Apache Spark 2: Data Processing and Real-Time Analytics
Master complex big data processing, stream analytics, and machine learning with Apache Spark
Romeo Kienzler
Md. Rezaul Karim
Sridhar Alla
Siamak Amirghodsi
Meenakshi Rajendran
Broderick Hall
Shuen Mei
BIRMINGHAM - MUMBAI
Apache Spark 2: Data Processing and Real-Time Analytics
Copyright © 2018 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors nor Packt Publishing or its dealers and distributors will be held liable for any damages caused or alleged to have been caused directly or indirectly ...
mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry-leading tools to help you plan your personal development and advance your career. For more information, please visit our website.
Why Subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Mapt is fully searchable
Copy and paste, print, and bookmark content
Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.
At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.
Contributors
About the Authors
Romeo Keinzler works as the chief data scientist in the IBM Watson IoT worldwide team, helping clients to apply advanced machine learning at scale on their IoT sensor data. He holds a Master's degree in computer science from the Swiss Federal Institute of Technology, Zurich, with a specialization in information systems, bioinformatics, and applied statistics. His current research focus is on scalable machine learning on Apache Spark. He is a contributor to various open source projects and works as an associate professor for artificial intelligence at Swiss University of Applied Sciences, Berne. He is a member of the IBM Technical Expert Council and the IBM Academy of Technology, IBM's leading brains trust.
Md. Rezaul Karim is a Research Scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Aachen, Germany. He holds a BSc and an MSc degree in Computer Science. Before joining Fraunhofer FIT, he worked as a Researcher at Insight Centre for Data Analytics, Ireland. Before this, he worked as a Lead Engineer at Samsung Electronics' distributed R&D Institutes in Korea, India, Turkey, and Bangladesh. Previously, he worked as a Research Assistant at the database lab, Kyung Hee University, Korea. He also worked as an R&D engineer with BMTech21 Worldwide, Korea. Before this, he worked as a Software Engineer with i2SoftTechnology, Dhaka, Bangladesh.
He has more than 8 years' experience in the area of research and development with a solid understanding of algorithms and data structures in C, C++, Java, Scala, R, and Python. He has published several books, articles, and research papers concerning big data and virtualization technologies, such as Spark, Kafka, DC/OS, Docker, Mesos, Zeppelin, Hadoop, and MapReduce. He is also equally competent with deep learning technologies such as TensorFlow, DeepLearning4j, and H2O. His research interests include machine learning, deep learning, the semantic web, linked data, big data, and bioinformatics. Also he is the author of the following book titles:
Large-Scale Machine Learning with Spark (Packt Publishing Ltd.)
Deep Learning with TensorFlow (Packt Publishing Ltd.)
Scala and Spark for Big Data Analytics (Packt Publishing Ltd.)
Sridhar Alla is a big data expert helping companies solve complex problems in distributed computing, large-scale data science and analytics practice. He presents regularly at several prestigious conferences and provides training and consulting to companies. He holds a bachelor's in computer science from JNTU, India.
He loves writing code in Python, Scala, and Java. He also has extensive hands-on knowledge of several Hadoop-based technologies, TensorFlow, NoSQL, IoT, and deep learning.
Siamak Amirghodsi (Sammy) is a world-class senior technology executive leader with an entrepreneurial track record of overseeing big data strategies, cloud transformation, quantitative risk management, advanced analytics, large-scale regulatory data platforming, enterprise architecture, technology road mapping, multi-project execution, and organizational streamlining in Fortune 20 environments in a global setting. Siamak is a hands-on big data, cloud, machine learning, and AI expert, and is currently overseeing the large-scale cloud data platforming and advanced risk analytics build out for a tier-1 financial institution in the United States. Siamak's interests include building advanced technical teams, executive management, Spark, Hadoop, big data analytics, AI, deep learning nets, TensorFlow, cognitive models, swarm algorithms, real-time streaming systems, quantum computing, financial risk management, trading signal discovery, econometrics, long-term financial cycles, IoT, blockchain, probabilistic graphical models, cryptography, and NLP.
Meenakshi Rajendran is a hands-on big data analytics and data governance manager with expertise in large-scale data platforming and machine learning program execution on a global scale. She is experienced in the end-to-end delivery of data analytics and data science products for leading financial institutions. Meenakshi holds a master's degree in business administration and is a certified PMP with over 13 years of experience in global software delivery environments. She not only understands the underpinnings of big data and data science technology but also has a solid understanding of the human side of the equation as well.
Meenakshi’s favorite languages are Python, R, Julia, and Scala. Her areas of research and interest are Apache Spark, cloud, regulatory data governance, machine learning, Cassandra, and managing global data teams at scale. In her free time, she dabbles in software engineering management literature, cognitive psychology, and chess for relaxation.
Broderick Hall is a hands-on big data analytics expert and holds a master’s degree in computer science with 20 years of experience in designing and developing complex enterprise-wide software applications with real-time and regulatory requirements at a global scale. He has an extensive experience in designing and building real-time financial applications for some of the largest financial institutions and exchanges in USA. He is a deep learning early adopter and is currently working on a large-scale cloud-based data platform with deep learning net augmentation.
Shuen Mei is a big data analytic platforms expert with 15+ years of experience in the financial services industry. He is experienced in designing, building, and executing large-scale, enterprise-distributed financial systems with mission-critical low-latency requirements. He is certified in the Apache Spark, Cloudera Big Data platform, including Developer, Admin, and HBase.
Shuen is also a certified AWS solutions architect with emphasis on peta-byte range real-time data platform systems. Shuen is a skilled software engineer with extensive experience in delivering infrastructure, code, data architecture, and performance tuning solutions in trading and finance for Fortune 100 companies.
Packt Is Searching for Authors Like You
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.
Table of Contents
Preface
Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning ...
Who This Book Is For
If you are an intermediate-level Spark developer looking to master the advanced capabilities and use-cases of Apache Spark 2.x, this Learning Path is ideal for you. Big data professionals who want to learn how to integrate and use the features of Apache Spark and build a strong big data pipeline will also find this Learning Path useful. To grasp the concepts explained in this Learning Path, you must know the fundamentals of Apache Spark and Scala.
What This Book Covers
Chapter 1, A First Taste and What's New in Apache Spark V2, provides an overview of Apache Spark, the functionality that is available within its modules, and how it can be extended. It covers the tools available in the Apache Spark ecosystem outside the standard Apache Spark modules for processing and storage. It also provides tips on performance tuning.
Chapter 2, Apache Spark Streaming, talks about continuous applications using Apache Spark Streaming. You will learn how to incrementally process data and create actionable insights.
Chapter 3, Structured Streaming, talks about Structured Streaming – a new way of defining continuous applications using the DataFrame and Dataset APIs.
Chapter 4, Apache Spark MLlib, introduces ...
To Get the Most out of This Book
Operating system: Linux distributions are preferable (including Debian, Ubuntu, Fedora, RHEL, and CentOS) and to be more specific, for Ubuntu it is recommended to have a complete 14.04 (LTS) 64-bit (or later) installation, VMWare player 12, or Virtual box. You can run Spark jobs on Windows (XP/7/8/10) or Mac OS X (10.4.7+).
Hardware configuration: Processor Core i3, Core i5 (recommended), or Core i7 (to get the best results). However, multicore processing will provide faster data processing and scalability. You will need least 8-16 GB RAM (recommended) for a standalone mode and at least 32 GB RAM for a single VM--and higher for a cluster. You will also need enough storage for running heavy jobs (depending on the dataset size you will be handling), and preferably at least 50 GB of free disk storage (for a standalone word missing and for an SQL warehouse).
Along with this, you would require the following:
Download the Example Code Files
You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Apache-Spark-2-Data-Processing-and-Real-Time-Analytics ...
Conventions Used
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next lines of code read the link and assign it to the to the BeautifulSoup function."
A block of code is set as follows:
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
Any command-line input or output is written as follows:
$./bin/spark-submit --class com.chapter11.RandomForestDemo \
--master spark://ip-172-31-21-153.us-west-2.compute:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
file:///home/KMeans-0.0.1-SNAPSHOT.jar \
file:///home/mnist.bz2
Bold: New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Configure Global Libraries. Select Scala SDK as your global library."
Warnings or important notes appear like this.
Tips and tricks appear like this.
Get in Touch
Feedback from our readers is always welcome.
General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.
Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.
Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us ...
Reviews
Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!
For more information about Packt, please visit packt.com.
A First Taste and What's New in Apache Spark V2
Apache Spark is a distributed and highly scalable in-memory data analytics system, providing you with the ability to develop applications in Java, Scala, and Python, as well as languages such as R. It has one of the highest contribution/involvement rates among the Apache top-level projects at this time. Apache systems, such as Mahout, now use it as a processing engine instead of MapReduce. It is also possible to use a Hive context to have the Spark applications process data directly to and from Apache Hive.
Initially, Apache Spark provided four main submodules--SQL, MLlib, GraphX, and Streaming. They will all be explained in their own chapters, but a simple overview would be useful here. The ...
Spark machine learning
Machine learning is the real reason for Apache Spark because, at the end of the day, you don't want to just ship and transform data from A to B (a process called ETL (Extract Transform Load)). You want to run advanced data analysis algorithms on top of your data, and you want to run these algorithms at scale. This is where Apache Spark kicks in.
Apache Spark, in its core, provides the runtime for massive parallel data processing, and different parallel machine learning libraries are running on top of it. This is because there is an abundance of machine learning algorithms for popular programming languages like R and Python but they are not scalable. As soon as you load more data to the available main memory of the system, they crash.
Apache Spark, in contrast, can make use of multiple computer nodes to form a cluster and even on a single node can spill data transparently to disk, therefore, avoiding the main memory bottleneck. Two interesting machine learning libraries are shipped with Apache Spark, but in this work, we'll also cover third-party machine learning libraries.
The Spark MLlib module, Classical MLlib, offers a growing but incomplete list of machine learning algorithms. Since the introduction of the DataFrame-based machine learning API called SparkML, the destiny of MLlib is clear. It is only kept for backward compatibility reasons.
In SparkML, we have a machine learning library in place that can take advantage of these improvements out of the box, using it as an underlying layer.
SparkML will eventually replace MLlib. Apache SystemML introduces the first library running on top of Apache Spark that is not shipped with the Apache Spark distribution. SystemML provides you with an execution environment of R-style syntax with a built-in cost-based optimizer. Massive parallel machine learning is an area of constant change at a high frequency. It is hard to say where that the journey goes, but it is the first time where advanced machine learning at scale is available to everyone using open source and cloud computing.
Deep learning on Apache Spark uses H20, Deeplearning4j, and Apache SystemML, which are other examples of very interesting third-party machine learning libraries that are not shipped with the Apache Spark distribution.
While H20 is somehow complementary to MLlib, Deeplearning4j only focuses on deep learning algorithms. Both use Apache Spark as a means for parallelization of data processing. You might wonder why we want to tackle different machine learning libraries.
The reality is that every library has advantages and disadvantages with the implementation of different algorithms. Therefore, it often depends on your data and Dataset size which implementation you choose for best performance.
However, it is nice that there is so much choice and you are not locked in a single library when using Apache Spark. Open source means openness, and this is just one example of how we are all benefiting from this approach in contrast to a single vendor, single product lock-in. Although recently Apache Spark integrated GraphX, another Apache Spark library into its distribution, we don't expect this will happen too soon. Therefore, it is most likely that Apache Spark as a central data processing platform and additional third-party libraries will co-exist, like Apache Spark being the big data operating system and the third-party libraries are the software you install and run on top of it.
Spark Streaming
Stream processing is another big and popular topic for Apache Spark. It involves the processing of data in Spark as streams and covers topics such as input and output operations, transformations, persistence, and checkpointing, among others.
Apache Spark Streaming will cover the area of processing, and we will also see practical examples of different types of stream processing. This discusses batch and window stream configuration and provides a practical example of checkpointing. It also covers different examples of stream processing, including Kafka and Flume.
There are many ways in which stream data can be used. Other Spark module functionality (for example, SQL, MLlib, and GraphX) can be used to process the stream. You ...
Spark SQL
From Spark version 1.3, data frames have been introduced in Apache Spark, so that Spark data can be processed in a tabular form and tabular functions (such as select, filter, and groupBy) can be used to process data. The Spark SQL module integrates with Parquet and JSON formats, to allow data to be stored in formats, that better represent the data. This also offers more options to integrate with external systems.
The idea of integrating Apache Spark into the Hadoop Hive big data database can also be introduced. Hive context-based Spark applications can be used to manipulate Hive-based table data. This brings Spark's fast in-memory distributed processing to Hive's big data storage capabilities. It effectively lets Hive use Spark as a processing engine.
Additionally, there is an abundance of additional connectors to access NoSQL databases outside the Hadoop ecosystem directly from Apache Spark.
Spark graph processing
Graph processing is another very important topic when it comes to data analysis. In fact, a majority of problems can be expressed as a graph.
A graph is basically, a network of items and their relationships to each other. Items are called nodes and relationships are called edges. Relationships can be directed or undirected. Relationships, as well as items, can have properties. So a map, for example, can be represented as a graph as well. Each city is a node and the streets between the cities are edges. The distance between the cities can be assigned as properties on the edge.
The Apache Spark GraphX module allows Apache Spark to offer fast big data in-memory graph processing. This allows you to run graph algorithms ...
Extended ecosystem
When examining big data processing systems, we think it is important to look at, not just the system itself, but also how it can be extended and how it integrates with external systems so that greater levels of functionality can be offered. In a book of this size, we cannot cover every option, but by introducing a topic, we can hopefully stimulate the reader's interest so that they can investigate further.
What's new in Apache Spark V2?
Since Apache Spark V2, many things have changed. This doesn't mean that the API has been broken. In contrast, most of the V1.6 Apache Spark applications will run on Apache Spark V2 with or without very little changes, but under the hood, there have been a lot of changes.
Although the Java Virtual Machine (JVM) is a masterpiece on its own, it is a general-purpose bytecode execution engine. Therefore, there is a lot of JVM object management and garbage collection (GC) overhead. So, for example, to store a 4-byte string, 48 bytes on the JVM are needed. The GC optimizes on object lifetime estimation, but Apache Spark often knows this better than JVM. Therefore, Tungsten disables the JVM GC for a subset of privately ...
Cluster design
As we have already mentioned, Apache Spark is a distributed, in-memory, parallel processing system, which needs an associated storage system. So, when you build a big data cluster, you will probably use a distributed storage system such as Hadoop, as well as tools to move data such as Sqoop, Flume, and Kafka.
We wanted to introduce the idea of edge nodes in a big data cluster. These nodes in the cluster will be client-facing, on which reside the client-facing components such as Hadoop NameNode or perhaps the Spark master. Majority of the big data cluster might be behind a firewall. The edge nodes would then reduce the complexity caused by the firewall as they would be the only points of contact accessible from outside. The following figure shows a simplified big data cluster:
It shows five simplified cluster nodes with executor JVMs, one per CPU core, and the Spark Driver JVM sitting outside the cluster. In addition, you see the disk directly attached to the nodes. This is called the JBOD (just a bunch of disks) approach. Very large files are partitioned over the disks and a virtual filesystem such as HDFS makes these chunks available as one large virtual file. This is, of course, stylized and simplified, but you get the idea.
The following simplified component model shows the driver JVM sitting outside the cluster. It talks to the Cluster Manager in order to obtain permission to schedule tasks on the worker nodes, because the Cluster Manager keeps track of resource allocation of all processes running on the cluster.
As we will see later, there is a variety of different cluster managers, some of them also capable of managing other Hadoop workloads or even non-Hadoop applications in parallel to the Spark Executors. Note that the Executor and Driver have bidirectional communication all the time, so network-wise, they should also be sitting close together:
Figure source: https://spark.apache.org/docs/2.0.2/cluster-overview.html
Generally, firewalls, while adding security to the cluster, also increase the complexity. Ports between system components need to be opened up so that they can talk to each other. For instance, Zookeeper is used by many components for configuration. Apache Kafka, the publish/subscribe messaging system, uses Zookeeper to configure its topics, groups, consumers, and producers. So, client ports to Zookeeper, potentially across the firewall, need to be open.
Finally, the allocation of systems to cluster nodes needs to be considered. For instance, if Apache Spark uses Flume or Kafka, then in-memory channels will be used. The size of these channels, and the memory used, caused by the data flow, need to be considered. Apache Spark should not be competing with other Apache components for memory usage. Depending on your data flows and memory usage, it might be necessary to have Spark, Hadoop, Zookeeper, Flume, and other tools on distinct cluster nodes. Alternatively, resource managers such as YARN, Mesos, or Docker can be used to tackle this problem. In standard Hadoop environments, YARN is most likely.
Generally, the edge nodes that act as cluster NameNode servers or Spark master servers will need greater resources than the cluster processing nodes within the firewall. When many Hadoop ecosystem components are deployed on the cluster, all of them will need extra memory on the master server. You should monitor edge nodes for resource usage and adjust in terms of resources and/or application location as necessary. YARN, for instance, is taking care of this.
This section has briefly set the scene, for the big data cluster in terms of Apache Spark, Hadoop, and other tools. However, how might the Apache Spark cluster itself, within the big data cluster, be configured? For instance, it is possible to have many types of Spark cluster manager. The next section will examine this and describe each type of the Apache Spark cluster manager.
Cluster management
The Spark context, as you will see in many of the examples in this book, can be defined via a Spark configuration object and Spark URL. The Spark context connects to the Spark cluster manager, which then allocates resources across the worker nodes for the application. The cluster manager allocates executors across the cluster worker nodes. It copies the application JAR file to the workers and finally allocates tasks.
The following subsections describe the possible Apache Spark cluster manager options available at this time.
Local
By specifying a Spark configuration local URL, it is possible to have the application run locally. By specifying local[n], it is possible to have Spark use n threads to run the application locally. This is a useful development and test option because you can also test some sort of parallelization scenarios but keep all log files on a single machine.
Standalone
Standalone mode uses a basic cluster manager that is supplied with Apache Spark. The spark master URL will be as follows:
Spark://<hostname>:7077
Here, <hostname> is the name of the host on which the Spark master is running. We have specified 7077 as the port, which is the default value, but this is configurable. This simple cluster manager currently supports only FIFO (first-in-first-out) scheduling. You can contrive to allow concurrent application scheduling by setting the resource configuration options for each application; for instance, using spark.core.max to share cores between applications.
Apache YARN
At a larger scale, when integrating with Hadoop YARN, the Apache Spark cluster manager can be YARN and the application can run in one of two modes. If the Spark master value is set as yarn-cluster, then the application can be submitted to the cluster and then terminated. The cluster will take care of allocating resources and running tasks. However, if the application master is submitted as yarn-client, then the application stays alive during the life cycle of processing, and requests resources from YARN.
Apache Mesos
Apache Mesos is an open source system, for resource sharing across a cluster. It allows multiple frameworks, to share a cluster by managing and scheduling resources. It is a cluster manager, that provides isolation using Linux containers and allowing multiple systems such as Hadoop, Spark, Kafka, Storm, and more to share a cluster safely. It is highly scalable to thousands of nodes. It is a master/slave-based system and is fault tolerant, using Zookeeper for configuration management.
For a single master node Mesos cluster, the Spark master URL will be in this form:
mesos://<hostname>:5050.
Here, <hostname> is the hostname of the Mesos master server; the port is defined as 5050, which is the default Mesos master port (this is ...
Cloud-based deployments
There are three different abstraction levels of cloud systems--Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). We will see how to use and install Apache Spark on all of these.
The new way to do IaaS is Docker and Kubernetes as opposed to virtual machines, basically providing a way to automatically set up an Apache Spark cluster within minutes. The advantage of Kubernetes is that it can be used among multiple different cloud providers as it is an open standard and also based on open source.
You even can use Kubernetes, in a local data center and transparently and dynamically move workloads between local, dedicated, and public cloud data centers. PaaS, in contrast, takes away from you the burden of installing and operating an Apache Spark cluster because this is provided as a service.
There is an ongoing discussion, whether Docker is IaaS or PaaS but, in our opinion, this is just a form of a lightweight preinstalled virtual machine. This is particularly interesting because the offering is completely based on open source technologies, which enables you to replicate the system on any other data center.
One of the open source components, we'll introduce is Jupyter notebooks; a modern way to do data science, in a cloud-based collaborative environment.
Performance
Before moving on to the rest of the chapters, covering functional areas of Apache Spark and extensions, we will examine the area of performance. What issues and areas need to be considered? What might impact the Spark application performance, starting at the cluster level and finishing with actual Scala code? We don't want to just repeat, what the Spark website says, so take a look at this URL: http://spark.apache.org/docs/<version>/tuning.html.
Here, <version> relates to the version of Spark that you are using; that is, either the latest or something like 1.6.1 for a specific version. So, having looked at this page, we will briefly mention some of the topic areas. We will list some general points in this section without implying ...
The cluster structure
The size and structure of your big data cluster are going to affect performance. If you have a cloud-based cluster, your IO and latency will suffer, in comparison to an unshared hardware cluster. You will be sharing the underlying hardware, with multiple customers and the cluster hardware may be remote. There are some exceptions to this. The IBM cloud, for instance, offers dedicated bare metal high-performance cluster nodes, with an InfiniBand network connection, which can be rented on an hourly basis.
Additionally, the positioning of cluster components on servers may cause resource contention. For instance, think carefully about locating Hadoop NameNodes, Spark servers, Zookeeper, Flume, and Kafka servers in large clusters. With high workloads, you might consider segregating servers to individual systems. You might also consider using an Apache system such as Mesos that provides better distributions and assignment of resources to the individual processes.
Consider potential parallelism as well. The greater the number of workers in your Spark cluster for large Datasets, the greater the opportunity for parallelism. One rule of thumb is one worker per hyper-thread or virtual core respectively.
Hadoop Distributed File System
You might consider using an alternative to HDFS, depending upon your cluster requirements. For instance, IBM has the GPFS (General Purpose File System) for improved performance.
The reason why GPFS might be a better choice is that coming from the high-performance computing background, this filesystem has a full read-write capability, whereas HDFS is designed as a write once, read many filesystems. It offers an improvement in performance over HDFS because it runs at the kernel level as opposed to HDFS, which runs in a Java Virtual Machine (JVM) that in turn runs as an operating system process. It also integrates with Hadoop and the Spark cluster tools. IBM runs setups with several hundred petabytes using GPFS. ...
Data locality
The key for good data processing performance is avoidance of network transfers. This was very true a couple of years ago, but is less relevant for tasks with high demands on CPU and low I/O, but for low demand on CPU and high I/O demand data processing algorithms, this still holds.
We can conclude from this, that HDFS is one of the best ways to achieve data locality, as chunks of files are distributed on the cluster nodes, in most of the cases, using hard drives directly attached to the server systems. This means that those chunks can be processed in parallel using the CPUs on the machines where individual data chunks are located in order to avoid network transfer.
Another way to achieve data locality is using ApacheSparkSQL. Depending on the connector implementation, SparkSQL can make use of the data processing capabilities of the source engine. So, for example, when using MongoDB in conjunction with SparkSQL, parts of the SQL statement are preprocessed by MongoDB before data is sent upstream to Apache Spark.
Memory
In order to avoid OOM (Out of Memory) messages for the tasks on your Apache Spark cluster, please consider a number of questions for the tuning:
Coding
Try to tune your code, to improve the Spark application performance. For instance, filter your application-based data early in your ETL cycle. One example is, when using raw HTML files, detag them and crop away unneeded parts at an early stage. Tune your degree of parallelism, try to find the resource-expensive parts of your code, and find alternatives.
ETL is one of the first things you are doing in an analytics project. So you are grabbing data, from third-party systems, either by directly accessing relational or NoSQL databases or by reading exports in various file formats such as, CSV, TSV, JSON or even more exotic ones from local or remote filesystems or from a staging area in HDFS: after some inspections and sanity checks on the files an ETL process in Apache Spark basically reads in the files and creates RDDs or DataFrames/Datasets out of them.
They are transformed, so that they fit the downstream analytics application, running on top of Apache Spark or other applications and then stored back into filesystems as either JSON, CSV or PARQUET files, or even back to relational or NoSQL databases.
Finally, I can recommend the following resource for any performance-related problems with Apache Spark: https://spark.apache.org/docs/latest/tuning.html.
Cloud
Although parts of this book will concentrate on examples of Apache Spark installed on physically server-based clusters, we want to make a point, that there are multiple cloud-based options out there that imply many benefits. There are cloud-based systems, that use Apache Spark as an integrated component and cloud-based systems that offer Spark as a service.
Errors and recovery
Generally, the question that needs to be asked for your application is: is it critical that you receive and process all the data? If not, then on failure, you might just be able to restart the application and discard the missing or lost data. If this is not the case, then you will need to use checkpointing, which will be described in the next section.
It is also worth noting that your application's error management should be robust and self-sufficient. What we mean by this is that if an exception is non-critical, then manage the exception, perhaps log it, and continue processing. For instance, when a task reaches the maximum number of failures (specified by spark.task.maxFailures), it will terminate processing.
This property, among others, can be set during creation of the SparkContext object or as additional command line parameters when invoking spark-shell or spark-submit.
Summary
In closing this chapter, we invite you to work your way, through each of the Scala code-based examples in the following chapters. The rate at which Apache Spark has evolved is impressive, and important to note is the frequency of the releases. So even though, at the time of writing, Spark has reached 2.2, we are sure that you will be using a later version.
If you encounter problems, report them at www.stackoverflow.com and tag them accordingly; you'll receive feedback within minutes--the user community is very active. Another way of getting information and help is subscribing to the Apache Spark mailing list: user@apachespark.org.
By the end of this chapter, you should have a good idea what's waiting for you in this book. We've dedicated ...
Apache Spark Streaming
The Apache Streaming module is a stream processing-based module within Apache Spark. It uses the Spark cluster, to offer the ability to scale to a high degree. Being based on Spark, it is also highly fault tolerant, having the ability to rerun failed tasks by checkpointing the data stream that is being processed. The following topics will be covered in this chapter after an introductory section, which will provide a practical overview of how Apache Spark processes stream-based data:
For each topic, we will provide a worked example in Scala and show how the stream-based architecture can be set up and tested.
Overview
The following diagram shows potential data sources for Apache Streaming, such as Kafka, Flume, and HDFS:
These feed into the Spark Streaming module and are processed as Discrete Streams. The diagram also shows that other Spark module functionality, such as machine learning, can be used to process stream-based data.
The fully processed data can then be an output for HDFS, databases, or dashboards. This diagram is based on the one at the Spark streaming website, but we wanted to extend it to express the Spark module functionality:
Checkpointing
On batch processing, we are used to having fault tolerance. This means, in case a node crashed, the job doesn't lose its state and the lost tasks are rescheduled on other workers. Intermediate results are written to persistent storage (which of course has to be fault tolerant as well which is the case for HDFS, GPFS or Cloud Object Storage). Now we want to achieve the same guarantees in streaming as well since it might be crucial that the data stream we are processing is not lost.
It is possible to set up an HDFS-based checkpoint directory to store Apache Spark-based streaming information. In this Scala example, data will be stored in HDFS under /data/spark/checkpoint. The following HDFS filesystem ls command shows that before starting, the directory does not exist:
[hadoop@hc2nn stream]$ hdfs dfs -ls /data/spark/checkpoint
ls: `/data/spark/checkpoint': No such file or directory
For replicating the following example, Twitter API credentials are used in order to connect to the Twitter API and obtain a stream of tweets. The following link explains how such credentials are created within the Twitter UI: https://dev.twitter.com/oauth/overview/application-owner-access-tokens.
The following Scala code sample starts by importing Spark Streaming Context and Twitter-based functionality. It then defines an application object named stream1:
import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.spark.streaming._
import org.apache.spark.streaming.twitter._
import org.apache.spark.streaming.StreamingContext._
object stream1 {
Next, a method is defined called createContext, which will be used to create both the Spark and Streaming contexts. It will also checkpoint the stream to the HDFS-based directory using the streaming context checkpoint method, which takes a directory path as a parameter. The directory path the value (cpDir) that was passed to the createContext method:
def createContext(cpDir : String) : StreamingContext = {
val appName = "Stream example 1"
val conf = new SparkConf()
conf.setAppName(appName)
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(5))
ssc.checkpoint(cpDir)
ssc
}
Now, the main method is defined as is the HDFS directory, as well as Twitter access authority and parameters. The Spark Streaming context ssc is either retrieved or created using the HDFS checkpoint directory via the StreamingContext method--checkpoint. If the directory doesn't exist, then the previous method called createContext is called, which will create the context and checkpoint. Obviously, we have truncated our own Twitter auth.keys in this example for security reasons:
def main(args: Array[String]) {
val hdfsDir = "/data/spark/checkpoint"
val consumerKey = "QQpxx"
val consumerSecret = "0HFzxx"
val accessToken = "323xx"
val accessTokenSecret = "IlQxx"
System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
System.setProperty("twitter4j.oauth.consumerSecret", consumerSecret)
System.setProperty("twitter4j.oauth.accessToken", accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret", accessTokenSecret)
val ssc = StreamingContext.getOrCreate(hdfsDir,
() => { createContext(hdfsDir) })
val stream = TwitterUtils.createStream(ssc,None).window(Seconds(60))
// do some processing
ssc.start()
ssc.awaitTermination()
} // end main
Having run this code, which has no actual processing, the HDFS checkpoint directory can be checked again. This time, it is apparent that the checkpoint directory has been created and the data has been stored:
[hadoop@hc2nn stream]$ hdfs dfs -ls /data/spark/checkpoint
Found 1 items
drwxr-xr-x - hadoop supergroup 0 2015-07-02 13:41 /data/spark/checkpoint/0fc3d94e-6f53-40fb-910d-1eef044b12e9
This example, taken from the Apache Spark website, shows you how checkpoint storage can be set up and used. How often is checkpointing carried out? The metadata is stored during each stream batch. The actual data is stored within a period, which is the maximum of the batch interval, or ten seconds. This might not be ideal for you, so you can reset the value using the following method:
DStream.checkpoint(newRequiredInterval)
Here, newRequiredInterval is the new checkpoint interval value that you require; generally, you should aim for a value that is five to ten times your batch interval. Checkpointing saves both the stream batch and metadata (data about the data).
If the application fails, then, when it restarts, the checkpointed data is used when processing is started. The batch data that was being processed at the time of failure is reprocessed along with the batched data since the failure. Remember to monitor the HDFS disk space being used for the checkpointing.
In the next section, we will examine the streaming sources and provide some examples of each type.
Streaming sources
We will not be able to cover all the stream types with practical examples in this section, but where this chapter is too small to include code, we will at least provide a description. In this chapter, we will cover the TCP and file streams and the Flume, Kafka, and Twitter streams. Apache Spark tends only to support this limited set out of the box, but this is not a problem since 3rd party developers provide connectors to other sources as well. We will start with a practical TCP-based example. This chapter examines stream processing architecture.
For instance, what happens in cases where the stream data delivery rate exceeds the potential data processing rate? Systems such as Kafka provide the possibility of solving this ...
TCP stream
There is a possibility of using the Spark Streaming Context method called socketTextStream to stream data via TCP/IP, by specifying a hostname and port number. The Scala-based code example in this section will receive data on port 10777 that was supplied using the netcat Linux command.
The netcat command is a Linux/Unix command which allows you to send and receive data to or from local or remote IP destinations using TCP or UDP. This way every shell script can play the role of a full network client or server. The following is a good tutorial on how to use netcat: http://www.binarytides.com/netcat-tutorial-for-beginners/.
The code sample starts by importing Spark, the context, and the streaming classes. The object class named stream2 is defined as it is the main method with arguments:
import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
object stream2 {
def main(args: Array[String]) {
The number of arguments passed to the class is checked to ensure that it is the hostname and port number. A Spark configuration object is created with an application name defined. The Spark and streaming contexts are then created. Then, a streaming batch time of 10 seconds is set:
if (args.length < 2) {
System.err.println("Usage: stream2 <host> <port>")
System.exit(1)
}
val hostname = args(0).trim
val portnum = args(1).toInt
val appName = "Stream example 2"
val conf = new SparkConf()
conf.setAppName(appName)
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(10))
A DStream called rawDstream is created by calling the socketTextStream method of the streaming context using the hostname and port name parameters:
val rawDstream = ssc.socketTextStream(hostname, portnum)
A top-ten word count is created from the raw stream data by splitting words with spacing. Then, a (key, value) pair is created as (word,1), which is reduced by the key value, this being the word. So now, there is a list of words and their associated counts. The key and value are swapped so the list becomes (count and word). Then, a sort is done on the key, which is now the count. Finally, the top 10 items in the RDD within the DStream are taken and printed out:
val wordCount = rawDstream
.flatMap(line => line.split(" "))
.map(word => (word,1))
.reduceByKey(_+_)
.map(item => item.swap)
.transform(rdd => rdd.sortByKey(false))
.foreachRDD(rdd =>
{ rdd.take(10).foreach(x=>println("List : " + x)) }
)
The code closes with the Spark Streaming start and awaitTermination methods being called to start the stream processing and await process termination:
ssc.start()
ssc.awaitTermination()
} // end main
} // end stream2
The data for this application is provided, as we stated previously, by the Linux Netcat (nc) command. The Linux cat command dumps the contents of a log file, which is piped to nc. The lk options force Netcat to listen for connections and keep on listening if the connection is lost. This example shows that the port being used is 10777:
[root@hc2nn log]# pwd
/var/log
[root@hc2nn log]# cat ./anaconda.storage.log | nc -lk 10777
The output from this TCP-based stream processing is shown here. The actual output is not as important as the method demonstrated. However, the data shows, as expected, a list of 10 log file words in descending count order. Note that the top word is empty because the stream was not filtered for empty words:
List : (17104,)
List : (2333,=)
List : (1656,:)
List : (1603,;)
List : (1557,DEBUG)
List : (564,True)
List : (495,False)
List : (411,None)
List : (356,at)
List : (335,object)
This is interesting if you want to stream data using Apache Spark Streaming based on TCP/IP from a host and port. However, what about more exotic methods? What if you wish to stream data from a messaging system or via memory-based channels? What if you want to use some of the big data tools available today such as Flume and Kafka? The next sections will examine these options, but, first, we will demonstrate how streams can be based on files.
File streams
We have modified the Scala-based code example in the last section to monitor an HDFS-based directory by calling the Spark Streaming Context method called textFileStream. We will not display all of the code, given this small change. The application class is now called stream3, which takes a single parameter--the HDFS directory. The directory path could be on another storage system as well (all the code samples will be available with this book):
val rawDstream = ssc.textFileStream(directory)
The stream processing is the same as before. The stream is split into words and the top-ten word list is printed. The only difference this time is that the data must be put in the HDFS directory while the application is running. This is achieved ...
Flume
Flume is an Apache open source project and product, which is designed to move large amounts of data at a big data scale. It is highly scalable, distributed, and reliable, working on the basis of data source, data sink, and data channels, as shown in the following diagram taken from http://flume.apache.org/:
Flume uses agents to process data streams. As can be seen in the previous figure, an agent has a data source, data processing channel, and data sink. A clearer way to describe this flow is via the figure we just saw. The channel acts as a queue for the sourced data and the sink passes the data to the next link in the chain.
Flume agents can form Flume architectures; the output of one agent's sink can be the input to a second agent. Apache Spark allows two approaches to use Apache Flume. The first is an Avro push-based in-memory approach, whereas the second one, still based on Avro, is a pull-based system using a custom Spark sink library. We are using Flume version 1.5 for this example:
[root@hc2nn ~]# flume-ng version
Flume 1.5.0-cdh5.3.3
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: b88ce1fd016bc873d817343779dfff6aeea07706
Compiled by jenkins on Wed Apr 8 14:57:43 PDT 2015
From source with checksum 389d91c718e03341a2367bf4ef12428e
The Flume-based Spark example that we will initially implement here is the Flume-based push approach, where Spark acts as a receiver and Flume pushes the data to Spark. The following figure represents the structure that we will implement on a single node:
The message data will be sent to port 10777 on a host called hc2r1m1 using the Linux netcat (nc) command. This will act as a source (source1) for the Flume agent (agent1), which will have an in-memory channel called channel1. The sink used by agent1 will be Apache Avro-based, again on a host called hc2r1m1, but this time, the port number will be 11777. The Apache Spark Flume application stream4 (which we will describe shortly) will listen for Flume stream data on this port.
We start the streaming process by executing the nc command against the 10777 port. Now, when we type text in this window, it will be used as a Flume source and the data will be sent to the Spark application:
[hadoop@hc2nn ~]$ nc hc2r1m1.semtech-solutions.co.nz 10777
In order to run the Flume agent, agent1, we have created a Flume configuration file called agent1.flume.cfg, which describes the agent's source, channel, and sink. The contents of the file are as follows. The first section defines the agent1 source, channel, and sink names.
agent1.sources = source1
agent1.channels = channel1
agent1.sinks = sink1
The next section defines source1 to be netcat-based, running on the host called hc2r1m1 and the 10777 port:
agent1.sources.source1.channels=channel1
agent1.sources.source1.type=netcat
agent1.sources.source1.bind=hc2r1m1.semtech-solutions.co.nz
agent1.sources.source1.port=10777
The agent1 channel, channel1, is defined as a memory-based channel with a maximum event capacity of 1000 events:
agent1.channels.channel1.type=memory
agent1.channels.channel1.capacity=1000
Finally, the agent1 sink, sink1, is defined as an Apache Avro sink on the host called hc2r1m1 and the 11777 port:
agent1.sinks.sink1.type=avro
agent1.sinks.sink1.hostname=hc2r1m1.semtech-solutions.co.nz
agent1.sinks.sink1.port=11777
agent1.sinks.sink1.channel=channel1
We have created a Bash script called flume.bash to run the Flume agent, agent1. It looks as follows:
[hadoop@hc2r1m1 stream]$ more flume.bash
#!/bin/bash
run the bash agent
flume-ng agent \
--conf /etc/flume-ng/conf \
--conf-file ./agent1.flume.cfg \
-Dflume.root.logger=DEBUG,INFO,console \
-name agent1
The script calls the Flume executable flume-ng, passing the agent1 configuration file. The call specifies the agent named agent1. It also specifies the Flume configuration directory to be /etc/flume-ng/conf/, the default value. Initially, we will use a netcat Flume source with a Scala-based example to show how data can be sent to an Apache Spark application. Then, we will show how an RSS-based data feed can be processed in a similar way. So initially, the Scala code that will receive the netcat data looks like this. The application class name is defined. The necessary classes for Spark and Flume are imported. Finally, the main method is defined:
import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.flume._
object stream4 {
def main(args: Array[String]) {
//The host and port name arguments for the data stream are checked and extracted:
if (args.length < 2) {
System.err.println("Usage: stream4 <host> <port>")
System.exit(1)
}
val hostname = args(0).trim
val portnum = args(1).toInt
println("hostname : " + hostname)
println("portnum : " + portnum)
The Spark and Streaming contexts are created. Then, the Flume-based data stream is created using the stream context host and port number. The Flume-based class, FlumeUtils, has been used to do this by calling its createStream method:
val appName = "Stream example 4"
val conf = new SparkConf()
conf.setAppName(appName)
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(10))
val rawDstream = FlumeUtils.createStream(ssc,hostname,portnum)
Finally, a stream event count is printed and (for debugging purposes while we test the stream) the stream content is dumped. After this, the stream context is started and configured to run until terminated via the application:
rawDstream.count()
.map(cnt => ">>>> Received events : " + cnt)
.print()
rawDstream.map(e => new String(e.event.getBody.array()))
ssc.start()
ssc.awaitTermination()
} // end main
} // end stream4
Having compiled it, we will run this application using spark-submit. In some of the other chapters of this book, we will use a Bash-based script called run_stream.bash to execute the job. The script looks as follows:
[hadoop@hc2r1m1 stream]$ more run_stream.bash
#!/bin/bash
SPARK_HOME=/usr/local/spark
SPARK_BIN=$SPARK_HOME/bin
SPARK_SBIN=$SPARK_HOME/sbin
JAR_PATH=/home/hadoop/spark/stream/target/scala-2.10/streaming_2.10-1.0.jar
CLASS_VAL=$1
CLASS_PARAMS="${*:2}"
STREAM_JAR=/usr/local/spark/lib/spark-examples-1.3.1-hadoop2.3.0.jar
cd $SPARK_BIN
./spark-submit \
--class $CLASS_VAL \
--master spark://hc2nn.semtech-solutions.co.nz:7077 \
--executor-memory 100M \
--total-executor-cores 50 \
--jars $STREAM_JAR \
$JAR_PATH \
$CLASS_PARAMS
So, this script sets some Spark-based variables and a JAR library path for this job. It takes the Spark class to run as its first parameter. It passes all the other variables as parameters to the Spark application class job. So, the execution of the application looks as follows:
[hadoop@hc2r1m1 stream]$./run_stream.bash stream4 hc2r1m1 11777
This means that the Spark application is ready and is running as a Flume sink on port 11777. The Flume input is ready, running as a netcat task on port 10777. Now, the Flume agent, agent1, can be started using the Flume script called flume.bash to send the netcat source-based data to the Apache Spark Flume-based sink:
[hadoop@hc2r1m1 stream]$./flume.bash
Now, when the text is passed to the netcat session, it should flow through Flume and be processed as a stream by Spark. Let's try it:
[hadoop@hc2nn ~]$ nc hc2r1m1.semtech-solutions.co.nz 10777
I hope that Apache Spark will print this
OK
I hope that Apache Spark will print this
OK
I hope that Apache Spark will print this
OK
Three simple pieces of text have been added to the netcat session and acknowledged with an OK so that they can be passed to Flume. The debug output in the Flume session shows that the events (one per line) have been received and processed:
2015-07-06 18:13:18,699 (netcat-handler-0) [DEBUG - org.apache.flume.source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:318)] Chars read = 41
2015-07-06 18:13:18,700 (netcat-handler-0) [DEBUG - org.apache.flume.source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:322)] Events processed = 1
2015-07-06 18:13:18,990 (netcat-handler-0) [DEBUG - org.apache.flume.source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:318)] Chars read = 41
2015-07-06 18:13:18,991 (netcat-handler-0) [DEBUG - org.apache.flume.source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:322)] Events processed = 1
2015-07-06 18:13:19,270 (netcat-handler-0) [DEBUG - org.apache.flume.source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:318)] Chars read = 41
2015-07-06 18:13:19,271 (netcat-handler-0) [DEBUG - org.apache.flume.source.NetcatSource$NetcatSocketHandler.run(NetcatSource.java:322)] Events processed = 1
Finally, in the Spark stream4 application session, three events have been received and processed; in this case, they have been dumped to the session to prove the point that the data arrived. Of course, this is not what you would normally do, but we wanted to prove data transit through this configuration:

Time: 1436163210000 ms

>>> Received events : 3

Time: 1436163210000 ms

I hope that Apache Spark will print this
I hope that Apache Spark will print this
I hope that Apache Spark will print this
This is interesting, but it is not really a production-worthy example of Spark Flume data processing. So, in order to demonstrate a potentially real data processing approach, we will change the Flume configuration file source details so that it uses a Perl script, which is executable as follows:
agent1.sources.source1.type=exec
agent1.sources.source.command=./rss.perl
The Perl script, which has been referenced previously, rss.perl, just acts as a source of Reuters science news. It receives the news as XML and converts it into JSON format. It also cleans the data of unwanted noise. First, it imports packages such as LWP and XML::XPath to enable XML processing. Then, it specifies a science-based Reuters news data source and creates a new LWP agent to process the data, similar to the following:
#!/usr/bin/perl
use strict;
use LWP::UserAgent;
use XML::XPath;
my $urlsource="http://feeds.reuters.com/reuters/scienceNews" ;
my $agent = LWP::UserAgent->new;
#Then an infinite while loop is opened, and an HTTP GET request is carried out against the URL. The request is configured, and the agent makes the request via a call to the request method:
while()
{
my $req = HTTP::Request->new(GET => ($urlsource));
$req->header('content-type' => 'application/json');
$req->header('Accept' => 'application/json');
my $resp = $agent->request($req);
If the request is successful, then the XML data returned is defined as the decoded content of the request. Title information is extracted from the XML via an XPath call using the path called /rss/channel/item/title:
if ($resp->is_success)
{
my $xmlpage = $resp -> decoded_content;
my $xp = XML::XPath->new(xml => $xmlpage);
my $nodeset = $xp->find('/rss/channel/item/title');
my @titles = () ;
my $index = 0 ;
For each node in the extracted title data XML string, data is extracted. It is cleaned of unwanted XML tags and added to a Perl-based array called titles:
foreach my $node ($nodeset->get_nodelist) {
my $xmlstring = XML::XPath::XMLParser::as_string($node) ;
$xmlstring =~ s/<title>//g;
$xmlstring =~ s/<\/title>//g;
$xmlstring =~ s/"//g;
$xmlstring =~ s/,//g;
$titles[$index] = $xmlstring ;
$index = $index + 1 ;
} # foreach find node
The same process is carried out for description-based data in the request response XML. The XPath value used this time is /rss/channel/item/description/. There are many more tags to be cleaned from the description data, so there are many more Perl searches and line replacements that act on this data (s///g):
my $nodeset = $xp->find('/rss/channel/item/description');
my @desc = () ;
$index = 0 ;
foreach my $node ($nodeset->get_nodelist) {
my $xmlstring = XML::XPath::XMLParser::as_string($node) ;
$xmlstring =~ s/<img.+\/img>//g;
$xmlstring =~ s/href=".+"//g;
$xmlstring =~ s/src=".+"//g;
$xmlstring =~ s/src='.+'//g;
$xmlstring =~ s/<br.+\/>//g;
$xmlstring =~ s/<\/div>//g;
$xmlstring =~ s/<\/a>//g;
$xmlstring =~ s/<a >\n//g;
$xmlstring =~ s///g;
$xmlstring =~ s///g;
$xmlstring =~ s/<div.+>//g;
$xmlstring =~ s/<title>//g;
$xmlstring =~ s/<\/title>//g;
$xmlstring =~ s/<description>//g;
$xmlstring =~ s/<\/description>//g;
$xmlstring =~ s/<.+>//g;
$xmlstring =~ s/"//g;
$xmlstring =~ s/,//g;
$xmlstring =~ s/\r|\n//g;
$desc[$index] = $xmlstring ;
$index = $index + 1 ;
} # foreach find node
Finally, the XML-based title and description data is output in the RSS JSON format using a print command. The script then sleeps for 30 seconds and requests more RSS news information to process:
my $newsitems = $index ;
$index = 0 ;
for ($index=0; $index < $newsitems; $index++) {
print "{"category": "science","
. " "title": "" . $titles[$index] . "","
. " "summary": "" . $desc[$index] . """
. "}\n";
} # for rss items
} # success ?
sleep(30) ;
} # while
We have created a second Scala-based stream processing code example called stream5. It is similar to the stream4 example, but it now processes the rss item data from the stream. Next, case class is defined to process the category, title, and summary from the XML RSS information. An HTML location is defined to store the resulting data that comes from the Flume channel:
case class RSSItem(category : String, title : String, summary : String) {
val now: Long = System.currentTimeMillis
val hdfsdir = "hdfs://hc2nn:8020/data/spark/flume/rss/"
The RSS stream data from the Flume-based event is converted to a string. It is then formatted using the case class called RSSItem. If there is event data, it is then written to an HDFS directory using the previous hdfsdir path:
rawDstream.map(record => {
implicit val formats = DefaultFormats
read[RSSItem](new String(record.event.getBody().array()))
}).foreachRDD(rdd => {
if (rdd.count() > 0) {
rdd.map(item => {
implicit val formats = DefaultFormats
write(item)
}).saveAsTextFile(hdfsdir+"file_"+now.toString())
}
})
Running this code sample, it is possible to see that the Perl RSS script is producing data, because the Flume script output indicates that 80 events have been accepted and received:
2015-07-07 14:14:24,017 (agent-shutdown-hook) [DEBUG - org.apache.flume.source.ExecSource.stop(ExecSource.java:219)] Exec source with command:./news_rss_collector.py stopped. Metrics:SOURCE:source1{src.events.accepted=80, src.events.received=80, src.append.accepted=0, src.append-batch.accepted=0, src.open-connection.count=0, src.append-batch.received=0, src.append.received=0}
The Scala Spark application stream5 has processed 80 events in two batches:
>>>> Received events : 73
>>>> Received events : 7
The events have been stored on HDFS under the expected directory, as the Hadoop filesystem ls command shows here:
[hadoop@hc2r1m1 stream]$ hdfs dfs -ls /data/spark/flume/rss/
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2015-07-07 14:09 /data/spark/flume/rss/file_1436234439794
drwxr-xr-x - hadoop supergroup 0 2015-07-07 14:14 /data/spark/flume/rss/file_1436235208370
Also, using the Hadoop filesystem cat command, it is possible to prove that the files on HDFS contain rss feed news-based data, as shown here:
[hadoop@hc2r1m1 stream]$ hdfs dfs -cat /data/spark/flume/rss/file_1436235208370/part-00000 | head -1
{"category":"healthcare","title":"BRIEF-Aetna CEO says has not had specific conversations with DOJ on Humana - CNBC","summary":"* Aetna CEO Says Has Not Had Specific Conversations With Doj About Humana Acquisition - CNBC"}
This Spark stream-based example has used Apache Flume to transmit data from an rss source, through Flume, to HDFS via a Spark consumer. This is a good example, but what if you want to publish data to a group of consumers? In the next section, we will examine Apache Kafka--a publish/subscribe messaging system--and determine how it can be used with Spark.
