

Defending IoT

Infrastructures

with the Raspberry Pi

Monitoring and Detecting Nefarious

Behavior in Real Time

—

Chet Hosmer

Defending IoT

Infrastructures with

the Raspberry Pi

Monitoring and Detecting

Nefarious Behavior in

Real Time

Chet Hosmer

 Defending IoT Infrastructures with the Raspberry Pi: Monitoring and

 Detecting Nefarious Behavior in Real Time

Chet Hosmer

Longs, South Carolina, USA

ISBN-13 (pbk): 978-1-4842-3699-4

ISBN-13 (electronic): 978-1-4842-3700-7

https://doi.org/10.1007/978-1-4842-3700-7

Library of Congress Control Number: 2018949207

Copyright © 2018 by Chet Hosmer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.

com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub via the book’s product page, located at www.apress.com/9781484236994. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

 To my wife Janet; your love and guidance make

 the journey complete.

Table of Contents

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

Chapter 1: IoT Vulnerabilities ���1

Why Is IoT Vulnerable? ��2

Device-to-Device Communication ���4

Device-to-Cloud Communications ���4

Device-to-Gateway Sensor Network Communications ������������������������������������5

Moving Beyond the Basics ��9

What Unique Vulnerabilities Lurk Within IoT Devices? ����������������������������������10

What Are the Common IoT Attack Vectors? ���11

How Do the Raspberry Pi and Python Fit In? ��12

Raspberry Pi Brief Introduction ���12

Summary���15

Chapter 2: Classifying and Modeling IoT Behavior ����������������������������17

What Should We Collect? ��19

Ethernet Packet Format ���21

ARP ��23

IP Packets ��24

TCP Packets ���25

v

Table of Con

T

T

able of Con enT

en s

UDP Packet ��26

ICMP Packet ��27

Passively Monitoring IoT Behavior ��27

Modeling Normal Behavior ��27

How Can This Be Accomplished on a Raspberry Pi with Python? �����������������30

Summary���46

Chapter 3: Raspberry Pi Configuration and PacketRecorder�py

Enhancements ��47

Basic Configuration (as of This Writing) ��48

Get Information About the Pi CPU ��49

Get Information Regarding Pi Memory ��51

Get Information Regarding the Current Free Memory Only ���������������������������52

Get Information Regarding Pi Filesystem ��53

Get Information Regarding USB Devices and Interfaces �������������������������������53

Get Information About the Version of Linux ���54

Upgrading Your Pi ��55

Advancing PacketRecorder�py ���56

Step 1: Creating the Lookups ��58

Ports Dictionary Creating Example ��59

Utilizing the Pickle Files in PacketRecorder�py ��63

Executing the Updated PacketRecorder�py ��69

Summary���71

Chapter 4: Raspberry Pi as a Sensor ��73

Turning the Packet Recorder into a Sensor ���73

Raspberry Pi Sensor/Recorder Design ��74

Design Overview ��75

Summary���127

vi

Table of Con

T

T

able of Con enTs

Chapter 5: Operating the Raspberry Pi Sensor ���������������������������������129

Raspberry Pi Setup ���129

Connecting the Raspberry Pi ���131

Switch Configuration for Packet Capture ��131

Running the Python Application ���134

Creating a Baseline ���136

Summary���149

Chapter 6: Adding Finishing Touches ���151

Raspberry Pi Latest Version ��151

Sensor Software Updates ��153

Summary���159

Chapter 7: Future Work���161

Expansion of Lookup Tables ��161

Port Lookups ��161

Manufacturer Lookup ��162

Country Lookup ���162

Implementation of User Searches and Filtering of Scan Result ������������������������163

Headless Communication with Remotely Deployed Pi Sensors ������������������������163

Correlation of Results from a Swarm of Pi Sensors ��166

Raspberry Pi Sensor: Executing the Sensor on Your Raspberry Pi ��������������������167

Summary���167

 Appendix A: Obtaining the Python Source Code �������������������������������169

 Obtaining the Source Code ���169

 Source Code Copyright and Licensing ��170

 Glossary ��171

Index ���175

vii

About the Author

Chet Hosmer is the Founder of Python

Forensics, Inc., a nonprofit organization

focused on the collaborative development of

open source investigative technologies using

the Python programming language. Chet has

been researching and developing technology

and training surrounding forensics, digital

investigation, and steganography for over two

decades. He has made numerous appearances

to discuss emerging cyberthreats, including National Public Radio’s

 Kojo Nnamdi Show, ABC’s Primetime Thursday, NHK Japan, TechTV’s CyberCrime and ABC News Australia. He has also been a frequent

contributor to technical and news stories relating to cybersecurity and

forensics and has been interviewed and quoted by IEEE, The New York

 Times, The Washington Post, Government Computer News, Salon.com, and Wired Magazine.

Chet has authored five books within the cybersecurity domain, ranging

from data hiding to forensics.

Chet serves as a visiting professor at Utica College in the Cybersecurity

Graduate Program. He is also an adjunct faculty member at Champlain

College in the Digital Forensic Science Program Masters Program.

Chet delivers keynote and plenary talks on various cybersecurity-

related topics around the world each year.

ix

About the Technical Reviewer

Michael T. Raggo

Chief Security Officer, 802 Secure (CISSP,

NSA-IAM, ACE, CSI) has over 20 years of

security research experience. His current

focus is wireless IoT threats impacting the

enterprise. Michael is the author of Mobile

 Data Loss: Threats and Countermeasures and

 Data Hiding: Exposing Concealed Data in

 Multimedia, Operating Systems, Mobile Devices

 and Network Protocols for Syngress Books,

and contributing author for Information Security: The Complete Reference (2nd edition). A former security trainer, Michael has briefed international defense agencies including the FBI and Pentagon, is a participating

member of FSISAC/BITS and PCI, and is a frequent presenter at security

conferences, including Black Hat, DEF CON, Gartner, RSA, DoD Cyber

Crime, OWASP, HackCon, and SANS.

xi

Acknowledgments

A special thanks to Mike Raggo for his insight and encouragement

throughout this process. Thank you for championing this project from the

beginning and testing every version of the Pi sensor along the way. Your

guidance, your friendship, and your quest to improve security and safety

are inspiring.

Thanks to Carlton Jeffcoat and Cameron Covington at WetStone for

deploying the sensor in live environments to passively map potential

vulnerabilities and for providing insights to make the sensor even better.

Thanks to the Utica College cybersecurity graduate students who have

experimented with the earliest to the final versions of PiSensor and have

provided excellent feedback.

Thanks to Rita Fernando, Laura Berendson, Susan McDermott, and the

whole team at Apress for your incredible patience throughout this process

and for your constant encouragement.

xiii

Introduction

The Internet of Things (IoT) and industrial control systems (ICS) require

special attention from a cybersecurity point of view. This is based on the well-known and -documented fact that the protocols and implementations

have vulnerabilities that when exploited can produce considerable

damage and provide an avenue for the exfiltration of data.

In addition, when examining these environments due to the dynamic

nature and/or critical infrastructure implications, active scanning or

probing of these environments is either discouraged or ineffective. Thus,

passive monitoring of these environments offers insights into the behavior of these devices and the networks in which they operate. One of the core

issues is the placement of the monitoring devices to provide visibility and coverage from both the wired and wireless points of view. There are vendor solutions that are offered today that rely on expensive hardware and

software solutions that may lack flexibility.

Using a Raspberry Pi and open source Python software to passively

monitor, detect, baseline, and provide insight into these behaviors has

been called “crazy” by some. However, as you will see, the Raspberry

Pi itself, with its multicore processor and integrated wired and wireless

network components, provides the basic underpinnings necessary for a

lightweight IoT/ICS sensor for less than $50.00. Couple that with an open

source extensible Python software solution that dynamically reduces and

records the most pertinent observations, and you have a low-cost, flexible, and nimble PiSensor for IoT and ICS environments.

xv

CHAPTER 1

IoT Vulnerabilities

The Internet of Things (IoT) is a network of processing devices with unique identities that can connect to and transfer data over a network without

requiring direct human interaction (see Figure 1-1). In many cases this makes the devices themselves autonomous or semiautonomous. They

can be controlled, managed, and programmed to follow specific rules of

engagement.

 Figure 1-1. IoT interconnected

The breadth of devices that currently exist as of this writing include the following:

• Health and Fitness Monitoring

• Manufacturing Systems

• Energy Metering

© Chet Hosmer 2018

1

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_1

ChaPTeR 1 IoT VulneRabIlITIes

• Hospital and Patient Care

• Smart Appliances and Lighting

• Enhanced Surveillance Systems

• Entertainment

• Home Automation and Security

• Multifunction Wearable Technologies

• Automotive

• Tracking Systems

• Personal Communications

• Along with new categories emerging every day

Note The focus of this book and the accompanying source code is

to observe, learn, model, and detect aberrant behavior of IoT devices

using the Raspberry Pi as a sensor.

 Why Is IoT Vulnerable?

When considering vulnerabilities of IoT devices and networks, we must first define the overall attack surface. If you believe Gartner’s prediction (Gartner Research, 2017) that 25.1 billion IoT endpoints will exist by the year 20211,

then this would certainly define a large attack surface. Many of these devices are also interconnected and operating across boundaries of consumers,

business, industry, and government, without geographic restrictions.

1 Gartner: Forecast: Internet of Things – Endpoints and Associated

 Services, Worldwide 2017. www.gartner.com/doc/3840665/

forecast-internet-things--endpoints.

2

ChaPTeR 1 IoT VulneRabIlITIes

Deployment options for IoT differ widely depending upon their

application, industry, and defined use. However, we can generally classify IoT deployments in one of three ways: device to device, device to cloud, or device to gateway, as shown in Figures 1-2, 1-3, and 1-4.

 Figure 1-2. Device-to-device communication model

3

ChaPTeR 1 IoT VulneRabIlITIes

 Device-to-Device Communication

This simple model depicts devices that directly discover, connect, and

communicate using the locally available networks. The communication

can be through traditional TCP (Transaction Control Protocol)/UDP (User

Datagram Protocol)/IP (Internet Protocol) networks; however, in many

cases, they communicate over low-power or wireless networks such as

Bluetooth, Z-Wave, ZigBee, and Universal Plug and Play (uPnP).

 Figure 1-3. Device-to-cloud communication

 Device-to-Cloud Communications

IoT devices using this method connect directly to an Internet-based cloud

service to exchange data and control messages. This method typically

utilizes traditional protocols such as TCP, UDP, HTTP(S), and TLS

(Transport Layer Security) for security-based exchanges.

4

ChaPTeR 1 IoT VulneRabIlITIes

 Figure 1-4. Device-to-gateway framework

 Device-to-Gateway Sensor Network

Communications

Utilizing this method, sensors discover and communicate with other

sensors and coordinate information through gateways. The gateway, in

turn, communicates information with other sensor networks and typically

with the cloud.

At first glance, these connection and communications models

don’t look that different from more traditional distributed computing

environments. However, many of the underlying protocols and methods

of deployment are dissimilar from traditional environments and require

closer examination. From a cybersecurity point of view, we still must

consider and examine these environments using proven principles. At the

heart, of course, is the CIA triad as shown in Figure 1-5.

5

ChaPTeR 1 IoT VulneRabIlITIes

 Figure 1-5. CIA triad

The IoT Security Foundation published the IoT Security Compliance

 Framework in 2016 to help promote contemporary best practices in IoT

security. As part of the framework, they applied the CIA triad to different classes of IoT devices as shown in Figure 1-6. They defined five specific classes of IoT devices along with the security requirements of each.

• Class 0: Compromise of data would cause little or no

impact.

• Class 1: Compromise of data would cause limited

impact.

6

ChaPTeR 1 IoT VulneRabIlITIes

• Class 2: Devices must be resilient to attack on

availability that would have significant impact.

• Class 3: Devices must both be resilient to attack and

protect sensitive data.

• Class 4: Devices must be resilient to attack, preserve

integrity of operation, and protect sensitive data. Any

resulting breach would cause serious impact and

potentially cause injury.

 Figure 1-6. Compliance classification security objectives

7

ChaPTeR 1 IoT VulneRabIlITIes

Interpreting the security objectives at each level are defined here in

Table 1-1.

 Table 1-1. Interpreting the Security Levels

Category

Level

Requirements

Integrity

basic

IoT devices resist low-level threat sources that have

very little capability

Medium

IoT devices resist medium-level threat sources that

have minimal focused capability

high

IoT devices must resist substantial-level threat sources

Confidentiality

basic

IoT devices processing public information

Medium

IoT devices protect against disclosure of low-value

personally identifiable information

high

IoT devices process very sensitive information and must

protect against any disclosure

availability

basic

IoT device lack of availability would cause only minor

disruption

Medium

IoT devices should possess some availability defenses

against the most common attacks

high

IoT devices must anticipate determined availability

attacks and take significant measures to overcome them

8

ChaPTeR 1 IoT VulneRabIlITIes

 Moving Beyond the Basics

Now that we have set the stage of what we are up against, let’s take a

deeper look at what is different about IoT devices and their potential

security challenges. What makes IoT devices and their accompanying

protocols unique?

Low-Power Sensors - These devices may have limited processing

and memory capabilities that limit the amount of traditional defensive

technologies that can be integrated into them. In addition, they may only

be able to communicate using low-power protocols such as Bluetooth,

ZigBee, or Z-Wave, thus obscuring their behavior on either the local area

network (LAN) or WIFI network.

Single Board Computers and Embedded Operating Systems -

To reduce cost and power requirements, many IoT devices use small

inexpensive hardware platforms such as Raspberry Pi, WeMO, Arduino,

Intel Edison, and Quark. These devices are capable of running embedded

operating systems such as Raspbian, Snappy Ubuntu, FreeBSD, Kali Linux,

and Windows 10 IoT Core along with other lesser-known open source

and proprietary systems such as RTOS IoT, Nano-RK, TinyOS, Mantis,

and Mbed. As you might have already guessed, some of these operating

systems have NOT been thoroughly vetted for security vulnerabilities.

Furthermore, since some of the most popular are open source, the ability

for adversaries to identify and then exploit design and/or coding flaws is a potential threat.

Zero Configuration Devices - All configuration of these devices is done automatically (without manual intervention) simply by applying power.

This generates a network ready state that typically requires three steps:

• Address allocation without the need of a DHCP

(Dynamic Host Configuration Protocol) server

• Name translation without access to a predefined

Domain Name Service

9

ChaPTeR 1 IoT VulneRabIlITIes

• Ability to discover other devices that are nearby or

located on the same subnet, WIFI network, or other

low-power wireless network

Dynamic Discovery Protocols - Protocols such as uPnP, Simple

Service Discovery Protocol (SSDP), and Network Basic Input/Output

System (NETBIOS) with Server Message Block are just a few of the

examples that are commonly used. Typically, IoT devices need to discover

services available to them. NETBIOS with Server Message Block allows

devices to advertise services and then determine their status.

Use of Multicast Communication - Protocols such as Web Services Dynamic Discovery can identify services available on the LAN. Web

Services Dynamic Discovery can communicate on top of SOAP (Simple

Object Access Protocol), which in turn can run on top of HTTP, SMTP, TCP,

UDP, and even the Java Message Service (JMS).

All of these communication and discovery protocols make it difficult

to track behavior, control access, ensure security, and even continuously

monitor these dynamic behaviors.

 What Unique Vulnerabilities Lurk Within IoT

Devices?

Our research shows that a plethora of vulnerabilities exists within the IoT

domain. This list represents several key high-level concerns.

• Hardware platforms and embedded operating systems

built for low cost and low power potentially contain

a wide variety of untapped vulnerabilities versus

traditional desktop and mobile devices.

• Direct discovery and connection between local IoT

devices has the potential of enabling self-replicating

malware threats once a single device or manufacturer

has been compromised.

10

ChaPTeR 1 IoT VulneRabIlITIes

• Direct connection of IoT devices to the Internet and

cloud-based services can circumvent traditional proven

security mechanisms and frameworks.

• Lightweight protocols with limited built-in strong

authentication, data privacy, or denial of service

defenses capabilities are targets for those wishing to

obtain access, leak information, or disrupt operation of

target IoT devices and sensor networks.

 What Are the Common IoT Attack Vectors?

Several recent successful attacks against IoT devices have helped to reveal common attack vectors. During DEF CON 23 and 24 (2015–2016) the IoT

Village was launched to focus attention on the vulnerabilities found in IoT

devices. The combined result produced 66 new zero day vulnerabilities

from 18 different manufacturers and over 20 unique devices. The

vulnerabilities included the following:

• Device Backdoors

• Lack of Encryption

• Poor Key Management and Key Protection

• Plain Text Passwords

• Buffer Overflows

• Command Injection Exploits

• SQL (Structured Query Language) Injections

11

ChaPTeR 1 IoT VulneRabIlITIes

In addition, other devices such as SmartTVs, home assistants, and the

devices that they control are being targeted:

• SmartTV Data Leaks (Samsung and LG)

• Alexa and Google Home can be hacked to monitoring

everything you watch and say. These systems control

lights, fans, switches, thermostats, garage doors,

sprinklers, door locks provided from numerous vendors

such as: WeMo, Philips Hue, Samsung SmartThings,

Nest, and ecobee

This represents just a glimpse at the attack surface related to IoT

devices to give you a flavor of the threats and risks associated with IoT

devices, protocols, and platforms.

 How Do the Raspberry Pi and Python Fit In?

As the book title Defending IoT Infrastructures with the Raspberry Pi

implies, we will be developing a Raspberry Pi sensor written in Python.

The Pi will be used to model, monitor, analyze, and report aberrant

behavior emanating from IoT devices along with targeted attacks

perpetrated against those devices.

 Raspberry Pi Brief Introduction

There are literally hundreds of books, videos, tutorials, and online

resources that provide a thorough background on the Raspberry Pi. Thus,

this quick introduction assumes that the reader have familiarity with the

Raspberry Pi. However, I want to provide a focused definition of how I plan to use the Pi as an IoT sensor. It turns out that many IoT devices based on the Raspberry Pi already exist. In addition, the Windows IoT core now runs on a Raspberry Pi offering developers both Linux (Raspbian and other

flavors) along with Windows as a choice for development.

12

ChaPTeR 1 IoT VulneRabIlITIes

 Raspberry Pi Hardware

Figure 1-7 is a snapshot of the Raspberry Pi 3 Model B that we will be using for this project.

 Figure 1-7. Raspberry Pi 3 Model B

The key features of this single board device that are important for our

work that are built into the standard product include the following:

• CPU: 1.2 GHZ quad-core ARM Cortex A53 (ARMv8

Instruction Set): Leveraging each core for specific

functions will be critical in capturing and identifying

IoT device behaviors.

• Memory: 1 GB LPDDR2-900 SDRAM: Utilizing the

expanded memory of Pi 3, will help to reduce I/O to the

slower SD device.

13

ChaPTeR 1 IoT VulneRabIlITIes

• Network: 10/100 MBPS Ethernet, 802.11n Wireless

LAN, Bluetooth 4.0: The built-in networking option

allows for the use of core functions of the Pi for the

main network monitoring interfaces whether they be

wired ethernet, WIFI, or Bluetooth devices.

• USB ports: 4: Provides the needed expansion

opportunities to support other wireless technologies

such as ZigBee.

All of this comes in a package that costs under $40.00 for the single

board device. Adding in the cost of a fast 32-GB SD Card and a computer

kit keeps the cost under $100.

 Raspbian OS

In addition to the Pi itself, we will be using the Raspbian Operating System on the Pi. Specifically, I will be using Raspbian GNU/Linux 8 (Jessie). As we move into later chapters I will provide details of the OS configuration and security measures.

 Python

Python is the language of choice for all the software components being

developed. We will be using Python 2.7.9, which is the latest 2.7.x version available for the Pi as of this writing. With minor modification, the code will run on Python 3.x as well. With a couple of exceptions, I will be

only be using the Python Standard Library modules, thus eliminating

the need to install or most importantly understand the underpinning,

performance, and risks associated with third-party libraries. This is mainly a performance and security decision that will keep the Pi as minimal and

safe as possible. The book is not designed to teach you Python, as there

are many resources that can help you with that. However, all my Python

code is extensively documented and the rationale for the methods and

14

ChaPTeR 1 IoT VulneRabIlITIes

approaches chosen are detailed throughout the book to hopefully extend

your knowledge.

Note There are many outstanding third-party Python libraries and

modules out there for you to experiment with as well.

 Summary

This chapter provided a very brief introduction to the IoT landscape

present and future. In addition, it examined some of the basic differences between IoT devices and more traditional computing devices. We

examined several classes of vulnerabilities and exploits of IoT devices to get a flavor for the diversity we face today and in the future. Finally, we provide a brief introduction to the Raspberry Pi, the Raspbian operating

system, and the Python programming language that will be utilized

throughout this book.

In Chapter 2, we will examine possible methods to model IoT

environments for passively monitoring their behavior and ultimately

discover aberrant behaviors.

15

CHAPTER 2

Classifying and

Modeling IoT Behavior

In Chapter 1 we took a high-level look at the differences between IoT

environments and traditional computing environments. In addition, we

examined some of the unique risks and vulnerabilities associated with

IoT environments along with the unique discovery and communication

protocols that are in use. These characteristics led me to focus on passive mapping and monitoring of IoT behavior. The rationale for this decision

includes the following:

• Many unique devices exist.

• These devices can be temporal, meaning that they may

appear and disappear from networks.

• They can operate on different wireless and wired

networks.

• They can communicate directly with each other,

in many cases without supervision or use of an

intermediary such as a switch or wireless access point.

• New devices can be added by simply applying power to

them as with zero configuration devices.

© Chet Hosmer 2018

17

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_2

Chapter 2 Classifying and Modeling iot Behavior

• They can utilize one of several dynamic discover

protocols.

• Finally, if devices are compromised they may impact

other local devices, leak information, or disrupt

activities of other devices and networks.

Thus, the remainder of this book will focus on the collection, mapping,

monitoring, and ultimately the detection of rogue devices or abnormal

behavior of IoT devices. To accomplish this, we must ask a few critical

questions.

1. What passive observations data should we collect?

2. How should we categorize collected observations as

meaningful, redundant, or plain noise?

3. How might we organize and store the observations?

4. What do we plan to do with the collected

observations?

a. How will we define “normal” versus “abnormal”

behavior?

b. Can the collected observations be used to train

machine learning elements?

c. Can the observations be a viable source of

forensic evidence?

5. What networks should we passively monitor?

6. What observations will be recorded based on this

passive monitoring?

7. Are we really going to use a Raspberry Pi to do this?

18

Chapter 2 Classifying and Modeling iot Behavior

Clearly, we are not going to address these all of these questions at the

same time. Rather, let’s develop a model for the basics and then we can

build upon that model in a spiral fashion.

We will do this by starting with what we already know well, Ethernet-

based IP wired networks. To monitor and collect data we can use a variety

of off-the-shelf tools or we can roll our own. Because we are planning to

deploy this technology on a Raspberry Pi, using Python (I know, sounds

crazy, right?), we need to keep this as simple and as close to the metal as possible. Thus, for this first experiment, I will be only using the Python standard socket library to perform this collection, and I will be using the built-in Python dictionary type to store, categorize, and at the same time, reduce the observations.

