GO

This statement puts the database online and in read-only mode. It also sets the
AUTO_CREATE_STATISTICS behavior to ON.

See Also
CREATE SCHEMA

DROP

CREATE/ALTER DOMAIN Statement
The ANSI standard defines a CREATE DOMAIN statement for defining a
new data type that constrains an existing data type. However only
PostgreSQL in our set of databases supports this construct. For Oracle and
SQL Server, the CREATE TYPE command can be used instead to achieve
the same. There is no counterpart to it in MySQL that can achieve the same
goal.

 Platform

 Command

MySQL Not Supported

Oracle Not Supported

PostgreSQL Supported

SQL Server Not supported

SQL Syntax

CREATE DOMAIN domain_name AS data_type
(constraint[, ...])

Keywords

CREATE DOMAIN domain_name
Creates a new domain with name domain_name in the current database
and schema context.

data_type
The data type that this domain is based on. This often includes qualifiers
where the base data_type supports it such as varchar(20) instead of just
varchar.

constraint
A domain can have one or more constraints that restricts the values of the
domain. The constraint can take one of the following forms:

NOT NULL
CHECK (expression)

Rules at a Glance
This command creates a data type that can be used as a table column type. It
is often used to create aliases for existing data types or to constrain a type
with a length or denote if it should be NOT NULL.

Programming Tips and Gotchas

Since CREATE DOMAIN is not supported by most databases, please refer to
CREATE TYPE.

PostgreSQL
PostgreSQL follows the standard. A simple domain would look like:

CREATE DOMAIN empid AS char(9) NOT NULL;

A domain with checks would look like this:

CREATE DOMAIN email AS varchar(75)
 CHECK (value ~ '^[A-Za-z0-9._%-]+@[A-Za-z0-9.-]+[.][A-Za-z]+$');

For more complex checks, you can employ the use of functions that return a
boolean.

See Also
CREATE TYPE

CREATE/ALTER INDEX Statement
Indexes are special objects built on top of tables that speed many data-
manipulation operations, such as SELECT, UPDATE, and DELETE
statements by providing a very fast lookup using pointers to individual
records within a table. The selectivity of a given WHERE clause and/or JOIN
clause are two common locations to build indexes. Each database vendor
provides a cost-based optimizer to determine the least expensive means of
answering a query by building execution plans, usually based upon the
quality of the indexes that have been placed on the table in a given database.
To re-emphasize, proper indexing is your first and best step for high
performance database applications.

The CREATE INDEX command was not a part of the early SQL standard, and
thus its syntax varies greatly among vendors.

 Platform Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Common Vendor Syntax

CREATE [UNIQUE] INDEX index_name ON table_name
(column_name[, ...])

Keywords

CREATE [UNIQUE] INDEX index_name
Creates a new index named index_name in the current database and
schema context. Since indexes are associated with specific tables (or
sometimes views), the index_name need only be unique to the table it is
dependent on. The UNIQUE keyword defines the index as a unique
constraint for the table and disallows any duplicate values into the
indexed column or columns of the table. (Refer to “Constraints.”)

table_name
Declares the pre-existing table with which the index is associated. The
index is dependent upon the table: if the table is dropped, so is the index.

column_name[, . . .])
Defines one or more columns in the table that are indexed. The pointers
derived from the indexed column or columns enable the database query
optimizer to greatly speed up data-manipulation operations such as
SELECT and DELETE statements. All major vendors support composite
indexes, also known as concatenated indexes, which are used when two
or more columns are best searched as a unit (for example, last_name and
first_name columns).

Rules at a Glance
Indexes are created upon a specified column or columns in a table to speed
data-manipulation operations against those tables, such as those in a WHERE
or JOIN clause. Indexes may also speed other operations, including:

Identifying a MIN() or MAX() value in an indexed column.

Sorting or grouping columns of a table.

Searching based on IS NULL or IS NOT NULL.

Fetching data quickly when the indexed data is all that is requested. A
SELECT statement that retrieves data from an index and not directly from
the table itself is called a covering query. An index that answers a query in
this way is a covering index.

After creating a table, you can create indexes on columns within the table. It
is a good idea to create indexes on columns that are frequently part of the
WHERE clauses or JOIN clauses of the queries made against a table. For
example, the following statement creates an index on a column in the sales
table that is frequently used in the WHERE clauses of queries against that
table:

CREATE INDEX ndx_ord_date ON sales(ord_date);

In another case, we want to set up the pub_name and country as a unique
index on the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country);

Since the index declares that the value of the two columns must be unique
when combined, any new record entered into the publishers table must have
a unique combination of publisher name and country.

NOTE

Some vendor platforms allow you to create indexes on views as well as tables.

Programming Tips and Gotchas
Concatenated indexes are most useful when queries address the columns of
the index starting from the left and moving to the right in ordinal position. If
you omit left-side columns in a query against a concatenated index, the query
may not perform as well because all or part of the index may be ignored by
the query optimizer. For example, assume that we have a concatenated index
on (last_name, first_name). If we query only by first_name, the
concatenated index that starts with last_name and includes first_name may
not be any good to us. That said, some of the vendor platforms have now
advanced their query engines to the point where this is much less of a
problem than it used to be.

NOTE
Creating an index on a table may cause that table to take up as much as 1.2 to 1.5 times
more space than the table currently occupies. Make sure you have enough room! Most of
that space is released after the index has been created.

You should be aware that there are situations in which too many indexes can
actually slow down system performance. In general, indexes greatly speed
lookup operations against a table or view, especially in SELECT statements.
However, every index you create adds overhead whenever you perform an
UPDATE, DELETE, or INSERT operation, because the database must update
all dependent indexes with the values that have changed in the table. As a
rule of thumb, 6 to 12 indexes are about the most you’ll want to create on a
single table.

In addition, indexes take up extra space within the database. The more
columns there are in an index, the more space it consumes. This is not usually
a problem, but it sometimes catches the novices off guard when they’re
developing a new database.

Most databases use indexes to create statistical samplings (usually just called
statistics), so the query engine can quickly determine which, if any, index or
combination of indexes will be most useful for a query. These indexes are
always fresh and useful when the index is first created, but they may become
stale and less useful over time as records in the table are deleted, updated, and
inserted. Consequently, indexes, like day-old bread, are not guaranteed to be
useful as they age. You need to be sure to refresh, rebuild, and maintain your
databases regularly to keep index statistics fresh.

MySQL
MySQL supports a form of the CREATE INDEX statement, but not the
ALTER INDEX statement. The types of indexes you can create in MySQL are
determined by the engine type, and the indexes are not necessarily stored in
B-tree structures on the filesystem. Strings within an index are automatically
prefix- and end-space-compressed. MySQL’s CREATE INDEX syntax is:

CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name
 [USING {BTREE | HASH}]
 ON table_name (column_name(length)[, ...])
[KEY_BLOCK_SIZE [=] int
 | [USING {BTREE | HASH}]
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}
 | ENGINE_ATTRIBUTE [=] 'string'
 | SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
]

MariaDB supports more or less the same features as MySQL with addition of
IF NOT EXISTS, CREATE OR REPLACE, IGNORED and WAIT.
Although KEY_BLOCK_SIZE is accepted, it is ignored.

CREATE OR REPLACE [UNIQUE | FULLTEXT | SPATIAL]
[IF NOT EXISTS] INDEX index_name
 [USING {BTREE | HASH}]
 ON table_name (column_name(length)[, ...])
[WAIT n | NOWAIT]
[KEY_BLOCK_SIZE [=] int
 | [USING {BTREE | HASH | RTREE}]
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}

 | ENGINE_ATTRIBUTE [=] 'string'
 | SECONDARY_ENGINE_ATTRIBUTE [=] 'string'
 | IGNORED | NOT IGNORED
]

where:

FULLTEXT
Creates a full-text search index against a column. Full-text indexes are
only supported on MyISAM and INNODB table types and CHAR,
VARCHAR, or TEXT datatypes. Refer to
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html for details.

SPATIAL
Creates an RTREE index for storage engines that support RTREE indexes
indexes. For storage engines that don’t support RTREE, it creates a
BTREE index. A btree index can only be used for exact matches and not
range matches. Refer to
https://dev.mysql.com/doc/refman/8.0/en/creating-spatial-indexes.html
for details.

USING {BTREE | HASH |}
Specifies a specific type of index to use. Use this hint sparingly, since
different storage engines allow different index types, Hash is generally
reserved for key value stores since it can only do exact match queries, but
is much better at exact match than BTree. NDB allows only HASH (and
allows the USING clause only for unique keys and primary keys), and
MEMORY/HEAP allows HASH and BTREE. This clause deprecates the
TYPE type_name clause found in MySQL 5.1.10 and earlier.

WAIT seconds
A MariaDB extension allows to specify how long to wait to get a lock on
the table before the CREATE INDEX cancels. Also available for DROP
INDEX.

https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/creating-spatial-indexes.html

KEY BLOCK SIZE int
Provides a hint to the storage engine about the size to use for index key
blocks, where int is the value in kilobytes to use. A value of 0 means that
the default for the storage engine should be used. Ignored by MariaDB in
all cases.

WITH PARSER parser_name
Used only with FULLTEXT indexes, this clause associates a parser plug-
in with the index. Plug-ins are fully documented in the MySQL
documentation.

IGNORED
Denotes if an index should be ignored by the query planner. NOT
IGNORED is the default when not specified. Only MariaDB supports this
clause.

MySQL supports the basic industry standard syntax for the CREATE INDEX
statement. Interestingly, MySQL also lets you build an index on the first
length characters of a CHAR or VARCHAR column. MySQL requires the
length clause for BLOB and TEXT columns. Specifying a length can be useful
when selectivity is sufficient in the first, say, 10 characters of a column, and
in those situations where saving disk space is very important. This example
indexes only the first 25 characters of the pub_name column and the first 10
characters of the country column:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name(25),
 country(10));

As a general rule, MySQL allows at least 16 keys per table, with a total
maximum length of at least 256 bytes. This can vary by storage engine,
however.

MySQL 8.0.13 supports functional key parts, often referred to as functional
indexes in other databases. Functional key parts can not use columns with
length specifiers however you can use functions like substring to work

around that. Functional key parts can only reference columns and not records
in other rows and they can not be used in indexes used for foreign key or
primary key constraints. Example of a functional key part index is as follows:

CREATE INDEX ix_sales_abs_qty ON sales(ABS(qty));

For an index with a functional key part to be useful, the functional expression
should be in the WHERE clause of a SELECT statement such as:

SELECT * FROM sales WHERE ABS(qty) > 50;

Oracle
Oracle allows the creation of indexes on tables, partitioned tables, clusters,
and index-organized tables, as well as on scalar type object attributes of a
typed table or cluster, and on nested table columns using the CREATE
INDEX statement. Oracle also allows several types of indexes, including
normal B-tree indexes, BITMAP indexes (useful for columns that have each
value repeated 100 or more times), partitioned indexes, function-based
indexes (based on an expression rather than a column value), and domain
indexes.

NOTE
Oracle index names must be unique within a schema, not just to the table to which they are
assigned.

Oracle also supports the ALTER INDEX statement, which is used to change
or rebuild an existing index without forcing the user to drop and recreate the
index. Oracle’s CREATE INDEX syntax is:

CREATE [UNIQUE | BITMAP] INDEX index_name
{ON
 {table_name ({column | expression} [ASC | DESC][, ...])
 [{INDEXTYPE IS index_type [PARALLEL [int] | NOPARALLEL]
 [PARAMETERS ('values')] }] |
 CLUSTER cluster_name |

 FROM table_name WHERE condition [LOCAL partitioning]}
[{LOCAL partitioning | GLOBAL partitioning}]
[physical_attributes_clause] [{LOGGING | NOLOGGING}] [ONLINE]
[COMPUTE STATISTICS] [{TABLESPACE tablespace_name | DEFAULT}]
[{COMPRESS int | NOCOMPRESS}] [{NOSORT | SORT}] [REVERSE]
[{VISIBLE | INVISIBLE}] [{PARALLEL [int] | NOPARALLEL}] }

and the syntax for ALTER INDEX is:

ALTER INDEX index_name
{ {ENABLE | DISABLE} | UNUSABLE | {VISIBLE | INVISIBLE} |
 RENAME TO new_index_name | COALESCE |
 [NO]MONITORING USAGE | UPDATE BLOCK REFERENCES |
 PARAMETERS ('ODCI_params') | alter_index_partitioning_clause |
 rebuild_clause |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']
 [INSTANCE int])]
 [SHRINK SPACE [COMPACT] [CASCADE]]
 [{PARALLEL [int] | NOPARALLEL}]
 [{LOGGING | NOLOGGING}]
 [physical_attributes_clause] }

where the non-ANSI clauses are:

BITMAP
Creates an index bitmap for each index value, rather than indexing each
individual row. Bitmaps are best for low-concurrency tables (e.g., read-
intensive tables). BITMAP indexes are incompatible with global
partitioned indexes, the INDEXTYPE clause, and index-organized tables
without a mapping table association.

ASC | DESC
Specifies that the values in the index be kept in either ascending (ASC) or
descending (DESC) order. When ASC or DESC is omitted, ASC is used
by default. However, be aware that Oracle treats DESC indexes as
function-based indexes, so there is some difference in functionality
between ASC and DESC indexes. You may not use ASC or DESC when
you are using the INDEXTYPE clause. DESC is ignored on BITMAP
indexes.

INDEXTYPE IS index_type [PARAMETERS ('values')]
Creates an index on a user-defined type of index_type. Domain indexes
require that the user-defined type already exists. If the user-defined type
requires arguments, pass them in using the optional PARAMETERS
clause. You may also optionally parallelize the creation of the type index
using the PARALLEL clause (explained in more detail later in this list).

CLUSTER cluster_name
Declares a clustering index based on the specified pre-existing
cluster_name. On Oracle, a clustering index physically co-locates two
tables that are frequently queried on the same columns, usually a primary
key and a foreign key. (Clusters are created with the Oracle-specific
command CREATE CLUSTER.) You do not declare a table or columns
on a CLUSTER index, since both the tables involved and the columns
indexed are already declared with the previously issued CREATE
CLUSTER statement.

GLOBAL partitioning
Includes the full syntax:

GLOBAL PARTITION BY
 {RANGE (column_list) (PARTITION [partition_name] VALUE LESS THAN
 (value_list) [physical_attributes_clause]
 [TABLESPACE tablespace_name] [LOGGING | NOLOGGING][, ...])} |
 {HASH (column_list) (PARTITION [partition_name])
 {[TABLESPACE tablespace_name] [[OVERFLOW] TABLESPACE
 tablespace_name] [VARRAY varray_name STORE AS LOB
 lob_segment_name] [LOB (lob_name) STORE AS [lob_segment_name]]
 [TABLESPACE tablespace_name]} |
 [STORE IN (tablespace_name[, ...])] [OVERFLOW STORE IN
 (tablespace_name [,...])]}[, ...]

The GLOBAL PARTITION clause declares that the global index is
manually partitioned via either range or hash partitioning onto
partition_name. (The default is to partition the index equally in the same
way the underlying table is partitioned, if at all.) You can specify a
maximum of 32 columns, though none may be ROWID. You may also

apply the [NO]LOGGING clause, the TABLESPACE clause, and the
physical_attributes_clause (defined earlier) to a specific partition. You
cannot partition on ROWID. You may include one or more partitions,
along with any attributes, in a comma-delimited list, according to the
following:

RANGE
Creates a range-partitioned global index based on the range of values
from the table columns listed in the column_list.

VALUE LESS THAN (value_list)
Sets an upper bound for the current partition of the global index. The
values in the value_list correspond to the columns in the column_list,
both of which are comma-delimited lists of columns. Both lists are prefix-
dependent, meaning that for a table with columns a, b, and c, you could
define partitioning on (a, b) or (a, b, c), but not (b, c). The last value in
the list should always be the keyword MAXVALUE.

HASH
Creates hash-partitioned global index, assigning rows in the index to each
partition based on a hash function of the values of the columns in the
column_list. You may specify the exact tablespace to store special
database objects such as VARRAYs and LOBs, and for any
OVERFLOW of the specified (or default) tablespaces.

LOCAL partitioning
Supports local index partitioning on range-partitioned indexes, list-
partitioned indexes, hash-partitioned indexes, and composite-partitioned
indexes. You may include zero or more partitions, along with any
attributes, in a comma-delimited list. When this clause is omitted, Oracle
generates one or more partitions consistent with those of the table
partition. Index partitioning is done in one of three ways:

Range- and list-partitioned indexes

Applied to regular or equipartitioned tables. Range- and list-partitioned
indexes (synonyms for the same thing) follow the syntax:

LOCAL [(PARTITION [partition_name]
 { [physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS] }[, ...])]

All of the options are the same as for GLOBAL PARTITION (see
earlier), except that the scope is for a local index.

Hash-partitioned indexes
Applied to hash-partitioned tables. Hash-partitioned indexes allow you to
choose between the earlier syntax and the following optional syntax:

LOCAL {STORE IN (tablespace_name[, ...]) |
 (PARTITION [partition_name] [TABLESPACE tablespace_name])}

to store the index partition on a specific tablespace. When you supply
more tablespace names than index partitions, Oracle will cycle through
the tablespaces when it partitions the data.

Composite-partitioned indexes
Applied on composite-partitioned tables, using the following syntax:

LOCAL [STORE IN (tablespace_name[, ...])]
PARTITION [partition_name]
 {[physical_attributes_clause] [TABLESPACE tablespace_name]
 [LOGGING | NOLOGGING] |
 [COMPRESS | NOCOMPRESS]}
 [{STORE IN (tablespace_name[, ...]) |
 (SUBPARTITION [subpartition_name] [TABLESPACE tablespace_name])}]

You may use the LOCAL STORE clause shown under the hash-
partitioned indexes entry, or the LOCAL clause shown under the range-
and list-partitioned indexes entry. (When using the LOCAL clause,
substitute the keyword SUBPARTITION for PARTITION.)

physical_attributes_clause

Establishes values for one or more of the following settings: PCTFREE
int, PCTUSED int, and INITRANS int. When this clause is omitted,
Oracle defaults to PCTFREE 10, PCTUSED 40, and INITRANS 2.

PCTFREE int
Designates the percentage of free space to leave on each block of the
index as it is created. This speeds up new entries and updates on the table.
However, PCTFREE is applied only when the index is created. It is not
maintained over time. Therefore, the amount of free space can erode over
time as records are inserted, updated, and deleted from the index. This
clause is not allowed on index-organized tables.

PCTUSED int
Designates the minimum percentage of used space to be maintained on
each data block. A block becomes available to row insertions when its
used space falls below the value specified for PCTUSED. The default is
40. The sum of PCTFREE and PCTUSED must be equal to or less than
100.

INITRANS int
Designates the initial number of concurrent transactions allocated to each
data block of the database. The value may range from 1 to 255.

In versions prior to 11g the MAXTRANS parameter was used to define
the maximum allowed number of concurrent transactions on a data block,
but this parameter has now been deprecated. Oracle 11g automatically
sets MAXTRANS to 255, silently overriding any other value that you
specify for this parameter (although existing objects retain their
established MAXTRANS settings).

LOGGING | NOLOGGING

Tells Oracle to log the creation of the index on the redo logfile
(LOGGING), or not to log it (NOLOGGING). This clause also sets the
default behavior for subsequent bulk loads using Oracle SQL*Loader.
For partitioned indexes, this clause establishes the default values of all
partitions and segments associated with the partitions, and the defaults
used on any partitions or subpartitions added later with an ALTER
TABLE . . . ADD PARTITION statement. (When using NOLOGGING,
we recommend that you take a full backup after the index has been loaded
in case the index has to be rebuilt due to a failure.)

ONLINE
Allows data manipulation on the table while the index is being created.
Even with ONLINE, there is a very small window at the end of the index
creation operation where the table will be locked while the operation
completes. Any changes made to the base table at that time will then be
reflected in the newly created index. ONLINE is incompatible with
bitmap, cluster, or parallel clauses. It also cannot be used on indexes on a
UROWID column or on index-organized tables with more than 32
columns in their primary keys.

COMPUTE [STATISTICS]
Collects statistics while the index is being created, when it can be done
with relatively little cost. Otherwise, you will have to collect statistics
after the index is created.

TABLESPACE {tablespace_name | DEFAULT}
Assigns the index to a specific tablespace. When omitted, the index is
placed in the default tablespace. Use the DEFAULT keyword to explicitly
place an index into the default tablespace. (When local partitioned
indexes are placed in TABLESPACE DEFAULT, the index partition (or
subpartition) is placed in the corresponding tablespace of the base table
partition (or subpartition).

COMPRESS [int] | NOCOMPRESS
Enables or disables key compression, respectively. Compression
eliminates repeated occurrences of key column values, yielding a
substantial space savings at the cost of speed. The integer value, int,
defines the number of prefix keys to compress. The value can range from
1 to the number of columns in the index for nonunique indexes, and from
1 to n−1 columns for unique indexes. The default is NOCOMPRESS, but
if you specify COMPRESS without an int value, the default is
COMPRESS n (for nonunique indexes) or COMPRESS n-1 (for unique
indexes), where n is the number of columns in the index. COMPRESS
can only be used on nonpartitioned and nonbitmapped indexes.

NOSORT | REVERSE
NOSORT allows an index to be created quickly for a column that is
already sorted in ascending order. If the values of the column are not in
perfect ascending order, the operation aborts, allowing a retry without the
NOSORT option. REVERSE, by contrast, places the index blocks in
storage by reverse order (excluding ROWID). REVERSE is mutually
exclusive of NOSORT and cannot be used on a bitmap index or an index-
organized table. NOSORT is most useful for creating indexes
immediately after a base table is loaded with data in presorted order.

VISIBLE | INVISIBLE
Declares whether the index is visible or invisible to the optimizer.
Invisible indexes are maintained by DML operations but are not normally
used by the optimizer for query performance. This is very useful when
you cannot alter an index to disable it, but you really need Oracle to
ignore the index.

PARALLEL [int] | NOPARALLEL
Allows the parallel creation of the index using multiple server process,
each operating on a distinct subset of the index, to speed up the operation.

An optional integer value, int, may be supplied to define the exact
number of parallel threads used in the operation. When omitted, Oracle
calculates the number of parallel threads to use. NOPARALLEL, the
default, causes the index to be created serially.

ENABLE | DISABLE
Enables or disables a pre-existing function-based index, respectively. You
cannot specify any other clauses of the ALTER INDEX statement with
ENABLE or DISABLE.

UNUSABLE
Marks the index (or index partition or subpartition) as unusable. When
UNUSABLE, an index (or index partition or subpartition) may only be
rebuilt or dropped and recreated before it can be used.

RENAME TO new_index_name
Renames the index from index_name to new_index_name.

COALESCE
Merges the contents of index blocks used to maintain the index-organized
table so that the blocks can be reused. COALESCE is similar to
SHRINK, though COALESCE compacts the segments less densely than
SHRINK and does not release unused space.

[NO]MONITORING USAGE
Declares that Oracle should clear existing information on index usage and
monitor the index, posting information in the V$OBJECT_USAGE
dynamic performance view, until ALTER INDEX . . .
NOMONITORING USAGE is executed. The NOMONITORING
USAGE clause explicity disables this behavior.

UPDATE BLOCK REFERENCES

Updates all stale guess data block addresses stored as part of the index
row on normal or domain indexes of an index-organized table. The guess
data blocks contain the correct database addresses for the corresponding
blocks identified by the primary key. This clause cannot be used with
other clauses of the ALTER INDEX statement.

PARAMETERS ('ODCI_params')
Specifies a parameter string passed, without interpretation, to the ODCI
indextype routine of a domain index. The parameter string, called
‘ODCI_params', may be up to 1,000 characters long. Refer to the vendor
documentation for more information on ODCI parameter strings.

alter_index_partitioning_clause
Refer to in the section “Oracle partitioned and subpartitioned tables”
under “Oracle” in the section on CREATE/ALTER TABLE for more
details.

rebuild_clause
Rebuilds the index, or a specific partition (or subpartition) of the index. A
successful rebuild marks an UNUSABLE index as USABLE. The syntax
for the rebuild_clause is:

REBUILD {[NO]REVERSE | [SUB]PARTITION partn_name}
 [{PARALLEL [int] | NOPARALLEL}] [TABLESPACE tablespace_name]
 [PARAMETERS ('ODCI_params')] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS int | NOCOMPRESS] [[NO]LOGGING]
 [physical_attributes_clause]

where:

[NO]REVERSE
Stores the bytes of the index block in reverse order and excludes rows
when the index is rebuilt (REVERSE), or stores the bytes of the index
blocks in regular order (NOREVERSE).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]]
Deallocates unused space at the end of the index (or at the end of each
range or hash partition of a partitioned index) and frees the space for
other segments in the tablespace. The optional KEEP keyword defines
how many bytes (int) above the high-water mark the index will keep after
deallocation. You can append a suffix to the int value to indicate that the
value is expressed in kilobytes (K), megabytes (M), gigabytes (G), or
terabytes (T). When the KEEP clause is omitted, all unused space is
freed.

ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE ‘filename']
[INSTANCE int])

Explicitly allocates a new extent for the index using the specified
parameters. You may mix and match any of the parameters. SIZE
specifies the size of the next extent, in bytes (no suffix), kilobytes (K),
megabytes (M), gigabytes (G), or terabytes (T). DATAFILE allocates an
entirely new datafile to the index extent. INSTANCE, used only on
Oracle RACs, makes a new extent available to a freelist group associated
with the specified instance.

SHRINK SPACE [COMPACT] [CASCADE]
Shrinks the index segments, though only segments in tablespaces with
automatic segment management may be shrunk. Shrinking a segment
moves rows in the table, so make sure ENABLE ROW MOVEMENT is
also used in the ALTER TABLE . . . SHRINK statement. Oracle
compacts the segment, releases the emptied space, and adjusts the high-
water mark, unless the optional keywords COMPACT and/or CASCADE
are applied. The COMPACT keyword only defragments the segment
space and compacts the index; it does not readjust the high-water mark or
empty the space immediately. The CASCADE keyword performs the
same shrinking operation (with some restrictions and exceptions) on all
dependent objects of the index. The statement ALTER INDEX . . .
SHRINK SPACE COMPACT is functionally equivalent to ALTER

INDEX . . . COALESCE.

By default, Oracle indexes are non-unique. It is also important to know that
Oracle’s regular B-tree indexes do not include records that have a NULL key
value.

Oracle does not support indexes on columns with the following data types:
LONG, LONG RAW, REF (with the SCOPE attribute), or any user-defined
datatype. You may create indexes on functions and expressions, but they
cannot allow NULL values or aggregate functions. When you create an index
on a function, if it has no parameters the function should show an empty set
(for example, function_name()). If the function is a UDF, it must be
DETERMINISTIC.

Oracle supports a special index structure called an index-organized table
(IOT) that combines the table data and primary key index on a single physical
structure, instead of having separate structures for the table and the index.
IOTs are created using the CREATE TABLE . . . ORGANIZATION INDEX
statement. Refer to the section on the CREATE/ALTER TABLE statement for
more information on making an IOT.

Oracle automatically creates any additional indexes on an index-organized
table as secondary indexes. Secondary indexes do not support the REVERSE
clause.

Oracle allows the creation of partitioned indexes and tables with the
PARTITION clause. Consequently, Oracle’s indexes also support partitioned
tables. The LOCAL clause tells Oracle to create separate indexes for each
partition of a table. The GLOBAL clause tells Oracle to create a common
index for all the partitions.

Note that any time an object name is referenced in the syntax diagram, you
may optionally supply the schema. This applies to indexes, tables, etc., but
not to table-spaces. You must have the explicitly declared privilege to create
an index in a schema other than the current one.

As an example, you can use a statement such as the following to create an
Oracle index that is compressed and created in parallel, with compiled

statistics, but without logging the creation:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
COMPRESS 1 PARALLEL NOLOGGING COMPUTE STATISTICS;

As with other Oracle object creation statements, you can control how much
space the index consumes and in what increments it grows. The following
example constructs an index in Oracle on a specific tablespace with specific
instructions for how the data is to be stored:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)
STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)
TABLESPACE publishers;

For example, when you create the housing_construction table as a
partitioned table on an Oracle server, you should also create a partitioned
index with its own index partitions:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
GLOBAL PARTITION BY RANGE (project_id)
 (PARTITION part1 VALUES LESS THAN ('H')
 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 VALUES LESS THAN ('P')
 TABLESPACE construction_part2_ndx_ts,
 PARTITION part3 VALUES LESS THAN (MAXVALUE)
 TABLESPACE construction_part3_ndx_ts);

If in fact the housing_construction table used a composite partition, we
could accommodate that here:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
STORAGE (INITIAL 10M MAXEXTENTS UNLIMITED)
LOCAL (PARTITION part1 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 TABLESPACE construction_part2_ndx_ts
 (SUBPARTITION subpart10, SUBPARTITION subpart20,
 SUBPARTITION subpart30, SUBPARTITION subpart40,
 SUBPARTITION subpart50, SUBPARTITION subpart60),
 PARTITION part3 TABLESPACE construction_part3_ndx_ts);

In the following example, we rebuild the project_id_ind index that was
created earlier by using parallel execution processes to scan the old index and

build the new index in reverse order:

ALTER INDEX project_id_ind
REBUILD REVERSE PARALLEL;

Similarly, we can split out an additional partition on project_id_ind:

ALTER INDEX project_id_ind
SPLIT PARTITION part3 AT ('S')
INTO (PARTITION part3_a TABLESPACE constr_p3_a LOGGING,
 PARTITION part3_b TABLESPACE constr_p3_b);

PostgreSQL
PostgreSQL allows the creation of ascending and descending order indexes,
as well as UNIQUE indexes. Its implementation also includes a performance
enhancement under the USING clause. PostgreSQL’s CREATE INDEX
syntax is:

CREATE [UNIQUE] INDEX [CONCURRENTLY] [IF NOT EXISTS] index_name ON [ONLY]
table_name

[USING method]
([column_name | expression][COLLATE collation] [opclass
 [(opclass_parameter = value
 [, ...])}
[INCLUDE (column_name [, ...])]
[WITH FILLFACTOR = int]
[TABLESPACE tablespace_name]
[WHERE predicate]

and the syntax for ALTER INDEX is:

ALTER INDEX index_name
[RENAME TO new_index_name]
[SET TABLESPACE new_tablespace_name]
[SET FILLFACTOR = int]
[RESET FILLFACTOR = int]

where:

CONCURRENTLY
Builds the index without acquiring any locks that would prevent

concurrent inserts, updates, or deletes on the table. Normally, PostgreSQL
locks the table to writes (but not reads) until the operation completes.

USING method
Specifies one of several dynamic access methods to optimize
performance. When no method is specified, it defaults to BTREE. The
method options are as follows:

BTREE
Uses Lehman-Yao’s high-concurrency B-tree structures to optimize the
index. This is the default method when no other is specified. B-tree
indexes can be invoked for comparisons using =, <, <=, >, and >=. B-tree
indexes can be multicolumn.

GIST
Generalized Index Search Trees (GISTs) is an index used for geospatial,
JSON, hierarchical tree (ltree type), full text search, and HStore - a
key/value store. It is a lossy index and as such generally requires a
recheck step against the real data to throw out false positives from the
index check.

GIN
Generalized INverted tree (GIN) is an index type used for JSON, full text
search, and fuzzy text or regular expression search. It is a lossless index
which means data in the index is the same as the data and thus can be
used as a covering index.

HASH
Uses Litwin’s linear hashing algorithm to optimize the index. Hash
indexes can be invoked for comparisons using =. Hash indexes must be
single-column indexes.

SPGIST
Uses Space-Partitioned Generalized Index Search Trees (SPGISTs) to
optimize the index. This kind of index is generally used for geospatial and
textural data.

BRIN
Block Range INdex (BRIN) is an index for indexing a block of pages in a
btree-like format. It is a lossy format. It is used for indexing large scale
data such as instrumentation data where data is usually queried in
contiguous blocks. Its benefit is that it takes up much less space than
btree, although it does perform worse for most queries than btree and
supports fewer operators.

column_name | expression
Defines one or more columns in the table or a function call involving one
or more columns of a table, rather than just a column from the base table,
as the basis of the index values. The function used in a function based
index must be immutable. If you use a user-defined function and change
the underlying definition of a function that results in value changes, you
should reindex your table to prevent erroneous query results.

INCLUDE = column_name [, ...]
Defines an additional list of columns to include data for. These columns
are almost never part of the index. You use include mostly to insure being
able to use an index as a covering index. For example you might create a
primary key or unique index on au_id but then INCLUDE(au_lname,
au_fname). You can’t include these in the primary key definition because
you need au_id to be treated as unique. However if many of your queries
involve au_id, au_lname, au_fname, they can then use this index as a
covering index and not have to check the table.

WITH FILLFACTOR = int

Defines a percentage for PostgreSQL to fill each index page during the
creation process. For B-tree indexes, this is during the initial index
creation process and when extending the index. The default is 90.
PostgreSQL does not maintain the fill factor over time, so it is advisable
to rebuild the index at regular intervals to avoid excessive fragmentation
and page splits.

TABLESPACE tablespace_name
Defines the tablespace where the index is created.

WHERE predicate
Defines a WHERE clause search condition, which is then used to
generate a partial index. A partial index contains entries for a select set of
records in the table, not all records. You can get some interesting effects
from this clause. For example, you can pair UNIQUE and WHERE to
enforce uniqueness for a subset of the table rather than for the whole
table. The WHERE clause must:

Reference columns in the base table (though they need not be columns
of the index itself).

Reference expressions that involve immutable functions and columns
in the base table

Not make use of aggregate functions.

Not use subqueries.

[RENAME TO new_index_name] [SET TABLESPACE
new_tablespace_name] [SET FILLFACTOR = int] [RESET FILLFACTOR]

Allows you to alter the properties of an existing index, for example to
rename the index, specify a new tablespace for the index, specify a new
fillfactor for the index, or reset the fillfactor to its default value. Note that
for SET FILLFACTOR and RESET FILLFACTOR, we recommend that

you rebuild the index with the REINDEX command because changes do
not immediately take effect.

opclass In PostgreSQL, a column may have an associated operator class
opclass based on the type of index and data type of the column. An operator
class specifies the allowed operators for a particular index. Although users
are free to define any valid operator class for a given column, there is a
default operator class defined for each column type and index which is used
when no operator class is specified.

