Practical
Apache Spark

Using the Scala AP

Subhashini Chellappan
Dharanitharan Ganesan

Apress’

Practical Apache Spark

Subhashini Chellappan
Dharanitharan Ganesan

Apress’

Practical Apache Spark

Subhashini Chellappan Dharanitharan Ganesan
Bangalore, India Krishnagiri, Tamil Nadu, India
ISBN-13 (pbk): 978-1-4842-3651-2 ISBN-13 (electronic): 978-1-4842-3652-9

https://doi.org/10.1007/978-1-4842-3652-9
Library of Congress Control Number: 2018965197
Copyright © 2018 by Subhashini Chellappan, Dharanitharan Ganesan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Siddhi Chavans

Coordinating Editor: Aditee Mirashi

Cover image by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3651-2. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3652-9

Table of Contents

About the AUtROIS.........cccemmssemmmmsnsmssnssssnsssssas s sas s san s s san s s san s nssann s s snnnnssnnnnnnns ix
About the Technical REVIEWEI'Sccccssssmmmmssnsssssssssssnsssssnsssssnsssssnsssssnsssssnsssssnnsnsnns xi
AcknNoWIedgmentsccccuusemnnmmssssnnnmsssssssnsssssssnnssssssnnnssssssnnnssssssnnssssssnnnnsssssnnnnssssnnns Xiii
INtroductioncccucesnssemnmsssnnmssnnmsssnnssssnnssssnnnsssannsssannsssannsssannsssannssssnnnsssnnsnssnnnnssnnnnss XV
Chapter 1: Scala: Functional Programming ASPectscusssssssssssssnsssssnsssssnnssssanssss 1
What Is Functional Programming?..........cocuvrvriennnnnnieninsensnsesessssessessesssssssessesssssssessessesssssssessens 2
What IS @ Pure FUNCHON?.........co i ssssssssssssens 2
Example of PUre FUNCLION..........coeciiicerresinene e s s 3
Scala Programming FEALUIES........ccvvvrreririereresserseseses s sessessessssessessessessssessessesssssssessesaessssssesnens 4
Variable Declaration and Initialization ... 5

L7 LN) (=T (T 1R 6

10 T 10T 7

Lazy EVAIUGLION........cvcerere e a e e s e e nnn 8
String INTErPOIALION.......cove e s 10
Pattern MatChing........coccvereiririre s s s p e e e 13
Scala Class VS. ODJECLccccvererirrirere et s s 14
SiNGIEtoN ODJECT ..o ——————————— 15
Companion Classes and ODJECTEScccvrevrrerverieninensnsese e sse s s sre e s ssesnens 17

CASE ClASSES ...erveuererseerreerssesessessssese s s ss s e e s sr s e e e e e s s e s e e e b e e nr s 18
SCAIA COIIBCTIONSveuvveerreereree e sr e nr e 21
Functional Programming ASPects 0f SCalac.ccveerevrnnreniennsrsene e snes 27
ANONYMOUS FUNCLIONScvveiieirierereserere e ses e se s sas e s e s sae e s e saestesessesaessssessesnesasssssensesaes 27
Higher Order FUNCHIONS.........cocvierenirserere st sse e s e s e ssesas e s e saesaessssessesaessssesnesneses 29

LT3[(]I O]] 00 T R 30
FUNCHION CUITYING oot re s se e s e sae e sae s s sesaesaesa s e ssesae s 31

iii

TABLE OF CONTENTS

o3 (=T T T (0] T 32
Functions with Variable Length Parameters.........c.ccoccvvrnninsninnnnsnc s 34
REfEIENCE LINKSceeereeceeeceree s 37
POINtS 10 REMEMDENcovicercerese e 37
Chapter 2: Single and Multinode Cluster Setup..........ccccunmmmmnnsnnnnmnnssnnnmmsssssnnns 39
Spark Multinode CIUSTEr SETUPccvvvecerreierrcrire e 39
Recommended PIAtfOrm..........ccoievnennesine s ssanes 39
PrEr@QUISITES .vvveevieeerrierrsesrse s p e ne e np s 61
Spark INStallation STEPScccvecrrirernriese s ————————— 62
SPATKWED UlL....o.e ettt s et s et e 66
Stopping the SPark CIUSTEL.......ccvvivrirr e 70
Spark Single-Node CIUSTEr SEIUPcovcvvvererrrir e nne e 70
e €T (0 [(=T RS 71
Spark INStallation STEPScccvceriirirr s ——————————— 73

S 0 T 1= T (=T U SRS 76
POINtS 10 REMEMDET ... s 77
Chapter 3: Introduction to Apache Spark and Spark Core.......c..cccnrmssssnnnssssssnsnsasns 79
What IS APAChe SPark? ... s s r s e s p e 80
WHY APACHE SPATK?cceireciciriire st a e s e s s s b e e s b r e e e nne 80
Spark vs. Hadoop MapREAUCEccvervreriinrine e st s 81
Apache SpPark ArChITECIUNEc.cueeeiicerre e 82
SPark COMPONENTES......ccvcerirerir s e s a e e e b e e e e e R e e e e e nens 84
SPArK COre (RDD)....cvuerrerrererererteserseressessesessessessessssessessessssessessessesssssssessessesssssssessessessssessesaes 84

L3 0 1 G OO 84

S 0T 1= 1 111 T OO 85
IVILID ..ot R R p s 85

T 0] RS 85
SPATKR ... e ————————————————————— 85

3] 0 14 G0 111 | R 85
SPArK COre: RDD.......ccvecererreriesereressessssesessessessssessessesssssssessesassssssssessesssssssessessssassensesaesssssnsesseses 86

iv

TABLE OF CONTENTS

RDD OPErationsccccvieieriiinsine s sise e s s p e s s p e s 88
Creating an BDD ...ttt e e e e e 88
RDD TranSfOrmMationsccoeeeerercrersererenerese s e see e senns el
310 DAY 0] S 95
Working With Pair RDDS........cccuevmienmnenenesessssesssesessssssssessessnses 98
Direct Acylic Graph in APAChe SParK........cccerevrrrrriernsinrere s sese s se s ssesaessssessesaens 101
HOW DAG WOTKS iN SPArK.......cccvereririeriererirsenese e ses e ses e s e s sessessessssessessesasssssessesnes 101
How Spark Achieves Fault Tolerance Through DAG.........cccoovvrirennnnnenennsessesesesessessesees 103
PErSiStING RDDcccceueverrerrersersessrseressessssessessessssessessessssssessessesssssssessessessssessessessssessessesssssssessens 104
Shared VariablESccorurriemrereressessese s 105
Broadcast VariabIes...........ccoverinerenerresireeree e s 106
ACCUMUIALONS ...t n e nne s 106
Simple Build TOOI (SBT)covevriiiriirerinisnirese s s s sss s s ss s s sss e s s s s snan 107
LTS T 1111 112
REfEreNCE LINKScoerreeriecrincsesese s s sn s e s sesssnenns 112
POINS 10 REMEMDENeivieeiicsiresere e 113
Chapter 4: Spark SQL, DataFrames, and Datasets.........cccoummmmmmmmmnnmmmmmmmmsnsssssnnns 115
What IS SPArK SAL? ...ttt st e e 116
Datasets and DataFramescooeerrnrerncnenese s 116

B3] 0 g QY= 1 1O 116
Creating DATAFTAMEScoocoeeeerrcre s n e e e 117
DataFrame OPerations.........ccucierinninic e 118
Running SQL Queries Programatically...........cccccecrerererrenrienernscrenesese e sesessesessesessssesennes 121
Dataset OPerations ... s 123
Interoperating With RDDS ..o s 125
Different DAta SOUICEScococeererereerrsere e 129
Working with Hive TabIES ..o 133
Building Spark SQL Application with SBT.........cccoiiininininnnner e 135
POINtS 10 REMEMDEN ..o s 139

TABLE OF CONTENTS

Chapter 5: Introduction to Spark Streamingccuccmrrnssssnnnmnssssnnnessssssssssssssnnns 141
Data ProCESSING......coeiriiircierissirse s s s e e p e nne 142
Streaming DAta.........ccccceecririerererrer s a e e e e a e ae e e s 142

Why Streaming Data Are Important............ccconiininnnns e 142
Introduction to Spark Streaming..........ccocveereenerenrnsrr s 142
Internal Working of Spark Streamingcccovevrerenenernsesnnesese s 143
Spark Streaming CONCEPLS......cccuviiririrnrrr e s nne s 144
Spark Streaming Example USing TCP SOCKEL...........ccccverernnennennresernsesesesess e sessesenns 145
Stateful STrEAMING ..o ——————— 149
Window-Based Strea@ming..........ccuueevrenerinesnsesssessssse s s s ssssessssssessssesessessssenens 149
Full-Session-Based SIreaming..........cccuvcevnennnnennsssessssesess s ssssessssssessnses 152
Streaming Applications ConSiderationsccvvvrererrrniniens s snes 155
PoINtS t0 REMEMDEN ..ot e 156

Chapter 6: Spark Structured Streamingccucccsrssemrmssnsesssnsssssnssssssssssssnssssnnssssas 157
What Is Spark Structured STreaming?oocooeernrnrerrese s 158
Spark Structured Streaming Programming MOdel...........coovevrenerenrnnenenesers e 158

Word Count Example Using Structured Streaming........c.ccccoveevrenrnssnsesesnesesesesensesesseens 160
Creating Streaming DataFrames and Streaming Datasetsccccvvvvrvnininnincnnnnsnsenennn, 163
Operations on Streaming DataFrames/Datasets..........cccvvrevnrnininnnnsnese e seseses 164
Stateful Streaming: Window Operations on EVENt-TIMeccccvvvvrevnvnienienessenseseseesessessenes 167
Stateful Streaming: Handling Late Data and Watermarking..........cccoeevvvevverienessenserseseesessensenees 170
10 o =T 3 OSSOSO 171
L UL L0 (=T = T 173
POINS 10 REMEMDENcovieircsireir e 174

Chapter 7: Spark Streaming with Kafka..........cccinmnnmmmmmmnssnmnmnnsssnnmmsssnsmnmssnn 175
Introduction t0 Kafka...........coouiernnnssss s 175

Kafka COre CONCEPLS ..coevuevreerereriesirseresseses e se s sas e s e s saeses e ssesae st s e ssesaesseses e saesasssssenaesnes 176

L U A 176
Kafka Fundamental CONCEPLSccverrererrerrererieserreseseesessessessesessessessessssessessessssessessessesssssnsesaens 177
Kafka ArCHItECIUNEcuceeecreceeree e 178

TABLE OF CONTENTS

2116 0] 1 OSSOSO 179
Leaders and REPliCASccucrerinininiene s s 179
Setting Up the Kafka CIUSTEN ..o 180
Spark Streaming and Kafka Integration..........c.c.ccovverrenrnnennnesens s 182
Spark Structure Streaming and Kafka Integration...........ccccovvennnsnnnnnnssennsse e 185
POINtS 10 REMEMDET ... s 187
Chapter 8: Spark Machine Learning Library.......cccccuseemmmmssssnnsmmsssssnssssssssssssssssnnnss 189
What IS SPArK MLID?coveoveceriereresersere s sessessessesre s s e ssessesas s sessesaessssessesaesasssssesassaesessssnesnees 190
SPArK MLID APIS.......coveeeireesesesesesesssssssssssssssssssssssssssssssssss s e sesesssssssssssssssssssssssssssssssasasasas 190
VECLOrS iN SCAIA......cccrvrririiiiririsssese s 191
BaSIC STAISHCS ...covivivieccririrrser e 194
Extracting, Transforming, and Selecting FEAtUresccvvvvrrrieriennrnienenssen s sessessennes 200
LI T o] 1TSS 215
P0oINtS t0 REMEMDEN ... e 236
Chapter 9: Working with SParkRccccussemmemssssnsnmmsssssssmssssssssmmsssssnssssssssssesssssnnns 237
Introduction t0 SPArkR ... ——————————— 237
SPArkDAtaFrame........cc.coiirirercsr e e e e 237
SPATKSESSION.....c.cicrierierie e e e e e nne s 238
Starting SparkR from RSTUCI0........c.cvcevriermreserresrre s 238
Creating SparkDataFrames..........cccvvvevnenmnnnesnesrne s s 241
From a Local R DAtaFrame..........cccccvereermnnnmnseseseses s s ses s snssessessesnes 241
From Other Data SOUICEScccvererrinmrnsesrsesese s s 242
From HiVe TADIESccceveerieerrncssnese s s sr s s sr e s s sss e 243
SparkDataFrame OPerationsS.......cccoovvvrrieriennsinsere s s s s s sae e s snes 244
Selecting ROWS and COIUMNSccvvererinriniene s se s sas s e s ssssessessesasssssessessens 244
Grouping and Aggregation.........c.uvvvrierennsinsene s e 245
Operating 0N COIUMNSc.uceeieerese e r s nr s 247
Applying User-Defined FUNCHIONS.......ccccverirnienierenss s s sessessessesssssssessessesssssssessesssssssessessens 248
Run a Given Function on a Large Data Set Using dapply or dapplyCollect..........cceerrerene. 248

vii

TABLE OF CONTENTS

Running SQL Queries from SPArkR ... 249
Machine Learning AlgOrithmSccoeocrreermnenereners s ses s e e sessesenns 250
Regression and Classification AIgQorithms ..o 250
LOGiStiIC REQIESSIONc.veceeeereeereecresese e se e e s se s 255

D LCTeT ST T T 258
POINtS 10 REMEMDEN ... e e 260
Chapter 10: Spark Real-Time Use CaSecccuseemrmsssssnnnmsssssnnnssssssnnnssssssnnssssssnnnnss 261
Data Analytics Project ArChItECIUNE........cocvcevvererere e 262
Data INGESTION ...ccvvueeereerieerrre e 262

DY (0] 1o [OSSOSO 263

DAt PrOCESSING......ccurrierreerriesrssesesese s sr s e sr s n s e sr s e r e na e 263

Data ViSUAlIZALIONcceeveerrierireser e s 264

UL - 264
Event Detection USE CaSE..........ccovrrinmnisinnnssssess s e sessssssssssens 264

BUIld ProCRAUIE ...t 270
Building the Application With SBTc.cccvvinininrrrr s s sessesnes 271
POINtS 10 REMEMDET ... s 273
1T - 275

viil

About the Authors

Subhashini Chellappan is a technology enthusiast with
expertise in the big data and cloud space. She has rich
experience in both academia and the software industry.
Her areas of interest and expertise are centered on business
intelligence, big data analytics and cloud computing.

Dharanitharan Ganesan has an MBA in technology
management with a high level of exposure and experience in
big data, using Apache Hadoop, Apache Spark, and various
Hadoop ecosystem components. He has a proven track
record of improving efficiency and productivity through the
automation of various routine and administrative functions
in business intelligence and big data technologies. His areas

of interest and expertise are centered on machine learning
algorithms, Blockchain in big data, statistical modeling, and
predictive analytics.

ix

About the Technical Reviewers

Mukund Kumar Mishra is a senior technologist with strong
business acumen. He has more than 18 years of international
experience in business intelligence, big data, data science,
and computational analytics. He is a regular speaker on big
data concepts, Hive, Hadoop, and Spark. Before joining the
world of big data, he also worked extensively in the Java and
.NET space.

Mukund is also a poet and his first book of poetry was

published when he was only 15 years old. Thus far he has
written around 300 poems. He runs one of the largest Facebook groups on big data
Hadoop (see https://www.facebook.com/groups/656180851123299/). You can connect
with Mukund on LinkedIn at https://www.linkedin.com/in/mukund-kumar-mishra-
7804b38/.

Sundar Rajan Raman has more than 14 years of full stack IT
experience, including special interests in machine learning,
deep learning, and natural language processing. He has 6
years of big data development and architecture experience
including Hadoop and its ecosystems and other No SQL
technologies such as MongoDB and Cassandra. He is a
design thinking practitioner interested in strategizing using
design thinking principles.

Sundar is active in coaching and mentoring people.

He has mentored many teammates who are now in
respectable positions in their careers.

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.facebook.com_groups_656180851123299_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zvOwOOWpYGOA0CJTaIPTeqvnT60IrSeMLCEUCaqd8u4&m=ajbdka8CKe-tZK6RQFz5X94MEJh81Ak3iU20-IPC0u8&s=enyyBmOwi6Ol39-Ipw2civ_CCJfKHFaKSFBUHqNYUIU&e=#_blank
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_in_mukund-2Dkumar-2Dmishra-2D7804b38_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zvOwOOWpYGOA0CJTaIPTeqvnT60IrSeMLCEUCaqd8u4&m=ajbdka8CKe-tZK6RQFz5X94MEJh81Ak3iU20-IPC0u8&s=JADzxMf6cvuA2vW3o9nZVkZnrLP7IL642vm_3ZtmhVY&e=#_blank
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_in_mukund-2Dkumar-2Dmishra-2D7804b38_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=zvOwOOWpYGOA0CJTaIPTeqvnT60IrSeMLCEUCaqd8u4&m=ajbdka8CKe-tZK6RQFz5X94MEJh81Ak3iU20-IPC0u8&s=JADzxMf6cvuA2vW3o9nZVkZnrLP7IL642vm_3ZtmhVY&e=#_blank

Acknowledgments

The making of this book was a journey that we are glad we undertook. The journey
spanned a few months, but the experience will last a lifetime. We had our families,
friends, collegues, and well-wishers onboard for this journey, and we wish to express our
deepest gratitude to each one of them.

We would like to express our special thanks to our families, friends, and colleagues,
who provided that support that allowed us to complete this book within a limited time
frame.

Special thanks are extended to our technical reviewers for the vigilant review and filling
in with their expert opinion.

We would like to thank Celestin Suresh John, Senior Manager, Apress and Springer
Science and Business Media, for signing us up for this wonderful creation. We wish to
acknowledge and appreciate Aditee Mirashi, coordinating editor, and the team who
guided us through the entire process of preparation and publication.

xiii

Introduction

Why This Book?

Apache Spark is a fast, open source, general-purpose memory processing engine for
big data processing. This book discusses various components of Apache Spark, such
as Spark Core, Spark SQL DataFrames and Datasets, Spark Streaming, Structured
Streaming, Spark machine learning libraries, and SparkR with practical code snippets
for each module. It also covers the integration of Apache Spark with other ecosystem
components such as Hive and Kafka. The book has within its scope the following:

* Functional programming features of Scala.
* Architecture and working of different Spark components.
*Work on Spark integration with Hive and Kafka.

* Using Spark SQL DataFrames and Datasets to process the data
using traditional SQL queries.

* Work with different machine learning libraries in Spark MLlib
packages.

Who Is This Book For?

The audience for this book includes all levels of IT professionals.

How Is This Book Organized?

Chapter 1 describes the functional programming aspects of Scala with code snippets.

In Chapter 2, we explain the steps for Spark installation and cluster setup. Chapter 3
describes the need for Apache Spark and core components of Apache Spark. In Chapter 4,
we explain how to process structure data using Spark SQL, DataFrames, and Datasets.
Chapter 5 provides the basic concepts of Spark Streaming and Chapter 6 covers the

INTRODUCTION

basic concepts of Spark Structure Streaming. In Chapter 7, we describe how to integrate
Apache Spark with Apache Kafka. Chapter 8 then explains the machine learning library
of Apache Spark. In Chapter 9, we address how to integrate Spark with R. Finally, in
Chapter 10 we provide some real-time use cases for Apache Spark.

How Can | Get the Most Out of This Book?

It is easy to leverage this book for maximum gain by reading the chapters thoroughly. Get
hands-on by following the step-by-step instructions provided in the demonstrations. Do
not skip any of the demonstrations. If need be, repeat them a second time or until the
concept is firmly etched in your mind. Happy learning!!!

Subhashini Chellappan
Dharanitharan Ganesan

CHAPTER 1

Scala: Functional
Programming Aspects

This chapter is a prerequiste chapter that provides a high-level overview of functional
programming aspects of Scala. This chapter helps you understand the functional
programming aspects of Scala. Scala is a preferred language to work with Apache Spark.
After this chapter, you will be able to understand the building blocks of functional
programming and how to apply functional programming concepts in your daily
programming tasks. There is a hands-on focus in this chapter and the entire chapter
introduces short programs and code snippets as illustrations of important functional
programming features.

The recommended background for this chapter is some prior experience with Java or
Scala. Experience with any other programming language is also sufficient. Also, having
some familiarity with the command line is preferred.

By end of this chapter, you will be able to do the following:

o Understand the essentials of functional programming.
o Combine functional programming with objects and classes.
e Understand the functional programming features.

e Write functional programs for any programming tasks.

Note Itis recommended that you practice the code snippets provided
and practice the exercises to develop effective knowledge of the functional
programming aspects of Scala.

© Subhashini Chellappan, Dharanitharan Ganesan 2018
S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_1

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

What Is Functional Programming?

Functional programming (FP) is a way of writing computer programs as the evaluation
of mathematical functions, which avoids changing the state or mutating data. The
programs are constructed using pure functions. Functional programs are always
declarative, where the programming is done with declarations and expressions instead
of statements. Functional programming languages are categorized into two groups:

1. Pure function

2. Impure function

What Is a Pure Function?

A function that has no side effects is called a pure function. So, what are side effects?
A function is said to be having side effects if it does any of the following other than just
returning a result:

e Modifies an existing variable.

e Reads from a file or writes to a file.

e Modifies a data structure (e.g., array, list).

e Modifies an object (setting a field in an object).

The output of a pure function depends only on the input parameter passed to the
function. The pure function will always give the same output for the same input
arguments, irrespective of the number of times it is called.

The impure function can give different output every time it is called and the output of
the function is not dependent only on the input parameters.

Hint Let us try to understand pure and impure functions using some Java
concepts (if you are familiar with). The mutator method (i.e., the setter method)
is an impure function and the accessor method (i.e., the getter method) is a pure
function.

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Example of Pure Function

The following function is an example of a pure function:

def squareTheNumber(num : Int) :Int ={
return num*num

}

The function squareTheNumber (see Figure 1-1) accepts an integer parameter and
always returns the square of the number. Because it has no side effects and the output is
dependent only on the input parameter, it is considered a pure function.

scala> def squareTheNumber(num : Int) :Int ={
| return num*num

4

squareTheNumber: (num: Int)Int

scala> squareTheNumber(10)
res3: Int = 100

scala>

Figure 1-1. Example of a pure function

Here are some the typical examples of pure functions:

¢ Mathematical functions such as addition, subtraction, division, and

multiplication.
o String class methods like 1length, toUpper, and tolLower.
These are some typical examples of impure functions:
e A function that generates a random number.

o Date methods like getDate() and getTime() as they return different
values based on the time they are called.

CHAPTER 1

SCALA: FUNCTIONAL PROGRAMMING ASPECTS

PURE AND IMPURE FUNCTIONS EXERCISE

Find the type of function and give the reason.

def myFunction(a : Int) :Int ={

return a
}

2. Find the type of function and give the reason.
def myFunction() : Double = {

var a = Math.random()
return a
}

3. The following function is said to be an impure function. Why?

def myFunction(emp : Employee) : Double = {
emp.setSalary(100000)
return emp.getSalary()

}

4. Give five differences between pure functions and impure functions.

5. Afunction named acceptUserInput() contains a statement to get input
from the console. ldentify whether the function is pure or impure and justify the
reason.

Note The last statement of the function is always a return statement in Scala.
Hence, it is not necessary to explicitly specify the return keyword.

The semicolon is not needed to specify the end of a statement in Scala. By default,
the newline character (\n) is considered the end of a statement. However, a
semicolon is needed if multiple statements are to be written in a single line.

Scala Programming Features

Let us turn to the Scala programming features, as illustrated in 1-2.

4

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Figure 1-2. Features of Scala programming language

Variable Declaration and Initialization

The variables can be declared through var and val keywords. The difference between
var and val is explained later in this chapter. The code here describes val and var:

val bookId=100
var bookId=100

Figure 1-3 displays the output.

scala> val bookId = 100
bookId: Int = 100
scala> var bookId = 100
bookId: Int = 100

Figure 1-3. Variable declaration and initialization

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Type Inference

In Scala, it is not mandatory to specify the data type of variables explicitly. The compiler
can identify the type of variable based on the initialization of the variable by the built-in
type inference mechanism.

The following is the syntax for declaring the variable:

var <variable name> : [<data_type>] = <value>
The [<data_type>] is optional. The code describes type inference mechanism.

var bookId = 101
var bookName = "Practical Spark"

Refer to Figure 1-4 for the output.

scala> var bookId = 101
bookId: Int = 101

scala> var bookName = "Practical Spark"
bookName: String = Practical Spark

Figure 1-4. Type inference without an explicit type specification

However, you can explicity specify the type for variables during declaration as shown here:

var bookId:Int = 101
var bookName:String = "Practical Spark"

Figure 1-5 shows the output.

scala> var bookId:Int = 101
bookId: Int = 101

scala> var bookName:String = "Practical Spark"
bookName: String = Practical Spark

Figure 1-5. Type inference with an explicit type specification

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Immutability

Immutablity means the value of a variable cannot be changed once it is declared. The
keyword val is used to declare immutable variables, whereas mutable variables can
be declared using the keyword var. Data immutablity helps you achieve concurrency
control while managing data. The following code illustrates a mutable variable.

var bookName = "Spark"
bookName = "Practical Spark"
print("The book Name is" + bookName)

Figure 1-6 shows mutable variables.

scala> var bookName = "Spark"
bookName: String = Spark

scala> bookName = "Practical Spark"
bookName: String = Practical Spark

scala> print("The book Name is " + bookName)
The book Name is Practical Spark

Figure 1-6. Mutable variables using the var keyword
Hence, variable reassignment is possible if the variable is declared using the var
keyword. The code shown here illustrates an immutable variable.

val bookName = "Spark"
bookName = "Practical Spark"

Refer to Figure 1-7 for immutable variables.

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> val bookName = "Spark"
bookName: String = Spark

scala> bookName = "Practical Spark"
<console>:15: error: reassignment to val
bookName = "Practical Spark"

A

Figure 1-7. Immutable variables using the val keyword

As you can see, variable reassignment is not possible if the variable is declared using the
val keyword.

Hint Declaring immutable variables using the val keyword is like declaring
final variables in Java.

Lazy Evaluation

The lazy evaluation feature allows the user to defer the execution of any expression until
itis needed using the 1azy keyword. When the expression is declared with the lazy
keyword, it will be executed only when it is being called explicity. The following code
and Figure 1-8 illustrates immediate expression evaluation.

val x = 10
10
val sum = x+y

val y

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> val x = 10
X: Int = 10

scala> val y = 10

y: Int = 10

scala> val sum = x+y
sum: Int = 20

Figure 1-8. Immediete expression evaluation without the lazy keyword

In the following code the expression y is defined with the lazy keyword. Hence, it is
evaluated only when it is called. Refer to Figure 1-9 for the output.

10
val y = 10
lazy val y = 10
print(sum)

val x

scala> val x 10

x: Int = 10

scala> val y = 10
y: Int = 1©

scala> lazy val y = 10
y: Int = <lazy>

scala> print (sum)
20

Figure 1-9. Lazy evaluation with the lazy keyword

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

It is important to note that the lazy evaluation feature can be used only with val
(i.e., immutable variables). Refer to the code given here and Figure 1-10.

var x =10
var y =10
lazy sum = x+y

scala> var x = 10
x: Int = 10
scala> var y = 10

y: Int = 10

scala> lazy sum = Xx+y

<console>:1: error: lazy not allowed here. Only vals can be lazy
lazy sum = x+y
A

Figure 1-10. Lazy evaluation cannot be used with mutable variables

String Interpolation

String interpolation is the process of creating a string from the data. The user can
embed the references of any variable directly into the processed string literals and
format the string. The code shown here describes string processing without using string
interpolation.

var bookName = "practical Spark"
println("The Book name is" + bookName)

Refer to Figure 1-11 for the output

scala> var bookName = "Practical Spark"
bookName: String = Practical Spark

scala> println("The Book name is "+bookName)
The Book name is Practical Spark

Figure 1-11. String processing without using interpolation

10

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

These are the available string interpolation methods:
e sinterpolator.
o finterpolator.

e raw interpolator.

String - s Interpolator

Using the interpolator s, to the string literal allows the user to use the reference variables
to append the data directly. The following code illustrates the s interpolator and the
result is shown in Figure 1-12.

var bookName = "practical Spark"
println(s"The Book name is $bookName")

{scala> var bookName = "Practical Spark"
bookName: String = Practical Spark

iscala> println(s"The Book name is $bookName")

The Book name is Practical Spark

Figure 1-12. String processing using the s interpolator

Observe the difference in println method syntax to form the string with and without
string interpolation.

Also, the arbitary expressions can be evaluated using the string interpolators, as shown
in the following code. Refer to Figure 1-13 for the output.

val x = 10
val y =15
println(s"The sum of $x and $y is ${x+y}")

11

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> val x = 10
x: Int = 106
scala> val y = 15

y: Int = 15

scala> println(s"The sum of $x and $y is ${x+y}")
The sum of 10 and 15 is 25

Figure 1-13. Expression evaluation using string interpolation

String - f Interpolator

Scala offers a new mechanism to create strings from your data. Using the interpolator
T to the string literal allows the user to create the formatted string and embed variable
references directly in processed string literals. The following code illustrates the f
interpolator and the output is shown in Figure 1-14.

var bookPrice = 100

val bookName = "Practical Spark"

println(f"The price of $bookName is $bookPrice")
println(f"The price of $bookName is $bookPrice%1.1f")
println(f"The price of $bookName is $bookPrice%1.2f")

scala> val bookPrice = 100
lbookPrice: Int = 1@

scala> val bookName = "Practical Spark"
bookName: String = Practical Spark

scala> println(f"The price of $bookName is $bookPrice")
The price of Practical Spark is 100

scala> println(f"The price of $bookName is $bookPrice%1.1f")
The price of Practical Spark is 100.0

scala> println(f"The price of $bookName is $bookPrice%1.2f")
The price of Practical Spark is 100.00

Figure 1-14. String processing using the f interpolator
12

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

The formats allowed after % are based on string format utilities available from Java.

String - raw Interpolator

The raw interpolator does not allow the escaping of literals. For example, using \n with
the raw interpolator does not return a newline character. The following code illustrates
the raw interpolator and the output is shown in Figure 1-15.

val bookId = 101

val bookName = "Practical Spark"

println(s"The book id is $bookId. \n The book name is $bookName")
println(raw"The id is $bookId. \n The book name is $bookName")

|scala> val bookId = 101
lbookId: Int = 11

scala> val bookName = "Practical Spark"
bookName: String = Practical Spark

scala> println(s"The book id is $bookId. \n The book name is $bookName")
The book id is 1e1.
The book name is Practical Spark

scala> println(raw"The book id is $bocokId. \n The bock name is $bookName™)
The book id is 101. \n The book name is Practical Spark

Figure 1-15. String processing using the raw interpolator

Pattern Matching

The process of checking a pattern against a value is called pattern matching. A successful
match returns a value associated with the case. Here is the simple syntax to use pattern
matching.

<reference_name> match {
case <option 1> => <return_value 1>
case <option 2> => <return_value 2>
case <option n> => <return_value n>
case <default option> => <default return value>

13

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS
The pattern matching expression can be defined for a function as shown here.

def chapterName(chapterNo:Int) = chapterNo match {
case 1 => "Scala Features"
case 2 => "Spark core"
case 3 => "Spark Streaming"
case _ => "Chapter not defined"

}

Refer to Figure 1-16 for the output.

Iscala> def chapterName(chapterNo:Int) = chapterNo match {
| case 1 => "Scala Features"

| case 2 => "Spark core"

| case 3 => "Spark Streaming"

| case _ => "Chapter not defined"

| }
chapterName: (chapterNo: Int)String

scala> chapterName(1)
res3@: String = Scala Features

scala> chapterName(5)
res31l: String = Chapter not defined

Figure 1-16. Example for pattern matching

Scala Class vs. Object

A class is a collection of variables, functions, and objects that is defined as a blueprint for
creating objects (i.e., instances). A Scala class can be instantiated (object can be created).
The following code describes class and objects.

scala> class SparkBook {
| val bookId = 101
val bookName = "Practical Spark"
val bookAuthor = "Dharanitharan G"
def printBookDetails(){
println(s"The $bookName is written by $bookAuthor")

14

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS
defined class SparkBook

scala> val book = new SparkBook()
book: SparkBook = SparkBook@96be74

scala> book.printBookDetails()
The Practical Spark is written by Dharanitharan G

Figure 1-17 displays the output.

Iscala> class SparkBook {
| val bookId = 101
| val bookName = "Practical Spark"
| val bookAuthor = "Dharanitharan G"
| | def printBookDetails(){
| println(s"The $bookName is written by $bookAuthor")
| }
| }
defined class SparkBook

scala> val book
book: SparkBook

new SparkBook()
SparkBook@762at0e9

scala> book.printBookDetails()
The Practical Spark is written by Dharanitharan G

Figure 1-17. Example for class and objects

The functions in the class can be called by using the object reference. The new keyword is
used to create an object, or instance of the class.

Singleton Object

Scala classes cannot have static variables and methods. Instead, a Scala class can have
a singleton object or companion object. You can use singleton object when there is a
need for only one instance of a class. A singleton is also a Scala class but it has only one
instance (i.e., Object). The singleton object cannot be instantiated (object creation). It
can be created using the object keyword. The functions and variables in the singleton
object can be directly called without object creation. The code shown here describes
SingletonObject and the output is displayed in Figure 1-18.

15

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> object SingletonObjectDeo{
| def functionInSingleton{
| println("This is printed in Singleton Object")
|}
|}

scala> object SingletonObjectDemo {
| def functionInSingleton() {
| println("This is printed in Singleton Object")
| }

| }
defined object SingletonObjectDemo

scala> SingletonObjectDemo.functionInSingleton()
This is printed in Singleton Object

Figure 1-18. Singleton object

Generally, the main method is created in a singleton object. Hence, the compiler need
not create an object to call the main method while executing. Add the following code in
a .scala file and execute it in a command prompt (REPL) to understand how the Scala
compiler calls the main method in singleton object.

object SingletonObjectMainDemo {
def main(args: Array[String]) {
println("This is printed in main method")
}

}

Save this code as SingletonObjectMainDemo.scala and execute the program using these
commands at the command prompt.

scalac SingletonObjectMainDemo.scala
scala SingletonObjectMainDemo

The scalac keyword invokes the compiler and generates the byte code for
SingletonObjectMainDemo. The scala keyword is used to execute the byte code
generated by compiler. The output is shown in Figure 1-19.

16

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> object SingletonObjectMainDemo {
| def main(args: Array[String]) {
| println("This is printed in main method")

| 3
| }

defined object SingletonObjectMainDemo

scala> SingletonObjectMainDemo.main(Array(""))
This is printed in main method

Figure 1-19. Calling main method of singleton object in REPL mode

Companion Classes and Objects

An object with the same name as a class is called a companion object and the class is
called a companion class.