 What Should We Collect?

Let’s take a very simplistic view of a traditional wired network. Devices

would be attached to a physical switch, with a SPAN or monitoring port.

A packet capture device would be connected to the monitoring port and

record all observed packets in and out of the switch (see Figure 2-1).

19

Chapter 2 Classifying and Modeling iot Behavior

 Figure 2-1. Simplified LAN diagram

Starting with the basics, we will examine the packets that could be

monitored using this approach. To break this down, for the first example

we plan to collect, record, and observe the following:

1. Ethernet Packets

2. ARP (Address Resolution Protocol) Packets

3. IP Packets

4. TCP Packets

5. UDP Packets

6. ICMP (Internet Control Message Protocol) Packets

20

Chapter 2 Classifying and Modeling iot Behavior

 Ethernet Packet Format

Examining the Ethernet header (see Figure 2-2), we narrow in on the destination and source media access control address, (commonly referred

to as MAC address), along with the type/length field. These provide

important mapping information, protocol data, and also the ability to look up the manufacturer associated with the source and destination of the

packet.

 Figure 2-2. Ethernet packet overview

Note network device MaC addresses can be modified in many

cases. thus, it is possible to modify such devices to report an

inaccurate or spoofed organizationally unique identifier (oUi).

21

Chapter 2 Classifying and Modeling iot Behavior

Breaking down the first octet (byte), we see that bit 0 and bit 1 have

special meaning (see Figure 2-3).

1. Bit 0 defines whether the packet is set to all nodes

individually (unicast) or if only one packet is sent

(multicast) and individual NICs can decide to

accept or reject the packet.

2. Bit 1 defines whether the MAC address is defined

globally through OUI registration or whether the

MAC address set by the manufacturer is overridden

by the local administrator.

 Figure 2-3. OUI breakdown

Our objective in extracting the MAC address is to map the packet to

a specific device. If the MAC address is not locally defined, then extract information about the device defined by the manufacturer.

22

Chapter 2 Classifying and Modeling iot Behavior

 ARP

The ARP is used to dynamically discover the mapping of devices operating

on a network. This maps the MAC address (layer 2) with the IP address

(layer 3).

For example, Device A needs to communicate with Device B, but

requires the MAC address to do so as Device A’s ARP table is incomplete

(see Figure 2-4). Device B responds to the request allowing device A to map the layer 2 MAC address with the layer 3 IP address to allow Device A

to properly address Device B at the Ethernet and IP layers.

 Figure 2-4. Simplified ARP request/replay process

23

Chapter 2 Classifying and Modeling iot Behavior

Mapping ARP behavior (request, replies, frequency, and time frame)

can identify devices that are behaving normally, or devices that could be

rogue, are new to the network, or are operating erratically or maliciously.

Mapping such behaviors under “normal conditions” will help to identify

aberrant conditions.

ARP Tables in ethernet, lan, a table, also referred to as the arp

cache, is used to maintain a correlation between each MaC address

and its corresponding ip address.

 IP Packets

Moving to IP packets and their contents, IP packets provide additional

details that can be used to map and analyze the behavior on traditional

networks. Figure 2-5 depicts a typical IP packet with fields that are highlighted to define key components that will be used during mapping

and analysis. Mapping the “normal” connections (source and destination

IP addresses) along with the protocols utilized, day of week and time of

day, will be vital in establishing a baseline of operations.

 Figure 2-5. IP packets

24

Chapter 2 Classifying and Modeling iot Behavior

Next, we will examine the specific data contained in the associated

data (for example TCP, UDP, and ICMP) contents delivered using IP

packets.

 TCP Packets

Extracting specific source and destination ports from TCP packets, as

shown in Figure 2-6, again provides a model for determining “normal”

behavior on the network. TCP packets provide reliable link capabilities by using sequence and acknowledgement numbers to ensure orderly delivery

and acknowledgment of packets. If packets are lost or delayed, the protocol will retry and request retransmission. At this point we will be ignoring the payload of the packet and just focus on the source and destination ports,

as they contain the most meaningful information that can be reasonably

and quickly acquired. Port values range from 1 to 65535 and are generally

defined here:

1. Ports 1–1023 are considered well-known ports.

2. Ports 1024–49151 are considered “registered ports”

that are assigned by the Internet Assigned Numbers

Authority (IANA).

3. Ports 49152–65535 are considered dynamic, private,

or more commonly ephemeral (i.e., lasting for a

brief time or transient). For example, ports in this

range are commonly used by clients making a

connection to a server. It should be noted that some

of the ports in this range have been mapped to

known malware usage.

25

Chapter 2 Classifying and Modeling iot Behavior

 Figure 2-6. TCP packet details

 UDP Packet

UDP packets, unlike TCP packets, ensure orderly packet sequencing.

UDP packets are connectionless and less reliable (see Figure 2-7). The protocol is used for streaming data where packets that are lost or are out of sequence will not impact the communication. Again, we are interested

here in mapping the normal behavior by capturing the source and

destination port numbers as discussed in the TCP section.

 Figure 2-7. UDP packet details

26

Chapter 2 Classifying and Modeling iot Behavior

 ICMP Packet

ICMP defines a protocol that provides troubleshooting, control, and error

message services. ICMP is most frequently used to diagnose and test

connections on an IP network. The only information we will be concerned

with is the fact that an ICMP packet was sent over the network from a

source IP address to a destination IP address (see Figure 2-8). Note that there is not a port number associated with ICMP.

 Figure 2-8. ICMP packet details

 Passively Monitoring IoT Behavior

Compared to active probing, passive monitoring provides greater insight

into the activities of the network being monitored. The difference can be

likened to a movie versus a still photograph. Using tools like NMAP to

identify devices operating on your network provides an instantaneous

view of those devices that properly respond. In many cases IoT devices are transient and thus could and will be missed by active or probing-based

methods. Mapping the behavior of these devices over an extended period

of time is critical to understanding the potential threats that they pose, along with connections to other devices.

 Modeling Normal Behavior

Now that we have defined several key elements from the Ethernet layer,

IP layer, and transport layers, let’s take inventory of the key elements that we could observe and determine how we can store and categorize these

observed values.

27

Chapter 2 Classifying and Modeling iot Behavior

Ethernet Layer

Source MAC address

Destination MAC address

Frame Type (IPv4, IPv6, ARP)

IP Layer

Source IP

Destination IP

Protocol

Transport Layer

Source Port

Destination Port

Because it is likely that we will encounter many packets with the same

MAC, source IP, destination IP, protocol, and nonephemeral port values,

we need to reduce the data that we store regarding these observations. We

will also be choosing a data type that is built in. We could choose a Python list or set, but both have limitations that make them not the best choice.

However, the built-in dictionary data type in Python provides the ideal

solution for storing these observations.

Python dictionaries, much like traditional Webster-style dictionaries,

have a key and a value, which is typically referred to as a key/value pair. In Python both the key and the value can be complex, the only rule being that the key must be a hashable type such as an integer, long, string, or tuple.

The value part of the key/value pair can be a list or other nonhashable data type.

The question is how would we structure the key to help us reduce the

observations that we need to store and begin to build and hold a model of

normal behavior. To simplify the question: what combination of fields from the collected observations would be considered unique?

I’m going to use the following tuple as the key:

28

Chapter 2 Classifying and Modeling iot Behavior

(SRC-MAC, DST-MAC, SRC-IP, DST-IP, Protocol, Port)

Notice I didn’t include SRC and DST port. The reason is that when a

client makes a connection to a server, the port that is chosen is dynamic

and normally comes from the ephemeral set of ports. Thus, the port that

will be included in the key will be the nonephemeral port. If both ports are nonephemeral then two entries will be made in the dictionary, one using

the SRC port and one using the DST port. If both ports are ephemeral,

again both entries will be made.

So that takes care of the key. Now the question is what does the value

portion of the key/value pair contain?

For this we are interested in keeping track of the number of

occurrences of each unique combination. Furthermore, we would like to

keep track of when and how often that combination occurred. Therefore,

I will use a list to keep track of the number of occurrences of each unique key. Note, keeping track of the number of occurrences can be very fine-grained (down to the hour, day, day of week, etc.). To keep this simple,

and use this data later for machine learning, I have decided to break the

occurrences count down in the following way.

Early Morning: 12:00 AM–5:59 AM

Morning: 6:00 AM–11:59 AM

Afternoon: 12:00 PM–5:59 PM

Evening: 6:00 PM–11:59 PM

Weekend: 12:00 AM Saturday–11:59 PM Sunday

Therefore, the value list will be initialized with just five occurrence

count values:

[0,0,0,0,0]

29

Chapter 2 Classifying and Modeling iot Behavior

Each time a new observation is made with the same key, the number

associated with that time will be incremented by one in the value

argument associated with that key.

 How Can This Be Accomplished on a Raspberry

Pi with Python?

I promise to only say this once: It’s as easy as Pie.

 Part I: Passively Capture Packets in Python

on a Raspberry Pi

1. As depicted in Figure 2-1 we need to attach the Pi

to a monitoring or SPAN port of an Ethernet switch

along with the WIFI 802.11 air waves.

2. Next, we need to place the Pi Ethernet Port into

promiscuous mode.

3. Finally, we need to capture packets using the Python

standard socket library.

Examine a Simple Code Snippet to Perform These Operations

The code snippet written in Python performs three basic operations (see

Listing 2-1).

1. The code places the standard Ethernet port of the

Pi into promiscuous mode. This allows us to view

any traffic flowing over the network even if it is not

destined or originating from the Pi itself.

30

Chapter 2 Classifying and Modeling iot Behavior

2. The code opens a socket associated with the

Ethernet port to listen to traffic passing over the

network.

3. The code captures a single packet and displays the

results in hexadecimal.

 Listing 2-1. sniff.py Capture One Packet with Python

'''

Capture a single packet in promiscuous mode

Note: you must run this script as super user

i.e. sudo python sniff.py

'''

import os # Python operating system standard library

import socket # Python low level socket standard library

import sys # Python system standard library

from binascii import hexlify # Python binary ascii conversions

standard library

configure Raspberry Pi eth0 in promiscuous mode

using a system command

try:

ret = os.system("ifconfig eth0 promisc")

except Exception as err:

print "System Command Failed: ", str(err)

sys.exit(0)

if ret == 0:

If the command was successful

print 'Promiscuous Mode Set Correctly'

create a new socket using the python socket module

PF_PACKET : Specifies Protocol Family Packet Level

31

Chapter 2 Classifying and Modeling iot Behavior

SOCK_RAW : Specifies A raw protocol at the network

layer

htons(0x0800) : Specifies all headers and packets

: Ethernet and IP, including TCP/UDP etc

try:

attempt to open the socket for capturing raw packets

rawSocket=socket.socket(socket.PF_PACKET,socket.

SOCK_RAW,

socket.htons(0x0800))

except Exception as err:

catch any exceptions and report the error

print "Socket Error", str(err)

sys.exit(0)

If socket is established and we have established

promiscuous mode

print "Network : Promiscuous Mode"

print "Sniffer : Ready: \n"

attempt to receive a packet

Note: this function call is synchronous, thus it will wait)

try:

recvPacket=rawSocket.recv(65535)

print "Packet Received:"

print hexlify(recvPacket)

print "\nEnd"

except Exception as err:

Catch any exceptions and report the error

print "Receive Socket Error: ", str(err)

sys.exit(0)

else:

print "System Command Failed to set promiscuous mode"

32

Chapter 2 Classifying and Modeling iot Behavior

Sample Execution of the Script

When executing this script we need to have privilege. In other words, we

need to be operating as superuser (sudo) in order to place the network

interface card (NIC) into promiscuous mode. Next, since the script is

written in Python we need to invoke the Python interpreter (python).

Finally, we need to identify the script (sniff.py) we are executing. The

script then performs as expected, setting the NIC into promiscuous

mode, capturing a single packet and displaying the packet details in hex

(see Listing 2-2).

 Listing 2-2. Sample Hex Dump of a Received Packet

pi@raspberrypi:~/Desktop $ sudo python sniff.py

Promiscuous Mode Set Correctly

Network : Promiscuous Mode

Sniffer : Ready:

Packet Received:

0000ca11223314b31f07219e0800450000282731400080064d8bc0a8006da2

7d2281e70c01bba0c0a5de4e0b8d0b501101001e420000000000000000

End

 Part II: Identify and Extract the Key Packet

Components

The next step in the process is to capture and then parse the packet

contents. This includes extracting the Ethernet, IP, ARP, TCP, ICMP, IGMP, and UDP components in our first example.

You may notice a new entry in the list IGMP. The IGMP protocol is

used to establish multicast group memberships. Multicast protocols are

commonly used by IoT devices in order to discover nearby devices along

with the services that they offer.

33

Chapter 2 Classifying and Modeling iot Behavior

To handle this, I have created a new Python script called

“PacketRecorder.py” which continually captures packets, extracts the key

information, and records the occurrences of each unique combination in a

Python dictionary.

Let’s take a deeper look at some of the key components of the script

(see Listing 2-3). At the end of the chapter I will provide the complete source code for the script.

 Listing 2-3. PacketRecorder.py Script Overview

 Overview and Copyright

'''

PacketRecorder.py

version .50

July 2017

Author: C. Hosmer, Python Forensics

Requirements:

Python 2.7.9 or greater

Raspbian or Ubuntu Linux

Copyright (c) 2017 Python Forensics and Chet Hosmer

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction,including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

'''

34

Chapter 2 Classifying and Modeling iot Behavior

Required Python Standard and Third-Party Libraries

For this script, I will be using almost exclusively standard Python libraries to perform the operations. I have imported one third-party library,

 PrettyTable, to provide tabular results of the recording (see Listing 2-4).

 Listing 2-4. Required Libraries

''' Import Python Standard Library Modules '''

import datetime

import calendar

import pickle

import struct

import os

import socket

import sys

import signal

from binascii import hexlify

3rd Party Libraries

from prettytable import PrettyTable

The Script Main Loop

Taking a top-down look at the script, let’s first examine the main script

entry point in Listing 2-5. Note that this script is completely contained in a single file (not including the importing of the standard and third-party libraries).

The script performs the following operations:

1. Creates a PacketProcessor object that will be used to

extract and record key information from each packet.

2. Configures Ethernet port 0 on the Raspberry Pi in

promiscuous mode.

35

Chapter 2 Classifying and Modeling iot Behavior

3. Creates a raw socket using this promiscuous port.

4. Sets a signal timer to capture packets for 1 hour

(3600 seconds).

5. Creates a loop to receive packets.

6. Each received packet is then passed to the

PacketExtractor method of the PacketProcessing

object.

7. Finally, once the timer expires the PrintMap method

of the PacketProcessing object is called to print out

the results.

 Listing 2-5. PacketRecorder Main Loop

Main Script Starts Here

#===================================

if __name__ == '__main__':

"Python Packet Recorder v.50"

"Python Forensics, Inc. July 2017 \n"

create a packet processing object

packetObj = PacketProcessor()

Python Packet Capture

configure the eth0 in promiscuous mode

try:

ret = os.system("ifconfig eth0 promisc")

except Exception as err:

print "System Command Failed: ", str(err)

sys.exit(0)

36

Chapter 2 Classifying and Modeling iot Behavior

if ret == 0:

print 'Promiscuous Mode Enabled for eth0'

create a new socket using the python socket module

PF_PACKET : Specifies Protocol Family Packet Level

SOCK_RAW : Specifies A raw protocol at the

network layer

htons(0x0800) : Specifies all headers and packets

: Ethernet and IP, including TCP/UDP etc

attempt to open the socket for capturing raw packets

try:

rawSocket=socket.socket(socket.PF_PACKET,socket.

SOCK_RAW,

socket.htons(0x0800))

except Exception as err:

print "Socket Error", str(err)

sys.exit(0)

print "Packet Processor : Ready: \n"

Set signal to 1 hour

signal.signal(signal.SIGALRM, handler)

signal.alarm(3600)

try:

while True:

attempt to receive (synchronous call)

try:

recvPacket=rawSocket.recv(65535)

packetObj.PacketExtractor(recvPacket)

except Exception as err:

packetObj.printMap()

37

Chapter 2 Classifying and Modeling iot Behavior

print "Receive Socket Error: ", str(err)

sys.exit(0)

except myTimeout:

packetObj.printMap()

packetObj.SaveOb("observations.pickle")

print "\nEnd Packet Processor"

sys.exit(0)

else:

print "System Command Failed to set promiscuous mode"

PacketProcessor Class

The PacketProcessor class contains four basic methods (see Listing 2-6): 1. __Init__ or the constructor: This function is called

when an object is instantiated from the class. It

creates two lookup objects for converting Ethernet

frame types and transport protocol numbers to

readable values. It also creates an empty dictionary

to hold the key/value pairs observed.

2. PacketExtractor: This function processes the

observed packet data. It extracts key information

from the Ethernet frame, IP header, and transport

protocols. Once the required information is

collected, the key will be equal to SRC-MAC,

DST-MAC, SRC-IP, DST-IP, protocol, and port, and

the value will be equal to the observed occurrence

times. A dictionary entry is created or updated

based on the observed data from the packet.

38

Chapter 2 Classifying and Modeling iot Behavior

3. PrintMap: This function iterates through each of the

entries in the dictionary of recorded observations

and prints them in a table format (see Figure 2-9).

4. SaveObservations: This function uses the Python

pickle library to save the dictionary as a pickle file.

We will be recalling this dictionary in later chapters

to perform additional operations and analysis

and to use as a key input to the machine learning

process.

 Listing 2-6. PacketProcessor Class

class PacketProcessor:

"""

Packet Processor Class Methods

__init__ Constructor

PacketProcessor(self, packet) : processes a single packet

PrintMap(self) : prints out the content of the map

"""

def __init__(self):

"""Constructor"""

'''

Create Lookup Objects

These Object provide lookups for:

Ethernet Frame Types

Transport Protocol Types

'''

self.traOBJ = TRANSPORT()

self.ethOBJ = ETH()

Packet Dictionary

self.d = {}

39

Chapter 2 Classifying and Modeling iot Behavior

def PacketExtractor(self, packet):

''' Extract Packet Data input: string packet, dictionary d

result is to update dictionary d

'''

ETH_LEN = 14 # ETHERNET HDR LENGTH

IP_LEN = 20 # IP HEADER LENGTH

UDP_LEN = 8 # UDP HEADER LENGTH

''' Elements of the key '''

self.srcMac = ''

self.dstMac = ''

self.srcIP = ''

self.dstIP = ''

self.proto = ''

self.port = ''

EthernetHeader=packet[0:ETH_LEN]

ethFields =struct.unpack("!6s6sH",EthernetHeader)

self.dstMac = hexlify(ethFields[0])

self.srcMac = hexlify(ethFields[1])

self.fType = ethFields[2]

frameType = self.ethOBJ.lookup(self.fType)

if frameType == "IPv4":

Process as IPv4 Packet

ipHeader = packet[ETH_LEN:ETH_LEN+IP_LEN]

unpack the ip header fields

ipHeaderTuple = struct.unpack('!BBHHHBBH4s4s' ,

ipHeader)

40

Chapter 2 Classifying and Modeling iot Behavior

extract the key ip header fields of interest

Field

Contents

verLen = ipHeaderTuple[0] # Field 0:

Ver and

Length

protocol = ipHeaderTuple[6] # Field 6:

Protocol

Number

sourceIP = ipHeaderTuple[8] # Field 8:

Source IP

destIP = ipHeaderTuple[9] # Field 9:

Destination

IP

Calculate / Convert extracted values

version = verLen >> 4 # Upper Nibble is

the version Number

length = verLen & 0x0F # Lower Nibble

represents the size

ipHdrLength = length * 4 # Calculate the

header in bytes

convert the src/dst IP address to typical dotted

notation strings

self.srcIP = socket.inet_ntoa(sourceIP);

self.dstIP = socket.inet_ntoa(destIP);

translate = self.traOBJ.lookup(str(protocol))

transProtocol = translate[0]

if transProtocol == 'TCP':

41

Chapter 2 Classifying and Modeling iot Behavior

self.proto = "TCP"

stripTCPHeader =

packet[ETH_LEN+ipHdrLength:ipHdr

Length+ETH_LEN+IP_LEN]

unpack the TCP Header to obtain the

source and destination port

tcpHeaderBuffer = struct.unpack('!HHLLBBHHH',

stripTCPHeader)

self.srcPort = tcpHeaderBuffer[0]

self.dstPort = tcpHeaderBuffer[1]

elif transProtocol == 'UDP':

self.proto = "UDP"

stripUDPHeader =

packet[ETH_LEN+ipHdrLength:ETH_

LEN+ipHdrLength+UDP_LEN]

unpack the UDP packet and obtain the

source and destination port

udpHeaderBuffer = struct.unpack('!HHHH',

stripUDPHeader)

self.srcPort = udpHeaderBuffer[0]

self.dstPort = udpHeaderBuffer[1]

elif transProtocol == 'ICMP':

self.proto = "ICMP"

self.srcPort = ""

42

Chapter 2 Classifying and Modeling iot Behavior

self.dstPort = ""

elif transProtocol == 'IGMP':

self.proto = "IGMP"

self.srcPort = ""

self.dstPort = ""

else:

self.proto = transProtocol

self.srcPort = ""

self.dstPort = ""

elif frameType == 'ARP':

self.proto = "ARP"

self.srcPort = ""

self.dstPort = ""

else:

self.proto = frameType

self.srcPort = ""

self.dstPort = ""

valueNdx = getOccurrenceValue()

get the most unique port to use

portA, portB = getUniquePort(self.srcPort, self.

dstPort)

create the key for this packet

key = (self.srcMac, self.dstMac, self.srcIP, self.

dstIP,

self.proto, portA)

try:

value = self.d[key]

43

Chapter 2 Classifying and Modeling iot Behavior

Increment the appropriate occurrence value

value[valueNdx] = value[valueNdx] + 1

self.d[key] = value

except:

New Key initialize the value

value = [0,0,0,0,0]

value[valueNdx] = value[valueNdx] + 1

self.d[key] = value

if portB != None:

create a 2nd key for this packet

key = (self.srcMac, self.dstMac, self.srcIP,

self.dstIP, self.proto, portB)

try:

value = seld.d[key]

Increment the appropriate occurrence value

value[valueNdx] = value[valueNdx] + 1

self.d[key] = value

except:

New Key initialize the value

value = [0,0,0,0,0]

value[valueNdx] = value[valueNdx] + 1

self.d[key] = value

def printMap(self):

''' Print the contents of the packet map'''

''' Table Heading'''

t = PrettyTable(['srcMac', 'DstMac', 'SrcIP', 'DstIP',

'Protocol',

'Port', '-->', "12AM>", "06AM>",

"12PM>", "06PM>", "SAT-SUN"])

44

Chapter 2 Classifying and Modeling iot Behavior

for eachKey in self.d:

value = self.d[eachKey]

t.add_row([eachKey[0], eachKey[1], eachKey[2],

eachKey[3],

eachKey[4], eachKey[5]," ", str(value[0]),

str(value[1]), str(value[2]), str(value[3]),

str(value[4])])

t.align = "l"

print t.get_string(sortby="SrcIP")

def SaveOb(self, fileName):

''' Save the current observation dictionary to a file '''

with open(fileName, 'wb') as fp:

pickle.dump(self.d, fp)

pi@raspberrypi:~/Desktop $ sudo python packetrecorder.py

Python Packet Recorder v.50

Python Forensics, Inc. July 2017

45

Chapter 2 Classifying and Modeling iot Behavior

 Figure 2-9. Sample output from the PacketRecorder.py script

 Summary

This chapter provides a deep look at the collection, reduction, and mapping of network traffic. The basic methods of capturing and recording observations will be used in future chapters to create a baseline of “normal” operations within an IoT environment. These observations will be used to monitor and

detect aberrant behavior and to train machine learning methods.