Kafka
Apache Kafka (http://kafka.apache.org/) is a top-level open source project in Apache. It is a big data publish/subscribe messaging system that is fast and highly scalable. It uses message brokers for data management and ZooKeeper for configuration so that data can be organized into consumer groups and topics.
Data in Kafka is split into partitions. In this example, we will demonstrate a receiverless Spark-based Kafka consumer so that we don't need to worry about configuring Spark data partitions when compared to our Kafka data. In order to demonstrate Kafka-based message production and consumption, we will use the Perl RSS script from the last section as a data source. The data passing into Kafka and to Spark will be Reuters RSS news ...
Summary
We could have provided streaming examples for other systems as well, but there was no room in this chapter. Twitter streaming has been examined by example in the Checkpointing section. This chapter has provided practical examples of data recovery via checkpointing in Spark Streaming. It has also touched on the performance limitations of checkpointing and shown that the checkpointing interval should be set at five to ten times the Spark stream batch interval.
Checkpointing provides a stream-based recovery mechanism in the case of Spark application failure. This chapter has provided some stream-based worked examples for TCP, File, Flume, and Kafka-based Spark stream coding. All the examples here are based on Scala and compiled with sbt. In case you are more familiar with Maven the following tutorial explains how to set up a Maven based Scala project: http://www.scala-lang.org/old/node/345.
Structured Streaming
As you might already have understood from the previous chapters, Apache Spark is currently in transition from RDD-based data processing to a more structured one, backed by DataFrames and Datasets in order to let Catalyst and Tungsten kick in for performance optimizations. This means that the community currently uses a double-tracked approach. While the unstructured APIs are still supported--they haven't even been marked as deprecated yet ,and it is questionable if they ever will--a new set of structured APIs has been introduced for various components with Apache Spark V 2.0, and this is also true for Spark Streaming. Structured Steaming was marked stable in Apache Spark V 2.2. Note that, as of Apache Spark V 2.1 when ...
The concept of continuous applications
Streaming apps tend to grow in complexity. Streaming computations don't run in isolation; they interact with storage systems, batch applications, and machine learning libraries. Therefore, the notion of continuous applications--in contrast to batch processing--emerged, and basically means the composite of batch processing and real-time stream processing with a clear focus of the streaming part being the main driver of the application, and just accessing the data created or processed by batch processes for further augmentation. Continuous applications never stop and continuously produce data as new data arrives.
True unification - same code, same engine
So a continuous application could also be implemented on top of RDDs and DStreams but would require the use of use two different APIs. In Apache Spark Structured Streaming the APIs are unified. This unification is achieved by seeing a structured stream as a relational table without boundaries where new data is continuously appended to the bottom of it. In batch processing on DataFrames using the relational API or SQL, intermediate DataFrames are created. As stream and batch computing are unified on top of the Apache SparkSQL engine, when working with structured streams, intermediate relational tables without boundaries are created.
It is important to note that one can mix (join) static and incremental ...
Windowing
Open source and commercial streaming engines such as IBM Streams, Apache Storm, or Apache Flink are using the concept of windows.
Windows specify the granularity or number of subsequent records, which are taken into account when executing aggregation functions on streams.
How streaming engines use windowing
There exist five different properties in two dimensions, which is how windows can be defined, where each window definition needs to use one property of each dimension.
The first property is the mode in which subsequent windows of a continuous stream of tuples can be created: sliding and tumbling.
The second is that the number of tuples that fall into a window has to be specified: either count-based, time-based or session-based.
Let's take a look at what they mean:
How Apache Spark improves windowing
Apache Spark structured streaming is significantly more flexible in the window-processing model. As streams are virtually treated as continuously appended tables, and every row in such a table has a timestamp, operations on windows can be specified in the query itself and each query can define different windows. In addition, if there is a timestamp present in static data, window operations can also be defined, leading to a very flexible stream-processing model.
In other words, Apache Spark windowing is just a sort of special type of grouping on the timestamp column. This makes it really easy to handle late arriving data as well because Apache Spark can include it in the appropriate window and rerun the computation on that window when a certain data item arrives late. This feature is highly configurable.
Event time versus processing time: In time series analysis and especially in stream computing, each record is assigned to a particular timestamp. One way of creating such a timestamp is the arrival time at the stream-processing engine. Often, this is not what you want. Usually, you want to assign an event time for each record at that particular point in time when it was created, for example, when a measurement on an IoT device took place. This allows coping with latency between creating and processing of an event, for example, when an IoT sensor was offline for a certain amount of time, or network congestion caused a delay of data delivery.
The concept of late data is interesting when using event time instead of processing time to assign a unique timestamp to each tuple. Event time is the timestamp when a particular measurement took place, for example. Apache Spark structured streaming can automatically cope with subsets of data arriving at a later point in time transparently.
Late data: If a record arrives at any streaming engine, it is processed immediately. Here, Apache Spark streaming doesn't differ from other engines. However, Apache Spark has the capability of determining the corresponding windows a certain tuple belongs to at any time. If for whatever reason, a tuple arrives late, all affected windows will be updated and all affected aggregate operations based on these updated windows are rerun. This means that results are allowed to change over time in case late data arrives. This is supported out of the box without the programmer worrying about it. Finally, since Apache Spark V2.1, it is possible to specify the amount of time that the system accepts late data using the withWatermark method.
The watermark is basically the threshold, used to define how old a late arriving data point is allowed to be in order to still be included in the respective window. Again, consider the HTTP server log file working over a minute length window. If, for whatever reason, a data tuple arrives which is more than 4 hours old it might not make sense to include it in the windows if, for example, this application is used to create a time-series forecast model on an hourly basis to provision or de-provision additional HTTP servers to a cluster. A four-hour-old data point just wouldn't make sense to process, even if it could change the decision, as the decision has already been made.
Increased performance with good old friends
As in Apache SparkSQL for batch processing and, as Apache Spark structured streaming is part of Apache SparkSQL, the Planner (Catalyst) creates incremental execution plans as well for mini-batches. This means that the whole streaming model is based on batches. This is the reason why a unified API for streams and batch processing could be achieved. The price we pay is that Apache Spark streaming sometimes has drawbacks when it comes to very low latency requirements (sub-second, in the range of tens of ms). As the name Structured Streaming and the usage of DataFrames and Datasets implies, we are also benefiting from performance improvements due to project Tungsten, which has been introduced in a previous ...
How transparent fault tolerance and exactly-once delivery guarantee is achieved
Apache Spark structured streaming supports full crash fault tolerance and exactly-once delivery guarantee without the user taking care of any specific error handling routines. Isn't this amazing? So how is this achieved?
Full crash fault tolerance and exactly-once delivery guarantee are terms of systems theory. Full crash fault tolerance means that you can basically pull the power plug of the whole data center at any point in time, and no data is lost or left in an inconsistent state. Exactly-once delivery guarantee means, even if the same power plug is pulled, it is guaranteed that each tuple- end-to-end from the data source to the data sink - is delivered - only, and exactly, once. Not zero times and also not more than one time. Of course, those concepts must also hold in case a single node fails or misbehaves (for example- starts throttling).
First of all, states between individual batches and offset ranges (position in a source stream) are kept in-memory but are backed by a Write Ahead Log (WAL) in a fault-tolerant filesystem such as HDFS. A WAL is basically a log file reflecting the overall stream processing state in a pro-active fashion. This means before data is transformed through an operator, it is first persistently stored in the WAL in a way it can be recovered after a crash. So, in other words, during the processing of an individual mini batch, the regions of the worker memory, as well as the position offset of the streaming source, are persisted to disk. In case the system fails and has to recover, it can re-request chunks of data from the source. Of course, this is only possible if the source supports this semantics.
Replayable sources can replay streams from a given offset
End-to-end exactly-once delivery guarantee requires the streaming source to support some sort of stream replay at a requested position. This is true for file sources and Apache Kafka, for example, as well as the IBM Watson Internet of Things platform, where the following example in this chapter will be based on.
Idempotent sinks prevent data duplication
Another key to end-to-end exactly-once delivery guarantee is idempotent sinks. This basically means that sinks are aware of which particular write operation has succeeded in the past. This means that such a smart sink can re-request data in case of a failure and also drop data in case the same data has been sent multiple times.
State versioning guarantees consistent results after reruns
What about the state? Imagine that a machine learning algorithm maintains a count variable on all the workers. If you replay the exact same data twice, you will end up counting the data multiple times. Therefore, the query planner also maintains a versioned key-value map within the workers, which are persisting their state in turn to HDFS--which is by design fault tolerant.
So, in case of a failure, if data has to be replaced, the planner makes sure that the correct version of the key-value map is used by the workers.
Example - connection to a MQTT message broker
So, let's start with a sample use case. Let's connect to an Internet of Things (IoT) sensor data stream. As we haven't covered machine learning so far, we don't analyze the data, we just showcase the concept.
We are using the IBM Watson IoT platform as a streaming source. At its core, the Watson IoT platform is backed by an MQTT (Message Queue Telemetry Transport) message broker. MQTT is a lightweight telemetry protocol invented by IBM in 1999 and became-- an OASIS (Organization for the Advancement of Structured Information Standards, a global nonprofit consortium that works on the development, convergence, and adoption of standards for security, Internet of Things, energy, content technologies, emergency management, and other areas) standard in 2013--the de facto standard for IoT data integration.
Messaging between applications can be backed by a message queue which is a middleware system supporting asynchronous point to point channels in various delivery modes like first-in-first-out (FIFO), last-in-first-out (LIFO) or Priority Queue (where each message can be re-ordered by certain criteria).
This is already a very nice feature, but still, couples applications in a certain way because, once a message is read, it is made unavailable to others.
This way N to N communication is hard (but not impossible) to achieve. In a publish/subscribe model applications are completely de-coupled. There doesn't exist any queues anymore but the notion of topics is introduced. Data providers publish messages on specific topics and data consumers subscribe to those topics. This way N to N communication is very straightforward to achieve since it is reflected by the underlying message delivery model. Such a middleware is called a Message Broker in contrast to a Message Queue.
As cloud services tend to change constantly, and cloud, in general, is introduced later in this book, the following tutorial explains how to set up the test data generator in the cloud and connect to the remote MQTT message broker. In this example, we will use the IBM Watson IoT Platform, which is an MQTT message broker available in the cloud. Alternatively one can install an open source message broker like MOSQUITTO which also provides a publicly available test installation on the following URL: http://test.mosquitto.org/.
In order to replicate the example, the following steps (1) and (2) are necessary as described in the following tutorial: https://www.ibm.com/developerworks/library/iot-cognitive-iot-app-machine-learning/index.html. Please make sure to note down http_host, org , apiKey, and apiToken during execution of the tutorial. Those are needed later in order to subscribe to data using Apache Spark Structured Streaming.
As the IBM Watson IoT platform uses the open MQTT standard, no special IBM component is necessary to connect to the platform. Instead, we are using MQTT and Apache Bahir as a connector between MQTT and Apache Spark structured streaming.
The goal of the Apache Bahir project is to provide a set of source and sink connectors for various data processing engines including Apache Spark and Apache Flink since they are lacking those connectors. In this case, we will use the Apache Bahir MQTT data source for MQTT.
In order to use Apache Bahir, we need to add two dependencies to our local maven repository. A complete pom.xml file is provided in the download section of this chapter. Let's have a look at the dependency section of pom.xml:
We are basically getting the MQTT Apache structured streaming adapter of Apache Bahir and a dependent package for low-level MQTT processing. A simple mvn dependency:resolve command in the directory of the pom.xml file pulls the required dependencies into our local maven repository, where they can be accessed by the Apache Spark driver and transferred to the Apache Spark workers automatically.
Another way of resolving the dependencies is when using the following command in order to start a spark-shell (spark-submit works the same way); the necessary dependencies are automatically distributed to the workers:
Now we need the MQTT credentials that we've obtained earlier. Let's set the values here:
val mqtt_host = "pcoyha.messaging.internetofthings.ibmcloud.com"
val org = "pcoyha"
val apiKey = "a-pcoyha-oaigc1k8ub"
val apiToken = "&wuypVX2yNgVLAcLr8"
var randomSessionId = scala.util.Random.nextInt(10000)
Now we can start creating a stream connecting to an MQTT message broker. We are telling Apache Spark to use the Apache Bahir MQTT streaming source:
val df = spark.readStream.format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")
We need to specify credentials such as username, password, and clientId in order to pull data from the MQTT message broker; the link to the tutorial mentioned earlier explains how to obtain these:
.option("username",apiKey)
.option("password",apiToken)
.option("clientId","a:"+org+":"+apiKey)
As we are using a publish/subscribe messaging model, we have to provide the topic that we are subscribing to--this topic is used by the test data generator that you've deployed to the cloud before:
.option("topic", "iot-2/type/WashingMachine/id/Washer01/evt/voltage/fmt/json")
Once everything is set on the configuration side, we have to provide the endpoint host and port in order to create the stream:
.load("tcp://"+mqtt_host+":1883")
Interestingly, as can be seen in the following screenshot, this leads to the creation of a DataFrame:
Note that the schema is fixed to [String, Timestamp] and cannot be changed during stream creation--this is a limitation of the Apache Bahir library. However, using the rich DataFrame API, you can parse the value, a JSON string for example, and create new columns.
As discussed before, this is one of the powerful features of Apache Spark structured streaming, as the very same DataFrame (and Dataset) API now can be used to process historic and real-time data. So let's take a look at the contents of this stream by writing it to the console:
val query = df.writeStream.
outputMode("append").
format("console").
start()
As output mode, we choose append to enforce incremental display and avoid having the complete contents of the historic stream being written to the console again and again. As format, we specify console as we just want to debug what's happening on the stream:
Finally, the start method initiates query processing, as can be seen here:
Controlling continuous applications
Once a continuous application (even a simple one, not taking historic data into account) is started and running, it has to be controlled somehow as the call to the start method immediately starts processing, but also returns without blocking. In case you want your program to block at this stage until the application has finished, one can use the awaitTermination method as follows:
query.awaitTermination()
This is particularly important when precompiling code and using the spark-submit command. When using spark-shell, the application is not terminated anyway.
More on stream life cycle management
Streaming tends to be used in the creation of continuous applications. This means that the process is running in the background and, in contrast to batch processing, doesn't have a clear stop time; therefore, DataFrames and Datasets backed by a streaming source, support various methods for stream life cycle management, which are explained as follows:
Sinks in Apache Spark streaming are smart in the sense that they support fault tolerance and end-to-end exactly-once delivery guarantee as mentioned before. In addition, Apache Spark needs them to support different output methods. Currently, the following three output methods, append, update, and complete, significantly change the underlying semantics. The following paragraph contains more details about the different output methods.
Different output modes on sinks: Sinks can be specified to handle output in different ways. This is known as outputMode. The naive choice would use an incremental approach as we are processing incremental data with streaming anyway. This mode is referred to as append. However, there exist requirements where data already processed by the sink has to be changed. One example is the late arrival problem of missing data in a certain time window, which can lead to changing results once the computation for that particular time window is recomputed. This mode is called complete.
Since Version 2.1 of Apache Spark, the update mode was introduced that behaves similarly to the complete mode but only changes rows that have been altered, therefore saving processing resources and improving speed. Some types of modes do not support all query types. As this is constantly changing, it is best to refer to the latest documentation at http://spark.apache.org/docs/latest/streaming-programming-guide.html.
Summary
So why do we have two different streaming engines within the same data processing framework? We hope that after reading this chapter, you'll agree that the main pain points of the classical DStream based engine have been addressed. Formerly, event time-based processing was not possible and only the arrival time of data was considered. Then, late data has simply been processed with the wrong timestamp as only processing time could be used. Also, batch and stream processing required using two different APIs: RDDs and DStreams. Although the API is similar, it is not exactly the same; therefore, the rewriting of code when going back and forth between the two paradigms was necessary. Finally, an end-to-end delivery guarantee was hard to ...
Apache Spark MLlib
MLlib is the original machine learning library that is provided with Apache Spark, the in-memory cluster-based open source data processing system. This library is still based on the RDD API. In this chapter, we will examine the functionality provided with the MLlib library in terms of areas such as regression, classification, and neural network processing. We will examine the theory behind each algorithm before providing working examples that tackle real problems. The example code and documentation on the web can be sparse and confusing.
We will take a step-by-step approach in describing how the following algorithms can be used and what they are capable of doing:
Architecture
Remember that, although Spark is used for the speed of its in-memory distributed processing, it doesn't provide storage. You can use the Host (local) filesystem to read and write your data, but if your data volumes are big enough to be described as big data, then it makes sense to use a cloud-based distributed storage system such as OpenStack Swift Object Storage, which can be found in many cloud environments and can also be installed in private data centers.
In case very high I/O is needed, HDFS would also be an option. More information on HDFS can be found here: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.
The development environment
The Scala language will be used for the coding samples in this book. This is because, as a scripting language, it produces less code than Java. It can also be used from the Spark shell as well as compiled with Apache Spark applications. We will be using the sbt tool to compile the Scala code, which we have installed into Hortonworks HDP 2.6 Sandbox as follows:
[hadoop@hc2nn ~]# sudo su -
[root@hc2nn ~]# cd /tmp
[root@hc2nn ~]#wget http://repo.scala-sbt.org/scalasbt/sbt-native-packages/org/scala-sbt/sbt/0.13.1/sbt.rpm
[root@hc2nn ~]# rpm -ivh sbt.rpm
The following URL provides instructions to install sbt on other operating systems including Windows, Linux, and macOS: http://www.scala-sbt.org/0.13/docs/Setup.html.
We used a generic Linux account called Hadoop. As the previous commands show, we need to install sbt as the root account, which we have accessed via sudo su -l (switch user). We then downloaded the sbt.rpm file to the /tmp directory from the web-based server called repo.scala-sbt.org using wget. Finally, we installed the rpm file using the rpm command with the options i for install, v for verify, and h to print the hash marks while the package is being installed.
We developed all of the Scala code for Apache Spark in this chapter on the Linux server, using the Linux Hadoop account. We placed each set of code within a subdirectory under /home/hadoop/spark. For instance, the following sbt structure diagram shows that the MLlib Naive Bayes code is stored in a subdirectory called nbayes under the Spark directory. What the diagram also shows is that the Scala code is developed within a subdirectory structure named src/main/scala under the nbayes directory. The files called bayes1.scala and convert.scala contain the Naive Bayes code that will be used in the next section:
The bayes.sbt file is a configuration file used by the sbt tool, which describes how to compile the Scala files within the Scala directory. (Note that if you were developing in Java, you would use a path of the nbayes/src/main/java form .) The contents of the bayes.sbt file are shown next. The pwd and cat Linux commands remind you of the file location and also remind you to dump the file contents.
The name, version, and scalaVersion options set the details of the project and the version of Scala to be used. The libraryDependencies options define where the Hadoop and Spark libraries can be located.
[hadoop@hc2nn nbayes]$ pwd
/home/hadoop/spark/nbayes
[hadoop@hc2nn nbayes]$ cat bayes.sbt
name := "Naive Bayes"
version := "1.0"
scalaVersion := "2.11.2"
libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.8.1"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.6.0"
libraryDependencies += "org.apache.spark" %% "spark-mllib" % "2.1.1"
The Scala nbayes project code can be compiled from the nbayes subdirectory using this command:
[hadoop@hc2nn nbayes]$ sbt compile
The sbt compile command is used to compile the code into classes. The classes are then placed in the nbayes/target/scala-2.10/classes directory. The compiled classes can be packaged in a JAR file with this command:
[hadoop@hc2nn nbayes]$ sbt package
The sbt package command will create a JAR file under the nbayes/target/scala-2.10 directory. As we can see in the example in the sbt structure diagram, the JAR file named naive-bayes_2.10-1.0.jar has been created after a successful compile and package. This JAR file, and the classes that it contains, can then be used in a spark-submit command. This will be described later as the functionality in the Apache Spark MLlib module is explored.
Classification with Naive Bayes
This section will provide a working example of the Apache Spark MLlib Naive Bayes algorithm. It will describe the theory behind the algorithm and will provide a step-by-step example in Scala to show how the algorithm may be used.
Theory on Classification
In order to use the Naive Bayes algorithm to classify a dataset, the data must be linearly divisible; that is, the classes within the data must be linearly divisible by class boundaries. The following figure visually explains this with three datasets and two class boundaries shown via the dotted lines:
Naive Bayes assumes that the features (or dimensions) within a dataset are independent of one another; that is, they have no effect on each other. The following example considers the classification of e-mails as spam. If you have 100 e-mails, then perform the following:
60% of emails are spam
80% of spam emails contain the word buy
20% of spam emails don't contain the word buy
40% of emails are not spam
10% of non spam emails contain the word buy
90% of non spam emails don't contain the word buy
Let's convert this example into conditional probabilities so that a Naive Bayes classifier can pick it up:
P(Spam) = the probability that an email is spam = 0.6
P(Not Spam) = the probability that an email is not spam = 0.4
P(Buy|Spam) = the probability that an email that is spam has the word buy = 0.8
P(Buy|Not Spam) = the probability that an email that is not spam has the word buy = 0.1
What is the probability that an e-mail that contains the word buy is spam? Well, this would be written as P (Spam|Buy). Naive Bayes says that it is described by the equation in the following figure:
So, using the previous percentage figures, we get the following:
P(Spam|Buy) = (0.8 * 0.6) / ((0.8 * 0.6) + (0.1 * 0.4)) = (.48) / (.48 + .04)
= .48 / .52 = .923
This means that it is 92 percent more likely that an e-mail that contains the word buy is spam. That was a look at the theory; now it's time to try a real-world example using the Apache Spark MLlib Naive Bayes algorithm.
Naive Bayes in practice
The first step is to choose some data that will be used for classification. We have chosen some data from the UK Government data website at http://data.gov.uk/dataset/road-accidents-safety-data.
The dataset is called Road Safety - Digital Breath Test Data 2013, which downloads a zipped text file called DigitalBreathTestData2013.txt. This file contains around half a million rows. The data looks as follows:
Reason,Month,Year,WeekType,TimeBand,BreathAlcohol,AgeBand,GenderSuspicion of Alcohol,Jan,2013,Weekday,12am-4am,75,30-39,MaleMoving Traffic Violation,Jan,2013,Weekday,12am-4am,0,20-24,MaleRoad Traffic Collision,Jan,2013,Weekend,12pm-4pm,0,20-24,Female
In order to classify the data, we have modified both the column ...
Clustering with K-Means
This example will use the same test data from the previous example, but we will attempt to find clusters in the data using the MLlib K-Means algorithm.
Theory on Clustering
The K-Means algorithm iteratively attempts to determine clusters within the test data by minimizing the distance between the mean value of cluster center vectors, and the new candidate cluster member vectors. The following equation assumes dataset members that range from X1 to Xn; it also assumes K cluster sets that range from S1 to Sk, where K <= n.
K-Means in practice
The K-Means MLlib functionality uses the LabeledPoint structure to process its data and so it needs numeric input data. As the same data from the last section is being reused, we will not explain the data conversion again. The only change that has been made in data terms in this section, is that processing in HDFS will now take place under the /data/spark/kmeans/ directory. Additionally, the conversion Scala script for the K-Means example produces a record that is all comma-separated.
The development and processing for the K-Means example has taken place under the /home/hadoop/spark/kmeans directory to separate the work from other development. The sbt configuration file is now called kmeans.sbt and is identical to the last example, except for the project name:
name := "K-Means"
The code for this section can be found in the software package under chapter7\K-Means. So, looking at the code for kmeans1.scala, which is stored under kmeans/src/main/scala, some similar actions occur. The import statements refer to the Spark context and configuration. This time, however, the K-Means functionality is being imported from MLlib. Additionally, the application class name has been changed for this example to kmeans1:
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.clustering.{KMeans,KMeansModel}
object kmeans1 extends App {
The same actions are being taken as in the last example to define the data file--to define the Spark configuration and create a Spark context:
val hdfsServer = "hdfs://localhost:8020"
val hdfsPath = "/data/spark/kmeans/"
val dataFile = hdfsServer + hdfsPath + "DigitalBreathTestData2013-MALE2a.csv"
val sparkMaster = "spark://localhost:7077"
val appName = "K-Means 1"
val conf = new SparkConf()
conf.setMaster(sparkMaster)
conf.setAppName(appName)
val sparkCxt = new SparkContext(conf)
Next, the CSV data is loaded from the data file and split by comma characters into the VectorData variable:
val csvData = sparkCxt.textFile(dataFile)
val VectorData = csvData.map {
csvLine =>
Vectors.dense(csvLine.split(',').map(_.toDouble))
}
A KMeans object is initialized, and the parameters are set to define the number of clusters and the maximum number of iterations to determine them:
val kMeans = new KMeans
val numClusters = 3
val maxIterations = 50
Some default values are defined for the initialization mode, the number of runs, and Epsilon, which we needed for the K-Means call but did not vary for the processing. Finally, these parameters were set against the KMeans object:
val initializationMode = KMeans.K_MEANS_PARALLEL
val numRuns = 1
val numEpsilon = 1e-4
kMeans.setK(numClusters)
kMeans.setMaxIterations(maxIterations)
kMeans.setInitializationMode(initializationMode)
kMeans.setRuns(numRuns)
kMeans.setEpsilon(numEpsilon)
We cached the training vector data to improve the performance and trained the KMeans object using the vector data to create a trained K-Means model:
VectorData.cache
val kMeansModel = kMeans.run(VectorData)
We have computed the K-Means cost and number of input data rows, and have to output the results via println statements. The cost value indicates how tightly the clusters are packed and how separate the clusters are:
val kMeansCost = kMeansModel.computeCost(VectorData)
println("Input data rows : " + VectorData.count())
println("K-Means Cost : " + kMeansCost)
Next, we have used the K-Means Model to print the cluster centers as vectors for each of the three clusters that were computed:
kMeansModel.clusterCenters.foreach{ println }
Finally, we use the K-Means model to predict function to create a list of cluster membership predictions. We then count these predictions by value to give a count of the data points in each cluster. This shows which clusters are bigger and whether there really are three clusters:
val clusterRddInt = kMeansModel.predict(VectorData)
val clusterCount = clusterRddInt.countByValue
clusterCount.toList.foreach{ println }
} // end object kmeans1
So, in order to run this application, it must be compiled and packaged from the kmeans subdirectory as the Linux pwd command shows here:
[hadoop@hc2nn kmeans]$ pwd
/home/hadoop/spark/kmeans
[hadoop@hc2nn kmeans]$ sbt package
Loading /usr/share/sbt/bin/sbt-launch-lib.bash
[info] Set current project to K-Means (in build file:/home/hadoop/spark/kmeans/)
[info] Compiling 2 Scala sources to /home/hadoop/spark/kmeans/target/scala-2.10/classes...
[info] Packaging /home/hadoop/spark/kmeans/target/scala-2.10/k-means_2.10-1.0.jar ...
[info] Done packaging.
[success] Total time: 20 s, completed Feb 19, 2015 5:02:07 PM
Once this packaging is successful, we check HDFS to ensure that the test data is ready. As in the last example, we convert our data into the numeric form using the convert.scala file, provided in the software package. We will process the DigitalBreathTestData2013-MALE2a.csv data file in the HDFS directory, /data/spark/kmeans, as follows:
[hadoop@hc2nn nbayes]$ hdfs dfs -ls /data/spark/kmeans
Found 3 items
-rw-r--r-- 3 hadoop supergroup 24645166 2015-02-05 21:11 /data/spark/kmeans/DigitalBreathTestData2013-MALE2.csv
-rw-r--r-- 3 hadoop supergroup 5694226 2015-02-05 21:48 /data/spark/kmeans/DigitalBreathTestData2013-MALE2a.csv
drwxr-xr-x - hadoop supergroup 0 2015-02-05 21:46 /data/spark/kmeans/result
The spark-submit tool is used to run the K-Means application. The only change in this command is that the class is now kmeans1:
spark-submit \
--class kmeans1 \
--master spark://localhost:7077 \
--executor-memory 700M \
--total-executor-cores 100 \
/home/hadoop/spark/kmeans/target/scala-2.10/k-means_2.10-1.0.jar
The output from the Spark cluster run is shown to be as follows:
Input data rows : 467054
K-Means Cost : 5.40312223450789E7
The previous output shows the input data volume, which looks correct; it also shows the K-Means cost value. The cost is based on the Within Set Sum of Squared Errors (WSSSE) which basically gives a measure of how well the found cluster centroids are matching the distribution of the data points. The better they are matching, the lower the cost. The following link https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/ explains WSSSE and how to find a good value for k in more detail.
Next, come the three vectors, which describe the data cluster centers with the correct number of dimensions. Remember that these cluster centroid vectors will have the same number of columns as the original vector data:
[0.24698249738061878,1.3015883142472253,0.005830116872250263,2.9173747788555207,1.156645130895448,3.4400290524342454]
[0.3321793984152627,1.784137241326256,0.007615970459266097,2.5831987075928917,119.58366028156011,3.8379106085083468]
[0.25247226760684494,1.702510963969387,0.006384899819416975,2.231404248000688,52.202897927594805,3.551509158139135]
Finally, cluster membership is given for clusters 1 to 3 with cluster 1 (index 0) having the largest membership at 407539 member vectors:
(0,407539)
(1,12999)
(2,46516)
So, these two examples show how data can be classified and clustered using Naive Bayes and K-Means. What if I want to classify images or more complex patterns, and use a black box approach to classification? The next section examines Spark-based classification using ANNs, or artificial neural networks.
Artificial neural networks
The following figure shows a simple biological neuron to the left. The neuron has dendrites that receive signals from other neurons. A cell body controls activation, and an axon carries an electrical impulse to the dendrites of other neurons. The artificial neuron to the right has a series of weighted inputs: a summing function that groups the inputs and a firing mechanism (F(Net)), which decides whether the inputs have reached a threshold, and, if so, the neuron will fire:
Neural networks are tolerant of noisy images and distortion, and so are useful when a black box classification method is needed for potentially ...
ANN in practice
In order to begin ANN training, test data is needed. Given that this type of classification method is supposed to be good at classifying distorted or noisy images, we decided to attempt to classify the images here:
They are hand-crafted text files that contain shaped blocks, created from the characters 1 and 0. When they are stored on HDFS, the carriage return characters are removed so that the image is presented as a single line vector. So, the ANN will be classifying a series of shape images and then will be tested against the same images with noise added to determine whether the classification will still work. There are six training images, and they will each be given an arbitrary training label from 0.1 to 0.6. So, if the ANN is presented with a closed square, it should return a label of 0.1. The following image shows an example of a testing image with noise added.
The noise, created by adding extra zero (0) characters within the image, has been highlighted:
As before, the ANN code is developed using the Linux Hadoop account in a subdirectory called spark/ann. The ann.sbt file exists in the ann directory:
[hadoop@hc2nn ann]$ pwd
/home/hadoop/spark/ann
[hadoop@hc2nn ann]$ ls
ann.sbt project src target
The contents of the ann.sbt file have been changed to use full paths of JAR library files for the Spark dependencies:
name := "A N N"
version := "1.0"
scalaVersion := "2.11.2"
libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.8.1"
libraryDependencies += "org.apache.spark" % "spark-core" % "2.6.0"
libraryDependencies += "org.apache.spark" % "spark-mllib" % "2.1.1"
libraryDependencies += "org.apache.spark" % "akka" % "2.5.3"
As in the previous examples, the actual Scala code to be compiled exists in a subdirectory named src/main/scala. We have created two Scala programs. The first trains using the input data and then tests the ANN model with the same input data. The second tests the trained model with noisy data to test the distorted data classification:
[hadoop@hc2nn scala]$ pwd
/home/hadoop/spark/ann/src/main/scala
[hadoop@hc2nn scala]$ ls
test_ann1.scala test_ann2.scala
We will examine the first Scala file and then we will just show the extra features of the second file, as the two examples are very similar up to the point of training the ANN. The code examples shown here can be found in the software package provided with this book under the path, chapter2\ANN. So, to examine the first Scala example, the import statements are similar to the previous examples. The Spark context, configuration, vectors, and LabeledPoint are being imported. The RDD class for RDD processing is being imported this time, along with the new ANN class, ANNClassifier. Note that the MLlib/classification routines widely use the LabeledPoint structure for input data, which will contain the features and labels that are supposed to be trained against:
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.mllib.classification.ANNClassifier
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg._
import org.apache.spark.rdd.RDD
object testann1 extends App {
The application class in this example has been called testann1. The HDFS files to be processed have been defined in terms of the HDFS server, path, and file name:
val server = "hdfs://localhost:8020"
val path = "/data/spark/ann/"
val data1 = server + path + "close_square.img"
val data2 = server + path + "close_triangle.img"
val data3 = server + path + "lines.img"
val data4 = server + path + "open_square.img"
val data5 = server + path + "open_triangle.img"
val data6 = server + path + "plus.img"
The Spark context has been created with the URL for the Spark instance, which now has a different port number--8077. The application name is ANN 1. This will appear on the Spark web UI when the application is run:
val sparkMaster = "spark://localhost:8077"
val appName = "ANN 1"
val conf = new SparkConf()
conf.setMaster(sparkMaster)
conf.setAppName(appName)
val sparkCxt = new SparkContext(conf)
The HDFS-based input training and test data files are loaded. The values on each line are split by space characters, and the numeric values have been converted into doubles. The variables that contain this data are then stored in an array called inputs. At the same time, an array called outputs is created, containing the labels from 0.1 to 0.6. These values will be used to classify the input patterns:
val rData1 = sparkCxt.textFile(data1).map(_.split(" ").map(_.toDouble)).collect
val rData2 = sparkCxt.textFile(data2).map(_.split(" ").map(_.toDouble)).collect
val rData3 = sparkCxt.textFile(data3).map(_.split(" ").map(_.toDouble)).collect
val rData4 = sparkCxt.textFile(data4).map(_.split(" ").map(_.toDouble)).collect
val rData5 = sparkCxt.textFile(data5).map(_.split(" ").map(_.toDouble)).collect
val rData6 = sparkCxt.textFile(data6).map(_.split(" ").map(_.toDouble)).collect
val inputs = Array[Array[Double]] (
rData1(0), rData2(0), rData3(0), rData4(0), rData5(0), rData6(0))
val outputs = Array[Double](0.1, 0.2, 0.3, 0.4, 0.5, 0.6)
The input and output data, representing the input data features and labels, are then combined and converted into a LabeledPoint structure. Finally, the data is parallelized in order to partition it for optimal parallel processing:
val ioData = inputs.zip(outputs)
val lpData = ioData.map{ case(features,label) =>
LabeledPoint(label, Vectors.dense(features))
}
val rddData = sparkCxt.parallelize(lpData)
Variables are created to define the hidden layer topology of the ANN. In this case, we have chosen to have two hidden layers, each with 100 neurons. The maximum number of iterations is defined as well as a batch size (six patterns) and convergence tolerance. The tolerance refers to how big the training error can get before we can consider training to have worked. Then, an ANN model is created using these configuration parameters and the input data:
val hiddenTopology : Array[Int] = Array(100, 100)
val maxNumIterations = 1000
val convTolerance = 1e-4
val batchSize = 6
val annModel = ANNClassifier.train(rddData,
batchSize,
hiddenTopology,
maxNumIterations,
convTolerance)
In order to test the trained ANN model, the same input training data is used as testing data to obtain prediction labels. First, an input data variable is created called rPredictData. Then, the data is partitioned and, finally, the predictions are obtained using the trained ANN model. For this model to work, it must output the labels, 0.1 to 0.6:
val rPredictData = inputs.map{ case(features) =>
(Vectors.dense(features))
}
val rddPredictData = sparkCxt.parallelize(rPredictData)
val predictions = annModel.predict(rddPredictData)
The label predictions are printed and the script closes with a closing bracket:
predictions.toArray().foreach(value => println("prediction > " + value))
} // end ann1
So, in order to run this code sample, it must first be compiled and packaged. By now, you must be familiar with the sbt command, executed from the ann subdirectory:
[hadoop@hc2nn ann]$ pwd
/home/hadoop/spark/ann
[hadoop@hc2nn ann]$ sbt package
The spark-submit command is then used from within the new spark/spark path using the new Spark-based URL at port 8077 to run the application, testann1:
/home/hadoop/spark/spark/bin/spark-submit \
--class testann1 \
--master spark://localhost:8077 \
--executor-memory 700M \
--total-executor-cores 100 \
/home/hadoop/spark/ann/target/scala-2.10/a-n-n_2.10-1.0.jar
By checking the Apache Spark web URL at http://localhost:19080/, it is now possible to see the application running. The following figure shows the ANN 1 application running as well as the previously completed executions:
By selecting one of the cluster host worker instances, it is possible to see a list of executors that actually carry out cluster processing for that worker:
Finally, by selecting one of the executors, it is possible to see its history and configuration as well as links to the log file and error information. At this level, with the log information provided, debugging is possible. These log files can be checked to process error messages:
The ANN 1 application provides the following output to show that it has reclassified the same input data correctly. The reclassification has been successful as each of the input patterns has been given the same label that it was trained with:
prediction > 0.1
prediction > 0.2
prediction > 0.3
prediction > 0.4
prediction > 0.5
prediction > 0.6
So, this shows that ANN training and test prediction will work with the same data. Now, we will train with the same data, but test with distorted or noisy data, an example of which we already demonstrated. This example can be found in the file called test_ann2.scala in your software package. It is very similar to the first example, so we will just demonstrate the changed code. The application is now called testann2:
object testann2 extends App
An extra set of testing data is created after the ANN model has been created using the training data. This testing data contains noise:
val tData1 = server + path + "close_square_test.img"
val tData2 = server + path + "close_triangle_test.img"
val tData3 = server + path + "lines_test.img"
val tData4 = server + path + "open_square_test.img"
val tData5 = server + path + "open_triangle_test.img"
val tData6 = server + path + "plus_test.img"
This data is processed into input arrays and partitioned for cluster processing:
val rtData1 = sparkCxt.textFile(tData1).map(_.split(" ").map(_.toDouble)).collect
val rtData2 = sparkCxt.textFile(tData2).map(_.split(" ").map(_.toDouble)).collect
val rtData3 = sparkCxt.textFile(tData3).map(_.split(" ").map(_.toDouble)).collect
val rtData4 = sparkCxt.textFile(tData4).map(_.split(" ").map(_.toDouble)).collect
val rtData5 = sparkCxt.textFile(tData5).map(_.split(" ").map(_.toDouble)).collect
val rtData6 = sparkCxt.textFile(tData6).map(_.split(" ").map(_.toDouble)).collect
val tInputs = Array[Array[Double]] (
rtData1(0), rtData2(0), rtData3(0), rtData4(0), rtData5(0), rtData6(0))
val rTestPredictData = tInputs.map{ case(features) => (Vectors.dense(features)) }
val rddTestPredictData = sparkCxt.parallelize(rTestPredictData)
It is then used to generate label predictions in the same way as the first example. If the model classifies the data correctly, then the same label values should be printed from 0.1 to 0.6:
val testPredictions = annModel.predict(rddTestPredictData)
testPredictions.toArray().foreach(value => println("test prediction > " + value))
The code has already been compiled, so it can be run using the spark-submit command:
/home/hadoop/spark/spark/bin/spark-submit \
--class testann2 \
--master spark://localhost:8077 \
--executor-memory 700M \
--total-executor-cores 100 \
/home/hadoop/spark/ann/target/scala-2.10/a-n-n_2.10-1.0.jar
Here is the cluster output from this script, which shows a successful classification using a trained ANN model and some noisy test data. The noisy data has been classified correctly. For instance, if the trained model had become confused, it might have given a value of 0.15 for the noisy close_square_test.img test image in position one, instead of returning 0.1 as it did:
test prediction > 0.1
test prediction > 0.2
test prediction > 0.3
test prediction > 0.4
test prediction > 0.5
test prediction > 0.6
Summary
This chapter has attempted to provide you with an overview of some of the functionality available within the Apache Spark MLlib module. It has also shown the functionality that will soon be available in terms of ANNs or artificial neural networks. You might have been impressed by how well ANNs work. It is not possible to cover all the areas of MLlib due to the time and space allowed for this chapter. In addition, we now want to concentrate more on the SparkML library in the next chapter, which speeds up machine learning by supporting DataFrames and the underlying Catalyst and Tungsten optimizations.