The following is the code for companion objects. Save this code as CompanionExample.
scala file and execute the program using this command.

scalac CompanionExample.scala
scala CompanionExample

//companion class

class Author(authorId:Int, authorName:String){
val id = authorld

val name = authorName

override def toString() =

this.id +" "+" , "+ this.name

}

//companion object

object Author{

def message(){

println("Welcome to Apress Publication")

}

17

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

def display(au:Author){

println("Author Details: " + au.id+","+au.name);
}

}

object CompanionExample {
def main(args: Array[String]) = {
var author=new Author(1001,"Dharanidharan")
Author.message()
Author.display(author)

}
}

The output of this program is shown in Figure 1-20.
c:\scala_programs>scalac CompanionExample.scala
c:\scala_programs>scala CompanionExample

Welcome to Apress Publication
Author Details: 1€01,Dharanidharan

Figure 1-20. CompanionExample.scala output

Case Classes

Case classes are like the regular classes that are very useful for modeling immutable
data. Case classes are useful in pattern matching, as we discuss later in this chapter. The
keyword case class is used to create a case class. Here is the syntax for creating case

classes:

case class <class_name> (<variable 1>:<data_type>, <variable n>:
<data_type>)

The following code illustrates a case class.

scalay> case class ApressBooks(
| bookId:Int,
| bookName:String,

18

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

| bookAuthor:String

1)

Figure 1-21 shows case class output.

scala> case class ApressBooks (
| bookId : Int,
| bookName : String,
| bookAuthor : String
|)

defined class ApressBooks

Figure 1-21. Example for case class

The case classes can be instantiated (object creation) without using the new keyword. All
the case classes have an apply method by default that takes care of object creation. Refer

to Figure 1-22.

scala> val bookl = ApressBooks(101,"Practical Spark","Subhashini Chellapan")
bookl: ApressBooks = ApressBooks(101,Practical Spark,Subhashini Chellapan)

scala> val book2 = ApressBooks(162,"Practical Scala","Dharanitharan Ganesan")
book2: ApressBooks = ApressBooks(102,Practical Scala,Dharanitharan Ganesan)

scala> println(s"The book ${bookl.bookName} is written by ${book1.bookAuthor}")
The book Practical Spark is written by Subhashini Chellapan

scala> println(s"The book ${book2.bookName} is written by ${book2.bookAuthor}")
The book Practical Scala is written by Dharanitharan Ganesan

Figure 1-22. Case class object creation

19

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Case classes are compared by structure and not by reference (Figure 1-23).

scala> case class Authors(authorName:String,publisher:String)
defined class Authors

scala> val authorl = Authors("Dharanidharan", "Apress")
authorl: Authors = Authors(Dharanidharan,Apress)

scala> val author2=Authors("Dharanidharan”,"Apress")
author2: Authors = Authors(Dharanidharan,Apress)

scala> authorl == author2
res®: Boolean = true

Figure 1-23. Example for case class

Even though author1 and author2 refer to different objects, the value of each
object is equal.

Pattern Matching on Case Classes

Case classes are useful in pattern matching. In the following example, Books is an
abstract superclass that has two concrete Book types implemented with case classes.
Now we can do pattern matching on these case classes. The code is shown here and the
results are displayed in Figure 1-24.

scala> abstract class Books
defined class Books

scala> case class ApressBooks(bookID:Int, bookName:String,
publisher:String) extends Books
defined class ApressBooks

scala> case class SpringerBooks(bookID:Int, bookName:String,
publisher:String) extends Books
defined class SpringerBooks

scala> def showBookDetails(book:Books) = {
| book match {
| case SpringerBooks(id,name,publisher) => s"The book ${name} is
published by ${publisher}"

20

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

| case ApressBooks(id,name,publisher) => s"The book ${name} is
published by ${publisher}"

|}
|}

scala> abstract class Books
efined class Books

scala> case class ApressBooks(bookID:Int, bookName:String, publisher:String) extends Books
efined class ApressBooks

Ecala> case class SpringerBooks(bookID:Int, bookName:String, publisher:String) extends Books
efined class SpringerBooks

scala> def showBookDetails(book : Books) = {
| book match {
| case SpringerBooks(id,name,publisher) => s"The book ${name} is published by ${publisher}"
I case ApressBooks(id,name,publisher) => s"The book ${name} is published by ${publisher}"
}

[}
showBookDetails: (book: Books)String

scala> showBookDetails(ApressBooks(101,"Practical Spark","Apress Publications"))
res39: String = The book Practical Spark is published by Apress Publications

scala> showBookDetails(SpringerBooks (102, "Practical Scala","Springer Media"))
res4@: String = The book Practical Scala is published by Springer Media

Figure 1-24. Pattern matching on case class

Note The abstract class and extends keyword are like the same in Java. It
is used here to represent the different book types (i.e., Apress Books & Springer
Books as generic books), which makes the showBookDetails function able to
accept any type of book as a parameter.

Scala Collections

The collections in Scala are the containers for some elements. They hold the arbitary
number of elements of the same or different types based on the type of collection. There

are two types of collections:
e Mutable collections.
« Immutable collections.

21

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

The contents or the reference of mutable collections can be changed, immutable
collections cannot be changed. Table 1-1 explains the most commonly used collections
with their descriptions.

Table 1-1. Commonly Used Collections in Scala

Collection Description

List Homogeneous collection of elements

Set Collection of elements of same type with no duplicates
Map Collection of key/value pairs

Tuple Collection of elements of different type but fixed size
Option Container for either zero or one element

The following code describes various collections.

val booksList = List("Spark","Scala","R Prog", "Spark")

val booksSet = Set("Spark","Scala","R Prog", "Spark")

val booksMap = Map(101 -> "Scala", 102 -> "Scala")

val booksTuple = new Tuple4(101,"Spark", "Subhashini","Apress")

Figure 1-25 depicts the creation of different collections.

scala> val booksList = List("Spark","Scala","R Prog", "Spark")
booksList: List[String] = List(Spark, Scala, R Prog, Spark)

scala> val booksSet = Set("Spark","Scala","R Prog","Spark")
booksSet: scala.collection.immutable.Set[String] = Set(Spark, Scala, R Prog)

scala> val booksMap = Map(1@1 -> "Scala", 102 -> "Scala")
booksMap: scala.collection.immutable.Map[Int,String] = Map(1@1 -> Scala, 102 -> Scala)

scala> val booksTuple = new Tuple4(1@1, "Spark", "Subhashini" , "Apress")
booksTuple: (Int, String, String, String) = (101,Spark,Subhashini,Apress)

Figure 1-25. Commonly used collections in Scala

In Scala, the Option[T] is a container for either zero or one element of a given type. The
Option can either be Some[T] or None[T], where T can be any given type. For example,
Some is referred for any available value and None is reffered for no value

(i.e., like null).

22

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Scala Map always returns the value as Some[<given_type>] if the key is present and None
if the key is not present. Refer to the following code and Figure 1-26.

val booksMap = Map(101 -> "Scala", 102 -> "Scala")

scala> val booksMap = Map(1@1 -> "Scala", 102 -> "Scala")
booksMap: scala.collection.immutable.Map[Int,String] = Map(101 -> Scala, 1082 -> Scala)

scala> booksMap.get(101)
res53: Option[String] = Some(Scala)

scala> booksMap.get(1@5)
res54: Option[String] = None

Figure 1-26. Example of Option[T] collection

The getOrElse() method is used to get the value from an Option or any default value if
the value is not present. Refer to Figure 1-27.

scala> booksMap.get(101).getOrElse("Book Not Available")
res55: String = Scala

scala> booksMap.get(105).getOrElse("Book Not Available")
res56: String = Book Not Available

Figure 1-27. Example of getOrElse() method of Option[T] collection

Iterating Over the Collection

The collections can be iterated using the iterator method. The iterator.hasNext
method is used to find whether the collection has further elements and the iterator.
next method is used to access the elements in a collection. The following code describes
the iterator method and Figure 1-28 shows its output.

scala> val booksList = List("Spark","Scala","R Prog","Spark")
booksList: List[String] = List(Spark, Scala, R Prog, Spark)

scala> def iteratinglist(booksList:List[String]){
| val iterator = bookslList.iterator
| while(iterator.hasNext){
| println(iterator.next)
|}
|}

23

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> val booksList = List("Spark","Scala","R Prog", "Spark")
|[booksList: List[String] = List(Spark, Scala, R Prog, Spark)

scala> def iteratinglList(booksList : List[String]){
| val iterator = booksList.iterator
| while (iterator.hasNext) {
| println(iterator.next)

| }
| }

iteratinglList: (booksList: List[String])unit

scala> iteratinglList(booksList)
Spark

Scala

R Prog

Spark

Figure 1-28. Iterating elements in the list

Here is another example, for which output is shown in Figure 1-29.

scala> val booksMap = Map(101 -> "Scala", 102 -> "Scala")
booksMap: scala.collection.immutable.Map[Int,String] = Map(101 -> Scala,
102 -> Scala)

scala> def iteratingMap(booksMap:Map[Int,String]){
| val iterator = booksMap.keySet.iterator
| while(iterator.hasNext){
| var key =iterator.next
| println(s"Book Id:$key,BookName:{booksMap.get(key)}")
|}

|}
iteratingMap: (booksMap: Map[Int,String])Unit

24

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> val booksMap = Map(101 -> "Scala", 102 -> "Scala")
booksMap: scala.collection.immutable.Map[Int,String] = Map(1@1 -> Scala, 182 -> Scala)

scala> def iteratingMap (booksMap : Map[Int,String]){
| val iterator = booksMap.keySet.iterator
| while(iterator.hasNext){

| var key = iterator.next

| println(s"Book Id :$key, BookName:${booksMap.get(key)}")

I

I

t

iterati

= SRS

gMap: (booksMap: Map[Int,String])Unit

scala> iteratingMap(booksMap)
Book Id :101, BookName:Some(Scala)
Book Id :182, BookName:Some(Scala)

Figure 1-29. Iterating elements in the Map

Common Methods of Collection

The following are the common frequently used methods on various available collections.

o filter

e map

o flatMap

e distinct
e foreach

Figure 1-30 shows an illustration of commonly used methods on different collections.

25

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> val booksList=List("Spark","Scala","R Prog","Spark")
booksList: List[String] = List(Spark, Scala, R Prog, Spark)

scala> val booksSet=List("Spark","Scala","R Prog","Spark")
booksSet: List[String] = List(Spark, Scala, R Prog, Spark)

scala> booksList.distinct
res5: List[String] = List(Spark, Scala, R Prog)

scala> booksList.foreach(println)
Spark

Scala

R Prog

Spark

scala> booksSet.map(name => s"The book name is $name").foreach(println)
The book name is Spark

The book name is Scala

The book name is R Prog

The book name is Spark

scala> booksSet.filter(name => name.equals("Spark")).foreach(println)
Spark
Spark

:scala>
Figure 1-30. Commonly used methods of collections

The function { name => name.equals("Spark") } used inside the filter method is
called as an anonymous function, is discussed later in this chapter.

The flatMap unwraps all the elements of the collection inside a collection and forms a
single collection as shown in Figure 1-31.

Iscala> val numbersList = List(List(1,2,3),List(4,5,6),List(7,8,9))
numbersList: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 6), List(7, 8, 9))

scala> numbersList.flatMap(list => list)
res82: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

Figure 1-31. Commonly used operations - flatMap

26

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Functional Programming Aspects of Scala

Let us understand the functional programming aspects of Scala. Scala supports
anonymous functions, higher order functions, function composition, function currying,
nested functions, and functions with variable length parameters (see Figure 1-32).

Figure 1-32. Functional programming aspects of Scala

Anonymous Functions

An anonymous function is a function that is not defined with a name and is created for
single use. Like other functions, it also accepts input parameters and returns outputs. In
simple words, these functions do not have a name but work like a function.

Anonymous functions can be created by using the => symbol and by _ (i.e., wildcard).
They are also represented as lambda functions.

The function that follows can be used to calculate the sum of two numbers. It accepts
two integers as input parameters and returns an integer as output.

def sumOfNumbers(a:Int,b:Int) : Int = {
return a + b

}

27

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Calling this function using the defined name sumOfNumbers (2, 3) returns the output 5.
The anonymous function does not need the name to be defined explictly and because
Scala has a strong built-in type inference mechanism, the data type need not be explicitly
specified. Also, the return keyword can be ignored because the last statement in the
function is a return statement by default. The same function can be written as

(a:Int, b:Int) => a+b

It can also be denoted as (_:Int)+(_:Int) usingthe wildcard character. Refer the
following code and Figure 1-33.

scala> val sum = (a:Int, b:Int) => a+b
sum: (Int, Int) => Int = <function2>

scala> val diff = (_:Int) - (_:Int)
diff: (Int, Int) => Int = <function2>

scala> sum(3,2)
res12: Int =5

scala> diff(3,2)

resi13: Int = 1

scala> var sum = (a:Int,b:Int) => a+b
sum: (Int, Int) => Int = $$Lambda$1690/526318751@32ae8593

scala> var diff = (_:Int)-(_:Int)
diff: (Int, Int) => Int = $$Lambda$1692/90338335@7d82b654

scala> sum(3,2)
res85: Int = 5

scala> diff(3,2)
res86: Int = 1

Figure 1-33. Anonymous functions

Here, the anonymous function (a:Int,b:Int) => a+bisassigned to avariable as a value
that proves that the function is also a value in functional programming. The left side is the
input parameter to the function and the right side is the return value of the function.

28

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Higher Order Functions

Functions that accept other functions as a paramenter or return a function are called
higher order functions. The most common example of a higher order function in Scala is
amap function applicable on collections.

If the function accepts another function as a parameter, the input parameter must be
defined as shown in the following code and Figure 1-34.

scala> def normalFunc(inputString:String) = {
| println(inputString)

|}
normalFunc: (inputString: String)Unit

scala> def funcAsParameter(str:String,anyFunc:(String) => Unit) {
| anyFunc(str)
|}

funcAsParameter: (str: String, anyFunc: String => Unit)Unit

scala> funcAsParameter("This is a Higher order function",normalFunc)
This is a Higher order function
referenceName: (function_params) => returnType

scala> def normalFunc(inputString:String) = {
| println(inputString)

| }
normalFunc: (inputString: String)Unit

scala> def funcAsParameter(str:String, anyFunc:(String)=>Unit) {
| anyFunc(str)

| 3

funcAsParameter: (str: String, anyFunc: String => Unit)Unit

scala> funcAsParameter("This is a Higher order fucntion", normalFunc)
This is a Higher order fucntion

Figure 1-34. Higher order functions

Here, the function funcAsParameter accepts another function as a parameter and
returns the same function when it is called. Table 1-2 shows input parameter and return
types of higher order functions.

29

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Table 1-2. Listing Higher Order Function Types

Input Parameter Return Type
Value Function
Function Function
Function Value

Function Composition

In Scala, multiple functions can be composed together while calling. This is known as

function composition. Refer to the following code and Figure 1-35.

scala> def concatValues(stri:String,str2:String):String = {
| var concatedvalue = stri.concat(str2);
| concatedvalue

|}

concatValues: (stri: String, str2: String)String
scala> def display(dispValue:String) = {

| print(dispValue)

|}
display: (dispValue: String)Unit

scala> display(concatValues("Practical","Spark"))
PracticalSpark

|[scala> def concatValues(strl: String, str2: String): String = {

| var concatedValue = strl.concat(str2);
| concatedValue

| }

concatValues: (strl: String, str2: String)String

scala> def display(dispValue: String) = {
| print(dispValue)
| }

display: (dispValue: String)unit

scala> display(concatValues("Practical™, "Spark"))
PracticalSpark

Figure 1-35. Function composition
30

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Here, the functions display and concatValues are composed together while calling.

Function Currying

The process of transforming a function that takes multiple arguments as parameters into
a function with a single argument as a parameter is called currying. Function currying is
primarily used to create a partially applied function. Partially applied functions are used
to reuse a function invocation or to retain some of the parameters. In such cases, the
number of parameters must be grouped as parameter lists. A single function can have
multiple parameter lists, as shown here:

def multiParameterList(parami:Int)(param2:Int,param3:String){
println("This function has two parameter lists")
println("1st parameter list has single parameter")
println("2nd parameter list has two parameters")

}

The following code and Figure 1-36 represent a function without currying.

scala> def bookDetails(id:Int)(name:String)(author:String){
| println("The book id is " + id)
| println("The book name is "+name)
| println("The book author is "+author)

|3}

scala> def bookDetails(id:Int)(name:String)(author:String) {
| println("The book id is "+id)
| println("The book name is "+name)
| println("The book author is "+author)

|}
bookDetails: (id: Int)(name: String)(author: String)Unit

scala> bookDetails(101)("Practical Spark")("Dharanitharan G")
The book id is 101

The book name is Practical Spark
The book author is Dharanitharan G

Figure 1-36. Without function currying

31

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

When a function is called with fewer parameter lists, it yields a partially applied function,
as illustrated in Figure 1-37.

scala> var newBookDetails=bookDetails(101)("Practical Spark")_
newBookDetails: String => Unit = $$Lambda$1695/150600414@3108babea

Figure 1-37. Partially applied function: Function currying

The bookDetails function is called by passing a lesser number of parameter lists than
its total number of parameter lists. This can be done by simply using _instead of a
parameter list (see Figure 1-38).

scala> var newBookDetails=bookDetails(1e1)("Practical Spark")_
newBookDetails: String => Unit = $$Lambda$1695/150600414@310ba6ea

scala> newBookDetails("Dharanitharan G")
The book id is 1e1

The book name is Practical Spark

The book author is Dharanitharan G

Figure 1-38. Function currying

Nested Functions

Scala allows the user to define functions inside a function. This is known as nested
functions, and the inner function is called a local function. The following code and
Figure 1-39 represent the nested function.

scala> def bookAssignAndDisplay(bookId:Int,bookname:String) = {
| def getBookDetails(bookId:Int,bookName:String):String = {
| s"The bookId is $bookId and book name is $bookName"
|}
| def display{
| println(getBookDetails(bookId,bookName))
|}
| display
|}

32

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> def bookAssignAndDisplay(bookId:Int, bookname: String) = {

def getBookDetails(bookId:Int, bookName: String): String = {

s"The bookId is $bookId and book name is $bookName"

¥

println(getBookDetails(bookId,bookName))

}
display

I}

|
|
|
| def display {
|
|
|

bookAssignAndDisplay: (bookId: Int, bookname: String)Unit

scala> bookAssignAndDisplay(1€1,"Practical Spark")
The bookId is 101 and book name is Practical Spark

Figure 1-39. Nested functions

Here, two inner functions are defined inside the function bookAssignAndDisplay.
The getBookDetails and display are the inner functions. The following code and

Figures 1-40 and 1-41 show the scope of the outer function.

scalay> def outerFunction(){
| var outerVariable ="Out"
| def innerFunction(){

| println(s"The value of outerVariable is : $outerVariable")

|}

| innerFunction()

|}

outerFunction: ()Unit

scala> def outerFunction(){
| var outervariable = "Out"
| def innerFunction(){
| var innerVariable = "In"
| println(s"The value of outerVariable is
|
|

}

innerFunction()

| }

outerFunction: ()Unit

scala> outerFunction()
The value of outerVariable is : Out

Figure 1-40. Scope of outer function variable

: $outervariable")

33

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scalay> def outerFunction(){
| var outerVariable = "Out"
| def innerFunction(){
| var innerVariable ="In"
| println(s"The value of outerVariable is :$outerVariable")
|}
| innerFunction()
| println(s"The value of innerVariable is :$innerVariable")

|}

lscala> def outerFunction(){
| var outervariable = "Out"
| def innerFunction(){
| var innerVariable = "In"
| println(s"The value of outerVariable is : $outerVariable")
I
I

}

innerFunction()
| println(s"The value of innerVariable is : $innerVariable")

| }

<console>:20: error: not found: value innerVariable
println(s"The value of innerVariable is : $innerVariable")

M

Figure 1-41. Scope of inner function variable

The variables declared in the outer function can be accessed in the inner function, but
the variables declared in the inner function do not have the scope in the outer function.

Functions with Variable Length Parameters

The variable length parameters allow passing any number of arguments of the same
type to the function when it is called. The following code represents the functions with
variable length parameters. Figure 1-42 displays the output.

scala> def add(values:Int*)={
| var sum =0;
| for (value <- values){
| sum = sum+value

|}

34

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

| sum

|}
add: (values: Int*)Int

scala> def add(values: Int*) = {
| var sum = 9;
for (value <- values){
sum =sum+value

|
|
| }
| sum
| }
add: (values: Int*)Int

scala> var sum = add(1, 2, 3, 4, 5, 6, 7, 8, 9);
sum: Int = 45

scala> println(s"The sum of all arguments is $sum");
The sum of all arguments is 45

Figure 1-42. Variable length parameters

The variable length parameters can be defined using the * operator. When it is defined as
Int*, it is mandatory to pass all parameters as Int. It is possible to pass other parameters
along with variable length parameters but the variable length parameters should be

the last in the parameter list. The following code and Figure 1-43 show variable length

parameters with other parameters.

scala> def add(ops:String,values:Int*) = {
| println(s"Performing $ops of all elements in variable length
parameter")
| var sum = 0;
| for(value <- values){
| sum =sum+value
|
|

}

sum

add: (ops: String, values: Int*)Int

35

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

scala> def add(ops:String,values: Int*) = {
| println(s"Performing $ops of all elements in variable lenth parameter")
| var sum = @;
| for (value <- values){
| sum =sum+value
I }
| sum
| }
add: (op

ops: String, values: Int*)Int

scala> var sum = add("addition",1, 2, 3, 4, 5, 6, 7, 8, 9);
Performing addition of all elements in variable lenth parameter
sum: Int = 45

scala> println(s"The sum of all arguments is $sum");
The sum of all arguments is 45

Figure 1-43. Variable length parameters with other parameters

A function cannot accept two variable length parameters, as reflected in Figure 1-44.

scala> def add(ops:String,values: Int*,values2: Int*) = {
| println(s"Performing $ops of all elements in variable lenth parameter")
| var sum = @;
| for (value <- values){
| sum =sum+value
I }
I

sum
| }

<console>:12: error: *-parameter must come last
def add(ops:String,values: Int*,values2: Int*) = {

Figure 1-44. Error: Multiple variable length parameters

Note In Scala, there are no primitive data types. Everthing is an object.

Scala doesn’t have operators. The operators are known as methods. Hence, we
can not use * while importing a package.

The packages can be imported as shown here:

import java.io._

36

CHAPTER 1 SCALA: FUNCTIONAL PROGRAMMING ASPECTS

Reference Links

o https://docs.scala-lang.org/tour/tour-of-scala.html

Points to Remember

o A function that has no side effects is called a pure function.

e InScala, the compiler can identify the type of variable based on
the initialization of the variable by the built-in type inference
mechanism.

o Thelazy evaluation feature allows the user to defer the execution of
any expression until it is needed using the lazy keyword.

e A Scala class cannot have static variables and methods. Instead, Scala
classes can have singleton objects or companion objects.

o Case classes are like the regular classes that are very useful for
modeling immutable data.

e Ananonymous function is a function that is not defined with a name

and is created for a single use.

o Functions that accept other functions as a parameter or return a
function are called higher order functions.

In next chapter, we discuss the installation and cluster setup for Apache Spark.

37

https://docs.scala-lang.org/tour/tour-of-scala.html

CHAPTER 2

Single and Multinode
Cluster Setup

This chapter explains how to install Apache Spark on a single and multinode cluster.
The recommended background for this chapter is to have some prior experience with
basic Unix commands.

By end of this chapter, you will be able to do the following:

e Setup asingle and multinode spark cluster.
e Understand the various configurations in the Spark cluster setup.

o Perform basic administration activities on the Spark cluster.

Note We recommend following the step-by-step instructions and the complete
procedure to create single-node and multinode Spark clusters based on the
requirements.

Spark Multinode Cluster Setup

Follow this guide to create a three-node spark cluster.

Recommended Platform

We recommend following this procedure to complete the cluster setup with minimal
operating system requirements for learning purposes.

© Subhashini Chellappan, Dharanitharan Ganesan 2018
S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_2

39

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Operating System

Windows is supported as a development platform, but Linux is recommended for the
development and deployment cluster. We recommend using Ubuntu - 14.0/16.0 or later.
You can download the Ubuntu iso file from http://releases.ubuntu.com/trusty/.
(Please note that this link might be changed in future as it depends on the Ubuntu
release team.)

Because we follow the steps to create a three-node cluster, we need three Ubuntu
machines that can be created in any cloud service provider or on-premises nodes.

To create the cluster on your personal PC, we recommend using any virtual machine
provider like Oracle VirtualBox or VM Workstation to create multiple machines.

We have used Oracle VirtualBox to create three Ubuntu virtual machines and the details
are given next (see Figure 2-1).

V¢ Oracle VM VirtualBox Manager
File Machine Help

(¢ y P

New Settings Discard Start
=] SparkMaster
g Running
= SparkWorker_1
g Running
e SparkWorker_2
ty Running

Figure 2-1. Oracle VM VirtualBox Manager

Follow the steps given here to install VirtualBox and create the virtual machines.
Download the latest version of Oracle VirtualBox from https://download.virtualbox.
org/virtualbox/5.2.18/VirtualBox-5.2.18-124319-Win.exe. (Please note that this
link might be changed in the future as it depends on the Oracle release team.) Once the
application is downloaded, right-click the application and run it as administrator

(see Figure 2-2).

40

http://releases.ubuntu.com/trusty/
https://download.virtualbox.org/virtualbox/5.2.18/VirtualBox-5.2.18-124319-Win.exe
https://download.virtualbox.org/virtualbox/5.2.18/VirtualBox-5.2.18-124319-Win.exe

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

N VirtualBox-5.2.18-124319-Win -
Open
G Run as administrator
Troubleshoot compatibility
Pin to Start
£l Scan with Windows Defender...
|2 Share

Send to >

Cut
Copy

Figure 2-2. Starting the VirtualBox installation

Click Next on the screen shown in Figure 2-3 to proceed with the installation.

45 Oracle VM VirtualBox 5.2.18 Setup X

Welcome to the Oracle VM
VirtualBox 5.2.18 Setup
Wizard

The Setup Wizard will install Oradle VM VirtualBox 5.2.18 on
your computer. Click Next to continue or Cancel to exit the
Setup Wizard.

Version 5.2.18 Cancel

Figure 2-3. VirtualBox installation step

41

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Browse the location to change the installation path, and click Next, as shown in

Figure 2-4.

#5 Oracle VM VirtualBox 5.2.18 Setup X

Custom Setup
Select the way you want features to be installed.

Click on the icons in the tree below to change the way features will be installed.

Orade VM VirtualBox 5.2. 18
- VirtualBox USB Support application.
EJ =3 ~ | VirtualBox Networking
i e (=) + | VirtualBox Bridge: ; -
i This feature requires 174MB on
o 9"%&50*”05*{ your hard drive. It has 3 of 3
. — "I VirtualBox Python 2.xSu| subfeatures selected. The

% 5 subfeatures require 852KB on yo...
Location: C:\Program Files\OradleVirtualBox\ | e
Version 5.2.18 | DiskUsage | | <Back |[Next> | | cancel

Figure 2-4. VirtualBox installation continued

42

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Next, select the required features for custom installation, as shown in Figure 2-5.

#5 Oracle VM VirtualBox 5.2.18 Setup X

Custom Setup
Select the way you want features to be installed.

Please choose from the options below:

[create start menu entries
Create a shortcut on the desktop
Create a shortcut in the Quick Launch Bar

Register file assodiations

Version 5.2.18 | <Back Cancel

Figure 2-5. VirtualBox installation steps continued

43

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Select Yes in the next step, depicted in Figure 2-6, to install the VirtualBox network
interfaces.

fﬂ Oracle VM VirtualBox 5.2.18 X

Warning:
Network Interfaces

Installing the Oradle VM VirtualBox 5.2. 18 Networking
feature will reset your network connection and temporarily
disconnect you from the network.

Proceed with installation now?

Version 5.2.18 No

Figure 2-6. VirtualBox installation steps continued

44

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Click Install on the next wizard page, shown in Figure 2-7, to proceed with the
installation.

45 Oracle VM VirtualBox 5.2.18 Setup X

Ready to Install
The Setup Wizard is ready to begin the Custom installation.

Click Install to begin the installation. If you want to review or change any of your
installation settings, dick Back. Click Cancel to exit the wizard.

Version 5.2.18 | <Bak [mnstal | | Concel

Figure 2-7. VirtualBox installation steps continued

45

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Wait for a few minutes for the installation to complete. You will see the wizard page
shown in Figure 2-8.

#5 Oracle VM VirtualBox 5.2.18 Setup - X

Oracle VM VirtualBox 5.2.18

Please wait while the Setup Wizard installs Oracle VM VirtualBox 5.2. 18. This may
take several minutes.

Status: Copying new files
|

Version 5.2.13 < Back Next >

Figure 2-8. VirtualBox installation steps continued

46

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Click Finish, as indicated in Figure 2-9, to complete the installation process.

#5 Oracle VM VirtualBox 5.2.18 Setup X

Oracle VM VirtualBox 5.2.18
~__ installation is complete.
@ Click the Finish button to exit the Setup Wizard.

Start Oracle VM VirtualBox 5.2. 18 after installation

Version 5.2.18 < Back Cancel

Figure 2-9. VirtualBox installation steps continued

47

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Once the installation is complete, start VirtualBox. You will see the welcome page shown

in Figure 2-10.

¥ Oracle VM VirtualBox Manager - a X
File Machine Help

@@ P o - -

New Settings Discard Start, Machine Tools Global Tools
Welcome to VirtualBox!

The left part of this window lists all virtual
machines and virtual machine groups on your
computer. The list is empty now because you
haven't created any virtual machines yet.

In order to create a new virtual machine,
press the New button in the main tool bar
located at the top of the window.

You can press the F1 key to getinstant help,
or visit www.virtualbox.org for more
information and latest news.

Figure 2-10. VirtualBox welcome page

48

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

To create the virtual machines, first click New to create a new virtual machine. Specify

the name of the virtual machine and select Linux as the type of operating system. Click

next. These steps are shown in Figure 2-11.

¥

New

Oracld

@

Sety

Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend toinstallon | a1

it. The name you choose will be used throughout VirtualBox to on your
identify this machine.

Name: [Sparld\-"laster

. s
v

Version: | Ubuntu (64-bit)

oot | [T] | o

Figure 2-11. VirtualBox new virtual machine creation

49

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Specify the memory to be allotted to the virtual machine in the dialog box shown in
Figure 2-12. The recommended memory is 1024 MB or more. When complete, click Next.

¥ Oracld ? X - O
File Ma
| € Create Virtual Machine
i > - -
New Setl Memory size Machine Tools Global Tools
Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine. Rirtual
5ot on your
The recommended memory size is 1024 MB. you
' = yet.
ERNETE, —
1 L 1 1 1 L} LI] 1 d‘i’:e,
4MB 4096 MB pol bar
ﬂantheh,
Cancel 2

Figure 2-12. VirtualBox new virtual machine creation: Specifying memory

50

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Select Create A Virtual Hard Disk Now from the available options in the Hard Disk
dialog box (see Figure 2-13) to create the new virtual hard disk for the machine.
Click Next.

V¥ Oracld ? X - O X

File Ma
i* o

New Setl Hard disk

€ Create Virtual Machine

If you wish you can add a virtual hard disk to the new machine.
‘You can either create a new hard disk file or select one from
the list or from another location using the folder icon.
1f you need a more complex storage set-up you can skip this
step and make the changes to the machine settings once the
machine is created.
The recommended size of the hard disk is 10.00 GB.

O Do not add a virtual hard disk

(®) iCreate a virtual hard disk now !

(O Use an existing virtual hard disk file

Empty A3

Create | | Cancel | D .

Figure 2-13. VirtualBox new virtual machine creation: Creating a hard disk

51

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Select VDI (VirtualBox Disk Image) as the hard disk file type, as shown in Figure 2-14.
Click next.

!‘i Oracld

File Madg
_+ € Create Virtual Machine

{; : 7 X

New Se Hard dis

Create Virtual Hard Disk

If you wis
You can ej
thelistor] Hard disk file type
If you nee
step and Please choose the type of file that you would like to use for the new virtual
machine hard disk. If you do not need to use it with other virtualization software you
can leave this setting unchanged.
Ther
VDI (VirtualBox Disk Image
O vl ® VDI (Vi age)
(O VHD (virtual Hard Disk)
@ Create
(O VMOK (Virtual Machine Disk)
O usean

emot]
Figure 2-14. VirtualBox new virtual machine creation: Selecting hard disk

file type

52

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Select Dynamically Allocated as the virtual hard disk storage type (see Figure 2-15) to

ensure the size of the hard disk grows dynamically. Click Next.

Mad
]

.u,l € Create Virtual Machine

@

| New Setil Ha[’d dis

If you wi
You can
the list or

If you ne
step and
machine i
The rec
| O Do not
@® Create
(O use an

Empty

€ Create Virtual Hard Disk

Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow as it is used
(dynamically allocated) or if it should be created at its maximum size (fixed
size).

A dynamically allocated hard disk file will only use space on your physical

hard disk as it fills up (up to a maximum fixed size), although it will not shrink
again automatically when space on itis freed.

A fixed size hard disk file may take longer to create on some systems butis
often faster to use.

® Dynamically allocated
(O Fixed size

Figure 2-15. VirtualBox new virtual machine creation: Selecting hard disk

storage type

53

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Next, select the file location and the size of the virtual hard disk and click Create, as
shown in Figure 2-16. This size is the limit on the amount of file data stored on the

hard disk.
¥ Oracle ? X -
e . € Create Virtual Machine =
i -
New Setl Hard dis
€ Create Virtual Hard Disk
If you wi
You can
thelistor! File |Jocation and size
If you ne
step and Please type the name of the new virtual hard disk file into the box below or dick
machine i on the folder icon to select a different folder to create the file in.
The rec |sparkMaster | &
O Donot Select the size of the virtual hard disk in megabytes. This size is the limit on the
@ Create amount of file data that a virtual machine will be able to store on the hard disk.
O ysean)
Empt s.00MB 2.00TB

Figure 2-16. VirtualBox new virtual machine creation: Specifying hard disk file
location and size

54

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Once the machine is created as shown in Figure 2-17, click Settings to specify the iso file
to install Ubuntu in the created virtual machine and also to change the network settings.

V¥ Oracle VM VirtualBox Manager —] X
Eile Machine Help
@ b D
@ U . > - i -
w Settings Discard Start Machine Tools Global Tools
B, g SparkMaster Welcome to VirtualBox! 2

@ Powered Off

The left part of this window lists all virtual
machines and virtual machine groups on
your computer,

The right part of this window represents a

set of tools which are currently opened (or

can be opened) for the currently chosen

machine. For a list of currently available

tools check the corresponding menu at the

right side of the main tool bar located at -
the top of the window. This list will be —
extended with new tools in future

releases.

You can press the F1 key to get instant
help, or visit www.virtualbox.org for more
information and latest news.

Figure 2-17. VirtualBox new virtual machine

55

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

In the Settings dialog box, select Storage and click the Adds Optical Drive icon as shown
in Figure 2-18 to specify the Ubuntu iso file.

