
Scala Programming
for Big Data
Analytics

Get Started With Big Data Analytics
Using Apache Spark
—
Irfan Elahi

Scala Programming
for Big Data Analytics

Get Started With Big Data
Analytics Using Apache Spark

Irfan Elahi

Scala Programming for Big Data Analytics

ISBN-13 (pbk): 978-1-4842-4809-6		 ISBN-13 (electronic): 978-1-4842-4810-2
https://doi.org/10.1007/978-1-4842-4810-2

Copyright © 2019 by Irfan Elahi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4809-6. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Irfan Elahi
Notting Hill, VIC, Australia

https://doi.org/10.1007/978-1-4842-4810-2

Dedicated to my parents and wife who trusted and
supported me all the way to becoming who I am today

v

Table of Contents

Chapter 1: Scala Language��1

Getting to Know Scala��3

Why Learn Scala?��4

Scala and Java���4

How Does Scala Relate to Java?��5

Interoperability with Java Libraries��5

Scala and Java Verbosity��6

Scala: A Statically Typed Language��7

Apache Spark and Scala��8

Scala’s Performance Benefits��11

Learning Apache Spark��12

Chapter 2: Installing Scala��15

Checking Scala Installation Status in Your System��15

Verifying Java Development Kit (JDK) Installation Status������������������������������������17

Installing the Oracle JDK��18

Installing Scala on Windows��19

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Foreword���xvii

Introduction��xix

vi

Verifying Scala Installation Status���22

Installing Scala on Linux��22

Chapter 3: Using the Scala Shell���27

Getting Help from the Scala Shell��28

Hello World in Scala REPL��29

Understanding Hello World in Scala REPL Step-by-Step��������������������������������30

Using Scala REPL’s Data Type Highlighting Feature���������������������������������������33

Paste Mode in Scala REPL��36

Retrieving History in Scala REPL��38

The Auto-Completion Feature of Scala REPL��39

Exiting from Scala REPL���43

Chapter 4: Variables��45

Getting Started with Variables in Scala��45

Immutability of Variables in Scala��47

Defining Variables (Mutable and Immutable) in Scala���48

Why Is Immutability Emphasized in Scala?��49

Mutability and Type-Safety Caveats���50

Specifying Types for Variables and Type Inference���52

Scala Identifier Rules and Naming Conventions��53

Chapter 5: Data Types��57

Scala Type Hierarchy System���58

The Boolean Type���61

The String Type���62

Special Types in Scala��73

The Unit Type��73

The Any Type���75

Type Casting in Scala���77

Table of ContentsTable of Contents

vii

Chapter 6: Conditional Statements��81

Boolean Expressions��82

Using Conditional Statements in Scala��83

Step-by-Step Understanding of Conditional Statements��������������������������������84

Caveats: Using {} After if/else���84

Nested If/Else Statements��87

If/Else as a Ternary Operator��89

Pattern Matching���90

Chapter 7: Code Blocks���95

Code Blocks in Scala��95

Caveats of Code Blocks��97

Code Blocks and If/Else Statements���98

Chapter 8: Functions���103

Why Use Functions?���103

Understanding Functions���105

Functions in Scala��106

Invoking a Function��108

Caveats: Function Definition���109

Functions with Multiple Parameters���111

Positional Parameters��112

Default Value of Parameters in Functions��113

Function with No Arguments��115

Single-Line Functions���115

Using the return Statement in Functions��116

Passing Functions as Arguments���116

Anonymous Functions��120

Table of ContentsTable of Contents

viii

Chapter 9: Collections���123

Real-Life Examples of Collections��123

Understanding Lists���126

Indexing List Elements���128

What Can You Store in Lists?��129

Widely Used List Operations���131

Creating Sets���143

Understanding Map Collections���145

Indexing a Map���147

Uniqueness of Keys in Maps��148

Alternative Ways to Create Map Collections���149

Manipulating Maps���149

Iterating Through Maps in Functional Style��151

Understanding Tuples���152

Indexing Tuples���153

Iterating Over Tuples���155

Alternative Ways to Create Tuples��156

Understanding Mutable Collections���156

Implications Related to Mutable Collections��158

Mutable Maps���159

Using Nested Collections���161

Chapter 10: Loops��165

Types of Loops in Scala���166

The for Loop���166

The while Loop���168

Comparing for and while Loops���170

Breaking a Loop’s Iteration��171

Table of ContentsTable of Contents

ix

Chapter 11: Classes and Packages��175

Classes and Objects in Scala���176

Creating Classes and Objects in Scala���178

Mutating Attribute Values and Caveats���182

Singleton Objects���185

Case Classes��188

Case Classes in Practice��189

Equality Checks in Classes���190

Case Classes and Collections Together��193

Classes and Packages���194

Avoiding Name-Space Collisions��195

Importing Packages��196

Chapter 12: Exception Handling��203

Fundamentals of Exception Handling in Scala���204

Implications of Type Inference and Exception Handling�������������������������������������215

Using Try, Catch, and Finally���218

Chapter 13: Building and Packaging���223

The Scala Development Lifecycle��224

The Scala Development Lifecycle in Action���225

Scala Build Tool (SBT)��226

Using SBT on Windows���227

Build.sbt for SBT���228

Maven Folder Structure for Scala Applications��242

Creating Multiple Classes in Your Scala Application and Using Them����������244

Compiling Your Scala Applications���247

Packaging Scala Applications in the Form of JARs��������������������������������������248

Table of ContentsTable of Contents

x

Transitioning to an IDE��249

Importing a Project in IntelliJ IDEA���253

Chapter 14: Hello Apache Spark��261

Revisiting Apache Spark��261

Distributed Computing Engine��261

Spark and Hadoop��262

Spark and YARN��263

Spark Processes���264

Spark Abstractions���264

Lazy Execution Model of Spark��265

Apache Spark in Scala in Action��266

Spark Environment Setup in Databricks���267

Apache Spark Development in Scala��271

Converting an RDD to a Dataframe���276

Uploading Data to Databricks���276

Converting an RDD to a Dataframe���279

Creating Spark Applications Using SBT���284

Creating a New Project in IntelliJ IDEA���284

Managing SBT Plugins for Uber JARs���286

Managing Apache Spark Dependencies in SBT��287

Spark Application Code��289

Conclusion and Beyond��298

Index��301

Table of ContentsTable of Contents

xi

About the Author

Irfan Elahi is currently working in Deloitte,

Australia and specializes in Big Data and

machine learning. He possesses years of

diverse experience in end-to-end lifecycle

and in designing, developing, and deploying

production-grade Big Data and analytics

solution architectures in leading cloud

environments (Azure, AWS, and GCP) that

support a wide array of business use cases

(including data lake, scalable predictive and graph analytics, and stream

processing, to name a few). His experience extends to DevOps, platform

governance, and administration aspects of Big Data analytics. In addition

to his professional achievements, Irfan presented at the DataWorks

Summit in Sydney in 2017 about in-memory Big Data technologies and

at a number of universities and meetups all around the world. He also

launched Udemy courses on Apache Spark for Big Data analytics and R

programming for Data Science, teaching thousands of students from over

150 countries.

xiii

About the Technical Reviewer

Manoj has served the software industry for

19 years. He holds an engineering degree

from COEP, Pune (India) and has enjoyed his

exciting IT journey.

Being a Principal Architect at TatvaSoft,

Manoj has taken many initiatives in the

organization, ranging from training and

menztoring the teams, leading the Data

Science and ML practice, to successfully

designing client solutions from different

functional domains.

Starting as a Java programmer, he was fortunate to have worked on

multiple frameworks with multiple languages and can claim to be a full

stack developer. In the last five years, he has extensively worked in the

field of BI, Big Data, and machine learning with technologies like Hitachi

Vantara (Pentaho), Hadoop ecosystem, TensorFlow, Python-based

libraries, and so on.

He is passionate about learning new technologies and trends and

reviewing books. When he's not working, he’s either working out or

reading/listening to infinitheism literature. Manoj would like to thank

Apress for giving him the opportunity to review this title and his two

daughters, Ayushee and Ananyaa, for their understanding during the

process.

xv

The fact that there are generally many people in your life that have direct

or indirect influence on your success cements the notion that one can’t

do complete justice in the acknowledgements section found in books.

Still, I’ll endeavour in the best of my capacity and I apologize in advance

to those I didn’t explicitly happen to mention; rest assured your efforts/

contributions are duly acknowledged.

Moral support in each step of the book writing process fuels one’s

motivation and dedication to achieve the elephantine milestone of writing

and completing a book. In this context, I can’t emphasize enough the

moral support from my parents and wife who were always there for me.

Their encouragement and trust were a true driving force. My gratefulness

additionally extends to my workplace friends, Shahban Riaz and Fahad

Sohail, who shared their feedback from their broader perspectives about

how to align this book to resonate better with the target audience.

Transforming your ideas from a nascent state into a book is an

involved process but it was streamlined significantly courtesy of the

amazing support from Apress. I am grateful to Celestin Suresh John

whose confidence in me and my book’s proposition led to its tangible

realization. Aditee Mirashi has been a wonderful editor to work with and

her cooperation in this process can’t be appreciated enough. Thanks to

Matthew Moodie for the investment of his time and effort to thoroughly

scrutinize my book and identify typos and opportunities for improvement.

A huge credit goes to Manoj Patil for his dedication to validating technical

aspects of the book. The collective experience of working with Apress has

been stupendous indeed.

Acknowledgments

xvi

This section would be incomplete if I didn’t acknowledge the people

instrumental in my journey to excellence (still a long way to go indeed) in

big data and analytics. My deepest gratitude to my elder brother, whose

support in the initial days of my career paved my path to this domain.

Lastly, a huge shout-out to my current employer, Deloitte, which enabled

me to apply (and enhance) my skill-set by working on challenging, real-

world projects. Huge thanks goes to Murad Khan (and other Deloitte

Partners) for trusting my abilities to work in several strategic engagements

in big data and analytics.

AcknowledgmentsAcknowledgments

xvii

Foreword

As a leader in one of Australia’s largest professional services firm, I often

get credit for introducing talented individuals to the firm. While that may

be true in a lot of cases, I do not correct people when they assume I am

responsible for Irfan as well. That is simply because not only is Irfan one

of the most dedicated professionals I’ve come across in my career, but

also that he has an uncanny ability to resolve every challenge thrown his

way. This book, in a similar fashion, tries to address all dimensions of

Scala programming for Big Data analytics. It is worth every page because

it is based on real-life problems that Irfan has solved over the years while

working in a series of engagements in the firm. I am certain that this book

is imbibed with Irfan’s unique pedagogy, coupled with his emphasis on

best practices and attention to detail, and thus will be a significant value

for the readers.

Murad Khan

Partner | Consulting | Analytics & Cognitive

Deloitte Touche Tohmatsu, Australia

xix

Introduction

Let me start by congratulating you on your decision to read this book.

I understand that with this decision, there will be significant

magnitude of hopes and expectations that you will have from this book.

This introduction sets the context and expectations so that we are on the

same page, which will lead to the best learning process.

First, as evident from the book’s title and description, this book is

about Scala. You will learn the foundations of Scala, which is one of the

hottest and in-demand programming languages out there. With the

rise of Big Data platforms like Apache Spark and Kafka, its demand has

skyrocketed further. So your decision to learn Scala will definitely be

fruitful, provided you put the effort needed to learn it. With that being

said, the book’s title outlines the scope of this book quite clearly: Scala

Programming for Big Data Analytics.

Scala is a general-purpose language and can be used for a number of

use cases like Big Data development, web applications development, and

numerical computation, to name a few. This book was developed with a

focus on Big Data development. With that being said, the book doesn’t

teach you about Big Data Development in detail. Rather, it covers and

teaches the concepts of the Scala language that are relevant to getting

started with Big Data development.

Now you may naturally ask, is it really important? And why this book?

Let me introduce myself quickly to clarify the point. I have been working

in Big Data and machine learning for years and I am proud to confess that

I am a self-taught engineer/data scientist. I learned all of the technologies,

frameworks, literature, tools, etc. that are used in Big Data on my own.

So I have strong empathy for those who want to start in this domain

xx

and understand the challenges they may face, as I have faced similar

challenges in my career. Big Data and machine learning (or Data Science

in general) are huge domains and one can easily get overwhelmed with so

many things that need to be learned to develop excellence. Specifically for

Big Data development, I’ve seen people who either don’t have a computer

science background or, even when they do, they find one a critical block:

They aren’t skilled in the languages that are considered standard in the

Big Data landscape. Hadoop, one of the de facto platform/technologies

that powers Big Data technology, is primarily developed in Java. Many of

the recent and heavily used Big Data technologies, like Apache Spark and

Kafka, have been developed in Scala.

Apache Spark, specifically, is one of the most widely used Big Data

processing frameworks used for a number of use cases (you’ll find some

details about this in subsequent chapters), and it is developed in Scala. If

you want to use it for your projects/use cases, you are expected to learn

Scala. That’s where the challenge happens. Big Data engineers struggle

a lot in developing the skillset in Scala, which is a prerequisite to use

Apache Spark. They follow books that are too detailed and voluminous

and cover Scala in too much depth; many of those concepts generally

aren’t critical for getting started in Apache Spark development. It’s for

this very reason that Cloudera, one of the leading Hadoop commercial

vendors, offers “Just Enough Scala” training for all those who want to learn

and enroll in their Apache Spark and Hadoop Development certification

program. If you can afford to enroll in their expensive training, please do.

Or if you want to learn just enough of Scala from a self-taught Big Data

engineer who is currently working in the industry and has been using Scala

for Big Data and general-purpose application development, this is the

exact opportunity this book provides. You can leverage my learning and

exposure that I have shared in this book and become skilled in Scala in a

focused and no-nonsense way. If you ask me, nothing can rival this value.

With that being said, let me just quickly point out a couple of nuances

in this book. This book covers Scala concepts related to getting started

IntroductionIntroduction

xxi

with Apache Spark development. Even those concepts have depth of their

own. I will cover those concepts to the required level of depth along with a

lot of examples that you can use for hands-on practice. Additionally, I will

highlight what you need to study on your own as well. You may find this

style to be different than books that are meant to cover everything, but if

I start going into details of those auxiliary concepts, the book will digress

from the main focus—which is to get you up to speed with Scala so that

you can focus on learning Apache Spark.

So you will find me suggesting that you research specific topics and

concepts. I have gained this inspiration from attending training programs

of many leading companies, like Cloudera and Microsoft, which give you

a problem and expect you to sort out on your own without relying on the

instructor to teach you. Those training programs have proven to be highly

effective. Similarly in this book, if you follow the pointers that I highlight,

it will be helpful as it will broaden and deepen your level of skills. If you

don’t, you’ll still get a lot from this book. It’s all about how much you want

to invest in developing skills. Thus, without further ado, let’s learn Scala,

shall we? I hope that you will find my style of teaching to be engaging and

interesting, as I approach pedagogy in a unique way. That’s the reason that

I am Data Science trainer in Deloitte, have spoken at a number of forums

like universities, global summits, and meetups, and have thousands of

students enrolled in my Udemy courses.

Best of luck and let the journey to excellence begin!

IntroductionIntroduction

1© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_1

CHAPTER 1

Scala Language
Programming languages have been around for a very long time and have

evolved significantly. Starting from the very foundational binary language,

which merely consisted of 0 and 1 bits, a huge array of languages has

been developed over the years to address a number of growing challenges

in different contexts. All of these languages have a core purpose—to

enable developers to write instructions in a way that is understandable

by computers with the goal of completing a specific task. Some languages

specialize in a specific set of tasks, such as developing web applications,

whereas others are preferred for Data Science and machine learning tasks.

Yet others are recommended for developing applications on the Windows

operating system, and the list goes on.

Languages are generally placed into different categories, which assists

in developing some understanding of them:

•	 High level or low level—Relates to abstraction, i.e., how

close your instructions correspond to what computers

actually do.

•	 Object-oriented—Relates to the design of programs

consisting of objects, their properties, and their

functionality, along with their interactions with each

other.

•	 Static or dynamic—Relates to the strength of the

association of the type to the objects defined.

2

Note  Type is a commonly used term in programming language
literature. It refers to data types of information that you use and
create in your program. For example, if you want to use numbers,
there are types for that, for instance, Integer. If you want to write
alphanumeric characters such as "Samsung Galaxy S7", you use
the String type.

•	 Functional programming—Relates to the level of

significance that functions hold in a language, i.e.,

are they treated the same way as other objects or not

(e.g., assigning to variables, passing as arguments to

functions, immutability of variables, etc.).

Another way to understand the notion of programming languages

is that some languages are derivatives of other languages. For example,

Scala, as you will find, is a superset/descendent of Java language. Scala

code gets compiled to a Java-specific format called Java bytecode and

runs in the Java Virtual Machine environment. Python’s code, even

though it has many implementations like CPython and Jython, is

compiled in the C language.

In a nutshell and to keep matters simple, languages allow you to

interact with computer systems. They allow you to specify instructions that

computers can understand and process, which ultimately translates to

addressing and solving many problems, ranging from simple mathematical

calculations to complex tasks like processing data on different systems in a

distributed and parallel manner.

You can easily find a lot of general information about programming

languages, so I won’t cover the general aspects here. Rather I’ll keep this

chapter short and will highlight some key interesting characteristics of

the Scala programming language specifically in the context of Big Data

analytics and Apache Spark development.

Chapter 1 Scala Language

3

�Getting to Know Scala
Scala, which is a short form of SCalable LAnguage, originated from ‘École

Polytechnique Fédérale de Lausanne’ (EPFL), Switzerland, in 2003, with

the goal of realizing a high-performance and highly concurrent language

that combines the strength of the following two leading programming

patterns on the Java Virtual Machine (JVM) platform:

•	 Object-oriented programming

•	 Functional programming

Both of these patterns allow you to express the problem at hand in an

efficient and reusable way. Object-oriented principles focus on building

objects and their interactions with other objects. Functional programming

concentrates on functions being prime objects in programming,

immutability of data (i.e., inability to change a variable’s state), purity of

functions (i.e., whether functions can change a value beyond their scope),

and making iterations more implicit. Many of these concepts will become

clear as you progress in this book.

Also, it is an established fact (Source: https://www.scala-lang.org/

old/node/3069) that using Scala leads to increased developer productivity,

as your code becomes better (because you use more immutable structures,

thus reducing a lot of side-effects), simpler and more expressive, and

statically typed (the data type of a variable is strongly adhered to). In

other languages, such as Python, if you define a variable, you can store

a number or a string value in it. However, if a language such as Scala is

statically typed, you can’t store a number value in a string variable because

doing so results in an error. This feature helps a lot when you deploy such

applications in production where the application processes data. You’ll see

more about static typing later in this chapter.

Chapter 1 Scala Language

https://www.scala-lang.org/old/node/3069
https://www.scala-lang.org/old/node/3069

4

�Why Learn Scala?
Apart from the fact that Scala is the lingua franca of Big Data development,

particularly when you use the leading distributed computation framework

Apache Spark, and that it leads to better programs and happy developers—

there are a lot of other perks to learning Scala:

•	 Programmers skilled in Scala are considered highly

valuable in the marketplace all around the world and

earn highly competitive salaries (Source: https://

adtmag.com/articles/2017/08/18/go-scala-

salaries.aspx).

•	 It’s heavily being used in the industry in companies

of all scales, including Netflix, LinkedIn, and Twitter

(Source: https://techcrunch.com/2016/06/14/

scala-is-the-new-golden-child/).

•	 It has been featured prominently in developers’

surveys conducted all around the world, indicating

strong interest in this programming language by the

global development community (Source: https://

jaxenter.com/survey-results-top-programming-

languages-131820.html).

�Scala and Java
If you don’t know already, Java is one of the most famous and widely

used programming languages out there. More than a billion devices use

Java. One of many reasons for Java’s success is that it provides platform

independence, i.e., you can write Java code once and run it on any

platform, like Windows/Linux.

Chapter 1 Scala Language

https://adtmag.com/articles/2017/08/18/go-scala-salaries.aspx
https://adtmag.com/articles/2017/08/18/go-scala-salaries.aspx
https://adtmag.com/articles/2017/08/18/go-scala-salaries.aspx
https://techcrunch.com/2016/06/14/scala-is-the-new-golden-child/
https://techcrunch.com/2016/06/14/scala-is-the-new-golden-child/
https://jaxenter.com/survey-results-top-programming-languages-131820.html)
https://jaxenter.com/survey-results-top-programming-languages-131820.html)
https://jaxenter.com/survey-results-top-programming-languages-131820.html)

5

Additionally, if you are inclined to learn about Big Data, you may have

heard about Hadoop, which is the de facto framework that powers Big Data

platforms. Hadoop, which actually is a suite of services, is primarily written

in Java.

I suggest you develop some understanding of Java, the Java Runtime

Environment (JRE), the Java Development Kit (JDK), the Java Virtual

Machine (JVM), and Java bytecode. These concepts will help you in the

long run if you intend to develop an extended skillset in Scala.

�How Does Scala Relate to Java?
Scala is referred to as a JVM (Java Virtual Machine) language, which means

that when you compile Scala code, it gets compiled to Java bytecode.

Java bytecode is an abstract machine language or instruction set that is

executed by the JVM. Think of the JVM as a program that executes other

programs (in the context of Java, it runs Java code). It’s like a virtual

environment that runs on top of any operating system (thus providing

platform independence) and manages system resources. So, a Scala

program gets compiled to Java bytecode, which then runs in the JVM.

Although there are similarities between Scala and Java, there are

differences between the two as well. In a way, Scala tries to address many

of the shortcomings of Java. One of those is Java’s verbosity, which is

elaborated further in the following sections in the chapter.

�Interoperability with Java Libraries
As Scala is a JVM language, this is itself an interesting feature. You can use

the Java language’s libraries in Scala! This is a great perk, as Java has a huge

ecosystem of libraries for a variety of purposes and you can use them in

your Scala program. Scala’s own libraries are great and are growing as well,

but being able to use Java libraries adds a lot to the usability and diversity

of Scala.

Chapter 1 Scala Language

6

�Scala and Java Verbosity
There is one interesting difference between the two languages related to

verbosity. Verbosity refers to how much code you write to accomplish a

task. Java is notorious for being too verbose, i.e., you have to write a lot of

code even to do a simple task like print a message onscreen. On the other

hand, Scala’s verbosity is quite low. Additionally, as Scala is a functional

programming language, one of the benefits is that it allows you to express

many operations (e.g., loops) in a succinct way without explicitly writing

looping statements. If this isn’t making much sense right now, don’t worry

as you will be doing plenty of this stuff later in this book.

This example provides a nice comparison of the verbosity of Java and

Scala. Here’s the code in Java first:

public class Person {

 private final String name;

 private final double age;

 public Person(String name, double providedAge) {

 this.name = name;

 this.age = providedAge;

 }

 @Override

 public int hashCode() {

 int hash = 10;

 hash = 23 * hash + Objects.hashCode(this.name);

 return hash;

 }

 @Override

 public boolean equals(Object obj) {

 if (obj == null) {

 return false;

 }

Chapter 1 Scala Language

7

 if (getClass() != obj.getClass()) {

 return false;

 }

 final Test other = (Test) obj;

 if (!Objects.equals(this.name, other.name)) {

 return false;

 }

 �if (Double.doubleToLongBits(this.age) != Double.

doubleToLongBits(other.age)) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return "Test{" + "name=" + name + ", age=" + age + '}';

 }

}

The same code in Scala looks like this:

case class Person(name: String, age: double)

All of these benefits translate to increased development productivity

and lower code maintenance cost.

�Scala: A Statically Typed Language
One of the dimensions in which languages are compared is whether a

language is statically typed or not. What this basically means is that if a

language is statically typed, it has a type system that is checked at compile

time. For example, if you write a module/function in your program that

Chapter 1 Scala Language

8

expects input to be of a specific type, upon compilation, it will be checked

for that condition. It also means that the type is associated/bound to a

variable. When you define a variable, its type is defined and it can only

store values of that type.

On the other hand, with languages that are dynamically or loosely

typed, such checks are performed at runtime (when the program is

actually run). This poses a challenge because it’s quite risky to deal with

errors at runtime. It’s better to identify errors at compile time, i.e., during

compilation prior to execution.

Scala falls under the category of a statically typed language and so does

Java. Some examples of loosely typed language include Lua and Python.

�Apache Spark and Scala
The rise of Scala has strong roots in the Big Data phenomena. Big Data, a

term that has many interpretations in different contexts, primarily means

that if you can’t process data in a single machine, you resort to a cluster

of machines that are interconnected. Those cluster of machines work

in concert and perform processing and computation in a distributed

manner. This is the new and de facto paradigm of scalable computing.

Previously, the approach was to make an individual server more powerful

by increasing its resources; however, one can only scale an individual

machine to a finite extent. Whereas you can scale a cluster of machines as

much as needed, per your processing requirements.

In the world of Big Data, you will often hear the term “Hadoop”.

Hadoop, as alluded to, is a suite/collection of services and software that

work in conjunction to enable Big Data computation and storage. There is

so much to talk about Hadoop, but to keep things focused, I’ll just highlight

one specific aspect of it. Services in Hadoop can be majorly placed into

two categories: storage and compute. To give you a taste of Hadoop, but to

keep it succinct, I’ll just cover compute here.

Chapter 1 Scala Language

9

In the compute category of Hadoop, there are a lot of services/tools/

frameworks that allow you to perform processing in parallel on a cluster

of machines. Hadoop originally started with the MapReduce framework

and then many other engines spawned, including Apache Spark, Apache

Storm, Apache Flink, Apache Impala, and so on. The Apache Spark

framework got the most traction and has become the go-to choice

for performing a number of Big Data and analytics tasks, such as ETL

(extraction, transformation, and loading), machine learning, and graph

analytics, to name a few.

And guess what: Apache Spark is written in the Scala language! If you

want to use Apache Spark, you use its APIs (application programming

interface, which are the libraries that allow you to interact with the

system) available in Scala. Apache Spark does have API support for other

languages, including Python, Java, and R, but this support is not as robust

as Scala’s.

Let’s spend some moments getting to know Apache Spark.

Apache Spark, among other capabilities, provides in-memory

computation. Previously, compute engines like MapReduce required a lot

of disk I/O to perform their tasks. Usually, the workflow of tasks in these

Big Data frameworks consists of different stages. For instance, if you want

to determine the frequency of words in a collection of documents, you

generally perform these series of tasks:

	 1.	 Load the documents.

	 2.	 Tokenize the words, i.e. convert each line of the

document into words.

	 3.	 Transform each word into a different form that may

look something like (word,1) in one structure.

	 4.	 Combine the same words and add the number

portion together.

Chapter 1 Scala Language

10

By doing so, you can count the frequency of the words in a collection of

documents. As you can see, we have mapped this into a series of phases/

stages. If you use MapReduce, each of these intermediate stage’s result is

written to disk and then read by subsequent stages.

That’s where issues happen: disk I/O operations are always expensive. By

expensive, it means that they take a significant amount of time to complete. If

you compare them with RAM, the operations there are much less expensive.

It’s pretty fast to write/read from RAM. This is exactly the leverage that Spark

maximizes and provides via its in-memory computation capability. The

intermediate results aren’t written to disk and are rather performed while

staying in RAM (more specifically, the on-heap memory of the JVM). This

results in much better performance; the literature states that it’s 100 times

faster than MapReduce (Source: https://dzone.com/articles/apache-

spark-introduction-and-its-comparison-to-ma). Figure 1-1 highlights

the difference between Hadoop MapReduce and Apache Spark.

disk

first
computation

HDFS
Read

Hadoop MapReduce

Spark

HDFS
Write

HDFS
Read

HDFS
Write

disk disk

second
computation

disk

first
computation

HDFS
Read

second
computation

memory memory

Figure 1-1.  Comparison of input/output (I/O) operations in Hadoop
MapReduce and Apache Spark, which is one of the reasons that
Apache Spark is significantly faster than MapReduce

Chapter 1 Scala Language

https://dzone.com/articles/apache-spark-introduction-and-its-comparison-to-ma
https://dzone.com/articles/apache-spark-introduction-and-its-comparison-to-ma

11

It’s mainly because of this that Apache Spark is heavily used in

businesses all around the world. It’s the most active open source Apache

project and the community is working extensively to strengthen it over time.

As Apache Spark is written in Scala, this places Scala in a special and

favorable position. Scala has become the language of choice whenever

you want to do anything with Apache Spark. The reason behind such

preference is manifold. First, Apache Spark is evolving with new releases

and versions coming on a periodic basis. All of those new language

features that come with new releases are initially made available to its

Scala language API. Although Spark APIs are available in other languages

as well, for instance Python and R, new features are supported only in the

Scala APIs.

Secondly, as Apache Spark is open source, developers and businesses

access the source code and make modifications to it when the default

implementation of Spark doesn’t have what they need.

It always helps to understand what each function or class does. To

develop such an understanding of the Apache Spark classes and functions,

you need to have a strong skillset in Scala.

Apache Spark isn’t the only well known project in the Big Data

landscape built in Scala. Many other famous technologies, like Apache

Kafka and Apache Samza, are also built in Scala.

�Scala’s Performance Benefits
A lot can be said and debated about this topic, but the fact remains—you

get the best performance in Apache Spark when you use Scala. Databricks,

a commercial Big Data vendor and the founder of Apache Spark,

conducted an extensive comparison of performance when Spark is used in

Python versus Scala. The results are available at the following link:

Chapter 1 Scala Language

12

https://databricks.com/blog/2015/04/24/recent-performance-

improvements-in-apache-spark-sql-python-dataframes-and-

more.html

This research clearly indicates that when RDDs (the core abstraction of

Apache Spark; for the time being, just think of them as collection-like

arrays) are used in Apache Spark APIs that are available in both Scala and

Python, the performance difference between the two languages becomes

significant. Apache Spark APIs have graduated to dataframes (another

data structure that Spark provides) and when dataframes are used, the

performance difference becomes negligible. However, RDDs are still used

extensively and thus can have a substantial impact on the performance of

your Apache Spark applications.

There are a lot of technical reasons behind why JVM languages are

better than interpreted languages in terms of speed, but let’s not go down

that path. For you, it’s more than enough to understand that with Scala,

you are assured to have the best level of performance (provided, obviously,

you have written the code correctly).

�Learning Apache Spark
Although this book is about learning Scala, the natural next step after

learning Scala is to develop your skillset in Apache Spark. If you want to

learn from my best-selling course on Udemy, which has been the highest-

rated course multiple times, you can enroll in the course by visiting

the following link: https://www.udemy.com/apache-spark-hands-on-

course-big-data-analytics/.

Chapter 1 Scala Language

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html
https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html
https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html
https://www.udemy.com/apache-spark-hands-on-course-big-data-analytics/
https://www.udemy.com/apache-spark-hands-on-course-big-data-analytics/

13

EXERCISES

•	 Learn about the Java language and its associated terms, such as

JDK, JRE, bytecode, and JVM.

•	 Learn why Scala was developed.

•	 Research more about Apache Spark.

•	 Understand the different use cases for Big Data.

•	 Understand the various applications of Scala.

•	 Research the other famous products developed in Scala, and if

possible, why?

•	 Research concerns about the performance of certain languages,

such as Python.

Chapter 1 Scala Language

15© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_2

CHAPTER 2

Installing Scala
Before you can use Scala to write exciting programs and make your way to

excellence in Apache Spark, you need to install Scala in your system. Even

if Scala isn’t installed on your system, you can open Notepad or any text

editor of your choice and write Scala code/expressions and then save the

contents of that file with a .scala extension. However, that won’t help you

in achieving your desired goal, which is to compile the program that you

wrote, run your Scala program, or package it (mostly in the form of JAR

files). Not to mention that you won’t be using the facilities that come with

the Scala shell (more on that later). These and many other characteristics

are enabled if you have Scala installed on your system.

Just a note that there are a number of online tools available, including

Scastie (https://scastie.scala-lang.org) and Databricks (which

we will use in later chapters), but it’s always productive to have Scala

accessible even when you are offline. Also, as Apache Spark provides an

interactive shell, learning Scala Shell will facilitate the process of learning

Apache Spark down the road.

�Checking Scala Installation Status in Your
System
Chances are that no matter what operating system you are using—Linux,

Windows, or Mac—Scala won’t come preinstalled on it. Most operating

https://scastie.scala-lang.org

16

systems come with the bare minimum software utilities and then

developers install software, framework, and utilities on them to configure

them as per their requirements. Each language has its own set of

prerequisites and requirements for it to execute. We will initially focus on

verifying whether Scala is installed on your system and, if not, how to set

up the requirements.

It’s not difficult to determine whether Scala is installed on your system.

As I am currently using Microsoft Windows (specifically Windows 10, but

it won’t matter much in this context), the instructions are tailored to the

Windows operating system. However, the process is similar regardless of

the operating system and I strive to call out wherever appropriate when the

process is different.

So, to quickly determine whether Scala is installed on your system, you

open the command prompt from your Start menu (by opening the Start

menu and either finding Command Prompt or typing cmd and pressing

Enter). Once the command prompt opens, type scala and see what you

get in the output, as illustrated in Figure 2-1.

Figure 2-1.  Verifying Scala installation status on Windows

Chapter 2 Installing Scala

17

If you get something similar to the screen shown in Figure 2-1, you can

pretty much assume that Scala isn’t installed on your system. Just a note:

Scala could still be installed on your system, depending on the system’s

environment variables. We’ll ignore that nuance and assume that Scala, as

per this test, isn’t installed on your system. So it’s a clean slate to proceed

to the next steps.

So what do you do next? Install Scala, of course.

�Verifying Java Development Kit (JDK)
Installation Status
There can be many ways you can go about installing Scala, but my intent

here is to highlight the quickest and simplest way to do it so that you are

up-to-speed in developing your first Scala program.

Before you jump right in to installing Scala on your system, knowing

that you are quite tempted to get your hands dirty writing your first Scala

program, you need to ensure that the prerequisites of Scala are met in your

system.

Scala, as of this date, requires the Java Development Kit (JDK) to

be installed on your system. To ensure you have the latest version, it’s

good practice to refer to the Scala and JDK compatibility documentation

online (for instance, at https://docs.scala-lang.org/overviews/jdk-

compatibility/overview.html).

For this chapter, I use JDK 8 because this is the recommended version

as per Scala’s download page. However, you can install any compatible

version of JDK after researching what version you are trying to install and

determining the recommended JDK for it. As Scala is a JVM language and

whatever you write in Scala is converted to Java code, it’s natural to have

JDK/Java installed in your system.

Chapter 2 Installing Scala

https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html
https://docs.scala-lang.org/overviews/jdk-compatibility/overview.html

18

To check if the JDK is installed on your system, open the command

prompt and type:

java –version

The results are highlighted in Figure 2-2.

If you get output similar to what’s shown in Figure 2-2, it means that

Java is installed on your system. If you did not get this output, you have to

install the JDK, as detailed in the next section.

What you basically did with the java -version command was check

which version of Java you have. In simpler terms, when you install the

JDK, it installs Java, among other components, for you. Note that your

Java version might not exactly match the one used here. You might end

up installing a newer version of the JDK, which is available at the time you

are reading this book. However, as mentioned before, this should not be

an issue as long as you are installing the latest available version of the JDK

while factoring in what Scala supports by going through its requirements

on its website.

�Installing the Oracle JDK
If the JDK isn’t installed in your system, you have to install it using the

next steps.

Figure 2-2.  Verifying JDK installation status

Chapter 2 Installing Scala

19

The JDK is available by multiple vendors and you can choose from two

major options: Oracle JDK and OpenJDK. For various reasons, I suggest

you install Oracle JDK instead of OpenJDK. To elaborate that further, many

Big Data vendors like Cloudera strictly recommend you opt for Oracle JDK

as they don’t support OpenJDK. So if you are on your way to pivot to Big

Data analytics, it’s good to stay aligned with what’s recommended in this

space.

The steps to installing Oracle JDK are pretty straightforward, on

Windows at least. It’s equivalent to installing any software, whereby you

download the setup from a website and follow the installation wizard.

Thus, go to Oracle’s website. At the time of writing this book, the link to

download the 1.8 version of JDK is:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads-2133151.html

As per your Windows operating system (i.e., x86 or x64), download the

corresponding installer .exe file. Once it’s downloaded, open the installer

and follow along with the instructions from the installation wizard. This

shouldn’t be hard.

If you are using another operating system, use the appropriate

installation instructions on Oracle’s website.

Once the installation process is done, verify it by issuing the java

-version command. If the JDK installed correctly, you will get a response

similar to what’s shown in Figure 2-2.

�Installing Scala on Windows
Fortunately for Windows users, the process of installing Scala bears a

strong resemblance to installing almost any other software. After you

have ensured that you have the right version of Oracle JDK installed on

Windows, you are in a good position to install Scala.

Chapter 2 Installing Scala

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-­downloads-­2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-­downloads-­2133151.html

20

To install Scala on Windows, open your favorite web browser and go to

the following URL:

https://www.scala-lang.org/download/)

Once you’re there, you will be presented with many ways to install

Scala. For instance, you can use the IDE (IntelliJ) or SBT. However, at this

stage, let’s skip those options. Search for Other ways to install Scala on

that web page and click the Download the Scala Binaries for Windows

option, as shown in the Figure 2-3.

Figure 2-3.  Scala download option available on the Scala website

When you install Scala this way, you will be able to use it from the

Windows command prompt (which, if you recall, complained previously

when you tried typing Scala there) and you will be able to launch the Scala

shell called REPL (which stands for Read-Eval-Print-Loop - it’s an interactiv

shell which we will be using a lot in this book), among other components.

So it’s a quick way to get up and running with Scala without using the other

installation options such as SBT and IntelliJ IDEA.

Chapter 2 Installing Scala

https://www.scala-lang.org/download/

21

After you have downloaded the Scala installer from the website, open

the downloaded setup/installer file. It will greet you with a screen similar

to what’s shown in Figure 2-4.

Figure 2-4.  Scala installation wizard

You may have guessed the next steps already? But for your reference,

they are presented as follows:

	 1.	 Click Next.

	 2.	 Read the end user license agreement and check

I Accept the Terms in the License Agreement.

Then click Next.

	 3.	 Select a location on your system where you want

Scala to be installed and then click Install.

After a while, Scala should be installed on your system successfully.

Chapter 2 Installing Scala

22

�Verifying Scala Installation Status
Upon successful installation, of any software, it helps to verify it’s

installation status. Thus, to check whether Scala is installed successfully

in your system, you can proceed as follows.

Open the Command Prompt again and type scala (it’s case sensitive,

so make sure you type scala in lowercase). You should get a screen similar

to what’s shown in Figure 2-5.

Figure 2-5.  Verifying Scala’s successful installation on Windows

If you still get an error when using the scala command in your

command prompt, you can add scala bin folder (which is located in the

folder where you installed Scala) to your path’s environment variable in

your system.

Most likely, you’ll see that Scala is working fine and it has launched a

Scala shell (REPL) for you. It also provides additional information, such as

which version is installed and which JDK it’s using. The JDK version will be

the same one you installed previously.

�Installing Scala on Linux
Given that Linux is being heavily used in professional environments to

power a diverse variety of applications (including Apache Spark), this

section covers installing Scala on Linux machines. There are a number

Chapter 2 Installing Scala

23

of Linux distributions and it will not be possible to cover installation

instructions for all of them, but I demonstrate how to install it on one of the

distros (Ubuntu 18.04.2 LTS); you can follow the same concepts to install

Scala on other distros.