In the following example, we create an index using the BTREE index type on
lower case of the publisher name and make sure that uniqueness is enforced
only for publishers outside of the USA:

CREATE UNIQUE INDEX unq_pub_id ON publishers(lower(pub_name), lower(country))
USING BTREE
WHERE country <> 'USA';

The default BTREE index opclass does not support LIKE operations. In order
to support LIKE, you’d use the varchar_pattern_ops operator class as
follows:

CREATE INDEX ix_authors_name_bpat
 ON authors USING btree
 (au_lname varchar_pattern_ops, au_fname varchar_pattern_ops);

The ix_authors_name_bpat index above would take care of expressions like:

 au_lname LIKE 'John%' AND au_fname LIKE 'Rich%'

It however will not take care of ILIKE. It will also not work for LIKE phrases
where there is a wildcard at the beginning such as the below:

au_lname LIKE '%John%' AND au_fname LIKE '%Rich%'

The index to use to speed up these queries is what is known as a trigram gin
index. Using a trigram index requires first installing an extension in your
database. This extension is one of the extensions generally shipped with

PostgreSQL. It is installed in your database as follows:

CREATE EXTENSION pg_trgm;

The pg_trgm is an extension for fuzzy text matching and includes many
functions we will not be covering. It also includes the operator class
gin_trgm_ops which is an operator class for the GIN index type. Once you
have this extension installed, you can create an index as follows:

CREATE INDEX ix_authors_name_gin_trgm
 ON authors USING gin
 (au_lname gin_trgm_ops, au_fname gin_trgm_ops);

This new index will then be used to speed up ILIKE searches, regex searches
and LIKE where your wildcard is at the front.

Here is an example that uses INCLUDE to include commonly used columns
with the primary key:

CREATE UNIQUE INDEX ux_author_id
 ON authors USING btree
 (au_id) INCLUDE(au_lname, au_fname);

PostgreSQL index and table statistics are kept up to date by a daemon process
called autovacuum which analyses and cleans up deleted data. After creating
an index or adding a bulk load of data, you can force updating of table
statistics using the analyse command as follows:

analyse authors;

In addition, PostgreSQL has a CREATE STATISTICS useful for creating
compound column statistics with columns you know the data is correlated.
For example you might create a statistic on state and city since these columns
are highly correlated. Refer to https://www.postgresql.org/docs/current/sql-
createstatistics.html for more details.

SQL Server
For much of SQL Server’s existence it has supported a single architecture for
indexes, the “rowstore index” using a balance-tree, or B-tree, algorithm.

https://www.postgresql.org/docs/current/sql-createstatistics.html

(Technically, the algorithm is called B-tree K+). In more recent versions, the
platform added a new architecture for indexes made popular in Big Data
applications called a “columnstore index” for tables containing many millions
or billions of records. All officially supported versions of SQL Server also
support two alternate indexes, XML indexes and Spatial indexes, which we
will discuss below.

SQL Server’s CREATE INDEX syntax is:

CREATE [UNIQUE] [[NON]CLUSTERED] INDEX index_name
ON {table_name | view_name} (column [ASC | DESC][, ...])
[INCLUDE (column [ASC | DESC][, ...])]
[WHERE index_filter_predicate]
[WITH [PAD_INDEX = {ON | OFF}] [FILLFACTOR = int] [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}] [STATISTICS_INCREMENTAL = {ON |
OFF}]
 [DROP_EXISTING = {ON | OFF}] [RESUMABLE = {ON | OFF}]
 [ONLINE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int] [MAX_DURATION = time [MINUTES]]
 [DATA_COMPRESSION = {NONE | ROW | PAGE}]
 [ON PARTITIONS ({partition_number | partition_range}]
 [, ...]]
[ON {filegroup | partition (column) | DEFAULT}]
[FILESTREAM_ON {filestream_filegroup_name | prtn | "NULL"}]
;

and the syntax for ALTER INDEX is:

ALTER INDEX {index_name | ALL} ON {object_name}
{ DISABLE |
 REBUILD [PARTITION = prtn_nbr] [WITH
 ([SORT_IN_TEMPDB = {ON | OFF}][MAXDOP = int][, ...])]
 [WITH [PAD_INDEX = {ON | OFF}][FILLFACTOR = int]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}] [SORT_IN_TEMPDB = {ON | OFF}]
 [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [MAXDOP = int][, ...]] |
REORGANIZE [PARTITION = prtn_nbr] [WITH (LOB_COMPACTION = {ON | OFF})] |
SET [ALLOW_ROW_LOCKS = {ON | OFF}] [ALLOW_PAGE_LOCKS = {ON | OFF}]
 [IGNORE_DUP_KEY = {ON | OFF}]
 [STATISTICS_NORECOMPUTE = {ON | OFF}][, ...] }
;

where:

[NON]CLUSTERED

Controls the physical ordering of data for the table using either a
CLUSTERED or a NONCLUSTERED index. The columns of a
CLUSTERED index determine the order in which the records of the table
are physically written. Thus, if you create an ascending clustered index on
column A of table Foo, the records will be written to disk in ascending
alphabetical order. The NONCLUSTERED clause (the default when a
value is omitted) creates a secondary index containing only pointers and
has no impact on how the actual rows of the table are written to disk.

ASC | DESC
Specifies that the values in the index be kept in either ascending (ASC) or
descending (DESC) order. When ASC or DESC is omitted, ASC is used
by default.

INCLUDE (column [,...n])
Specifies non-key column(s) to add to the leaf level of a nonclustered
index. This sub clause is useful to improve performance by avoiding key
lookup execution plan operators. Although this technique initially appears
to be a method of creating a “covering index”, that is, an index whose
columns retrieve all of the data requested by a query thereby saving IOPs
and improving performance, it is not truly a covering index. That is
because included columns are not used to improve index cardinality or
selectivity. There are several restrictions on which non-key columns may
be added as included columns. Refer to the vendor documentation for
additional details..

WHERE index_filter_predicatea
Allows the specification of one or more optional attributes for the index.

WITH
Allows the specification of one or more optional attributes for the index.

PAD_INDEX = {ON | OFF}
Specifies that space should be left open on each 8K index page, according
to the value established by the FILLFACTOR setting.

FILLFACTOR = int
Declares a percentage value, int, from 1 to 100 that tells SQL Server how
much of each 8K data page should be filled at the time the index is
created. This is useful to reduce I/O contention and page splits when a
data page fills up. Creating a clustered index with an explicitly defined
fillfactor can increase the size of the index, but it can also speed up
processing in certain circumstances.

IGNORE_DUP_KEY = {ON | OFF}
Controls what happens when a duplicate record is placed into a unique
index through an insert or update operation. If this value is set for a
column, only the duplicate row is excluded from the operation. If this
value is not set, all records in the operation (even nonduplicate records)
are rejected as duplicates.

DROP_EXISTING = {ON | OFF}
Drops any pre-existing indexes on the table and rebuilds the specified
index.

STATISTICS_NORECOMPUTE = {ON | OFF}
Stops SQL Server from recomputing index statistics. This can speed up
the CREATE INDEX operation, but it may mean that the index is less
effective.

ONLINE = {ON | OFF}
Specifies whether underlying tables and associated indexes are available
for queries and data-manipulation statements during the index operation.

The default is OFF. When set to ON, long-term write locks are not held,
only shared locks.

SORT_IN_TEMPDB = {ON | OFF}
Stores any intermediate results used to build the index in the system
database, TEMPDB. This increases the space needed to create the index,
but it can speed processing if TEMPDB is on a different disk than the
table and index.

ALLOW_ROW_LOCKS = {ON | OFF}
Specifies whether row locks are allowed. When omitted, the default is
ON.

ALLOW_PAGE_LOCKS = {ON | OFF}
Specifies whether page locks are allowed. When omitted, the default is
ON.

MAXDOP = int
Specifies the maximum degrees of parallelism for the duration of the
indexing operation. 1 suppresses parallelism. A value greater than 1
restricts the operation to the number of processors specified. 0, the
default, allows SQL Server to choose up to the actual number of
processors on the system.

ON filegroup
Creates the index on a given pre-existing filegroup. This enables the
placing of indexes on a specific hard disk or RAID device. Issuing a
CREATE CLUSTERED INDEX . . . ON FILEGROUP statement
effectively moves a table to the new filegroup, since the leaf level of the
clustered index is the same as the actual data pages of the table.

DISABLE

Disables the index, making it unavailable for use in query execution
plans. Disabled nonclustered indexes do not retain underlying data in the
index pages. Disabling a clustered index makes the underlying table
unavailable to user access. You can re-enable an index with ALTER
INDEX REBUILD or CREATE INDEX WITH DROP_EXISTING.

REBUILD [PARTITION = prtn_nbr]
Rebuilds an index using the pre-existing properties, including columns in
the index, indextype, uniqueness attributes, and sort order. You may
optionally specify a new partition. This clause will not automatically
rebuild associated nonclustered indexes unless you include the keyword
ALL. When using this clause to rebuild an XML or spatial index, you
may not also use the ONLINE = ON or IGNORE_DUP_KEY = ON
clauses. Equivalent to DBCC DBREINDEX.

REORGANIZE [PARTITION = prtn_nbr]
Performs an online reorganization of the leaf level of the index (i.e., no
long term blocking table locks are held and queries and updates to the
underlying table can continue). You may optionally specify a new
partition. Not allowed with ALLOW_PAGE_LOCKS=OFF. Equivalent
to DBCC INDEXDEFRAG.

WITH (LOB_COMPACTION = {ON | OFF})
Compacts all pages containing LOB datatypes, including IMAGE, TEXT,
NTEXT, VARCHAR(MAX), NVARCHAR(MAX),
VARBINARY(MAX), and XML. When omitted, the default is ON. The
clause is ignored if no LOB columns are present. When ALL is specified,
all indexes associated with the table or view are reorganized.

SET
Specifies index options without rebuilding or reorganizing the index. SET
cannot be used on a disabled index.

SQL Server allows up to 249 nonclustered indexes (unique or non-unique) on
a table, as well as one primary key index. Index columns may not be of the
data types NTEXT, TEXT, or IMAGE.

SQL Server automatically parallelized the creation of the index according to
the configuration option max degree of parallelism (MaxDOP).

It is often necessary to build indexes that span several columns—i.e., a
concatenated key. Concatenated keys may contain up to 16 columns and/or a
total of 900 bytes across all fixed-length columns. Here is an example:

CREATE UNIQUE INDEX project2_ind
ON housing_construction(project_name, project_date)
WITH PAD_INDEX, FILLFACTOR = 80
ON FILEGROUP housing_fg
GO;

Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells
SQL Server to leave the index and data pages 80% full, rather than 100%
full. This example also tells SQL Server to create the index on the
housing_fg filegroup, rather than the default filegroup.

Note that SQL Server allows the creation of a unique clustered index on a
view, effectively materializing the view. This can greatly speed up data
retrieval operations against the view. Once a view has a unique clustered
index, nonclustered indexes can be added to the view. Note that the view also
must be created using the SCHEMABINDING option. Indexed views support
data retrieval, but not data modification.

Columnstore Index in SQL Server
SQL Server has supported columnstore indexes since the 2014 release, with
subsequent releases further increasing their usability and manageability.
Azure SQL Database supports all syntax for columnstore indexes, while only
certain versions of on-premises SQL Server do. Columnstore indexes, as
opposed to old-fashioned rowstore indexes, are much more effective for
storing and querying massive tables, such as those commonly found in large
data warehouses. Columnstore indexes feature their own form of data
compression which, when combined with specific optimizer improvements

for large batch processing, can yield 10x to 20x performance improvements
over standard rowstore indexes. (Note that you should not use columnstore
indexes on tables with less than several millions of rows).

Columnstore indexes are complex, with many best practices for optimal
usage, maintenance practices, limitations, restrictions, and prerequisites.
Features and requirements vary widely across versions that support
columnstore, with support for all features reaching maturity with SQL Server
2016. As an example of this heightened complexity, you cannot change the
structure of a columnstore index using the ALTER INDEX statement or the
CREATE OR ALTER syntax allowed for other SQL Server DML statements.
(On the other hand, you may use ALTER INDEX to change a property of an
columstore index, such as to enable or disable the index). Instead, you must
DROP then recreate a columnstore index to effect a change or you must use
the syntax CREATE … WITH (DROP_EXISTING = ON). However, the
syntax to create a columnstore index is rather simple:

-- Columnstore Index Syntax
CREATE [[NON]CLUSTERED] COLUMNSTORE INDEX index_name
ON table_name [(column [,...])
[WHERE index_filter_predicate]
[WITH (option [,...n]]]
[ORDER (column [, ...])
[ON {filegroup | partition (column) | DEFAULT}]
;

You are strongly encouraged to refer to the vendor documentation for
extensive details on the principals and concepts. Filtered indexes are only
allowed for nonclustered columnstore indexes. Columnstore indexes may be
created on heaps, on tables with rowstore indexes, and on In_Memory tables.
The ORDER subclause is only used when creating clustered columnstore
indexes on Azure Synapse Analytics data warehouses. The arguments
allowed for a Columnstore index arguments are briefly described below:

ON table_name [(column [,...])]
When specifying a clustered columnstore index, only the table_name is
needed. The table_name may specify the one-, two-, or three-part naming
convention of [database_name.[schema_name.]table_name. When

specifying a nonclustered columnstore index, you may declare up to 1024
columns within the columnstore index, assuming the columns are
supportable data types.

WITH option
Allows one or more options of the same functionality as the options for a
regular index, but limited to: DROP_EXISTING, ONLINE, MAXDOP,
COMPRESSION_DELAY, and DATA_COMPRESSION. Unless
otherwise noted, the option is defined in the same way as with rowstore
indexes, with these exceptions:

COMPRESSION_DELAY = { 0 | delay | M[inutes] }
Specifies an integer value for the minimum number of minutes that newly
inserted or changed rows (also known as a ‘delta rowgroup’) must remain
in the CLOSED state before it will be compressed into a columnstore
rowgroup. The default is 0 minutes

DATA_COMPRESSION = { COLUMNSTORE |
COLUMNSTORE_ARCHIVE}

Specifies the compression option for the table, offering a trade-off
between speed and cost. The parameter accepts either a value of
columnstore (the default option, most useful for data that is actively used
to answer queries) or columnstore_archive (an option for maximal
compression and smallest possible storage needs, most useful for rarely
used data which allow for slower retrieval).

XML Indexes in SQL Server
SQL Server supports the creation of XML indexes and Spatial indexes on
specified tables within a SQL Server database. These extended indexes are
created on columns of the XML data type and spatial data types, such as
geometry or geography, respectively. The syntax for XML index creation is:

-- XML Index Syntax
CREATE [PRIMARY] XML INDEX index_name

ON table_name (xml_column_name)
[USING XML INDEX xml_index_name
 [FOR { VALUE | PATH | PROPERTY }]]
[WITH (option [,...n]]]
;

When creating an XML index or Spatial index on a table, up to 249 of each
index are allowed per table. The user table must also have a primary key that
acts as the clustered index, with no more than 15 columns. XML indexes can
only be created upon a single XML column in a user table, with a maximum
of one primary XML index and possibly many secondary XML indexes
based upon the primary XML index. The XML index name may include
database_name.schema_name.table_name nomenclature, as do Spatial
indexes.

A few notes on the arguments for CREATE XML INDEX syntax includes:

PRIMARY
When specified, a clustered index is created based upon the user table
clustered index plus a XML node identifier.

WITH
When specified, identifies the primary XML index used to create a
secondary XML index. The secondary index may be further categorized
as:

FOR VALUE
Specifies a secondary XML index on columns where the key columns
are, ordinally, the node value and path of the primary XML index.

FOR PATH
Specifies a secondary XML index on columns using, ordinally, the path
values and node values that are key columns to facilitate efficient seeks
when searching for paths.

FOR PROPERTY

Specifies a secondary XML index on columns using, ordinally, the
primary key of the user table, path value, and node value to facilitate
efficient seeks when searching for paths.

WITH option
Allows one or more options of the same functionality as the options for a
regular index, but limited to: PAD_INDEX, FILLFACTOR,
SORT_IN_TEMPDB, IGNORE_DUP_KEY, DROP_EXISTING,
ONLINE, ALLOW_ROW_LOCKS, ALLOW_PAGE_LOCKS, and
MAXDOP.

Spatial Indexes in SQL Server
Spatial indexes are built using B-tree structions so that they can effectively
represent 2-dimensional spatial data in a linear and ordered B-tree.
Consequently SQL Server must hierarchically “decompose” the defined
space into a four-level grid hierarchy of increasing granularity, starting with
level_1 (top and least granular level) through level_4 (the most granular
level). Each level of the grid hierarchy are composed of an equal number of
cells of equal size along the X- and Y-axis (say, 4x4 or 8x8).

The number of cells per axis is called its “density” and is a measurement that
is independent of the actual unit of measurement applied to each cell. For
example, a Spatial indexes containing four levels of a 4x4 grid hierarchy
decomposes into a space of 65,536 level_4 cells of equal measurement, but
those cells might represent feet, meters, hectares, or miles depending on the
specification of the user. The syntax for Spatial indexes follows:

-- Spatial Index Syntax
CREATE SPATIAL INDEX index_name
ON table_name (spatial_column_name)
USING [{GEOMETRY_AUTO_GRID | GEOGRAPHY_AUTO_GRID | GEOMETRY_GRID |
GEOGRAPHY_GRID}]
[WITH (
 [BOUNDING_BOX = ()],
 [GRIDS = ()],
 [CELLS_PER_OBJECT = n],
 [option [, ...n]])
;

Spatial data types and spatial indexes upon those data types are rather
complex. You are encouraged to refer to the vendor documentation for
extensive details on the principals and concepts. The arguments allowed for a
Spatial Index are briefly described below:

USING
The USING subclause specifies the “tessellation” of the Spatial index,
enabling an object to be associated with a specific cell or cells on the grid.
Tessellation, in turn, allows the Spatial database to quickly locate other
objects in space relative to any other object of the geography or geometry
column stored in the index. When an object completely covers an entire
cell, the cell is “covered” by the object averting the need to tessellate the
cell.

GEOMETRY_GRID | GEOGRAPHY_GRID
Used on the geometry or geography data type, respectively, to manually
specify the tessellation scheme to use in the spatial index.

GEOMETRY__AUTO_GRID | GEOGRAPHY_AUTO_GRID
Specifies a secondary XML index on columns using, ordinally, the path
values and node values that are key columns to facilitate efficient seeks
when searching for paths.

WITH
When specified with one of the grid tessellation schemes, this subclause
allows you to manually specify one or more parameters of the tessellation
scheme. The WITH subclause may further be used to specify commonly
used options for creating the index or specific properties of the index,
such as data compression. The additional syntax of the WITH subclause
follows:

BOUNDING_BOX = (xmin , ymin , xmax , ymax)
Specifies the coordinates for the bounding box, but is only applicable for

the USING GEOMETRY_GRID clause. Each value may be represented
as a float specifying the x- and y- coordinates as represented by their
parameter name, for example, xmin represents the float value of the x-
axis in the lower-left corner of the bounding box while ymax represents
the float value of the y-axis at the upper-right corner of the bounding box.
Alternately, you may specify both the property name and the value of
each corner of the bounding box using the syntax (XMIN=a, YMIN=b,
XMAX=c, YMAX=d). Naturally, the max value in each min-max pair
must be greater than the min value. This property does not have default
values.

GRIDS (level_n [= { LOW | MEDIUM | HIGH}, [,... n])
Manually specifies the density of one or more levels of the grid, but is
only useable with the GEMOTRY_GRID and GEOGRAPH_GRID
parameters. Using the level name of LEVEL_1, LEVEL_2, LEVEL_3,
and/or LEVEL_4 allows you to specify one or more of the levels in any
order and to omit one or more levels. When omitted, a level defaults to
MEDIUM. Density may be set to LOW (a 4x4 grid of 16 cells),
MEDIUM, (an 8x8 grid of 64 cells), or HIGH (a 16x16 grid of 256 cells).
You may alternately skip the explicit naming of each level by specifying
the density of all four levels, as in GRIDS = (LOW, MEDIUM, HIGH,
HIGH), with the values applying in ordinal position of level 1 through 4.

CELLS_PER_OBJECT=n
Specifies an integer value for the number of tessellation cells per object
between 1 and 8192, inclusive. When omitted, SQL Server sets the
default value of CELLS_PER_OBJECT at to 16 for GEOMETRY_GRID
and GEOGRAPHY_GRID, to 12 for GEOGRAPHY_AUTO_GRID, and
to 8 for GEOMETRY_AUTO_GRID.

WITH option
Allows one or more options of the same functionality as the options for a
regular index, but limited to: PAD_INDEX, FILLFACTOR,

SORT_IN_TEMPDB, IGNORE_DUP_KEY,
STATISTICS_NORECOMPUTE, DROP_EXISTING, ONLINE,
ALLOW_ROW_LOCKS, ALLOW_PAGE_LOCKS, MAXDOP, and
DATA_COMPRESSION.

See Also
CREATE/ALTER TABLE

DROP

CREATE ROLE Statement
CREATE ROLE allows the creation of a named set of privileges that may be
assigned to users of a database. When a role is granted to a user, that user
gets all the privileges and permissions of that role at a database-level. Roles
are generally accepted as one of the best means for maintaining security and
controlling privileges within a database.

 Platform

 Command

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Syntax

CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

Keywords

CREATE ROLE role_name
Creates a new role and differentiates that role from a host DBMS user and
other roles. A role can be assigned any permission that a user can be
assigned. The important difference is that a role can then be assigned to

one or more users, thus giving them all the permissions of that role.

WITH ADMIN {CURRENT_USER | CURRENT_ROLE}
Assigns a role immediately to the currently active user or currently active
role along with the privilege to pass the use of the role on to other users.
By default, the statement defaults to WITH ADMIN CURRENT_USER.

Rules at a Glance
Using roles for database security can greatly ease administration and user
maintenance. The general steps for using roles in database security are:

1. Assess the needs for roles and pick the role names (e.g., administrator,
manager, data_entry, report_writer, etc.).

2. Assign permissions to each role as if it were a standard database user,
using the GRANT statement. For example, the manager role might have
permission to read from and write to all user tables in a database, while
the report_writer role might only have permission to execute read-only
reports against certain reporting tables in the database.

3. Use the GRANT statement to grant roles to users of the system
according to the types of work they will perform.

Permissions can be disabled using the REVOKE command.

Programming Tips and Gotchas
The main problem with roles is that occasionally a database administrator
will provide redundant permissions to a role and separately to a user. If you
ever need to prevent a user’s access to a resource in situations like this, you
usually will need to REVOKE the permissions twice: the role must be
revoked from the user, and then the specific user-level privilege must also be
revoked from the user.

MySQL
{CREATE} ROLE [IF NOT EXISTS] role_name[, role_name2, ..]|

Creates one or more roles which are named collections of priviledges.
Example:

CREATE ROLE IF NOT EXISTS ‘admins’, ‘read_only’;
Only applies to users connecting from the local server

CREATE ROLE ‘admins@localhost`;
Adds a set of roles to an existing user

SET DEFAULT ROLE role_name[, role_name2, ..] TO user_name
When the hostname @whatever is omitted, it defaults to @’%’ which
means connection from anywhere.

Oracle
Although it is not currently supported by the ANSI standard, Oracle also
offers an ALTER ROLE statement. Oracle supports the concept of roles,
though its implementation of the commands is very different from the ANSI
SQL standard:

{CREATE | ALTER} ROLE role_name
 [NOT IDENTIFIED |
 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY |
 USING package_name}]

where:

{CREATE | ALTER} ROLE role_name
Identifies the name of the new role being created or the pre-existing role
being modified.

NOT IDENTIFIED
Declares that no password is needed for the role to receive authorization
to the database. This is the default.

IDENTIFIED

Declares that the users of the role must authenticate themselves by the
method indicated before the role is enabled via the SET ROLE command,
where:

BY password
Creates a local role authenticated by the string value of password. Only
single-byte characters are allowed in the password, even when using a
multibyte character set.

EXTERNALLY
Creates an external role that is authenticated by the operating system or a
third-party provider. In either case, the external authentication service
will likely require a password.

GLOBALLY
Creates a global role that is authenticated by an enterprise directory
service, such as an LDAP directory.

USING package_name
Creates an application role that enables a role only through an application
that uses a PL/SQL package of package_name. If you omit the schema,
Oracle assumes that the package is in your schema.

In Oracle, the role is created first, then granted privileges and permissions as
if it is a user via the GRANT command. When users want to get access to the
permissions of a role protected by a password, they use the SET ROLE
command. If a password is placed on the role, any user wishing to access it
must provide the password with the SET ROLE command.

Oracle ships with several preconfigured roles. CONNECT, DBA, and
RESOURCE are available in all versions of Oracle. EXP_FULL_DATABASE
and IMP_FULL_DATABASE are newer roles used for import and export
operations. The GRANT statement reference has a more detailed discussion of

all of the preconfigured roles available in Oracle.

The following example uses CREATE to specify a new role in Oracle,
GRANTs it privileges, assigns it a password with ALTER ROLE, and GRANTs
the new role to a couple of users:

CREATE ROLE boss;
GRANT ALL ON employee TO boss;
GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;
ALTER ROLE boss IDENTIFIED BY le_grand_fromage;
GRANT boss TO emily, jake;

PostgreSQL
PostgreSQL supports both the ALTER and CREATE ROLE statements, and it
offers a nearly identical extension of its own called ALTER/CREATE
GROUP. The CREATE ROLE WITH LOGIN is equivalent to the
PostgreSQL specific CREATE USER and is the recommended way of
creating new users. The syntax for CREATE ROLE follows:

{CREATE | ALTER} ROLE name
[[WITH] [[NO]SUPERUSER] [[NO]CREATEDB] [[NO]CREATEUSER] [[NO]INHERIT]
[[NO]LOGIN]
 [CONNECTION LIMIT int] [{ENCRYPTED | UNENCRYPTED} PASSWORD 'password']
 [VALID UNTIL 'date_and_time'] [IN ROLE rolename[, ...]]
 [IN GROUP groupname[, ...]] [ROLE rolename[, ...]]
 [ADMIN rolename[, ...]] [USER rolename[, ...]] [SYSID int][...]]
[RENAME TO new_name]
[SET parameter {TO | =} {value | DEFAULT}]
[RESET parameter]

where:

{CREATE | ALTER} ROLE name
Specifies the new role to create or the existing role to modify, where
name is the name of the role to create or modify.

[NO]SUPERUSER
Specifies whether the role is a superuser or not. The superuser may
override all access restrictions within the database. NOSUPERUSER is
the default.

[NO]CREATEDB
Specifies whether the role may create databases or not. NOCREATEDB
is the default.

[NO]CREATEROLE
Specifies whether the role may create new roles and alter or drop other
roles. NOCREATEROLE is the default.

[NO]CREATEUSER
Specifies whether the role may create a superuser. This clause is
deprecated in favor of [NO]SUPERUSER.

[NO]INHERIT
Specifies whether the role inherits the privileges of the roles of which it is
a member. A role with INHERIT automatically may use the privileges
that are granted to the roles that of which it is (directly or indirectly) a
member. INHERIT is the default.

[NO]LOGIN
Specifies whether the role may log in. With LOGIN, a role is essentially a
user. With NOLOGIN, a role provides mapping to specific database
privileges but is not an actual user. The default is NOLOGIN.

CONNECTION LIMIT int
Specifies how many concurrent connections a role can make, if it has
LOGIN privileges. The default is −1; that is, unlimited.

{ENCRYPTED | UNENCRYPTED} PASSWORD ‘password’
Sets a password for the role, if it has LOGIN privileges. The password
may be stored in plain text (UNENCRYPTED) or encrypted in MD5-
format in the system catalogs (ENCRYPTED). Older clients may not

support MD5 authentication, so be careful.

VALID UNTIL ‘date_and_time’
Sets a date and time when the role’s password will expire, if it has
LOGIN privileges. When omitted, the default is no time limit.

IN ROLE, IN GROUP
Specifies one or more existing roles (or groups, though this clause is
deprecated) of which the role is a member.

ROLE, GROUP
Specifies one or more existing roles (or groups, though this clause is
deprecated) that are automatically added as members of the new or
modified role.

ADMIN rolename
Similar to the ROLE clause, except new roles are added WITH ADMIN
OPTION, giving them the right to grant membership in this role to others.

USER username
Deprecated clauses that are still accepted for backward compatibility.
USER is equivalent to the ROLE clause WITH LOGIN.

[RENAME TO new_name] [SET parameter {TO | =} {value | DEFAULT}]
[RESET parameter]

Renames an existing role to a new name, sets a configuration parameter,
or resets a configuration parameter to the default value. Configuration
parameters are fully detailed within PostgreSQL’s documentation.

Use the DROP ROLE clause to drop a role you no longer want.

SQL Server

Microsoft SQL Server supports the ALTER and CREATE ROLE statements,
as well as equivalent capabilities via the system stored procedure
sp_add_role. SQL Server’s syntax follows:

CREATE ROLE role_name [AUTHORIZATION owner_name]
;

ALTER ROLE _existing_role_name
 { WITH NAME = role_name_new | ADD MEMBER role_name | DROP MEMBER role_name
}
;

where:

AUTHORIZATION owner_name
Specifies the database user or role that owns the newly created role. The
newly created role may also be assigned to system roles, such as
db_securityadmin. When omitted, the role is owned by the user that
created it.

WITH NAME = role_name_new
Specifies the new name of the role, where the role is a database user or
user-defined database role. Changing the name of a role does not change
any other aspect of the role, such as permissions granted to the role, the
owner, or the internal ID number.

ADD MEMBER = role_name
Adds a newly created user role or user-defined database role to an
existing role, where the role is a database user or user-defined database
role.

DROP MEMBER = role_name
Drops the existing user or user-defined database role from the previously
created role, where the role is a database user or user-defined database
role.

See Also
GRANT

REVOKE

CREATE SCHEMA Statement
This statement creates a schema—i.e., a named group of related objects
contained within a database or instance of a database server. A schema is a
collection of tables, views, and permissions granted to specific users or roles.
According to the SQL standard, specific object permissions are not schema
objects in themselves and do not belong to a specific schema. However, roles
are sets of privileges that do belong to a schema. As an industry practice, it is
common to see database designers create all of the necessary objects of a
schema, along with roles and permissions such that the collection is a self-
contained package.

 Platform

 Command

MySQL Supported (as CREATE DATABASE)

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL Syntax

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]
[DEFAULT CHARACTER SET char_set_name]
[PATH schema_name[, ...]]
 [CREATE statements [...]]
 [GRANT statements [...]]

Keywords

CREATE SCHEMA [schema_name]
Creates a schema called schema_name. When omitted, the database will

create a schema name for you using the name of the user who owns the
schema.

AUTHORIZATION owner_name
Specifies the user who will be the owner of the schema. When this clause
is omitted, the current user is set as the owner. The ANSI standard allows
you to omit either the schema_name or the AUTHORIZATION clause, or
to use them both together.

DEFAULT CHARACTER SET char_set_name
Declares a default character set of char_set_name for all objects created
within the schema.

PATH schema_name[, . . .]
Optionally declares a file path and filename for any unqualified routines
(i.e., stored procedures, user-defined functions, user-defined methods) in
the schema.

CREATE statements [. . .]
Contains one or more CREATE TABLE and CREATE VIEW statements.
No commas are used between the CREATE statements.

GRANT statements [. . .]
Contains one or more GRANT statements that apply to previously
defined objects. Usually, the objects were created earlier in the same
CREATE SCHEMA statement, but they may also be pre-existing objects.
No commas are used between the GRANT statements.

Rules at a Glance
The CREATE SCHEMA statement is a container that can hold many other
CREATE and GRANT statements. The most common way to think of a
schema is as all of the objects that a specific user owns. For example, the user

jake may own several tables and views in his own schema, including a table
called publishers. Meanwhile, the user dylan may own several other tables
and views in his schema, but may also own his own separate copy of the
publishers table. Schemas are also used to group logically related objects.
For example you can create an accounting schema to store ledgers, accounts,
and related stored procedures and functions to work with these.

The ANSI standard requires that all CREATE statements are allowed in a
CREATE SCHEMA statement. In practice, however, most implementations of
CREATE SCHEMA allow only three subordinate statements: CREATE
TABLE, CREATE VIEW, and GRANT. The order of the commands is not
important, meaning that (although it is not recommended) you can grant
privileges on tables or views whose CREATE statements appear later in the
CREATE SCHEMA statement.

Programming Tips and Gotchas
It is not required, but it is considered a best practice to arrange the objects and
grants within a CREATE SCHEMA statement in an order that will execute
naturally without errors. In other words, CREATE VIEW statements should
follow the CREATE TABLE statements that they depend on, and the GRANT
statements should come last.

If your database system uses schemas, we recommend that you always
reference your objects by schema and then object name (as in
jake.publishers). If you do not include a schema qualifier, the database
platform will typically assume the default schema for the current user
connection.

Some database platforms do not explicitly support the CREATE SCHEMA
command. However, they implicitly create a schema when a user creates
database objects. For example, Oracle creates a schema whenever a user is
created. The CREATE SCHEMA command is simply a single-step method of
creating all the tables, views, and other database objects along with their
permissions.

MySQL

MySQL supports the CREATE SCHEMA statement as a synonym of the
CREATE DATABASE statement. Refer to that section for more information
on MySQL’s implementation.

Oracle
In Oracle, the CREATE SCHEMA statement does not actually create a
schema; only the CREATE USER statement does that. What CREATE
SCHEMA does is allow a user to perform multiple CREATEs and GRANTs in
a previously created schema in one SQL statement:

CREATE SCHEMA AUTHORIZATION schema_name
 [ANSI CREATE statements [...]]
 [ANSI GRANT statements [...]]

Note that Oracle only allows ANSI-standard CREATE TABLE, CREATE
VIEW, and GRANT statements within a CREATE SCHEMA statement. You
should not use any of Oracle’s extensions to these commands when using the
CREATE SCHEMA statement.

The following Oracle example places the permissions before the objects
within the CREATE SCHEMA statement:

CREATE SCHEMA AUTHORIZATION emily
 GRANT SELECT, INSERT ON view_1 TO sarah
 GRANT ALL ON table_1 TO sarah
 CREATE VIEW view_1 AS
 SELECT column_1, column_2
 FROM table_1
 ORDER BY column_2
 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));

As this example shows, the order of the statements within the CREATE
SCHEMA statement is unimportant; Oracle commits the CREATE SCHEMA
statement only if all CREATE and GRANT statements in the statement
complete successfully.

PostgreSQL
PostgreSQL supports both ALTER and CREATE SCHEMA statements
without support for the PATH and DEFAULT CHARACTER SET clauses.

The CREATE SCHEMA syntax follows:

CREATE SCHEMA [IF NOT EXISTS] { schema_name [AUTHORIZATION user_name] |
AUTHORIZATION user_name }
 [CREATE statements [...]]
 [GRANT statements [...]]

When the schema_name is omitted, the user_name is used to name the
schema. Currently, PostgreSQL supports only the following CREATE
statements within a CREATE SCHEMA statement: CREATE TABLE,
CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, and CREATE
TRIGGER. Other CREATE statements must be handled separately from the
CREATE SCHEMA statement.

The ALTER SCHEMA syntax follows:

ALTER SCHEMA schema_name [RENAME TO new_schema_name] [OWNER TO new_user_name]

The ALTER SCHEMA statement allows you to rename a schema or to specify
a new owner, who must be a pre-existing user on the database.

SQL Server
SQL Server supports the basic CREATE SCHEMA statement, without support
for the PATH clause or the DEFAULT CHARACTER SET clause:

CREATE SCHEMA [schema_name] [AUTHORIZATION] [owner_name]
 [CREATE statements [...]]
 [GRANT statements [...]]
 [REVOKE statements [...]]
 [DENY statements [...]]
;

If any statement fails within the CREATE SCHEMA statement, the entire
statement fails. You may not only GRANT permissions within a SQL
SERVER CREATE SCHEMA statement, you may also revoke previously
declared permissions or deny permissions.