ﬁ Oracle VM VirtualBox Manager O X
File chine Help
i; €23 SparkMaster - Settings ? X
Storage ‘

g Storage Devices ——————— Attributes
r Controller: IDE Name: |IDE
Display @ | I
Y @ Empty Adds optical drive. qu 5
L2) Storage & Controller: SATA [Use Host 1/0 Cache
o Audio SparkMaster.vdi

WP Network
@ Serial Ports
ﬁ use

Shared Folders

Figure 2-18. VirtualBox new virtual machine Settings dialog box

Click Choose Disk, as displayed in Figure 2-19, to browse for the Ubuntu iso file.

i -)
ﬁ Oracle VM VirtualBox Manager s O X

Help

{3 SparkMaster - Settings

| New Settngs‘
@ General Storage

Sparkr
© Pow System Storage Devices Attributes
I Controller: IDE e Name: |IDE
@l Display e @] -
S @ Eempty {23 VirtualBox - Question ? X
4 Storage £ Controller: SATA
e You are about to add a new optical
@ Audio - SparkMaster.vdi drive to controller IDE.
Would you like to choose a virtual
WP Network optical disk to putin the drive or to
i leave it empty for now?
@ Serial Ports 2 .
ﬁ Leave empty Id&oosedskl | Cancel
USB

Figure 2-19. VirtualBox new virtual machine: Choosing the iso disk file

56

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Select the downloaded iso file and click OK. Now select Network in the Settings dialog
box to change the network settings. Refer to Figure 2-20.

B nage]
File Machine Help L
{ﬁ 23 SparkMaster - Settings ? X
Hew 5 Setthng E General Network
m-/ Sparkl L
© Pow System Adapter 1 Adapter2 Adapter3 Adapter 4
Display £ Enable Network Adapter
Storage . to: =
Name: i

b Audio O Adv

@ Network

@ Serial Ports

ﬁ use

Figure 2-20. VirtualBox new virtual machine: Network settings

Select the bridged adapter as shown in Figure 2-21 and click OK to complete the network
settings.

| ﬁ Oracle VI

| VirtualBox Manager — a

Help |

i{g {2} SparkMaster - Settings ? X

‘.New Settngs @ General Network

System Adapter 1 Adapter2 Adapter 3 Adapter 4
Display £ Enable Network Adspter
Storage Attached to: |Bridged Adapter ¥ |

Name: | Intel(R) 82578DM Gigabit Network Connection v
W Audio B Adv

Figure 2-21. VirtualBox new virtual machine: Network adapter selection

57

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Once these settings are completed, start the virtual machine to complete the installation.
Specify the required username and password during the installation procedure. The
installation happens only on starting the machine for the first time.

After the successful completion of installation, log in to the machine and follow the steps
outlined next to set the static IP address to the created virtual machine. First, find the
actual network configuration by running this command in the terminal:

ifconfig

The complete network configuration respective to ethernet LAN and Wireless LAN
would be displayed. If you need to configure the static IP for the created virtual machine,
follow these commands.

Edit the networking config file by using this command:

sudo nano /etc/network/interfaces

Note You can use either the nano editor or the vi editor.

Change the details as shown here.

auto etho

iface etho inet static

address 192.168.163.153

netmask 255.255.255.0

gateway 192.168.1.1

dns-nameservers 8.8.8.8 192.168.1.1

Once the IP is changed as mentioned, exit the editor. Again check the IP details using the
ifconfig command.

Follow the same steps to create two more virtual machines for Spark worker daemons.
The IP and Host Name details of all the machines are given here for reference.

SparkMaster:

Host Name - SparkMaster

Ip Address - 192.168.163.153
SparkWorker 1:

Host Name - SparkWorkeri

58

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Ip Address - 192.168.163.152
SparkWorker 2:

Host Name - SparkWorker2

Ip Address - 192.168.163.151

Log in to all the machines with the username and password. We have used Putty to log in
to the machines through SSH (i.e., Secured Shell). The reference image for the SparkMaster
machine given in Figure 2-22. Note that we have used vagrant as the username.

@' vagrant@SparkMaster: ~

|login as: vagrant

vagrant@1%2.168.163.153's password:

Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86_64)

* Documentation: https://help.ubuntu.com/
New release '14.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Welcome to your Vagrant-built virtual machine.
Last login: Wed May 16 09:49:59 2018 from 192.168.163.1

vagrant@SparkMaster:~$ ||
|

Figure 2-22. Login reference for SparkMaster machine

Figure 2-23 shows the login reference for the SparkWorker1 machine.

@ vagrant@SparkWorker1: ~

login as: vagrant
vagrant@192.168.163.152"'s password:
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86_64)

* Documentation: https://help.ubuntu.com/
New release '14.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Welcome to your Vagrant-built wvirtual machine.
Last login: Wed May 16 09:55:27 2018
vagrant@SparkWorkerl:~$ ﬂ

Figure 2-23. Login reference for SparkWorker1 machine
59

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Figure 2-24 depicts the login reference for the SparkWorker2 machine.

| @ vagrant@SparkWorker2: ~

login as: vagrant
vagrant@192.168.163.151's password:
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86 64)

* Documentation: https://help.ubuntu.com/
New release '14.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Welcome to your Vagrant-built wvirtual machine.
Last login: Wed May 16 09:55:42 2018

vagrant@SparkWorker2:~$ ||
|

Figure 2-24. Login reference for SparkWorker2 machine
Add the hostnames of all the machines in the hosts file of each machine as shown here.

192.168.163.153 SparkMaster
192.168.163.152 SparkWorker1
192.168.163.151 SparkWorker2

The hosts file in each machine can be edited using the vi editor, as shown in
Figure 2-25.

vagrant@SparkMaster:~$ sudo vi /etc/hosts

Figure 2-25. Editing the host files to add the 1P address

We have used the latest version of Spark, 2.3.0. It can be downloaded from
http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-2.3.0-

bin-hadoop2.7.tgz. For the most up-to-date download, follow the Apache Spark
documentation to download the required version.

60

http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz
http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Prerequisites

Ensure that Java 1.8 is installed on all machines. Execute this command to install Java on

all the nodes:
sudo apt-get install openjdk-8-jdk

If the openjdk-8-jdk package is not available for the Ubuntu version you are
using, download the jdk package from this link and extract the tar in all the
machines: http://download.oracle.com/otn-pub/java/jdk/8u172-b11/
a58eablec242421181065cdc37240b08/jdk-8u172-1inux-x64.tar.gz.

Note The given link is subject to change. Visit http://download.oracle.
com/ and check for available downloads and updates.

Ensure the proper installation of Java using the java -version command in all the three
nodes, as shown in Figure 2-26.

vagrant@SparkMaster:~$ java -version

java version "1.8.0_ 77"

Java(TM) SE Runtime Environment (build 1.8.0_77-b03)

Java HotSpot (TM) 64 —Bit_Server VM (build 25.77-b03, mixed mode)

Figure 2-26. Check the Java version

Now, Set the JAVA_HOME in the . bashrc profile file of all the machines as shown in
Figure 2-27. For example:

export JAVA HOME=<your java_installation_path>
export PATH=$PATH:$JAVA HOME/bin

vagrant@SparkMaster:~$ sudo vi ~/.bashrc

Figure 2-27. Editing the .bashzc file

61

http://download.oracle.com/otn-pub/java/jdk/8u172-b11/a58eab1ec242421181065cdc37240b08/jdk-8u172-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u172-b11/a58eab1ec242421181065cdc37240b08/jdk-8u172-linux-x64.tar.gz
http://download.oracle.com/
http://download.oracle.com/

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP
Add these lines to the end of the .bashrc file:

export JAVA HOME=/home/vagrant/java8
export PATH=$PATH:$JAVA HOME/bin

Note The installation path could be different from /home/vagrant/javas.

Once the PATH is added, use
source ~/.bashrc

to update the .bashrc file to the same session without restarting the machine, as
displayed in Figure 2-28.

|vagrant@SparkMaster:~$ source ~/.bashrc

Figure 2-28. Updating the .bashrc file

Verify the updated path details, using the code shown in Figure 2-29.

vagrant@SparkMaster:~$ echo $JAVA HOME
/home/vagrant/javas

Figure 2-29. Verify the Java home path

Spark Installation Steps

Download the Spark binaries in master node by using this Unix wget command:

sudo wget http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-
2.3.0-bin-hadoop2.7.tgz

Copy the downloaded binaries to all the other nodes using the scp command in this
code as shown in Figure 2-30.

scp spark-2.3.0-bin-hadoop2.7.tgz vagrant@SparkWorkeri:/home/vagrant

62

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

vagrant@SparkMaster:~$ scp spark-2.3.0-bin-hadoop2.7.tgz vagrant@SparkWorkerl:/home/vagrant

spark-2.3.0-bin-hadoop2.7.tgz 100%
vagrant@SparkMaster:~$ scp spark-2.3.0-bin-hadoop2.7.tgz vagrant@SparkWorker2:/home/vagrant
spark-2.3.0-bin-hadoop2.7.tgz 100%

vagrant@SparkMaster:~$ |

Figure 2-30. Copy Spark binaries to other virtual machines

Extract the .tgz zip file and rename the directory spark-2.3.0 in all three nodes, as
shown here and in Figures 2-31 and 2-32.

tar - xvf spark-2.3.0-bin-hadoop2.7.tgz

vagrant@SparkMaster:~$ tar -xvf spark-2.3.0-bin-hadoop2.7.tgz
Figure 2-31. Extracting the . tqgz zip file

mv spark-2.3.0-bin-hadoop2.7 spark-2.3.0

vagrant@SparkMaster:~$ mv spark-2.3.0-bin-hadoop2.7 spark-2.3.0
vagrant@SparkMaster:~$ 1s

spark-2.3.0 spark-2.3.0-bin-hadoop2.

Figure 2-32. Unzipping the Spark binaries

Now, set the SPARK_HOME in the .bashrc profile file of all the machines as shown here
and in Figure 2-33.

export SPARK HOME=<your spark_installation_path>
export PATH=$PATH:$SPARK_HOME/bin:$SPARK HOME/sbin

vagrant@SparkMaster:~$ sudo vi ~/.bashrc

Figure 2-33. Verify .bashrc in other virtual machines

63

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP
Add the following lines to the end of the .bashrc file:

export SPARK HOME=/home/vagrant/spark-2.3.0
export PATH=$PATH:$JAVA HOME/bin

Note The installation path could be different from /home/vagrant/
spark-2.3.0.

Once the PATH is added, use source ~/.bashrc to update the .bashrc file to the same
session without restarting the machine, as shown in Figure 2-34.

|vagrant@SparkMaster:~$ source ~/.bashrc

Figure 2-34. Updating the .bashrc file

Verity the updated path details using the code shown in Figure 2-35.

vagrant@SparkMaster:~$ echo $SPARK HOME
/home/vagrant/spark-2.3.0

Figure 2-35. Verifying the Spark installation home path

After installing Spark in all the nodes and the PATH variable is updated, specify
the slave details in all the nodes (i.e., the worker node details for the Spark cluster)
by following these steps in all three nodes.

1. Navigate to the conf directory in the Spark installation folder:
cd /home/vagrant/spark-2.3.0/conf

2. Rename the slaves.template file slaves:
mv slaves.template slaves

3. Edit the slaves file and add SparkWorker1 and SparkWorker2 at
the end of the file (see Figure 2-36):

vi slaves

64

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

vagrant@SparkMaster:~$ cd ~/spark-2.3.0/
vagrant@SparkMaster:~/spark-2.3.0$ cd conf/
vagrant@SparkMaster:~/spark-2.3.0/conf$ 1s
docker.properties.template metrics.properties.template
fairscheduler.xml.template slaves.template
log4j.properties.template spark-defaults.conf.template
vagrant@SparkMaster:~/spark-2.3.0/conf$ mv slaves.template slaves
vagrant@SparkMaster:~/spark-2.3.0/conf$ vi slaves ||

Figure 2-36. Add Spark master and worker details
Add these lines to the slaves file:

SparkWorker1
SparkWorker2

4. Rename the spark-env.sh.template file spark-env.sh:
mv spark-env.sh.template spark-env.sh
5. Edit the spark-env.sh file and add the JAVA_HOME path to the file:

vi spark-env.sh

6. Add thisline in the spark-env.sh file.
export JAVA HOME=/home/vagrant/java8
Check for the running services in all the three nodes (see Figure 2-37) to confirm that the

Spark cluster is not running.

vagrant@SparkMaster:~$ jps
1762 Jps

vagrant@SparkWorkerl:~$ jps
1742 Jps

vagrant@SparkWorker2:~$ jps
1872 Jps

Figure 2-37. Checking running Java processes in all virtual machines

65

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Now, on the SparkMaster machine, start the processes by calling the script start-all.sh
(see Figure 2-38), which starts the master process in SparkMaster and worker processes
in both SparkWorker1 and SparkWorker2.

Also, the master process can be started using start-master.sh and worker processes
can be started using start-slaves.sh separately.

vagrant@SparkMaster:~$ start-all.sh

starting org.apache.spark.deploy.master.Master

SparkWorker2: starting org.apache.spark.deploy.worker.Worker
SparkWorkerl: starting org.apache.spark.deploy.worker.Worker

Figure 2-38. Start the Spark master

Now check for the running services in all three nodes as shown in Figure 2-39 to verify
that the Spark cluster is running.

vagrant@SparkMaster:~$ jps
2209 Jps
2145 Master

vagrant@SparkWorkerl:~$ jps
2258 Worker
2303 Jps

vagrant@SparkWorker2:~$ jps
2546 Jps
2500 Worker

Figure 2-39. Checking running Spark process in all virtual machines

Now, the three-node Spark cluster is running with master on the SparkMaster machine
and worker on the SparkWorker1 and SparkWorker2 machines.

Spark Web Ul

Let’s go through the Spark Master user interface (UI) and Spark application Ul in the
following sections.

66

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Spark Master Ul

When the Spark cluster is running, browse the Spark UT using the following URL to
learn about worker nodes attached to the master, running applications, and the cluster
resources.

http://mastermachine-ip address:8080/
Example: http://192.168.163.153:8080/

The following information can be found in the Spark Master Web UI
(see Figure 2-40):

URL: spark://SparkMaster:7077

REST URL: spark://SparkMaster:6066 (cluster mode)
Alive Workers: 2

Cores in use: 4 Total, 0 Used

Memory in use: 2.0 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed

Drivers: O Running, 0 Completed

Status: ALIVE

Also, the Workers, Running Applications, and Completed Application details would be
updated in the same UL

< C | (® 192.168.163.153:8080

Spark Master at spark://SparkMaster:7077

URL: spark://SparkMaster:7077

REST URL: spark://SparkMaster:6066 (cluster mode)
Alive Workers: 2

Cores in use: 4 Total, 0 Used

Memory in use: 2.0 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Figure 2-40. Spark Master

67

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Figure 2-41 shows the Spark Web UI.

Workers (2)
Worker Id Address
worker-20180516195830-192.168.163.151-56237 192.168.163.151:56237
worker-20180516195830-192.168.163.152-49344 192.168.163.152:49344

Running Applications (0)

Application ID Name Cores Memory per Executor

Completed Applications (0)

Application ID Name Cores Memory per Executor =

Figure 2-41. Spark Web Ul

The worker node status, available cores, and the available memory are also updated as
shown in Figure 2-42.

Workers (2)
Worker Id Address State Cores Memory
worker-20180516195830-192.168.163.151-56237 192.168.163.151:56237 ALIVE 2(0 Used) 1024.0 MB (0.0 B Used)
worker-20180516195830-192.168.163.152-49344 192.168.163.152:49344 ALIVE 2 (0 Used) 1024.0 MB (0.0 B Used)

Figure 2-42. Spark Web UI worker details

Spark Application Ul

When an application is submitted to the cluster, the browser and the Spark application
Ul need to know about the execution details and a list of tasks for the submitted job.

http://mastermachine-ip address:4040/

For example, when the spark-shell is started it creates an application and then submits
it to the cluster. The application would be in the running state until the spark-shell is
closed.

Start the interactive shell by calling spark-shell in the $SPARK_HOME/bin directory
(see Figure 2-43).

68

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

vagrant@SparkMaster:~$ spark-shell

2018-05-16 21:21:14 WARN NativeCodeLoader:62 - Unable to load native-hadoop library
Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel (newLevel). For SparkR, use setLogLevel (newLevel).
Spark context Web UI available at http://SparkMaster:4040

Spark context available as 'sc' (master = local(*], app id = local-1526505685727).

Spark session available as 'spark'.

Welcome to
I 7 I
NN N
I/ . IN_,_/_/ /_/A_\ version 2.3.0
[/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_77)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Figure 2-43. Starting spark-shell

Note spark-shell is an interactive shell that can be used for testing and
debugging purposes.

Now, the spark application Ul is available at http://192.168.163.153:4040/ as shown
in Figure 2-44.

= C | ® 192.168.163.153:4040/jobs/

Spo]iz 230 Jobs Stages Storage Environment Executors

Spark Jobs (?)

User: vagrant
Total Uptime: 3.6 min
Scheduling Mode: FIFO

» Event Timeline

Figure 2-44. Spark Web Ul submitted jobs

69

http://192.168.163.153:4040/

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Stopping the Spark Cluster

In SparkMaster machine stops all the processes by calling the script stop-all.sh, which
stops the master process in SparkMaster and worker processes in both SparkWorker1
and SparkWorker2 (see Figure 2-45).

vagrant@SparkMaster:~5 jps

2336 Jps

2145 Master

vagrant@SparkMaster:~$ stop-all.sh

SparkWorker2: stopping org.apache.spark.deploy.worker.Worker
SparkWorkerl: stopping org.apache.spark.deploy.worker.Worker
stopping org.apache.spark.deploy.master.Master
vagrant@SparkMaster:~$ jps

2367 Jps

Figure 2-45. Stopping the Spark processes

Also, the master process can be stopped using stop-master.sh and worker processes
can be stopped using stop-slaves.sh separately.

Spark Single-Node Cluster Setup

Follow this procedure to set up a Spark single-node cluster.
First, create the Ubuntu machine to install Spark, and run master and worker processes
in the same machine that forms the single-node cluster (see Figure 2-46).

@ P

New Settings Discard Show

E?' SparkMachine
=» Running

Figure 2-46. VirtualBox virtual machine (master machine)

70

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP
The IP and hostname details of the machine are given here for reference.

SparkMachine:
Host Name - SparkMachine
Ip Address - 192.168.163.153

Log in to the machine with the username and password. We use Putty to log in to the
machine through SSH. The reference image is given in Figure 2-47.

@ vagrant@SparkMachine: ~

login as: vagrant
vagrant@192.168.163.153's password:
Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic x86_64)

* Documentation: https://help.ubuntu.com/
New release '14.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Welcome to your Vagrant-built wvirtual machine.
Last login: Mon May 21 05:37:54 2018
vagrant@SparkMachine:~$ I

Figure 2-47. SparkMaster virtual machine login reference

We are using the latest version of Spark, 2.3.0, which can be downloaded from
http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-2.3.0-bin-
hadoop2.7.tgz.

This link is subject to change. You should follow the Apache Spark documentation to
download the required and most up-to-date version.

Prerequisites

Ensure that Java 1.8 is installed on all the machines.
Execute this command to install Java on all the nodes:

sudo apt-get install openjdk-8-jdk

71

http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz
http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

If the openjdk-8-jdk package is not available for the Ubuntu version you are using,
download the jdk package from the following link and extract the tar in all the
machines.

http://download.oracle.com/otn-pub/java/jdk/8u172-b11/
a58eablec242421181065cdc37240b08/jdk-8u172-1inux-x64.tar.gz

Note This link might be modified over the time. Visit http://download.
oracle.com/ and check for available downloads.

Ensure the proper installation of Java using the java -version command
(see Figure 2-48).

vagrant@SparkMachine:~$ java -version

java version "1.8.0_77"

Java (TM) SE Runtime Environment (build 1.8.0 77-b03)

Java HotSpot (TM) 64-Bit Server VM (build 25.77-b03, mixed mode)
vagrant@SparkMachine:~$ I

Figure 2-48. Verify Java version

Next, set the JAVA_HOME in the .bashrc profile file. For example (see Figure 2-49):

export JAVA HOME=<your java_installation_ path>
export PATH=$PATH:$JAVA HOME/bin

vagrant@SparkMachine:~$ sudo vi ~/.bashrc

Figure 2-49. Editing the .bashzc file

Add these lines to the end of the .bashrc file:

export JAVA HOME=/home/vagrant/java8
export PATH=$PATH:$JAVA HOME/bin

Note The installation path could be different from /home/vagrant/javas.

72

http://download.oracle.com/otn-pub/java/jdk/8u172-b11/a58eab1ec242421181065cdc37240b08/jdk-8u172-linux-x64.tar.gz
http://download.oracle.com/otn-pub/java/jdk/8u172-b11/a58eab1ec242421181065cdc37240b08/jdk-8u172-linux-x64.tar.gz
http://download.oracle.com/
http://download.oracle.com/

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Once the PATH is added, use source ~/.bashrc (see Figure 2-50) to update the .bashrc
file to the same session without restarting the machine.

|vagrant@SparkMachine:~$ source ~/.bashrc

Figure 2-50. Updating the .bashrc file

Verity the updated path details, as shown in Figure 2-51.

vagrant@SparkMachine:~$ echo $JAVA HOME
/home/vagrant/javas

Figure 2-51. Verify the Java home path

Spark Installation Steps

Download the Spark binaries in the master node by using this Unix wget command:

sudo wget http://redrockdigimark.com/apachemirror/spark/spark-2.3.0/spark-
2.3.0-bin-hadoop2.7.tgz

Extract the .tgz zip file (see Figures 2-52 and 2-53) and rename the directory
spark-2.3.0:

tar - xvf spark-2.3.0-bin-hadoop2.7.tgz
vagrant@SparkMachine:~$ tar -xvf spark-2.3.0-bin-hadoop2.7.tgz

Figure 2-52. Extract the . tgz zip file

mv spark-2.3.0-bin-hadoop2.7 spark-2.3.0

vagrant@SparkMachine:~$ mv spark-2.3.0-bin-hadoop2.7 spark-2.3.0

Figure 2-53. Unczip the Spark binaries

73

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

vagrant@SparkMachine:~$ 1ls
javas spark-2.3.0 spark-2.3.0-bin-hadoop2.7.tg

Next, set the SPARK_HOME in the .bashrc profile file as shown in Figure 2-54).
For example:

export SPARK_HOME=<your spark_installation_path>
export PATH=$PATH:$SPARK HOME/bin:$SPARK HOME/sbin

vagrant@SparkMachine:~$ sudo vi ~/.bashrc

Figure 2-54. Editing the .bashzc file

Add the following lines to the end of the .bashrc file:

export SPARK HOME=/home/vagrant/spark-2.3.0
export PATH=$PATH:$JAVA HOME/bin

Note The installation path could be different from /home/vagrant/
spark-2.3.0.

Once the PATH is added, use source ~/.bashrc to update the .bashzrc file to the same
session without restarting the machine. Then verify the updated path details, as shown
in Figure 2-55.

vagrant@SparkMachine:~$ echo $SPARK HOME
/home/vagrant/spark-2.3.0

Figure 2-55. Verifying the Spark home path

74

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

After installing Spark and updating the PATH variable, specify the slave details
(i.e., the worker node details) for the Spark cluster by following these steps.

1. Navigate to the conf directory in the Spark installation folder:
cd /home/vagrant/spark-2.3.0/conf

2. Rename the slaves.template file slaves:
mv slaves.template slaves

3. Edit the slaves file and add SparkMachine at the end of the file
(see Figure 2-56):

vi slaves

vagrant@SparkMachine:~$% cd ~/spark-2.3.0/

vagrant@sSparkMachine:~/spark-2.3.05 cd conf/

vagrant@SparkMachine:~/spark-2.3.0/confs 1ls

docker.properties.template log4j.properties.template slaves
fairscheduler.xml.template metrics.properties.template spark-defaults.conf.template
vagrant@SparkMachine:~/spark-2.3.0/conf$ mv slaves.template slavesl

vagrant@SparkMachine:~/spark-2.3.0/conf$ vi slaves
Figure 2-56. Configuration - adding slave host names

4. Rename the spark-env.sh.template file spark-env.sh:
mv spark-env.sh.template spark-env.sh

5. Edit the spark-env.sh file and add the JAVA_HOME path to the file.
vi spark-env.sh

6. Add the following line in the spark-env.sh file.
export JAVA HOME=/home/vagrant/java8

Check for the running services (see Figure 2-57) to understand that the Spark cluster is
not running.

vagrant@SparkMachine:~$ jps
1384 Jps

Figure 2-57. Check the running Java processes

75

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP

Now, on the SparkMachine machine, start the processes by calling the script
start-all.sh (see Figure 2-58), which starts the master and worker processes on the
same machine.

vagrant@SparkMachine:~$ start-all.sh

starting org.apache.spark.deploy.master.Master, logging to
pache.spark.deploy.master.Master-1-SparkMachine.out
SparkMachine: Warning: Permanently added 'sparkmachine,192.
SparkMachine: starting org.apache.spark.deploy.worker.Worke
-vagrant-org.apache. spark.deploy.worker.Worker-1-SparkMachi
vagrant@SparkMachine:~$ jps

1525 Master

1592 Worker

Figure 2-58. Start the Spark processes

Also, the master process can be started using start-master. sh and worker processes
can be started using start-slaves.sh separately.

Spark Master Ul

When the Spark cluster is running, browse the Spark UT using the following URL to
learn about worker nodes attached to the master, running applications, and the cluster
resources.

http://mastermachine-ip _address:8080/
Example: http://192.168.163.153:8080/
The following information can be found in the Spark Master Web UI (see Figure 2-59).

URL: spark://SparkMaster:7077

REST URL: spark://SparkMaster:6066 (cluster mode)
Alive Workers: 2

Cores in use: 4 Total, 0 Used

Memory in use: 2.0 GB Total, 0.0 B Used
Applications: 0 Running, 0 Completed

Drivers: O Running, 0 Completed

Status: ALIVE

76

CHAPTER 2 SINGLE AND MULTINODE CLUSTER SETUP
= C | 192.168.163.153:8080

Spar Spark Master at spark://SparkMachine:7077

2.3.0

URL: spark://SparkMachine:7077

REST URL: spark://SparkMachine:8066 (cluster mode)
Alive Workers: 1

Cores in use: 2 Total, 0 Used

Memory in use: 1024.0 MB Total, 0.0 B Used
Applications: 0 Running, 0 Completed

Drivers: 0 Running, 0 Completed

Status: ALIVE

Workers (1)

Worker Id Address
worker-20180521062606-192.168.163.153-40706 192.168.163.153:40706

Figure 2-59. Spark Web UI

Also, the Workers, Running Applications, and Completed Application details would be
updated in the same UL

Points to Remember

1. We have created three different virtual machines using Oracle
VirtualBox.

2. The storage and network settings are very important for smooth
installation and usage.

3. [Install Java and verify the Java home path without fail.
4. Copy the Spark binaries and edit the configuration files.

5. Start the Spark processes and verify the master and worker details
in the Web UL

77

CHAPTER 3

Introduction to Apache
Spark and Spark Core

In the previous chapters, the fundamental concepts of Scala programming, pure
function, pattern matching, singleton objects, Scala collections, and functional
programming features of Scala have been covered.

For this chapter, some prior experience with Scala and Hadoop MapReduce is ideal.
A mandatory prerequisite for this chapter is to have read the previous chapters.

In this chapter, we are going to discuss the need for Apache Spark, Spark architecture,
and Spark Core. We will be focusing on these topics:

e Whatis Apache Spark?

e Why Apache Spark?

o Sparkvs. Hadoop MapReduce.

e Sparkarchitecture.

o Spark Ecosystem.

o Spark Core.

¢ Resilient distributed data set (RDD) transformation.
o RDD actions.

e Working with pair RDDs.

o Direct Acylic Graph (DAG) in Apache Spark.
o Persisting RDD.

e Simple Build Tool (SBT).

79
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_3

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

What Is Apache Spark?

Apache Spark is an open source, fast, general-purpose, in-memory processing engine for
big data processing. Apache Spark was developed in 2009 at the University of California
Berkeley’s AMP Lab and later open sourced as an Apache project in 2010. Apache Spark
is written in Scala and provides high-level application programming interfaces (APIs) in
Java, Scala, Python, and R.

Note Apache Spark 1.x is written in Scala 2.10 and Apache Spark 2.x is written
in Scala 2.11.

Why Apache Spark?

Let’s discuss the need of Spark.

e Apache Spark provides a unified framework to perform different tasks
that would have previously required different engines for processing
such as batch, real-time processing.

e Apache Spark provides high-level operators (e.g., map, filter, etc.) to
process the data that are not available in Hadoop MapReduce.

e Apache Spark s 100 times faster than Hadoop MapReduce when you
run Spark in memory and 10 times faster than Hadoop MapReduce
even when you run Spark on disk.

e Apache Spark supports both batch processing and real-time
processing.

e Apache Spark provides an interactive shell that you can use for
learning and exploring data.

e Apache Spark is not bundled with a storage system. Local file
systems, Hadoop Distributed File System (HDFS), Cassandra, S3, and
others can be used as storage systems.

80

CHAPTER 3

INTRODUCTION TO APACHE SPARK AND SPARK CORE

Spark vs. Hadoop MapReduce

Table 3-1 provides a comparison between Spark and Hadoop MapReduce.

Table 3-1. Spark vs. Hadoop MapReduce

Apache Spark

Hadoop MapReduce

Introduction

Speed

Difficulty

Real-time
processing

Interactive
mode

Open source big data processing
framework.

Faster and general-purpose data
processing engine.

Unified framework to process various
tasks such as batch, interactive, iterative
processing.

100 times faster than Hadoop
MapReduce when Spark runs in
memory and 10 times faster when
Spark runs on disk

Spark makes this possible by reducing
the number of read/write cycles to
disk and storing intermediate data in
memory

Spark provides high-level operators
such as map, filter, and so on, which
makes the developer’s job easy

Spark supports both batch and real-time
processing

Spark provides an interactive shell to
learn and explore data

Open source framework to process
structured and unstructured data that
are stored in the Hadoop Distributed File
System (HDFS)

Hadoop MapReduce processes data only
in batch mode

Hadoop MapReduce reads and writes
from disk, which slows down the
processing speed of Hadoop MapReduce

Developers need to hand code each
operation in Hadoop MapReduce

Hadoop MapReduce supports only batch
processing

Hadoop MapReduce does not provide an
interactive shell

81

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Apache Spark Architecture

Apache Spark has a master-slave architecture with a cluster manager and two daemons,
as shown in Figure 3-1. The daemons are master and worker.

Worker

Executors

Cache

Driver

Cluster Manager
Spark Context (Standalone, YARN, Mesos)

A

Worker

Executors

Cache

| Task || Task |

Figure 3-1. Apache Spark architecture

At a high level, every Spark application consists of a driver program that is responsible
for running the user’s main function and executing various parallel operations on

the cluster. A Spark cluster consists of a single coordinator called a driver and many
distributed workers. The driver communicates in several ways:

o With Spark through the SparkContext object. The SparkContext
object is the entry point for Spark functionality. The SparkContext
object is available as sc.

o With a large number of distributed workers called executors to
execute tasks.

o With Cluster Manager for resource allocation to execute the tasks.

82

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

The driver program has the following features.
o [Itis the place where SparkContext is created.

o [Itis the entry point for the interactive shell, which is available only for
Scala, Python, and R.

e Itruns the application’s main function.

o Itisresponsible for scheduling jobs and allocating resources to
execute tasks.

o Itisresponsible for converting user applications into smaller
execution units known as tasks.

The executor has several functions.
o Itisresponsible for executing tasks and performing data processing.
o Itreads from and writes to external sources.
o It stores intermediate results in memory.
The Cluster Manager has the following attributes.
o Itisan external service.

o Itisresponsible for acquiring resources such as CPU, memory, and
more, and allocating them to Spark applications.

o There are three types of Cluster Manager: stand-alone, yet another
resource negotiator (YARN; specific to Hadoop), and Mesos (a
general-purpose cluster manager). This is illustrated in Figure 3-2.

Spark Spark
Spark
YARN Mesos
Local File System/ Local File System/ Local File System/
HDFS/ S3/Other HDFS/ S3/Other HDFS/ 83/Other
storage storage storage

Figure 3-2. Spark Cluster Manager

83

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Spark Components

Let’s look at the various components of Apache Spark, illustrated in Figure 3-3.

Spark .
Spark SQL Streaming MLib Graphx Spark R
Spark Core
R Scala Java Python

Figure 3-3. Spark components

Spark Core (RDD)

Spark Core is known as resilient distributed data set (RDD). This is the fundamental data
structure of Spark. RDD is an immutable distributed collection of objects that can be
operated on in parallel. This component is used for batch processing. We discuss Spark

Core further later in this chapter.

Spark SQL

Spark SQL is to run SQL-like queries on Spark data. Spark SQL is used for structure
data processing. It provides extra information such as structure of both the data and
computation to be performed to Spark. Spark uses this extra information to perform

optimization. We discuss Spark SQL in Chapter 4.

84

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Spark Streaming

Spark Streaming is an extension of the Spark core. Spark Streaming is a scalable, fault-
tolerant, high-throughput streaming engine to process live data streams. The Spark
streaming component is used for real-time processing. Data can be taken from many
sourses such as Kafka, Kinesis, HDFS, Flume, and so on, and can be processed using
high-level Spark core APIs such as map, filter, join, and so on. In Chapter 5, we discuss
Spark Streaming in detail.

MLib

Spark MLib is a machine learning library for Spark. Spark MLib is for scalable practical
machine learning. Spark MLib is focused on common learning algorithms such as
regression, classification, clustering, and colloborative filtering. In Chapter 8, we discuss
Spark MLib.

GraphX

GraphX is for graphs and grpah parallel computation. Spark GraphX extends RDD by
introducing a new Graph abstraction, a directed multigraph with properties attached to
each vertex and edge.

SparkR

SparkR is a package for R that provides a lightweight front end to use Apache Spark from
R. In Spark 2.3.0, we have data frame distribution, which is similar to the R data frame
to perform selection, filtering, aggregation, and so on, on large data sets. SparkR also
supports distributed machine learning using MLib. In Chapter 9, we cover the SparkR
component further.

Spark Shell

Spark provides an interactive shell for data exploration and testing, a read, evaluate,
print loop (REPL). To start Spark Shell, type spark-shell at the command line (see
Figure 3-4). Refer to Chapter 2 for Spark installation and cluster setup.

85

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Sbark context available as 'sc! (mastér = local[*], app id = local-1517754512031).
Spark session available as 'spark'.
Welcome to

/I_ T
N
N_,_/_/ /_/_\ wversion 2.1.0

Using Scala version 2.11.8 (Java HotSpot (TM) 64-Bit Server VM, Java 1.8.0_77)
Type in expressions to have them evaluated.
Type :help for more information.

scala> sc.appName
resO: String = Spark shell

Figure 3-4. Starting Spark Shell

Note We are going to use Spark Shell to work with RDD. In Spark Shell,
SparkContext is available as sc and can be used to perform various data
processing tasks.