46

CHAPTER 3

Raspberry Pi

Configuration and

PacketRecorder.py

Enhancements

When examining a platform for deploying a sensor, there are several

key considerations. These considerations typically fall into four broad

categories.

1. We must consider the placement of the sensor and

the connection to the network that we which wish to

sense, such as wired direct connection, traditional

802.11 WIFI, Bluetooth, or other lightweight

protocols.

2. We must examine the visibility that can be obtained

from the selected network connection and/or the

physical location of the sensor. In other words, what

network traffic will be visible from a specific vantage

point?

© Chet Hosmer 2018

47

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_3

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements 3. Will multiple sensors be required to derive a

complete picture of the network that we wish to

monitor?

4. Certainly, the cost and long-term viability of the

platform we intend to deploy need to be considered.

Since this book is focused on using the Raspberry Pi as the sensor, we

also need to consider the advantages and limitations of the Pi. We have

chosen this platform and the Python programming language based on

cost, simplicity, and versatility. Certainly, depending upon the amount

of network traffic, along with the speed of the networks that will be

monitored, the Pi might not have the performance required. However,

since all of the software is written in Python, as more powerful Raspberry Pi or other Linux platforms (small and lightweight or large and high

performance) become available, the solution can be scaled to meet

the needs.

 Basic Configuration (as of This Writing)

We will be using a Raspberry Pi 3 Model B version 1.2 as described back in Chapter 1 and pictured in Figure 1-6 for the examples in the book. We do this to provide a bit more detail on the configuration and to introduce you to the Raspberry Pi and the Raspbian OS commands, which allow us to do

a bit of probing.

Note All the commands executed from the Pi were done from the

/home/pi directory. In the default state the default user is pi.

48

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements The following line is what the default prompt should look like.

Depending on the installation and configuration of your Pi, this might vary slightly.

pi@raspberrypi:~ $

Note the ~ (tilde) character is shorthand for the /home/pi directory.

thus, commands are entered directly after the $, allowing you to get

some basic but valuable information about your Pi.

 Get Information About the Pi CPU

The command retrieves the basic information regarding the Raspberry Pi CPU.

pi@raspberrypi:~ $ cat /proc/cpuinfo

Note the Pi 3 Model B has four cores. This will become important

in later chapters when we utilize the Python multiprocessing library to

enhance performance.

processor : 0

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

49

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements processor : 1

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

processor : 2

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

processor : 3

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

50

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements Get Information Regarding Pi Memory

Another crucial factor regarding the capabilities of the Raspberry Pi is the amount of RAM memory onboard, and more importantly the memory

available for use by our application. You can obtain this information using the following command.

pi@raspberrypi:~ $ get_mem arm

Notice, unlike the static information regarding the CPU, this is a live

report regarding memory usage. As you can see we have a little over

700 MB of fee memory available along with just under 100 MB of free swap

memory.

Hardware : BCM2709

Revision : a02082

Serial : 0000000093c183ae

MemTotal: 947732 kB

MemFree: 700856 kB

MemAvailable: 796304 kB

Buffers: 20404 kB

Cached: 126088 kB

SwapCached: 0 kB

Active: 129024 kB

Inactive: 84444 kB

Active(anon): 67364 kB

Inactive(anon): 13852 kB

Active(file): 61660 kB

Inactive(file): 70592 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 102396 kB

SwapFree: 102396 kB

51

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements Dirty: 92 kB

Writeback: 0 kB

AnonPages: 66816 kB

Mapped: 63560 kB

Shmem: 14240 kB

Slab: 16964 kB

SReclaimable: 8312 kB

SUnreclaim: 8652 kB

KernelStack: 1576 kB

PageTables: 2316 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 576260 kB

Committed_AS: 721200 kB

VmallocTotal: 1114112 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

CmaTotal: 8192 kB

CmaFree: 3724 kB

 Get Information Regarding the Current

Free Memory Only

Digging a bit deeper, this command provides a more targeted result

providing us data regarding free memory and the used and free swap space.

pi@raspberrypi:~ $ free -o -h

total used free shared buffers cached

Mem: 925M 241M 683M 13M 20M 123M

Swap: 99M 0B 99M

52

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements Get Information Regarding Pi Filesystem

Obtaining information regarding the current active Pi filesystem will help to define the onboard storage we have available.

pi@raspberrypi:~ $ df

This command provides the information on how the Pi is configured

and most importantly how much free space we have available. Performing

simple arithmetic (1024 × 8792304; the available blocks × 1K), we see that we have a little over 9 GB available. This make sense as I’m using a 16GB

SD Card on this Pi. If you need more space, then you can choose a larger

SD Card for your application. Note, the official maximum size is 32GB.

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/root 13606320 4099804 8792304 32% /

devtmpfs 469532 0 469532 0% /dev

tmpfs 473864 0 473864 0% /dev/shm

tmpfs 473864 6460 467404 2% /run

tmpfs 5120 4 5116 1% /run/lock

tmpfs 473864 0 473864 0% /sys/fs/cgroup

/dev/mmcblk0p6 66528 20762 45767 32% /boot

tmpfs 94776 0 94776 0% /run/user/1000

/dev/mmcblk0p5 30701 456 27952 2% /media/pi/

SETTINGS

 Get Information Regarding USB Devices

and Interfaces

We can of course add more storage to the Pi using the available USB

expansion slots as well.

53

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements I ran this command twice for you. The first is with no external USB

devices inserted, and the second is with one added.

pi@raspberrypi:~ $ lsusb

Bus 001 Device 004: ID 045e:0745 Microsoft Corp. Nano

Transceiver v1.0 for Bluetooth

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Now, to execute the same command after inserting the external USB

SanDisk Cruzer:

pi@raspberrypi:~ $ lsusb

Bus 001 Device 004: ID 045e:0745 Microsoft Corp. Nano

Transceiver v1.0 for Bluetooth

Bus 001 Device 005: ID 0781:5406 SanDisk Corp. Cruzer Micro U3

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

 Get Information About the Version of Linux

This command provides us information about the core version of Linux

we are using, but also provides information regarding the current c++

compiler and crosstool that are installed. It is important to keep your Pi updated, including the operating system and development platform.

54

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements pi@raspberrypi:~ $ cat /proc/version

Linux version 4.4.50-v7+ (dc4@dc4-XPS13-9333)

(gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0- 88- g8460611))

#970 SMP Mon Feb 20 19:18:29 GMT 2017

 Upgrading Your Pi

Like other more traditional computing platforms, keeping your Pi up to

date is an important process. This will ensure that you are running the

latest version of software and that security updates are current. In addition, I also update the pip environment for the same reasons (pip is the tool that we use for installing and managing Python packages, such as those found

in the Python Package Index.) Here are examples for both:

pi@raspberrypi:~ $ sudo apt-get update

This will download and install updates to any packages that have

updates available (based on the information obtained from the apt-get

update command).

Get:1 http://mirrordirector.raspbian.org jessie InRelease [14.9 kB]

Get:2 http://archive.raspberrypi.org jessie InRelease [22.9 kB]

Get:3 http://mirrordirector.raspbian.org jessie/main armhf

Packages [9,536 kB]

Get:4 http://archive.raspberrypi.org jessie/main armhf Packages

[170 kB]

Get:5 http://archive.raspberrypi.org jessie/ui armhf Packages

[58.9 kB]

Get:6 http://mirrordirector.raspbian.org jessie/contrib armhf

Packages [43.3 kB]

---- Truncated for brevity ----

pi@raspberrypi:~ $ sudo apt-get dist-upgrade

55

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements Using the dist-upgrade will update Pi kernel and firmware.

Finally, as mentioned in the preceding, we need to keep the Python

package installer up to date as well, in order to update any third-party

Python packages we may use.

pi@raspberrypi:~ $ sudo pip install --upgrade pip

Important one final note after executing these updates! you need

to reboot the Pi. the command to do that is

pi@raspberrypi:~ $ sudo reboot

 Advancing PacketRecorder.py

Now that we have the Pi configuration in hand, we can begin to advance

the baseline of the PacketRecorder.py script we created in Chapter 2.

To obtain more interesting information from the packets we see, we

need to perform some secondary processing and advanced dictionary

of observations. This will allow us to detect and observe packets of

interest. Therefore, we are going to make the following enhancements to

PacketRecorder.py.

1. Convert port numbers to common port names

including known malicious ports

2. Convert MAC addresses to known manufacturers

including known suspicious MAC addresses

3. Look up country code based on IP addresses

4. Record the average packet size for each unique

connection

56

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements 5. Update the interface to the PacketRecorder by

using the built-in argparse library. This will allow

us to create a command-line interface to the

PacketRecorder and supply our desired options.

You can always find the latest command-line execution and

parameters by typing the following:

pi@raspberrypi:~/Desktop/RP-10-12-2017 $ sudo python pr.py -h

Notice that I moved to the current working directory containing the

PacketRecorder.py source code along with the needed additional support

files. The installation of the full project is available from the source code for this book. Go to www.apress.com/9781484236994 and click the Source Code button.

pi@raspberrypi:~/Desktop/RP-10-12-2017 $ sudo python pr.py -h

Python Packet Recorder v.85 - Raspberry Pi

Python Forensics, Inc. October 2017

Copyright Python Forensics - All Rights Reserved

usage: Raspberry Pi Packet Recorder V.85 . October 2017 [-h] -m

DURATION

[-E] [-C]

optional arguments:

-h, --help show this help message and exit

-m DURATION, --duration DURATION

specify duration of the recording in minutes

-E, --ephemeral if specified ephemeral ports are

considered unique

-C, --countryReport if specified a special country report

is generated

57

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements Step 1: Creating the Lookups

During the examination of observed packets, it is important not to

overwhelm that process with significant code, databases, and so on.

Remember, the purpose of the PacketRecorder.py application is to create

a baseline of a “normal operating” network. This will in fact generate a

detailed network device-level asset map for the environment that we are

monitoring. This map should be compared to other available device maps

(such as those generated by NMAP, administration documentation, etc.).

Thus, our approach is to preprocess lists of known good/bad ports,

country codes, and manufacturer indices, and create a fast lookup of those values that can be easily added to the observations dictionary. We can of

course generate anomalies identified during the baselining process as well.

Each of the lookups is processed in a comparable manner that starts

with the conversion of online data into dictionary objects. We perform

this operation as a preprocessing step. Depending upon the complexity of

the online data source, the parsing and preparation of these dictionaries

can be either simple or quite complex. However, we only perform this

preprocessing operation periodically to keep our dictionary lookups up

to date.

Once the preprocessing step is complete, we convert the resulting

dictionary objects into serialized data (Python pickle files) that are loaded on to the Pi. In this manner the Pi does not require access to the Internet during baselining or operational sensing phases.

To perform this effectively, we extract information from reliable sources: 1. Manufacturer IEEE (Institute of

Electrical and Electronics Engineers) OUI lists:

http://standards-oui.ieee.org/oui.txt

2. IANA for the known port number/name translations

www.iana.org/assignments/service-names-port-

numbers/service-names-port- numbers.xhtml

58

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements 3. Maxmind’s Country Location Database http://

dev.maxmind.com/geoip/legacy/geolite/

 Ports Dictionary Creating Example

The following script demonstrates the processing of the IANA text ports list and conversion into a Python dictionary. Once the dictionary is created,

the serialization of the dictionary is recorded in the file “ports.pickle”.

'' Port Dictionary Creation Process '''

'''

Copyright (c) 2017 Python-Forensics and Chet Hosmer, cdh@

python-forensics.org

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/

or sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

'''

''' excerpt from the online ports list

TCP 0 Reserved

TCP 1 Port Service Multiplexer

TCP 2 Management Utility

TCP 3 Compression Process

59

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements TCP 4 Unassigned

TCP 5 Remote Job Entry

'''

import pickle

Create an Empty Dictionary

portDictionary = {}

records = 0

print "PortList Dictionary Creation Script"

print "Python Forensics, Inc. ver 1.1 2017"

print "Processing PortList.txt"

Open the PortList Text File

with open("PortList.txt", 'r') as theFile:

Process EachLine

for eachLine in theFile:

Create a list of each component of the line

Split the line into parts

lineList = eachLine.split()

We need at least three elements to be valid

PortType PortNumber Description

The descriptions may be broken up into multiple parts

of course

if len(lineList) >= 3:

Make the key in the key/value pair

key = (lineList[1], lineList[0])

Determine how many parts we have after type and port

We will use this list as the value in the key/value

pair

60

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements value = " ".join(lineList[2:])

Now create a dictionary entry

key = Port,Type

Value = Description

portDictionary[key] = value

records += 1

else:

if the line does not have the correct number

of values skip this line and continue processing

the next line

continue

All lines have been processed

print "Lookup Records Create: ", records

''' Finally we serialize the portDictionary

for use by PacketRecorder and PacketDetection

scripts, by creating the file ports.pickle

'''

with open('portTest.pickle', 'wb') as pickleFile:

pickle.dump(portDictionary, pickleFile)

 Execution of the Script

To demonstrate the execution of the script, I have copied the source code

and PortList.txt file to my local windows system.

Note the creation of the lookups does not need to be done on the

raspberry Pi; this process can be created on Windows, Linux, or mac.

61

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements When you download the Raspberry Pi installation files from GIT-HUB

it will include the required pickle files. Therefore, you will not need to perform this operation. The sample is provided here to explain how the

dictionaries are serialized into pickle files (see Listing 3-1).

 Listing 3-1. Directory for Execution of the CreatePortPickle.py script c:\ports> dir

Volume in drive C is OS

Volume Serial Number is ECD2-7A54

Directory of c:\ports

10/13/2017 11:22 AM <DIR> .

10/13/2017 11:22 AM <DIR> ..

10/13/2017 11:17 AM 2,696 CreatePortPickle.py

05/23/2017 08:15 AM 174,165 PortList.txt

2 File(s) 176,861 bytes

2 Dir(s) 496,912,228,352 bytes free

At this point the script is executed and listing of the resulting directory, which includes the portTest.pickle file.

c:\ports> python CreatePortPickle.py

PortList Dictionary Creation Script

Python Forensics, Inc. ver 1.1 2017

Processing PortList.txt

Lookup Records Created: 6367

c:\ports> dir

Volume in drive C is OS

Volume Serial Number is ECD2-7A54

Directory of c:\ports

62

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements 10/13/2017 11:27 AM <DIR> .

10/13/2017 11:27 AM <DIR> ..

10/13/2017 11:17 AM 2,696 CreatePortPickle.py

05/23/2017 08:15 AM 174,165 PortList.txt

10/13/2017 11:27 AM 398,507 portTest.pickle

3 File(s) 575,368 bytes

2 Dir(s) 496,910,360,576 bytes free

You might notice that the .pickle file is larger than the original PortList.

txt file. This is normal, as the keys and internal structure of the dictionary may be larger. However, the efficiency gained through their use in the

actual packetRecorder.py script is significant.

 Utilizing the Pickle Files in PacketRecorder.py

Integrating the pickle files for is accomplished by creating a class for

each lookup type. The initialization (or constructor of the class) loads

the associated .pickle file into a dictionary associated with the object.

Then a lookup method is included that allows fast lookup of the desired

conversion.

• Ethernet Packet Type

• MAC Address to Manufacturer Lookup

• Transport Protocol Lookup

• Port Name Lookup

• Country IP Address Lookup

The following code snippets provide the code for each of the

lookup- related classes.

63

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements class ETH:

def __init__(self):

''' FrameTypes Supported'''

self.ethTypes = {}

with open("ethTypes.pickle2",'rb') as fp:

self.ethTypes = pickle.load(fp)

def lookup(self, ethType):

''' Returns the FrameType associated with the lookup or

not=supported'''

try:

result = self.ethTypes[ethType]

except:

result = "not-supported"

return result.strip()

MAC Address Lookup Class

class MAC:

def __init__(self):

''' constructor'''

Open the MAC Address OUI Dictionary

try:

with open('oui.pickle', 'rb') as pickleFile:

self.macDict = pickle.load(pickleFile)

except Exception as err:

print str(err)

def lookup(self, macAddress):

try:

result = self.macDict[macAddress]

64

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements if len(result) >= 2:

result = ": ".join(result[0:2])

else:

result = result[0]

return result

except:

return "unknown"

Transport Lookup Class

class TRANSPORT:

def __init__(self):

Open the Transport protocol Dictionary

with open('protocol.pickle', 'rb') as pickleFile:

self.proDict = pickle.load(pickleFile)

def lookup(self, protocol):

try:

result = self.proDict[protocol]

return result

except:

return ["unknown", "unknown", "unknown"]

#PORTS Lookup Class

class PORTS:

def __init__(self):

Open the Transport protocol Dictionary

with open('ports.pickle', 'rb') as pickleFile:

self.portsDict = pickle.load(pickleFile)

def lookup(self, port, portType):

65

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements try:

lookupValue = (str(port).strip(),portType)

result = self.portsDict[lookupValue]

return result

except:

return "unknown"

#

Country Lookup

#

class COUNTRY:

def __init__(self):

download from http://dev.maxmind.com/geoip/legacy/

geolite/

self.giv4 = pygeoip.GeoIP('geoIPv4.dat')

self.giv6 = pygeoip.GeoIP('geoIPv6.dat')

def lookup(self, ipAddr, kind):

try:

if kind == 'IPv4':

return self.giv4.country_name_by_addr(ipAddr)

elif kind == 'IPv6':

return self.giv6.country_name_by_addr(ipAddr)

else:

return ''

except:

return ''

66

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements Instantiating and Accessing the Lookup Methods

The next step is to instantiate each of the classes into locally useable objects and then use the associated lookup functions when processing the observed packet.

Note We perform this instantiation as part of the packetProcessor

Class constructor, so the lookup methods are available during packet

processing.

Code Snippet to Instantiate the Classes into Objects

class PacketProcessor:

"""

Packet Processor Class Methods

__init__ Constructor

PacketProcessor(self, packet) : processes a single packet

PrintMap(self) : prints out the content of the map

"""

def __init__(self):

"""Constructor"""

'''

Create Lookup Objects

These Object provide lookups for:

Ethernet Frame Types

MAC Addresses

Transport Protocol Types

TCP/UDP Port Names

Country

'''

self.traOBJ = TRANSPORT()

self.ethOBJ = ETH()

self.portOBJ = PORTS()

67

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements self.ouiOBJ = MAC()

self.cc = COUNTRY()

 Using the Lookups During Packet Processing

Now that the objects self.traOBJ, self.ethOB, self.portOBJ, self.ouiOBJ, and self.cc have been created, we can put them to use during normal packet

processing. I have chosen to depict a couple of these here to give an

example of how they are utilized.

Sample IPv4 Processing Conversion (Excerpt)

This excerpt depicts the conversion of the source and destination IP

addresses into country location and converts the protocol number of the

IPv4 packet into the associated country name.

covert the source and destination address to typical dotted

notation strings

self.packetSize = packetLength

self.srcIP = socket.inet_ntoa(sourceIP);

self.dstIP = socket.inet_ntoa(destIP);

self.srcCC = self.cc.lookup(self.srcIP, 'IPv4')

self.dstCC = self.cc.lookup(self.dstIP, 'IPv4')

translate = self.traOBJ.lookup(str(protocol))

transProtocol = translate[0]

Convert the Port Numbers into Port Names (Excerpt)

unpack the TCP Header to obtain the

source and destination port

tcpHeaderBuffer = struct.unpack('!HHLLBBHHH' ,

stripTCPHeader)

68

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements self.srcPort = tcpHeaderBuffer[0]

self.dstPort = tcpHeaderBuffer[1]

self.srcPortName = self.portOBJ.lookup(self.

srcPort, 'TCP')

self.dstPortName = self.portOBJ.lookup(self.

dstPort, 'TCP')

 Executing the Updated PacketRecorder.py

In each chapter, as we advance and integrate new capabilities into

PacketRecorder.py baselining capability, and into the ultimate sensor, I will be providing sample output from the latest version.

Note that the name of the Packetrecorder.py was changed to pr.py

for simplicity.

pi@raspberrypi:~/Desktop/RP-10-12-2017 $ sudo python

pr.py -m 1 -C

The command line requests that pr.py execute for 1 minute using

the -m option. The -C option requests that a separate country report be

generated.

 Script Execution

In this run you can see new columns in the report that include

1. Port Name

2. Manufacturer

3. Average Packet Size

In addition, near the bottom you can see that IPv6 packet captures are

now included (Figure 3-1).

69

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

 der

 ecor

 acker r P

 e 3-1.ur

 Fig

70

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

 Foreign Country Hits (Outside the United States)

An additional report is also generated that extracts any foreign countries that were detected based on the IP address translation (Figure 3-2).

 Figure 3-2. Foreign country report

 Summary

This chapter provided an examination of the Raspberry Pi using several

special Raspbian Pi command-line tools. We also considered both the

advantages and some potential limitations of the Pi based on available

memory and filesystem space.

We added some finishing touches to the baselining script

PacketRecorder.py, including the following:

• Ethernet packet type

• MAC address to manufacturer lookup

• Transport protocol lookup

• Port name lookup

• Country IP address lookup

• Recording of IPv6 packets

• Recording of ARP packets

• Recording of average packet size observed for each

unique connection

• Finally, a command-line execution that directs the

execution of the script

71

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements We also added a second report option for generating a report relating

to country IP addresses outside the United States. In the next version, we will add an allowed/blacklisted country list to generate even more data

regarding the external connections made.

In Chapter 4, we will develop the sensor script, which will utilize a prerecorded baseline (generated by PacketRecorder) and report on

anomalies between the baseline and the live environment. We will also

generate a specific report that isolates IoT-based protocol observations

versus other network traffic.

72

CHAPTER 4

Raspberry Pi

as a Sensor

Moving from a packet recorder to a packet sensor requires us to examine

the differences between the activity that was observed during the

recording period versus the active monitoring for aberrant behavior.

 Turning the Packet Recorder into a Sensor

As we advance the PacketRecorder into a complete sensor platform

that can monitor a live network and report anomalies, several major

enhancements need to be made. These enhancements will make it easier to

1. Operate the recorder and sensor using the same

interface.

2. Generate HTML reports that cover the following:

a. Overall master report

b. Observed MAC addresses/manufacturers

c. Observed country connections

d. Observed port usage

e. Observed possible IoT connections

© Chet Hosmer 2018

73

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_4

Chapter 4 raspberry pi as a sensor

f. Observed possible industrial control system

(ICS) connections

g. Alerts generated during sensor mode

3. Provide basic status information directly on the

Raspberry Pi.

4. Finally, produce the recorder/sensor as a single

executable file.