SQL Server does not require that the CREATE or GRANT statements be in
any particular order, except that nested views must be declared in their

logical order. That is, if view_100 references view_10, view_10 must appear
in the CREATE SCHEMA statement before view_100.

For example:

CREATE SCHEMA AUTHORIZATION katie
 GRANT SELECT ON view_10 TO public
 CREATE VIEW view_10(col1) AS SELECT col1 FROM foo
 CREATE TABLE foo(col1 INT)
 CREATE TABLE foo
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo2(col1))
 CREATE TABLE foo2
 (col1 INT PRIMARY KEY,
 col2 INT REFERENCES foo(col1));

The syntax for ALTER ROLE follows:

ALTER ROLE owner_name WITH NAME = new_owner_name;

The ALTER ROLE statement merely allows the assignment of a new owner to
an existing schema.

See Also
CREATE/ALTER TABLE

CREATE/ALTER VIEW

GRANT

CREATE/ALTER TABLE Statement
Manipulating tables is one of the most common activities that database
administrators and programmers perform when working with database
objects. This section details how to create and modify tables.

The SQL standard represents a sort of least common denominator among the
vendors. Although not all vendors offer every option of the SQL standard
version of CREATE TABLE and ALTER TABLE, the standard does represent
the basic form that can be used across all of the platforms. Conversely, the
vendor platforms offer a variety of extensions and additions to the SQL

standards for CREATE and ALTER TABLE.

NOTE
Typically, a great deal of consideration goes into the design and creation of a table. This
discipline is known as database design. The discipline of analyzing the relationship of a
table to its own data and to other tables within the database is known as normalization. We
recommend that database developers and database administrators alike study both
database design and normalization principles thoroughly before issuing CREATE TABLE
commands.

 Platform

 Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Syntax
The SQL statement CREATE TABLE creates a permanent or temporary table
within the database where the command is issued. The syntax is as follows:

CREATE [{LOCAL TEMPORARY| GLOBAL TEMPORARY}] TABLE table_name
 (column_name datatype attributes[, ...]) |
 [, ...]) |
 [column_name [datatype] GENERATED ALWAYS AS (expression)
[,...]]
 [column_name {GENERATED ALWAYS| BY DEFAULT} AS IDENTITY
{sequence_options}]
 [column_name WITH OPTIONS options] |
 [column_name_start datatype GENERATED ALWAYS AS ROW START] |
 [column_name_end datatype GENERATED ALWAYS AS ROW END] |
 [PERIOD FOR SYSTEM_TIME (column_name_start,column_name_end] |
 [LIKE table_name] |
 [REF IS column_name
 {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [CONSTRAINT constraint_type [constraint_name][, ...]]
[OF type_name [UNDER super_table] [table_definition]] |
[ON COMMIT {PRESERVE ROWS | DELETE ROWS} |
[WITH SYSTEM_VERSIONING {ON|OFF} }

The SQL statement ALTER TABLE allows many useful modifications to be
made to an existing table without dropping any existing indexes, triggers, or
permissions assigned to it. Following is the ALTER TABLE syntax:

ALTER TABLE table_name
[ADD [COLUMN] column_name datatype attributes]
[ADD [COLUMN] column_name [datatype] GENERATED ALWAYS AS (expression)
[,...]]
[ADD [COLUMN] column_name {GENERATED ALWAYS| BY DEFAULT} AS IDENTITY
{sequence_options}]
| [ALTER [COLUMN] column_name SET DEFAULT default_value]
| [ALTER [COLUMN] column_name DROP DEFAULT]
| [ALTER [COLUMN] column_name ADD SCOPE table_name]
| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]
| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]
| [ADD table_constraint]
| [SET SYSTEM_VERSIONING {ON | OFF}]
[SET PERIOD FOR SYSTEM_TIME (column_name_start,column_name_end]
| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

Keywords

CREATE [{LOCAL TEMPORARY | GLOBAL TEMPORARY}] TABLE
Declares a permanent table or a TEMPORARY table of LOCAL or
GLOBAL scope. Local temporary tables are accessible only to the
session that created them and are automatically dropped when that
session terminates. Global temporary tables are accessible by all active
sessions but are also automatically dropped when the session that created
them terminates. Do not qualify a temporary table with a schema name.
Depending on the database platform, you may use two- or even three-part
naming conventions of schema_name.table_name or
database_name.schema_name.table_name, respectively.

(column_name datatype attributes[, . . .])
Defines a comma-delimited list of one or more columns, their data types,
and any additional attributes (such as nullability). Every table declaration
must contain at least one column, which may include:

column_name

Specifies a name for a column. The name must be a valid identifier
according to the rules of the specific DBMS. Make sure the name makes
sense!

datatype
Associates a specific datatype with the column identified by
column_name. An optional length may be specified for datatypes that
allow user-defined lengths, for example VARCHAR(255). It must be a
valid datatype on the specific DBMS. Refer to Chapter 2 for a full
discussion of acceptable datatypes and vendor variations.

attributes
Associates specific constraint attributes with the column_name. Many
attributes may be applied to a single column_name, no commas required.
Typical ANSI attributes include:

NOT NULL
Tells the column to reject NULL values or, when omitted, to accept them.
Any INSERT or UPDATE statement that attempts to place a NULL value
in a NOT NULL column will fail and roll back.

DEFAULT expression
Tells the column to use the value of expression when no value is supplied
by an INSERT or UPDATE statement. The expression must be
acceptable according to the datatype of the column; for example, no
alphabetic characters may be used in an INTEGER column. expression
may be a string or numeric literal, but you may also define a user-defined
function or system function. SQL allows these system functions in a
DEFAULT expression: NULL, USER, CURRENT_USER,
SESSION_USER, SYSTEM_USER, CURRENT_PATH,
CURRENT_DATE, CURRENT_TIME, LOCALTIME,
CURRENT_TIMESTAMP, LOCALTIMESTAMP, ARRAY, or

ARRAY[].

COLLATE collation_name
Defines a specific collation, or sort order, for the column to which it is
assigned. The name of the collation is platform-dependent. If you do not
define a collation, the columns of the table default to the collation of the
character set used for the column.

REFERENCES ARE [NOT] CHECKED [ON DELETE {RESTRICT | SET
NULL}]

Indicates whether references are to be checked on a REF column defined
with a scope clause. The optional ON DELETE clause tells whether any
values in records referenced by a deleted record should set to NULL, or
whether the operation should be restricted.

CONSTRAINT constraint_name [constraint_type [constraint]]
Assigns a constraint and, optionally a constraint name, to the specific
column. Constraint types are discussed in Chapter 2. Because the
constraint is associated with a specific column, the constraint declaration
assumes that the column is the only one in the constraint. After the table
is created, the constraint is treated as a table-level constraint.

column_name [WITH OPTIONS options]
Defines a column with special options, such as a scope clause, a default
clause, a column-level constraint, or a COLLATE clause. For many
implementations, the WITH OPTIONS clause is restricted to the creation
of typed tables.

column_name [datatype] GENERATED ALWAYS AS (expression)
Denotes a virtual column with the expression being a function of other
columns and functions. Per the standard the datatype is optional.

column_name GENERATED {ALWAYS | BY DEFAULT} AS IDENTITY
[(sequence_options)]

Denotes an auto-incrementing integer. ALWAYS means the value
generated can not be changed by standard UPDATE/INSERT. BY
DEFAULT means the column is updatable but defaults to next identity
value when not specified..

sequence_options : [START WITH integer][, INCREMENT BY integer]

column_name_start datatype GENERATED {ALWAYS | BY DEFAULT}
AS [ROW START]

Only applies to temporal tables introduced in SQL:2011. It is the column
that defines the start time the row is valid for.

column_name_end datatype GENERATED {ALWAYS | BY DEFAULT}
AS [ROW START]

Only applies to temporal tables introduced in SQL:2011. It is the column
that defines the end time the row is valid for.

LIKE table_name
Creates a new table with the same column definitions as the pre-existing
table named table_name.

REF IS column_name {SYSTEM GENERATED | USER GENERATED |
DERIVED}

Defines the object identifier column (OID) for a typed table. An OID is
necessary for the root table of a table hierarchy. Based on the option
specified, the REF might be automatically generated by the system
(SYSTEM GENERATED), manually provided by the user when inserting
the row (USER GENERATED), or derived from another REF
(DERIVED). Requires the inclusion of a REFERENCES column attribute
for column_name.

CONSTRAINT constraint_type [constraint_name][, . . .]
Assigns one or more constraints to the table. This option is noticeably
different from the CONSTRAINT option at the column level, because
column-level constraints are assumed to apply only to the column with
which they are associated. Table-level constraints, however, give the
option of associating multiple columns with a constraint. For example, in
a sales table you might wish to declare a unique constraint on a
concatenated key of store_id, order_id, and order_date. This can only
be done using a table-level constraint. Refer to Chapter 2 for a full
discussion of constraints.

PERIOD FOR SYSTEM_TIME (column_name_start, column_name_end)
Denotes that this is a temporal table and which columns to use to denote
the start period and end period that this row is valid for.

OF type_name [UNDER super_table] [table_definition]
Declares that the table is based upon a pre-existing user-defined type. In
this situation, the table may have only a single column for each attribute
of the structured type, plus an additional column, as defined in the REF IS
clause. This clause is incompatible with the LIKE table_name clause.

[UNDER super_table] [table_definition]
Declares the direct supertable of the currently declared table within the
same schema, if any exists. The table being created is thus a direct
subtable of the supertable. You may optionally provide a complete
table_definition of the new subtable, complete with columns, constraints,
etc.

ON COMMIT {PRESERVE ROWS | DELETE ROWS}
ON COMMIT PRESERVE ROWS preserves data rows in a temporary
table on issuance of a COMMIT statement. ON COMMIT DELETE
ROWS deletes all data rows in a temporary table on COMMIT.

ADD [COLUMN] column_name datatype attributes
Adds a column to a table, along with the appropriate datatype and
attributes.

ADD [COLUMN] column_name [datatype] GENERATED ALWAYS AS
(expression)[,...]]

Adds a virtual column.

ADD [COLUMN] column_name {GENERATED ALWAYS | BY
DEFAULT} AS IDENTITY ..]

Adds an identity column..

ALTER [COLUMN] column_name SET DEFAULT default_value
Adds a default value to the column if none exists, and resets the default
value if a previous one exists.

ALTER [COLUMN] column_name DROP DEFAULT
Completely removes a default from the named column.

ALTER [COLUMN] column_name ADD SCOPE table_name
Adds a scope to the named column. A scope is a reference to a user-
defined datatype.

ALTER [COLUMN] column_name DROP SCOPE {RESTRICT |
CASCADE}

Drops a scope from the named column. The RESTRICT and CASCADE
clauses are defined at the end of this list.

DROP COLUMN column_name {RESTRICT | CASCADE}
Drops the named column from the table.

ADD table_constraint
Adds a table constraint of the specified name and characteristics to the
table.

DROP CONSTRAINT constraint_name {RESTRICT | CASCADE}
Drops a previously defined constraint from the table.

RESTRICT
Tells the DBMS to abort the command if it finds any other objects in the
database that depend on the object.

CASCADE
Tells the DBMS to drop any other objects that depend on the object.

Rules at a Glance
The typical CREATE TABLE statement is very simple, although the major
database vendors have added a dizzying array of variations. Generally, it
names the table and any columns and attributes of those columns contained in
the table. Many table definitions also include a nullability constraint for most
of the columns, as in this example:

CREATE TABLE housing_construction
 (project_number INT NOT NULL,
 project_date DATE NOT NULL,
 project_name VARCHAR(50) NOT NULL,
 construction_color VARCHAR(20) ,
 construction_height DECIMAL(4,1),
 construction_length DECIMAL(4,1),
 construction_width DECIMAL(4,1),
 construction_volume INT);

This example adds a table with a primary key:

CREATE TABLE category
(cat_name varchar(40) PRIMARY KEY);

This example adds a foreign key to the example table:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) ,
 subcategory VARCHAR(40) ,
 pub_date DATE NOT NULL,
 purchase_date DATE NOT NULL,
 CONSTRAINT fk_categories FOREIGN KEY (category)
 REFERENCES category(cat_name));

The foreign key on the categories column relates it to the cat_name table in
the category table. All the vendors discussed in this book support this syntax.

NOTE
Examples for creating a table with each constraint type are shown in Chapter 2.

Similarly, the foreign key could be added after the fact as a multicolumn key
including both the category and subcategory columns:

ALTER TABLE favorite_books ADD CONSTRAINT fk_categories
 FOREIGN KEY (category, subcategory)
 REFERENCES category(cat_name, subcat_name);

Now, we can use an ALTER TABLE statement to drop the constraint
altogether:

ALTER TABLE favorite_books DROP CONSTRAINT fk_categories RESTRICT;

Listed below are more full examples from pubs, the sample database that
ships with early releases of Microsoft SQL Server:

-- For a Microsoft SQL Server database
CREATE TABLE jobs
 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,
 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',
 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),
 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))
-- For a MySQL database
CREATE TABLE employee
 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,
 fname VARCHAR(20) NOT NULL,

 minit CHAR(1) NULL,
 lname VARCHAR(30) NOT NULL,
 job_id SMALLINT NOT NULL DEFAULT 1
 REFERENCES jobs(job_id),
 job_lvl TINYINT DEFAULT 10,
 pub_id CHAR(4) NOT NULL DEFAULT ('9952')
 REFERENCES publishers(pub_id),
 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());
CREATE TABLE publishers
 (pub_id char(4) NOT NULL
 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED
 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]'),
 pub_name varchar(40) NULL,
 city varchar(20) NULL,
 state char(2) NULL,
 country varchar(30) NULL DEFAULT('USA'))

Once you get into the vendor extensions, the CREATE TABLE statement is no
longer portable between database platforms. The following is an example of
an Oracle CREATE TABLE statement with many storage properties that are
not part of the SQL standard:

CREATE TABLE classical_music_cds
 (music_id INT,
 composition VARCHAR2(50),
 composer VARCHAR2(50),
 performer VARCHAR2(50),
 performance_date DATE DEFAULT SYSDATE,
 duration INT,
 cd_name VARCHAR2(100),
CONSTRAINT pk_class_cds PRIMARY KEY (music_id)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K),
CONSTRAINT uq_class_cds UNIQUE
 (composition, performer, performance_date)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K))
TABLESPACE tabledata_ts;

When issuing a CREATE or ALTER statement, we recommend that it be the
only statement in your transaction. For example, do not attempt to create a
table and select from it in the same batch. Instead, first create the table, then
verify the operation, issue a COMMIT, and finally perform any subsequent
operations against the table.

table_name is the name of a new or existing table. New table names should
start with an alphabetic character and in general should contain no other

special symbol besides the underscore (_). Rules for the length of the name
and its exact composition differ according to the vendor.

When creating or altering a table, the list of column definitions is always
encapsulated within parentheses, and the individual column definitions are
separated by commas.

Programming Tips and Gotchas
The user issuing the CREATE TABLE command must have the appropriate
permissions. Similarly, any user wishing to ALTER or DROP a table should
own the table or have adequate permissions to alter or drop the table. Since
the SQL standard does not specify the privileges required, expect some
variation between vendors.

You can encapsulate a CREATE TABLE or ALTER TABLE statement within a
transaction, using a COMMIT or ROLLBACK statement to explicitly
conclude the transaction. We recommend that the CREATE/ALTER TABLE
statement be the only command in the transaction.

Extensions to the SQL standard can give you a great deal of control over the
way that the records of a table are physically written to the disk subsystem.
SQL Server uses a technique called clustered indexes to control the way that
records are written to disk. Oracle offers a technique that is functionally
similar, called an index-organized table (IOT), although it is not a
requirement for good performance. PostgreSQL offers a CLUSTER ON
similar to SQL Server clustered indexes, that allows sorting a table by an
index. However in PostgreSQL this sort is not maintained and requires a
CLUSTER <sometab> to physically re-sort a clustered table of CLUSTER
which physically re-sorts all clustered tables.

Some databases will lock a table that is being modified by an ALTER TABLE
statement, possibly blocking one or many other users attempting to access the
table. It is therefore wise to issue this command only on tables that are not in
use on a production database or during low-usage times.

Furthermore, some databases will lock the target and source tables when
using the CREATE TABLE . . . LIKE statement. Use caution.

MySQL
The MySQL syntax for CREATE TABLE creates a permanent or local
temporary table within the database in which the command is issued:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name
{(column_name datatype attributes
 constraint_type constraint_name[, ...])
 [constraint_type [constraint_name][, ...]]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON {DELETE | UPDATE} {RESTRICT | CASCADE | SET NULL | NO ACTION}]
LIKE other_table_name}
 {[TABLESPACE tablespace_name STORAGE DISK] |
 [AUTO_INCREMENT = int] |
 [AVG_ROW_LENGTH = int] |
 [COMPRESSION [=] {'ZLIB' | 'LZ4' | 'NONE'}] |
 [CONNECTION = 'connection_string'] |
 [[DEFAULT] CHARACTER SET charset_name] |
 [CHECKSUM = {0 | 1}] |
 [[DEFAULT] COLLATE collation_name] |
 [COMMENT = "string"] |
 [DATA DIRECTORY = "path_to_directory"] |
 [DELAY_KEY_WRITE = {0 | 1}] |
 [ENGINE = engine_name] |
 [ENGINE_ATTRIBUTE = "string"] |
 [INDEX DIRECTORY = "path_to_directory"] |
 [INSERT_METHOD = {NO | FIRST | LAST}] |
 [KEY_BLOCK_SIZE = int] |
 [MAX_ROWS = int] |
 [MIN_ROWS = int] |
 [PACK_KEYS = {0 | 1}] |
 [PASSWORD = "string"] |
 [ROW_FORMAT= { DEFAULT | DYNAMIC | FIXED | COMPRESSED | REDUNDANT | COMPACT
}]
 [...]
 [SECONDARY_ENGINE_ATTRIBUTE = "string"]
}
[partition_definition[, ...]]
[[IGNORE | REPLACE] select_statement]

When the ENGINE clause is specified in ALTER TABLE, MySQL always
rebuilds the table even when the current ENGINE is the same as the one
specified. This feature is often used to defrag a table. The MySQL syntax for
ALTER TABLE allows modifications to a table or even renaming of a table:

ALTER [IGNORE] TABLE table_name
{
[ENGINE = engine_name] |

[ADD [COLUMN] (column_name datatype attributes)
 [FIRST | AFTER column_name][, ...]]
| [ADD [CONSTRAINT] [UNIQUE | FOREIGN KEY | FULLTEXT | PRIMARY KEY | SPATIAL]
 [INDEX | KEY] [index_name](index_col_name[, ...])]
| [ALTER [COLUMN] column_name {SET DEFAULT literal | DROP DEFAULT}]
| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name column_definition
 [FIRST | AFTER column_name]
| [DROP [COLUMN | FOREIGN KEY | PRIMARY KEY | INDEX | KEY] [object_name]]
| [{ENABLE | DISABLE} KEYS]
| [RENAME [TO] new_tbl_name]
| [ORDER BY column_name[, ...]]
| [CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]]
| [{DISCARD | IMPORT} TABLESPACE]
| [{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE | REBUILD |
REPAIR}
 PARTITION]
| [REORGANIZE PARTITION prtn_name INTO (partition_definition)]
| [REMOVE PARTITIONING]
| [table_options] }[, ...]

Keywords and parameters are as follows:

TEMPORARY
Creates a table that persists for the duration of the connection under
which it was created. Once that connection closes, the temporary table is
automatically deleted.

IF NOT EXISTS
Prevents an error if the table already exists. A schema specification is not
required.

constraint_type
Allows standard ANSI SQL constraints to be assigned at the column or
table level. MySQL fully supports the following constraints: primary key,
unique, and default (must be a constant). MySQL provides syntax support
for check, foreign key, and references constraints, but they are not
functional except on InnoDB tables. MySQL also has six specialty
constraints:

FULLTEXT ({INDEX | KEY}]
Creates a fulltext-search index to facilitate rapid searches of large blocks

of text. Note that only MyISAM tables support FULLTEXT indexes, and
that they can only be made on CHAR, VARCHAR, and TEXT columns.

SPATIAL ({INDEX | KEY}]
Creates an R-Tree spatial index or key on the column. Only MyISAM and
INNoDB engines support R-Tree SPATIAL indexes. If spatial index is
specified for a storage engine that doesn’t support an R-Tree index, then a
btree index is created instead.

AUTO_INCREMENT
Sets up an integer column so that it automatically increases its value by 1
(starting with a value of 1). MySQL only allows one
AUTO_INCREMENT column per table. When all records are deleted
(using DELETE or TRUNCATE), the values may start over. This option
is allowed on MyISAM, MEMORY, ARCHIVE, and InnoDB tables.

[UNIQUE] INDEX
When an INDEX characteristic is assigned to a column, a name for the
index can also be included. (A MySQL synonym for INDEX is KEY.) If
a name is not assigned to the primary key, MySQL assigns a name of
column_name plus a numeric suffix (_2, _3, . . .) to make it unique. All
table types except ISAM support indexes on NULL columns, or on
BLOB or TEXT columns. Note that UNIQUE without INDEX is valid
syntax on MySQL.

COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}
Specifies a data storage format for individual columns in NDB tables.
FIXED specifies fixed-width storage; DYNAMIC specifies variable-
width storage; and DEFAULT specifies that either FIXED or DYNAMIC
be used, according to the datatype for the column. This clause is not
available in versions before 5.1.19-ndb.

STORAGE {DISK | MEMORY}
Specifies whether to store the column in an NDB table on the DISK or in
MEMORY (the default). Not available in versions before 5.1.19-ndb.

ENGINE
Describes how the data should be physically stored. You can convert
tables between types using the ALTER TABLE statement. MyISAM and
many other storage engines do not offer recoverability with the COMMIT
or ROLLBACK statements. In absence of recoverability there will often
be loss of data if the database crashes. The default engine is InnoDB for
MySQL 8 and MariaDB 10. The following is the list of
MySQL/MariaDB engine types. The offerings of engines vary a bit by
installs and additional ones are made available by third-parties. To find
out which storage engine your database supports, use the SHOW
ENGINES command on the MySQL command line. Common engines
you will find installed are:

ARIA
Is generally only available on MariaDB installations and is a safer
alternative to MyISAM. It provides a bit TRANSACTIONAL that
dictates if it should provide crash-safety or not. It currently doesn’t
support transactions, so commands such as BEGIN TRANSACTION /
COMMIT have no effect.

ARCHIVE
Utilizes the ARCHIVE storage engine, which is good for storing large
amounts of data without indexes in a small footprint. The data is
compressed. When creating an ARCHIVE table, the metadata filename is
the table’s name with an .FRM extension. Data tables have the table name
as the filename and extensions of .ARZ. A file with an .ARN extension
may appear occasionally during optimizations.

BLACKHOLE
The BLACKHOLE storage engine acts as a “black hole” that accepts data
but throws it away and does not store it. Retrievals always return an
empty result. It is useful for testing the validity of commands.

CSV
Stores rows in comma-separated values (CSV) format. When creating a
CSV table, the filename is the table name with an .FRM extension. Data
is stored in a file with the table name as the filename and an extension of
.CSV. The data is stored in plain text, so be careful with security on these
tables.

CONNECTION
A MariaDB storage engine introduced in MariaDB 10.0, but installed
separately. It allows for connecting to many kinds of remote data sources
and loosely follows the SQL Management of External Data (SQL/MED)
standard.

EXAMPLE
EXAMPLE is a stub engine that does nothing. No data can be stored in an
EXAMPLE table.

FEDERATED
Lets you access data from a remote MySQL database without using
replication or cluster technology. No data is stored in the local tables.

INNODB
Creates a transaction-safe table with row-level locking. It also provides an
independently managed tablespace, checkpoints, non-locking reads, and
fast reads from large datafiles for heightened concurrency and
performance. Requires the innodb_data_file_path startup parameter.

InnoDB supports all ANSI constraints, including CHECK and FOREIGN
KEY. Well-known developer websites like Slashdot.org
(http://Slashdot.org) run on MySQL with InnoDB because of its excellent
performance. InnoDB tables and indexes are stored together in their own
tablespace (unlike other table formats, such as MyISAM, which store
tables in separate files).

MEMORY
Creates a memory-resident table that uses hashed indexes. Synonymous
with HEAP. Since they are memory-resident, the indexes are not
transaction-safe; any data they contain will be lost if the server crashes.
MEMORY tables can have up to 32 indexes per table and 16 columns per
index, for a maximum index length of 500 bytes. Think of MEMORY
tables as an alternative to temporary tables; like temporary tables, they are
shared by all clients. If you use MEMORY tables, always specify the
MAX_ROWS option so that you do not use all available memory.
MEMORY tables do not support BLOB or TEXT columns, ORDER BY
clauses, or the variable-length record format, and there are many
additional rules concerning MEMORY tables. Be sure to read the vendor
documentation before implementing MEMORY tables.

MERGE
Collects several identically structured MyISAM tables for use as one
table, providing some of the performance benefits of a partitioned table.
SELECT, DELETE, and UPDATE statements operate against the
collection of tables as if they were one table. Think of a merge table as
the collection, but not as the table(s) containing the data. Dropping a
merge table only removes it from the collection; it does not erase the table
or its data from the database. Specify a MERGE table by using the
statement UNION=(table1, table2, . . .). The two keywords MERGE and
MRG_MyISAM are synonyms.

MyISAM

Stores data in .MYD files and indexes in .MYI files. MyISAM is based
on ISAM code, with several extensions. MyISAM is a binary storage
structure that is more portable than ISAM. MyISAM supports
AUTO_INCREMENT columns, compressed tables (with the myisampack
utility), and large table sizes. Under MyISAM, BLOB and TEXT
columns can be indexes, and up to 64 indexes are allowed per table, with
up to 16 columns per index and a maximum key length of 1,000 bytes.

NDBCLUSTER
Creates clustered, fault-tolerant, memory-based tables called NDBs. This
is MySQL’s special high-availability table format. Refer to the vendor
documentation for additional information on implementing NDBs.
NDBCluster engine is only available in MySQL NDBCluster version of
MySQL.

TABLESPACE...STORAGE DISK
Assigns the table to a Cluster Disk Data tablespace when using NDB
Cluster tables. The tablespace named in the clause must already have
been created using CREATE TABLESPACE.

AUTO_INCREMENT = int
Sets the auto-increment value (int) for the table (MyISAM only).

AVG_ROW_LENGTH = int
Sets an approximate average row length for tables with variable-size
records. MySQL uses AVG_ROW_LENGTH * MAX_ROWS to
determine how big a table may be.

[DEFAULT] CHARACTER SET
Specifies the CHARACTER SET (or CHARSET) for the table, or for
specific columns.

CHECKSUM = {0 | 1}
When set to 1, maintains a checksum for all rows in the table (MyISAM
only). This makes processing slower but leaves your data less prone to
corruption.

[DEFAULT] COLLATE
Specifies the collation set for the table, or for specific columns.

COMMENT = “string”
Allows a comment of up to 60 characters.

CONNECTION = ‘connection_string’
The connection string required to connect to a FEDERATED table.
Otherwise, this is a noise word. Older versions of MySQL used the
COMMENT option for the connection string.

DATA DIRECTORY = “path_to_directory”
Overrides the default path and directory that MySQL should use for
MyISAM table storage.

DELAY_KEY_WRITE = {0 | 1}
When set to 1, delays key table updates until the table is closed
(MyISAM only).

INDEX DIRECTORY = “path_to_directory”
Overrides the default path and directory that MySQL should use for
MyISAM index storage.

INSERT_METHOD = {NO | FIRST | LAST}
Required for MERGE tables. If no setting is specified for a MERGE table

or the value is NO, INSERTs are disallowed. FIRST inserts all records to
the first table in the collection, while LAST inserts them all into the last
table of the collection

KEY_BLOCK_SIZE = int
Allows the storage engine to change the value used for the index key
block size. 0 tells MySQL to use the default.

MAX_ROWS = int
Sets a maximum number of rows to store in the table. The default
maximum is 4 GB of space.

MIN_ROWS = int
Sets a minimum number of rows to store in the table.

PACK_KEYS = {0 | 1}
When set to 1, compacts the indexes of the table, making reads faster but
updates slower (MyISAM and ISAM only). By default, only strings are
packed. When set to 1, both strings and numeric values are packed.

PASSWORD = “string”
Encrypts the .FRM file (but not the table itself) with a password, “string”.

ROW_FORMAT = { DEFAULT | DYNAMIC | FIXED | COMPRESSED |
REDUNDANT | COMPACT }

Determines how future rows should be stored in a MySQL table.
DEFAULT varies by storage engine. DYNAMIC allows the rows to be of
variable sizes (i.e., using VARCHAR), while FIXED expects fixed-size
columns (i.e., CHAR, INT, etc.). REDUNDANT is used only on InnoDB
tables and maximizes the value of an index, even if some redundant data
is stored. COMPRESSED tables are readonly and compresses the data by
about 20% compared to the REDUNDANT format. COMPRESSED is

also allowed only on InnoDB.

partition_definition
Specifies a partition or subpartition for a MySQL table. Refer to the
section below for more details on partitioning and subpartitioning
MySQL tables. Note that all of the definition options are usable for
subpartitions, with the exception of the VALUE subclause.

[IGNORE | REPLACE] select_statement
Creates a table with columns based upon the elements listed in the
SELECT statement. The new table will be populated with the results of
the SELECT statement if the statement returns a result set.

ALTER [IGNORE]
The altered table will include all duplicate records unless the IGNORE
keyword is used. If it is not used, the statement will fail if a duplicate row
is encountered and if the table has a unique index or primary key.

{ADD | COLUMN} [FIRST | AFTER column_name]
Adds or moves a column, index, or key to the table. When adding or
moving columns, the new column appears as the last column in the table
unless it is placed AFTER another named column.

ALTER COLUMN
Allows the definition or resetting of a default value for a column. If you
reset a default, MySQL will assign a new default value to the column.

CHANGE
Renames a column, or changes its datatype.

MODIFY

Changes a column’s datatype or attributes such as NOT NULL. Existing
data in the column is automatically converted to the new datatype.

DROP
Drops the column, key, index, or tablespace. A dropped column is also
removed from any indexes in which it participated. When dropping a
primary key, MySQL will drop the first unique key if no primary key is
present.

{ENABLE | DISABLE} KEYS
Enables or disables all non-unique keys on a MyISAM table
simultaneously. This can be useful for bulk loads where you want to
temporarily disable constraints until after the load is finished. It also
speeds performance by finishing all index block flushing at the end of the
operation.

RENAME [TO] new_tbl_name
Renames a table.

ORDER BY column_name[, . . .]
Orders the rows in the specified order.

CONVERT TO CHARACTER SET charset_name [COLLATE
collation_name]

Converts the table to a character set (and optionally a collation) that you
specify.

DISCARD | IMPORT TABLESPACE
Deletes the current .IDB file (using DISCARD), or makes a tablespace
available after restoring from a backup (using IMPORT).

{ADD | DROP | COALESCE int | ANALYZE | CHECK | OPTIMIZE |
REBUILD | REPAIR} PARTITION

Adds or drops a partition on a table. Other options perform preventative
maintenance behaviors analogous to those available for MySQL tables
(i.e., CHECK TABLE and REPAIR TABLE). Only COALESCE
PARTITION has a unique behavior, in which MySQL reduces the
number of KEY or HASH partitions to the number specified by int.

REORGANIZE PARTITION prtn_name INTO (partition_definition)
Alters the definition of an existing partition according to the new
partition_definition specified.

REMOVE PARTITIONING
Removes a table’s partitioning without otherwise affecting the table or its
data.

For example:

CREATE TABLE test_example
 (column_a INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY(column_a),
 INDEX(column_b))
 TYPE=HEAP
IGNORE
SELECT column_b,column_c FROM samples;

This creates a heap table with three columns: column_a, column_b, and
column_c. Later, we could change this table to the MyISAM type:

ALTER TABLE example TYPE=MyISAM;

Three operating-system files are created when MySQL creates a MyISAM
table: a table definition file with the extension .FRM, a datafile with the
extension .MYD, and an index file with the extension .MYI. The .FRM
datafile is used for all other tables.

The following example creates two base MyISAM tables and then creates a
MERGE table from them:

CREATE TABLE message1
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE message2
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20));
CREATE TABLE all_messages
 (message_id INT AUTO_INCREMENT PRIMARY KEY,
 message_text CHAR(20))
 TYPE=MERGE UNION=(message1, message2) INSERT_METHOD=LAST;

Partitioned tables

MySQL allows partitioning of tables for greater control of I/O and space
management. The syntax for the partitioning clause is:

PARTITION BY function
[[SUB]PARTITION prtn_name
 [VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'comment_text']
 [DATA DIRECTORY [=] 'data_path']
 [INDEX DIRECTORY [=] 'index_path']
 [MAX_ROWS [=] max_rows]
 [MIN_ROWS [=] min_rows]
 [TABLESPACE [=] (tablespace_name)]
 [NODEGROUP [=] node_group_id]
 [(subprtn[, subprtn] ...)][, ...]]

where (values not described below are redundant to the list of table options
and are presented in the earlier listing):

function
Specifies the function used to create the partition. Allowable values
include: HASH(expr), where expr is a hash of one or more columns in an
allowable SQL format (including function calls that return any single
integer value); LINEAR KEY(column_list), where MySQL’s hashing
function more evenly distributes data; RANGE(expr), where expr is one
or more columns in an allowable SQL format with the VALUES clause
telling exactly which partition holds which values; and LIST(expr), where
expr is one or more columns in an allowable SQL format with the
VALUES clause telling exactly which partition holds which values.

[SUB]PARTITION prtn_name

Names the partition or subpartition.

VALUES {LESS THAN {(expr) | MAXVALUE} | IN (value_list)}
Specifies which values are assigned to which partitions.

NODEGROUP [=] node_group_id
Makes the partition or subpartition act as part of a node group identified
by node_group_id. Only applicable for NDB tables.

Note that partitions and subpartitions must all use the same storage engine.