Spark Core: RDD

The fundamental data structure of Spark is RDD, a fault-tolerant collection of elements
that can be operated on in parallel. It is resilient because it has built-in fault tolerance. If
something goes wrong, we can reconstruct it from the source (lineage). We discuss this
later in more detail. Data are distributed in memory across the worker nodes. A data set
represents records of the data.

RDD is an immutable collection of distributed objects, elements partitioned across the
nodes of clusters and operated on in parallel as shown in Figure 3-5.

86

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

A1

: T
| Executor |
I l‘dd_l I
1
_ I T/
]
1)
:Exerutor |
: rdd_2 |
1
_1 " J
4 : 1)
|Executor |
T :
_! !)

Figure 3-5. RDD: Resilient distributed data set

RDD has the following characteristics.

In-memory computation: RDD stores intermediate results in
distributed memory.

Lazy evaluations: In Spark all transformations are lazy. Lazy means
they do not compute their results until it is required.

Fault tolerance: RDD rebuilds the lost data automatically from the
source on failure using lineage. Each RDD remembers how it was
created from other data sets.

Immutability: RDDs are immutable in the sense thaat data cannot
be modified in place. RDDs can be modified only by applying RDD
operations, namely transformation and action.

Partitioning: Data are divided into partitions and distributed across
the cluster and operated in parallel.

Action/transformations: In Spark RDD, all the computations are

either actions or transformations.

87

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

RDD Operations

RDD provides two types of operations, transformation and actions.

Transformations

Creating a new RDD from an existing RDD is known as transformation. Chain of
transformation can be performed once data are loaded into memory. An example is
extracting specific fields and filtering out only certain records.

Actions

Spark doesn’t process data immediately. It processes data only when an action is called.

Examples include a sum or a count.

Creating an RDD

There are two ways to create an RDD: using parallelized collection or from an external
data source. Let’s look at each of these methods next.

Using Parallelized Collection

Parallelized collections can be created by calling SparkContext’s parallelize method
on an existing collection. When the parallelize method is applied on a collection,
elements of the collection are copied to form a distributed data set.

Objective: To create an RDD.
Action: Use the parallelize method of SparkContext. Create Array of integers and pass
that as an argument to the parallelize method.

val rdd = Array(1, 2, 3, 4, 5) //Line 1
val rdd1 = sc.parallelize(rdd) //Line 2
rdd1.collect() //Line 3

Output: Use the collect() action, which returns all the elements of the data set as an
array to the driver program, to display the output of the RDD displayed in Figure 3-6.

88

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

scala> rddl.collect()
resl: Array[Int] = Array(l, 2, 3, 4, 5)

Figure 3-6. RDD output

From External Data Source

Spark can create distributed data sets from any storage system such as Hadoop,
Cassandra, and so on.

Objective: To create an RDD using an external data source.
Input File: keywords . txt (see Figure 3-7).

Apache Spark

Big Data and Analytics using Spark
Learning Spark

Real time Spark Streaming
Machine Learning using Spark
Spark using Scala

Pyspark

Spark and Kafka

Spark and R

Spark SQL

/

Figure 3-7. Keywords. txt file

Action: Use the textFile() method of SparkContext. Specify the URL path of the local
file system as an argument to the textFile() method.

val rdd = sc.textFile("/home/data/keywords.txt") //Line 1

Output: The RDD output is shown in Figure 3-8.

scala> rdd.collect
res2: Array[String] = Array(Apache Spark, Big Data and Analytics using Spark, Learning Spark, Real time Spark Streaming,
achine Learning using Spark, Spark using Scala, Pyspark, Spark and Kafka, Spark and R, Spark SQL)

Figure 3-8. RDD output

89

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Note Store the file in the local file system.

Let’s discuss how to create an RDD from HDFS.

Creating an RDD from the Hadoop File System

Objective: To create an RDD using external data source - HDFS.

Input File: keywords.txt (as shown earlier in Figure 3-7).

Action: Use textFile() of SparkContext. Specify the URL path of the HDFS as an
argument to the textFile() method.

val rdd = sc.textFile("hdfs://localhost:9000/data/keywords.txt") //Line 1

Output: RDD output is shown in Figure 3-9.

scala> rdd.collect
res2: Array([String] = Array(Apache Spark, Big Data and Analytics using Spark, Learning Spark, Real time Spark Streaming
Machine Learning using Spark, Spark using Scala, Pyspark, Spark and Kafka, Spark and R, Spark SQL)

Figure 3-9. RDD output

Let’s discuss next how to create an RDD with partitioning.

Creating an RDD: File Partitioning

Spark divides data into partitions and distributes them across a cluster. By default, it
divides data into two partitions, but the number of partitions can be specified while
creating an RDD as shown here.

textFile(filename, minPartitions)
val rdd = sc.textFile("home/data/keywords.txt", 3)

Here, the number of partitions is three, so the file will be divided into three partitions.

90

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

RDD Transformations

Let’s discuss the various transformations provided by Apache Spark.

1. map(func): Returns a new data set by operating on each element
of the source RDD.

Objective: To illustrate a map (func) transformation.
Action: Create an RDD of a numeric list. Then apply map (func) to multiply each

element by 2.
val mapRdd = sc.parallelize(List(1, 2, 3, 4)) // Line 1
val mapRddl = mapRdd.map(x => x * 2) // Line 2

Output: The mapRdd1 data set is shown in Figure 3-10.

scala> mapRddl.collect
resl: Array[Int] = Array(2, 4, 6, 8)

Figure 3-10. mapRdd1 data set

2. flatMap(func): Like map, but each item can be mapped to zero,
one, or more items.

Objective: To illustrate the flatMap(func) tranformation.
Action: Create an RDD for a list of Strings, apply flatMap(func).

val flatMapRdd = sc.parallelize(List("hello world", "hi")) //Lline 1
val flatMapRddi= flatMapRdd.flatMap(line => line.split(" ")) //Line 2

Output: The flatMapRdd data set is shown in Figure 3-11.

scala> flatMapRddl.collect
res2: Array[String] = Array(hello, world, hi)

Figure 3-11. flatMapRdd1 data set

91

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE
Apply map(func) in line 2 instead of f1latMap (func).
val mapRddi= flatMapRdd.map(line => line.split(" ")) //Line 2

Output: The mapRdd1 output is shown in Figure 3-12.

scala> mapRddl.collect
res3: Array[Array([String]] = Array(Array(hello, world), Array(hi))

Figure 3-12. mapRddl data set

3. filter(func): Returns a new RDD that contains only elements
that satisfy the condition.

Objective: To illustrate filter(func) tranformation.

Action: Create an RDD using an external data set. Apply filter(func) to display the
lines that contain the word Kafka.

Input File: keywords . txt (refer to Figure 3-7).

val filterRdd = sc.textFile("/home/data/keywords.txt") //Line 1
val filterRddi = filterRdd.filter(line => line.contains("Kafka"))//Line 2

Output: The filterRdd1 data set is shown in Figure 3-13.

scala> filterRddl.collect
res5: Array([String] = Array(Spark and Kafka)

Figure 3-13. filterRddl data set

4. mapPartitions(func): Itis similar to map, but works on the
partition level.

Objective: To illustrate the mapPartitions(func) tranformation.
Action: Create an RDD of numeric type. Apply mapPartition(func)

val rdd = sc.parallelize(10 to 90) //Line 1
rdd.mapPartitions(x => List(x.next).iterator).collect //Line 2

Output: The output is shown in Figure 3-14.

92

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

scala> rdd.mapPartitions(x => List(x.next).iterator).collect
res0: Array[Int] = Array (10, 50)

Figure 3-14. mapPartition output

Here, the data set is divided into two partitions. Partition1 contains elements 10 to 40
and partition2 contains elements 50 to 90.

5. mapPartitionsWithIndex(func): This is similar to
mapPartitions,but provides a function with an Int value to
indicate the index position of the partition.

Objective: To illustrate the mapPartitionsWithIndex(func) tranformation.
Action: Create an RDD of numeric type. Apply mapPartitionWithIndex(func) to display
the position of each element in the partition.

val rdd = sc.parallelize(1 to 5, 2) // Line 1

rdd.mapPartitionsWithIndex((index: Int, it: Iterator[Int]) => it.tolist.
map(x => index + ", "+x).iterator).collect //Line 2

Output: The output is shown in Figure 3-15.

res0: Array([String] = Array(0, 1, 0, 2, 1, 3, 1, 4, 1, 5)
Figure 3-15. mapPartitionsWithIndex output

Here, partitioni contains elements 1 and 2, whereas partition2 contains

elements 3, 4, and 5.

6. union(otherDataset): This returns a new data set that contains
the elements of the source RDD and the argument RDD. The key
rule here is the two RDDs should be of the same data type.

Objective: To illustrate union(otherDataset) .
Action: Create two RDDs of numeric type as shown here. Apply union(otherDataset) to
combine both RDDs.

val rdd = sc.parallelize(1 to 5) //Lline 1
val rdd1 = sc.parallelize(6 to 10) //Line 2
val unionRdd=rdd.union(rdd1) //Line 3

93

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Output: The unionRdd data set is shown in Figure 3-17.

scala> unionRdd.collect
res7: Array[Int] = Array(l, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Figure 3-16. unionRdd data set

7. intersection(otherDataset): This returns a new data set that
contains the intersection of elements from the source RDD and
the argument RDD.

Objective: To illustrate intersection(otherDataset) .

Action: Create two RDDs of numeric type as shown here. Apply
intersection(otherDataset) to display all the elements of source RDD that also belong
to argument RDD.

val rdd = sc.parallelize(1 to §5) //Line 1
val rdd1 = sc.parallelize(1l to 2) //Line 2
val intersectionRdd = rdd.intersection(rdd1) //Line 3

Output: The intersectionRdd data set is shown in Figure 3-17.

scala> intersectionRdd.collect
res8: Array[Int] = Array(2, 1)

Figure 3-17. The intersectionRdd data set

8. distinct([numTasks]): This returns a new RDD that contains
distinct elements within a source RDD.

Objective: To illustrate distinct([numTasks]) .
Action: Create two RDDs of numeric type as shown here. Apply union(otherDataset)
and distinct([numTasks]) to display distinct values.

val rdd = sc.parallelize(10 to 15) //Line 1
val rdd1 = sc.parallelize(10 to 15) //Line 2
val distinctRdd=rdd.union(rdd1).distinct //Line 3

94

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Output: The distinctRdd data set is shown in Figure 3-18.

scala> distinctRdd.collect
res9: Array[Int] = Array(12, 13, 14, 10, 15, 11)

Figure 3-18. distinctRdd data set

RDD Actions

Action returns values to the driver program. Here we discuss RDD actions.

1. reduce(func): This returns a data set by aggregating the elements
of the data set using a function func. The function takes two
arguments and returns a single argument. The function should be
commutative and associative so that it can be operated in parallel.

Objective: To illustrate reduce (func).
Action: Create an RDD that contains numeric values. Apply reduce(func) to display the
sum of values.

val rdd = sc.parallelize(1 to §5) //Line 1
val sumRdd = rdd.reduce((t1,t2) => t1 + t2) //Line 2

Output: The sumRdd value is shown in Figure 3-19.

scala> val sumRdd = rdd.reduce((tl,t2) => tl + t2)
sumRdd: Int = 15

Figure 3-19. sumRdd value

2. collect(): All the elements of the data set are returned as an
array to the driver program.

Objective: To illustrate collect().
Action: Create an RDD that contains a list of strings. Apply collect to display all the
elements of the RDD.

val rdd = sc.parallelize(List("Hello Spark", "Spark Programming")) //Line 1
rdd.collect() //Line 2

95

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Output: The result data set is shown in Figure 3-20.

scala> rdd.collect
resl0: Array([String] = Array(Hello Spark, Spark Programming)

Figure 3-20. The result data set

3. count(): This returns the number of elements in the data set.

Objective: To illustrate count().
Action: Create an RDD that contains a list of strings. Apply count to display the number
of elements in the RDD.

val rdd = sc.parallelize(List("Hello Spark", "Spark Programming")) //Line 1
rdd. count() //Line 2

Output: The number of elements in the data set is shown in Figure 3-21.

scala> rdd.count
resll: Long = 2

Figure 3-21. The number of elements in the data set

4. first(): This returns the first element in the data set.

Objective: To illustrate first().
Action: Create an RDD that contains a list of strings. Apply first() to display the first
element in the RDD.

val rdd = sc.parallelize(List("Hello Spark", "Spark Programming")) //Line 1
rdd.first() //Line 2

Output: The first element in the data set is shown in Figure 3-22.

scala> rdd.first ()
resl2: String = Hello Spark

Figure 3-22. First element in the data set
96

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

5. take(n): This returns the first n elements in the data set as an
array.

Objective: To illustrate take(n) .
Action: Create an RDD that contains a list of strings. Apply take(n) to display the first n
elements in the RDD.

val rdd = sc.parallelize(List("Hello","Spark","Spark SQL","MLib")) //Line 1
rdd.take(2) //Line 2

Output: The first n elements in the data set are shown in Figure 3-23.

scala> rdd.take (2)
resl4: Array[String] = Array(Hello, Spark)

Figure 3-23. First n elements in the data set

6. saveAsTextFile(path): Write the elements of the RDD as a text
file in the local file system, HDFS, or another storage system.

Objective: To illustrate saveAsTextFile(path).
Action: Create an RDD that contains a list of strings. Apply saveAsTextFile(path) to
write the elements in the RDD to a file.

val rdd = sc.parallelize(List("Hello","Spark","Spark SQL","MLib")) //Line 1

rdd. saveAsTextFile("/home/data/output™) //Line 2

7. foreach(func): foreach(func) operates on each element in the
RDD.

Objective: To illustrate foreach(func) .
Action: Create an RDD that contains a list of strings. Apply foreach(func) to print each
element in the RDD.

val rdd = sc.parallelize(List("Hello","Spark","Spark SQL","MLib")) //Line 1
rdd.foreach(println) //Line 2

Output: The output of foreach(println) is shown in Figure 3-24.

97

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

scala> rdd.foreach(println)
Hello

Spark

Spark SQL

MLib

Figure 3-24. The foreach(println) output

Working with Pair RDDs

Pair RDDs are special form of RDD. Each element in the pair RDDs is represented as a
key/value pair. Pair RDDs are useful for sorting, grouping, and other functions. Here we

introduce a few pair RDD transformations.

1. groupByKey([numTasks]): When we apply this on a data set of
(K, V) pairs, it returns a data set of (K, Iterable<V>) pairs.

Objective: To illustrate the groupByKey ([numTasks]) transformation. Display names by

each country.
Input File: people.csv (see Figure 3-25).

year,name,country,count
2015,john,us,215
2016,jack,ind, 120
2017,james,ind,56
2018,john,cannada,67
2016,james,us,218

-

Figure 3-25. People.csv file

Action: Follow these steps.
1. Create an RDD using people.csv.
2. Use the filter(func) transformation to remove the header line.
3. Use map(func) and the split() method to split fields by “,”.
4. Retrieve country, name field using map(func).

5. Apply groupByKey to group names by each country.

98

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Note The field index starts from O.

val rdd = sc.textFile("/home/data/people.csv") //Lline 1
val splitRdd = rdd.filter(line => !line.contains

("year")).map(line => line.split(",")) //Line 2
val fieldRdd= splitRdd.map(f => (f(2),f(1))) //Line 3
val groupNamesByCountry=fieldRdd.groupByKey //Line 4
groupNamesByCountry.foreach(println) //Line 5

Output: The data set that contains names by each country is shown in Figure 3-26.

scala> groupNamesByCountry.foreach (println)
(ind, CompactBuffer (jack, james))

(us, CompactBuffer (john, james))

(cannada, CompactBuffer (john))

Figure 3-26. RDD that contains names by country

2. reduceByKey (func, [numTasks]): When reduceByKey(func,
[numTasks]) is applied on a data set of (K, V) pairs, it returns
a data set of (K, V) pairs. Here the values for each key are
aggregated using reduce(func). The func should be of

type (V,V) => V.

Objective: To illustrate the reduceByKey (func, [numTasks]) transformation. Display
the total names count by each name.
Input File: people.csv (refer Figure 3-25).
Action:
1. Create an RDD using people.csv.
2. Use the filter(func) transformation to remove the header line.
3. Use map(func) and split () to split fields by “,”.
4. Retrieve name, count field using map (func).

5. Apply reduceByKey (func) to count names.

99

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

val rdd = sc.textFile("/home/data/people.csv") //Line 1
val splitRdd = rdd.filter(line => !line.contains

("year")).map(line => line.split(",")) //Line 2
val fieldRdd = splitRdd.map(f => (f(1),f(3).toInt)) //Line 3
val namesCount=fieldRdd.reduceByKey((vi,v2) => v1 + v2) //Lline 4
namesCount.foreach(println) //Line 5

Output: The data set that contains name counts by each name is shown in Figure 3-27.

scala> namesCount.foreach (println)
(James, 274)
(jack, 120)
(john, 282)

Figure 3-27. RDD that contains name counts by each name

3. sortByKey([ascending], [numTasks]): When
sortByKey([ascending], [numTasks]) isapplied on a data set
of (K, V) pairs, it returns a data set of (K, V) pairs where keys
are sorted in ascending or descending order as specified in the
boolean ascending argument.

Objective: To illustrate the sortByKey([ascending], [numTasks]) transformation.
Display the names in ascending order.

Input File: people.csv (refer to Figure 3-25).
Action:
1. Create an RDD using people.csv.
2. Use the filter(func) transformation to remove the header line.
3. Use map(func) and split() to split fields by “,”.
4. Retrieve name, count field using map (func).

5. Apply sortByKey(func) to display names in ascending order.

100

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE
val rdd = sc.textFile("/home/data/people.csv") //Line 1

val splitRdd = rdd.filter(line => !line.contains
("year")).map(line => line.split(",")) //Line 2

val fieldRdd = splitRdd.map(f => (f(1),f(3).toInt)).sortByKey() //Line 3
fieldRdd.foreach(println) //Lline 4

Output: The data set that contains names in ascending order is shown in Figure 3-28.

scala> fieldRdd.foreach(println)
(jack,120)

(james, 56)

(James, 218)

(john, 215)

(john, 67)

Figure 3-28. RDD that contains names in ascending order

Direct Acylic Graph in Apache Spark

DAG in Apache Spark is a set of vertices and edges. In Spark, vertices represent RDDs
and edges represent the operation to be applied on RDD. Each edge in the DAG is
directed from one vertex to another. Spark creates the DAG when an action is called.

How DAG Works in Spark

At a high level, when an action is called on the RDD, Spark creates the DAG and submits
the DAG to the DAG scheduler.

1. The DAG scheduler divides operators such as map, flatMap, and
so on, into stages of tasks.

2. The result of a DAG scheduler is a set of stages.

3. The stages are passed on to the Task Scheduler.

4. The Task Scheduler launches tasks via Cluster Manager.
5. The worker executes the tasks.

101

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Note A stage is comprised of tasks based on partitions of the input data.

At a high level, Spark applies two transformations to create a DAG. The two
transformations are as follows:

e Narrow transformation: The operators that don’t require the data
to be shuffled across the partitions are grouped together as a stage.
Examples are map, filter, and so on.

o Wide transformation: The operators that require the data to be
shuffled are grouped together as a stage. An example is reduceByKey.

DAG visualization can be viewed through the Web UI (http:/localhost:4040/jobs/).
Scala code to count the occurrence of each word in a file is shown here.

sc.textFile("/home//keywords.txt").flatMap(1line => line.split(" ")).
map(word => (word,1)).reduceByKey(+).collect()

Refer to Figure 3-29 for the DAG visualization of word count. The word count problem
consists of two stages. The operators that do not require shuffling (f1atMap() and map()
in this case) are grouped together as Stage 1 and the operators that require shuffling
(reduceByKey) are grouped together as Stage 2.

102

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

+ DAG Visualization

Stage 1 Stage 2
textFile reduceByKey

Figure 3-29. The DAG visualization for word count

How Spark Achieves Fault Tolerance Through DAG

Spark maintains each RDD’s lineage (i.e., previous RDD on which it depends) that

is created in DAG to achieve fault tolerance. When any node crashes, Spark Cluster
Manager assigns another node to continue processing. Spark does this by reconstructing
the series of operations that it should compute on that partition from the source.

103

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

To view the lineage, use toDebugString. A lineage graph for word count is shown in
Figure 3-30.

scala> wc.toDebugString

resl: String =

(2) ShuffledRDD[4] at reduceByKey at <console>:24 []

+-(2) MapPartitionsRDD[3] at map at <console>:24 []
| MapPartitionsRDD[2] at flatMap at <console>:24 []
| /home/keywords.txt MapPartitionsRDD[1l] at textFile at <console>:24 []
| /home/keywords.txt HadoopRDD[0] at textFile at <console>:24 []

Figure 3-30. Lineage for word count

Persisting RDD

The most important feature of Spark is persisting (or caching) a data set in memory
across operations. Persisting an RDD stores the computation result in memory and
reuses it in other actions on that data set. This helps future actions to be performed
much faster.

To persist an RDD, use the persist() or cache() methods on it. RDD can be persisted
using a different storage level. To set a different storage level, pass the StorageLevel
object (Scala, Java, Python) to persist() as shown here.

persist(StoragelLevel .MEMORY ONLY)

The default storage level is StorageLevel .MEMORY_ONLY. This can be set by using the
cache() method.

Spark persists shuffle operations (e.g., reduceByKey) with intermediate data
automatically even without calling the persist method. This avoids recomputation of
the entire input if a node fails during the shuffle. Table 3-2 shows different storage levels.

104

Table 3-2. Storage Level

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Storage Level

Meaning

MEMORY_ONLY

MEMORY_AND_DISK

MEMORY_ONLY_SER (Java
and Scala)

MEMORY_AND DISK_ SER
(Java and Scala)

DISK ONLY

MEMORY ONLY_2, MEMORY _
AND_DISK_2, etc.

Store RDD as deserialized Java objects in the Java Virtual
Machine. If the RDD does not fit in memory, some partitions will
not be cached and will be recomputed on the fly each time they’re
needed. This is the default level.

Store RDD as deserialized Java objects in the Java Virtual
Machine. If the RDD does not fit in memory, store the partitions
that don’t fit on disk, and read them from there when they’re
needed.

Store RDD as serialized Java objects (one byte array per partition).
This is generally more space-efficient than deserialized objects,
especially when using a fast serializer, but more CPU-intensive to
read.

Similar to MEMORY_ONLY_SER, but spill partitions that don’t fit in
memory to disk instead of recomputing them on the fly each time
they’re needed.

Store the RDD partitions only on disk.

Same as the levels above, but replicate each partition on two
cluster nodes.

Shared Variables

Normally, Spark executes RDD operations such as map or reduce on a remote cluster node.

When a function is passed to RDD operation, it works on the separate copies of all the

variables used in the function. All these variables are copied to each machine and updates

to the variables are not propagated back to the driver. This makes read-write across tasks

inefficient. To resolve this, Spark provides two common types of shared variables, namely

broadcast variables and accumulators. We discuss broadcast variables first.

105

https://spark.apache.org/docs/latest/tuning.html

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Broadcast Variables

Broadcast variables help to cache a read-only variable on each machine rather than
shipping a copy of it with tasks. Broadcast variables are useful to give a copy of large data
set to every node in an efficient manner.

Broadcast variables are created by calling (v) as shown here.

val broadcastVar = sc.broadcast(Array(1, 2, 3)) //Line 1

Broadcast variables can be accessed by calling the value method as shown in
Figure 3-31.

broadcastVar.value //Line 2

scala> broadcastVar.value
res0: Array[Int] = Array(l, 2, 3)

Figure 3-31. Broadcast variable value output

Note Do not modify object v after it is created to ensure that all nodes get the
same value of the broadcast variable.

Accumulators

Accumulators are variables that can be used to aggregate variables across the executors.
Accumulators can be used to implement counters or sums. Spark supports accumulators
of numeric type by default and programmers can add support for new types.

A numeric accumulator can be created by calling SparkContext. longAccumulator() to
accumulate the value of Long. Tasks can add value to the accumulator by using the add
method. However, tasks cannot read the accumulator value. Only the driver program can
read the accumulator’s value.

The following code accumulates the value of an Array.

val accum = sc.longAccumulator("My Counter") //Line 1
sc.parallelize(Array(10,20,30,40)).foreach(x => accum.add(x)) //Line 2

accum.value //Line 3
106

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

The accumulator value can be accessed by calling the value method as shown in
Figure 3-32.

scala> accum.value
res4: Long = 100

Figure 3-32. Accumulator output

The accumulator value can be accessed through the Web UI as well (see Figure 3-33).

~ Aggregated Metrics by Executor
Extcutor 1D - Aderess Task Time Total Tasks Falled Tasks Killed Tasks Succesded Tasks
drrver 152 168 153 15146516 o7 ens H 0 o z
Accumulators
Accumulable Valus
Wy Counter 100
Tasks (2)
Incex - 10 Attempt Status Locality Level Executor 10 1 Host Launch Time Duration aE Time Accumul lators Errors
o 2 0 SUCCESS PROCESS_LOCAL v £ Iocatnost 20180212 05.06.03 1 ms My Counter. 30
1 3 0 SUCCESS PROCESS_LOCAL anves { kainost 201802112 05:06:03 2ms Wy Counter. 70

Figure 3-33. Accumulator value display in Web Ul

Simple Build Tool (SBT)

SBT is a Scala-based build tool for Scala applications. We discuss how to build Spark
applications using SBT and submit them to the Spark Cluster.

You can download the latest version of SBT from http://www.scala-sbt.org/
download.html. Click on the installer and follow the instruction to install SBT.

107

http://www.scala-sbt.org/download.html
http://www.scala-sbt.org/download.html

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Let’s discuss how we can build a Spark application using SBT.

1. Create a folder structure as shown in Figure 3-34.

[SparkApplication]

S1C

main I
\

scala I
—[WordCount.scala]

Figure 3-34. Spark application folder structure

2. Create build.sbt as shown in Figure 3-35. Specify all the required
libraries.

name := "spark-wc"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" % "spark-core 2.11" % "2.1.0"

B S

Figure 3-35. build. sbt file

108

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

3. Write a Spark application to count the occurrence of each word in
the keywords. txt file. Consider Figure 3-7 for the input file. The
Scala code is shown here.

package com. Book
import org.apache.spark.{SparkContext, SparkConf}

object WordCount {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Spark WordCount
Application™)
val sc = new SparkContext(conf)

val inputFileName = args(0)
val outputFileName = args(1)

sc.textFile(inputFileName)
.flatMap(line => line.split(" "))
.map(word => (word,1))
.reduceByKey(_ +)
.saveAsTextFile(outputFileName)

4. Open a command prompt and navigate to the folder where the
Spark word count application is present. Type sbt clean package
to build the project.

5. Project, the target directory, will be created as shown in Figure 3-36.

Name Date modified Type Size
project 12-02-2018 12:25
src 11-01-2018 12:50
target 12-02-2018 12:2

! build 07-12-2017 12:32

Figure 3-36. Project, the target directory

109

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

6. The executable jar will be created inside the target directory,

scala-2.11 as shown in Figure 3-37.

Name Date modified Type Size
" classes 12-02-2018 12:27 File folder
' resolution-cache 12-02-2018 12:27 File folder
" | %] spark-we_2.11-1.0 12-02-2018 12:27 Executable Jar File 5KB
-
Figure 3-37. Spark word count jar
7. Copy the executable jar (spark-wc_2.11-1.0.jar) to the Spark
cluster as shown in Figure 3-38.
Name a Size Changed Rights Owner
. 01-02-2018 10:12:07 TWXT=Xr-X vagrant
|| keywords.txt 1KB 01-02-2018 10:12:30 rw-rw-r-- vagrant
<y people.csv 1KB 05-02-2018 13:13:43 W-rw-r-- vagrant
| £ spark-wc_2.11-1.0 jar 5KB 24-01-2018 10:18:M W-rw-r-- vagrant

Figure 3-38. Spark word count jar

8. Issue the spark-submit command as shown here.

spark-submit --class com.book.WordCount --master spark://
masterhostname:7077 /home/data/spark-wc_2.11-1.0.jar /home/data/keywords.

txt /home/data/output

Note Here, the Spark stand-alone Cluster Manager (spark://

masterhostname:7077) is used to submit the job.

9. Output will be created as part of a file as shown in Figures 3-39

and 3-40.

110

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Name Size Changed

. 01-02-2018 10:12:07
12-02-2018 12:58:35

s 1KB 01-02-2018 10:12:30

8. peo 1KB 05-02-2018 13:13:43

|£fspark-we_2.11-1.0,jar 5KB 12-02-2018 12:45:48

Figure 3-39. Output directory

Figure 3-40 shows part of the file inside the output directory.

Name Size Changed Rights

L3 _ 12-02-2018 12:58:01 PWXTWXT-X

|] _SUCCEss 0KB 12-02-2018 12:58:35 PW-r=-r-~
| part-00000 1KB 12-02-2018 12:58:34 Wer--f--

|] part-00001 1KB 12-02-2018 12:58:34 TW=r=ef-=

Figure 3-40. Part of a file inside the output directory

10. Open the part-00000 file to check the output as shown in
Figures 3-41 and 3-42.

|(Kafka,1)
(Real,1)
(R,1)

(Big,1)
(Pyspark,1)
(Apache,1)
(SQL,1)
(Analytics,1)
(using,3)
(Scala,l)
(Data,l)
(Streaming,1)
(Learning,2)

Figure 3-41. Word count output

Rights
TWXT-Xr-X
TWXIWXT-X
W-rw-r--
W=rW=r==
W=rW=r==

Owner

vagrant
vagrant
vagrant

vagrant

Owner

vagrant
vagrant
vagrant
vagrant
vagrant

111

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

kSpark,Q)
(Machine,1)
(time,1)
(and, 3)

Figure 3-42. Word count output

Assignments

1. Consider the the sample logs.txt shown in Figure 3-43. Write a
Spark application to count the total number of WARN lines in the
logs. txt file.

WARN This is a warning message
ERROR This is an error message
WARN This is a warning message
ERROR This is an error message
ERROR This is an error message
WARN This is a warning message

WARN This is a warning message

_./—

Figure 3-43. Sample logs. txt

Reference Links

1. https://spark.apache.org/docs/latest/rdd-programming-
guide.html

112

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

CHAPTER 3 INTRODUCTION TO APACHE SPARK AND SPARK CORE

Points to Remember

Apache Spark is 100 times faster than Hadoop MapReduce.

Apache Spark has a built-in real-time stream processing engine to
process real-time data.

RDD is an immutable collection of objects.

RDD supports two types of operations: transformation and actions.
Pair RDDs are useful to work with key/value data sets.

Broadcast and accumulators are shared variables.

SBT can be used to build Spark applications.

In the next chapter, we discuss how to deal with structure data using Spark SQL.

113

CHAPTER 4

Spark SQL, DataFrames,
and Datasets

In the previous chapter on Spark Core, you learned about the RDD transformations and
actions as the fundamentals and building blocks of Apache Spark. In this chapter, you
will learn about the concepts of Spark SQL, DataFrames, and Datasets. As a heads up,
the Spark SQL DataFrames and Datasets APIs are useful to process structured file data
without the use of core RDD transformations and actions. This allows programmers and
developers to analyze the structured data much faster than they would by applying the
transformations on RDDs created.

The recommended background for this chapter is to have some prior experience with
Java or Scala. Experience with any other programming language is also sufficient. Also,
having some familiarity with the command line is beneficial.

The mandatory prerequisite for this chapter is to have completed the previous chapter
on Spark Core, practiced all the demos, and completed all the hands-on exercises given
in the previous chapter.

By end of this chapter, you will be able to do the following:

e Understand the concepts of Spark SQL.

e Use the DataFrames and Datasets APIs to process the
structured data.

e Run traditional SQL queries on structured file data.

Note Itis recommended that you practice the code snippets provided as the
illustrations and practice the exercises to develop effective knowledge of Spark
SQL concepts and DataFrames, and the Datasets API.

115
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_4

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

What Is Spark SQL?

Spark SQL is the Spark module for processing structured data. The basic Spark RDD
APIs are used to process semistructured and structured data with the help of built-in
transformations and actions. The Spark SQL APIs, though, help developers to process
structured data without applying transformations and actions. The DataFrame and
Datasets APIs provide several ways to interact with Spark SQL.

Datasets and DataFrames

Dataset is a new interface added in the Spark SQL that provides all the RDD benefits with
the optimized Spark SQL execution engine. It is defined as the distribution of collection
of data. The Dataset API is available for Scala and Java. It is not available for Python,

as the dynamic nature of Python provides the benefits of the Dataset API as a built-in
feature.

DataFrame is a Dataset organized as named columns, which makes querying easy.
Conceptually, the DataFrame is equivalent to a table in any relational database. The
DataFrames can be created from a variety of sources like any structured data files,
external relational data sources, or existing RDDs.

Spark Session

The entry point for all Spark SQL functionality is the Spark Session API. The Spark
Session can be created using SparkSession.builder ().

import org.apache.spark.sql.SparkSession // Line 1
val spark = SparkSession.builder()

.appName("PracticalSpark SQL Application")
.getOrCreate() // Line 2

import spark.implicits._ // Line 3

In this code, line 3 is mandatory to enable all implicit conversions like converting RDDs
to DataFrames.

116

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Note Spark 2.0 provides the built-in support for Hive features to write queries
using HiveQL and to read data from Hive tables.

In starting the Spark Shell, Spark Session will be created by default and it is not required
to create the session manually again in the shell (see Figure 4-1).

Spark context Web UI available at http://10.0.2.15:4040

Spark context available as 'sc' (master = local[*], app id = local-1517568219555).
Spark session available as 'spark'.

Welcome to

/IN_,_/_/"7_/\\ version 2.2.0

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_77)
Type in expressions to have them evaluated.
Type :help for more information.

|scala> i
Figure 4-1. Spark Session in Spark Shell

The details of Spark Shell were explained completely in Chapter 3.

Creating DataFrames

The DataFrames can be created by using existing RDDs, Hive tables, and other data
sources like text files and external databases. The following example shows the steps to
create DataFrames from the JSON file with SparkSession. The steps to create DataFrames
from existing RDDs and other data sources is explained later in this chapter.

Add the contents in bookDetails. json as shown in Figure 4-2.