 Raspberry Pi Sensor/Recorder Design

As you can see in Figure 4-1, the major operational elements of the design include an event-driven GUI (Graphical User Interface), completely

developed in native Python, using the TKinter standard library. This

adheres to our goal of keeping the code base small and portable. This

ensures compatibility with new Raspberry Pi devices as they progress.

 Figure 4-1. Snapshot of the Raspberry Pi sensor/recorder GUI

In addition, a real-time ePaper display was added (as an optional

element) to the Raspberry Pi itself (Figure 4-2). This provides feedback directly from the Raspberry Pi in both recording and monitoring modes.

More information regarding the PaPirus ePaper display is available from

the manufacturer at www.pi-supply.com/product/papirus-epaper-eink-

screen-hat-for-raspberry-pi/.

74

Chapter 4 raspberry pi as a sensor

 Figure 4-2. Raspberry Pi configured with a PaPirus real-time display Design Overview

Figure 4-3 depicts the overall operational design of the Pi sensor/recorder.

 Figure 4-3. Raspberry Pi sensor/recorder

The Pi sensor/recorder is set up to execute within an event-driven

application loop supported by Python and TKinter.

75

Chapter 4 raspberry pi as a sensor

The main code section is established as follows:

Script Constants

M1

NAME = "Raspberry Pi - IoT/ICS Packet Sensor / Recorder"

VERSION = " Version .99-4 Experimental "

TITLE = NAME+'\t'+VERSION

Initialize the root TK Window

M2from Tkinter import *

root = Tk()

def main():

Set the Title for the Main Window

M3

root.title(TITLE)

Instantiate the GUI Application Object

app = Application(root)

Start App MainLoop

app.mainloop()

Main Script Starts Here

M3

if __name__ == '__main__':

main()

A quick overview of the initialization is defined here:

M1: Creates the TITLE constant to be displayed in the application

window title bar.

76

Chapter 4 raspberry pi as a sensor

M2: Imports the TKinter Python library and instantiates a new TK

object. This will be used as the main window object and event handler in

the application.

M3: The main takeaway here is the highlighted call that initializes the application by passing in the root object instantiated from TK.

Next, we’ll look at this application handler and the list of methods that

have been created to control the distinct aspects of the application.

class Application(Frame):

''' APPLICATION CLASS GUI FRAME USING Tkinter '''

def __init__(self, master=None):

Define the instance variables to be

collected from the GUI

A1

self.folderSelection = ''

self.baselineSelection = ''

self.baselineGood = False

self.reportFolderGood = False

self.abortFlag = False

self.baselineCC = {}

self.baselineMAC = {}

Create the basic frame

A2

Frame.__init__(self, master)

self.parent = master

Initialize the GUI

self.initUI()

Initialize PaPirus if available

A3

if PA_ON:

self.paObj = PA()

77

Chapter 4 raspberry pi as a sensor

Examining the main sections of the application class, we find three

main sections:

A1: Establishes object attributes that will be associated with each instantiation of the application class. For example, variables that hold state information regarding the baseline and report selections are initialized

here, along with dictionaries that will be used by the sensor during

monitoring activities. For example, the baselineCC dictionary will hold

countries that were observed during the recording phase. Then any new

country observations that are observed during the sensor stage can be

reported as anomalous.

A2: Creates the parent window frame that will be used by the

application. Most importantly, the initUI() method is called; this

establishes all the GUI widgets on the window, such as labels, buttons, text boxes, drop-down lists, progress bars, status displays, and menu options.

In the next section we will take a look at the list of methods that have

been created and examine a couple of those in detail.

A3: Finally, if a PaPirus display was attached and detected, an object is instantiated to handle the interface with the display. We will see how this is done later in this chapter.

Now let’s take a 30,000-foot view of the methods that have been created

to handle the user interface and perform the defined functions. At this

point we are just looking at the methods that have been defined as shown

in Figure 4-4 and Table 4-1.

78

Chapter 4 raspberry pi as a sensor

 Figure 4-4. Application object methods

Brief descriptions of the application object methods are given in

Table 4-1.

79

Chapter 4 raspberry pi as a sensor

 Table 4-1. GUI method definitions

Method

Description

initUi

Creates and initializes all the display widgets found on the

application frame. once all the widgets are created, the

lookup tables used by the application are loaded and the

status bar is updated.

btnselectFolder

handles the button click to the right of the report Folder

selection and provides a folder browser for the user. the

user must select an existing folder, or create a new folder

to store the results of the record baseline or activate

sensor selections.

btnselectbaseline

handles the selection of an existing baseline that will

be used in sensor mode to detect anomalies from the

recorded baseline, for example, new connections, devices,

port usage and countries contacted.

btnperformCapture

begins the record baseline process. based on the selected

duration, this method will run to completion unless

interrupted by the stop button. note: this button will not be

active until a report folder has been selected.

btnactivatesensor

Utilizes the selected baseline and begins the process of

monitoring network activity and comparing those results

to the baseline. Like the btnperformCapture method,

it will run for the selected duration unless interrupted

by the stop button. note: this button will not be active

until a report folder has been selected along with a valid

baseline.

(continued)

80

Chapter 4 raspberry pi as a sensor

 Table 4-1. (continued)

Method

Description

btnstopCapture

activated upon pressing the stop button during a baseline

recording or sensor execution. it will interrupt the

recording or sensor, but will store the intermediate results.

note: this button will only be activated during baseline

recording or sensor monitoring activity.

btnViewselectedreport Displays the report currently selected by the user in the select report drop-down menu. possible reports include

the following:

Master report

Manufacturer report (oUi device name)

Country report

port usage report

iot report

iCs report

btnViewalerts

activated by the user pressing the view alerts button.

this button is only active after a sensor execution has

been completed. the method will display the current alert

report generated by the last sensor operation.

the next set of methods perform operations upon completing the recording of a baseline. the method uses the unique dictionary created during the baseline recording process.

saveob

saves the baseline as a serialized python pickle object.

the baseline is saved in the baseline directory that is

created under the selected report folder.

(continued)

81

Chapter 4 raspberry pi as a sensor

 Table 4-1. (continued)

Method

Description

GenCsV

Generates a comma-separated value (CsV) file in

the reports folder. the CsV contains all the unique

observations during the record baseline process.

GenhtML

Generates the master htML report

GenCountry

Generates the country htML report

GeniCs

Generates the possible iCs observed activity htML report

Geniot

Generates the possible iot observed activity htML report

GenMFG

Generates the observed manufacturers htML report

GenportUsage

Generates the portUsage htML report

translatealertCodes

Converts alert codes generated by the pi sensor into

meaningful messages

Genalerts

Generates the alerts htML report generated by the sensor

operation

btnstopCapture

allows the user to stop the recording or sensor, but still

generate the reports

Menuabout

Displays the application about box

Menutoolsexit

handles the exiting of the Menutools

 Method Details

Next, we will take a deeper look at some of the key methods defined here.

Note a complete listing of the completed python solutions is

available in the appedix a, provides instructions on accessing the

source code.

82

Chapter 4 raspberry pi as a sensor

Initializing the GUI (initUI)

def initUI(self):

Create Menu Bar

U1

menuBar = Menu(self.parent) # menu begin

toolsMenu = Menu(menuBar, tearoff=0)

toolsMenu.add_command(label='About', accelerator='Ctrl+A',

command=self.menuAbout, underline=0)

toolsMenu.add_separator()

toolsMenu.add_command(label='Exit', accelerator='Ctrl+X',

command=self.menuToolsExit)

menuBar.add_cascade(label='Help', menu=toolsMenu,

underline=0)

self.parent.config(menu=menuBar) # menu ends

self.bind_all("<Control-x>", self.menuToolsExit)

self.bind_all("<Control-a>", self.menuAbout)

Folder Selection

U2

self.lblReport = Label(self.parent, anchor='w',

text="Report Folder")

self.lblReport.grid(row=1, column=0, padx=5, pady=10,

sticky='w')

self.ReportFolder = Label(self.parent, anchor='w', bd=3, bg

= 'white', fg='black',width=80, relief=SUNKEN)

self.ReportFolder.grid(row=1, column=1, padx=5, pady=0,

sticky='w')

83

Chapter 4 raspberry pi as a sensor

self.buttonReportFolder = Button(self.parent, text=' ... ',

command=self.btnSelectFolder, width=5, bg ='gray',

fg='black',

activebackground='black', activeforeground='green')

self.buttonReportFolder.grid(row=1, column=1, padx=585,

pady=0, sticky='w')

self.lblBaseline = Label(self.parent, anchor='w',

text="Select Baseline")

self.lblBaseline.grid(row=2, column=0, padx=5, pady=10,

sticky='w')

self.fileBaseline = Label(self.parent, anchor='w', bd=3,

bg = 'white', fg='black',width=80, relief=SUNKEN)

self.fileBaseline.grid(row=2, column=1, padx=5, pady=0,

sticky='w')

self.buttonSelectBaseline = Button(self.parent,

text=' ... ',

command=self.btnSelectBaseLine, width=5, bg ='gray',

fg='black',

activebackground='black', activeforeground='green')

self.buttonSelectBaseline.grid(row=2, column=1, padx=585,

pady=0,

sticky='w')

Specify the Duration of the Scan

U3

self.lblDuration = Label(self.parent, anchor='w',

text="Select Duration")

self.lblDuration.grid(row=3, column=0, padx=5, pady=10,

sticky='w')

self.durationValue = StringVar()

self.duration = ttk.Combobox(self.parent,

textvariable=self.durationValue)

84

Chapter 4 raspberry pi as a sensor

self.duration['values'] = ('1-Min', '10-Min', '30-Min',

'1-Hr', '4-Hr', '8-Hr', '12-Hr', '18-Hr', '1-Day', '2-Day',

'4- Day', '7-Day','2-Week', '4-Week')

self.duration.current(0)

self.duration.grid(row=3, column=1, padx=5, pady=10,

sticky='w')

Capture Packet Button

U4 Action Buttons

self.ActivateSensor = Button(self.parent, text='Activate

Sensor',

command=self.btnActivateSensor, bg ='gray',

fg='black',

activebackground='black', activeforeground='green')

self.ActivateSensor.grid(row=8, column=1, padx=5, pady=5,

sticky=W)

self.ActivateSensor['state']=DISABLED

self.CapturePackets = Button(self.parent, text='Record

Baseline',

command=self.btnPerformCapture, bg ='gray',

fg='black',

activebackground='black', activeforeground='green')

self.CapturePackets.grid(row=8, column=1, padx=120, pady=5,

sticky=W)

self.CapturePackets['state']=DISABLED

self.StopCapture = Button(self.parent, text='STOP',

command=self.btnSTOPCapture, bg ='gray',

fg='black',

85

Chapter 4 raspberry pi as a sensor

activebackground='black', activeforeground='green')

self.StopCapture.grid(row=8, column=1, padx=240, pady=5,

sticky=W)

self.StopCapture['state']=DISABLED

self.ViewAlerts = Button(self.parent, text='View Alerts',

command=self.btnViewAlerts, bg ='gray', fg='black',

activebackground='black', activeforeground='green')

self.ViewAlerts.grid(row=8, column=1, padx=320, pady=5,

sticky=W)

self.ViewAlerts['state']=DISABLED

SETUP a Progress Bar

U5 Progress Bar Setup

self.progressLabel = Label(self.parent, anchor='w',

text="Progress")

self.progressLabel.grid(row=9, column=0, padx=0, pady=10,

sticky='w')

self.progressBar = ttk.Progressbar(self.parent,

orient='horizontal',

mode='determinate')

self.progressBar.grid(row=9, column=1, padx=5, pady=10,

sticky='w')

Special Code to align the width of the progress bar

colWidth = self.ReportFolder.winfo_width()

self.progressBar['length'] = colWidth

self.update()

86

Chapter 4 raspberry pi as a sensor

Report Setup

U6 Reporting

self.lblReport = Label(self.parent, anchor='w', text="

Select Report")

self.lblReport.grid(row=3, column=1, padx=175, pady=10,

sticky='w')

self.ReportSelection = StringVar()

self.report = ttk.Combobox(self.parent, textvariable=self.

ReportSelection)

self.report['values'] = ('Master Report', 'MFG Report',

'Country Report', 'Port Usage Report', 'ICS Report', 'IoT

Report')

self.report.current(0)

self.report.grid(row=3, column=1, padx=275, pady=10,

sticky='w')

View Report

self.viewReport = Button(self.parent, text='View

Selected Report', command=self.btnViewSelectedReport,

bg ='gray', fg='black', activebackground='black',

activeforeground='green')

self.viewReport.grid(row=3, column=1, padx=425, pady=5,

sticky=W)

self.viewReport['state']=DISABLED

Status Message

U7 Status Bar

self.statusText = Label(self.parent, anchor='w', width=80,

bd=3, bg ='white', fg='black', relief=SUNKEN)

87

Chapter 4 raspberry pi as a sensor

self.statusText.grid(row=10, column=0, columnspan=2,

padx=5, pady=5, sticky='w')

self.update()

Defining a GUI in Python can be accomplished with many different

third-party libraries. However, here we have chosen to utilize the built- in Python TKinter Library, TK for short. Tk/Tcl is an integral component of

standard Python. It provides a robust and platform independent windowing

toolkit that is readily available to Python programmers using the TKinter

module, and its extensions. The extensions include the Tix and ttk modules.

Additional details regarding TKinter can be found in the Python Standard

Library at https://docs.python.org/2/library/tk.html.

The TKinter module is a thin object-oriented layer on top of Tcl/Tk, which provides a set of wrappers that implement the Tk widgets as Python

classes. In addition, the internal module _TKinter provides a threadsafe

mechanism which allows Python and Tcl to interact.

Using TKinter requires us to make specific declarations and

configurations for each of the onscreen widgets along with any event

handlers (for example button clicks) for each widget.

Configuring TK can be done using one of two geometry-based

methods, commonly referred to as Grid and Pack. We have chosen to use the Grid method. Using the Grid method organizes widgets in a table-like

structure, where each widget (buttons, labels, combo boxes, progress bars, etc.) are then placed at a specific row and column location.

In addition to visual widgets, other objects such as menu-based

objects like those declared in the U1 highlighted section are placed on the frames menu bar.

In order to better explain how this is done, we will walk through each

code section U1 through U7.

88

Chapter 4 raspberry pi as a sensor

U1-Menu Bar

This section declares the simple menu item “Help” that contains just three items:

1. About

2. A horizontal separator line

3. Exit

In addition, the keyboard shortcut bindings for Ctrl-X and Ctrl-A are defined to allow keystroke menu selections.

Finally, specific command executions are associated with the About

and Exit menu options. For example:

command=self.menuAbout

command=self.menuToolsExit

If you examine Table 4-1 you will see the declarations for these two methods as part of the application object. We will examine those methods

later in this chapter.

This produces the menu as shown in Figure 4-5.

 Figure 4-5. Menu bar illustration

89

Chapter 4 raspberry pi as a sensor

U2-Folder and File Selection

The folder selection code section defines two selections, and each

selection contains three widgets:

1. A label widget that indicates the name of the field

2. A sunken label that will hold the resulting user

selection

3. A button to launch the requisite folder and file

selection dialogs

Taking a close look at the first folder selection, we first define the label widget with the text Report Folder and place that label at row 1, column 0

on the parent frame and we anchor the frame to the westmost position in

the column.

self.lblReport = Label(self.parent, anchor='w',

text="Report Folder")

self.lblReport.grid(row=1, column=0, padx=5, pady=10, sticky='w')

Next, we specify another label widget at row 1, column 1 and specify

the label to be sunken to represent data that is specified.

self.ReportFolder = Label(self.parent, anchor='w', bd=3,

bg = 'white',

fg='black',width=80, relief=SUNKEN)

self.ReportFolder.grid(row=1, column=1, padx=5, pady=0, sticky='w')

Finally, we add a button widget at row 1, column 2 that will launch

a dialog box for the user to select the folder where reports, baseline, and alerts will be stored. Notice this widget has a command associated with

 self.btnSelectFolder. This method is also defined in Table 4-1, and again, we will examine the details of this method. The method source code is

shown here.

90

Chapter 4 raspberry pi as a sensor

self.buttonReportFolder = Button(self.parent, text=' ... ',

command=self.btnSelectFolder, width=5, bg ='gray',

fg='black',

activebackground='black', activeforeground='green')

self.buttonReportFolder.grid(row=1, column=1, padx=585, pady=0,

sticky='w')

U3-Duration Selection

Duration selection specifies two widgets. The first is a label to display

“Select Duration”, and the second is a combo box to list the possible

duration options available. The label is placed at row 3, column 0, while

the combo box is placed at row 3, column 1. When the user clicks the

combo box, the list of possible options is displayed as shown in Figure 4-6.

The current selection is maintained by the widget and we can retrieve that selection at any time. Of course, the string value will have to have been

converted into a useable time value.

 Figure 4-6. Duration selection

91

Chapter 4 raspberry pi as a sensor

U4-Action Buttons

The action buttons, activate sensor, record baseline, stop and view Alerts are defined here. They are all defined to be placed in row 8, column 1.

However, each contains a different padx value (padding from the westmost

position of the row) allowing the buttons to be separated. Without the

padding, they would be displayed on top of each other.

In addition, each button has a defined command associated with it

that will be executed when pressed.

Also, notice that each of the buttons is set to DISABLED. The rationale

is that the buttons cannot activate the specific operations until the report folder and/or the baseline have been correctly selected.

In addition, the stop button will be enabled once either the activate

sensor or record baseline operations are underway, allowing the user to

interrupt the operations. Once the selections have been made the buttons

become activated, as shown in Figure 4-7.

 Figure 4-7. Report and baseline selections enable activate sensor and record baseline buttons

The source code for each button selection are covered in the GUI Source

Code Selection.

92

Chapter 4 raspberry pi as a sensor

U5-Progress Bar

When the activate sensor or record baseline process is underway, a

progress bar will be displayed to depict the time remaining in the scan. For this widget we are using a label and a ttk progress bar widget.

U6-Report Selection

As with the duration selection widgets, we are using a combo box to

provide a list of possible reports that can be selected, a label to display the text “Select Report”, and a button to display the selected report. Note that the view selected report button is also disabled during initialization and only enabled when reports are available for display, as shown in Figure 4-8.

 Figure 4-8. Select report section

U7-Status Bar

The last section defines the status bar at the bottom of the frame. This is used to report status as the application executes. Once again, we use a

simple sunken label widget for the status bar (Figure 4-9). The widget is placed at row 10, column 0.

 Figure 4-9. Application status bar

93

Chapter 4 raspberry pi as a sensor

Exploring Other Application Methods

Now that we have initialized the application interface, let’s look at

the underlying functions that perform operations based on the user

interactions described in Figure 4-3. We will start with selection of the report folder and baseline. The application will write newly generated

reports to the selected report folder. In addition, the subfolders Baselines

and Alerts will be created to hold any recorded baselines and alerts generated during active sensor operation.

Selecting the Report Folder (btnSelectFolder)

Start with the btnSelectFolder method (depicted in code segment F1),

which is activated upon the button click action defined in “U2 Folder and

File Selection.” This section is straightforward; we are using the built-in tkFileDialog.askdirectory function, which displays a directory selection

dialog as shown in Figure 4-10. As you can see, the baselines and alerts folders have also been created.

If the selection result is a valid directory (we use the os.path.isdir()

method to verify this) then we can enable the record baseline button. In

addition, if the baseline has previously been established, then the activate sensor button could also be enabled.

94

Chapter 4 raspberry pi as a sensor

 Figure 4-10. Selection of the report folder

Source Code Methods for GUI Elements

F1 Report Folder Selection

def btnSelectFolder(self):

try:

self.folderSelection = tkFileDialog.

askdirectory(initialdir="./",

title='Select Report Folder')

self.ReportFolder['text'] = self.folderSelection

if os.path.isdir(self.folderSelection) and

os.access(self.folderSelection, os.W_OK):

95

Chapter 4 raspberry pi as a sensor

self.reportFolderGood = True

self.statusText['text'] = "Report Folder

Selected"

self.update()

''' Ok to enable Record Baseline Button '''

self.CapturePackets['state']=NORMAL

if self.baselineGood:

self.ActivateSensor['state']=NORMAL

else:

self.reportFolderGood = False

self.statusText['text'] = "Invalid Folder

Selection ... Folder

must exist and be writable"

self.update()

except Exception as err:

self.reportFolderGood = False

self.update()

Baseline Selection

def btnSelectBaseLine(self):

self.fileSelection = tkFileDialog.askopenfilename(initi

aldir="./",

self.fileSelection =

tkFileDialog.askopenfilename(initiald

ir="./",

filetypes=[("Sensor Baseline

Files","*.baseline")],

title='Select Baseline

File') title='Select Baseline

File')

self.fileBaseline['text'] = self.fileSelection

96

Chapter 4 raspberry pi as a sensor

if self.fileBaseline:

try:

with open(self.fileSelection, 'rb') as base:

try:

''' Make sure we loaded a dictionary '''

self.baselineDictionary = pickle.

 load(base)

''' Make sure the elements match our

structure'''

if type(self.baselineDictionary) is dict:

value = self.baselineDictionary.

values()[0]

if value[POV] == 'S' or value[POV]

== 'D':

self.baselineGood = True

else:

self.baselineGood = False

self.statusText['text'] =

"Baseline Load Failed"

if self.baselineGood:

''' Create Quick Lookups for

Country, MFG'''

self.statusText['text'] =

"Loading Baseline

Contents"

self.update()

for key, value in

self.

baselineDictionary.

iteritems():

97

Chapter 4 raspberry pi as a sensor

try:

srcCC = value[SRCCC]

dstCC = value[DSTCC]

srcMAC = value[SRCMAC]

dstMAC = value[DSTMAC]

if srcCC != '' and

srcCC.lower() !=

'unknown':

self.

baselineCC[srcCC]

= 1

if dstCC != '' and

dstCC.lower() !=

'unknown':

self.

baselineCC[dstCC]

= 1

if srcMAC != '' and

srcMAC.lower() !=

'unknown':

self.

baselineMAC[srcMAC]

= 1

if dstMAC != '' and

dstMAC.lower() !=

'unknown':

self.

baselineMAC[dstMAC]

= 1

except:

98

Chapter 4 raspberry pi as a sensor

''' ignore errors in

baseline

loading'''

continue

self.statusText['text'] =

"Loading Baseline

Completed"

''' Ok to enable Activate

Sensor Button '''

if self.reportFolderGood:

self.ActivateSensor['state'

]=NORMAL

except Exception as err:

self.statusText['text'] = "Baseline

Load Failed"

except Exception as err:

self.statusText['text'] = "Baseline Load

Failed: "+str(err)

self.update()

When we examine the btnSelectBaseLine method depicted in F2, we

see that this function is a bit more complicated. First, this method uses the built-in tkFileDialog.askopenfilename to select the baseline. Since the user can select any file with the .baseline extension, we need to verify that this is a valid baseline generated by the record baseline method. Once this is

verified, we create a set of local dictionaries to hold extracted values from the baseline, including previously observed countries and MAC addresses;

these will be used during the monitoring process to generate alerts from

unknown countries and new observed MAC addresses.