We saw how to develop Scala-based examples for Naive Bayes classification, K-Means clustering, and ANNs. You learned how to prepare test ...
Apache SparkML
So now that you've learned a lot about MLlib, why another ML API? First of all, it is a common task in data science to work with multiple frameworks and ML libraries as there are always advantages and disadvantages; mostly, it is a trade-off between performance and functionality. R, for instance, is the king when it comes to functionality--there exist more than 6000 R add-on packages. However, R is also one of the slowest execution environments for data science. SparkML, on the other hand, currently has relatively limited functionality but is one of the fastest libraries. Why is this so? This brings us to the second reason why SparkML exists.
The duality between RDD on the one hand and DataFrames and Datasets on the other is like a red thread in this book and doesn't stop influencing the machine learning chapters. As MLlib is designed to work on top of RDDs, SparkML works on top of DataFrames and Datasets, therefore making use of all the new performance benefits that Catalyst and Tungsten bring.
We will cover the following topics in this chapter:
What does the new API look like?
When it comes to machine learning on Apache Spark, we are used to transforming data into an appropriate format and data types before we actually feed them to our algorithms. Machine learning practitioners around the globe discovered that the preprocessing tasks on a machine learning project usually follow the same pattern:
Therefore, the new ApacheSparkML API supports this process out of the box. It is called pipelines and is inspired by scikit-learn http://scikit-learn.org, a very popular machine learning library for the Python programming language. The central data structure is a DataFrame and all operations run on top of it.
The concept of pipelines
ApacheSparkML pipelines have the following components:
Transformers
Let's start with something simple. One of the most common tasks in machine learning data preparation is string indexing and one-hot encoding of categorical values. Let's see how this can be done.
String indexer
Let's assume that we have a DataFrame df containing a column called color of categorical labels--red, green, and blue. We want to encode them as integer or float values. This is where org.apache.spark.ml.feature.StringIndexer kicks in. It automatically determines the cardinality of the category set and assigns each one a distinct value. So in our example, a list of categories such as red, red, green, red, blue, green should be transformed into 1, 1, 2, 1, 3, 2:
import org.apache.spark.ml.feature.StringIndexer
var indexer = new StringIndexer()
.setInputCol("colors")
.setOutputCol("colorsIndexed")
var indexed = indexer.fit(df).transform(df)
The result of this transformation is a DataFrame called indexed that, in addition to the colors column of the String type, now contains a column called colorsIndexed of type double.
OneHotEncoder
We are only halfway through. Although machine learning algorithms are capable of making use of the colorsIndexed column, they perform better if we one-hot encode it. This actually means that, instead of having a colorsIndexed column containing label indexes between one and three, it is better if we have three columns--one for each color--with the constraint that every row is allowed to set only one of these columns to one, otherwise zero. Let's do it:
var encoder = new OneHotEncoder() .setInputCol("colorIndexed") .setOutputCol("colorVec")var encoded = encoder.transform(indexed)
Intuitively, we would expect that we get three additional columns in the encoded DataFrame, for example, colorIndexedRed, colorIndexedGreen, and colorIndexedBlue ...
VectorAssembler
Before we start with the actual machine learning algorithm, we need to apply one final transformation. We have to create one additional feature column containing all the information of the columns that we want the machine learning algorithm to consider. This is done by org.apache.spark.ml.feature.VectorAssembler as follows:
import org.apache.spark.ml.feature.VectorAssembler
vectorAssembler = new VectorAssembler()
.setInputCols(Array("colorVec", "field2", "field3","field4"))
.setOutputCol("features")
This transformer adds only one single column to the resulting DataFrame called features, which is of the org.apache.spark.ml.linalg.Vector type. In other words, this new column called features, created by the VectorAssembler, contains all the defined columns (in this case, colorVec, field2, field3, and field4) encoded in a single vector object for each row. This is the format the Apache SparkML algorithms are happy with.
Pipelines
Before we dive into estimators--we've already used one in StringIndexer--let's first understand the concept of pipelines. As you might have noticed, the transformers add only one single column to a DataFrame and basically omit all other columns not explicitly specified as input columns; they can only be used in conjunction with org.apache.spark.ml.Pipeline, which glues individual transformers (and estimators) together to form a complete data analysis process. So let's do this for our two Pipeline stages:
var transformers = indexer :: encoder :: vectorAssembler :: Nilvar pipeline = new Pipeline().setStages(transformers).fit(df)var transformed = pipeline.transform(df)
The now obtained DataFrame called transformed contains all the ...
Estimators
We've used estimators before in StringIndexer. We've already stated that estimators somehow contain state that changes while looking at data, whereas this is not the case for transformers. So why is StringIndexer an estimator? This is because it needs to remember all the previously seen strings and maintain a mapping table between strings and label indexes.
In machine learning, it is common to use at least a training and testing subset of your available training data. It can happen that an estimator in the pipeline, such as StringIndexer, has not seen all the string labels while looking at the training dataset. Therefore, you'll get an exception when evaluating the model using the test dataset as the StringIndexer now encounters labels that it has not seen before. This is, in fact, a very rare case and basically could mean that the sample function you use to separate the training and testing datasets is not working; however, there is an option called setHandleInvalid("skip") and your problem is solved.
Another easy way to distinguish between an estimator and a transformer is the additional method called fit on the estimators. Fit actually populates the internal data management structure of the estimators based on a given dataset, which, in the case of StringIndexer, is the mapping table between label strings and label indexes. So now let's take a look at another estimator, an actual machine learning algorithm.
RandomForestClassifier
Let's assume that we are in a binary classification problem setting and want to use RandomForestClassifier. All SparkML algorithms have a compatible API, so they can be used interchangeably. So it really doesn't matter which one we use, but RandomForestClassifier has more (hyper)parameters than more simple models like logistic regression. At a later stage we'll use (hyper)parameter tuning which is also inbuilt in Apache SparkML. Therefore it makes sense to use an algorithm where more knobs can be tweaked. Adding such a binary classifier to our Pipeline is very simple:
import org.apache.spark.ml.classification.RandomForestClassifiervar rf = new RandomForestClassifier() .setLabelCol("label") .setFeaturesCol("features") ...
Model evaluation
As mentioned before, model evaluation is built-in to ApacheSparkML and you'll find all that you need in the org.apache.spark.ml.evaluation package. Let's continue with our binary classification. This means that we'll have to use org.apache.spark.ml.evaluation.BinaryClassificationEvaluator:
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
val evaluator = new BinaryClassificationEvaluator()
import org.apache.spark.ml.param.ParamMap
var evaluatorParamMap = ParamMap(evaluator.metricName -> "areaUnderROC")
var aucTraining = evaluator.evaluate(result, evaluatorParamMap)
To code previous initialized a BinaryClassificationEvaluator function and tells it to calculate the areaUnderROC, one of the many possible metrics to assess the prediction performance of a machine learning algorithm.
As we have the actual label and the prediction present in a DataFrame called result, it is simple to calculate this score and is done using the following line of code:
var aucTraining = evaluator.evaluate(result, evaluatorParamMap)
CrossValidation and hyperparameter tuning
We will be looking at one example each of CrossValidation and hyperparameter tuning. Let's take a look at CrossValidation.
CrossValidation
As stated before, we've used the default parameters of the machine learning algorithm and we don't know if they are a good choice. In addition, instead of simply splitting your data into training and testing, or training, testing, and validation sets, CrossValidation might be a better choice because it makes sure that eventually all the data is seen by the machine learning algorithm.
CrossValidation basically splits your complete available training data into a number of k folds. This parameter k can be specified. Then, the whole Pipeline is run once for every fold and one machine learning model is trained for each fold. Finally, the different machine learning models obtained are joined. This is done by a voting scheme for classifiers or by averaging for regression.
The following figure illustrates ten-fold CrossValidation:
Hyperparameter tuning
CrossValidation is often used in conjunction with so-called (hyper)parameter tuning. What are hyperparameters? These are the various knobs that you can tweak on your machine learning algorithm. For example, these are some parameters of the Random Forest classifier:
Setting these parameters can have a significant influence on the performance of the trained classifier. Often, there is no way of choosing them based on a clear recipe--of course, experience helps--but hyperparameter tuning is considered as black magic. Can't we just choose many different parameters and test the prediction performance? Of course, we can. This feature ...
Winning a Kaggle competition with Apache SparkML
Winning a Kaggle competition is an art by itself, but we just want to show you how the Apache SparkML tooling can be used efficiently to do so.
We'll use an archived competition for this offered by BOSCH, a German multinational engineering, and electronics company, on production line performance data. Details for the competition data can be found at https://www.kaggle.com/c/bosch-production-line-performance/data.
Data preparation
The challenge data comes in three ZIP packages but we only use two of them. One contains categorical data, one contains continuous data, and the last one contains timestamps of measurements, which we will ignore for now.
If you extract the data, you'll get three large CSV files. So the first thing that we want to do is re-encode them into parquet in order to be more space-efficient:
def convert(filePrefix : String) = { val basePath = "yourBasePath" var df = spark .read .option("header",true) .option("inferSchema", "true") .csv("basePath+filePrefix+".csv") df = df.repartition(1) df.write.parquet(basePath+filePrefix+".parquet")}convert("train_numeric")convert("train_date")convert("train_categorical")
First, we define a function ...
Feature engineering
Now it is time to run the first transformer (which is actually an estimator). It is StringIndexer and needs to keep track of an internal mapping table between strings and indexes. Therefore, it is not a transformer but an estimator:
import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}
var indexer = new StringIndexer()
.setHandleInvalid("skip")
.setInputCol("L0_S22_F545")
.setOutputCol("L0_S22_F545Index")
var indexed = indexer.fit(df_notnull).transform(df_notnull)
indexed.printSchema
As we can see clearly in the following image, an additional column called L0_S22_F545Index has been created:
Finally, let's examine some content of the newly created column and compare it with the source column.
We can clearly see how the category string gets transformed into a float index:
Now we want to apply OneHotEncoder, which is a transformer, in order to generate better features for our machine learning model:
var encoder = new OneHotEncoder()
.setInputCol("L0_S22_F545Index")
.setOutputCol("L0_S22_F545Vec")
var encoded = encoder.transform(indexed)
As you can see in the following figure, the newly created column L0_S22_F545Vec contains org.apache.spark.ml.linalg.SparseVector objects, which is a compressed representation of a sparse vector:
Sparse vector representations: The OneHotEncoder, as many other algorithms, returns a sparse vector of the org.apache.spark.ml.linalg.SparseVector type as, according to the definition, only one element of the vector can be one, the rest has to remain zero. This gives a lot of opportunity for compression as only the position of the elements that are non-zero has to be known. Apache Spark uses a sparse vector representation in the following format: (l,[p],[v]), where l stands for length of the vector, p for position (this can also be an array of positions), and v for the actual values (this can be an array of values). So if we get (13,[10],[1.0]), as in our earlier example, the actual sparse vector looks like this: (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0).
So now that we are done with our feature engineering, we want to create one overall sparse vector containing all the necessary columns for our machine learner. This is done using VectorAssembler:
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
var vectorAssembler = new VectorAssembler()
.setInputCols(Array("L0_S22_F545Vec", "L0_S0_F0", "L0_S0_F2","L0_S0_F4"))
.setOutputCol("features")
var assembled = vectorAssembler.transform(encoded)
We basically just define a list of column names and a target column, and the rest is done for us:
As the view of the features column got a bit squashed, let's inspect one instance of the feature field in more detail:
We can clearly see that we are dealing with a sparse vector of length 16 where positions 0, 13, 14, and 15 are non-zero and contain the following values: 1.0, 0.03, -0.034, and -0.197. Done! Let's create a Pipeline out of these components.
Testing the feature engineering pipeline
Let's create a Pipeline out of our transformers and estimators:
import org.apache.spark.ml.Pipelineimport org.apache.spark.ml.PipelineModel//Create an array out of individual pipeline stagesvar transformers = Array(indexer,encoder,assembled)var pipeline = new Pipeline().setStages(transformers).fit(df_notnull)var transformed = pipeline.transform(df_notnull)
Note that the setStages method of Pipeline just expects an array of transformers and estimators, which we had created earlier. As parts of the Pipeline contain estimators, we have to run fit on our DataFrame first. The obtained Pipeline object takes a DataFrame in the transform method and returns the results of the transformations:
As expected, ...
Training the machine learning model
Now it's time to add another component to the Pipeline: the actual machine learning algorithm--RandomForest:
import org.apache.spark.ml.classification.RandomForestClassifier
var rf = new RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
var model = new Pipeline().setStages(transformers :+ rf).fit(df_notnull)
var result = model.transform(df_notnull)
This code is very straightforward. First, we have to instantiate our algorithm and obtain it as a reference in rf. We could have set additional parameters to the model but we'll do this later in an automated fashion in the CrossValidation step. Then, we just add the stage to our Pipeline, fit it, and finally transform. The fit method, apart from running all upstream stages, also calls fit on the RandomForestClassifier in order to train it. The trained model is now contained within the Pipeline and the transform method actually creates our predictions column:
As we can see, we've now obtained an additional column called prediction, which contains the output of the RandomForestClassifier model. Of course, we've only used a very limited subset of available features/columns and have also not yet tuned the model, so we don't expect to do very well; however, let's take a look at how we can evaluate our model easily with Apache SparkML.
Model evaluation
Without evaluation, a model is worth nothing as we don't know how accurately it performs. Therefore, we will now use the built-in BinaryClassificationEvaluator in order to assess prediction performance and a widely used measure called areaUnderROC (going into detail here is beyond the scope of this book):
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluatorval evaluator = new BinaryClassificationEvaluator()import org.apache.spark.ml.param.ParamMapvar evaluatorParamMap = ParamMap(evaluator.metricName -> "areaUnderROC")var aucTraining = evaluator.evaluate(result, evaluatorParamMap)
As we can see, there is a built-in class called org.apache.spark.ml.evaluation.BinaryClassificationEvaluator and there are some other ...
CrossValidation and hyperparameter tuning
As explained before, a common step in machine learning is cross-validating your model using testing data against training data and also tweaking the knobs of your machine learning algorithms. Let's use Apache SparkML in order to do this for us, fully automated!
First, we have to configure the parameter map and CrossValidator:
import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder}
var paramGrid = new ParamGridBuilder()
.addGrid(rf.numTrees, 3 :: 5 :: 10 :: 30 :: 50 :: 70 :: 100 :: 150 :: Nil)
.addGrid(rf.featureSubsetStrategy, "auto" :: "all" :: "sqrt" :: "log2" :: "onethird" :: Nil)
.addGrid(rf.impurity, "gini" :: "entropy" :: Nil)
.addGrid(rf.maxBins, 2 :: 5 :: 10 :: 15 :: 20 :: 25 :: 30 :: Nil)
.addGrid(rf.maxDepth, 3 :: 5 :: 10 :: 15 :: 20 :: 25 :: 30 :: Nil)
.build()
var crossValidator = new CrossValidator()
.setEstimator(new Pipeline().setStages(transformers :+ rf))
.setEstimatorParamMaps(paramGrid)
.setNumFolds(5)
.setEvaluator(evaluator)
var crossValidatorModel = crossValidator.fit(df_notnull)
var newPredictions = crossValidatorModel.transform(df_notnull)
The org.apache.spark.ml.tuning.ParamGridBuilder is used in order to define the hyperparameter space where the CrossValidator has to search and finally, the org.apache.spark.ml.tuning.CrossValidator takes our Pipeline, the hyperparameter space of our RandomForest classifier, and the number of folds for the CrossValidation as parameters. Now, as usual, we just need to call fit and transform on the CrossValidator and it will basically run our Pipeline multiple times and return a model that performs the best. Do you know how many different models are trained? Well, we have five folds on CrossValidation and five-dimensional hyperparameter space cardinalities between two and eight, so let's do the math: 5 * 8 * 5 * 2 * 7 * 7 = 19600 times!
Using the evaluator to assess the quality of the cross-validated and tuned model
Now that we've optimized our Pipeline in a fully automatic fashion, let's see how our best model can be obtained:
var bestPipelineModel = crossValidatorModel.bestModel.asInstanceOf[PipelineModel] var stages = bestPipelineModel.stagesimport org.apache.spark.ml.classification.RandomForestClassificationModel val rfStage = stages(stages.length-1).asInstanceOf[RandomForestClassificationModel]rfStage.getNumTreesrfStage.getFeatureSubsetStrategyrfStage.getImpurityrfStage.getMaxBinsrfStage.getMaxDepth
The crossValidatorModel.bestModel code basically returns the best Pipeline. Now we use bestPipelineModel.stages to obtain the individual stages and obtain the tuned RandomForestClassificationModel ...
Summary
You've learned that, as in many other places, the introduction of DataFrames leads to the development of complementary frameworks that are not using RDDs directly anymore. This is also the case for machine learning but there is much more to it. Pipeline actually takes machine learning in Apache Spark to the next level as it improves the productivity of the data scientist dramatically.
The compatibility between all intermediate objects and well-thought-out concepts is just awesome. Great! Finally, we've applied the concepts that we discussed on a real dataset from a Kaggle competition, which is a very nice starting point for your own machine learning project with Apache SparkML. The next Chapter covers Apache SystemML, which is a 3rd party machine learning library for Apache Spark. Let's see why it is useful and what the differences are to SparkML.
Apache SystemML
So far, we have only covered components that came along with the standard distribution of Apache Spark (except HDFS, Kafka and Flume, of course). However, Apache Spark can also serve as runtime for third-party components, making it as some sort of operating system for big data applications. In this chapter, we want to introduce Apache SystemML, an amazing piece of technology initially developed by the IBM Almaden Research Lab in California. Apache SystemML went through many transformation stages and has now become an Apache top level project.
In this chapter, we will cover the following topics to get a greater insight into the subject:
Why do we need just another library?
In order to answer this question, we have to know something about SystemML's history, which began ten years ago in 2007 as a research project in the IBM Almaden Research Lab in California. The project was driven by the intention to improve the workflow of data scientists, especially those who want to improve and add functionality to existing machine learning algorithms.
So, SystemML is a declarative markup language that can transparently distribute work on Apache Spark. It supports Scale-up using multithreading and SIMD instructions on CPUs as well as GPUs and also Scale-out using a cluster, and of course, both together.
Finally, there is a cost-based optimizer in place to generate low-level execution plans taking statistics about the Dataset sizes into account. In other words, Apache SystemML is for machine learning, what Catalyst and Tungsten are for DataFrames.
Why on Apache Spark?
Apache Spark solves a lot of common issues in data processing and machine learning, so Apache SystemML can make use of these features. For example, Apache Spark supports the unification of SQL, Graph, Stream, and machine learning data processing on top of a common RDD structure.
In other words, it is a general DAG (directed acyclic graph) execution engine supporting lazy evaluation and distributed in-memory caching.
The history of Apache SystemML
Apache SystemML is already ten years old. Of course, it went through multiple refactorings and is now a state-of-the-art, and one of the fastest, machine learning libraries in the world.
As you can see in the preceding figure, a lot of research has been done for Apache SystemML. It is two years older than Apache Spark and in 2017 it has been turned into a top-level Apache project, leaving incubator status. Even during the time SystemML was started, the researchers at IBM Research Almaden realized that, very often, out-of-the-box machine learning algorithms perform very poorly on large Datasets.
So, the data analysis pipeline, had to be tuned after a small-scale version of it had been prototyped. The following figure illustrates this:
This means that the data scientist will prototype his application in a programming language of his choice, most likely Matlab, R or python and, finally, a systems programmer will pick this up and re-implement this in a JVM language like Java or Scala, which usually turns out to provide better performance and also linearly scales on data parallel framework like Apache Spark.
The scaled version of the prototype will return results on the whole Dataset and the data scientist again is in charge of modifying the prototype and the whole cycle begins again. Not only the IBM Almaden Research staff members have experienced this, but even our team has seen it. So let's make the systems programmer redundant (or at least require him only to take care of our Apache Spark jobs) using Apache SystemML.
A cost-based optimizer for machine learning algorithms
Let's start with an example to exemplify how Apache SystemML works internally. Consider a recommender system.
An example - alternating least squares
A recommender system tries to predict the potential items that a user might be interested in, based on a history from other users.
So let's consider a so-called item-user or product-customer matrix, as illustrated here:
This is a so-called sparse matrix because only a couple of cells are populated with non-zero values indicating a match between a customer i and a product j. Either by just putting a one in the cell or any other numerical value, for example, indicating the number of products bought or a rating for that particular product j from customer i. Let's call this matrix rui, where u stands for user and i for item.
Those of you familiar with linear algebra might know that any matrix can be factorized by two smaller matrices. This means that you have to find two matrices pu and qi that, when multiplied with each other, reconstruct the original matrix rui; let's call the reconstruction rui'. The goal is to find pu and qi to reconstruct rui' such that it doesn't differ too much from rui. This is done using a sum of squared errors objective.
The following figure illustrates this and the sparsity property of the matrix:
Once we've found good factors pu and qi, we can construct rui' and, finally, new non-zero cells will be present, which become the new predicted product suggestions. In case you haven't understood all the details, don't worry, as we don't need too much of this example to understand the rest of this chapter.
A common algorithm to find pu and qi is called alternating least squares (ALS)--alternating because in each iteration the optimization objective switches from pu to qi and vice versa. Don't get bothered with it too much, but this is how it actually works, and, in Apache Spark MLlib, this is just a single line of Scala code:
So what's wrong with this? Before we explain this, let's take a look at how ALS is implemented in a statistical programming language such as R:
Again, don't worry if you don't understand each line, but the purpose of this figure is to show you that in R, this algorithm needs only 27 lines of code to be expressed. If we now take a look at the ALS implementation in MLlib, we'll see that it has more than 800 lines. You can find this implementation at https://github.com/apache/spark/tree/master/mllib/src/main/scala/org/apache/spark/mllib/recommendation.
So why do we need more than 800 lines in Scala on Spark and only 27 in R? This is because of performance optimizations. The ALS implementation in MLlib consists of more than 50% of performance optimization code. So what if we could perform the following?
This is where Apache SystemML kicks in, it supports all this. Apache SystemML's DSL (domain specific language) is a subset of R syntax, so you can just take the previous example and run it 1:1 without any modification on top of Apache SystemML. In addition, a cost-based performance optimizer generates a physical execution plan on top of Apache Spark in order to minimize execution time based on the size properties of your data. So let's find out how this works.
ApacheSystemML architecture
So the key thing on Apache SystemML is the optimizer. This component turns a high-level description of an algorithm in a domain-specific language into a highly optimized physical execution on Apache Spark, as shown in the following figure:
Language parsing
Let's open this black box a bit in order to understand what exactly is going on in the Apache SystemML optimizer. The first thing that the engine does is a compile step on the DSL. So first, syntax checking, then live variable analysis in order to determine which intermediate results are still needed, and finally a semantic check.
High-level operators are generated
Once the previous step is passed, the execution plan using so-called high-level operators (HOPs) is generated. These are constructed from the abstract syntax tree (AST) of the DSL. The following important optimization steps are taking place during this phase:
How low-level operators are optimized on
Let's have a look on, how low-level operators are selected and optimized on. We'll stick to the weighted divide matrix multiplication example--a HOP that has been selected before the HOP optimizations process over an ordinary sequence of matrix multiplications. So now the question arises, for example, if it makes sense to use a parallel version of a LOP running parallel on the Apache Spark workers, or whether a local execution is preferable. In this example, Apache SystemML determines that all intermediate results fit into the main memory of the driver node and chooses the local operator, WDivMM, over the parallel operator, MapWDivMM. The following figure illustrates this process:
Performance measurements
So is all this effort worth it? Let's take a look at some performance comparisons between a local R script, MLlib, and Apache SystemML:
The ALS algorithm has been run on different Datasets with 1.2, 12, and 120 GB size using R, MLlib, and ApacheSystemML. We can clearly see that, even on the smallest Dataset, R is not a feasible solution as it took more than 24 hours, and we are not sure if it would have ever completed. On the 12 GB Dataset, we've noticed that ApacheSystemML runs significantly faster than MLlib, and finally, on the 120 GB Dataset, the ALS implementation of MLlib didn't finish in one day and we gave ...
Apache SystemML in action
So let's take a look at a very simple example. Let's create a script in Apache SystemML DSL--an R-like syntax--in order to multiply two matrices:
import org.apache.sysml.api.MLOutput
import org.apache.spark.sql.SQLContext
import org.apache.spark.mllib.util.LinearDataGenerator
import org.apache.sysml.api.MLContext
import org.apache.sysml.runtime.instructions.spark.utils.{RDDConverterUtilsExt => RDDConverterUtils}
import org.apache.sysml.runtime.matrix.MatrixCharacteristics;
val sqlContext = new SQLContext(sc)
val simpleScript =
"""
fileX = "";
fileY = "";
fileZ = "";
X = read (fileX);
Y = read (fileY);
Z = X %*% Y
write (Z,fileZ);
"""
Then, we generate some test data:
// Generate data
val rawDataX = sqlContext.createDataFrame(LinearDataGenerator.generateLinearRDD(sc, 100, 10, 1))
val rawDataY = sqlContext.createDataFrame(LinearDataGenerator.generateLinearRDD(sc, 10, 100, 1))
// Repartition into a more parallelism-friendly number of partitions
val dataX = rawDataX.repartition(64).cache()
val dataY = rawDataY.repartition(64).cache()
In order to use Apache SystemML, we have to create an MLContext object:
// Create SystemML context
val ml = new MLContext(sc)
Now we have to convert our data to a format that Apache SystemML understands:
// Convert data to proper format
val mcX = new MatrixCharacteristics()
val mcY = new MatrixCharacteristics()
val X = RDDConverterUtils.vectorDataFrameToBinaryBlock(sc, dataX, mcX, false, "features")
val Y = RDDConverterUtils.vectorDataFrameToBinaryBlock(sc, dataY, mcY, false, "features")
Now, we pass the data X and Y to the Apache SystemML runtime and also preregister a variable called Z in order to obtain the result from the runtime:
// Register inputs & outputs
ml.reset()
ml.registerInput("X", X, mcX)
ml.registerInput("Y", Y, mcY)
ml.registerOutput("Z")
Finally, we actually execute the script stored in simpleScript with the executeScript method and obtain the result from the runtime:
val outputs = ml.executeScript(simpleScript)
// Get outputs
val Z = outputs.getDF(sqlContext, "Z")
Now Z contains DataFrame with the result of the matrix multiplication. Done!
Summary
You've learned that there is room for additional machine learning frameworks and libraries, on top of Apache Spark and that, a cost-based optimizer similar to what we are already using in Catalyst can speed things up tremendously. In addition, separation from performance optimizations code and code for the algorithm facilitates further improvements on the algorithm side without having to care about performance at all.
Additionally, these execution plans are highly adaptable to the size of the data and also to the available hardware configuration based on main memory size and potential accelerators such as GPUs. Apache SystemML dramatically improves on the life cycle of machine learning applications, especially if machine learning ...
Apache Spark GraphX
In this chapter, we want to examine the Apache Spark GraphX module and graph processing, in general. So, this chapter will cover the topic of implementing graph analysis workflows on top of GraphX. The GraphX coding section, written in Scala, will provide a series of graph coding examples. Before writing code in Scala to use the Spark GraphX module, we think it will be useful to provide an overview of what a graph actually is in terms of graph processing. The following section provides a brief introduction using a couple of simple graphs as examples.
In this chapter we will cover:
Overview
A graph can be considered to be a data structure that consists of a group of vertices and edges connecting them. The vertices or nodes in the graph can be anything as long it is an object (so people for example), and the edges are the relationships between them. The edges can be un-directional or directional, meaning that the relationship operates from one node to another. For instance, node A is the parent of node B.
In the following diagram, the circles represent the vertices or nodes (A to D), while the thick lines represent the edges or relationships between them (E1 to E6). Each node or edge may have properties, and these values are represented by the associated gray squares (P1 to P7):
So, if a graph represents a physical ...
Graph analytics/processing with GraphX
This section will examine Apache Spark GraphX programming in Scala using the family relationship graph data sample shown in the last section. This data will be accessed as a list of vertices and edges. Although this data set is small, the graphs that you build in this way could be very large. For example, we've been able to analyze 30 TB of financial transaction data of a large bank using only four Apache Spark workers.
The raw data
We are working with two data files. They contain the data that will be used for this section in terms of the vertices and edges that make up a graph:
graph1_edges.csvgraph1_vertex.csv
The vertex file contains just six lines representing the graph used in the last section. Each vertex represents a person and has a vertex ID number, a name, and an age value:
1,Mike,482,Sarah,453,John,254,Jim,535,Kate,226,Flo,52
The edge file contains a set of directed edge values in the form source vertex ID, destination vertex ID, and relationship. So, record 1 forms a Sister relationship between Flo and Mike:
6,1,Sister1,2,Husband2,1,Wife5,1,Daughter5,2,Daughter3,1,Son3,2,Son4,1,Friend1,5,Father1,3,Father2,5,Mother2,3,Mother
Lets, examine some ...
Creating a graph
This section will explain generic Scala code up to the point of creating a GraphX graph from data. This will save time as the same code is reused in each example. Once this is explained, we will concentrate on the actual graph-based manipulation in each code example.
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
object graph1 extends App {
val vertexFile = "graph1_vertex.csv"
val edgeFile = "graph1_edges.csv"
val sparkMaster = "spark://localhost:7077"
val appName = "Graph 1"
val conf = new SparkConf()
conf.setMaster(sparkMaster)
conf.setAppName(appName)
val sparkCxt = new SparkContext(conf)
val vertices: RDD[(VertexId, (String, String))] =
sparkCxt.textFile(vertexFile).map { line =>
val fields = line.split(",")
(fields(0).toLong, (fields(1), fields(2)))
}
val edges: RDD[Edge[String]] =
sparkCxt.textFile(edgeFile).map { line =>
val fields = line.split(",")
Edge(fields(0).toLong, fields(1).toLong, fields(2))
}
val default = ("Unknown", "Missing")
val graph = Graph(vertices, edges, default)
Many of these algorithms are iterative applications, for instance, PageRank and triangle count. As a result, the programs will generate many iterative Spark jobs.
Example 1 – counting
The graph has been loaded, and we know the data volumes in the data files. But what about the data content in terms of vertices and edges in the actual graph itself? It is very simple to extract this information using the vertices and edges count function shown as follows:
println("vertices : " + graph.vertices.count)println("edges : " + graph.edges.count)
Running the graph1 example using the example name and the .jar file created earlier will provide the count information. The master URL is supplied to connect to the Spark cluster, and some default parameters are supplied for the executor memory and total executor cores:
spark-submit \--class graph1 \--master spark://localhost:7077 \--executor-memory 700M \--total-executor-cores ...
Example 2 – filtering
What happens if we need to create a subgraph from the main graph and filter on person age or relationships? The example code from the second example Scala file graph2 shows how this can be done:
val c1 = graph.vertices.filter { case (id, (name, age)) => age.toLong > 40 }.count
val c2 = graph.edges.filter { case Edge(from, to, property)
=> property == "Father" | property == "Mother" }.count
println("Vertices count : " + c1)
println("Edges count : " + c2)
Two example counts have been created from the main graph: the first filters person-based vertices on age only, taking those people who are greater than forty years old. Notice that the age value, which was stored as a string, has been converted to a long for the comparison.
The second example filters the edges on the relationship property of Mother or Father. Two count values c1 and c2 are created and printed as the Spark run output, shown as follows:
Vertices count : 4
Edges count : 4
Example 3 – PageRank
The PageRank algorithm provides a ranking value for each of the vertices in a graph. It makes the assumption that the vertices that are connected to the most edges are the most important.
Search engines use PageRank to provide an ordering for page display during a web search as can be seen from the following code:
val tolerance = 0.0001val ranking = graph.pageRank(tolerance).verticesval rankByPerson = vertices.join(ranking).map { case (id, ((person,age) , rank)) => (rank, id, person)}
The example code creates a tolerance value and calls the graph pageRank method using it. The vertices are then ranked into a new value ranking. In order to make the ranking more meaningful, the ranking values are joined with the original ...
Example 4 – triangle counting
The triangle count algorithm provides a vertex-based count of the number of triangles associated with that vertex. For instance, vertex Mike (1) is connected to Kate (5), who is connected to Sarah (2), Sarah is connected to Mike (1), and so a triangle is formed. This can be useful for route finding where triangle free minimum spanning tree graphs need to be generated for route planning.
The code to execute a triangle count and print it is simple as shown next. The graph triangleCount method is executed for the graph vertices. The result is saved in the value tCount and printed:
val tCount = graph.triangleCount().vertices
println(tCount.collect().mkString("\n"))
The results of the application job show that vertices Flo (4) and Jim (6) have no triangles, while Mike (1) and Sarah (2) have the most as expected, as they have the most relationships:
(4,0)
(6,0)
(2,4)
(1,4)
(3,2)
(5,2)
Example 5 – connected components
When a large graph is created from data, it might contain unconnected subgraphs or subgraphs that are isolated from each other and might contain no bridging or connecting edges between them. These algorithms provide a measure of that connectivity. It might be important depending on your processing to know that all vertices are connected.
The Scala code for this example calls two graph methods, connectedComponents and stronglyConnectedComponents. The strong method required a maximum iteration count, which has been set to 1000. These counts are acting on the graph vertices:
val iterations = 1000val connected = graph.connectedComponents().verticesval connectedS = graph.stronglyConnectedComponents(iterations).vertices ...
Summary
This chapter showed by example how Scala-based code can be used to call GraphX algorithms in Apache Spark. Scala has been used because it requires less code to develop the examples than Java, which saves time. Note that GraphX is not available for Python or R. A Scala-based shell can be used, and the code can be compiled into Spark applications.
The most common graph algorithms have been covered and you should have an idea now on how to solve any graph problem with GraphX. Especially since you've understood that a Graph in GraphX is still represented and backed by RDDs, so you are already familiar with using them. The configuration and code examples from this chapter will also be available for download with the book.
Spark Tuning
In this chapter, we will dig deeper into Apache Spark internals and see that while Spark is great in making us feel like we are using just another Scala collection, we don't have to forget that Spark actually runs in a distributed system. Therefore, some extra care should be taken. In a nutshell, the following topics will be covered in this chapter:
Monitoring Spark jobs
Spark provides web UI for monitoring all the jobs running or completed on computing nodes (drivers or executors). In this section, we will discuss in brief how to monitor Spark jobs using Spark web UI with appropriate examples. We will see how to monitor the progress of jobs (including submitted, queued, and running jobs). All the tabs in the Spark web UI will be discussed briefly. Finally, we will discuss the logging procedure in Spark for better tuning.
Spark web interface
The web UI (also known as Spark UI) is the web interface for running Spark applications to monitor the execution of jobs on a web browser such as Firefox or Google Chrome. When a SparkContext launches, a web UI that displays useful information about the application gets started on port 4040 in standalone mode. The Spark web UI is available in different ways depending on whether the application is still running or has finished its execution.
Also, you can use the web UI after the application has finished its execution by persisting all the events using EventLoggingListener. The EventLoggingListener, however, cannot work alone, and the incorporation of the Spark history server is required. Combining these two features, the ...
Jobs
Depending upon the SparkContext, the Jobs tab shows the status of all the Spark jobs in a Spark application. When you access the Jobs tab on the Spark UI using a web browser at http://localhost:4040 (for standalone mode), you should observe the following options:
Internally, the Jobs tab is represented by the JobsTab class, which is a custom SparkUI tab with the jobs prefix. The Jobs tab uses JobProgressListener to access statistics about the Spark jobs to display the above information on the page. Take a look at the following screenshot:
Figure 2: The jobs tab in the Spark web UI
If you further expand the Active Jobs option in the Jobs tab, you will be able to see the execution plan, status, number of completed stages, and the job ID of that particular job as DAG Visualization, as shown in the following:
Figure 3: The DAG visualization for task in the Spark web UI (abridged)
When a user enters the code in the Spark console (for example, Spark shell or using Spark submit), Spark Core creates an operator graph. This is basically what happens when a user executes an action (for example, reduce, collect, count, first, take, countByKey, saveAsTextFile) or transformation (for example, map, flatMap, filter, mapPartitions, sample, union, intersection, distinct) on an RDD (which are immutable objects) at a particular node.
Figure 4: DAG scheduler transforming RDD lineage into stage DAG
During the transformation or action, Directed Acyclic Graph (DAG) information is used to restore the node to last transformation and actions (refer to Figure 4 and Figure 5 for a clearer picture) to maintain the data resiliency. Finally, the graph is submitted to a DAG scheduler.
How does Spark compute the DAG from the RDD and subsequently execute the task?
At a high level, when any action is called on the RDD, Spark creates the DAG and submits it to the DAG scheduler. The DAG scheduler divides operators into stages of tasks. A stage comprises tasks based on partitions of the input data. The DAG scheduler pipelines operators together. For example, many map operators can be scheduled in a single stage. The final result of a DAG scheduler is a set of stages. The stages are passed on to the task scheduler. The task scheduler launches tasks through the cluster manager (Spark Standalone/YARN/Mesos). The task scheduler doesn't know about the dependencies of the stages. The worker executes the tasks on the stage.
The DAG scheduler then keeps track of which RDDs the stage outputs materialized from. It then finds a minimal schedule to run jobs and divides the related operators into stages of tasks. Based on the partitions of the input data, a stage comprises multiple tasks. Then, operators are pipelined together with the DAG scheduler. Practically, more than one map or reduce operator (for example) can be scheduled in a single stage.
Figure 5: Executing action leads to new ResultStage and ActiveJob in DAGScheduler
Two fundamental concepts in DAG scheduler are jobs and stages. Thus, it has to track them through internal registries and counters. Technically speaking, DAG scheduler is a part of SparkContext's initialization that works exclusively on the driver (immediately after the task scheduler and scheduler backend are ready). DAG scheduler is responsible for three major tasks in Spark execution. It computes an execution DAG, that is, DAG of stages, for a job. It determines the preferred node to run each task on and handles failures due to shuffle output files being lost.
Figure 6: DAGScheduler as created by SparkContext with other services
The final result of a DAG scheduler is a set of stages. Therefore, most of the statistics and the status of the job can be seen using this visualization, for example, execution plan, status, number of completed stages, and the job ID of that particular job.
Stages
The Stages tab in Spark UI shows the current status of all stages of all jobs in a Spark application, including two optional pages for the tasks and statistics for a stage and pool details. Note that this information is available only when the application works in a fair scheduling mode. You should be able to access the Stages tab at http://localhost:4040/stages. Note that when there are no jobs submitted, the tab shows nothing but the title. The Stages tab shows the stages in a Spark application. The following stages can be seen in this tab:
For example, when you submit a Spark job locally, you should be able to see the following status:
Figure 7: The stages for all jobs in the Spark ...
Storage
The Storage tab shows the size and memory use for each RDD, DataFrame, or Dataset. You should be able to see the storage-related information of RDDs, DataFrames, or Datasets. The following figure shows storage metadata such as RDD name, storage level, the number of cache partitions, the percentage of a fraction of the data that was cached, and the size of the RDD in the main memory:
Figure 9: Storage tab shows space consumed by an RDD in disk
Note that if the RDD cannot be cached in the main memory, disk space will be used instead. A more detailed discussion will be carried out in a later section of this chapter.
Figure 10: Data distribution and the storage used by the RDD in disk
Environment
The Environment tab shows the environmental variables that are currently set on your machine (that is, driver). More specifically, runtime information such as Java Home, Java Version, and Scala Version can be seen under Runtime Information. Spark properties such as Spark application ID, app name, and driver host information, driver port, executor ID, master URL, and the schedule mode can be seen. Furthermore, other system-related properties and job properties such as AWT toolkit version, file encoding type (for example, UTF-8), and file encoding package information (for example, sun.io) can be seen under System Properties.
Figure ...
Executors
The Executors tab uses ExecutorsListener to collect information about executors for a Spark application. An executor is a distributed agent that is responsible for executing tasks. Executors are instantiated in different ways. For example, they can be instantiated when CoarseGrainedExecutorBackend receives RegisteredExecutor message for Spark Standalone and YARN. The second case is when a Spark job is submitted to Mesos. The Mesos's MesosExecutorBackend gets registered. The third case is when you run your Spark jobs locally, that is, LocalEndpoint is created. An executor typically runs for the entire lifetime of a Spark application, which is called static allocation of executors, although you can also opt in for dynamic allocation. The executor backends exclusively manage all the executors in a computing node or clusters. An executor reports heartbeat and partial metrics for active tasks to the HeartbeatReceiver RPC endpoint on the driver periodically and the results are sent to the driver. They also provide in-memory storage for RDDs that are cached by user programs through block manager. Refer to the following figure for a clearer idea on this:
Figure 12: Spark driver instantiates an executor that is responsible for HeartbeatReceiver's Heartbeat message handler
When an executor starts, it first registers with the driver and communicates directly to execute tasks, as shown in the following figure:
Figure 13: Launching tasks on executor using TaskRunners
You should be able to access the Executors tab at http://localhost:4040/executors.
Figure 14: Executor tab on Spark web UI
As shown in the preceding figure, Executor ID, Address, Status, RDD Blocks, Storage Memory, Disk Used, Cores, Active Tasks, Failed Tasks, Complete Tasks, Total Tasks, Task Time (GC Time), Input, Shuffle Read, Shuffle Write, and Thread Dump about the executor can be seen.
SQL
The SQL tab in the Spark UI displays all the accumulator values per operator. You should be able to access the SQL tab at http://localhost:4040/SQL/. It displays all the SQL query executions and underlying information by default. However, the SQL tab displays the details of the SQL query execution only after a query has been selected.
A detailed discussion on SQL is out of the scope of this chapter. Interested readers should refer to http://spark.apache.org/docs/latest/sql-programming-guide.html#sql for more on how to submit an SQL query and see its result output.
Visualizing Spark application using web UI
When a Spark job is submitted for execution, a web application UI is launched that displays useful information about the application. An event timeline displays the relative ordering and interleaving of application events. The timeline view is available on three levels: across all jobs, within one job, and within one stage. The timeline also shows executor allocation and deallocation.
Figure 15: Spark jobs executed as DAG on Spark web UI
Observing the running and completed Spark jobs
To access and observe the running and the completed Spark jobs, open http://spark_driver_host:4040 in a web browser. Note that you will have to replace spark_driver_host with an IP address or hostname accordingly.
Note that if multiple SparkContexts are running on the same host, they will bind to successive ports beginning with 4040, 4041, 4042, and so on. By default, this information will be available for the duration of your Spark application only. This means that when your Spark job finishes its execution, the binding will no longer be valid or accessible.
Now, to access the active jobs that are still executing, click on the Active Jobs link and you will see the related information of those ...
Debugging Spark applications using logs
Seeing the information about all running Spark applications depends on which cluster manager you are using. You should follow these instructions while debugging your Spark application:
yarn logs -applicationId <application ID> [OPTIONS]
For example, the following are the valid commands for these IDs:
yarn logs -applicationId application_561453090098_0005
yarn logs -applicationId application_561453090070_0005 userid
Note that the user IDs are different. However, this is only true if yarn.log-aggregation-enable is true in yarn-site.xml and the application has already finished the execution.
Logging with log4j with Spark
Spark uses log4j for its own logging. All the operations that happen backend get logged to the Spark shell console (which is already configured to the underlying storage). Spark provides a template of log4j as a property file, and we can extend and modify that file for logging in Spark. Move to the SPARK_HOME/conf directory and you should see the log4j.properties.template file. This could help us as the starting point for our own logging system.