~

[{"bookld":lol, "bookName":"Practical Spark", "Author":"Dharanitharan G"}
{"bookld":102, "bookName":"Spark Core", "Author":"Subhashini R C"}

{"bookld":103, "bookName":"Spark SQL", "Author":"Dharanitharan G"}

{"bookld":104, "bookName":"Spark Streaming", "Author":" Subhashini R C "}

_

Figure 4-2. bookDetails. json

117

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Follow the example shown here to create the DataFrame from the JSON content. Refer to
Figure 4-3 for the output.

val bookDetails = spark.read.json("/home/SparkDataFiles/bookDetails.json")

Iscala> val bookDetails = spark.read.json ("/home/SparkDataFiles/bookDetails.json")
bookDetails: org.apache.spark.sql.DataFrame = [Author: string, bookId: bigint ...

scala> bookDetails.show()

| Author |bookId| bookName |
pommmm———————— pmmmmm- S ettt +
Dharanitharan G	101	Practical Spark
Subhashini RC	102] Spark Core	
Dharanitharan G	103	Spark SQL
Subhashini RC	104	Spark Streaming
pmmmmm———————— e $rmmmmmmmm—————— +

Figure 4-3. Creating DataFrame using JSON file

The spark.read.json("/filepath") is used to read the content of the JSON file as
a DataFrame. bookDetails is created as a DataFrame. The show() method is used to
display the contents of a DataFrame in the stdout.

DataFrame Operations

DataFrame operations provides a structured data manipulation with APIs available in
different languages such as Java, Scala, Python, and R. The DataFrames are the set of
Dataset rows in Java and Scala.

The DataFrame operations are also called Untyped transformations. Shown here are
examples of a few uptyped transformations available for DataFrames. It is recommended
that you practice all the given examples. Refer to Figure 4-4 for the printSchema() function.

118

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

'scala> bookDetails.printSchema ()
root

| == Author: string (nullable = true)
| -- bookId: long (nullable = true)
| -- bookName: string (nullable = true)

Figure 4-4. printSchema() function on a DataFrame
The printSchema() function displays the schema of the DataFrame.

Untyped DataFrame Operation: Select

The select() transformation is used to select the required columns from the
DataFrame. Refer to the following code and Figure 4-5.

bookDetails.select("bookId","bookName™).show()

scala> bookDetails.select ("bookId", "bookName") .show ()
+-———— o +
| bookId]| bookName |
+-————— e +
| 101 |Practical Spark|
| 102 Spark Core|
| 103 Spark SQL|
| 104 | Spark Streaming]|
tm————— o ———————— +

Figure 4-5. Untyped DataFrame operation: Select

Untyped DataFrame Operation: Filter

The filter() transformation is used to apply the filter conditions on the DataFrame

rows while retrieving the data. Refer to the following code for the filter operation and see
Figure 4-6 for the output.

bookDetails.filter($"bookName" === "Spark Core").show()

119

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

scala> bookDetails.filter ($"bookName" === "Spark Core") .show()
Fmm——————————— Fm———— Fmm e ———— +

| Author |bookId| bookName |
Fom e t-————- Fomm +
| Subhashini RC| 102 | spark Core|
o N o —— +

Figure 4-6. Untyped DataFrame operation: Filter

Note $"bookName" indicates the values of the column. Also, === (triple equal)
must be used to match the condition.

Untyped DataFrame Operation: Aggregate Operations

The groupBy () transformation is used to apply filter aggregation on the DataFrame
rows while retrieving the data. The following code shows the groupBy operation and
Figure 4-7 displays the output.

val grouped = bookDetails.groupBy("Author")
val total = grouped.count()

scala> val grouped = bookDetails.groupBy ("Author")
grouped: org.apache.spark.sgl.RelationalGroupedDataset = org.apache.spa

scala> val total = grouped.count()
total: org.apache.spark.sgl.DataFrame = [Author: string, count: bigint]

scala> total.show()

o o +
| Author|count|
B e ettt o +
|Dharanitharan G| 2|
| Subhashini RC| 2|
e et e et Fm——— +

Figure 4-7. Untyped DataFrame operation: Aggregate operations
These transformations can be chained together and written as

bookDetails.groupBy("Author").count().show()

Hint The equivalent SQL of these chained transformations is SELECT Author,
COUNT(Author) FROM BookDetails GROUP BY Author.

120

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Running SQL Queries Programatically

The sql function on the SparkSession allows us to run the SQL queries
programmatically and it returns the DataFrame as a result.

Creating Views

It is necessary to create a view from the DataFrame to run the SQL queries directly based
on the requirements. The views are always temporary and session scoped. They will

be destroyed if the session that creates the views is terminated. There are two types of
temporary views: temporary views and global temporary views. Assume that the view is
like a relational database management system (RDBMS) view.

Once the view is created, the SQL query can be executed on the view by using the sql
method in SparkSession as shown in Figure 4-8.

scala> bookDetails.createOrReplaceTempView ("BookDetails")

scala> val rs =
| spark.sql ("SELECT Author,COUNT (Author) FROM BookDetails GROUP BY Author")
rs: org.apache,spark.sql.DataFrame = [Author: string, count(Author): bigint]

scala> rs.show()

pommmmmmm e e L +
| Author|count (Author) |
e e e Hommmmm e +
|Dharanitharan G| 2|
| Subhashini RC| 2|

Figure 4-8. Running an SQL query programmatically, temporary view

The function createOrReplaceTempView() is used to create a temporary view that is
available only in the same SparkSession; that s, (spark).

The global temporary view can be created by using the createGlobalTempView()
function. The global temporary view is shared among all the Spark sessions and remains
alive until the Spark application is terminated. It is tied to the system preserved database
'global_temp' and hence it is required to use a fully qualified table name like global _
temp.<table name> to refer it while using it in the query (see Figure 4-9).

121

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

scala> bookDetails.createGlobalTempView ("BookDetails")

scala> result.show()

fmmm——————————— pmm— frmm—————————— -
| Author |bookId| bookName |
T pmmm——— $rmmm————————— +
Dharanitharan G	101	Practical Spark
Subhashini RC	102] Spark Core	
Dharanitharan G	103 Spark SQL	
Subhashini RC	104	Spark Streaming]
T R $mmmmmmm———————— +

Figure 4-9. Running SQL query programmatically, global temporary view

scala> val result = spark.sql ("SELECT * FROM global temp.BookDetails")
result: org.apache.spark.sql.DataFrame = [Author: string, bookId: bigint .

SPARK SQL EXERCISE 1: DATAFRAME OPERATIONS

1. Create the following data as logdata. log with comma delimiters as shown.

6:24:25,10.192.123.23,http://www.google.com/searchString,ODCl
10:24:21,10.123.103.23,http://www.amazon.com,0DC1
10:24:21,10.112.123.23,http://www.amazon.com/Electronics,ODC1
10:24:21,10.124.123.24,http://www.amazon.com/Electronics/storagedevices,0DC1
10:24:22,10.122.123.23,http://www.gmail.com,0DC2

10:24:23,10.122.143.21,http://www.flipkart.com,0DC2

Q:M:Z1,10.124.123.23,http://www.ﬂipkart.com/offers,ODCl

~

J

Note The schema for these data is: Time, IpAddress, URL, Location

122

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

2. Create a DataFrame of the created log file using spark.read.csv.

Note The spark.read.csv reads the data from a file with comma delimiters
by default and the column names of the DataFrame would be _c0, c1, and so on.
The different data sources, options, and the format for creating DataFrames with
different schema is discussed later in this chapter.

3. Create a temporary view named 'LogData’.

4. Create a global temporary view named 'LogData Global'. Observe the
difference between the temporary view and global temporary view by executing
the query with a temporary view in a different Spark session.

5. Write and run SQL queries programatically for the following requirements.
e How many people accessed the Flipkart domain in each location?
e Who accessed the Flipkart domain in each location? List their IpAddress.
e How many distinct Internet users are available in each location?

e List the unique locations available.

Dataset Operations

Datasets are like RDDs. Dataset APIs provide a type safe and object-oriented
programming interface. The DataFrame is an alias for untyped Dataset[Row]. Datasets
also provide high-level domain-specific language operations like sum(), select(),
avg(), and groupby(), which makes the code easier to read and write.

Add the contents shown in Figure 4-10 to BookDetails. json.

[{"bookld":lol, "bookName":"Practical Spark", "Author":"Dharanitharan G"}
{"bookld":102, "bookName":"Spark Core", "Author":"Subhashini R C"}

{"bookld":103, "bookName":"Spark SQL", "Author":"Dharanitharan G"}

{"bookld":104, "bookName":"Spark Streaming", "Author":" Subhashini R C "} j

_

Figure 4-10. BookDetails.json

123

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Create a case class for the bookDetails schema as shown here. Figure 4-11 displays the
result.

case class BookDetails (bookId:String, bookname: String, Author:String)

scala> case class BookDetails (bookId:String, bookname: String, Author:String)
defined class BookDetails

Figure 4-11. Case class for BookDetails. json

Now, create the DataSet by reading from the JSON file.

val bookDetails = spark.read.json("/home/SparkDataFiles/bookDetails.
json").as[BookDetails]

This code creates the Dataset (named bookDetails) and it is represented as
org.apache.spark.sql.Dataset[BookDetails] because the case class, BookDetails, is
used to map the schema. See Figure 4-12 for the output.

scala> case class BookDetails (bookId:String, bookname: String, Author:String)
defined class BookDetails

scala> val inputPath = "/home/SparkDataFiles/bookDetails.json"
inputPath: String = /home/SparkDataFiles/bookDetails.json

scala> val bookDetails = spark.read.json(inputPath).as[BookDetails]
bookDetails: org.apache.spark.sql.Dataset[BookDetails] = [Author: string, book

scala> bookDetails,show()

tmmmmmm e tmm———- Fmmmmmmmm e -
| Author |bookId| bookName |
e e pmmmmm—————————— -
Dharanitharan G	101	Practical Spark
Subhashini RC	102] Spark Core	
Dharanitharan G	103	Spark SQL
Subhashini RC	104	Spark Streaming
tmmmmmm e tmmm—- e EEE R -

Figure 4-12. Dataset operations

It is possible to do all the DataFrame operations on Dataset as well.

124

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Interoperating with RDDs

In Spark SQL, there are two methods for converting the existing RDDs into Datasets: the
reflection-based approach and the programmatic interface.

Reflection-Based Approach to Infer Schema

The RDDs containing case classes can be automatically converted into a DataFrame
using the Scala interface for Spark SQL. The case class defines the schema of the
DataFrame. The column names of the DataFrames are read using the reflection from
the names of the arguments of case classes. The RDD can be implicitly converted into a
DataFrame and then converted into a table.

Add the following contents in bookDetails.txt:

101,Practical Spark,Dharanitharan G
102, Spark Core,Subhashini RC
103,Spark SOL,Dharanitharan G

104, Spark Streaming,Subhashini RC

Create a case class for the bookDetails schema.
case class BookDetails (bookId:String, bookname: String, Author:String)

Now, create an RDD from the bookDetails.txt file as shown in Figure 4-13.

scala> val inputPath = "/home/SparkDataFiles/bookDetails.txt"
inputPath: String = /home/SparkDataFiles/bookDetails.txt

scala> val bookDetails = sc.textFile (inputPath)
bookDetails: org.apache.spark.rdd.RDD[String] = /home/SparkDataFiles/bookDetails.txt

Figure 4-13. Creating RDD from a file

Note scisa SparkContext, which is available in a Spark Shell session.

125

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Because the RDD is created from the text file, each element in the RDD is a string (each
line in the file is converted as an element in the RDD).

Now the DataFrame can be created from the existing RDD bookDetails by using the
toDF () function as shown in Figure 4-14. Observe that each element in the RDD is
converted as a row in DataFrame and each field in the element is converted as a column.

scala> val bookDetailsDF = bookDetails.toDF ()
bookDetailsDF: org.apache.spark.sqgl.DataFrame = [value: string]

scala> bookDetailsDF.show()

|101,Practical Spa...
1102, Spark Core,Su...
1103, Spark SQL,Dha...
|104,Spark Streami...

|101,Practical Spark,Dharanitharan G|
|102,Spark Core,Subhashini RC |
|103,Spark SQL,Dharanitharan G |
|104,Spark Streaming,Subhashini RC |

scala> bookDetailsDF.printSchema ()
root
| -- wvalue: string (nullable = true)

Figure 4-14. Creating DataFrame from an existing RDD

Because each element in the RDD contains only one field, there is only one column
in the DataFrame. So, we need to create each element in the RDD with multiple fields
as per requirements. Also, observe that the schema is inferred from the existing case
class BookDetails. The column names of the DataFrame are taken from the names of
arguments of the case class (see Figure 4-15).

126

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

scala> val details2 = bookDetails.map(line => line.split(","))
details2: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[11]

scala> val details mapped = details2.map(x => BookDetails(x(0),x(1),x(2)))
details mapped: org.apache.spark.rdd.RDD[BookDetails] = MapPartitionsRDD[12]

scala> val bookDetailsDF = details mapped.toDF()
bookDetailsDF: org.apache.spark.sql.DataFrame

scala> bookDetailsDF.show (false)

$ommme pommmmmm e tommmm e -
|bookId|bookname | Author |
tmmm—- fommmmmmm e $ommmmmm e -
|101 |Practical Spark|Dharanitharan G|
|102 |Spark Core | Subhashini RC |
[103 |Spark SQL |Dharanitharan G|
|104 |Spark Streaming|Subhashini RC |
- Fmmmm - mmmm e -

Figure 4-15. Schema inference through reflection from case class attributes

Now, the DataFrame can be registered as the temporary table and SQL queries can be
run programmatically.

The schema can be represented by a StructType matching the structure of rows in
the RDD created from the text file. Then, apply the schema to the RDD of rows via the
createDataFrame method provided by the Spark Session.

import org.apache.spark.sql.types.
import org.apache.spark.sql.

These two imports are mandatory because the StructField and StructType should be
used for creating the schema (see Figure 4-16).

127

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

scala> import org.apache.spark.sql._
import org.apache.spark.sql._

scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._

scala> val schema = Array("bookID","bookName","AuthorName")
schema: Array[String] = Array(bookID, bookName, AuthorName)

scala> val fields = schema.map(x => StructField(x, StringType, nullable = true))
fields: Array[org.apache.spark.sql.types.StructField]

scala> val dfSchema = StructType (fields)
dfSchema: org.apache.spark.sql.types.StructType

Figure 4-16. Schema creation using StructType

Now, the created schema can be merged with the RDD as shown in Figure 4-17.

scala> val inputPath = "/home/SparkDataFiles/bookDetails.txt"
inputPath: String = /home/SparkDataFiles/bookDetails.txt

scala> val bookDetails = sc.textFile (inputPath)
bookDetails: org.apache.spark.rdd.RDD[String]

scala> val bookDetails2 = bookDetails.map(x => x.split(","))
bookDetails2: org.apache.spark.rdd.RDD[Array[String]]

scala> val fieldsMap = bookDetails2.map (x=>Row (x(0) ,x(1) ,x(2)))
fieldsMap: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]

scala> wval bookDetailsDF = spark.createDataFrame (fieldsMap,dfSchema)
bookDetailsDF: org.apache.spark.sqgl.DataFrame

scala> bookDetailsDF.show(false)

Fm———— Fmmm e B e +
|bookID | bookName | AuthorName |
+————— o ——————— o ———————— +
|101 | Practical Spark|Dharanitharan G|
|102 | Spark Core | Subhashini RC |
1103 | Spark SQL |Dharanitharan G|
1104 | Spark Streaming|Subhashini RC |
+————— o ————————— Fm——————————— +

Figure 4-17. Programmatically specifying schema

128

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Different Data Sources

Spark SQL supports a variety of data sources like json, csv, txt, parquet, jdbc, and orc.
In this module, we discuss the generic load and save functions and manually specifying
options for loading and saving. It is also possible to run the SQL queries programatically
directly on the files without creating the RDDs and DataFrames.

Generic Load and Save Functions

The default data source is parquet files, but the default can be configured by changing
the spark.sql.sources.default property. See Figure 4-18 for how to use generic load

and save functions.

scala> val inputPath = "/home/SparkDataFiles/users.parquet"
inputPath: String = /home/SparkDataFiles/users.parquet

scala> val userDetailsDF = spark.read.load(inputPath)
userDetailsDF: org.apache.spark.sql.DataFrame

scala> val userName = userDetailsDF.select ("name")
userName: org.apache.spark.sql.DataFrame = [name: string]

scala> userName.show(false)

tm———— +
|name |
tm———— +
|Alyssa|
| Ben |
+-————— +

scala> userName.write.save ("/home/SparkDataFiles/UserNames.parquet")

Figure 4-18. Generic load and save functions

If the property spark.sql.sources.default is not changed, the type of data source can

be specified manually as explained later.

129

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Manually Specifying Options

The format of the data sources can be manually specified by using the format ()
function, as shown in Figure 4-19.

scala> val inputPath = "/home/SparkDataFiles/bookDetails.json"
inputPath: String = /home/SparkDataFiles/bookDetails.json

scala> val bookDetailsDF = spark.read.format("json").load(inputPath)
bookDetailsDF: org.apache.spark.sql.DataFrame

scala> val bookNames = bookDetailsDF.select ("bookName", "Author")
bookNames: org.apache.spark.sql.DataFrame

scala> bookNames.show(false)

ittt e it L +
| bookName |Author |
o e +
Practical Spark	Dharanitharan G
Spark Core	Subhashini RC
Spark SQL	Dharanitharan G
Spark Streaming	Subhashini RC
Fomm e Fomm e +

scala> bookNames.write.format ("csv") .save ("/home/SparkDataFiles/BookNames")

Figure 4-19. Manually specifying options for loading and saving files

To create parquet files, the format can be specified as parquet for the save function.

Run SQL on Files Directly

The SQL queries can be run directly on the files programmatically instead of using load
functions, as shown in Figure 4-20. Use the created bookDetails.parquet file as the
input file.

130

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

scala> val sqlDF = spark.sql("SELECT * FROM parquet. /home/SparkDataFiles/bookDetails.parquet ")
sqlDF: org.apache.spark.sql.DataFrame = [bookName: string, Author: string]

scala> sqlDF.show()

+

| bookName | Author|

s

'y
+

+

Practical Spark	Dharanitharan G
Spark Core	Subhashini RC
Spark SQL	Dharanitharan G
Spark Streaming	Subhashini RC

'y
T T T

Figure 4-20. Running SQL on files directly (parquet source)

The same can be done for a json data source, shown in Figure 4-21.

scala> val sqlDF = spark.sql ("SELECT * FROM json. /home/SparkDataFiles/bookDetails.json"")
sqlDF: org.apache.spark.sql.DataFrame = [Author: string, bookId: bigint ... 1 more field]

scala> sqlDF.show()

$ommmmmmmemeeaae e pommmmmmmmeeeee +
| Author|bookId| bookName |
mmmmm e tmmmmm- dommmm e +
Dharanitharan G	101	Practical Spark
Subhashini RC	102] Spark Core	
Dharanitharan G	103] Spark SQL	
Subhashini RC	104	Spark Streaming
T tmmmme- tommmmmmmememeee +

Figure 4-21. Running SQL on files directly (json source)

Spark SQL automatically infers the schema of json files and loads them as
Dataset[Row].

131

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

JDBC to External Databases

Spark SQL allows users to connect to external databases through JDBC (i.e., Java
DataBase Connectivity) connectivity. The tables from the databases can be loaded as
DataFrame or Spark SQL temporary tables using the Datasources API.

The following properties are mandatory to connect to the database.

e URL:The JDBC URL to connect to (e.g., jdbc:mysql://${jdbcHostna
me}:${jdbcPort}/${jdbcDatabase}).

o Driver: The class name of the JDBC driver to connect to the URL
(e.g., com.mysql.jdbc.Driver, for mysql database).

e UserName and Password: To connect to the database.

The following code creates the DataFrame from the mysql table.

val jdbcDF = spark.read.format("jdbc")
.option("url", "jdbc:mysql:localhost:3306/sampleDB")
.option("dbtable", "sampleDB.bookDetailsTable ")
.option("user", "<username>"
.option("password", "<password>")
.load()

It is mandatory to keep the jar for mysql database in the Spark classpath.
The same can be done by specifying the connection properties separately and using the
same with direct read as shown here where, spark is the Spark Session.

val connectionProperties = new Properties()
connectionProperties.put("user"”, "username")
connectionProperties.put("password”, "password")

val jdbcDF2 = spark.read.jdbc("jdbc:mysql:localhost:3306/sampleDB",
"schema.tablename", connectionProperties)

Spark SQL allows the users to write into the external tables of any databases. This code
can be used to write the data in amysql table.

132

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

jdbcDF .write.format("jdbc")
.option("url”, " jdbc:mysql:localhost:3306/sampleDB")
.option("dbtable", "schema.tablename")
.option("user", "username"
.option("password", "password")
.save()

Working with Hive Tables

Spark SQL supports reading and writing data stored in Apache Hive. Configuration

of Hive is done by placing hive-site.xml in the configuration folder of Spark. When

itis not configured by hive-site.xml, Spark automatically creates metastore dbin

the current directory, which defaults to the spark-warehouse directory in the current
directory when the Spark application is started.

To work with Hive, instantiate SparkSession with Hive support as shown in the following
code. Refer to Figure 4-22.

import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder().appName("Spark Hive Example").
config("spark.sql.warehouse.dir", "/home/Spark").enableHiveSupport().
getOrCreate()

scala> import org.apache.spark.sgl.Row
iimport org.apache.spark.sql.Row

scala> import org.apache.spark.sql.SparkSession
iimport org.apache.spark.sgl.SparkSession

Iscala>

[scala> val spark = SparkSession.builder () .appName ("Spark Hive Example").config("spark.
[sql.warehouse.dir", "/home/Spark").enableHiveSupport().getOrCreate()

18/08/17 04:57:18 WARN SparkSession$Builder: Using an existing SparkSession; some conf
iiguration may not take effect.

|spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@2b4954a4

lscala>]

Figure 4-22. SparkSession with Hive support
133

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Now, you can create a Hive table as shown in the following code. The output is shown in
Figure 4-23.

scala> case class authors(name:String, publisher: String)
defined class authors

scala> sql("CREATE TABLE IF NOT EXISTS authors (name String, publisher String) ROW FOR
MAT DELIMITED FIELDS TERMINATED BY ',' ")

18/08/17 05:06:44 WARN HiveMetaStore: Location: file:/home/vagrant/spark-warehouse/aut
hors specified for non-external table:authors

res(: org.apache.spark.sql.DataFrame = []

scala> sql ("LOAD DATA LOCAL INPATH '/home/Spark/authors.txt' INTO TABLE authors")
resl: org.apache.spark.sgl.DataFrame = []

scala> sql ("SELECT * FROM authors").show()
+- : :
| name |publisher|
fom e fommmmm e E
| Subhashini| Apress|
|Dharanitharan| Apress|

R . -

Figure 4-23. Working with Hive table

case class authors(name:String, publisher: String)

sql("CREATE TABLE IF NOT EXISTS authors (name String, publisher String) ROW
FORMAT DELIMITED FIELDS TERMINATED BY ',"' ")
sql("LOAD DATA LOCAL INPATH '/home/Spark/authors.txt' INTO TABLE authors")

sql("SELECT * FROM authors").show()

The table authors can be viewed in Hive as shown in Figure 4-24.

134

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

hive> show tables;

OK

authors

Time taken: 0.038 seconds, Fetched: 1 row(s)
hive> select * from authors;

OK
Subhashini Apress
Dharanitharan Apress

Time téken: 1.833 seconds, Fetched: 2 row(s)

Figure 4-24. authors table in hive prompt

Building Spark SQL Application with SBT

The SBT installation procedure was already discussed in the previous chapter. Follow
the further steps here to add the SparkSQL dependencies in the build. sbt file. Add the
content shown here to the build. sbt file.

name := "SparkSQL-DemoApp"

version := "1.0"

scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" % "spark-core 2.11" % "2.1.0"
libraryDependencies += "org.apache.spark" % "spark-sql _2.11" % "2.1.0"

SBT downloads the required dependencies for the Spark SQL and keeps it in the local
repository if it is not available while building the jar.

Note Any other build tools like maven can also be used to build the package,
the SBT is recommended for packaging the Scala classes.

Let’s write a Spark SQL application to display or get the list of books written by author
“Dharanitharan G” from the bookDetails. json file.

135

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS
Create a Scala file named BooksByDharani.scala and add the following code:

import org.apache.spark.sql.
import org.apache.spark.sql.SparkSession

object BooksByDharani {
def main(args:Array[String]) :Unit = {
val spark = SparkSession.builder()
.appName ("BooksByDharani")
.getOrCreate()
import spark.implicits._
val bookDetails = spark.read.json(args(0))
bookDetails.createGlobalTempView("BookDetails")
val result = spark.sql("SELECT * FROM global temp.BookDetails")
result.rdd.saveAsTextFile(args(1))

}
}

The input path and the output path are specified as args(0) and args (1) to pass it as
command-line arguments while submitting it to the cluster.

It is mandatory to import spark.implicits. as discussed at the beginning of this
chapter to enable the implicit conversions of DataFrames from RDD.

Create the folder structure shown in Figure 4-25, where BooksByDharani is the folder and
src/main/scala are subfolders.

BooksByDharani

src

main

scala

build <bt BooksByDharani.scala

Figure 4-25. Folder structure

136

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Navigate to the folder BooksByDharani (i.e., cd /home/BooksByDharani). Now execute
the Scala build package command to build the jar file.

> cd /home/BooksByDharani
> sbt clean package

Once the build has succeeded, it creates the project and target directory shown in
Figure 4-26.

~
Name v Type Size
project File folder
Src File folder
target File folder
] build.sbt SBT File 1KB

Figure 4-26. SBT build directory structure

SBT creates the application jar SparkSQOL-DemoApp-1.0_2.11.jar in the target directory.
Now, the application can be submitted to the Spark cluster by using the following
command.

spark-submit --class BooksByDharani --master spark://<hostIP>:<port>
SparkSQL-DemoApp-1.0_2.11.jar <inputfilepath> <outputfilepath>

where spark://<hostIP>:<port> is the URI for the Spark master. By default, the Spark
master runs on port 7077. However, that can be changed in the configuration files.

137

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

SPARK SQL EXERCISE 2: DATAFRAME OPERATIONS

1. Create the following data as logdata. log with comma delimiters as shown.

6:24:25,10.192.123.23,http://www.google.com/searchString,ODCl
10:24:21,10.123.103.23,http://www.amazon.com,0DC1
10:24:21,10.112.123.23,http://www.amazon.com/Electronics,0DC1
10:24:21,10.124.123.24,http://www.amazon.com/Electronics/storagedevices,0DC1
10:24:22,10.122.123.23,http://www.gmail.com,0DC2

10:24:23,10.122.143.21,http://www.flipkart.com,0DC2

Q:Mz21,10.124.123.23,http://www.ﬂipkart.com/offers,ODCl

~

/

Note The schema for these data is Time, IpAddress, URL, Location.

2. Create an RDD from the created file with the column names as specified by
using the schema inference through reflection method.

3. Create a DataFrame from the created RDD and register it as a global temporary
view named LogDetails Global.

4. Write a SQL query to find the number of unique IP addresses in each location.

5. Save the DataFrame created in Question 3 as a json file, using the Spark
write method by specifying the json format.

6. Runthe same SQL query to find the number of unique IP addresses in each
location directly on the json file created without creating a DataFrame.

138

CHAPTER 4 SPARK SQL, DATAFRAMES, AND DATASETS

Points to Remember

e Spark SQL is the Spark module for processing structured data.

o DataFrame is a Dataset organized as named columns, which makes
querying easy. It is conceptually equivalent to a table in a relational
database or a data frame in R/Python, but with richer optimizations
under the hood.

e Datasetis a new interface added in Spark SQL that provides all the
RDD benefits with the optimized Spark SQL execution engine.

In the next chapter, we are going to discuss how to work with Spark Streaming.

139

CHAPTER 5

Introduction to Spark
Streaming

In Chapter 4 we discussed how to process structured data using DataFrames, Spark SQL,
and Datasets.

The recommended background for this chapter is some prior experience with Scala.

In this chapter, we are going to focus on real-time processing using Apache Spark. We
will be focusing on these areas:

o Data processing.

o Streaming data.

e Why streaming data are important.

e Introduction to Spark Streaming.

o Spark Streaming example using TCP Socket.
o Stateful streaming.

e Streaming application considerations.

141
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_5

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Data Processing

Data can be processed in two ways.

e Batch processing: A group of transactions are collected over a period
of time and are processed as a one single unit of work or by dividing
it into smaller batches. Batch processing gives insight about what
happened in past. Examples include payroll and billing systems.

e Real-time processing: Data are processed as and when they are
genearted. Real-time processing gives insight about what is
happening now. An example is bank ATMs.

Streaming Data

Data that are generated continuously by different sources are known as streaming data.
These data need to be processed incrementally to get insight about what is happening
now. The stream data could be any of the following:

e Web clicks.
e Website monitoring.
e Network monitoring.

e Advertising.

Why Streaming Data Are Important

Streaming data are important because:

o Tracking of web clicks can be used to recommend a relevant product
to a user.

e Tracking of logs could help to understand the root cause of the failure.

Introduction to Spark Streaming

Spark Streaming is an extension of the core Spark API. Spark Streaming captures
continuous streaming data and process data in near real time. Near real time means that
Spark does not process data in real time, but instead processes data in microbatches, in
just a few milliseconds.

142

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

There are some of the notable features of Spark Streaming:
o Scalable, high-throughtput, and fault-tolerant stream processing.

e Data can be ingested from different sources such as TCP sockets,
Kafka, and HDFS/S3.

o Data can be processed using high-level Spark Core APIs such as map,
join, and window.

e Scala, Java, and Python APIs support.
o Final results can be stored in HDFS, databases, and dashboards.

Figure 5-1 illustrates the Spark Streaming architecture.

Kafka
HDFS/S3 HDFS
Twitter Stf::r:;ng Databases
Flume Dashboards
Kinesis

Figure 5-1. Spark Streaming architecture

Internal Working of Spark Streaming

Spark Streaming captures live input data streams and divides the streaming data into
batches. These batches are processed by the Spark Streaming engine to generate the final
stream results. This Spark Streaming process is illustrated in Figure 5-2.

Input data batches of batches of
stream input data processed
[SparkStreaming] [N | E> [Spark Engine] [N | E>

Figure 5-2. Internal workings of Spark Streaming

143

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Spark Streaming Concepts

Let’s discuss the some of the basic concepts of Spark Streaming.

Discretized Streams (DStream)

The basic abstraction provided by Spark Streaming is DStream. The DStream is a
representation of a continuous series of RDDs as shown in Figure 5-3. Each RDD in a

DStream contains data from a certain interval.
RDD @ timel RDD @ time2 RDD @time3 RDD @ time4

veud| datafromtime0 | | datafromtimel | | datafromtime2 | | datafromtime3 | >
tol to2 to3 to4

Figure 5-3. Discretized streams (DStream)

The DStream can be obtained from different sources. For example, a text stream can be
obtained from TCP socket.

Streaming Context

The main entry point for Spark Streaming applications is Streaming Context. The
Streaming Context is equivalent to SparkContext in Spark. Streaming Context can
be configured in the same way as Spark Context, but it requires batch durations in
milliseconds, seconds, or minutes.

DStream Operations

The RDD operations can be applied to each batch to process a continuous stream of data
(e.g., map, flatMap, filter, etc.). There are two types of RDD operations: transformations
and output operations. Transformations create a new DStream from an existing
DStream. Output operations write data to a file system.

Two important streaming methods are start, which starts the execution of DStreams,
and awaitTermination, which waits for computation to terminate.

144

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Spark Streaming Example Using TCP Socket

Let’s discuss how we can perform the task of counting the occurrences of a word in text
data received from a data server listening on a TCP Socket. Refer to the following code.

package com.apress.book

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.Storagelevel

object SparkWordCountStreaming{

def main(args: Array[String])
{

// Create Spark Session and Spark Context

val spark = SparkSession.builder.appName(getClass.getSimpleName).
getOrCreate()

// Get the Spark context from the Spark session to create streaming
context

val sc = spark.sparkContext

// Create the streaming context, interval is 40 seconds

val ssc = new StreamingContext(sc, Seconds(40))

// Set the check point directory to save the data to recover when

there is a crash

ssc.checkpoint("/tmp")
// Create a DStream that connects to hostname:port to stream data from a
TCP source.

// Set the Storagelevel as Storagelevel.MEMORY_AND_DISK SER which
indicates that the data will be stored in memory and if it
overflows, in disk as well

145

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

val lines = ssc.socketTextStream("localhost", 9999, Storagelevel.
MEMORY_ AND_DISK_SER)

// count the number of words in text data received from a data server
listening on a TCP socket.

// Split each line into words
val words = lines.flatMap(_.split(" "))
// Count each word in each batch

val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(+)

// Print the elements of each RDD generated in this DStream to the
console

wordCounts.print()
// Start streaming
ssc.start()
// Wait until the application is terminated

ssc.awaitTermination()

Build SparkWordCountStreaming.scala using SBT. The folder structure is shown in
Figure 5-4.
Name Date modified Type Size
src 30-03-2018 11:50 File folder
| build.sbt 30-03-2018 15:26 SBT File 1K8

Figure 5-4. SparkWordCountStreaming folder structure

146

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

The build.sbt file is shown here.

name := "Spark Streaming WordCount"
version := "1.0"
scalaVersion := "2.11.8"

val sparkVersion = "2.1.0"

libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % sparkVersion,
"org.apache.spark” %% "spark-sql" % sparkVersion,
"org.apache.spark" %% "spark-streaming" % sparkVersion

)

Next, navigate to the corresponding folder and type sbt clean package as shown in
Figure 5-5 to build the project.

: \SparkStreamingDemos\Spark_Streaming_Wordcount_Demo>sbt clean package

Figure 5-5. Command to build SparkStreamingWordCount project

Next, run Netcat, a small utility found in most Unix-like systems, as a data server
(see Figure 5-6).

nc -1k 9999

Welcome to Apress Pulication

Figure 5-6. Running Netcat utility

147

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Next, copy the executable spark_streaming wordcount_2.11-1.0.jar to the node
where the Spark cluster is running and use the Spark submit command to submit the
SparkStreamingWordCount application to the Spark cluster as shown here. The output is
shown in Figure 5-7.

Time: 1522595920000 ms
(Welcome, 1)
(Publication, 1)
(Apress, 1)

(to,1)

Figure 5-7. Streaming output starts 40 seconds after ssc.start

spark-submit --class com.apress.book. SparkWordCountStreaming --master spark://
localhost:7077 /home/data/spark_streaming wordcount_2.11-1.0.jar
Figure 5-8 displays the streaming output 40 seconds later.

Time: 1522596240000 ms
(Publiations, 1)
(Publication, 1)
(Springer, 1)

(Apress, 1)

(Book, 1)

Figure 5-8. Streaming output 40 seconds later

The streaming process continues until termination of the source.

Note Here, word count computation is performed on each RDD based on the
specified interval.

148

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Stateful Streaming

The Spark Streaming architecture is a microbatch architecture. The incoming data are
grouped into microbatches called DStream. DStream represents a continuous series of
RDDs. When data are tracked on each RDD, this is known as stateless streaming. The
previous example is an example for stateless streaming. When data are tracked across, it
is known as stateful streaming.

There are two types of stateful streaming.

e Window-based tracking.

o Full-session-based tracking.

Window-Based Streaming

Apache Spark provides windowed computations that can be used to perform
transformations over a sliding window of data. Window operation requires two
parameters.

o Window length: The duration of the window.

e Window interval: The interval at which window operation is
performed.