99

Chapter 4 raspberry pi as a sensor

Once a verified baseline and report folder have been selected, both the

activate sensor and record baseline selections are available, as shown in

Figure 4-11.

 Figure 4-11. Properly selected and verified report folder and baseline Record Baseline Method (btnPerformCapture)

Now we move to one of the critical methods of the application, the

record baseline or btnPerformCapture method. This method utilizes two

selections by the user:

• Duration (determine how long to run the recording)

• Report folder (where to record the results)

The method first performs some setup tasks (section R1) to disable

the other action buttons and to enable the Stop button, allowing the

user to interrupt the recording. In addition, a packet processor object is instantiated, which in turn loads the necessary lookups for manufacturer

OUI identification, port and protocol translations, and country lookups. If the PaPirus display is detected and available, it will be initialized to display details of the ongoing recording.

Finally, the network adapter is set to promiscuous mode to collect all

traffic presented at Eth0.

100

Chapter 4 raspberry pi as a sensor

Moving to section R2, the main loop is established and processes each

packet observed over the network. The loop continues until either the

duration time expires or the user presses the stop button. Every 2 seconds, the packet count is updated in the status bar and the progress bar is

updated marking the progress toward the time expiration.

Once R2 completes (either by the user interrupting the process or

through time expiration), a new baseline is created and stored in the

baseline directory, and all the HTML and CSV reports are generated and

stored in the selected report folder. The code in the R3 section calls each report generation function. Let’s take a deeper look at one of the report

generation functions to examine how the resulting HTML reports are

generated in the next section.

R1 Perform Capture

def btnPerformCapture(self):

self.CapturePackets['state']=DISABLED

saveActivateSensor = self.ActivateSensor['state']

self.ActivateSensor['state']=DISABLED

self.StopCapture['state']=NORMAL

self.update()

create a packet processing object

self.statusText['text'] = "Loading Lookups ..."

self.update()

self.packetObj = PacketProcessor(self.lookupList)

if PA_ON:

self.statusText['text'] = "Resetting PaPirus Display

... Please

Wait"

self.update()

self.paObj.ResetDisplay()

101

Chapter 4 raspberry pi as a sensor

self.paObj.UpdateMode("Record ")

self.paObj.UpdateStatus("Operation Started ")

self.statusText['text'] = "Capturing Packets ..."

self.update()

durationValue = self.duration.get()

durSec = CONVERT[durationValue]

startTime = time.time()

curProgress = 0

self.progressBar['value'] = curProgress

Python Packet Capture

configure the eth0 in promiscuous mode

try:

if platform.system() == "Linux":

self.PLATFORM = "LINUX"

ret = os.system("ifconfig eth0 promisc")

if ret == 0:

LogEvent(LOG_INFO, 'Promiscuous Mode Enabled

for eth0')

create a new socket using the python socket

module

PF_PACKET : Specifies Protocol Family

Packet Level

SOCK_RAW : Specifies A raw network

packet layer

htons(0x0003) : Specifies all headers and

packets

: Ethernet and IP, including

TCP/UDP etc

102

Chapter 4 raspberry pi as a sensor

attempt to open the socket for capturing raw

packets

rawSocket=socket.socket(socket.PF_PACKET,

socket.SOCK_RAW,

socket.htons(0x0003))

else:

self.statusText['text'] = "Capture Failed ...

Cannot Open

Socket"

self.progressBar['value'] = 0

self.update()

self.CapturePackets['state']=NORMAL

self.StopCapture['state']=DISABLED

self.update()

return

except Exception as err:

self.statusText['text'] = "Network Connection Failed:

"+ str(err)

self.update()

return

pkCnt = 0

upTime = time.time()

paTime = time.time()

R2 Main Loop

while True:

curTime = time.time()

elapsedTime = curTime - startTime

if elapsedTime > durSec:

103

Chapter 4 raspberry pi as a sensor

break

if self.abortFlag:

''' User Aborted '''

''' Reset the Flag for next use '''

self.abortFlag = False

break

''' Update the Progress Bar on Change vs Total Time'''

newProgress = int(round((elapsedTime/durSec * 100)))

if newProgress > curProgress:

self.progressBar['value'] = newProgress

curProgress = newProgress

self.update()

''' Update the Status Window every two seconds'''

newTime = time.time()

if (newTime - upTime) >= 2:

upTime = newTime

cntStr = '{:,}'.format(pkCnt)

self.statusText['text'] = "Connections Processed: "

+ cntStr

self.update()

''' Update the PA Display if available '''

if PA_ON:

newPATime = time.time()

if (newPATime - paTime) >= 20:

paTime = newPATime

cntStr = '{:,}'.format(pkCnt)

self.paObj.UpdatePacketCnt(cntStr)

104

Chapter 4 raspberry pi as a sensor

attempt to receive (this call is synchronous, thus it

will wait)

try:

recvPacket=rawSocket.recv(65535)

self.packetObj.PacketExtractor(recvPacket)

pkCnt += 1

except Exception as err:

LogEvent(LOG_INFO,'Recv Packet Failed: '+str(err))

continue

self.statusText['text'] = "Generating Capture Reports and

Saving

Baseline ..."

self.update()

Generate Reports and Save the Baseline

R3 Report Generation

self.SaveOb(self.packetObj.d)

self.GenCSV(self.packetObj.d)

self.GenHTML(self.packetObj.d)

self.GenCOUNTRY(self.packetObj.d)

self.GenMFG(self.packetObj.d)

self.GenICS(self.packetObj.d)

self.GenIOT(self.packetObj.d)

self.GenPortUsage(self.packetObj.d)

''' Enable Report Button '''

self.viewReport['state']=NORMAL

''' Reset Progress Bar and Post Completed status'''

self.progressBar['value'] = 0

cntStr = '{:,}'.format(pkCnt)

105

Chapter 4 raspberry pi as a sensor

unique = '{:,}'.format(len(self.packetObj.d))

self.statusText['text'] = "Done: Total Connections

Processed:

"+cntStr+" Unique Observations Recorded: "+unique

self.CapturePackets['state']=NORMAL

reset the ActivateSensor State

self.ActivateSensor['state']=saveActivateSensor

self.StopCapture['state']=DISABLED

self.update()

if PA_ON:

self.paObj.UpdatePacketCnt(unique)

self.paObj.UpdateStatus("Operation Completed")

self.paObj.UpdateMode(" ")

Master Report Generation (GenHTML)

The report generators all work basically the same, but they filter and sort data based on the specific reports being created. The method is a unique

method of autogenerating an HTML file. One could use XML (eXtensible

Markup Language) and style sheets as an alternative.

Examining M1, we start by updating the status bar of our progress. The

current date and time are obtained in order to generate a unique file name for the desired report. Each report name is prepended with the date-time

in order to provide easy sorting of the report results. For this example, the report name would be in the following format:

2017-11-14-08-22-master.html

yyyy-mm-dd-hr-mm-master.html

106

Chapter 4 raspberry pi as a sensor

Next, the html file is built from a template stored in the rpt.py file.

Each report has a separate template that is used. Basically, the template

contains an HTML_START section, HTML_HEADER section, (multiple)

HTML_BODY sections, and HTML_END section.

Examining the code in section M2, the Python dictionary object d

contains all the unique observations collected during this recording. A

loop is created to iterate over each unique observation, and the values

extracted from the key/value pairs of the dictionary are stored in local

variable prefaced with fld (for example, fldAlert, fldSrcIP, etc.). Once they are collected we use the format method available for strings, as shown

here, to replace the placeholders defined in the template HTML.

htmlSection = htmlSection.format(**locals())

The template HTML placeholders highlighted here are then replaced

by the corresponding local variables to generate the final HTML code.

<td style="width: 250px;"> {fldAlert} </td>

<td style="width: 250px;"> {fldAlertCnt} </td> Once all the HTML code has been generated, the code in section M3

writes out the complete htmlContents to the report filename created in section M1.

def GenHTML(self, d):

M1 Update Report Date / Time

''' Produce the Master Report using the master dictionary

provided '''

path = self.ReportFolder['text']

utc=datetime.datetime.utcnow()

yr = str(utc.year)

mt = '{:02d}'.format(utc.month)

dy = '{:02d}'.format(utc.day)

107

Chapter 4 raspberry pi as a sensor

hr = '{:02d}'.format(utc.hour)

mn = '{:02d}'.format(utc.minute)

''' Produce Master HTML Report'''

self.statusText['text'] = "Generating Master HTML Report

..."+yr+'-

'+mt+'-'+dy+'-'+hr+'-'+mn+"

-Master.html"

self.update()

filename = yr+'-'+mt+'-'+dy+'-'+hr+'-'+mn+"-Master.hmtl"

self.MasterHTML = os.path.join(path, filename)

htmlContents = ''

htmlHeader = rpt.HTML_START

fldDate = yr+'-'+mt+'-'+dy+'@'+hr+':'+mn+" UTC"

htmlHeader = htmlHeader.format(**locals())

htmlContents = htmlContents + htmlHeader

for eachKey in d:

M2 Adding Observation Data to the Reports

htmlSection = rpt.HTML_BODY

value = d[eachKey]

fldAlert = value[ALERT]

fldSrcIP = eachKey[SRCIP]

fldDstIP = eachKey[DSTIP]

fldFrame = eachKey[FRAMETYPE]

fldProtocol = eachKey[PROTOCOL]

fldSrcPort = value[SRCPORT]

fldSrcPortName= value[SRCPORTNAME]

fldDstPort = value[DSTPORT]

108

Chapter 4 raspberry pi as a sensor

fldDstPortName= value[DSTPORTNAME]

fldSrcMAC = value[SRCMAC]

fldDstMAC = value[DSTMAC]

fldSrcMFG = value[SRCMFG]

fldDstMFG = value[DSTMFG]

fldSrcCC = value[SRCCC]

fldDstCC = value[DSTCC]

fldPktSize = value[AVGPCKSIZE]

fldTwilight = value[AM12]

fldMorning = value[AM6]

fldAfternoon = value[PM12]

fldEvening = value[PM6]

fldWeekend = value[WKEND]

fldTotal = value[AM12]+value[AM6]+

value[PM12]+

value[PM6]+value[WKEND]

htmlSection = htmlSection.format(**locals())

htmlContents = htmlContents + htmlSection

htmlContents = htmlContents + rpt.HTML_END

''' Write the Report to the output file'''

M3 Write HTML Report to File

output = open(self.MasterHTML,"w")

output.write(htmlContents)

output.close()

Saving the Baseline (SaveOb)

In addition to generating the various reports associated with the

record baseline process, the actual baseline is also created. This is a

straightforward process in Python, as we are serializing the Python

dictionary object d using the pickle standard library module.

109

Chapter 4 raspberry pi as a sensor

Note What is pickling? pickling “serializes” python objects prior

to writing them to a file. pickling converts python objects (list, dict,

etc.) into a character stream. the idea is that this character stream

contains all the information necessary to reconstruct the object in

another python script. this is done by using the pickle.load(filename)

method. this method was utilized in section F-2 when the baseline

file was selected by the user.

In Section S1, the SaveOb method uses the same naming convention

used when creating report files, but adds the file extension “.baseline” to the file. Then with only two lines of code, the baseline file is created.

with open(outFile, 'wb') as fp:

pickle.dump(d, fp)

def SaveOb(self, d):

S1 Serializing and Saving the Object Baseline

''' Save the current observation dictionary to a the

specified path '''

try:

path = self.ReportFolder['text']

baseDir = os.path.join(path,'baselines')

if not os.path.isdir(baseDir):

os.mkdir(baseDir)

self.statusText['text'] = "Generating Serialized

Baseline ..."

self.update()

utc=datetime.datetime.utcnow()

yr = str(utc.year)

mt = '{:02d}'.format(utc.month)

dy = '{:02d}'.format(utc.day)

110

Chapter 4 raspberry pi as a sensor

hr = '{:02d}'.format(utc.hour)

mn = '{:02d}'.format(utc.minute)

filename = yr+'-'+mt+'-'+dy+'--'+hr+'-'+mn+".baseline"

outFile = os.path.join(baseDir, filename)

with open(outFile, 'wb') as fp:

pickle.dump(d, fp)

except Exception as err:

LogEvent(LOG_ERR, "Failed to Create Baseline

Output"+str(err))

Activate Sensor (btnActivateSensor, PacketMonitor)

The final method to examine in this chapter is the btnActivateSensor

method. The front end of this method mimics that of the packer

recorder. The difference is in the processing of each received packet. The PacketMonitor method examines the received packet and determines

if “the same packet construction” exists in the current baseline. If not,

then an alert report item is generated to indicate a “New Observation”. In addition, the key elements of the packet, such as IP country location, MAC

address, packet size, and time of the observation, are compared to known

or expected values. If anomalies are discovered, additional report items

are recorded. The following code snippet includes the btnActivateSensor,

 PacketMonitor, and supporting methods.

 def btnActivateSensor(self):

Handle Active Sensor Button Click

self.ActivateSensor['state']=DISABLED

saveCaptureState = self.CapturePackets['state']

self.CapturePackets['state']=DISABLED

self.StopCapture['state']=NORMAL

self.update()

111

Chapter 4 raspberry pi as a sensor

create a packet processing object

self.statusText['text'] = "Loading Lookups ..."

self.update()

self.packetObj = PacketProcessor(self.lookupList,

self.baselineDictionary)

self.statusText['text'] = "Monitoring Packets ..."

if PA_ON:

self.statusText['text'] = "Resetting PaPirus Display

... Please

Wait"

self.update()

self.paObj.ResetDisplay()

self.paObj.UpdateMode("Monitor")

self.paObj.UpdateStatus("Operation Started ")

self.statusText['text'] = "Monitoring Packets ..."

self.update()

durationValue = self.duration.get()

durSec = CONVERT[durationValue]

startTime = time.time()

curProgress = 0

self.progressBar['value'] = curProgress

self.alertDict = {}

Python Packet Capture

configure the eth0 in promiscuous mode

try:

ret = os.system("ifconfig eth0 promisc")

if ret == 0:

112

Chapter 4 raspberry pi as a sensor

LogEvent(LOG_INFO, 'Promiscuous Mode Enabled for

eth0')

create a new socket using the python socket

module

PF_PACKET : Specifies Protocol Family Packet

Level

SOCK_RAW : Specifies A raw protocol at the

network layer

htons(0x0003) : Specifies all headers and packets

: Ethernet and IP, including TCP/

UDP etc

attempt to open the socket for capturing raw

packets

rawSocket=socket.socket(socket.PF_PACKET,socket.

SOCK_RAW,

socket.htons(0x0003))

else:

self.statusText['text'] = "Monitoring Failed ...

Cannot Open Socket"

self.progressBar['value'] = 0

self.update()

self.CapturePackets['state']=NORMAL

self.StopCapture['state']=DISABLED

self.update()

return

except Exception as err:

self.statusText['text'] = "Socket Exception ...

"+str(err)

self.progressBar['value'] = 0

113

Chapter 4 raspberry pi as a sensor

self.CapturePackets['state']=NORMAL

self.StopCapture['state']=DISABLED

self.update()

return

pkCnt = 0

upTime = time.time()

paTime = time.time()

while True:

curTime = time.time()

elapsedTime = curTime - startTime

if elapsedTime > durSec:

break

if self.abortFlag:

''' User Aborted '''

''' Reset the Flag for next use '''

self.abortFlag = False

break

''' Update the Progress Bar on Change vs Total Time'''

newProgress = int(round((elapsedTime/durSec * 100)))

if newProgress > curProgress:

self.progressBar['value'] = newProgress

curProgress = newProgress

self.update()

''' Update the Status Window every two seconds'''

newTime = time.time()

if (newTime - upTime) >= 2:

upTime = newTime

114

Chapter 4 raspberry pi as a sensor

cntStr = '{:,}'.format(pkCnt)

self.statusText['text'] = "Pck Cnt: " + cntStr

self.update()

''' Update the PA Display if available '''

if PA_ON:

newPATime = time.time()

if (newPATime - paTime) >= 20:

paTime = newPATime

cntStr = '{:,}'.format(pkCnt)

self.paObj.UpdatePacketCnt(cntStr)

attempt to receive (this call is synchronous, thus it

will wait)

try:

recvPacket=rawSocket.recv(65535)

self.packetObj.PacketMonitor(recvPacket,

self.alertDict, self.baselineCC,

self.baselineMAC)

pkCnt += 1

except Exception as err:

LogEvent(LOG_INFO,'Recv Packet Failed: '+str(err))

continue

Generate Sensor Reports

self.GenAlerts(self.alertDict)

''' Enable Report Button '''

self.ViewAlerts['state']=NORMAL

''' Reset Progress Bar and Post Completed status'''

self.progressBar['value'] = 0

cntStr = '{:,}'.format(pkCnt)

115

Chapter 4 raspberry pi as a sensor

alertsGenerated = '{:,}'.format(len(self.alertDict))

self.statusText['text'] = "Done: Total Connections

Processed

: "+cntStr+" Alerts: "+alertsGenerated

self.CapturePackets['state'] = saveCaptureState

self.ActivateSensor['state']=NORMAL

self.StopCapture['state']=DISABLED

self.update()

if PA_ON:

self.paObj.UpdateAlertCnt(alertsGenerated)

self.paObj.UpdatePacketCnt(cntStr)

self.paObj.UpdateStatus("Operation Completed")

self.paObj.UpdateMode(" ")

 def PacketMonitor (self, packet, alertDict, baseCC, baseMAC):

''' Extract Packet Data input: string packet, dictionary d

result is to update dictionary d

'''

ETH_LEN = 14 # ETHERNET HDR LENGTH

IP_LEN = 20 # IP HEADER LENGTH

IPv6_LEN = 40 # IPv6 HEADER LENGTH

ARP_HDR = 8 # ARP HEADER

UDP_LEN = 8 # UPD HEADER LENGTH

TCP_LEN = 20 # TCP HEADER LENGTH

''' Elements of the key '''

self.srcMac = ''

self.dstMac = ''

self.frType = ''

self.srcIP = ''

116

Chapter 4 raspberry pi as a sensor

self.dstIP = ''

self.proto = ''

self.opcode = ''

self.port = ''

self.srcPort = ''

self.dstPort = ''

self.srcPortName = ''

self.dstPortName = ''

self.packetSize = 0

self.srcMFG = ''

self.dstMFG = ''

self.dstMacOui =''

self.srcMacOui = ''

self.srcCC = ''

self.dstCC = ''

self.alert = ''

self.lastObservationTime = time.ctime(time.time())

ethernetHeader=packet[0:ETH_LEN]

ethFields =struct.unpack("!6s6sH",ethernetHeader)

self.dstMac = hexlify(ethFields[0]).upper()

self.dstMacOui = self.dstMac[0:6]

self.dstMFG = self.ouiOBJ.lookup(self.dstMacOui)

self.alert = 'Normal'

self.srcMac = hexlify(ethFields[1]).upper()

self.srcMacOui = self.srcMac[0:6]

self.srcMFG = self.ouiOBJ.lookup(self.srcMacOui)

self.fType = ethFields[2]

frameType = self.ethOBJ.lookup(self.fType)

self.frType = frameType

117

Chapter 4 raspberry pi as a sensor

if frameType == "IPV4":

Process as IPv4 Packet

ipHeader = packet[ETH_LEN:ETH_LEN+IP_LEN]

unpack the ip header fields

ipHeaderTuple = struct.unpack('!BBHHHBBH4s4s' , ipHeader)

extract the key ip header fields of interest

Field Contents

verLen = ipHeaderTuple[0] # Field 0: Version &

Length

TOS = ipHeaderTuple[1] # Field 1: Type of

Service

packetLength = ipHeaderTuple[2] # Field 2: Packet

Length

protocol = ipHeaderTuple[6] # Field 6: Protocol

Number

sourceIP = ipHeaderTuple[8] # Field 8: Source IP

destIP = ipHeaderTuple[9] # Field 9:

Destination IP

timeToLive = ipHeaderTuple[5] # Field 5: Time to

Live

Calculate / Convert extracted values

version = verLen >> 4 # Upper Nibble is the

version Number

length = verLen & 0x0F # Lower Nibble represents

the size

ipHdrLength = length * 4 # Calculate the header size

in bytes

covert the srcIP/dstIP to typical dotted notation strings

self.packetSize = packetLength

118

Chapter 4 raspberry pi as a sensor

self.srcIP = socket.inet_ntoa(sourceIP);

self.dstIP = socket.inet_ntoa(destIP);

self.srcCC = self.cc.lookup(self.srcIP, 'IPv4')

self.dstCC = self.cc.lookup(self.dstIP, 'IPv4')

translate = self.traOBJ.lookup(str(protocol))

transProtocol = translate[0]

if transProtocol == 'TCP':

self.proto = "TCP"

stripTCPHeader = packet[ETH_

LEN+ipHdrLength:ipHdrLength+

ETH_LEN+TCP_LEN]

unpack the TCP Header to obtain the

source and destination port

tcpHeaderBuffer = struct.unpack('!HHLLBBHHH' ,

stripTCPHeader)

self.srcPort = tcpHeaderBuffer[0]

self.dstPort = tcpHeaderBuffer[1]

self.srcPortName = self.portOBJ.lookup(self.srcPort,

'TCP')

self.dstPortName = self.portOBJ.lookup(self.dstPort,

'TCP')

elif transProtocol == 'UDP':

self.proto = "UDP"

stripUDPHeader = packet[ETH_LEN+ipHdrLength:ETH_LEN+

ipHdrLength+UDP_LEN]

119

Chapter 4 raspberry pi as a sensor

unpack the UDP packet and obtain the

source and destination port

udpHeaderBuffer = struct.unpack('!HHHH' ,

stripUDPHeader)

self.srcPort = udpHeaderBuffer[0]

self.dstPort = udpHeaderBuffer[1]

self.srcPortName = self.portOBJ.lookup(self.srcPort,

'UDP')

self.dstPortName = self.portOBJ.lookup(self.dstPort,

'UDP')

elif transProtocol == 'ICMP':

self.proto = "ICMP"

elif transProtocol == 'IGMP':

self.proto = "IGMP"

else:

self.proto = transProtocol

elif frameType == 'ARP':

Process as IPv4 Packet

arpHeader = packet[ETH_LEN:ETH_LEN+ARP_HDR]

unpack the ARP header fields

arpHeaderTuple = struct.unpack('!HHBBH' , arpHeader)

ht = arpHeaderTuple[0]

pt = arpHeaderTuple[1]

hal = arpHeaderTuple[2]

120

Chapter 4 raspberry pi as a sensor

pal = arpHeaderTuple[3]

op = arpHeaderTuple[4]

set packetSize for ARP to zero

self.packetSize = 0

base = ETH_LEN+ARP_HDR

shAddr = hexlify(packet[base:base+hal])

base = base+hal

spAddr = hexlify(packet[base:base+pal])

base = base+pal

thAddr = hexlify(packet[base:base+hal])

base = base+hal

tpAddr = hexlify(packet[base:base+pal])

self.srcIP = shAddr

self.dstIP = thAddr

self.proto = str(op)

elif frameType == "IPV6":