The following example creates three tables, each with a different partitioning
function:

CREATE TABLE employee (emp_id INT, emp_fname VARCHAR(30), emp_lname VARCHAR(50))
 PARTITION BY HASH(emp_id);
CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code
CHAR(5))
 PARTITION BY KEY(location_code)
 PARTITIONS 4;
CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code
CHAR(5))
 PARTITION BY LINEAR KEY(location_code)
 PARTITIONS 5;

The following two examples show somewhat more elaborate examples of
partitioning using RANGE partitioning and LIST partitioning:

CREATE TABLE employee (emp_id INT,
 emp_fname VARCHAR(30),
 emp_lname VARCHAR(50),
 hire_date DATE)
PARTITION BY RANGE(hire_date)
 (PARTITION prtn1 VALUES LESS THAN ('01-JAN-2004'),
 PARTITION prtn2 VALUES LESS THAN ('01-JAN-2006'),
 PARTITION prtn3 VALUES LESS THAN ('01-JAN-2008'),
 PARTITION prtn4 VALUES LESS THAN MAXVALUE);
CREATE TABLE inventory (prod_id INT, prod_name VARCHAR(30), location_code
CHAR(5))
PARTITION BY LIST(prod_id)
 (PARTITION prtn0 VALUES IN (10, 50, 90, 130, 170, 210),
 PARTITION prtn1 VALUES IN (20, 60, 100, 140, 180, 220),
 PARTITION prtn2 VALUES IN (30, 70, 110, 150, 190, 230),
 PARTITION prtn3 VALUES IN (40, 80, 120, 160, 200, 240));

The following example renames both a table and a column:

ALTER TABLE employee RENAME AS emp;
ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;

Since MySQL allows the creation of indexes on a portion of a column (for
example, on the first 10 characters of a column), you can also build short
indexes on very large columns.

MySQL can redefine the datatype of an existing column, but to avoid losing
any data, the values contained in the column must be compatible with the
new datatype. For example, a date column could be redefined to a character
datatype, but a character datatype could not be redefined to an integer. Here’s
an example:

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

MySQL offers some additional flexibility in the ALTER TABLE statement by
allowing users to issue multiple ADD, ALTER, DROP, and CHANGE clauses
in a comma-delimited list in a single ALTER TABLE statement. However, be
aware that the CHANGE column_name and DROP INDEX clauses are
MySQL extensions not found in SQL. MySQL supports the clause MODIFY
column_name to mimic the same feature found in Oracle.

Oracle
The Oracle syntax for CREATE TABLE creates a relational table either by
declaring the structure or by referencing an existing table. You can modify a
table after it is created using the ALTER TABLE statement. Oracle also allows
the creation of a relational table that uses user-defined types for column
definitions, an object table that is explicitly defined to hold a specific UDT
(usually a VARRAY or NESTED TABLE type), or an XMLType table. New in
Oracle 21c is the BLOCKCHAIN table type for use in building block-chain
applications. We will not be covering this type. For more details about
BLOCKCHAIN refer to https://docs.oracle.com/en/database/oracle/oracle-
database/21/nfcon/details-oracle-blockchain-table-282449857.html.

The standard ANSI-style CREATE TABLE statement is supported, but Oracle

https://docs.oracle.com/en/database/oracle/oracle-database/21/nfcon/details-oracle-blockchain-table-282449857.html

has added many sophisticated extensions to the command that would take a
whole book to cover and are rarely used. For example, Oracle allows
significant control over the storage and performance parameters of a table. In
both the CREATE TABLE and ALTER TABLE statements, you’ll see a great
deal of nesting and reusable clauses. To make this somewhat easier to read,
we have broken Oracle’s CREATE TABLE statement into three distinct
variations (relational table, object table, XML table, Blockchain table) so that
you can more easily follow the syntax.

The CREATE TABLE syntax for a standard relational table, which has no
object or XML properties, is as follows:

CREATE [GLOBAL | PRIVATE] [TEMPORARY]
[SHARDED | DUPLICATED] TABLE table_name
[({column | virtual_column | attribute}
 [SORT] [DEFAULT expression]
[PERIOD FOR valid_time_column [(start_time_column, end_time_column)]]
[{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[table_constraint_clause]
{ [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING] |
 [CLUSTER (column[, ...])] |
 {[ORGANIZATION
 {HEAP [physical_attributes_clause][TABLESPACE
 tablespace_name] [storage_clause]
 [COMPRESS | NOCOMPRESS] [[NO]LOGGING] |
 INDEX [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause]
 [PCTTHRESHOLD int] [COMPRESS [int] | NOCOMPRESS]
 [MAPPING TABLE | NOMAPPING][...] [[NO]LOGGING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [storage_clause] [[NO]LOGGING]}] |
 EXTERNAL ([TYPE driver_type]) DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [REJECT LIMIT {int | UNLIMITED}]} }
[{ENABLE | DISABLE} ROW MOVEMENT]
[[NO]CACHE] [[NO]MONITORING] [[NO]ROWDEPENDENCIES] [[NO]FLASHBACK ARCHIVE]
[PARALLEL int | NOPARALLEL] [NOSORT] [[NO]LOGGING]]
[COMPRESS [int] | NOCOMPRESS]
[{ENABLE | DISABLE} [[NO]VALIDATE]
 {UNIQUE (column[, ...]) | PRIMARY KEY | CONSTRAINT constraint_name}]
 [USING INDEX {index_name | CREATE_INDEX_statement}] [EXCEPTIONS INTO]
 [CASCADE] [{KEEP | DROP} INDEX]] |

[partition_clause]
[AS subquery]

The relational table syntax contains a large number of optional clauses.
However, the table definition must contain, at a minimum, either column
names and datatypes specifications or the AS subquery clause.

The Oracle syntax for an object table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
AS object_type [[NOT] SUBSTITUTABLE AT ALL LEVELS]
[({column | attribute} [DEFAULT expression] [{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
[OIDINDEX [index_name] ([physical_attributes_clause] [storage_clause])]
[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

Oracle allows you to create, and later alter, XMLType tables. XMLType
tables may have regular columns or virtual columns. The Oracle syntax for an
XMLType table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name
OF XMLTYPE
[({column | attribute} [DEFAULT expression] [{column_constraint |
 inline_ref_constraint}] |
 {table_constraint_clause | table_ref_constraint} |
 {GROUP log_group (column [NO LOG][, ...]) [ALWAYS] | DATA
 (constraints[, ...]) COLUMNS})]
[XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] |
 [{SECUREFILE | BASICFILE}]
 [{CLOB | BINARY XML} [lob_segname] [lob_params]}] [xml_schema_spec]
 [ON COMMIT {DELETE | PRESERVE} ROWS]
 [OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]
 [OIDINDEX index_name ([physical_attributes_clause]
[storage_clause])]
 [physical_attributes_clause] [TABLESPACE tablespace_name]
[storage_clause]

The Oracle syntax for ALTER TABLE changes the table or column properties,
storage characteristics, LOB or VARRAY properties, partitioning
characteristics, and integrity constraints associated with a table and/or its

columns. The statement can also do other things, like move an existing table
into a different tablespace, free recuperated space, compact the table segment,
and adjust the “high-water mark.”

The ANSI SQL standard uses the ALTER keyword to modify existing
elements of a table, while Oracle uses MODIFY for the same purpose. Since
they are essentially the same thing, please consider the behavior of otherwise
identical clauses (for example, ANSI’s ALTER TABLE . . . ALTER COLUMN
and Oracle’s ALTER TABLE . . . MODIFY COLUMN) to be functionally
equivalent.

Oracle’s ALTER TABLE syntax is:

ALTER TABLE table_name
-- Alter table characteristics
 [physical_attributes_clause] [storage_clause]
 [{READ ONLY | READ WRITE}]
 [[NO]LOGGING] [[NO]CACHE] [[NO]MONITORING] [[NO]COMPRESS]
 [[NO]FLASHBACK ARCHIVE] [SHRINK SPACE [COMPACT] [CASCADE]]
 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]
 [[NO]MINIMIZE RECORDS_PER_BLOCK]
 [PARALLEL int | NOPARALLEL]
 [{ENABLE | DISABLE} ROW MOVEMENT]
 [{ADD | DROP} SUPPLEMENTAL LOG
 {GROUP log_group [(column_name [NO LOG][, ...]) [ALWAYS]] |
 DATA ({ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY}[, ...]) COLUMNS}]
 [ALLOCATE EXTENT
 [([SIZE int [K | M | G | T]] [DATAFILE 'filename'] [INSTANCE int])]
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]
 [ORGANIZATION INDEX ...
 [COALESCE] [MAPPING TABLE | NOMAPPING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS]
 [{ ADD OVERFLOW [TABLESPACE tablespace_name] [[NO]LOGGING]
 [physical_attributes_clause] } |
 OVERFLOW { [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE
 'filename'] [INSTANCE int]) |
 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]]] }]]]
 [RENAME TO new_table_name]
-- Alter column characteristics
 [ADD (column_name datatype attributes[, ...])]
 [DROP { {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT int] |
 {COLUMN column_name | (column_name[, ...])} [CHECKPOINT int]
 [{CASCADE CONSTRAINTS | INVALIDATE}] }]
 [SET UNUSED {COLUMN column_name | (column_name[, ...])}
 [{CASCADE CONSTRAINTS | INVALIDATE}]]
 [MODIFY { (column_name datatype attributes[, ...]) |
 COLUMN column_name [NOT] SUBSTITUTABLE AT ALL LEVELS [FORCE] }]
 [RENAME COLUMN old_column_name TO new_column_name]

 [MODIFY {NESTED TABLE | VARRAY} collection_item [RETURN AS {LOCATOR |
 VALUE}]]
-- Alter constraint characteristics
 [ADD CONSTRAINT constraint_name table_constrain_clause]
 [MODIFY CONSTRAINT constraint_name constraint_state_clause]
 [RENAME CONSTRAINT old_constraint_name TO new_constraint_name]
 [DROP { { PRIMARY KEY | UNIQUE (column[, ...]) } [CASCADE]
 [{KEEP | DROP} INDEX] |
 CONSTRAINT constraint_name [CASCADE] }]
-- Alter table partition characteristics
 [alter partition clauses]
-- Alter external table characteristics
 DEFAULT DIRECTORY directory_name
 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}]
 LOCATION ([directory_name:]'location_spec'[, ...])
 [ADD (column_name ...)][DROP column_name ...][MODIFY (column_name
...)]
 [PARALLEL int | NOPARALLEL]
 [REJECT LIMIT {int | UNLIMITED}]
 [PROJECT COLUMN {ALL | REFERENCED}]
-- Move table clauses
 [MOVE [ONLINE] [physical_attributes_clause]
 [TABLESPACE tablespace_name] [[NO]LOGGING] [PCTTHRESHOLD int]
 [COMPRESS int | NOCOMPRESS] [MAPPING TABLE | NOMAPPING]
 [[INCLUDING column] OVERFLOW
 [physical_attributes_clause] [TABLESPACE tablespace_name]
 [[NO]LOGGING]]
 [LOB ...] [VARRAY ...] [PARALLEL int | NOPARALLEL]]
-- Enable/disable attributes and constraints
 [{ {ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, ...]) |
 PRIMARY KEY | CONSTRAINT constraint_name}
 [USING INDEX {index_name | CREATE_INDEX_statement |
 [TABLESPACE tablespace_name] [physical_attributes_clause]
 [storage_clause]
 [NOSORT] [[NO]LOGGING] [ONLINE] [COMPUTE STATISTICS]
 [COMPRESS | NOCOMPRESS] [REVERSE]
 [{LOCAL | GLOBAL} partition_clause]
 [EXCEPTIONS INTO table_name] [CASCADE] [{KEEP | DROP} INDEX]]} |
 [{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}] }]

The parameters are as follows:

virtual_column
Allows the creation or alteration of a virtual column (i.e., a column whose
value is derived from a calculation rather than directly from a physical
storage location). For example, a virtual column income might be derived
by summing the salary, bonus, and commission columns.

PERIOD FOR valid_time_column [(start_time_column, end_time_column)
]

Support for temporal history useful for flashback reporting.

column_constraint
Specifies a column constraint using the syntax described later.

GROUP log_group (column [NO LOG][, . . .]) [ALWAYS] | DATA
(constraints[, . . .]) COLUMNS

Specifies a log group rather than a single logfile for the table.

ON COMMIT {DELETE | PRESERVE} ROWS
Declares whether a declared temporary table should keep the data in the
table active for the entire session (PRESERVE) or only for the duration
of the transaction in which the temporary table is created (DELETE).

table_constraint_clause
Specifies a table constraint using the syntax described later.

physical_attributes_clause
Specifies the physical attributes of the table using the syntax described
later.

TABLESPACE tablespace_name
Specifies the name of the tablespace where the table you are creating will
be stored. If omitted, the default tablespace for the schema owner will be
used. See below for specifics. See the Oracle Concepts manual to learn
about tablespaces and their use.

storage_clause
Specifies physical storage characteristics of the table using the syntax

described later.

[NO]LOGGING
Specifies whether redo log records will be written during object creation
(LOGGING) or not (NOLOGGING). LOGGING is the default.
NOLOGGING can speed the creation of database objects. However, in
case of database failure under the NOLOGGING option, the operation
cannot be recovered by applying logfiles, and the object must be
recreated. The LOGGING clause replaces the older RECOVERABLE
clause, which is deprecated.

CLUSTER(column[, . . .])
Declares that the table is part of a clustered index. The column list should
correspond, one to one, with the columns in a previously declared
clustered index. Because it uses the clustered index’s space allocation, the
CLUSTER clause is compatible with the physical_attributes_clause,
storage_clause, or TABLESPACE clause. Tables containing LOBs are
incompatible with the CLUSTER clause.

ORGANIZATION HEAP
Declares how the data of the table should be recorded to disk. HEAP, the
default for an Oracle table, declares that no order should be associated
with the storage of rows of data (i.e., the physical order in which records
are written to disk) for this table. The ORGANIZATION HEAP clause
allows several optional clauses, described in detail elsewhere in this list,
that control storage, logging, and compression for the table.

ORGANIZATION INDEX
Declares how the data of the table should be recorded to disk. INDEX
declares that the records of the table should be physically written to disk
in the sort order defined by the primary key of the table. Oracle calls this
an index-organized table. A primary key is required. Note that the

physical_attributes_clause, the TABLESPACE clause, and the
storage_clause (all described in greater detail elsewhere in this section)
and the [NO]LOGGING keyword may all be associated with the new
INDEX segment as you create it. In addition, the following subclauses
may also be associated with an ORGANIZATION INDEX clause:

PCTTHRESHOLD int
Declares the percentage (int) of space in each index block to be preserved
for data. On a record-by-record basis, data that cannot fit in this space
will be placed in the overflow segment.

INCLUDING column
Declares the point at which a record will split between index and
overflow portions. All columns that follow the specified column will be
stored in the overflow segment. The column cannot be a primary key
column.

MAPPING TABLE | NOMAPPING
Tells the database to create a mapping of local to physical ROWIDs. This
mapping is required to create a bitmap index on an IOT. Mappings are
also partitioned identically if the table is partitioned. NOMAPPING tells
the database not to create the ROWID map.

[INCLUDING column] OVERFLOW
Declares that a record that exceeds the PCTTHRESHOLD value be
placed in a segment described in this clause. The
physical_attributes_clause, the TABLESPACE clause, the storage_clause
(all described elsewhere in the list in greater detail) and the
[NO]LOGGING keyword may all be associated with a specific
OVERFLOW segment when you create it. The optional INCLUDING
column clause defines a column at which to divide an IOT row into index
and overflow portions. Primary key columns are always stored in the

index. However, all non-primary key columns that follow column are
stored in the overflow data segment.

ORGANIZATION EXTERNAL
Declares how the data of the table should be recorded to disk.
EXTERNAL declares that the table stores its data outside of the database
and is usually read-only (its metadata is stored in the database, but its data
is stored outside of the database). There are some restrictions on external
tables: they cannot be temporary; they cannot have constraints; they can
only have column, datatype, and attribute column-descriptors; and LOB
and LONG datatypes are disallowed. No other ORGANIZATION clauses
are allowed with EXTERNAL. The following subclauses may be used
with the ORGANIZATION EXTERNAL clause:

TYPE driver_type
Defines the access driver API for the external table. The default is
ORACLE_LOADER.

DEFAULT DIRECTORY directory_name
Defines the default directory on the filesystem where the external table
resides.

ACCESS PARAMETERS {USING CLOB subquery | (opaque_format)}
Assigns and passes specific parameters to the access driver. Oracle does
not interpret this information. USING CLOB subquery tells Oracle to
derive the parameters and their values from a subquery that returns a
single row with a single column of the datatype CLOB. The subquery
cannot contain an ORDER BY, UNION, INTERSECT, or
MINUS/EXCEPT clause. The opaque_format clause allows you to list
parameters and their values, as described in the ORACLE LOADER
section of the “Oracle9i Database Utilities” guide.

LOCATION (directory_name:'location_spec'[, . . .])
Defines one or more external data sources, usually as files. Oracle does
not interpret this information.

REJECT LIMIT {int | UNLIMITED}
Defines the number of conversion errors (int) that are allowed during the
query to the external data source before Oracle aborts the query and
returns an error. UNLIMITED tells Oracle to continue with the query no
matter how many errors are encountered. The default is 0.

{ENABLE | DISABLE} ROW MOVEMENT
Specifies that a row may be moved to a different partition or subpartition
if required due to an update of the key (ENABLE), or not (DISABLE).
The DISABLE keyword also specifies that Oracle return an error if an
update to a key would require a move.

[NO]CACHE
Buffers a table for rapid reads (CACHE), or turns off this behavior
(NOCACHE). Index-organized tables offer CACHE behavior.

[NO]MONITORING
Specifies whether modification statistics can be collected for this table
(MONITORING) or not (NOMONITORING). NOMONITORING is the
default.

[NO]ROWDEPENDENCIES
Specifies whether a table will use row-level dependency tracking, a
feature that applies a system change number (SCN) greater than or equal
to the time of the last transaction affecting the row. The SCN adds 6 extra
bytes of space to each record. Row-level dependency tracking is most
useful in replicated environments with parallel data propagation.

NOROWDEPENDENCIES is the default.

[NO]FLASHBACK ARCHIVE
Enables or disables historical tracking for the table, if a flashback archive
for the table already exists. NO FLASHBACK ARCHIVE is the default.

PARALLEL [int] | NOPARALLEL
The PARALLEL clause allows for the parallel creation of the table by
distinct CPUs to speed the operation. It also enables parallelism for
queries and other data-manipulation operations against the table after its
creation. An optional integer value may be supplied to define the exact
number of parallel threads used to create the table in parallel, as well as
the number of parallel threads allowed to service the table in the future.
(Oracle calculates the best number of threads to use in a given parallel
operation, so the int argument is optional.) NOPARALLEL, the default,
creates the table serially and disallows future parallel queries and data-
manipulation operations.

COMPRESS [int] | NOCOMPRESS
Specifies whether the table should be compressed or not. On index-
organized tables, only the key is compressed; on heap-organized tables,
the entire table is compressed. This can greatly reduce the amount of
space consumed by the table. NOCOMPRESS is the default. In index-
organized tables, you can specify the number of prefix columns (int) to
compress. The default value for int is the number of keys in the primary
key minus one. You need not specify an int value for other clauses, such
as ORGANIZATION. When you omit the int value, Oracle will apply
compression to the entire table.

{ENABLE | DISABLE} [[NO]VALIDATE] {UNIQUE (column[, . . .]) |
PRIMARY KEY | CONSTRAINT constraint_name}

Declares whether the named key or constraint applies to all of the data in

the new table or not. ENABLE specifies that the key or constraint applies
to all new data in the table while DISABLE specifies that the key or
constraint is disabled for the new table, with the following options:

[NO]VALIDATE
VALIDATE verifies that all existing data in the table complies with the
key or constraint. When NOVALIDATE is specified with ENABLE,
Oracle does not verify that existing data in the table complies with the
key or constraint, but ensures that new data added to the table does
comply with the constraint.

UNIQUE (column[, . . .]) | PRIMARY KEY | CONSTRAINT
constraint_name

Declares the unique constraint, primary key, or constraint that is enabled
or disabled.

USING INDEX index_name | CREATE_INDEX_statement
Declares the name (index_name) of a pre-existing index (and its
characteristics) used to enforce the key or constraint, or creates a new
index (CREATE_INDEX_statement). If neither clause is declared, Oracle
creates a new index.

EXCEPTIONS INTO table_name
Specifies the name of a table into which Oracle places information about
rows violating the constraint. Run the utlexpt1.sql script before using this
keyword to explicitly create this table.

CASCADE
Cascades the disablement/enablement to any integrity constraints that
depend on the constraint named in the clause. Usable only with the
DISABLE clause.

{KEEP | DROP} INDEX
Lets you keep (KEEP) or drop (DROP) an index used to enforce a unique
or primary key. You can drop the key only when disabling it.

partition_clause
Declares partitioning and subpartitioning of a table. Partitioning syntax
can be quite complex; refer to the material later in this section under
“Oracle partitioned and subpartitioned tables” for the full syntax and
examples.

AS subquery
Declares a subquery that inserts rows into the table upon creation. The
column names and datatypes used in the subquery can act as substitutes
for column name and attribute declarations for the table.

AS object_type
Declares that the table is based on a pre-existing object type.

[NOT] SUBSTITUTABLE AT ALL LEVELS
Declares whether row objects corresponding to subtypes can be inserted
into the type table or not. When this clause is omitted, the default is
SUBSTITUTABLE AT ALL LEVELS.

inline_ref_constraint and table_ref_constraint
Declares a reference constraint used by an object-type table or XMLType
table. These clauses are described in greater detail later in this section.

OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}
Declares whether the object ID (OID) of the object-type table is
SYSTEM GENERATED or based on the PRIMARY KEY. When
omitted, the default is SYSTEM GENERATED.

OIDINDEX [index_name]
Declares an index, and possibly a name for the index, if the OID is
system-generated. You may optionally apply a physical_attributes_clause
and a storage_clause to the OIDINDEX. If the OID is based on the
primary key, this clause is unnecessary.

OF XMLTYPE
Declares that the table is based on Oracle’s XMLTYPE datatype.

XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] | [
{SECUREFILE | BASICFILE}] [{CLOB | BINARY XML} [lob_segname]
[lob_params]]

Declares how the underlying data of the XMLTYPE is stored: either in
LOB, object-relational, or binary XML format. OBJECT RELATIONAL
stores the data in object-relational columns and allows indexing for better
performance. This subclause requires an xml_schema_spec and a schema
that has been pre-registered using the DBMS_XMLSCHEMA package.
CLOB specifies that the XMLTYPE data will be stored in a LOB column
for faster retrieval. You may optionally specify the LOB segment name
and/or the LOB storage parameters, but you cannot specify LOB details
and XMLSchema specifications in the same statement. BINARY XML
stores the data in a compact binary XML format, with any LOB
parameters applied to the underlying BLOB column.

xml_schema_spec
Allows you to specify the URL of one or more registered XML schemas,
and an XML element name. The element name is required, but the URL
is optional. Multiple schemas are allowed only when using the BINARY
XML storage format. You may further specify ALLOW ANYSCHEMA
to store any schema-based document in the XMLType column, ALLOW
NONSCHEMA to store non-schema-based documents, or DISALLOW
NONSCHEMA to prevent storage of non-schema-based documents.

READ ONLY | READ WRITE
Places the table in read-only mode, which disallows all DML operations
including SELECT...FOR UPDATE. Regular SELECT statements are
allowed, as are operations on indexes associated with a read-only table.
READ WRITE re-enables normal DML operations.

ADD . . .
Adds a new column, virtual column, constraint, overflow segment, or
supplemental log group to an existing table. You may also alter an
XMLType table by adding (or removing) one or more XMLSchemas.

MODIFY . . .
Changes an existing column, constraint, or supplemental log group on an
existing table.

DROP . . .
Drops an existing column, constraint, or supplemental log group from an
existing table. You can explicitly drop columns marked as unused from a
table with DROP UNUSED COLUMNS; however, Oracle will also drop
all unused columns when any other column is dropped. The
INVALIDATE keyword causes any object that depends on the dropped
object, such as a view or stored procedure, to become invalid and
unusable until the dependent object is recompiled or reused. The
COLUMNS CONTINUE clause is used only when a DROP COLUMN
statement failed with an error and you wish to continue where it left off.

RENAME . . .
Renames an existing table, column, or constraint on an existing table.

SET UNUSED . . .
Declares a column or columns to be unused. Those columns are no longer

accessible from SELECT statements, though they still count toward the
maximum number of columns allowed per table (1,000). SET UNUSED
is the fastest way to render a column unusable within a table, but it is not
the best way. Only use SET UNUSED as a shortcut until you can actually
use ALTER TABLE . . . DROP to drop the column.

COALESCE
Merges the contents of index blocks used to maintain the index-organized
table so that the blocks can be reused. COALESCE is similar to
SHRINK, though COALESCE compacts the segments less densely than
SHRINK and does not release unused space.

ALLOCATE EXTENT
Explicitly allocates a new extent for the table using the SIZE,
DATAFILE, and INSTANCE parameters. You may mix and match any
of these parameters. The size of the extent may be specified in bytes (no
suffix), kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]]
Deallocates unused space at the end of the table, LOB segment, partition,
or subpartition. The deallocated space is then usable by other objects in
the database. The KEEP keyword indicates how much space you want to
have left over after deallocation is complete.

SHRINK SPACE [COMPACT] [CASCADE]
Shrinks the table, index-organized table, index, partition, subpartition,
materialized view, or materialized log view, though only segments in
tablespaces with automatic segment management may be shrunk.
Shrinking a segment moves rows in the table, so make sure ENABLE
ROW MOVEMENT is also used in the ALTER TABLE . . . SHRINK
statement. Oracle compacts the segment, releases the emptied space, and
adjusts the high-water mark unless the optional keywords COMPACT

and/or CASCADE are applied. The COMPACT keyword only
defragments the segment space and compacts the table row for
subsequent release; it does not readjust the high-water mark or empty the
space immediately. The CASCADE keyword performs the same
shrinking operation (with some restrictions and exceptions) on all
dependent objects of the table, including secondary indexes on index-
organized tables. Used only with ALTER TABLE.

UPGRADE [NOT] INCLUDING DATA
Converts the metadata of object tables and relational tables with object
columns to the latest version for each referenced type. The INCLUDING
DATA clause will either convert the data to the latest type format
(INCLUDING DATA) or leave it unchanged (NOT INCLUDING
DATA).

MOVE . . .
Moves the tablespace, index-organized table, partition, or subpartition to
a new location on the filesystem.

[NO]MINIMIZE RECORDS_PER_BLOCK
Tells Oracle to restrict or leave open the number of records allowed per
block. The MINIMIZE keyword tells Oracle to calculate the maximum
number of records per block and set the limit at that number. (Best to do
this when a representative amount of data is already in the table.) This
clause is incompatible with nested tables and index-organized tables.
NOMINIMIZE is the default.

PROJECT COLUMN {REFERENCE | ALL}
Determines how the driver for the external data source validates the rows
of the external table in subsequent queries. REFERENCE processes only
those columns in the select item list. ALL processes the values in all
columns, even those not in the select item list, and validates rows with

full and valid column entries. Under ALL, rows are rejected when errors
occur, even on columns that are not selected. ALL returns consistent
results, while REFERENCE returns varying numbers of rows depending
on the columns referenced.

{ENABLE | DISABLE} {TABLE LOCK | ALL TRIGGERS}
Enables or disables table-level locks and all triggers on the table,
respectively. ENABLE TABLE LOCK is required if you wish to change
the structure against an existing table, but it is not required when
changing or reading the data of the table.

A global temporary table is available to all user sessions, but the data stored
within a global temporary table is visible only to the session that inserted it.
The ON COMMIT clause, which is allowed only when creating temporary
tables, tells Oracle either to truncate the table after each commit against the
table (DELETE ROWS) or to truncate the table when the session terminates
(PRESERVE ROWS). For example:

CREATE GLOBAL TEMPORARY TABLE shipping_schedule
 (ship_date DATE,
 receipt_date DATE,
 received_by VARCHAR2(30),
 amt NUMBER)
ON COMMIT PRESERVE ROWS;

This CREATE TABLE statement creates a global temporary table,
shipping_schedule, which retains inserted rows across multiple transactions.

The Oracle physical_attributes_clause
The physical_attributes_clause (shown in the following code block) defines
storage characteristics for an entire local table, or, if the table is partitioned,
for a specific partition (discussed later). To declare the physical attributes of a
new table or change the attributes on an existing table, simply declare the
new values:

-- physical_attributes_clause
[{PCTFREE int | PCTUSED int | INITRANS int |

 storage_clause}]

where:

PCTFREE int
Defines the percentage of free space reserved for each data block in the
table. For example, a value of 10 reserves 10% of the data space for new
rows to be inserted.

PCTUSED int
Defines the minimum percentage of space allowed in a block before it can
receive new rows. For example, a value of 90 means new rows are
inserted in the data block when the space used falls below 90%. The sum
of PCTFREE and PCTUSED cannot exceed 100.

INITRANS int
Rarely tinkered with; defines the allocation of from 1 to 255 initial
transactions to a data block.

NOTE
In versions prior to 11g the MAXTRANS parameter was used to define the maximum
allowed number of concurrent transactions on a data block, but this parameter has now
been deprecated. Oracle 11g automatically sets MAXTRANS to 255, silently overriding any
other value that you specify for this parameter (although existing objects retain their
established MAXTRANS settings).

The Oracle storage_clause and LOBs
The storage_clause controls a number of attributes governing the physical
storage of data:

-- storage_clause
STORAGE ([{INITIAL int [K | M | G | T]
 | NEXT int [K | M]
 | MINEXTENTS int
 | MAXEXTENTS {int | UNLIMITED}

 | PCTINCREASE int
 | FREELISTS int
 | FREELIST GROUPS int
 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}}] [...])

When delineating the storage clause attributes, enclose them in parentheses
and separate them with spaces—for example, (INITIAL 32M NEXTBM). The
attributes are as follows:

INITIAL int [K | M | G | T]
Sets the initial extent size of the table in bytes, kilobytes (K), megabytes
(M), gigabytes (G), or terabytes (T).

NEXT int [K | M]
Tells how much additional space to allocate after INITIAL is filled.

MINEXTENTS int
Tells Oracle to create a minimum number of extents. By default, only one
is created, but more can be created when the object is initialized.

MAXEXTENTS int | UNLIMITED
Tells Oracle the maximum number of extents allowed. This value may be
set to UNLIMITED. (Note that UNLIMITED should be used with
caution, since a table could grow until it consumes all free space on a
disk.)

PCTINCREASE int
Controls the growth rate of the object after the first growth. The initial
extent gets allocated as specified, the second extent is the size specified
by NEXT, the third extent is NEXT + (NEXT * PCTINCREASE), and so
on. When PCTINCREASE is set to 0, NEXT is always used. Otherwise,
each added extent of storage space is PCTINCREASE larger than the
previous extent.

FREELISTS int
Establishes the number of freelists for each group, defaulting to 1.

FREELIST GROUPS int
Sets the number of groups of freelists, defaulting to 1.

BUFFER_POOL {KEEP | RECYCLE | DEFAULT}
Specifies a default buffer pool or cache for any non-cluster table where all
object blocks are stored. Index-organized tables may have a separate
buffer pool for the index and overflow segments. Partitioned tables inherit
the buffer pool from the table definition unless they are specifically
assigned a separate buffer pool.

KEEP
Puts object blocks into the KEEP buffer pool; that is, directly into
memory. This enhances performance by reducing I/O operations on the
table. KEEP takes precedence over the NOCACHE clause.

RECYCLE
Puts object blocks into the RECYCLE buffer pool.

DEFAULT
Puts object blocks into the DEFAULT buffer pool. When this clause is
omitted, DEFAULT is the default buffer pool behavior.

For example, the table books_sales is defined on the sales tablespace as
consuming an initial 8 MB of space, to grow by no less than 8 MB when the
first extent is full. The table has no less than 1 and no more than 8 extents,
limiting its maximum size to 64 MB:

CREATE TABLE book_sales
 (qty NUMBER,
 period_end_date DATE,

 period_nbr NUMBER)
TABLESPACE sales
STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);

An example of a LOB table called large_objects with special handling for
text and image storage might look like this:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING);

The exact syntax used to define a LOB, CLOB, or NCLOB column is defined
by the lob_parameter_clause. LOBs can appear at many different levels
within an Oracle table. For instance, separate LOB definitions could exist in a
single table in a partition definition, in a subpartition definition, and at the top
table-level definition. The syntax of lob_parameter_clause follows:

{TABLESPACE tablespace_name] [{SECUREFILE | BASICFILE}]
 [{ENABLE | DISABLE} STORAGE IN ROW]
 [storage_clause] [CHUNK int] [PCTVERSION int]
 [RETENTION [{MAX | MIN int | AUTO | NONE}]]
 [{DEDUPLICATE | KEEP_DUPLICATES}]
 [{NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]}]
 [FREEPOOLS int]
[{CACHE | {NOCACHE | CACHE READS} [{LOGGING | NOLOGGING}]}]

In the lob_parameter_clause, each parameter is identical to those of the
wider CREATE TABLE LOB-object level. However, the following parameters
are unique to LOBs:

SECUREFILE | BASICFILE
Specifies use of either the high-performance LOB storage
(SECUREFILE) or the traditional LOB storage (BASICFILE, the
default). When using SECUREFILE, you get access to other new features
such as LOB compression, encryption, and deduplication.

{ENABLE | DISABLE} STORAGE IN ROW

Defines whether the LOB value is stored inline with the other columns of
the row and the LOB locator (ENABLE), when it is smaller than
approximately 4,000 bytes or less, or outside of the row (DISABLE).
This setting cannot be changed once it is set.

CHUNK int
Allocates int number of bytes for LOB manipulation. int should be a
multiple of the database block size; otherwise, Oracle will round up. int
should also be less than or equal to the value of NEXT, from the
storage_clause, or an error will be raised. When omitted, the default
chunk size is one block. This setting cannot be changed once it is set.

PCTVERSION int
Defines the maximum percentage (int) of the overall LOB storage
dedicated to maintaining old versions of the LOB. When omitted, the
default is 10%.

RETENTION [{MAX | MIN int | AUTO | NONE}]
Used in place of PCTVERSION on databases in automatic undo mode.
RETENTION tells Oracle to retain old versions of the LOB. When using
SECUREFILE, you may specify additional options. MAX tells Oracle to
allow the undo file to grow until the LOB segment has reached its
maximum size, as defined by the MAXSIZE value of the storage_clause.
MIN limits undo to int seconds if the database is in flashback mode.
AUTO, the default, maintains enough undo for consistent reads. NONE
specifies that the undo is not required.

DEDUPLICATE | KEEP_DUPLICATES
Specifies whether to keep duplicate LOB values within an entire LOB
segment (KEEP_DUPLICATES) or to eliminate duplicate copies
(DEDUPLICATE, the default). Only usable with SECUREFILE LOBs.

NOCOMPRESS | COMPRESS [{HIGH | MEDIUM}]
NOCOMPRESS, the default, disables server-side compression of LOBs
in the SECUREFILE format. Alternately, you may tell Oracle to
compress LOBs using either a MEDIUM (the default when a value is
omitted) or HIGH degree of compression (HIGH compression incurs
more overhead).

The following example shows our large_objects LOB table with added
parameters to control inline storage and retention of old LOBs:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOB (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING
 ENABLE STORAGE IN ROW
 RETENTION);

The earlier example added parameter values for STORAGE IN ROW and
RETENTION, but since we did not set one for CHUNK, that value is set to
the Oracle default for the LOB.