Now, let's create our own custom logging system while running a Spark job. When you are done, rename the file as log4j.properties and put it under the same directory (that is, project tree). A sample snapshot of the file can be seen as follows:
Figure 17: A snap of the ...
Spark configuration
There are a number of ways to configure your Spark jobs. In this section, we will discuss these ways. More specifically, according to Spark 2.x release, there are three locations to configure the system:
Spark properties
As discussed previously, Spark properties control most of the application-specific parameters and can be set using a SparkConf object of Spark. Alternatively, these parameters can be set through the Java system properties. SparkConf allows you to configure some of the common properties as follows:
setAppName() // App name setMaster() // Master URL setSparkHome() // Set the location where Spark is installed on worker nodes. setExecutorEnv() // Set single or multiple environment variables to be used when launching executors. setJars() // Set JAR files to distribute to the cluster. setAll() // Set multiple parameters together.
An application can be configured to use a number of available cores on your machine. For example, we ...
Environmental variables
Environment variables can be used to set the setting in the computing nodes or machine settings. For example, IP address can be set through the conf/spark-env.sh script on each computing node. The following table lists the name and the functionality of the environmental variables that need to be set:
Figure 18: Environmental variables and their meaning
Logging
Finally, logging can be configured through the log4j.properties file under your Spark application tree, as discussed in the preceding section. Spark uses log4j for logging. There are several valid logging levels supported by log4j with Spark; they are as follows:
Log Level | Usages |
OFF | This is the most specific, which allows no logging at all |
FATAL | This is the most specific one that shows fatal errors with little data |
ERROR | This shows only the general errors |
WARN | This shows warnings that are recommended to be fixed but not mandatory |
INFO | This shows the information required for your Spark job |
DEBUG | While debugging, those logs will be printed |
TRACE | This provides the least specific error trace with a lot of data |
ALL ... |
Common mistakes in Spark app development
Common mistakes that happen often are application failure, a slow job that gets stuck due to numerous factors, mistakes in the aggregation, actions or transformations, an exception in the main thread and, of course, Out Of Memory (OOM).
Application failure
Most of the time, application failure happens because one or more stages fail eventually. As discussed earlier in this chapter, Spark jobs comprise several stages. Stages aren't executed independently: for instance, a processing stage can't take place before the relevant input-reading stage. So, suppose that stage 1 executes successfully but stage 2 fails to execute, the whole application fails eventually. This can be shown as follows:
Figure 19: Two stages in a typical Spark job
To show an example, suppose you have the following three RDD operations as stages. The same can be visualized as shown in Figure 20, Figure 21 ...
Slow jobs or unresponsiveness
Sometimes, if the SparkContext cannot connect to a Spark standalone master, then the driver may display errors such as the following:
02/05/17 12:44:45 ERROR AppClient$ClientActor: All masters are unresponsive! Giving up.
02/05/17 12:45:31 ERROR SparkDeploySchedulerBackend: Application has been killed. Reason: All masters are unresponsive! Giving up.
02/05/17 12:45:35 ERROR TaskSchedulerImpl: Exiting due to error from cluster scheduler: Spark cluster looks down
At other times, the driver is able to connect to the master node but the master is unable to communicate back to the driver. Then, multiple attempts to connect are made even though the driver will report that it could not connect to the Master's log directory.
Furthermore, you might often experience very slow performance and progress in your Spark jobs. This happens because your driver program is not that fast to compute your jobs. As discussed earlier, sometimes a particular stage may take a longer time than usual because there might be a shuffle, map, join, or aggregation operation involved. Even if the computer is running out of disk storage or main memory, you may experience these issues. For example, if your master node does not respond or you experience unresponsiveness from the computing nodes for a certain period of time, you might think that your Spark job has halted and become stagnant at a certain stage:
Figure 24: An example log for executor/driver unresponsiveness
Potential solutions could be several, including the following:
$ bin/spark-shell --master spark://master-ip:7077
Sometimes, we experience some issues due to hardware failure. For example, if the filesystem in a computing node closes unexpectedly, that is, an I/O exception, your Spark job will eventually fail too. This is obvious because your Spark job cannot write the resulting RDDs or data to store to the local filesystem or HDFS. This also implies that DAG operations cannot be performed due to the stage failures.
Sometimes, this I/O exception occurs due to an underlying disk failure or other hardware failures. This often provides logs, as follows:
Figure 25: An example filesystem closed
Nevertheless, you often experience slow job computing performance because your Java GC is somewhat busy with, or cannot do, the GC fast. For example, the following figure shows that for task 0, it took 10 hours to finish the GC! I experienced this issue in 2014, when I was new to Spark. Control of these types of issues, however, is not in our hands. Therefore, our recommendation is that you should make the JVM free and try submitting the jobs again.
Figure 26: An example where GC stalled in between
The fourth factor could be the slow response or slow job performance is due to the lack of data serialization. This will be discussed in the next section. The fifth factor could be the memory leak in the code that will tend to make your application consume more memory, leaving the files or logical devices open. Therefore, make sure that there is no option that tends to be a memory leak. For example, it is a good practice to finish your Spark application by calling sc.stop() or spark.stop(). This will make sure that one SparkContext is still open and active. Otherwise, you might get unwanted exceptions or issues. The sixth issue is that we often keep too many open files, and this sometimes creates FileNotFoundException in the shuffle or merge stage.
Optimization techniques
There are several aspects of tuning Spark applications toward better optimization techniques. In this section, we will discuss how we can further optimize our Spark applications by applying data serialization by tuning the main memory with better memory management. We can also optimize performance by tuning the data structure in your Scala code while developing Spark applications. The storage, on the other hand, can be maintained well by utilizing serialized RDD storage.
One of the most important aspects is garbage collection, and it's tuning if you have written your Spark application using Java or Scala. We will look at how we can also tune this for optimized performance. For distributed environment- and cluster-based ...
Data serialization
Serialization is an important tuning for performance improvement and optimization in any distributed computing environment. Spark is not an exception, but Spark jobs are often data and computing extensive. Therefore, if your data objects are not in a good format, then you first need to convert them into serialized data objects. This demands a large number of bytes of your memory. Eventually, the whole process will slow down the entire processing and computation drastically.
As a result, you often experience a slow response from the computing nodes. This means that we sometimes fail to make 100% utilization of the computing resources. It is true that Spark tries to keep a balance between convenience and performance. This also implies that data serialization should be the first step in Spark tuning for better performance.
Spark provides two options for data serialization: Java serialization and Kryo serialization libraries:
You can start using Kryo by initializing your Spark job with a SparkConf and calling conf.set(spark.serializer, org.apache.spark.serializer.KryoSerializer). To register your own custom classes with Kryo, use the registerKryoClasses method, as follows:
val conf = new SparkConf()
.setMaster(“local[*]”)
.setAppName(“MyApp”)
conf.registerKryoClasses(Array(classOf[MyOwnClass1], classOf[MyOwnClass2]))
val sc = new SparkContext(conf)
If your objects are large, you may also need to increase the spark.kryoserializer.buffer config. This value needs to be large enough to hold the largest object you serialize. Finally, if you don't register your custom classes, Kryo still works; however, the full class name with each object needs to be stored, which is wasteful indeed.
For example, in the logging subsection at the end of the monitoring Spark jobs section, the logging and computing can be optimized using the Kryo serialization. At first, just create the MyMapper class as a normal class (that is, without any serialization), as follows:
class MyMapper(n: Int) { // without any serialization
@transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger")
def MyMapperDosomething(rdd: RDD[Int]): RDD[String] = rdd.map { i =>
log.warn("mapping: " + i)
(i + n).toString
}
}
Now, let's register this class as a Kyro serialization class and then set the Kyro serialization as follows:
conf.registerKryoClasses(Array(classOf[MyMapper])) // register the class with Kyro
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") // set Kayro serialization
That's all you need. The full source code of this example is given in the following. You should be able to run and observe the same output, but an optimized one as compared to the previous example:
package com.chapter14.Serilazition
import org.apache.spark._
import org.apache.spark.rdd.RDD
class MyMapper(n: Int) { // without any serilization
@transient lazy val log = org.apache.log4j.LogManager.getLogger
("myLogger")
def MyMapperDosomething(rdd: RDD[Int]): RDD[String] = rdd.map { i =>
log.warn("mapping: " + i)
(i + n).toString
}
}
//Companion object
object MyMapper {
def apply(n: Int): MyMapper = new MyMapper(n)
}
//Main object
object KyroRegistrationDemo {
def main(args: Array[String]) {
val log = LogManager.getRootLogger
log.setLevel(Level.WARN)
val conf = new SparkConf()
.setAppName("My App")
.setMaster("local[*]")
conf.registerKryoClasses(Array(classOf[MyMapper2]))
// register the class with Kyro
conf.set("spark.serializer", "org.apache.spark.serializer
.KryoSerializer") // set Kayro serilazation
val sc = new SparkContext(conf)
log.warn("Started")
val data = sc.parallelize(1 to 100000)
val mapper = MyMapper(1)
val other = mapper.MyMapperDosomething(data)
other.collect()
log.warn("Finished")
}
}
The output is as follows:
17/04/29 15:33:43 WARN root: Started
.
.
17/04/29 15:31:51 WARN myLogger: mapping: 1
17/04/29 15:31:51 WARN myLogger: mapping: 49992
17/04/29 15:31:51 WARN myLogger: mapping: 49999
17/04/29 15:31:51 WARN myLogger: mapping: 50000
.
.
17/04/29 15:31:51 WARN root: Finished
Well done! Now let's have a quick look at how to tune the memory. We will look at some advanced strategies to make sure the efficient use of the main memory in the next section.
Memory tuning
In this section, we will discuss some advanced strategies that can be used by users like you to make sure that an efficient use of memory is carried out while executing your Spark jobs. More specifically, we will show how to calculate the memory usages of your objects. We will suggest some advanced ways to improve it by optimizing your data structures or by converting your data objects in a serialized format using Kryo or Java serializer. Finally, we will look at how to tune Spark's Java heap size, cache size, and the Java garbage collector.
There are three considerations in tuning memory usage:
Memory usage and management
Memory usages by your Spark application and underlying computing nodes can be categorized as execution and storage. Execution memory is used during the computation in merge, shuffles, joins, sorts, and aggregations. On the other hand, storage memory is used for caching and propagating internal data across the cluster. In short, this is due to the large amount of I/O across the network.
Technically, Spark caches network data locally. While working with Spark iteratively or interactively, caching or persistence are optimization techniques in Spark. This two help in saving interim partial results so that they can be reused in subsequent stages. Then these interim results (as RDDs) can be kept in memory (default) or more solid storage, such as a disk, and/or replicated. Furthermore, RDDs can be cached using cache operations too. They can also be persisted using a persist operation. The difference between cache and persist operations is purely syntactic. The cache is a synonym of persisting or persists (MEMORY_ONLY), that is, the cache is merely persisted with the default storage level MEMORY_ONLY.
If you go under the Storage tab in your Spark web UI, you should observe the memory/storage used by an RDD, DataFrame, or Dataset object, as shown in Figure 10. Although there are two relevant configurations for tuning memory in Spark, users do not need to readjust them. The reason is that the default values set in the configuration files are enough for your requirements and workloads.
spark.memory.fraction is the size of the unified region as a fraction of (JVM heap space - 300 MB) (default 0.6). The rest of the space (40%) is reserved for user data structures, internal metadata in Spark, and safeguarding against OOM errors in case of sparse and unusually large records. On the other hand, spark.memory.storageFraction expresses the size of R storage space as a fraction of the unified region (default is 0.5). The default value of this parameter is 50% of Java heap space, that is, 300 MB.
Now, one question might arise in your mind: which storage level to choose? To answer this question, Spark storage levels provide you with different trade-offs between memory usage and CPU efficiency. If your RDDs fit comfortably with the default storage level (MEMORY_ONLY), let your Spark driver or master go with it. This is the most memory-efficient option, allowing operations on the RDDs to run as fast as possible. You should let it go with this because this is the most memory-efficient option. This also allows numerous operations on the RDDs to be done as fast as possible.
If your RDDs do not fit the main memory, that is, if MEMORY_ONLY does not work out, you should try using MEMORY_ONLY_SER. It is strongly recommended to not spill your RDDs to disk unless your UDF (aka user-defined function that you have defined for processing your dataset) is too expensive. This also applies if your UDF filters a large amount of the data during the execution stages. In other cases, recomputing a partition, that is, repartition may be faster for reading data objects from disk. Finally, if you want fast fault recovery, use the replicated storage levels.
In summary, there are the following StorageLevels available and supported in Spark 2.x: (number _2 in the name denotes 2 replicas):
Note that cache is a synonym of persist (MEMORY_ONLY). This means that cache is solely persisted with the default storage level, that is, MEMORY_ONLY. Detailed information can be found at https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd-StorageLevel.html.
Tuning the data structures
The first way to reduce extra memory usage is to avoid some features in the Java data structure that impose extra overheads. For example, pointer-based data structures and wrapper objects contribute to nontrivial overheads. To tune your source code with a better data structure, we provide some suggestions here, which can be useful.
First, design your data structures such that you use arrays of objects and primitive types more. Thus, this also suggests using standard Java or Scala collection classes like Set, List, Queue, ArrayList, Vector, LinkedList, PriorityQueue, HashSet, LinkedHashSet, and TreeSet more frequently.
Second, when possible, avoid using nested structures with a lot of small objects and pointers so ...
Serialized RDD storage
As discussed already, despite other types of memory tuning, when your objects are too large to fit in the main memory or disk efficiently, a simpler and better way of reducing memory usage is storing them in a serialized form.
This can be done using the serialized storage levels in the RDD persistence API, such as MEMORY_ONLY_SER. For more information, refer to the previous section on memory management and start exploring available options.
If you specify using MEMORY_ONLY_SER, Spark will then store each RDD partition as one large byte array. However, the only downside of this approach is that it can slow down data access times. This is reasonable and obvious too; fairly speaking, there's no way to avoid it since each object needs to deserialize on the flyback while reusing.
As discussed previously, we highly recommend using Kryo serialization instead of Java serialization to make data access a bit faster.
Garbage collection tuning
Although it is not a major problem in your Java or Scala programs that just read an RDD sequentially or randomly once and then execute numerous operations on it, Java Virtual Machine (JVM) GC can be problematic and complex if you have a large amount of data objects w.r.t RDDs stored in your driver program. When the JVM needs to remove obsolete and unused objects from the old objects to make space for the newer ones, it is mandatory to identify them and remove them from the memory eventually. However, this is a costly operation in terms of processing time and storage. You might be wondering, that the cost of GC is proportional to the number of Java objects stored in your main memory. Therefore, we strongly suggest ...
Level of parallelism
Although you can control the number of map tasks to be executed through optional parameters to the SparkContext.text file, Spark sets the same on each file according to its size automatically. In addition to this, for a distributed reduce operation such as groupByKey and reduceByKey, Spark uses the largest parent RDD's number of partitions. However, sometimes, we make one mistake, that is, not utilizing the full computing resources for your nodes in a computing cluster. As a result, the full computing resources will not be fully exploited unless you set and specify the level of parallelism for your Spark job explicitly. Therefore, you should set the level of parallelism as the second argument.
For more on this option, please refer to https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.PairRDDFunctions.
Alternatively, you can do it by setting the config property spark.default.parallelism to change the default. For operations such as parallelizing with no parent RDDs, the level of parallelism depends on the cluster manager, that is, standalone, Mesos, or YARN. For the local mode, set the level of parallelism equal to the number of cores on the local machine. For Mesos or YARN, set the fine-grained mode to 8. In other cases, the total number of cores on all executor nodes or 2, whichever is larger, and in general, 2-3 tasks per CPU core in your cluster is recommended.
Broadcasting
A broadcast variable enables a Spark developer to keep a read-only copy of an instance or class variable cached on each driver program, rather than transferring a copy of its own with the dependent tasks. However, an explicit creation of a broadcast variable is useful only when tasks across multiple stages need the same data in deserialize form.
In Spark application development, using the broadcasting option of SparkContext can reduce the size of each serialized task greatly. This also helps to reduce the cost of initiating a Spark job in a cluster. If you have a certain task in your Spark job that uses large objects from the driver program, you should turn it into a broadcast variable.
To use a broadcast variable in a Spark ...
Data locality
Data locality means how close the data is to the code to be processed. Technically, data locality can have a nontrivial impact on the performance of a Spark job to be executed locally or in cluster mode. As a result, if the data and the code to be processed are tied together, computation is supposed to be much faster. Usually, shipping a serialized code from a driver to an executor is much faster since the code size is much smaller than that of data.
In Spark application development and job execution, there are several levels of locality. In order from closest to farthest, the level depends on the current location of the data you have to process:
Data Locality | Meaning | Special Notes |
PROCESS_LOCAL | Data and code are in the same location | Best locality possible |
NODE_LOCAL | Data and the code are on the same node, for example, data stored on HDFS | A bit slower than PROCESS_LOCAL since the data has to propagate across the processes and network |
NO_PREF | The data is accessed equally from somewhere else | Has no locality preference |
RACK_LOCAL | The data is on the same rack of servers over the network | Suitable for large-scale data processing |
ANY | The data is elsewhere on the network and not in the same rack | Not recommended unless there are no other options available |
Table 2: Data locality and Spark
Spark is developed such that it prefers to schedule all tasks at the best locality level, but this is not guaranteed and not always possible either. As a result, based on the situation in the computing nodes, Spark switches to lower locality levels if available computing resources are too occupied. Moreover, if you would like to have the best data locality, there are two choices for you:
Summary
In this chapter, we discussed some advanced topics of Spark toward making your Spark job's performance better. We discussed some basic techniques to tune your Spark jobs. We discussed how to monitor your jobs by accessing Spark web UI. We discussed how to set Spark configuration parameters. We also discussed some common mistakes made by Spark users and provided some recommendations. Finally, we discussed some optimization techniques that help tune Spark applications.
Testing and Debugging Spark
In an ideal world, we write perfect Spark codes and everything runs perfectly all the time, right? Just kidding; in practice, we know that working with large-scale datasets is hardly ever that easy, and there are inevitably some data points that will expose any corner cases with your code.
Considering the aforementioned challenges, therefore, in this chapter, we will see how difficult it can be to test an application if it is distributed; then, we will see some ways to tackle this. In a nutshell, the following topics will be cover throughout this chapter:
Testing in a distributed environment
Leslie Lamport defined the term distributed system as follows:
"A distributed system is one in which I cannot get any work done because some machine I have never heard of has crashed."
Resource sharing through World Wide Web (aka WWW), a network of connected computers (aka a cluster), is a good example of distributed systems. These distributed environments are often complex and lots of heterogeneity occurs frequently. Testing in these kinds of heterogeneous environments is also challenging. In this section, at first, we will observe some commons issues that are often raised while working with such a system.
Distributed environment
There are numerous definitions of distributed systems. Let's see some definition and then we will try to correlate the aforementioned categories afterward. Coulouris defines a distributed system as a system in which hardware or software components located at networked computers communicate and coordinate their actions only by message passing. On the other hand, Tanenbaum defines the term in several ways:
Now, based on the preceding definition, distributed systems can be categorized as follows:
Issues in a distributed system
Here we will discuss some major issues that need to be taken care of during the software and hardware testing so that Spark jobs run smoothly in cluster computing, which is essentially a distributed computing environment.
Note that all the issues are unavoidable, but we can at least tune them for betterment. You should follow the instructions and recommendations given in the previous chapter. According to Kamal Sheel Mishra and Anil Kumar Tripathi, Some Issues, Challenges and Problems of Distributed Software System, in International Journal of Computer Science and Information Technologies, Vol. 5 (4), 2014, 4922-4925. URL: https://pdfs.semanticscholar.org/4c6d/c4d739bad13bcd0398e5180c1513f18275d8.pdf, there ...
Challenges of software testing in a distributed environment
There are some common challenges associated with the tasks in an agile software development, and those challenges become more complex while testing the software in a distributed environment before deploying them eventually. Often team members need to merge the software components in parallel after the bugs proliferating. However, based on urgency, often the merging occurs before the testing phase. Sometimes, many stakeholders are distributed across teams. Therefore, there's a huge potential for misunderstanding and teams often lose in between.
For example, Cloud Foundry (https://www.cloudfoundry.org/) is an open source heavily distributed PaaS software system for managing deployment and scalability of applications in the Cloud. It promises different features such as scalability, reliability, and elasticity that come inherently to deployments on Cloud Foundry require the underlying distributed system to implement measures to ensure robustness, resiliency, and failover.
The process of software testing is long known to comprise unit testing, integration testing, smoke testing, acceptance testing, scalability testing, performance testing, and quality of service testing. In Cloud Foundry, the process of testing a distributed system is shown in the following figure:
Figure 1: An example of software testing in a distributed environment like Cloud
As shown in the preceding figure (first column), the process of testing in a distributed environment like Cloud starts with running unit tests against the smallest points of contract in the system. Following successful execution of all the unit tests, integration tests are run to validate the behavior of interacting components as part of a single coherent software system (second column) running on a single box (for example, a Virtual Machine (VM) or bare metal). However, while these tests validate the overall behavior of the system as a monolith, they do not guarantee system validity in a distributed deployment. Once integration tests pass, the next step (third column) is to validate distributed deployment of the system and run the smoke tests.
As you know, that the successful configuration of the software and execution of unit tests prepares us to validate acceptability of system behavior. This verification is done by running acceptance tests (fourth column). Now, to overcome the aforementioned issues and challenges in distributed environments, there are also other hidden challenges that need to be solved by researchers and big data engineers, but those are actually out of the scope of this book.
Now that we know what real challenges are for the software testing in a distributed environment, now let's start testing our Spark code a bit. The next section is dedicated to testing Spark applications.
Testing Spark applications
There are many ways to try to test your Spark code, depending on whether it's Java (you can do basic JUnit tests to test non-Spark pieces) or ScalaTest for your Scala code. You can also do full integration tests by running Spark locally or on a small test cluster. Another awesome choice from Holden Karau is using Spark-testing base. You probably know that there is no native library for unit testing in Spark as of yet. Nevertheless, we can have the following two alternatives to use two libraries:
However, before starting to test your Spark applications written in Scala, some background knowledge about unit testing and testing Scala methods is a mandate.
Testing Scala methods
Here, we will see some simple techniques for testing Scala methods. For Scala users, this is the most familiar unit testing framework (you can also use it for testing Java code and soon for JavaScript). ScalaTest supports a number of different testing styles, each designed to support a specific type of testing need. For details, see ScalaTest User Guide at http://www.scalatest.org/user_guide/selecting_a_style. Although ScalaTest supports many styles, one of the quickest ways to get started is to use the following ScalaTest traits and write the tests in the TDD (test-driven development) style:
Feel free to browse the preceding URLs to learn more about these traits; that will make the rest of this tutorial go smoothly.
It is to be noted that the TDD is a programming technique to develop software, and it states that you should start development from tests. Hence, it doesn't affect how tests are written, but when tests are written. There is no trait or testing style to enforce or encourage TDD in ScalaTest.FunSuite, Assertions, and BeforeAndAfter are only more similar to the xUnit testing frameworks.
There are three assertions available in the ScalaTest in any style trait:
The ScalaTest's assertions are defined in the trait Assertions, which is further extended by Suite. In brief, the Suite trait is the super trait for all the style traits. According to the ScalaTest documentation at http://www.scalatest.org/user_guide/using_assertions, the Assertions trait also provides the following features:
From the preceding list, we will show a few of them. In your Scala program, you can write assertions by calling assert and passing a Boolean expression in. You can simply start writing your simple unit test case using Assertions. The Predef is an object, where this behavior of assert is defined. Note that all the members of the Predef get imported into your every Scala source file. The following source code will print Assertion success for the following case:
package com.chapter16.SparkTesting
object SimpleScalaTest {
def main(args: Array[String]):Unit= {
val a = 5
val b = 5
assert(a == b)
println("Assertion success")
}
}
However, if you make a = 2 and b = 1, for example, the assertion will fail and you will experience the following output:
Figure 2: An example of assertion fail
If you pass a true expression, assert will return normally. However, assert will terminate abruptly with an Assertion Error if the supplied expression is false. Unlike the AssertionError and TestFailedException forms, the ScalaTest's assert provides more information that will tell you exactly in which line the test case failed or for which expression. Therefore, ScalaTest's assert provides better error messages than Scala's assert.
For example, for the following source code, you should experience TestFailedException that will tell that 5 did not equal 4:
package com.chapter16.SparkTesting
import org.scalatest.Assertions._
object SimpleScalaTest {
def main(args: Array[String]):Unit= {
val a = 5
val b = 4
assert(a == b)
println("Assertion success")
}
}
The following figure shows the output of the preceding Scala test:
Figure 3: An example of TestFailedException
The following source code explains the use of the assertResult unit test to test the result of your method:
package com.chapter16.SparkTesting
import org.scalatest.Assertions._
object AssertResult {
def main(args: Array[String]):Unit= {
val x = 10
val y = 6
assertResult(3) {
x - y
}
}
}
The preceding assertion will be failed and Scala will throw an exception TestFailedException and prints Expected 3 but got 4 (Figure 4):
Figure 4: Another example of TestFailedException
Now, let's see a unit testing to show expected exception:
package com.chapter16.SparkTesting
import org.scalatest.Assertions._
object ExpectedException {
def main(args: Array[String]):Unit= {
val s = "Hello world!"
try {
s.charAt(0)
fail()
} catch {
case _: IndexOutOfBoundsException => // Expected, so continue
}
}
}
If you try to access an array element outside the index, the preceding code will tell you if you're allowed to access the first character of the preceding string Hello world!. If your Scala program can access the value in an index, the assertion will fail. This also means that the test case has failed. Thus, the preceding test case will fail naturally since the first index contains the character H, and you should experience the following error message (Figure 5):
Figure 5: Third example of TestFailedException
However, now let's try to access the index at position -1 as follows:
package com.chapter16.SparkTesting
import org.scalatest.Assertions._
object ExpectedException {
def main(args: Array[String]):Unit= {
val s = "Hello world!"
try {
s.charAt(-1)
fail()
} catch {
case _: IndexOutOfBoundsException => // Expected, so continue
}
}
}
Now the assertion should be true, and consequently, the test case will be passed. Finally, the code will terminate normally. Now, let's check our code snippets if it will compile or not. Very often, you may wish to ensure that a certain ordering of the code that represents emerging "user error" does not compile at all. The objective is to check the strength of the library against the error to disallow unwanted result and behavior. ScalaTest's Assertions trait includes the following syntax for that purpose:
assertDoesNotCompile("val a: String = 1")
If you want to ensure that a snippet of code does not compile because of a type error (as opposed to a syntax error), use the following:
assertTypeError("val a: String = 1")
A syntax error will still result on a thrown TestFailedException. Finally, if you want to state that a snippet of code does compile, you can make that more obvious with the following:
assertCompiles("val a: Int = 1")
A complete example is shown as follows:
package com.chapter16.SparkTesting
import org.scalatest.Assertions._
object CompileOrNot {
def main(args: Array[String]):Unit= {
assertDoesNotCompile("val a: String = 1")
println("assertDoesNotCompile True")
assertTypeError("val a: String = 1")
println("assertTypeError True")
assertCompiles("val a: Int = 1")
println("assertCompiles True")
assertDoesNotCompile("val a: Int = 1")
println("assertDoesNotCompile True")
}
}
The output of the preceding code is shown in the following figure:
Figure 6: Multiple tests together
Now we would like to finish the Scala-based unit testing due to page limitation. However, for other unit test cases, you can refer the Scala test guideline at http://www.scalatest.org/user_guide.
Unit testing
In software engineering, often, individual units of source code are tested to determine whether they are fit for use or not. This way of software testing method is also called the unit testing. This testing ensures that the source code developed by a software engineer or developer meets the design specifications and works as intended.
On the other hand, the goal of unit testing is to separate each part of the program (that is, in a modular way). Then try to observe if all the individual parts are working normally. There are several benefits of unit testing in any software system:
Testing Spark applications
We have already seen how to test your Scala code using built-in ScalaTest package of Scala. However, in this subsection, we will see how we could test our Spark application written in Scala. The following three methods will be discussed:
Methods 1 and 2 will be discussed here with some practical codes. However, a detailed discussion on method 3 will be provided in the next subsection. To keep the understanding easy and simple, we will use the famous word counting applications to demonstrate methods 1 and 2.
Method 1: Using Scala JUnit test
Suppose you have written an application in Scala that can tell you how many words are there in a document or text file as follows:
package com.chapter16.SparkTestingimport org.apache.spark._import org.apache.spark.sql.SparkSessionclass wordCounterTestDemo { val spark = SparkSession .builder .master("local[*]") .config("spark.sql.warehouse.dir", "E:/Exp/") .appName(s"OneVsRestExample") .getOrCreate() def myWordCounter(fileName: String): Long = { val input = spark.sparkContext.textFile(fileName) val counts = input.flatMap(_.split(" ")).distinct() val counter = counts.count() counter }}
The preceding code simply parses a text file and performs a flatMap operation by simply splitting the words. Then, it performs ...
Method 2: Testing Scala code using FunSuite
Now, let's redesign the preceding test case by returning only the RDD of the texts in the document, as follows:
package com.chapter16.SparkTesting
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
class wordCountRDD {
def prepareWordCountRDD(file: String, spark: SparkSession): RDD[(String, Int)] = {
val lines = spark.sparkContext.textFile(file)
lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)
}
}
So, the prepareWordCountRDD() method in the preceding class returns an RDD of string and integer values. Now, if we want to test the prepareWordCountRDD() method's functionality, we can do it more explicit by extending the test class with FunSuite and BeforeAndAfterAll from the ScalaTest package of Scala. The testing works in the following ways:
Based on the preceding steps, let's see a class for testing the preceding prepareWordCountRDD() method:
package com.chapter16.SparkTesting
import org.scalatest.{ BeforeAndAfterAll, FunSuite }
import org.scalatest.Assertions._
import org.apache.spark.sql.SparkSession
import org.apache.spark.rdd.RDD
class wordCountTest2 extends FunSuite with BeforeAndAfterAll {
var spark: SparkSession = null
def tokenize(line: RDD[String]) = {
line.map(x => x.split(' ')).collect()
}
override def beforeAll() {
spark = SparkSession
.builder
.master("local[*]")
.config("spark.sql.warehouse.dir", "E:/Exp/")
.appName(s"OneVsRestExample")
.getOrCreate()
}
test("Test if two RDDs are equal") {
val input = List("To be,", "or not to be:", "that is the question-", "William Shakespeare")
val expected = Array(Array("To", "be,"), Array("or", "not", "to", "be:"), Array("that", "is", "the", "question-"), Array("William", "Shakespeare"))
val transformed = tokenize(spark.sparkContext.parallelize(input))
assert(transformed === expected)
}
test("Test for word count RDD") {
val fileName = "C:/Users/rezkar/Downloads/words.txt"
val obj = new wordCountRDD
val result = obj.prepareWordCountRDD(fileName, spark)
assert(result.count() === 214)
}
override def afterAll() {
spark.stop()
}
}
The first test says that if two RDDs materialize in two different ways, the contents should be the same. Thus, the first test should get passed. We will see this in the following example. Now, for the second test, as we have seen previously, the word count of RDD is 214, but let's assume it unknown for a while. If it's 214 coincidentally, the test case should pass, which is its expected behavior.
Thus, we are expecting both tests to be passed. Now, on Eclipse, run the test suite as ScalaTest-File, as shown in the following figure:
Figure 10: running the test suite as ScalaTest-File
Now you should observe the following output (Figure 11). The output shows how many test cases we performed and how many of them passed, failed, canceled, ignored, or was in pending. It also shows the time to execute the overall test.
Figure 11: Test result when running the two test suites as ScalaTest-file
Fantastic! The test case passed. Now, let's try changing the compare value in the assertion in the two separate tests using the test() method as follows:
test("Test for word count RDD") {
val fileName = "data/words.txt"
val obj = new wordCountRDD
val result = obj.prepareWordCountRDD(fileName, spark)
assert(result.count() === 210)
}
test("Test if two RDDs are equal") {
val input = List("To be", "or not to be:", "that is the question-", "William Shakespeare")
val expected = Array(Array("To", "be,"), Array("or", "not", "to", "be:"), Array("that", "is", "the", "question-"), Array("William", "Shakespeare"))
val transformed = tokenize(spark.sparkContext.parallelize(input))
assert(transformed === expected)
}
Now, you should expect that the test case will be failed. Now run the earlier class as ScalaTest-File (Figure 12):
Figure 12: Test result when running the preceding two test suites as ScalaTest-File
Well done! We have learned how to perform the unit testing using Scala's FunSuite. However, if you evaluate the preceding method carefully, you should agree that there are several disadvantages. For example, you need to ensure an explicit management of SparkContext creation and destruction. As a developer or programmer, you have to write more lines of code for testing a sample method. Sometimes, code duplication occurs as the Before and the After step has to be repeated in all test suites. However, this is debatable since the common code could be put in a common trait.
Now the question is how could we improve our experience? My recommendation is using the Spark testing base to make life easier and more straightforward. We will discuss how we could perform the unit testing the Spark testing base.
Method 3: Making life easier with Spark testing base
Spark testing base helps you to test your most of the Spark codes with ease. So, what are the pros of this method then? There are many in fact. For example, using this the code is not verbose but we can get a very succinct code. The API is itself richer than that of ScalaTest or JUnit. Multiple languages support, for example, Scala, Java, and Python. It has the support of built-in RDD comparators. You can also use it for testing streaming applications. And finally and most importantly, it supports both local and cluster mode testings. This is most important for testing in a distributed environment.
The GitHub repo is located at https://github.com/holdenk/spark-testing-base.
Before starting ...
Configuring Hadoop runtime on Windows
We have already seen how to test your Spark applications written in Scala on Eclipse or IntelliJ, but there is another potential issue that should not be overlooked. Although Spark works on Windows, Spark is designed to be run on the UNIX-like operating system. Therefore, if you are working in a Windows environment, then extra care needs to be taken.
While using Eclipse or IntelliJ to develop your Spark applications for solving data analytics, machine learning, data science, or deep learning applications on Windows, you might face an I/O exception error and your application might not compile successfully or may be interrupted. Actually, the thing is that Spark expects that there is a runtime environment for Hadoop on Windows too. For example, if you run a Spark application, say KMeansDemo.scala, on Eclipse for the first time, you will experience an I/O exception saying the following:
17/02/26 13:22:00 ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
The reason is that by default, Hadoop is developed for the Linux environment, and if you are developing your Spark applications on Windows platform, a bridge is required that will provide an environment for the Hadoop runtime for Spark to be properly executed. The details of the I/O exception can be seen in the following figure:
Figure 14: I/O exception occurred due to the failure of not to locate the winutils binary in the Hadoop binary path
Now, how to get rid of this problem then? The solution is straightforward. As the error message says, we need to have an executable, namely winutils.exe. Now download the winutils.exe file from https://github.com/steveloughran/winutils/tree/master/hadoop-2.7.1/bin, paste it in the Spark distribution directory, and configure Eclipse. More specifically, suppose your Spark distribution containing Hadoop is located at C:/Users/spark-2.1.0-bin-hadoop2.7. Inside the Spark distribution, there is a directory named bin. Now, paste the executable there (that is, path = C:/Users/spark-2.1.0-binhadoop2.7/bin/).
The second phase of the solution is going to Eclipse and then selecting the main class (that is, KMeansDemo.scala in this case), and then going to the Run menu. From the Run menu, go to the Run Configurations option and from there select the Environment tab, as shown in the following figure:
Figure 15: Solving the I/O exception occurred due to the absence of winutils binary in the Hadoop binary path
If you select the tab, you a will have the option to create a new environmental variable for Eclipse using the JVM. Now create a new environmental variable named HADOOP_HOME and put the value as C:/Users/spark-2.1.0-bin-hadoop2.7/. Now press on Apply button and rerun your application, and your problem should be resolved.
It is to be noted that while working with Spark on Windows in a PySpark, the winutils.exe file is required too.
Please make a note that the preceding solution is also applicable in debugging your applications. Sometimes, even if the preceding error occurs, your Spark application will run properly. However, if the size of the dataset is large, it is most likely that the preceding error will occur.
Debugging Spark applications
In this section, we will see how to debug Spark applications that are running locally (on Eclipse or IntelliJ), standalone or cluster mode in YARN or Mesos. However, before diving deeper, it is necessary to know about logging in the Spark application.
Logging with log4j with Spark recap
As stated earlier, Spark uses log4j for its own logging. If you configured Spark properly, Spark gets logged all the operation to the shell console. A sample snapshot of the file can be seen from the following figure:
Figure 16: A snap of the log4j.properties file
Set the default spark-shell log level to WARN. When running the spark-shell, the log level for this class is used to overwrite the root logger's log level so that the user can have different defaults for the shell and regular Spark apps. We also need to append JVM arguments when launching a job executed by an executor and managed by the driver. For this, you should edit the conf/spark-defaults.conf. In short, the following options can be added:
spark.executor.extraJavaOptions=-Dlog4j.configuration=file:/usr/local/spark-2.1.1/conf/log4j.properties spark.driver.extraJavaOptions=-Dlog4j.configuration=file:/usr/local/spark-2.1.1/conf/log4j.properties
To make the discussion clearer, we need to hide all the logs generated by Spark. We then can redirect them to be logged in the file system. On the other hand, we want our own logs to be logged in the shell and a separate file so that they don't get mixed up with the ones from Spark. From here, we will point Spark to the files where our own logs are, which in this particular case is /var/log/sparkU.log. This log4j.properties file is then picked up by Spark when the application starts, so we don't have to do anything aside of placing it in the mentioned location:
package com.chapter14.Serilazition
import org.apache.log4j.LogManager
import org.apache.log4j.Level
import org.apache.spark.sql.SparkSession
object myCustomLog {
def main(args: Array[String]): Unit = {
val log = LogManager.getRootLogger
//Everything is printed as INFO once the log level is set to INFO untill you set the level to new level for example WARN.
log.setLevel(Level.INFO)
log.info("Let's get started!")
// Setting logger level as WARN: after that nothing prints other than WARN
log.setLevel(Level.WARN)
// Creating Spark Session
val spark = SparkSession
.builder
.master("local[*]")
.config("spark.sql.warehouse.dir", "E:/Exp/")
.appName("Logging")
.getOrCreate()
// These will note be printed!
log.info("Get prepared!")
log.trace("Show if there is any ERROR!")
//Started the computation and printing the logging information
log.warn("Started")
spark.sparkContext.parallelize(1 to 20).foreach(println)
log.warn("Finished")
}
}
In the preceding code, everything is printed as INFO once the log level is set to INFO until you set the level to a new level for example WARN. However, after that no info or trace and so on, that will not be printed. In addition to that, there are several valid logging levels supported by log4j with Spark. The successful execution of the preceding code should generate the following output:
17/05/13 16:39:14 INFO root: Let's get started!
17/05/13 16:39:15 WARN root: Started
4
1
2
5
3
17/05/13 16:39:16 WARN root: Finished
You can also set up the default logging for Spark shell in conf/log4j.properties. Spark provides a template of the log4j as a property file, and we can extend and modify that file for logging in Spark. Move to the SPARK_HOME/conf directory and you should see the log4j.properties.template file. You should use the following conf/log4j.properties.template after renaming it to log4j.properties. While developing your Spark application, you can put the log4j.properties file under your project directory while working on an IDE-based environment such as Eclipse. However, to disable logging completely, just set the log4j.logger.org flags as OFF as follows:
log4j.logger.org=OFF
So far, everything is very easy. However, there is a problem we haven't noticed yet in the preceding code segment. One drawback of the org.apache.log4j.Logger class is that it is not serializable, which implies that we cannot use it inside a closure while doing operations on some parts of the Spark API. For example, suppose we do the following in our Spark code:
object myCustomLogger {
def main(args: Array[String]):Unit= {
// Setting logger level as WARN
val log = LogManager.getRootLogger
log.setLevel(Level.WARN)
// Creating Spark Context
val conf = new SparkConf().setAppName("My App").setMaster("local[*]")
val sc = new SparkContext(conf)
//Started the computation and printing the logging information
//log.warn("Started")
val i = 0
val data = sc.parallelize(i to 100000)
data.map{number =>
log.info(“My number”+ i)
number.toString
}
//log.warn("Finished")
}
}
You should experience an exception that says Task not serializable as follows:
org.apache.spark.SparkException: Job aborted due to stage failure: Task not serializable: java.io.NotSerializableException: ...
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
Caused by: java.io.NotSerializableException: org.apache.log4j.spi.RootLogger
Serialization stack: object not serializable
At first, we can try to solve this problem in a naive way. What you can do is just make the Scala class (that does the actual operation) Serializable using extends Serializable . For example, the code looks as follows:
class MyMapper(n: Int) extends Serializable {
@transient lazy val log = org.apache.log4j.LogManager.getLogger("myLogger")
def logMapper(rdd: RDD[Int]): RDD[String] =
rdd.map { i =>
log.warn("mapping: " + i)
(i + n).toString
}
}
This section is intended for carrying out a discussion on logging. However, we take the opportunity to make it more versatile for general purpose Spark programming and issues. In order to overcome the task not serializable error in a more efficient way, the compiler will try to send the whole object (not only the lambda) by making it serializable and forces SPark to accept that. However, it increases shuffling significantly, especially for big objects! The other ways are making the whole class Serializable or by declaring the instance only within the lambda function passed in the map operation. Sometimes, keeping the not Serializable objects across the nodes can work. Lastly, use the forEachPartition() or mapPartitions() instead of just map() and create the not Serializable objects. In summary, these are the ways to solve the problem around:
In the preceding code, we have used the annotation @transient lazy, which marks the Logger class to be nonpersistent. On the other hand, an object containing the method apply (i.e. MyMapperObject) that instantiate the object of the MyMapper class is as follows:
//Companion object
object MyMapper {
def apply(n: Int): MyMapper = new MyMapper(n)
}
Finally, the object containing the main() method is as follows:
//Main object
object myCustomLogwithClosureSerializable {
def main(args: Array[String]) {
val log = LogManager.getRootLogger
log.setLevel(Level.WARN)
val spark = SparkSession
.builder
.master("local[*]")
.config("spark.sql.warehouse.dir", "E:/Exp/")
.appName("Testing")
.getOrCreate()
log.warn("Started")
val data = spark.sparkContext.parallelize(1 to 100000)
val mapper = MyMapper(1)
val other = mapper.logMapper(data)
other.collect()
log.warn("Finished")
}
Now, let's see another example that provides better insight to keep fighting the issue we are talking about. Suppose we have the following class that computes the multiplication of two integers:
class MultiplicaitonOfTwoNumber {
def multiply(a: Int, b: Int): Int = {
val product = a * b
product
}
}
Now, essentially, if you try to use this class for computing the multiplication in the lambda closure using map(), you will get the Task Not Serializable error that we described earlier. Now we simply can use foreachPartition() and the lambda inside as follows:
val myRDD = spark.sparkContext.parallelize(0 to 1000)
myRDD.foreachPartition(s => {
val notSerializable = new MultiplicaitonOfTwoNumber
println(notSerializable.multiply(s.next(), s.next()))
})
Now, if you compile it, it should return the desired result. For your ease, the complete code with the main() method is as follows:
package com.chapter16.SparkTesting
import org.apache.spark.sql.SparkSession
class MultiplicaitonOfTwoNumber {
def multiply(a: Int, b: Int): Int = {
val product = a * b
product
}
}
object MakingTaskSerilazible {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.master("local[*]")
.config("spark.sql.warehouse.dir", "E:/Exp/")
.appName("MakingTaskSerilazible")
.getOrCreate()
val myRDD = spark.sparkContext.parallelize(0 to 1000)
myRDD.foreachPartition(s => {
val notSerializable = new MultiplicaitonOfTwoNumber
println(notSerializable.multiply(s.next(), s.next()))
})
}
}
The output is as follows:
0
5700
1406
156
4032
7832
2550
650
Debugging the Spark application
In this section, we will discuss how to debug Spark applications running on locally on Eclipse or IntelliJ, as standalone or cluster mode in YARN or Mesos. Before getting started, you can also read the debugging documentation at https://hortonworks.com/hadoop-tutorial/setting-spark-development-environment-scala/.