Process as IPv6 Packet

ipHeader = packet[ETH_LEN:ETH_LEN+IPv6_LEN]

unpack the ip header fields

ipv6HeaderTuple = struct.unpack('!IHBBQQQQ' , ipHeader)

flush = ipv6HeaderTuple[0]

pLength = ipv6HeaderTuple[1]

nextHdr = ipv6HeaderTuple[2]

hopLmt = ipv6HeaderTuple[3]

srcIP = (ipv6HeaderTuple[4] << 64) | ipv6HeaderTuple[5]

dstIP = (ipv6HeaderTuple[6] << 64) | ipv6HeaderTuple[7]

self.packetSize = pLength

self.srcIP = str(netaddr.IPAddress(srcIP))

121

Chapter 4 raspberry pi as a sensor

self.dstIP = str(netaddr.IPAddress(dstIP))

self.srcCC = self.cc.lookup(self.srcIP, 'IPv6')

self.dstCC = self.cc.lookup(self.dstIP, 'IPv6')

translate = self.traOBJ.lookup(str(nextHdr))

transProtocol = translate[0]

if transProtocol == 'TCP':

self.proto = "TCP"

stripTCPHeader = packet[ETH_LEN+IPv6_LEN:ETH_LEN+

IPv6_LEN+TCP_LEN]

unpack the TCP Header to obtain the

source and destination port

tcpHeaderBuffer = struct.unpack('!HHLLBBHHH' ,

stripTCPHeader)

self.srcPort = tcpHeaderBuffer[0]

self.dstPort = tcpHeaderBuffer[1]

self.srcPortName = self.portOBJ.lookup(self.srcPort,

'TCP')

self.dstPortName = self.portOBJ.lookup(self.dstPort,

'TCP')

elif transProtocol == 'UDP':

self.proto = "UDP"

stripUDPHeader = packet[ETH_LEN+IPv6_LEN:ETH_LEN+

IPv6_LEN+UDP_LEN]

unpack the UDP packet and obtain the

source and destination port

122

Chapter 4 raspberry pi as a sensor

udpHeaderBuffer = struct.unpack('!HHHH' ,

stripUDPHeader)

self.srcPort = udpHeaderBuffer[0]

self.dstPort = udpHeaderBuffer[1]

self.srcPortName = self.portOBJ.lookup(self.srcPort,

'UDP')

self.dstPortName = self.portOBJ.lookup(self.dstPort,

'UDP')

elif transProtocol == 'ICMP':

self.proto = "ICMP"

elif transProtocol == 'IGMP':

self.proto = "IGMP"

else:

self.proto = transProtocol

else:

self.proto = frameType

valueNdx = getOccurrenceValue()

if self.srcIP == '127.0.0.1' and self.dstIP == '127.0.0.1':

''' Ignore this packet '''

return

if self.srcPort <= CORE_PORTS:

''' if srcPort is definately a service port'''

key = (self.srcIP, self.dstIP, self.srcPort,

self.frType, self.proto)

elif self.dstPort <= CORE_PORTS:

123

Chapter 4 raspberry pi as a sensor

''' if dstPort is definately a service port'''

key = (self.srcIP, self.dstIP, self.dstPort,

self.frType, self.proto)

elif self.srcPort < self.dstPort:

''' Guess that srcPort is server '''

key = (self.srcIP, self.dstIP, self.srcPort,

self.frType, self.proto)

else:

''' guess destination port is server'''

key = (self.srcIP, self.dstIP, self.dstPort,

self.frType, self.proto)

''' Check Baseline for previously observed key '''

try:

''' if match found, snag the time entries and avg packet

size'''

value = self.b[key]

avgPckSize = value[AVGPCKSIZE]

timeList = [value[AM12], value[AM6], value[PM12],

value[PM6], value[WKEND]]

newEntry = False

except:

''' Then this is a new observation'''

self.CreateAlertEntry(key, alertDict, "New Observation")

newEntry = True

chk, value = self.ouiOBJ.chkHotlist(self.dstMacOui)

if chk:

self.CreateAlertEntry(key, alertDict, "HotList: "+value)

if self.isNewMAC(self.srcMac, baseMAC):

self.CreateAlertEntry(key, alertDict, "New MAC Address")

124

Chapter 4 raspberry pi as a sensor

if self.isNewMAC(self.dstMac, baseMAC):

self.CreateAlertEntry(key, alertDict, "New MAC Address")

if self.isNewCC(self.srcCC, baseCC):

self.CreateAlertEntry(key, alertDict, "New Country Code")

if self.isNewCC(self.dstCC, baseCC):

self.CreateAlertEntry(key, alertDict, "New Country Code")

''' If this is not a new entry the safe to check pckSize and

Times'''

if not newEntry:

if self.isUnusualPckSize(self.packetSize, avgPckSize):

self.CreateAlertEntry(key, alertDict, "Unusual Packet

Size")

if self.isUnusualTime(timeList):

self.CreateAlertEntry(key, alertDict, "Unusual Packet

Time")

Packet Monitor Supporting Methods

def isUnusualPckSize(self, pSize, avgSize):

if float(pSize) < float(avgSize*.70):

return True

if float(pSize) < float(avgSize*1.30):

return True

return False

def isNewMAC(self, mac, b):

if mac == 'Unknown' or mac == '':

return False

if not mac in b:

return True

else:

125

Chapter 4 raspberry pi as a sensor

return False

def isNewCC(self,cc, b):

if cc == 'Unknown' or cc == '':

return False

if not cc in b:

return True

else:

return False

def isUnusualTime(self, occList):

occ = getOccurrenceValue()

if occList[occ] == 0:

return True

else:

return False

def CreateAlertEntry(self, key, alertDict, alertType):

try:

''' See if the alert already exists '''

value = alertDict[key]

''' if yes, then bump the occurrence count'''

cnt = value[1] + 1

alertDict[key] = [alertType, cnt,

self.lastObservationTime,

self.packetSize,

self.srcCC, self.dstCC, self.

srcMac,

self.dstMac, self.srcMFG, self.

dstMFG,

self.srcPort, self.dstPort, self.

srcPortName,

126

Chapter 4 raspberry pi as a sensor

self.dstPortName]

except:

''' Othewise create a new alert entry'''

alertDict[key] = [alertType, 1, self.

lastObservationTime,

self.packetSize, self.srcCC,

self.dstCC,

self.srcMac, self.dstMac, self.

srcMFG,

self.dstMFG,self.srcPort, self.

dstPort,

self.srcPortName, self.

dstPortName]

 Summary

This chapter provided both an overview of the Raspberry Pi sensor/

recorder along with a detailed examination of many of the code elements

that support the design. This included the following:

• Design overview

• Examination of the GUI approach

• Integration of the PaPirus ePaper display

• Details of the baseline recording method

• Details of the sensor methods

• Details of the report generation methods

• Finally, the use of the Python pickle method to store

and load the resulting recorded baselines

127

Chapter 4 raspberry pi as a sensor

In Chapter 5, the focus will be on applying the Pi recorder/sensor to create baselines that are used to train and then activate the sensor. Finally, both the recorder-generated reports and the reports generated by the

sensor will be examined to expose IoT-based operations within our test

network.

128

CHAPTER 5

Operating the

Raspberry Pi Sensor

Now that we have a functioning Raspberry Pi sensor that includes the

baseline recorder, sensor, and reports, let’s do an operational walk- through.

 Raspberry Pi Setup

The first step is to set up the Raspberry Pi sensor.

The following is required for the basic installation:

1. Raspberry Pi Model 3

2. Minimum of 16GB SD card

3. Install the Raspbian OS (this is the current version

running)

PRETTY_NAME="Raspbian GNU/Linux 8 (jessie)"

NAME="Raspbian GNU/Linux"

VERSION_ID="8"

VERSION="8 (jessie)"

ID=raspbian

ID_LIKE=debian

© Chet Hosmer 2018

129

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_5

Chapter 5 Operating the raspberry pi sensOr

4. Once you have this installed, update the Python

2.7 version to the latest, which currently is 2.7.9 or

greater. Note this step is only necessary if you plan

to work with the Python source code. The executable

for piSensorV3 is also being provided with this book.

5. Copy installation files available at python-forensics.

org/piSensor to a folder of your choice on the Pi.

For my test installation, I placed the files in a folder

named TEST right on the desktop of the Pi. Figure 5-1

depicts the contents of the folder TEST.

a. RPT Folder: Reports and baselines are written to

this folder by the Raspberry Pi sensor

b. piSensorV3 is the compiled Python sensor

application

c. lookup.db contains the various lookup tables for

ports, protocols, MAC address manufacturers,

and Ethernet types

d. The geoIPv6 and geoIPv4 files are used to map

IP addresses to country locations

e. hotlist.txt contains a list of ports of interest

 Figure 5-1. Operational folder

130

Chapter 5 Operating the raspberry pi sensOr

Optional Features:

As discussed in Chapter 4, you can add the PaPirus ePaper display to your Pi, as shown in Figure 5-2. This will display real-time information directly on the Pi. If the PaPirus is not installed, the sensor will perform normally and all display will be provided via the GUI only.

 Figure 5-2. Raspberry Pi with PaPirus ePaper display

 Connecting the Raspberry Pi

The next step is to connect the Raspberry Pi to the network you wish to

monitor.

 Switch Configuration for Packet Capture

Most modern networking infrastructures and switches support port

mirroring via a Switched Port ANalyzer (SPAN) or Remote Switched Port

ANalyzer (RSPAN). I’m using a TP-LINK eight-port Gigabit Easy Smart

Switch TL-SG108E as shown in Figure 5-3. I have experimented with many switches and hubs for this purpose, and for a low-cost, reliable, and easy-to- configure device, this meets all my objectives.

131

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-3. TP-LINK eight-port Gigabit Easy Smart Switch

The simplicity of the switch is based on the software application “Easy

Smart Configuration Utility,” shown in Figure 5-4, that is included with the switch. The configuration utility allows for the configuration of all the features available on the TL-SG108E.

For the purposes of capturing all the network traffic that passes

through the switch, we will set up the monitoring selection. Figure 5-4

depicts the configuration screen for port monitoring. In this example, I

have set up Port 8 to be the monitoring port and ports 1–7 to be monitored.

This means that all traffic flowing in or out of ports 1–7 will be available for monitoring on Port 8.

132

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-4. Easy Smart configuration utility

Now simply connect the Ethernet port on the Raspberry Pi to Port 8 on

the switch as shown in Figure 5-5.

 Figure 5-5. Connecting the Pi sensor to the TP-LINK monitoring port 133

Chapter 5 Operating the raspberry pi sensOr

 Running the Python Application

Now that your Raspberry Pi is configured and connected to a suitable

network switch with a monitor or SPAN port, we can begin to run the

sensor application. As shown in Figure 5-1, the piSensorV3 is the compiled version of the Python-based sensor application. You might be asking two

questions.

1. Why is this not just a Python file? You could of

course launch the Python interpreter and specify

the main Python script piSensorV3.py. You would

need to download the Python scripts as noted in the

Appendix A to do this. Note that piSensorV3.py is

a Python 2.7 script and will not work in Python 3.x

environments. However, the piSensorV3 application

does not rely on the underlying Python installation.

sudo python piSensorV3.py

2. How did you make the Python script into an

executable? There are several methods to convert

Python scripts into more traditional executables.

I have found that the pyinstaller is an outstanding

product to convert Python scripts into executables.

You can find more information about pyinstaller at

the following website:

www.pyinstaller.org/

To execute the piSensorV3, open a terminal window on your Raspberry

Pi. The straightforward way to do this is to click the icon on the top toolbar as shown in Figure 5-6.

134

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-6. Open a terminal window

This will launch the terminal application allowing you to type

command-line commands (see Figure 5-7). To launch piSensorV3, simply 1. Navigate to the folder where you copied the required

files. On my Raspberry Pi, I navigated to the desktop,

then to the TEST folder. I then typed “ls” to verify

that the directory contained the required files.

2. Launch the executable. Notice that I launched the

executable from the current working directory,

and I launched this as sudo. This is required since

piSensorV3 requires privilege to place the network

adapter in promiscuous mode.

 Figure 5-7. Terminal window execution of piSensorV3

This will launch the piSensorV3 application with a GUI as shown in

Figure 5-8.

135

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-8. piSensorV3 application launched

Note if you have a papirus display installed, the display will be

initialized and display the initial prompts.

 Creating a Baseline

The next step in the operation is to create a baseline of the network you

are monitoring. This will be used by the sensor later to monitor device

behaviors when in sensor mode. However, much can be gleaned about

your network by recording the baseline as well.

The first step in creating the baseline is to specify the folder where

the observed results will be recorded along with a setup of reports.

For this I have selected the folder RPT to store the results, as shown

in Figures 5- 9 and 5-10. I have also selected a duration of 1 day. The duration for recording is dependent upon the behavior you wish to

monitor. In most cases, I like to set this for one full week to cover

operations of each day of the week.

136

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-9. Report folder selection

 Figure 5-10. Report and duration selected

You may notice that the record baseline button is now available, as I

have successfully specified the report folder and duration. Now that I’m

ready to record the baseline, I can do that by clicking the record baseline button. Figure 5-11 shows the record baseline progress, while Figure 5-12

depicts the PaPirus display progress indications. Notice that the record

baseline button is no longer available, but the STOP button is. At any

time you can press STOP and you will be given the option to continue the

recording or cancel it. If you cancel, the results recorded will be saved in a baseline and the resulting intermediate reports will be generated.

137

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-11. Baseline recording progress

 Figure 5-12. PaPirus recording progress display

Once the recording has completed, the status message changes to

“Completed” and displays the total connections processed along with the

number of unique observations (see Figures 5-13 and 5-14). This is a key of our data reduction methodology. Connections using the same source

IP, destination, and port are recorded. However, instead of keeping each

connection, the number of connections of this type that occur are recorded for each day of the week and hour of the day. This information is used by

the sensor to identify unusual behavior. This allows us to also conserve

resources on the Pi by only recording unique behaviors.

138

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-13. Baseline recording completed

 Figure 5-14. Baseline completed PaPirus display

There are a couple of other important results of the recording

operation. First, the view reports button is now activated as reports from the observation period have been generated. Figure 5-15 depicts the selection of reports that are available.

139

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-15. Report selection

The reports available include the following:

1. Master - This report includes all recorded

observations (in this example, 17,510 records) with

details of each recording as shown in Figure 5-15.

See the report excerpt in Figure 5-16 for an

abbreviated example of the master report contents.

140

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-16. Master report excerpt

141

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-17. Master report excerpt continued

142

Chapter 5 Operating the raspberry pi sensOr

2. Device manufacturer report – This report provides

observation of each device manufacturer along with

the associated MAC and IP address. This provides

detailed tracking of known and possibly unknown

devices located on your network. During the sensor

phase, any device that was not observed during

the recording period is reported as an alert. See the

report in Figure 5-18 for an abbreviated example.

 Figure 5-18. Excerpt of the manufacturer report

143

Chapter 5 Operating the raspberry pi sensOr

3. Country report - Much like the manufacturer report,

the data is organized by observed country. Included

in the report is the number of connections made to

systems within the targeted country. Again, during the

sensor phase, any country connections not observed

during the recording period generate an alert.

Figure 5-19 shows an example of the country report.

 Figure 5-19. Report observed country connections

4. Port usage report – This report organizes the data

by observed port connections. The report contains

each used port number and associated name,

along with the unique source and destination IP

144

Chapter 5 Operating the raspberry pi sensOr

addresses, frame type, and associated protocol that

was used. Figure 5-20 depicts an excerpt from the

port usage report.

 Figure 5-20. Port usage report

5. Known ICS port usage report and IoT port usage

report – These reports further filter the port usage

to the only ports that are typically utilized by ICS

or IoT devices. It is important to note that some

of the port reports can have non-ICS/IoT usage as

well. Thus, the reports are named Possible ICS and

Possible IoT Port Usage. Report Excerpts E and F

provide samples of these reports. During sensor

operation, any ICS or IoT observations that did not

exist during the recording period will generate an

alert. See Figures 5-21 and 5-22 for samples of the ICS and IoT reports.

145

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-21. ICS report sample

 Figure 5-22. IoT report sample

Now that we have a recorded baseline, we can use that baseline to

activate the sensor by selecting the specific baseline, as shown in

Figure 5- 23. The report folder is still required, and the activate sensor button will not be available until both report folder and baseline have

been selected. The report folder is necessary, as any alerts generated by

the sensor will be stored one level below the report folder in a subfolder named ALERTS. It should be noted that all the reports, alerts, and

baselines include the yyyy- mm- dd-hh-mm prefix.

146

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-23. Baseline selection

Finally, we need to select the duration of the sensor operation and

click the activate sensor button; then, the process of monitoring for any

variance from the recorded baseline commences (see Figure 5-24).

 Figure 5-24. Activating the sensor

147

Chapter 5 Operating the raspberry pi sensOr

Once the sensor operation is complete, we see the number of packets

processed along with the number of alerts generated. In addition, the view alerts button is now available, allowing us to review any alerts generated by the sensor. During this short run of the sensor (30 minutes), the sensor processed 22,295 connections and found 353 anomalies or variance from

the observed baseline (see Figure 5-25).

 Figure 5-25. Sensor completed

We can now examine the generated alerts to view the variance or

anomalies that were detected by the sensor. Report Figure 5-26 provides an abbreviated output. As you can see in the excerpt, the report included

unusual packet time reports along with a new observation. Neither of these is too serious, based on the review of the packets. A much longer recording (a week) would have created observations that would have likely included

both of these.

148

Chapter 5 Operating the raspberry pi sensOr

 Figure 5-26. Alert report sample

 Summary

This chapter provided a walk-through of a Raspberry Pi sensor. This

included the following:

• Overview of the sensor connection to an active

network.

• Recording a baseline.

• Generating and examining reports created during the

process of recording a baseline.

149

Chapter 5 Operating the raspberry pi sensOr

• Selection of a recorded baseline once created for use

during the sensor phase.

• Activation of the sensor based on a specific recorded

baseline.

• Examination of alerts generated by the sensor.

In Chapter 6, we will take a detailed look at the recording of the baseline process, and the method of reduction that is accomplished using

a Python dictionary. In addition, we will examine the details of the sensor decision-making process and baseline comparison.

150

CHAPTER 6

Adding Finishing

Touches

As with most hardware solutions, they are never finished until they are no longer relevant. This chapter adds a couple of final touches to this version of the Pi sensor. As this book proceeds to print, I’m sure more changes,

updates, and enhancements will continue. Not to worry, the updates and

source code for the latest changes will be available via git-hub. Go to

www.apress.com/9781484236994.

 Raspberry Pi Latest Version

On Pi Day 2018 (March 14, i.e., 3.14), the Raspberry Pi foundation

announced the release of the Raspberry Pi 3 Model B+. According to the

foundation, the new improvements allow the computer to sustain higher

performance for longer periods of time (see Figure 6-1).

© Chet Hosmer 2018

151

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_6

Chapter 6 adding Finishing touChes

 Figure 6-1. Raspberry Pi 3 Model B+

The 3B+ upgrade offers a faster processor (200MHz increase in CPU

clock frequency), better thermal management, three times the wired and

wireless network throughput, and Gigabit Ethernet. These improvements

add value to our sensor solution by delivering additional speed to process packets faster without overheating the Pi.

Adding a new rugged case with a built-in fan (see Figure 6-2) adds greater stability, sleekness, and cooling to the sensor.

152

Chapter 6 adding Finishing touChes

 Figure 6-2. Raspberry Pi in ruggedized Smraza case

As of this writing, the multilayer Smraza case is available from Amazon,

among other places. The case includes an on/off switch cable, a fan, and

heat sinks.

 Sensor Software Updates

Along with the new Raspberry Pi 3 Model B+, several important software

updates were made to the sensor. They include NIC selection and MAC

address filtering, as shown in Figure 6-3 and labeled A and B respectively.

153

Chapter 6 adding Finishing touChes

 Figure 6-3. Sensor updates: (A) NIC selection; (B) MAC address filtering (A) NIC Selection

Determining the available interfaces on the Raspberry Pi is quite

straightforward. The directory /sys/class/net holds the names of the

available interfaces. For our purposes, this allows us to provide a drop-

down list of possible interfaces and most importantly allows the selection of the wireless interface in addition to the standard Ethernet port. As

mentioned in the preceding, both interfaces have been significantly

improved on the Raspberry Pi 3 Model B+.

To build a list and the GUI drop-down menu, see Listing 6-1.

 Listing 6-1. Targeting Specific Devices to Monitor

try:

nicList = os.listdir('/sys/class/net')

nicList.sort()

nicTuple = tuple(nicList)

except:

nicTuple= tuple(['eth0'])

self.ethPort['values'] = nicTuple

self.ethPort.current(0)

self.ethPort.grid(row=5, column=1, padx=5, pady=10, sticky='w')

154

Chapter 6 adding Finishing touChes

Note, for example, if you select the wireless LAN (wlan0), you must first

connect to the desired wireless network to monitor. On the Raspberry Pi

you can select, connect, and log in to the desired wireless interface using the icon in the upper right corner (see Figure 6-4).

 Figure 6-4. Raspberry Pi wireless selection

(B) MAC Address Filtering

The second addition included in finishing touches is the ability to

monitor, record, and activate the sensor to target specific MAC addresses.

Within industrial control or compartmentalized IoT environments, it is

quite common to closely monitor critical assets. This selection uses a list of MAC addresses supplied in a flat text file. Figures 6-5 and 6-6 demonstrate the selection of the MAC filter file and the check box that enables MAC

filtering.

155

Chapter 6 adding Finishing touChes

 Figure 6-5. Selection of the MAC filtering list

 Figure 6-6. Enabling the MAC filter

The MAC-LIST text file contains a simple list of MAC addresses, one

per line, as shown in Figure 6-7.

156

Chapter 6 adding Finishing touChes

 Figure 6-7. Sample MAC-LIST text file

You might be questioning why we chose to use a MAC address for

filtering instead of the IP address. IP addresses for devices are dynamically assigned by DHCP unless they are statically defined. Therefore, using MAC

addresses (which can be manipulated as well, but require targeted action

to do so) provides better filtering options. When the sensor is operated,

only packets with source or destination MAC addresses provided in the

list will be recorded. This allows for easier analysis of the reports such as port usage and country, allowing you to verify the inbound and outbound

traffic from specific devices.

The MAC address filtering is handled in just a few lines of code. First,

we create a list of MACs to filter when a MAC filtering file is provided, and MAC filtering is enabled (see Listing 6-2).

157

Chapter 6 adding Finishing touChes

 Listing 6-2. Honoring User Filter Selections

self.fileSelection = tkFileDialog.askopenfilename

(initialdir = "./",

title = "Select Include MAC Address List File")

self.IncludeFile['text'] = self.fileSelection

if self.fileSelection:

self.macList = []

self.macEnable = True

with open(self.fileSelection) as ips:

for eachLine in ips:

self.macList.append(eachLine.strip())

else:

self.macEnable = False

This method provides easy filtering of MAC addresses during packet

extraction (see Listing 6-3).