For example, if the window interval is 3 seconds and slide interval is 2 seconds,
computations will be performed every 2 seconds on the batches that have arrived in the
last 3 seconds.

In Figure 5-9, the incoming batches are grouped every 3 units of time (window interval)
and the computations are done every 2 units of time (slide interval).

149

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

time 1 time 2 time 3 time 4 time 5

Original
DStream T . """ . """" . ------ . ------ . _____ ->

Windowed

DStream -\ -1 """ . """ -»>
window at window at window at
time 1 time 3 time 5

Figure 5-9. Window operations

Let’s explore window operations with an example. We extend the earlier word count
example by computing word counts over the last 30 seconds of data, every 10 seconds.
This is achieved using the reduceByKeyAndWindow transformation. Refer to the following

code.
package com.apress.book

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.Storagelevel

object WordCountByWindow{
def main(args: Array[String])

{

// Create the Spark Session and the Spark Context
val spark = SparkSession
.builder
.appName(getClass.getSimpleName)
.getOrCreate()

// Get the Spark Context from the Spark Session to create streaming

context
val sc = spark.sparkContext

150

}
}

/7

//

//

//

//

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Create the streaming context, interval is 10 seconds
val ssc = new StreamingContext(sc, Seconds(10))

Set the checkpoint directory to save the data to recover when
there is a crash
ssc.checkpoint("/tmp")

Create a DStream that connects to hostname:port to stream data
from a TCP source.

Set the Storagelevel as Storagelevel.MEMORY_AND_DISK_SER which
indicates that the data will be stored in memory and if it
overflows, in disk as well

count the number of words in text data received from a data
server listening on a TCP socket.

val lines = ssc.socketTextStream("localhost",9999, Storagelevel.
MEMORY_AND_DISK_SER)

//

Split each line into words

val words = lines.flatMap(_.split(" "))

//

Count each word in over the last 30 seconds of data

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKeyAndWindow((x: Int, y: Int) =>
x+y, Seconds(30), Seconds(10))

wordCounts.print()

// Start the streaming

ssc.start()

// Wait until the application is terminated

ssc.awaitTermination()

Build the project and submit the WordCountByWindow application to the Spark Cluster.

The Streaming data are shown in Figures 5-10 and 5-11, and the output is shown in

Figure 5-12.

151

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Welcome to Apress Publications

Figure 5-10. Textdata

Springer Conference

Figure 5-11. Textdata

(Welcome, 1)
(Apress, 1)

(to,1)
(Publications, 1)

Figure 5-12. Word count over last 30 seconds

Figure 5-13 displays the word count over the last 30 seconds.

Time: 1522609550000 ms

(Welcome, 1)
(Springer, 1)
(Apress, 1)
(Conference, 1)
(to,1)
(Publications, 1)

Figure 5-13. Word count over last 30 seconds

Full-Session-Based Streaming

When data are tracked starting from the streaming job, this is known as full-session-
based tracking. In full-session-based tracking, checking the previous state of the RDD is
necessary to update the new state of the RDD.

152

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Let’s explore full-session-based tracking with an example. We extend the earlier word
count program to count each word starting from the streaming job. This is achieved with
the help of updateStateByKey (see Figure 5-14).

t=1 t=2 t=3
(Apress,1) (Apress,1) (Apress,1)
Word Count (Publications, 1) (Publications,1) (Publications, 1)
(Springer,1)

Total Word ﬂ ﬂ ﬂ
Count

(State)
(Apress,1) (Apress,2) (Apress,3)
(Publications,1) (Publications,2) (Publications,3)
(Springer,1)

Figure 5-14. Word count starting from the streaming job

The code for full-session-based word count program is given here.
package com.apress.book

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.Storagelevel

object UpdateStateByKeyWordCount{

def updateFunction(newValues: Seq[Int], runningCount: Option[Int]):
Option[Int] = {
val newCount = runningCount.getOrElse(0) + newValues.sum

153

CHAPTER 5 INTRODUCTION TO SPARK STREAMING

Some (newCount)

}

def main(args: Array[String]) {
val spark = SparkSession
.builder
.appName(getClass.getSimpleName)
.getOrCreate()

val sc = spark.sparkContext

val ssc = new StreamingContext(sc, Seconds(40))
ssc.checkpoint("/tmp")

val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val runningCounts = pairs.updateStateByKey[Int](updateFunction)
runningCounts.print()

ssc.start()

ssc.awaitTermination()

}
}

Refer to Figures 5-15 and 5-16 for streaming data. Figure 5-17 displays the output.

|Hello, Apress Authors!

Figure 5-15. Textdata

Welcome to Apress

Figure 5-16. Text data

154

CHAPTER 5

Time: 1522614640000 ms

(Hello, , 1)
(ARpress, 1)
(Authors!, 1)

Figure 5-17. Word count after 40 seconds

Figure 5-18 shows the word count after 80 seconds.

(Welcome, 1)
(Hello, , 1)
(Apress, 2)
(Ruthors!, 1)
(to,1)

Figure 5-18. Word count after 80 seconds

INTRODUCTION TO SPARK STREAMING

Streaming Applications Considerations

Spark Streaming applications are long-running applications that accumulate metadata

over time. It is therefore necessary to use checkpoints when you perform stateful

streaming. The checkpoint directory can be enabled using the following syntax.

ssc.checkpoint(directory)

Note In Spark Streaming, the Job tasks are load balanced across the worker

nodes automatically.

155

CHAPTER 5

INTRODUCTION TO SPARK STREAMING

Points to Remember

Spark Streaming is an extension of Spark Core APIs.

The Spark Streaming architecture is a microbatch architecture.
DStreams represents a continuous stream of data.

The entry point for the streaming application is Streaming Context.

RDD operations can be applied to microbatches to process data.

In the next chapter, we will be discussing how to work with Spark Structure Streaming.

156

CHAPTER 6

Spark Structured
Streaming

In the previous chapter, you learned the concepts of Spark Streaming and stateful
streaming. In this chapter, we are going to discuss structured stream processing built on
top of the Spark SQL engine.

The recommended background for this chapter is to have some prior experience with
Scala. Some familiarity with the command line is beneficial. The mandatory prerequisite
for this chapter is completion of the previous chapters assuming that you have practiced
all the demos.

In this chapter, we are going to discuss structured stream processing built on top of the
Spark SQL engine. In this chapter, we are going to focus on the following topics:

e What Spark Structured Streaming is.

e Spark Structured Streaming programming model.

e Word count example using Structured Streaming.

o Creating streaming DataFrames and streaming Datasets.
e Operations on streaming DataFrames and Datasets.

o Stateful Structured Streaming, including window operation and
watermarking.

o Triggers.

o Fault tolerance.

157
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_6

CHAPTER6 SPARK STRUCTURED STREAMING

What Is Spark Structured Streaming?

Spark Structured Streaming is a fault-tolerant, scalable stream processing engine built on
top of Spark SQL. The computations are executed on an optimized Spark SQL engine. The
Scala, Java, R, or Python Dataset/DataFrame API is used to express streaming computation.
Structured Streaming provides fast, scalable, fault-tolerant, end-to-end, exactly-once
stream processing. Spark internally processes Structured Streaming queries using a
microbatch processing engine. The process streams data as a series of small batch jobs.

Spark Structured Streaming Programming Model

The new stream processing model treats live data streams as a table that is being
continuously appended. The streaming computations are expressed as a batch-like
query and Spark runs this as an incremental query on the unbounded input table.

In this model, the input data stream is considered as the input table. Every data item that
is coming from the stream is considered a new row being appended to the input table
(see Figure 6-1).

Data Stream Unbounded Takle

JUUUA

new data in

the data
stream

new rows
appended to
an unbounded
table

Figure 6-1. Structured Streaming programming model

158

CHAPTER6 SPARK STRUCTURED STREAMING

A query on the input table will generate a result table. At every trigger interval, a new
row is appended to the input table and this eventually updates the result table. We

need to write the result rows to the external sink whenever the result table is updated
(see Figure 6-2).

Trigger: Every 1 sec

1 z 3 4
Time ! data ! data : data : data
i up to | up to ! up to E up to
vy t=1 ¥y t=2 y t=3 ¥y t=4
Input
O result
¥ - result AL rasult
t
£=1 ug ° up to up to
t=2 £=3 t=4
Result
Output

Figure 6-2. Programming model for Structured Streaming

159

CHAPTER6 SPARK STRUCTURED STREAMING

Here, the output denotes what we need to write to the external storage. There are three
different modes to specify output.

e Complete mode: Complete mode writes the entire result table to the

external storage.

o Append mode: Append mode writes only the new rows that are
appended to the result table. This mode can be applied on the
queries only when existing rows in the result table are not expected to
change.

o Update mode: Update mode writes only the updated rows in the
result table to the external storage.

Note Different streaming queries support different types of output mode.

Word Count Example Using Structured Streaming

Let’s discuss how to process text data received from a data server listening on a TCP
socket using Structured Streaming. We use Spark Shell to write the code.

// import the necessary classes.

import org.apache.spark.sql.functions._

import spark.implicits.

Create a streaming DataFrame to represent the text data received from a data server

listening on TCP (localhost:9999).

val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load()

160

CHAPTER6 SPARK STRUCTURED STREAMING

Transform the DataFrame to count the occurrences of a word that is received from the
data server.

// Convert line DataFrame into Dataset and split the lines into multiple words
val words = lines.as[String].flatMap(.split(" "))
// Generate running word count

val wordCounts = words.groupBy("value").count()

Note Because we are using Spark Shell to run the code, there is no need to
create Spark Session. Spark Session and Spark Context will be available by default.

Here, DataFrame represents an unbounded table. This unbounded table contains one
column of string named value. Each line in the streaming data represents a row in the
unbounded table.

// Write a query to print running counts of the word to the console

val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.start()

query.awaitTermination()

Start the Netcat server using the following command and type a few messages as shown
in Figures 6-3 and 6-4.

netcat -1k 9999

e e T s - -

Hello Authors!

Figure 6-3. Text data

Welcome to Apress Publications!

Figure 6-4. Textdata

161

CHAPTER6 SPARK STRUCTURED STREAMING

The running counts of the words are shown in Figures 6-5 and 6-6. The query object
handles the active streaming data until the application is terminated.

scala> ——————-————————————————————————————————————— -
Batch: 0

Fom——_—— —— R +

| value|count|

. R =

|Authors! | 1]

| Hello| 1]

S V- S S +

Figure 6-5. Running word count

scala> —————mmm e
Batch: 1

S P —— S E— +
| value|count|
. e — +
| Authors!| 1]
| Hello| 1]
| Apress| 1]
|Publications! | 1]
| Welcome | 1]
| tol 1]
S R — +

Figure 6-6. Running word count

Structured Streaming keeps only the minimal intermediate state data that
are required to update the state. In this example, Spark keeps the intermediate
count of word.

162

CHAPTER6 SPARK STRUCTURED STREAMING

Creating Streaming DataFrames and
Streaming Datasets

The SparkSession.readStream() returns the DataStreamReader interface. This
interface is used to create streaming DataFrames. We can also specify the source: data
format, schema, options, and so on.

The following are the built-in input sources.

e File source: Reads files written in a directory as a stream of data. The
supported file formats are text, csv, json, orc, and parquet.

e Kafka source: Reads data from Kafka.
o Socket source: Reads UTF8 text data from a socket connection.

e Rate source: Generates data at the specified number of rows per
second, and each output row contains a timestamp and value. This
source is intended for testing purposes. timestamp is the Timestamp
type containing the time of message dispatch. value is the Long type

containing the message count, starting from 0 as the first row.

Let’s discuss how to obtain data for processing using File source.
// import necessary classes

import org.apache.spark.sql.types.{StructType, StructField, StringType,
IntegerType};

// specify schema

val userSchema = new StructType().add("authorname", "string").
add("publisher”, "string")

// create DataFrame using File Source, reads all the .csv files in the data
directory.

val csvDF = spark.readStream.option("sep", ";").schema(userSchema).csv
("/home/data™)

// Create query object to display the contents of the file

val query = csvDF.writeStream.outputMode("append").format("console").start()

163

CHAPTER6 SPARK STRUCTURED STREAMING

Note The csvDF DataFrame is untyped.

Refer to Figure 6-7 for the output.

scala> --——-——-—-————————
Batch: 0

Fom e ————— o —————— -

|authorname |publisher|

. R ~

| Subhashini | Apress|

| Dharani | Bpress|

tom e ———— tmmm—————— -

Figure 6-7. Query result

Operations on Streaming DataFrames/Datasets

Most of the common operations on DataFrame/Dataset operations are supported for
Structured Streaming. Table 6-1 shows student.csv.

Table 6-1. Student.csv
S$101,John,89
S$102,James,78

$103,Jack,90
S$104,Joshi,88
S$105,Jacob,95

164

CHAPTER6 SPARK STRUCTURED STREAMING
// import required classes

import org.apache.spark.sql.functions._
import spark.implicits._
import org.apache.spark.sql.types._;

// Specify Schema

val studId=StructField("studId",DataTypes.StringType)

val studName=StructField("studName",DataTypes.StringType)
val grade=StructField("grade",DataTypes.IntegerType)

val fields = Array(studId,studName,grade)

val schema = StructType(fields)

case class Student(studId: String, studName: String, grade: Integer)
// Create Dataset

val csvDS = spark.readStream.option("sep”, ",").schema(schema).
csv("/home/data").as[Student]

// Select the student names where grade is more than 90
val studNames=csvDS.select("studName").where("grade>90")

val query = studNames.writeStream.outputMode("append").format("console").
start()

The output of this query is shown in Figure 6-8.

Figure 6-8. Student names where grade is more than 90

165

CHAPTER 6 SPARK STRUCTURED STREAMING

We can apply an SQL statement by creating a temporary view as shown here.
csvDS.createOrReplaceTempView("student™)

val student=spark.sql("select * from student")

val query = student.writeStream.outputMode("append").format("console").
start()

Refer to Figure 6-9 for the output.

scalad ———————————— e ——————————
Batch: 0

R . S R Tp—— +
| studId|studName |grade |
o o ———— - +
S101] John	89
S102] James	78
S103] Jack	90
S104] Joshi	88
S105] Jacob	G5
R . R p—— +

Figure 6-9. Student table

Let’s write a query to find the maximum grade.

val gradeMax=spark.sql("select max(grade) from student™)

val query = gradeMax.writeStream.outputMode("complete").format("console").
start()

The output for this query is shown in Figure 6-10.

166

CHAPTER6 SPARK STRUCTURED STREAMING

scala> --------—-—1-+-+1-—+—+-—"H—1"—-"m--————
Batch: 0

Figure 6-10. Maximum grade

You can check whether the DataFrame/Dataset has streaming data by issuing the
command shown in Figure 6-11.

scala> csvDS.1isStreaming
resll: Boolean = true

Figure 6-11. isStreaming command

Note We need to specify the schema when we perform Structured Streaming
from File sources.

Stateful Streaming: Window Operations on
Event-Time

Structured Streaming provides straightforward aggregations over a sliding event-time
window. This is like grouped aggregation. In a grouped aggregation, aggregate values are
maintained for each unique value in the user-specified grouping column. In the same
way, in window-based aggregation, aggregate values are maintained for each window
into which the event-time of a row falls.

167

CHAPTER6 SPARK STRUCTURED STREAMING

Let us discuss how to count words within 10-minute windows that slide every

5 minutes. For example, count words that are received between 10-minute windows
09:00-09:10, 09:05-09:15, 09:10-09:20, and so on. Suppose the word arrives at 09:07; it
should increment the counts in two windows: 09:00-09:10 and 09:05-09:15. Figure 6-12
shows the result tables.

09:02 Apache

Spark 09:07 spark

Og?RﬁxﬁQEifk Spark Streaming
N,
Input Stream

[! Y Y
L4
Time 09=0€\\, 09:05 \‘ 09:10 09:15
|

09:00- Apache 1 l

v

09:10
09:00- Apache 1
09:00- Spark 3 09:10
09:10
Result Tables after 09:00- Spark 4
5 minute triggers 00:10
09:00- Streaming 1
09:10
09:05- Spark 1
09:15

09:05- Streaming 1

Counts incremented for windows 09:00 -

09:10 and 09:05 - 09:15

Figure 6-12. Windowed grouped aggregation with 10-minute windows, sliding
every 5 minutes

import java.sql.Timestamp
import org.apache.spark.sql.functions.
import spark.implicits._

168

CHAPTER6 SPARK STRUCTURED STREAMING

// Create DataFrame representing the stream of input lines from connection
to host:port

val lines = spark.readStream
.format("socket")

.option("host", "localhost")
.option("port",9999)
.option("includeTimestamp”, true)
.load()

// Split the lines into words, retaining timestamps

val words = lines.as[(String, Timestamp)]
.flatMap(line =>line. 1.split(" ")
.map(word => (word, line. 2)))
.toDF("word", "timestamp")

// Group the data by window and word and compute the count of each group

val windowedCounts = words.groupBy(window($"timestamp", "10 minutes",
"5 minutes"), $"word").count().orderBy("window")

// Start running the query that prints the windowed word counts to the
console

val query = windowedCounts.writeStream.outputMode("complete").
format("console").option("truncate", "false").start()

query.awaitTermination()

The output is shown in Figure 6-13.

169

CHAPTER6 SPARK STRUCTURED STREAMING

SCalad ————mmm e

Batch: 0

S fom——— S +
| window |word |count]
o S S +

| [2018-04-15 13:00:00.0,2018-04-15 13:10:00.0] |Apache|1 I
[2018-04-15 13:00:00.0,2018-04-15 13:10:00.0]	spark	3
[2018-04-15 13:05:00.0,2018-04-15 13:15:00.0]	Spark	3
[2018-04-15 13:05:00.0,2018-04-15 13:15:00.0]	Apache	1

S o S -
Batch: 1

S Fomm e ——— Fom——— -
| window |word | count |
o Fomm S S =

| [2018-04-15 13:00:00.0,2018-04-15 13:10:00.0] | Streaming]|1
| [2016-04-15 13:00:00.0,2018-04-15 13:10:00.0] |Apache |1

|

|
[2018-04-15 13:00:00.0,2018-04-15 13:10:00.0]	Spark	4
[2018-04-15 13:05:00.0,2018-04-15 13:15:00.0]	Streaming	1
[2018-04-15 13:05:00.0,2018-04-15 13:15:00.0]	spark	4
[2018-04-15 13:05:00.0,2018-04-15 13:15:00.0]	Apache	1
t——_——————— F——_——— F——— +

Figure 6-13. Windowed Structured Streaming output

Stateful Streaming: Handling Late Data
and Watermarking

Structured Streaming maintains the intermediate state for partial aggregates for a long
period of time. This helps to update the aggregates of old data correctly when data arrive
later than the expected event-time. In short, Spark keeps all the windows forever and
waits for the late events forever. Keeping the intermediate state becomes problematic
when the volume of data increases. This can be resolved with the help of watermarking.
Watermarking allows us to control the state in a bounded way.

170

CHAPTER6 SPARK STRUCTURED STREAMING

Watermarking allows the Spark engine to track the current event-time in the data and
clean up the old state accordingly. You can define the watermark of a query by specifying
the event-time column and the threshold for how late the data are expected to be in
terms of event-time. Late data that arrive within the threshold are aggregated and data
that arrive later than the threshold are dropped.

val windowedCounts = words
.withWatermark("timestamp", "10 minutes")

.groupBy (
window($"timestamp", "10 minutes", "5 minutes"),
$"word")

.count()

The following are the conditions for watermarking to clean the aggregation state.
¢ Output mode should be append or update.

o withWatermark must be called on the same column as the timestamp
column used in the aggregate.

o withWatermark must be called before the aggregation for the
watermark details to be used.

Triggers

The timing of streaming data processing can be defined with the help of trigger settings,
which are described in Table 6-2.

171

CHAPTER6 SPARK STRUCTURED STREAMING

Table 6-2. Trigger Type

Trigger Type Description
Unspecified The query will be executed in microbatch mode, where microbatches will be
(default) generated as soon as the previous microbatch has completed processing.

Fixed interval
microbatches

One-time
microbatch

The query will be executed in microbatch mode, where microbatches will be
kicked off at the user-specified intervals.

If the previous microbatch completes within the interval, then the engine will wait
until the interval is over before kicking off the next microbatch.

If the previous microbatch takes longer than the interval to complete

(i.e., if an interval boundary is missed), then the next microbatch will start as
soon as the previous one completes (i.e., it will not wait for the next interval
boundary).

If no new data are available, then no microbatch will be kicked off.

The query will execute only one microbatch to process all the available data and
then stop on its own.

Let’s discuss how to set the trigger type.

import org.apache.spark.sql.streaming.Trigger

// Default trigger (runs microbatch as soon as it can)

df .writeStream
.format("console")

.start()

// ProcessingTime trigger with 2-second microbatch interval

df.writeStream

.format("console")

.trigger(Trigger.ProcessingTime("5 seconds"))

.start()

172

CHAPTER6 SPARK STRUCTURED STREAMING
// One-time trigger

df.writeStream
.format("console")
.trigger(Trigger.Once())
.start()

Fault Tolerance

One of the key goals of Structured Streaming is to deliver end-to-end, exactly-once stream
processing. To achieve this, Structured Streaming provides streaming sources, an execution
engine, and sinks. Every streaming source is assumed to have offsets to track the read
position in the stream. The engine uses checkpointing and write-ahead logs to record the
offset range of the data that are being processed in each trigger. The streaming sinks are
designed to be idempotent for handling reprocessing.

You can specify the checkpoint directory while creating a Spark Session. This code sets a
checkpoint directory.

import org.apache.spark.sql.SparkSession

val spark: SparkSession = SparkSession.builder
.master("local[*]")
.appName("Structured Streaming")
.config("spark.sql.streaming.checkpointLocation", "/home/checkpoint/)
.getOrCreate

SPARK STRUCTURED STREAMING - EXERCISE 1

1. Write a Spark Structured Streaming application to count the number of WARN
messages in a received log stream. Use Netcat to generate the log stream.

2. Extend the code to count WARN messages within 10-minute windows that slide
every 5 minutes.

3. Consider the sample employee.csv file shown in Figure 6-14. Create a
streaming Dataset to query employee details where project is Spark.

173

CHAPTER6 SPARK STRUCTURED STREAMING

E1001,D101,John,Hadoop
E1002,D102,James,Spark
E1003,D102,Jack,Cloud
E1004,D101,Josh,Hadoop
E1005,D103,Joshi,Spark

/

Figure 6-14. employee.csyv file

Points to Remember

o Spark Structured Streaming is a fault-tolerant, scalable stream
processing engine built on top of Spark SQL.

o Inwindow-based aggregation, aggregate values are maintained for
each window into which the event-time of a row falls.

o Watermarking allows the Spark engine to track the current event-time
in the data and clean up the old state accordingly.

In next chapter, we will be discussing how to integrate Spark Streaming with Kafka.

174

CHAPTER 7

Spark Streaming with
Kafka

In the previous chapter, you have learned the concepts of Structured Streaming,
window-based Structured Streaming, and watermarking. In this chapter, we focus on the
basics of Kafka and how to integrate Spark and Kafka.

The recommended background for this chapter is some prior experience with Scala. The
mandatory prerequisite for this chapter is completion of the previous chapters assuming
that you have practiced all the demos.

We focus on these topics:

e Introduction to Kafka.

o Kafka fundamental concepts.

o Kafka architecture.

o Setting up the Kafka cluster.

e Spark Streaming and Kafka integration.

o Spark Structured Streaming and Kafka integration.

Introduction to Kafka

Apache Kafka is a distributed streaming platform. Apache Kafka is a publishing and
subscribing messaging system. It is a horizontally scalable, fault-tolerant system.
Kafka is used for these purposes:

o To build real-time streaming pipelines to get data between systems or
applications.

e To build real-time streaming applications to transform or react to the
streams of data.

175
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_7

CHAPTER 7 SPARK STREAMING WITH KAFKA

Kafka Core Concepts

Kafka is run as a cluster on one or more servers.
The Kafka cluster stores streams of records in categories called fopics.

Each record consists of a key, a value, and a timestamp.

Kafka APls

176

Producer API: The Producer API enables an application to publish a
stream of records to one or more Kafka topics.

Consumer API: The Consumer API enables an application to
subscribe to one or more topics and process the stream of records
produced to them.

Streams API: The Streams API allows an application to act as a stream
processor; that is, this API converts the input streams into output

streams.

Connector API: The Connector API allows building and running
reusable producers or consumers. These resuable producers

or consumers can be used to connect Kafka topics to existing
applications or data systems. For example, a connector to a relational
database might capture every change to a table.

https://kafka.apache.org/documentation/streams

CHAPTER 7 SPARK STREAMING WITH KAFKA

Figure 7-1 illustrates the Kafka APIs.

Producers

App App App

- App

Kafka Cluster

Stream Processors

A

App

App App App

Consumers

Figure 7-1. Kafka APIs

Kafka Fundamental Concepts

Let’s cover the fundamental concepts of Kafka.

e Producer: The producer is an application that publishes a stream of
records to one or more Kafka topics.

o Consumer: The consumer is an application that consumes a stream of
records from one or more topics and processes the published streams
of records.

e Consumer group: Consumers label themselves with a consumer
group name. One consumer instance within the group will get the
message when the message is published to a topic.

177

CHAPTER 7 SPARK STREAMING WITH KAFKA

e Broker: The broker is a server where the published stream of records
is stored. A Kafka cluster can contain one or more servers.

o Topics: Topics is the name given to the feeds of messages.

e Zookeeper: Kafka uses Zookeeper to maintain and coordinate Kafka
brokers. Kafka is bundled with a version of Apache Zookeeper.

Kafka Architecture

The producer application publishes messages to one or more topics. The messages are
stored in the Kafka broker. The consumer application consumes messages and process
the messages. The Kafka architecture is depicted in Figure 7-2.

Producers

App App App

Y

Kafka Cluster

| Broker 1 | | Broker 1
App App App
Consumers

Figure 7-2. Kafka architecture

178

CHAPTER 7 SPARK STREAMING WITH KAFKA

Kafka Topics

We now discuss the core abstraction of Kafka. In Kafka, topics are always multisubscriber
entities. A topic can have zero, one, or more consumers. For each topic, a Kafka cluster
maintains a partitioned log (see Figure 7-3).

i

. . I

Partition 0[1]|2(3]|4|s|e|7|8|9|10|11] 12}

0 |
“’.

Partition 0|1)|2(3|4[S|e6 7|8]|9 < mrites

Y i

Partition ol1]2|3]|4|s|e6| 7|8|9|10]|11] 12

)

old » New

Figure 7-3. Anatonomy of a Kafka topic

The topics are split into multiple partitions. Each parition is an ordered, immutable
sequence of records that is continually appended to a structured commit log. The
records in the partitions are uniquely identified by sequential numbers called offset.
The Kafka cluster persists all the published records for a configurable period whether
they are consumed or not. For example, if the retention period is set for two days, the
records will be available for two days. After that, they will be discared to free up space.
The partitions of the logs are distributed across the server in the Kafka cluster and each
partition is replicated across a configurable number of servers to achieve fault tolerance.

Leaders and Replicas

Each partition has one server that acts as the leader and zero, one, or more servers that act
as followers. All the read and write requests for the partition are handled by the leader and
followers passively replicate the leader. If the leader fails, any one of the followers becomes
the leader automatically. Each server acts as a leader for some of its partitions and a
follower for others. This way the load is balanced within the cluster (see Figure 7-4).

179

CHAPTER 7 SPARK STREAMING WITH KAFKA

broker 1 broker 2 broker 3
logs lOgS logs
follower
Topic 1 - Topic 1 -
Partition 1 Partition 1 |
LY
leader m follower
ToPl? L= Topic 1 -
Partition 2 .
Partition 2
leader

—

Figure 7-4. Three brokers, one topic, and two partitions

When a producer publishes a message to a partition in a topic, first it is forwarded to

the leader replica of the partition; the followers then pull the new messages from the
leader replica.

The leader commits the message, when enough replicas pull the message. To determine
enough replicas, each partition of a topic maintains an in-sync replica set. The in-sync
replica (ISR) represents the set of alive replicas that is fully caught up with the leader.
Initially, every replica of the partition will be in the ISR. When a new message is
published, the leader commits the new message when it reaches all replicas in the

ISR. When a follower replica fails, it will be dropped out from the ISR and then the leader
commits new messages with remaining replicas.

Setting Up the Kafka Cluster

There are three different ways to set up the Kafka cluster:
o Single node, single broker.
o Single node, multiple broker.

e Multinode, multiple broker.

180

CHAPTER 7 SPARK STREAMING WITH KAFKA

Let’s discuss how to set up a single node, single broker cluster. To do so, follow
these steps.

1. Download Kafka from https://kafka.apache.org/downloads
2. Untar the downloaded Kafka .tgz file.

3. Navigate to the Katka_2.11-0.11.0.2 folder as shown in Figure 7-5.

~/bigdata/kafka 2.11-0.11.0.25 |}
Figure 7-5. Kafka folder

4. Start Zookeeper by issuing the following command.
> bin/zookeeper-server-start.sh config/zookeeper.properties

5. Open another session, navigate to the Katka 2.11-0.11.0.2
folder, and start the Kafka broker.

> bin/kafka-server-start.sh config/server.properties

6. Open another session, navigate to the Katka_2.11-0.11.0.2
folder, and create a topic named sparkandkafka by issuing

following command.

> bin/kafka-topics.sh --create --zookeeper localhost:2181
--replication-factor 1 --partitions 1 --topic sparkandkafkatest

7. Open another session, navigate to the Katka_2.11-0.11.0.2
folder, and run the producer. Type a few messages into the console
to send to the server (see Figure 7-6).

> bin/kafka-console-producer.sh --broker-list localhost:9092
--topic sparkandkafkatest

-

>Hello Authors!
>Welcome to Apress Publications!

>

Figure 7-6. Publishing messages to the topic sparkandkafkatest
181

https://kafka.apache.org/downloads

CHAPTER 7 SPARK STREAMING WITH KAFKA

8. Open another session, navigate to the Kafka 2.11-0.11.0.2
folder, and run the consumer to dump out the messages to
standard output (see Figure 7-7).

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092
--topic sparkandkafkatest --from-beginning

Hello Authors!
Welcome to Apress Publications!

Figure 7-7. Consumer console that dumps the output

Spark Streaming and Kafka Integration

Let’s discuss how to write a Spark application to consume data from the Kafka server that

will perform a word count.

1. Download the spark-streaming-kafka-0-8-assembly 2.11-
2.1.1.jar file from the following link and place it in the jar folder
of Spark.

http://central.maven.org/maven2/org/apache/spark/spark-streaming-
kafka-0-8-assembly 2.11/2.1.1/spark-streaming-kafka-0-8-
assembly 2.11-2.1.1.jar

2. Create abuild.sbt file as shown in Figure 7-8.

name := "spark-Kafka-streaming"
version := "1.0"
scalaVersion := "2.11.8"

libraryDependencies += "org.apache.spark" % "spark-core 2.11" % "2.1.0"
libraryDependencies += "org.apache.spark" % "spark-sql 2.11" % "2.1.0"

libraryDependencies += "org.apache.spark" % "spark-streaming 2.11" % "2.1.0"
libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-8-assembly" % "2.1.1"

Figure 7-8. built.sbt

182

CHAPTER 7 SPARK STREAMING WITH KAFKA
Create SparkKafkalWordCount.scala as shown here.
package com.apress.book

import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.

import org.apache.spark.streaming.

import org.apache.spark.streaming.kaftka.

object SparkKafkaWordCount{
def main(args:Array[String]){
// Create Spark Session and Spark Context

val spark = SparkSession.builder.appName(getClass.
getSimpleName).getOrCreate()

// Get the Spark Context from the Spark Session to create
Streaming Context
val sc = spark.sparkContext

// Create the Streaming Context, interval is 40 seconds
val ssc = new StreamingContext(sc, Seconds(40))

// Create Kafka DStream that receives text data from the Kafka
server.

val kafkaStream = KafkaUtils.createStream(ssc,
"localhost:2181","spark-streaming-consumer-group"”,
Map("sparkandkafkatest” -> 1))

val words = kafkaStream.flatMap(x => x. 2.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(+)

// To print the wordcount result of the stream
wordCounts.print()
ssc.start()
ssc.awaitTermination()

183

CHAPTER 7 SPARK STREAMING WITH KAFKA

4. Start the Kafka producer and publish a few messages to a topic
sparkandkafkatest as shown in Figure 7-9.

> bin/kafka-console-producer.sh --broker-list localhost:9092
--topic sparkandkafkatest

- -

>Hello Authors
>Welcome to Apress Publication

Figure 7-9. Publishing messages to a topic sparkandkafkatest

5. Build a Spark application using SBT and submit the job to the
Spark cluster as shown here.

spark-submit --class com.apress.book.SparkKatkaWordCount /home/
data/spark-kafka-streaming 2.11-1.0.jar

6. The streaming output is shown in Figure 7-10.

(Hello, 1)
(Authors, 1)
(Welcome, 1)
(Publication, 1)
(Apress, 1)
(to,1)

Figure 7-10. Word count output

184

CHAPTER 7 SPARK STREAMING WITH KAFKA

Spark Structure Streaming and Kafka Integration

Next we discuss how to integrate Kafka with Spark Structured Streaming.

1.

Start the Spark Shell using this command.

> spark-shell --packages 'org.apache.spark:spark-sql-
kafka-0-10 2.11:2.1.0'

The package spark-sql-kafka-0-10 2.11:2.1.0is required to
integrate Spark Structured Streaming and Kafka.

Create a DataFrame to read data from the Kafka server.

val readData= spark.readStream.format("kafka").option("kafka.
bootstrap.servers", "localhost:9092").option("subscribe",
"sparkandkafkatest™").load()

Convert DataFrame into Dataset.

val Ds = readData.selectExpr("CAST(key AS STRING)", "CAST(value
AS STRING)").as[(String, String)]

Write code to generate the running count of the words as shown
here.

val wordCounts = Ds.map(_. 2.split(" ")).groupBy("value").count()
Run a query to print the running count of the word to the console.

val query = wordCounts.writeStream.outputMode("complete").
format("console").start()

The running count of the word is shown in Figure 7-11.

185

CHAPTER 7 SPARK STREAMING WITH KAFKA

U

scala> ————————
Batch: 0

B o +
|value | count|
R fmm——— +
N Fmm——— +
iBatch: 1

[___
S E —— +

I value|count|
R S +
gl Hello| 1]

| Subhashini | 1]
o ————— Fmmmmm +
'| ___
Batch: 2
O o +
| value|count|
o S +
| Hello| 2]

| Subhashini | 1]

I Dharani| 1]
o S +
Batch: 3

o ———— e +
| value|count|
o —————— i +
|Publication]| 1]
| Hello] 2]
| Subhashini]| 1]
I Apress| 1]
I Dharani | 1]
| Welcome | 1]
I tol 1]
o ——— tmm——— +

Figure 7-11. Running count of the word

186

CHAPTER 7 SPARK STREAMING WITH KAFKA

SPARK & KAFKA INTEGRATION - EXERCISE 1

Write a Spark Streaming application to count the number of WARN messages in a received log
stream. Use a Kafka producer to generate a log stream.