Debugging Spark application on Eclipse as Scala debug
To make this happen, just configure your Eclipse to debug your Spark applications as a regular Scala code debug. To configure select Run | Debug Configuration | Scala Application as shown in the following figure:
Figure 17: Configuring Eclipse to debug Spark applications as a regular Scala code debug
Suppose we want to debug our KMeansDemo.scala and ask Eclipse (you can have similar options on InteliJ IDE) to start the execution at line 56 and set the breakpoint in line 95. To do so, run your Scala code as debugging and you should observe the following scenario on Eclipse:
Figure 18: Debugging Spark applications on Eclipse
Then, Eclipse will pause on the line you ask it to stop the execution in line 95, as shown in the following screenshot:
Figure 19: Debugging Spark applications on Eclipse (breakpoint)
In summary, to simplify the preceding example, if there is any error between line 56 and line 95, Eclipse will show where the error actually occurs. Otherwise, it will follow the normal workflow if not interrupted.
Debugging Spark jobs running as local and standalone mode
While debugging your Spark application locally or as standalone mode, you should know that debugging the driver program and debugging one of the executors is different since using these two types of nodes requires different submission parameters passed to spark-submit. Throughout this section, I'll use port 4000 as the address. For example, if you want to debug the driver program, you can add the following to your spark-submit command:
--driver-java-options -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=4000
After that, you should set your remote debugger to connect to the node where you have submitted the driver program. For the preceding case, port number 4000 was ...
Debugging Spark applications on YARN or Mesos cluster
When you run a Spark application on YARN, there is an option that you can enable by modifying yarn-env.sh:
YARN_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=4000 $YARN_OPTS"
Now, the remote debugging will be available through port 4000 on your Eclipse or IntelliJ IDE. The second option is by setting the SPARK_SUBMIT_OPTS. You can use either Eclipse or IntelliJ to develop your Spark applications that can be submitted to be executed on remote multinode YARN clusters. What I do is that I create a Maven project on Eclipse or IntelliJ and package my Java or Scala application as a jar file and then submit it as a Spark job. However, in order to attach your IDE such as Eclipse or IntelliJ debugger to your Spark application, you can define all the submission parameters using the SPARK_SUBMIT_OPTS environment variable as follows:
$ export SPARK_SUBMIT_OPTS=-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=4000
Then submit your Spark job as follows (please change the values accordingly based on your requirements and setup):
$ SPARK_HOME/bin/spark-submit \
--class "com.chapter13.Clustering.KMeansDemo" \
--master yarn \
--deploy-mode cluster \
--driver-memory 16g \
--executor-memory 4g \
--executor-cores 4 \
--queue the_queue \
--num-executors 1\
--executor-cores 1 \
--conf "spark.executor.extraJavaOptions=-agentlib:jdwp=transport=dt_socket,server=n,address= host_name_to_your_computer.org:4000,suspend=n" \
--driver-java-options -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=4000 \
KMeans-0.0.1-SNAPSHOT-jar-with-dependencies.jar \
Saratoga_NY_Homes.txt
After running the preceding command, it will wait until you connect your debugger, as shown in the following: Listening for transport dt_socket at address: 4000. Now you can configure your Java remote application (Scala application will work too) on the IntelliJ debugger, as shown in the following screenshot:
Figure 20: Configuring remote debugger on IntelliJ
For the preceding case, 10.200.1.101 is the IP address of the remote computing node where your Spark job is basically running. Finally, you will have to start the debugger by clicking on Debug under IntelliJ's Run menu. Then, if the debugger connects to your remote Spark app, you will see the logging info in the application console on IntelliJ. Now if you can set the breakpoints and the rests of them are normal debugging.
The following figure shows an example how will you see on the IntelliJ when pausing a Spark job with a breakpoint:
Figure 21: An example how will you see on the IntelliJ when pausing a Spark job with a breakpoint
Although it works well, sometimes I experienced that using SPARK_JAVA_OPTS won't help you much in the debug process on Eclipse or even IntelliJ. Instead, use and export SPARK_WORKER_OPTS and SPARK_MASTER_OPTS while running your Spark jobs on a real cluster (YARN, Mesos, or AWS) as follows:
$ export SPARK_WORKER_OPTS="-Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=4000,suspend=n"
$ export SPARK_MASTER_OPTS="-Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=4000,suspend=n"
Then start your Master node as follows:
$ SPARKH_HOME/sbin/start-master.sh
Now open an SSH connection to your remote machine where the Spark job is actually running and map your localhost at 4000 (aka localhost:4000) to host_name_to_your_computer.org:5000, assuming the cluster is at host_name_to_your_computer.org:5000 and listening on port 5000. Now that your Eclipse will consider that you're just debugging your Spark application as a local Spark application or process. However, to make this happen, you will have to configure the remote debugger on Eclipse, as shown in the following figure:
Figure 22: Connecting remote host on Eclipse for debugging Spark application
That's it! Now you can debug on your live cluster as if it were your desktop. The preceding examples are for running with the Spark Master set as YARN-client. However, it should also work when running on a Mesos cluster. If you're running using YARN-cluster mode, you may have to set the driver to attach to your debugger rather than attaching your debugger to the driver since you won't necessarily know in advance what mode the driver will be executing on.
Debugging Spark application using SBT
The preceding setting works mostly on Eclipse or IntelliJ using the Maven project. Suppose that you already have your application done and are working on your preferred IDEs such as IntelliJ or Eclipse as follows:
object DebugTestSBT { def main(args: Array[String]): Unit = { val spark = SparkSession .builder .master("local[*]") .config("spark.sql.warehouse.dir", "C:/Exp/") .appName("Logging") .getOrCreate() spark.sparkContext.setCheckpointDir("C:/Exp/") println("-------------Attach debugger now!--------------") Thread.sleep(8000) // code goes here, with breakpoints set on the lines you want to pause }}
Now, if you want to get this job to the local cluster (standalone), the very first step is packaging ...
Summary
In this chapter, you saw how difficult the testing and debugging your Spark applications are. These can even be more critical in a distributed environment. We also discussed some advanced ways to tackle them altogether. In summary, you learned the way of testing in a distributed environment. Then you learned a better way of testing your Spark application. Finally, we discussed some advanced ways of debugging Spark applications.
This is more or less the end of our little journey with advanced topics on Spark. Now, a general suggestion from our side to you as readers or if you are relatively newer to the data science, data analytics, machine learning, Scala, or Spark is that you should at first try to understand what types of analytics you want to perform. To be more specific, for example, if your problem is a machine learning problem, try to guess what type of learning algorithms should be the best fit, that is, classification, clustering, regression, recommendation, or frequent pattern mining. Then define and formulate the problem, and after that, you should generate or download the appropriate data based on the feature engineering concept of Spark that we have discussed earlier. On the other hand, if you think that you can solve your problem by using deep learning algorithms or APIs, you should use other third-party algorithms and integrate with Spark and work straight away.
Our final recommendation to the readers is to browse the Spark website (at http://spark.apache.org/) regularly to get the updates and also try to incorporate the regular Spark-provided APIs with other third-party applications or tools to get the best result of the collaboration.
Practical Machine Learning with Spark Using Scala
In this chapter, we will cover:
Introduction
With the recent advancements in cluster computing coupled with the rise of big data, the field of machine learning has been pushed to the forefront of computing. The need for an interactive platform that enables data science at scale has long been a dream that is now a reality.
The following three areas together have enabled and accelerated interactive data science at scale:
First, we need to set up the development environment, which will consist of the following components:
The recipes in this chapter will give you detailed instructions for installing and configuring the IntelliJ IDE, Scala plugin, and Spark. After the development environment is set up, we'll proceed to run one of the Spark ML sample codes to test the setup.
Apache Spark
Apache Spark is emerging as the de facto platform and trade language for big data analytics and as a complement to the Hadoop paradigm. Spark enables a data scientist to work in the manner that is most conducive to their workflow right out of the box. Spark's approach is to process the workload in a completely distributed manner without the need for MapReduce (MR) or repeated writing of the intermediate results to a disk.
Spark provides an easy-to-use distributed framework in a unified technology stack, which has made it the platform of choice for data science projects, which more often than not require an iterative algorithm that eventually merges toward a solution. These algorithms, due to their inner workings, generate a large ...
Machine learning
The aim of machine learning is to produce machines and devices that can mimic human intelligence and automate some of the tasks that have been traditionally reserved for a human brain. Machine learning algorithms are designed to go through very large data sets in a relatively short time and approximate answers that would have taken a human much longer to process.
The field of machine learning can be classified into many forms and at a high level, it can be classified as supervised and unsupervised learning. Supervised learning algorithms are a class of ML algorithms that use a training set (that is, labeled data) to compute a probabilistic distribution or graphical model that in turn allows them to classify the new data points without further human intervention. Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses.
Out of the box, Spark offers a rich set of ML algorithms that can be deployed on large datasets without any further coding. The following figure depicts Spark's MLlib algorithms as a mind map. Spark's MLlib is designed to take advantage of parallelism while having fault-tolerant distributed data structures. Spark refers to such data structures as Resilient Distributed Datasets or RDDs:
Scala
Scala is a modern programming language that is emerging as an alternative to traditional programming languages such as Java and C++. Scala is a JVM-based language that not only offers a concise syntax without the traditional boilerplate code, but also incorporates both object-oriented and functional programming into an extremely crisp and extraordinarily powerful type-safe language.
Scala takes a flexible and expressive approach, which makes it perfect for interacting with Spark's MLlib. The fact that Spark itself is written in Scala provides a strong evidence that the Scala language is a full-service programming language that can be used to create sophisticated system code with heavy performance needs.
Scala builds on Java's tradition ...
Software versions and libraries used in this book
The following table provides a detailed list of software versions and libraries used in this book. If you follow the installation instructions covered in this chapter, it will include most of the items listed here. Any other JAR or library files that may be required for specific recipes are covered via additional installation instructions in the respective recipes:
Core systems | Version |
Spark | 2.0.0 |
Java | 1.8 |
IntelliJ IDEA | 2016.2.4 |
Scala-sdk | 2.11.8 |
Miscellaneous JARs that will be required are as follows:
Miscellaneous JARs | Version |
bliki-core | 3.0.19 |
breeze-viz | 0.12 |
Cloud9 | 1.5.0 |
Hadoop-streaming | 2.2.0 |
JCommon | 1.0.23 |
JFreeChart | 1.0.19 |
lucene-analyzers-common | 6.0.0 |
Lucene-Core | 6.0.0 |
scopt | 3.3.0 |
spark-streaming-flume-assembly | 2.0.0 |
spark-streaming-kafka-0-8-assembly | 2.0.0 |
We have additionally tested all the recipes in this book on Spark 2.1.1 and found that the programs executed as expected. It is recommended for learning purposes you use the software versions and libraries listed in these tables.
To stay current with the rapidly changing Spark landscape and documentation, the API links to the Spark documentation mentioned throughout this book point to the latest version of Spark 2.x.x, but the API references in the recipes are explicitly for Spark 2.0.0.
All the Spark documentation links provided in this book will point to the latest documentation on Spark's website. If you prefer to look for documentation for a specific version of Spark (for example, Spark 2.0.0), look for relevant documentation on the Spark website using the following URL:
https://spark.apache.org/documentation.html
We've made the code as simple as possible for clarity purposes rather than demonstrating the advanced features of Scala.
Configuring IntelliJ to work with Spark and run Spark ML sample codes
We need to run some configurations to ensure that the project settings are correct before being able to run the samples that are provided by Spark or any of the programs listed this book.
Getting ready
We need to be particularly careful when configuring the project structure and global libraries. After we set everything up, we proceed to run the sample ML code provided by the Spark team to verify the setup. Sample code can be found under the Spark directory or can be obtained by downloading the Spark source code with samples.
How to do it...
The following are the steps for configuring IntelliJ to work with Spark MLlib and for running the sample ML code provided by Spark in the examples directory. The examples directory can be found in your home directory for Spark. Use the Scala samples to proceed:
There's more...
Prior to Spark 2.0, we needed another library from Google called Guava for facilitating I/O and for providing a set of rich methods of defining tables and then letting Spark broadcast them across the cluster. Due to dependency issues that were hard to work around, Spark 2.0 no longer uses the Guava library. Make sure you use the Guava library if you are using Spark versions prior to 2.0 (required in version 1.5.2). The Guava library can be accessed at the following URL:
https://github.com/google/guava/wiki
You may want to use Guava version 15.0, which can be found here:
https://mvnrepository.com/artifact/com.google.guava/guava/15.0
If you are using installation instructions from previous blogs, make sure to exclude the Guava library from the installation set.
See also
If there are other third-party libraries or JARs required for the completion of the Spark installation, you can find those in the following Maven repository:
https://repo1.maven.org/maven2/org/apache/spark/
Running a sample ML code from Spark
We can verify the setup by simply downloading the sample code from the Spark source tree and importing it into IntelliJ to make sure it runs.
Getting ready
We will first run the logistic regression code from the samples to verify installation. In the next section, we proceed to write our own version of the same program and examine the output in order to understand how it works.
How to do it...
If you cannot find the source code in your directory, you can always download the Spark source, unzip, and then extract the examples directory accordingly.
Identifying data sources for practical machine learning
Getting data for machine learning projects was a challenge in the past. However, now there is a rich set of public data sources specifically suitable for machine learning.
Getting ready
In addition to the university and government sources, there are many other open sources of data that can be used to learn and code your own examples and projects. We will list the data sources and show you how to best obtain and download data for each chapter.
How to do it...
The following is a list of open source data worth exploring if you would like to develop applications in this field:
See also
Other sources for machine learning data:
There are some specialized datasets (for example, text analytics in Spanish, and gene and IMF data) that might be of some interest to you:
Running your first program using Apache Spark 2.0 with the IntelliJ IDE
The purpose of this program is to get you comfortable with compiling and running a recipe using the Spark 2.0 development environment you just set up. We will explore the components and steps in later chapters.
We are going to write our own version of the Spark 2.0.0 program and examine the output so we can understand how it works. To emphasize, this short recipe is only a simple RDD program with Scala sugar syntax to make sure you have set up your environment correctly before starting to work with more complicated recipes.
How to do it...
We installed Spark 2.0 in the C:\spark-2.0.0-bin-hadoop2.7\ directory on a Windows machine.
Mac users note that we installed Spark 2.0 in the /Users/USERNAME/spark/spark-2.0.0-bin-hadoop2.7/ directory on a Mac machine.
Place the myFirstSpark20.scala file in the /Users/USERNAME/spark/spark-2.0.0-bin-hadoop2.7/examples/src/main/scala/spark/ml/cookbook/chapter1 directory.
package spark.ml.cookbook.chapter1
import org.apache.spark.sql.SparkSession
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myFirstSpark20")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
The myFirstSpark20 object will run in local mode. The previous code block is a typical way to start creating a SparkSession object.
val x = Array(1.0,5.0,8.0,10.0,15.0,21.0,27.0,30.0,38.0,45.0,50.0,64.0)
val y = Array(5.0,1.0,4.0,11.0,25.0,18.0,33.0,20.0,30.0,43.0,55.0,57.0)
val xRDD = spark.sparkContext.parallelize(x)
val yRDD = spark.sparkContext.parallelize(y)
val zipedRDD = xRDD.zip(yRDD)
zipedRDD.collect().foreach(println)
In the console output at runtime (more details on how to run the program in the IntelliJ IDE in the following steps), you will see this:
val xSum = zipedRDD.map(_._1).sum()
val ySum = zipedRDD.map(_._2).sum()
val xySum= zipedRDD.map(c => c._1 * c._2).sum()
val n= zipedRDD.count()
println("RDD X Sum: " +xSum)
println("RDD Y Sum: " +ySum)
println("RDD X*Y Sum: "+xySum)
println("Total count: "+n)
Here's the console output:
spark.stop()
Once the rebuild is complete, there should be a build completed message on the console:
Information: November 18, 2016, 11:46 AM - Compilation completed successfully with 1 warning in 55s 648ms
You can also use the Run menu from the menu bar to perform the same action.
Process finished with exit code 0
This is also shown in the following screenshot:
Place the code in the correct path.
How it works...
In this example, we wrote our first Scala program, myFirstSpark20.scala, and displayed the steps to execute the program in IntelliJ. We placed the code in the path described in the steps for both Windows and Mac.
In the myFirstSpark20 code, we saw a typical way to create a SparkSession object and how to configure it to run in local mode using the master() function. We created two RDDs out of the array objects and used a simple zip() function to create a new RDD.
We also did a simple sum calculation on the RDDs that were created and then displayed the result in the console. Finally, we exited and released the resource by calling spark.stop().
There's more...
Spark can be downloaded from http://spark.apache.org/downloads.html.
Documentation for Spark 2.0 related to RDD can be found at http://spark.apache.org/docs/latest/programming-guide.html#rdd-operations.
See also
How to add graphics to your Spark program
In this recipe, we discuss how to use JFreeChart to add a graphic chart to your Spark 2.0.0 program.
How to do it...
How it works...
In this example, we wrote MyChart.scala and saw the steps for executing the program in IntelliJ. We placed code in the path described in the steps for both Windows and Mac.
In the code, we saw a typical way to create the SparkSession object and how to use the master() function. We created an RDD out of an array of random integers in the range of 1 to 15 and zipped it with the Index.
We then used JFreeChart to compose a basic chart that contains a simple x and y axis, and supplied the chart with the dataset we generated from the original RDD in the previous steps.
We set up the schema for the chart and called the show() function in JFreeChart to show a Frame with the x and y axes displayed as a linear graphical chart.
Finally, we exited and released the resource by calling spark.stop().
There's more...
More about JFreeChart can be found here:
See also
Additional examples about the features and capabilities of JFreeChart can be found at the following website:
http://www.jfree.org/jfreechart/samples.html
Spark's Three Data Musketeers for Machine Learning - Perfect Together
In this chapter, we will cover the following recipes:
Introduction
The three workhorses of Spark for efficient processing of data at scale are RDD, DataFrames, and the Dataset API. While each can stand on its own merit, the new paradigm shift favors Dataset as the unifying data API to meet all data wrangling needs in a single interface.
The new Spark 2.0 Dataset API is a type-safe collection of domain objects that can be operated on via transformation (similar to RDDs' filter, map, flatMap(), and so on) in parallel using functional or relational operations. For backward compatibility, Dataset has a view called DataFrame, which is a collection of rows that are untyped. In this chapter, we demonstrate all three API sets. The figure ahead summarizes the pros and cons of the key components of Spark for data wrangling:
An advanced developer in machine learning must understand and be able to use all three API sets without any issues, for algorithmic augmentation or legacy reasons. While we recommend that every developer should migrate toward the high-level Dataset API, you will still need to know RDDs for programming against the Spark core system. For example, it is very common for investment banking and hedge funds to read leading journals in machine learning, mathematical programming, finance, statistics, or artificial intelligence and then code the research in low-level APIs to gain competitive advantage.
RDDs - what started it all...
The RDD API is a critical toolkit for Spark developers since it favors low-level control over the data within a functional programming paradigm. What makes RDDs powerful also makes it harder to work with for new programmers. While it may be easy to understand the RDD API and manual optimization techniques (for example, filter() before a groupBy() operation), writing advanced code would require consistent practice and fluency.
When data files, blocks, or data structures are converted to RDDs, the data is broken down into smaller units called partitions (similar to splits in Hadoop) and distributed among the nodes so they can be operated on in parallel at the same time. Spark provides this functionality right out ...
DataFrame - a natural evolution to unite API and SQL via a high-level API
The Spark developer community has always strived to provide an easy-to-use high-level API for the community starting from the AMPlab days at Berkley. The next evolution in the Data API materialized when Michael Armbrust gave the community the SparkSQL and Catalyst optimizer, which made data virtualization possible with Spark using a simple and well-understood SQL interface. The DataFrame API was a natural evolution to take advantage of SparkSQL by organizing data into named columns like relational tables.
The DataFrame API made data wrangling via SQL available to a multitude of data scientists and developers familiar with DataFrames in R (data.frame) or Python/Pandas (pandas.DataFrame).
Dataset - a high-level unifying Data API
A dataset is an immutable collection of objects which are modelled/mapped to a traditional relational schema. There are four attributes that distinguish it as the preferred method going forward. We particularly find the Dataset API appealing since we find it familiar to RDDs with the usual transformational operators (for example, filter(), map(), flatMap(), and so on). The Dataset will follow a lazy execution paradigm similar to RDD. The best way to try to reconcile DataFrames and Datasets is to think of a DataFrame as an alias that can be thought of as Dataset[Row].
Creating RDDs with Spark 2.0 using internal data sources
There are four ways to create RDDs in Spark. They range from the parallelize() method for simple testing and debugging within the client driver code to streaming RDDs for near-realtime responses. In this recipe, we provide you with several examples to demonstrate RDD creation using internal sources.
How to do it...
package spark.ml.cookbook.chapter3
import breeze.numerics.pow
import org.apache.spark.sql.SparkSession
import Array._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR) ...
How it works...
The data held in the client driver is parallelized and distributed across the cluster using the number of portioned RDDs (the second parameter) as the guideline. The resulting RDD is the magic of Spark that started it all (refer to Matei Zaharia's original white paper).
The resulting RDDs are now fully distributed data structures with fault tolerance and lineage that can be operated on in parallel using Spark framework.
We read a text file A Tale of Two Cities by Charles Dickens from http://www.gutenberg.org/ into Spark RDDs. We then proceed to split and tokenize the data and print the number of total words using Spark's operators (for example, map, flatMap(), and so on).
Creating RDDs with Spark 2.0 using external data sources
In this recipe, we provide you with several examples to demonstrate RDD creation using external sources.
How to do it...
package spark.ml.cookbook.chapter3
import breeze.numerics.pow
import org.apache.spark.sql.SparkSession
import Array._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myRDD")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
val book1 = spark.sparkContext.textFile("../data/sparkml2/chapter3/a.txt")
The output will be as follows:
Number of lines = 16271
val book2 = book1.flatMap(l => l.split(" "))
println(book1.count())
The output will be as follows:
Number of words = 143228
How it works...
We read a text file A Tale of Two Cities by Charles Dickens from http://www.gutenberg.org/ into an RDD and then proceed to tokenize the words by using whitespace as the separator in a lambda expression using .split() and .flatmap() of RDD itself. We then proceed to use the .count() method of RDDs to output the total number of words. While this is simple, you have to bear in mind that the operation takes place using the distributed parallel framework of Spark with only a couple of lines.
There's more...
Creating RDDs with external data sources, whether it is a text file, Hadoop HDFS, sequence file, Casandra, or Parquet file is remarkably simple. Once again, we use SparkSession (SparkContext prior to Spark 2.0) to get a handle to the cluster. Once the function (for example, textFile Protocol: file path) is executed, the data is broken into smaller pieces (partitions) and automatically flows to the cluster, which becomes available to the computations as fault-tolerant distributed collections that can be operated on in parallel.
In this example, we read multiple files and then print the first file for examination.
The spark.sparkContext.wholeTextFiles() function is used to read a large number of small files and present them as (K,V), or key-value:
val dirKVrdd = spark.sparkContext.wholeTextFiles("../data/sparkml2/chapter3/*.txt") // place a large number of small files for demo
println ("files in the directory as RDD ", dirKVrdd)
println("total number of files ", dirKVrdd.count())
println("Keys ", dirKVrdd.keys.count())
println("Values ", dirKVrdd.values.count())
dirKVrdd.collect()
println("Values ", dirKVrdd.first())
On running the previous code, you will get the following output:
files in the directory as RDD ,../data/sparkml2/chapter3/*.txt
WholeTextFileRDD[10] at wholeTextFiles at myRDD.scala:88)
total number of files 2
Keys ,2
Values ,2
Values ,(file:/C:/spark-2.0.0-bin-hadoop2.7/data/sparkml2/chapter3/a.txt,
The Project Gutenberg EBook of A Tale of Two Cities,
by Charles Dickens
See also
Spark documentation for the textFile() and wholeTextFiles() functions:
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext
The textFile() API is a single abstraction for interfacing to external data sources. The formulation of protocol/path is enough to invoke the right decoder. We'll demonstrate reading from an ASCII text file, Amazon AWS S3, and HDFS with code snippets that the user would leverage to build their own system.
Transforming RDDs with Spark 2.0 using the filter() API
In this recipe, we explore the filter() method of RDD which is used to select a subset of the base RDD and return a new filtered RDD. The format is similar to map(), but a lambda function selects which members are to be included in the resulting RDD.
How to do it...
package spark.ml.cookbook.chapter3
import breeze.numerics.pow
import org.apache.spark.sql.SparkSession
import Array._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR) ...
How it works...
The filter() API is demonstrated using several examples. In the first example we went through an RDD and output odd numbers by using a lambda expression .filter (i => (i%2) == 1) which takes advantage of the mod (modulus) function.
In the second example we made it a bit interesting by mapping the result to a square function using a lambda expression num.map(pow(_,2)).filter(_ %2 == 1).
In the third example, we went through the text and filtered out short lines (for example, lines under 30 character) using the lambda expression .filter(_.length < 30).filter(_.length > 0) to print short versus total number of lines (.count()) as output.
There's more...
The filter() API walks through the parallelized distributed collection (that is, RDDs) and applies the selection criteria supplied to filter() as a lambda in order to include or exclude the element from the resulting RDD. The combination uses map(), which transforms each element and filter(), which selects a subset is a powerful combination in Spark ML programming.
We will see later with the DataFrame API how a similar Filter() API can be used to achieve the same effect using a higher-level framework used in R and Python (pandas).
See also
Transforming RDDs with the super useful flatMap() API
In this recipe, we examine the flatMap() method which is often a source of confusion for beginners; however, on closer examination we demonstrate that it is a clear concept that applies the lambda function to each element just like map, and then flattens the resulting RDD as a single structure (rather than having a list of lists, we create a single list made of all sublist with sublist elements).
How to do it...
package spark.ml.cookbook.chapter3
import breeze.numerics.pow
import org.apache.spark.sql.SparkSession
import Array._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myRDD")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
val book1 = spark.sparkContext.textFile("../data/sparkml2/chapter3/a.txt")
val wordRDD2 = book1.map(_.trim.split("""[\s\W]+""")).filter(_.length > 0)
wordRDD2.take(3)foreach(println(_))
On running the previous code, you will get the following output.
[Ljava.lang.String;@1e60b459
[Ljava.lang.String;@717d7587
[Ljava.lang.String;@3e906375
val wordRDD3 = book1.flatMap(_.trim.split("""[\s\W]+""")).filter(_.length > 0).map(_.toUpperCase())
println("Total number of lines = ", book1.count())
println("Number of words = ", wordRDD3.count())
In this case, after flattening the list using flatMap(), we can get a list of the words back as expected.
wordRDD3.take(5)foreach(println(_))
The output is as follows:
Total number of lines = 16271
Number of words = 141603
THE
PROJECT
GUTENBERG
EBOOK
OF
How it works...
In this short example, we read a text file and then split the words (that is, tokenize it) using the flatMap(_.trim.split("""[\s\W]+""") lambda expression to have a single RDD with the tokenized content. Additionally we use the filter () API filter(_.length > 0) to exclude the empty lines and the lambda expression .map(_.toUpperCase()) in a .map() API to map to uppercase before outputting the results.
There are cases where we do not want to get a list back for every element of base RDD (for example, get a list for words corresponding to a line). We sometimes prefer to have a single flattened list that is flat and corresponds to every word in the document. In short, rather than a list of lists, we want a single list containing ...
There's more...
The function glom() is a function that lets you model each partition in the RDD as an array rather than a row list. While it is possible to produce the results in most cases, glom() allows you to reduce the shuffling between partitions.
While at the surface, both method 1 and 2 mentioned in the text below look similar for calculating the minimum numbers in an RDD, the glom() function will cause much less data shuffling across the network by first applying min() to all the partitions, and then sending over the resulting data. The best way to see the difference is to use this on 10M+ RDDs and watch the IO and CPU usage accordingly.
val minValue1= numRDD.reduce(_ min _)
println("minValue1 = ", minValue1)
On running the preceding code, you will get the following output:
minValue1 = 1.0
val minValue2 = numRDD.glom().map(_.min).reduce(_ min _)
println("minValue2 = ", minValue2)
On running the preceding code, you will get the following output:
minValue1 = 1.0
See also
Transforming RDDs with set operation APIs
In this recipe, we explore set operations on RDDs, such as intersection(), union(), subtract(), and distinct() and Cartesian(). Let's implement the usual set operations in a distributed manner.
How to do it...
package spark.ml.cookbook.chapter3
import breeze.numerics.pow
import org.apache.spark.sql.SparkSession
import Array._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR) ...
How it works...
In this example, we started with three sets of number Arrays (odd, even, and their combo) and then proceeded to pass them as parameters into the set operation API. We covered how to use intersection(), union(), subtract(), distinct(), and cartesian() RDD operators.
See also
While the RDD set operators are easy to use, one must be careful with the data shuffling that Spark has to perform in the background to complete some of these operations (for example, intersection).
It is worth noting that the union operator does not remove duplicates from the resulting RDD set.
RDD transformation/aggregation with groupBy() and reduceByKey()
In this recipe, we explore the groupBy() and reduceBy() methods, which allow us to group values corresponding to a key. It is an expensive operation due to internal shuffling. We first demonstrate groupby() in more detail and then cover reduceBy() to show the similarity in coding these while stressing the advantage of the reduceBy() operator.
How to do it...
package spark.ml.cookbook.chapter3
import breeze.numerics.pow
import org.apache.spark.sql.SparkSession
import Array._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR) ...
How it works...
In this example, we created numbers one through twelve and placed them in three partitions. We then proceeded to break them into odd/even using a simple mod operation while. The groupBy() is used to aggregate them into two groups of odd/even. This is a typical aggregation problem that should look familiar to SQL users. Later in this chapter, we revisit this operation using DataFrame which also takes advantage of the better optimization techniques provided by the SparkSQL engine. In the later part, we demonstrate the similarity of groupBy() and reduceByKey(). We set up an array of alphabets (that is, a and b) and then convert them into RDD. We then proceed to aggregate them based on key (that is, unique letters - only two in this case) and print the total in each group.
There's more...
Given the direction for Spark which favors the Dataset/DataFrame paradigm over low-level RDD coding, one must seriously consider the reasoning for doing groupBy() on an RDD. While there are legitimate situations for which the operation is needed, the readers are advised to reformulate their solution to take advantage of the SparkSQL subsystem and its optimizer called Catalyst.
The Catalyst optimizer takes into account Scala's powerful features such as pattern matching and quasiquotes while building an optimized query plan.
See also
Documentation for groupBy() and reduceByKey() operations under RDD:
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD
Transforming RDDs with the zip() API
In this recipe we explore the zip() function. For those of us working in Python or Scala, zip() is a familiar method that lets you pair items before applying an inline function. Using Spark, it can be used to facilitate RDD arithmetic between pairs. Conceptually, it combines the two RDDs in such a way that each member of one RDD is paired with the second RDD that occupies the same position (that is, it lines up the two RDDs and makes pairs out of the members).
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.spark.sql.SparkSession
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myRDD")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
val SignalNoise: Array[Double] = Array(0.2,1.2,0.1,0.4,0.3,0.3,0.1,0.3,0.3,0.9,1.8,0.2,3.5,0.5,0.3,0.3,0.2,0.4,0.5,0.9,0.1)
val SignalStrength: Array[Double] = Array(6.2,1.2,1.2,6.4,5.5,5.3,4.7,2.4,3.2,9.4,1.8,1.2,3.5,5.5,7.7,9.3,1.1,3.1,2.1,4.1,5.1)
val parSN=spark.sparkContext.parallelize(SignalNoise) // parallelized signal noise RDD
val parSS=spark.sparkContext.parallelize(SignalStrength) // parallelized signal strength
val zipRDD= parSN.zip(parSS).map(r => r._1 / r._2).collect()
println("zipRDD=")
zipRDD.foreach(println)
On running the previous code, you will get the following output:
zipRDD=
0.03225806451612903
1.0
0.08333333333333334
0.0625
0.05454545454545454
How it works...
In this example, we first set up two arrays representing signal noise and signal strength. They are simply a set of measured numbers that we could have received from the IoT platform. We then proceeded to pair the two separate arrays so each member looks like they have been input originally as a pair of (x, y). We then proceed to divide the pair and produce the noise to signal ratio using the following code snippet:
val zipRDD= parSN.zip(parSS).map(r => r._1 / r._2)
The zip() method has many variations that involve partitions. The developers should familiarize themselves with variations of the zip() method with partition (for example, zipPartitions).
See also
Join transformation with paired key-value RDDs
In this recipe, we introduce the KeyValueRDD pair RDD and the supporting join operations such as join(), leftOuterJoin and rightOuterJoin(), and fullOuterJoin() as an alternative to the more traditional and more expensive set operations available via the set operation API, such as intersection(), union(), subtraction(), distinct(), cartesian(), and so on.
We'll demonstrate join(), leftOuterJoin and rightOuterJoin(), and fullOuterJoin(), to explain the power and flexibility of key-value pair RDDs.
println("Full Joined RDD = ")
val fullJoinedRDD = keyValueRDD.fullOuterJoin(keyValueCity2RDD)
fullJoinedRDD.collect().foreach(println(_))
How to do it...
val keyValuePairs = List(("north",1),("south",2),("east",3),("west",4))
val keyValueCity1 = List(("north","Madison"),("south","Miami"),("east","NYC"),("west","SanJose"))
val keyValueCity2 = List(("north","Madison"),("west","SanJose"))
val keyValueRDD = spark.sparkContext.parallelize(keyValuePairs)
val keyValueCity1RDD = spark.sparkContext.parallelize(keyValueCity1)
val keyValueCity2RDD = spark.sparkContext.parallelize(keyValueCity2)
val keys=keyValueRDD.keys
val values=keyValueRDD.values
val kvMappedRDD = keyValueRDD.mapValues(_+100)
kvMappedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
(north,101)
(south,102)
(east,103)
(west,104)
println("Joined RDD = ")
val joinedRDD = keyValueRDD.join(keyValueCity1RDD)
joinedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
(south,(2,Miami))
(north,(1,Madison))
(west,(4,SanJose))
(east,(3,NYC))
println("Left Joined RDD = ")
val leftJoinedRDD = keyValueRDD.leftOuterJoin(keyValueCity2RDD)
leftJoinedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
(south,(2,None))
(north,(1,Some(Madison)))
(west,(4,Some(SanJose)))
(east,(3,None))
println("Right Joined RDD = ")
val rightJoinedRDD = keyValueRDD.rightOuterJoin(keyValueCity2RDD)
rightJoinedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
(north,(Some(1),Madison))
(west,(Some(4),SanJose))
val fullJoinedRDD = keyValueRDD.fullOuterJoin(keyValueCity2RDD)
fullJoinedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
Full Joined RDD =
(south,(Some(2),None))
(north,(Some(1),Some(Madison)))
(west,(Some(4),Some(SanJose)))
(east,(Some(3),None))
How it works...
In this recipe, we declared three lists representing typical data available in relational tables, which could be imported using a connector to Casandra or RedShift (not shown here to simplify the recipe). We used two of the three lists representing city names (that is, data tables) and joined them with the first list, which represents directions (for example, defining tables). The first step is to define three lists of paired values. We then parallelized them into key-value RDDs so we can perform join operations between the first RDD (that is, directions) and the other two RDDs representing city names. We applied the join function to the RDDs to demonstrate the transformation.
We demonstrated join(), leftOuterJoin and rightOuterJoin() ...
There's more...
Documentation for join() and its variations under RDD is available at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD.
Reduce and grouping transformation with paired key-value RDDs
In this recipe, we explore reduce and group by key. The reduceByKey() and groupbyKey() operations are much more efficient and preferred to reduce() and groupBy() in most cases. The functions provide convenient facilities to aggregate values and combine them by key with less shuffling, which is problematic on large data sets.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.spark.sql.SparkSession
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myRDD")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
val signaltypeRDD = spark.sparkContext.parallelize(List(("Buy",1000),("Sell",500),("Buy",600),("Sell",800)))
val signaltypeRDD = spark.sparkContext.parallelize(List(("Buy",1000),("Sell",500),("Buy",600),("Sell",800)))
val groupedRDD = signaltypeRDD.groupByKey()
groupedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
Group By Key RDD =
(Sell, CompactBuffer(500, 800))
(Buy, CompactBuffer(1000, 600))
println("Reduce By Key RDD = ")
val reducedRDD = signaltypeRDD.reduceByKey(_+_)
reducedRDD.collect().foreach(println(_))
On running the previous code, you will get the following output:
Reduce By Key RDD =
(Sell,1300)
(Buy,1600)
How it works...
In this example we declared a list of items as being sold or purchased and their corresponding price (that is, typical commercial transaction). We then proceeded to calculate the sum using Scala shorthand notation (_+_). In the last step, we provided the total for each key group (that is, Buy or Sell). The key-value RDD is a powerful construct that can reduce coding while providing the functionality needed to group paired values into aggregated buckets. The groupByKey() and reduceByKey() functions mimic the same aggregation functionality, while reduceByKey() is more efficient due to less shuffling of the data while final results are being assembled.
See also
Documentation for groupByKey() and reduceByKey() operations under RDD is available at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD.
Creating DataFrames from Scala data structures
In this recipe, we explore the DataFrame API, which provides a higher level of abstraction than RDDs for working with data. The API is similar to R and Python data frame facilities (pandas).
DataFrame simplifies coding and lets you use standard SQL to retrieve and manipulate data. Spark keeps additional information about DataFrames, which helps the API to manipulate the frames with ease. Every DataFrame will have a schema (either inferred from data or explicitly defined) which allows us to view the frame like an SQL table. The secret sauce of SparkSQL and DataFrame is that the catalyst optimizer will work behind the scenes to optimize access by rearranging calls in the pipeline.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.spark.sql._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myDataFrame")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
val signaltypeRDD = spark.sparkContext.parallelize(List(("Buy",1000),("Sell",500),("Buy",600),("Sell",800)))
val numList = List(1,2,3,4,5,6,7,8,9)
val numRDD = spark.sparkContext.parallelize(numList)
val myseq = Seq(("Sammy","North",113,46.0),("Sumi","South",110,41.0), ("Sunny","East",111,51.0),("Safron","West",113,2.0))
val numDF = numRDD.toDF("mylist")
numDF.show
On running the previous code, you will get the following output.:
+------+
|mylist|
+------+
| 1|
| 2|
| 3|
| 4|
| 5|
| 6|
| 7|
| 8|
| 9|
+------+
val df1 = spark.createDataFrame(myseq).toDF("Name","Region","dept","Hours")
df1.show()
df1.printSchema()
On running the previous code, you will get the following output:
+------+------+----+-----+
| Name|Region|dept|Hours|
+------+------+----+-----+
| Sammy| North| 113| 46.0|
| Sumi| South| 110| 41.0|
| Sunny| East| 111| 51.0|
|Safron| West| 113| 2.0|
+------+------+----+-----+
root
|-- Name: string (nullable = true)
|-- Region: string (nullable = true)
|-- dept: integer (nullable = false)
|-- Hours: double (nullable = false)
How it works...
In this recipe, we took two lists and a Seq data structure and converted them to DataFrame and used df1.show() and df1.printSchema() to display contents and schema for the table.
DataFrames can be created from both internal and external sources. Just like SQL tables, the DataFrames have schemas associated with them that can either be inferred or explicitly defined using Scala case classes or the map() function to explicitly convert while ingesting the data.
There's more...
To ensure completeness, we include the import statement that we used prior to Spark 2.0.0 to run the code (namely, Spark 1.5.2):
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.mllib.linalg
import org.apache.spark.util
import Array._
import org.apache.spark.sql._
import org.apache.spark.sql.types
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types.{ StructType, StructField, StringType};
See also
Documentation for DataFrame is available at https://spark.apache.org/docs/latest/sql-programming-guide.html.
If you see any issues with implicit conversion, double check to make sure you have included the implicit import statement.
Example code for Spark 2.0:
import sqlContext.implicits
Operating on DataFrames programmatically without SQL
In this recipe, we explore how to manipulate DataFrame with code and method calls only (without SQL). The DataFrames have their own methods that allow you to perform SQL-like operations using a programmatic approach. We demonstrate some of these commands such as select(), show(), and explain() to get the point across that the DataFrame itself is capable of wrangling and manipulating the data without using SQL.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.spark.sql._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR) ...
How it works...
In this example, we loaded data from a text file into an RDD and then converted it to a DataFrame structure using the .toDF() API. We then proceeded to mimic SQL queries using built-in methods such as select(), filter(), show(), and explain() that help us to programmatically explore the data (no SQL). The explain() command shows the query plan which can be awfully useful to remove the bottleneck.
DataFrames provide multiple approaches to data wrangling.
For those comfortable with the DataFrame API and packages from R (https://cran.r-project.org) like dplyr or an older version, we have a programmatic API with an extensive set of methods that lets you do all your data wrangling via the API.
For those more comfortable with SQL, you can simply use SQL to retrieve and manipulate data as if you were using Squirrel or Toad to query the database.
There's more...
To ensure completeness, we include the import statements that we used prior to Spark 2.0.0 to run the code (namely, Spark 1.5.2):
import org.apache.spark._ import org.apache.spark.rdd.RDD import org.apache.spark.sql.SQLContext import org.apache.spark.mllib.linalg._ import org.apache.spark.util._ import Array._ import org.apache.spark.sql._ import org.apache.spark.sql.types._ import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Row; import org.apache.spark.sql.types.{ StructType, StructField, StringType};
See also
Documentation for DataFrame is available at https://spark.apache.org/docs/latest/sql-programming-guide.html.
If you see any issues with implicit conversion, double check to make sure you have included the implicits import statement.
Example import statement for Spark 2.0:
import sqlContext.implicits._
Loading DataFrames and setup from an external source
In this recipe, we examine data manipulation using SQL. Spark's approach to provide, both a pragmatic and SQL interface works very well in production settings in which we not only require machine learning, but also access to existing data sources using SQL to ensure compatibility and familiarity with existing SQL-based systems. DataFrame with SQL makes for an elegant process toward integration in real-life settings.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.spark.sql._
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("myDataFrame")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
val customersRDD = spark.sparkContext.textFile("../data/sparkml2/chapter3/customers13.txt") //Customer file
val custRDD = customersRDD.map {
line => val cols = line.trim.split(",")
(cols(0).toInt, cols(1), cols(2), cols(3).toInt)
}
val custDF = custRDD.toDF("custid","name","city","age")
Customer data contents for reference:
custDF.show()
On running the preceding code, you will get the following output:
val productsRDD = spark.sparkContext.textFile("../data/sparkml2/chapter3/products13.txt") //Product file
val prodRDD = productsRDD.map {
line => val cols = line.trim.split(",")
(cols(0).toInt, cols(1), cols(2), cols(3).toDouble)
}
val prodDF = prodRDD.toDF("prodid","category","dept","priceAdvertised")
Product data contents:
prodDF.show()
On running the previous code, you will get the following output:
val salesRDD = spark.sparkContext.textFile("../data/sparkml2/chapter3/sales13.txt") //Sales file
val saleRDD = salesRDD.map {
line => val cols = line.trim.split(",")
(cols(0).toInt, cols(1).toInt, cols(2).toDouble)
}
val saleDF = saleRDD.toDF("prodid", "custid", "priceSold")
Sales data contents:
saleDF.show()
On running the previous code, you will get the following output:
custDF.printSchema()
productDF.printSchema()
salesDF. printSchema()
On running the previous code, you will get the following output:
root
|-- custid: integer (nullable = false)
|-- name: string (nullable = true)
|-- city: string (nullable = true)
|-- age: integer (nullable = false)
root
|-- prodid: integer (nullable = false)
|-- category: string (nullable = true)
|-- dept: string (nullable = true)
|-- priceAdvertised: double (nullable = false)
root
|-- prodid: integer (nullable = false)
|-- custid: integer (nullable = false)
|-- priceSold: double (nullable = false)
How it works...
In this example, we first loaded data into an RDD and then converted it into a DataFrame using the toDF() method. The DataFrame is very good at inferring types, but there are occasions that require manual intervention. We used the map() function after creating the RDD (lazy initialization paradigm applies) to massage the data either by type conversion or calling on more complicated user-defined functions (referenced in the map() method) to do the conversion or data wrangling. Finally, we proceeded to examine the schema for each of the three DataFrames using show() and printSchema().