 Listing 6-3. Filtering Out Other Device Packets

ethernetHeader=packet[0:ETH_LEN]

ethFields =struct.unpack("!6s6sH",ethernetHeader)

Extract DST MAC, SRC MAC and Frame Type

self.dstMac = hexlify(ethFields[0]).upper()

self.srcMac = hexlify(ethFields[1]).upper()

Check if MAC Filtering is on

if self.macFilterEnable and self.macFilterSet:

if not (self.dstMac in self.macFilter) and

not (self.srcMac in self.macFilter):

Filter this packet

return

158

Chapter 6 adding Finishing touChes

 Summary

This chapter added some finishing touches to the Raspberry Pi sensor,

specifically, the ability to monitor any network interface that is available on the Pi. This provides a wider view of activity on the network in question.

In addition, the capability to target specific MAC addresses detected

during recording or sensor activation further refines the applications of the Pi sensor.

In Chapter 7, we will discuss future capabilities that are planned for the Pi sensor, and how you can participate in the project.

159

CHAPTER 7

Future Work

Continued advancement of the Pi sensor is actively underway. Key areas of

development include the following:

1. Expansion of key lookup tables

2. Implementation of user searching and filtering of

scan results

3. Headless communication with remotely deployed

Pi sensors

4. Correlation of results from a swarm of Pi sensors

 Expansion of Lookup Tables

The Pi Sensor utilizes several key lookup tables that have been compiled

for open source websites. They include port, manufacturer, and country

lookups.

 Port Lookups

The port lookup table is gathered from the IANA at www.iana.org. IANA provides registration services for port numbers designed for a specific

purpose. However, many of the port usage descriptions provide only

general information regarding port usage. Additional details are necessary

© Chet Hosmer 2018

161

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7_7

Chapter 7 Future Work

to better map port usage to specific IoT and ICS applications. This would

allow for more accurate reporting, tracking, and usage of ports by IoT and ICS applications.

 Manufacturer Lookup

Looking up manufactures by the OUI suffers from some of the same

limitations of the port lookup. The OUI represents the first 24 bits of the MAC address emitted by devices. The OUI is managed by the IEEE. The

specific OUI values are purchased from the IEEE and added to the

registry. The issue is that the OUI represents the manufacturer but does

not define the use or application of the value. For example, identification of which OUI numbers are associated with drones, entertainment

devices, computers, home automation, industrial control, cybersecurity

devices, and so on is not readily available. If more details and cross-

referencing of OUI and a specific category were available, then the ability to track behaviors of IoT devices would be significantly improved. This

categorization coupled with a more refined port usage would allow the

detection of normal and aberrant communication between IoT devices

and between IoT devices and local/remote communicating/controlling

entities.

 Country Lookup

The expansion, accuracy, and refinement of country lookup would help

to identify potential hostile or inappropriate communications between

devices. IP addresses are managed by IANA along with five regional

Internet registries. Tracking and associating IP addresses to a finer-

grained location (i.e., street address or lat/lon location) would provide

more detailed location information of potential attackers, botnets, and

command and control servers.

162

Chapter 7 Future Work

 Implementation of User Searches and

Filtering of Scan Result

One of the immediate next steps to PiSensor is the development of an

interface that would allow mining of scan and alert results. This feature

needs to engage the user in actively reviewing the results of recording

and/or alert results. This interface needs to be interactive and would help pinpoint activities of interest. This information would be used for early

indication and warning, alert refinement and digital forensics, incident

response (DFIR) activities.

 Headless Communication with Remotely

Deployed Pi Sensors

The current GUI for direct interaction with the Pi sensor provides a good

local method of configuration, activation, control, and review of Pi sensor results. However, the ability to place Pi sensors in remote locations and

then control and retrieve results and alerts is the logical next step. This would allow the deployment in either wired or wireless settings with only a power source and connection to the network to be monitored. This would

eliminate the need for a monitor, keyboard, and mouse, and would reduce

the cost of deployment to under $50.00 per sensor. This would of course

require the Pi sensor to support a secure interface with those controlling its operation. Examining possible security devices for this purpose (note

that software-only devices have been discounted due to the potential

security risks), I have begun to experiment with the ZYMKEY 4i, shown in

Figures 7-1 and 7-2.

163

Chapter 7 Future Work

 Figure 7-1. ZYMKEY from zymbit

164

Chapter 7 Future Work

 Figure 7-2. ZYMKEY install on a Raspberry Pi

The ZYMKEY provides a hardware key that connects to the Raspberry

Pi I2C bus. The ZYMKEY comes with a Python application interface

allowing us to integrate the key into the Pi sensor application. The device includes a cryptographic processing and authentication engine, a secure

key store, and tamper detection and response circuits. In addition, when

placed in production mode the ZYMKEY binds itself to the specific

Raspberry Pi it is connected to and will not operate on a different Pi. This combined with the tamper detection and response and secure key store

allows us to perform secure authentication and encryption with a control

center.

The general operating concept is to develop a secure console that can

activate, control, and receive alerts from remotely deployed Pi sensors as shown in Figure 7-3.

165

Chapter 7 Future Work

 Figure 7-3. Secure command and control of a remote Pi sensor

 Correlation of Results from a Swarm of

Pi Sensors

The concept of swarm deployment of sensors is certainly not new.

However, doing so with a group of Raspberry Pi’s acting as a swarm of IoT

devices is. This final area of future work is still being researched at this point.

The need for this is straightforward. Organizations now need to deploy

sensors at numerous locations within a single facility, facilities across

town, or across the world, and this need will continue to grow. Consider a hotel with thousands of rooms and hundreds of floors. The ability to detect behaviors and instrument the Pi sensor with various wireless and physical

sensing capabilities would provide early indications of nefarious activities or even aid hotel guests in distress. My building a swarm or Pi’s provides not only discrete communication from Pi to a command and control

center, but also Pi-to-Pi sharing of information.

166

Chapter 7 Future Work

 Raspberry Pi Sensor: Executing the Sensor

on Your Raspberry Pi

The easiest method is to simply download the prebuilt executable for the

Pi sensor. The executable is delivered as a Debian package. Download the

package file piSensor.deb and then install it.

sudo dpkg -i piSensor.deb

The second method is to download the source code and execute the

PiSensor directly from the Python source: follow the README instructions

in the source download.

The piSensor.deb and piSensor.zip are both available as part of the

source code for this book. Go to www.apress.com/us/book/9781484236994

and click the source code button.

 Summary

This chapter provided a look at the next steps for the PiSensor. If you

would like to contribute ideas, write some code, or test future work, please contact the author directly.

Coming up next is the appendix. The appendix provides the complete

source code for PiSensor along with samples of hotlist and MAC-LIST

text files.

167

 APPENDIX A

Obtaining the Python

Source Code

As noted in the Chapter 7 summary, the source code is continually evolving, and new versions are continually updated. As my wife Janet

(also an outstanding computer scientist) remarks, “software is never done

until it is obsolete.”

 Obtaining the Source Code

Readers can obtain a copy of the current Python source code, additional

files, and an executable version for the Raspberry Pi on GitHub via the

book’s product page, located at

www.apress.com/978-1-4842-3699-4

In addition, for those wishing to participate in the advancement of the

code for the Raspberry Pi or porting the code to other platforms, please

contact the author:

Chet Hosmer, cdh@python-forensics.org

or

visit the web page www.python-forensics.org.

© Chet Hosmer 2018

169

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7

APPENDIX A ObtAININg thE PythON SOurcE cODE

 Source Code Copyright and Licensing

The following copyright message is included in each of the source files for the Raspberry Pi sensor/recorder to clearly state the use and distribution of the source code.

'''

Packet Sensor/Recorder GUI Version

Version 1.0 May 5, 2018 Cinco-de-Mayo Version

Copyright (c) 2018 Python Forensics and Chet Hosmer

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the software is

furnished to do so, subject to the following condition:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

'''

170

 Glossary

Active Discovery – The act of directly probing devices attached to a

network to discover them along with the services they have open and even

to determine the type of operating system or device (e.g., Windows, Linux, Mac, Printer).

Arduino – An open source electronics platform based on available and

simple-to-use hardware and software components.

ARP – Address Resolution Protocol. This protocol is used to map IP

addresses to a unique physical MAC address.

HTTP – Hypertext Transfer Protocol. An application-layer protocol for

communicating using hypermedia.

ICMP – Internet Control Message Protocol. ICMPv4 is used for IPv4

environments, and ICMPv6 is used for IPv6 environments. The protocol

is used to identify and troubleshoot network and host connection issues.

It should be noted that in many modern environments ICMP packets are

blocked.

IGMP – Protocol used to establish multicast group memberships.

IIoT – Industrial Internet of Things. It should be noted that this

acronym is frowned upon in many circles, because the “I” in “IoT” stands

for Internet, and most industrial users would never attach their control

systems to the Internet.

IoT – Internet of Things.

IP – Internet Protocol. Utilized by networked devices to connect and

communicate.

JMS – Java Message Service. Developed by Sun Microsystems to

provide a standard method for Java programs to communicate using

asynchronous messaging at the enterprise level.

© Chet Hosmer 2018

171

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7

Glossary

MAC – Media Access Control address of a network interface.

Computers and other network devices may have one or more network

interfaces, and each would have a unique MAC address. The MAC address

is defined by the manufacturer of devices.

NETBIOS – Network Basic Input/Output System. NETBIOS is an

application interface and not a networking protocol.

NIC – Network Interface Card.

OUI – Organizationally Unique Identifier. The first 24 bits of the device

MAC address (in most cases) represents the manufacturer of the device.

These are purchased from the IEEE (Institute of Electrical and Electronics Engineers).

Passive Monitoring – The act of monitoring (sniffing) network traffic to

record behaviors over a period. The concept allows for a deeper look at the activities of network devices even when those devices might be transient or devices that may not respond to normal probing.

PaPirus Display –An ePaper display technology that mimics the

appearance of ink on paper. ePaper displays reflected light, much like

ordinary paper. These displays are capable of holding text and images

indefinitely, even in the absence of power.

Pickle – A Python Standard Library that allows serialization of Python

objects (e.g., strings, lists, sets, dictionaries). The serialization allows for the fast storage and retrieval of these objects.

Python – A general-purpose, open source, high-level programming

language.

Raspberry Pi – A credit card–sized (and smaller) single-board

computer developed in the United Kingdom by the Raspberry Pi

Foundation.

Raspbian – One of the many flavors of operating systems available for

the Raspberry Pi.

SMB –Server Message Block. A communication protocol that allows for

the sharing of files, printers, and other I/O devices between computers.

172

Glossary

SOAP – Simple Object Access Protocol. Provides messaging services

allowing programs that execute on different operating systems to

communicate using HTTP and XML.

SPAN Port – Sometimes referred to as a monitoring port available on

modern switches and routers. All traffic that passes through the switch or router can also be directed to this port. This allows monitoring devices to observe all traffic flowing the switch.

SQL – Structured Query Language. A standard language used for

interfacing with relational databases.

TCP – Transaction Control Protocol. It operates at the transport layer,

as its primary role is to establish and maintain connections between host

computers and devices.

Tcl/Tk – A scripting language developed by Sun Microsystems for

creating graphical user interfaces.

TKinter – Python library that provides an object-oriented layer on top

of Tcl/Tk to provide graphical user interface capabilities to Python.

TLS – Transport Layer Security. As the name implies, it ensures privacy

and tamper protection between server and client or even between peer-to-

peer entities.

UDP – User Datagram Protocol. The protocol does not verify receipt

of transmitted packets and requires no response. Therefore, the protocol

is referred to as an unreliable link protocol, whereas TCP is commonly

referred to as a reliable link protocol. Both operate at the transport layer.

uPnP – Universal Plug and Play. A networking protocol that allows

devices such as IoT, computers, phones, printers, and so on to discover

their presences on a network.

WeMo – A series of products, developed by Belkin International, that

enable users to access, monitor, and control devices over the Internet from anywhere.

XML –eXtensible Markup Language. Defines encoding rules for

documents that can be utilized across the Internet.

173

Glossary

Zero Configuration – Many IoT devices can configure themselves and

join a network without manual intervention. All configuration of these

devices is done automatically simply by applying power. This generates a

network ready state, allowing the device to discover and be discovered.

Z-Wave – A wireless communication protocol typically used for home

IoT devices such as lighting, entertainment, and appliances.

ZigBee – A specification for a communication protocol used in

personal area networks typically built from small, low-power devices.

ZigBee is based on the 802.15.4 specification.

174

Index

A

Device-to-gateway framework, 5

Dynamic Discovery

Address Resolution Protocol (ARP)

Protocols, 10

packets, 23–24

E, F, G

B, C

Ethernet packet, 21–22

Baseline

activating sensor, 147

alert report sample, 148

H

IoT report sample, 145

Headless communication, remote

manufacturer report

Pi sensor , 163–166

excerpt, 142

master report excerpt, 140–141

I, J, K

PaPirus recording progress

display, 138–139

Internet Control Message Protocol

port usage report, 144

(ICMP) packets, 27

recording progress, 137

Internet Protocol (IP)

report folder and duration, 137

packets, 24

report folder selection, 136

IoT Security Compliance

report selection, 139

Framework, 6

selection, 146

IoT vulnerabilities

attack vectors, 11

compliance classification

D

security objectives, 7

Device-to-cloud communications, 4

deployment options, 3

Device-to-device

devices, autonomous/

communication, 3–4

semiautonomous, 1

© Chet Hosmer 2018

175

C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,

https://doi.org/10.1007/978-1-4842-3700-7

Index

IoT vulnerabilities (cont.)

N, O

device-to-cloud

Network Basic Input/Output

communications, 4

System (NETBIOS), 10

device-to-device

communication, 3–4

device-to-gateway

P, Q

framework, 5

PacketRecorder.py enhancements

Dynamic Discovery

command-line execution and

Protocols, 10

parameters, 57

Gartner’s prediction, 2

execution of, 61–63

high-level concerns, 10

foreign country report, 71

interconnected, 1

Internet, 58

interpreting, security levels, 8

IPv4 processing conversion, 68

low-power sensors, 9

IPv6 packet, 69

multicast communication, 10

“normal operating” network, 58

Python, 14

online data source, 58

Raspberry Pi, 12, 14

packetProcessor Class, 67

Raspbian OS, 14

packets, 56

security requirements, 6

pickle files, 63–66

single board computers and

Port Dictionary Creation

embedded operating

Process, 59–61

systems, 9

port numbers to port names, 68

SmartTVs and home

script execution, 69

assistants, 12

source code, 57

zero configuration devices, 9

Packets

ARP, 23

L, M

Ethernet, 21–22

ICMP, 27

LAN diagram, 20

IP, 24

Lookup tables

monitoring port, 19

country, 162

TCP, 25–26

manufacturer, 162

UDP, 26

port, 161–162

Passive monitoring, IoT behavior

Low-power sensors, 9

active probing, 27

176

Index

modeling normal

Raspbian OS commands, 48

behavior, 27–30

upgrading, 55–56

Raspberry Pi with Python

USB devices and interfaces,

basic operations, 30

53–54

capture packets, 30

version of Linux, 54

execution of script, 33

Raspberry Pi sensor, 74, 167

PacketProcessor class, 38–46

application object methods,

PacketRecorder Main

79–82

Loop, 36–38

connecting, 131

PacketRecorder.py script

design overview, 75–78

overview, 34

method details

required libraries, 35

action buttons, 92

script main loop, 35

btnActivateSensor

sniff.py capture one

method, 111––125

packet, 31–32

btnPerformCapture

Python, 14

method, 100–106

piSensorV3, 134–136

btnSelectFolder

source code, 169–170

method, 94–99

duration selection, 91

R

exploring application

methods, 94

Raspberry Pi 3 Model B

folder and file selection, 90

CUP, 13

GenHTML method, 106–109

memory, 13

GUI (initUI),

network, 14

initializing, 83–88

USB ports, 14

menu bar, 89

Raspberry Pi 3 Model B+, 151, 152

PacketMonitor, 125–127

multilayer Smraza case, 153

progress bar, 93

Raspberry Pi configuration

report selection, 93

advantages and limitations, 48

saving baseline (SaveOb),

filesystem, 53

109–110

free memory, 52

status bar, 93

Pi CPU, 49–50

PacketRecorder, 73–74

Pi memory, 51–52

real-time ePaper display, 74–75

177

Index

Raspberry Pi sensor (cont.)

TP-LINK eight-port Gigabit Easy

setup, 129–131

Smart Switch, 131, 132

snapsot, 74

utility, 132–133

Raspbian OS, 14

Switched Port ANalyzer (SPAN), 131

Remote Switched Port ANalyzer

(RSPAN), 131

T

S

Traditional computing

environments, 17

Simple Object Access Protocol

Transaction Control Protocol

(SOAP), 10

(TCP) packets, 25–26

Simple Service Discovery Protocol

(SSDP), 10

Software sensor, 153

U, V

MAC address filtering, 155–158

User Datagram Protocol (UDP)

NIC selection, 154

packets, 26

targeting devices to

User searches, 163

monitor, 154

Swarm deployment of sensors, 166

Switch configuration

W, X, Y, Z

Ethernet port, 133

Web Services Dynamic

purposes, 132

Discovery, 10

178

Document Outline

	Table of Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Introduction

	Chapter 1: IoT Vulnerabilities

	Why Is IoT Vulnerable?

	Device-to-Device Communication

	Device-to-Cloud Communications

	Device-to-Gateway Sensor Network Communications

	Moving Beyond the Basics

	What Unique Vulnerabilities Lurk Within IoT Devices?

	What Are the Common IoT Attack Vectors?

	How Do the Raspberry Pi and Python Fit In?

	Raspberry Pi Brief Introduction

	Raspberry Pi Hardware

	Raspbian OS

	Python

	Summary

	Chapter 2: Classifying and Modeling IoT Behavior

	What Should We Collect?

	Ethernet Packet Format

	ARP

	IP Packets

	TCP Packets

	UDP Packet

	ICMP Packet

	Passively Monitoring IoT Behavior

	Modeling Normal Behavior

	How Can This Be Accomplished on a Raspberry Pi with Python?

	Part I: Passively Capture Packets in Python on a Raspberry Pi

	Examine a Simple Code Snippet to Perform These Operations

	Sample Execution of the Script

	Part II: Identify and Extract the Key Packet Components

	Required Python Standard and Third-Party Libraries

	The Script Main Loop

	PacketProcessor Class

	Summary

	Chapter 3: Raspberry Pi Configuration and PacketRecorder.py Enhancements

	Basic Configuration (as of This Writing)

	Get Information About the Pi CPU

	Get Information Regarding Pi Memory

	Get Information Regarding the Current Free Memory Only

	Get Information Regarding Pi Filesystem

	Get Information Regarding USB Devices and Interfaces

	Get Information About the Version of Linux

	Upgrading Your Pi

	Advancing PacketRecorder.py

	Step 1: Creating the Lookups

	Ports Dictionary Creating Example

	Execution of the Script

	Utilizing the Pickle Files in PacketRecorder.py

	Instantiating and Accessing the Lookup Methods

	Code Snippet to Instantiate the Classes into Objects

	Using the Lookups During Packet Processing

	Sample IPv4 Processing Conversion (Excerpt)

	Convert the Port Numbers into Port Names (Excerpt)

	Executing the Updated PacketRecorder.py

	Script Execution

	Foreign Country Hits (Outside the United States)

	Summary

	Chapter 4: Raspberry Pi as a Sensor

	Turning the Packet Recorder into a Sensor

	Raspberry Pi Sensor/Recorder Design

	Design Overview

	Method Details

	Initializing the GUI (initUI)

	U1-Menu Bar

	U2-Folder and File Selection

	U3-Duration Selection

	U4-Action Buttons

	U5-Progress Bar

	U6-Report Selection

	U7-Status Bar

	Exploring Other Application Methods

	Selecting the Report Folder (btnSelectFolder)

	Source Code Methods for GUI Elements

	Record Baseline Method (btnPerformCapture)

	Master Report Generation (GenHTML)

	Saving the Baseline (SaveOb)

	Activate Sensor (btnActivateSensor, PacketMonitor)

	Packet Monitor Supporting Methods

	Summary

	Chapter 5: Operating the Raspberry Pi Sensor

	Raspberry Pi Setup

	Connecting the Raspberry Pi

	Switch Configuration for Packet Capture

	Running the Python Application

	Creating a Baseline

	Summary

	Chapter 6: Adding Finishing Touches

	Raspberry Pi Latest Version

	Sensor Software Updates

	Summary

	Chapter 7: Future Work

	Expansion of Lookup Tables

	Port Lookups

	Manufacturer Lookup

	Country Lookup

	Implementation of User Searches and Filtering of Scan Result

	Headless Communication with Remotely Deployed Pi Sensors

	Correlation of Results from a Swarm of Pi Sensors

	Raspberry Pi Sensor: Executing the Sensor on Your Raspberry Pi

	Summary

	Appendix A: Obtaining the Python Source Code

	Obtaining the Source Code

	Source Code Copyright and Licensing

	Glossary

	Index

index-85_2.jpg

index-8_1.jpg

index-36_1.png
Source Port — 16 Bits Destination Port — 16 Bits
Lengeh

Payload

index-15_1.png
TcP
uop

0T Audio Device loT Home
Automation

index-16_1.jpg
-9

‘ Sensor

°Network

index-155_1.jpg
Port Usage Report 2017-12-30@20:19 UTC

Port Usage Observations

[Port PortName SrcIP Dst 1P [Frame [Protocol
[3 |DomenNameSever [192168861 1921688636 [PV [DP |
Is3 Domain Name Server 192.168.86.1 192.168.86.47 PV4 {ubp
[3 |DomeinNameSever [1921688636 192168861 [PV [UDP |
53 |Domain Name Server 192.168.86.47 192.168.86.1 [upp
53 [DomainNameServer 8888 (1921688623 | upP.
is3 |Domain Name Server 8888 192.168.86.25 V4 [ubP.

Bootstrap Protocol Client 192.168.86.36 192.168.86.1 IPV4 ’UDP

Bootstrap Protocol Client 192.168.86.37 192.168.86.1 PV4 rU'DP

Bootstrap Protocol Client 192.168.86.38 192.168.86.1

[Bootstrap Protocol Client 1921688647 192168861 [PV [ubP |

index-140_1.jpg
File Edit View Bookmarks Go Tools Help

© v % (8 homepi/Deskop/TEST

Directory Tree ~ Name
= @pi RPT
% [Adafiuit Python_Charl.CD piSensorV3
= @ Desktop lookup.db
® @save hotlisttxt
2 M@ss geolPv6.dat

BT, = o

Description Size Modified
folder 12/18/20171210
executable 9BMiB 12/04/2017 1341

plain text document 28 MiB 11/30/2017 0654
plain text document 449 bytes 10/25/2017 0804
unknown 20MiB 10/04/201711:18
unknown 1.1 MiB 10/04/2017 1117

index-17_1.png
Integrity

How is data integrity preserved?
How are devices authenticated?

How devices securely identify themselves?
wfidentiality How are compromised devices revoked?
How is software validated?
How is device and network trust achieved?

What data requires privacy? Integrity
What method or algorithm is used?

How will keys be managed? -
How is trust achieved Availability

How is availability assured?
Are devices and sensor?
networks resilient to denial
~ of service attacks?