Oracle nested tables
Oracle allows the declaration of a NESTED TABLE, in which a table is
virtually stored within a column of another table. The STORE AS clause
enables a proxy name for the table within a table, but the nested table must be
created initially as a user-defined datatype. This capability is valuable for
sparse arrays of values, but we don’t recommend it for day-to-day tasks. This
example creates a table called proposal_types along with a nested table
called props_nt, which is stored as props_nt_table:

CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;
CREATE TABLE proposal_types
 (proposal_category VARCHAR2(50),
 proposals PROPS_NT)
NESTED TABLE props_nt STORE AS props_nt_table;

Oracle compressed tables
Starting at Oracle 9i Release 2, Oracle allows compression of both keys and
entire tables. (Oracle 9i Release 1 allowed only key compression.) Although
compression adds a tiny bit of overhead, it significantly reduces the amount
of disk space consumed by a table. This is especially useful for databases
pushing the envelope in terms of size. Key compression is handled in the
ORGANIZE INDEX clause, while table compression is handled in the
ORGANIZE HEAP clause.

Oracle partitioned and subpartitioned tables
Oracle allows tables to be partitioned and subpartitioned. You can also break
out LOBs onto their own partition(s). A partitioned table may be broken into
distinct parts, possibly placed on separate disk subsystems to improve I/O
performance (based on four strategies: range, hash, list, or a composite of the
first three), or on a system partition. Partitioning syntax is quite elaborate:

{ PARTITION BY RANGE (column[, ...])
 [INTERVAL (expression) [STORE IN (tablespace[, ...])]]
 (PARTITION [partition_name]
 VALUES LESS THAN ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY HASH (column[, ...])
 {(PARTITION [partition_name] [partitioning_storage_clause][, ...])
|
 PARTITIONS hash_partition_qty [STORE IN (tablespace[, ...])]
 [OVERFLOW STORE IN (tablespace[, ...])]} |
 PARTITION BY LIST (column[, ...]) (PARTITION [partition_name]
 VALUES ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY RANGE (column[, ...])
 {subpartition_by_list | subpartition_by_hash}
 (PARTITION [partition_name] VALUES LESS THAN
 ({MAXVALUE | value}[, ...])
 [table_partition_description]) |
 PARTITION BY SYSTEM [int] |
 PARTITION BY REFERENCE (constraint)
 [(PARTITION [partition_name] [table_partition_description][,
...])] }

The following example code shows the orders table partitioned by range:

CREATE TABLE orders

 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE));

This example creates three partitions on the orders table—one for the orders
taken before the year 2000 (pre_yr_2000), one for the orders taken before
the year 2004 (pre_yr_2004), and another for the orders taken after the year
2004 (post_yr_2004)—all based on the range of dates that appear in the
order_date column.

The INTERVAL clause further facilitates range partitioning on numeric or
datetime values by automatically creating new partitions when the current
range boundaries are exceeded. The interval expression defines a valid
number for the range boundary. Use the STORE IN subclause to tell Oracle
which tablespace(s) will store the interval partition data. You cannot use
interval partitioning on index-organized tables, with domain indexes, or at a
subpartition level.

The next example creates the orders table based on a hash value in the
cust_shp_id column:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY HASH (cust_shp_id)
 (PARTITION shp_id1 TABLESPACE tblspc01,
 PARTITION shp_id2 TABLESPACE tblspc02,
 PARTITION shp_id3 TABLESPACE tblspc03)
ENABLE ROW MOVEMENT;

The big difference in how the records are divided among partitions between

the hash partition example and the range partition example is that the range
partition code explicitly defines where each record goes, while the hash
partition example allows Oracle to decide (by applying a hash algorithm)
which partition to place the record in. (Note that we also enabled row
movement for the table).

In addition to breaking tables apart into partitions (for easier backup,
recovery, or performance reasons), you may further break them apart into
subpartitions. The subpartition_by_list clause syntax follows:

SUBPARTITION BY LIST (column)
[SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name
 [VALUES {DEFAULT | {val | NULL}[, ...]}]
 [partitioning_storage_clause]) |
 hash_subpartition_qty }]

As an example, we’ll recreate the orders table once again, this time using a
range-hash composite partition. In a range-hash composite partition, the
partitions are broken apart by range values, while the subpartitions are broken
apart by hashed values. List partitions and subpartitions are broken apart by a
short list of specific values. Because you must list out all the values by which
the table is partitioned, the partition value is best taken from a small list of
values. In this example, we’ve added a column (shp_region_id) that allows
four possible regions:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20))
PARTITION BY RANGE(order_date)
SUBPARTITION BY LIST(shp_region)
 SUBPARTITION TEMPLATE(
 (SUBPARTITION shp_region_north
 VALUES ('north','northeast','northwest'),
 SUBPARTITION shp_region_south
 VALUES ('south','southeast','southwest'),
 SUBPARTITION shp_region_central
 VALUES ('midwest'),
 SUBPARTITION shp_region_other
 VALUES ('alaska','hawaii','canada')

 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE))
ENABLE ROW MOVEMENT;

This code example sends the records of the table to one of three partitions
based on the order_date, and further partitions the records into one of four
subpartitions based on the region where the order is being shipped and on the
value of the shp_region column. By using the SUBPARTITION TEMPLATE
clause, you apply the same set of subpartitions to each partition. You can
manually override this behavior by specifying subpartitions for each
partition.

You may also subpartition using a hashing algorithm. The
subpartition_by_hash clause syntax follows:

SUBPARTITION BY HASH (column[, ...])
 {SUBPARTITIONS qty [STORE IN (tablespace_name[, ...])] |
 SUBPARTITION TEMPLATE
 { (SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL)
 [, ...])] [partitioning_storage_clause]) |
 hash_subpartition_qty))

The table_partition_description clause referenced in the partitioning syntax
is, in itself, very flexible and supports precise handling of LOB and VARRAY
data:

[segment_attr_clause] [[NO] COMPRESS [int]] [OVERFLOW segment_attr_clause]
[partition_level_subpartition_clause]
[{ LOB { (lob_item[, ...]) STORE AS lob_param_clause |
 (lob_item) STORE AS {lob_segname (log_param_clause) |
 log_segname | (log_param_clause)} } |
 VARRAY varray_item [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] STORE AS LOB { log_segname |
 [log_segname] (log_param_clause) } |
 [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |
 [NOT] SUBSTITUTABLE AT ALL LEVELS}] }]

The partition_level_subpartition_clause syntax follows:

{SUBPARTITIONS hash_subpartition_qty [STORE IN (tablespace_name[, ...])]

|
 SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}[, ...]]
 [partitioning_storage_clause] }

The partition_storage_clause, like the table-level storage_clause defined
earlier, defines how elements of a partition (or subpartition) are stored. The
syntax follows:

[[TABLESPACE tablespace_name] | [OVERFLOW TABLESPACE tablespace_name] |
 VARRAY varray_item STORE AS LOB log_segname |
 LOB (lob_item) STORE AS { (TABLESPACE tablespace_name) |
 Log_segname [(TABLESPACE tablespace_name)] }]

SYSTEM partitioning is simple because it does not require partitioning key
columns or range or list boundaries. Instead, SYSTEM partitions are
equipartitioned subordinate tables, like nested tables or domain index storage
tables, whose parent table is partitioned. If you leave off the int variable,
Oracle will create one partition called SYS_Pint. Otherwise, it will create int
number of partitions, up to a limit of 1,024K - 1. System partitioned tables
are similar to other partitioned or subpartitioned tables, but they do not
support the OVERFLOW clause within the table_partition_description
clause.

REFERENCE partitioning is allowable only when the table is created. It
enables equipartitioning of a table based on a referential-integrity constraint
found in an existing partitioned parent table. All maintenance on the
subordinate table with REFERENCE partitioning occurs automatically,
because operations on the parent partition automatically cascade to the
subordinate table.

In this final partitioning example, we’ll again recreate the orders table using
a composite range-hash partition, this time with LOB (actually, an NCLOB
column) and storage elements:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),
 order_desc NCLOB)
PARTITION BY RANGE(order_date)
SUBPARTITION BY HASH(cust_shp_id)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY') TABLESPACE tblspc01
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a01
 STORAGE (INITIAL 10M NEXT 20M))
 SUBPARTITIONS subpartn_a,
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY') TABLESPACE tblspc02
 LOB (order_desc) STORE AS (TABLESPACE tblspc_a02
 STORAGE (INITIAL 25M NEXT 50M))
 SUBPARTITIONS subpartn_b TABLESPACE tblspc_x07,
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE (SUBPARTITION subpartn_1,
 SUBPARTITION subpartn_2,
 SUBPARTITION subpartn_3
 SUBPARTITION subpartn_4))
ENABLE ROW MOVEMENT;

In this somewhat more complex example, we define the orders table with the
added NCLOB table called order_desc. In the pre_yr_2000 and
pre_yr_2004 partitions, we specify that all of the non-LOB data goes to
tablespaces tblspc01 and tblspc02, respectively. However, the NCLOB
values of the order_desc column will be stored in the tblespc_a01 and
tblspc_a02 partitions, respectively, with their own unique storage
characteristics. Note that the subpartition subpartn_b under the partition
pre_yr_2004 is also stored in its own tablespace, tblspc_x07. Finally, the
last partition (post_yr_2004) and its subpartitions are stored in the default
tablespace for the orders table, because no partition- or subpartition-level
TABLESPACE clause overrides the default.

Altering partitioned and subpartition tables

Anything about partitions and subpartitions that is explicitly set by the
CREATE TABLE statement may be altered after the table is created. Many of
the clauses shown here (for example, the SUBPARTITION TEMPLATE and
MAPPING TABLE clauses) are merely repetitions of clauses that were
described in the earlier section about creating partitioned tables;
consequently, descriptions of these clauses will not be repeated. Altering the
partitions and/or subpartitions of an Oracle table is governed by this syntax:

ALTER TABLE table_name

 [MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
 [physical_attributes_clause] [storage_clause] [PCTTHRESHOLD int]
 [{ADD OVERFLOW ... | OVERFLOW ...}] [[NO]COMPRESS]
 [{LOB (lob_name) | VARRAY varray_name} [(lob_parameter_clause)]]
 [COMPRESS int | NOCOMPRESS]]
 [SET SUBPARTITION TEMPLATE {hash_subpartn_quantity |
 (SUBPARTITION subpartn_name [partn_list] [storage_clause])}]
 [{ SET INTERVAL (expression) |
 SET SET STORE IN (tablespace[, ...]) }]
 [MODIFY PARTITION partn_name
 { [table_partition_description] |
 [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }
 [MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |
 list_subpartn_attributes}]
 [MOVE {PARTITION | SUBPARTITION} partn_name
 [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]
 [update_index_clause]]
 [ADD PARTITION [partn_name] [table_partition_description]
 [[NO]PARALLEL] [update_index_clause]]
 [COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]]
 [DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]
 [update_index_clause]]
 [RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name]
 [TRUNCATE {PARTITION | SUBPARTITION} partn_name
 [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]]
 [SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES}
 (value[, ...])
 [INTO (PARTITION [partn_name1]
 [table_partition_description],
 PARTITION [partn_name2]
 [table_partition_description])]
 [[NO]PARALLEL] [update_index_clause]]
 [MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2
 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]
 [update_index_clause]]
 [EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name
 [{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION]
 [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]]

where:

MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]
Modifies a wide variety of attributes for the current partition or a specific
partition of partn_name. Refer to the earlier section “Oracle partitioned

and subpartitioned tables” for all the details on partition attributes.

SET SUBPARTITION TEMPLATE { hash_subpartn_quantity |
(SUBPARTITION subpartn_name [partn_list] [storage_clause])}

Sets a new subpartition template for the table.

SET INTERVAL (expression | SET SET STORE IN (tablespace [, . . .])
Converts a range-partitioned table to an interval-partitioned table or,
using SET STORE IN, changes the tablespace storage of an existing
interval-partitioned table. You can change an interval-partitioned table
back to a range-partitioned table using the syntax SET INTERVAL ().

MODIFY PARTITION partn_name
Changes a wide variety of physical and storage characteristics, including
the storage properties of LOB and VARRAY columns, of a pre-existing
partition or subpartition called partn_name. Additional syntax may be
appended to the MODIFY PARTITION partn_name clause:

{ [table_partition_description] | [[REBUILD] UNUSABLE LOCAL INDEXES] |
 [ADD [subpartn specification]] |
 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
 { [{UPDATE | INVALIDATE} GLOBAL INDEXES] |
 UPDATE INDEXES [(index_name (
 {index_partn | index_subpartn}))[, ...]] }] |
 [{ADD | DROP} VALUES (partn_value[, ...])] |
 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSED ...}] }
where:

table_partition_description
Described in the earlier section “Oracle partitioned and subpartitioned
tables.” This clause may be used on any partitioned table.

[REBUILD] UNUSABLE LOCAL INDEXES
Marks the local index partition as UNUSABLE. Adding the optional
REBUILD keyword tells Oracle to rebuild the unusable local index

partition as part of the operation performed by the MODIFY
PARTITION statement. This clause may not be used with any other
subclause of the MODIFY PARTITION statement, nor may it be used on
tables with subpartitions. This clause may be used on any partitioned
table.

ADD [subpartn specification]
Adds a hash or list subpartition specification, as described in the earlier
section “Oracle partitioned and subpartitioned tables,” to an existing
range partition. This clause may be used to define range-hash or range-list
composite partitions only. Oracle populates the new subpartition with
rows from other subpartitions using either the hash function or the list
values you specify. We recommend the total number of subpartitions be
set to a power of 2 for optimal load balancing. You may add range-list
subpartitions only if the table does not already have a DEFAULT
subpartition. When adding range-list subpartitions, the list value clause is
required, but it cannot duplicate values found in any other subpartition of
the current partition. The only storage or physical attribute you may
couple with this clause for both range-hash and range-list subpartitions is
the TABLESPACE clause. Adding the clause DEPENDENT TABLES
(table_name (partn_specification[, . . .])[, . . .]) [{UPDATE |
INVALIDATE} [GLOBAL] INDEXES (index_name (index_partn)[, . . .
]))] instructs Oracle to cascade partition maintenance and alteration
operations on a table to any reference-partitioned child tables (and/or
indexes) that may exist.

COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]
Coalesces the subpartition of a range-hash composite partitioned table.
This clause tells Oracle to distribute the contents of the last hash
subpartition to one or more remaining subpartitions in the set, and then
drop the last hash subpartition. Oracle also drops local index subpartitions
corresponding to the subpartition you are coalescing. The
update_index_clause is described later in this list. Global indexes may be

updated or invalidated using the syntax {UPDATE | INVALIDATE}
GLOBAL INDEXES. In addition, local indexes, index partitions, or
index subpartitions may be updated using the syntax UPDATE INDEXES
(index_name ({index_partn | index_subpartn})).

{ADD | DROP} VALUES (partn_ value [, . . .])
Adds a new value (or values) or drops existing values on an existing list-
partitioned table, respectively. Local and global indexes are not affected
by this clause. Values cannot be added to or dropped from a DEFAULT
list partition.

MAPPING TABLE {ALLOCATE EXTENT . . . | DEALLOCATE
UNUSED . . . }

Defines a mapping table for a partitioned table that is an IOT. The
ALLOCATE EXTENT and DEALLOCATE UNUSED clauses were
described earlier, in the syntax description list for the CREATE TABLE
statement. This clause may be used on any type of partitioned table, as
long as the table is an index-organized table.

MODIFY SUBPARTITION subpartn_name { hash_subpartn_attributes |
list_sub partn_attributes }

Modifies a specific hash or list subpartition according to the subpartition
attributes described in the earlier section “Oracle partitioned and
subpartitioned tables.”

MOVE {PARTITION | SUBPARTITION} partn_name [MAPPING TABLE]
[table_partition_description] [[NO]PARALLEL] [update_index_clause]

Moves a specified partition (or subpartition) of partn_name to another
partition (or subpartition) described in the table_partition_description
clause. Moving a partition is I/O-intensive, so the optional PARALLEL
clause may be used to parallelize the operation. When it’s omitted,
NOPARALLEL is the default. In addition, you may optionally update or
invalidate the local and global index, as described in the

update_index_clause discussed later in this list.

ADD PARTITION [partn_name] [table_partition_description]
[[NO]PARALLEL] [update_index_clause]

Adds a new partition (or subpartition) of partn_name to the table. The
ADD PARTITION clause supports all aspects of creating a new partition
or subpartition, via the table_partition_description clause. Adding a
partition may be I/O-intensive, so the optional PARALLEL clause may
be used to parallelize the operation. When it’s omitted, NOPARALLEL is
the default. In addition, you may optionally update or invalidate local and
global indexes on the table using the update_index_clause.

update_index_clause
Controls the status assigned to indexes once the partitions and/or
subpartitions of a table are altered. By default, Oracle invalidates the
entire index(es) of a table, not just those portions of the index on the
partition and/or subpartition being altered. You may update or invalidate
global indexes on the table or update one or more specific index(es) on
the table, respectively, using this syntax:

[{UPDATE | INVALIDATE} GLOBAL INDEXES] |

UPDATE INDEXES [(index_name ({index_partn|index_subpartn}))[,
...]]

COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]
Takes the contents of the last partition of a set of hash partitions and
rehashes the contents to one or more of the other partitions in the set. The
last partition is then dropped. Obviously, this clause is only for use with
hash partitions. The update_index_clause may be applied to update or
invalidate the local and/or global indexes of the table being coalesced.

DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL] [

update_index_clause]
Drops an existing range or list partition or subpartition of partn_name
from the table. The data within the partition is also dropped. If you want
to keep the data, use the MERGE PARTITION clause. If you want to get
rid of a hash partition or subpartition, use the COALESCE PARTITION
clause. Tables with only a single partition are not affected by the ALTER
TABLE . . . DROP PARTITION statement; instead, use the DROP
TABLE statement.

RENAME {PARTITION | SUBPARTITION} old_partn_name TO
new_partn_name

Renames an existing partition or subpartition of old_partn_name to a new
name of new_partn_name.

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP |
REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]

Removes all of the rows of a partition or subpartition of partn_name. If
you truncate a composite partition, all the rows of the subpartition(s) are
also dropped. On IOTs, mapping table partitions and overflow partitions
are also truncated. LOB data and index segments, if the table has any
LOB columns, are also truncated. Finally, disable any existing referential
integrity constraints on the data, or else delete the rows from the table
first, then truncate the partition or subpartition. The optional DROP and
REUSE STORAGE subclauses define whether the space freed by the
truncated data is made available for other objects in the tablespace or
remains allocated to the original partition or sub-partition.

SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES} (
value [, . . .]) [INTO (PARTITION [partn_name1] [
table_partition_description]), (PARTITION [partn_name2] [
table_partition_description])] [[NO]PARALLEL] [update_index_clause]

Creates from the current partition (or subpartition) identified by
partn_name two new partitions (or subpartitions) called partn_name1 and

partn_name2. These new partitions may have their own complete
specification, as defined by the table_partition_description clause. When
such a specification is omitted, the new partitions inherit all physical
characteristics of the current partition. When splitting a DEFAULT
partition, all of the split values go to partn_name1, while all of the default
values go to partn_name2. For IOTs, Oracle splits any mapping table
partition in a manner corresponding to the split. Oracle also splits LOB
and OVERFLOW segments, but you may specify your own LOB and
OVERFLOW storage characteristics, as described in the earlier section on
LOBs.

{AT | VALUES} (value [, . . .])
Splits range partitions (using AT) or list partitions (using VALUES)
according to the value(s) you specify. The AT (value[, . . .]) clause
defines the new noninclusive upper range for the first of the two new
partitions. The new value should be less than the partition boundary of the
current partition, but greater than the partition boundary of the next
lowest partition (if one exists). The VALUES (value1[, . . .]) clause
defines the values to go into the first of the two new list partitions. The
first new list partition is built from value1, and the second is built from
the remaining partition values in the current partition of partn_name. The
value list must include values that already exist in the current partition,
but it cannot contain all of the values of the current partition.

INTO (PARTITION [partn_name1] [table_partition_description]),
(PARTITION [partn_name2] [table_partition_description])

Defines the two new partitions that result from the split. At a minimum,
the two PARTITION keywords, in parentheses, are required. Any
characteristics not explicitly declared for the new partitions are inherited
from the current partition of partn_name, including any subpartitioning.
There are a few restrictions to note. When subpartitioning range-hash
composite partitioned tables, only the TABLESPACE value is allowed
for the subpartitions. Subpartitioning is not allowed at all when splitting

range-list composite partitioned tables. Any indexes on heap-organized
tables are invalidated by default when the table is split. You must use the
update_index_clause to update their status.

MERGE {PARTITION | SUBPARTITION} partn_name1 , partn_name2
[INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL] [
update_index_clause]

Merges the contents of two or more partitions or subpartitions of a table
into a single new partition. Oracle then drops the two original partitions.
Merged range partitions must be adjacent and are then bound by the
higher boundary of the original two partitions when merged. Merged list
partitions need not be adjacent and result in a single new partition with a
union of the two sets of partition values. If one of the list partitions was
the DEFAULT partition, the new partition will be the DEFAULT.
Merged range-list composite partitions are allowed but may not have a
new subpartition template. Oracle creates a subpartition template from the
existing one(s) or, if none exist, creates a new DEFAULT subpartition.
Physical attributes not defined explicitly are inherited from the table-level
settings. By default, Oracle makes all local index partitions and global
indexes UNUSABLE unless you override this behavior using the
update_index_clause. (The exception to this rule is with IOTs, which,
being index-based, will remain USABLE throughout the merge
operation.) Merge operations are not allowed on hash-partitioned tables;
use the COALESCE PARTITION clause instead.

EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE
table_name [{INCLUDING | EXCLUDING} INDEXES] [{WITH |
WITHOUT} VALIDATION] [[NO]PARALLEL] [update_index_clause]
[EXCEPTIONS INTO table_name]

Exchanges the data and index segments of a nonpartitioned table with
those of a partitioned table, or the data and index segments of a
partitioned table of one type with those of a partitioned table of another
type. The structure of the tables in the exchange must be identical,
including the same primary key. All segment attributes (e.g., tablespaces,

logging, and statistics) of the current partitioned table, called partn_name,
and the table it is being exchanged with, called table_name, are
exchanged. Tables containing LOB columns will also exchange LOB data
and index segments. Additional syntax details that have not previously
been defined elsewhere in this list follow:

WITH TABLE table_name
Defines the table that will exchange segments with the current partition or
subpartition.

{INCLUDING | EXCLUDING} INDEXES
Exchanges local index partitions or subpartitions with the table index (on
nonpartitioned tables) or the local index (on hash-partitioned tables),
using the INCLUDING INDEXES clause. Alternately, marks all index
partitions and subpartitions as well as regular indexes and partitioned
indexes of the exchanged table with the UNUSABLE status, using the
EXLCUDING INDEXES clause.

{WITH | WITHOUT} VALIDATION
Returns errors when any rows in the current table fail to map into a
partition or subpartition of the exchanged table, using the WITH
VALIDATION clause. Otherwise, the WITHOUT VALIDATION clause
may be included to skip checking of row mapping between the tables.

EXCEPTIONS INTO table_name
Places the ROWIDs of all rows violating a UNIQUE constraint (in
DISABLE VALIDATE state) on the partitioned table. When this clause is
omitted, Oracle assumes there is a table in the current schema called
EXCEPTIONS. The EXCEPTIONS table is defined in the utlexcpt.sql
and utlexpt1.sql scripts that ship with Oracle. Refer to the Oracle
documentation if you need these scripts.

There are a couple of caveats to remember about altering a partitioned table.

First, altering a partition on a table that serves as the source for one or more
materialized views requires that the materialized views be refreshed. Second,
bitmap join indexes defined on the partitioned table being altered will be
marked UNUSABLE. Third, several restrictions apply if the partitions (or
subpartitions) are ever spread across tablespaces that use different block
sizes. Refer to the Oracle documentation when attempting these sorts of
alterations to a partitioned table.

In the next few examples, assume we are using the orders table, partitioned
as shown here:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER)
PARTITION BY RANGE(order_date)
 (PARTITION pre_yr_2000 VALUES LESS THAN
 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),
 PARTITION pre_yr_2004 VALUES LESS THAN
 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'
 PARTITION post_yr_2004 VALUES LESS THAN
 MAXVALUE)) ;

The following statement will mark all of the local index partitions as
UNUSABLE in the orders table for the post_yr_2004 partition:

ALTER TABLE orders MODIFY PARTITION post_yr_2004
 UNUSABLE LOCAL INDEXES;

However, say we’ve decided to now split the orders table partition
post_yr_2004 into two new partitions, pre_yr_2008 and post_yr_2008.
Values that are now less than MAXVALUE will be stored in the
post_yr_2008 partition, while values less than ‘01-JAN-2008’ will be stored
in pre_yr_2008:

ALTER TABLE orders SPLIT PARTITION post_yr_2004
 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))
 INTO (PARTITION pre_yr_2008, PARTITION post_yr_2008);

Assuming that the orders table contained a LOB or a VARRAY column, we
could further refine the alteration by including additional details for handling
these columns, while also updating the global indexes as the operation
completes:

ALTER TABLE orders SPLIT PARTITION post_yr_2004
 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))
 INTO
 (PARTITION pre_yr_2008
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1),
 PARTITION post_yr_2008)
 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1))
 UPDATE GLOBAL INDEXES;

Now, assuming the orders table has been grown at the upper end, let’s merge
together the partitions at the lower end:

ALTER TABLE orders
 MERGE PARTITIONS pre_yr_2000, pre_yr_2004
 INTO PARTITION yrs_2004_and_earlier;

After a few more years have passed, we might want to get rid of the oldest
partition, or at least give it a better name:

ALTER TABLE orders DROP PARTITION yrs_2004_and_earlier;
ALTER TABLE orders RENAME PARTITION yrs_2004_and_earlier TO pre_yr_2004;

Finally, let’s truncate a table partition, delete all of its data, and return the
empty space for use by other objects in the tablespace:

ALTER TABLE orders
 TRUNCATE PARTITION pre_yr_2004
 DROP STORAGE;

As these examples illustrate, anything related to partitioning and
subpartitioning that can be created with the Oracle CREATE TABLE
statement can later be changed, augmented, or cut down using the Oracle
ALTER TABLE statement.

Organized tables: heaps, IOTs, and external tables
Oracle offers powerful means of controlling the physical storage behavior of

tables.

The most useful aspect of the ORGANIZATION HEAP clause is that you can
now compress an entire table within Oracle. This is extremely useful for
reducing disk storage costs in database environments with multiterabyte
tables. The following example creates the orders table in a compressed and
logged heap, along with a primary key constraint and storage details:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 COMPRESS LOGGING
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;

To define the same table using an index-organized table based on the
order_date column, we would use this syntax:

CREATE TABLE orders
 (order_number NUMBER,
 order_date DATE,
 cust_nbr NUMBER,
 price NUMBER,
 qty NUMBER,
 cust_shp_id NUMBER,
 shp_region VARCHAR2(20),
 order_desc NCLOB,
CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))
ORGANIZATION HEAP
 INCLUDING order_date
PCTTHRESHOLD 2
STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
OVERFLOW STORAGE
 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)
ENABLE ROW MOVEMENT;

Finally, we’ll create an external table that stores our customer shipping
information, called cust_shipping_external. The code shown in bold is the
opaque_format_spec:

CREATE TABLE cust_shipping_external
 (external_cust_nbr NUMBER(6),
 cust_shp_id NUMBER,
 shipping_company VARCHAR2(25))
ORGANIZATION EXTERNAL
 (TYPE oracle_loader
 DEFAULT DIRECTORY dataloader
 ACCESS PARAMETERS
 (RECORDS DELIMITED BY newline
 BADFILE 'upload_shipping.bad'
 DISCARDFILE 'upload_shipping.dis'
 LOGFILE 'upload_shipping.log'
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
 (client_id INTEGER EXTERNAL(6),
 shp_id CHAR(20),
 shipper CHAR(25)))
 LOCATION ('upload_shipping.ctl'))
REJECT LIMIT UNLIMITED;

In this example, the external table type is ORACLE_LOADER and the default
directory is DATALOADER. This example illustrates the fact that you define
the metadata of the table within Oracle and then describe how that metadata
references a data source outside of the Oracle database server itself.

Oracle XMLType and object-type tables
When an Oracle XMLType table is created, Oracle automatically stores the
data in a CLOB column, unless you create an XML schema-based table. (For
details on Oracle’s XML support, see Oracle’s XMLDB Developer’s Guide.)
The following code example first creates an XMLType table, distributors,
with the implicit CLOB data storage, then creates a second such table,
suppliers, with a more sophisticated XML-schema definition:

CREATE TABLE distributors OF XMLTYPE;
CREATE TABLE suppliers OF XMLTYPE
XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
ELEMENT "vendors";

A key advantage of tables based on XML schemas is that you can create B-

tree indexes on them. In the following example, we create an index on
suppliercity:

CREATE INDEX suppliercity-index
ON suppliers
(S."XMLDATA"."ADDRESS"."CITY");

You may similarly create tables using a mix of standard and XMLTYPE
columns. In this case, the XMLTYPE column may store its data as a CLOB, or
it may store its data in an object-relational column of a structure determined
by your specification. For example, we’ll recreate the distributors table (this
time with some added storage specifications) and the suppliers table with
both standard and XMLTYPE columns:

CREATE TABLE distributors
 (distributor_id NUMBER,
 distributor_spec XMLTYPE)
XMLTYPE distributor_spec
STORE AS CLOB
 (TABLESPACE tblspc_dist
 STORAGE (INITIAL 10M NEXT 5M)
 CHUNK 4000
 NOCACHE
 LOGGING);
CREATE TABLE suppliers
 (supplier_id NUMBER,
 supplier_spec XMLTYPE)
XMLTYPE supplier_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"
 ELEMENT "vendors"
OBJECT IDENTIFIER IS SYSTEM GENERATED
OIDINDEX vendor_ndx TABLESPACE tblspc_xml_vendors;

When creating XML and object tables, you may refer to inline_ref_constraint
and table_ref_constraint clauses. The syntax for an inline_ref_constraint
clause is:

{SCOPE IS scope_table |
 WITH ROWID |
 [CONSTRAINT constraint_name] REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}

The only difference between an inline reference constraint and a table

reference constraint is that inline reference constraints operate at the column
level and table reference constraints operate at the table level. (This is
essentially the same behavior and coding rule of standard relational
constraints like PRIMARY KEY or FOREIGN KEY.) The syntax for a
table_ref_constraint follows:

{SCOPE FOR (ref_col | ref_attr) IS scope_table |
 REF (ref_col | ref_attr) WITH ROWID |
 [CONSTRAINT constraint_name] FOREIGN KEY (ref_col | ref_attr)
 REFERENCES object [(column_name)]
 [ON DELETE {CASCADE | SET NULL}]
 [constraint_state]}

The constraint_state clause contains a number of options that have already
been defined earlier in the discussion of the Oracle CREATE TABLE
statement. However, these options are applied only to the condition of the
scope reference:

[NOT] DEFERRABLE
INITIALLY {IMMEDIATE | DEFERRED}
{ENABLE | DISABLE}
{VALIDATE | NOVALIDATE}
{RELY | NORELY}
EXCEPTIONS INTO table_name
USING INDEX {index_name | (create_index_statement) | index_attributes}

Object-type tables are useful for creating tables containing user-defined
types. For example, the following code creates the building_type type:

CREATE TYPE OR REPLACE building_type AS OBJECT
 (building_name VARCHAR2(100),
 building_address VARCHAR2(200));

We can then create a table called offices-object-table that contains the object
and defines some of its characteristics, such as OID information. In addition,
we’ll create two more tables, based upon building_type, that reference the
object type as an inline_ref_constraint and a table_ref_constraint,
respectively:

CREATE TABLE offices_object_table
 OF building_type (building_name PRIMARY KEY)
OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE leased_offices
 (office_nbr NUMBER,
 rent DEC(9,3),
 office_ref REF building_type
 SCOPE IS offices_object_table);
CREATE TABLE owned_offices
 (office_nbr NUMBER,
 payment DEC(9,3),
 office_ref REF building_type
 CONSTRAINT offc_in_bld REFERENCES offices_object_table);

In these examples, the SCOPE IS clause defines the inline_ref_constraint,
while the CONSTRAINT clause defines the table_ref_constraint.

Oracle ALTER TABLE

When using the Oracle command ALTER TABLE, you are able to ADD,
DROP, or MODIFY every aspect of each element of the table. For example,
the syntax diagram shows that the method for adding or modifying an
existing column includes its attributes, but you need to explicitly state that the
attributes include any Oracle-specific extensions. So, while the ANSI
standard only lets you modify attributes such as DEFAULT or NOT NULL (as
well as column-level constraints assigned to the column), Oracle also allows
you to alter any special characteristics that might exist, such as LOB,
VARRAY, NESTED TABLE, index-organized table, CLUSTER, or
PARTITION settings.

For example, the following code adds a new column to a table in Oracle and
adds a new, unique constraint to that table:

ALTER TABLE titles
ADD subtitle VARCHAR2(32) NULL
CONSTRAINT unq_subtitle UNIQUE;

When a foreign key constraint is added to a table, the DBMS verifies that all
existing data in the table meets that constraint. If not, the ALTER TABLE
fails.

NOTE
Any queries that use SELECT * return the new columns, even if this was not planned.
Precompiled objects, such as stored procedures, can return any new columns if they use

the %ROWTYPE attribute. Otherwise, a precompiled object may not return any new
columns.

Oracle also allows you to perform multiple actions, such as ADD or
MODIFY, on multiple columns by enclosing the actions within parentheses.
For example, the following command adds several columns to a table with a
single statement:

ALTER TABLE titles
ADD (subtitles VARCHAR2(32) NULL,
 year_of_copyright INT,
 date_of_origin DATE);

PostgreSQL
PostgreSQL supports the ANSI standards for CREATE and ALTER TABLE,
with a couple of extensions that enable you to quickly build a new table from
existing table definitions. Following is the syntax for CREATE TABLE:

CREATE [LOCAL | [TEMP]ORARY | FOREIGN][UNLOGGED] TABLE table_name
 (column_name data type attributes[, ...]
| [column_name [datatype] GENERATED ALWAYS AS (expression) STORED][,...]]
| [column_name {GENERATED ALWAYS| BY DEFAULT} AS IDENTITY
{sequence_options}]
[, ...]
CONSTRAINT constraint_name [{NULL | NOT NULL}]
{[UNIQUE] | [PRIMARY KEY (column_name[, ...])] | [CHECK (expression)] |
REFERENCES reference_table (reference_column[, ...])
 [MATCH {FULL | PARTIAL | default}]
 [ON {UPDATE | DELETE}
 {CASCADE | NO ACTION | RESTRICT | SET NULL | SET DEFAULT value}]
 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}]}[, ...] |
 [table_constraint][, ...]
[INHERITS (inherited_table[, ...])]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
[PARTITION OF partition_clause]
[COLLATE collation] [opclass] [, ...])]
[USING method]
[ON COMMIT {DELETE | PRESERVE} ROWS]
[AS select_statement]

And the PostgreSQL syntax for ALTER TABLE is:

ALTER [FOREIGN] TABLE [ONLY] table_name [*]
[ADD [COLUMN] column_name data type attributes [...]
[column_name datatype GENERATED ALWAYS AS (expression)[STORED][,...]]