There's more...
To ensure completeness, we include the import statements that we used prior to Spark 2.0.0 to run the code (namely, Spark 1.5.2):
import org.apache.spark._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.mllib.linalg._
import org.apache.spark.util._
import Array._
import org.apache.spark.sql._
import org.apache.spark.sql.types._
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Row;
import org.apache.spark.sql.types.{ StructType, StructField, StringType};
See also
Documentation for DataFrame is available at https://spark.apache.org/docs/latest/sql-programming-guide.html.
If you see any issues with implicit conversion, double check to make sure you have included the implicits import statement.
Example import statement for Spark 1.5.2:
import sqlContext.implicits._
Using DataFrames with standard SQL language - SparkSQL
In this recipe, we demonstrate how to use DataFrame SQL capabilities to perform basic CRUD operations, but there is nothing limiting you from using the SQL interface provided by Spark to any level of sophistication (that is, DML) desired.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.spark.sql._
import org.apache.log4j.Logger import org.apache.log4j.Level
Logger.getLogger(...
How it works...
The basic workflow for DataFrame using SQL is to first populate the DataFrame either through internal Scala data structures or via external data sources first, and then use the createOrReplaceTempView() call to register the DataFrame as a SQL-like artifact.
When you use DataFrames, you have the benefit of additional metadata that Spark stores (whether API or SQL approach) which can benefit you during the coding and execution.
While RDDs are still the workhorses of core Spark, the trend is toward the DataFrame approach which has successfully shown its capabilities in languages such as Python/Pandas or R.
There's more...
There has been a change for registration of a DataFrame as a table. Refer to this:
Pre-Spark 2.0.0 to register a DataFrame as a SQL table like artifact:
Before we can use the DataFrame for queries via SQL, we have to register the DataFrame as a temp table so the SQL statements can refer to it without any Scala/Spark syntax. This step may cause confusion for many beginners as we are not creating any table (temp or permanent), but the call registerTempTable() creates a name in SQL land that the SQL statements can refer to without additional UDF or without any domain-specific query language.
See also
Documentation for DataFrame is available at https://spark.apache.org/docs/latest/sql-programming-guide.html.
If you see any issues with implicit conversion, please double check to make sure you have included implicits import statement.
Example import statement for Spark 1.5.2
import sqlContext.implicits._
DataFrame is an extensive subsystem and deserves an entire book on its own. It makes complex data manipulation at scale available to SQL programmers.
Working with the Dataset API using a Scala Sequence
In this recipe, we examine the new Dataset and how it works with the seq Scala data structure. We often see a relationship between the LabelPoint data structure used with ML libraries and a Scala sequence (that is, seq data structure) that play nicely with dataset.
The Dataset is being positioned as a unifying API going forward. It is important to note that DataFrame is still available as an alias described as Dataset[Row]. We have covered the SQL examples extensively via DataFrame recipes, so we concentrate our efforts on other variations for dataset.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
case class Car(make: String, model: String, price: Double,
style: String, kind: String)
val carData =
Seq(
Car("Tesla", "Model S", 71000.0, "sedan","electric"),
Car("Audi", "A3 E-Tron", 37900.0, "luxury","hybrid"),
Car("BMW", "330e", 43700.0, "sedan","hybrid"),
Car("BMW", "i3", 43300.0, "sedan","electric"),
Car("BMW", "i8", 137000.0, "coupe","hybrid"),
Car("BMW", "X5 xdrive40e", 64000.0, "suv","hybrid"),
Car("Chevy", "Spark EV", 26000.0, "coupe","electric"),
Car("Chevy", "Volt", 34000.0, "sedan","electric"),
Car("Fiat", "500e", 32600.0, "coupe","electric"),
Car("Ford", "C-Max Energi", 32600.0, "wagon/van","hybrid"),
Car("Ford", "Focus Electric", 29200.0, "sedan","electric"),
Car("Ford", "Fusion Energi", 33900.0, "sedan","electric"),
Car("Hyundai", "Sonata", 35400.0, "sedan","hybrid"),
Car("Kia", "Soul EV", 34500.0, "sedan","electric"),
Car("Mercedes", "B-Class", 42400.0, "sedan","electric"),
Car("Mercedes", "C350", 46400.0, "sedan","hybrid"),
Car("Mercedes", "GLE500e", 67000.0, "suv","hybrid"),
Car("Mitsubishi", "i-MiEV", 23800.0, "sedan","electric"),
Car("Nissan", "LEAF", 29000.0, "sedan","electric"),
Car("Porsche", "Cayenne", 78000.0, "suv","hybrid"),
Car("Porsche", "Panamera S", 93000.0, "sedan","hybrid"),
Car("Tesla", "Model X", 80000.0, "suv","electric"),
Car("Tesla", "Model 3", 35000.0, "sedan","electric"),
Car("Volvo", "XC90 T8", 69000.0, "suv","hybrid"),
Car("Cadillac", "ELR", 76000.0, "coupe","hybrid")
)
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("mydatasetseq")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
import spark.implicits._
val cars = spark.createDataset(MyDatasetData.carData)
// carData is put in a separate scala object MyDatasetData
infecars.show(false)
+----------+--------------+--------+---------+--------+
|make |model |price |style |kind |
cars.columns.foreach(println)
make
model
price
style
kind
println(cars.schema)
StructType(StructField(make,StringType,true), StructField(model,StringType,true), StructField(price,DoubleType,false), StructField(style,StringType,true), StructField(kind,StringType,true))
cars.filter(cars("price") > 50000.00).show()
spark.stop()
How it works...
In this recipe, we introduced Spark's Dataset feature which first appeared in Spark 1.6 and which was further refined in subsequent releases. First, we created an instance of a Dataset from a Scala sequence with the help of the createDataset() method belonging to the Spark session. The next step was to print out meta information about the generated Datatset to establish that the creation transpired as expected. Finally, snippets of Spark SQL were used to filter the Dataset by the price column for any price greater than $50, 000.00 and show the final results of execution.
There's more...
Dataset has a view called DataFrame, which is a Dataset of rows which is untyped. The Dataset still retains all the transformation abilities of RDD such as filter(), map(), flatMap(), and so on. This is one of the reasons we find Datasets easy to use if we have programmed in Spark using RDDs.
See also
Creating and using Datasets from RDDs and back again
In this recipe, we explore how to use RDD and interact with Dataset to build a multi-stage machine learning pipeline. Even though the Dataset (conceptually thought of as RDD with strong type-safety) is the way forward, you still have to be able to interact with other machine learning algorithms or codes that return/operate on RDD for either legacy or coding reasons. In this recipe, we also explore how to create and convert from Dataset to RDD and back.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSession
case class Car(make: String, model: String, price: Double,style: String, kind: String)
val carData =Seq(Car("Tesla", "Model S", 71000.0, "sedan","electric"), ...
How it works...
In this section, we transformed an RDD into a Dataset and finally transformed it back to an RDD. We began with a Scala sequence which was changed into an RDD. After the creation of the RDD, invocation of Spark's session createDataset() method occurred, passing the RDD as an argument while receiving a Dataset as the result.
Next, the Dataset was grouped by the make column, counting the existence of various makes of cars. The next step involved filtering the Dataset for makes of Tesla and transforming the results back to an RDD. Finally, we displayed the resulting RDD by way of the RDD foreach() method.
There's more...
The Dataset source file in Spark is only about 2500+ lines of Scala code. It is a very nice piece of code which can be leveraged for specialization under Apache license. We list the following URL and encourage you to at least scan the file and understand how buffering comes into play when using Dataset.
Source code for Datasets hosted on GitHub is available at https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala.
See also
Working with JSON using the Dataset API and SQL together
In this recipe, we explore how to use JSON with Dataset. The JSON format has rapidly become the de-facto standard for data interoperability in the last 5 years.
We explore how Dataset uses JSON and executes API commands like select(). We then progress by creating a view (that is, createOrReplaceTempView()) and then execute a SQL query to demonstrate how to query against a JSON file using API and SQL with ease.
How to do it...
{"make": "Telsa", "model": "Model S", "price": 71000.00, "style": "sedan", "kind": "electric"}
{"make": "Audi", "model": "A3 E-Tron", "price": 37900.00, "style": "luxury", "kind": "hybrid"}
{"make": "BMW", "model": "330e", "price": 43700.00, "style": "sedan", "kind": "hybrid"}
package spark.ml.cookbook.chapter3
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
case class Car(make: String, model: String, price: Double,
style: String, kind: String)
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("mydatasmydatasetjsonetrdd")
.config("Spark.sql.warehouse.dir", ".")
.getOrCreate()
import spark.implicits._
val cars = spark.read.json("../data/sparkml2/chapter3/cars.json").as[Car]
cars.show(false)
cars.columns.foreach(println)
make
model
price
style
kind
println(cars.schema)
StructType(StructField(make,StringType,true), StructField(model,StringType,true), StructField(price,DoubleType,false), StructField(style,StringType,true), StructField(kind,StringType,true))
cars.select("make").distinct().show()
cars.createOrReplaceTempView("cars")
spark.sql("select make, model, kind from cars where kind = 'electric'").show()
spark.stop()
How it works...
It is extremely straightforward to read a JavaScript Object Notation (JSON) data file and to transform it into a Dataset with Spark. JSON has become a widely used data format over the past several years and Spark's support for the format is substantial.
In the first part, we demonstrated loading JSON into a Dataset by means of built-in JSON parsing functionality in Spark's session. You should take note of Spark's built-in functionality that transforms the JSON data into the car case class.
In the second part, we demonstrated Spark SQL being applied on the Dataset to wrangle the said data into a desirable state. We utilized the Dataset's select method to retrieve the make column and apply the distinct method for the removal ...
There's more...
To fully understand and master the Dataset API, be sure to understand the concept of Row and Encoder.
Datasets follow the lazy execution paradigm, meaning that execution only occurs by invoking actions in Spark. When we execute an action, the Catalyst query optimizer produces a logical plan and generates a physical plan for optimized execution in a parallel distributed manner. See the figure in the introduction for all the detailed steps.
Documentation for Row is available at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset
Documentation for Encoder is available at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Encoder
See also
Again, be sure to download and explore the Dataset source file, which is about 2500+ lines from GitHub. Exploring the Spark source code is the best way to learn advanced programming in Scala, Scala Annotations, and Spark 2.0 itself.
Noteworthy for Pre-Spark 2.0 users:
Functional programming with the Dataset API using domain objects
In this recipe, we explore how functional programming works with Dataset. We use the Dataset and functional programming to separate the cars (domain object) by their models.
How to do it...
package spark.ml.cookbook.chapter3
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.{Dataset, SparkSession}import spark.ml.cookbook.{Car, mydatasetdata}import scala.collection.mutableimport scala.collection.mutable.ListBufferimport org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSession
How it works...
In this example, we use a Scala sequence data structure to hold the original data, which is a series of cars and their attributes. Using createDataset(), we create a DataSet and populate it. We then proceed to use the 'make' attribute with groupBy and mapGroups() to list cars by their models using a functional paradigm with DataSet. Using this form of functional programming with domain objects was not impossible before DataSet (for example, the case class with RDD or UDF with DataFrame), but the DataSet construct makes this easy and intrinsic.
There's more...
Be sure to include the implicits statement in all your DataSet coding:
import spark.implicits._
See also
The documentation for Datasets can be accessed at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset.
Common Recipes for Implementing a Robust Machine Learning System
In this chapter, we will cover:
Introduction
In every line of business, ranging from running a small business to creating and managing a mission-critical application, there are a number of tasks that are common and need to be included as a part of almost every workflow that is required during the course of executing the functions. This is true even for building robust machine learning systems. In Spark machine learning, some of these tasks range from splitting the data for model development (train, test, validate) to normalizing input feature vector data to creating ML pipelines via the Spark API. We provide a set of recipes in this chapter to enable the reader to think about what is actually required to implement an end-to-end machine learning system.
This chapter attempts to demonstrate a number of common tasks which are present in any robust Spark machine learning system implementation. To avoid redundant references these common tasks in every recipe covered in this book, we have factored out such common tasks as short recipes in this chapter, which can be leveraged as needed while reading the other chapters. These recipes can either stand alone or be included as pipeline subtasks in a larger system. Please note that these common recipes are emphasized in the larger context of machine learning algorithms in later chapters, while also including them as independent recipes in this chapter for completeness.
Spark's basic statistical API to help you build your own algorithms
In this recipe, we cover Spark's multivariate statistical summary (that is, Statistics.colStats) such as correlation, stratified sampling, hypothesis testing, random data generation, kernel density estimators, and much more, which can be applied to extremely large datasets while taking advantage of both parallelism and resiliency via RDDs.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.stat.Statistics
import org.apache.spark.sql.SparkSession
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("Summary Statistics")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
val sc = spark.sparkContext
val rdd = sc.parallelize(
Seq(
Vectors.dense(0, 1, 0),
Vectors.dense(1.0, 10.0, 100.0),
Vectors.dense(3.0, 30.0, 300.0),
Vectors.dense(5.0, 50.0, 500.0),
Vectors.dense(7.0, 70.0, 700.0),
Vectors.dense(9.0, 90.0, 900.0),
Vectors.dense(11.0, 110.0, 1100.0)
)
)
val summary = Statistics.colStats(rdd)
The colStats() method will return a MultivariateStatisticalSummary, which contains the computed summary statistics:
println("mean:" + summary.mean)
println("variance:" +summary.variance)
println("none zero" + summary.numNonzeros)
println("min:" + summary.min)
println("max:" + summary.max)
println("count:" + summary.count)
mean:[5.142857142857142,51.57142857142857,514.2857142857142]
variance:[16.80952380952381,1663.952380952381,168095.2380952381]
none zero[6.0,7.0,6.0]
min:[0.0,1.0,0.0]
max:[11.0,110.0,1100.0]
count:7
spark.stop()
How it works...
We created an RDD from dense vector data followed by the generation of summary statistics on it using the statistics object. Once the colStats() method returned, we retrieved summary statistics such as the mean, variance, minimum, maximum, and so on.
There's more...
It cannot be emphasized enough how efficient the statistical API is on large datasets. These APIs will provide you with basic elements to implement any statistical learning algorithm from scratch. Based on our research and experience with half versus full matrix factorization, we encourage you to first read the source code and make sure that there isn't an equivalent functionality already implemented in Spark before implementing your own.
While we only demonstrate a basic statistics summary here, Spark comes equipped out of the box with:
A quick reference to the Goodness of fit concept in statistics can be found at https://en.wikipedia.org/wiki/Goodness_of_fit link.
See also
Documentation for more multivariate statistical summary:
ML pipelines for real-life machine learning applications
This is the first of two recipes which cover the ML pipeline in Spark 2.0. For a more advanced treatment of ML pipelines with additional details such as API calls and parameter extraction, see later chapters in this book.
In this recipe, we attempt to have a single pipeline that can tokenize text, use HashingTF (an old trick) to map term frequencies, run a regression to fit a model, and then predict which group a new term belongs to (for example, news filtering, gesture classification, and so on).
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.ml.Pipelineimport org.apache.spark.ml.classification.LogisticRegressionimport org.apache.spark.ml.feature.{HashingTF, Tokenizer}import org.apache.spark.sql.SparkSessionimport org.apache.log4j.{Level, Logger}
Logger.getLogger("org").setLevel(Level.ERROR)Logger.getLogger("akka" ...
How it works...
In this section, we investigated constructing a simple machine learning pipeline with Spark. We began with creating a DataFrame comprised of two groups of text documents and then proceeded to set up a pipeline.
First, we created a tokenizer to parse text documents into terms followed by the creation of the HashingTF to convert the terms into features. Then, we created a logistic regression object to predict which group a new text document belongs to.
Second, we constructed the pipeline by passing an array of arguments to it, specifying three stages of execution. You will notice each subsequent stage provides the result as a specified column while using the previous stage's output column as the input.
Finally, we trained the model by invoking fit() on the pipeline object and defining a set of test data for verification. Next, we transformed the test set with the model, producing which of the defined two groups the text documents in the test set belong to.
There's more...
The pipeline in Spark ML was inspired by scikit-learn in Python, which is referenced here for completeness:
http://scikit-learn.org/stable/
ML pipelines make it easy to combine multiple algorithms used to implement a production task in Spark. It would be unusual to see a use case in a real-life situation that is made of a single algorithm. Often a number of cooperating ML algorithms work together to achieve a complex use case. For example, in LDA-based systems (for example, news briefings) or human emotion detection, there are a number of steps before and after the core system to be implemented as a single pipe to produce any meaningful and production-worthy system. See the following link for a real-life use case requiring ...
See also
Documentation for more multivariate statistical summary:
Normalizing data with Spark
In this recipe, we demonstrate normalizing (scaling) the data prior to importing the data into an ML algorithm. There are a good number of ML algorithms such as Support Vector Machine (SVM) that work better with scaled input vectors rather than with the raw values.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.feature.MinMaxScaler
def parseWine(str: String): (Int, Vector) = {
val columns = str.split(",")
(columns(0).toInt, Vectors.dense(columns(1).toFloat, columns(2).toFloat, columns(3).toFloat))
}
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("My Normalize")
.getOrCreate()
import spark.implicits._
val data = Spark.read.text("../data/sparkml2/chapter4/wine.data").as[String].map(parseWine)
val df = data.toDF("id", "feature")
df.printSchema()
df.show(false)
val scale = new MinMaxScaler()
.setInputCol("feature")
.setOutputCol("scaled")
.setMax(1)
.setMin(-1)
scale.fit(df).transform(df).select("scaled").show(false)
spark.stop()
How it works...
In this example, we explored feature scaling which is a critical step in most machine learning algorithms such as classifiers. We started out by loading the wine data files, extracted an identifier, and used the next three columns to create a feature vector.
Then, we created a MinMaxScaler object, configuring a minimum and maximum range to scale our values into. We invoked the scaling model by executing the fit() method on the scaler class, and then we used the model to scale the values in our DataFrame.
Finally, we displayed the resulting DataFrame and we noticed feature vector values ranges are between negative 1 and positive 1.
There's more...
The roots of normalizing and scaling can be better understood by examining the concept of unit vectors in introductory linear algebra. Please see the following links for some common references for unit vectors:
In the case of input sensitive algorithms, such as SVM, it is recommended that the algorithm is trained on scaled values (for example, range from 0 to 1) of the features rather than the absolute values as represented by the original vector.
See also
Documentation for MinMaxScaler is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.ml.feature.MinMaxScaler
We want to emphasize that MinMaxScaler is an extensive API that extends the Estimator (a concept from the ML pipeline) and when used correctly can lead to achieving coding efficiency and high accuracy results.
Splitting data for training and testing
In this recipe, you will learn to use Spark's API to split your available input data into different datasets that can be used for training and validation phases. It is common to use an 80/20 split, but other variations of splitting the data can be considered as well based on your preference.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.sql.SparkSessionimport org.apache.log4j.{ Level, Logger}
Logger.getLogger("org").setLevel(Level.ERROR)Logger.getLogger("akka" ...
How it works...
We began by loading the data file newsCorpora.csv and then by way of the randomSplit() method attached to the dataset object, we split the dataset.
There's more...
To validate the result, we must set up a Delphi technique in which the test data is absolutely unknown to the model. See Kaggle competitions for details at https://www.kaggle.com/competitions.
Three types of datasets are needed for a robust ML system:
See also
Documentation for randomSplit() is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.api.java.JavaRDD@randomSplit(weights:Array%5BDouble%5D):Array%5Borg.apache.spark.api.java.JavaRDD%5BT%5D%5D.
The randomSplit() is a method call within an RDD. While the number of RDD method calls can be overwhelming, mastering this Spark concept and API is a must.
API signature is as follows:
def randomSplit(weights: Array[Double]): Array[JavaRDD[T]]
Randomly splits this RDD with the provided weights.
Common operations with the new Dataset API
In this recipe, we cover the Dataset API, which is the way forward for data wrangling in Spark 2.0 and beyond. In this chapter ,we cover some of the common, repetitive operations that are required to work with these new API sets. Additionally, we demonstrate the query plan generated by the Spark SQL Catalyst optimizer.
How to do it...
name,city
Bears,Chicago
Packers,Green Bay
Lions,Detroit
Vikings,Minnesota
package spark.ml.cookbook.chapter4
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.sql.SparkSession
import org.apache.log4j.{Level, Logger}
case class Team(name: String, city: String)
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val spark = SparkSession
.builder
.master("local[*]")
.appName("My Dataset")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
import spark.implicits._
val champs = spark.createDataset(List(Team("Broncos", "Denver"), Team("Patriots", "New England")))
champs.show(false)
val teams = spark.read
.option("Header", "true")
.csv("../data/sparkml2/chapter4/teams.csv")
.as[Team]
teams.show(false)
val cities = teams.map(t => t.city)
cities.show(false)
cities.explain()
== Physical Plan ==
*SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, input[0, java.lang.String, true], true) AS value#26]
+- *MapElements <function1>, obj#25: java.lang.String
+- *DeserializeToObject newInstance(class Team), obj#24: Team
+- *Scan csv [name#9,city#10] Format: CSV, InputPaths: file:teams.csv, PartitionFilters: [], PushedFilters: [], ReadSchema: struct<name:string,city:string>
teams.write
.mode(SaveMode.Overwrite)
.json("../data/sparkml2/chapter4/teams.json"){"name":"Bears","city":"Chicago"}
{"name":"Packers","city":"Green Bay"}
{"name":"Lions","city":"Detroit"}
{"name":"Vikings","city":"Minnesota"}
spark.stop()
How it works...
First, we created a dataset from a Scala list and displayed the output to validate the creation of the dataset as expected. Second, we loaded a comma-separated value (CSV) file into memory, transforming it into a dataset of type Team. Third, we executed the map() function over our dataset to build a list of team city names and printed out the execution plan used to generate the dataset. Finally, we persisted the teams dataset we previously loaded into a JSON formatted file for future use.
There's more...
Please take a note of some interesting points on datasets:
See also
Documentation for Dataset is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset.
Creating and using RDD versus DataFrame versus Dataset from a text file in Spark 2.0
In this recipe, we explore the subtle differences in creating RDD, DataFrame, and Dataset from a text file and their relationship to each other via a short sample code:
Dataset: spark.read.textFile()
RDD: spark.sparkContext.textFile()
DataFrame: spark.read.text()
Assume spark is the session name
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSession
case class Beatle(id: Long, name: String)
Logger.getLogger("org").setLevel(Level.ERROR)
How it works...
We create an RDD, DataFrame, and Dataset object using a similar method from the same text file and confirm the type using the getClass method:
Dataset: spark.read.textFile
RDD: spark.sparkContext.textFile
DataFrame: spark.read.text
Please note that they are very similar and sometimes confusing. Spark 2.0 has transformed DataFrame into an alias for Dataset[Row], making it truly a dataset. We showed the preceding methods to let the user pick an example to create their own datatype flavor.
There's more...
Documentation for datatypes is available at http://spark.apache.org/docs/latest/sql-programming-guide.html.
If you are unsure as to what kind of data structure you have at hand (sometimes the difference is not obvious), use the getClass method to verify.
Spark 2.0 has transformed DataFrame into an alias for Dataset[Row]. While RDD and Dataram remain fully viable for near future, it is best to learn and code new projects using the dataset.
See also
Documentation for RDD and Dataset is available at the following websites:
LabeledPoint data structure for Spark ML
LabeledPoint is a data structure that has been around since the early days for packaging a feature vector along with a label so it can be used in unsupervised learning algorithms. We demonstrate a short recipe that uses LabeledPoint, the Seq data structure, and DataFrame to run a logistic regression for binary classification of the data.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.sql._
val spark = SparkSession
.builder
.master("local[*]")
.appName("myLabeledPoint")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
val myLabeledPoints = spark.createDataFrame(Seq(
LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5)),
LabeledPoint(0.0, Vectors.sparse(3, Array(0,2), Array(1.0,3.0))),
LabeledPoint(1.0, Vectors.sparse(3, Array(1,2), Array(1.2,-0.4)))
))
The DataFrame objects are created from the preceding LabeledPoint.
myLabeledPoints.show()
val lr = new LogisticRegression()
lr.setMaxIter(5)
.setRegParam(0.01)
val model = lr.fit(myLabeledPoints)
println("Model was fit using parameters: " + model.parent.extractParamMap())
In the console, it will show the following model parameters:
Model was fit using parameters: {
logreg_6aebbb683272-elasticNetParam: 0.0,
logreg_6aebbb683272-featuresCol: features,
logreg_6aebbb683272-fitIntercept: true,
logreg_6aebbb683272-labelCol: label,
logreg_6aebbb683272-maxIter: 5,
logreg_6aebbb683272-predictionCol: prediction,
logreg_6aebbb683272-probabilityCol: probability,
logreg_6aebbb683272-rawPredictionCol: rawPrediction,
logreg_6aebbb683272-regParam: 0.01,
logreg_6aebbb683272-standardization: true,
logreg_6aebbb683272-threshold: 0.5,
logreg_6aebbb683272-tol: 1.0E-6
}
spark.stop()
How it works...
We used a LabeledPoint data structure to model features and drive training of a logistics regression model. We began by defining a group of LabeledPoints, which are used to create a DataFrame for further processing. Then, we created a logistic regression object and passed LabeledPoint DataFrame as an argument to it so we could train our model. Spark ML APIs are designed to work well with the LabeledPoint format and require minimal intervention.
There's more...
A LabeledPoint is a popular structure used to package data as a Vector + a Label which can be purposed for supervised machine learning algorithms. A typical layout of the LabeledPoint is given here:
Seq(
LabeledPoint (Label, Vector(data, data, data))
......
LabeledPoint (Label, Vector(data, data, data))
)
Please note that not only dense but also sparse vectors can be used with LabeledPoint, which will make a huge difference in efficiency especially if you have a large and sparse dataset housed in the driver during testing and development.
See also
Getting access to Spark cluster in Spark 2.0
In this recipe, we demonstrate how to get access to a Spark cluster using a single point access named SparkSession. Spark 2.0 abstracts multiple contexts (such as SQLContext, HiveContext) into a single entry point, SparkSession, which allows you to get access to all Spark subsystems in a unified way.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.master("local[*]") // if use cluster master("spark://master:7077").appName("myAccesSparkCluster20").config("spark.sql.warehouse.dir", ".").getOrCreate()
The preceding code utilizes the master() function to set the cluster type ...
How it works...
In this example, we show how to connect to a Spark cluster using local and remote options for an application. First, we create a SparkSession object which will grant us access to a Spark cluster by specifying whether the cluster is local or remote using the master() function. You can also specify the master location by passing a JVM argument when starting your client program. In addition, you can configure an application name and a working data directory. Next, you invoked the getOrCreate() method to create a new SparkSession or hand you a reference to an already existing session. Finally, we execute a small sample program to prove our SparkSession object creation is valid.
There's more...
A Spark session has numerous parameters and APIs that can be set and exercised, but it is worth consulting the Spark documentation since some of the methods/parameters are marked with the status Experimental or left blank - for non-experimental statuses (15 minimum as of our last examination).
Another change to be aware of is to use spark.sql.warehouse.dir for the location of the tables. Spark 2.0 uses spark.sql.warehouse.dir to set warehouse locations to store tables rather than hive.metastore.warehouse.dir. The default value for spark.sql.warehouse.dir is System.getProperty("user.dir").
Also see spark-defaults.conf for more details.
Also noteworthy are the following:
See also
Documentation for SparkSession API documents is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SparkSession.
Getting access to Spark cluster pre-Spark 2.0
This is a pre-Spark 2.0 recipe, but it will be helpful for developers who want to quickly compare and contrast the cluster access for porting pre-Spark 2.0 programs to Spark 2.0's new paradigm.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.{SparkConf, SparkContext}
val conf = new SparkConf()
.setAppName("MyAccessSparkClusterPre20")
.setMaster("local[4]") // if cluster setMaster("spark://MasterHostIP:7077")
.set("spark.sql.warehouse.dir", ".")
val sc = new SparkContext(conf)
The preceding code utilizes the setMaster() function to set the cluster master location. As you can see, we are running the code in local mode.
The -D option value will be overridden by the cluster master parameter set in the code if both exist).
The following are the three sample ways to connect to the cluster in different modes:
setMaster("local")
setMaster("spark://yourmasterhostIP:port")
-Dspark.master=local
val file = sc.textFile("../data/sparkml2/chapter4/mySampleCSV.csv")
val headerAndData = file.map(line => line.split(",").map(_.trim))
val header = headerAndData.first
val data = headerAndData.filter(_(0) != header(0))
val maps = data.map(splits => header.zip(splits).toMap)
val result = maps.take(4)
result.foreach(println)
sc.stop()
How it works...
In this example, we show how to connect to a Spark cluster using the local and remote modes prior to Spark 2.0. First, we create a SparkConf object and configure all the required parameters. We will specify the master location, application name, and working data directory. Next, we create a SparkContext passing the SparkConf as an argument to access a Spark cluster. Also, you can specify the master location my passing a JVM argument when starting your client program. Finally, we execute a small sample program to prove our SparkContext is functioning correctly.
There's more...
Prior to Spark 2.0, getting access to a Spark cluster was done via SparkContext.
The access to the subsystems such as SQL was per-specific names context (for example, SQLContext).
Spark 2.0 changed how we gain access to a cluster by creating a single unified access point (namely, SparkSession).
See also
Documentation for SparkContext is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext.
Getting access to SparkContext vis-a-vis SparkSession object in Spark 2.0
In this recipe, we demonstrate how to get hold of SparkContext using a SparkSession object in Spark 2.0. This recipe will demonstrate the creation, usage, and back and forth conversion of RDD to Dataset. The reason this is important is that even though we prefer Dataset going forward, we must still be able to use and augment the legacy (pre-Spark 2.0) code mostly utilizing RDD.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSessionimport scala.util.Random
Logger.getLogger("org").setLevel(Level.ERROR)
val session = SparkSession ...
How it works...
We created RDD using the SparkContext; this was widely used in Spark 1.x. We also demonstrated a way to create Dataset in Spark 2.0 using the Session object. The conversion back and forth is necessary to deal with pre-Spark 2.0 code in production today.
The technical message from this recipe is that while DataSet is the preferred method of data wrangling going forward, we can always use the API to go back and forth to RDD and vice versa.
There's more...
More about the datatypes can be found at http://spark.apache.org/docs/latest/sql-programming-guide.html.
See also
Documentation for SparkContext and SparkSession is available at the following websites:
New model export and PMML markup in Spark 2.0
In this recipe, we explore the model export facility available in Spark 2.0 to use Predictive Model Markup Language (PMML). This standard XML-based language allows you to export and run your models on other systems (some limitations apply). You can explore the There's more... section for more information.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.SparkSession
import org.apache.spark.mllib.clustering.KMeans
val spark = SparkSession
.builder
.master("local[*]") // if use cluster master("spark://master:7077")
.appName("myPMMLExport")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
val data = spark.sparkContext.textFile("../data/sparkml2/chapter4/my_kmeans_data_sample.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()
val numClusters = 2
val numIterations = 10
val model = KMeans.train(parsedData, numClusters, numIterations)
println("MyKMeans PMML Model:\n" + model.toPMML)
In the console, it will show the following model:
MyKMeans PMML Model:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PMML version="4.2" xmlns="http://www.dmg.org/PMML-4_2">
<Header description="k-means clustering">
<Application name="Apache Spark MLlib" version="2.0.0"/>
<Timestamp>2016-11-06T13:34:57</Timestamp>
</Header>
<DataDictionary numberOfFields="3">
<DataField name="field_0" optype="continuous" dataType="double"/>
<DataField name="field_1" optype="continuous" dataType="double"/>
<DataField name="field_2" optype="continuous" dataType="double"/>
</DataDictionary>
<ClusteringModel modelName="k-means" functionName="clustering" modelClass="centerBased" numberOfClusters="2">
<MiningSchema>
<MiningField name="field_0" usageType="active"/>
<MiningField name="field_1" usageType="active"/>
<MiningField name="field_2" usageType="active"/>
</MiningSchema>
<ComparisonMeasure kind="distance">
<squaredEuclidean/>
</ComparisonMeasure>
<ClusteringField field="field_0" compareFunction="absDiff"/>
<ClusteringField field="field_1" compareFunction="absDiff"/>
<ClusteringField field="field_2" compareFunction="absDiff"/>
<Cluster name="cluster_0">
<Array n="3" type="real">9.06 9.179999999999998 9.12</Array>
</Cluster>
<Cluster name="cluster_1">
<Array n="3" type="real">0.11666666666666665 0.11666666666666665 0.13333333333333333</Array>
</Cluster>
</ClusteringModel>
</PMML>
model.toPMML("../data/sparkml2/chapter4/myKMeansSamplePMML.xml")
spark.stop()
How it works...
After you spend the time to train a model, the next step will be to persist the model for future use. In this recipe, we began by training a KMeans model to generate model info for persistence in later steps. Once we have the trained model, we invoke the toPMML() method on the model converting it into PMML for storage. The invocation of the method generates an XML document, then the XML document text can easily be persisted to a file.
There's more...
PMML is a standard developed by the Data Mining Group (DMG). The standard enables inter-platform interoperability by letting you build on one system and then deploy to another system in production. The PMML standard has gained momentum and has been adopted by most vendors. At its core, the standard is based on an XML document with the following:
As of this writing, the Spark 2.0 Machine Library support for PMML exporting is currently limited to:
You can export the model to the following file types in Spark:
Model_a.toPMML("/xyz/model-name.xml")
Model_a.toPMML(SparkContext, "/xyz/model-name")
Model_a.toPMML(System.out)
See also
Documentation for PMMLExportable API documents at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.pmml.PMMLExportable.
Regression model evaluation using Spark 2.0
In this recipe, we explore how to evaluate a regression model (a regression decision tree in this example). Spark provides the RegressionMetrics facility which has basic statistical facilities such as Mean Squared Error (MSE), R-Squared, and so on, right out of the box.
The objective in this recipe is to understand the evaluation metrics provided by Spark out of the box.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.mllib.evaluation.RegressionMetricsimport org.apache.spark.mllib.linalg.Vectorsimport org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.mllib.tree.DecisionTreeimport org.apache.spark.sql.SparkSession
val spark = SparkSession.builder.master("local[*]").appName("myRegressionMetrics").config("spark.sql.warehouse.dir", ".").getOrCreate()
How it works...
In this recipe, we explored the generation of regression metrics to help us evaluate our regression model. We began to load a breast cancer data file and then split it in a 70/30 ratio to create training and test datasets. Next, we trained a DecisionTree regression model and utilized it to make predictions on our test set. Finally, we took the predictions and generated regression metrics which gave us the squared error, R-squared, mean absolute error, and explained variance.
There's more...
We can use RegressionMetrics() to produce the following statistical measures:
Documentation on regression validation is available at https://en.wikipedia.org/wiki/Regression_validation.
R-Squared/coefficient of determination is available at https://en.wikipedia.org/wiki/Coefficient_of_determination.
See also
Binary classification model evaluation using Spark 2.0
In this recipe, we demonstrate the use of the BinaryClassificationMetrics facility in Spark 2.0 and its application to evaluating a model that has a binary outcome (for example, a logistic regression).
The purpose here is not to showcase the regression itself, but to demonstrate how to go about evaluating it using common metrics such as receiver operating characteristic (ROC), Area Under ROC Curve, thresholds, and so on.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.sql.SparkSession
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
val spark = SparkSession
.builder
.master("local[*]")
.appName("myBinaryClassification")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
// Load training data in LIBSVM format
//https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
val data = MLUtils.loadLibSVMFile(spark.sparkContext, "../data/sparkml2/chapter4/myBinaryClassificationData.txt")
The dataset is a modified dataset. The original adult dataset has 14 features, among which six are continuous and eight are categorical. In this dataset, continuous features are discretized into quantiles, and each quantile is represented by a binary feature. We modified the data to fit the purpose of the code. Details of the dataset feature can be found at the http://archive.ics.uci.edu/ml/index.php UCI site.
val Array(training, test) = data.randomSplit(Array(0.6, 0.4), seed = 11L)
training.cache()
// Run training algorithm to build the model
val model = new LogisticRegressionWithLBFGS()
.setNumClasses(2)
.run(training)
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
}
val metrics = new BinaryClassificationMetrics(predictionAndLabels)
val precision = metrics.precisionByThreshold
precision.foreach { case (t, p) =>
println(s"Threshold: $t, Precision: $p")
}
From the console output:
Threshold: 2.9751613212299755E-210, Precision: 0.5405405405405406
Threshold: 1.0, Precision: 0.4838709677419355
Threshold: 1.5283665404870175E-268, Precision: 0.5263157894736842
Threshold: 4.889258814400478E-95, Precision: 0.5
val recall = metrics.recallByThreshold
recall.foreach { case (t, r) =>
println(s"Threshold: $t, Recall: $r")
}
From the console output:
Threshold: 1.0779893231660571E-300, Recall: 0.6363636363636364
Threshold: 6.830452412352692E-181, Recall: 0.5151515151515151
Threshold: 0.0, Recall: 1.0
Threshold: 1.1547199216963482E-194, Recall: 0.5757575757575758
val f1Score = metrics.fMeasureByThreshold
f1Score.foreach { case (t, f) =>
println(s"Threshold: $t, F-score: $f, Beta = 1")
}
From the console output:
Threshold: 1.0, F-score: 0.46874999999999994, Beta = 1
Threshold: 4.889258814400478E-95, F-score: 0.49230769230769234, Beta = 1
Threshold: 2.2097791212639423E-117, F-score: 0.48484848484848486, Beta = 1
val beta = 0.5
val fScore = metrics.fMeasureByThreshold(beta)
f1Score.foreach { case (t, f) =>
println(s"Threshold: $t, F-score: $f, Beta = 0.5")
}
From the console output:
Threshold: 2.9751613212299755E-210, F-score: 0.5714285714285714, Beta = 0.5
Threshold: 1.0, F-score: 0.46874999999999994, Beta = 0.5
Threshold: 1.5283665404870175E-268, F-score: 0.5633802816901409, Beta = 0.5
Threshold: 4.889258814400478E-95, F-score: 0.49230769230769234, Beta = 0.5
val auPRC = metrics.areaUnderPR
println("Area under precision-recall curve = " + auPRC)
From the console output:
Area under precision-recall curve = 0.5768388996048239
val thresholds = precision.map(_._1)
val roc = metrics.roc
val auROC = metrics.areaUnderROC
println("Area under ROC = " + auROC)
From the console output:
Area under ROC = 0.6983957219251337
spark.stop()
How it works...
In this recipe, we investigated the evaluation of metrics for binary classification. First, we loaded the data, which is in the libsvm format, and split it in the ratio of 60:40, resulting in the creation of a training and a test set of data. Next, we trained a logistic regression model followed by generating predictions from our test set.
Once we had our predictions, we created a binary classification metrics object. Finally, we retrieved the true positive rate, positive predictive value, receiver operating curve, the area under receiver operating curve, the area under precision recall curve, and F-measure to evaluate our model for fitness.
There's more...
Spark provides the following metrics to facilitate evaluation:
The following links should provide a good introductory material for the metrics:
See also
Documentation for the original dataset information is available at the following links:
Documentation for binary classification metrics is available at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.evaluation.BinaryClassificationMetrics.
Multiclass classification model evaluation using Spark 2.0
In this recipe, we explore MulticlassMetrics, which allows you to evaluate a model that classifies the output to more than two labels (for example, red, blue, green, purple, do-not-know). It highlights the use of a confusion matrix (confusionMatrix) and model accuracy.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.sql.SparkSessionimport org.apache.spark.mllib.classification.LogisticRegressionWithLBFGSimport org.apache.spark.mllib.evaluation.MulticlassMetricsimport org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.mllib.util.MLUtils
val spark = SparkSession.builder.master("local[*]").appName("myMulticlass").config("spark.sql.warehouse.dir", ".").getOrCreate() ...
How it works...
In this recipe, we explored generating evaluation metrics for a multi-classification model. First, we loaded the Iris data into memory and split it in a ratio of 60:40. Second, we trained a logistic regression model with the number of classifications set to three. Third, we made predictions with the test dataset and utilized MultiClassMetric to generate evaluation measurements. Finally, we evaluated metrics such as the model accuracy, weighted precision, weighted recall, weighted F1 score, weighted false positive rate, and so on.
There's more...
While the scope of the book does not allow for a complete treatment of the confusion matrix, a short explanation and a link are provided as a quick reference.
The confusion matrix is just a fancy name for an error matrix. It is mostly used in unsupervised learning to visualize the performance. It is a layout that captures actual versus predicted outcomes with an identical set of labels in two dimensions:
Confusion Matrix
To get a quick introduction to the confusion matrix in unsupervised and supervised statistical learning systems, see https://en.wikipedia.org/wiki/Confusion_matrix.
See also
Documentation for original dataset information is available at the following websites:
Documentation for multiclass classification metrics is available at:
Multilabel classification model evaluation using Spark 2.0
In this recipe, we explore multilabel classification MultilabelMetrics in Spark 2.0 which should not be mixed up with the previous recipe dealing with multiclass classification MulticlassMetrics. The key to exploring this recipe is to concentrate on evaluation metrics such as Hamming loss, accuracy, f1-measure, and so on, and what they measure.
How to do it...
package spark.ml.cookbook.chapter4
import org.apache.spark.sql.SparkSession
import org.apache.spark.mllib.evaluation.MultilabelMetrics
import org.apache.spark.rdd.RDD
val spark = SparkSession
.builder
.master("local[*]")
.appName("myMultilabel")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
val data: RDD[(Array[Double], Array[Double])] = spark.sparkContext.parallelize(
Seq((Array(0.0, 1.0), Array(0.1, 2.0)),
(Array(0.0, 2.0), Array(0.1, 1.0)),
(Array.empty[Double], Array(0.0)),
(Array(2.0), Array(2.0)),
(Array(2.0, 0.0), Array(2.0, 0.0)),
(Array(0.0, 1.0, 2.0), Array(0.0, 1.0)),
(Array(1.0), Array(1.0, 2.0))), 2)
val metrics = new MultilabelMetrics(data)
println(s"Recall = ${metrics.recall}")
println(s"Precision = ${metrics.precision}")
println(s"F1 measure = ${metrics.f1Measure}")
println(s"Accuracy = ${metrics.accuracy}")
From the console output:
Recall = 0.5
Precision = 0.5238095238095238
F1 measure = 0.4952380952380952
Accuracy = 0.4523809523809524
metrics.labels.foreach(label =>
println(s"Class $label precision = ${metrics.precision(label)}"))
metrics.labels.foreach(label => println(s"Class $label recall = ${metrics.recall(label)}"))
metrics.labels.foreach(label => println(s"Class $label F1-score = ${metrics.f1Measure(label)}"))
From the console output:
Class 0.0 precision = 0.5
Class 1.0 precision = 0.6666666666666666
Class 2.0 precision = 0.5
Class 0.0 recall = 0.6666666666666666
Class 1.0 recall = 0.6666666666666666
Class 2.0 recall = 0.5
Class 0.0 F1-score = 0.5714285714285715
Class 1.0 F1-score = 0.6666666666666666
Class 2.0 F1-score = 0.5
println(s"Micro recall = ${metrics.microRecall}")
println(s"Micro precision = ${metrics.microPrecision}")
println(s"Micro F1 measure = ${metrics.microF1Measure}")
From the console output:
Micro recall = 0.5
Micro precision = 0.5454545454545454
Micro F1 measure = 0.5217391304347826
println(s"Hamming loss = ${metrics.hammingLoss}")
println(s"Subset accuracy = ${metrics.subsetAccuracy}")
From the console output:
Hamming loss = 0.39285714285714285
Subset accuracy = 0.2857142857142857
spark.stop()
How it works...
In this recipe, we investigated generating evaluation metrics for the multilabel classification model. We began with manually creating a dataset for the model evaluation. Next, we passed our dataset as an argument to the MultilabelMetrics and generated evaluation metrics. Finally, we printed out various metrics such as micro recall, micro precision, micro f1-measure, Hamming loss, subset accuracy, and so on.
There's more...
Note that the multilabel and multiclass classifications sound similar, but they are two different things.
All multilabel MultilabelMetrics() method is trying to accomplish is to map a number of inputs (x) to a binary vector (y) rather than numerical values in a typical classification system.