For this installation, I assume that you are using the Linux operating

system. If not, you can use a Virtualization solution (e.g., use Ubuntu’s

image in an Oracle Virtual Box) to run Linux on your Windows operating

system. Provided that you have a Linux environment handy, the steps to

install Scala are as follows.

Just like with Windows, you need to have the JDK installed on your

Linux operating system. The steps to install the JDK in Ubuntu are as

follows.

Open the Ubuntu shell and issue the following commands to update

all existing packages on your Ubuntu system.

sudo su

apt-get update

It’s always a recommended practice to do so. Also, it is helpful if you

change your user to root so that you can issue these commands without

running into privileges issues (i.e., your user may not have the privilege/

authorization to run such system commands). You can run each of the

following commands with sudo as well.

Figure 2-6 highlights the example output after running the apt-get

update command.

Chapter 2 Installing Scala

24

Once the process is complete, issue the following command to add the

Oracle JDK to your list of repositories.

add-apt-repository ppa:webupd8team/java

This command is required for Ubuntu’s package management system

to find Java from this repository when you issue installation commands.

After you issue this command, the process may prompt you to accept the

license agreement. Accept the agreement after reading it; the installation

will resume.

After the installation is complete, issue the following command to start

the installation of Oracle JDK:

apt install oracle-java8-installer

Figure 2-6.  Updating Ubuntu packages

Chapter 2 Installing Scala

25

Once this is done, verify the installation status of the Oracle JDK by

issuing the java –version command.

It should show output similar to Figure 2-7.

Lastly, to install Scala, issue the following command:

apt-get install scala

Figure 2-8 shows the sample output of this command.

Figure 2-7.  Java version in Ubuntu indicating successful installation

Figure 2-8.  Installing Scala on Ubuntu

Chapter 2 Installing Scala

26

After installation, verify Scala’s installation status by issuing scala

command in the shell. It should display Scala REPL. Figure 2-9 highlights

that result.

Congratulations. At this stage, you have successfully installed Scala on

Windows or on Linux. You have configured a development environment

on your system, which you can use to follow along with this book.

EXERCISES

•	 Figure out how to install Scala on Linux in an offline setting

(e.g., on a system that’s not connected to the Internet). You

will encounter such scenarios extensively in professional

environments due to security controls.

•	 Type scala -help at the command prompt and familiarize

yourself with as many options available as possible.

•	 Try installing multiple versions of Scala on your system and

investigate if there are any challenges.

•	 Research the latest versions of Scala available on the website

and make a habit of going through the release notes to

understand the latest enhancements in the new releases.

Figure 2-9.  Scala REPL in Ubuntu

Chapter 2 Installing Scala

27© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_3

CHAPTER 3

Using the Scala Shell
In the developer communities in nearly all parts of the world, productivity

is deemed one of the critical key performance indicators (KPIs). If the

experience of using a tool or language enhances a developer’s productivity,

this is considered as a strong plus for that tool or language. There can be many

language characteristics that increase a developer’s productivity, and one

of the reasons Scala is loved by many is because of its REPL/shell feature.

If you have used Java before, you may know that in order to write and

execute a program, even one as simple as printing Hello World, you have

to follow all the involved steps. Those steps include, but are not limited

to, creating a .java file (ensuring that the filename is equal to the class

within that file). Then you compose a class in that file with a main method

(if you want to make it executable) and then compile it (resulting in Java

bytecode) and run it. If you want to try a new expression in Java, you have

to do all of these steps again and again. By using IDEs like Eclipse, the

process is quick but the steps are the same.

In Scala, the situation is rather different. By virtue of the Scala shell,

you can type an expression and get the result right away, thus eliminating

many of the steps mentioned for Java (just an FYI that Java 9 launched the

JShell for this same purpose). A similar experience exists in Python as well.

However, note that this Scala use case is well suited for exploratory and

experimentation purposes or even for Data Scientists or Data Engineers

who want to quickly prototype something. For production deployments,

you follow similar steps as needed in Java (although there is high degree of

flexibility that Scala furnishes, as we’ll see).

28

In the previous chapter, we walked through the process of installing

Scala on a Windows and Linux system. The chapter also covered how to

verify Scala installation and how to launch the Scala shell/REPL. (I use

these terms interchangeably.) With the Scala shell launched, you are all

set to do programming in a highly interactive environment, which will

foster your learning process. The Scala shell, once launched, will be ready

to accept your commands or Scala expressions, execute them, and display

the results immediately, without any delay. To emphasize further the

ubiquity of the Scala shell, I use it when I want to try specific expressions

on an ad hoc basis prior to productionizing my codebase. The Scala shell is

my go-to tool for this purpose, as it significantly increases my productivity.

When you explore Apache Spark, you will find that it also comes with a

shell (for both Scala and Python). Spark’s shell for Scala is the same as the

Scala shell that you’ll use in this chapter.

Let’s get familiar with this tool before we move on to the next stages of

our learning journey, shall we? As a first step, launch the Scala shell on your

system. (It should be clear by now that you can launch Scala by opening the

Windows Command Prompt (or Linux shell) and typing scala.)

�Getting Help from the Scala Shell
One of the first things that I do when using a new tool is determine which

options or commands I have available at my disposal. Every command

line interface (CLI) tool, i.e., a tool that you use via the Command Prompt,

comes with a number of options that you can use to your advantage.

Having a certain degree of familiarity with those options always helps.

Once you have launched the Scala shell, type :help in the shell. Make

sure not to miss the colon (the :) before the help keyword. There should

be no spaces between : and help, as shown in Figure 3-1.

Chapter 3 Using the Scala Shell

29

It will display all the possible commands, apart from Scala expressions,

that you can type here. I won’t cover all of them but will highlight just a

couple of them in this chapter (and the book). You can research others on

your own, as needed.

�Hello World in Scala REPL
Now let’s do what every new programmer does when they start learning

programming, i.e., let’s print hello world! Let’s do it in the Scala shell and

see how difficult or easy it is.

To print Hello World, just type "hello world" in the shell, as shown in

Figure 3-2.

Figure 3-1.  Output of :help in Scala REPL

Figure 3-2.  Printing hello world in Scala REPL

Chapter 3 Using the Scala Shell

30

You will get output as shown in Figure 3-2. There you have it. You have

displayed hello world programmatically using Scala in your environment.

Technically you didn’t “print” it like you normally do with print function,

but for now, it’s more than enough.

�Understanding Hello World in Scala REPL
Step-by-Step
Now what just happened in the previous step? Let’s take a look at the

process in a step-by-step manner. Understanding this will form a strong

foundation for your understanding of Scala and its shell:

•	 You actually typed a string in the Scala shell. String is

one of the data types available in Scala and you’ll use a

combination of different data types in your programs

to achieve the task that you want to perform. You

use the String data type to represent alphanumeric

characters like "hello world". Strings in Scala are

represented by double quotes, i.e. "". It’s different from

Python, where Python accepts both single and double

quotes for strings. In Scala, strings must be enclosed in

double quotes (or triple quotes, as we’ll see in coming

chapters).

•	 Whatever you type in a double quote, it becomes a

String data type. In this case when you typed

"hello world"

And pressed Enter, Scala displayed this output on

the screen:

res3: String = hello world

Chapter 3 Using the Scala Shell

31

•	 What does that output mean that was displayed as

a result of you typing "hello world"? It means that

the Scala shell created a variable for you named res3.

Every time you type and enter anything in the Scala

shell, it is assigned to a variable, which generally starts

with resN (where res stands for result and N can be

any number depending on how many expressions you

have entered in that shell session). What is a variable,

you may inquire? Although we haven’t covered that

concept in detail, you can imagine it to be a holder or

container of data, i.e., something that has a name and

can store data in it.

•	 Another important piece of information that you can

gather from here is that res3, the variable that was

created, is of type String. Scala is a strongly typed

language, as explained in the first chapter, and each

variable has a type associated with it. In this case, the

type of the variable, obviously, is String, and this fact

is confirmed by the Scala shell. This particular feature

of the Scala shell is particularly useful as having an

understanding of data type is crucial for you to write

logically correct programs. Computer programs are all

about operating on data of varying types, so knowing

what type of data you are manipulating will help you

choose the correct method and will avoid many errors.

Given that the Scala shell created a variable for you when you simply

typed "hello world", you can access and use that variable if you want to.

Just type res3 in the shell and see what you get for output (it will be similar

to Figure 3-3).

Chapter 3 Using the Scala Shell

32

Sure enough, you’ll get hello world in the output along with other

information. This is a great way to understand the type and value of an

expression that is generated when you type Scala expressions.

In this case, we simply typed "hello world" but you can try any valid

Scala expression to see what value and type is returned. Just type 1+10 in

the shell, as highlighted in Figure 3-4.

This time, it shows that it created a variable called res5. It’s of type

INT (which is one of the numerical types in Scala used to deal with

numbers), and its value is 11. This time you created a variable of type

Integer (or Int to be specific; I use Integer and Int interchangeably)

instead of String.

I must say that you will rarely use these variables (like res4 and res5)

that the Scala shell creates, but what’s important is to see the result

of expressions and the types. This notion will become more important

if you do advanced programming in Scala, as discussed in the

next section.

Figure 3-3.  Displaying the res3 variable that Scala REPL created

Figure 3-4.  Using a mathematical expression in Scala REPL

Chapter 3 Using the Scala Shell

33

�Using Scala REPL’s Data Type Highlighting
Feature
Let’s look at a slightly complex yet real-world example to show how the

feature of the Scala shell that highlights data type can be helpful in many

settings.

A while ago, I was working on a Scala program where I had to retrieve

database name from a variable that included database name and table

name with the following naming convention:

database_name.table_name

I wanted to retrieve just database name. For those who know

programming, you may have guessed how to do this. One of the ways to

do this is to use the split function, which is available in the String type.

If you have a string like "Irfan_Pakistan" for example and if you use the

"Irfan_Pakistan".split("_") function, it will split at the underscore _

character. Once it’s split, you can get the element of your choice (either

Irfan or Pakistan).

Now when you use "Irfan_Pakistan".split("_"), the result of this

expression isn’t a string. It’s something else. Figure 3-5 shows how you can

use the Scala shell to see the type of the result of using the split function

on String.

Figure 3-5.  Highlighting how to use the split method on a String data
type

Chapter 3 Using the Scala Shell

34

It indicates that when we use the split function on a string, we’ll get

an Array in return.

Note A n Array is another type in Scala that’s used when you want
a variable to store a collection of values. We’ll learn what collections
are in upcoming chapters, but for now, just keep in mind that they are
different from variables of other data types like Integer, which can
hold only one value.

Knowing that the expression gives me Array, I can then use it to get my

desired values out of it (by using indexing—think of this like retrieving a

particular element from an Array collection), as shown in Figure 3-6.

Note that we used (0) in the expression in Figure 3-6, which indicates

that we are getting the first element of the collection (Array in this case).

For now, it’s enough to know that Scala uses zero-based indexing (which in

simpler terms means that the first element of a Scala collection like Array

is element 0, the second element is element 1, and so on).

If you didn’t know already, now you know the implications of using

split, i.e., it returns an Array.

Now with this contextual knowledge, we can attack the problem at

hand. If we use

"sample_db.my_table".split(".")

Figure 3-6.  Indexing the array that gets returned via the split method

Chapter 3 Using the Scala Shell

35

It should give us an array like before, right? Well, go on and give it a try

and see what happens. If you do, you will see that you will, interestingly,

get an exception. This means that what you are trying to do is wrong.

Congrats, you’ve lived long enough to see your first Scala exception, as

shown in Figure 3-7.

The point is, you expected the split function to work the same way but it

didn’t and you checked it with the Scala shell instantly. (A more appropriate

way of doing this would be to write unit test cases, which is something that

you should look into once you become slightly more well-versed with Scala.)

What happened is that, in this particular instance, you need to do something

different to achieve the desired result, as shown in Figure 3-8.

In the example shown in Figure 3-8, I used similar constructs as

before with one variation that I used ("\\0") while splitting. Using . in

this context without \\ was interpreted differently by Scala. It indicated

that you wanted to use regular expressions (which are used for matching

Figure 3-7.  An example of an ArrayIndexOutOfBounds exception

Figure 3-8.  The correct way to split a string on a . character

Chapter 3 Using the Scala Shell

36

patterns in strings). Rather, the intent was to just split on the . character

and not involve regular expressions in any way. That’s why we “escaped”

the . character by using the \\ to indicate our intentions to Scala.

The key takeaway is that using the Scala shell, you can see the type of

the result of the expression and, if possible, detect errors. Which, trust me,

is really handy!

�Paste Mode in Scala REPL
Now back to the rhythm: You can use this shell to type any Scala expression

that you want and see the results instantaneously. It works great for single

line expressions, but you can run into issues when you are trying to paste in

multiple lines of code. For instance, say you wrote a few lines of Scala code

in a text editor (e.g., notepad or Sublime) and you want to execute them in

the Scala shell in one go. You can just paste them in the shell, but there is a

better way to do this. That’s where the paste mode comes into play.

To use paste mode, type :paste in the shell. This brings you into paste

mode, where you can paste or type multiple expressions and execute all of

them at once by pressing Ctrl+D, as shown in Figure 3-9.

Chapter 3 Using the Scala Shell

37

In Figure 3-9, I initialized a variable named x in Scala. val before x

stands for value and it means that the variable that you are creating is

immutable, i.e., its value can’t be changed or you can’t assign a value

back to this variable. But at a higher level, it’s how you generally initialize

a variable in Scala. You can initialize using var as well, which creates a

mutable variable. We’ll look at these concepts in more detail in subsequent

chapters.

Then I used two print statements to print the value of the variable. In

the second print statement, I used the .toUpperCase function of String

(just like I used split function before) to convert the string to uppercase;

I also used the + sign to concatenate (i.e., join together) the two strings.

If you are working with classes and traits in Scala, paste mode is very

handy. Similarly, for control statements (like if-else conditionals and

loops), it proves to be useful.

Figure 3-9.  Paste mode in Scala REPL

Chapter 3 Using the Scala Shell

38

�Retrieving History in Scala REPL
Whatever you type in the Scala shell is stored and you can retrieve the

history as well. The experience is similar to the commands history in

the Linux shell. It’s helpful when you want to see which commands/

expressions you executed previously and reuse them by copying and

pasting them back into the shell.

To see a history of expressions that you typed in the Scala shell, type

:history in the shell, as shown in Figure 3-10.

Figure 3-10.  Getting a history of expressions in Scala REPL

Chapter 3 Using the Scala Shell

39

You can also type a number after :history to inform the Scala shell

that you intend to get that many items from history, as illustrated in

Figure 3-11.

If you type :history 200, it will display the past 200 expressions. It’s a

pretty handy feature to see what you typed before.

�The Auto-Completion Feature of Scala REPL
When you search using major search engines like Google, the search

engine keeps on suggesting or auto-filling your intended search query.

This streamlines the user experience significantly. Similarly, you saw

in the previous examples that the String data type had some functions

associated with it (we used .toUpperCase and the .split method to do

different types of tasks).

How can we determine which methods are available to different data

types/objects in Scala? One option is to keep the Scala API documentation

handy, but in many instances, you’ll quickly want to know what’s available

in a particular object. To facilitate that, you can employ the Scala shell’s

auto-completion feature.

Figure 3-11.  Using the history feature with a number to specify the
number of items you want to retrieve

Chapter 3 Using the Scala Shell

40

Say that you created a variable of type integer in a Scala REPL session

as follows:

val myVariable = 20

Then, when you type some characters of your defined variable like

myVar and press Tab, Scala REPL will auto-complete it for you. It can add a

lot to your productivity and can save you some typing (and prevent errors).

Another interesting and helpful extension of this feature is that it

allows you to see the functions and fields available in your object. I

know you may not have a thorough understanding of object oriented

programming and the terms like functions, fields, and object may not

make such sense to you right now. But at a higher level, whenever you

create a variable in Scala REPL, for example,

val myStringVariable = "Scala"

it creates a variable of a specific type (String in this case). Thus, depending

on the nature of the variable created, e.g. Integer, String, etc., there are

a number of methods (similar to functions, which you will study later in

the book, but think of them as modules of code that do specific tasks)

and fields (also known as attributes, and they represent properties of that

object) that come with each type.

If you want to see which functions and fields are available for the

String variable that you just created, type the variable, then type . and

then press Tab. It will display a list of what’s available for the String type,

as shown here:

Chapter 3 Using the Scala Shell

41

scala> myStringVariable.

!= compareTo genericBuilder matches runWith

toBuffer

compareToIgnoreCase getBytes max sameElements

toByte

* compose getChars maxBy scan

toCharArray

+ concat getClass min scanLeft

toDouble

++ contains groupBy minBy scanRight

toFloat

++: containsSlice grouped mkString segmentLength

toIndexedSeq

+: contentEquals hasDefiniteSize ne self

toInt

-> copyToArray hashCode nonEmpty seq

toIterable

/: copyToBuffer head notify size

toIterator

:+ corresponds headOption notifyAll slice

toList

:\ count indexOf offsetByCodePoints sliding

toLong

< diff indexOfSlice orElse sortBy

toLowerCase

<= distinct indexWhere padTo sortWith

toMap

== drop indices par sorted

toSeq

> dropRight init partition span

toSet

>= dropWhile inits patch split

toShort

Chapter 3 Using the Scala Shell

42

addString endsWith intern permutations

splitAt toStream

aggregate ensuring intersect prefixLength

startsWith toString

andThen eq isDefinedAt product

stringPrefix toTraversable

apply equals isEmpty r

stripLineEnd toUpperCase

applyOrElse equalsIgnoreCase isInstanceOf reduce

stripMargin toVector

asInstanceOf exists isTraversableAgain reduceLeft

stripPrefix transpose

canEqual filter iterator reduceLeftOption

stripSuffix trim

capitalize filterNot last reduceOption

subSequence union

charAt find lastIndexOf reduceRight

substring unzip

chars flatMap lastIndexOfSlice reduceRightOption

sum unzip3

codePointAt flatten lastIndexWhere regionMatches

synchronized updated

codePointBefore fold lastOption replace

tail view

codePointCount foldLeft length replaceAll

tails wait

codePoints foldRight lengthCompare replaceAllLiterally

take withFilter

collect forall lift replaceFirst

takeRight zip

collectFirst foreach lines repr

takeWhile zipAll

combinations format linesIterator reverse

to zipWithIndex

Chapter 3 Using the Scala Shell

43

companion formatLocal linesWithSeparators reverseIterator

toArray ?

compare formatted map reverseMap

toBoolean

As you can see, there is a thorough list showing what you can access/

invoke on the object. For example, to determine the length of your string

variable’s value, you can call:

myStringVariable.length

Similarly, to find the location/index of a specific character in your string

(e.g., to find where the character “c” appears in your string variable value

"Scala"), you can use another method that comes with the String type:

myStringVariable.indexOf("c")

In the output, you will get 1 as the result. 1, in this context, means that

it exists in the second position from the left. Remember, counting positions

(called indexing) starts at zero in Scala.

Thus, using this feature of Scala REPL, you can quickly determine

which fields or methods are available.

�Exiting from Scala REPL
On a lighter note, unlike many text editors like Vim, it’s quite easy to exit

from the Scala shell.

To quit the Scala shell/REPL, you simply type:

:quit

Technically, at the backend, your OS launches a Java Virtual Machine

process that runs the Scala shell and, as you exit the session, that JVM

process is killed as well.

Chapter 3 Using the Scala Shell

44

Well, that’s enough for Scala REPL. Let’s move on to the next chapter

and learn about some fundamentals of the Scala language in a proper and

methodical manner, shall we?

EXERCISES

•	 Create a variable of type Int, assign a value, and then see what

methods are available for that type. Repeat the same process for

the String variable.

•	 Explore other options that are available in Scala REPL and

research how you can use them (e.g., :sh, :save, :load, etc.).

•	 Research the spark-shell and see if the same commands and

features are available there as well.

•	 Try increasing the memory used by the Scala shell.

Chapter 3 Using the Scala Shell

45© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_4

CHAPTER 4

Variables
When you write programs, you use variables and you use a lot of them.

The notion of variables was introduced briefly in the previous chapter.

You use them to refer to different objects that you create. For example,

if you are writing a program to store the result of the mathematical

expression 10+5, you will typically store it in a container/placeholder so

that you can reuse it with further operations. For instance, if you created a

variable that stored an integer value, you could further use it for numerical

operations like addition or subtraction. In the context of programming,

these placeholders/containers are called variables, and that’s what we will

thoroughly explore in this chapter.

�Getting Started with Variables in Scala
In the backend, depending on the language you are using and the type

of variable that you are using, each variable creation results in memory

allocation. So typically, in Scala, you will write something like this:

val sumResult = 10+5

Let’s look at what’s happening in this statement. First, refer to Figure 4-1.

46

Here is a description of this statement:

•	 The right side of the equation, i.e. the elements on the

right side of the equals sign, are evaluated or executed.

This generates a result, which in this case is 15.

•	 On the left side of the equation, we define a variable

with the name sumResult. sumResult is the name of

the variable and you will refer to this variable with this

name.

•	 The result of the right side of the equation (15) will be

stored in the variable called sumResult. Technically,

under the hood, it will store a reference to the location

in memory (specifically, in the heap memory space of

JVM), where 15 gets stored and its reference (address)

is assigned to the variable name sumResult. However,

for now, you can assume that the value 15 is stored in

sumResult.

val sumResults = 10 + 5

this gets evaluated =
to 15

1

this value gets
stored in the variable.

2

variable name

Figure 4-1.  Understanding variables and value assignments in Scala

Chapter 4 Variables

47

�Immutability of Variables in Scala
Chances are that if you have worked in other programming languages like

Python or Java, you have some concept and understanding of variables.

If not, generally, it’s assumed that values in variables can vary. Also, the

literal meaning of a variable is something that can vary/change. This is a

common practice in all programming languages—you create variables and

then you change their values whenever it’s appropriate. For example in

Python, you can do something like this:

example of using variables in Python:

sumResult = 10+5

sumResult = 9+100

Initially, the value of the sumResult variable was 15 and then, in the

next expression, we changed it to something else (109). Convenient isn’t it?

For a string, in Python, you do it like this:

another example of using variables in Python:

myName = "Irfan"

myName = "Irfan" + "Elahi"

The reason I gave quick examples from the Python language is to

emphasize the following fact: Variables are used in almost all programming

languages and it’s considered perfectly normal in many languages (even

in Scala in certain scenarios) to change their values. This characteristic is

called mutability, i.e., the ability to mutate or change.

But overall, as you will discover, Scala emphasizes the immutability of

variables compared to other languages, i.e., the values in variables should

not change. This philosophy is deeply rooted in the fact that Scala is a

functional programming language, so mutability is considered as a bad

practice for certain reasons (which will be explained later in the book).

Chapter 4 Variables

48

�Defining Variables (Mutable and Immutable)
in Scala
Now with this context in place, there are two ways you can create variables

in Scala:

•	 Using the val keyword

•	 Using the var keyword

Simply speaking, if you create a variable with the val keyword, you

can’t change its value. In other words, it’s immutable and can’t be updated.

Whereas if you create a variable with the var keyword, you can change its

value whenever you want (it’s mutable).

Let’s play with this concept a bit more to develop an in-depth

understanding. Open Scala REPL and create a variable named country

preceded with the val keyword, as follows:

val country = "Pakistan"

Then try reassigning a different value to this variable, e.g. Australia,

and see what you get. Do this:

country = "Australia"

As soon as you attempt this, Scala will respond with loud complaints

that it’s not possible. Specifically, it will report to you:

error: re-assignment to val

That is, in Scala, it’s not possible to assign a value to an already

initialized val variable.

Now, do these same steps but this time, use var instead of val and see

if it works. Here’s a hint: It should. When you use the var keyword, you are

creating a mutable variable.

Take a look at the sample screenshot in Figure 4-2.

Chapter 4 Variables

49

In this step, by creating a mutable variable, we could change the value

of the country variable to Australia from Pakistan.

�Why Is Immutability Emphasized in Scala?
So why bother having val or immutable variables in Scala? This relates to

Scala’s inclination toward functional programming constructs, where it

frowns on the idea of impurity. In the world of functional programming,

there is a dire threat that it addresses: side effects. By side effects, it means

that if you define a variable and if the value of that variable is changed by

any function somewhere, this is a side effect.

When there is possibility that any function can change the value of

any variable at any time whenever desired, this leads to another severe

consequence: during code maintenance it becomes significantly difficult

to track what changed the variable state and when and why.

That’s why, in functional programming, you will hear the term pure

functions a lot, which represents the same idea. A function is pure if it

doesn’t create any side effects, i.e., it doesn’t change the state of any

variable outside of its scope.

Figure 4-2.  Mutability in variables created using the var keyword

Chapter 4 Variables

50

Also, one of the design goals of Scala was to make it highly concurrent.

Using mutable variables in programs where multiple threads/processes

are trying to interact with them can lead to inconsistent states. Thus, it’s

considered best practice to use immutable variables in Scala.

So, Scala practitioners recommend using val wherever possible. Or,

in fact, all of the time. In very specific scenarios where you can’t get away

with using a mutable variable, only then is it considered acceptable to use

mutable variables. For example, when using counters in a loop—but in

many scenarios, even those can be handled by using immutable variables

created with val.

�Mutability and Type-Safety Caveats
There is another catch with mutable variables, and with this, we will now

pivot toward type-safety in Scala. Let’s take a look at it with the help of an

example.

Create a mutable variable in Scala named temperature and then

assign it a value of 98. As per the concepts developed so far, you can

change its value, right? Try assigning it the value 100. It worked? Good.

Now try doing this—try assigning the value "hot" to the temperature

variable. It’s mutable and it should work, right? Refer to Figure 4-3 for

further proof of this.

Chapter 4 Variables

51

Surprise—it won’t work.

It’s not because of immutability. It’s because Scala is a strongly typed

language. This is yet another striking difference between Scala and dynamic

languages like Python, which are pretty relaxed in this aspect. In Python, you

can create a variable that may initially hold an integer value and in the next

instant, it can hold a string or any other data type with no complaints.

In Scala, every variable that you create has a type strictly associated

with it. For instance, if you create a mutable variable of type Integer, that

type will remain associated with it. If you try to change its value to another

integer, it will work. But if you try to change its value to another type, e.g.,

from Integer to String, it won’t work. You saw proof of this in the previous

example.

We cover data types in the upcoming chapter, but you have been using

some of the types already—numbers (you assigned 98 to temperature) and

strings (you assigned "Pakistan" to the country variable). So, in a nutshell,

every Scala variable (mutable/immutable) must have a type and when it’s

initialized, the type gets associated with it and cannot be changed.

Figure 4-3.  Mutability in variables created using the var keyword

Chapter 4 Variables

52

�Specifying Types for Variables and Type Inference
There are two ways you can specify types of variables. This is where Scala is

different from other statically typed languages like Java.

•	 Type inference

•	 Explicitly declaring type

By type inference, we mean that you let Scala infer the type of variable

on its own. You don’t dictate or specify the type, rather you let Scala make

the best possible guess when you create a variable. That’s exactly how

we’ve been working with variables so far. Did we, at any point in time,

specify that we wanted to create Int or String type variables? Nope. We

simply issued expressions like this:

val temperature = 10

val country = "Australia"

In the first instance, Scala inferred the temperature type to be Integer

and, in the second case, it guessed the type to be String. How can you

be sure of that? One simple way is that in the Scala shell, when you create

variables, right after the execution of that expression, it shows the type as

well.

This characteristic is not linked to immutable or mutable variables. In

both cases, it will infer the types whenever it can.

Alternatively, you can explicitly specify the type at the time of variable

creation. In this case, you add another layer of emphasis/enforcement that

this variable will always store the value of this type and nothing else.

The way to do this is to specify the type after the variable name

separated by a colon :. Generally:

<val | var> <variable_name>:<variable_type> = <variable_value>

Chapter 4 Variables

53

Here are some examples:

val country:String = "Australia"

var temperature:Int = 10

var isCustomer:Boolean = true

Generally, as a best practice, programmers explicitly specify the

types to avoid any ambiguities or discrepancies. By doing so, you can

be confident that you are working with the expected data types. Going

forward, when you use functions, you will find that you specify the

parameters along with their types.

This benefit will become even more evident when you use IDEs like

IntelliJ because if the result of an expression is of a different type than what

it expects, it will indicate an error. I know that we haven’t covered IntelliJ

yet, but I’m just giving you a heads up about this concept beforehand.

�Scala Identifier Rules and Naming
Conventions
So far you have learned how to create variables in Scala. Another

important concept closely associated with variables is identifier rules,

which generally refers to rules that must be followed while naming your

variables (and other entities in Scala like classes, functions, etc.). Let’s

explore this further.

First, if you don’t happen to follow the identifier rules, you will get

errors while creating variables. To better understand this point, consider

the following example:

scala> val 10years = 1

<console>:1: error: Invalid literal number

 val 10years = 1

 ^

Chapter 4 Variables

54

At first, it may appear that the expression is syntactically correct. We

used the val keyword, then added a variable name, and then tried to

assign a value to it. However, we still got error. The error in this context is

related to the variable name; Scala complained that it’s an invalid literal

number.

To avoid such errors, follow these basic identifier rules:

•	 All identifiers in Scala are case sensitive (meaning

firstname, FirstName, and firstName are three

different identifiers or variable names).

•	 An identifier must not start with a numeric digit

(e.g., 10years and 2Stores are not valid identifiers or

variable names).

•	 An identifier must not consist of Scala keywords (e.g.,

def, class, for, etc.). Also, An identifier name must not

start with operators (e.g., +, :, ?, ~, or #).

In addition to these rules, it’s always a good practice to follow naming

conventions, which are a set of established naming standards. Variable

names should be camel cased (in which the first word is lowercase and

each subsequent word begins with a capital letter, with no intervening

spaces or punctuation). For instance, tableName, filePath, and

regularizationParameter are all valid variable names written in camel

case. Whereas TableName, Table-Name, TABLENAME, and file_path don’t

follow that naming convention. Thus, whenever possible, make a habit of

following these naming conventions in your code.

So in this chapter, you learned about the concept of the variable, its

type (mutable/immutable), how type-safety works in Scala, and the rules

governing their names. These concepts are fundamental to subsequent

chapters, so make sure you understand them well.

Chapter 4 Variables

55

EXERCISES

•	 Try creating a variable of type Double and assigning an integer

value to it. Does it work? If yes, research this. Do it the other way

(storing a Double value in an Integer variable).

•	 Try creating a variable (e.g., x) and assigning a value to it

(e.g., 10). Then create another variable (e.g., y) and assign it to

another variable (i.e., x=y). Now change the value of x. Check

whether it changed the value of y or not. If not, research this

concept (specifically what is meant by pass by value and pass
by reference).

•	 Try creating multiple variables on one line.

Chapter 4 Variables

57© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_5

CHAPTER 5

Data Types
In our daily life, we encounter data of varying nature. For instance, our

names consist of letters, our mobile numbers are numbers, and our

decisions are usually yes (true) or no (false). To represent these and many

other types, every programming language has a type system to support

this notion. Using the combination of different types that come with a

language’s type system, we can create variables associated with these types

to implement tasks of varying nature. Like many other languages, Scala

has a strong type system (which in fact is more sophisticated than many

others) and there are different types available out of the box that you can

use and work with.

Unlike other programming languages like Java, there is no concept of

primitive data types in Scala. Primitive data types are considered the most

basic data types like Integer, Boolean, Char, etc., and are just meant to

store simple values of the type. In other programming languages, variables

with primitive types actually store the value in them instead of storing

reference to their addresses where they are stored.

In Scala, each type is actually an object. An object is an object oriented

concept which, at a very high level, represents an entity (or in more simple

terms a thing) that embodies fields and methods that you can call to carry

out actions using that thing (we briefly covered this in Chapter 3). The

notion of types in Scala is not as simple as it is in many other languages

and that’s the reason Scala has no primitive data types.

58

�Scala Type Hierarchy System
In addition to each type being an object, each type in Scala also belongs to

a type hierarchy, as shown in Figure 5-1.

The hierarchy may appear complex at first, but let’s look at it in step-

by-step manner:

•	 At the top root of the hierarchy, there is a type called

Any. This is the parent or super-type of all the types. All

other types are descendants or children of the Any type.

•	 The Any type is further divided into two categories:

•	 AnyVal: This is the parent of all value types. This is

where the so-called primitive types fall:

scala.Any

scala.AnyVal

scala.Unit

scala.Seq java.lang.String

... (other Java classes) ...

... (other Scala classes) ...

scala.Option

scala.List

scala.Unit

scala.Booleanscala.Boolean

scala.Charscala.Char

scala.Char

scala.Char

scala.Char

scala.Nothing

scala.Null

scala.AnyRef
(java.lang.Object)

scala.ScalaObject

Subtype
View

Figure 5-1.  Scala type hierarchy

Chapter 5 Data Types

59

•	 Numeric types: Double, Float, Long, Int, Short,

and Byte. These types have hierarchies in them

as well. For example, Double is the super-type of

all numeric types and Byte is the lowest in this

hierarchy of numeric types.

•	 Boolean type: Represent two values: true and false.

•	 Unit: Represents emptiness and is equivalent to

void in other languages. We explore this in detail in

this chapter.

•	 Char: Used to represent characters and is different

from the String data type. In Scala, it’s represented

using single quotes '. Under the hood, they are

stored as integer (unsigned) values.

•	 AnyRef: This is the parent of all reference types and

is analogous to java.lang.Object in Java. Again,

it’s an object oriented construct and as of now, you

may understand that when you define a variable of a

reference type, the variable then stores the memory

address of that variable instead of actually storing that

value directly. When Scala is used in the context of

the Java runtime environment, AnyRef corresponds

to java.lang.Object. Similarly, when you create

your own types in Scala, they will also fall under this

category. The String type that you used briefly in the

previous chapter also belongs to this category. This is

also where all the Scala collections (such as List, Map,

etc.) are found.

Chapter 5 Data Types

60

At the bottom of the hierarchy lies the Nothing type. In Scala, every

expression that you write must return a value. Even those functions that

display something (e.g., println) also in fact return data of type Unit. In

such instances where your expression is not returning anything, Nothing is

used. This is the case when there is a loop that runs infinitely or a function

that stops an application.

Deeper understanding of this hierarchy system involves knowledge

of object-oriented principles, as each sub-type (e.g., AnyVal is sub-type

of Any) inherits certain methods from its parent. Also, the concept of

polymorphism is closely associated with this type system. But at this stage,

all you need to know is:

•	 The equivalent primitive types in Scala. That is, the

numeric types in Scala, the non-numeric equivalent

primitive types (boolean), etc.

•	 If you use a particular type in Scala, you should know at

least where it falls in the overall hierarchy.

•	 If you find types like Any, Unit, etc., this shouldn’t

surprise you, as all of these are types, located at

different levels in the overall hierarchy.

EXERCISES: DATA TYPES

•	 Understand the difference, also in the context of memory

footprint and range, between different numeric types in Scala.

What are the limitations of each and when does it make sense to

use one over the other?

•	 Research what functions are available in the integer data type,

i.e. addition, subtraction, multiplication, and division. Use them in

Scala REPL.

Chapter 5 Data Types

61

•	 Research which operators on numeric types have precedence,

i.e., in an expression, which operation will be executed before

the other. Understand these basic concepts on your own.

In this chapter, instead of going into the details of all the types,

I cover specific types in the Scala language, along with their respective

implications, and will point you in the right direction to deepen your

knowledge about Scala’s type system.

�The Boolean Type
In Scala, to show that something is true or false, we have the Boolean type.

For example, to say is 2 less than 5 (which is true) and “Scala” is equal to

“Java” (which is false), we use Boolean types. In this type, there can be only

two values:

true

false

These values are case sensitive. True/False/TRUE/“True” are not

equivalent Boolean values.

Boolean values generally appear when you are performing some

logical comparisons, such as < (lesser than), > (greater than), >= (greater

than or equal to), == (equal to). As an example, type the operator shown in

Figure 5-2 into Scala REPL.

Figure 5-2.  Using a relational operator to generate Boolean values

Chapter 5 Data Types

62

You’ll get a variable of type Boolean whose value is false. The

expression 2==1 returns a Boolean value (note that there are two = signs

and not one).

Note T he == (double equals to) is a comparison operator that
returns Boolean values, whereas = is an assignment that assigns
a value on its right to the variable on its left. Also, as = is just an
assignment operator, it does not return anything per se. However, in
Scala, every expression normally returns something and thus in the
case of simple assignment expressions, something does get returned
and that’s Unit.

EXERCISES: BOOLEAN TYPE

•	 Research the different types of logical operators available in

Scala. Try to use them in Scala REPL.

•	 Try assigning a Boolean variable to an Integer variable. What do

you get? Research whether you can do this in other languages.

•	 Try adding two Boolean values. What do you get?

�The String Type
To represent alphanumeric data in Scala, string data is generally used.

Specifically, if you enclose a value in double quotes (" ") or three double

quotes (""" """), it becomes a string. As mentioned, a string can have

numbers or alphabetical characters (or other characters if you are using

encodings like UTF-8). In the context of type hierarchy in Scala, it’s a

subtype of AnyRef. The String type, even in other languages like Java,

Chapter 5 Data Types

63

is not considered a primitive type, as it’s a reference type. And in one

respect, String is a collection of characters because you can access/

index individual elements of the String data. These concepts will become

clearer soon.

You’ve already worked with a number of examples of String types but

for practice, type the following:

val query = "Select * from table where id = 1"

In this example, the whole statement, starting from Select until 1, is

a string because it’s enclosed in double quotes (""). It is stored in a query

variable.

In certain instances, i.e. with a few special characters, you need to

escape characters in your String variable. For example, if your String

variable contains double quotes or a backslash, you have to proceed with \.

If you don’t, Scala will report back an error. For example, consider the

example shown in Figure 5-3.

If you escape these special characters with \, the issue is addressed

properly, as shown in Figure 5-4.

Figure 5-3.  The problem of not escaping certain characters in String

Figure 5-4.  Escaping characters in String

Chapter 5 Data Types

64

To elaborate the previous point that String is actually a collection as

well and you can index/retrieve individual characters, try the following in

your Scala REPL:

greeting(0)

See what is returned. You will find output similar to Figure 5-5.

Although the concepts related to collection are covered in later

chapters, you accessed the first element (or character) in the String data.

The sequence of numbers in this context starts at zero. That is, if you access

the 0th element, it will return the first character of your String, and so on.

Similarly, there are certain special characters as well:

•	 \n (newline character)

•	 \t (tab character)

•	 \b (backspace character)

•	 \r (carriage return character)

These special characters are used for specific purposes and I suggest

you do further research about these to learn why and where they are used.

�Multi-Line Strings

As mentioned previously, you can create a string in Scala with double or

triple quotes. If your string consists of multiple lines or has quotes within

itself, Scala gives you the option to use a triple-quoted string like so:

Figure 5-5.  Accessing individual characters of a String

Chapter 5 Data Types

65

val funkyString = """ this is a

multi-line string and in this string,

there can be

"quotes" as well with

no problems"""

This results in the creation of a multi-line string.