[column_name {GENERATED ALWAYS| BY DEFAULT} AS IDENTITY {sequence_options}]
[, ...]
| [ALTER [COLUMN] column_name
 {SET DEFAULT value | DROP DEFAULT | SET STATISTICS int}]
| [RENAME [COLUMN] column_name TO new_column_name]
| [RENAME TO new_table_name]
| [ADD table_constraint]
| [DROP CONSTRAINT constraint_name RESTRICT]
| [SET { LOGGED | UNLOGGED }]
| [partition_clause]
| [OWNER TO new_owner]

The parameters are as follows:

table_constraint
Allows standard ANSI SQL constraints to be assigned at the column or
table level. PostgreSQL fully supports the following constraints: primary
key, unique, NOT NULL, and DEFAULT. PostgreSQL provides syntax
support for check, foreign key, and references constraints. In addition
PostgreSQL provides an EXCLUDE constraint which is an extension to
the standard. Exclusion constraints are used to guarantee two records
don’t overlap given a set of columns. For example you might define a
table with schedules for each room and put in an exclusion constraint to
prevent the room from having overlapping bookings.

REFERENCES . . . MATCH . . . ON {UPDATE | DELETE} . . .
Checks a value inserted into the column against the values of a column in
another table. This clause can also be used as part of a FOREIGN KEY
declaration. The MATCH options are FULL, PARTIAL, and the default,
where MATCH has no other keyword. FULL match forces all columns of
a multicolumn foreign key either to be NULL or to contain a valid value.
The default allows mixed NULLs and values. PARTIAL matching is a
valid syntax, but is not supported. The REFERENCES clause also allows
several different behaviors to be declared for ON DELETE and/or ON
UPDATE referential integrity:

LOCAL | [TEMP]ORARY | FOREIGN
There are 3 mutually exclusive kinds of tables you can create in

PostgreSQL. When not specified the table is LOCAL.

A local table is one that resides in the database and can be queried and
updated based on user permissions set.

A TEMPORARY (often created using TEMP instead of fully spelled out)
is a table that exists only for the life of a session and is automatically
deleted after the session is closed. It can however be deleted and recreated
by the session. TEMP tables are always stored in a pg_temp.. schema
determined by PostgreSQL. As such they can never be qualified with a
schema name. When naming temp tables, care must be taken to use a
prefix to distinguish it from real tables, otherwise it is possible to
accidentally delete a real table when deleting a TEMP table. This is
because the DROP TABLE command does not take TEMP as a qualifier.

A FOREIGN table is a table that resides in another database, is a link to a
file of data, and/or exists on another server database. You’ll see some
examples of this later in this chapter.

PARTITION BY
A table with a PARTITION BY clause is called a partitioned table. More
details in Partitioned tables section.

PARTITION OF
A table with a PARTITION OF clause is a partition of a partitioned table.
It can be a LOCAL table or a FOREIGN table. More details in Partitioned
tables section.

UNLOGGED
For local tables, you can qualify with the word UNLOGGED. LOGGED
is assumed if UNLOGGED is not specified. An unlogged table is one in
which only the CREATION ddl is logged and not the loading or updating
of it. This has a couple of consequences which may be good or bad for

your use case. Loading data into an unlogged table is much faster than
loading into a logged one. Since unlogged tables are not logged, data
residing in the tables is never replicated to database replicas, however the
creation of the unlogged table is replicated. In the event of a database
crash, an unlogged table is purged of its contents. That said, you should
never store data in an unlogged table that you can not replenish from
other sources. Unlogged tables are great though for fast loading of data,
and can be easily converted to a LOGGED table using ALTER TABLE
<> SET LOGGED.

NO ACTION
Produces an error when the foreign key is violated (the default).

RESTRICT
Synonym for NO ACTION.

CASCADE
Sets the value of the referencing column to the value of the referenced
column.

SET NULL
Sets the value of the referencing column to NULL.

SET DEFAULT value
Sets the referencing column to its declared default value or NULL, if no
default value exists.

[NOT] DEFERRABLE [INITIALLY {DEFERRED | IMMEDIATE}]
The DEFERRABLE option of the REFERENCES clause tells
PostgreSQL to defer evaluation of all constraints until the end of a
transaction. NOT DEFERRABLE is the default behavior for the

REFERENCES clause. Similar to the DEFERRABLE clause is the
INITIALLY clause: specifying INITIALLY DEFERRED checks
constraints at the end of a transaction; INITIALLY IMMEDIATE checks
constraints after each statement (the default).

FOREIGN KEY
Can be declared only as a table-level constraint, not as a column-level
constraint. All options for the REFERENCES clause are supported as part
of the FOREIGN KEY clause. The syntax follows:

[FOREIGN KEY (column_name[, ...]) REFERENCES...]

INHERITS inherited_table
Specifies a table or tables from which the table you are creating inherits
all columns. The newly created table also inherits columns attached to
tables higher in the hierarchy.

ON COMMIT {DELETE | PRESERVE} ROWS
Used only with temporary tables. This clause controls the behavior of the
temporary table after records are committed to the table. ON COMMIT
DELETE ROWS clears the temporary table of all rows after each
commit. This is the default if the ON COMMIT clause is omitted. ON
COMMIT PRESERVE ROWS saves the rows in the temporary table
after the transaction has committed.

AS select_statement
Enables you to create and populate a table with data from a valid
SELECT statement. The column names and datatypes do not need to be
defined, since they are inherited from the query. The CREATE TABLE . .
. AS statement has similar functionality to SELECT . . . INTO, but is
more readable.

ONLY
Specifies that only the named table is affected by the ALTER TABLE
statement, not any parent or subtables in the table hierarchy.

OWNER TO new_owner
Changes the owner of the table to the user identified by new_owner.

A PostgreSQL table cannot have more than 1,600 columns. However, you
should limit the number of columns to well below 1,600, for performance
reasons. For example:

CREATE TABLE distributors
 (name VARCHAR(40) DEFAULT 'Thomas Nash Distributors',
 dist_id INTEGER GENERATED BY DEFAULT AS IDENTITY,
 modtime TIMESTAMPTZ DEFAULT CURRENT_TIMESTAMP,
 has_vowel boolean GENERATED ALWAYS AS (name ~* '[aeiou]') STORED
);

NOTE
Unique to PostgreSQL is the ability to create column-level constraints with multiple
columns. Since PostgreSQL also supports standard table-level constraints, the ANSI-
standard approach is still the recommended approach.

PostgreSQL follows the SQL spec on how to define generated columns using
the GENERATED ALWAYS AS (expression) syntax, however it requires
the word STORED to be followed and the data type specification of the
column is not optional. PostgreSQL doesn’t currently support virtual columns
that are computed at query-time. This is planned to change in future. Other
restrictions of generated columns is that the expression can only use
immutable functions and other columns in the table. Expressions can not use
other generated columns or aggregations of the table.

PostgreSQL’s implementation of ALTER TABLE allows the addition of extra
columns and generated columns using the ADD keyword. Existing columns
may have new default values assigned to them using ALTER COLUMN . . .

SET DEFAULT, while ALTER COLUMN . . . DROP DEFAULT allows the
complete erasure of a column-based default. In addition, new defaults may be
added to columns using the ALTER clause, but only newly inserted rows will
be affected by such new default values. RENAME allows new names for
existing columns and tables.

PostgreSQL tables as types
PostgreSQL automatically creates a pseudo-type definition for tables and
companion pseudo-type array type for a table. One use case for this is to
allow a table definition to be used as a column type in another table very
similar in use to Oracle’s nested table feature, in which a table is virtually
stored within a column of another table. It is also useful as a return type for
functions. This capability is also valuable for structured arrays of values in a
table. This example creates a table called person and uses this in a definition
of another table, using both the array type definition and the basic type
definition:

CREATE TABLE person(name varchar(50), phone varchar(20));
CREATE TABLE party
 (id bigint NOT NULL GENERATED ALWAYS AS IDENTITY,
date_event date,
 party_planner person,
 invited_people person[]);

In the above example, the definition of the table person is used in a table
party. The [] in the definition denotes that we want to store an array where
each element of the array has the structure of the person table. Specifying the
table name person without the brackets means we want the column to only
store one person.

PostgreSQL typed tables
PostgreSQL tables can also be created from composite types. Here is an
example that creates a type and then uses it to define a table:

CREATE TYPE inventory_item AS (
 name varchar(50),
 weight_lb numeric(10,2),
 price numeric(10,2));
CREATE TABLE pens OF inventory_item;

A table whose definition is derived from a composite type can never have
columns added or removed from it directly. This needs to be done on the type
with CASCADE to cascade to the related tables, columns, and any other
objects that use it. Below is an example of how you would add a new column
to all tables that are defined by the inventory_item type.

ALTER TYPE inventory_item
 ADD ATTRIBUTE upc_code varchar(100)
 CASCADE;

PostgreSQL partitioned tables
PostgreSQL allows tables to be partitioned and subpartitioned. A partitioned
table may be broken into distinct parts, possibly placed on separate table
spaces or on separate servers to improve I/O performance (based on three
strategies: range, hash, or list. A partitioned table can be further partitioned
using the same strategies and need not use the same strategy as it’s parent.
There are two parts to a partition. There is the partitioned table and then there
is the partition of a table. Both are detailed at
https://www.postgresql.org/docs/current/ddl-partitioning.html

The partitioned table has a clause as follows:

{ PARTITION BY [RANGE | HASE | LIST] (column[, ...])}

The partition of a table has a clause as follows:

{ PARTITION OF partitioned_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] { FOR VALUES partition_bound_spec | DEFAULT }
}

Each kind of partition takes a different partition_bound_spec:

RANGE: FOR VALUES FROM (somevalue_1) TO (somevalue_2)

LIST: FOR VALUES IN(somevalue_1,somevalue_2, ..)

HASH: VALUES WITH (modulus some_integer_1, remainder

https://www.postgresql.org/docs/current/ddl-partitioning.html

some_integer_2)

Partitions can be added and removed from a partitioned table using ALTER
TABLE as well:

The following example code shows the orders table partitioned by range:

CREATE TABLE orders
 (order_number bigint,
 order_date DATE,
 cust_nbr bigint,
 price numeric(12,2),
 qty integer,
 cust_shp_id bigint)
PARTITION BY RANGE(order_date);
CREATE TABLE pre_yr_2000
 PARTITION OF orders FOR VALUES
 FROM (minvalue) TO ('2000-01-01');
ALTER TABLE orders DETACH PARTITION pre_yr_2000;
ALTER TABLE orders ATTACH PARTITION pre_yr_2000
 FOR VALUES FROM (minvalue) TO ('2000-01-01');

Primary keys and indexes applied on a partitioned table are automatically
applied on all the partitions. One caveat is that primary keys MUST contain
the partitioning keys. This often means you’ll have to define a compound
primary key in cases where you only want one column.

PostgreSQL foreign tables
PostgreSQL offers another kind of table called a FOREIGN table which has a
corresponding SERVER and users which uses a connecting mechanism
called a FOREIGN DATA WRAPPER (FDWs).

PostgreSQL’s foreign data support follows the SQL for Management of
External Data (SQL-MED) standard https://en.wikipedia.org/wiki/SQL/MED
. A foreign table is a table that lives on a different server, database, or
filesystem. The connection to the table is modulated by a corresponding
FDW. For most cases a Foreign table can be queried like any other table, but
the performance is often worse than a local table. PostgreSQL foreign data
wrappers are installed via PostgreSQL’s CREATE EXTENSION command.
Most PostgreSQL installs (except possibly for DbaaS ones) come packaged
with two foreign data wrappers: postgres_fdw and file_fdw. The
postgres_fdw allows connecting to another postgres database which could be

https://en.wikipedia.org/wiki/SQL/MED

on the same PostgreSQL service, another service running on the same server
or a PostgreSQL service running on a different server. The file_fdw allows
for connecting to a delimited text file. These two FDWs provide similar
functionality to MySQL’s CSV and FEDERATED and MariaDB CONNECT
storage engines and SQL Server’s linked servers.

There are many PostgreSQL FDWs available from connecting to webservices
and file formats to connecting to other databases like the oracle_fdw one for
connecting to Oracle databases or the ogr_fdw one that supports numerous
spatial and non-spatial data sources (relational, file, odbc, and webservice).
Many of these are provided by PostgreSQL package management systems.
Once the binaries are installed, any of these can be installed in a database
using the CREATE EXTENSION command. A specific FDW can only be
installed once in a database but can have many server definitions that use it.

Here is an example for connecting to a csv file.

CREATE EXTENSION file_fdw;
CREATE SERVER svr_files FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE fdt_orders
 (order_number bigint,
 order_date DATE,
 cust_nbr bigint,
 price numeric(12,2),
 qty integer,
 cust_shp_id bigint)
SERVER svr_files
OPTIONS (
format 'csv', header 'true',
filename '/external_data/order.psv',
delimiter '|', null ''
);

Some foreign data wrappers support a command called IMPORT FOREIGN
SCHEMA, that allows for automatically creating a set of foreign tables
without using the CREATE FOREIGN table command directly. Many
servers also require that a user mapping must exist for a user to connect. The
user mapping can be for a particular user role or group role. A server can
have one or more user mappings. Here is an example for connecting to
another PostgreSQL database and creating foreign tables for all tables in the
remote database’s public schema in the local remote_public schema.

CREATE EXTENSION postgres_fdw;
CREATE SERVER svr_pg_remote FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host 'ip_or_name', port '5432', dbname 'pagila');
CREATE USER MAPPING FOR trusted_users_group SERVER svr_pg_remote
OPTIONS (user 'role_on_foreign', password 'your_password');
CREATE SCHEMA IF NOT EXISTS remote_public;
IMPORT FOREIGN SCHEMA public FROM SERVER svr_pg_remote
INTO remote_public;

As mentioned earlier, partitions of a partitioned table can reside on other
servers. This is accomplished by making a foreign table with the same
structure as the partitioned table and attaching it as a partition. The foreign
table need not be a postgres one.

SQL Server
SQL Server offers a plethora of options when defining or altering a table, its
columns, and its table-level constraints. In addition, SQL Server now
supports several kinds of tables beyond the standard relational table,
including memory-optimized tables, bitemporal tables, XML tables, and
JSON tables.

SQL Server does not support the CREATE TABLE...AS select_statement
syntax. Instead, use the syntax SELECT… INTO… syntax.

Its CREATE TABLE syntax is:

CREATE TABLE table_name
[AS FILETABLE]
(
column_name data_type { [DEFAULT default_value] [
 | [IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]
 [ROWGUIDCOL] [NULL | NOT NULL]
 | [{PRIMARY KEY | UNIQUE}
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]
 | [[FOREIGN KEY]
 REFERENCES reference_table [(reference_column[, ...])]
 [ON {DELETE | UPDATE} {CASCADE | NO ACTION}]
 [NOT FOR REPLICATION]]
 | [CHECK [NOT FOR REPLICATION] (expression)]
 | [COLLATE collation_name]
| column_name AS computed_column_expression }
[, ...]
| [table_constraint][, ...]
| [table_index]
)

[ON {filegroup | DEFAULT | partition_details}]
[FILESTREAM_ON {filegroup | DEFAULT | partition_details}]
[TEXTIMAGE_ON {filegroup | DEFAULT}]
[WITH (table_option [,...])]
;

And the SQL Server version of ALTER TABLE is:

ALTER TABLE table_name
[ALTER COLUMN column_name new_data type attributes {ADD | DROP}
ROWGUIDCOL]
| [ADD [COLUMN] column_name data type attributes][, ...]]
| [WITH CHECK | WITH NOCHECK] ADD table_constraint][, ...]
| [DROP { [CONSTRAINT] constraint_name | COLUMN column_name }][, ...]
| [{CHECK | NOCHECK} CONSTRAINT { ALL | constraint_name[, ...] }]
| [{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, ...] }]
;

The parameters are as follows:

table_name
Specifies the new table’s name using either a one-, two-, or three-part
naming convention of [database_name.][schema_name.]table_name.

AS FILETABLE
Specifies an optional table type which supports the Windows file
namespace and offers compatibility with Windows applications and SQL
Server simultaneously. Commonly used in situations where an application
needs direct access to data on the Windows file system, but the
application designers also want the benefit of ACID transactions and
point-in-time recovery offered by a relational database. FILETABLE
does not allow column definitions since it has a fixed schema. Refer to
the vendor documentation on filetables for more information.

DEFAULT default_value
Applies to any column except those with a TIMESTAMP datatype or an
IDENTITY property. The default_value must be a constant value such as
a character string or a number, a system function such as GETDATE(), or

NULL.

IDENTITY [(seed, increment)]
Creates and populates the column with a monotonically increasing
number when applied to an integer column. The IDENTITY starts
counting at the value of seed and increases by the value of increment.
When either is omitted, the default is 1.

NOT FOR REPLICATION
Specifies that the values of an IDENTITY or FOREIGN KEY are not
replicated to subscribing servers. This helps in situations in which
different servers require the same table structures, but not the exact same
data.

ROWGUIDCOL
Identifies a column as a globally unique identifier (GUID), which ensures
no two values are ever repeated across any number of servers. Only one
such column may be identified per table. This clause does not, however,
create the unique values itself. They must be inserted using the NEWID
function.

{PRIMARY KEY | UNIQUE}
Defines a unique or primary key constraint for the table. The primary key
declaration differs from the ANSI standard by allowing you to assign the
clustered or nonclustered attributes on the primary key index, as well as a
starting fillfactor. (Refer to the section ““PRIMARY KEY Constraints”“
on page 62 in Chapter 2 for more information.) The attributes of a unique
or primary key include:

CLUSTERED | NONCLUSTERED
Declares that the column or columns of the primary key set the physical
sort order of the records in the table (CLUSTERED), or that the primary

key index maintains pointers to all of the records of the table
(NONCLUSTERED). CLUSTERED is the default when this clause is
omitted.

WITH FILLFACTOR = int
Declares that a percentage of space (int) should remain free on each data
page when the table is created. SQL Server does not maintain
FILLFACTOR over time, so you should rebuild the index on a regular
basis.

ON {filegroup | DEFAULT}
Specifies that the primary key either is located on the pre-existing, named
filegroup or is assigned to the DEFAULT filegroup.

FOREIGN KEY
Checks values as they are inserted into the table against a column in
another table in order to maintain referential integrity. Foreign keys are
described in detail in Chapter 2. A foreign key can only reference
columns that are defined as a PRIMARY KEY or UNIQUE index on the
referencing table. A referential action may be specified to take place on
the reference_table when the record is deleted or updated, according to
the following:

ON {DELETE | UPDATE}
Specifies that an action needs to happen in the local table when either (or
both) an UPDATE or DELETE occurs on the referenced table.

CASCADE
Specifies that any DELETE or UPDATE also takes place on the referring
table for any records dependent on the value of the FOREIGN KEY.

NO ACTION

Specifies that no action occurs on the referring table when a record on the
current table is deleted or updated.

NOT FOR REPLICATION
Specifies that an IDENTITY property should not be enforced when the
data is replicated from another database. This ensures that data from the
published server is not assigned new identity values.

CHECK
Ensures that a value inserted into the specified column of the table is a
valid value, based on the CHECK expression. For example, the following
shows a table with two column-level CHECK constraints:

CREATE TABLE people
 (people_id CHAR(4)
 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED
 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '
 [A-Z][A-Z][A-Z][A-Z]'),
 people_name VARCHAR(40) NULL,
 people_addr1 VARCHAR(40) NULL,
 people_addr2 VARCHAR(40) NULL,
 city VARCHAR(20) NULL,
 state CHAR(2) NULL
 CONSTRAINT def_st DEFAULT ("CA")
 CONSTRAINT chk_st REFERENCES states(state_ID),
 zip CHAR(5) NULL
 CONSTRAINT ck_dist_zip
 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),
 phone CHAR(12) NULL,
 sales_rep empid NOT NULL DEFAULT USER)
GO

The CHECK constraint on people_id ensures an all-alphabetic ID, while
the one on zip ensures an all-numeric value. The REFERENCES
constraint on state performs a lookup on the states table. The
REFERENCES constraint is essentially the same as a CHECK constraint,
except that it derives its list of acceptable values from the values stored in
another column. This example illustrates how column-level constraints
are named using the CONSTRAINT constraint_name syntax.

COLLATE
Allows programmers to change, on a column-by-column basis, the sort
order and character set that is used by the column.

TEXTIMAGE_ON {filegroup | DEFAULT}
Controls the placement of text, ntext, and image columns, allowing you
to place LOB data on the pre-existing filegroup of your choice. When
omitted, these columns are stored in the default filegroup with all other
tables and database objects.

WITH [NO]CHECK
Tells SQL Server whether the data in the table should be validated against
any newly added constraints or keys. When constraints are added using
WITH NOCHECK, the query optimizer ignores them until they are
enabled via ALTER TABLE table_name CHECK CONSTRAINT ALL.
When constraints are added using WITH CHECK, the constraints are
checked immediately against all data already in the table.

[NO]CHECK CONSTRAINT
Enables an existing constraint with CHECK CONSTRAINT or disables
one with NOCHECK CONSTRAINT.

{ENABLE | DISABLE} TRIGGER { ALL | trigger_name[, . . .] }
Enables or disables the specified trigger or triggers, respectively. All
triggers on the table may be enabled or disabled by substituting the
keyword ALL for the table name, as in ALTER TABLE employee
DISABLE TRIGGER ALL. You may, alternately, disable or enable a
single trigger_name or more than one trigger by placing each
trigger_name in a comma-delimited list.

SQL Server allows any column-level constraint to be named by specifying
CONSTRAINT constraint_name . . ., and then the text of the constraint.

Several constraints may be applied to a single column, as long as they are not
mutually exclusive (for example, PRIMARY KEY and NULL).

SQL Server also allows a local temporary table to be created, using its own
proprietary syntax. A local temporary table, which is stored in the tempdb
database, requires a prefix of a single pound sign (#) to the name of the table.
The local temporary table is usable by the person or process that created it
and is deleted when the person logs out or the process terminates. A global
temporary table, which is usable by all people and processes that are
currently logged in/running, can be established by prefixing two pound signs
(##) to the name of the table. The global temporary table is deleted when its
process terminates or its creator logs out.

SQL Server also allows the creation of tables with columns that contain
computed values. Computed columns can offer a big performance increase in
certain circumstances. Such a column does not actually contain data; instead,
it is a virtual column containing an expression using other columns already in
the table. For example, a computed column could contain an expression such
as order_cost AS (price * qty). Computed columns also can contain constants,
functions, variables, non-computed columns, or any of these combined with
each other using operators.

Any of the column-level constraints shown earlier also may be declared at the
table level. That is, PRIMARY KEY constraints, FOREIGN KEY constraints,
CHECK constraints, and others may be declared after all the columns have
been defined in the CREATE TABLE statement. This is very useful for
constraints that cover more than one column. For example, a column-level
UNIQUE constraint can be applied only to that column. However, declaring
the constraint at the table level allows it to span several columns. Here is an
example of both column- and table-level constraints:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL)
GO

-- Creating a table-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) NOT NULL,
 book_name VARCHAR(40) NOT NULL,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)
 WITH FILLFACTOR=70,
 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))
GO

These two commands provide nearly the same results, except that the table-
level UNIQUE constraint has two columns, whereas only one column is
included in the column-level UNIQUE constraint.

The following example adds a new CHECK constraint to a table, but does not
check to ensure that the existing values in the table pass the constraint:

ALTER TABLE favorite_book WITH NOCHECK
ADD CONSTRAINT extra_check CHECK (ISBN > 1)
GO

In this example, we further add a new column with an assigned DEFAULT
value that is placed in each existing record in the table:

ALTER TABLE favorite_book ADD reprint_nbr INT NULL

CONSTRAINT add_reprint_nbr DEFAULT 1 WITH VALUES
GO
-- Now, disable the constraint
ALTER TABLE favorite_book NOCHECK CONSTRAINT add_reprint_nbr
GO

See Also
CREATE SCHEMA

DROP

CREATE/ALTER TYPE Statement
The CREATE TYPE statement allows you to create a user-defined type
(UDT); that is, a user-defined datatype or “class” in object-oriented terms.

UDTs extend SQL capabilities into the realm of object-oriented programming
by allowing inheritance and other object-oriented features. You can also
create something called typed tables with the CREATE TABLE statement
using a previously created type made with the CREATE TYPE statement.
Typed tables are based on UDTs and are equivalent to “instantiated classes”
from object-oriented programming.

 Platform

 Command

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Syntax

CREATE TYPE type_name
[UNDER supertype_name]
[AS [new_udt_name] datatype [attribute][, ...]
 {[REFERENCES ARE [NOT] CHECKED
 [ON DELETE
 {NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT}]] |
 [DEFAULT value] |
 [COLLATE collation_name]}]
 [[NOT] INSTANTIABLE]
 [[NOT] FINAL]
[REF IS SYSTEM GENERATED |
 REF USING datatype
 [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH identifier] |
 REF new_udt_name[, ...]]
[CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier]
[method_definition[, ...]]

The following syntax alters an existing user-defined datatype:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |
 DROP ATTRIBUTE type_name}

Keywords

{CREATE | ALTER} TYPE type_name

Creates a new type or alters an existing type with the name type_name.

UNDER supertype_name
Creates a subtype that is dependent upon a single, pre-existing, named
supertype. (A UDT can be a supertype if it is defined as NOT FINAL.)

AS [new_udt_name] datatype [attribute][, . . .]
Defines attributes of the type as if they were column declarations in a
CREATE TABLE statement without constraints. You should either
define the UDT attribute on an existing datatype, such as
VARCHAR(10), or on another, previously created UDT, or even on a
user-defined domain. Defining a UDT using a predefined datatype (e.g.,
CREATE TYPE my_type AS INT) creates a distinct type, while a UDT
defined with an attribute definition is a structured type. The allowable
attributes for a structured type are:

ON DELETE NO ACTION
Produces an error when the foreign key is violated (the default).

ON DELETE RESTRICT
Synonym for NO ACTION.

ON DELETE CASCADE
Sets the value of the referencing column to the value of the referenced
column.

ON DELETE SET NULL
Sets the value of the referencing column to NULL.

ON DELETE SET DEFAULT value
Defines a default value for the UDT for when the user does not supply a

value. Follows the rules of a DEFAULT in the section.

COLLATE collation_name
Assigns a collation—that is, a sort order—for the UDT. When omitted,
the collation of the database where the UDT was created applies. Follows
the rules of a COLLATION in the section.

[NOT] INSTANTIABLE
Defines the UDT such that it can be instantiated. INSTANTIABLE is
required for typed tables, but not for standard UDTs.

[NOT] FINAL
Required for all UDTs. FINAL means the UDT may have no subtypes.
NOT FINAL means the UDT may have subtypes.

REF
Defines either a system-generated or user-generated reference
specificationthat is, a sort of unique identifier that acts as a pointer that
another type may reference. By referencing a pre-existing type using its
reference specification, you can have a new type inherit properties of a
pre-existing type. There are three ways to tell the DBMS how the typed
table’s reference column gets its values (i.e., its reference specification):

new_udt_name[, . . .]
Declares that the reference specification is provided by another
preexisting UDT called new_udt_name.

IS SYSTEM GENERATED
Declares that the reference specification is system-generated (think of an
automatically incrementing column). This is the default when the REF
clause is omitted.

USING datatype [CAST {(SOURCE AS REF) | (REF AS SOURCE)} WITH
identifier]

Declares that the user defines the reference specification. You do this by
using a predefined datatype and optionally casting the value. You can use
CAST (SOURCE AS REF) WITH identifier to cast the value with the
specified datatype to the reference type of the structured type, or use
CAST (REF AS SOURCE) WITH identifier to cast the value for the
structured type to the datatype. The WITH clause allows you to declare
an additional identifier for the cast datatype.

CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH
identifier method_definition[, . . .]

Defines one or more pre-existing methods for the UDT. A method is
merely a specialized user-defined function and is created using the
CREATE METHOD statement (see CREATE FUNCTION). The
method_definition clause is not needed for structured types since their
method(s) are implicitly created. The default characteristics of a method
are LANGUAGE SQL, PARAMETER STYLE SQL, NOT
DETERMINISTIC, CONTAINS SQL, and RETURN NULL ON NULL
INPUT.

ADD ATTRIBUTE type_definition
Adds an additional attribute to an existing UDT, using the format
described earlier under the AS clause. Available via the ALTER TYPE
statement.

DROP ATTRIBUTE type_name
Drops an attribute from an existing UDT. Available via the ALTER
TYPE statement.

Rules at a Glance
You can create user-defined types as a way to further ensure data integrity in

your database and to ease the work involved in doing so. An important
concept of UDTs is that they allow you to easily create subtypes, which are
UDTs built upon other UDTs. The UDT that subtypes depend on is called a
parent type or supertype. Subtypes inherit the characteristics of their
supertypes.

Assume, for example, that you want to define a general UDT for phone
numbers called phone_nbr. You could then easily build new subtypes of
phone_nbr called home_phone, work_phone, cell_phone, pager_phone, etc.
Each of the subtypes could inherit the general characteristics of the parent
type but also have characteristics of its own.

In this example, we create a general root UDT called money and then several
subtypes:

CREATE TYPE money (phone_number DECIMAL (10,2))
 NOT FINAL;
CREATE TYPE dollar UNDER money AS DECIMAL(10,2)
 (conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE euro UNDER money AS DECIMAL(10,2)
 (dollar_conversion_rate DECIMAL(10,2)) NOT FINAL;
CREATE TYPE pound UNDER euro
 (euro_conversion_rate DECIMAL(10,2)) FINAL;

Programming Tips and Gotchas
The biggest programming gotcha for user-defined types is that they are
seldom used and not well understood by most database developers and
database administrators. Consequently, they can be problematic due to simple
ignorance. They offer, however, a consistent and labor-saving approach for
representing commonly reused conceptual elements in a database, such as an
address (e.g., street1, street2, city, state, postal code).

MySQL
Not supported. To achieve similar functionality, you may use a JSON data
type. Although not identical to a user-defined data type, it can provide similar
behavior and has been supported by MySQL since version 5.7.8.

Oracle

Oracle has CREATE TYPE and ALTER TYPE statements, but they are non-
standard. Instead of a single CREATE TYPE statement, Oracle uses CREATE
TYPE BODY to define the code that makes up the UDT, while CREATE
TYPE defines the argument specification for the type. The syntax for
CREATE TYPE is:

CREATE [OR REPLACE] {[EDITIONABLE | NONEDITIONABLE]} TYPE type_name
{ [OID 'object_identifier'] [AUTHID {DEFINER | CURRENT_USER}]
 { {AS | IS} OBJECT | [UNDER supertype_name] |
 {OBJECT | TABLE OF data type | VARRAY (limit) OF datatype} }
 EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition
 { [(attribute datatype[, ...]) [EXTERNAL NAME 'name'] |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 [{ {MEMBER | STATIC}
 {function_based | procedure_based} | constructor_clause |
 map_clause } [...]]
 [pragma_clause]] } }

Once the type has been declared, you encapsulate all of the UDT logic in the
type body declaration. The type_name for both CREATE TYPE and CREATE
TYPE BODY should be identical. The syntax for CREATE TYPE BODY is
shown here:

CREATE [OR REPLACE] TYPE BODY type_name
{AS | IS}
{{MEMBER | STATIC}
{function_based | procedure_based | constructor_clause}}[...]
[map_clause]

Oracle’s implementation of ALTER TYPE enables you to drop or add
attributes and methods from or to the type:

ALTER TYPE type_name
 {COMPILE [DEBUG] [{SPECIFICATION | BODY}]
 [compiler_directives] [REUSE SETTINGS] |
 REPLACE [AUTHID {DEFINER | CURRENT_USER}] AS OBJECT
 (attribute datatype[, ...] [element_definition[, ...]]) |
 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]
 { {ADD | DROP} { {MAP | ORDER} MEMBER FUNCTION function_name
 (parameter data type[, ...]) } |
 { {MEMBER | STATIC} {function_based | procedure_based} |
 constructor_clause | map_clause [pragma_clause] } [...] |
 {ADD | DROP | MODIFY} ATTRIBUTE (attribute [datatype][, ...]) |
 MODIFY {LIMIT int | ELEMENT TYPE datatype} }
 [{INVALIDATE |

 CASCADE [{ [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE }]
 [FORCE] [EXCEPTIONS INTO table_name]}]}

Parameters for the three statements are as follows:

OR REPLACE
Recreates the UDT if it already exists. Objects that depend on the type are
marked as DISABLED after you recreate the type.

EDITIONABLE | NONEDITIONABLE
Specifies whether the type is an editioned or noneditioned object if
editioning is enabled for the schema object TYPE in the declared schema.
The default is EDITIONABLE.

AUTHID {DEFINER | CURRENT_USER}
Determines what user permissions any member functions or procedures
are executed under and how external name references are resolved. (Note
that subtypes inherit the permission styles of their supertypes.) This
clause can be used only with an OBJECT type, not with a VARRAY type
or a nested table type.

DEFINER
Executes functions or procedures under the privileges of the user who
created the UDT. Also specifies that unqualified object names (object
names without a schema definition) in SQL statements are resolved to the
schema where the member functions or procedures reside.

CURRENT_USER
Executes functions or procedures under the privileges of the user who
invoked the UDT. Also specifies that unqualified object names in SQL
statements are resolved to the schema of the user who invoked the UDT.

UNDER supertype_name

Declares that the UDT is a subtype of another, pre-existing UDT. The
supertype UDT must be created with the AS OBJECT clause. A subtype
will inherit the properties of the supertype, though you should override
some of those or add new properties to differentiate it from the supertype.

OID ‘object_identifier’
Declares an equivalent identical object, of the name ‘object_identifier', in
more than one database. This clause is most commonly used by those
developing Oracle Data Cartridges and is seldom used in standard SQL
statement development.

AS OBJECT
Creates the UDT as a root object type (the top-level object in a UDT
hierarchy of objects).

AS TABLE OF data type
Creates a named nested table type of a UDT called datatype. The datatype
cannot be an NCLOB, but CLOB and BLOB are acceptable. If the
datatype is an object type, the columns of the nested table must match the
name and attributes of the object type.

AS VARRAY (limit) OF datatype
Creates the UDT as an ordered set of elements, all of the same datatype.
The limit is an integer of zero or more. The type name must be a built-in
datatype, a REF, or an object type. The VARRAY cannot contain LOB or
XMLType data types. VARRAY may be substituted with VARYING
ARRAY.

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING
data_definition

Maps a Java class to a SQL UDT by specifying the name of a public Java
external class, java_ext_name. Once defined, all objects in a Java class

must be Java objects. The data_definition may be SQLData,
CustomDatum, or OraData, as defined in the “Oracle9i JDBC
Developers Guide.” You can map many Java object types to the same
class, but there are two restrictions. First, you should not map two or
more subtypes of a common data type to the same class. Second, subtypes
must be mapped to an immediate subclass of the class to which their
supertype is mapped.