The important metrics associated with the multilabel classification are (see the preceding code):
A full explanation of each parameter is out of scope, but the following link provides a short treatment for the multilabel metrics:
https://en.wikipedia.org/wiki/Multi-label_classification
See also
Documentation for multilabel classification metrics:
Using the Scala Breeze library to do graphics in Spark 2.0
In this recipe, we will use the functions scatter() and plot() from the Scala Breeze linear algebra library (part of) to draw a scatter plot from a two-dimensional data. Once the results are computed on the Spark cluster, either the actionable data can be used in the driver for drawing or a JPEG or GIF can be generated in the backend and pushed forward for efficiency and speed (popular with GPU-based analytical databases such as MapD)
How to do it...
package spark.ml.cookbook.chapter4
How it works...
In this recipe, we created a dataset in Spark from random numbers. We then created a Breeze figure and set up the basic parameters. We derived x, y data from the created dataset.
We used Breeze's scatter() and plot() functions to do graphics using the Breeze library.
There's more...
One can use Breeze as an alternative to more complicated and powerful charting libraries such as JFreeChart, demonstrated in the previous chapter. The ScalaNLP project tends to be optimized with Scala goodies such as implicit conversions that make the coding relatively easier.
The Breeze graphics JAR file can be downloaded at http://central.maven.org/maven2/org/scalanlp/breeze-viz_2.11/0.12/breeze-viz_2.11-0.12.jar.
More about Breeze graphics can be found at https://github.com/scalanlp/breeze/wiki/Quickstart.
The API document (please note, the API documentation is not necessarily up-to-date) can be found at http://www.scalanlp.org/api/breeze/#package.
Note that once you are in the root package, you need click on Breeze to ...
See also
For more information on Breeze, see the original material on GitHub at https://github.com/scalanlp/breeze.
Note that once you are in the root package, you need to click on Breeze to see the details.
For more information regarding the Breeze API documentation, please download the https://repo1.maven.org/maven2/org/scalanlp/breeze-viz_2.11/0.12/breeze-viz_2.11-0.12-javadoc.jar JAR.
Recommendation Engine that Scales with Spark
In this chapter, we will cover:
Introduction
In the previous chapters, we used short recipes and extremely simplified code to demonstrate basic building blocks and concepts governing the Spark machine library. In this chapter, we present a more developed application that addresses specific machine learning library domains using Spark's API and facilities. The number of recipes is less in this chapter; however, we get into a more ML application setting.
In this chapter, we explore the recommendation system and its implementation using a matrix factorization technique that draws on latent factor models called alternating least square (ALS). In a nutshell, when we try to factorize a large matrix of user-item ratings into two lower ranked, skinnier matrices, we often face a non-linear or non-convex optimization problem that is very difficult to solve. It happens that we are very good at solving convex optimization problems by fixing one leg and partially solving the other and then going back and forth (hence alternating); we can solve this factorization (hence discovering a set of latent factors) much better using known optimization techniques in parallel.
We use a popular dataset (movie lens dataset) to implement the recommendation engine, but unlike in other chapters, we use two recipes to explore the data and also show how you can introduce graphical elements such as the JFreeChart popular library to your Spark machine learning toolkit.
The following figure shows the flow of the concepts and recipes in this chapter to demonstrate an ALS recommendation application:
Recommendation engines have been around for a long time and were used in early e-commerce systems of the 1990s, using techniques ranging from hardcoded product association to content-based recommendations driven by profiling. The modern systems use collaboration filtering (CF) to address the shortcomings of the early systems and also to address the scale and latency (for example, 100 ms max and less) that is necessary to compete in modern commerce systems (for example, Amazon, Netflix, eBay, News, and so on).
The modern systems use CF based on historical interactions and records (page view, purchases, rating, and so on). These systems address two major issues, mainly scalability and sparseness (that is, we do not have all the ratings for all movies or songs). Most systems use a variation of Alternating Least Square with Weighted Lambda Regularization that can be parallelized on most major platforms (for example, Spark). Having said that, a practical system implemented for commercial purposes uses many augmentations to deal with bias (that is, not all movies and users are equal) and temporal issues (that is, users' choice will change and the inventory of items will change) that are present in today's ecosystem. Having worked on a smart and leading edge e-commerce system, building a competitive recommender is not a purist approach, but a practical one that uses multiple techniques, arriving at the affinity matrix/heat map as the context utilizing all three techniques (collaborative filtering, content-based filtering, and similarity) at the minimum.
The reader is encouraged to look up white papers and material that refer to the problem of cold start in recommendation systems.
To set the context, the following figure provides a high-level taxonomy of methods that are available to build recommendation systems. We briefly cover some of the pros and cons of each system but concentrate on matrix factorization (latent factor model) that is available in Spark.
While both single value decomposition (SVD) and alternative least squares (ALS) are available, we concentrate on ALS implementation with MovieLens data due to the shortcomings of SVD in handling missing data among other things.
The recommendation engine techniques in use are explained in the following section.
Content filtering
Content filtering is one of the original techniques for recommendation engines. It relies on user profiles to make recommendations. This approach relies mostly on pre-existing profiles for users (type, demographics, income, geo-location, ZIP code) and inventory (characteristics of a product, movie, or a song) to infer attribution which then can be filtered and acted upon. The main issue is that the pre-existing knowledge is often incomplete and expensive to source. This technique is more than a decade old and is still being practiced.
Collaborative filtering
Collaborative filtering is the workhorse of modern recommendation systems and relies on user interaction in the ecosystem rather than profiles to make recommendations.
This technique relies on past user behavior and product ratings and does not assume any pre-existing knowledge. In short, users rate the inventory items and the assumption is that customer taste will remain relatively constant over time, which can be exploited to provide recommendations. Having said that, an intelligent system will augment and reorder recommendations with any available context (for example, the user is a female who has logged in from China).
The main issue with this class of techniques is cold start, but its advantages of being domain free, with more accuracy and easy scalability, has made it a winner in the age of big data.
Neighborhood method
This technique is mostly implemented as weighted local neighborhood. In its core, it is a similarity technique and relies heavily on assumptions about items and users. While it is easy to understand and implement the technique, the algorithm suffers from a lack of scalability and accuracy.
Latent factor models techniques
This technique attempts to explain users' ratings of inventory items (for example, products on Amazon) by inferring a secondary set of latent factors which are inferred from ratings. The power comes from the fact that you do not need to know the factors ahead of time (similar to PCA techniques), but they are simply inferred from the ratings themselves. We derive the latent factors using matrix factorization techniques which are popular due to the extreme scalability, accuracy of predictions, and flexibility (they allow for bias and the temporal nature of the user and inventory).
Setting up the required data for a scalable recommendation engine in Spark 2.0
In this recipe, we examine downloading the MovieLens public dataset and take a first exploratory view of the data. We will use the explicit data based on customer ratings from the MovieLens dataset. The MovieLens dataset contains 1,000,000 ratings of 4,000 movies from 6,000 users.
You will need one of the following command line tools to retrieve the specified data: curl (recommended for Mac) or wget (recommended for Windows or Linux).
How to do it...
wget http://files.grouplens.org/datasets/movielens/ml-1m.zip
You can also use the following command:
curl http://files.grouplens.org/datasets/movielens/ml-1m.zip -o ml-1m.zip
unzip ml-1m.zip
creating: ml-1m/
inflating: ml-1m/movies.dat
inflating: ml-1m/ratings.dat
inflating: ml-1m/README
inflating: ml-1m/users.dat
The command will create a directory named ml-1m with data files decompressed inside.
cd m1-1m
head -5 movies.dat
1::Toy Story (1995)::Animation|Children's|Comedy
2::Jumanji (1995)::Adventure|Children's|Fantasy
3::Grumpier Old Men (1995)::Comedy|Romance
4::Waiting to Exhale (1995)::Comedy|Drama
5::Father of the Bride Part II (1995)::Comedy
head -5 ratings.dat
1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
How it works...
The MovieLens dataset is an excellent alternative to the original Netflix KDD cup dataset. This dataset comes in multiple sets ranging from small (100 K set) to large (1 M and 20 M set). For those users interested in tweaking the source code to add their own augmentation (for example, the change regularization technique), the range of the dataset makes it easy to study the scaling effect and look at the performance curve versus Spark utilization per executive, as the data scales from 100 K to 20 M.
The URL to download is http://grouplens.org/datasets/movielens/.
There's more...
Take a closer look at where we downloaded the data from because more datasets are available for use at http://files.grouplens.org/datasets/.
The following figure depicts the size and extent of the data. For this chapter, we use the small set so it can easily run on a small laptop with limited resources.
Source: MovieLens
See also
Please read through the README file contained within the directory that you unzipped the data to. The README file contains information about data file formats and data descriptions.
There is also a MovieLens genome tag set that can be used for reference.
For those interested in exploring the original Netflix dataset, please see the http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a URL.
Exploring the movies data details for the recommendation system in Spark 2.0
In this recipe, we will begin to explore the movie data file by parsing data into a Scala case class and generating a simple metric. The key here is to acquire an understanding of our data, so in the later stages, if nebulous results arise, we will have some insight to make an informed conclusion about the correctness of our results.
This is the first of the two recipes which explore the movie dataset. Data exploration is an important first step in statistical analysis and machine learning.
One of the best ways to understand the data quickly is to generate a data visualization of it, and we will use JFreeChart to do that. It is very important to make sure you feel comfortable with the data and understand firsthand what is in each file, and the story it tries to tell.
We must always explore, understand, and visualize the data before we do anything else. Most performances and misses with ML and others systems can be traced to a lack of understanding of how the data is laid out and how it changes over time. If we look at the chart given in step 14 in this recipe, one immediately realizes that the distribution of movies over the years is not uniform, but skewed with high kurtosis. While we are not going to explore this property for optimization and sampling in this book, it makes an important point about the nature of the movie data.
How to do it...
package spark.ml.cookbook.chapter7
import java.text.DecimalFormat import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession import org.jfree.chart.{ChartFactory, ChartFrame, JFreeChart} import org.jfree.chart.axis.NumberAxis import org.jfree.chart.plot.PlotOrientation import org.jfree.data.xy.{XYSeries, ...
How it works...
When the program started to execute, we initialized a SparkContext in our driver program to start the task of processing the data. This implies that the data must fit in the driver's memory (user's station), which is not a server requirement in this case. Alternative methods of divide and conquer must be devised to deal with extreme datasets (partial retrieval and the assembly at destination).
We continued by loading and parsing the data file into a dataset with the data type of the movies. The movie dataset was then grouped by year, yielding a map of movies keyed by year, with buckets of associated movies attached.
Next, we extracted the year with the count of the number of movies associated with the specific year to generate our histogram. We then collected the data, causing the entire resulting data collection to materialize on the driver, and passed it to JFreeChart to build the data visualization.
There's more...
You need to be cognizant of our use of Spark SQL because of its flexibility. More information is available at http://spark.apache.org/docs/latest/sql-programming-guide.html#running-sql-queries-programmatically.
See also
For more on using JFreechart, refer to the JFreeChart API documentation at http://www.jfree.org/jfreechart/api.html.
You can find a good tutorial on JFreeChart at the http://www.tutorialspoint.com/jfreechart/ link.
The link for the JFreeChart itself is http://www.jfree.org/index.html.
Exploring the ratings data details for the recommendation system in Spark 2.0
In this recipe, we explore the data from the user/rating perspective to understand the nature and property of our data file. We will start to explore the ratings data file by parsing data into a Scala case class and generating visualization for insight. The ratings data will be used a little later to generate features for our recommendation engine. Again, we stress that the first step in any data science/machine learning exercise should be the visualization and exploration of the data.
Once again, the best way of understanding data quickly is to generate a data visualization of it, and we will use a JFreeChart scatterplot to do this. A quick look at the chart of ...
How to do it...
package spark.ml.cookbook.chapter7
import java.text.DecimalFormat
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.jfree.chart.{ChartFactory, ChartFrame, JFreeChart}
import org.jfree.chart.axis.NumberAxis
import org.jfree.chart.plot.PlotOrientation
import org.jfree.data.xy.{XYSeries, XYSeriesCollection}
case class Rating(userId: Int, movieId: Int, rating: Float, timestamp: Long)
def show(chart: JFreeChart) {
val frame = new ChartFrame("plot", chart)
frame.pack()
frame.setVisible(true)
}
def parseRating(str: String): Rating = {
val columns = str.split("::")
assert(columns.size == 4)
Rating(columns(0).toInt, columns(1).toInt, columns(2).toFloat, columns(3).toLong)
}
val ratingsFile = "../data/sparkml2/chapter7/ratings.dat"
val spark = SparkSession
.builder
.master("local[*]")
.appName("MovieRating App")
.config("spark.sql.warehouse.dir", ".")
.config("spark.executor.memory", "2g")
.getOrCreate()
Logger.getLogger("org").setLevel(Level.ERROR)
import spark.implicits._
val ratings = spark.read.textFile(ratingsFile).map(parseRating)
ratings.createOrReplaceTempView("ratings")
val resultDF = spark.sql("select ratings.userId, count(*) as count from ratings group by ratings.userId")
resultDF.show(25, false);
From the console output:
val scatterPlotDataset = new XYSeriesCollection()
val xy = new XYSeries("")
resultDF.collect().foreach({r => xy.add(r.getAs[Integer]("userId"), r.getAs[Integer]("count")) })
scatterPlotDataset.addSeries(xy)
val chart = ChartFactory.createScatterPlot(
"", "User", "Ratings Per User", scatterPlotDataset, PlotOrientation.VERTICAL, false, false, false)
val chartPlot = chart.getXYPlot()
val xAxis = chartPlot.getDomainAxis().asInstanceOf[NumberAxis]
xAxis.setNumberFormatOverride(new DecimalFormat("####"))
show(chart)
spark.stop()
How it works...
We began by loading and parsing the data file into a dataset with the data type ratings, and finally converted it to a DataFrame. The DataFrame was then used to execute a Spark SQL query that grouped all the ratings by user with their totals.
A full understanding of the API and its concepts (lazy instantiation, staging, pipelining, and caching) is critical for every Spark developer.
Finally, we passed the result set of data to the JFreeChart scatterplot component to display our chart.
There's more...
A Spark DataFrame is a distributed collection of data organized into named columns. All DataFrame operations are also automatically parallelized and distributed on clusters. Also, DataFrames are lazily evaluated like RDDs.
See also
Documentation on DataFrames can be found at http://spark.apache.org/docs/latest/sql-programming-guide.html.
A good tutorial on JFreeChart can be found at the http://www.tutorialspoint.com/jfreechart/ linking.
JFreeChart can be downloaded from the http://www.jfree.org/index.html URL.
Building a scalable recommendation engine using collaborative filtering in Spark 2.0
In this recipe, we will be demonstrating a recommendation system that utilizes a technique known as collaborative filtering. At the core, collaborative filtering analyzes the relationship between users themselves and the dependencies between the inventory (for example, movies, books, news articles, or songs) to identify user-to-item relationships based on a set of secondary factors called latent factors (for example, female/male, happy/sad, active/passive). The key here is that you do not need to know the latent factors in advance.
The recommendation will be produced via the ALS algorithm which is a collaborative filtering technique. At a high level, collaborative filtering entails making predictions of what a user may be interested in based on collecting previously known preferences, combined with the preferences of many other users. We will be using the ratings data from the MovieLens dataset and will convert it into input features for the recommendation algorithm.
How to do it...
package spark.ml.cookbook.chapter7
import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession import org.apache.spark.ml.recommendation.ALS
case class Movie(movieId: Int, title: String, year: Int, genre: Seq[String]) case class FullRating(userId: Int, movieId: Int, rating: Float, timestamp: Long)
How it works...
Due to the complex nature of the program, we provide a conceptual explanation and then proceed to explain the details of the program.
The following figure depicts a conceptual view of ALS and how it factorizes the user/movie/rating matrix, which is a high-ranking order matrix to a lower order tall and skinny matrix, and a vector of latent factors: f(users) and f(movies).
Another way to think about it is that these factors can be used to place the movie in an n dimensional space that will be matched to a given recommendation for a given user. It is always desirable to view machine learning as a search query in a dimensional variable space. The point to remember is that the latent factor (learned geometry space) is not pre-defined and can be as low as 10 to 100 or 1,000 depending on what is being searched or factorized. Our recommendation, then, can be viewed as placing a probability mass within the n-dimensional space. The following figure provides an extremely simplified view of a possible two-factor model (two-dimensional) to demonstrate the point:
While the implementation of ALS can vary a bit from system to system, at its core it is an iterative full-factorization method (in Spark) with weighed regularization. Spark's documentation and tutorials provide an insight into the actual math and the nature of the algorithm. It depicts the algorithm as follows:
The best way to understand this formula/algorithm is to think of it as an iterating apparatus which is trying to discover the latent factors by alternating between inputs (that is, fix one of the inputs and then approximate/optimize the other--and then back and forth), while trying to minimize the least square error (MSE) with respect to a regularization penalty of weighted lambda. A more detailed explanation is provided in the next section.
The program flow is as follows:
There's more...
People often struggle with ALS even though at its core it is a simple linear algebra operation with an added regularization penalty. What makes ALS powerful is its ability to be parallelized and to deal with scale (for example, Spotify).
ALS in layman's language involves the following:
See also
Spark 2.0 ML documentation to explore the ALS API:
Spark 2.0 MLlib documentation is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.recommendation.ALS.
ALS parameters and their default constructs an ALS instance with default parameters as follows:
{numBlocks: -1, rank: 10, iterations: 10, lambda: 0.
numBlocks: -1,
rank: 10,
iterations: 10,
lambda: 0.01,
implicitPrefs: false,
alpha: 1.0
Dealing with implicit input for training
There are times when the actual observations (ratings) are not available and one must deal with implied feedback parameters. This can be as simple as which audio track was listened to during an engagement to how long a movie was watched, or the context (indexed in advance) or what caused a switch (a Netflix movie abandoned in the beginning, middle, or near a specific scene). The example provided in the third recipe deals with explicit feedback via the use of ALS.train().
The Spark ML library provides an alternative method, ALS.trainImplicit(), with four hyper parameters to control the algorithm and address the implicit data. If you are interested in testing this (it is very similar to the explicit ...
Unsupervised Clustering with Apache Spark 2.0
In this chapter, we will cover:
Introduction
Unsupervised machine learning is a type of learning technique in which we try to draw inferences either directly or indirectly (through latent factors) from a set of unlabeled observations. In simple terms, we are trying to find the hidden knowledge or structures in a set of data without initially labeling the training data.
While most machine learning library implementation break down when applied to large datasets (iterative, multi-pass, a lot of intermediate writes), the Apache Spark Machine Library succeeds by providing machine library algorithms designed for parallelism and extremely large datasets using memory for intermediate writes out of the box.
At the most abstract level, we can think of unsupervised learning as:
Building a KMeans classifying system in Spark 2.0
In this recipe, we will load a set of features (for example, x, y, z coordinates) using a LIBSVM file and then proceed to use KMeans() to instantiate an object. We will then set the number of desired clusters to three and then use kmeans.fit() to action the algorithm. Finally, we will print the centers for the three clusters that we found.
It is really important to note that Spark does not implement KMeans++, contrary to popular literature, instead it implements KMeans || (pronounced as KMeans Parallel). See the following recipe and the sections following the code for a complete explanation of the algorithm as it is implemented in Spark.
How to do it...
package spark.ml.cookbook.chapter8
import org.apache.log4j.{Level, Logger}import org.apache.spark.ml.clustering.KMeansimport org.apache.spark.sql.SparkSession
Logger.getLogger("org").setLevel(Level.ERROR)
val spark = SparkSession .builder.master("local[*]") .appName("myKMeansCluster") .config("spark.sql.warehouse.dir" ...
How it works...
We read a LIBSVM file with a set of coordinates (can be interpreted as a tuple of three numbers) and then created a KMean() object, but changed the default number of clusters from 2 (out of the box) to 3 for demonstration purposes. We used the .fit() to create the model and then used model.summary.predictions.show() to display which tuple belongs to which cluster. In the last step, we printed the cost and the center of the three clusters. Conceptually, it can be thought of as having a set of 3D coordinates as data and then assigning each individual coordinate to one of the three clusters using KMeans algorithms.
KMeans is a form of unsupervised machine learning algorithm, with its root in signal processing (vector quantization) and compression (grouping similar vectors of items together to achieve a higher compression rate). Generally speaking, the KMeans algorithm attempts to group a series of observations {X1, X2, , Xn} into a series of clusters {C1, C2 Cn} using a form of distance measure (local optimization) that is optimized in an iterative manner.
There are three main types of KMeans algorithm that are in use. In a simple survey, we found 12 specialized variations of the KMeans algorithm. It is important to note that Spark implements a version called KMeans || (KMeans Parallel) and not KMeans++ or standard KMeans as referenced in some literature or videos.
The following figure depicts KMeans in a nutshell:
Source: Spark documentation
KMeans (Lloyd Algorithm)
The steps for basic KMeans implementation (Lloyd algorithm) are:
The three generations are depicted in the following figure:
KMeans++ (Arthur's algorithm)
The next improvement over standard KMeans is the KMeans++ proposed by David Arthur and Sergei Vassilvitskii in 2007. Arthur's algorithm improves the initial Lloyd's KMeans by being more selective during the seeding process (the initial step).
KMeans++, rather than picking random centres (random centroids) as starting points, picks the first centroid randomly and then picks the data points one by one and calculates D(x). Then it chooses one more data point at random and, using proportional probability distribution D(x)2, it then keeps repeating the last two steps until all K numbers are picked. After the initial seeding, we finally run the KMeans or a variation with the newly seeded centroid. The KMeans++ algorithm is guaranteed to find a solution in an Omega= O(log k) complexity. Even though the initial seeding takes extra steps, the accuracy improvements are substantial.
KMeans|| (pronounced as KMeans Parallel)
KMeans || is optimized to run in parallel and can result in one-two orders of magnitude improvement over Lloyd's original algorithm. The limitation of KMeans++ is that it requires K-passes over the dataset, which can severely limit the performance and practicality of running KMeans with large or extreme datasets. Spark's KMeans|| parallel implementation runs faster because it takes fewer passes (a lot less) over the data by sampling m points and oversampling in the process.
The core of the algorithm and the math is depicted in the following figure:
In a nutshell, the highlight of the KMeans || (Parallel ...
There's more...
There is also a streaming version of KMeans implementation in Spark that allows you to classify the features on the fly.
There is also a class that helps you to generate RDD data for KMeans. We found this to be very useful during our application development process:
def generateKMeansRDD(sc: SparkContext, numPoints: Int, k: Int, d: Int, r: Double, numPartitions: Int = 2): RDD[Array[Double]]
This call uses Spark context to create RDDs while allowing you to specify the number of points, clusters, dimensions, and partitions.
A useful related API is: generateKMeansRDD(). Documentation for generateKMeansRDD can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.util.KMeansDataGenerator$ for generate an RDD containing test data for KMeans.
See also
We need two pieces of objects to be able to write, measure, and manipulate the parameters of the KMeans || algorithm in Spark. The details of these two pieces of objects can be found at the following websites:
Bisecting KMeans, the new kid on the block in Spark 2.0
In this recipe, we will download the glass dataset and try to identify and label each glass using a bisecting KMeans algorithm. The Bisecting KMeans is a hierarchical version of the K-Mean algorithm implemented in Spark using the BisectingKMeans() API. While this algorithm is conceptually like KMeans, it can offer considerable speed for some use cases where the hierarchical path is present.
The dataset we used for this recipe is the Glass Identification Database. The study of the classification of types of glass was motivated by criminological research. Glass could be considered as evidence if it is correctly identified. The data can be found at NTU (Taiwan), already in LIBSVM format.
How to do it...
The dataset contains 11 features and 214 rows.
Type of glass: Will find our class attributes or clusters using BisectingKMeans():
How it works...
In this session, we explored the Bisecting KMeans model, which is new in Spark 2.0. We utilized the glass dataset in this session and tried to assign a glass type using BisectingKMeans(), but changed k to 6 so we have sufficient clusters. As usual, we loaded the data into a dataset with Spark's libsvm loading mechanism. We split the dataset randomly into 80% and 20%, with 80% used to train the model and 20% used for testing the model.
We created the BiSectingKmeans() object and used the fit(x) function to create the model. We then used the transform(x) function for the testing dataset to explore the model prediction and printed out the result in the console output. We also output the cost of computing the clusters (sum of error squared) and then displayed the cluster centers. Finally, we printed the features with their assigned cluster number and stop operation.
Approaches to hierarchical clustering include:
There's more...
More about the Bisecting KMeans can be found at:
We use clustering to explore the data and get a feel for what the outcome looks like as clusters. The bisecting KMeans is an interesting case of hierarchical analysis versus KMeans clustering.
The best way to conceptualize it is to think of bisecting KMeans as a recursive hierarchical KMeans. The bisecting KMeans algorithm divides the data using similarity measurement techniques like KMeans but uses a hierarchical scheme to increase accuracy. It is particularly prevalent ...
See also
There are two approaches to implementing hierarchical clustering--Spark uses a recursive top-down approach in which a cluster is chosen and then splits are performed in the algorithm as it moves down the hierarchy:
Using Gaussian Mixture and Expectation Maximization (EM) in Spark to classify data
In this recipe, we will explore Spark's implementation of expectation maximization (EM) GaussianMixture(), which calculates the maximum likelihood given a set of features as input. It assumes a Gaussian mixture in which each point can be sampled from K number of sub-distributions (cluster memberships).
How to do it...
Start a new project in IntelliJ or in an IDE of your choice. Make sure the necessary JAR files are included.
Set up the package location where the program will reside:
package spark.ml.cookbook.chapter8.
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.clustering.GaussianMixture
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.SparkSession
Create Spark's session object:
val spark = SparkSession
.builder
.master("local[*]")
.appName("myGaussianMixture")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
Let us take a look at the dataset and examine the input file. The Simulated SOCR Knee Pain Centroid Location Data represents the centroid location for the hypothetical knee-pain locations for 1,000 subjects. The data includes the X and Y coordinates of the centroids.
This dataset can be used to illustrate the Gaussian Mixture and Expectation Maximization. The data is available at: http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_KneePainData_041409
The sample data looks like the following:
X, Y
11 73
20 88
19 73
15 65
21 57
26 101
24 117
35 106
37 96
35 147
41 151
42 137
43 127
41 206
47 213
49 238
40 229
The following figure depicts a knee-pain map based on the SOCR dataset from wiki.stat.ucla:
We place the data file in a data directory (you can copy the data file to any location you prefer).
The data file contains 8,666 entries:
val dataFile ="../data/sparkml2/chapter8/socr_data.txt"
We then load the data file into RDD:
val trainingData = spark.sparkContext.textFile(dataFile).map { line =>
Vectors.dense(line.trim.split(' ').map(_.toDouble))
}.cache()
We now create a GaussianMixture model and set the parameters for the model. We set the K value to 4, since the data was collected by four views: Left Front (LF), Left Back (LB), Right Front (RF), and Right Back (RB). We set the convergence to the default value of 0.01, and the maximum iteration counts to 100:
val myGM = new GaussianMixture()
.setK(4) // default value is 2, LF, LB, RF, RB
.setConvergenceTol(0.01) // using the default value
.setMaxIterations(100) // max 100 iteration
We run the model algorithm:
val model = myGM.run(trainingData)
We print out the key values for the GaussianMixture model after the training:
println("Model ConvergenceTol: "+ myGM.getConvergenceTol)
println("Model k:"+myGM.getK)
println("maxIteration:"+myGM.getMaxIterations)
for (i <- 0 until model.k) {
println("weight=%f\nmu=%s\nsigma=\n%s\n" format
(model.weights(i), model.gaussians(i).mu, model.gaussians(i).sigma))
}
Since we set the K value to 4, we will have four sets of values printed out in the console logger:
We also print out the first 50 cluster-labels based on the GaussianMixture model predictions:
println("Cluster labels (first <= 50):")
val clusterLabels = model.predict(trainingData)
clusterLabels.take(50).foreach { x =>
print(" " + x)
}
The sample output in the console will show the following:
Cluster labels (first <= 50):
1 1 1 1 1 1 1 1 1 0
We then close the program by stopping the Spark context:
spark.stop()
How it works...
In the previous recipe, we observed that KMeans can discover and allocate membership to one and only one cluster based on an iterative method using similarity (Euclidian, and so on). One can think of KMeans as a specialized version of a Gaussian mixture model with EM models in which a discrete (hard) membership is enforced.
But there are cases that have overlap, which is often the case in medicine or signal processing, as depicted in the following figure:
In such cases, we need a probability density function that can express the membership in each sub-distribution. The Gaussian Mixture models with Expectation Maximization
New GaussianMixture()
This constructs a default instance. The default parameters that control the behavior of the model are:
The Gaussian Mixture models with Expectation Maximization are a form of soft clustering in which a membership can be inferred using a log maximum likelihood function. In this scenario, a probability density function with mean and covariance is used to define the membership or likelihood of a membership to K number of clusters. It is flexible in the sense that the membership is not quantified which allows for overlapping membership based on probability (indexed to multiple sub-distributions).
The following figure is a snapshot of the EM algorithm:
Here are the steps to the EM algorithm:
For a more mathematical explanation, including detailed work on maximum likelihood, see the following link: http://www.ee.iisc.ernet.in/new/people/faculty/prasantg/downloads/GMM_Tutorial_Reynolds.pdf
There's more...
The following figure provides a quick reference point to highlight some of the differences between hard versus soft clustering:
See also
Documentation for constructor GaussianMixture can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.GaussianMixture
Documentation for constructor GaussianMixtureModel can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.GaussianMixtureModel
Classifying the vertices of a graph using Power Iteration Clustering (PIC) in Spark 2.0
This is a classification method for the vertices of a graph given their similarities as defined by their edges. It uses the GraphX library which is ships out of the box with Spark to implement the algorithm. Power Iteration Clustering is similar to other Eigen Vector/Eigen Value decomposition algorithms but without the overhead of matrix decomposition. It is suitable when you have a large sparse matrix (for example, graphs depicted as a sparse matrix).
GraphFrames will be the replacement/interface proper for the GraphX library going forward (https://databricks.com/blog/2016/03/03/introducing-graphframes.html).
How to do it...
Start a new project in IntelliJ or in an IDE of your choice. Make sure the necessary JAR files are included.
Set up the package location where the program will reside:
package spark.ml.cookbook.chapter8
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.clustering.PowerIterationClustering
import org.apache.spark.sql.SparkSession
Set up the logger level to ERROR only to reduce the output:
Logger.getLogger("org").setLevel(Level.ERROR)
Create Spark's configuration and SQL context so we can have access to the cluster and be able to create and use a DataFrame as needed:
// setup SparkSession to use for interactions with Spark
val spark = SparkSession
.builder
.master("local[*]")
.appName("myPowerIterationClustering")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
We create a training dataset with a list of datasets and use the Spark sparkContext.parallelize() function to create Spark RDD:
val trainingData =spark.sparkContext.parallelize(List(
(0L, 1L, 1.0),
(0L, 2L, 1.0),
(0L, 3L, 1.0),
(1L, 2L, 1.0),
(1L, 3L, 1.0),
(2L, 3L, 1.0),
(3L, 4L, 0.1),
(4L, 5L, 1.0),
(4L, 15L, 1.0),
(5L, 6L, 1.0),
(6L, 7L, 1.0),
(7L, 8L, 1.0),
(8L, 9L, 1.0),
(9L, 10L, 1.0),
(10L,11L, 1.0),
(11L, 12L, 1.0),
(12L, 13L, 1.0),
(13L,14L, 1.0),
(14L,15L, 1.0)
))
We create a PowerIterationClustering object and set the parameters. We set the K value to 3 and max iteration count to 15:
val pic = new PowerIterationClustering()
.setK(3)
.setMaxIterations(15)
We then let the model run:
val model = pic.run(trainingData)
We print out the cluster assignment based on the model for the training data:
model.assignments.foreach { a =>
println(s"${a.id} -> ${a.cluster}")
}
The console output will show the following information:
We also print out the model assignment data in a collection for each cluster:
val clusters = model.assignments.collect().groupBy(_.cluster).mapValues(_.map(_.id))
val assignments = clusters.toList.sortBy { case (k, v) => v.length }
val assignmentsStr = assignments
.map { case (k, v) =>
s"$k -> ${v.sorted.mkString("[", ",", "]")}"
}.mkString(", ")
val sizesStr = assignments.map {
_._2.length
}.sorted.mkString("(", ",", ")")
println(s"Cluster assignments: $assignmentsStr\ncluster sizes: $sizesStr")
The console output will display the following information (in total, we have three clusters which were set in the preceding parameters):
Cluster assignments: 1 -> [12,14], 2 -> [4,6,8,10], 0 -> [0,1,2,3,5,7,9,11,13,15]
cluster sizes: (2,4,10)
We then close the program by stopping the Spark context:
spark.stop()
How it works...
We created a list of edges and vertices for a graph and then proceeded to create the object and set the parameters:
new PowerIterationClustering().setK(3).setMaxIterations(15)
The next step was the model of training data:
val model = pic.run(trainingData)
The clusters were then outputted for inspection. The code near the end prints out the model assignment data in a collection for each cluster using Spark transformation operators.
At the core PIC (Power Iteration Clustering) is an eigenvalue class algorithm which avoids matrix decomposition by producing an Eigen Value plus an Eigen Vector to satisfy Av = λv. Because PIC avoids the decomposition of the matrix A, it is suitable when the input matrix A (describing a graph in ...
There's more...
For a more detailed mathematical treatment of the subject (power iteration), see the following white paper from Carnegie Mellon University: http://www.cs.cmu.edu/~wcohen/postscript/icml2010-pic-final.pdf
See also
Documentation for the constructor PowerIterationClustering() can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.PowerIterationClustering
Documentation for the constructor PowerIterationClusteringModel() can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.PowerIterationClusteringModel
Latent Dirichlet Allocation (LDA) to classify documents and text into topics
In this recipe, we will explore the Latent Dirichlet Allocation (LDA) algorithm in Spark 2.0. The LDA we use in this recipe is completely different from linear discrimination analysis. Both Latent Dirichlet Allocation and linear discrimination analysis are referred to as LDA, but they are extremely different techniques. In this recipe, when we use the LDA, we refer to Latent Dirichlet Allocation. The chapter on text analytics is also relevant to understanding the LDA.
LDA is often used in natural language processing which tries to classify a large body of the document (for example, emails from the Enron fraud case) into a discrete number of topics or themes so it can be understood. LDA is also a good candidate for selecting articles based on one's interest (for example, as you turn a page and spend time on a specific topic) in a given magazine article or page.
How to do it...
Start a new project in IntelliJ or in an IDE of your choice. Make sure the necessary JAR files are included.
Set up the package location where the program will reside:
package spark.ml.cookbook.chapter8
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSessionimport org.apache.spark.ml.clustering.LDA
We set up the necessary Spark Session to gain access to the cluster:
val spark = SparkSession .builder.master("local[*]") .appName("MyLDA") .config("spark.sql.warehouse.dir", ".") .getOrCreate()
We have a sample LDA dataset, which is located at the following relative path (you can use an absolute path). The sample file is provided with any Spark distribution and ...
How it works...
LDA assumes that the document is a mixture of different topics with Dirichlet prior distribution. The words in the document are assumed to have an affinity towards a specific topic which allows LDA to classify the overall document (compose and assign a distribution) that best matches a topic.
A topic model is a generative latent model for discovering abstract themes (topics) that occur in the body of documents (often too large for humans to handle). The models are a pre-cursor to summarize, search, and browse a large set of unlabeled documents and their contents. Generally speaking, we are trying to find a cluster of features (words, sub-images, and so on) that occur together.
The following figure depicts the overall LDA scheme:
Please be sure to refer to the white paper cited here for completeness http://ai.stanford.edu/~ang/papers/nips01-lda.pdf
The steps for the LDA algorithm are as follows:
Initialize the following parameters (controls concentration and smoothing):
Alpha parameter (high alpha makes documents more similar to each other and contain similar topics)
Beta parameter (high beta means each topic is most likely to contain a mix of most of the words)
Randomly initialize the topic assignment.
Iterate:
For each document.
For each word in the document.
Resample the topic for each word.
With respect to all other words and their current assignment (for the current iteration).
Get the result.
Model evaluation
In statistics, Dirichlet distribution Dir(alpha) is a family of continuous multivariate probability distributions parameterized by a vector α of positive real numbers. For a more in-depth treatment of LDA, see the original paper in the
Journal of Machine Learning at http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
The LDA does not assign any semantics to a topic and does not care what the topics are called. It is only a generative model that uses the distribution of fine-grained items (for example, words about cats, dogs, fish, cars) to assign an overall topic that scores the best. It does not know, cares, or understand about topics called dogs or cats.
We often have to tokenize and vectorize the document via TF-IDF prior to input to an LDA algorithm.
There's more...
The following figure depicts the LDA in a nutshell:
There are two approaches to document analysis. We can simply use matrix factorization to decompose a large matrix of datasets to a smaller matrix (topic assignments) times a vector (topics themselves):
See also
See also, via Spark's Scala API, documentation links for the following:
Streaming KMeans to classify data in near real-time
Spark streaming is a powerful facility which lets you combine near real-time and batch in the same paradigm. The streaming KMeans interface lives at the intersection of ML clustering and Spark streaming, and takes full advantage of the core facilities provided by Spark streaming itself (for example, fault tolerance, exactly once delivery semantics, and so on).
How to do it...
package spark.ml.cookbook.chapter14.
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.clustering.StreamingKMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.{Seconds, StreamingContext}
We set up the following parameters for the streaming KMeans program. The training directory will be the directory to send the training data file. The KMeans clustering model utilizes the training data to run algorithms and calculations. The testDirectory will be the test data for predictions. The batchDuration is a number in seconds for a batch run. In the following case, the program will check every 10 seconds to see if there is any new data files for recalculations.
The cluster is set to 2, and the data dimensions will be 3:
val trainingDir = "../data/sparkml2/chapter8/trainingDir"
val testDir = "../data/sparkml2/chapter8/testDir"
val batchDuration = 10
val numClusters = 2
val numDimensions = 3
With the preceding settings, the sample training data will contain data like the following (in the format of [X1, X2, ...Xn], where n is numDimensions:
[0.0,0.0,0.0]
[0.1,0.1,0.1]
[0.2,0.2,0.2]
[9.0,9.0,9.0]
[9.1,9.1,9.1]
[9.2,9.2,9.2]
[0.1,0.0,0.0]
[0.2,0.1,0.1]
....
The test data file will contain data like the following (in the format of (y, [X1, X2, .. Xn]), where n is numDimensions and y is an identifier):
(7,[0.4,0.4,0.4])
(8,[0.1,0.1,0.1])
(9,[0.2,0.2,0.2])
(10,[1.1,1.0,1.0])
(11,[9.2,9.1,9.2])
(12,[9.3,9.2,9.3])
We set up the necessary Spark context to gain access to the cluster:
val spark = SparkSession
.builder
.master("local[*]")
.appName("myStreamingKMeans")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
Define the streaming context and micro-batch window:
val ssc = new StreamingContext(spark.sparkContext, Seconds(batchDuration.toLong))
The following code will create data by parsing the data file in the preceding two directories into trainingData and testData RDDs:
val trainingData = ssc.textFileStream(trainingDir).map(Vectors.parse)
val testData = ssc.textFileStream(testDir).map(LabeledPoint.parse)
We create the StreamingKMeans model and set the parameters:
val model = new StreamingKMeans()
.setK(numClusters)
.setDecayFactor(1.0)
.setRandomCenters(numDimensions, 0.0)
The program will train the model using the training dataset and predict using the test dataset:
model.trainOn(trainingData)
model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print()
We start the streaming context, and the program will run the batch every 10 seconds to see if a new dataset is available for training and if there is any new test dataset for prediction. The program will exit if a termination signal is received (exit the batch running):
ssc.start()
ssc.awaitTermination()
We copy the testKStreaming1.txt data file into the preceding testDir set and see the following printed out in the console logs:
The job panel will display streaming jobs, as shown in the following figure:
As shown in the following figure, the streaming panel will show the preceding Streaming KMeans matrix as the matrix displayed, the batch job running every 10 seconds in this case:
You can get more details on the streaming batch by clicking on any of the batches, as shown in the following figure:
How it works...
In certain situations, we cannot use batch methods to load and capture the events and then react to them. We can use creative methods of capturing events in the memory or a landing DB and then rapidly marshal that over to another system for processing, but most of these systems fail to act as streaming systems and often are very expensive to build.
Spark provides a near real-time (also referred to as subjective real time) that can receive incoming sources, such as Twitter feeds, signals, and so, on via connectors (for example, a Kafka connector) and then process and present them as an RDD interface.
These are the elements needed to build and construct streaming KMeans in Spark:
Use the streaming context as opposed to the ...
There's more...
Streaming KMeans are special cases of KMeans implementation in which the data can arrive at a near real-time and be classified into a cluster (hard classification) as needed. For a reference to Voronoi diagrams, see the following URL: https://en.wikipedia.org/wiki/Voronoi_diagram
Currently, there are other algorithms besides streaming KMeans in the Spark Machine Library, as shown in the following figure:
See also
Documentation for Streaming KMeans can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.StreamingKMeans
Documentation for Streaming KMeans Model can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.stat.test.StreamingTest
Documentation for Streaming Test--very useful for data generation--can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.StreamingKMeansModel
Implementing Text Analytics with Spark 2.0 ML Library
In this chapter, we will cover the following recipes:
Introduction
Text analytics is at the intersection of machine learning, mathematics, linguistics, and natural language processing. Text analytics, referred to as text mining in older literature, attempts to extract information and infer higher level concepts, sentiment, and semantic details from unstructured and semi-structured data. It is important to note that the traditional keyword searches are insufficient to deal with noisy, ambiguous, and irrelevant tokens and concepts that need to be filtered out based on the actual context.
Ultimately, what we are trying to do is for a given set of documents (text, tweets, web, and social media), is determine what the gist of the communication is and what concepts it is trying to convey (topics and ...
Doing term frequency with Spark - everything that counts
For this recipe, we will download a book in text format from Project Gutenberg, from http://www.gutenberg.org/cache/epub/62/pg62.txt.
Project Gutenberg offers over 50,000 free eBooks in various formats for human consumption. Please read their terms of use; let us not use command-line tools to download any books.
When you look at the contents of the file, you will notice the title and author of the book is The Project Gutenberg EBook of A Princess of Mars by Edgar Rice Burroughs.
This eBook is for the use of anyone, anywhere, at no cost, and with almost no restrictions whatsoever. You may copy it, give it away, or reuse it under the terms of the Project Gutenberg License included with this eBook online at http://www.gutenberg.org/.
We then use the downloaded book to demonstrate the classic word count program with Scala and Spark. The example may seem somewhat simple at first, but we are beginning the process of feature extraction for text processing. Also, a general understanding of counting word occurrences in a document will go a long way to help us understand the concept of TF-IDF.
How to do it...
package spark.ml.cookbook.chapter12
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SQLContextimport org.apache.spark.{SparkConf, SparkContext}import org.jfree.chart.axis.{CategoryAxis, CategoryLabelPositions}import org.jfree.chart.{ChartFactory, ChartFrame, JFreeChart}import org.jfree.chart.plot.{CategoryPlot, PlotOrientation}import org.jfree.data.category.DefaultCategoryDataset
def show(chart: JFreeChart) ...
How it works...
We began by loading the downloaded book and tokenizing it via a regular expression. The next step was to convert all tokens to lowercase and exclude stop words from our token list, followed by filtering out any words less than two characters long.
The removal of stop words and words of a certain length reduce the number of features we have to process. It may not seem obvious, but the removal of particular words based on various processing criteria reduce the number of dimensions our machine learning algorithms will later process.
Finally, we sorted the resulting word count in descending order, taking the top 25, which we displayed a bar chart for.
There's more...
In this recipe, we have the base of what a keyword search would do. It is important to understand the difference between topic modelling and keyword search. In a keyword search, we try to associate a phrase with a given document based on the occurrences. In this case, we will point the user to a set of documents that has the most number of occurrences.
See also
The next step in the evolution of this algorithm, that a developer can try as an extension, would be to add weights and come up with a weighted average, but then Spark provides a facility which we explore in the upcoming recipes.
Displaying similar words with Spark using Word2Vec
In this recipe, we will explore Word2Vec, which is Spark's tool for assessing word similarity. The Word2Vec algorithm is inspired by the distributional hypothesis in general linguistics. At the core, what it tries to say is that the tokens which occur in the same context (that is, distance from the target) tend to support the same primitive concept/meaning.