EXERCISES: STRING TYPES

•	 Create a string variable and then type . (the dot

character) and press Tab. You will see a list of functions.

Many of them are covered in this book; however, explore them

and learn what they do. The more you know about them, the

better.

•	 Try converting numeric types and Boolean types to String types.

Did you have any issue in doing so? You shouldn’t.

�String Operations

Let’s delve into some of the common yet important string operations that

developers use a lot in general purpose and Big Data applications.

String Concatenation

Try creating two string variables that contain numeric values:

val a="1"

and

val b="2"

Chapter 5 Data Types

66

and then do

a+b

What happened? Did it return 3 or 12? It should return 12. Why? This

operation is called string concatenation.

String Interpolation

Try creating a variable as follows:

val name="irfan"

Then create another string variable as follows:

 val introduction = "my name is $name"

What do you get? You should get the following:

 "my name is $name"

This is straightforward, right? Now just append s as follows:

 val introduction = s"my name is $name"

Now what is the output? It should be this:

"my name is Irfan"

Why? That’s how you do string interpolation. It will substitute the

variable name with its value if a string starts with s. Similarly, give this a

shot as well:

val introduction = s"my name is ${name}"

You will get similar output. You can do the same if you precede a

string with f.

Chapter 5 Data Types

67

With string interpolation, there are some caveats that you should be

aware of. To explore them, type this in Scala REPL:

val introduction = s"my name is $name.toUpperCase"

It will display the following:

"my name is Irfan.toUpperCase"

What you are trying to do is to use the .toUpperCase function, which

comes with String to convert the String to uppercase, but you are unable

to do that in the previous example. Now type this:

val introduction = "my name is ${name.toUpperCase}"

You should get this:

"my name is IRFAN"

Thus, if you want to use methods on your variables, like .toUpperCase

in this example, you should use ${variable_name.method}.

Also, as eluded to before, there are two ways you can do string

interpolation in Scala—using s and f. The main difference between the

two is that f provides an easier way to format the numbers. Consider the

following example:

scala> val sharePrice = 100.4

sharePrice: Double = 100.4

scala> s"the share price is $sharePrice"

res0: String = the share price is 100.4

scala> s"the share price is $sharePrice%.2f"

res1: String = the share price is 100.4%.2f

scala> f"the share price is $sharePrice%.2f"

res2: String = the share price is 100.40

Chapter 5 Data Types

68

As you can see in this example, we first defined a variable of type

Double that allows us to use decimal numbers. Then, using s for string

interpolation, we tried to format the display of the number by enforcing it

to use two digits in decimals (using %.2f). It didn’t work with s, whereas it

worked with f.

There is a raw interpolator as well, which you use by prepending the

string with raw. When you use that, it uses the string as it is without any

type of processing or interpolation:

scala> val aString="Irfan \n Elahi"

aString: String =

Irfan

 Elahi

scala> val aString=raw"Irfan \n Elahi"

aString: String = Irfan \n Elahi

In the first example, you create a String variable and use \n in the

string value, which corresponds to a newline (remember that I referred to

such types of special characters in this chapter before?). That’s why in the

output, you got Irfan and Elahi on two different lines. When you use the

same String value and prepend it with raw, you see that it didn’t process

\n and just treated it in the raw form.

Length of String

As String can be thought of as a series/sequence/collection of characters,

the notion of the length of String makes sense. In Scala, to get the length or

size of a string, you can use the length or size method of the String types.

For instance, to get the length of the following string variable, use this:

val customerPackage = "prepaid"

You can do this similar to what’s shown in Figure 5-6.

Chapter 5 Data Types

69

Lastly, to expand more on string indexing, create a string variable:

val customerPackage = "prepaid"

Then type customerPackage(0). You will get p as was described

previously (you’ll get the first element). But if you try to access a number

beyond the string’s length, e.g. customerPackage(100), you will get an

error indicating that you are trying to get an element out of its bounds/

range (see Figure 5-7).

Splitting Strings

Many times you need to split a string on a particular character to perform

certain types of processing. For example, if you have a file that consists of

comma-separated values (CSV) like this:

1,mark zuckerberg,facebook

Figure 5-6.  Finding string length or size in Scala

Figure 5-7.  Getting an element of string outside of its range

Chapter 5 Data Types

70

It may represent a row from a database table and each value separated

by comma may represent a column. In this example, “1” may represent

some ID column, “mark zuckerberg” is the name of a person (another

column), and “facebook” is a company (another column). If you have

many records like these in a file and want to operate on one, a specific

column/portion of this string (just the names), then you usually split the

string into individual “components” or parts, as follows:

scala> val aRow = "1,mark zuckerberg,facebook"

aRow: String = 1,mark zuckerberg,facebook

scala> aRow.split(",")

res11: Array[String] = Array(1, mark zuckerberg, facebook)

As you can see in this example, when you use split, you define which

character you want the string to be split on. In this case, we wanted it to

split on a comma (,) so we specified that. Thus, wherever it encountered

a comma, it performed the split and returned a different data type

(Array[String], which is a Scala collection). Now when you use split,

you get an array that holds all the different parts of the string. You can

access the individual parts as follows:

scala> aRow.split(",")(0)

res12: String = 1

scala> aRow.split(",")(1)

res13: String = mark zuckerberg

scala> aRow.split(",")(2)

res14: String = facebook

Just a note that this scenario appears quite often when using Apache

Spark, as CSV is a common data format, and you use Apache Spark to

process large volumes of CSV files. The logic of split that you learned here

is used in almost in the same way when using Apache Spark for large-scale

processing.

Chapter 5 Data Types

71

Extracting Parts of a String

If you need to extract specific parts of a string between certain positions (or

starting from a specific position), you can use the substring function of

the String data type. Here’s an example:

scala> val x = "apache spark"

x: String = apache spark

If you want to get the string starting from a specific position, you use

substring as follows:

scala> x.substring(0)

res21: String = apache spark

scala> x.substring(1)

res22: String = pache spark

In this example, when you do substring(i), it returns all characters

of the string starting at position I (whereas i starts at 0). Thus, if you use

substring(0), it returns all the characters of the string starting from 0

(meaning all the characters because 0 is the starting point of a string).

When you use substring(1), it returns all characters from 1 onward.

That’s why you got “pache spark” and it didn’t return “a”, which is the first

character (at the 0th position).

You can use substring in another context to define a range of

characters to be retrieved from a string:

scala> x.substring(1,4)

res26: String = pac

You passed two parameters to substring—substring(I,j). Specifically,

you used substring (1,4) and it returned pac. It did so by returning

characters starting at position i until j-1 (i.e., starting from position 1 and

“p” exists at position 1) until 3 (i.e., 4-1 = 3 and the character “c” exists at

position 3).

Chapter 5 Data Types

72

It’s quite a handy tool if your data follows a specific format consisting

of characters of a specific length (e.g., extracting month from a date,

extracting ZIP codes, etc.).

Finding the Index of Characters in a String

If you want to find the position (also known as the index) of a specific

character in a string, you can use the indexOf function of String, as

follows:

scala> val x = "apache spark"

x: String = apache spark

scala> x.indexOf("a")

res27: Int = 0

scala> x.indexOf("p")

res28: Int = 1

scala> x.indexOf("k")

res29: Int = 11

You use the indexOf function by passing the character in its brackets

whose position you want to find in a string. So in the previous example,

when you pass use x.indexOf("a"), it returns 0, meaning the character “a”

exists at the 0th position (which is the first position/index in Scala). Note

that even though “a” appears multiple times in the variable, indexOf only

returns its first occurrence.

This concludes the section on String data types. There are many

functions available in String (and other data types) and it’s not practically

possible to cover all of them in this book. However, the ones covered so

far will provide you with a firm foundation to develop your concepts/skills

further.

Chapter 5 Data Types

73

�Special Types in Scala
I will take this opportunity to discuss some special data types that are

unique to Scala.

�The Unit Type
Unit is a data type, just like Int, Double, String, etc. It generally appears

when you use a function that doesn’t return anything. I know we haven’t

used functions yet, but let’s do one thing. In Scala REPL, type the following:

val printOutput = println("Hello Scala")

Assign it a variable (mutable or immutable) and then observe the

output, which is shown in Figure 5-8.

Two main things happened here:

•	 You created a variable called printOutput and assigned

it the result of println("Hello Scala").

•	 println is a function. You didn’t create it, rather

it comes by default with Scala. A function does

something. println displays whatever you specify in

() onscreen. It doesn’t return anything. It just displays

results. That’s why, when you assign the result of

println (which doesn’t return anything), to a variable,

Figure 5-8.  Data of type Unit returned by the println function

Chapter 5 Data Types

74

the type of printOutput is Unit. Why Unit? Again

remember the rule in Scala that every expression must

return something. Thus, when nothing is returned, to

comply with this rule, a value of type Unit is returned.

You can think of Unit as empty. In other programming languages, the

equivalent type is void. In contrast to this example, if you use a function

that returns something, you won’t get Unit:

val sqrtResult = math.sqrt(4)

The type of the variable sqrtResult will be Double because math.

sqrt(4) returned a value (i.e., the square root of 4, which is 2).

Other scenarios in which you’ll encounter Unit is when the last

expression of your function is an assignment of a variable. More on that

later.

Another way to think about the Unit type is when it’s used, it means

that you may be changing state of a variable (as a result of the assignment

operation) which at times may refer to impurity, in the context of

functional programming. This is not always the case though. Consider the

following code:

scala> var aGlobalVariable = 10

aGlobalVariable: Int = 10

scala> def impureFunction() = {aGlobalVariable =

aGlobalVariable*2}

impureFunction: ()Unit

scala> aGlobalVariable

res8: Int = 10

scala> impureFunction

scala> aGlobalVariable

res10: Int = 20

Chapter 5 Data Types

75

In this example, you defined a variable (a mutable one using var).

Then you defined a function (we haven’t covered functions in Scala, so

at this point, you can think of them as modules or pieces of code that you

can write once and call multiple times). In the function, you are basically

mutating or changing the value of the global variable. Note that the last

expression of the function is the assignment expression and that’s why the

return type of the function is Unit. Then you displayed the original value of

the aGlobalVariable and then called the function and displayed the value

again.

Notice that the value has changed, which means that it’s a side effect

(you changed the value of a variable which was not in the body of the

function). This is an example of an impure function and functions like

these are generally avoided in Scala. This will be clearer when we cover

functions in subsequent chapters.

When you use Apache Spark, there are certain functions that return

Unit as well (e.g., foreach). In those instances, understanding Unit does

help significantly.

�The Any Type
In the Scala type hierarchy image shown in Figure 5-1, you may have

noticed that the Any type exists at the root of the Scala type hierarchy.

How can you see it in action? Consider this specific instance. It appears

when Scala encounters values of different types in a variable. For example,

refer to Figure 5-9.

Figure 5-9.  A list of type Any

Chapter 5 Data Types

76

In Figure 5-9, you created a List. We haven’t covered List yet but to

elaborate on the concept, bear with me. Think of List as a type that can

hold a collection of values. You can think of them as somewhat similar to

String, as String holds a collection of characters. Normally, List in Scala

contains elements of a specific type, for example, consider Figure 5-10,

which is a list of integer values.

Figure 5-10.  List of Integer type

Figure 5-11.  Creating a variable of type Any in Scala

In Figure 5-10, Scala can infer the type right away—it’s a List of

Integers (as evident from the output of REPL i.e. List[Int]). But in

Figure 5-9, it inferred a list of type List[Any]. Why? Because in Figure 5-9,

the list was comprised of multiple types (Integer and String values). In

this context, Scala fell back to a broader type (Any) to accommodate.

When you define a variable of type Any, it being the super-type of

all types, it can house the value of any sub-type. For instance, consider

Figure 5-11.

Chapter 5 Data Types

77

Let’s understand what’s happening in Figure 5-11:

•	 You created a mutable variable of type Any.

•	 You stored an Integer value in it.

•	 You then stored a String value in it.

It didn’t complain. Why? It’s because it’s a super-type or parent type of

both Integer and String and had no issues in accommodating either of

them.

That’s where knowledge of type hierarchy comes in handy.

You may ask—is it a good practice to create variables of such “broad”

types? The answer is that it depends, but generally the more specific a

type, the better. For instance, if you are not sure about the value/type of a

variable at runtime (i.e., when your program is actually running), in such

instances it’s safe to use the Any type as a catch-all type. Otherwise, it’s

recommended to use as specific a type as possible.

As you are working with data types, it will be helpful to note that in

Scala, you can determine the type of an object by using the getClass

method, as shown in Figure 5-12.

Figure 5-12.  Using the getClass method in Scala

�Type Casting in Scala
At times, you may need to change data from one type to another. Say you

read user’s input and you need to cast a number that the user entered as

an Integer.

Chapter 5 Data Types

78

In Scala, to get user input, you use the following method:

scala.io.StdIn.readLine

When you use it, even if you type numbers, they are stored in the

String type. If you want to perform numerical operations on the user’s

input, you need to cast the input as Integer.

In Scala, you do this using the .to<Type> functions. Figure 5-13 shows

an example.

When you use scala.io.StdIn.readLine and press Enter, it prompts

you to enter input. Whatever you enter will be stored in the userInput

variable. scala.io.StdIn.readLine is a function (like math.sqrt or

println) and its return type is String (like the math.sqrt return type was

Double and the println return type was Unit). So if you enter a number,

it will be stored as a String. If for example you want to divide it by 10, you

will get error, as shown in Figure 5-14.

Figure 5-13.  Getting input from a user

Figure 5-14.  Dividing a number in String form by another number

Chapter 5 Data Types

79

You are trying to use the / operator (which stands for division for

numerical types) on a variable that’s a String type; thus it gives you an

error. You need to convert your variable to a numeric type. To do that, you

can use the toInt function, as shown in Figure 5-15.

Figure 5-15.  Type casting a String to an Integer type

Similarly, you can do conversions to other data types.

This concludes this chapter, which covered the core aspects of data

types in Scala!

EXERCISES: TYPE CASTING

•	 Try converting a Double (e.g., 10.5) to Int. What happens?

It will drop the portion of number after the decimal. Beware of

such nuances.

•	 Try running "10".toInt. Does it work? It should. Try to convert

"two".toInt. Does it work? It shouldn’t. You can’t type cast all

the time.

•	 Research how you generally work with nulls in Scala. You will

find specific types, such as Option and its concrete subtypes

(Some, None). Research them and make sure you understand

their use.

Chapter 5 Data Types

81© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_6

CHAPTER 6

Conditional
Statements
In life, we make a number of decisions at different moments. For example,

if it’s raining then we will not play outside; if a customer is susceptible to

be churned, then we will use a particular marketing approach, and so on.

There are many examples of conditional statements like this. Similarly,

in programming, at different instances we have to consider a number of

decisions and based on the results, decide the logic/flow of the program.

For example, if a username exists and if the password matches, the user

will be able to log in; otherwise, they are denied access. If we don’t make

these decisions, there can be no notion of intelligence in our programs and

thus their usefulness is severely limited.

In programming languages, such scenarios are handled using

conditional statements. In Scala, and in other languages, we use

combination of if/else statements to handle tasks involving conditions.

Using this construct, we can create a series of conditions to be checked

and can define which actions to take (or which expressions to execute).

These conditions can be nested if required to capture complex conditions.

In Scala, there are certain nuances of using conditional statements and

I highlight them as we go along. The goal of this chapter is to make you

adept at using conditional statements in Scala.

82

Furthermore, such constructs are heavily used in Big Data analytics.

For instance, when you use Apache Spark to load data from external data

sources (e.g., a distributed filesystem running on a set of machines), you

can also commonly apply filter conditions to filter the records on which

you will perform processing. For example, say you are loading a million

lines of data from a series of text files and you want to process only those

lines that contain a certain keyword (e.g. Scala). In that case, you will use

similar constructs that will result in optimal processing.

�Boolean Expressions
Before we dive into conditional statements, it will be helpful to revisit the

notion of Boolean expressions.

A Boolean is a data type and has two possible values: true or false.

There are expressions in Scala that generate Boolean values, using

certain operators. Just like certain expressions generate Integer results. For

instance, if you type

1+10

You get Integer as a result. Similarly, if you type expressions that

involve logical operators:

10 > 100

10 >= 100

"irfan" != "Irfan"

100 < 1000

100 <= 1000

All of these result in a Boolean value (true). All of these expressions

use the following logical operators:

•	 < (less than)

•	 > (greater than)

Chapter 6 Conditional Statements

83

•	 >= (greater than or equal to)

•	 == (equal to)

•	 != (not equal to)

Similarly, you can combine multiple logical expressions with

operators, like so, in order to craft your desired conditions:

•	 & (AND)

•	 | (OR)

In the conditional statements that we’ll cover next, we use these logical

expressions extensively, so it’s a good idea to practice them.

�Using Conditional Statements in Scala
First, let’s start with a simple example. We will define a variable called

carBudget and apply a condition based on it. For example, if the car’s

budget is less than 30 (let’s assume that the base unit is thousand dollars),

we’ll recommend buying a Mazda; otherwise, we’ll recommend a

BMW. This is a simple yet important decision that car lovers face in their

pursuit of buying their dream cars!

First, enter the following in paste mode in Scala REPL (by typing

:paste and pressing Enter):

:paste

val carBudget = 40

if (carBudget < 30)

println("buy Mazda")

else println("buy BMW")

When you execute it (by pressing Ctrl+D while in paste mode), you will

get the following as output:

buy BMW

Chapter 6 Conditional Statements

84

Step-by-Step Understanding of Conditional
Statements
Let’s look at how the conditional statement expressions that you wrote

previously were executed:

•	 You define a variable called carBudget and assign it a

value of 40.

•	 In the if statement and between the parentheses (),

you specified a condition which was then checked,

i.e., carBudget < 30, which turned out to be false (a

Boolean value). As a result, the statements following

the if statement didn’t execute. Instead, the else block

was executed.

Thus, from this example, you can gather the fundamentals of using

conditional statements in Scala:

•	 You use if and else to constitute your conditions.

•	 The expressions in the if block are executed when the

conditions defined in if () result in true.

•	 Otherwise, the else block is executed.

•	 The expressions that you write in the if parentheses

must result in a Boolean value.

�Caveats: Using {} After if/else
In the last example, we didn’t use {} after the if or else statements. Our

approach works correctly when there is only a single expression to execute

after the if statement. However, there can be more than one statement

in the if and else sections. Depending on certain conditions, you want

to take an action that can be represented by a series of Scala expressions

instead of just one. There are two ways to handle this in Scala:

Chapter 6 Conditional Statements

85

•	 If the number of expressions in the if/else block is

one, you can skip using {} after the if/else, like you

did in the previous example. You can, however, still

specify {} in such instances. So the previous example

with {} can be written as follows:

val carBudget = 40

if (carBudget < 30) {

 println("buy Mazda")

}

else {

 println("buy BMW")

}

It would’ve worked fine as well.

•	 If the number of expressions in your if/else blocks

are more than one, you must always use {} or you

will run into logical errors. If you don’t use {} and

there are multiple statements intended to be executed

after if/else, Scala will throw error. For example, try

running this snippet:

val carBudget = 40

if (carBudget < 30)

println("so your budget is lesser than 30")

println("buy Mazda")

else print("buy BMW")

Scala will give you an error, as shown in Figure 6-1.

Chapter 6 Conditional Statements

86

If you do this instead, it will work fine without any error (see Figure 6-2):

val carBudget = 40

if (carBudget < 30) {

 println("so your budget is lesser than 30")

 println("buy Mazda")

}

else {

 print("buy BMW")

}

Figure 6-1.  Error when not using {} in if/else statements

Chapter 6 Conditional Statements

87

So in a nutshell: get in the habit of using {} to surround the statements

after the if and else blocks. That would be my advice.

�Nested If/Else Statements
In order to represent conditions that are interdependent, you can nest if

else conditions in Scala.

For instance, consider the following code:

val country="Australia"

val carBudget = 25

if (carBudget < 30) {

 println("So your budget is less than 30")

 if (country == "Australia") {

 println("Buy Mazda")

 } else {

 println("Buy Toyota")

 }

}

Figure 6-2.  Correct use of {} in if/else statements

Chapter 6 Conditional Statements

88

else {

 print("buy BMW")

}

Let’s look at this code in a step-by-step manner:

•	 The first if condition checks if your budget is less than

30. If it is, the program flow goes inside the if block.

•	 Once in that block, there is another if condition that

checks which country you belong to. If you live in

Australia, it suggests you buy a Mazda; otherwise, it

suggests a Toyota.

•	 If your budget is greater than 30, it skips the if block

and executes the else block

So here you’ve used a nested if/else condition. A better way to

visualize nested if/else conditions is via a decision tree like in Figure 6-3.

Budget

BMW Country

Toyota Mazda

country == Australiacountry != Australia

budget > 30 budget < 30

Figure 6-3.  Visual representation of nested if/else conditions

Chapter 6 Conditional Statements

89

We have not used conditions in the else block yet. It’s an important

construct so let’s consider the following code snippet:

val carBudget = 70

if (carBudget < 30) {

 println("Buy Toyota")

}

else if (carBudget > 30 & carBudget < 50) {

 print("Buy Mazda")

} else if (carBudget > 50) {

 print("Buy BMW")

}

In this code example, notice that the code first checks whether

carBudget is less than 30. If it’s not, it checks another condition in the else

block. If it’s greater than 30 and less than 50 and if that condition is not

met, it checks the last else block’s condition. This way, you can write more

involved conditional statements to achieve your desired flow of conditions.

�If/Else as a Ternary Operator
A ternary operator is a way to express conditions in a concise way and is

generally available in different languages (even in Excel). As you’ve seen

previously, if/else blocks span multiple lines of code. If your conditions

and the corresponding actions are simple enough to be expressed in one

line, for the sake of brevity, you can use ternary operator notation to create

your conditional statements.

The form generally looks like this:

if <condition> <value to be returned upon True condition> else

<value to be returned upon False condition>

Chapter 6 Conditional Statements

90

You can use a ternary operator in Scala using if/else as follows:

scala> val salary = 95000

salary: Int = 95000

scala> val highlyPaid = if (salary>100000) true else false

highlyPaid: Boolean = false

The example uses an if/else statement in one line without using

blocks or multiple lines. If you have conditions that can be expressed

conveniently in one line, you can use if/else in this way.

�Pattern Matching
One of the reasons that so many developers love Scala is because of its

powerful pattern-matching feature. Pattern matching is fancy term that

basically means using match and case statements and the features that this

combination supports.

If you have used other programming languages like C or Java, you may

recall that they have a switch operator that allows you to check multiple

conditions. You can do the same with multiple if/else statements, but

switch provides better and cleaner syntax. You can achieve the same effect,

with many capabilities, using pattern-matching constructs, as follows.

scala> :paste

// Entering paste mode (ctrl-D to finish)

val country = "Australia"

country match {

case "Australia" => "Continent"

case _ => "Not Continent"

}

Chapter 6 Conditional Statements

91

// Exiting paste mode, now interpreting.

country: String = Australia

res9: String = Continent

Here’s a step-by-step explanation of the code snippet:

•	 You first defined the variable called country and

assigned it a value called "Australia".

•	 You then used the match keyword to match the value of

the variable and created a code block within the {}.

•	 Within the code block, you wrote a series of case

statements, which will act like conditions. The syntax of

the case statements in the most basic form is:

case <condition> => <value to be returned>

By using case "Australia", you are basically doing an equality

check; you are comparing whether the value of country is equal to

"Australia". If the condition is true, the code to the right of => will

be executed. In this case, the condition is true and there is only one

expression to the right of =>, "Continent", so it will return that.

You used another case statement to check for another condition.

It’s like using another if/else condition. In the second case statement,

you used _. You didn’t specify a value to match. When you use _ in this

context, it means that everything else will be matched. In other languages,

the equivalent construct is default when you use the switch statement.

So if nothing matches, case _ will act as a catch-all and will get executed.

Similarly, when this case statement gets executed, whatever is to the right

of => will be executed and ultimately be returned. In this case, just the

false will be returned.

So you achieved a conditional flow using pattern matching.

Chapter 6 Conditional Statements

92

Pattern matching is a huge topic and it’s heavily used by developers to

structure the conditional flow of their programs. Let me highlight another

way you can use pattern matching in Scala:

scala> :paste

// Entering paste mode (ctrl-D to finish)

val salary = 95000

salary match {

case x if x>100000 => true

case y if y<100000 => false

}

// Exiting paste mode, now interpreting.

salary: Int = 95000

res8: Boolean = false

In this example, the overall concept remains the same—you are matching

the value of the salary variable and specifying a couple of case statements,

which act like conditions/checks. Depending on which case statement’s

condition becomes true, its code to the right of => will be executed.

But here’s a subtle difference: you may have noticed that we used case

statements a bit differently here:

case x if x<100000=> true

In this case, we used a variable x and then if statement within it. The

value of the variable to be matched, i.e. salary, is passed to x and then

the condition is checked (i.e., if x>100000). Depending on the result of the

condition, the corresponding blocks are executed. If you want to perform

such types of logical or conditional checks using pattern matching, that’s

how you do it—you use a variable, in this case x, and then apply logical

conditions to it. Previously, when you didn’t use this construct, you were

merely checking the equality of variables. But to perform more involved

conditions, you can use this form.

Chapter 6 Conditional Statements

93

The scope of the variable in this case is limited to the case statement

and the code body to the right of =>. You can use the x variable in the code

block that you can write to the right of =>. But you can’t use that variable

x anywhere else, even in another case statement. Beware of this caveat.

Using this variable in this way allows you not only to check conditions but

also to use that variable in the code block on the right, which can be quite

handy at times.

Similarly, in the second case statement, you defined another variable

called y and applied a condition on it.

This concludes this chapter on conditional statements in which

you mainly explored the concepts related to Boolean expressions and

operators, using if/else blocks in your code, and using pattern matching

to introduce a certain degree of decision-making in your programs.

These constructs are heavily employed not only in general-purpose

programming but also in Big Data analytics context. So be sure to practice

the concepts as much as you can.

EXERCISE

•	 First, create a decision tree indicating a different series of

conditions to be checked. Then use the if/else condition

statements based on this decision tree in your program.

•	 Try assigning the whole if/else blocks to a variable and seeing

what value is returned.

•	 Try nesting different case statements in pattern matching. See

how it works.

•	 Explore other use cases of pattern matching. Explore how it can

be used with regular expressions, type checks, and for catching

exceptions.

Chapter 6 Conditional Statements

95© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_7

CHAPTER 7

Code Blocks
As you progress through this book, you will come to appreciate that Scala

embodies a number of constructs that you can leverage to your advantage.

Such constructs help structure your code better, reduce verbosity, and

improve productivity. In this chapter, we explore a feature in Scala that will

help you achieve some of the aforementioned benefits.

The feature we will cover in this chapter is called the code block, which

basically allows you to write a bunch of statements together in a block

and assign the result to a variable. The block is processed as a unit and

the expressions within that unit are executed within that scope. The result

of the last expression of that block will be returned and will be stored in a

variable.

This has a number of applications, but mostly it’s used to assign values

to variables after doing some preprocessing.

�Code Blocks in Scala
Let’s look at code blocks using a concrete example. Consider the following

code:

val resultOfBlock = {

 val a=2

 val b=2

 a+b

}

96

Let’s examine this code in a step-by-step format:

	 1.	 First and foremost, to create a block, you use {}. All

the expressions between {} constitute a block and

will be evaluated as a block.

•	 You created a variable called resultOfBlock and

then assigned it to a block (a set of expressions

within {}). The block included three statements.

•	 In the first statement, you created a variable

called a and then created another variable b. Then

you summed them using a+b. The result of this

expression is 4. Also, this is the last statement in

this block, so it will be returned and stored in the

variable resultOfBlock. That’s why the value that

gets stored in the variable is 4.

This concept is further highlighted in Figure 7-1.

Figure 7-1.  Highlighting the concept of code blocks in Scala

Note that you didn’t explicitly type any return statement. You wrote

the block in such a way that the last expression resulted in 4 and thus it was

stored in the variable.

Chapter 7 Code Blocks

97

Another way to understand code blocks is that they allow you to

encapsulate processing that needs to happen before you assign the final

value to a variable. You might argue that you could also use functions

for this purpose, because they allow you to do the same. And you could.

However, functions make more sense if they are reusable; i.e., if you want

to execute the same set of expressions again and again, you can create a

function out of them that you can call repeatedly. If there are instances

where you find that the processing/expressions won’t repeat, then you can

use code blocks.

Are code blocks necessary? Nope. You can achieve these tasks without

them. It’s just that they impart a structure to your program and improve

readability.

I’ve used them extensively. For instance, in one application, I needed

to use a file path passed to the program at runtime, validate that the file

path existed, load the contents of that file, and then parse that file as JSON,

and ultimately store the contents in a variable. I conveniently used a

code block and it did the job well. Don’t worry if some of the terms in this

example don’t make sense, as the intent was to convey a real-life example

of code blocks use.

�Caveats of Code Blocks
Like many other constructs of Scala, you must be cautious of certain

caveats associated with code blocks. Let’s look at those caveats through a

number of examples.

In your Scala REPL, execute this block:

val resultOfBlock = {

 val a=2

 val b=2

 val c=a+b

}

Chapter 7 Code Blocks

98

What is the value of resultOfBlock? It will be Unit. Why? To answer

this, look at the last expression of the {} block. It’s as follows:

val c=a+b

As mentioned in the previous chapters, when you use the assignment

expression, the return type of that expression is Unit. Assignment of a

value to a variable does that task, but from a “value returning” point of

view, it returns Unit, aka void, aka emptiness. So beware of that.

The same effect will be achieved if your last expression is a println in

your block, or any function that doesn’t return anything (or returns Unit).

Go on and give it a try.

Thus, you can infer that the value returned from a block is governed by

the last expression in that block.

�Code Blocks and If/Else Statements
Now I may have mentioned it before, but I am stating it again—every

statement that you type in Scala is an expression, which means it will return

something. It doesn’t matter if it’s one line (1+2) or multiple lines, as is

done in a code block.

Following this concept, if/else statements, which you learned about

in Chapter 6, are also expressions. Thus, following the same principle, they

will also return a value.

Now this is where things get interesting, because there are certain

nuances that deserve further consideration.

Consider the following if statement:

val age = 50

val isOld = {

 if (age>50)

 true

 else false

 }

Chapter 7 Code Blocks

99

Consider if you execute this in Scala REPL, as shown in Figure 7-2.

Let’s look at a number of things that happened in this code example:

•	 You are using if/else conditions like before. You are

already familiar with them, so this is nothing new here.

•	 You have surrounded the if/else statement in a code

block. How? By using {} around them. This means that

last expression of this block will be returned and you are

storing that to-be-returned value in a variable called isOld.

•	 Now, depending on the value of the age variable, either

the if or else block will execute. In our example,

because the age variable’s value is 50 and it’s not

greater than 50, the else section is executed. As a result

of that, false is returned.

Figure 7-2.  Highlighting the use of if/else statements and code blocks
together

Chapter 7 Code Blocks

100

•	 Try setting age to a lower value, e.g. 30, so that the if

block is executed. Check what value is stored in the

isOld variable. It should be true.

•	 Furthermore, note that in this example, the type of the

isOld variable is Boolean. This makes sense because

no matter which if or else block gets executed, it

will always return a Boolean value (true or false),

right? Now what if things aren’t that pure and you do

something like this:

val age=50

val isOld = {

 if (age>50)

 100

 else "no"

}

Upon execution, you’ll get something resembling Figure 7-3.

Figure 7-3.  Highlighting the use of if/else statements and code blocks
together

Chapter 7 Code Blocks

101

You will find that the type of the isOld variable now is Any. It’s not a

string like before. Why?

Let’s focus on the if block. What value is there? It’s 100, which is an

Integer. And what value will be returned in else? It’s "no", which is a

String. So your if/else consists of two possibilities for returning values:

an Integer and String. It can return two different values belonging to

different types. This scenario is different from the previous one, where the

contents of the if and else blocks were of the same type. In the current

scenario, based on Scala’s type inference characteristic, it inferred the type

of this variable to be Any, which is a super-type (remember the Scala type

hierarchy?).

Beware of such nuances when you use code blocks. They are effective

and powerful but come with such caveats if not handled properly.

EXERCISES

•	 Practice using code blocks by writing a series of statements in

them and assigning a value to a variable to see what is returned

and stored.

•	 Study the caveats of what value gets returned when you use

pattern matching, i.e., if you return different values in different

case blocks, make sure you understand what happens.

Chapter 7 Code Blocks

103© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_8

CHAPTER 8

Functions
When you are programming, you are solving a specific problem. The nature

and complexity of that problem can vary. It can be as simple as finding a

square root of a function or it can be as complex as writing data cached

in RAM to multiple nodes in your environment in a parallel fashion (hint:

Apache Spark). In either case, you write code and expressions that help

you address that problem in your program. When you are in the mindset

of programming, you think about what your input is and what your output

is. In the case of finding the square root of a number, the number is your

input and the square root of that number is your output. Then you write

statements that help you address that problem. This concept lays the

foundation of functions that we will explore in detail in this chapter.

�Why Use Functions?
What if you need the same functionality multiple times in your program?

Let’s say it’s needed at the start of a program, somewhere in between, in

some other file that’s part of your overall project, and at the end. You know

how to find the square root. But how can you use this approach multiple

times in more than one place in your application?

Like many things in life, you have a choice to make here:

•	 You could rewrite all the expressions again and again

whenever you need to find the square root of a number.

104

•	 You could write it once somewhere in your application

in a way that’s easily accessible and useable quickly

whenever you need it. In other words, you can reuse

the expression whenever and wherever needed.

Let’s take a pause and think about which approach is the better one

and why it’s better.

With the first approach, you are rewriting the same piece of code again

and again, and you are writing it in multiple places. This will increase

the cost of maintaining your code. If you need to fix or improve your

code or want to introduce customization to finding the square root (e.g.,

handling exceptions when users try to find the square root of a string),

you would have to sift through dozens of places in the code to make the

change (provided you are able find them all in the first place!). Also, while

making changes, there is always a possibility that bugs will be introduced

of varying nature (e.g., syntax errors or logical errors). Additionally, if the

function behavior is intended to remain the same no matter where and

how many times it’s used, how will you test that the different pieces of code

scattered all around your application are behaving/working identically?

In the world of programming, the practice of duplicating code is

considered a sin! There is a specific phrase that’s quite common with

the evangelists of programming—DRY, which stands for “Don’t Repeat

Yourself”. Whenever possible, avoid rewriting your code. Whenever

possible, maximize the reusability of your code. Whenever possible,

abstract the internals of your code from the external world or the program

that uses that functionality.

In view of all the recommendations stated here and all the bad things

that happen if you ignore them, you can deduce that good programmers

use functions!

Functions are pieces of code (e.g., finding the square root of a number)

wrapped in such a way that you can use them whenever you need them,

without having to write the actual logic again and again. You define the logic

of a function once and then just call that function whenever you need it.

Chapter 8 Functions

105

Additionally, you rely on parameters that are passed to functions

that render functions dynamic. Parameters are variables that are used in

functions and, when calling functions, you can specify their values. The

function uses those values in the core logic to generate output. In our

square root example, the parameter would be the number from which we

want to find the square root.

Also, when you test your code, functions become even more

important as you structure your code in the form of functions that you

can individually test. If your code’s logic is not comprised of functions,

it becomes difficult to test your code, and this can lead to a number of

challenges when you want to make and test changes in your code.

Thus, in summary, functions are recommended in programming.

Particularly in Apache Spark programming, functions are used extensively

and this notion will become evident when we cover Scala collections.

�Understanding Functions
As a best practice, it’s recommended that your functions be focused

and smaller and should be designed in such a way that they do one and

only one task. If your functions are doing lots of tasks and are becoming

complex and lengthy, it’s probably a good idea to break them into smaller

pieces. If you know what a function is doing, it will always help when you

test its functionality.

Furthermore, before we delve into the hands-on part of this chapter,

it’s recommended that functions not generate any side-effects. Functions

should operate only within their scope. They should operate only on the

parameters passed to them. They should not tamper with or alter the state

of any variable defined outside of their scope. These recommendations

are biased in the light of functional programming, but the more you follow

this rule, the more robustness there will be in your code. You won’t have to

track the impact of your functions outside their scope. It makes life easier.

Chapter 8 Functions

106

�Functions in Scala
With that understanding, rationale, and motivation behind using functions

established, let’s dive into the actual hands-on stuff—how to develop

functions in Scala!

In Scala, the syntax for defining functions looks like this:

def <function_name>(<parameter_name:parameter_type>,

<parameter_name:parameter_type>…):return_type = {

 //function body

}

Let’s decipher this syntax:

•	 Function definitions in Scala start with the def

keyword.

•	 Every function has a name (function_name in the

previous example).

•	 A function can accept zero or more parameters. Those

parameters are defined within the parentheses () after

the function name. The parameters are strongly typed,

which means you have to explicitly specify their types.

Think of parameters as variables of functions and these

variables are available for your use in the function

body.

•	 These parameters are not available outside of the

function.

•	 Every function has a return type, which can be denoted

by :return_type after the params. This means that

every function returns a value of some sort whenever it

is called. You can skip specifying the return type. If you

Chapter 8 Functions

107

do, the return type of the function will be determined

based on the last expression in the function body.

•	 The body of the function is encapsulated within

brackets {}. If it’s a single-line function, you don’t have

to use the brackets. More on this later.

Here is a concrete example:

def getSquareRoot(givenNumber:Int):Double = {

 println(s"Finding square root of $givenNumber")

 math.sqrt(givenNumber)

}

Let’s look at this function in the step-by-step way:

•	 You defined a function with the name getSquareRoot.

The name can be any valid identifier, as we discussed in

Chapter 4. Also, as per Scala’s naming convention, the

name should start with a lowercase letter. Generally,

function names represent verbs, as they are meant to

do something.

•	 This function accepts or expects one parameter defined

within the (). Also, it further expects the function to

be a specific type. In this case, it’s going to be integer,

as you are going to find the square root of an integer

number.

•	 This function, after it does what it’s supposed to do,

which is find the square root in this case, returns a

number of type Double.

•	 You then specify what happens inside the function or

what goes in the body of the function. That’s where you

specify all the logic of that function and implement the

functionality for which the function exists.

Chapter 8 Functions

108

Figure 8-1 further elaborates these concepts.

That’s it. That’s how you usually define functions in Scala. It’s

important to learn this syntax convention in Scala, as you are going to

extensively define functions in Scala.

�Invoking a Function
Up until now, you have defined a function and implemented the logic of

finding the square root of the number that you pass to it as its parameter.

Defining a function is one half of the puzzle. Defined functions are useless

as they won’t execute on their own unless you actually use/invoke them.

Let’s look at how to invoke this function.

In Scala, invoking a function is pretty straightforward:

scala> getSquareRoot(25)

finding square root of 25

res9: Double = 5.0

You use the name of the function and then pass any required parameters.

If you don’t pass parameters where the function is expecting them, the

compiler will throw error, as the function will have no value to work with.

Figure 8-1.  Illustrating the concept of functions in Scala

Chapter 8 Functions

109

If a function is returning a value, you can assign the function to a

variable as well:

scala> val squareOf25 = squareThis(25)

�Caveats: Function Definition
Let’s consider a couple of caveats worth mentioning when it comes to

defining functions in Scala.