Confidentiality

What other devices or
networks reliant on other
components for availability?

index-153_1.png
Manufacturer Report 2017-12-30@20:19 UTC
MFG Observations

[Manufacturer [MAC Address {IP Address.
[CN: B-Link Electronic Limited [48022A4A2DAE 192.168.36 41
|CN: B-Link Electronic Limited [48022A4A2DAE 148022a422dae
O B Link Elecwronic Lumited [802A4A2DAE (804202 2afE feta2dne
[eN: TP-LINK TECHNOLOGIES CO. LTD. [Soc7BFaCF802 50 Tbfcf02
|CN: Wistron Infocomsm (Zhongshan) Corporation [FsoF4142D110 1192.168.86.38
|CN: Wistron Infocomm (Zhongshan) Corporation [F80F4142D110 [/80£4142d110
|CN: Wistron Infocomm (Zhongshan) Corporation [FsoF4142D110 [6e80::6492:7¢a0:5026:87¢
[CN: Zhejiang shenghui lighting co. Ltd [BOCE18189451 192.168 86 28
|CN: Zhejiang shenghui lighting co. Ltd [BOCE18189451 [b0ce18189451
|CN: Zhejiang shenghui lighting co. Ltd [BocE18189451 [£e80: b2ce: 18fF£e18:9451
[KR: Samsung Electronics Co. Ltd [900628FB11BB 00628fb11bb
[KR: Samsung Electronics Co. Lid [900628FB11BB £e80::9206:28F:fefb:11bb
[TW: ASUSTek COMPUTER INC. [0015F25CF374 [001525¢6374
[TW: ASUSTek COMPUTER INC. [oo15F25CF374. 192.168.86.47
[TW: ASUS Tek COMPUTER INC. [oo15F25CF374 [fe80::8103 ed8e.c718 8224
[0B4cDB12685
3 [10B4cDB12685 192.168.86.27
[US: Amazon Technologies Inc. [40B4CDB12685 [10bdcdb12685
[US: Amazon Technologies Inc. [+0B4CDB12685 6680::42b4:cdfffeb1:2685
[US: Amazon Technologies Inc. 747548914299 l0000
[Us: Amazon Technologies Inc. 747548914299 192.168.86.39
[US: Amazon Technologies Inc. 747548914299 747545914299
[US: Amazon Technologies Inc. 747548914200 e80::7675:4881.6e91:4299

index-84_1.jpg
74 Raspberry Pi - T/ICS Packet Sensor / Recarder Version 99-4 Experimental - o x
Help

ReporFolder [T [
S Bt [CTrrT TR P i 5T 173515 e &

Sl Durtion [1 i

ActvateSensor| RecordBaseine | ST0P| View lerts

SelectReport [Moster Report <) [View Selected Report

Progress

oving oo o

index-147_2.jpg
oo
ReportFotdr [PomeriowreBTESTRST

suect aseine [
Seect Report. fisier Rt E

fopor Fader seted

index-12_1.jpg
Interconnected
autonomous devices

Limited or No Human
Intervention

Supporting a variety of
applications and
platforms

index-148_1.jpg

index-163_1.jpg

index-142_1.jpg

index-157_2.jpg
e oo B et epon s

index-32_1.png
Ul Unique
1=Locally Defined

O=unicast
1=multicast

gth 6th
Octet Octet

[T [[[[[[o]

ond 3rd 4th
Octet Octet Octet

Organizationally Unique Identifier (OUI)

index-36_2.png
Source Port — 16 Bits Destination Port — 16 Bits

Sequence Number — 32 Bits
Acknowledgement - 32 Bits
Offset and Flags Window

Checksum Urgency
Options Padding Bytes

Payload Data

index-14_1.png
loT Audio Device
Wireless or Wired

Communication,
Bluetooth,

7-Wave, ZigBee, uPnP,
TCP, UDP, SSDP,
NETBIOS, SMB

loT Tablet

10T Home Automation

index-34_1.jpg
Version| IP HL TOS Total Length
Identification Flags Fragment Offset

Header Checksum

<Destination Address

Options [Pad

TTL

Data

index-143_2.jpg

index-89_1.png
def btnSelectFile(self):
Handle Folder Browse Button Click

def btnselectFolder(self):

def btnselectBaseLine(self):

def btnViewSelectedReport(self):
def btnViewAlerts(self):

def btnActivatesensor(self):

def btnPerformCapture(self):

def Saveohi self, d):

def GenHTML(self, d):

def GenCOUNTRY(self, d):

def GenICS(self, d):

def GenIOT(self, d):

def GenMFG(self, d):

def GenPortUsage(self, d):

def translateAlertCodes(self, alerts):
def GenAlerts(self, d):

def btnSTOPCapture(self):
def menuToolsExit(self, event=True):

def menuAbout(self, event=True):

index-157_1.jpg
Holp.

Reporrodr [omeos e TETTT

St Bsine [P SSHTESTAS BRSO 133019 59 b

proess

S rapen. st gt

Cosang boseine ompites
b

i e T
e e |

T e
- e

S papan st g

index-80_1.jpg
Ny S S . CERE- EE A SV L S VIR
o' rsdast - 280y aabacsah Saioet raoth

e e et

bovnsesh iR LA - Skl PR TR

o13s o batdans s svomateons |
e et

s3tussn sntontod - soatomed sressh

I ETIET ey T e
YR ol 2 il Bl 90U | 825.225.225.. WAL | AIIIITIO0L0 | EESSIIANN000 1
e] - H| el
iq 3 ¢ s Sstian) ool | eien
| H grasedi) nlmewoss sl
P H [
M] o | i ansen
| H 2 il f | ey fesactll
I e H EEE| NI s
i o GEua | smudjeenaml |
|] I e e ol
s N o haar| | e | s
[-] - 7} el RHER | I | Rkstoaient | Geiciiione |
| Y o o GhEES| WD amE) |
I | | o frtrkr e b
I) o GhEl oW lamEl
| A et £ ASStMe| poimone: | eauces
I H = gEimi| @ B sunms) |
| EY o 4 ¢ mmanl o EmmlaaEml
4 8 o HE e
Caloi o —— | o) Bemime onecte | |
KR e B HR
Pl mfmen s STl memimmml |
I | 3 s fas 1 mg| e jmomee sl |
I Y e 5 b | emm el |
[-1 e =
- . | | o e | |
; - i — e e
| i | gaeg SamEl o) s
1 } m‘-w: onins | e 0 80 S0 ‘y o f esuae } utuliu:u}
il | | o GEBG | | e | i | [

index-150_1.jpg
Help

Report Folder [FromerpiDeskiopNTESTRPT

Select asselne |

Select Report Master Report

Select Duration [1-Day

aster Raport

[Port Usage Report

e

Progress _—_———-—

[Sone: Total Comnections Processed: 1,023,009 Unique Observations Recorded: 17,510

index-166_1.jpg

index-33_1.png
Device A
Device A sends
Broadcast ARP Request
t0192.168.22

1P 192.168.24
A

Switch
Device B
Device B sends 1P 192.168.22
Responds with MAC
Address n

00-50-56-e8-36-f3

index-18_1.png
Compliance Class Security Objective

Integrity Availability | Confidentiality

index-85_1.jpg
Section of

¥ Report Folder
¥ Baseline File
+ and Duration

v

[Sonctn) Usorpicks
¢ Baseline Recording

User ¥ Sensor Activation

Selection

Once completed the user
an select and view
PaPirus epaper reports or alerts
display
initaization
(optional)

Contiuoun)
Progross |

)

Continuous i
pogess) !

Activate

Report or Alerts

Record unique network Loads Specified Baseline Display detailed HTML
observations and and monitors the active network |lll Report about the
rate baseline for anomalies and variati collected baseline
from baseline behavior

index-99_1.jpg
goeryPi - I0T/CS Packe Sencr / Recerder Version $9-4 Expeimental - o x

index-24_1.jpg
GPIO Header

Chip Antenna \0

DSI Display Connector

Micro SD Card Slot
(underside) \\(
Status LED

BCM2837 Chipset
USB 2.0 Port

USB 2.0 Port

Micro USB Connector
(to power Raspberry Pi)

HDMI Video/Audio
Connector

10/100 Ethernet Port

Csl Camera

Connector gea video/Audio

Jack

index-56_1.png
e L Deae L e ! Proveced | Rese 1 71 W
iowscorsnss | seeeeeeeeee | Vassassassass (we L@ 1 1o 15 1o 11 1s
| 10aacorasise | seccsseeeece | Passassassass fwe te 1 1o (o G911 190
| Aomacamizees | seeeseeseece | Pasasassass w1 1 11 10 1o 1o 10
| domacamnces | ceecseceece | | 233las5 255 255 | e @ 1 11 19 do 13 19
| IATiiouorses | fecececeeec | |ESISENED | o AR R R R S U]
' | seeeeseeceee | 0. | 2331235 255 255 | e @ 1 a0 1o do 13 1o
i | eeeeceeceee | 0. 1 2331255 255 255 | w8 @ 1 11 1o do 1o 1o
| T09er0ndcass | fecececceece | o' | 2331255 255 355 | won @ 1 a1 i ds 13 1o
| Sedascivised | feeeseceeee | o' | 2330238 258 2 | O A A
| Sclasoimizea | feeeseeceece | o' | 2351235 255 255 | I A A T]
| 5000ca112239 | LAIAEOTEISe | 1042371911 | 192.168.0.200 | Pode ol do 0w 1o
| 00000a113233 | Lamareorzise | 1042371011 | | boar ol i 4z e
| 000000113233 | Lamdreoriise | 1042086138 | | T A A A
| 0000ca112233 | ARreo7EISe | d04-61307.73 | i Poas i de 4 e
| 0000ca113233 | LAmALOTEIe | 104-40.08.34 | | ool i ixmo 1o
| 3000ca112233 | 1mnreo7eise | 104 46 s0a%s | 192.168.0.208 | I A E A T
| 00000a113233 | Lireorzioe | 104.0a 4 ish | 192.168.0.108 | Poae lo i g 1o
| 300050000000 | 005000000000 | 129.0.0.1 1 137.08.0 | Doodme i do o qer 1o
| 200000000000 | 00800a000000 | 127:031 1 I Dm0 oG9 qés 1o
| 30000a113233 | Lawneorzise | 1310331200 | | PoaEtie e G e
| 0000ca112£23 | LmneorEIse | 13.0070.120 | | I A A
| B000ea1iasas | Lmaneorsie | 13007458 | i I R S S T
| 9000ca11az33 | Amnreorzise | 13307568 | | P i 1o dm 1o
| 3000ca113233 | LumareoTEIe | 1376205101 | | R R B]
| 3000ea1i3539 | Lumanersise | 1376310250 | I I S A ST
| 0000ca112233 | Amdreorzise | 13i.255.61200 | | I A A A
| 0000ca112233 | Lneovzise | 131233 61 60 | 192.168.0.209 | P i G qo 1o
| 0000ca11a233 | Aneo7zise | 131233.61 68 | 192.160.0:208 | RO A]
| 0000ca112233 | Mbdreo7zIse | 131.233.1198 | 192.168.01209 | I R E R O
| 0000ca112233 | Amreo7zIse | 134.170.58.335 | | Poase i G0 4o 4o
| 0000ca112233 | Lnreorzise | 137.116.74.195 | | I 1o 1o 4o 1o
| S000ca1iazas | iemsreorsie | A7 sk | i I A R A T
| 0000ca112233 | IAEOTEISe | 162.125.16.191 | 192.160.0.209 | o do i qo o
| 0000ca112233 | Lnreorzise | 162125.16.5 | | 192.168.0.208 | Poas ol de qe e
| 0000ea113233 | Lmaneorzise | d6a1ze.10 102 | 192.168.0.209 | A A R
| 3000ca112233 | Lnreorsise | carssiars . | 198.160.0.208 | I A B]
| 0000ca112233 | Lmnreorzise | 162.125.10.033 | 192.168.0.208 | I lo de i 1o
| O0G0eaiiaEss | Mssneovaise | deizsisas | o0 | Poam le de i 1o
| 3000catizrs | Lmaeoaise | 6131766348 | [0 | TS AR
| B000caiiza2a | aanancoatae | 207 ek 00 | [0 | S S A A O]
| Qo00ailasts | dnaicoraiae | 73173556 | loi0s | I A A A
| 0000ca112233 | MbieaIde | G06h12.% | 192.160.0.208 | I A R
| O000cai1a£33 | imaiforaise | G8ch 2220 | 192.168.0.208 | T A R
| 9000caiiafes | iemaieoraise | Ghchasise | dsadee.oiies | A A A
| 000catiazes | Lmaieoraiae | Goce e | loi0s | T R T
| Booicatiants | ieneicoraiae | 6heesies | ol0s | I R R T
| 9000cat1anes | imaisoraise | LA | 130 | I N R 1
| 0000ca11azes | fe0eareaitd | 74.125.138.136 | I | I A A A
| 30004112233 | £60€42424210 | 74.125.138.190 | loe | T A A R
| 0000ca112£33 | fe0ra1uatto | T4AZS21413 | 132.160.00028 | TS A R A
| B000caiiasts | iewaitonnide | TAArsalan | dsadeeoios | T A N R
| 9000ca112233 | ss0earsaanto | 7412522008 | | I A A A
| 0000ca112233 | f00e4142a110 | 74 12520198 | | A R R
| 0000eai12233 | fe0arsaaito | 4 Az a1 0 | | Poamo1o o de qo 1o
| o000cat1zsas | I | | I R R]
| oo0neai1a233 | 281208115280 | | I A R
| 3000ca113533 | Aebanfoa1oe | 78108115250 | 13a.1e0.0.208 | ii% 16 e 0% 46

index-103_2.jpg
ﬁnitmg... Select Report Folder and/or Baseline

index-164_1.jpg
g Scee g o s B

index-9_1.jpg

index-154_1.jpg
Country Report 2017-12-30@20:19 UTC

Unique Country Observations

| Country

Count

1357228

|Canada

29

| Czech Republic

1439

|Germany

12

iHmKone

400

Internal

1085886

804

150

17

1832

420

16

834

nited States 762871

index-146_1.jpg
Report Folder |

Select Baseine |

Select Duration (144 o Select Ragort baster Report F|
srogress ;

[Rasay Seiect aportFaider andir Gaseine

index-152_1.png
Master Report 2017-12-30@20:00 UTC

Observations

"Lum PNormal

lsrep DsTp Brotocal [Frame Type
192.168.86.36 [192.168.86.1 UDP [PV

‘}s«-ron [Sre-Port Name. Dst-Port [Dst-Port name.
e0s65 [Unnoven 5 [Domain Nome Server

[SreMAC [Sre-MFG Name DaMAC [Dst-MFG Name
14B31FOT2ISE. [Us: Detl e EaF0a2BESSS [Unknown

Sre Countey [Dst Country

= nteral

PacketSize 7

[Morning o

[Afternoon 2

[Evening, o

|PreDawa)

| Weekend o

ot 2

(Alert [Normal

ISre-TP [Dst-TP [Protocol [Frame-Type

192168864 239255255250 oo Vs
re-Port [Sre-Port Name Dst-Port [Dst-Port name
144868 [Unknown 1900 [UPnP SSDP
reMAC [Sre-MFG Name IDstMAC [Dst-MFG Name
000CsA979D36 [US- Bose Corporation (01005ETFFFFA [Crtmown

re Country [Dst Country

tatermal [Onknown

[PacketSize o

[Morning 1432

[asternoon 1440

[Evening 157

[PreDavn 1340

[Weekend o

Foral

5749

index-173_1.jpg
bottom

OEM connector

index-175_1.png
Secure
Communications

Remote
PiSensor

index-31_1.png
Sample Ethernet Packet

Frame Check
Destination Source MAC
Preamble MAC address address Type/Length User Data (S::;ence

8Bytes 6 Bytes 6 Bytes 2Bytes 46-1500 4

\—'%

Ethernet Header Fields

Note: Ethernet Hardware of interest

filters out the preamble

index-158_1.jpg
et Saseine [oms o TES IV bseines 317 123 1555 soseme

Sectpapor. i e

index-30_1.png
Monitor or
SPAN Port

Network Switcp

Capture

Intercept

Attached Devices 10T and Other

index-102_1.jpg
74 Raspberry Pi - 10T/ICS Packet Sensor / Recorder Version .99-4 Experimental =
Help

Report Folder [C/Users/cdhsl/Desktop/RPT

iE -

Select Baseline [/ Users/cdhsl/Desktop/RPT/baselines/2017-11-30--16-24 baseline 2

S o —) |

Activate Sensor | Record faseine| <70P View Alers|
i

index-174_1.jpg

index-159_1.png
Alert Report 2017-12-31@16:06 UTC

Alert Observations

Rt el Parke T Oserved g

Last Observed o Dec 31 1103:17 017

SrclP |DstIP ‘rame-Type Protocol
FENEEFIFNN] 192165861 s Tce
SrcPort [DstPort DtPortName
o3¢ [59575 [Crimonn
SraAC [Peksize]
[E4F042BF5185 J[AECA05FA0552

SreCoumry ountry SFG DFC
Do Swes] Cakor [Gatown
Rere vl Packe Tane served 3

Last Observed Son Dec 31 TTOFT6 017

SrclP |DstIP Frame-Type

151685633 [ms003t Vs

SeePort SrcPortName [DtPort

[NA NA ™A

Srafic Danac =Ty

BS2EBCIOAE IOUSEO00EE 5z

SreCouniry oy

{Internal [Unknown US: Raspberry Pi Foundation

Rt e Osevaion 3

Last Observed un Dec 31 10:50:14 2017

SrclP |DstIP

152168563 foT165257

SrcPort rcPortName

[E envork Time Protoeo

ISreMAC \C

BS7EBCIAE [EFoBESISS

SreCouniry DstCountry DMFG
[nternal [Unsted States. US: Raspberry Pi Foundation {Unknown

index-162_1.jpg
1=

=)

index-148_2.jpg
oo
Raport Foder [PomaricetkiepEs T

Swict Baseine |

Seiect Ouraton Selact Raport st Report F

jcommssunn) posst it | R o |
erozress _—-

index-156_2.jpg
IoT Report 2017-12-30@20:19 UTC

Possible IoT Observations
SrelP Dt 1P
s 1192168 86 44 p2400251
St Port. ~ SrcPortN:
5353 Usimown.
Sre MAC Sre MFG Dut MAC
US: Bose Corporation 100SE0000FB.
SrcIP 3
£ 1192168 8647 2400251
'Sre Port SrcPort Name Dst Porvstrong> m-n
15353 Usknows. 353 U
[Sre MAC Sre MFG Dst MAC MFG
15F25CE374 “TW. ASUSTek COMPUTER INC. 100SE0000FB
Observed SretP Dut 1P
106 fe80. 8103 edSe 718 82ad. o2 fo
Sre Port ‘SrcPort Name Dst Portstrong> [DstPort Name
55 Toakmoun 35 Tonknown
SrMFG DstMAC MFG
V- ASUSTek COMPUTER INC. 333000000FB.

index-165_1.jpg
*l.'p) E 1547 A

| Wireless
Selection

index-86_1.png
74 Raspberry Pi - 10T/ICS Packet Sensor / Recorder Version .99-4 Experimental

index-147_1.jpg
s
[r—— =
Dty emopestspTAST ==

s St popan. e g E

Bovioes

index-166_2.jpg
74 Python Forensics - Passive Packet Sensor / Recordes Version 99-6 Experimental
Help

Report Folder
Seect Baseline
MAC Filter FM(MDVM Python Forensics/Books/ Apress/PI-Chapters/Source/MAR- 18-2018/pySensor

ﬂbmuu:m-

Select NIC: @]

index-101_1.jpg
Select Duration |1-Min
1-Min
10-Min

1-Hr
Erogress 4-Hr

8-Hr
[invaid Folder SeJu-Hr Ind

18-Hr
1-Day
2-Dav S5 e

index-151_1.png
Master Report 2017-12-30@20:00 UTC

Observations
[Alert ormal
ISreIP Dsp Protocol [FrameType
(1921685636 192168861 oop [pv
(SrePort Src-Port Name DatPort [Dst-Port ame
605 3 [Domin Neme Server
NAC Sre MFG Name. DaMAC [DS-MFG Name
B3IFOTIISE 5. DellTne. EAFouBEsIES [Caknown
Sec Country [Dst Countey
Taternal Jlnternal
PacketSize 7
Morning lo
[Afternoon k
Evening o
PreDawn o
Weekend lo
Fotal. B
[alert Nomal
sretp st Protoest FrameType
192168864 239255255350 oop Vs
[SrcPore [Sre.Port Name DatPort [Dst-Port name
[rises [Cnknown 1900 [cap ssDP
[SreMAC [Src-MFG Name DatMAC [DStMFG Name
[o00csAST9D% [US: Bose Corporation OL00SETFFFFA [Caknown
[Sre Coumtry s Country
lernal [Cnknown
[PacketSize o
[Moraizg 132
[Afternoon 130
[Evenieg. 137
[PreDawn is40
[Weekend b

o 60

index-145_2.jpg
File Edit Tabs Help

pi@raspberrypi:~ $ cd Desktop
pi@raspberrypi:~/Desktop $ cd TEST
pi@raspberrypi:~/Desktop/TEST $ ls

geoIPv4.dat hotlist.txt lookup.db RPT

geoIPv6.dat log.txt piSensorv3
pi@raspberrypi:~/Desktop/TEST $ sudo ./piSensorV3[]

index-156_1.jpg
e gl o TS varoamrsint
o TS, Earoamraiss
el T Earoaras
n T T T

index-110_1.jpg
74 RaspbertyBi- 61/1CS Packet Sensor / RecordesVerion 95-4 Bxperimentsl

Hep

rponrote [T |
D e e el |

SelectDuraion [1-Min

SdectReport [Master Report

sy

Progres:

[[osding Saseine Compietes

index-103_1.jpg
Select Report

3aseline] STOP|MFG Report

Report

index-105_1.jpg
T Raspberry Pi - 16T/1CS Packet Sensor / Recordes Verion 99-4 Expesimental - o
Hap
Repotfolder [CUmenreamibemen®or =

|

Select Dunation [1-Min

SelectReport [Master Report

ey 1l s

progress

[Report Fotder Seected

Browse For Folder

SelectRepertFolder

ERETTT
> 11 SyChamcenn
pyintd
L zenmap
> AppDate
53 Contacts
Oeskeop
11 Demo
> [DFS-510Convert 2103

5 1] Week & Webinar CVB-649
> 1] Work
> [Documents

index-37_1.png
32 bits

iy
type

code checksum

message-specific information

index-167_1.png
@m
File Edit Format View Help
F80F4143DA10
F80F4146D710
F80F4148DB10
F80F4142D110

index-143_1.jpg
TP-LINK

‘Smart Confguraton ity

System

+ Port Statstics

+ CableTest

+ Loop Prevention

Monitoring

Switching VAN QoS Help
Port Mirror
PortMiror Status: | Enable |+ Mirtoring Port

Mirrored Port

Mirored Ports:

GinEiaiGic

Aoply.

1£one ports n a unk group, it can be nether mirroing portnor miored port.

index-145_1.jpg

index-149_2.jpg

index-141_1.jpg

index-1_1.png

index-149_1.jpg
e

Senct e

Seceursten 103

index-81_1.jpg
R
BRI

ummmmmm::u

208200200000

]

aafszizdangy

FEREHEEHEH
T

i bl bt L

e

o i5gd188g8 Sete
n HLEE LR

H
m I

.. haded a4

iR