Points to Remember

e Apache Kafka is a distributed streaming platform. Apache Kafka is a
publishing and subscribing messaging system.

o Kafkais run as a cluster on one or more servers.
o The Kafka cluster stores streams of records in categories called topics.
e Eachrecord consists of a key, a value, and a timestamp.

In the next chapter, we discuss the Machine Learning Library of Spark.

187

CHAPTER 8

Spark Machine Learning
Library

In previous chapters, the fundamental components of Spark such as Spark Core, Spark
SQL, and Spark Streaming have been covered. In addition to these components, the
Spark ecosystem provides an easy way to implement machine learning algorithms
through the Spark Machine Learning Library, Spark MLIib. The goal is to implement
scalable machine learning easily.

The recommended background for this chapter is to have some prior experience with
Scala. Experience with any other programming language is also sufficient. In addition,
some familiarity with the command line is beneficial. The mandatory prerequisite for
this chapter is to understand the basic concepts of correlation and hypothesis testing.
You should also have completed the previous chapters, practiced all the demos, and
completed the hands-on exercises given in those chapters.

The examples in the chapter are demostrated using the Scala language.

By end of this chapter, you will be able to do the following:

e Understand the concepts of Spark MLlib.

e Use common learning algorithms such as classification, regression,

clustering, and collaborative filtering.

o Construct, evaluate, and tune the machine learning pipelines using
Spark MLIib.

Note Itis recommended that you practice the code snippets provided as
illustrations and practice the exercises to develop effective knowledge of Spark
Machine Learning Libraries.

189
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_8

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

What Is Spark MLIib?

Spark MLIib is Spark’s collection of machine learning (ML) libraries, which can be used
as APIs to implement ML algorithms. The overall goal is to make practical ML scalable
and easy. At a high level, Spark MLIib provides tools such as those shown in Figure 8-1.

ML Algorithms Featurization
Common learning algorithms such as Feature extraction, transformation,
classification, regression, clustering, dimensionality reduction, and
and collaborative filtering selection
Spark MLIib
Persistence Pipelines
Saving and load algorithms, models, Tools for constructing, evaluating,
and Pipelines and tuning ML Pipelines

Figure 8-1. Spark MLIib features

Spark MLIib APIs

Spark MLIib provides the ML libraries through two different APIs.
1. DataFrame-based API
2. RDD-based API

As of Spark 2.0, the RDD-based APIs in the spark.ml1lib package have been taken back
for maintenance and are not deprecated. Now the primary API for ML is the DataFrame-
based API in the spark.ml package.

However, MLIib still supports the RDD-based API in the spark.ml1lib package with some
bug fixes. Spark MLIlib will not add any new features to the RDD-based API, however.
Also, the RDD-based API is expected to be removed from MLIib in Spark 3.0.

Why are DataFrame-based APIs better than RDD-based APIs? Here are three reasons
(see Figure 8-2).

190

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

1. DataFrames provide a more user-friendly API than RDDs. The
many benefits of DataFrames include Spark data sources, SQL/
DataFrame queries, and uniform APIs across languages.

2. 'The DataFrame-based API for MLIib provides a uniform API
across ML algorithms and across multiple languages.

3. DataFrames facilitate practical ML pipelines, particularly feature

transformations.

. Basic Statistics
Spa rk MLlIb Pipelines

Extracting, transforming and selecting features

D ata fra m e *Regression and Classification

*Clustering

ba Sed AP I S *Collaborative filtering

*Frequent Pattern Mining

*Model selection and ML tuning

Figure 8-2. Spark MLIib DataFrame-based API features

Note Before we start with basic statistics, it is higly recommended that you
understand vectors and the importance of sparse vectors and dense vectors. Later
in this chapter, we explain the concept of vectors with a simple example in Scala.

Vectors in Scala

A vector is an immutable collection in Scala. Although it is immutable, a vector can be
added to and updated. The operator : + is used to add any elements to the end of a vector
and the operator +: is used to add the element to the start of a vector.

Let’s start by creating the empty vector using

scala.collection.immutable.Vector.empty

and add the elements to the start and the end of the vector.

191

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

val v1 = scala.collection.immutable.Vector.empty
println(vi)

val v2 = vl :+ §
println(v2)

val v3 = v2 :+ 10 :+ 20
println(v3)

The output is shown in Figure 8-3.

scala> val vl = scala.collection.immutable.Vector.empty
vl: scala.collection.immutable.Vector[Nothing] = Vvector()

scala> printin(vl)
vector()

scala> val v2 = vl :+ 5
v2: scala.collection.immutable.Vector[Int]

vVector (5)

scala> printin(v2)
vector (5)

scala> val v3 = v2 :+ 10 :+ 20
v3: scala.collection.immutable.Vector[Int]

scala> println(v3)
vector (5, 10, 20)

Figure 8-3. Vectors in Scala

Vector (5, 10,

20)

The vector values can be changed using the updated() method based on the index of

elements.

val v3_changed = v3.updated(2,100)
println(v3_changed)

The output is shown in Figure 8-4.

scala> val v3_changed = v3.updated(2,100)

v3_changed: scala.collection.immutable.vector[Int] = vector(5, 10, 100)

scala> printin(v3_changed)
vector (5, 10, 100)

Figure 8-4. Updating vectors in Scala

192

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Vector Representation in Spark

The vectors can be defined as dense vectors or sparse vectors. For example, let’s say we
want to create the following vector: {0, 2, 0, 4}.

Because the implementation of vectors in a programming language occurs as a one-
dimensional array of elements, the vector is said to be sparse if many elements have zero
values. From a storage perspective, it is not good to store the zero values or null values. It
is better to represent the vector as a sparse vector by specifying the location of nonzero
values only. The sparse vector is represented as

sparse(int size, int[] indices, double[] values)

This method creates a sparse vector where the first argument is size, the second
argument is the indexes where a value exists, and the last argument is the values on
these indexes. The other elements of this vector have values of zero.

The Vector class of org.apache.spark.mllib.1linalg has multiple methods to create
the dense and sparse vectors. First, start the Spark Shell (see Figure 8-5).

Spark context web UI available at http://10.0.2.15:4040

Spark context available as 'sc' (master = local[*], app id = local-1522988807355).
Spark session available as 'spark'.

welcome to

/Y Y
AN N~)
/__7//-__/_,_/_/ /_/_\ version 2.2.1

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server vM, Java 1.8.0_77)
Type in expressions to have them evaluated.
Type :help for more information.

scala>
Figure 8-5. Starting Spark Shell
Next, create the dense vector by importing Vectors from the spark.ml package.

import org.apache.spark.ml.linalg.Vectors
val denseVector=vectors.dense(1,2,0,0,5)
print(denseVector)

The output is shown in Figure 8-6.

193

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.linalg.Vvectors

scala> val densevector=Vectors.dense(1,2,0,0,5)
densevector: org.apache.spark.ml.linalg.vector = [1.0,2.0,0.0,0.0,5.0]

scala> print(densevector)
[1.0,2.0,0.0,0.0,5.0]

Figure 8-6. Dense vectors in Spark

The same can be created as sparse vectors by specifying the size and indices of nonzero
elements.
As discussed earlier, the sparse vector is represented as

Vectors.sparse(size, indices, values)
where indices are represented as an integer array and values as a double array.

Val sparseVector = Vectors.sparse(5,Array(0,1,4),Array(1.0,2.0,5.0))
print(sparseVector)

The output is shown in Figure 8-7.

scala> val sparsevector=Vectors.sparse(5,Array(0,1,4),Array(1l.
1,

0,2.0,5.0)
sparsevector: org.apache.spark.ml.linalg.vector = (5,[0,1,4],[1 5

2 5.0))
.0,2.0,5.0])

scala> print(sparsevector)
(s,[0,1,4],[1.0,2.0,5.0])

Figure 8-7. Sparse vectors in Spark

In the preceding example, the sparse vector is created with size 5. The nonzero elements
are represented in the indices [0,1,4] and the values are [1.0,2.0,5.0], respectively.

Note It is mandatory to specify the values in the sparse vector as a double array.

Basic Statistics

The most important statistical components of Spark MLIlib are correlation and
hypothesis testing.

194

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Correlation

The basic operation in the statistics is calculating the correlation between the two series
of data. The spark.ml package provides the flexiblity to calculate the pairwise correlation
among many series of data.

There are two currently supported correlation methods in the spark.ml package:
Pearson correlation and Spearman correlation. Correlation computes the correlation
matrix for input data set of vectors using the specified method of correlation.

The Pearson correlation is a number between -1 and 1 that indicates the extent to which
two variables are linearly related. The Pearson correlation is also known as the product-
moment correlation coefficient (PMCC) or simply correlation.

The Spearman rank-order correlation is the nonparametric version of the Pearson
product-moment correlation. The Spearman correlation coefficient measures the
strength and direction of association between two ranked variables.

The output will be the DataFrame that contains the correlation matrix of the column of
vectors.

Import the following classes:

import org.apache.spark.ml.linalg.Matrix
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.Row

Then create a sample Dataset of vectors:

val data = List(
Vectors.sparse(4, Array(0,3), Array(1.0, -2.0)),
Vectors.dense(4.0, 5.0, 0.0, 3.0),
Vectors.dense(6.0, 7.0, 0.0, 8.0),
Vectors.sparse(4, Array(0,3), Array(9.0, 1.0))

)

Create a DataFrame using Spark SQL's toDF () method:

val dataFrame = sampleData.map(Tuplel.apply).toDF("features")

195

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Create the correlation matrix by passing the DataFrame to the Correlation. corr () method.

val Row(coeff: Matrix) = Correlation.corr(dataFrame,"features").head
println(s"The Pearson correlation matrix:\n\n$coeff")

Figure 8-8 shows the execution steps in Spark Shell.

scala> import org.apache.spark.ml.linalg.Matrix
import org.apache.spark.ml.linalg.Matrix

scala> import org.apache.spark.ml.Tinalg.vectors
import org.apache.spark.ml.linalg.Vvectors

scala> import org.apache.spark.ml.stat.Correlation
import org.apache.spark.ml.stat.cCorrelation

scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row

scala>

scala> val data = List(

| Vectors.sparse(4, Array(0,3), Array(1.0, -2.0)),
| vectors.dense(4.0, 5.0, 0.0, 3.0),

| Vectors.dense(6. 0 7. 0 0.0, 8.0),

I Vectors.sparse(4, Array(o 3) Array(g 0, 1.0))

)
data: List[org.apache.spark.ml.1linalg.vector]

scala>

scala> val dataFrame = sampleData.map(Tuplel.apply).toDF("features")
dataFrame: org.apache.spark.sql.pataFrame = [features: vector]

scala> val Row(coeff: Matrix) = Correlation.corr(dataFrame,"features").head
18/04/06 06:35:49 WARN PearsonCorrelation: Pearson correlation matrix contains NaN values
coeff: org.apache.spark.ml.linalg.Matrix =

0

1. 0.055641488407465814 NanN 0.4004714203168137
0.055641488407465814 1.0 NaN 0.9135958615342522
NaN NaN 1.0 NaN

0.4004714203168137 0.9135558615342522 NaN 1.0

scala> println(s"The Pearson correlation matrix:\n\n$coeff")
The Pearson correlation matrix:

1. 0.055641488407465814 NaN 0.4004714203168137
0 055641488407465814 l O NaN 0.9135958615342522
1.0 NaN

0.4004714203168137 0.9135958615342522 Nan 1.0

Figure 8-8. Pearson correlation matrix calculation in Spark

The complete code excerpt for correlation matrix formation is given here.
package com.apress.statistics

import org.apache.spark.ml.linalg.Matrix
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.stat.Correlation

196

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession

object PearsonCorrelationDemo {
def main(args: Array[String]): Unit = {

val sparkSession = SparkSession.builder
.appName ("ApressCorrelationExample™)
.master("local[*]")
.getOrCreate()

import sparkSession.implicits.

val sampleData = List(
Vectors.sparse(4, Array(o, 3), Array(1.0, -2.0)),
Vectors.dense(4.0, 5.0, 0.0, 3.0),
Vectors.dense(6.0, 7.0, 0.0, 8.0),
Vectors.sparse(4, Array(0, 3), Array(9.0, 1.0)))

val dataFrame = sampleData.map(Tuplel.apply).toDF("features")
val Row(coeff: Matrix) = Correlation.corr(dataFrame,"features").head
println(s"The Pearson correlation matrix:\n $coeff")

sparkSession.stop()

Note To execute the given code in any integrated development environment (IDE)
that supports Scala, it is mandatory to add the Scala library to the project
workspace and all the Spark jars to the classpath.

The Spearman correlation matrix can be calculated by specifying the type in
val Row(coeff: Matrix) = Correlation.corr(df, "features", "spearman").head

The calculation is displayed in Figure 8-9.

197

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> val Row(coeff: Matrix) = Correlation.corr(dataFrame, "features", "spearman").head

coeff: org.apache.spark.ml.linalg.Matrix =

.0 0.10540925533894532 NaN 0.40000000000000174
0.10540925533894532 1.0 NaN 0.9486832980505141
NaN NaN 1.0 NaN
0.40000000000000174 0.9486832980505141 NaN 1.0

scala> printin(s"Spearman correlation matrix:\nScoeff")
Spearman correlation matrix:

1.0 0.10540925533894532 NaN 0.40000000000000174
0.10540925533894532 1.0 NaN 0.9486832980505141
NaN NaN 1.0 NaN
0.40000000000000174 0.9486832980505141 NanN 1.0

Figure 8-9. Spearman correlation matrix calculation in Spark

Hypothesis Testing

Hypothesis testing is conducted to determine whether the result is statistically significant
or not. Currently the spark.ml package supports the Pearson chi-square (?) tests for
independence.

ChiSquareTest conducts the Pearson independence test for each feature against the
label. For each feature, the (feature, label) pairs are converted into a contingency matrix
for which the chi-square statistic is computed.

Import the following ChiSquareTest class from the spark.ml package:

import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.stat.ChiSquareTest

The ChiSquareTest can be conducted on the DataFrame by this method.
ChiSquareTest.test(dataFrame, "features", "label").head

Figure 8-10 shows the execution steps for ChiSquareTest in Spark Shell.

198

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> import org.apache.spark.ml.linalg.vector
import org.apache.spark.ml.1inalg.vector

scala> import org.apache.spark.ml.1inalg.Vvectors
import org.apache.spark.ml.linalg.Vvectors

scala> import org.apache.spark.ml.stat.cChisquareTest
import org.apache.spark.ml.stat.ChisquareTest

scala>

scala> val data = List(

(0.0, Vvectors.dense(0.5, 15.0)),
| (0.0, vectors.dense(1l.5, 20.0)),
| (1.0, vectors.dense(1.5, 35.0)),
| (0.0, vectors.dense(3.5, 35.0))
| (0.0, vectors.dense(3.5, 45.0)),
% (1.0, vectors.dense(3.5, 55.0))

)
data: List[(Double, org.apache.spark.ml.linalg.vector)]

scala>

scala> val dataFrame = data.toDF("label", "features")
dataFrame: org.apache.spark.sql.DpataFrame = [label: double, features: vector]

scala> val test = chisquareTest.test(dataFrame, "features", "label").head
test: org.apache.spark.sql.Row

scala> printin(s"pvalues = ${test.getAs[vector](0)3}")
pvalues = [0.6872892787909721,0.44089552967916945]

scala> println(s"degreesofFreedom ${test.getsSeq[Int](1l).mkstringC"[", "," ,"1™)¥")
degreesofFreedom [2,4]

scala> printin(s"statistics ${test.getAs[vector](2)}'")
statistics [0.75,3.7500000000000004]

Figure 8-10. Hypothesis testing: Chi-square test

The complete code snippet for hypothesis testing with ChiSquareTest (using the spark.
ml package) is given here.

package com.apress.statistics

import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.stat.ChiSquareTest
import org.apache.spark.sql.SparkSession

object HypothesisTestingExample {

def main(args: Array[String]): Unit = {

199

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

val sparkSession = SparkSession.builder
.appName ("ApressHypothesisExample")
.master("local[*]")

.getOrCreate()

import sparkSession.implicits._

val sampleData =

(0.0, Vectors.
(0.0, Vectors.
(1.0, Vectors.
(0.0, Vectors.
(0.0, Vectors.
(1.0, Vectors.

val dataFrame =

println(s"pValues = ${test.getAs[Vector](0)}")
println(s"degreesOfFreedom ${test.getSeq[Int](1).mkString("[
println(s"statistics ${test.getAs[Vector](2)}")

}

List(

dense(0.
dense(1.
dense(1.
dense(3.
dense(3.
dense(3.

sampleData.toDF("label", "features")
val test = ChiSquareTest.test(dataFrame, "features", "label").head

5,
5,
5,
5,
5,
5,

15.0)),
20.0)),
35.0)),
35.0)),
45.0)),
55.0)))

Note To execute the given code in any IDE that supports Scala, it is mandatory
to add the Scala library to the project workspace and all the Spark jars to the

classpath.

Extracting, Transforming, and Selecting Features

Extraction deals with extracting the features with the raw data. Transformation deals
with scaling, converting, and modifying the features extracted from the raw data.
Selection deals with taking a sample or subset from large set of features.

Figure 8-11 explains the list of the available and most commonly used feature extractors,

feature transformers, and feature selectors.

200

I I

*TF-IDF
e\Word2Vec
eCountVectorizer

CHAPTER 8

Oy

* Tokenizer

* StopWordsRemover
« StringIndexer

¢ IndexToString

* Vectorindexer

SPARK MACHINE LEARNING LIBRARY

©

* VectorSlicer
* RFormula
* ChiSqgSelector

*Normalizer
*SQLTransformer
e Interaction

e StandardScaler
*VectorAssembler
*VectorSizeHint
*n-gram

e Binarizer

eFeature Hasher

FEATURE EXTRACTORS
FEATURE SELECTORS

FEATURE TRANSFORMERS

Figure 8-11. Feature extractors, transformers, and selectors

Note Refer to the Spark Machine Learning Library module in the Apache Spark
documentation for the complete list of feature extractors, feature transformers, and
feature selectors.

Feature Extractors

Feature extraction is the process of transforming the input data into a set of features that
can represent the input data very well. The various available feature extractors in Spark
MLIib are explained later in this chapter.

Term Frequency-Inverse Document Frequency (TF-IDF)

TE-IDF is a vectorization method to understand the importance of a term to the
document in the corpus. The notations are given here.

Term - t, Document - d, Corpus - D

201

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

o Term frequency TF(t,d): This is defined as the number of times the
term appears in the document.

e Document frequency DF(t,D): This is defined as the number of
documents containing the term.

If a term appears very frequently in the corpus, it won'’t carry any special information

about a document. Examples include a, is, are, and for. It is very easy to overemphasize

these terms because they appear very often and carry little information about the

document.

ID|+1

IDF(t,D) = log—————
DF(t,D)+1

where |D| is the total number of documents in the corpus.

This logarithm is used to make the IDF value zero if a term appears in all documents. A

smoothing term is applied to avoid dividing by zero for terms outside the corpus.

o TF-IDE Term Frequency Inverse Document Frequency: This is the
product of term frequency and inverse document frequency.

TFIDF(t,d, D) = TF(t,d)*IDF(t,D)

o Term frequency generation: The HashingTF and CountVectorizer
can be used to generate the term frequency vectors. HashingTF is a
transformer that generates fixed-length feature vectors from the input
set of terms. CountVectorizer creates the vector of term counts from

text documents.

o Inverse document frequency generation: IDF is an estimator that fits
on a data set and produces an IDFModel. The IDFModel scales the
features created from the HashingTF or CountVectorizer by down-
weighting the frequently appearing features in the corpus.

202

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Example

Execute the following example in the shell and observe the output from each step (see
Figure 8-12).

import org.apache.spark.ml.feature.HashingTF
import org.apache.spark.ml.feature.IDF
import org.apache.spark.ml.feature.Tokenizer

val rawData = spark.createDataFrame(Seq(
(0.0, "This is spark book"),
(0.0, "published by Apress publications"),
(1.0, "Dharanitharan wrote this book"))).
toDF("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").
setOutputCol("words")

val wordsData = tokenizer.transform(rawData)

val hashingTF = new HashingTF().setInputCol("words")

.setOutputCol("rawFeatures")
.setNumFeatures(20)

val featurizedData = hashingTF.transform(wordsData)

val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)

rescaledData.select("label", "features").show(false)

203

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> import org.apache.spark.ml.feature.HashingTF
import org.apache.spark.ml.feature.HashingTF

scala> import org.apache.spark.ml.feature.IDF
import org.apache.spark.ml.feature. IDF

scala> 1import org.apache.spark.ml.feature.Tokenizer
import org.apache.spark.ml.feature.Tokenizer

scala> val rawbData = spark.createDataFrame(Seq(
| (0.0, "This 1is spark book"),
[(0.0, "published by Apress publications"),
[(1.0, "Dharanitharan wrote this book")
|)).toDF("T1abel", "sentence")
rawbData: org.apache.spark.sql.DataFrame

scala> val tokenizer = new Tokenizer().
| setInputCol("sentence").
| setoutputCol("words")
tokenizer: org.apache.spark.ml.feature.Tokenizer

scala> val wordsData = tokenizer.transform(rawbata)
wordsData: org.apache.spark.sql.DataFrame

scala> val hashin?TF = new HashingTF(Q).
| setInputCol("words").
| setoOutputCol("rawFeatures").
| setNumFeatures(10)

hashingTF: org.apache.spark.ml.feature.HashingTF

scala> val featurizedData = hashingTF. transform(wordsData)
featurizedData: org.apache.spark.sql.DataFrame

scala> val idf = new IDF().setInputCol("rawFeatures").
| setOutﬁutCo1(“features")
idf: org.apache.spark.ml.feature.IDF = idf_3da066d50a3d

scala> val idfModel = 1idf.fit(featurizedbData)
idfModel: org.apache.spark.ml.feature.IDFModel

scala> val rescaledbata = idfModel.
| transform(featurizedbData)
rescaledbata: org.apache.spark.sql.DataFrame

scala> rescaledData.select("label"”, "features").show(false)

Fm———— T ettt +
| Tabel| features |
- e T +

0.0 |(10,[1,3,5],[0.28768207245178085,0.0,0.6931471805599453]) |
10.0 |(10,[3,7],[0.0,0.6931471805599453]) [
11.0 |(10 [0.1,3], [0.6931471805599453,0.28768207245178085,0.0]) |

Figure 8-12. TF-IDF » HashingTF term frequency extractor

204

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

The CountVectorizer can also be used for creating the feature vectors as shown here
(see Figure 8-13).

import org.apache.spark.ml.feature.CountVectorizer

val rawData = spark.createDataFrame(Seq(
(0.0, "This is spark book"),
(0.0, "published by Apress publications"),
(1.0, "Dharanitharan wrote this book"))).
toDF("label", "sentence")

val couvtVecModel = new CountVectorizer()
.setInputCol("sentence").setOutputCol("features")
.setVocabSize(3).setMinDF(2).fit(rawData)

couvtVecModel.transform(rawData).show(false)

scala> import org.apache.spark.ml.feature.Countvectorizer
import org.apache.spark.ml.feature.Countvectorizer

scala>

scala> val rawData = spark.createDataFrame(Seq(
| (0.0, Array("This","™is","spark"™, "book™)),
| (0.0, Array("published"”, "by", "Apress", "publications")),
| (1.0, Array("Dharanitharan"”, "wrote", "this", "book")))).
| toDF("1abel"”, "sentence')
rawbData: org.apache.spark.sql.DataFrame

scala> val couvtVecModel = new CountVectorizer().
| setInputCol("sentence").
| setOutputCol(“"features").
| setvVocabSize(3).
| setMinDF(2).fit(rawbata)
couvtVecModel: org.apache.spark.ml.feature.CountVectorizerModel

scala> couvtVecModel. transform(rawbata).show(false)

te———- e e L L e P fommmmmm————— +
| Tabel|sentence | features |
+--—-- it fomm e +
[0.0 |[This, is, spark, book] |(1,[0],[1.01)]
[0.0 |[published, by, Apress, publications]|(1,[],[]) |
|1.0 |[Dharanitharan, wrote, this, book] | (1,[0],[1.0])]
fom—-- ittt LT fom e +

Figure 8-13. TF-IDF » CountVectorizer term frequency extractor

205

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Feature Transformers

The transformers implement a method transform(), which converts one DataFrame
into another, generally by appending or removing one or more columns. The various
available feature transformers in Spark MLlib are explained later in this chapter.

Tokenizer

The process of splitting a full sentence into individual words is called tokenization.
Figure 8-14 shows the process of splitting sentences into sequences of words using the
Tokenizer.

scala> import org.apache.spark.ml.feature.Tokenizer
import org.apache.spark.ml.feature.Tokenizer

scala> import org.apache.spark.sql.functions._
import org.apache.spark.sql.functions._

scala> val rawData = spark.createDataFrame(Seq(
| (0.0, "This is spark book"),
| (0.0, "published by Apress publications"),
| (1.0, "Dharanitharan wrote this book')
|)).toDF("1abel"”, "sentence")
rawData: org.apache.spark.sql.DataFrame = [label: double, sentence: string]

scala> val tokenizer = new Tokenizer().
| setInputCol('"sentence").
| setoutputCol("words™)
tokenizer: org.apache.spark.ml.feature.Tokenizer = tok_4ae4da6d943f

scala> val countTokens = udf { (words: Seq[String]) => words.length }
countTokens: org.apache.spark.sql.expressions.UserDefinedFunction

scala> val tokenized = tokenizer.transform(rawData)
tokenized: org.apache.spark.sql.DataFrame

scala> tokenized.select("sentence", "words'").

| withColumn("tokens", countTokens(col("words"))).

| show(false)
e L L P P L PP TP R et e et +
| sentence |words | tokens |
e e L L L L T e e L e e LT Fomm——- +
This is spark book	[this, 1s, spark, book]	4
published by Apress publications	[published, by, apress, publications]	4
bharanitharan wrote this book	[dharanitharan, wrote, this, book]	4
Fom e e e e L Fe———— +

Figure 8-14. Tokenization using the Tokenizer transformer

206

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

StopWordsRemover

The StopWordsRemover transformer (see Figure 8-15) is used to exclude the set of words
that does not carry much meaning from the input. For example, I, was, is, an, the, and
for can be the stop words, because they do not carry much meaning in the sentence to
create the features.

scala> import org.apache.spark.ml.feature.StopwWordsRemover
import org.apache.spark.ml.feature.StopWordsRemover

scala>

scala> val wordsRemover = new StopWordsRemover ().
| setInputcol("rawbata").
| setoutputCol("filtered")
wordsRemover: org.apache.spark.ml.feature.StopWordsRemover = stopWords_a2c7ec9

scala>

scala> val input = spark.createDataFrame(Seq(
| (0, seq("This","is","spark", "book")),
| (1, seq("published","by", "Apress", "publications™)))).
| toDF("id", "rawbData")
input: org.apache.spark.sql.DataFrame = [id: int, rawData: array<string>]

scala> wordsRemover.transform(input). show(fa‘lse)

e T et Rttt e e L LT +
|id |rawData]f11tered |
+--—t-———— e T +
|0 |[Th15, is, spark, book] | [spark, book] |
|1 |[Pub11shed by, Apress, pub11cat1on5]|[pub115hed Apress, publications]|
o o e e e e e e e e e e +

Figure 8-15. StopWordsRemover transformer

The input to StopWordsRemover is sequence of strings (i.e., the output of Tokenizer) and
it filters all the stop words specified in the stopWords parameter.
StopWordsRemover.loadDefaultStopWords(language) provides the default stop words
in any language. For example, the default language is English.

Also, the custom stop words can be specified using the stopWords parameter as shown
here (see Figure 8-16).

val wordsRemover = new StopWordsRemover().
setInputCol("rawData").
setOutputCol("filtered").
setStopWords (Array("book", "apress"))

207

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> import org.apache.spark.ml.feature.StopWordsRemover
import org.apache.spark.ml.feature.StopwordsRemover

scala>

scala> val wordsRemover = new StopWordsRemover().
| setInputCol(“"rawbata").
| setOoutputCol("filtered").
| setStopWords(Array("book","apress™"))
wordsRemover: org.apache.spark.ml.feature.StopWordsRemover = stopWords_e473

scala>

scala> val input = spark.createDataFrame(Seq(
| (0, seq("This","is","spark"”,"BOOK", "book™)),
| (1, seq("published","by", "Apress", "publications')))).
| toDF("id", ”rawData")
input: org.apache.spark.sql.DataFrame = [id: int, rawbData: array<string>]

scala>

scala> wordsRemover. transform(input). show(fa1se)
o e +
|1d IrawData |f11tered |

|0 |[Th1s is, spark, BOOK, book] |[Th1s is, spark]
|1 |[pub115hed by, Apress, pub11cat1ons]|[pub11shed by, pub11cat1ons]|

Figure 8-16. StopWordsRemover transformer with stopWords parameter

By default, the caseSensitive parameter is false. Hence, it removes the specified stop
words irrespective of case. It can be changed by specifying the caseSensitive parameter
as shown in Figure 8-17.

scala> val wordsRemover = new StopwordsRemover ().
| setInputCol("rawbata).
| setoutputcCol("filtered").
| setStopwords(Array(“"book™,"apress")).
| setCaseSensitive(false)
wordsRemover: org.apache.spark.ml.feature.StopwordsRemover = stopwords_990

scala>

scala> wordsRemover. transform(input). show(fa1se)

R e e e T T +
|id |rawbata |f11tered |
s bt e L L T P it bttt +
|0 |[This, is, spark, BOOK, book] |[This, is, spark] |
|1 |[Pub115hed by, Apress, pub11cat1ons]|[pub11shed by, publications]|
o o e e +

Figure 8-17. StopWordsRemover transformer with caseSensitive parameter

208

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Figure 8-18 illustrates the flow of the Tokenizer and StopWords transformers.

TRANSFORMER
[This is spark Book book] [This, is, spark, Book, book]
[published by Apress] s TOKENIZER mmm) [published, by, Apress]
[written by Dharanitharan] < [written, by, Dharanitharan]
[spark] STOP WORDS
[published, Apress] o REMOVER
[written, Dharanitharan] -
TRANSFORMER
w
7]
@
E
m
&

Stop Words: book
Language : English
Case Sensitive : false

Figure 8-18. Feature transformers illustration: Tokenizer and StopWords

transformers

Stringindexer

The StringIndexer encodes the labels of a string column to a column of label indices. The
indices are in [0, numLabels), ordered by label frequencies, so the most frequent label
gets index 0. For example:

val input = spark.createDataFrame(Seq(
(o, "Spark"),(1, "Apress"),(2, "Dharani"), (3, "Spark"),
(4,"Apress"))).toDF("id", "words")

This line creates a DataFrame with columns id and words. Words is a string column with
three labels: "Spark", "Apress", and "Dharani”.

209

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Applying StringIndexer with words as the input column and the wordIndex as the output
column (see Figure 8-19):

val indexer = new StringIndexer().
setInputCol("words").
setOutputCol("wordIndex")

e +
| id| words| TRANSFORMER

fommfmmmmeee +

| O] spark] .

| 1| Apress| === Stringindexer

| 2|Dharani|)

| 3] spark] ~

| 4| Apress| .

om e + Frequently appearing word

gets the index 0

+--—tm—m—— - +-—mmm - +
| id| words|wordIndex|
+--——————- +--m—————- -
| 0| Spark] 0.0]
| 1] Apress]| 1.0]
| 2|Dharani| 2.0|
| 3| Spark] 0.0]|
| 4| Apress| 1.0]
e tommmmm +

Figure 8-19. Stringlndexer transformer

The word "Spark" gets index 0 because it is the most frequent, followed by "Apress"
with index 1 and "Dharani” with index 2 (see Figure 8-20).

When the downstream pipeline components like Estimator or any Transformer uses this
string-indexed label, it is must set the input column of the respective component to this
string-indexed column name. Generally, the input column is set by the setInputCol

property.

210

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.ml.feature.StringIndexer

scala>

scala> val input = spark.createDataFrame(Seq(
| (0, "spark™),
| (1, "Apress"),
| (2, "Dharani'),
| (3, "Spark"),
| (4, "Apress™))).
| toDF("id", "words™")
input: org.apache.spark.sql.DataFrame = [id: int, words: string]

scala>

scala> val indexer = new StringIndexer().
| setInputcCol("words").
| setoutputCol("wordIndex")
indexer: org.apache.spark.ml.feature.StringIndexer = strIdx_8260d7

scala>

scala> val indexed = indexer.fit(input).transform(input)
indexed: org.apache.spark.sql.DataFrame = [id: int, words: string

scala>

scala> indexed.show()
fo—mpmmm - tommm +
| id| words|wordIndex|
+-——t—-————- t-———————- +
| 0] sSpark] 0.0]
| 1| Apress]| 1.0
| 2|Dharani] 2.0]
| 3| spark] 0.0]
| 4| Apress]| 1.0
+-——t——————- t-———————- +

Figure 8-20. Feature transformer: Stringlndexer

Feature Selectors

The feature selectors are used to select the required features based on indices. The
available feature selectors in Spark MLIib are explained later in this chapter.

211

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

VectorSlicer

VectorSlicer takes the feature vector as input and outputs a new feature vector with a
subset of the original features. It is useful for extracting required features from a vector
column.

VectorSlicer accepts a vector column with specified indices, then outputs a new vector
column with values that are selected through the indices. There are two types of indices.

o Integer indices: This represents the indices into the vector. It is
represented by setIndices().

o String indices: This represents the names of features into the vector
and represented by setNames (). This requires the vector column to
have an AttributeGroup because the implementation matches on
the name field of an Attribute.