�Type Inference

You can skip specifying the return type of a function if you want and leave

it to the compiler to figure out what the return type of your function will

be. If you follow this approach, you can define the same function that you

defined before in an alternative way, as follows:

scala> def getSquareRoot(givenParam:Int)= {

 println(s"finding square root of $givenParam")

 math.sqrt(givenParam)

 }

squareThis: (givenParam: Int)Double

It will still work. In this example, we didn’t write the return type

(Double) when defining the function, as seen here:

def getSquareRoot(givenParam:Int):Double

Also, based on the output, you can see that Scala figured out that your

function is returning a Double value.

Generally, it’s recommended that you specify the return type of your

function, as it enforces type-safety and improves readability of your code,

which is equally important.

Chapter 8 Functions

110

�Return Statements: To Use or Not To Use?

If you have worked in other programming languages like Python, you

may have an idea that in such languages, you explicitly use a return

statement in your function to signify what will be returned from your

function.

Did you use a return statement in your function body? You didn’t. Do

you remember what code blocks are and how they work? If not, go back to

Chapter 7 and read about them. (Just a hint: In code blocks, the returned

value was the last expression of the block.) In the case of a function, the

same holds true—the last expression of a function is returned from the

function or determines the return type of that function.

Referring to the example that we’ve been using so far: What was the

last statement in the squareThis function? It was math.sqrt(givenParam),

thus the result of that expression, which was a number of type Double, will

be returned.

Try changing the order of the expressions in your squareThis—make

println the last expression of your squareThis and try to run the program.

What happens? Your return type will become Unit. Why? Because the last

expression is now println, whose return type is Unit. If you are wondering

about the return value of your function, look at the last expression of your

function body. There lies the clue!

Also, try using println as the last statement of your function with the

return type highlighted as Double in the function definition. See if the Scala

REPL allows you to do that. (Hint: It won’t. Why? Because you enforced

type-safety by specifying a return type in the function definition, whereas

if you don’t, your function will not care what the return type is, as it will

solely depend on the last expression of your function’s body.)

Chapter 8 Functions

111

�Functions with Multiple Parameters
You know that your function has one parameter and you just invoked it:

squareThis(5)

The value 5 is assigned to the givenParam variable that you defined in

the function.

What if your function has (or requires) more than one parameter? Say

you want to greet a company employee like so:

Hi Irfan. Welcome to Facebook!

How can you do this? You’ll use two parameters like this:

scala> def greetEmployee(name:String, company:String) = {

 println(s"Hi $name. Welcome to $company")

}

greetEmployee: (name: String, company: String)Unit

scala> greetEmployee("Irfan","Facebook")

Hi Irfan. Welcome to Facebook

Let’s dissect this further:

•	 Like before, you defined a function with a valid name,

in this case greetEmployee.

•	 In the parentheses (), you specified multiple

parameters. In fact, two of them—name and company.

•	 While invoking the function, you passed not one but

two values—"Irfan", "Facebook". Why two? Because

you had two parameters defined in your function

definition. Try passing one parameter and see what the

Scala REPL says.

Chapter 8 Functions

112

•	 What is the return type of this function? It’s Unit. The

last statement in your function body is println and

your last expression/statement determines what is

returned. What does a println function return? Unit.

�Positional Parameters
You might have noticed that the first argument value that you passed—

"Irfan"—was assigned to the name parameter in the function definition.

Note  When you define functions, the variables in the function
definition are called parameters (e.g., in the greetEmployee
function, name and company are parameters). However, when
you invoke that function and pass values to those parameters,
those values are called arguments. You passed the "Irfan" and
"Facebook" arguments.

Similarly, "Facebook" was assigned to the company variable and

you used them in your function body to do something (in this case, to

print a message). So it’s like a positional assignment. The first value was

assigned to the first variable, the second value was assigned to the second

parameter, and so on.

Scala provides another way to pass arguments to functions, wherein

you can specify the name of the variable as per the function definition and

then assign values to it.

For example, you can use the greetEmployee function in the same way

but invoke it in a slightly different way as follows:

scala> greetEmployee(name="Irfan",company="Deloitte")

Hi Irfan. Welcome to Deloitte

Chapter 8 Functions

113

Have you noticed in this example how we passed argument values

while invoking the function? We used the parameter variable name =

parameter value format. When you do that in this way, you can change

the order in which you pass arguments. You can specify the company

parameter first and name second and Scala will understand it.

scala> greetEmployee(company="Deloitte",name="Irfan")

Hi Irfan. Welcome to Deloitte

If your function has a lot of parameters (which generally isn’t

considered a good design decision), it’s handy to invoke a function the

way I specified, where you explicitly specify the parameter and parameter

value instead of relying on the positions. One of the reasons to have fewer

parameters is that it improves the readability of your code. Readers will

clearly know what values are being passed to which parameters. Cleaner

code also mitigates potential errors, as you’ll have a better idea as to which

argument values to pass to which parameters, and in what order. Code

readability is a metric that you should always keep in mind while writing

your code.

�Default Value of Parameters in Functions
In certain instances, it helps to specify a default value of function

parameters. If your function has a number of parameters and there are

certain parameters whose values are unlikely to change and you can work

with their default values, it’s possible in Scala. Another way to interpret

the benefit of this approach is that if you don’t want to pass values to

function parameters all the time and you think the default values of such

parameters will work in most cases, it helps to use this feature because

if you don’t provide values for those parameters, Scala won’t complain.

Rather it will happily use the default values.

Chapter 8 Functions

114

Going further into detail, in such a scenario, there are two possibilities:

•	 If you don’t pass a value to the parameter that has a

default value defined, Scala picks up the default value.

•	 If you pass a value to such parameters while invoking

functions, Scala will use the value that you pass during

invocation. In other words, the passed value will

override the default values.

Here’s an example to illustrate this concept further:

scala> def greetEmployee(name:String="Irfan", company:String) = {

 println(s"Hi $name. Welcome to $company")

}

greetEmployee: (name: String, company: String)Unit

In this code example, you’ve defined a function with the name

parameter and it has a default value of Irfan. Cool. You can invoke

this function as follows, whereby you don’t specify a value for the name

parameter:

scala> greetEmployee(company="Deloitte")

Hi Irfan. Welcome to Deloitte

Did you notice that it picked up the default value of the name

parameter? To override the default value of the name parameter:

scala> greetEmployee(name="John Doe",company="Deloitte")

Hi John Doe. Welcome to Deloitte

It picked the value that you specified while calling the function (i.e.,

"John Doe" instead of the one that you used as the default in the function

definition (i.e. "Irfan").

Chapter 8 Functions

115

�Function with No Arguments
There can be scenarios in which your functions don’t require an argument

(known as zero parity). In such scenarios, you can skip specifying the

parentheses after the function names, like this:

scala> def printDate = java.time.LocalDate.now.toString

printDate: String

scala> printDate

res5: String = 2018-08-19

Here, we used the java.time library to print today’s date. Don’t worry

if you haven’t used this library before, as the focal point here is that the

function didn’t require any parameters. You can see that in the function

definition (i.e., def printDate), I didn’t use parentheses.

Another point to note is that when I invoked this function, I also

didn’t use the parentheses. In our previous examples, whenever we

invoked functions, we invoked them with the parentheses. Here, as the

function doesn’t have any parameters, you can type the printDate without

parentheses to invoke it.

�Single-Line Functions
You must have noticed that we surrounded the body of functions within

brackets {}. However, if your function’s body occupies a single line instead

of multiple lines, you can omit the brackets that usually surround the

function body, as I’ve done in the previous example. But do note that you

must use the brackets if your function body occupies multiple lines.

As a matter of personal preference, I always use the brackets, whether

a function occupies a single line or multiple lines. That way, if there is any

need to modify the function in the future and that modification results in

the function occupying more than one line, I don’t have to worry.

Chapter 8 Functions

116

�Using the return Statement in Functions
So far, I’ve highlighted that when using functions in the Scala language,

you don’t need a return statement to signify what value will be returned

from a function. This is in contrast to many other languages like

Python, which expect you to explicitly write return statements. There

is one particular scenario where Scala does expect you to write return

statements or you’ll get an error.

If you’ve studied programming before, you may be aware of the idea of

recursion, whereby a function repeatedly calls itself to perform a specific

task and each subsequent call makes the function converge to a base-

case (I advise to research recursion, as this isn’t in the scope of this book).

When you use recursion semantics, it becomes imperative to use return

statements in such functions.

After covering many caveats of using functions in Scala, let’s buckle

up and explore some advanced concepts that are entrenched in Scala’s

functional programming roots.

�Passing Functions as Arguments
When I say that Scala is a functional programming language, this shouldn’t

sound like Greek to you at this point. You must be able to recall functional

programming language concepts. Functions are first class citizens; they

can be treated like any other object.

So far, you’ve passed parameters of specific data types to functions.

Those data types can belong to Scala’s type hierarchy or they can be

your own classes. Also, prior to the dawn of functional programming,

the very idea of passing a function as an argument to other function was

nonexistent. Given the fact that you are using a functional programming

language, you can pass functions as parameters to functions. Trust me, this

is quite a powerful concept.

Chapter 8 Functions

117

You will see this concept leveraged a lot when you use functions

like map, foreach, etc. on Scala collections. Many of these functions are

extensively used in Apache Spark APIs in almost the same syntactical form.

So learning these concepts now will have long-term benefits when you do

Apache Spark development.

To drive the discussion forward, here’s an intuitive example to explain

this concept. You want to formulate a single generic function that will be

responsible for handling both of the following cases, depending on the

type of arguments (functions in this case) passed to it:

•	 It can convert strings to lowercase

•	 It can also convert strings to uppercase

How can you approach this in Scala, leveraging the functional

programming constructs?

Let’s create implementations of these two cases as follows, by creating

two functions:

scala> def convertToUpper(name:String):String = name.

toUpperCase

convertToUpper: (name: String)String

scala> def convertToLower(name:String):String = name.

toLowerCase

convertToLower: (name: String)String

You’ve created two functions that do these jobs—one converts a string

to lowercase and the other converts it to uppercase.

Let’s now create a higher order function that will be responsible for

handling both of these cases or responsible for calling these two specific

functions.

Chapter 8 Functions

118

You define a function like this:

scala> def changeCase(givenName:String,caseConverter:(String)=>

String) = caseConverter(givenName)

changeCase: (givenName: String, caseConverter: String =>

String)String

Let’s spend some time dissecting this code example:

•	 You defined a function with the name changeCase. Its

first parameter (givenName) is of type String and this

is the string that you will convert to either upper or

lowercase.

•	 Things get interesting if you observe the second

parameter. Firstly, the parameter name is caseConverter.

Then, after the colon :, you usually specify types. In this

code example, you specified the “type” this way:

(String)=>String

What does this mean? In Scala, it means any function that can accept

String as a parameter (signified by (String)=>String, i.e., the one before

=>) and can also return String (signified by (String)=>String, i.e., the

one after =>).

This is a generic representation, as there can be many functions that fit

this role (i.e., that can accept one String parameter and return a value of

type String).

You can also think of it as a wrapper that can hold any function that

fulfills two conditions: accepts one parameter as a String and returns the

String type.

Now compare that to the two functions that you created before—

convertToLower and convertToUpper. What do they accept? One String

parameter. What do they return? The String type. So they can be used here

as well. They can be passed to that second parameter (caseConverter)

that accepts functions of the form (String)=>(String).

Chapter 8 Functions

119

Consider the body of the function as well. You invoke the caseConverter

function and pass the parameter (givenName). The invoked function

does its job (depending on the function you passed to the caseConverter

parameter) and returns the results, which are then returned by the outer

function (changeCase).

So to invoke such a function, you do something like this:

scala> changeCase("irfan",convertToUpper)

res12: String = IRFAN

In the first parameter value, you passed the "Irfan" string. That’s a

no brainer by now. For the second argument, you passed the name of the

function that you created before—convertToUpper. This function will be

passed to the caseConverter parameter. Now, caseConverter embodies

convertToUpper and when caseConverter is invoked in the changeCase

function body, it will actually invoke convertToUpper to do the job, which

is to convert the string to uppercase.

Similarly, you can do this:

scala> changeCase("IRFAN",convertToLower)

res13: String = irfan

In a nutshell, you are passing a function (i.e., either convertToLower

or convertToUpper) as a parameter to a function (i.e., changeCase). This

is only possible courtesy of Scala’s functional programming nature. It’s

just like passing a value to a variable. In this context, functions are treated

in the same way as variables. Hence the maxim: Functions are first class

citizens in Scala.

You will see this concept in action quite often when you use functions

like map and filter on Scala collections in upcoming chapters. Those

functions accept another function as an argument to perform powerful

operations on collections.

Chapter 8 Functions

120

�Anonymous Functions
So far, you have used functions by defining their names, right? Then you

invoke those functions by using their names. While creating functions, you

specify the function name after the def keyword.

But Scala provides another feature, called anonymous functions. In

Python, the equivalent feature is lambda functions. Anonymous functions

don’t have a name assigned to them. They are nameless. You generally use

these functions when you need to pass a function as a parameter to others,

like we did before.

Here’s the syntax to define anonymous functions in Scala:

(parameterName:parameterType)=>function_body

In line with the stated syntax, let’s create a couple of anonymous

functions to strengthen the concept further:

(name:String)=>name.ToUpperCase

(name:String)=>name.ToLowerCase

To use them, you can assign them to a variable, thanks to the

functional programming support in Scala:

scala> val convertToUpperAnon=(name:String)=>name.toUpperCase

convertToUpperAnon: String => String = $$Lambda$1137/45854145@5a5183ed

Here is what’s happening:

•	 You defined a variable called convertToUpperAnon.

•	 You assigned a value to that variable, which is

everything to the right of the equals sign =.

•	 In this case, it’s an anonymous function that accepts

one parameter (the name of type String) and does

something to it (converts it to uppercase):

(name:String)=>name.toUpperCase

Chapter 8 Functions

121

•	 Now you can invoke this anonymous function as follows:

scala> convertToUpperAnon("irfan")

res22: String = IRFAN

You used the variable that you used to store the anonymous function.

That variable is a container for the function and that function accepts one

parameter, so what you include in parentheses is passed as a parameter to

that function.

Note that you did not use def in this scenario.

Similarly, while invoking the changeCase function that we defined a

while ago:

scala> changeCase("irfan",(x:String)=>x.toUpperCase)

res21: String = IRFAN

Unlike before, this time you passed an anonymous function

((x:String)=>x.toUpperCase) as a second argument. Remember the

function definition of changeCase? It was like this:

def changeCase(givenName:String,caseConverter:(String)=>String)

= caseConverter(givenName)

As per the function definition, in its second argument, it’s expecting a

function that can accept a String as a parameter and returns String as the

output. Isn’t your anonymous function doing the same thing? It accepts

a string parameter (x:String) and returns String as the return type (x.

toUpperCase). That is why you were able to use this anonymous function

in this instance as well.

There’s so much to cover about this amazing feature of Scala, but as

this book is meant to be an introduction of Scala specifically in the context

of Big Data development, I suggest you research this further on your own,

leveraging the foundation that I’ve established here.

Chapter 8 Functions

122

In this chapter, you were introduced to the powerful concepts of

functions and learned about a number of caveats associated with them. Be

sure to practice this concept as much as you can, as these are heavily used

in all aspects of programming.

EXERCISES

•	 Understand the difference between functions and methods in the

context of functional programming in Scala.

•	 Consider a use case of recursion and try applying it.

•	 Try using functions within functions, i.e., local functions.

Understand whether you can refer to inner functions in outer

scope.

•	 Understand whether variables were copied by value or by

reference in Scala and what the implications of doing so are.

•	 Understand the best practices of functions, in that they should

be designed so that they perform one and only one task.

Chapter 8 Functions

123© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_9

CHAPTER 9

Collections
So far, we’ve been working with variables and data types. We have seen

that every line in Scala is an expression that returns a value. You can also

group multiple expressions in the form of code block so that the result of the

last expression gets returned. But in that case, only one value is returned

and the variables we’ve been working with so far have one value in them.

In many scenarios, you work with data types or data structures that

can hold multiple values in them. More specifically, variables of such

data structures/types can hold more than one value in them. In Scala,

such types are called collections. Scala’s ecosystem of collections is quite

powerful. You will find that this chapter is one of the longest in this book

and this is for good reason: If you are able to develop a strong skillset

using Scala collections, it will become a lot easier to use Apache Spark

APIs. That’s because in Spark, you will be dealing with collections as well

(although they are distributed ones but the use is highly similar). That’s

why I’ve invested a lot of time in this chapter; it’s beneficial to everyone.

�Real-Life Examples of Collections
To give you more real-life examples of such collections, here are some:

•	 Collection of grocery items (apples, bread, eggs, butter,

and oil)

•	 Collection of students (Irfan, Raza, Arslan, Ahad, and

Hammaad)

124

•	 Collection of temperature values (100, 98.8, 101, 102,

and 95)

•	 Collection of employees who are still employed at

a company (true, true, false, and false) (where true

represents an employee who is employed and false

means the employee isn’t)

What’s common in these collections? Apart from the fact that all of

them are collections, there is another similarity. The type of data is the

same inside the collection, for example, the first and second collections’

elements are all of String type, the third collection has Numeric values,

and the fourth has Boolean values.

In Scala, when you work with collections like List, Arrays, and

Sequence (where List/Array are specific instances of Sequence), it’s

expected that the data will be of the same type.

Now consider another flavor of collection:

•	 Customer to number map/dictionary (“Irfan” ➤

10019181, “Raza” ➤ 1219121)

•	 Country to capital map/dictionary (“Pakistan” ➤

“Islamabad”, “Australia” ➤ “Canberra”, “USA” ➤

“Washington”)

In these examples, the collections contain items in the “something_

first” ➤ “something_second” format. In this context, “something_first”

can be thought of as key that you can use to look up a value (which is

“something_second”). It’s similar to a phone directory or a contact list

on your smartphone, whereby you use names (key) to look up numbers

(value).

This concept is quite powerful as it provides an instant indexing

feature. If you know the key, you can instantly look up its value; you don’t

need to traverse the whole collection to find your value. In Scala (and other

Chapter 9 Collections

125

languages), there is a data structure called Map (also called hash-map) that

contains such data. Map is a type of Scala collection that we’ll explore in

detail in this chapter. However, there are some challenges when it comes

to building this data structure that are related to collision, whereby keys

should be unique. If they are not unique, they can be handled in different

ways, such as overwriting the value against that key. To elaborate the

point further, if a key called “Irfan” exists in the Map collection with a value

10019181 and you try to insert another key-value pair like “Irfan” ➤ 200,

it will overwrite the previous value. These are more data structure-related

concepts and I don’t want to overwhelm you with these.

Even in the case of Maps, specifically in Scala and other type-safe

languages like Java, once you define the type of key and values, they

must remain the same. For instance, if your key is String and the value

is Number, each key-value pair should follow that same format. You can’t

mingle different types. However, key and value can be of any type.

There is another flavor of collections in Scala:

•	 Record of a patient: 1, John Doe, St Mary Hospital, Dr.

Robert Jones

•	 Record of customer: 10, Tony Stark, Pre-paid, Lahore,

Pakistan, true

What’s the first thing that you notice here? You may have noticed

that in each collection, the elements are different types. In the case of the

patient record, we have id (1, Int), name (John Doe, String), hospital name

(St Mary Hospital, String), and doctor name (Dr. Robert Jones, String).

In the previous examples, all the elements were the same type. In the

current example, a collection can have elements of different types. For

such scenarios, you use tuples. This collection exists in Python as well and

it’s called the same thing in Scala.

Chapter 9 Collections

126

Lastly, there is another type of collection in Scala called sets in which

order doesn’t matter and it doesn’t allow duplicate values. If you have

studied sets in your elementary mathematics, these exact properties exist

in mathematical sets as well and they manifest in the world of Scala (and in

Python). So when you create a set, you cannot be certain of the order; if you

try to create a set from a collection that has duplicate values, it will remove

the duplicates (thus it’s a quick way to remove duplicates in your collection).

Another dimension of understanding collections in Scala is related to

mutability and immutability. In Scala, you will find that collections fall into

two categories:

•	 Mutable

•	 Immutable

This means that once you initialize an immutable collection in Scala,

you can’t add/remove/update elements from it. In the mutable ones, you

can. There are still some caveats to it. We cover these later in this chapter.

Now that you have an intuitive understanding of collections, let’s move

to the hands-on part of it where the actual fun lies.

�Understanding Lists
One of the most commonly used collections in Scala is the List collection.

For techie folks, it’s actually a linked list. Scala lists are optimized by the

compiler and it’s efficient to use them. They do have certain limitations,

such as not being fit for parallel programming.

In the examples in the introduction of this chapter (collection of

grocery items, collection of students, and so on), all the elements are of the

same type. It’s time to create your first list:

val myIntegerList = List(1,2,10,30)

val myStringList = List("New York", "Melbourne", "Islamabad",

"Istanbul")

Chapter 9 Collections

127

You can create these lists in Scala REPL, as shown in Figure 9-1.

Using Scala REPL’s feature that outputs additional information, here’s

what we can gather:

•	 myIntegerList is a list of a specific type called Integer.

The Scala compiler looked at the elements of the list

and saw that all the elements are of the Integer type

and thus it inferred the type.

•	 Similarly for myStringList, the inferred type is String

for the same reasons.

You can have elements of different types in a list:

val mixList = List(1,"New York","Melbourne",2,"Islamabad")

However, there will be consequences of doing this, which in Scala

REPL looks like Figure 9-2.

Figure 9-1.  Creating lists in Scala

Figure 9-2.  Creating a mixed list in Scala

Chapter 9 Collections

128

When you create a mixList, where elements are of different types like

String and Integer, Scala assigns the highest type (Any). Scala provides

another collection called Tuples that allow you to store different data types

and we’ll cover that later in this chapter. However, in the previous example,

mixList is still a list (of type Any).

For object oriented programming enthusiasts, something called

polymorphism should ring bells, right?

�Indexing List Elements
So after creating a list, what else can you do? You can access each element.

You do that via indexing, using parentheses and specifying a number as

follows:

scala> myIntegerList(0)

scala> myIntegerList(2)

scala> myStringList(0)

scala> myStringList(3)

This is illustrated in Figure 9-3.

Recall, as with many other programming languages, the indexing starts

at zero. This means that if you want to access the first element, you use 0

and count up from there. Figure 9-4 highlights this idea.

Figure 9-3.  Accessing lists in Scala

Chapter 9 Collections

129

Thus, myIntegerList(0) and myStringList(0) provide the first

element of both lists, myIntegerList(2) gives the third element, and

myStringList(3) gives the fourth.

�What Can You Store in Lists?
You can store any JVM object that you want in lists. By this, I mean that

you can store whatever type you want in a list; you aren’t restricted to just

the primitive types like Integer or String (remember in Scala these types

aren’t actually treated as primitives, as is done in other languages like

Java). So you can create your own type and store it in a list. For example, to

represent a person, I create a type via case class as follows:

case class Person (name:String, age:Int, employer:String,

isMarried:Boolean)

Figure 9-4.  Indexing a list in Scala

Chapter 9 Collections

130

So just think of this expression as a new type that allows you to store

data/record about a person, like name, age, employer, and isMarried. Just

don’t overthink and settle on this understanding. This is another type that

you created for yourself.

Previously, you stored integers and strings in a list. We can also create a

list of our freshly created Person type, like this:

val listOfPersons = List(Person("irfan",30,"Deloitte",true),

Person("Tony Stark",45,"Avengers", false), Person("Neo",34,

"Matrix",true))

In Scala REPL, you do something similar to what’s shown here:

scala> :paste

// Entering paste mode (ctrl-D to finish)

case class Person (name:String, age:Int, employer:String,

isMarried:Boolean)

val listOfPersons = List(Person("irfan",30,"Deloitte",true),

Person("Tony Stark",45,"Avengers",false), Person("Elon Musk",

34, "Tesla", true))

// Exiting paste mode, now interpreting.

defined class Person

listOfPersons: List[Person] = List(Person(irfan,30,Deloitte,

true), Person(Tony Stark,45,Avengers,false), Person(Elon Musk,

34,Tesla,true))

scala> listOfPersons

res0: List[Person] = List(Person(irfan,30,Deloitte,true),

Person(Tony Stark,45,Avengers,false), Person(Elon Musk,

34,Tesla,true))

Chapter 9 Collections

131

It didn’t complain, which means it’s a valid operation. Notice the type

of List. It’s List[Person]. Previously, we had List[Int], List[String].

Thus the point is—you can store whatever object you want in a list.

I could fill books with what you can do with lists, but it’s beyond the

scope of this book. I just cover some of the functions and ways you can

operate on lists.

�Widely Used List Operations
In this section, we look at the common and widely used list operations.

�List Size

You can determine the length of the list via the .length field as follows:

myIntegerList.length

It will return an integer, indicating the length of the list.

Note A field is an object oriented programming related concept, but
as of now, you can think of a field as something that represents the
properties of objects. Thus, in the case of List, if you consider it an
object, the length field is a property of it, indicating the length of it.

�Basic Statistics of Lists

You can find the min and max elements of a list by using the .min and .max

fields in a list. Give it a shot by creating a list of integers and finding the

min and max of the list.

Chapter 9 Collections

132

�Converting a List to a String

Many times you will need to create a string from the elements of a list. To

do that, you use the .mkString method. It also allows you to specify the

separator. See Figure 9-5.

As you can see in Figure 9-5, the returned value is a string. It

concatenated/joined each element of the list and added the delimiter

that you specified. Try using mkString without a delimiter and see what

happens.

�Iterating Over Lists

Owing to the functional programming characteristics of Scala, there are

a number of cool ways to traverse the elements of a list. The following are

commonly used:

•	 foreach

•	 map

•	 Loops (covered in the next chapter)

First, don’t confuse this map with the hash-map I highlighted before.

That was a data type. This is a function that allows you to traverse elements

on the list.

Figure 9-5.  Creating a string from a list

Chapter 9 Collections

133

Using the map Function to Iterate Over Lists

Let’s look at the map function. It’s one of my favorites. A similar function

exists when you do programming using Spark APIs. In fact, many of the

operations that you do on a list will be similar to what you do with Spark

APIs. Thus, you’re developing a sound foundation of Scala in order to be a

Big Data developer.

The best way to understand map is, as usual, by using it.

Unlike other methods that you used—such as split or replace—on

the String data type, map accepts functions as arguments, as discussed in

Chapter 8.

�Getting to Know Functional Programming Concepts

Functional programming is a diverse topic, but as elaborated previously,

what you need to know is that if a language supports functional

programming constructs, then functions become first-class citizens in

that language. That means that you treat functions the same way you

treat other data objects. You can assign them to variables or pass them as

parameters to functions. You can pass a function as a parameter to another

function. This concept is foundational to understanding the upcoming

two functions (map and foreach). These two, in some shape and form, also

exist when you use Apache Spark APIs.

One thing that you may understand by now is that the map function

accepts a parameter and that parameter is a function:

map(f(x))

where f(x) is a function that gets passed to map.

Here is another important property of the operational characteristics

of the map function: the function that you pass to it as a parameter will be

applied to every element in the list. So f(x), no matter what it does, will

be applied one-by-one to each element in the list. For each element in the

list, the function will be called and that function will do something on that

element and will return a value.

Chapter 9 Collections

134

Figure 9-6 illustrates this idea.

Your list will be transformed by that function; each element of the list

will be transformed by that function.

Let’s dissect this idea with an example. Let’s say that we define a

function that creates the square of each integer.

def squareThis(givenParam:Int):Double = math.pow(givenParam,2)

So you’ve defined this function and you can call it independently.

When fed an integer number, it returns the square of that number. Simple.

Now let’s define a list:

val numberList = List(1,3,5,7,9)

This list contains some numbers. Nothing fancy.

Now what if you want to get the square of each element of this list?

You want to apply the squareThis function to each element of this list. In

non-functional programming languages, you typically would write a loop

that iterated through the elements and did something. In a functional

programming language like Scala, you can express the same task in a more

expressive way by using the map function:

numberList.map(x=>squareThis(x))

Figure 9-6.  Highlighting how the map function works on a list

Chapter 9 Collections

135

Wait, what? You may be wondering what (x=>squareThis(x)) means.

You might be able to identify the part using the squareThis function that

we used before. But, what’s this new notation?

There is a lot of technical reasoning behind this, but a simple way to

understand is that in the expression

(x=>SquareThis(x))

The x before => represents a parameter. In this case, it represents each

element of the list on which you are calling the squareThis function. So,

in the first iteration, x will have value of 1, and then 3, then 5, and so on.

So x will hold values of the list, one by one, on which the map function is

invoked.

The next part is easy; the right side of => represents the function that

you want to call. So you call squareThis and pass it x, which in each

iteration represents each element of this list.

Scala provides a simpler way to invoke such functions:

numberList.map(squareThis)

This is equivalent to what you wrote before. This is generally used

when your function accepts one parameter, as is applicable in this context.

Just like you defined a function to be used in the map function, you can

invoke the functions that come with data types. For example, if you are

operating on a String data type as follows:

val stringList = List("Australia","USA","UK","Malaysia","Singapore")

And you want to find the length of each element in the list, you can

simply use this approach:

stringList.map(x=>x.length)

It will give you the length of each element of the list.

Chapter 9 Collections

136

EXERCISES: LISTS AND THE MAP FUNCTION

There are many ways you can use the amazing map function. Here are some

example exercises to strengthen your grip on this function:

•	 Create a list of numbers and return true if an element is even;

otherwise, return false.

•	 Create a list of strings and extract the first and last character of

each string.

•	 Load a file in Scala and load its content in a list. Then iterate

through each line, one by one.

What Is Returned When You Use the Map Function?

There’s an important point to be noted about map. Using the function

that you pass, it applies that function to each element of the list and then

returns a list. You will find that this behavior is quite different from other

functions, like foreach, which actually don’t return anything.

In the case of map, if you invoke it on a list, you get a list. However, here

is another important caveat. It’s not necessary that the list be of the same

type. You’ve seen this already, when you created a list of strings and found

the length of each element, the type of list that was returned was different.

Do that exercise again and notice that the type of your original list

(List[String]) and the type of the list that’s generated by invoking

map with that specific .length function in it. I know that .length isn’t a

function, but for the sake of brevity, let’s proceed with this understanding.

So, the list type will be List[Integer]. You converted the list from one

type to another, as further indicated in Figure 9-7.

Chapter 9 Collections

137

Figure 9-7.  Return type of map function on list

You will do that a lot in Spark programming, as you will be converting

RDD (a fancy name for distributed collection of data that’s loaded in Spark

and acts like a Scala list) from one form to another.

Using foreach on Lists

Now with this understanding of map, let’s look at foreach. It is pretty

simple. It operates the same way as map in that you pass a function that

you want to apply to each element of the list. The only caveat is that in

foreach, the return type is Unit. It returns no value. Unlike with map, in

which you get a list, albeit a changed one, with foreach, you don’t get a

list in return.

Figure 9-8 illustrates this further.

Figure 9-8.  Return type of foreach function on List

Chapter 9 Collections

138

The notion of foreach is that you use it to do some processing on each

element. Typically, it’s used to print elements of a list. More technically

advanced use cases of foreach include when you want to interact with

a third-party system. For example, if you want to store each element of a

list to a database. In such use cases, you don’t need the list to be returned.

Rather, you use the elements of the list to interact with other sub-systems.

This is quite a powerful concept and is heavily used in Apache Spark to

interact with other systems like databases and message queues.

For now, try using foreach as follows:

numberList.foreach(x=>squareThis(x))

When you execute it, you will see blank output. Why? Because it

returns no value and thus nothing gets printed.

Try this:

numberList.foreach(x=>println(s"My id is $x"))

In this case, you will see some output on the screen courtesy of the

println statement. So println will print each element onscreen. But it

doesn’t mean that foreach returns a value. It will still return nothing. Want

proof? Try assigning the following to a variable and view the type:

numberList.foreach(x=>println(s"My id is $x"))

It will be Unit.

�Using the filter Function on Lists

The filter function is heavily used with lists and has a cousin in the world

of Apache Spark APIs. filter is used to select certain elements of a list that

satisfy a particular condition and then return a list.

Chapter 9 Collections

139

There are some similarities between the filter and map functions, as

follows:

•	 Like map, filter also returns a list. That’s why it’s

different from the foreach function.

•	 Like map (and foreach), it expects a parameter in the

form of a function.

•	 Like map (and foreach), it applies the function that you

pass as a parameter to each element of the list.

Now with the similarities highlighted, let’s discuss how filter is

different:

•	 The function that you pass to the list must return a

Boolean value (true or false). Generally, the function

that you pass performs some conditional checks on

each value of the list and then returns either true or

false.

•	 If a function for a specific value of a list returns true,

that value gets retained in the final list. If a function

for a specific value of a list returns false, that value is

discarded and doesn’t appear in the final list.

Let’s understand this with an example, shall we?

Consider an example in which you have a list of numbers (from 1 to 10)

and you want to select only the even numbers from this list. Here’s how

you can do that via the filter function.

First, we define a function that we will pass to filter as a parameter:

def isEven(givenParam:Int):Boolean = givenParam%2 == 0

Chapter 9 Collections

140

scala> val numberList=(1 to 10).toList //this is yet another

method you can quickly create a list. This will create a list

consisting of numbers from 1 to 10.

numberList: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

//if we use .filter method and pass that isEven function, in

the same way we did for map, we get:

scala> numberList.filter(x=>isEven(x))

res2: List[Int] = List(2, 4, 6, 8, 10)

As you can see, only the even numbers exist in this list. This is because

only these list elements returned true per the function that we passed in

the filter method.

Another important point to understand is that as a result of using

filter:

•	 You get a list that has the same type as the original list.

•	 The number of elements in a list returned by filter

can be the same or less than the original list.

Thus, if you have a use case where you want to filter/select/exclude/

include specific elements of a list, you should use filter, not map or foreach.

�Using the Reduce Operation on Lists

So far you have seen functions that operate on each element in a list. If

you want to perform some aggregation on the elements in a list, you can

use the reduce operation on them. The reduce operation works by taking

all the elements in a list and aggregating them in some way to produce

a single value. Specifically, it uses a binary operation to combine the

first two elements of the list. Once it’s done, it uses the result of that first

aggregation and proceeds to combine that with the next element in the list.

This process continues until the end of the list.

Chapter 9 Collections

141

One point to note is that reduce works when you use a binary operator

(an operation that uses two operands, such as addition, multiplication, or

even string concatenation).

Let’s say you have a list of numbers and you want to find the sum of the

elements of the list. You can probably use reduce (in addition to using the

.sum function):

scala> val list=(1 to 10).toList

list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> list.reduce((x,y)=>x+y)

res11: Int = 55

scala> list.reduce(_+_)

res12: Int = 55

Let’s look at the previous code snippet:

•	 In the first step, you created a list by calling .toList on

the (1 to 10) range collection.

•	 Then you used the reduce function on that. In the

reduce function, you specified parameters like

((x,y)=>x+y), which means that when it encounters

two elements of a list, it will apply the operation of

addition on them and will aggregate them.

Under the hood, the x variable acts like an accumulator, which gets

initialized to zero (because we are using addition; if it’s multiplication, it

will be 1). It starts adding elements of the list one by one. Initially, the value

of x will be zero and then it will add the first element to it. In the second

iteration, x will add the second element of the list (2) and it will become 3,

and so on. So it will act like an accumulator. Figure 9-9 illustrates this idea.

Chapter 9 Collections

142

Scala provides another syntactical way to represent ((x,y)=>x+y) as

(_+_) which means the same thing. It’s a concise way to write the same

thing.

�List Equality Check

You can quickly check if two lists are the same (have the same elements in

them) by using the == operator. It’s a quick way to check list equality and it

is somewhat different from other languages.

Figure 9-9.  Reduce operation on a list

Chapter 9 Collections

143

�Alternative Ways to Create Lists

You’ve already seen two ways to create list. Scala provides another way to

create lists, specifically via the con (::) operator and Nil, as follows:

scala> val aList = "a" :: "b" :: "c" :: Nil

aList: List[String] = List(a, b, c)

Specifically, Nil represents an empty list or lists of zero length.

EXERCISES: LISTS

•	 Explore how to append two lists, append an element to a list,

and take a union or intersection of two lists on your own. When

you do these operations, does it change/mutate the original list

or does it return a new instance of list?

•	 Create a list of strings and then try using reduce to achieve the

same output as you would get by using the .mkString function.

�Creating Sets
As mentioned earlier, the elements in a set should be unique. There is no

notion of order in sets.

Here’s how you can create sets in Scala:

scala> val aSet = Set(1,10,121)

aSet: scala.collection.immutable.Set[Int] = Set(1, 10, 121)

You must use elements of the same types in Set.

Chapter 9 Collections

144

If you try to create a set with duplicate elements, it will simply discard

the duplicate values:

scala> val aSet = Set(1,10,121,10)

aSet: scala.collection.immutable.Set[Int] = Set(1, 10, 121)

I tried creating a set with the value 10 duplicated. It created a set with

that duplicate value removed. Whenever I need to remove duplicates from

a list, I convert my list to a set, which automatically removes the duplicates.

Consider this example:

scala> val duplicateList = List(1,10,121,10)

duplicateList: List[Int] = List(1, 10, 121, 10)

scala> duplicateList.toSet

res24: scala.collection.immutable.Set[Int] = Set(1, 10, 121)

If you try to access an element of a set like you do with a list, you will

find surprises. If you use parentheses with sets, as follows:

aSet(N)

It will not fetch the element at the N position. Rather, it will check the

membership of that element; it will tell you whether that element exists in

the set.

scala> aSet

res25: scala.collection.immutable.Set[Int] = Set(1, 10, 121)

scala> aSet(1)

res26: Boolean = true

scala> aSet(10)

res27: Boolean = true

scala> aSet(20)

res28: Boolean = false

Chapter 9 Collections

145

As sets are not ordered collections, accessing the first or second

element doesn’t make sense. That’s why aSet() simply checks whether an

element exists.

You can traverse elements of a set like you do in lists, by using map or

foreach.

�Understanding Map Collections
We’ve spent a great deal of time on lists, which is important as they are

foundational and widely used in Scala. Now let’s look at the Map collection.

First things first, this Map collection has no association with the map

function that you used before in lists that allowed you to transform lists.

Map, in this context, is a type of Scala collection and can hold a collection of

values. It’s like a list but with a twist.

Remember the example that I gave before about the different types of

collections we encounter in real life? I specifically highlighted a scenario

where you have constructs like key-value pairs and you use a key to look

up a value. You use the contacts in your smartphone to look up a number

via your contact name. The Map collection works in the same way.

In the case of the Map collection, you have a key-value pair. Each

element of a map consists of this pair—on position 0 (which is the first

position in Scala collections), there is a key-value pair. That key and value

will not occupy different index positions in Map. They will exist at the same

index position. Comparing this with list, you have one object/element at

each index. Now in Map, you have a pair of key-value. Interesting!

Figure 9-10 illustrates the concept further.

Figure 9-10.  What a Map collection consists of in Scala

Chapter 9 Collections

146

Let’s see how you can create one:

scala> val contactsMap = Map("thor"->918101,"captain america"-

>1281281,"hulk"->91921921)

contactsMap: scala.collection.immutable.Map[String,Int] =

Map(thor -> 918101, captain america -> 1281281, hulk ->

91921921)

You created a Map in the previous example that represents contact

details for the Marvel superheroes.