The Word2Vec algorithm was invented by a team of researchers at Google. Please refer to a white paper mentioned in the There's more... section of this recipe which describes Word2Vec in more detail.
How to do it...
package spark.ml.cookbook.chapter12
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.feature.{RegexTokenizer, StopWordsRemover, Word2Vec}
import org.apache.spark.sql.{SQLContext, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}
val input = "../data/sparkml2/chapter12/pg62.txt"
val spark = SparkSession
.builder
.master("local[*]")
.appName("Word2Vec App")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
import spark.implicits._
Logger.getRootLogger.setLevel(Level.WARN)
val df = spark.read.text(input).toDF("text")
val tokenizer = new RegexTokenizer()
.setPattern("\\W+")
.setToLowercase(true)
.setMinTokenLength(4)
.setInputCol("text")
.setOutputCol("raw")
val rawWords = tokenizer.transform(df)
val stopWords = new StopWordsRemover()
.setInputCol("raw")
.setOutputCol("terms")
.setCaseSensitive(false)
val wordTerms = stopWords.transform(rawWords)
val word2Vec = new Word2Vec()
.setInputCol("terms")
.setOutputCol("result")
.setVectorSize(3)
.setMinCount(0)
val model = word2Vec.fit(wordTerms)
val synonyms = model.findSynonyms("martian", 10)
synonyms.show(false)
spark.stop()
How it works...
Word2Vec in Spark uses skip-gram and not Continuous Bag of Words (CBOW) which is more suitable for a Neural Net (NN). At its core, we are attempting to compute the representation of the words. It is highly recommended for the user to understand the difference between local representation versus distributed presentation, which is very different to the apparent meaning of the words themselves.
If we use distributed vector representation for words, it is natural that similar words will fall close together in the vector space, which is a desirable generalization technique for pattern abstraction and manipulation (that is, we reduce the problem to vector arithmetic).
What we want to do for a given set of words {Word1, Word2,
There's more...
How would you find similar words anyhow? How many algorithms are there that can solve this problem, and how do they vary? The Word2Vec algorithm has been around for a while and has a counterpart called CBOW. Please bear in mind that Spark provides the skip-gram method as the implementation technique.
The variations of the Word2Vec algorithm are as follows:
There is a variation of the algorithm that is called skip-gram model with negative sampling (SGNS), which seems to outperform other variants.
The co-occurrence is the fundamental concept underlying both CBOW and skip-gram. Even though the skip-gram does not directly use a co-occurrence matrix, it is using it indirectly.
In this recipe, we used the stop words techniques from NLP to have a cleaner corpus before running our algorithm. The stop words are English words such as "the" that need to be removed since they are not contributing to any improvement in the outcome.
Another important concept is stemming, which is not covered here but will be demonstrated in later recipes. Stemming removes extra language artifacts and reduces the word to its root (for example, Engineering, Engineer, and Engineers become Engin which is the root).
The white paper found at the following URL should provide a deeper explanation for Word2Vec:
http://arxiv.org/pdf/1301.3781.pdf
See also
Documentation for the Word2Vec recipe:
Downloading a complete dump of Wikipedia for a real-life Spark ML project
In this recipe, we will be downloading and exploring a dump of Wikipedia so we can have a real-life example. The dataset that we will be downloading in this recipe is a dump of Wikipedia articles. You will either need the command-line tool curl, or a browser to retrieve a compressed file, which is about 13.6 GB at this time. Due to the size, we recommend the curl command-line tool.
How to do it...
curl -L -O http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles-multistream.xml.bz2
bunzip2 enwiki-latest-pages-articles-multistream.xml.bz2
This should create an uncompressed file which is named enwiki-latest-pages-articles-multistream.xml and is about 56 GB.
head -n50 enwiki-latest-pages-articles-multistream.xml<mediawiki xmlns=http://www.mediawiki.org/xml/export-0.10/ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.mediawiki.org/xml/export-0.10/ http://www.mediawiki.org/xml/export-0.10.xsd" version="0.10" ...
There's more...
We recommend working with the XML file in chunks, and using sampling for your experiments until you are ready for a final job to submit. It will save a tremendous amount of time and effort.
See also
Documentation for Wiki download is available at https://en.wikipedia.org/wiki/Wikipedia:Database_download.
Using Latent Semantic Analysis for text analytics with Spark 2.0
In this recipe, we will explore LSA utilizing a data dump of articles from Wikipedia. LSA translates into analyzing a corpus of documents to find hidden meaning or concepts in those documents.
In the first recipe of this chapter, we covered the basics of the TF (that is, term frequency) technique. In this recipe, we use HashingTF for calculating TF and use IDF to fit a model into the calculated TF. At its core, LSA uses singular value decomposition (SVD) on the term frequency document to reduce dimensionality and therefore extract the most important concepts. There are other cleanup steps that we need to do (for example, stop words and stemming) that will clean up the bag of words before we start analyzing it.
How to do it...
package spark.ml.cookbook.chapter12
import edu.umd.cloud9.collection.wikipedia.WikipediaPage import edu.umd.cloud9.collection.wikipedia.language.EnglishWikipediaPage import org.apache.hadoop.fs.Path import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.{FileInputFormat, JobConf} import org.apache.log4j.{Level, Logger} import org.apache.spark.mllib.feature.{HashingTF, IDF} import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.sql.SparkSession import org.tartarus.snowball.ext.PorterStemmer ...
How it works...
The example starts off by loading a dump of Wikipedia XML using Cloud9 Hadoop XML streaming tools to process the enormous XML document. Once we have parsed out the page text, the tokenization phase invokes turning our stream of Wikipedia page text into tokens. We used the Porter stemmer during the tokenization phase to help reduce words to a common base form.
More details on stemming are available at https://en.wikipedia.org/wiki/Stemming.
The next step was to use Spark HashingTF on each page token to compute the term frequency. After this phase was completed, we utilized Spark's IDF to generate the inverse document frequency.
Finally, we took the TF-IDF API and applied a singular value decomposition to handle factorization and dimensionality reduction.
The following screenshot shows the steps and flow of the recipe:
The Cloud9 Hadoop XML tools and several other required dependencies can be found at:
There's more...
It should be obvious by now that even though Spark does not provide a direct LSA implementation, the combination of TF-IDF and SVD will let us construct and then decompose the large corpus matrix into three matrices, which can help us interpret the results by applying the dimensionality reduction via SVD. We can concentrate on the most meaningful clusters (similar to a recommendation algorithm).
SVD will factor the term frequency document (that is, documents by attributes) to three distinct matrices that are much more efficient to extract to N concepts (that is, N=27 in our example) from a large matrix that is hard and expensive to handle. In ML, we always prefer the tall and skinny matrices (that is, U matrix in this case) ...
See also
More details on SingularValueDecomposition() can be found at http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.linalg.SingularValueDecomposition.
Please refer to http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.linalg.distributed.RowMatrix for more details on RowMatrix().
Topic modeling with Latent Dirichlet allocation in Spark 2.0
In this recipe, we will be demonstrating topic model generation by utilizing Latent Dirichlet Allocation to infer topics from a collection of documents.
We have covered LDA in previous chapters as it applies to clustering and topic modelling, but in this chapter, we demonstrate a more elaborate example to show its application to text analytics using more real-life and complex datasets.
We also apply NLP techniques such as stemming and stop words to provide a more realistic approach to LDA problem-solving. What we are trying to do is to discover a set of latent factors (that is, different from the original) that can solve and describe the solution in a more efficient way in a reduced ...
How to do it...
package spark.ml.cookbook.chapter12
import edu.umd.cloud9.collection.wikipedia.WikipediaPage
import edu.umd.cloud9.collection.wikipedia.language.EnglishWikipediaPage
import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapred.{FileInputFormat, JobConf}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.ml.clustering.LDA
import org.apache.spark.ml.feature._
import org.apache.spark.sql.SparkSession
def parseWikiPage(rawPage: String): Option[(String, String)] = {
val wikiPage = new EnglishWikipediaPage()
WikipediaPage.readPage(wikiPage, rawPage)
if (wikiPage.isEmpty
|| wikiPage.isDisambiguation
|| wikiPage.isRedirect
|| !wikiPage.isArticle) {
None
} else {
Some(wikiPage.getTitle, wikiPage.getContent)
}
}
val input = "../data/sparkml2/chapter12/enwiki_dump.xml"
val jobConf = new JobConf()
jobConf.set("stream.recordreader.class", "org.apache.hadoop.streaming.StreamXmlRecordReader")
jobConf.set("stream.recordreader.begin", "<page>")
jobConf.set("stream.recordreader.end", "</page>")
FileInputFormat.addInputPath(jobConf, new Path(input))
val spark = SparkSession
.builder
.master("local[*]")
.appName("ProcessLDA App")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
Logger.getRootLogger.setLevel(Level.WARN)
val wikiData = spark.sparkContext.hadoopRDD(
jobConf,
classOf[org.apache.hadoop.streaming.StreamInputFormat],
classOf[Text],
classOf[Text]).sample(false, .1)
val df = wiki.map(_._1.toString)
.flatMap(parseWikiPage)
.toDF("title", "text")
val tokenizer = new RegexTokenizer()
.setPattern("\\W+")
.setToLowercase(true)
.setMinTokenLength(4)
.setInputCol("text")
.setOutputCol("raw")
val rawWords = tokenizer.transform(df)
val stopWords = new StopWordsRemover()
.setInputCol("raw")
.setOutputCol("words")
.setCaseSensitive(false)
val wordData = stopWords.transform(rawWords)
val cvModel = new CountVectorizer()
.setInputCol("words")
.setOutputCol("features")
.setMinDF(2)
.fit(wordData)
val cv = cvModel.transform(wordData)
cv.cache()
The "MinDF" specifies the minimum number of different document terms that must appear in order to be included in the vocabulary.
val lda = new LDA()
.setK(5)
.setMaxIter(10)
.setFeaturesCol("features")
val model = lda.fit(tf)
val transformed = model.transform(tf)
The "K" refers to how many topics and "MaxIter" maximum iterations to execute.
val topics = model.describeTopics(5)
topics.show(false)
val vocaList = cvModel.vocabulary
topics.collect().foreach { r => {
println("\nTopic: " + r.get(r.fieldIndex("topic")))
val y = r.getSeq[Int](r.fieldIndex("termIndices")).map(vocaList(_))
.zip(r.getSeq[Double](r.fieldIndex("termWeights")))
y.foreach(println)
}
}
The console output will be as follows:
spark.stop()
How it works...
We began with loading the dump of Wikipedia articles and parsed the page text into tokens using Hadoop XML leveraging streaming facilities API. The feature extraction process utilized several classes to set up the final processing by the LDA class, letting the tokens flow from Spark's RegexTokenize, StopwordsRemover, and HashingTF. Once we had the term frequencies, the data was passed to the LDA class for clustering the articles together under several topics.
The Hadoop XML tools and several other required dependencies can be found at:
There's more...
Please see the recipe LDA to classify documents and text into topics in Chapter 8, Unsupervised Clustering with Apache Spark 2.0 for a more detailed explanation of the LDA algorithm itself.
The following white paper from the Journal of Machine Learning Research (JMLR) provides a comprehensive treatment for those who would like to do an extensive analysis. It is a well-written paper, and a person with a basic background in stat and math should be able to follow it without any problems.
Refer to the http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf link for more details of JMLR; an alternative link is https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels/readings/BleiNgJordan2003.pdf.
See also
See also Spark's Scala API documentation for the following:
Spark Streaming and Machine Learning Library
In this chapter, we will cover the following recipes:
Introduction
Spark streaming is an evolving journey toward unification and structuring of the APIs in order to address the concerns of batch versus stream. Spark streaming has been available since Spark 1.3 with Discretized Stream (DStream). The new direction is to abstract the underlying framework using an unbounded table model in which the users can query the table using SQL or functional programming and write the output to another output table in multiple modes (complete, delta, and append output). The Spark SQL Catalyst optimizer and Tungsten (off-heap memory manager) are now an intrinsic part of the Spark streaming, which leads to a much efficient execution.
In this chapter, we not only cover the streaming facilities available in Spark's ...
Structured streaming for near real-time machine learning
In this recipe, we explore the new structured streaming paradigm introduced in Spark 2.0. We explore real-time streaming using sockets and structured streaming API to vote and tabulate the votes accordingly.
We also explore the newly introduced subsystem by simulating a stream of randomly generated votes to pick the most unpopular comic book villain.
There are two distinct programs (VoteCountStream.scala and CountStreamproducer.scala) that make up this recipe.
How to do it...
package spark.ml.cookbook.chapter13
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSessionimport java.io.{BufferedOutputStream, PrintWriter}import java.net.Socketimport java.net.ServerSocketimport java.util.concurrent.TimeUnitimport scala.util.Randomimport org.apache.spark.sql.streaming.ProcessingTime
class CountSreamThread(socket: ...
How it works...
In this recipe, we created a simple data generation server to simulate a stream of voting data and then counted the vote. The following figure provides a high-level depiction of this concept:
First, we began by executing the data generation server. Second, we defined a socket data source, which allows us to connect to the data generation server. Third, we constructed a simple Spark expression to group by villain (that is, bad superheroes) and count all currently received votes. Finally, we configured a threshold trigger of 10 seconds to execute our streaming query, which dumps the accumulated results onto the console.
There are two short programs involved in this recipe:
There's more...
The topic of how to program using Spark streaming and structured streaming in Spark is out of scope for this book, but we felt it is necessary to share some programs to introduce the concepts before drilling down into ML streaming offering for Spark.
For a solid introduction to streaming, please consult the following documentation on Spark:
See also
Streaming DataFrames for real-time machine learning
In this recipe, we explore the concept of a streaming DataFrame. We create a DataFrame consisting of the name and age of individuals, which we will be streaming across a wire. A streaming DataFrame is a popular technique to use with Spark ML since we do not have a full integration between Spark structured ML at the time of writing.
We limit this recipe to only the extent of demonstrating a streaming DataFrame and leave it up to the reader to adapt this to their own custom ML pipelines. While streaming DataFrame is not available out of the box in Spark 2.1.0, it will be a natural evolution to see it in later versions of Spark.
How to do it...
package spark.ml.cookbook.chapter13
import java.util.concurrent.TimeUnit
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming.ProcessingTime
val spark = SparkSession
.builder
.master("local[*]")
.appName("DataFrame Stream")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
val df = spark.read
.format("json")
.option("inferSchema", "true")
.load("../data/sparkml2/chapter13/person.json")
df.printSchema()
From the console, you will see the following output:
root
|-- age: long (nullable = true)
|-- name: string (nullable = true)
val stream = spark.readStream
.schema(df.schema)
.json("../data/sparkml2/chapter13/people/")
val people = stream.select("name", "age").where("age > 60")
val query = people.writeStream
.outputMode("append")
.trigger(ProcessingTime(1, TimeUnit.SECONDS))
.format("console")
query.start().awaitTermination()
How it works...
In this recipe, we first discover the underlying schema for a person object using a quick method (using a JSON object) as described in step 6. The resulting DataFrame will know the schema that we subsequently impose on the streaming input (simulated via streaming a file) and treated as a streaming DataFrame as seen in step 7.
The ability to treat the stream as a DataFrame and act on it using a functional or SQL paradigm is a powerful concept that can be seen in step 8. We then proceed to output the result using writestream() with append mode and a 1-second batch interval trigger.
There's more...
The combination of DataFrames and structured programming is a powerful concept that helps us to separate the data layer from the stream, which makes the programming significantly easier. One of the biggest drawbacks with DStream (pre-Spark 2.0) was its inability to isolate the user from details of the underlying details of stream/RDD implementation.
Documentation for DataFrames:
See also
Documentation for Spark data stream reader and writer:
Streaming Datasets for real-time machine learning
In this recipe, we create a streaming Dataset to demonstrate the use of Datasets with a Spark 2.0 structured programming paradigm. We stream stock prices from a file using a Dataset and apply a filter to select the day's stock that closed above $100.
The recipe demonstrates how streams can be used to filter and to act on the incoming data using a simple structured streaming programming model. While it is similar to a DataFrame, there are some differences in the syntax. The recipe is written in a generalized manner so the user can customize it for their own Spark ML programming projects.
How to do it...
package spark.ml.cookbook.chapter13
import java.util.concurrent.TimeUnitimport org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSessionimport org.apache.spark.sql.streaming.ProcessingTime
case class StockPrice(date: String, open: Double, high: Double, low: Double, close: Double, volume: Integer, adjclose: Double)
val spark = SparkSession.builder.master("local[*]").appName("Dataset ...
How it works...
In this recipe, we will be utilizing the market data of closing prices for General Electric (GE) dating back to 1972. To simplify the data, we have preprocessed for the purposes of this recipe. We use the same method from the previous recipe, Streaming DataFrames for real-time machine learning, by peeking into the JSON object to discover the schema (step 7), which we impose on the stream in step 8.
The following code shows how to use the schema to make the stream look like a simple table that you can read from on the fly. This is a powerful concept that makes stream programming accessible to more programmers. The schema(s.schema) and as[StockPrice] from the following code snippet are required to create the streaming Dataset, which has a schema associated with it:
val streamDataset = spark.readStream
.schema(s.schema)
.option("sep", ",")
.option("header", "true")
.csv("../data/sparkml2/chapter13/ge").as[StockPrice]
There's more...
Documentation for all the APIs available under Dataset at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset website.
See also
The following documentation is helpful while exploring the streaming Dataset concept:
Streaming data and debugging with queueStream
In this recipe, we explore the concept of queueStream(), which is a valuable tool while trying to get a streaming program to work during the development cycle. We found the queueStream() API very useful and felt that other developers can benefit from a recipe that fully demonstrates its usage.
We start by simulating a user browsing various URLs associated with different web pages using the program ClickGenerator.scala and then proceed to consume and tabulate the data (user behavior/visits) using the ClickStream.scala program:
We use Spark's streaming API with Dstream(), which will require the use ...
How to do it...
package spark.ml.cookbook.chapter13
import java.time.LocalDateTime
import scala.util.Random._
case class ClickEvent(userId: String, ipAddress: String, time: String, url: String, statusCode: String)
val statusCodeData = Seq(200, 404, 500)
val urlData = Seq("http://www.fakefoo.com",
"http://www.fakefoo.com/downloads",
"http://www.fakefoo.com/search",
"http://www.fakefoo.com/login",
"http://www.fakefoo.com/settings",
"http://www.fakefoo.com/news",
"http://www.fakefoo.com/reports",
"http://www.fakefoo.com/images",
"http://www.fakefoo.com/css",
"http://www.fakefoo.com/sounds",
"http://www.fakefoo.com/admin",
"http://www.fakefoo.com/accounts"
)
val ipAddressData = generateIpAddress()
def generateIpAddress(): Seq[String] = {
for (n <- 1 to 255) yield s"127.0.0.$n"
}
val timeStampData = generateTimeStamp()
def generateTimeStamp(): Seq[String] = {
val now = LocalDateTime.now()
for (n <- 1 to 1000) yield LocalDateTime.of(now.toLocalDate,
now.toLocalTime.plusSeconds(n)).toString
}
val userIdData = generateUserId()
def generateUserId(): Seq[Int] = {
for (id <- 1 to 1000) yield id
}
def generateClicks(clicks: Int = 1): Seq[String] = {
0.until(clicks).map(i => {
val statusCode = statusCodeData(nextInt(statusCodeData.size))
val ipAddress = ipAddressData(nextInt(ipAddressData.size))
val timeStamp = timeStampData(nextInt(timeStampData.size))
val url = urlData(nextInt(urlData.size))
val userId = userIdData(nextInt(userIdData.size))
s"$userId,$ipAddress,$timeStamp,$url,$statusCode"
})
}
def parseClicks(data: String): ClickEvent = {
val fields = data.split(",")
new ClickEvent(fields(0), fields(1), fields(2), fields(3), fields(4))
}
val spark = SparkSession
.builder
.master("local[*]")
.appName("Streaming App")
.config("spark.sql.warehouse.dir", ".")
.config("spark.executor.memory", "2g")
.getOrCreate()
val ssc = new StreamingContext(spark.sparkContext, Seconds(1))
Logger.getRootLogger.setLevel(Level.WARN)
val rddQueue = new Queue[RDD[String]]()
val inputStream = ssc.queueStream(rddQueue)
val clicks = inputStream.map(data => ClickGenerator.parseClicks(data))
val clickCounts = clicks.map(c => c.url).countByValue()
clickCounts.print(12)
ssc.start()
for (i <- 1 to 10) {
rddQueue += ssc.sparkContext.parallelize(ClickGenerator.generateClicks(100))
Thread.sleep(1000)
}
ssc.stop()
How it works...
With this recipe, we introduced Spark Streaming using a technique many overlook, which allows us to craft a streaming application utilizing Spark's QueueInputDStream class. The QueueInputDStream class is not only a beneficial tool for understanding Spark streaming, but also for debugging during the development cycle. In the beginning steps, we set up a few data structures, in order to generate pseudo-random clickstream event data for stream processing at a later stage.
It should be noted that in step 12, we are creating a streaming context instead of a SparkContext. The streaming context is what we use for Spark streaming applications. Next, the creation of a queue and queue stream is done to receive streaming data. Now steps ...
See also
At its core, queueStream() is just a queue of RDDs that we have after the Spark streaming (pre-2.0) turns into RDD:
Downloading and understanding the famous Iris data for unsupervised classification
In this recipe, we download and inspect the well-known Iris dataset in preparation for the upcoming streaming KMeans recipe, which lets you see classification/clustering in real-time.
The data is housed on the UCI machine learning repository, which is a great source of data to prototype algorithms on. You will notice that R bloggers tend to love this dataset.
How to do it...
wget https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
You can also use the following command:
curl https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data -o iris.data
You can also use the following command:
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
head -5 iris.data
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
tail -5 iris.data
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica
How it works...
The data is made of 150 observations. Each observation is made of four numerical features (measured in centimeters) and a label that signifies which class each Iris belongs to:
Features/attributes:
Label/class:
There's more...
The following image depicts an Iris flower with Petal and Sepal marked for clarity:
See also
The following link explores the Iris dataset in more detail:
https://en.wikipedia.org/wiki/Iris_flower_data_set
Streaming KMeans for a real-time on-line classifier
In this recipe, we explore the streaming version of KMeans in Spark used in unsupervised learning schemes. The purpose of streaming KMeans algorithm is to classify or group a set of data points into a number of clusters based on their similarity factor.
There are two implementations of the KMeans classification method, one for static/offline data and another version for continuously arriving real-time updating data.
We will be streaming iris dataset clustering as new data streams into our streaming context.
How to do it...
package spark.ml.cookbook.chapter13
import org.apache.spark.mllib.linalg.Vectorsimport org.apache.spark.mllib.regression.LabeledPointimport org.apache.spark.rdd.RDDimport org.apache.spark.SparkContextimport scala.collection.mutable.Queue
def readFromFile(sc: SparkContext) = { sc.textFile("../data/sparkml2/chapter13/iris.data") .filter(s ...
How it works...
In this recipe, we begin by loading the iris dataset and using the zip() API to pair data with a unique identifier to the data for generating labeled points data structure for use with the KMeans algorithm.
Next, the mutable queues and QueueInputDStream are created for appending data to simulate streaming. Once the QueueInputDStream starts receiving data then the streaming k-mean clustering begins to dynamically cluster data and printing out results. The interesting thing you will notice here is we are streaming the training dataset on one queue stream and the test data on another queue stream. As we append data to our queues, the KMeans clustering algorithm is processing our incoming data and dynamically generating clusters.
There's more...
Documentation for StreamingKMeans():
See also
The hyper parameters defined via a builder pattern or streamingKMeans are:
setDecayFactor()
setK()
setRandomCenters(,)
Downloading wine quality data for streaming regression
In this recipe, we download and inspect the wine quality dataset from the UCI machine learning repository to prepare data for Spark's streaming linear regression algorithm from MLlib.
How to do it...
You will need one of the following command-line tools curl or wget to retrieve specified data:
wget http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv
You can also use the following command:
curl http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv -o winequality-white.csv
This command is the third way to do the same:
http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv
head -5 winequality-white.csv
"fixed acidity";"volatile acidity";"citric acid";"residual sugar";"chlorides";"free sulfur dioxide";"total sulfur dioxide";"density";"pH";"sulphates";"alcohol";"quality"
7;0.27;0.36;20.7;0.045;45;170;1.001;3;0.45;8.8;6
6.3;0.3;0.34;1.6;0.049;14;132;0.994;3.3;0.49;9.5;6
8.1;0.28;0.4;6.9;0.05;30;97;0.9951;3.26;0.44;10.1;6
7.2;0.23;0.32;8.5;0.058;47;186;0.9956;3.19;0.4;9.9;6
tail -5 winequality-white.csv
6.2;0.21;0.29;1.6;0.039;24;92;0.99114;3.27;0.5;11.2;6
6.6;0.32;0.36;8;0.047;57;168;0.9949;3.15;0.46;9.6;5
6.5;0.24;0.19;1.2;0.041;30;111;0.99254;2.99;0.46;9.4;6
5.5;0.29;0.3;1.1;0.022;20;110;0.98869;3.34;0.38;12.8;7
6;0.21;0.38;0.8;0.02;22;98;0.98941;3.26;0.32;11.8;6
How it works...
The data is comprised of 1,599 red wines and 4,898 white wines with 11 features and an output label that can be used during training.
The following is a list of features/attributes:
The following is the output label:
There's more...
The following link lists datasets for popular machine learning algorithms. A new dataset can be chosen to experiment with as needed.
Alternative datasets are available at https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research.
We selected the Iris dataset so we can use continuous numerical features for a linear regression model.
Streaming linear regression for a real-time regression
In this recipe, we will use the wine quality dataset from UCI and Spark's streaming linear regression algorithm from MLlib to predict the quality of a wine based on a group of wine features.
The difference between this recipe and the traditional regression recipes we saw before is the use of Spark ML streaming to score the quality of the wine in real time using a linear regression model.
How to do it...
package spark.ml.cookbook.chapter13
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.Queue
val spark = SparkSession
.builder
.master("local[*]")
.appName("Regression Streaming App")
.config("spark.sql.warehouse.dir", ".")
.config("spark.executor.memory", "2g")
.getOrCreate()
import spark.implicits._
val ssc = new StreamingContext(spark.sparkContext, Seconds(2))
Logger.getRootLogger.setLevel(Level.WARN)
val rawDF = spark.read
.format("com.databricks.spark.csv")
.option("inferSchema", "true")
.option("header", "true")
.option("delimiter", ";")
.load("../data/sparkml2/chapter13/winequality-white.csv")
val rdd = rawDF.rdd.zipWithUniqueId()
val lookupQuality = rdd.map{ case (r: Row, id: Long)=> (id, r.getInt(11))}.collect().toMap
val labelPoints = rdd.map{ case (r: Row, id: Long)=> LabeledPoint(id,
Vectors.dense(r.getDouble(0), r.getDouble(1), r.getDouble(2), r.getDouble(3), r.getDouble(4),
r.getDouble(5), r.getDouble(6), r.getDouble(7), r.getDouble(8), r.getDouble(9), r.getDouble(10))
)}
val trainQueue = new Queue[RDD[LabeledPoint]]()
val testQueue = new Queue[RDD[LabeledPoint]]()
val trainingStream = ssc.queueStream(trainQueue)
val testStream = ssc.queueStream(testQueue)
val numFeatures = 11
val model = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.zeros(numFeatures))
.setNumIterations(25)
.setStepSize(0.1)
.setMiniBatchFraction(0.25)
model.trainOn(trainingStream)
val result = model.predictOnValues(testStream.map(lp => (lp.label, lp.features)))
result.map{ case (id: Double, prediction: Double) => (id, prediction, lookupQuality(id.asInstanceOf[Long])) }.print()
ssc.start()
val Array(trainData, test) = labelPoints.randomSplit(Array(.80, .20))
trainQueue += trainData
Thread.sleep(4000)
val testGroups = test.randomSplit(Array(.50, .50))
testGroups.foreach(group => {
testQueue += group
Thread.sleep(2000)
})
ssc.stop()
How it works...
We started by loading the wine quality dataset into a DataFrame via Databrick's spark-csv library. The next step was to attach a unique identifier to each row in our dataset to later match the predicted quality to the actual quality. The raw data was converted to labeled points so it can be used as input for the streaming linear regression algorithm. In steps 9 and 10, we created instances of mutable queues and Spark's QueueInputDStream class to be used as a conduit into the regression algorithm.
We then created the streaming linear regression model, which will predict wine quality for our final results. We customarily created training and test datasets from the original data and appended them to the appropriate queue to start ...
There's more...
Documentation for StreamingLinearRegressionWithSGD(): https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD.
See also
Hyper parameters for StreamingLinearRegressionWithSGD():
There is also a StreamingLinearRegression() API that does not use the stochastic gradient descent (SGD) version:
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.regression.StreamingLinearAlgorithm
The following link provides a quick reference for linear regression:
https://en.wikipedia.org/wiki/Linear_regression
Downloading Pima Diabetes data for supervised classification
In this recipe, we download and inspect the Pima Diabetes dataset from the UCI machine learning repository. We will use the dataset later with Spark's streaming logistic regression algorithm.
How to do it...
You will need one of the following command-line tools curl or wget to retrieve the specified data:
http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data
This is an alternative that you can use:
wget http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data -o pima-indians-diabetes.data
head -5 pima-indians-diabetes.data6,148,72,35,0,33.6,0.627,50,11,85,66,29,0,26.6,0.351,31,0 ...
How it works...
We have 768 observations for the dataset. Each line/record is comprised of 10 features and a label value that can be used for a supervised learning model (that is, logistic regression). The label/class is either a 1, meaning tested positive for diabetes and 0 if the test came back negative.
Features/Attributes:
Label/Class:
1 - tested positive
0 - tested negative
There's more...
We found the following alternative datasets from Princeton University very helpful:
http://data.princeton.edu/wws509/datasets
See also
The dataset that you can use to explore this recipe has to be structured in a way that the label (prediction class) has to be binary (tested positive/negative for diabetes).
Streaming logistic regression for an on-line classifier
In this recipe, we will be using the Pima Diabetes dataset we downloaded in the previous recipe and Spark's streaming logistic regression algorithm with SGD to predict whether a Pima with various features will test positive as a diabetic. It is an on-line classifier that learns and predicts based on the streamed data.
How to do it...
package spark.ml.cookbook.chapter13
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable.Queue
val spark = SparkSession
.builder
.master("local[*]")
.appName("Logistic Regression Streaming App")
.config("spark.sql.warehouse.dir", ".")
.getOrCreate()
import spark.implicits._
val ssc = new StreamingContext(spark.sparkContext, Seconds(2))
Logger.getLogger("org").setLevel(Level.ERROR)
val rawDS = spark.read
.text("../data/sparkml2/chapter13/pima-indians- diabetes.data").as[String]
val buffer = rawDS.rdd.map(value => {
val data = value.split(",")
(data.init.toSeq, data.last)
})
val lps = buffer.map{ case (feature: Seq[String], label: String) =>
val featureVector = feature.map(_.toDouble).toArray[Double]
LabeledPoint(label.toDouble, Vectors.dense(featureVector))
}
val trainQueue = new Queue[RDD[LabeledPoint]]()
val testQueue = new Queue[RDD[LabeledPoint]]()
val trainingStream = ssc.queueStream(trainQueue)
val testStream = ssc.queueStream(testQueue)
val numFeatures = 8
val model = new StreamingLogisticRegressionWithSGD()
.setInitialWeights(Vectors.zeros(numFeatures))
.setNumIterations(15)
.setStepSize(0.5)
.setMiniBatchFraction(0.25)
model.trainOn(trainingStream)
val result = model.predictOnValues(testStream.map(lp => (lp.label,
lp.features)))
result.map{ case (label: Double, prediction: Double) => (label, prediction) }.print()
ssc.start()
val Array(trainData, test) = lps.randomSplit(Array(.80, .20))
trainQueue += trainData
Thread.sleep(4000)
val testGroups = test.randomSplit(Array(.50, .50))
testGroups.foreach(group => {
testQueue += group
Thread.sleep(2000)
})

Time: 1488571098000 ms

(1.0,1.0)
(1.0,1.0)
(1.0,0.0)
(0.0,1.0)
(1.0,0.0)
(1.0,1.0)
(0.0,0.0)
(1.0,1.0)
(0.0,1.0)
(0.0,1.0)
...

Time: 1488571100000 ms

(1.0,1.0)
(0.0,0.0)
(1.0,1.0)
(1.0,0.0)
(0.0,1.0)
(0.0,1.0)
(0.0,1.0)
(1.0,0.0)
(0.0,0.0)
(1.0,1.0)
...
ssc.stop()
How it works...
First, we loaded the Pima Diabetes Dataset into a Dataset and parsed it into a tuple by taking every element as a feature except the last one, which we used as a label. Second, we morphed the RDD of tuples into labeled points so it can be used as input to the streaming logistic regression algorithm. Third, we created instances of mutable queues and Spark's QueueInputDStream class to be used as a pathway into the logistic algorithm.
Fourth, we created the streaming logistic regression model, which will predict wine quality for our final results. Finally, we customarily created training and test datasets from original data and appended it to the appropriate queue to trigger the model's processing of streaming data. The final ...
There's more...
Documentation for StreamingLogisticRegressionWithSGD() is available at https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD
See also
The hyper parameters for the model:
Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:
Modern Scala Projects
Ilango Gurusamy
ISBN: 9781788624114
Apache Spark Deep Learning Cookbook
Ahmed Sherif and Amrith Ravindra
ISBN: 9781788474221
Leave a review - let other readers know what you think
Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!
Table of Contents
Apache Spark 2: Data Processing and Real-Time Analytics
Why Subscribe?
Packt.com
About the Authors
Packt Is Searching for Authors Like You
Who This Book Is For
What This Book Covers
To Get the Most out of This Book
Download the Example Code Files
Conventions Used
Get in Touch
Reviews
A First Taste and What's New in Apache Spark V2
Spark machine learning
Spark Streaming
Spark SQL
Spark graph processing
Extended ecosystem
What's new in Apache Spark V2?
Cluster design
Cluster management
Local
Standalone
Apache YARN
Apache Mesos
Cloud-based deployments
Performance
The cluster structure
Hadoop Distributed File System
Data locality
Memory
Coding
Cloud
Summary
Overview
Errors and recovery
Checkpointing
Streaming sources
TCP stream
File streams
Flume
Kafka
Summary
The concept of continuous applications
True unification - same code, same engine
Windowing
How streaming engines use windowing
How Apache Spark improves windowing
Increased performance with good old friends
How transparent fault tolerance and exactly-once delivery guarantee is achieved
Replayable sources can replay streams from a given offset
Idempotent sinks prevent data duplication
State versioning guarantees consistent results after reruns
Example - connection to a MQTT message broker
Controlling continuous applications
More on stream life cycle management
Summary
Architecture
The development environment
Classification with Naive Bayes
Theory on Classification
Naive Bayes in practice
Clustering with K-Means
Theory on Clustering
K-Means in practice
Artificial neural networks
ANN in practice
Summary
What does the new API look like?
The concept of pipelines
Transformers
String indexer
OneHotEncoder
VectorAssembler
Pipelines
Estimators
RandomForestClassifier
Model evaluation
CrossValidation and hyperparameter tuning
CrossValidation
Hyperparameter tuning
Winning a Kaggle competition with Apache SparkML
Data preparation
Feature engineering
Testing the feature engineering pipeline
Training the machine learning model
Model evaluation
CrossValidation and hyperparameter tuning
Using the evaluator to assess the quality of the cross-validated and tuned model
Summary
Why do we need just another library?
Why on Apache Spark?
The history of Apache SystemML
A cost-based optimizer for machine learning algorithms
An example - alternating least squares
ApacheSystemML architecture
Language parsing
High-level operators are generated
How low-level operators are optimized on
Performance measurements
Apache SystemML in action
Summary
Overview
Graph analytics/processing with GraphX
The raw data
Creating a graph
Example 1 – counting
Example 2 – filtering
Example 3 – PageRank
Example 4 – triangle counting
Example 5 – connected components
Summary
Monitoring Spark jobs
Spark web interface
Jobs
Stages
Storage
Environment
Executors
SQL
Visualizing Spark application using web UI
Observing the running and completed Spark jobs
Debugging Spark applications using logs
Logging with log4j with Spark
Spark configuration
Spark properties
Environmental variables
Logging
Common mistakes in Spark app development
Application failure
Slow jobs or unresponsiveness
Optimization techniques
Data serialization
Memory tuning
Memory usage and management
Tuning the data structures
Serialized RDD storage
Garbage collection tuning
Level of parallelism
Broadcasting
Data locality
Summary
Testing in a distributed environment
Distributed environment
Issues in a distributed system
Challenges of software testing in a distributed environment
Testing Spark applications
Testing Scala methods
Unit testing
Testing Spark applications
Method 1: Using Scala JUnit test
Method 2: Testing Scala code using FunSuite
Method 3: Making life easier with Spark testing base
Configuring Hadoop runtime on Windows
Debugging Spark applications
Logging with log4j with Spark recap
Debugging the Spark application
Debugging Spark application on Eclipse as Scala debug
Debugging Spark jobs running as local and standalone mode
Debugging Spark applications on YARN or Mesos cluster
Debugging Spark application using SBT
Summary
Practical Machine Learning with Spark Using Scala
Introduction
Apache Spark
Machine learning
Scala
Software versions and libraries used in this book
Configuring IntelliJ to work with Spark and run Spark ML sample codes
Getting ready
How to do it...
There's more...
See also
Running a sample ML code from Spark
Getting ready
How to do it...
Identifying data sources for practical machine learning
Getting ready
How to do it...
See also
Running your first program using Apache Spark 2.0 with the IntelliJ IDE
How to do it...
How it works...
There's more...
See also
How to add graphics to your Spark program
How to do it...
How it works...
There's more...
See also
Spark's Three Data Musketeers for Machine Learning - Perfect Together
Introduction
RDDs - what started it all...
DataFrame - a natural evolution to unite API and SQL via a high-level API
Dataset - a high-level unifying Data API
Creating RDDs with Spark 2.0 using internal data sources
How to do it...
How it works...
Creating RDDs with Spark 2.0 using external data sources
How to do it...
How it works...
There's more...
See also
Transforming RDDs with Spark 2.0 using the filter() API
How to do it...
How it works...
There's more...
See also
Transforming RDDs with the super useful flatMap() API
How to do it...
How it works...
There's more...
See also
Transforming RDDs with set operation APIs
How to do it...
How it works...
See also
RDD transformation/aggregation with groupBy() and reduceByKey()
How to do it...
How it works...
There's more...
See also
Transforming RDDs with the zip() API
How to do it...
How it works...
See also
Join transformation with paired key-value RDDs
How to do it...
How it works...
There's more...
Reduce and grouping transformation with paired key-value RDDs
How to do it...
How it works...
See also
Creating DataFrames from Scala data structures
How to do it...
How it works...
There's more...
See also
Operating on DataFrames programmatically without SQL
How to do it...
How it works...
There's more...
See also
Loading DataFrames and setup from an external source
How to do it...
How it works...
There's more...
See also
Using DataFrames with standard SQL language - SparkSQL
How to do it...
How it works...
There's more...
See also
Working with the Dataset API using a Scala Sequence
How to do it...
How it works...
There's more...
See also
Creating and using Datasets from RDDs and back again
How to do it...
How it works...
There's more...
See also
Working with JSON using the Dataset API and SQL together
How to do it...
How it works...
There's more...
See also
Functional programming with the Dataset API using domain objects
How to do it...
How it works...
There's more...
See also
Common Recipes for Implementing a Robust Machine Learning System
Introduction
Spark's basic statistical API to help you build your own algorithms
How to do it...
How it works...
There's more...
See also
ML pipelines for real-life machine learning applications
How to do it...
How it works...
There's more...
See also
Normalizing data with Spark
How to do it...
How it works...
There's more...
See also
Splitting data for training and testing
How to do it...
How it works...
There's more...
See also
Common operations with the new Dataset API
How to do it...
How it works...
There's more...
See also
Creating and using RDD versus DataFrame versus Dataset from a text file in Spark 2.0
How to do it...
How it works...
There's more...
See also
LabeledPoint data structure for Spark ML
How to do it...
How it works...
There's more...
See also
Getting access to Spark cluster in Spark 2.0
How to do it...
How it works...
There's more...
See also
Getting access to Spark cluster pre-Spark 2.0
How to do it...
How it works...
There's more...
See also
Getting access to SparkContext vis-a-vis SparkSession object in Spark 2.0
How to do it...
How it works...
There's more...
See also
New model export and PMML markup in Spark 2.0
How to do it...
How it works...
There's more...
See also
Regression model evaluation using Spark 2.0
How to do it...
How it works...
There's more...
See also
Binary classification model evaluation using Spark 2.0
How to do it...
How it works...
There's more...
See also
Multiclass classification model evaluation using Spark 2.0
How to do it...
How it works...
There's more...
See also
Multilabel classification model evaluation using Spark 2.0
How to do it...
How it works...
There's more...
See also
Using the Scala Breeze library to do graphics in Spark 2.0
How to do it...
How it works...
There's more...
See also
Recommendation Engine that Scales with Spark
Introduction
Content filtering
Collaborative filtering
Neighborhood method
Latent factor models techniques
Setting up the required data for a scalable recommendation engine in Spark 2.0
How to do it...
How it works...
There's more...
See also
Exploring the movies data details for the recommendation system in Spark 2.0
How to do it...
How it works...
There's more...
See also
Exploring the ratings data details for the recommendation system in Spark 2.0
How to do it...
How it works...
There's more...
See also
Building a scalable recommendation engine using collaborative filtering in Spark 2.0
How to do it...
How it works...
There's more...
See also
Dealing with implicit input for training
Unsupervised Clustering with Apache Spark 2.0
Introduction
Building a KMeans classifying system in Spark 2.0
How to do it...
How it works...
KMeans (Lloyd Algorithm)
KMeans++ (Arthur's algorithm)
KMeans|| (pronounced as KMeans Parallel)
There's more...
See also
Bisecting KMeans, the new kid on the block in Spark 2.0
How to do it...
How it works...
There's more...
See also
Using Gaussian Mixture and Expectation Maximization (EM) in Spark to classify data
How to do it...
How it works...
New GaussianMixture()
There's more...
See also
Classifying the vertices of a graph using Power Iteration Clustering (PIC) in Spark 2.0
How to do it...
How it works...
There's more...
See also
Latent Dirichlet Allocation (LDA) to classify documents and text into topics
How to do it...
How it works...
There's more...
See also
Streaming KMeans to classify data in near real-time
How to do it...
How it works...
There's more...
See also
Implementing Text Analytics with Spark 2.0 ML Library
Introduction
Doing term frequency with Spark - everything that counts
How to do it...
How it works...
There's more...
See also
Displaying similar words with Spark using Word2Vec
How to do it...
How it works...
There's more...
See also
Downloading a complete dump of Wikipedia for a real-life Spark ML project
How to do it...
There's more...
See also
Using Latent Semantic Analysis for text analytics with Spark 2.0
How to do it...
How it works...
There's more...
See also
Topic modeling with Latent Dirichlet allocation in Spark 2.0
How to do it...
How it works...
There's more...
See also
Spark Streaming and Machine Learning Library
Introduction
Structured streaming for near real-time machine learning
How to do it...
How it works...
There's more...
See also
Streaming DataFrames for real-time machine learning
How to do it...
How it works...
There's more...
See also
Streaming Datasets for real-time machine learning
How to do it...
How it works...
There's more...
See also
Streaming data and debugging with queueStream
How to do it...
How it works...
See also
Downloading and understanding the famous Iris data for unsupervised classification
How to do it...
How it works...
There's more...
See also
Streaming KMeans for a real-time on-line classifier
How to do it...
How it works...
There's more...
See also
Downloading wine quality data for streaming regression
How to do it...
How it works...
There's more...
Streaming linear regression for a real-time regression
How to do it...
How it works...
There's more...
See also
Downloading Pima Diabetes data for supervised classification
How to do it...
How it works...
There's more...
See also
Streaming logistic regression for an on-line classifier
How to do it...
How it works...
There's more...
See also
Leave a review - let other readers know what you think