Data type
Declares the attributes and datatypes used by the UDT. Oracle does not
allow ROWID, LONG, LONG ROW, or UROWID. Nested tables and
VARRAYs do not allow attributes of AnyType, AnyData, or
AnyDataSet.

EXTERNAL NAME ‘name’ [NOT] OVERRIDING
Declares that this method overrides a MEMBER method defined in the
supertype (OVERRIDING) or not (NOT OVERRIDING, the default).
This clause is valid only for MEMBER clauses.

MEMBER | STATIC
Describes the way in which subprograms are associated with the UDT as
attributes. MEMBER has an implicit first argument referenced as SELF,
as in object_expression.method(). STATIC has no implicit arguments, as
in type_name.method(). The following bases are allowed to call
subprograms:

function_based
Declares a subprogram that is function-based using the syntax:

FUNCTION function_name (parameter datatype[, ...])return_clause |
java_object_clause

This clause allows you to define the PL/SQL function-based UDT body

without resorting to the CREATE TYPE BODY statement. The
function_name cannot be the name of any existing attribute, including
those inherited from supertypes. The return_clause and
java_object_clause are defined later in this list.

procedure_based
Declares a subprogram that is function-based using the syntax:

PROCEDURE procedure_name (parameter datatype[, ...])
{AS | IS} LANGUAGE {java_call_spec | c_call_spec}

This clause allows you to define the PL/SQL procedure-based UDT body
without resorting to the CREATE TYPE BODY statement. The
procedure_name cannot be the name of any existing attribute, including
those inherited from supertypes. Refer to the entries on java_call_spec
and c_call_spec later in this list for details on those clauses.

constructor_clause
Declares one or more constructor specifications, using the following
syntax:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION datatype
 [([SELF IN OUT datatype,] parameter datatype[, ...])]
RETURN SELF AS RESULT
 [{AS | IS} LANGUAGE {java_call_spec | c_call_spec}]

A constructor specification is a function that returns an initialized
instance of a UDT. Constructor specifications are always FINAL,
INSTANTIABLE, and SELF IN OUT, so these keywords are not
required. The java_call_spec and c_call_spec subclauses may be replaced
with a PL/SQL code block in the CREATE TYPE BODY statement.
(Refer to the entries on java_call_spec and c_call_spec later in this list for
details.)

map_clause

Declares the mapping or ordering of a supertype, using the following
syntax:

{MAP | ORDER} MEMBER function_based

MAP uses more efficient algorithms for object comparison and is best in
situations where you’re performing extensive sorting or hash joins. MAP
MEMBER specifies the relative position of a given instance in the
ordering of all instances of the UDT. ORDER MEMBER specifies the
explicit position of an instance and references a function_based
subprogram that returns a NUMBER datatype value. Refer to the entry on
function_based earlier in this list for details.

return_clause
Declares the datatype return format of the SQL UDT using the syntax:

RETURN datatype [{AS | IS} LANGUAGE {java_call_spec |
 c_call_spec}]
java_object_clause

Declares the return format of the Java UDT using the syntax:

RETURN {datatype | SELF AS RESULT} EXTERNAL [VARIABLE] NAME
 'java_name'

If you use the EXTERNAL clause, the value of the public Java method
must be compatible with the SQL returned value.

pragma_clause
Declares a pragma restriction (that is, an Oracle precompiler directive) for
the type using the syntax:

PRAGMA RESTRICT REFERENCES ({DEFAULT | method_name},
{RNDS | WNDS |RNPS | WNPS | TRUST}[, ...])

This feature is deprecated and should be avoided. It is intended to control

how UDTs read and write database tables and variables.

DEFAULT
Applies the pragma to all methods in the type that don’t have another
pragma in place.

method_name
Identifies the exact method to which to apply the pragma.

RNDS
Reads no database state—no database reads allowed.

WNDS
Writes no database state—no database writes allowed.

RNPS
Reads no package state—no package reads allowed.

WNPS
Writes no package state—no package writes allowed.

TRUST
States that the restrictions of the pragma are assumed but not enforced.

java_call_spec
Identifies the Java implementation of a method using the syntax JAVA
NAME ’string’. This clause allows you to define the Java UDT body
without resorting to the CREATE TYPE BODY statement.

c_call_spec

Declares a C language call specification using the syntax:

C [NAME name] LIBRARY lib_name [AGENT IN (argument)]
[WITH CONTEXT] [PARAMETERS (parameter[, ...])]

This clause allows you to define the C UDT body without resorting to the
CREATE TYPE BODY statement.

COMPILE
Compiles the object type specification and body. This is the default when
neither a SPECIFICATION clause nor a BODY clause is defined.

DEBUG
Generates and stores additional codes for the PL/SQL debugger. Do not
specify both DEBUG and the compiler_directive PLSQL_DEBUG.

SPECIFICATION | BODY
Indicates whether to recompile the SPECIFICATION of the object type
(created by the CREATE TYPE statement) or the BODY (created by the
CREATE TYPE BODY statement).

compiler_directives
Defines a special value for the PL/SQL compiler in the format directive =
‘value’. The directives are: PLSQL_OPTIMIZE_LEVEL,
PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in
the statement. The directive is valid only for the unit being compiled.

REUSE SETTINGS
Retains the original value for the compiler_directives.

REPLACE AS OBJECT

Adds new member subtypes to the specification. This clause is valid only
for object types.

[NOT] OVERRIDING
Indicates that the method overrides a MEMBER method defined in the
supertype. This clause is valid only with MEMBER methods and is
required for methods that define (or redefine, using ALTER) a supertype
method. NOT OVERRIDING is the default if this clause is omitted.

ADD
Adds a new MEMBER function, function- or procedure-based
subprogram, or attribute to the UDT.

DROP
Drops an existing MEMBER function, function- or procedure-based
subprogram, or attribute from the UDT.

MODIFY
Alters the properties of an existing attribute of the UDT.

MODIFY LIMIT int
Increases the number of elements in a VARRAY collection type up to int,
as long as int is greater than the current number of elements in the
VARRAY. Not valid for nested tables.

MODIFY ELEMENT TYPE datatype
Increases the precision, size, or length of a scalar datatype of a VARRAY
or nested table. This clause is valid for any non-object collection type. If
the collection is a NUMBER, you may increase its precision or scale. If
the collection is a RAW, you may increase its maximum size. If the
collection is a VARCHAR2 or NVARCHAR2, you may increase its

maximum length.

INVALIDATE
Invalidates all dependent objects without checks.

CASCADE
Cascades the change to all subtypes and tables. By default, the action will
be rolled back if any errors are encountered in the dependent types or
tables.

[NOT] INCLUDING TABLE DATA
Converts data stored in the UDT columns to the most recent version of
the column’s type (INCLUDING TABLE DATA, the default), or not
(NOT INCLUDING TABLE DATA). When NOT, Oracle checks the
metadata but does not check or update the dependent table data.

CONVERT TO SUBSTITUTABLE
Used when changing a type from FINAL to NOT FINAL. The altered
type then can be used in substitutable tables and columns, as well as in
subtypes, instances of dependent tables, and columns.

FORCE
Causes the CASCADE operation to go forward, ignoring any errors found
in dependent subtypes and tables. All errors are logged to a previously
created EXCEPTIONS table.

EXCEPTIONS INTO table_name
Logs all error data to a table previously created using the system package
DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE.

In this example, we create a Java SQLJ object type called address_type:

CREATE TYPE address_type AS OBJECT
 EXTERNAL NAME 'scott.address' LANGUAGE JAVA
 USING SQLDATA (street1 VARCHAR(30) EXTERNAL NAME 'str1',
 street2 VARCHAR(30) EXTERNAL NAME 'str2',
 city VARCHAR(30) EXTERNAL NAME 'city',
 state CHAR(2) EXTERNAL NAME 'st',
 locality_code CHAR(15) EXTERNAL NAME 'lc',
 STATIC FUNCTION square_feet RETURN NUMBER
 EXTERNAL VARIABLE NAME 'square_feet',
 STATIC FUNCTION create_addr (str VARCHAR,
 City VARCHAR, state VARCHAR, zip NUMBER)
 RETURN address_type
 EXTERNAL NAME 'create (java.lang.String,
 java.lang.String, java.lang.String, int)
 return scott.address',
 MEMBER FUNCTION rtrims RETURN SELF AS RESULT
 EXTERNAL NAME 'rtrim_spaces () return scott.address')
NOT FINAL;

We could create a UDT using a VARRAY type with four elements:

CREATE TYPE employee_phone_numbers AS VARRAY(4) OF CHAR(14);

In the following example, we alter the address_type that we created earlier by
adding a VARRAY called phone_varray:

ALTER TYPE address_type
 ADD ATTRIBUTE (phone phone_varray) CASCADE;

In this last example, we’ll create a supertype and a subtype called
menu_item_type and entry_type, respectively:

CREATE OR REPLACE TYPE menu_item_type AS OBJECT
(id INTEGER, title VARCHAR2(500),
 NOT INSTANTIABLE
 MEMBER FUNCTION fresh_today
 RETURN BOOLEAN)
NOT INSTANTIABLE
NOT FINAL;

In the preceding example, we created a type specification (but not the type
body) that defines items that may appear on a menu at a café. Included with
the type specification is a subprogram method called fresh_today, a Boolean
indicator that tells whether the menu item is made fresh that day. The NOT
FINAL clause that appears at the end of the code tells Oracle that this type

may serve as the supertype (or base type) to other subtypes that we might
derive from it. So now, let’s create the entre_type:

CREATE OR REPLACE TYPE entry_type UNDER menu_item_type
(entre_id INTEGER, desc_of_entre VARCHAR2(500),
 OVERRIDING MEMBER FUNCTION fresh_today
 RETURN BOOLEAN)
NOT FINAL;

PostgreSQL
PostgreSQL supports both an ALTER TYPE statement and a CREATE TYPE
statement used to create a new data type. PostgreSQL’s implementation of
the CREATE TYPE statement is nonstandard and can take on any of four
forms listed below:

For composite type, such as types that can be used to define a table:

CREATE TYPE name AS

([attribute_name data_type [COLLATE collation] [, ...]])

For enum types the label is list of named values allowed for this type.

CREATE TYPE name AS ENUM

(['label' [, ...]])

For range types which define a start and end value:

CREATE TYPE name AS RANGE (

SUBTYPE = subtype

[, SUBTYPE_OPCLASS = subtype_operator_class]

[, COLLATION = collation]

[, CANONICAL = canonical_function]

[, SUBTYPE_DIFF = subtype_diff_function]

)

For base types that internally define their own storage characteristics and
indexing support. These often require programming in C to make and thus are
the hardest to create.

CREATE TYPE type_name
 (INPUT = input_function_name,
 OUTPUT = output_function_name
[, INTERNALLENGTH = { int | VARIABLE }]
[, DEFAULT = value]
[, ELEMENT = array_element_datatype]
[, DELIMITER = delimiter_character]
[, CATEGORY = category]
[, COLLATABLE = collatable]
[, PASSEDBYVALUE]
[, ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}]
[, STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}]
[, RECEIVE = receive_function]
[, SEND = send_function]
[, ANALYZE = analyze_function]
[, TYPMOD_IN = type_modifier_input_function]
[, TYPMOD_OUT = type_modifier_output_function])

PostgreSQL allows you to change the schema or owner of an existing type
using the ALTER TYPE statement:

ALTER TYPE type_name [OWNER TO new_owner_name] [SET SCHEMA new_schema_name]

The parameters are as follows:

CREATE TYPE type_name
Creates a new user-defined datatype called type_name. The name may
not exceed 30 characters in length, nor may it begin with an underscore.

INPUT = input_function_name
Declares the name of a previously created function that converts external
argument values into a form usable by the type’s internal form.

OUTPUT = output_function_name
Declares the name of a previously created function that converts internal
output values to a display format.

INTERNALLENGTH = { int | VARIABLE }
Specifies a numeric value, int, for the internal length of the new type, if
the datatype is fixed-length. The keyword VARIABLE (the default)

declares that the internal length is variable.

DEFAULT = value
Defines a value for type when it defaults.

ELEMENT = array_element_datatype
Declares that the datatype is an array and that array_element_datatype is
the datatype of the array elements. For example, an array containing
integer values would be ELEMENT = INT4. In general, you should allow
the array_element_datatype value to default. The only time you might
want to override the default is when creating a fixed-length UDT
composed of an array of multiple identical elements that need to be
directly accessible by subscripting.

DELIMITER = delimiter_character
Declares a character to be used as a delimiter between output values of an
array produced by the type. Only used with the ELEMENT clause. The
default is a comma.

PASSEDBYVALUE
Specifies that the values of the datatype are passed by value and not by
reference. This optional clause cannot be used for types whose value is
longer than the DATUM datatype (4 bytes on most operating systems, 8
bytes on a few others).

ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}
Defines a storage alignment for the type. Four datatypes are allowed, with
each equating to a specific boundary: CHAR equals a 1-byte boundary,
INT2 equals a 2-byte boundary, INT4 equals a 4-byte boundary (the
requirement for a variable-length UDT on PostgreSQL), and DOUBLE
equals an 8-byte boundary.

STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}
Defines a storage technique for variable-length UDTs. (PLAIN is
required for fixed-length UDTs.) Four types are allowed:

PLAIN
Stores the UDT inline, when declared as the datatype of a column in a
table, and uncompressed.

EXTERNAL
Stores the UDT outside of the table without trying to compress it first.

EXTENDED
Stores the UDT as a compressed value if it fits inside the table. If it is too
long, PostgreSQL will save the UDT outside of the table.

MAIN
Stores the UDT as a compressed value within the table. Bear in mind,
however, that there are situations where PostgreSQL cannot save the
UDT within the table because it is just too large. The MAIN storage
parameter puts the highest emphasis on storing UDTs with all other table
data.

SEND = send_function
Converts the internal representation of the type to the external binary
representation. Usually coded in C or another low-level language.

RECEIVE = receive_function
Converts the text’s external binary representation to the internal
representation. Usually coded in C or another low-level language.

ANALYZE = analyze_function

Performs type-specific statistical collection for columns of the type.

NOTE
More details on the SEND, RECEIVE, and ANALYZE functions are available in the
PostgreSQL documentation.

When you create a new datatype in PostgreSQL, it is available only in the
current database. The user who created the datatype is the owner. When you
create a new type, the parameters may appear in any order and are largely
optional, except for the first two (the input and output functions).

To create a new data type, you must create at least two functions before
defining the type (see the earlier section “CREATE/ALTER
FUNCTION/PROCEDURE Statements”). In summary, you must create an
INPUT function that provides the type with external values that can be used
by the operators and functions defined for the type, as well as an OUTPUT
function that renders a usable external representation of the data type. There
are some additional requirements when creating the input and output
functions:

The input function should either take one argument of type OPAQUE or
take three arguments of OPAQUE, OID, and INT4. In the latter case,
OPAQUE is the input text of a C string, OID is the element type for array
types, and INT4 (if known) is the typemod of the destination column.

The output function should either take one argument of type OPAQUE or
take two arguments of type OPAQUE and OID. In the latter case,
OPAQUE is the datatype itself and OID is the element type for array
types, if needed.

For example, we can create a UDT called floorplan and use it to define a
column in two tables, one called house and one called condo:

CREATE TYPE floorplan
 (INTERNALLENGTH=12, INPUT=squarefoot_calc_proc,
 OUTPUT=out_floorplan_proc);

CREATE TABLE house
 (house_plan_id int4,
 size floorplan,
 descrip varchar(30));
CREATE TABLE condo
 (condo_plan_id INT4,
 size floorplan,
 descrip varchar(30)
 location_id varchar(7));

SQL Server
SQL Server supports the CREATE TYPE statement, but not the ALTER TYPE
statement. New data types can also be added to SQL Server using the non-
ANSI system stored procedure sp_addtype. Beginning in SQL Server 2014
and applicable to Azure SQL Database, you may also process data in a table
type using memory-optimized tables. The syntax for SQL Server’s
implementation of CREATE TYPE follows:

CREATE TYPE type_name
{ FROM base_type [(precision [, scale])] [[NOT] NULL] |
 AS TABLE table_definition |
 CLR_definition }

where:

FROM base_type
Supplies the datatype upon which the data type alias is based. The
datatype may be one of the following: BIGINT, BINARY, BIT, CHAR,
DATE, DATETIME, DATETIME2, DATETIMEOFFSET, DECIMAL,
FLOAT, IMAGE, INT, MONEY, NCHAR, NTEXT, NUMERIC,
NVARCHAR, REAL, SMALLDATETIME, SMALLINT,
SMALLMONEY, SQL_VARIANT, TEXT, TIME, TINYINT,
UNIQUEIDENTIFIER, VARBINARY, or VARCHAR. Where
appropriate to the data type, a precision and scale may be defined.

[NOT] NULL
Specifies whether the type can hold a NULL value. When omitted, NULL
is the default.

AS TABLE table_definition
Specifies a user-defined table type with columns, data types, keys,
constraints (such as CHECK, UNIQUE, and PRIMARY KEY), and
properties (such as CLUSTERED and NONCLUSTERED), just like a
regular table.

SQL Server supports the creation of types written in Microsoft .NET
Framework common language runtime (CLR) methods that can take and
return user-supplied parameters. These types have similar CREATE and
ALTER declarations to regular SQL types; however, the code bodies are
external assemblies. Refer to the SQL Server documentation if you want to
learn more about programming routines using the CLR.

User-defined types created with sp_addtype are accessible by the public
database role. However, permission to access user-defined types created with
CREATE TYPE must be granted explicitly, including to PUBLIC.

See Also
CREATE/ALTER FUNCTION/PROCEDURE

DROP

CREATE/ALTER VIEW Statement
This statement creates a view (also known as a virtual table). A view acts just
like a table but is actually defined as a query. When a view is referenced in a
statement, the result set of the query becomes the content of the view for the
duration of that statement. Almost any valid SELECT statement can define
the contents of a view, though some platforms restrict certain clauses of the
SELECT statement and certain set operators. Tables and views may not have
the same names within a schema, because they share the same namespace.

In some cases, views can be updated, causing the view changes to be
translated to the underlying data in the base tables. Some database platforms
support a materialized view; that is, a physically created table that is defined
with a query just like a view.

NOTE
ALTER VIEW is not an ANSI-supported statement.

 Platform

 Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Syntax

CREATE [RECURSIVE] VIEW view_name {[(column[, ...])] |
[OF udt_name [UNDER supertype_name
 [REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}]
 [column_name WITH OPTIONS SCOPE table_name]]]}
AS select_statement [WITH [CASCADED | LOCAL] CHECK OPTION]

Keywords

CREATE VIEW view_name
Creates a new view using the supplied name.

MySQL, Oracle, and PostgreSQL all support the extended form CREATE
OR REPLACE VIEW construct. SQL Server does not however SQL
Server since v2016SP1 does support a CREATE OR ALTER VIEW
construct which is for the most part equivalent to CREATE OR
REPLACE VIEW. The CREATE OR REPLACE extended form and
CREATE OR ALTER is not an ANSI-SQL supported statement.

RECURSIVE
Creates a view that derives values from itself. It must have a column
clause and may not use the WITH clause.

[(column[, . . .])]
Names all of the columns in the view. The number of columns declared
here must match the number of columns generated by the
select_statement. When omitted, the columns in the view derive their
names from the columns in the table. This clause is required when one or
more of the columns is derived and does not have a base table column to
reference.

OF udt_name [UNDER supertype_name]
Defines the view on a UDT rather than on the column clause. The typed
view is created using each attribute of the type as a column in the view.
Use the UNDER clause to define a view on a subtype.

REF IS column_name {SYSTEM GENERATED | USER GENERATED |
DERIVED}

Defines the object-ID column for the view.

column_name WITH OPTIONS SCOPE table_name
Provides scoping for a reference column in the view. (Since the columns
are derived from the type, there is no column list. Therefore, to specify
column options, you must use column_name WITH OPTIONS)

AS select_statement
Defines the exact SELECT statement that provides the data of the view.

WITH [CASCADED | LOCAL] CHECK OPTION
Used only on views that allow updates to their base tables. Ensures that
only data that may be read by the view may be inserted, updated, or
deleted by the view. For example, if a view of employees showed
salaried employees but not hourly employees, it would be impossible to
insert, update, or delete hourly employee records through that view. The

CASCADED and LOCAL options of the CHECK OPTION clause are
used for nested views. CASCADED performs the check option for the
current view and all views upon which it is built; LOCAL performs the
check option only for the current view, even when it is built upon other
views.

Rules at a Glance
Views are usually only as effective as the queries upon which they are based.
That is why it is important to be sure that the defining SELECT statement is
speedy and well written. The simplest view is based on the entire contents of
a single table:

CREATE VIEW employees
AS
SELECT *
FROM employee_tbl;

A column list also may be specified after the view name. The optional
column list contains aliases serving as names for each element in the result
set of the SELECT statement. If you use a column list, you must provide a
name for every column returned by the SELECT statement. If you don’t use a
column list, the columns of the view will be named whatever the columns in
the SELECT statement are called. You will sometimes see complex SELECT
statements within a view that make heavy use of AS clauses for all columns,
because that allows the developer of the view to put meaningful names on the
columns without including a column list.

The ANSI standard specifies that you must use a column list or an AS clause.
However, some vendors allow more flexibility, so follow these rules for
when to use an AS clause:

When the SELECT statement contains calculated columns, such as (salary
* 1.04)

When the SELECT statement contains fully qualified column names, such
as pubs.scott.employee

When the SELECT statement contains more than one column of the same
name (though with separate schema or database prefixes)

For example, the following two view declarations have the same functional
result:

-- Using a column list
CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_monthly_sales,
 publisher)
AS
SELECT t.title, ta.au_ord, a.au_lname, t.price, (t.ytd_sales / 12),
 t.pub_id
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;
-- Using the AS clause with each column
CREATE VIEW title_and_authors
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0

Alternatively, you can change the titles of columns using the column list. In
this case, we’ll change avg_monthly_sales to avg_sales. Note that the code
overrides the default column names provided by the AS clauses (in bold):

CREATE VIEW title_and_authors
 (title, author_order, author, price, avg_sales, publisher)
AS
SELECT t.title AS title, ta.au_ord AS author_order,
 a.au_lname AS author, t.price AS price,
 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher
FROM authors AS a
JOIN titleauthor AS ta ON a.au_id = ta.au_id
JOIN titles AS t ON t.title_id = ta.title_id
WHERE t.advance > 0;

An ANSI-standard view can update the base table(s) it is based upon if it
meets the following conditions:

The view does not have UNION, EXCEPT, or INTERSECT operators.

The defining SELECT statement does not contain GROUP BY or
HAVING clauses.

The defining SELECT statement does not contain any reference to non-
ANSI pseudocolumns such as ROWNUM or ROWGUIDCOL.

The defining SELECT statement does not contain the DISTINCT clause.

The view is not materialized.

This example shows a view named california_authors that allows data
modifications to apply only to authors within the state of California:

CREATE VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH LOCAL CHECK OPTION

The view shown in this example would accept INSERT, DELETE, and
UPDATE statements against the base table but guarantee that all inserted,
updated, or deleted records contain a state of ‘CA’ using the WITH . . .
CHECK clause.

The most important rule to remember when updating a base table through a
view is that all columns in a table that are defined as NOT NULL must
receive a not-NULL value when receiving a new or changed value. You can
do this explicitly by directly inserting or updating a not-NULL value into the
column, or by relying on a default value. In addition, views do not lift
constraints on the base table. Thus, the values being inserted into or updated
in the base table must meet all the constraints originally placed on the table
through unique indexes, primary keys, CHECK constraints, etc.

Programming Tips and Gotchas
Views also can be built upon other views, but this is inadvisable and usually
considered bad practice. Depending on the platform, such a view may take
longer to compile, but may offer the same performance as a transaction

against the base table(s). On other platforms, where each view is dynamically
created as it is invoked, nested views may take a long time to return a result
set because each level of nesting means that another query must be processed
before a result set is returned to the user. In this worst-case scenario, a three-
level nested view must make three correlated query calls before it can return
results to the user.

Although materialized views are defined like views, they take up space more
like tables. Ensure that you have enough space available for the creation of
materialized views.

MySQL
MySQL supports CREATE VIEW, CREATE OR REPLACE VIEW and an
ALTER VIEW statement. MySQL doesn’t support SQL recursive views, UDT
and supertyped views, or views using REF. The syntax for both statements
follows:

{ALTER | CREATE [OR REPLACE]}
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = {user_name | CURRENT_USER}]
[SQL SECURITY {DEFINER | INVOKER}]
VIEW view_name [(column[, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

where:

ALTER | CREATE [OR REPLACE]
Alters an existing view or creates (or replaces) a view. You can use the
replace form if you want to completely replace the definition of a view
even if such a replace would delete or change the data type of existing
columns of the view.

ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}
Specifies how MySQL should process the view. MERGE tells MySQL to
merge the query plans of the query referencing the view and the
underlying view itself to achieve optimal performance. TEMPTABLE

tells MySQL to first retrieve the results of the view into a temporary
table, then act upon the query that called the view against the temporary
table. UNDEFINED tells MySQL to choose the best algorithm to process
the view. When this clause is omitted, UNDEFINED is the default.

DEFINER = {user_name | CURRENT_USER}
Specifies the user account to use when checking privileges. You may
specify either a pre-existing user, or the user who issued the CREATE
VIEW statement (i.e., the CURRENT_USER). CURRENT USER is the
default when this clause is omitted.

SQL SECURITY {DEFINER | INVOKER}
Specifies the security context under which the view runs: either that of
the user that created the view (DEFINER, the default when this clause is
omitted), or the user running the view (INVOKER).

In this example we create a view listing just California authors. It will allow
only insert of California authors and only users who have permission to query
the underlying table can query this view:

CREATE OR REPLACE SQL SECURITY INVOKER VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH CHECK OPTION;

Oracle
Oracle supports extensions to the ANSI standard to create object-oriented
views, XMLType views, and views that support LOB and object types:

CREATE [OR REPLACE] [[NO] FORCE][EDITIONING]
 [EDITIONABLE | NONEDITIONABLE]
 [MATERIALIZED] VIEW view_name
 {[(column[, ...]) [constraint_clause]] |
 [OF type_name {UNDER parent_view |
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}
 [(constraint_clause)]}] |
 [OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT

 {element | xml_schema_url # element}]
 WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, ...])}]]}
 [FOR UPDATE]
AS
(select statement)
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

Oracle’s implementation of the ALTER VIEW statement supports added
capabilities, such as adding, dropping, or modifying constraints associated
with the view. In addition, the ALTER VIEW statement will explicitly
recompile a view that is invalid, enabling you to locate recompilation errors
before runtime. This recompiling feature enables you to determine whether a
change in a base table negatively impacts any dependent views:

ALTER [MATERIALIZED] VIEW view_name
 {ADD constraint_clause |
 MODIFY CONSTRAINT constraint_clause [NO]RELY]] |
 DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column[, ...])}}
COMPILE

The parameters are:

OR REPLACE
Replaces any existing view of the same view_name with the new view. It
maintains old permissions but for regular views will drop any instead of
triggers.

[NO] FORCE
The FORCE clause creates the view regardless of whether the base tables
exist or the user creating the view has privileges to read from or write to
the base tables, views, or functions defined in the view. The FORCE
clause also creates the view regardless of any errors that occur during
view creation. The NO FORCE clause creates the view only if the base
tables and proper privileges are in place.

EDITIONING
Creates an editioning view. Editioning views are single-table based views
that select all rows, but only a subset of the columns from a table and are

considered part of an edition. There can be many editions of a view, but
views within the same addition must have unique names. This allows for
editions to be used to shield applications from database structural
changes. In addition to having to select all rows and have a subset of
columns, editioning views differ from common views in that they can
have DML triggers directly on them and these DML triggers do not fire
when data is inserted/updated to the base table but only fire when data
changes are made against the view. They can not have INSTEAD OF
Triggers. They can not be created if their underlying table does not exist.
They cannot be object or XML based.

constraint_clause
Allows you to specify constraints on views for CREATE VIEW (see the
section on CREATE TABLE for details). Using ALTER VIEW, this
clause also allows you to affect a named, pre-existing constraint. You can
define the constraint at the view level, similar to a table-level view, or at
the column or attribute level. Note that although Oracle allows you to
define constraints on a view, it doesn’t yet enforce them. Oracle supports
constraints on a view in DISABLE and NOVALIDATE modes.

MATERIALIZED
Stores the results of the query defined by the view. It is used mostly for
performance where querying the underlying tables would be significantly
slower than querying a cached set of the data. They are also used to store
read-only copies of data on a remote server. Materialized views are often
part of a MATERIALIZED VIEW group and can have a
MATERIALIZED VIEW log. Both of these control the replication
characteristics and refresh characteristics.

A materialized view can be read-only or updateable. By default a
materialized view is read-only. To allow for updates, FOR UPDATE
needs to be added. It should be part of a MATERIALIZED VIEW group
for changes to replicate to the underyling tables.

Materialized views can be refreshed a number of ways using the
following Refresh types: complete refresh, fast refresh, or force refresh.

An on-demand refresh can be accomplished using
DBMS_REFRESH.REFRESH('view_name');

OF type_name
Declares that the view is an object view of type type_name. The columns
of the view correspond directly to the attributes returned by type_name,
where type_name is a previously declared type (see the section on
CREATE TYPE). You do not specify column names for object and
XMLType views.

UNDER parent_view
Specifies a subview based on a pre-existing parent_view. The subview
must be in the same schema as the parent view, the type_name must be an
immediate subtype of the parent_view, and only one subview is allowed.

WITH OBJECT IDENTIFIER {DEFAULT | (attribute[, . . .])}
Defines the root object view as well as any attributes of the object type
used to identify each row of the object view. The attributes usually
correspond to the primary key columns of the base table and must
uniquely identify each row of the view. This clause is incompatible with
subviews and dereferenced or pinned REF keys. The DEFAULT keyword
uses the implicit object identifier of the base object table or view.

OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT {element |
xml_schema_url # element }] WITH OBJECT IDENTIFIER {DEFAULT |
(attribute[, . . .])}

Specifies that the view will return XMLType instances. Specifying the
optional xml_schema_url as a pre-registered XMLSchema and element
name further constrains the returned XML as an element in that
XMLSchema. The WITH OBJECT IDENTIFIER clause specifies the

identifier that uniquely identifies each row of the XMLType view. One or
more attributes may use non-aggregate functions like EXTRACTVALUE
to obtain the identifiers from the resultant XMLType.

WITH READ ONLY
Ensures that the view is used only to retrieve data, not to modify it.

WITH CHECK OPTION [CONSTRAINT constraint_name]
Forces the view to accept only inserted and updated data that can be
returned by the view’s SELECT statement. Alternately, you can specify a
single CHECK OPTION constraint_name that exists on the base table
that you want to enforce. If the constraint is not named, Oracle names the
constraint SYS_Cn, where n is an integer.

ADD constraint_clause
Adds a new constraint to the view. Oracle supports constraints only in
DISABLE and NOVALIDATE modes.

MODIFY CONSTRAINT constraint_clause [NO]RELY
Changes the RELY or NORELY setting of an existing view constraint.
(RELY and NORELY are explained in the section on CREATE TABLE.)

DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE
(column[, . . .])}

Drops an existing constraint on a view.

COMPILE
Recompiles the view.

Any dblinks in the view’s SELECT statement must be declared using the
CREATE DATABASE LINK . . . CONNECT TO statement. Any view
containing flashback queries will have its AS OF clause evaluated at each

invocation of the view, not when the view is compiled.

In this example, we create a view that has an added constraint:

CREATE VIEW california_authors (last_name, first_name,
 author_ID UNIQU RELY DISABLE NOVALIDATE,
 CONSTAINT id_pk PRIMARY KEY (au_id) RELY DISABLE NOVALIDATE)
AS
SELECT au_lname, au_fname, au_id
FROM authors
WHERE state = 'CA';

We might also wish to create an object view on an Oracle database and
schema. This example creates the type and the object view:

CREATE TYPE inventory_type AS OBJECT
(title_id NUM(6),
 warehouse wrhs_typ,
 qty NUM(8));
CREATE VIEW inventories OF inventory_type
WITH OBJECT IDENTIFIER (title_id)
AS
SELECT i.title_id, wrhs_typ(w.wrhs_id, w.wrhs_name,
 w.location_id), i.qty
FROM inventories i
JOIN warehouses w ON i.wrhs_id = w.wrhs_id;

We could recompile the inventory_type view like this:

ALTER VIEW inventory_type COMPILE:

An updatable view in Oracle cannot contain any of the following:

The DISTINCT clause

UNION, INTERSECT, or MINUS clauses

Joins that cause inserted or updated data to affect more than one table

Aggregate or analytic functions

GROUP BY, ORDER BY, CONNECT BY, or START WITH clauses

Subqueries or collection expressions in the SELECT item list (subqueries

are acceptable in the SELECT statement’s WHERE clause)

Update pseudocolumns or expressions

There are some restrictions on how subviews and materialized views can be
defined in Oracle:

The subview must use aliases for ROWID, ROWNUM, or LEVEL
pseudocolumns.

The subview cannot query CURRVAL or NEXTVAL pseudocolumns.

The subview cannot contain the SAMPLE clause.

The subview evaluates all columns of a SELECT * FROM . . . statement at
compile time. Thus, any new columns added to the base table will not be
retrieved by the subview until the view is recompiled.

Note that while older versions of Oracle supported partitioned views, this
feature has been deprecated. You should use explicitly declared partitions
instead.

PostgreSQL
PostgreSQL supports the ANSI standard for CREATE VIEW and a variation
WITH that appears at the top and extended CREATE OR REPLACE VIEW. A
view column name list must be specified for a RECURSIVE view.

CREATE [OR REPLACE] [TEMP[ORARY]][MATERIALIZED]
[RECURSIVE] VIEW view_name [(column[, ...])]
 [USING method]
WITH (view_option_name [= view_option_value] [, ...])]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION
 [[NO] DATA]]
]

USING method
Only used with materialized views. Denotes the table storage method.

WITH
Allows setting one or more view options which are as follows:

check_option (enum)
This parameter may be either local or cascaded, and is equivalent to
specifying WITH [CASCADED | LOCAL] CHECK OPTION (see
below).

 security_barrier (true | false)

This should be used if the view is intended to provide row-level security.
Refer to PostgreSQL docs on row-level security -
https://www.postgresql.org/docs/current/rules-privileges.html

 <storage_parameter> = <value>

There are quite a few storage parameters. Storage parameters can only be
set for materialized views. Refer to
https://www.postgresql.org/docs/current/sql-createtable.html#SQL-
CREATETABLE-STORAGE-PARAMETERS for details.

WITH CHECK OPTION
Forces the view to accept only inserted and updated data that can be
returned by the view’s SELECT statement.

MATERIALIZED
Stores the results of the query defined by the view. It is used mostly for
performance where querying the underlying tables would be significantly
slower than querying a cached set of the data.