Here are some observations:

•	 Each element in this collection is a key-value pair,

represented as “key” ➤ “value”.

•	 In this example, key is of type String and value is of

type Int. This type should remain consistent in a map.

If you mix and match types, it will pivot to a bigger data

type, like Any, like we’ve seen before.

•	 Thanks to Scala REPL, the type of this Map is quite

clearly highlighted. It’s scala.collection.immutable.

Map[String,Int], which means two things:

•	 It’s an immutable map (we will see that there can

be a mutable map as well).

•	 The type of this map is Map[String,Int], which

is based on the fact that the keys in your map

are String and the values are all Integer. Scala

inferred the type based on the elements/key-value

pairs that you specified in the map.

Chapter 9 Collections

147

�Indexing a Map
If you try to index a map like you do a list—that is, by using (N)—you will

be greeted with an error, as shown in Figure 9-11.

The old ways of indexing don’t work here; you can’t use numerical

indexing or positional indexing like you can with lists.

So how do you index an element? You do so by passing the key in

parentheses. If that key exists in your map, its value will be returned, as

shown in Figure 9-12.

You looked up the contact number of Thor by using his name as the

key. It’s the same behavior of looking up a contact number in your mobile

phone via contact name.

So what if you pass a key that doesn’t exist in your map? You will get

error, as shown in Figure 9-13.

Figure 9-11.  The wrong way to index a map

Figure 9-12.  Indexing a map properly

Chapter 9 Collections

148

Rightly so. A safer and cleaner way to do lookups in a Scala map are as

follows:

scala> contactsMap.getOrElse("iron man","not found")

res14: Any = not found

This involves using .getOrElse. This code says that if a key is present,

return its value; otherwise, return the value that you specified as the

second argument ("not found") in this example.

�Uniqueness of Keys in Maps
Another caveat about Map is that its keys have to be unique. What will

happen if you specify keys that are the same? Go on and give it a try. It

won’t give you an error. But do see what happens.

scala> val contactsMap = Map("thor"->918101,"captain america"-

>1281281,"hulk"->91921921,"thor"->99021)

contactsMap: scala.collection.immutable.Map[String,Int] =

Map(thor -> 99021, captain america -> 1281281, hulk -> 91921921)

scala> contactsMap("thor")

res0: Int = 99021

The key that you specified as the last will be used and the previously

defined key-value pair for the same key will be ignored. If you look up

based on a key and if that key exists more than once, which value should

be returned? Scala’s heuristic is to consider the latest key-value pair when

Figure 9-13.  Indexing a map using a key that doesn't exist

Chapter 9 Collections

149

there are duplicate keys. As in the previous example, when you used

contactsMap("thor") to look up the value against Thor, it returned the

latest value in the map.

However, there is no such restriction on values. They don’t have to be

unique. This makes sense.

�Alternative Ways to Create Map Collections
Like with lists, Scala provides another way to create Map collections as well.

With this alternate method, you basically make two changes compared to

the previous method:

•	 You surround your key-value pair with parentheses

•	 You replace -> with a comma (,)

Here’s an example:

scala> val contactsMap = Map(("thor",918101),("captain america",

1281281),("hulk",91921921),("thor",99021))

contactsMap: scala.collection.immutable.Map[String,Int] =

Map(thor -> 99021, captain america -> 1281281, hulk -> 91921921)

There is no difference in the method you choose to create Scala Map

collections.

�Manipulating Maps
If you want to see which keys are available in your Scala Map, just use the

.keys attribute:

scala> contactsMap.keys

res1: Iterable[String] = Set(thor, captain america, hulk)

Chapter 9 Collections

150

Similarly, if you want to get values out of the Scala Map, use the .values

attribute:

scala> contactsMap.values

res2: Iterable[Int] = MapLike.DefaultValuesIterable(99021,

1281281, 91921921)

If you want to see if a particular key exists in your Scala Map, you can

use the contains method, which will return true if the key is present and

false if not:

scala> contactsMap.contains("thor")

res3: Boolean = true

scala> contactsMap.contains("black panther")

res4: Boolean = false

If you have the urge to assign/update a value against a particular key,

you will be discouraged because this is an immutable Scala map.

Let’s say Hulk’s contact number changed and you want to update it in

your current Scala Map instance:

scala> contactsMap("hulk") = 81729191

<console>:13: error: value update is not a member of scala.

collection.immutable.Map[String,Int]

 contactsMap("hulk") = 81729191

You will get an error. For such luxuries, you have to use mutable

collections, which we discuss in coming sections. Also, even if you use

mutable collections, you still have to be cautious of the type of value that

you are trying to update.

Chapter 9 Collections

151

�Iterating Through Maps in Functional Style
Map also gives you a map function. Using that map function, you can

transform your Map collections. However, since you are dealing with a key-

value pair, things will be slightly different.

For example, say you need to make each of your keys (contact names

in this example) uppercase.

To do that, you have to transform each element and get an object/map

out of the results. Therefore, using the map function makes sense (instead

of foreach, which would return Unit or filter, which is better suited for

excluding/including certain elements).

Thus, we use the following code:

scala> contactsMap.map{case(x,y)=>x.toUpperCase -> y}

res24: scala.collection.immutable.Map[String,Int] = Map(THOR ->

99021, CAPTAIN AMERICA -> 1281281, HULK -> 91921921)

Here is what’s happening here:

•	 Like before, you use a map function, in the same way

you used it in lists.

•	 In the body of the map function, you use brackets {}

instead of parentheses. Otherwise, you would get an

'illegal start of simple expression' error.

•	 You use case(x,y) where you typically represent

parameters. You are basically mapping keys to x and

values to y. Remember in lists like this one that x

represented the element in each iteration:

myList.map(x=>f(x))

Similarly, in each iteration, (x,y) will represent the

key-value pair and you use that via case(x,y).

Chapter 9 Collections

152

•	 You operate as usual to make whatever transformations

you want on the right side of =>. In this case, you use

x.toUpperCase to convert keys to uppercase and you

keep y as it is.

This can appear to be complex at first, but if you practice it a bit, it will

make sense. There is another way to use the map function in this example,

but I’ll highlight that once I cover the Scala tuples. On a similar note, you

can also use filter and foreach.

�Understanding Tuples
So far, we covered the List and Map collections. In those collections, recall

that the data types used in the elements were the same type. You created a

map where keys were of a specific data type and the values were a specific

data type. If you try to mix and match different data types, Scala assigns a

higher data type, like Any, which in some scenarios can lead to ambiguities.

Referring back to the real-life examples of collections mentioned at the

start of this chapter, specifically the example related to the nature of rows

present in a spreadsheet or table in a database system. In that scenario,

collections may have different data types. For example, if you store details

about a customer like so:

id | name | phone number | location | isActive

1 | Irfan| 919191 | Pakistan | true

You can see that you are dealing with different data types. Clearly,

previous collections may not be of much help here. That’s where the

Tuples collection comes into play. It’s also found in other languages

like Python. The Tuples collection addresses the pain point that we just

observed—it can store data of different types. Coolness.

Chapter 9 Collections

153

Let’s start exploring tuples in Scala by creating one:

scala> val aTuple = (1,"customer1","australia","prepaid",true)

aTuple: (Int, String, String, String, Boolean) = (1,customer1,

australia,prepaid,true)

We created a tuple in this example. Here are some points:

•	 To create a tuple, you just use a comma-separated list

of values that you want to be included in the Tuple

collection and surround them with parentheses.

•	 You can see that this tuple also has a type (Int, String,

String, String, Boolean), which represents the

corresponding elements in your tuple. As you can see,

we used a variety of data types in our tuple.

�Indexing Tuples
What do we do when we create collections? We access the elements!

Unlike List and Map, there are two differences when it comes to

indexing elements. First, we don’t use parentheses to index the elements of

a tuple. Rather, we use this different syntax:

aTuple._N

where N stands for the position of the element that you want to access.

Secondly, in tuples, the index starts at 1! Shocking maybe, but that’s

how it is. So to access the first element of your tuple, you will use this:

aTuple._1

Instead of this:

aTuple._0

This concept is illustrated in Figure 9-14.

Chapter 9 Collections

154

Thus, to access the first element of the tuple that you just created,

you use:

scala> aTuple._1

res0: Int = 1

To access the second, you use:

scala> aTuple._2

res1: String = customer1

And so on.

Figure 9-14.  Indexing elements of a tuple

Chapter 9 Collections

155

�Iterating Over Tuples
Unlike List and other collections like Map, you will find that there are no

map, foreach, and filter methods available with tuples.

So how do you iterate through a tuple? It’s done via productIterator.

When you use productIterator on a tuple, it returns an Iterable,

which is a trait in Scala. Now don’t worry if you don’t understand what

traits are (they are equivalent to interfaces in Java for Java folks); traits

are like types in a way and define certain characteristics, which are then

further implemented by sub-types. For now, just think of Iterable as one

type of collection like a list.

So if you use productIterator, you get Iterable and you can convert

an Iterable to a List, a type with which you are quite comfortable by

now, right? So how do you do this? Here’s how:

scala> aTuple.productIterator.toList.foreach(println)

1

customer1

australia

prepaid

true

So here’s what happened in this code snippet:

•	 When you use productIterator on aTuple, you get

Iterable (you can verify that by calling aTuple.

productIterator).

•	 You then convert Iterable to a list via the toList

method.

•	 Once it’s a list, you use any of the methods that List

supports, like foreach, to do whatever you want.

Chapter 9 Collections

156

So you’ve seen one of the ways to convert a collection from one type to

another by using toList. Keep a note of that as we may use that again.

Now, to find size of a tuple, you can use productArity like so:

scala> aTuple.productArity

res7: Int = 5

Try experimenting with other functions/attributes available with tuple,

like toString, and research them.

Note I f you are using Scala 2.10 or before, you can’t have more
than 22 elements in a tuple. This limitation was addressed in
subsequent versions of Scala.

�Alternative Ways to Create Tuples
There are other ways to create tuples as well. Here are some:

scala> val twoElementTuple=Tuple2("irfan","elahi")

twoElementTuple: (String, String) = (irfan,elahi)

You use TupleN, and then pass N elements in parentheses to create a

tuple of size N. It’s mostly a matter of preference when it comes to choosing

which syntactical style to use for creating tuples.

�Understanding Mutable Collections
So far, you have noticed that Scala emphasizes immutability quite a bit.

You’ve been creating immutable variables so far. You’ve also been using

immutable collections so far. But again, there can be scenarios where you

need mutable collections. For example, you want to add elements to a list

and receive input from a user, or you want to add key-value pairs to a map

Chapter 9 Collections

157

to keep track of the frequency of words in a file, whereby each word is a

key and each word’s value is the number of times it appears. Scala doesn’t

leave you in the lurch when it comes to this. Let’s look at a handful of

mutable collections.

One of the most commonly used mutable collection is ListBuffer.

Think of it as a mutable variant of list.

Here are some examples of using ListBuffer:

scala> import scala.collection.mutable.ListBuffer

import scala.collection.mutable.ListBuffer

scala> val aMutableList = ListBuffer(1,10,91,121)

aMutableList: scala.collection.mutable.ListBuffer[Int] =

ListBuffer(1, 10, 91, 121)

scala> aMutableList += 500

res29: aMutableList.type = ListBuffer(1, 10, 91, 121, 500)

scala> aMutableList

res30: scala.collection.mutable.ListBuffer[Int] = ListBuffer

(1, 10, 91, 121, 500)

Here is a step-by-step explanation of what you did in this code:

•	 You imported ListBuffer in your namespace.

•	 You then created a ListBuffer like you create a list.

•	 Once it’s created, to exploit its mutable nature, you

added or inserted an element using the += operator.

You can update an element at a particular position as well:

scala> aMutableList(0) = -91

scala> aMutableList

res32: scala.collection.mutable.ListBuffer[Int] = ListBuffer

(-91, 10, 91, 121, 500)

Chapter 9 Collections

158

To remove any element from a ListBuffer, use this:

scala> aMutableList -=500

res34: aMutableList.type = ListBuffer(-91, 10, 91, 121)

scala> aMutableList -= 10

res35: aMutableList.type = ListBuffer(-91, 91, 121)

scala> aMutableList

res36: scala.collection.mutable.ListBuffer[Int] =

ListBuffer(-91, 91, 121)

There is a lot you can do with ListBuffers, like traversing through

elements using map and filtering elements using filter. Explore these

functions, which will be quite similar to lists.

�Implications Related to Mutable Collections
There are two important caveats to mutable collections that we should

consider:

•	 You initialized the mutable collection (ListBuffer) as

val, which stands for immutability, but you were able

to manipulate its elements with no issues. So val in this

context has no power. You can mutate elements of a

mutable collection.

•	 If you try to change the assignment of objects to the

val variable, it will not allow you to do so. Remember,

when you create a variable (with val` or `var’),

you actually store a reference to the memory location

(called a pointer) where the values are stored (whether

it’s a single variable or a collection). So this memory

reference, AKA pointer, when created via val will

remain immutable even if you use mutable collections.

Chapter 9 Collections

159

Let’s create another ListBuffer like so:

scala> val secondMutableList = ListBuffer(818181, 912121)

secondMutableList: scala.collection.mutable.ListBuffer[Int] =

ListBuffer(818181, 912121)

Try assigning this:

aMutableList = secondMutableList

It won’t work, because you are assigning a different memory reference/

pointer to the initial variable created with val.

However, if you do the same thing with var, you get this level of

mutability as well. Go on and give it a shot.

EXERCISE: LISTBUFFERS

•	 Try using ArrayBuffer as a mutable collection. Make sure

you understand the difference between ListBuffer and

ArrayBuffer.

�Mutable Maps
Just like we have ListBuffer and ArrayBuffer, we have mutable versions

of Scala maps as well. They provide the same characteristics:

•	 You can add/update/delete the elements of the map

(i.e., key-value pairs).

•	 You can’t mutate/change the assignment of reference/

pointer if you use val.

Chapter 9 Collections

160

So let’s try using them:

//first you import the mutable library into your name-space.

It's suggested to not import scala.collection.mutable.Map as

it will be vague as to whether you want to use mutable or

immutable map in your program.

scala> import collection.mutable

import scala.collection.mutable

// creating a mutable map is similar to immutable one:

scala> val mutableMap = mutable.Map("CEO" -> "John Doe", "CTO"

-> "Tony Stark", "Team Lead" -> "Dwayne Johnson")

mutableMap: scala.collection.mutable.Map[String,String] =

Map(CTO -> Tony Stark, Team Lead -> Dwayne Johnson, CEO ->

John Doe)

//if you want to update a key-value pair i.e. specifically a

value against a key:

scala> mutableMap("CEO") = "John Cena"

//if you want to add a new key-value pair in your mutable map:

scala> mutableMap += "Developer" -> "Nate Silver"

res2: mutableMap.type = Map(CTO -> Tony Stark, Team Lead ->

Dwayne Johnson, CEO -> John Cena, Developer -> Nate Silver)

Mutable Map gives you the convenience of doing such operations with

ease. I suggest exploring other aspects of mutable Maps, like deleting a key-

value pair, iterating through the elements, and so on, to develop a deeper

understanding of this.

Chapter 9 Collections

161

�Using Nested Collections
The last topic that I want to explore before I move on is the nested list. It’s

quite important and heavily used.

So far, you’ve created a list of integers and strings. Similarly, if you have

been following along, you must have worked on the example where you

created a list of the Person case class. What about a list of lists? Or lists of

maps? Or a map where the value is a list? Or a list of tuples? Is your mind

blown? It shouldn’t be, because like Int, String, or case class, collections

are just another object in Scala. So even though the notion of nested lists

may seem daunting at first, if you look at them under the same lens that

these are just lists with Scala objects, things will be much clearer.

As always, let’s learn by doing. Let’s create a list where each element

itself is a list:

scala> val nestedList = List(

 List("Australia","Pakistan","Malaysia"),

 �List("Asia","Africa","Antarctica","Australia","Europe",

"North America","South America"),

 �List("Microsoft","Apple","Facebook","Twitter","Cisco",

"Netflix","Uber")

)

nestedList: List[List[String]] = List(List(Australia, Pakistan,

Malaysia), List(Asia, Africa, Antarctica, Australia, Europe,

North America, South America), List(Microsoft, Apple, Facebook,

Twitter, Cisco, Netflix, Uber))

Here’s what you just did:

•	 You created a list and assigned it to a variable called

nestedList. That’s a start.

Chapter 9 Collections

162

•	 Unlike with the previous examples, each element now

is a list. Specifically, it’s a list of Strings. How do you

access a specific element in a list? Via indexing, right?

So go ahead and access the first element as follows:

scala> nestedList(0)

res3: List[String] = List(Australia, Pakistan, Malaysia)

Sure enough, you get the first element, which is a list itself that you

specified while creating the list. Now as this element is itself a list, you can

index it further. Nothing is stopping you from doing so:

scala> val firstElement = nestedList(0)

firstElement: List[String] = List(Australia, Pakistan,

Malaysia)

scala> firstElement(0)

res4: String = Australia

You store the first element of your list in a variable, which is a list, and

then you access its first element, which is "Australia" (a String).

Instead of using this intermediate variable firstElement, you can do

the same as:

nestedList(0)(0)

Where the first (0) allows you to access the first element of the outer or

main list and then the second (0) allows you to index the inner list.

If you follow these guidelines, working with nested lists won’t be hard.

You will be working with such structures a lot, especially if you use Apache

Spark.

Chapter 9 Collections

163

Let’s look at another example. Say you created a list of tuples to store

information about the owners of famous websites, like this:

scala> val nestedListOfTuples = List((1,"irfan","irfanelahi.com"),

(2,"nate silver","fivethirtyeight.com/"),(3,"Mark Zuckerberg",

"facebook.com"))

nestedListOfTuples: List[(Int, String, String)] = List((1,irfan,

irfanelahi.com), (2,nate silver,fivethirtyeight.com/),

(3,Mark Zuckerberg,facebook.com))

Unlike before, this is a list of tuples. The previous example was a list

of lists. In here, each element is a tuple and each tuple consists of three

elements.

Now let’s traverse this list and print the owner names as follows:

scala> nestedListOfTuples.foreach(x=>println(s"owner name is:

${x._2}"))

owner name is: irfan

owner name is: nate silver

owner name is: Mark Zuckerberg

Here’s what you did:

•	 You created a list of tuples.

•	 You used the .foreach method, which allows you to

operate on each element of a list.

•	 In the body of foreach, x stands for each element of

the list. What is each element of your list? Tuple, right?

That’s why you used x._2 to access the second element

of the tuple. Because you know that in each iteration, x

will store the tuple. Thus you used the corresponding

syntax to interact with it.

Chapter 9 Collections

164

I can’t emphasize enough how important this concept is, specifically

if you intend to use Apache Spark. In Apache Spark, you will often load

data from a Hadoop distributed filesystem, operate on it like converting

to lists, and then converting to tuples, and so on. So spend some energy

understanding this concept. Trust me, it will pay off.

With this, let’s conclude this chapter, which seems to be one of the

longest chapters of this book! It rightfully deserves to be, as this chapter is

the cornerstone of many concepts that you will employ in Apache Spark

programming.

ADDITIONAL EXERCISES

•	 Understand what Array is in Scala. How is it different from the

other collections that you studied?

•	 Understand what vector is in Scala and how is it different from

the other collections that you studied.

Chapter 9 Collections

165© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_10

CHAPTER 10

Loops
Many tasks in our life require some degree of iteration or repetition. For

instance, books have chapters and you start with one chapter and go until

the end. If we want to add numbers from 1 to 100, we have to start at 1

and add them together until we reach the last number. If you are logging

into an online web application, you may be prompted for the correct

combination of username and password until you get it right. The list of

such tasks can go on and on, but the gist of the matter is that if you have

to model such tasks in programming languages, you will have to rely on

specific constructs to do so.

In your journey to learn Scala so far, you have worked with Scala

collections and saw various types. You also observed how to traverse

through a Scala collection, like lists via the map or foreach function.

You can achieve many real-world examples by traversing a collection in

Scala. In addition to those higher-order functions like map and foreach,

there is another way that you can traverse through a collection—via loop

expressions. If you want to execute certain statements multiple times until

a particular condition is met (e.g., until the user provides username and

password correctly), you can also rely on loops to implement them.

When you use Apache Spark, you generally don’t use these loops

to process data distributed over a cluster of machines. Rather, you use

Apache Spark APIs to traverse/process that dataset. However, in such a

pipeline, after Apache Spark processes large scale datasets in a distributed

manner, it can return summarized results (e.g., the count/frequency of

166

how many times a particular term appeared in a huge collection of files).

You then use loops to traverse those summarized results from Apache

Spark and that’s where loops usually come in handy.

�Types of Loops in Scala
In Scala, there are two main types of loops:

•	 for loop

•	 while loop

Let’s look at an example of each of these types in order to further our

understanding of this topic.

�The for Loop
It always helps to get to know the syntax of an expression first. The syntax

of the for loop, in its simplest form, looks something like this:

for (counterVariable <- Collection) {

 Loop body

}

So a concrete example could be:

scala> val listOfNumbers = List(1,20,300,-12,121)

listOfNumbers: List[Int] = List(1, 20, 300, -12, 121)

scala> for (i<-listOfNumbers){

 println(i)

 }

1

20

300

-12

121

Chapter 10 Loops

167

In this code example, here is what’s happening:

	 1.	 We use the for loop by using a for keyword.

	 2.	 In (), we specify two things: a variable to hold each

value of the list for each iteration and the collection

to be traversed.

	 3.	 Then there is the loop’s body in which we specify

which statements we want to execute. This body is

surrounded by {}. You can also refer to the variable

(i.e., i in this case) in your loop’s body for data

manipulation.

In the previous code example, you initialized a list consisting of five

Integer values. To traverse this list, you used a for loop. In the for loop,

you used the variable i to iterate over the list. This loop will execute five

times and in the first iteration, the variable i will store the value 1 from the

list. With that value stored in the variable, the body of the loop will execute.

(It consists of the println statement in this case.) Once the body is

executed for that iteration, the next iteration starts and the variable i then

will store the next value from the list (i.e., 20) and the process will repeat

until you reach the end of the list.

What if you want to specify certain conditions related to iterations,

i.e., on what values your loop should execute? You can do this via for loop

guards, as follows, in which you use an if condition in the for loop to

specify your conditions.

For instance, to enhance the code example, we can traverse the even

elements in the list by using loop guards:

scala> for (i<-listOfNumbers;if i%2==0){

 println(i)

 }

20

300

-12

Chapter 10 Loops

168

As you can see in the previous code example:

	 1.	 After the i<-listOfNumbers we used ; and then an

if condition on the counter variable (i.e., i in this

case) to specify the condition. In this case, we used

the % operator to check the remainder (if the value in

the variable i is divided by 2 and the remainder is 0,

the number is even).

	 2.	 The for loop will execute for only those iterations

where the loop guard condition is true (which in this

case will be only for even numbers).

You can exploit this capability to write complex logical expressions

using a combination of logical operators like & or | to complete your tasks.

for loops are great when you have a list to traverse. When you use

them, you have prior knowledge that the loop will execute/iterate a certain

number of times (N, where N can be the size of the list). However, in many

instances, you may not know beforehand how many times a loop will

execute. Rather, your iteration can be dependent on a condition to be true

with no explicit notion of a collection’s traversal. In those scenarios, it

helps to use a while loop.

�The while Loop
Scala provides another way to use loops, using the while statement. In

many scenarios, for and while are interchangeable.

The overall syntax of the while loop is:

while(condition){

 body

}

Chapter 10 Loops

169

Here’s a concrete example:

scala> :paste

// Entering paste mode (ctrl-D to finish)

var i=0

while (i<listOfNumbers.length){

 println(i)

 i+=1

}

// Exiting paste mode, now interpreting.

0

1

2

3

4

i: Int = 5

Let’s use a step-by-step process to look at what we did in the previous

code example:

	 1.	 We set our counter variable i to zero prior to starting the

loop. Then we used a while loop. In the () of the while

loop, we specified a condition which should return a

Boolean value (true or false). The loop will run if the

condition is true. In this case, it will check the condition

if the value of variable i is less than the length of the list.

	 2.	 In the body of the function, we specified the logic of

while loop i.e. what this loop should do. In this case,

it will print each element of the list.

	 3.	 We also handled the case so that the loop will

terminate at a point. We did this by incrementing

the i variable in each iteration. This is important

Chapter 10 Loops

170

because if we don’t do this, the while loop can run

infinitely. This is because the while loop will look

at the condition in () and terminate only if this

condition becomes false. To make it converge to

that case, we need to modify the value of i in each

iteration accordingly.

�Comparing for and while Loops
You might wonder which of these loop types is best in which scenarios.

We address that question in this section. In a while loop, you specify a

condition in (), whereas in a for loop, you specify what list to traverse

(which can be further qualified with loop guards). Also, in a while loop,

you have to handle the iteration logic, i.e., increment your counter variable

one by one. Whereas a for loop takes care of this. On this note, a while

loop can be used to run indefinitely until a specific condition is true, such

as when prompting users for correct passwords again and again until they

specify a correct one.

Here’s an example of how the password scenario can be implemented

in a while loop:

scala> :paste

// Entering paste mode (ctrl-D to finish)

var passwd=""

while(passwd != "correctpassword"){

 passwd=scala.io.StdIn.readLine

 println("Enter the correct password")

}

// Exiting paste mode, now interpreting.

Enter the correct password

Chapter 10 Loops

171

Enter the correct password

Enter the correct password

passwd: String = correctpassword

In this code example:

	 1.	 Upon each iteration of the while loop, it will prompt

users for their password and will check if it’s equal

to correctpassword. We’ve used scala.io.StdIn.

readLine to prompt the user and get input. The

value entered by the user will be stored as a String.

	 2.	 If the value entered does not equal

"correctpassword", the condition between () will

be true and the loop will continue to execute.

	 3.	 As soon as the condition within () becomes false, it exits.

Here, you haven’t specified how many times it will run and thus the

while loop is better suited for such scenarios. Try implementing the same

logic with a for loop and see if it’s possible.

�Breaking a Loop’s Iteration
If you want to write logic that allows you to break out of a loop subject

to meet some condition, you can use Scala’s scala.util.control.

BreakControl. Here’s a simple example of how you can use it:

scala> import util.control.Breaks._

scala> :paste

// Entering paste mode (ctrl-D to finish)

var i = 0

while (i<10){

 if (i==7) break

 println(i)

 i+=1

Chapter 10 Loops

172

}

In this example, you used an import statement to import the required

modules (break in this case) into your program. Then, following the same

logic as in previous examples, you specified a variable that served as a

counter. In the body of the while loop, you specified a condition called

(i==7), which if true, will execute a break statement. The effect of that

statement is that it breaks out of the loop, i.e., the loop stops when it

encounters a break statement.

Thus, when you execute this program, the loop will continue to

run until the value of i becomes 6. As soon as it becomes 7, the break

condition becomes true and the loop breaks. The set of statements after

the loop’s body will continue to execute.

Here’s sample output of the code snippet:

0

1

2

3

4

5

6

scala.util.control.BreakControl

As you can see in the output, Scala REPL also echoes scala.util.

control.BreakControl, indicating that the loop execution has executed

because of the break statement.

In this chapter, you learned about yet another commonly used and

powerful construct of programming: loops. They allow you to repeat

execution of your expressions based on certain logic. Practice using them

to develop a more thorough understanding of how they work.

Chapter 10 Loops

173

EXERCISES

•	 Load a text file in Scala and see how many times a particular

term appears in it. Try implementing this exercise using a for

and a while loop.

•	 Try using loops in a function (e.g., one that prints odd numbers

from 0 to 200) and invoke that function in your main program.

•	 Try assigning a for or while loop to a variable. Understand

what happens when you do so.

•	 Try using two variables in the () after for. Explore the

prospects of these and see how you can use them.

•	 Try nesting one for loop into another.

•	 Try the good old sorting algorithms (e.g., bubble sort, merge sort)

using for and while loops in Scala.

Chapter 10 Loops

175© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_11

CHAPTER 11

Classes and Packages
We all live in a world composed of different objects. Just pause and look

around you. You will probably find objects like chairs, tables, laptops,

televisions, and so on. If you put your programming hat on and observe

them, you will find that each of these objects has two main parts:

•	 Each object has some set of properties, such as with

a television, it has dimensions (length, width, and

height), color, screen type, etc.

•	 Each object can perform certain functions, such as with

a television, you can turn it on, off, increase/decrease

volume, change channels, etc.

Objects interact with each other as well. For example, a remote control

is an object and it interacts with the television object.

Another aspect inherent in objects is a hierarchy. For example, animals

➤ mammals ➤ humans, dogs, etc.. Animals can be thought as one parent

category of living organisms; mammals are a subtype of that, and then

humans and dogs are further subtypes of mammals. Many characteristics

of mammals are inherited by their subtypes.

Interestingly in the world of programming, under the context of object

oriented programming (OOP), we structure our applications using these

same principles. In OOP, we identify the objects in our applications using a

class and we define their properties, functions, and interactions with them

in that class. There is so much in OOP and it is not in the scope of this book

176

to cover OOP in detail. The main purpose of this chapter is to cover some

basics of classes and objects, including how they are packaged and how

can you use these packages in your programs.

The reason this chapter exists is because when you do Big Data

development, specifically in Apache Spark, you use a number of packages

to suit your requirements. For instance, if you want to do Apache Spark

development in Scala, you use Apache Spark packages and the classes and

classes’ functions to perform Big Data analytics. Even when you use Scala

for general-purpose programming, you still use packages. Chances are that

whatever you are trying to implement or build has already been built by

someone and is available in Scala. Instead of reinventing the wheel, you

can use existing packages. That’s why it’s important to understand how to

use packages.

When you develop executable applications in Scala (and in Big Data

analytics using Apache Spark APIs), you structure your programs in

such a way that one class becomes the entry point of execution. In those

instances, it’s always helpful to have a foundational knowledge of classes

and objects. Fear not! The notion of object oriented programming may

appear to be daunting at first, but as you progress in this chapter, you will

find it quite easy—just like many other constructs of Scala that you have

studied (and hopefully practiced) in this book.

�Classes and Objects in Scala
So, what is a class? So far we have talked about objects only and discussed

that objects have properties and that they can perform certain functions.

Think of a television as an object, for instance. Let’s say that you have a

television of a particular make, such as Samsung. This TV model was built

by some blueprint or design document. At the Samsung factory, machines

and engineers followed those blueprints and design documents religiously

to produce the physical TV sets in bulk. You happen to have one of those

models in your home.

Chapter 11 Classes and Packages

177

So we are talking about two things:

•	 A conceptual specification that details what objects

look like. Some examples could be blueprints, design

documents, maps, or layouts.

•	 A concrete and tangible manifestation of that concept,

like a house, television, or mobile phone.

In the world of object oriented programming, the first concept in the

list is called the class and the second one is termed the object.

Classes represent at the theoretical/conceptual/logical level what

objects contain. Classes don’t materialize. They don’t exist concretely or

physically. Objects are created from classes. (Well, not always, because

there is a construct called a singleton object in Scala that doesn’t follow

this rule, but we’ll cover that concept later in chapter later.) Objects

possess all the properties and functions defined in classes and they are

entities that get initialized and allocated memory when you use them in

programming languages.

This concept is illustrated in Figure 11-1.

Chapter 11 Classes and Packages

178

�Creating Classes and Objects in Scala
As mentioned, this chapter won’t go into the details of OOP, but it does

share some examples of how to create classes and objects in Scala. In

Scala, to create a class, you use the class keyword and then specify a class

name as follows:

class Television {

 //class body

}

Figure 11-1.  The concept of classes and objects

Chapter 11 Classes and Packages

179

You use the class keyword, followed by the class name, and then a set

of parentheses that contain the class body. As per the naming conventions,

class names always start with capital letters. So far, you have created the

Television class, but it’s empty. It has no properties or functions in it. It, in

one sense, is useless. Let’s make it useful.

Let’s add some details to the Television class. What does a class

contain? As mentioned previously, at a very basic level, it contains

attributes and functions:

scala> :paste

// Entering paste mode (ctrl-D to finish)

class Television(val brand:String, val screenSize:Int, val

screenStatus:Boolean) {

 def turnOn = println("Turning on")

 def turnOff = println("Turning off")

}

// Exiting paste mode, now interpreting.

defined class Television

Here’s what happened in the previous code snippet:

•	 You defined a Television class.

•	 The Television class has three attributes (brand,

screenSize, and screenStatus, where false means

it’s off). Think of these as properties or characteristics

of that class (and soon to be objects). There can be

many other properties of this class, but for the sake

of simplicity in this example, we have just three

properties.

Chapter 11 Classes and Packages

180

•	 The Television class has two functions (turnOn and

turnOff). Both of these functions perform an action in

this example; they just print a message onscreen. But

you can manipulate the screenStatus attribute if you

want to.

Figure 11-2 highlights the elements that constitute a class.

How do you use a class that you’ve defined? Typically, you will create

objects of it. To define an object in Scala from a class, you use the new

keyword:

val samsungOled = new Television("Samsung",42,false)

Here’s what you did in this line of code:

•	 You created an object called samsungOled from the

Television class. You used the new keyword for that

followed by the class name.

Figure 11-2.  Elements of a class

Chapter 11 Classes and Packages

181

•	 While using the new keyword followed by the class

name, you also passed some parameters in the

parentheses. Those values are stored against the

defined attributes of the class. When an object is

created from the Television class, the attributes

will be initialized with these values. After this object

instantiation, the attribute values will look like this:

•	 brand=Samsung

•	 screenSize=42

•	 screenStatus=false

With that object created, you can now access its attributes. All the

attributes and functions that you defined in the original class will be

available in the instantiated object.

In Scala, you access elements of an object using the . (dot) operator as

follows:

scala> samsungOled.brand

res0: String = Samsung

scala> samsungOled.screenSize

res1: Int = 42

You can also access the functions that you originally defined in the

Television class:

scala> samsungOled.turnOn

Turning on

scala> samsungOled.turnOff

Turning off

Chapter 11 Classes and Packages

182

In case you don’t remember, you have used the . operator for a while

now, for example, when you used the map, filter, and foreach functions

on a list, the .length attribute of collections, the .split function of a

string, and so on.

In Apache Spark development, you will be using this construct even

more. When you use Apache Spark for a lot of cool stuff that is executed in

a distributed environment, you will find that your programs will initialize

a SparkContext object, just like you initialized a Television object

using the new keyword. Then you will use a number of the functions of

the SparkContext object to perform a lot of operations, like loading data

from a Hadoop distributed filesystem (HDFS), creating accumulator

and broadcast variables, and a lot of other cool stuff. Having a strong

understanding that objects consist of attributes and functions and that you

access them via the . operator is very handy going forward.

�Mutating Attribute Values and Caveats
Although it’s not too relevant to the scope at hand, I suppose

comprehending this topic will help you, especially if you end up creating

your own classes. So far, you defined a class and its elements. You created

objects of that class and accessed those elements (e.g., attributes and

functions).

How about updating the values of attributes of an object? When you

create an object, you specify values of its attributes. If you intend to change

the values of the attribute for any reason, you can do so, but there are

certain caveats. Let’s take a look at them:

•	 When you created the Television class, you defined

its attributes with the val keyword. Remember that

the val keyword implies immutability. Whenever you

create a class with val attributes, you can’t update the

attribute values. Let’s try doing that:

Chapter 11 Classes and Packages

183

scala> samsungOled.screenSize=48

<console>:12: error: reassignment to val

 samsungOled.screenSize=48

 ^

We get reassignment to a val error. You can try this with other

attributes. So, what can we do?

When it comes to specifying attributes for Scala classes, you generally

have three options:

•	 Use the val keyword

•	 Use the var keyword

•	 Don’t use either the val or the var keyword

Each of these options has caveats. Let’s learn about each one of them

one by one.

�Using the val Keyword for Class Attributes

When you use the val keyword, as you’ve seen before, you can only

initialize attribute values at the time of object creation and can’t change,

mutate, or update their values. In OOP terms, you only get “getters” for

attributes and not “setters”. Usually in OOP design in other languages, to

update or access attribute values, we write some functions in the class, just

like the functions we wrote for the Television class (turnOn and turnOff).

The function that is used to access attribute values is called getter and

the function used to set/update attribute values is called setter (quite

intuitive names, aren’t they?).

In many instances, you don’t need to worry about getters and setters,

as Scala creates these for your classes automatically. Specifically, when you

specify attributes with the val keyword, you’ve observe that you don’t have

the capability to update the attribute values. In other words, you don’t get

setters for those attributes. You can only access them.

Chapter 11 Classes and Packages

184

�Using the var Keyword for Class Attributes

If you use the var keyword with class attributes, you can both set (or

update) and get (or read) attribute values whenever you want. Unlike with

the val keyword, even though you initialize attribute values at the start of

object creation, you can change them at any time.

From the perspective of getters/setters, you get both of them in such

classes. Here’s an example of the same class creation but with the var

keyword and updating one the attribute values.

scala> val lgPlasma=new Television("LG",32,true)

lgPlasma: Television = Television@be694c0

scala> lgPlasma.brand

res13: String = LG

scala> lgPlasma.screenSize

res14: Int = 32

scala> lgPlasma.screenSize=42

lgPlasma.screenSize: Int = 42

scala> lgPlasma.screenSize

res15: Int = 42

As you can see, we are not only able to access the attributes but can

also change the values.

�Using Neither the val Nor the var Keyword for Class
Attributes

You also have the option to not use either of these keywords. When you use

this option, you can neither access nor update attributes. In other words,

you don’t getters and setters in such classes.

Chapter 11 Classes and Packages

185

Figure 11-3.  Defining class parameters with/without val/var keywords

Try creating the same Television class without the val or var keyword

and see if you are able to get/set any of the attributes.

The permutations of using or not using val and var are highlighted in

a structured way in Figure 11-3.

�Singleton Objects
So far, you have seen that objects are created from classes. You use the new

keyword for instantiating an object. Objects are the tangible entities that

actually get materialized, whereas classes represent a concept/notion.

Now things are going to change a bit, so be ready!

Scala provides another construct, called singleton objects. The main

proposition of this construct is that these objects aren’t created explicitly

from classes per se. If you want to use such objects, you don’t need to

explicitly create a class and instantiate such objects from that class. You get

to use such objects directly. Or if put in other way: You don’t need to create

them using the new keyword.

Chapter 11 Classes and Packages

186

Though for the geeks, under the hood, Scala does create a class

and there is a concept of companion objects at play here, but let’s not

complicate things.

Singleton objects have all the same characteristics as classes:

•	 They have attributes and functions

•	 You access them via the . operator

Let’s try creating a singleton object in Scala:

scala> :paste

// Entering paste mode (ctrl-D to finish)

object DatabaseUtils{

 val databaseName:String = "sample_db"

 val tableName:String = "sample_table"

 def establishConnection = println(s"Establishing connection

to ${databaseName}")

 def closeConnection = println(s"Closing connection to

${databaseName}")

}

// Exiting paste mode, now interpreting.

defined object DatabaseUtils

Here’s what happened in this code snippet:

•	 You created an object named DatabaseUtils. Notice

that you used the object keyword instead of the class

keyword.

•	 You created attributes of this object (databaseName and

tableName).

•	 You created functions in this object

(establishConnection and closeConnection).

Chapter 11 Classes and Packages

187

This workflow is quite similar to what you did while creating classes in

Scala previously.

Furthermore, if you want to use this object, you do as follows:

Using auto completion (TAB) here:

scala> DatabaseUtils.

closeConnection databaseName establishConnection tableName

scala> DatabaseUtils.databaseName

res16: String = sample_db

scala> DatabaseUtils.establishConnection

Establishing connection to sample_db

As you can see in this code snippet:

•	 The created object has all the attributes and functions

that you created. You can retrieve them in Scala REPL

by using Tab after typing . after the object name.

•	 You can use the attributes and function names without

explicitly instantiating or creating objects using the new

keyword like you did before.

Here are some additional observations:

•	 Whenever you use this object, it will always have the

same attribute values (sample_db for databaseName and

sample_table for tableName).

•	 You can’t normally pass attributes as parameters like

you did for classes. (Tip: You can achieve that using the

apply function to some extent but it’s not covered in

this book.)

Chapter 11 Classes and Packages

188

So a natural question would be, when do you use this singleton object

in Scala?

•	 When you want to make your Scala programs

executable, you create a singleton object and define

the main function with a specific signature. Your

application then becomes executable.

•	 I generally use singleton objects to group utility

functions together that don’t need child objects. An

example is shown in the previous snippet, where we

created a utility object to contain database-related

functions.

�Case Classes
If you talk to Scala developers and ask their opinion of what they love most

about Scala, chances are they will mention case classes. Case classes are

extensively used in Scala and in Apache Spark programming. Let’s spend

some time looking at them.

Let’s work with our current knowledge of classes. When you define

a class in Scala, and then create objects out of it, you will find that such

classes contain many methods that you didn’t specify. For instance,

consider Figure 11-4.

Figure 11-4.  Default methods in a class

Chapter 11 Classes and Packages

189

In Figure 11-4, you created an Employee class, created an object of it,

and then tried to access its elements using . and Tab in Scala REPL. You

are presented with a series of methods, such as equals, getClass, and

toString, to name a few. But you simply created an empty class, right?

How on earth did these methods appear?

Referring to the notion that OOP resembles the real world in that it

manifests hierarchy in OOP, a class can be a sub-type or a child class of

another. Or put other way, the concept of parent and child classes exist

in Scala. It’s done by virtue of inheritance principles of OOP. By the way,

OOP consists of certain principles like inheritance, encapsulation, and

polymorphism. As it’s not the scope of this book to teach the depths of

OOP, so it’s suggested you familiarize yourself with these concepts.

Thus, when you create a class, it inherits from the main class java.

lang.Object and java.lang.Object actually contains all these functions,

which become part of every class that you initialize.

Another OOP concept—you can override many of these functions like

toString and equals in accord with your requirements.

This is where case classes shine. Let’s explore them.

�Case Classes in Practice
So what are case classes? These are classes in Scala that provide boilerplate

actions (meaning commonly used code already done for you) for you. Let’s

look closer at this concept.

When you use case classes, you will find that the behavior of many

of their functions (like toString and equals) is quite different from the

simple classes in Scala. They are overridden for you. Their behavior is

modified to assist in their usage in Big Data analytics. This point will

become clear in a while.

When you use a case class, you don’t need to initialize the objects with

the new keyword. This is similar to how singleton objects work.

Chapter 11 Classes and Packages

190

Consider the following example:

scala> case class EmployeeCaseClass(val designation:String,

val company:String)

That’s how you define a case class. You use "case class" keyword

and then class name and then define the parameters. If required, you can

define your methods within the body of the case class as well.

Also, when it comes to creating individual objects out of the case class,

you don’t initialize them with the new keyword. Remember the companion

classes term I used when describing singleton objects? It’s because of that.

At this stage, it’s enough that you know this concept.

In Apache Spark, case classes are used extensively. As an example,

there are two types of (main) data structures in Apache Spark: RDD

and dataframe. RDD are like Scala collections (with a number of

characteristics like immutable and distributed) and dataframes are like

tables or spreadsheets. You extensively use case classes when you want

to convert data from RDD to dataframe (RDD and dataframe are two of

the data structures available when you use Apache Spark for distributed

computing. We’ll cover these concepts in a later chapter.) Trust me that

this operation is quite extensively used in Apache Spark. Having a hands-

on understanding of the case class is in line with your goal of using Scala

for Big Data analytics.

Referring to the aforementioned notion that many of the behaviors of

case class methods are modified, let’s dig into this concept further.

�Equality Checks in Classes
Let’s say you want to compare two classes (or more specifically the objects

of those classes) to determine whether they are equal. One way to do this is

to check individual fields of the objects against each other. That’s what you

normally do if you create simple classes (ones that are not case classes).

Chapter 11 Classes and Packages

191

This is the norm in other languages like Java. For instance, consider the

following example:

scala> class Employee(val designation:String, val

company:String)

defined class Employee

scala> val e1=new Employee("engineer","facebook")

e1: Employee = Employee@a5cb99

scala> val e2=new Employee("engineer","facebook")

e2: Employee = Employee@6d58cd

In this code snippet:

•	 We created a class called Employee.

•	 We created two objects of this class (e1 and e2).

The attribute values of these two objects are the same—the designation

in e1 and e2 is "engineer" and so is company ("facebook"). But if you

compare the equality of these two objects:

scala> e1.equals(e2)

res0: Boolean = false

You instantly note that you get false in return. You know that from the

attribute values’ point of view, both objects are the same. But when you

use the equals method, instead of checking attribute values, it checks the

memory address of the object reference (specifically the starting address

location in the heap memory). As each object gets a different memory

location, it’s returned as false.

As in analytics, we do a lot of computations and many of those relate to

equality checks. So if you are performing analytics at scale and create your

own type (via case classes) and you want to compare them, that’s where

case classes come in handy.

Chapter 11 Classes and Packages

192

Consider the same example, but implemented using case classes as

follows:

scala> case class EmployeeCaseClass(val designation:String,

val company:String)

defined class EmployeeCaseClass

scala> val ec1=EmployeeCaseClass("engineer","facebook")

ec1: EmployeeCaseClass = EmployeeCaseClass(engineer,facebook)

scala> val ec2=EmployeeCaseClass("engineer","facebook")

ec2: EmployeeCaseClass = EmployeeCaseClass(engineer,facebook)

In this code snippet:

•	 We created a case class (EmployeeCaseClass) and

defined its parameters.

•	 We then created two objects of this class (ec1 and ec2).

Note again that we didn’t use the new keyword here, as

we do with simple classes.

Now let’s try to check the equality of these objects to verify whether

case classes live up to the expectation or not:

scala> ec1.equals(ec2)

res1: Boolean = true

As expected, it says true. Thus, when you compare case classes

(or their objects), it doesn’t compare their memory addresses. Rather,

it compares individual attributes, which is pretty handy in many

circumstances.

Another difference between a case class and a simple class is when you

invoke the toString method on both:

scala> e1.toString

res2: String = Employee@a5cb99

Chapter 11 Classes and Packages

193

scala> ec1.toString

res3: String = EmployeeCaseClass(engineer,facebook)

As you can gather from this code, if you invoke the toString method

on a simple class, it doesn’t return anything intuitive. Whereas in a case

class, it returns something from which you can determine which attributes

values were used for its initialization.

�Case Classes and Collections Together
Before we move to other aspects of classes, I wanted to highlight how you

can use case classes with collections.

In Chapter 9, you created collections of different native types, like

collections of Integer, String, etc. How about a collection of a case class?

For example, if you want to create a collection that holds data about

the employee class, how would you do that?

First let’s create a collection that holds such data:

scala> val employees = List("engineer,facebook","manager,

facebook","associate,facebook")

employeeData: List[String] = List(engineer,facebook,

manager,facebook, associate,facebook)

Let’s also create a case class to hold the employee data:

scala> case class EmployeeData(designation:String,

company:String)

defined class EmployeeData

Now let’s put our knowledge of collections into practice and iterate

through the list of strings to create a list of our case class:

scala> val employeeList = employees.map(x=>x.split(",")).map(x

=>EmployeeData(x(0),x(1)))

Chapter 11 Classes and Packages

194

employeeList: List[EmployeeData] = List(EmployeeData(engineer,

facebook), EmployeeData(manager,facebook), EmployeeData

(associate,facebook))

employeeList is a list of objects in which each object is a case class.

This can become quite handy. For instance, if you index the first element

of this list, you get an object of a case class:

scala> employeeList(0)

res0: EmployeeData = EmployeeData(engineer,facebook)

You can use that to further access the individual attributes:

scala> employeeList(0).designation

res1: String = engineer

If you want to get (or print) designations of your employees, you can

use something like this:

scala> employeeList.map(x=>x.designation)

res2: List[String] = List(engineer, manager, associate)

As you can gather, when you combine case classes with lists, you can

do a lot of powerful data manipulation. You will find that in Apache Spark

programming, this notion is used quite a lot.

�Classes and Packages
So far we have learn about classes, including learning how to create them

and use them via objects. As mentioned, OOP principles are related to

real-world objects and in real-world objects, there is almost always the

concept of hierarchy. A similar notion exists in OOP—one class can be

a sub-class of another. Programmers use this capability to optimally

structure their programs, which also fosters reusability.

Chapter 11 Classes and Packages

195

However, there is another aspect of hierarchy in classes. When you

use or create classes, you’ll find that classes are grouped into something

called a package. Packages are special entities in Scala used to contain

classes. Generally, package names have an intrinsic hierarchy in them that

relates to the organizational domain name. For example, if you use the

Apache Spark package, it’s structured as org.apache.spark; if you use the

Microsoft SQL Server JDBC driver, you use the com.microsoft package;

if you want to use Cloudera’s Impala driver, you use the com.cloudera

package. Package names are usually the reverse of a company’s domain

name (for example, package name: com.microsoft and domain name:

microsoft.com).

�Avoiding Name-Space Collisions
Packages, among many other benefits, help developers avoid name-space

collisions. For example, when you use Scala REPL, you can access the

Array collection there (specifically scala.Array). Now, if you do JDBC

programming—writing programs to connect and interact with databases—

you will find that you will use the java.sql package quite a lot. In that

package, there is an Array class as well, called java.sql.Array. As both

Array classes are part of different packages—one belongs to scala.Array

and the other to java.sql.Array—and if you import them properly in

your program, you can avoid name-space collision. That means when you

refer to Array in your programs, Scala will know whether you are referring

to scala.Array or java.sql.Array.

If you reflect, you will find that you have already been using packages

and their respective classes in this book. Remember when you used

mutable and immutable collections specifically in the form of mutable and

immutable maps? You used a specific package for both of them.

Chapter 11 Classes and Packages

196

You don’t initialize packages per se as you define classes or singleton

objects. Rather, as you’ll find in the upcoming chapters when you write

classes, you define, mostly at the start of programs, to which package this

class belongs. By doing so, the class becomes part of that package and you

can reuse that class in other parts of the program.

�Importing Packages
When you write Scala programs, you have to rely on many packages that

either you created or that were developed by others. By default, when

you write programs, those packages aren’t loaded automatically in your

namespace. If you want to access a particular package or a particular class

in a package, you won’t be able to do so unless you do something about

it. For example, if you want to read a file in your local filesystem in your

program, Scala provides the fromFile function for this purpose and this

function is part of the scala.io.Source class.

If you want to use Source.fromFile in your program right away,

you won’t be able to do that because this class isn’t loaded into your

JVM environment (or into Scala REPL if you are using that). Technically

speaking, this class isn’t on the default classpath of JVM. What’s a

classpath, you may ask? It’s Java-specific jargon that refers to the path in

your local system where Java looks for classes when you try to use them.

If you try to use the Source.fromFile function in your Scala REPL

without importing it properly, here’s what’ll happen:

scala> val fileData=Source.fromFile("C:\\path_to\\sample_file.txt")

<console>:14: error: not found: value Source

 val fileData=Source.fromFile("C:\\path_to\\sample_file.txt")

You will get an error in which Scala is complaining that it can’t find

Source, meaning this particular object, although it exists, isn’t accessible

in your environment.

Chapter 11 Classes and Packages

197

How can you go about addressing errors like these? You have two

choices:

•	 Specify the full name of the class, including the package

to which it belongs, that you want to use whenever

you need:

scala> val fileData = scala.io.Source.fromFile

("valid path to a file")

fileData: scala.io.BufferedSource = non-empty iterator

If you do this, you will have to type the full name

again and again, which can lead to typos and will

needlessly increase the verbosity of your code.

•	 You can alternatively import that class in your

environment and use it right away, without the need to

fully specify the name:

scala> import scala.io.Source

import scala.io.Source

scala> val fileData=Source.fromFile("valid path to a file")

fileData: scala.io.BufferedSource = non-empty iterator

A couple of observations here:

•	 You imported the required class (scala.io.Source)

using the import keyword.

•	 Once you import it, you use the class without using

its full name (Source.fromFile() instead of scala.

io.Source.fromFile()).

Chapter 11 Classes and Packages

198

You can even do the following:

scala> import scala.io.Source._

import scala.io.Source._

scala> val fileData = fromFile("valid path to a file")

fileData: scala.io.BufferedSource = non-empty iterator

In this attempt, the following things happened:

•	 You used the import command and imported scala.

io.Source._. What does import scala.io.Source._

mean? It means to import everything that’s in the

scala.io.Source class. Since fromFile was part of

this class, you can use this function directly in your

program and you didn’t even have to specify Source.

fromFile like you did before.

•	 If you used the Java language, then import scala.

io.Source._ is equivalent to import scala.

io.Source.* in Java.

There are a couple of caveats related to import statements that deserve

an explanation:

•	 As you’ve seen before, if you use the ._ notation, you

import all entities in a class or package. Those entities

can be a class in a package or a function (or fields) in a

class. It’s generally considered bad practice to use this

notation because it results in importing all the entities

(e.g., classes, functions, etc.) in your program, even the

ones you might not use. By doing so, this can result in a

name-space collision.

Chapter 11 Classes and Packages

199

•	 You can import an individual class using the import

statement. Like you did before when you used import

scala.io.Source.

•	 You can import multiple individual classes/objects in a

package using the import statement. To do this, you use

brackets {} with the import statement:

scala> import scala.io.{Source,StdIn}

import scala.io.{Source, StdIn}

•	 While importing, you can assign a label for the class for

your use. This can become quite handy to avoid name-

space collision. As mentioned, when you use Scala REPL,

the Array class is loaded automatically. If you want to use

the java.sql.Array class and import using this:

import java.sql.Array

And if you use Array, it will tend to use java.sql.

Array instead of scala.Array (which Scala imports

for you by default in Scala REPL). Here’s an example:

scala> import java.sql.Array

import java.sql.Array

scala> val numberArray = Array(1,10,-100)

<console>:18: error: class java.sql.Array is not a value

 val numberArray = Array(1,10,-100)

 ^

Chapter 11 Classes and Packages

200

To avoid such scenarios, you can import java.sql.Array and assign

it a different label. As a result, you can continue to use scala.Array and

java.sql.Array simultaneously in your program without any conflicts.

scala> import java.sql.{Array=>SqlArray}

import java.sql.{Array=>SqlArray}

scala> val numberArray = Array(1,10,-100)

numberArray: Array[Int] = Array(1, 10, -100)

In this code example, when you used Array, the Scala interpreter

will know right away what type of array are you referring to because you

specifically created an alias of java.sql.Array as SqlArray. Thus, when

you used Array in your code, it didn’t conflict with java.sql.Array and it

created an array of the right type (scala.Array).

This concludes this chapter. It’s important to understand how to

import your required classes from packages in your program so that

you avoid name-space collisions, along with improving verbosity and

readability of your code.

EXERCISES

•	 Try importing Java libraries in Scala—e.g., Java’s date

libraries—and try using them in your program.

•	 If you are using Linux, try executing the shell script from

your Scala program. You will have to import a specific

package to do so.

•	 Research the maven repository. What is it, what does it contain,

and how do Scala and Java programmers use it?

Chapter 11 Classes and Packages

201

•	 Try creating two classes—Television and PowerSupply—

to model a television set with a power supply component. Try

to create a Television class where one of its attributes is

PowerSupply. Can you do that? On the same note, search for

“composition in object oriented programming”.

•	 Research the dependencies in the context of libraries. For

example, if your program intends to use a specific library that

doesn’t come out of the box, what can you do about it? Try using

the spray-json library, which is great for parsing JSON files

and converting to case classes in Scala. You can’t import it as it

is. Try to sort out how you can import it.

Chapter 11 Classes and Packages

203© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_12

CHAPTER 12

Exception Handling
It’s a cliché that life is unpredictable. At any point in life, the unexpected

can happen and in order to survive the surprises of life, it’s important to be

well prepared.

The same philosophy, to some extent, holds true with computer

programs. At runtime or compile time, unexpected issues can happen.

They can be due to a number of reasons, including:

•	 Your program was expecting a specific input, whereas

the input provided was a different format.

•	 The program depended on an external system, such as

a database to be available, and that system was down or

unstable at the time program wanted to interact with it.

•	 Your program was trying to access an object that

wasn’t defined before (such as accessing an index of a

collection that’s more than the length of the collection).

These scenarios can vary. When such issues appear, you have two

options:

•	 You don’t handle them. You let the programs depend

on “ideal conditions” and assume that everything will

be favorable.

•	 You handle exceptions as and when they appear and

take actions accordingly.

204

Good programmers follow the second approach. If you are getting

started in Scala, you should think with this mindset as well. Specifically,

as you will be using Big Data technologies that rely on distributed systems

and processes and on external systems a lot, the probability of exceptions

increases to some extent. Thus, if you are using Scala, it makes sense to be

well versed in exception handling so that your programs won’t crash and

won’t land you in trouble.

�Fundamentals of Exception Handling
in Scala
In Scala, if you suspect that a particular expression will result in an

exception, you must use and write certain Scala programming language

constructs to handle those exceptions.

Figure 12-1 shows the overall mechanics of exception handling in

programming in general.

Chapter 12 Exception Handling

205

Figure 12-1.  General concept of exception handling in programming
languages and in Scala

Chapter 12 Exception Handling

206

The most straightforward way to handle exceptions in Scala is to use

try-catch blocks. The format looks like this:

try {

 //the expressions that can cause exceptions

} catch {

 //your logic to handle exceptions

}

The try-catch block construct isn’t exclusive to Scala. It’s available in

other languages as well (with some variations of course).

However, Scala, being a super-set of Java and an amazing language by

itself, provides more powerful constructs to handle exceptions optimally.

Remember pattern matching? Recall the constructs that you studied in

Chapter 6 that allowed you to replicate the behavior of switch statements

as used in other languages, and allowed you to achieve multiple nested

conditions in a clean and powerful way. You’re going to use similar

concepts here for exception handling.

Let’s consider a basic example:

scala> val aList = (1 to 20).toList

aList: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20)

We defined a list consisting of 20 elements. What would happen if you

try to access the 22nd element of this list? Exception!!

scala> aList(22)

java.lang.IndexOutOfBoundsException: 22

 at scala.collection.LinearSeqOptimized.

apply(LinearSeqOptimized.scala:63)

 at scala.collection.LinearSeqOptimized.

apply$(LinearSeqOptimized.scala:61)

 at scala.collection.immutable.List.apply(List.scala:86)

 ... 28 elided

Chapter 12 Exception Handling

207

You get a specific type of exception here, known as IndexOutOfBounds

Exception. The name itself is quite intuitive, as you were trying to access

an index of a collection that was out of bounds (i.e., more than the length of

the collection). When you run this program, your program’s execution will

be interrupted and you will get this ugly stack trace on stdout, which isn’t a

decent way to inform us of the issue, indeed. There has to be a better way.

Our expression aList(22) is susceptible to an exception, right? Such

culprit statements should be wrapped with a try block. The resulting

probable exceptions are caught in an accompanying catch block, where

you use a series of case statements to specify how you want the exceptions

to be handled. Something like this:

scala> :paste

// Entering paste mode (ctrl-D to finish)

try{

 aList(22)

} catch {

 case _: Throwable => "exception"

}

// Exiting paste mode, now interpreting.

res10: Any = exception

Here’s what the previous code snippet is doing:

•	 You used the paste mode of REPL so that you could

execute a block of expressions at once.

•	 You used the try keyword and then defined a code

block with brackets {}.

•	 Within the try code block, you specified the expression

that you wanted to execute and indicated the usual

suspects for generating exceptions.

Chapter 12 Exception Handling

208

•	 You then wrote a catch block. try is always

accompanied by a catch block. Remember that.

•	 In the catch block, you can specify a series of case

statements in a similar way you used them in pattern

matching scenarios. In this example, we just used one

case statement.

•	 In our case statement, we used _. Remember what it

does? After case, you can specify a temporary variable

that you then can use in the case block. Here you used

_, which means you don’t want to define a variable.

•	 You defined the type that you want to match via case

_:Throwable. Throwable is a JVM-specific construct

(or more specifically it’s a class) that represents general

exceptions. There are also concrete classes of this

class. In your case statement, you are matching for a

general occurrence of an exception. You aren’t looking

for a particular type of exception. It’s like a catch-all

scenario; it matches if any type of exception happens.

•	 If the exception happens, that case statement will

be matched and whatever is to the right of => will be

executed. This is where your logic for handling the

exception will go. In our example, we just returned the

"exception" string, which is why, when you execute

this program, this is returned (well, type-cast to its

parent type Any).

So this is the overall anatomy of exception handling in Scala in its very

basic form. Let’s make this a bit better and more involved, shall we?

Chapter 12 Exception Handling

209

scala> :paste

// Entering paste mode (ctrl-D to finish)

try{

 aList(22)

} catch {

 case x: IndexOutOfBoundsException => "index out of bounds

exception"

 case _: Throwable => "exception"

}

// Exiting paste mode, now interpreting.

res12: Any = index out of bounds exception

Most of the stuff in this example will be clear to you, but I just want to

bring your attention to a few specific points:

•	 As I mentioned, you can write a series of case

statements. That’s what you did here.

•	 In the first case statement, you looked for a specific

type of exception, i.e., IndexOutOfBoundsException.

In the next case statement, you looked for a more

general exception condition. This is generally how

programmers write handlers for exception handling.

They start with a specific type and, as they write more

case statements, they make their handlers more and

more generic.

•	 When you executed this snippet of code, the first

case statement was executed. This is the one that was

matched.

Chapter 12 Exception Handling

210

•	 In the first case statement, you used the x variable. By

doing so, we have an additional capability to use the

x variable in the body of the case statement (in this

example it’s not used that way, but we’ll use it shortly in

this chapter).

Here’s another twist to exception handling:

scala> :paste

// Entering paste mode (ctrl-D to finish)

try{

 aList(22)

} catch {

 case x: IndexOutOfBoundsException => throw new

IndexOutOfBoundsException

 case _: Throwable => "exception"

}

// Exiting paste mode, now interpreting.

java.lang.IndexOutOfBoundsException

 at .liftedTree1$1(<pastie>:16)

 ... 36 elided

In this example, in the first case statement block after =>, you threw

the exception yourself. For example, if an error is critical and you don’t

want the program to continue working after it has been encountered, you

throw exceptions. One scenario could be with a data processing pipeline,

where you are reading from source files and writing to databases. Say you

are doing data quality checks on a file and find issues in the data (e.g., data

type mismatches), one approach is to throw an exception so that you don’t

insert dirty records into the final database.

Chapter 12 Exception Handling

211

If you need to explicitly throw exception yourself, you can use this form:

throw new <exception type>

Let’s look at another example:

scala> :paste

// Entering paste mode (ctrl-D to finish)

try{

 aList(22)

} catch {

 case x: IndexOutOfBoundsException =>

 �println("Printing error stack trace for better trouble-

shooting")

 x.printStackTrace()

 case _: Throwable => "exception"

}

// Exiting paste mode, now interpreting.

Printing error stack trace for better trouble-shooting

java.lang.IndexOutOfBoundsException: 22

 �at scala.collection.LinearSeqOptimized.apply

(LinearSeqOptimized.scala:63)

 �at scala.collection.LinearSeqOptimized.apply$

(LinearSeqOptimized.scala:61)

 at scala.collection.immutable.List.apply(List.scala:86)

 at $line26.$read$$iw$$iw$.liftedTree1$1(<pastie>:14)

 at $line26.$read$$iw$$iw$.<init>(<pastie>:13)

 at $line26.$read$$iw$$iw$.<clinit>(<pastie>)

 at $line26.$eval$.$print$lzycompute(<pastie>:7)

 at $line26.$eval$.$print(<pastie>:6)

 at $line26.$eval.$print(<pastie>)

Chapter 12 Exception Handling

212

 �at sun.reflect.NativeMethodAccessorImpl.invoke0

(Native Method)

 �at sun.reflect.NativeMethodAccessorImpl.invoke

(Unknown Source)

 �at sun.reflect.DelegatingMethodAccessorImpl.invoke

(Unknown Source)

 at java.lang.reflect.Method.invoke(Unknown Source)

 �at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.

call(IMain.scala:735)

 �at scala.tools.nsc.interpreter.IMain$Request.loadAndRun

(IMain.scala:999)

 �at scala.tools.nsc.interpreter.IMain.$anonfun$interpret$1

(IMain.scala:567)

 �at scala.reflect.internal.util.ScalaClassLoader.asContext

(ScalaClassLoader.scala:34)

 �at scala.reflect.internal.util.ScalaClassLoader.asContext$

(ScalaClassLoader.scala:30)

 �at scala.reflect.internal.util.AbstractFileClassLoader.

asContext(AbstractFileClassLoader.scala:33)

 �at scala.tools.nsc.interpreter.IMain.loadAndRunReq$1

(IMain.scala:566)

 �at scala.tools.nsc.interpreter.IMain.interpret

(IMain.scala:593)

 �at scala.tools.nsc.interpreter.IMain.interpret

(IMain.scala:563)

 �at scala.tools.nsc.interpreter.ILoop.$anonfun$paste

Command$11(ILoop.scala:816)

 �at scala.tools.nsc.interpreter.IMain.withLabel

(IMain.scala:112)

 �at scala.tools.nsc.interpreter.ILoop.interpretCode$1

(ILoop.scala:816)

Chapter 12 Exception Handling

213

 �at scala.tools.nsc.interpreter.ILoop.pasteCommand

(ILoop.scala:822)

 �at scala.tools.nsc.interpreter.ILoop.$anonfun$standard

Commands$10(ILoop.scala:190)

 �at scala.tools.nsc.interpreter.LoopCommands$Line

Cmd.apply(LoopCommands.scala:154)

 �at scala.tools.nsc.interpreter.LoopCommands.colonCommand

(LoopCommands.scala:114)

 �at scala.tools.nsc.interpreter.LoopCommands.colonCommand$

(LoopCommands.scala:112)

 �at scala.tools.nsc.interpreter.ILoop.colonCommand

(ILoop.scala:43)

 �at scala.tools.nsc.interpreter.ILoop.command

(ILoop.scala:752)

 �at scala.tools.nsc.interpreter.ILoop.processLine

(ILoop.scala:456)

 at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:477)

 �at scala.tools.nsc.interpreter.ILoop.process

(ILoop.scala:1069)

 �at scala.tools.nsc.MainGenericRunner.runTarget$1

(MainGenericRunner.scala:82)

 �at scala.tools.nsc.MainGenericRunner.run$1

(MainGenericRunner.scala:85)

 �at scala.tools.nsc.MainGenericRunner.process

(MainGenericRunner.scala:96)

 �at scala.tools.nsc.MainGenericRunner$.main

(MainGenericRunner.scala:101)

 �at scala.tools.nsc.MainGenericRunner.main

(MainGenericRunner.scala)

res16: Any = ()

Chapter 12 Exception Handling

214

Wow, quite a lengthy error stack trace, isn’t it?

Here’s what we did differently in the previous code snippet:

•	 In the first case statement, you used multiple

statements in that case block. This is not unusual.

There is generally more than one statement in the

block and you don’t necessarily need to surround them

in brackets {} specifically in such instances, like when

using case statements.

•	 In the first case statement, we matched for a specific

exception type, called IndexOutOfBoundsException.

The second case statement match is done for a general

type of exception.

•	 We deliberately executed an expression (aList(22))

against which we got the IndexOutOfBoundsException

exception. As a result, the first case statement was

matched. Thus, its code block was executed and the

second case statement didn’t execute.

This is highlighted further in Figure 12-2.

Chapter 12 Exception Handling

215

�Implications of Type Inference and
Exception Handling
As a refresher, you use code blocks when the intent is to assign a value

to a variable after the statements in the code block have been executed.

Similarly, in many scenarios, you will want to execute expressions and

ensure that you use exception-handling constructs if anything bad

happens with those expressions. The result of that expression should be

assigned to a variable. It’s a normal expectation; however, when you do

that in Scala, there are certain implications that I want to highlight.

Figure 12-2.  Using try-catch blocks to handle exceptions in Scala

Chapter 12 Exception Handling

216

Consider the following snippet of code:

scala> val inputIndex = scala.io.StdIn.readLine().toInt

scala> :paste

// Entering paste mode (ctrl-D to finish)

val theElement = try{

 aList(inputIndex)

} catch {

 case x: IndexOutOfBoundsException =>

 println("Printing error stack trace for better trouble-shooting")

 x.printStackTrace()

 case _: Throwable => "exception"

}

// Exiting paste mode, now interpreting.

theElement: Any = 20

So here’s what we did in the previous code snippet:

•	 When the program runs, it will prompt users for

input. If, for instance, the user inputs 19, that value

will be stored in the inputIndex variable, which is

then used in indexing aList. If the indexInput value

is 19, it will access the 20th element of the list (which

has 20 elements). This operation will not result in an

exception. But, being a thoughtful programmer, you

wrapped this operation in an exception-handling block

by using try-catch.

•	 In the case statements, you used the same set of

conditions and code blocks as before.

•	 What you did differently is assigned the value of the

whole exception block to a variable called theElement.

Chapter 12 Exception Handling

217

•	 Your expectation might be that if you do a normal

operation like accessing the 20th element of the list

using aList(19), it will not result in an exception

and the value should be stored with its right data type

(Integer). In this scenario, Scala did return the value

as 20, but it type-cast it to Any instead of Integer. This

type-casting can have implications down the road.

Perhaps you developed your program to perform

numerical operations on this variable, but now you

have variable of type Any here. The reason that it’s

doing this is that in one of your case statements, you

are returning a string ("exception") and thus Scala

reverted to the higher data type.

Even if you try to specify the type of this theElement variable to be an

Integer as follows, it won’t help:

scala> val inputIndex = scala.io.StdIn.readLine().toInt

scala> :paste

// Entering paste mode (ctrl-D to finish)

val theElement:Int = try{

 aList(inputIndex)

} catch {

 case x: IndexOutOfBoundsException =>

 println("Printing error stack trace for better trouble-shooting")

 x.printStackTrace()

 case _: Throwable => "exception"

}

// Exiting paste mode, now interpreting.

<pastie>:17: error: type mismatch;

 found : Unit

Chapter 12 Exception Handling

218

 required: Int

x.printStackTrace()

 ^

<pastie>:18: error: type mismatch;

 found : String("exception")

 required: Int

case _: Throwable => "exception"

 ^

Instead, it will result in an error for reasons related to type-mismatch.

�Using Try, Catch, and Finally
You will often be working with external resources in your program, for

instance when reading from or writing to a file/database/message queues.

When you interact with those resources, you establish a connection

to them and then write data via that established connection. As a best

practice, it is recommended that, when you are done interacting with those

external resources, you close the connection (or any other objects that you

may have initialized). There is a cost associated with each connection (e.g.,

when you establish a connection to a database, it reserves a connection

slot) and if you continue to establish connections without closing, it can

have performance impacts on the external systems. This notion becomes

even more important when you are writing expressions that throw

exceptions. In your program, you may have written the logic to close a

connection, but if your program gets interrupted because of exceptions,

that logic won’t be executed and the resources will not be released.

To handle this problem, programming languages, including Scala,

provide constructs like try, catch, and finally. The main premise of

try-catch remains the same, but the addition of the finally block

ensures that the code in it is always executed, even when exceptions occur.

This ensures that you don’t run into the resources exhaustion issue we

Chapter 12 Exception Handling

219

discussed previously. In the finally block, you generally write expressions

related to releasing resources, such as closing connections.

Here is an example that elaborates the point further:

import java.io.{File, BufferedWriter, FileWriter}

val fileContent = scala.io.StdIn.readLine()

val textFile = new File("valid path to a file")

try {

 val buffWriter = new BufferedWriter(new FileWriter(textFile))

} catch {

 case x:java.io.IOException => println("Issues in writing

file. Check if you have permissions to write to the location or

if a directory with the same name exists")

 throw new java.io.IOException

}

try {

 buffWriter.write(fileContent)

} catch {

 case x:java.io.IOException => println("Writing to the file

failed. Check if you have the permissions to write to file")

 throw new java.io.IOException

} finally {

 buffWriter.close()

}

In this code example:

•	 We used Java libraries (File, BufferedWriter, and

FileWriter) that allow you to write to a file.

•	 First, we got input from a user about the content that

needs to be written. Then we initialized an object of the

java.io.File class and specified the path where the

file will be created and where the data will be written.

Chapter 12 Exception Handling

220

•	 Then we used try-catch blocks to attempt to write

to a file. In such instances, it helps to resort to online

documentation to assess which exceptions a particular

class or method can throw. For instance, Figure 12-3

shows the details of the java.io.FileWriter class.

If you observe the throws section, it highlights the

type of exception that this class can throw when

initialized.

•	 As you can see, it can throw the java.io.IOException

exception, so the code is written to catch those

expressions.

•	 At the end of code, the finally block is used to close

the BufferedWriter object. That is like a connection

stream to the file where data is written.

The key takeaway here is that you should use exception handling in

your code. However, when you use exception handling, you should be

vigilant of the different caveats of using exception handlings in Scala, as

discussed in this chapter.

Figure 12-3.  Documentation of the java.io.FileWriter class with
emphasis on the type of exceptions it can throw

Chapter 12 Exception Handling

221

EXERCISES

•	 When you use a function from a module, try to observe

what type of exception the function can throw in the Scala

documentation online. Try to write programs in such a way that

you handle all of those exceptions.

•	 Explore the benefits of using scala.util.

{Try,Success,Failure} for exception handling.

Chapter 12 Exception Handling

223© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_13

CHAPTER 13

Building and Packaging
Doesn’t it feel great that you are nearing your goal to learn Scala for

Big Data analytics? With such an ambitious goal, you need to orient

yourself according to the development patterns. You need to follow the

development lifecycle currently practiced in the development community.

You need to be exposed to another dimension in the development

endeavors, which will enable you to extend your development efforts

beyond Spark Shell. In a nutshell, now is the right time to pivot to topics

that relate to building and packaging your Scala code.

Let’s put things in perspective. So far, you’ve been using Scala REPL for

all of your development in this book. Scala REPL is an amazing tool and

it really fosters productivity of a programmer and brings you up to speed.

You get your hands dirty with the quirks and constructs of programming.

You can use it to quickly test, learn, and prototype something.

However, in production environments, your logic/program/

expressions won’t be executed in Scala REPL. It won’t be like that if you

want to do something with your Scala code, such as count the frequency of

a word in some documents. You won’t invoke the Scala shell and pass your

commands one by one to it. Also, the distribution of code is an equally

important aspect that a good developer needs to consider. Generally there

are multiple environments in professional settings—development, test,

and production. Generally speaking, developers operate in a development

environment and then their code is tested in test environments. If the tests

pass, the code is deployed into a production environment. If your code is

224

packaged in such a way that it is easily distributed, executed, and tested

in different environments, it refines the overall development pipeline and

aligns with the DevOps practices prevalent in today’s industry.

�The Scala Development Lifecycle
The approach that’s generally followed in this lifecycle is as follows:

	 1.	 You use Scala REPL in the aforementioned capacity,

for rapid learning or prototyping.

	 2.	 You then create Scala applications that are properly

structured in the form of classes and packages.

	 3.	 Your code is generally divided into a number of

Scala files that constitute your classes and packages

as a whole.

	 4.	 You define and use any additional modules you

need in your Scala applications (e.g., a library for

parsing JSON, a library to enable you to interact

with Microsoft SQL Server via JDBC, or a library that

allows you to use Apache Spark API). This is called

dependency management.

	 5.	 Once you structure your app and manage your

dependencies, you perform the following steps:

•	 Compile

•	 Build

•	 Test

•	 Package

•	 Deploy

Chapter 13 Building and Packaging

225

As a result, your Scala application becomes compiled, tested, and

packaged in the form of a JAR (Java Archive). JAR is a file format mostly

used for packaging your code along with its dependencies (e.g., libraries),

metadata, and any other required resources. Java and Scala programs are

packaged in JAR form for distribution and deployment.

These steps may appear to be nebulous at the start and that’s the goal

of this chapter—to explain these concepts and strengthen your skillset in

these areas.

�The Scala Development Lifecycle in Action
Let’s start with a goal—you want to create an executable Scala application

packaged in the form of JAR. By executable, I mean that the JAR is

runnable: it does something. Let’s start with a very basic example: a Hello

World example. You’ve already created one in Scala REPL, but let’s do it in

the way professional developers do.

This will lay the foundations of Apache Spark development as well.

To achieve this goal, you need the following:

•	 An IDE. We’ll use IntelliJ, but we’ll start with a

text editor and you can use any text editor of your

choice, even one as simple as Notepad. Better ones

include Sublime Text Editor, Visual Studio Code, and

Notepad++. The choice is yours. I won’t go into the

details of setting up or installing a text editor, as it’s

pretty trivial.

•	 A build tool. In Scala, the de facto tool is Scala Build

Tool (SBT), which is genuinely amazing. This tool

allows you to do a lot of things, not limited to:

•	 Manage dependencies

•	 Compile your code

Chapter 13 Building and Packaging

226

•	 Run unit tests

•	 Package your code in the form of JAR

We’ll see each of these actions in a bit. We won’t cover unit tests in this

book as they demand substantial discussion on their own.

�Scala Build Tool (SBT)
The consensus is that you’ll need SBT. We’ve been using Windows in this

book to date, so let’s stick to that.

To install SBT, navigate to the following website and download the

Windows MSI Installer:

https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html

This installer is shown in Figure 13-1.

Figure 13-1.  Installing Scala Build Tool on Windows

Chapter 13 Building and Packaging

https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html

227

Once the installer is downloaded, the rest of the installation is pretty

straightforward. It will ask for an end user license agreement, components,

and location to install. At this stage, you can proceed with the defaults.

Figure 13-2 shows how the installation wizard looks.

Figure 13-2.  Installation wizard of SBT on Windows

Once the installation is complete, you should be ready to use SBT.

�Using SBT on Windows
After the installation is completed successfully, open the Windows

command prompt and type sbt. Ideally, it should show something similar

to Figure 13-3.

Chapter 13 Building and Packaging

228

If you get the message shown in Figure 13-3, it indicates that SBT has

been downloaded and installed successfully in your system. Kudos.