WITH NO DATA
Only used with materialized views. Denotes that the query should not be

https://www.postgresql.org/docs/current/rules-privileges.html
https://www.postgresql.org/docs/13/sql-createtable.html#SQL-CREATETABLE-STORAGE-PARAMETERS

run to populate the data without first doing a refresh. This is particularly
useful for materialized views that take a while to run. By state “NO
DATA”, a database restore will not be slowed down by trying to populate
the materialized view. If DATA is specified or no specification, then
DATA is assumed.

PostgreSQL ALTER VIEW command is used to set certain properties of a
view, change ownership of a view, change name of the view, move the view
to a different schema, or rename columns. The ALTER VIEW command
takes the following forms.

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name
SET DEFAULT expression

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name
DROP DEFAULT

ALTER VIEW [IF EXISTS] name OWNER TO { new_owner |
CURRENT_USER | SESSION_USER }

ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column_name
TO new_column_name

ALTER VIEW [IF EXISTS] name RENAME TO new_name

ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema

ALTER VIEW [IF EXISTS] name SET (view_option_name [=
view_option_value] [, ...])

ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

There are two view_option_name are the same as what you would use in
CREATE VIEW.

You can not use ALTER VIEW to replace the definition of a view.

However, you can use CREATE OR REPLACE VIEW view_name to
substitute the definition of an old view with the definition of a new view. A
CREATE OR REPLACE VIEW command can only be used if the new view
definition adds new columns and not if the new definition changes the data
type of existing columns, deletes columns, or changes the order of columns.

In addition, PostgreSQL allows you to create temporary views, which is an
extension to the SQL standard.

PostgreSQL allows views to be built on tables, other views, and other defined
class objects. PostgreSQL views against single tables that don’t involve
aggregation like GROUP BY are updatable by default. For views involving
more than one table or aggregation, INSTEAD OF triggers can be created to
control how data is updated in the underlying tables. You can use functions in
views and still have them be automatically updatable as long as updates do
not try to update these columns. Here is an example of a view definition that
allows updating of au_lname, au_fname and even au_id but will prevent
changing the state because that would cause the updated record to no longer
satisfy the filter of the view. It will also prevent updating current_age because
that is a column that is not part of the base table.

CREATE OR REPLACE VIEW california_authors
AS
 SELECT au_lname, au_fname, au_id,
 au_fname || ' ' || au_lname AS au_full_name
 FROM authors
 WHERE state = 'CA'
WITH CHECK OPTION;

PostgreSQL views are always schema-bound, meaning no objects referenced
in the views such as tables, views, functions can be altered such that they
would affect the output definitions of the columns of the view. This means
you can’t drop tables or views used in a view, you can’t alter the column data
types of a column of a table used in a view. However you can change the
name of objects (tables, views, columns in tables/views) referenced by the
view. This catches many off-guard because it is different from how most
other databases work. PostgreSQL internally tracks all tables and columns in
views by their internal identifier. When you rename an object referenced in a
view, such as the name of a column, the view automatically changes. Let’s
say you decided to ALTER TABLE authors RENAME au_lname TO
last_name;

Then if you look at the definition of california_authors you will see that it has
changed au_lname to authors.last_name AS au_lname. Also note that all

columns have been changed to be fully qualified.

PostgreSQL CREATE RECURSIVE VIEW construct is equivalent to writing
a recursive cte WITH RECURSIVE construct as the definition of the view.

PostgreSQL also supports an extended CREATE MATERIALIZED VIEW
which creates a view with cached data by running the query defined by the
view. Materialized views, unlike other views, can have indexes defined on
them using the CREATE INDEX construct. Materialized views are never
updatable. Queries on a materialized view are applied to the cached data
rather than the underlying tables. To refresh data in a materialized view, you
would use REFRESH MATERIALIZED VIEW view_name or REFRESH
MATERIALIZED VIEW CONCURRENTLY view_name.

REFRESH MATERIALIZED VIEW without the CONCURRENTLY
keyword, is a blocking operation that prevents querying of the view. Using
CONCURRENTLY allows a materialized view to be queried while it is being
refreshed, but can only be used with materialized views that have a unique
index. PostgreSQL has no automatic means of refreshing a materialized view.
Many users implore a cronjob, triggers, or some other job scheduling tool
like pgAgent or pgSchedule to refresh materialized views.

Here, we define a PostgreSQL materialized view with a unique index:

CREATE MATERIALIZED VIEW vw_mat_authors AS
 SELECT au_lname, au_fname, au_id
 FROM authors;
CREATE UNIQUE INDEX ux_vw_mat_authors USING btree(au_id);

SQL Server
SQL Server supports some extensions to the ANSI standard but does not
offer object views, subviews, or recursive views:

CREATE [OR ALTER] VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [, ...]]
AS select_statement
[WITH CHECK OPTION]
;

SQL Server supports some extensions to the ANSI standard but does not

offer object views, subviews, or recursive views. Although SQL Server does
not have a CREATE OR REPLACE as do some other databases, SQL Server
2014 and above have an equivalent construct CREATE OR ALTER.

SQL Server’s implementation of ALTER VIEW allows you to change an
existing view without affecting the permissions or dependent objects of the
view:

ALTER VIEW view_name [(column[, ...])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA}[, ...]]
AS select_statement
[WITH CHECK OPTION]
;

The parameters are as follows:

ENCRYPTION
Encrypts the text of the view in the sys.comments table. This option is
usually invoked by software vendors who want to protect their
intellectual capital.

SCHEMABINDING
Binds the view to definitions of the underlying objects, meaning changes
to referenced tables and views can not be changed such that they would
affect the definition of the output columns of the view. The tables and the
views referenced in the view must also be qualified with at least the
schema name e.g dbo.authors or nutshell.dbo.authors, but not simply
authors. It also means any referenced tables and views can not be dropped
or renamed without first dropping the view or dropping the schema
binding via ALTER VIEW.

VIEW_METADATA
Specifies that SQL Server return metadata about the view (rather than the
base table) to calls made from DBLIB or OLEDB APIs. Views created or
altered with VIEW_METADATA enable their columns to be updated by
INSERT and UPDATE INSTEAD OF triggers.

WITH CHECK OPTION
Forces the view to accept only inserted and updated data that can be
returned by the view’s SELECT statement.

The SELECT clause of a SQL Server view cannot:

Have COMPUTE, COMPUTE BY, INTO, or ORDER BY clauses (ORDER
BY is allowed if you use SELECT TOP)

Reference a temporary table

Reference a table variable

Reference more than 1,024 columns, including those referenced by
subqueries

Here, we define a SQL Server view with both ENCRYPTION and CHECK
OPTION clauses:

CREATE VIEW california_authors (last_name, first_name, author_id)
WITH ENCRYPTION
AS
 SELECT au_lname, au_fname, au_id
 FROM authors
 WHERE state = 'CA'
WITH CHECK OPTION
GO

SQL Server allows multiple SELECT statements in a view, as long as they
are linked with UNION or UNION ALL clauses. SQL Server also allows
functions and hints in a view’s SELECT statement. A SQL Server view is
updatable if all of the conditions in the following list are true:

The SELECT statement has no aggregate functions.

The SELECT statement does not contain TOP, GROUP BY, DISTINCT,
or UNION clauses.

The SELECT statement has no derived columns (see SUBQUERY).

The FROM clause of the SELECT statement references at least one table.

SQL Server allows indexes to be created on views (see CREATE INDEX). By
creating a unique, clustered index on a view, you cause SQL Server to store a
physical copy of the view on the database. Changes to the base table are
automatically updated in the indexed view. Indexed views consume extra
disk space but provide a boost in performance. These views must be built
using the SCHEMABINDING clause.

SQL Server also allows the creation of local and distributed partitioned
views. A local partitioned view is a partitioned view where all views are
present on the same SQL server. A distributed partitioned view is a
partitioned view where one or more views are located on remote servers.

Partitioned views must very clearly derive their data from different sources,
with each distinct data source joined to the next with a UNION ALL
statement. Partitioned views are updatable. Furthermore, all columns of the
partitioned views should be selected and identical including collation. It is
not sufficient for data types to be coercible as it normally is for UNION ALL
queries. (The idea is that you have split the data out logically by means of a
frontend application; SQL Server then recombines the data through the
partitioned view.) This example shows how the data in the view comes from
three separate SQL servers:

CREATE VIEW customers
AS
--Select from a local table on server New_York
SELECT *
FROM sales_archive.dbo.customers_A
UNION ALL
SELECT *
FROM houston.sales_archive.dbo.customers_K
UNION ALL
SELECT *
FROM los_angeles.sales_archive.dbo.customers_S

Note that each remote server (New_York, houston, and los_angeles) has to be
defined as a remote server on all of the SQL servers using the distributed
partitioned view.

Partitioned views can greatly boost performance because they can split I/O

and user loads across many machines. However, they are difficult to plan,
create, and maintain. Be sure to read the vendor documentation for complete
details about all the permutations available with partitioned views.

When altering an existing view, SQL Server acquires and holds an exclusive
schema lock on the view until the alteration is finished. ALTER VIEW drops
any indexes that might be associated with a view; you must manually recreate
them using CREATE INDEX.

INSTEAD OF triggers can be created on views to control how data is
updated in the underlying tables.

See Also
CREATE/ALTER TABLE

DROP

SELECT

SUBQUERY

INSTEAD OF triggers

DROP Statements
All of the database objects created with CREATE statements may be
destroyed using complementary DROP statements. On some platforms, a
ROLLBACK statement after a DROP statement will recover the dropped
object. However, on other database platforms the DROP statement is
irreversible and permanent, so it is advisable to use the command with care.

 Platform

 Command

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL Syntax
Currently, the SQL standard supports the ability to drop a lot of object types
that are largely unsupported by most vendors. The ANSI/ISO SQL syntax
follows this format:

DROP [object_type] object_name {RESTRICT | CASCADE}

Keywords

DROP [object_type] object_name
Irreversibly and permanently destroys the object of type object_type
called object_name. The object_name does not need a schema identifier,
but if none is provided the current schema is assumed. ANSI/ISO SQL
supports a long list of object types, each created with its own
corresponding CREATE statement. CREATE statements covered in this
chapter with corresponding DROP statements include:

DATABASE

DOMAIN

INDEX

ROLE

SCHEMA

TABLE

TYPE

VIEW

RESTRICT | CASCADE

Prevents the DROP from taking place if any dependent objects exist
(RESTRICT), or causes all dependent objects to also be dropped

(CASCADE). This clause is not allowed with some forms of DROP, such
as DROP TRIGGER, but is mandatory for others, such as DROP
SCHEMA. To further explain, DROP SCHEMA RESTRICT will only
drop an empty schema. Otherwise (i.e., if the schema contains objects),
the operation will be prevented. In contrast, DROP SCHEMA CASCADE
will drop a schema and all objects contained therein.

Rules at a Glance
For rules about the creation or modification of each of the object types, refer
to the sections on the corresponding CREATE/ALTER statements.

The DROP statement destroys a pre-existing object. The object is
permanently destroyed, and all users who had permission to access the object
immediately lose the ability to access it.

The object may be qualified—that is, you may fully specify the schema
where the dropped object is located. For example:

DROP TABLE scott.sales_2008 CASCADE;

This statement will drop not only the table scott.sales_2004, but also any
views, triggers, or constraints built on it. On the other hand, a DROP
statement may include an unqualified object name, in which case the current
schema context is assumed. For example:

DROP TRIGGER before_ins_emp;
DROP ROLE sales_mgr;

Although not required by the SQL standard, most implementations cause the
DROP command to fail if the database object is in use by another user.

Programming Tips and Gotchas
DROP will only work when it is issued against a pre-existing object of the
appropriate type and when the user has appropriate permissions (usually the
DROP TABLE permission—refer to the section on the GRANT statement for
more information). The SQL standard requires only that the owner of an
object be able to drop it, but most database platforms allow variations on that

requirement. For example, the database superuser/superadmin can usually
drop any object on a database server.

With some vendors, the DROP command fails if the database object has
extended properties. For example, Microsoft SQL Server will not drop a table
that is replicated unless you first remove the table from replication.
PostgreSQL will not allow dropping anything that has dependencies without
the CASCADE clause.

WARNING
It is important to be aware that most vendors do not notify you if the DROP command
creates a dependency problem. Thus, if a table that is used by a few views and stored
procedures elsewhere in the database is dropped, no warning is issued; those other objects
simply fail when they are accessed. To prevent this problem, you may wish to use the
RESTRICT syntax where it is available, or check for dependencies before invoking the
DROP statement.

You may have noticed that the ANSI standard does not support certain
common DROP commands, such as DROP DATABASE and DROP INDEX,
even though every vendor covered in this book (and just about every one in
the market) supports these commands. The exact syntax for each of these
commands is covered in the platform-specific sections that follow.

MySQL
MySQL supports the DROP clause for most any object that it has a CREATE
clause. MySQL supports the DROP statement for the following SQL objects:

DROP { {DATABASE | SCHEMA} | FUNCTION | INDEX |
 PROCEDURE | [TEMPORARY] TABLE | TRIGGER | VIEW }
[IF EXISTS] object_name[, ...]
[RESTRICT |CASCADE]

The supported SQL syntax elements are:

{DATABASE | SCHEMA} database_name
Drops the named database, including all the objects it contains (such as

tables and indexes). DROP SCHEMA is a synonym for DROP
DATABASE on MySQL. The DROP DATABASE command removes
all database and table files from the filesystem, as well as two-digit
subdirectories. MySQL will return a message showing how many files
were erased from the database directory. (Files of these extensions are
erased: .BAK, .DAT, .FRM, .HSH, .ISD, .ISM, .MRG, .MYD, .MYI,
.DM, and .FM.) If the database is linked, both the link and the database
are erased. You may drop only one database at a time. RESTRICT and
CASCADE are not valid on DROP DATABASE.

FUNCTION routine_name
Drops the named routine from a MySQL v5.1 or greater database. You
can use the IF EXISTS clause with a DROP FUNCTION statement.

PROCEDURE routine_name
Drops the named routine from a MySQL v5.1 or greater database. You
can use the IF EXISTS clause with a DROP PROCEDURE statement.

[TEMPORARY] TABLE table_name[, . . .]
Drops one or more named tables, with table names separated from each
other by commas. MySQL erases each table’s definition and deletes the
three table files (.FRM, .MYD, and .MYI) from the filesystem. Issuing
this command causes MySQL to commit all active transactions. The
TEMPORARY keyword drops only temporary tables without committing
running transactions or checking access rights.

TRIGGER [schema_name.]trigger_name
Drops a named trigger for a MySQL v5.0.2 or greater database. You can
use the IF EXISTS clause with a DROP TRIGGER statement to ensure
that you only drop a trigger that actually exists within the database.

VIEW view_name

Drops a named view for the MySQL database. You can use the IF
EXISTS clause with a DROP VIEW statement.

IF EXISTS
Prevents an error message when you attempt to drop an object that does
not exist. Usable in MySQL v3.22 or later.

RESTRICT | CASCADE
Noise words. These keywords do not generate an error, nor do they have
any other effect.

MySQL supports only the ability to drop a database, a table (or tables), or an
index from a table. Although the DROP statement will not fail with the
RESTRICT and CASCADE optional keywords, they have no effect. You can
use the IF EXISTS clause to prevent MySQL from returning an error message
if you try to delete an object that doesn’t exist.

Other objects that MySQL allows you to drop using similar syntax include:

DROP { EVENT | FOREIGN KEY | LOGFILE GROUP | PREPARE | PRIMARY KEY |
 SERVER | TABLESPACE | USER }object_name

These variations of the DROP statement are beyond the scope of this book.
Check the MySQL documentation for more details.

Oracle
Oracle supports most of the ANSI keywords for the DROP statements, as
well as many additional keywords corresponding to objects uniquely
supported by Oracle. Oracle supports the DROP statement for the following
SQL objects:

DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE | TABLE |
 TRIGGER | TYPE [BODY] | [MATERIALIZED] VIEW }object_name

The rules for Oracle DROP statements are less consistent than the ANSI

standard’s rules, so the full syntax of each DROP variant is shown in the
following list:

DATABASE database_name
Drops the named database from the Oracle server.

FUNCTION function_name
Drops the named function, as long as it is not a component of a package.
(If you want to drop a function from a package, use the CREATE
PACKAGE . . .OR REPLACE statement to redefine the package without
that function.) Any local objects that depend on or call the function are
invalidated, and any statistical types associated with the function are
disassociated.

INDEX index_name [FORCE]
Drops a named index or domain index from the database. Dropping an
index invalidates all objects that depend on the parent table, including
views, packages, functions, and stored procedures. Dropping an index
also invalidates cursors and execution plans that use the index and will
force a hard parse of the affected SQL statements when they are next
executed.

Non-IOT indexes are secondary objects and can be dropped and recreated
without any loss of user data. IOTs, because they combine both table and
index data in the same structure, cannot be dropped and recreated in this
manner. IOTs should be dropped using the DROP TABLE syntax.

When you drop a partitioned index, all partitions are dropped. When you
drop a composite partitioned index, all index partitions and subpartitions
are dropped. When you drop a domain index, any statistics associated
with the domain index are removed and any statistic types are
disassociated. The optional keyword FORCE applies only when dropping
domain indexes. FORCE allows you to drop a domain index marked IN
PROGRESS, or to drop a domain index when its indextype routine

invocation returns an error. For example:

DROP INDEX ndx_sales_salesperson_quota;

PROCEDURE procedure_name
Drops the named stored procedure. Any dependent objects are invalidated
when you drop a stored procedure, and attempts to access them before
you recreate the stored procedure will fail with an error. If you recreate
the stored procedure and then access a dependent object, the dependent
object will be recompiled.

ROLE role_name
Drops the named role, removes it from the database, and revokes it from
all users and roles to whom it has been granted. No new sessions can use
the role, but sessions that are currently running under the role are not
affected. For example, the following statement drops the sales_mgr role:

DROP ROLE sales_mgr:

TABLE table_name [CASCADE CONSTRAINTS] [PURGE]
Drops the named table, erases all of its data, drops all indexes and triggers
built from the table (even those in other schemas), and invalidates all
permissions and all dependent objects (views, stored procedures, etc.). On
partitioned tables, Oracle drops all partitions (and subpartitions). On
index-organized tables, Oracle drops all dependent mapping tables.
Statistic types associated with a dropped table are disassociated.
Materialized view logs built on a table are also dropped when the table is
dropped.

The DROP TABLE statement is effective for standard tables, index-
organized tables, and object tables. The table being dropped is only
moved to the recycling bin, unless you add the optional keyword PURGE,
which tells Oracle to immediate free all space consumed by the table.

(Oracle also supports a non-ANSI SQL command called PURGE that lets
you remove tables from the recycling bin outside of the DROP TABLE
statement.) DROP TABLE erases only the metadata of an external table.
You must use an external operating system command to drop the file
associated with an external table and reclaim its space.

Use the optional CASCADE CONSTRAINTS clause to drop all
referential integrity constraints elsewhere in the database that depend on
the primary or unique key of the dropped table. You cannot drop a table
with dependent referential integrity constraints without using the
CASCADE CONSTRAINTS clause. The following example drops the
job_desc table in the emp schema, then drops the job table and all
referential integrity constraints that depend on the primary key and
unique key of the job table:

DROP TABLE emp.job_desc;

DROP TABLE job CASCADE CONSTRAINTS;

TRIGGER trigger_name
Drops the named trigger from the database.

TYPE [BODY] type_name [{FORCE | VALIDATE}]
Drops the specification and body of the named object type, nested table
type, or VARRAY, as long as they have no type or table dependencies.
You must use the optional FORCE keyword to drop a supertype, a type
with an associated statistic type, or a type with any sort of dependencies.
All subtypes and statistic types are then invalidated. Oracle will also drop
any public synonyms associated with a dropped type. The optional
BODY keyword tells Oracle to drop only the body of the type while
keeping its specification intact. BODY cannot be used in conjunction
with the FORCE or VALIDATE keywords. Use the optional VALIDATE
keyword when dropping subtypes to check for stored instances of the
named type in any of its supertypes. Oracle performs the drop only if no

stored instances are found. For example:

DROP TYPE salesperson_type;

VIEW view_name [CASCADE CONSTRAINTS]
Drops the named view and marks as invalid any views, subviews,
synonyms, or materialized views that refer to the dropped view. Use the
optional clause CASCADE CONSTRAINTS to drop all referential
integrity constraints that depend on the view. Otherwise, the DROP
statement will fail if dependent referential integrity constraints exist. For
example, the following statement drops the active_employees view in the
hr schema:

DROP VIEW hr.active_employees;

In the DROP syntax, object_name can be replaced with
[schema_name.]object_name. If you omit the schema name, the default
schema of the user session is assumed. Thus, the following DROP statement
drops the specified view from the sales_archive schema:

DROP VIEW sales_archive.sales_1994;

However, if your personal schema is scott, the following command is
assumed to be against scott.sales_1994:

DROP VIEW sales_1994;

Oracle also supports the DROP statement for a large number of objects that
aren’t part of SQL, including:

DROP { CLUSTER | CONTEXT | DATABASE LINK | DIMENSION | DIRECTORY | DISKGROUP |
 FLASHBACK ARCHIVE | INDEXTYPE | JAVA | LIBRARY | MATERIALIZED VIEW |
 MATERIALIZED VIEW LOG | OPERATOR | OUTLINE | PACKAGE | PROFILE | RESTORE
 POINT |
 ROLLBACK SEGMENT | SEQUENCE | SYNONYM | TABLESPACE | TYPE BODY | USER
}object_name

These variations are beyond the scope of this book. Refer to the Oracle
documentation if you want to drop an object of one of these types (although
the basic syntax is the same for almost all variations of the DROP statement).

PostgreSQL
PostgreSQL supports both the RESTRICT and CASCADE optional keywords
supported by the ANSI standard. RESTRICT is assumed when CASCADE is
not specified. PostgreSQL also supports dropping and creating objects in a
transaction, as such you can rollback a sequence of drops and recover
everything. It does support a wide variety of DROP variants including
PostgreSQL specific objects. The SQL objects covered are as follows:

DROP { DATABASE | DOMAIN | FUNCTION | INDEX | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | [MATERIALIZED] VIEW }
[IF EXISTS]object_name
[CASCADE | RESTRICT]

Following is the full SQL-supported syntax for each variant:

DATABASE database_name
Drops the named database and erases the operating system directory
containing all of the database’s data. This command can only be executed
by the database owner, while that user is connected to a database other
than the target database. For example, we can drop the sales_archive
database:

DROP DATABASE sales_archive;

DOMAIN domain_name[, . . .] [CASCADE | RESTRICT]
Drops one or more named domains owned by the session user.
CASCADE automatically drops objects that depend on the domain, while
RESTRICT prevents the action from occurring if any objects depend on
the domain. When omitted, RESTRICT is the default behavior.

FUNCTION function_name ([datatype1[, . . .]) [CASCADE | RESTRICT]

Drops the named user-defined function. Since PostgreSQL allows
multiple functions of the same name, distinguished only by the various
input parameters they require, you must specify one or more datatypes to
uniquely identify the user-defined function you wish to drop. PostgreSQL
does not perform any kind of dependency checks on other objects that
might reference a dropped user-defined function. (They will fail when
invoked against an object that no longer exists.) For example:

DROP FUNCTION median_distribution (int, int, int, int);

INDEX index_name[, . . .] [CASCADE | RESTRICT]
Drops one or more named indexes that you own. For example:

DROP INDEX ndx_titles, ndx_authors;

ROLE rule_name[, . . .]
Drops one or more named database roles. On PostgreSQL, a role cannot
be dropped when it is referenced in any database. That means you’ll need
to drop or reassign ownership of any objects owned by the role, using
REASSIGN OWNED and DROP OWNED statements, before dropping
it, and then revoke any privileges the role has been granted.

SCHEMA schema_name[, . . .] [CASCADE | RESTRICT]
Drops one or more named schemas from the current database. A schema
can only be dropped by a superuser or the owner of the schema (even
when the owner does not explicitly own all of the objects in the schema).

TABLE table_name[, . . .] [CASCADE | RESTRICT]
Drops one or more existing tables from the database, as well as any
indexes or triggers specified for the tables. For example:

DROP TABLE authors, titles;

TRIGGER trigger_name ON table_name [CASCADE | RESTRICT]
Drops the named trigger from the database. You must specify the
table_name because PostgreSQL requires that trigger names be unique
only on the tables to which they are attached. This means it is possible to
have many triggers called, say, insert_trigger or delete_trigger, each on
a different table. For example:

DROP TRIGGER insert_trigger ON authors;

TYPE type_name[, . . .] [CASCADE | RESTRICT]
Drops one or more pre-existing user-defined types from the database.
PostgreSQL does not check to see what impact the DROP TYPE
command might have on any dependent objects, such as functions,
aggregates, or tables; you must check the dependent objects manually.
(Do not remove any of the built-in types that ship with PostgreSQL!)
Note that PostgreSQL’s implementation of types differs from the ANSI
standard. Refer to the section on the CREATE/ALTER TYPE statement
for more information.

[MATERLIAZED] VIEW view_name[, . . .] [CASCADE | RESTRICT]
Drops one or more pre-existing views from the database. If a view is
materialized, the word MATERLIZED needs to be prefixed to the drop.

CASCADE | RESTRICT
CASCADE automatically drops objects that depend on the object being
dropped, while RESTRICT prevents the action from occurring if any
objects depend on the object being dropped. When omitted, RESTRICT
is the default behavior.

IF EXISTS
Suspends the creation of an error message if the object to be dropped does
not exist. This subclause is usable for most variations of the DROP

statement.

Note that PostgreSQL drop operations do not allow you to specify the target
database where the operation will take place (except for DROP DATABASE).
Therefore, you should execute any drop operation from the database where
the object you want to drop is located.

PostgreSQL supports variations of the DROP statement for several objects
that are extensions to the SQL standard, as shown here:

DROP { AGGREGATE | CAST | CONVERSION | EXTENSION | FOREIGN TABLE | GROUP |
LANGUAGE | OPERATOR [CLASS] |
 RULE | SEQUENCE | TABLESPACE | USER } object_name

These variations are beyond the scope of this book. Refer to the PostgreSQL
documentation if you want to drop an object of one of these types (although
the basic syntax is the same for almost all variations of the DROP statement).

SQL Server
SQL Server supports several SQL variants of the DROP statement:

DROP { DATABASE | FUNCTION | INDEX | PROCEDURE | ROLE |
 SCHEMA | TABLE | TRIGGER | TYPE | VIEW }
[IF EXISTS] object_name

Following is the full syntax for each variant:

IF EXISTS object_name
Conditionally drops an object, only if it already exists starting in SQL
Server 2016 and Azure SQL Database.

DATABASE database_name[, . . .]
Drops the named database(s) and erases all disk files used by the
database(s). This command may only be issued from the master database.
Replicated databases must be removed from their replication schemes
before they can be dropped, as must log shipping databases. You cannot
drop a database while it is in use, nor can you drop system databases

(master, model, msdb, or tempdb). For example, we can drop the
northwind and pubs databases with one command:

DROP DATABASE northwind, pubs

GO

FUNCTION [schema.]function_name[, . . .]
Drops one or more user-defined functions from the current database.

INDEX index_name ON table_or_view_name[, . . .] [WITH { MAXDOP
=int | ONLINE = {ON | OFF} | MOVE TO location [FILESTREAM_ON
location] }]

Drops one or more indexes from tables or indexed views in the current
database and returns the freed space to the database. This statement
should not be used to drop a PRIMARY KEY or UNIQUE constraint.
Instead, drop these constraints using the ALTER TABLE . . . DROP
CONSTRAINT statement. When dropping a clustered index from a table,
all non-clustered indexes are rebuilt. When dropping a clustered index
from a view, all non-clustered indexes are dropped. The WITH subclause
may only be used when dropping a clustered index. MAXDOP specifies
the maximum degrees of parallelism that SQL Server may use to drop the
clustered index. Values for MAXDOP may be 1 (suppresses parallelism),
0 (the default, using all or fewer processors on the system), or a value
greater than 1 (restricts parallelism to the value of int). ONLINE specifies
that queries or updates may continue on the underlying tables (with ON),
or that table locks are applied and the table is unavailable for the duration
of the process (with OFF). MOVE TO specifies a pre-existing filegroup
or partition, or the default location for data within the database to which
the clustered index will be moved. The clustered index is moved to the
new location in the form of a heap.

PROC[EDURE] procedure_name[, . . .]

Drops one or more stored procedures from the current database. SQL
Server allows multiple versions of a single procedure via version
numbers, but these versions cannot be dropped individually; you must
drop all versions of a stored procedure at once. System procedures (those
with an sp_ prefix) are dropped from the master database if they are not
found in the current user database. For example:

DROP PROCEDURE calc_sales_quota

GO

ROLE rule_name[, . . .]
Drops one or more roles from the current database. The role must not
own any objects, or else the statement will fail. You must first drop
owned objects or change their ownership before dropping a role that owns
any objects.

SCHEMA schema_name
Drops a schema that does not own any objects. To drop a schema that
owns objects, first drop the dependent objects or assign them to a
different schema.

TABLE [database_name.][schema_name.]table_name[, . . .]
Drops a named table and all data, permissions, indexes, triggers, and
constraints specific to that table. (The table_name may be a fully qualified
table name like pubs.dbo.sales or a simple table name like sales, if the
current database and owner are correct.) Views, functions, and stored
procedures that reference the table are not dropped or marked as invalid,
but will return an error when their procedural code encounters the missing
table. Be sure to drop these yourself! You cannot drop a table referenced
by a FOREIGN KEY constraint without first dropping the constraint.
Similarly, you cannot drop a table used in replication without first
removing it from the replication scheme. Any user-defined rules or

defaults are unbound when the table is dropped. They must be rebound if
the table is recreated.

TRIGGER trigger_name[, . . .] [ON {DATABASE | ALL SERVER}]
Drops one or more triggers from the current database. The subclause [ON
{DATABASE | ALL SERVER}] is available when dropping DDL
triggers, while the subclause [ON ALL SERVER] is also available to
LOGON event triggers. ON DATABASE indicates the scope of the DDL
trigger applied to the current database and is required if the subclause was
used when the trigger was created. ON ALL SERVER indicates the scope
of the DDL or LOGON trigger applied to the current server and is
required if the subclause was used when the trigger was created.

TYPE [schema_name.]type_name[, . . .]
Drops one or more user-defined types from the current database.

VIEW [schema_name.]view_name[, . . .]
Drops one or more views from the database, including indexed views, and
returns all space to the database.

SQL Server also has a large number of objects that extend the ANSI standard
and that are removed using the more-or-less standardized syntax of the
DROP statement. These variations of the syntax include:

DROP { AGGREGATE | APPLICATION ROLE | ASSEMBLY | ASYMMETRIC KEY | BROKER
PRIORITY |
 CERTIFICATE | CONTRACT | CREDENTIAL | CRYPTOGRAPHIC PROVIDER | DATABASE AUDIT
 SPECIFICATION | DATABASE ENCRYPTIIN KEY | DEFAULT | ENDPOINT | EVENT
 NOTIFICATION | EVENT SESSION | FULLTEXT CATALOG | FULLTEXT INDEX | FULLTEXT
 STOPLIST | LOGIN | MASTER KEY | MESSAGE TYPE | PARTITION FUNCTION | PARTITION
 SCHEME | QUEUE | REMOTE SERVICE BINDING | RESOURCE POOL | ROUTE | SERVER
AUDIT |
 SERVER AUDIT SPECIFICATION | SERVICE | SIGNATURE | STATISTICS | SYMMETRIC KEY
|
 SYNONYM | USER | WORKLOAD GROUP | XML SCHEMA COLLECTION }object_name

These variations are beyond the scope of this book. Refer to the SQL Server

documentation to drop an object of one of these types (although the basic
syntax is the same for almost all variations of the DROP statement).

See Also
CALL

CONSTRAINTS

CREATE/ALTER FUNCTION/PROCEDURE/METHOD

CREATE SCHEMA

CREATE/ALTER TABLE

CREATE/ALTER VIEW

DELETE

DROP

GRANT

INSERT

RETURN

SELECT

SUBQUERY

UPDATE

1. 1. SQL History and Implementations
a. The Relational Model and ANSI SQL

i. Codd’s Rules for Relational Database Systems

ii. Codd’s Rules in Action: Simple SELECT Examples

b. History of the SQL Standard
i. What’s New in SQL:2016

ii. What’s New in SQL:2011

iii. What’s New in SQL:2008

iv. What’s New in SQL:2006

v. What’s New in SQL:2003 (aka SQL3)

vi. Levels of Conformance

vii. Supplemental Features Packages in the SQL3 Standard

viii. SQL3 Statement Classes

c. SQL Dialects

2. 2. Foundational Concepts
a. Database Platforms Described in This Book

b. Categories of Syntax
i. Identifiers

ii. Literals

iii. Operators

iv. Keywords and Reserved Words

c. ANSI/ISO SQL and Platform-specific Data Types
i. MySQL Data Types

ii. Oracle Datatypes

iii. PostgreSQL Data types

iv. SQL Server Data Types

d. Constraints
i. Scope

ii. Syntax

iii. PRIMARY KEY Constraints

iv. FOREIGN KEY Constraints

v. UNIQUE Constraints

vi. CHECK Constraints

3. 3. Structuring Your Data
a. How to Use This Chapter

b. SQL Platform Support

c. SQL Command Reference
i. CREATE/ALTER DATABASE Statement

ii. CREATE/ALTER DOMAIN Statement

iii. CREATE/ALTER INDEX Statement

iv. CREATE ROLE Statement

v. CREATE SCHEMA Statement

vi. CREATE/ALTER TABLE Statement

vii. CREATE/ALTER TYPE Statement

viii. CREATE/ALTER VIEW Statement

ix. DROP Statements

	1. SQL History and Implementations
	The Relational Model and ANSI SQL
	Codd’s Rules for Relational Database Systems
	Codd’s Rules in Action: Simple SELECT Examples

	History of the SQL Standard
	What’s New in SQL:2016
	What’s New in SQL:2011
	What’s New in SQL:2008
	What’s New in SQL:2006
	What’s New in SQL:2003 (aka SQL3)
	Levels of Conformance
	Supplemental Features Packages in the SQL3 Standard
	SQL3 Statement Classes

	SQL Dialects

	2. Foundational Concepts
	Database Platforms Described in This Book
	Categories of Syntax
	Identifiers
	Literals
	Operators
	Keywords and Reserved Words

	ANSI/ISO SQL and Platform-specific Data Types
	MySQL Data Types
	Oracle Datatypes
	PostgreSQL Data types
	SQL Server Data Types

	Constraints
	Scope
	Syntax
	PRIMARY KEY Constraints
	FOREIGN KEY Constraints
	UNIQUE Constraints
	CHECK Constraints

	3. Structuring Your Data
	How to Use This Chapter
	SQL Platform Support
	SQL Command Reference
	CREATE/ALTER DATABASE Statement
	CREATE/ALTER DOMAIN Statement
	CREATE/ALTER INDEX Statement
	CREATE ROLE Statement
	CREATE SCHEMA Statement
	CREATE/ALTER TABLE Statement
	CREATE/ALTER TYPE Statement
	CREATE/ALTER VIEW Statement
	DROP Statements