Even though we nailed the installation of SBT, we still need to make

some arrangements before we can use it. If you parse the message in

Figure 13-3, you can see that SBT is complaining about something called a

build.sbt (and of project as well but let’s ignore that for now). This means

that SBT requires some entity known as build.sbt for its operation. So

let’s focus on that.

�Build.sbt for SBT
What is build.sbt? You may have gathered by now that it’s something that

SBT requires. At a higher level:

•	 build.sbt is plain text file.

•	 You as the developer create build.sbt every time you

need to work with SBT.

•	 You use build.sbt for a number of purposes, including

dependency management:

Figure 13-3.  Evidence of successful SBT installation on Windows

Chapter 13 Building and Packaging

229

•	 Defining which version of Scala you intend to

use (even though you have Scala installed in your

system, with SBT you can work with different

versions of Scala at the same time for different

projects).

•	 Defining which additional libraries you want to use

in your project (Apache Spark will be a library that

you will indicate in build.sbt going forward).

Where do we find those dependencies? These libraries are generally

available on platforms called repositories. There are some standard and

well-known repositories that developers use a lot and one of those is

maven (https://mvnrepository.com/).

The libraries or dependencies that you want to use in your program will

most probably be available in maven. SBT manages the lifecycle of accessing

maven to download those dependencies and making them available for your

project. In the world of Scala and Java, those dependencies exist in the form

of JARs. It downloads the JARS corresponding to the dependencies that you

define in build.sbt, from maven to your local system.

I’ll highlight more use cases of build.sbt going forward, but armed

with this knowledge, let’s proceed with a working example to put

everything in perspective, shall we?

We installed SBT. We need build.sbt because we’ll use it for

dependency management mainly and later for build purposes.

Do the following to create the build.sbt file:

	 1.	 Create a directory on your system. Call it whatever

you want.

	 2.	 Open the text editor of your choice, create a new file,

and then write the following content in that file as it

is. Save the file as build.sbt in the folder that you

created:

Chapter 13 Building and Packaging

https://mvnrepository.com/

230

name := "HelloWorld"

version := "1.0"

scalaVersion := "2.12.0"

Figure 13-4 shows how my folder looks after following these two steps.

Figure 13-4.  Highlighting the build.sbt file in the project folder

Figure 13-5.  Running SBT from the Windows Command Prompt

As you can see, there is only one file build.sbt there. Navigate your

cmd to that directory and then type sbt, as shown in Figure 13-5.

Chapter 13 Building and Packaging

231

As soon as you press Enter, a lot of stuff will get displayed in your

screen, as shown in Figure 13-6.

Figure 13-6.  SBT downloading dependencies from the online
repositories (by default, the maven and Scala ones)

Think of that stuff as the initialization process of SBT. Comparing

this to the previous response of SBT, which you got when you didn’t have

build.sbt in your folder, this one is quite different and verbose.

If you sift through this output, you will find that SBT is downloading

myriad JAR files and, as it is downloading them, it’s marking them as

SUCCESSFUL. Basically, it’s downloading all the required dependencies

from the default repositories (maven is generally the default repository for

SBT). You still may have some questions at this stage, but hold them for a

moment and proceed to the next steps.

Chapter 13 Building and Packaging

232

After it has downloaded all that it needs to download and the process

is complete, you will be presented with a shell, like the one shown in

Figure 13-7.

Figure 13-7.  The SBT shell

This is the SBT shell. This is not the Scala REPL shell. So if you’ll start

typing Scala commands, you will face disappointment.

This SBT shell can accept SBT-specific commands. We’ll use some of

these in a while. But to get a feeling, try typing help and it will display all

the commands that you can issue here. Similarly, type about and it will

display some information as well. It may come as a surprise to you, but

you can use the Scala shell/REPL here as well in this context. To do so, type

console in the SBT shell and it will launch the good old Scala REPL for

you. Upon launching the console the first time, it will also download any

required dependencies as specified in the SBT file. Why you would do that

will become clearer sooner. See the example in Figure 13-8.

Chapter 13 Building and Packaging

233

So let’s dial back and understand what we actually did:

•	 You created the build.sbt file and in that build.sbt

file, you specified some properties. Mainly, with the

following content that you used in build.sbt:

name := "HelloWorld"

version := "1.0"

scalaVersion := "2.12.0"

What you meant was—my project’s name is going to be HelloWorld.

The same project name appeared in the SBT shell as well.

•	 The project’s version is 1.0. This is for your own

reference. Generally you use it when you compile JARs

and you can use this property to indicate different

versions of JAR.

•	 Most importantly, you declared a version of Scala.

You said that you want to use version 2.12.0 of Scala.

This version can be different from the version that you

previously installed in your system. Think of this as an

independent environment where you can run different

versions of Scala and it won’t interfere with your

installed version. This is a great facility if you want to

test library compatibility. Some libraries are available

Figure 13-8.  Launching the Scala shell from within SBT

Chapter 13 Building and Packaging

234

for a specific version of Scala and you can control the

behavior using this feature.

•	 This Scala version is a dependency. You didn’t define

any additional library or module. You just said that you

want a particular version of Scala for your project

(the space in your directory is like a project).

•	 With the build.sbt file created, when you triggered

SBT, SBT identified which dependency you mentioned

in build.sbt, which was Scala 2.12.0, and it started

downloading this dependency from the Internet.

Generally, a dependency may depend on other libraries

and those libraries may in turn depend on others, so it’s

like a chain reaction. It’s the job of SBT to track all those,

download them, and make them available to you. That’s

what happened when you saw a lot of verbose output upon

entering the sbt command at the Command Prompt.

•	 Once it was done, it launched the SBT shell, which you can

use for a number of tasks. But you specifically launched the

console, which launched Scala REPL. Did you notice the

Scala version when you launched the console?

The image in Figure 13-9 is for your reference.

Figure 13-9.  Highlighting the Scala version in the Scala shell
launched via SBT

Chapter 13 Building and Packaging

235

Can you spot Scala 2.12.0 in Figure 13-9? That’s because you

mentioned that in build.sbt. Thus, it managed this dependency and

provisioned it for your use. Coolness, isn’t it?

�Managing Dependencies Using SBT

Before we revert to our original goal, let’s take a look at one more aspect.

With the console opened, issue the following command:

import spray.json._

You will be greeted with an error, as shown in Figure 13-10. What

happened? You tried to import a library that was not available in your

project and Scala was not able to find it.

Let’s say that you want this library in your project. By default, it won’t

be available for your use. This is where SBT can come to your rescue.

Go to the maven repository and type spray json in the search box, as

shown in Figure 13-11.

Figure 13-10.  Importing a library in your Scala session

Figure 13-11.  Searching for your library in the maven repository

Chapter 13 Building and Packaging

236

In the displayed search results, select Spray JSON. It will take you to the

page shown in Figure 13-12.

Figure 13-12.  Different versions of the library available on the
maven repo

The versions of this library along with Scala versions are highlighted.

Which Scala version did you specify in your build.sbt file? It was 2.12.0 so

look for the library’s version corresponding to this Scala version and select

it. There can be overlaps (e.g., 1.3.3, 1.3.4, 1.3.5 all support Scala 2.12).

You can choose any of them. Generally, the most recent versions are good

and stable (but not always though), so pick any one of them for now. As

an example, I picked 1.3.4 and clicked on that. It will take you to the page

shown in Figure 13-13.

Chapter 13 Building and Packaging

237

On this page, I want you to focus on the section where Maven, Gradle,

and SBT are written. All of these are build tools. Maven and Gradle are

generally used with Java. SBT is used with Scala, although they can be used

interchangeably as well. I selected the SBT tab there and it displayed this text:

// https://mvnrepository.com/artifact/io.spray/spray-json

libraryDependencies += "io.spray" %% "spray-json" % "1.3.4"

As you can gather, the first line is a comment. Now copy this into your

original build.sbt file. Exit the SBT shell prior to that please.

Now my build.sbt file looks like Figure 13-14.

Figure 13-13.  Specific version of a library on the maven repo, which
also highlights how to highlight this as a dependency in different
build tools

Chapter 13 Building and Packaging

238

As you can see, I just copy and pasted the libraryDependencies

from maven into build.sbt. What I am trying to do is define this as a

dependency. I need this library in my project, thus I defined it in my

build.sbt and the idea is that when I launch SBT next time, it should

manage and provision the dependency for my use. Let’s see.

Now when I launch sbt and issue console for instance and try to

import this library, it works like a charm, as highlighted in Figure 13-15.

Figure 13-14.  View of the build.sbt file after adding spray JSON as a
dependency

Figure 13-15.  Successfully importing a library in a Scala session after
it’s managed in the build.sbt file

Chapter 13 Building and Packaging

239

It actually downloaded the Spray JSON JAR from Maven for us. Why?

Because we specified it as a dependency for our project and it obediently

grabbed it and provisioned it for us.

This is how you manage dependencies via SBT.

�Creating an Executable Scala Application Using SBT

Armed with this knowledge, let’s revert to our original goal—creating an

executable JAR in Scala.

We will approach that problem in two phases: First, we will understand

what it entails to create an executable application and then we’ll see how

we can package that in the form of a JAR (along with highlighting issues

relating to creating Fat JARs).

Let’s start simple, yeah? Create a new file in the same folder, put the

following content in it, and then save it as HelloWorld.scala.

println("hello world")

Then relaunch sbt in the same folder (you can still issue the run

command without relaunching SBT). Once it’s launched, type run there.

Once it’s done, you will encounter the error shown in Figure 13-16.

Figure 13-16.  Running an executable Scala application that isn’t
structured properly

Chapter 13 Building and Packaging

240

So clearly this doesn’t work. Here’s what you tried to do:

•	 Create an executable Scala application that you can run

via SBT. You tried to print Hello World on the screen

(which you could do without any issues in the Scala

shell) and when you tried to run this, it failed in SBT.

•	 This is because when you want an application to be

executable, you have to structure it accordingly. If

you go through the error message in this figure, you

will find that it says that it “expected class or object

definition”.

So, how can you write programs that are executable or runnable? To do

so, you need three things:

•	 An object definition (a singleton object)

•	 A main function with a specific signature

•	 The body that you want to be executed within the main

function

Here’s how you do this:

object HelloWorld {

 def main(args:Array[String]):Unit = {

 println("hello world")

 }

}

Pay special attention to the main function. It has to be like this. It has to

be called main. It should accept the parameter of type Array[String] and

it should return Unit. If you don’t follow these steps exactly, you will run

into errors.

Chapter 13 Building and Packaging

241

When you write your program in this way and ask SBT to run, the SBT

process will look for an object with the main function that matches the

signature. Once it’s found, it will mark the entry point of your program

execution and your program will start executing from there. Your program

will become executable.

Now save the file with this code and type run in the SBT shell. Figure 13-17

shows what happens.

Figure 13-17.  Successfully executing a runnable/executable Scala
application

Success! You were able to successfully display Hello World via an

executable Scala application. Executable means that your program has an

object with the main method, as this serves as an entry point when you

run/execute the program. Kudos.

�Using the Scala App Trait for Executable Scala
Applications

Scala, being a stylish language by all means, provides another way to make

your objects executable. You can do so by extending App in your object.

It’s an OOP concept whereby you make your object inherit from the App

trait. But for your understanding, you can think of this as another way to

Chapter 13 Building and Packaging

242

make your Scala program executable and you can avoid defining the main

function like before.

Here’s an example:

object HelloWorld extends App{

 println("hello world")

}

Go ahead and try running it in SBT. It should work and everything in

the HelloWorld object will run.

�Maven Folder Structure for Scala Applications
Maven is a repository. We all know by now. But maven is also a build tool

for Java (and for Scala). When developers use maven, they create a specific

folder structure and put their code in those folders. SBT also tends to

prefer such folder structure as well. This becomes important when you

want to organize your classes files in the form of packages (especially in

Java, but Scala is still lenient in this context) and when you want to run unit

test cases.

Generally, the following folder structure is preferred:

project

 build.sbt

 src

 main

 scala

 com

 irfan

 elahi

 HelloWorld

 HelloFacebook

 resources

Chapter 13 Building and Packaging

243

 lib

 test

 scala

 com

 irfan

 elahi

 HelloWorldSpec

 HelloFacebookSpec

 resources

As you can see, the code is placed in the project/src/main/scala

directory. If you want to structure your classes in the form of packages, by

convention a folder is created for each coordinate of the package (e.g., for

package com.irfan.elahi, three folders will be created—com, irfan,

and elahi). Just a note that this is not a strict requirement for Scala and

is more of a convention.

The resources folder is used if you want to include files in the main

JAR. In the lib folder, you can put JARs as well, which will automatically be

added to your classpath.

Now equipped with this knowledge, let’s create the directory structure

and put our HelloWorld class in the com.irfan.elahi package.

As per the proposed folder structure, here’s how my environment looks:

Figure 13-18.  Example of folder structure for a Scala project
highlighting the usage of package (com.irfan.elahi)

Chapter 13 Building and Packaging

244

I’ve modified HelloWorld.scala as follows:

package com.irfan.elahi

object HelloWorld extends App{

 println("hello world")

}

Upon running it in the SBT shell, it works fine, as shown in Figure 13-19.

Figure 13-19.  Successfully executing a Scala application structured
as per the maven folder structure

Also notice that when I run in SBT, it says it’s running com.irfan.

elahi.HelloWorld. Thus it has identified my package and the naming

hierarchy of my package correctly.

�Creating Multiple Classes in Your Scala
Application and Using Them
Let’s do one more thing. Let’s create another class and use its function in

our main class.

In your existing project, create another file named GreetWorld.scala

and put the following content in it:

Chapter 13 Building and Packaging

245

package com.irfan.elahi

object GreetWorld {

 def printMessage(theMessage:String):Unit = {

 println(s"${theMessage} from Irfan Elahi")

 }

}

Alter your HelloWorld.scala so that it contains the following code:

package com.irfan.elahi

import com.irfan.elahi.GreetWorld

object HelloWorld extends App {

 GreetWorld.printMessage("Hello Awesome World")

}

Then issue the run command in the SBT shell. You should get the

output shown in Figure 13-20. Let’s try that first and then look at what’s

happening in the code snippets.

Figure 13-20.  Running a Scala application with multiple classes in a
package

As you can see in Figure 13-20, the code runs successfully (with a few

warnings that I’ll address next).

Chapter 13 Building and Packaging

246

Here’s what we achieved in these code snippets:

•	 We created two classes in our project (HelloWorld.

scala and GreetWorld.scala).

•	 We made HelloWorld.scala an executable class (by

extending App) in our object.

•	 We made both the classes belong to the same package,

called com.irfan.elahi.

•	 In the GreetWorld.scala file, we created a singleton

object and defined a function that takes a String

argument and returns Unit. In the body, the function

uses the passed parameter and displays a custom

message on the screen.

•	 We imported that object into HelloWorld.scala and

called that object and its function

•	 And then we ran it.

You should now see:

•	 How you can create class files in your project and group

them under one package.

•	 How you can use elements of one class in another.

•	 How you can create an executable application.

Pretty cool, isn’t it? All of the Scala applications, no matter how

complex and including Apache Spark ones, are based on this foundational

notion. You create classes and use them in one another to achieve the

desired goal. This fosters modularity and reusability of code.

Chapter 13 Building and Packaging

247

Note  Just a callout that we got warnings when we ran the code in
SBT. Those warnings were due to the import statement that we used
in our HelloWorld.scala and it’s because the usage is redundant in
this context. I added that to make the concept of importing classes to
your programs easier to understand. Both of the classes belong to the
same package and exist at the same hierarchy—com.irfan.elahi—
thus, in such scenarios, you don’t need to explicitly import them.

�Compiling Your Scala Applications
At times, you’ll want to ensure that there are no syntax errors or any type-

related errors in your code. These and many other types of errors can

be checked at compile time. Compilation is another step in the overall

development lifecycle that, among other things, can be used to quickly

perform syntax checks on your code. It takes your .scala files, checks for

any errors, and then converts them into Java bytecode files (.class files),

which are then used in later stages to run your applications. When you

run your code via SBT, compilation also happens. At times when you don’t

want to run the code (or your package may not have any executable class at

all), the compile function helps.

So how do you compile your code via SBT? It’s quite straightforward.

Just type compile in the SBT and it will result in the compilation of your

code, as shown in Figure 13-21.

Figure 13-21.  Compiling a Scala application

Chapter 13 Building and Packaging

248

�Packaging Scala Applications in the Form
of JARs
So far you have learned how to structure your Scala application in the

form of folders, packages, and classes and how to compile and run your

code using SBT. But if you want to ship your code for execution, you need

the code to be packaged. For instance, when you download and install

software on the Windows operating system, it’s packaged in the form an

.exe file that you can use. Such a notion exists in Scala applications as well

and Scala applications are generally packaged in the form of JAR files.

On a similar note, when you write Apache Spark programs using

its APIs in Scala, you will package your applications in the form of JAR

files and will run them on the cluster, which refers to multiple computer

systems/servers configured in a way to run distributed processing

workloads on them.

So how do you generate JAR files from your Scala code? That’s where

SBT comes to the rescue again! Just like the commands you used before—

like run and compile—there is another command, called package, that you

can use to package your Scala applications in the form of JAR files. When

you run the package command, it compiles it as well so you don’t need to

separately run the compile command prior to package.

Refer to Figure 13-22 for further clarity.

Figure 13-22.  Packaging a Scala application in the form of a JAR

Chapter 13 Building and Packaging

249

After you issue this command, SBT will package your code in the form

of a JAR and it will be deployed in the following folder in your project:

Project_folder\target\scala-2.12\helloworld_2.12-1.0.jar

The exact folder names and class names can vary depending on the

version of Scala that you specified in SBT, the name of your project, and the

version of your project, but it will be in this same hierarchy.

Once you have the JAR, you can execute using the following command

outside of SBT:

scala <location_of_jar_file>

Refer to Figure 13-23.

Figure 13-23.  Running a packaged JAR file

Once it’s done, the the program will start execution from the class

where you used the main function (or extended the App trait).

�Transitioning to an IDE
You’ve taken a long journey so far. You’ve learned about Scala, the Scala

REPL, and then graduated to using SBT to run your Scala applications. But

the road to excellence still lies ahead.

You need to align yourself to the practices of professional developers.

If you do so, your productivity will be significantly boosted. There will be a

small learning curve, but it’s all worth it. So which tools do the professional

developers use for their development? You will often hear the term IDE

from them, which stands for Integrated Development Environment.

It’s software where developers write their code and use for a number of

Chapter 13 Building and Packaging

250

reasons. The IDE provides syntax checking, highlighting, type-checking,

dependency management, and build, compile, and unit test execution, all

within one platform. So it significantly improves productivity.

First, you wrote your code in Scala REPL and then in a text editor and

now is the time to start using an IDE.

Every language has its go-to IDEs that are considered the de facto ones.

For .NET development, it’s Visual Studio. For Python, it’s PyCharm (though

this is purely subjective and preference can vary from one person to another).

For Java and Scala, it’s IntelliJ IDEA (many developers also love Eclipse a lot,

but I prefer IntelliJ IDEA). Again, it’s a matter of personal preference.

So in this chapter and from now on, we will pivot to IntelliJ.

�Installing IntelliJ IDEA

Before you can use IntelliJ, you need to download and install it. To do so,

go to this website:

https://www.jetbrains.com/idea/download/

You will find a page similar to Figure 13-24.

Figure 13-24.  Downloading IntelliJ

Chapter 13 Building and Packaging

https://www.jetbrains.com/idea/download/

251

You will find two options to download IntelliJ IDEA. For many

purposes, the Community Edition works fine and is free. So just download

the Community Edition for now.

Once it’s downloaded, install it. The installation process will be a no

brainer. Once it’s installed, launch IntelliJ.

When you launch IntelliJ IDEA, you will see something like what’s

shown in Figure 13-25.

Figure 13-25.  Launch screen of IntelliJ IDEA

Chapter 13 Building and Packaging

252

�IntelliJ IDEA Plugins Installation

When you install IntelliJ IDEA, it doesn’t come with much functionality

that is required for Scala development. You therefore need to install a set of

plugins. At a bare minimum for Scala development, you need the following

two plugins:

•	 Scala

•	 SBT

You can install the plugins by selecting Plugins, as shown in Figure 13-25,

and then typing the required plugin names in the search box. Then you

install them, as shown in Figure 13-26.

Figure 13-26.  Installing plugins in IntelliJ IDEA

As you install plugins, it will probably ask you to restart IntelliJ IDEA.

Please do so.

Chapter 13 Building and Packaging

253

�Importing a Project in IntelliJ IDEA
You have already been working on a project in this chapter where you

created two classes (HelloWorld and GreetWorld) and compiled and

executed them via the SBT shell.

Let’s import that project and do the same in IntelliJ IDEA.

	 1.	 Launch IntelliJ and click Import Project (refer back

to Figure 13-25).

	 2.	 Navigate to the directory in the IntelliJ IDEA wizard

where your project exists.

	 3.	 Click Next and then select Import Project From

External Model. Select sbt, as shown in Figure 13-27.

Figure 13-27.  Selecting SBT in IntelliJ IDEA

Chapter 13 Building and Packaging

254

	 4.	 In the next screen, ensure that JDK is selected. If not,

click New and navigate to the directory where you

installed JDK on your system.

	 5.	 Also, click the Global SBT settings and then the

select Custom in Launcher (sbt-launch.jar)

section. Navigate to the directory where you

installed SBT. In that directory, go to bin and

select sbt-launch.jar. You can use bundled SBT

that comes with IntelliJ but it helps to use the

one that’s installed in your system. This helps

when you have done some configurations in

your installed SBT (e.g., proxy settings). Refer to

Figure 13-28.

Chapter 13 Building and Packaging

255

	 6.	 Click Finish.

Once it’s done, allow IntelliJ IDEA to finish the import. At this time, it

will parse the build.sbt file and download any dependencies that weren’t

downloaded before (by the way, when the dependencies are downloaded,

they exist on your system and are managed by Apache Ivy).

Once IntelliJ IDEA has done its work and imported all the

dependencies, you can do the development in this environment.

Figure 13-29 shows a view of that state.

Figure 13-28.  Configuring JDK and SBT in IntelliJ IDEA

Chapter 13 Building and Packaging

256

As you can see in Figure 13-29:

•	 The left pane shows the directory structure of your

project.

•	 The right pane shows the contents of the files that you

selected in the left pane. I selected HelloWorld.scala

and it’s displayed there.

You can also see that it has beautifully highlighted the syntax in the

right pane. Each keyword in your code is highlighted with a color (e.g., the

object and extends keywords).

It also highlights when something is wrong. For instance, as mentioned,

the import command is redundant and it has been highlighted in gray and

is underlined. Similarly, if you make any mistakes, it will show in real time

what you are doing, which really helps achieve prompt troubleshooting.

It also shows which elements are available in classes that you are using.

For example, refer to Figure 13-30.

Figure 13-29.  View of IntelliJ IDEA after it has successfully imported
a project

Chapter 13 Building and Packaging

257

As you can see in Figure 13-30, it shows that printMessage function

is available in the GreetWorld object and shows which parameters this

function accepts and the value it returns. Pretty handy!

Now let’s run our Scala application. You can do so from within IntelliJ

IDEA. Right-click the class that you want to run (in this case, HelloWorld.

scala) from the left pane and then click Run ’HelloWorld’, as shown in

Figure 13-31.

Figure 13-30.  Highlighting elements of classes/objects

Chapter 13 Building and Packaging

258

As you click that, it will start the whole process (compile and run) at

the back end and will show the output at the bottom of IntelliJ IDEA, as

shown in Figure 13-32.

Figure 13-31.  Running an application from within IntelliJ IDEA

Chapter 13 Building and Packaging

259

Since IntelliJ IDEA is a sophisticated tool with a lot of amazing features,

I can’t possibly cover everything. But it’s a great idea to familiarize yourself

as much as possible with its features and learn how you can use them to

enhance your productivity.

In this chapter, we covered a lot. You started using SBT for different

tasks like compile, run, and package and you learned how to structure

your Scala applications and how to use IntelliJ IDEA to supercharge your

development efforts. This lays a substantial foundation for the upcoming

chapter, where we use Apache Spark while employing all the concepts

we’ve learned so far! Exciting times!

Figure 13-32.  Running an application in IntelliJ IDEA

Chapter 13 Building and Packaging

260

EXERCISES

•	 Create a new project in IntelliJ IDEA instead of importing one.

•	 Install SBT in a Linux machine and use it.

•	 Figure out how to change the configurations of SBT. For example,

if you are behind a network proxy, how do you specify those

settings in SBT, how do you change the heap size of SBT, etc.

•	 Find out the meaning of “uber” or “Fat” JAR.

•	 Understand the different constructs of build.sbt and how to

include different repositories.

•	 Figure out how to specify multiple dependencies in build.sbt.

•	 Figure out how to define multiple projects in build.sbt and

how to structure your folders accordingly. Also, how do you

selectively build/package individual projects in SBT.

•	 Use maven to build Scala code instead of SBT. Understand the

differences between the two.

•	 Instead of specifying the required dependencies in build.sbt,

find alternative ways to provide those dependencies for your

project. (Hint: It involves putting JAR files in your project’s folder.)

•	 Figure out how to launch the Scala shell and add different JARs

to its classpath.

Chapter 13 Building and Packaging

261© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2_14

CHAPTER 14

Hello Apache Spark
Doesn’t it feel good when you are in the vicinity of your envisioned and

cherished destination? When you see in retrospect that you’ve been

through a long journey and the milestone that you once dreamed of is

in your reach? You must have the same feeling as you start this chapter,

because this last chapter of the book is all about how you can put the

concepts you’ve learned into practice and work on Big Data analytics and

Apache Spark. So buckle up as it’s going to be an exciting ride!

I’ve referred to Apache Spark again and again in this book. I shed some

light to some extent on this technology in the first chapter of the book. But

let’s formally develop some basic understanding of Apache Spark and then

see how you can start doing development in Scala.

�Revisiting Apache Spark
There are many ways I can explain Apache Spark and I already covered it

some in the first chapter. Let’s develop a better understanding of it.

�Distributed Computing Engine
Apache Spark is a distributed computing engine. What this means is that

Spark can run computations on multiple machines. Normally, if you

write a Scala program and run it, all the processing within the program

happens on a single machine. It’s not like multiple machines participate

in the computation. But in Spark, you have the opportunity to leverage

262

pools of machines to perform distributed computation. This is the crux

of Big Data—horizontally scaling out to multiple machines to perform

analysis on data that can’t be done in one machine. A single machine has

limits to scalability, in that you can increase processing power (CPU cores

or multiple processors) or memory (RAM) or storage (hard disk) only to

some extent. But with the horizontal scalability model, there is practically

no limit to the amount of data you can process (and store). This is where

Spark shines—when writing programs that result in execution on multiple

machines.

�Spark and Hadoop
Spark is strongly associated with Hadoop. Hadoop, as mentioned in the

first chapter, is a consortium of services that fall in different categories:

•	 Compute (Spark, MapReduce, Hive, Impala, Storm,

Flink, Samza, Drill, and Presto)

•	 Storage (HDFS, Kudu, HBase, MongoDB, Cassandra,

and Gremlin)

•	 Security (Sentry, Knox, and Ranger)

•	 Metadata Management (Hive Metastore, HCatalog,

Atlas, and Cloudera Navigator)

•	 Message Queues (Kafka, EventHub, and Kinesis)

•	 Integration (NiFi, StreamSets, and Flume)

•	 Cluster Manager (YARN and Mesos)

This list is by no means exhaustive. But you get the idea. Spark is a

compute service of Hadoop. Generally, the Hadoop ecosystem is deployed

on a cluster of machines. Some of the services run on some nodes. So is the

case with Apache Spark. As a part of cluster configuration, it’s configured

where Spark processes will run.

Chapter 14 Hello Apache Spark

263

�Spark and YARN
YARN, as you can see in the previous list, is a cluster manager. Cluster

managers play a crucial role in the overall anatomy of the cluster. In a

cluster, each machine has some compute resources (processor cores and

RAM). There has to be a component that has a broader visibility of these

compute resources and their respective status. The component should

know where to launch a particular process—on which machine—provided

that machine has resources available to accommodate those resources.

The component should know that if multiple jobs are being submitted

to the cluster, how it manages the workload—queue them or throttle the

resources consumed by each job. Also, if a distributed process is running

and if that process gets killed on a node, it should know where to spawn

that process next. All of these and many other jobs are the responsibilities

of YARN.

Like many other components, YARN has two components:

•	 Resource Manager

•	 Node Manager

The Resource Manager is a master process and the Node Managers

are like slave processes that run on multiple machines. YARN allocates

compute resources via something called a container (which is an

abstraction for compute resources). Thus, the YARN Resource Manager

launches a container on the Node Managers and it tracks the status of

containers (health, failure, etc.).

You may wonder why we are discussing YARN. It’s because in

production-grade systems, Spark is run on top of YARN. When a Spark

job runs, Spark processes run on nodes running Node Manager processes

(though this is not universally true as Databricks Spark offering doesn’t

run on YARN per se). Spark jobs get resources from YARN in the form of

containers. Understanding this will help you in the long run.

Chapter 14 Hello Apache Spark

264

�Spark Processes
Spark consists of two types of processes:

•	 Driver processes

•	 Executor processes

A Driver process runs in something called a driver JVM. Think of it as

master process for Spark. This is responsible for coordinating the flow of

Spark tasks. This is where Spark Context is initialized. There is always one

driver process per Spark application. It doesn’t participate in the distributed

processing of tasks. All of the distributed processing happens in the executor

processes. Also, when you load a file or any data in Spark, it gets partitioned

and loaded in the heap memory of the Executor processes’ JVM.

�Spark Abstractions
You may have heard the term RDD before in this book. Now is the time

to develop some understanding of what RDD is. It stands for Resilient

Distributed Datasets. The best way to understand RDD is:

•	 It is like a Scala collection in that it provides a number

of methods like map, filter, and foreach. They are

used in the same way as in a Scala collection.

•	 However, unlike Scala collections, they don’t exist on

one machine or JVM. They are partitioned. They exist

on multiple nodes (specifically executor processes that

run on YARN Node Managers).

•	 They are immutable. You know pretty well by now what

that means.

•	 They are resilient. Spark keeps track of RDD lineage—

how they were created. So if any RDD gets destroyed,

Spark knows how to recreate them.

Chapter 14 Hello Apache Spark

265

How you create RDDs? There are multiple ways. You can create them

when you load data from external systems to Spark for processing (e.g.,

filesystems, databases, and message queues). You can create them by

parallelizing Scala collections as well (which doesn’t make sense as there

is little rationale to distribute a collection that can already fit in a driver

JVM but is used for testing purposes). Or you can transform one RDD to

create others.

We’ll work with RDDs in a bit later in this chapter.

�Lazy Execution Model of Spark
One of the most interesting features of Spark is that it follows the lazy

execution model. If you invoke certain functions (called transformations)

on RDDs, the execution won’t happen right away. Rather, such

transformations are “recorded” in the form of DAGs (directed acyclic

graphs, a kind of graph that means that it doesn’t form a circular loop).

For example, if you specify the following set of transformations on an RDD:

•	 Load data from a filesystem

•	 Filter those lines that have the word “Scala” in them

•	 Split each line on a comma

•	 Count how many such rows exist

Then the first three transformations won’t result in execution. Rather

Spark will start recording those steps in the form of a graph like this:

Load Data ➤ Filter ➤ Map

As soon you issue certain methods (called actions), it will trigger

execution from the start of the stated graph, i.e., loading data from the

filesystem.

This is called the lazy execution model and Spark relies on it to perform

optimizations under the hood.

Chapter 14 Hello Apache Spark

266

I hope that this provides a very basic and foundational understanding

of Apache Spark. For deeper understanding, I suggest you research on

your own and to facilitate that further, I recommend you enroll in my best-

selling Udemy course. It will take your Apache Spark skills to the next level:

https://www.udemy.com/apache-spark-hands-on-course-big-data-

analytics/

Enough of the theory. Let’s do some actual Spark development, shall we?

First, we’ll do ad hoc Spark development and then we’ll see how to

create a Spark application that we can run on a cluster (you won’t exactly

need a cluster to follow along because we will simulate one).

�Apache Spark in Scala in Action
So how can you get your hands dirty with Apache Spark? There are so

many ways to go about it. But the quickest and free way to get started with

using Apache Spark is via:

•	 Cloudera QuickStart VM

•	 Databricks Community Edition

Both Cloudera and Databricks are commercial vendors of Hadoop.

Databricks is solely based on Apache Spark though. With the first option,

you can run a Linux VM on your Windows system that has Cloudera

Distribution of Hadoop (CDH) installed and configured in it. Spark also

comes with CDH. In there, you can launch spark-shell (or spark2-

shell), which will launch Scala Shell, with which you are quite familiar by

now. It has all the dependencies of Apache Spark preconfigured.

But if you don’t want to go through the hassle of running VM in your

system, the other option is to use Databricks. It’s free and it runs in a

browser, which means you need to be connected to the Internet to use

it. Another great feature of Databricks out of the box is that it provides

Notebooks UI, which is quite handy for ad hoc analysis.

Chapter 14 Hello Apache Spark

https://www.udemy.com/apache-spark-hands-on-course-big-data-analytics/
https://www.udemy.com/apache-spark-hands-on-course-big-data-analytics/

267

�Spark Environment Setup in Databricks
Let’s use Databricks! To do that, you need to sign up for Databricks

Community Edition. Go to the following link:

https://databricks.com/try-databricks

Refer to Figure 14-1.

Figure 14-1.  Signing up for Databricks Community Edition

Click on GET STARTED below the Community Edition and follow the

signup process. Once the signup process is complete, you will be brought

to the screen shown in Figure 14-2.

Chapter 14 Hello Apache Spark

https://databricks.com/try-databricks

268

Before you can use Apache Spark, you need to have a cluster up and

running. The Community Edition of Databricks provides such a facility.

Though the cluster that can be set up in the Community Edition is quite

minimal and single node, it will be enough to serve our requirements.

Thus, go to the Clusters option on the menu on the left side. Once

there, click the Create Cluster button. See Figure 14-3.

Figure 14-2.  Main screen of Databricks after signing in

Figure 14-3.  Cluster section of Databricks

Chapter 14 Hello Apache Spark

269

Once you click the button, it will ask you a couple of options related to

creating clusters, as shown in Figure 14-4. Specify any cluster name that

you like and select the Scala version of your choice. Then click the Create

Cluster button. It will take a minute or so for the cluster to get up and

running. You can track its status in the Clusters section.

Figure 14-4.  Cluster creation options in Databricks

Once the cluster is created, click Databricks in the left menu and click

New Notebook. It will ask for name of the notebook, which language you

want to use, and which cluster to use. Specify any name for the notebook,

choose Scala as the language, and select the cluster that you just created.

Finally, click Create. Once it’s done, it will launch a notebook for you in all

of its glory!

Refer to Figure 14-5.

Chapter 14 Hello Apache Spark

270

A notebook consists of different cells where you write your code and

the output gets displayed in the section right below the cell. You can create

cells above and below the current cell and work in a highly interactive

manner. Data scientists use notebooks a lot.

In each cell, you can write Scala expressions and press Ctrl+Enter to

execute that cell. If you press Shift+Enter, it will execute the cell and create

another cell below it.

So with that knowledge in mind, let’s do some Apache Spark

programming using Scala. You will find that the concepts that you have

learned so far will be quite handy.

Again, as this book is not about Apache Spark itself, I’ll not go into the

nitty-gritty Spark-specific details. If you want to quench your curiosity, you

can always research on your own. (Though there are a number of books on

Apache Spark, I think the one by Butch Quinto published by Apress (link:

https://www.apress.com/gp/book/9781484231463) is particularly good

as it not only covers Spark but also talks about its integration with other

Big Data technologies for different use cases. I know this because I was the

technical reviewer of that book.)

Figure 14-5.  A notebook in Databricks

Chapter 14 Hello Apache Spark

https://www.apress.com/gp/book/9781484231463

271

�Apache Spark Development in Scala
Now when you work with Apache Spark, the first thing that you do is

initialize the SparkContext object. It’s an object that provides an entry

point to the Spark cluster. This object exposes a number of functions that

you can use and via which you use the distributed computation capability

of Apache Spark. From the Scala standpoint, SparkContext is just an

object, like any other that you create from a class. The good thing about

Databricks is that when you launch notebook, the SparkContext object is

already made available to you so the overhead of creating one is removed.

However, when we’ll write our Scala applications in the next section, we’ll

actually create one.

In a Databricks notebook, as mentioned, the SparkContext object is

made available as the sc variable, as shown in Figure 14-6.

Figure 14-6.  Spark Context object

As you can see, just like in Scala REPL, it gives you in the output the

type of object as well. You can see that the sc object is of type org.apache.

spark.SparkContext.

Let’s see what elements are available in the sc object. You can do so by

typing sc. and pressing Tab. Just like in Scala REPL.

Now let’s create an RDD. As mentioned, there are multiple ways to

create RDDs. The simplest way is via the sc.parallelize method. This

method accepts a Scala collection (with which you have worked before).

This program will distribute the contents of a single node Scala collection,

which you’ve been using, to multiple nodes (though in this example, you

are working with single node cluster).

Chapter 14 Hello Apache Spark

272

So type this:

sc.parallelize(List(1,2,3,4,5,6,7,8,9,10))

and press Ctrl+Enter or Shift+Enter, as shown in Figure 14-7.

You will find that upon execution, you will get an object. That object

will be of type org.apache.spark.rdd.RDD[Int]. It’s just a type. Just like

any other types that you have worked with before.

You can assign the created RDD to an immutable variable:

val myRdd = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10))

Then you can work with this variable.

Now let’s say you want to multiply each element of the RDD by 2. How

will you do that? Before you answer, think about how will you do that if you

were operating with a list. In fact let’s start with a list and then see how we

can do that in RDD:

Here’s how you address such a problem when you are working with a list:

val aList = List(1,2,3,4,5,6,7,8,9,10)

aList.map(x=>x*2)

It should be pretty clear to you now. You used map function of list and

then used a function (x=>x*2) that operated on each element of the list

and multiplied each by 2.

How will you do that in RDD? Answer: In exactly the same way!

myRdd.map(x=>x*2)

Figure 14-7.  Using the parallelize function of Spark Context object

Chapter 14 Hello Apache Spark

273

However, as mentioned, there are two types of functions in Spark:

transformations and actions. Here you used the map function of RDD. It’s

a transformation. When you’ll execute this command, you won’t see any

output. In fact, Spark hasn’t executed anything owing to its lazy execution

model. So how do you trigger execution? You use an action. One of the

actions is collect, which returns all the elements of an RDD to the

driver JVM. (It’s highly recommended to not use collect when you are

working with large-scale datasets because doing so will cause all executor

processes to return their part of RDD data to the driver program and thus it

will cause memory overflow problems for the driver program. (This is not

just because you are currently using the Community Edition of Databricks.

It’s a general issue that can appear because the driver program is a single

JVM process with limited memory so if you try to bring data from multiple

executor JVM processes into a single JVM, it’s bound to experience

memory overflow problems.)

As we are working with a very small dataset, it’s safe to use it for now.

Developers tend to use collect because doing so converts RDD to Scala

collections (localized in the driver JVM) with which they are already

familiar. However, you can (and should) use Spark’s functions like map,

filter, etc. to do any type of required transformation and you will be

reaping the benefits of distributed computing while doing so.

Thus, when you use collect, you get the output as follows:

myRdd.map(x=>x*2).collect()

Refer to Figure 14-8.

Figure 14-8.  Using the collect() action on RDD

Chapter 14 Hello Apache Spark

274

And there you have it. You can use the same logic whether you are

operating on a small dataset or a massive dataset comprised of billions of

records. If you use this process, it will distribute the processing on a cluster

of machines for you. Spark takes away all of those complexities and presents

a very simple RDD API model that significantly resembles Scala collections.

Similarly, you can use the filter function on the RDDs. Let’s filter just

the even numbers from the list. Also, let’s define a function that does the

job as well to see that your concepts about functions will work perfectly

fine here too:

def giveEvens(givenNumber:Int):Boolean = {

 givenNumber%2 == 0

}

myRdd.filter(x=>giveEvens(x)).collect()

This is shown in Figure 14-9.

Figure 14-9.  Using a function in Spark’s filter transformation

Chapter 14 Hello Apache Spark

275

There you go! Here’s a quick recap of what you did:

•	 You defined a function that takes an integer number as

an argument and checks if its modulus by 2 is zero (i.e.,

when divided by 2, whether the remainder is zero).

•	 You used the filter function of RDDs and used that

function there. Filter is also a transformation so to

actually trigger execution and to get results, you used

the collect() action, which caused Spark to perform

the processing and return the results (in this case, a list

of even numbers).

You can chain the operations together instead of writing them

separately in each expression:

myRdd.filter(x=>giveEvens(x)).map(x=>x*2)

You can also seamlessly use collection functions on the results that

get returned when you use the collect() action. The collect() function

returns the contents of RDD as an array and thus you can use the foreach

function of arrays to further do any processing on them (such as print them):

myRdd.filter(x=>giveEvens(x)).map(x=>x*2).collect().foreach(println)

Note that foreach in this context is used on Array and not on RDDs.

Many RDD functions and collections functions have the same name, so it’s

important to be aware of the context in which you are using them.

EXERCISES

Explore available transformations and actions of Apache Spark RDD APIs.

For example, transformations: foreach, reduce and zipWithIndex and

actions: collect, action, take, and first. Use them in your code. You can

use them without any barrier. You have all the required knowledge of Scala

and Spark to do that. So trust yourself and do that.

Chapter 14 Hello Apache Spark

276

�Converting an RDD to a Dataframe
Apache Spark programming itself deserves its own book, but I wanted

to cover another related concept where you’ll see the use of case classes

in action as well. So far you have used RDDs of Apache Spark. RDDs

are the fundamental data abstraction of Apache Spark and they provide

collections like interfaces. But many times when you are interacting

with structured or tabular data, Spark provides another abstraction that

facilitates the processing logic significantly: the dataframe.

If you have used Python’s pandas or R, the similar notion of dataframe

data structure exists and it resembles a table. A dataframe consists of rows

and columns and each column has a name and type. This data structure

provides its own set of functions, which are optimally suited for relational

data processing. You can select a few columns, create new columns, join

two dataframes, filter certain rows, or apply a function to one or more

columns. As per Apache Spark, the direction is to emphasize dataframes

and that’s the reason that Spark Machine Learning libraries and Spark

streaming libraries are now tailored to use Spark SQL dataframes. Both of

them had RDD APIs as well, but the trend is going in favor of the Spark SQL

dataframe.

If you have an RDD, you can convert it to dataframe. You can create a

dataframe a number of ways, including by loading CSV, JSON, XML, and

Parquet files into Spark, and reading from databases, to name two. But to

emphasize the use of case classes and to connect the dots, I’ll show the

method where you convert an RDD to dataframe while using case classes.

This method is called Schema reflection in the Apache Spark literature.

�Uploading Data to Databricks
First, let’s create a small CSV file and upload it to Databricks. We’ll use that

as an example. This example resembles a lot of real-world scenarios in

which you get data in the form of files and process them in Apache Spark.

Chapter 14 Hello Apache Spark

277

In your local system, create a simple CSV file (I called it sample_file.

csv) in a text editor of your choice and write a few records, as follows:

1,irfan,scala,pakistan

2,mark,java,usa

3,ehsan,python,portugal

4,arslan,java,pakistan

It’s a simple CSV file (i.e., each field is delimited or separated by a

comma) that has four rows and four columns in it.

Let’s upload sample_file.csv to Databricks. To do so, click Data in the

left menu and then click Add Data, as shown in Figure 14-10.

Figure 14-10.  Uploading data on Databricks

Chapter 14 Hello Apache Spark

278

Once you’re done, click on Browse, as shown in Figure 14-11.

Figure 14-11.  The Browse option for file to be uploaded on Databricks

Select the file from your local filesystem. Once it is uploaded, it will

look like Figure 14-12.

Chapter 14 Hello Apache Spark

279

Note the location where the file is uploaded (/FileStore/tables/

simple_file.csv in this case) and create a new notebook.

�Converting an RDD to a Dataframe
You first need to load the data in Apache Spark so that you can perform

some analysis on it. In Spark, there are many ways to do that, but let’s try

the following way:

val myData = sc.textFile("/FileStore/tables/simple_file.csv")

Figure 14-12.  Successfully uploading a file on Databricks

Chapter 14 Hello Apache Spark

280

What this will do is load the contents of the text file in an RDD. As you

can see, we used sc (SparkContext) here. We used its function (.textFile)

and passed a String argument to it (representing the path of the file that

you just uploaded). Try to understand the syntax in the way I explained

previously and everything will make sense. Using this function, you will get

an RDD. Just like each list has a type (representing the type of elements it

holds), so is the case with RDD. When you use the sc.textFile function,

you get RDD[String], i.e., the RDD of type String.

Now let’s create a case class that will represent the schema or structure of our

dataframe. We need to define the name and type of each column. You already

know how to create case classes, and the same concept will be applicable here:

case class DataSchema(id:Int, name:String, language:String,

country:String)

I defined a case class with the name DataSchema and defined four

attributes in it, which represent the schema of my file in this context.

You need to process your RDD. Your RDD is currently an RDD[String],

i.e., each element is a string. You need to split each String element into

Array[String] by splitting on the comma , character. Wherever it finds a

comma, it will split the String. You have already used these functions.

You can do that by using RDD’s map transformation, which will look

exactly the same as the collection’s map function:

myData.map(x=>x.split(","))

Then you need to convert each Array[String] element to a

DataSchema object. You’ve done this same activity before as well. Here’s

how you’ll do it in one go:

val myDF = myData.map(x=>x.split(",")).map(x=>DataSchema(x(0).toInt,

 x(1),

 x(2),

 x(3)

)).toDF

Chapter 14 Hello Apache Spark

281

In this code in the second map, you mapped each component of each

Array[String] to a corresponding case class attribute. Note that you had

to type-cast x(0) to Int because that represents the id attribute of the

case class, which is Integer. After you’ve done it all, you just need to call

the .toDF function. As soon as you do, you’ll see Spark SQL’s powerful

dataframe in action! Be sure to save it in a variable as we did in the

previous step.

�Using the Spark SQL Dataframe API

Let’s play around with that dataframe. You can select columns of your dataframe

using the .select method and passing in a column name as String (there

is another possible variation in the arguments as well but let’s park it):

myDF.select("id").show()

Refer to Figure 14-13.

Figure 14-13.  Using the Select function of the Spark SQL dataframe

Chapter 14 Hello Apache Spark

282

As you can see, we used the .show() function here to display the

output to the screen. For dataframes, it’s an action and you know what an

action does.

You can filter rows of this dataframe based on the condition of your

choice:

myDF.filter("language == 'java'").show()

Refer to Figure 14-14.

Figure 14-14.  Using the filter function of the Spark SQL dataframe

As you can see, its APIs are quite intuitive and simple in structure.

Before we conclude, let me highlight another cool feature of Apache

Spark. If you know SQL, you may know already that this is one of the most

heavily used languages for data analysis and is generally the standard

language for querying relational databases. It’s a declarative language,

which allows you to express your intent and let the system figure how to

execute it. It’s for this reason that many business intelligence and data

analysts use it a lot, as they don’t need to learn and use programming

languages to explicitly define the logic to do the processing.

Chapter 14 Hello Apache Spark

283

�Running SQL Queries Against Spark SQL Dataframes

If you have a Spark SQL dataframe, you can, to everyone’s amazement, run

SQL queries against it! It’s a highly powerful feature of Apache Spark and

is one of the main drivers of its massive adoption in enterprises all around

the world.

From the Scala standpoint, you need to use another object, called spark

(which is a SparkSession object), and use its .sql function to pass SQL

queries as strings. Before that, you need to issue another function that registers

that dataframe as a table (and that table exists just within that session).

myDF.createOrReplaceTempView("df_temp")

So with this function, you created an alias of your dataframe that can

be queried via SQL.

Next, use the spark.sql function to issue queries against this table:

spark.sql("select * from df_temp where country = 'pakistan'").show()

Refer to Figure 14-15.

Figure 14-15.  Using SQL commands against the Spark SQL dataframe

Chapter 14 Hello Apache Spark

284

I’ll conclude this section at this point. So far, you’ve developed some

exposure of some APIs available in Apache Spark (RDD and dataframe)

and were able to use their respective functions to perform Big Data

analytics. Let me reiterate: the same logic and constructs are used whether

you are using a single node or multi-node cluster or operating on smaller

or larger datasets.

Now let’s look at how you can use the concepts related to SBT and OOP

to create a Spark Application that you can run in a cluster.

�Creating Spark Applications Using SBT
Just like creating any other Scala applications, the workflow of creating

Spark application is almost the same:

	 1.	 You structure your project’s folder as per maven

standards (having code in src/main/scala folders

and test cases in src/test/scala).

	 2.	 You use build.sbt and define dependencies

(in this case, you define Apache Spark related

dependencies).

	 3.	 You use SBT to package the code in the form of a JAR.

However, there are some caveats and I’ll highlight them as we go along.

�Creating a New Project in IntelliJ IDEA
Let’s get started:

	 1.	 Launch IntelliJ IDEA and choose New Project.

	 2.	 Select Scala on the left and SBT in the right pane, as

shown in Figure 14-16.

Chapter 14 Hello Apache Spark

285

	 3.	 Fill out the project-related details like name and

location of the project directory. Ensure that JDK is

selected. For this project, choose 2.11.8 as the Scala

version. For SBT, you can choose 0.13.18 or later and

click Finish, as shown in Figure 14-17.

Figure 14-16.  Creating a new project in IntelliJ IDEA

Chapter 14 Hello Apache Spark

286

Once it’s done, IntelliJ IDEA will do its stuff and grab and manage

all the dependencies relevant to your project (mainly SBT and Scala

at this stage). So give IntelliJ some time and track its activity in the

bottom-most bar.

Once it has done its work, you will find that it has created all the

required directories for you, even build.sbt! Cool.

�Managing SBT Plugins for Uber JARs
Let’s double-click build.sbt and then populate it as per our requirements

of dependencies. Before that, just a callout that you need to manage an

SBT plugin so that you get Uber or Fat JARs. Remember these terms in

the previous chapter? What they basically mean is that you want to create

a JAR that contains all the dependencies that you highlight in build.

sbt. You want them to be packaged in that JAR and, as you stuff those

Figure 14-17.  Scala project details in IntelliJ IDEA

Chapter 14 Hello Apache Spark

287

dependencies in that JAR, your JAR becomes “Fat” or “Uber”. It’s a reliable

way to manage dependencies, although it results in somewhat bulky JARs

in terms of size.

The other option is that you manage the dependencies in the

environment where you are working, i.e., you configure the Java classpath

and Spark so that your program can find the dependencies for you during

runtime. This approach can be risky, as not all platforms can be configured

per your expectations. Thus I generally rely on building Uber JARs to avoid

such surprises.

To do that, you add the SBT Assembly plugin to your project. Adding

that is pretty easy. Just create a new file in the project folder in your

working directory and call it assembly.sbt. Then populate it with the

following content:

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.9")

That’s it. You’ve added the required plugin that will allow you to build

Fat JARs having all dependencies within it.

�Managing Apache Spark Dependencies in SBT
Next, you need to specify Apache Spark as dependencies in the build.sbt

file. The concept is the same as in the previous chapter. However, as Spark is

deeply integrated with Hadoop, the dependencies list can vary depending

on what you intend to do (e.g., if you want to integrate with HDFS and Hive,

then you will have to include those dependencies as well). I’ll keep matters

simple here, so the content of build.sbt will look like this:

name := "HelloWorldSpark"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies ++= Seq(

Chapter 14 Hello Apache Spark

288

 "org.apache.spark" %% "spark-core" % "2.4.1",

 "org.apache.spark" %% "spark-sql" % "2.4.1"

)

assemblyJarName in assembly := "hello_spark.jar"

assemblyMergeStrategy in assembly := {

 case PathList("META-INF", "MANIFEST.MF") => MergeStrategy.discard

 case x => MergeStrategy.first

}

Most of the constructs in build.sbt should look familiar. There are few

quirks however:

•	 Instead of specifying library dependencies individually,

I’ve created a Seq() or collection of them and specified

them as a command-separated list.

•	 I’ve also added the assemblyJarName section, which is

related to the SBT assembly plugin. The JAR that will be

created when you’ll do the packaging should have this name.

•	 Then you have the assemblyMergeStrategy section,

which is also related to the SBT assembly package. This

section is about managing conflicts if two classes have

the same name. If that happens, you can instruct SBT

assembly plugins how to handle conflicting classes.

There are various merge strategies. For example, if such

conflicts happen, you can discard, pick one, and so on.

Go through the SBT assembly plugin’s page to develop

a better understanding of this. At this stage, it suffices to

say that you are using SBT assembly plugin’s construct

and have specified merged strategies. These conflicts

do appear and that’s why I’ve added them to avoid any

issues if you are reproducing this project on your end.

Chapter 14 Hello Apache Spark

289

Now with build.sbt created and populated, you will find that IntelliJ

will again do some processing and will download and index the required

dependencies for you. Let it do its work.

�Spark Application Code
After that, create a new Scala file in IntelliJ and call it HelloWorldSpark.

scala. Populate it with the following content:

import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

object HelloWorldSpark extends App{

 //initialize Apache Spark Context:

 val conf = new SparkConf()

 val spark = SparkSession.builder.config(conf).getOrCreate()

 val aList = List(1,2,3,4,5,6,7,8,9,10)

 val aRdd = spark.sparkContext.parallelize(aList)

 aRdd.filter(x=>x%2==0).map(x=>x*2).collect().foreach(println)

}

Here’s what we did in this code snippet:

	 1.	 You imported required classes from the Spark

package. You are able to do so because you specified

Apache Spark as a dependency in build.sbt.

	 2.	 You created an executable Scala application by

using an object and extending App.

	 3.	 You created an object called conf from SparkConf

class using the new keyword. You then used that

conf object to create another object called spark.

Chapter 14 Hello Apache Spark

290

It’s the same SparkSession object that you used in

your Databricks notebook. You always create these

objects when working with Spark 2 (which is the

latest version of Spark to date).

	 4.	 You then accessed the sparkContext object from

the SparkSession object and used the familiar

parallelize function to parallelize a Scala list that

you created previously.

	 5.	 You then used the same series of transformations

(filter to filter just the even numbers) and mapped

to double each number. You then called the collect

action and used foreach on the returned Scala array

to display each element of the array. Simple stuff!

That’s it. Your Apache Spark application will filter even numbers from a list

and will double them and display them. This is like a HelloWorld for Spark!

Figure 14-18 shows how my project looks in IntelliJ.

Figure 14-18.  Project view in IntelliJ IDEA

Now let’s compile and package the code. You can launch Terminal

from within IntelliJ, as shown in Figure 14-19.

Chapter 14 Hello Apache Spark

291

Once Terminal is started, launch the SBT shell using the sbt command.

Then type compile to compile your project to check if there are any

compile-time errors.

If not, type assembly. This will use the SBT assembly plugin to package

your Scala code in the form of a Fat JAR. This is the alternative of the

package command that you used previously.

Refer to Figure 14-20.

Figure 14-19.  Launching Terminal from IntelliJ IDEA

Chapter 14 Hello Apache Spark

292

The output is further shown here:

D:\Users\ielahi\Documents\HelloWorldSpark>sbt

Java HotSpot(TM) 64-Bit Server VM warning: ignoring option

MaxPermSize=256m; support was removed in 8.0

[info] Loading settings for project helloworldspark-build from

assembly.sbt ...

[info] Loading project definition from D:\Users\ielahi\

Documents\HelloWorldSpark\project

[info] Loading settings for project helloworldspark from build.sbt ...

[info] Set current project to HelloWorldSpark (in build

file:/D:/Users/ielahi/Documents/HelloWorldSpark/)

[info] sbt server started at local:sbt-server-5d19e7429706954c02ef

sbt:HelloWorldSpark> assembly

[info] Compiling 1 Scala source to D:\Users\ielahi\Documents\

HelloWorldSpark\target\scala-2.11\classes ...

Figure 14-20.  Compiling and packaging Scala code from the SBT
shell in IntelliJ IDEA

Chapter 14 Hello Apache Spark

293

[info] Non-compiled module 'compiler-bridge_2.11' for Scala

2.11.8. Compiling...

[info] Compilation completed in 24.806s.

[info] Done compiling.

[info] Strategy 'discard' was applied to a file (Run the task

at debug level to see details)

[info] Strategy 'first' was applied to 489 files (Run the task

at debug level to see details)

[info] Packaging D:\Users\ielahi\Documents\HelloWorldSpark\

target\scala-2.11\hello_spark.jar ...

[info] Done packaging.

Once the code issued, it will create a JAR for you and will store it in

target/scala-2.11/location, as shown in Figure 14-21.

Figure 14-21.  The JAR created after packaging/assembling in SBT

Congratulations. Your JAR is ready in all of its splendor.

Next, you need to run this JAR or Spark application. For that, you need

to have a Spark cluster running. Unfortunately, you can’t use Databricks

Community Edition. To simulate such an environment, use Cloudera

QuickStart VM. The process of setting it up should be straightforward.

Chapter 14 Hello Apache Spark

294

First, download the Oracle VirtualBox software from the Internet and

download Cloudera QuickStart VM from Cloudera’s website (a few Google

queries will take you there, don’t worry). Then, using VirtualBox, start

the QuickStart VM. Once it’s started, launch the Linux terminal and you

should be good to go.

I am assuming that you have launched Cloudera QuickStart VM. Copy

your JAR to that VM. It’s time to launch your Spark application via the JAR,

which is the final milestone of this book and of your amazing journey. To

do so, issue the following command:

spark2-submit --class HelloWorldSpark --master local hello_

spark.jar

Note that if spark2-submit doesn’t work because of the change in

Cloudera QuickStart versions, try issuing spark-submit (Just a note

that in case you find encounter errors related to signature of JAR file,

you can issue the following command to address that: zip -d file.jar

'META-INF/*.SF' 'META-INF/*.RSA').

Figure 14-22 shows the same command being issued in an environment.

Figure 14-22.  Issuing the spark2-submit command

Chapter 14 Hello Apache Spark

295

Here’s a portion of the output:

spark2-submit --class HelloWorldSpark --master local hello_

spark.jar

19/04/12 17:53:09 INFO spark.SparkContext: Running Spark

version 2.2.0.cloudera1

19/04/12 17:53:10 INFO spark.SparkContext: Submitted

application: HelloWorldSpark

19/04/12 17:53:10 INFO spark.SecurityManager: Changing view

acls to: oracle

19/04/12 17:53:10 INFO spark.SecurityManager: Changing modify

acls to: oracle

19/04/12 17:53:10 INFO spark.SecurityManager: Changing view

acls groups to:

19/04/12 17:53:10 INFO spark.SecurityManager: Changing modify

acls groups to:

19/04/12 17:53:10 INFO spark.SecurityManager: SecurityManager:

authentication disabled; ui acls disabled; users with view

permissions: Set(oracle); groups with view permissions: Set();

users with modify permissions: Set(oracle); groups with modify

permissions: Set()

19/04/12 17:53:10 INFO util.Utils: Successfully started service

'sparkDriver' on port 60077.

19/04/12 17:53:10 INFO spark.SparkEnv: Registering

MapOutputTracker

19/04/12 17:53:10 INFO spark.SparkEnv: Registering

BlockManagerMaster

19/04/12 17:53:10 INFO storage.BlockManagerMasterEndpoint:

Using org.apache.spark.storage.DefaultTopologyMapper for

getting topology information

19/04/12 17:53:10 INFO storage.BlockManagerMasterEndpoint:

BlockManagerMasterEndpoint up

Chapter 14 Hello Apache Spark

296

19/04/12 17:53:10 INFO storage.DiskBlockManager: Created local

directory at /tmp/blockmgr-0250bd6c-6a3c-4a12-b255-28af82af630f

19/04/12 17:53:10 INFO memory.MemoryStore: MemoryStore started

with capacity 366.3 MB

19/04/12 17:53:10 INFO spark.SparkEnv: Registering

OutputCommitCoordinator

19/04/12 17:53:10 INFO util.log: Logging initialized @1856ms

19/04/12 17:53:10 INFO server.Server: jetty-9.3.z-SNAPSHOT

19/04/12 17:53:10 INFO server.Server: Started @1923ms

The output indicates the logs that Spark generates when initializing

itself to run the application. You don’t need to understand what each of the

log output lines means at this stage.

With this command, you launched a Spark application. The syntax

for launching Spark applications is via spark2-submit (you don’t use

scala <jar> in this context). Then you specify the main class using

--class parameter. Then you specify --master local to specify the

cluster manager where the application should run. I’ve run it in local mode

(i.e., single node), but if you have YARN set up, run it on YARN using the

--master yarn option (that’s how it’s executed in production systems).

Then you specify the JAR that you copied over to the VM.

When you issue this command, it will display a whole lot of stuff on the

screen. Don’t be intimidated by that. Amidst that output, you will find your

desired output, as shown in Figure 14-23.

Chapter 14 Hello Apache Spark

297

Can you spot the numbers 4, 8, 12, 16, and 20? Isn’t this the desired

output of your Spark program? We filtered just the even numbers from a

list of numbers (1 to 10) and doubled each number.

So there you go—you were able to create an executable Spark

application, compile its Uber JAR, and then run it in a cluster environment

successfully. Trust me, this is a huge achievement. Many “experts” or

“gurus” in Big Data struggle a lot with such stuff. But here you are—able to

apply all the concepts of Scala you’ve learned (and some limited concepts

of Spark) to create a full-blown application. Kudos! I can’t emphasize

enough how amazing that achievement is.

Figure 14-23.  Output of Spark application

Chapter 14 Hello Apache Spark

298

�Conclusion and Beyond
Congratulations on completing this book. It’s indeed a commendable

milestone and you must pat yourself on the back. However, this is not

the end. In fact, it’s the start of so many amazing things that you need to

further learn, master, and excel in to gain a competitive edge in the world

of Big Data.

In my view, if you completed this book, it’s quite probable that you

are serious about learning Big Data. Big Data is a huge domain on its own

with so many dimensions to it. But one of the best ways to get started is

to understand and develop skill in at least one of the tools in the Big Data

ecosystem while keeping a holistic view of others.

In this context, Apache Spark is the leading Big Data processing

engine and should be your focus if you are starting up or even if you are

experienced in this domain. As per a recent survey report (see https://

www.techrepublic.com/article/the-top-10-big-data-frameworks-

used-in-the-enterprise/), Apache Spark tops the Big Data framework

used by enterprises today.

So what’s next for you? The way I see it, there are two ways you can go

further:

•	 Big Data path: Start learning Apache Spark. As you

learn Apache Spark, you will naturally be exposed to

other Hadoop technologies like Hadoop Distributed

Filesystem (HDFS), Hive, HBase, Kafka, etc., because

of Spark’s strong integration with all these. How do you

learn Apache Spark? You can get the Apress book that I

mentioned or you can enroll in my best-selling Udemy

course, which has been featured multiple times as the

highest rated course there. You can enroll in my course

by following the link:

Chapter 14 Hello Apache Spark

https://www.techrepublic.com/article/the-top-10-big-data-frameworks-used-in-the-enterprise/
https://www.techrepublic.com/article/the-top-10-big-data-frameworks-used-in-the-enterprise/
https://www.techrepublic.com/article/the-top-10-big-data-frameworks-used-in-the-enterprise/

299

https://www.udemy.com/apache-spark-hands-on-

course-big-data-analytics

•	 Advanced Scala path: There is still much to learn

about Scala. You still have to learn how to use

Scala’s object oriented and functional programming

constructs in a thorough way, how to develop Scala

applications using build tools like SBT, and how to do

test-driven development in Scala. Additionally, Scala

has a number of strong frameworks like Play (a web

framework), which the world is leveraging for building

microservices. Similarly, akka is yet another library for

building highly concurrent applications. There is not a

single resource that you can rely on for learning these.

I am planning to write more books and launch courses

to cover many of these areas as well, so watch for these

things happening!

All in all, one becomes an outstanding developer by practice. So

practice as much as you can. Try to write at least one line of code each

day. Work on harder problems and come up with your approach to solving

them. You’ll fail but if you learn from your mistakes, this whole journey

will lead you to the excellence that you deserve. All the best! You can

always reach out to me via my blog (http://www.irfanelahi.com) or my

LinkedIn profile (https://linkedin.com/in/irfanelahi).

It’s been an amazing journey with you all. Now go and claim the

excellence that you deserve!

That concludes this book, folks.

Regards,

Irfan Elahi

Chapter 14 Hello Apache Spark

https://www.udemy.com/apache-spark-hands-on-course-big-data-analytics
https://www.udemy.com/apache-spark-hands-on-course-big-data-analytics
http://www.irfanelahi.com
https://linkedin.com/in/irfanelahi

301© Irfan Elahi 2019
I. Elahi, Scala Programming for Big Data Analytics,
https://doi.org/10.1007/978-1-4842-4810-2

Index

A
{} after if/else statement, 84–87
Anonymous functions

changeCase function, 121
syntax, 120

Any type, 75–77
Apache Spark, 8–12, 82, 164,

176, 190
abstractions, 264, 265
collect() action, 273, 275
databricks

cluster section, 268, 269
launch notebook, 269, 270
main screen, 267, 268
signing up, 267

dataframe, 276
distributed computing

engine, 261, 262
filter function, 274
Hadoop, 262
lazy execution model, 265, 266
parallelize function, 272
processes, 264
RDD, 271–273, 275
run SQL queries, 283
SBT

application code (see
Application code, SBT)

dependencies, 287–289
IntelliJ IDEA, 284–286
Uber/Fat JARs, 286, 287
workflow, 284

SparkContext object, 271
SQL dataframe, 281, 282
upload data to

databricks, 276–279
YARN, 263

Apache Spark APIs, 117
Application code, SBT

Cloudera QuickStart VM, 294
HelloWorldSpark.scala, 289
IntelliJ IDEA

compiling and packaging,
Scala, 291, 292

launching terminal, 290, 291
project view, 290

JAR, 293
master yarn option, 296, 297
Oracle VirtualBox

software, 294
spark2-submit

command, 294–296
SparkConf class, 289
SparkSession object, 290
Uber JAR, 297

Array collection, 34

https://doi.org/10.1007/978-1-4842-4810-2

302

B
Big Data analytics, 82
Boolean expressions, 82, 83
brand attribute, 179

C
Classes and objects

blueprint, 176
case classes

boilerplate actions, 189
collections, 193, 194
define methods and

parameters, 190
equality checks, 190–192
methods, 188
OOP, 189

conceptual specification, 177
concrete and tangible

manifestation, 177
creation

attribute and
functions, 179, 180, 182

class keyword, 179
. (dot) operator, 181
elements, 180
HDFS, 182
singleton objects, 185–188
val keyword, 183, 185
var keyword, 184, 185

OOP, 177, 178
packages

avoid name-space
collisions, 195, 196

hierarchy, 195
import command, 198, 199
import java.sql.Array, 200
Source.fromFile

function, 196, 197
singleton object, 177

Cloudera Distribution of Hadoop
(CDH), 266

Code blocks, 93
caveats, 97, 98
file path, 97
functions, 97
if/else statement, 98–101
resultOfBlock, 96
return statement, 96
variable, 95

Code readability, 113
Collections

defined, 123
real-life examples, 123–126

com.irfan.elahi package, 243
Command line interface (CLI), 28
conditional statements, 81

{} after if/else, 84–87
define variable, 83, 84
if statement, 84
nested if/else, 87–89
ternary operator, 89, 90

D
Data type

hierarchy system
AnyRef type, 59

INDEX

303

Any type, 58
boolean type, 59, 61, 62
char type, 59
multi-line string, 64
nothing type, 60
numeric types, 59
polymorphism, 60
string operations (see String

operations)
string type, 62–64
unit type, 59

Directed acyclic graphs
(DAGs), 265

Driver process, 264

E
École Polytechnique Fédérale de

Lausanne` (EPFL), 3
Exception handling

case statements, 207, 209, 210
catch block, 207, 208
example, 211–213
exception string, 208
implications, 215
overall mechanism, 204, 205
switch statements, 206
theElement variable, 217
throw exception, 211
try-catch blocks, 206, 207, 215
type inference, 215–218

Executor process, 264
Extracting parts of

String, 71, 72

F
finally block, 218–220
for loop, 166–168
Functional programming

element length, 135, 136
foreach function, 137, 138
map function, 133, 134
return, map function, 136, 137
squareThis function, 134, 135

Function parameters, 105
Functions

as arguments
caseConverter, 119
changeCase, 119
higher order, 117
single generic, 117

defined, 104
parameters, 105

G
givenParam variable, 111

H
Hadoop distributed filesystem

(HDFS), 182

I
if condition, 167
Index characters, 72
IndexOutOfBoundsException,

207, 209, 214

Index

304

IntelliJ IDEA
installation, 250, 251
plugins, 252

Invoke, function
default value, 113, 114
multiple parameters, 111, 112
no arguments, 115
positional parameters, 112, 113
return statement, 109, 110, 116
Scala, 108
single line, 115

J
Java bytecode, 2, 5
Java Development Kit (JDK), 5
Java Runtime Environment

(JRE), 5
Java Verbosity, 6, 7
Java Virtual Machine (JVM), 3, 5

K
Key performance indicators

(KPIs), 27

L
length attribute, 182
Length of String, 68, 69
List collections

creation, 127
index, 128, 129

operations (see List operations)
storage, 129–131

List operations
basic statistics, 131
creation, 143
equality check, 142
filter function, 138–140
iteration, 132, 133
reduce operation, 140–142
size, 131
string conversion, 132

Logical operators, 82, 83
Loop guards, 167, 168
Loop’s iteration, break

out, 171, 172

M
map function, 133
Map collections

creation, 149
index, 147, 148
iteration, 151
keys, 148
key-value pair, 145
manupulating, 149, 150

Maven folder structure, 242–244
Multi-node cluster, 284
Mutable collections

ArrayBuffer, 159
implications, 158, 159
ListBuffer, 157, 158
maps, 159, 160

INDEX

305

N
Nested collections, 161, 163, 164
Nested if/else statement, 87–89

O
Object oriented programming

(OOP), 175, 176

P, Q
parallelize function, 290
Parameters, 112
Paste mode, 36, 37
Pattern-matching

constructs, 90–93
Primitive data types, 57
productArity, 156
productIterator, 155
Python, 120

R
Recursion, 116
REPL, Scala

hello world!
array collection, 34, 35
auto-completion, 39–43
data type, 33
history, 38, 39
mathematical expression, 32
paste mode, 36, 37
print, 29, 30
to quit, 43

res3 variable, 31, 32
split function, 33–35
String data type, 30, 31

S
SCalable LAnguage (Scala), 3

Apache Spark, 8–11
development lifecycle, 224–226
functional programming, 3
functions, 106–108
immutable structures, 3
installation

checking, 15, 16
on Linux, 22–26
Oracle JDK, 17–19
verification, 22
on windows, 19–21

Java
Hadoop, 5
interoperability, 5
JVM, 5
verbosity, 6, 7

JVM, 3
learning, 4
object-oriented programming, 3
performance benefits, 11, 12
statically typed language, 7, 8

Scala Build Tool (SBT)
build.sbt

App trait, 241, 242
dependencies, 235–239
executable application,

239–241

Index

306

compilation, 247
installation, 226–228
IntelliJ IDEA, 253

classes/objects, 256, 257
configuring JDK, 254, 255
directory structure, 256
run an application, 257–259

maven, 242–244
multiple classes, 244–246
packaging, 248, 249
transitioning, 249–252

screenSize attribute, 179
screenStatus attribute, 180
Sets creation, 143–145
Singleton objects, 185–188, 246
SparkSession object, 290
spark.sql function, 283
split function, 33–35
String operations

concatenation, 65
extracting parts, 71, 72
index characters, 72
interpolation, 66–68
length of, 68, 69
splitting, 69, 70

T
Ternary operator, 89, 90
Throwable, 208
try keyword, 207
try-catch blocks, 206, 220

Tuples
creation, 153, 156
index, 153, 154
iteration, 155, 156

turnOff function, 180
turnOn function, 180
Type casting, 78, 79

U
Unit type, 73–75

V
val keyword, 182
Variable

explicitly declaring type, 52, 53
immutability, 47, 49, 50
mutability, 50, 51
mutable and immutable, 48, 49
rules and naming

conventions, 53, 54
type inference, 52
value assignments, 45, 46

W, X, Y
while loop vs. for, 168–170
Windows MSI Installer, 226

Z
Zero parity, 115

Scala Build Tool (SBT) (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Scala Language
	Getting to Know Scala
	Why Learn Scala?
	Scala and Java
	How Does Scala Relate to Java?
	Interoperability with Java Libraries
	Scala and Java Verbosity

	Scala: A Statically Typed Language
	Apache Spark and Scala
	Scala’s Performance Benefits
	Learning Apache Spark

	Chapter 2: Installing Scala
	Checking Scala Installation Status in Your System
	Verifying Java Development Kit (JDK) Installation Status
	Installing the Oracle JDK
	Installing Scala on Windows
	Verifying Scala Installation Status
	Installing Scala on Linux

	Chapter 3: Using the Scala Shell
	Getting Help from the Scala Shell
	Hello World in Scala REPL
	Understanding Hello World in Scala REPL Step-by-Step
	Using Scala REPL’s Data Type Highlighting Feature
	Paste Mode in Scala REPL
	Retrieving History in Scala REPL
	The Auto-Completion Feature of Scala REPL
	Exiting from Scala REPL

	Chapter 4: Variables
	Getting Started with Variables in Scala
	Immutability of Variables in Scala
	Defining Variables (Mutable and Immutable) in Scala
	Why Is Immutability Emphasized in Scala?
	Mutability and Type-Safety Caveats
	Specifying Types for Variables and Type Inference

	Scala Identifier Rules and Naming Conventions

	Chapter 5: Data Types
	Scala Type Hierarchy System
	The Boolean Type
	The String Type
	Multi-Line Strings
	String Operations
	String Concatenation
	String Interpolation
	Length of String
	Splitting Strings
	Extracting Parts of a String
	Finding the Index of Characters in a String

	Special Types in Scala
	The Unit Type
	The Any Type

	Type Casting in Scala

	Chapter 6: Conditional Statements
	Boolean Expressions
	Using Conditional Statements in Scala
	Step-by-Step Understanding of Conditional Statements
	Caveats: Using {} After if/else
	Nested If/Else Statements
	If/Else as a Ternary Operator

	Pattern Matching

	Chapter 7: Code Blocks
	Code Blocks in Scala
	Caveats of Code Blocks
	Code Blocks and If/Else Statements

	Chapter 8: Functions
	Why Use Functions?
	Understanding Functions
	Functions in Scala
	Invoking a Function
	Caveats: Function Definition
	Type Inference
	Return Statements: To Use or Not To Use?

	Functions with Multiple Parameters
	Positional Parameters
	Default Value of Parameters in Functions
	Function with No Arguments
	Single-Line Functions
	Using the return Statement in Functions

	Passing Functions as Arguments
	Anonymous Functions

	Chapter 9: Collections
	Real-Life Examples of Collections
	Understanding Lists
	Indexing List Elements
	What Can You Store in Lists?
	Widely Used List Operations
	List Size
	Basic Statistics of Lists
	Converting a List to a String
	Iterating Over Lists
	Using the map Function to Iterate Over Lists

	Getting to Know Functional Programming Concepts
	What Is Returned When You Use the Map Function?
	Using foreach on Lists

	Using the filter Function on Lists
	Using the Reduce Operation on Lists
	List Equality Check
	Alternative Ways to Create Lists

	Creating Sets
	Understanding Map Collections
	Indexing a Map
	Uniqueness of Keys in Maps
	Alternative Ways to Create Map Collections
	Manipulating Maps
	Iterating Through Maps in Functional Style

	Understanding Tuples
	Indexing Tuples
	Iterating Over Tuples
	Alternative Ways to Create Tuples

	Understanding Mutable Collections
	Implications Related to Mutable Collections
	Mutable Maps

	Using Nested Collections

	Chapter 10: Loops
	Types of Loops in Scala
	The for Loop
	The while Loop

	Comparing for and while Loops
	Breaking a Loop’s Iteration

	Chapter 11: Classes and Packages
	Classes and Objects in Scala
	Creating Classes and Objects in Scala
	Mutating Attribute Values and Caveats
	Using the val Keyword for Class Attributes
	Using the var Keyword for Class Attributes
	Using Neither the val Nor the var Keyword for Class Attributes

	Singleton Objects

	Case Classes
	Case Classes in Practice
	Equality Checks in Classes
	Case Classes and Collections Together

	Classes and Packages
	Avoiding Name-Space Collisions
	Importing Packages

	Chapter 12: Exception Handling
	Fundamentals of Exception Handling in Scala
	Implications of Type Inference and Exception Handling
	Using Try, Catch, and Finally

	Chapter 13: Building and Packaging
	The Scala Development Lifecycle
	The Scala Development Lifecycle in Action
	Scala Build Tool (SBT)
	Using SBT on Windows
	Build.sbt for SBT
	Managing Dependencies Using SBT
	Creating an Executable Scala Application Using SBT
	Using the Scala App Trait for Executable Scala Applications

	Maven Folder Structure for Scala Applications
	Creating Multiple Classes in Your Scala Application and Using Them
	Compiling Your Scala Applications
	Packaging Scala Applications in the Form of JARs
	Transitioning to an IDE
	Installing IntelliJ IDEA
	IntelliJ IDEA Plugins Installation

	Importing a Project in IntelliJ IDEA

	Chapter 14: Hello Apache Spark
	Revisiting Apache Spark
	Distributed Computing Engine
	Spark and Hadoop
	Spark and YARN
	Spark Processes
	Spark Abstractions
	Lazy Execution Model of Spark

	Apache Spark in Scala in Action
	Spark Environment Setup in Databricks
	Apache Spark Development in Scala
	Converting an RDD to a Dataframe
	Uploading Data to Databricks
	Converting an RDD to a Dataframe
	Using the Spark SQL Dataframe API
	Running SQL Queries Against Spark SQL Dataframes

	Creating Spark Applications Using SBT
	Creating a New Project in IntelliJ IDEA
	Managing SBT Plugins for Uber JARs
	Managing Apache Spark Dependencies in SBT
	Spark Application Code

	Conclusion and Beyond

	Index