Create a DataFrame with feature vectors and map the attributes using Attribute groups.

val data = Arrays.asList(
Row(Vectors.dense(2.5, 2.9, 3.0)),
Row(Vectors.dense(-2.0, 2.3, 0.0))

)

val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("coli", "col2", "col3").map(defaultAttr.withName)

val attrGroup = new AttributeGroup(
"InFeatures"”,
attrs.asInstanceOf[Array[Attribute]]

)

212

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

val dataset = spark.createDataFrame(
data,
StructType(Array(attrGroup.
toStructField()))

)

Then create a VectorSlicer,

val slicer = new VectorSlicer()
.setInputCol("InFeatures")
.setOutputCol("SelectedFeatures")

Set the index to slicer to select the feature that is required. For example, if col1 is
required, set the index as 0 or name as "col1".

slicer.setIndices(Array(0))
--0T--
slicer.setNames(Array("col1"))
Then call the transform:

val output = slicer.transform(dataset)
output.show(false)

213

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Figure 8-21 shows the full VectorSlicer selector.

scala> val data = Arrays.asList(
| Row(vectors.dense(2.5, 2.9, 3.0)),
| Row(vectors.dense(-2.0, 2.3, 0.0))
)

data: java.util.List[org.apache.spark.sql.Row] = [[[2.5,2.9,3.0]], [[-2.0,2.3,0.0]]]
scala>

scala> val defaultAttr = NumericAttribute.defaultAttr
defaultattr: org.apache.spark.ml.attribute.NumericAttribute = {"type":"numeric"}

scala>

scala> val attrs = Array(“coll”, "col2", "col13").map(defaultAttr.withName)

attrs: Arrag[org.apache.spark.m1.attribute.NumericAttribute]

me":"co13"}

scala>

scala> val attrGroup = new AttributeGroup('InFeatures", attrs.asInstanceOf[Array[Attribute]])
attrGroup: org.apache.spark.ml.attribute.AttributeGroup

3"}13, "num_attrs":3}}

scala>

scala> val dataset = spark.createDataFrame(data, StructType(Array(attrGroup.toStructField())))
dataset: org.apache.spark.sql.DataFrame = [InFeatures: vector]

scala>

scala> val slicer = new Vectorslicer().setInputCol("InFeatures").setOutputCol("selctedFeatures")
slicer: org.apache.spark.ml.feature.vectorSlicer = vectorSlicer_05c9263c062f

scala>

scala> slicer.setIndices(Array(0))
resS4: slicer.type = vectorSlicer_05c9263c062f

scala>

scala> val output = slicer.transform(dataset)
output: org.apache.spark.sql.DataFrame = [InFeatures: vector, SelctedFeatures: vector]

scala> output.show(false)

et L e to——mmmmm - +
| InFeatures |selctedFeatures|
Fommmmm - Fommmm - +
|1[2.5,2.9,3.0] |[2.5] |
|[-2.0,2.3,0.0]|[-2.0] |
- - t-——m - +

Figure 8-21. Feature selector VectorSlicer

Figure 8-22 illustrates the working of the VectorSlicer feature selector.

214

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

AttributeGroup
“CO'l", "colzl" “COI3"
fommmm———————— + Feature Selector

102.5.2.9.3.0] | ™=> Vector Slicer
[22.0.2.3.0.0]]

| .
Fommmmmm e +
slicer.setindices(Array(0))
- or -
slicer.setNames(Array("col1",))
tommmmmmmm—m e ommmmmmm e +
| InFeatures |SelctedFeatures|
e EE L E LT ommmmmmm o -
|[2.5,2.9,3.0] |[2.5] |
|[-2.0,2.3,0.0]|[-2.0] |
tommmmmm——————— e e L LT +

Figure 8-22. Feature selector VectorSlicer

ML Pipelines

The spark.ml package provides the MLIlib APIs for the ML algorithms to create pipelines.
The pipeline helps to combine more than one ML algorithm into a single workflow.

These are some of the important concepts of ML pipelines.

e DataFrames: The ML Sataset can hold variety of data types such
as texts, labels, feature vectors in the form of DataFrames through
the ML DataFrame APIs. A DataFrame can be created implicitly or
explicitly from an RDD. The creation of DataFrames from RDDs was
covered in previous chapters.

o Transformer: The ML transformer transforms the available
DataFrame into another DataFrame. For example, an ML model is
a transformer that converts one existing DataFrame into another
DataFrame with prediction features.

o Estimator: The estimator is an algorithm that helps to create a
transformer.

e Parameters: The parameters are specified using common APIs for all
estimators and transformers.

215

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Pipeline Components

Spark ML pipelines provide a uniform set of high-level APIs built on top of DataFrames
that helps to create and tune practical ML pipelines. Spark MLIib represents such a
workflow as a pipeline, which consists of a sequence of PipelineStages (transformers and
estimators) to be run in a specific order.

Estimators

An estimator is an abstraction of any learning algotithm or any other algorithm that
trains the model on the input data. In Spark MLIib, the estimator implements a method
fit(). The fit() method accepts a DataFrame and produces a model.

Transformers

A transformer is an abstraction that includes any of the feature transformers (the feature
transformers are explained in the next section of this chapter) and learned models. The
transformer implements a method transform(), which converts one DataFrame into
another, generally by appending one or more columns.

As an example, a feature transformer might take a DataFrame, read a column (e.g.,
column1), map it into a new column (e.g., column2), and it gives a new DataFrame as
output with the mapped column appended.

Pipeline Examples

The pipeline involves a sequence of algorithms to process and build the model by
learning from data. For example, a simple text document processing pipeline might
involve the following stages.

1. Split the document’s text into the words.

2. Convert each word from the document into a numerical feature

vector.

3. Learn from the data and build a prediction model using the
feature vectors and the labels.

These steps are the stages in the pipeline. Each stage can be a transformer or an
estimator.

216

https://spark.apache.org/docs/latest/sql-programming-guide.html

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Start the Spark Shell (see Figure 8-23) and practice the following code snippets to better
understand the pipeline concepts.

spark session available as 'spark'.
Welcome to

- [
NN N -)
/_//._/_,_ _/ /_/_\ version 2.2.1

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_77)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Figure 8-23. Starting the Spark Shell

Import the following classes (see Figure 8-24):

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.PipelineModel

import org.apache.spark.ml.classification.logisticRegression
import org.apache.spark.ml.feature.HashingTF

import org.apache.spark.ml.feature.Tokenizer

import org.apache.spark.ml.linalg.Vector

import org.apache.spark.sql.Row

scala> import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.{Pipeline, PipelineModel}

scala> import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.classification.LogisticRegression

scala> import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}

scala> import org.apache.spark.ml.Tinalg.Vvector
import org.apache.spark.ml.linalg.vector

scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row

Figure 8-24. Importing the pipeline APIs from the spark.ml package

217

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Note The details and workings of logistic regression algorithms are explained
later this chapter. We used logistic regression to simply explain the stages of
transformers and estimators in a pipeline.

Now prepare the data to train the model with a list of (id, text, label) tuples. The
following data set explains the text and the respective label for each text (see Figure 8-25).

Schema: ("id", "text", "label")
val training = spark.createDataFrame(Seq(
(oL, "This is spark book", 1.0),
(1L, "published by Apress publications", 0.0),
(2L, "authors are Dharanitharan", 1.0),
(3L, "and Subhashini", 0.0))).toDF("id", "text", "label")

scala> val training = spark.createDataFrame(Seq(
| (0L, "This 1is spark book", 1.0),
| (1L, "published by Apress publications”, 0.0),
| (2L, "authors are Dharanitharan", 1.0),
| (3L, "and Subhashini™, 0.0))).toDF("id", "text", "label™)

Figure 8-25. Preparing input documents to train the model

Now create a pipeline (see Figure 8-26) with three stages: Tokenizer, HashingTF, and the
logistic regression algorithm.

val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words")

val hashingTF = new HashingTF().setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")

new LogisticRegression().setMaxIter(10).setRegParam(0.001)

new Pipeline().setStages(Array(tokenizer, hashingTF,

val logitreg
val pipeline
logitreg))

218

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> val tokenizer = new Tokenizer().setInputCol("text").
| setoutputCol("words™)
tokenizer: org.apache.spark.ml.feature.Tokenizer = tok_cO0f5f43f

scala> val hashingTF = new HashingTF().setNumFeatures(1000).
| setInputCol(tokenizer.getOutputCol).
| setOutputCol("features')
hashingTF: org.apache.spark.ml.feature.HashingTF = hashingTF_68

scala> val logitreg = new LogisticRegression().setMaxIter (10).
| setRegParam(0.001)
logitreg: org.apache.spark.ml.classification.LogisticRegression

scala> val pipeline = new Pipeline().
| setStages(Array(tokenizer, hashingTF, logitreg))
pipeline: org.apache.spark.ml.Pipeline = pipeline_41712b26b59f

Figure 8-26. Creating the pipeline
Then, fit the pipeline to the training documents (see Figure 8-27).

val model = pipeline.fit(training)

scala> val model = pipeline.fit(training)
model: org.apache.spark.ml.PipelineMode]l = pipeline_41712b26b59f

Figure 8-27. Model fitting

Create the test documents, which are not labeled. We next predict the label based on the

feature vectors (see Figure 8-28).

val test = spark.createDataFrame(Seq(
(4L, "spark book"),
(5L, "apress published this book"),
(6L, "Dharanitharan wrote this book™")))
.toDF("id", "text")

scala> val test = spark.createDataFrame(Seq(
| (4L, "spark book™),
| (5L, "apress published this book"),
| (6L, "Dharanitharan wrote this book™)
|)).toDF("id", "text")
test: org.apache.spark.sql.DataFrame = [id: bigint, text: string]

Figure 8-28. Preparing test documents without a label column

219

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY
Then make the predictions on the test documents.

val transformed = model.transform(test)

val result = transformed.select("id", "text", "probability", "prediction")
.collect()

result.foreach {
case Row(id: Long, text: String, prob: Vector, prediction:
Double)
=>
println(s"($id, $text) --> prob=$prob, prediction=$prediction")
}

Thus, we have predicted the label based on the feature vectors for each text

(see Figure 8-29).

scala> val transformed = model.transform(test)
transformed: org.apache.spark.sql.DataFrame

scala> val result = transformed.
| select("id", "text", "probability", "prediction").
| collect()

scala> result.
| foreach{
| case Row(id: Long, text: String, prob: Vvector, prediction: Double)
| =>
| printin(s"($id, $text) --> prediction=$prediction”)
I

(4, spark book) --> prediction=1.0

(5, apress published this book) --> prediction=0.0
(6, Dharanitharan wrote this book) --> prediction=1.0

Figure 8-29. Predicting the labels

Note The details of Tokenizer and HashingTF transformers were explained earlier
in this chapter.

220

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY
The complete code snippet for the preceding pipeline example is given here.
package com.apress.pipelines

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.linalg.Vector

import org.apache.spark.sql.Row

object PipelineCreationDemo {
def main(args: Array[String]): Unit = {

val sparkSession = SparkSession.builder
.appName("PipelineCreationDemo").master("local[*]")
.getOrCreate()

import sparkSession.implicits.

val training = spark.createDataFrame(Seq(
(oL, "This is spark book", 1.0),
(1L, "published by Apress publications", 0.0),
(2L, "authors are Dharanitharan", 1.0),
(3L, "and Subhashini", 0.0)))
.toDF("id", "text", "label")

val tokenizer = new Tokenizer().setInputCol("text")
.setOutputCol("words")

val hashingTF = new HashingTF().setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")

new LogisticRegression().setMaxIter(10)
.setRegParam(0.001)

val logitreg

new Pipeline()
.setStages(Array(tokenizer, hashingTF, logitreg))

val pipeline

val model = pipeline.fit(training)

221

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

val test = spark.createDataFrame(Seq(
(4L, "spark book"),
(5L, "apress published this book"),
(6L, "Dharanitharan wrote this book")))
.toDF("id", "text")

val transformed = model.transform(test)
.select("id", "text", "probability", "prediction")
.collect()
result.foreach {
case Row(id: Long, text: String, prob: Vector, prediction: Double)
=>
println(s"($id, $text) --> prob=$prob, prediction=$prediction")
}

Note To execute the given code in any IDE that supports Scala, it is mandatory
to add the Scala library to the project workspace and all the Spark jars to the
classpath.

The working of the discussed simple word text document processing pipeline is
illustrated in the flow diagrams that follow.

Figure 8-30 explains the flow of training time usage of pipeline until the fit() method is
called. The Pipeline.fit() method is called on the raw data (i.e., original DataFrame),
which has raw text documents and labels. The Tokenizer.transform() method splits
the raw text documents into words, adding a new column with words to the DataFrame.
The HashingTF.transform() method converts the words column into feature

vectors, adding a new column with those vectors to the DataFrame. Now, because
LogisticRegression is an estimator, the pipeline first calls LogisticRegression.fit()
to produce a model; that is, LogisticRegressionModel.

222

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

TRANSFORMER TRANSFORMER
H
0 :
pipeline <> 5 C__ Ld >
Estimator m —) N L d w — .:, —) M
G
i
pipelinefit() Data frame e Data frame T Data frame

[_

Logistic Lomisti
Regression | (e [R ogistic]
Model egression

ESTIMATOR

Figure 8-30. Training time usage of pipeline

Figure 8-31 explains the flow of PipelineModel, which has the same number of stages as
the pipeline. When the PipelineModel’s transform() method is called on a test data set,
the data are passed through the fitted pipeline in order. The transform() method in each
stage updates the data set and passes it to the next stage. The pipelines and PipelineModels
ensure the training and test data go through identical feature processing steps.

TRANSFORMER TRANSFORMER
T H
0 s
K
pipeline model 3 E D L 3
e e | e | =
G
z
pipelinemodelfit() Data frame £ Data frame T Data frame
F
- .‘/' . . .
(—— Loglstl_c
Regression
Model
TRANSFORMER

Figure 8-31. Testing time usage of pipeline model
223

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Machine Learning Regression and Classification Algorithms

Spark MLIib supports creation of ML pipelines for common learning algorithms such as
classification, regression, and clustering. The common algorithms for predictions and
clustering are explained later in this chapter.

Regression Algorithms

Let’s look into the linear regression approach.

Linear Regression

Linear regression is a linear approach to model the relationship between the dependent
variable (y) and one or more independent variables (x1, x2, ...). In the case of a single
independent variable, it is called simple linear regression. If many independent variables
are present, it is called multiple linear regression.

In linear regression, the linear models are modeled using linear predictor functions
whose unknown model parameters are predicted from data. The simple linear
regression equation with one dependent and one independent variable is defined by

the formula

y=a+b(x)

where y is the dependent variable score, a is a constant, b is the regression coefficient,
and x is the value of the independent variable.
Let’s look at an example. The following chart is the set of given observations of y

against x.
X 1 3) 7 9
Y 2 4 6 8 ?

Build the linear regression model to build the relationship between the variables to
predict the value of x.

Here, y is the response variable (i.e., dependent variable) and x is the independent
variable. Create the DataFrame with column labels and features as shown here.

224

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

val data = List(
(2.0, Vectors.dense(1.0)),
(4.0, Vectors.dense(3.0)),
(6.0, Vectors.dense(5.0)),
(8.0, Vectors.dense(7.0))

)
val inputToModel = data.toDF("label","features")

where label is the dependent variable (i.e., the value to predict) and the features are the
independent variables (i.e., variables used to predict the response variable).

Note The input DataFrame with label and features to build the model can be
created by reading from a file as an RDD and converting it into a DataFrame using
the toDF () function.

Now, build the model using LinearRegression().
val linearReg = new LinearRegression()
val linearRegModel = linearReg.fit(inputToModel)

The coefficients of the model can be obtained from the coefficients method of
the model:

println(s"Coefficients:${1lrModel.coefficients}
Intercept:${1lrModel.intercept}"

)

225

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Then build the summary of the model.

val trainingSummary = linearRegModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")

println(
s"objectiveHistory:[${trainingSummary.objectiveHistory.
mkString(",")}]"
)

trainingSummary.residuals.show()

println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")

println(s"r2: ${trainingSummary.r2}")

Now, the label for feature 9.0 can be predicted as:

val toPredict = List((0.0,Vectors.dense(9.0)),(0.0,Vectors.dense(11.0)))
val toPredictDF = toPredict.toDF("label","features")

val predictions=linearRegModel.transform(toPredictDF)
predictions.select("prediction™).show()

Figure 8-32 shows the execution result of each step in building the regression model.

226

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegression

scala> val data = List(
| (2.0, vectors.dense(1.0)),
| (4.0, vectors.dense(3.0)),
| (6.0, vectors.dense(5.0)),
| (8.0, vectors.dense(7.0))
|

b}
data: List[(Double, org.apache.spark.ml.1inalg.vector)]

scala> val inputToModel = data.toDF("label","features")
inputToModel: org.apache.spark.sql.DataFrame = [label: double, features: wvector]

scala>

scala> val linearReg = new LinearRegression() . .
TinearReg: org.apache.spark.ml.regression.LinearRegression = 1inReg_31126ef4cSeb

scala>

scalar val linearRegModel = linearReaq.fit(inputToModel}
linearRegModel: org. apache spark.ml.regression.LinearRegressionModel = TinReg_3112

scala> printin(s"coefficients:${1rModel.coefficients} Intercept:${1rModel.intercept}")
coefficients: [1.7922744891641464] Intercept:0.6231765325075609

scala>

scala> val trainingSummarﬁ TinearRegModel. summary))
trainingsummary: org.apache.spark.ml.regression.LinearRegressionTrainingSummary

scala>

scala> printin(s"numIterations: ${trainingSummary.totalIterations}")
numIterations:

scala> printin(s"objectiveHistory: [${trainingSummary.objectiveHistory.mkstring(","2}]1")
objectiveHistory: [0.0]

scala>
sca1a> tra1n1ngsummary residuals.show()

+
|-2.66453525910037... |
|-1.77635683940025. .. |
|-1.77635683940025... |
|
+

scala>

scala> printin(s"RMSE: 3{trainingsummary.rootMeansquaredError}")
RMSE: 1.831026719408895E-15

scala>

scala> printin(s"r2: ${trainingSummary.r2}")
rz: 1.0

scala> val toPredict = List(

| (0.0,vVectors.dense(9.0)),

| (0.0,vectors.dense(11.0))

1)
toPredict: List[(Double, org.apache.spark.ml.linalg.vector)]
scala>

scala> val toPredictDF = toPredict.toDF("label”,"features™)
toPredictDF: org.apache.spark.sql.DataFrame = [label: double, features: vector]

scala>

scala> val predictions=linearRegModel. transform(toPredictDF)
predictions: org.apache.spark.sqgl.DataFrame

scala>

scala> predictions. se1ect(‘prediction™).show()

Figure 8-32. Linear regression algorithm

227

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Thus, the values of 9 and 11 have been predicted as 10.0 and 11.998 (~=12 approx),
respectively.
The complete code snippet for the regression algorithm implementation is given here.

package com.apress.mlalgorithms

import org.apache.spark.ml_

import org.apache.spark.ml.linalg.Vector

import org.apache.spark.ml.linalg.Vectors

import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.sql.SparkSession

object LinearRegressionDemo {
def main(args: Array[String]): Unit = {

val sparkSession = SparkSession.builder
.appName("LinearRegressionDemo").master("local[*]")
.getOrCreate()

import sparkSession.implicits.

val data = List(
(2.0, Vectors.dense(1.0)),
(4.0, Vectors.dense(3.0)),
(6.0, Vectors.dense(5.0)),
(8.0, Vectors.dense(7.0))
)
val inputToModel = data.toDF("label","features")
val linearReg = new LinearRegression()
val linearRegModel = linearReg.fit(inputToModel)
println(s"Coefficients:${1lrModel.coefficients}
Intercept:${1rModel.intercept}")
val trainingSummary = linearRegModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory:[
${trainingSummary.objectiveHistory.mkString(",")}1")
trainingSummary.residuals.show()

228

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")

println(s"r2: ${trainingSummary.r2}")

val toPredict = List((0.0,Vectors.dense(9.0)),
(0.0,Vectors.dense(11.0)))

val toPredictDF = toPredict.toDF("label","features")

val predictions=linearRegModel.transform(toPredictDF)

predictions.select("prediction").show()

}

Classification Algorithms

Let’s now look into the logistic regression approach.

Logistic Regression

The logistic regression is used to predict the categorical response. The spark.ml logistic
regression can be used to predict a binary outcome (either 0 or 1) by using binomial
logistic regression.

The following example shows how to train binomial logistic regression models for
binary classification to predict the categorical response. Create the data set shown in
Figure 8-33 in a file matchPlay.csv.

G‘clook,temp,humidity,played \

sunny, hot,high,0
sunny, hot,high,0
overcast,hot,high,1
rainy,mild,high,1
rainy,cool,normal,1
rainy,cool,normal,0
overcast,cool,normal,1
sunny,mild,high,0
sunny, cool,normal,1
rainy,mild,normal, 1
sunny,mild,normal,1
overcast,mild,high,1
overcast,hot,normal,1

Qiny,mild,high,o /

Figure 8-33. matchPlay.csv file

229

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

The data set contains four variables: outlook, temp, humidity, and play. They explain
whether the match is played or not based on outlook, temperature, and humidity conditions.
Play is the response variable and the other three columns are independent variables.

Now, build a logistic regression model to predict whether the match would be played or
not based on the independent variables’ labels.

First, read the data from the file using Spark Session.

val data = spark.read.option("header","true")
.option("inferSchema","true")
.format("csv"

.load("matchPlay.txt")

Verify the schema using data.printSchema(). Select the required label columns and the
feature columns. Here the label column is "played”, as it is the response variable, and
the other columns are feature columns, which helps for the prediction.

val logRegDataAll = (data.select(data("play").as("label"),
$"outlook",$"temp",$"humidity"))

Next, convert the categorical (i.e., string) columns into numerical values because the
ML algorithm cannot understand the categorical variable. This can be done using
StringIndexer, which creates the column of indices from the column of labels. The
StringIndexer was explained earlier in this chapter.

import org.apache.spark.ml.feature.StringIndexer

val outlookIndexer = new StringIndexer()
.setInputCol("outlook").setOutputCol("OutlookIndex")

val tempIndexer = new StringIndexer()
.setInputCol("temp").setOutputCol("tempIndex")

val humidityIndexer = new StringIndexer()
.setInputCol("humidity").
setOutputCol("humidityIndex")

Third, apply OneHotEncoder (i.e., 0 or 1) to the numerical values. One-hot encoding
maps a categorical feature, represented as a label index, to a binary vector with at most a
single one-value by indicating the presence of a specific feature value from the set of all
feature values.

230

http://en.wikipedia.org/wiki/One-hot

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Because the categorical feature is represented as a label index, we need to map the label
index to a binary vector with at most a single one-value indicating the presence of a
specific feature value from among the set of all feature values. OneHotEncoder is also a
transformer, which can be used in the ML pipeline.

import org.apache.spark.ml.feature.OneHotEncoder

val outlookEncoder = new OneHotEncoder()
.setInputCol("OutlookIndex").
setOutputCol("outlookVec")

val tempEncoder = new OneHotEncoder()
.setInputCol("tempIndex").setOutputCol("tempVec")

val humidityEncoder = new OneHotEncoder()
.setInputCol("humidityIndex").
setOutputCol("humidityVec")

Fourth, create the label and features to build the model by assembling the
OneHotEncoded vectors of all the categorical columns to the features vector.

import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler

val assembler = new VectorAssembler()

.setInputCols(Array("outlookVec","tempVec",
Vec"))

.setOutputCol("features")

humidity

Fifth, create a LogisticRegression estimator to build the pipeline.

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.lLogisticRegression

val logReg = new LogisticRegression()

val pipeline = new Pipeline().setStages

(

Array(outlookIndexer,tempIndexer,humidityIndexer,
outlookEncoder,tempEncoder,humidityEncoder,
assembler, logReg)

)

231

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Sixth, randomly split the original data set into training (70%) and test (30%) to build the
logistic regression model and verify it with the predicted label for the "played" variable.

val model = pipeline.fit(training)
val results = model.transform(test)

results.select("outlook","humidity","temp","label","prediction").show()

Note Execute the statements and observe the flow of the pipeline.

The complete code for the example just described is given here and the model is shown
in Figure 8-34.

package com.apress.mlalgorithms

import org.apache.spark.ml.classification.lLogisticRegression

import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.feature.{VectorAssembler, StringIndexer}
import org.apache.spark.ml.feature.{VectorIndexer,OneHotEncoder}
import org.apache.spark.ml.linalg.Vectors

object LogisticRegressionDemo {
def main(args: Array[String]): Unit = {

val sparkSession = SparkSession.builder
.appName("LogisticRegression").master("local[*]")
.getOrCreate()

import sparkSession.implicits.

val data = spark.read.option("header”,"true")

.option("inferSchema","true").format("csv"
.load("matchPlay.txt")

val logRegDataAll = (data.select(data("play")
.as("label"),$"outlook",$"temp",$"humidity"))

// converting string column to numerical values

232

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

val outlookIndexer = new StringIndexer().setInputCol("outlook")
.setOutputCol("OutlookIndex")

val tempIndexer = new StringIndexer().setInputCol("temp")
.setOutputCol("tempIndex")

val humidityIndexer = new StringIndexer().setInputCol("humidity")
.setOutputCol("humidityIndex")

// converting numerical values into OneHot Encoding - 0 or 1
val outlookEncoder = new OneHotEncoder().setInputCol("OutlookIndex")
.setOutputCol("outlookVec")

val tempEncoder = new OneHotEncoder().setInputCol("tempIndex")
.setOutputCol("tempVec")

val humidityEncoder = new OneHotEncoder().setInputCol("humidityIndex")
.setOutputCol("humidityVec")

// create(label, features)

val assembler = new VectorAssembler()
.setInputCols(Array("outlookVec","tempVec","humidityVec"))
.setOutputCol("features")

val Array(training,test)=1logRegDataAll.randomSplit(Array(0.7,0.3))
val logReg = new LogisticRegression()

val pipeline = new Pipeline()
.setStages (Array(outlookIndexer,tempIndexer,
humidityIndexer,outlookEncoder,tempEncoder,
humidityEncoder,assembler,logReg))

val model = pipeline.fit(training)
val results = model.transform(test)

results.select("outlook", "humidity","temp","label","prediction").show()

233

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

scala> val model = pipeline.fit(training)
model: org.apache.spark.ml.PipelineModel = pipeline_08375a00f852

scala>

scala> val results = model.transform(test)
results: org.apache.spark.sql.DataFrame

scala>

scala> results.select("outlook"”,"humidity","temp”,"label","prediction").show()
Hommm tommmmmmm B Bt tmmmm e +

| outlook|humidity|temp|label|prediction|
Fomm Fommmmm o B Fomm +
| rainy| normal|cool| 0] 1.0]
| sunny | high| hot]| 0] 0.0]|
|overcast| high| hot| 1] 0.0]
| rainy| normal|cool] 1| 1.0]
e fmmmmmmmm B T fmmmmmmmmen +

Figure 8-34. Logistic regression model

Clustering Algorithms

Let’s look into the K-Means clustering algorithm.

K-Means Clustering

The K-Means clustering algorithm is used to cluster the data points into a preferred
number of clusters. In Spark MLIlib, K-Means is implemented as an estimator and

generates a K MeansModel as a base model.
The details of the input columns and output columns are described next.

e Input columns
e Parameter name: featuresCol
e Type(s): Vector
e Default: "features", which is a feature vector
¢ Output columns
e Parameter name: predictionCol
o Type(s): Int
e Default: "prediction”, which is the predicted cluster center

As an example, create the data set shown in Figure 8-35 in a file called kmeans-sample.txt.

234

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

4)

VA WN RO
PR RRRR
RS
NP ONRO
N NNNNDN
RS
NP ONRO
wwwwww
RS
NP ONRO

. J

Figure 8-35. kmeans-sample. txt file

Import the classes for K-Means clustering. The model is shown in Figure 8-36.
import org.apache.spark.ml.clustering.KMeans

// Load the dataset in "libsvm" format
val dataset = spark.read.format("libsvm").load("kmeans-sample.txt ")

// Trains a k-means model by setting the number of clusters as 2.
val kmeans = new KMeans().setK(2).setSeed(1L)
val model = kmeans.fit(dataset)

// Make predictions
val predictions = model.transform(dataset)

// print the result.
model.clusterCenters.foreach(println)

scala> import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.ml.clustering.KMeans

scala> val dataset = spark.read.format("Tibsvm").load("kmeans-sample.txt")
dataset: org.apache.spark.sql.DataFrame = [label: double, features: vector]

scala> val kmeans = new KMeans().setkK(2).setSeed(1lL)
kmeans: org.apache.spark.ml.clustering.KMeans = kmeans_05f9164319cf

scala> val model = kmeans.fit(dataset)
model: org.apache.spark.ml.clustering.KMeansModel = kmeans_05f9164319cf

scala> val predictions = model.transform(dataset)
predictions: org.apache.spark.sql.DataFrame = [label: double, features: vector

scala> model.clustercCenters.foreach(printin)
[0.1,0.1,0.1]
[9.1,9.1,9.1]

Figure 8-36. K-Means clustering model

235

CHAPTER 8 SPARK MACHINE LEARNING LIBRARY

Points to Remember

Spark MLIib is Spark’s collection of ML libraries, which can be used
as APIs to implement ML algorithms.

Use the common learning algorithms such as classification,
regression, clustering, and collaborative filtering.

Construct, evaluate, and tune the ML pipelines using Spark MLIib.

In ML pipelines, extraction deals with extracting the features with the
raw data.

Transformation deals with scaling, converting, and modifying the
features extracted from the raw data.

Selection deals with taking a sample or subset from a larger set of
features.

In the next chapter, we discuss the features of SparkR.

236

CHAPTER 9

Working with SparkR

In the previous chapter, we discussed the fundamental concepts of Spark MLIlib. We also
discussed the machine learning algorithms with implementation.

In this chapter, we are going to discuss how to work with the SparkR component. We
focus on the following topics:

¢ Introduction to SparkR.

o Starting SparkR from RStudio.

o Creating a SparkDataFrame.

o SparkDataFrame operations.

e Applying user-defined functions.

o Running SQL queries.

Introduction to SparkR

SparkR is an R package that allows us to use Apache Spark from R. Spark provides
a distributed DataFrame that is like R data frames to perform select, filter, and
aggregate operations on large data sets. SparkR also supports distributed ML
algorithms using MLIib.

SparkDataFrame

A SparkDataFrame is a distributed collection of data organized into named columns.
A SparkDataFrame is equivalent to a table in an RDBMS or a data frame in R with richer
optimization under the hood. SparkDataFrame can be constructed from different
sources, such as structure data files, external databases, tables in Hive, existing local R
data frames.

237

© Subhashini Chellappan, Dharanitharan Ganesan 2018
S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_9

CHAPTER9 WORKING WITH SPARKR

SparkSession

The entry point for SparkR is the SparkSession. The SparkSession connects the R
program to a Spark cluster. The spark.sessionis used to create SparkSession. You can
also pass options such as application name, dependent Spark packages, and so on, to the
spark.session.

Note If you are working from the SparkR shell, the SparkSession should already
be created for you, and you would not need to call sparkR.session.

Let’s discuss how to start SparkR from RStudio.

Starting SparkR from RStudio

1. Download Spark version 2.3.0 from this link.

http://www-us.apache.org/dist/spark/spark-2.3.0/spark-
2.3.0-bin-hadoop2.7.tgz

2. Extract the tar to spark_2.3.0.

3. Download R from this link and install it.
https://cran.r-project.org/bin/windows/base/o0ld/3.4.2/

4. Download RStudio from this link and install it.
https://www.rstudio.com/products/rstudio/download/

5. Start RStudio.

6. Install SparkR packages by issuing the following command
(see Figure 9-1).

Library.packages(SparkR)

238

http://www-us.apache.org/dist/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz
http://www-us.apache.org/dist/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz
https://cran.r-project.org/bin/windows/base/old/3.4.2/
https://www.rstudio.com/products/rstudio/download/

CHAPTER 9

R version 3.4.4 (2018-03-15) -- "someone to Lean on"
Copyright (¢) 2018 The R Foundation for statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R i5s free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or ‘licence()' for distribution details.

R i5 a collaborative project with many contributors.
Type 'contributors()" for more information and
‘citation()’ on how to cite R or R packages in publications.

Type ‘demo()' for some demos, "help()' for on-line help, or
'help.start ()" for an HTML browser interface to help.
Type 'q()’ to quit R.

[workspace loaded from ~/.RData]

> install.packages("sparkr™)

WORKING WITH SPARKR

Installing package into ‘C:/users/r.c.subhashini/pocuments/R/win-Tibrary/3.4°

(as '1ib" is unspecified)

trying URL "https://cran.rstudio. com/bin/windows/contrib/3.4/sparkr_2.3.0.zip’

content type ‘application/zip" length 1595574 bytes (1.5 MB)
downloaded 1.5 MB

package ‘sparkr’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\r.c.subhashini\Apppata\Local\Temp\RtmpwBhcCh\downloaded_packages

>

Figure 9-1. Installing SparkR packages

7. Attach the SparkR package to the R environment by calling this

command (see Figure 9-2).

library(SparkR)

> library(sparkr)

Attaching package: ‘sparkr’

The following objects are masked from ‘package:stats’:
cov, filter, lag, na.omit, predict, sd, var, window

The following objects are masked from ‘package:base’:

as.data.frame, colnames, colnames<-, drop, endswith, intersect, rank, rbind, sample, startswith, subset,

summary, transform, union

> |

Figure 9-2. Attaching the SparkR package

239

CHAPTER9 WORKING WITH SPARKR

8. Setthe Spark environment variable by issuing these commands
(see Figure 9-3).

if (nchar(Sys.getenv("SPARK HOME")) < 1) {
Sys.setenv(SPARK _HOME = "C:/Users/Administrator/Desktop/
spark-2.3.0")

}

> if (ncHar(Sys.getenv("SPARK_HGME")) <1) {
- Sys.setenv(SPARK_HOME = "C://users//administrator//Desktop//spark_2.3.0")}
> |

Figure 9-3. Setting the Spark environment variable

9. Load SparkR and call sparkR.session by issuing these
commands. You can also specify Spark driver properties (see
Figure 9-4).

library(SparkR, 1lib.loc = c(file.path(Sys.getenv("SPARK_HOME"),
R", "1ib")))

sparkR.session(master = "local[*]",sparkHome =Sys.getenv("SPARK
HOME"),enableHiveSupport = TRUE, sparkConfig = list(spark.driver.
memory = "2g"))

Ty

> Tibrary(sparkr, 1ib.loc = c(file,path(Sys.getenv("SPARK_HOME"), "R", "1ib"}))

> sparke. session(master = "local(*]",sparkHome =Sys.getenv("SPARK_HOME"),enableHivesupport = TRUE, sparkconfig = list(spark.driver.memory
= "29"))

spark package found in SPARK_HOME: C://users//Adwinistrator//Desktop//spark-2.3.0

Launching java with spark-submit command €://users//administrator//Desktop//spark-2. 3. 0/bin/spark-submit2.cmd --driver-memory "2g" spark
r-shell c:\users\RCSA06~1.SUB\AppData'\Locall\Temp\RTmps24tz4’\backend_portlef&76e94462

Java ref type org.apache.spark.sql.sparksession id 1

>

Figure 9-4. Load SparkR and call sparkR.session

We have successfully created a SparkR session.

240

CHAPTER9 WORKING WITH SPARKR

Creating SparkDataFrames

There are three ways to create SparkDataFrames:
e From alocal R DataFrame.
o From a Hive table.
¢ From other data sources.

Let’s discuss each method in turn.

From a Local R DataFrame

The easiest way to create SparkDataFrame is to convert a local R DataFrame into

a SparkDataFrame. You can use as.DataFrame or createDataFrame to create a
SparkDataFrame. The following code creates a SparkDataFrame using a faithful data set
from R (see Figure 9-5).

df <- as.DataFrame(faithful) //Line1

To display the first part of the SparkDataFrame
head(df) //Line 2

> df <- as.patarFrame(faithful)

> head(df)

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
> |

Figure 9-5. Creating a SparkDataFrame from a local R DataFrame

241

CHAPTER9 WORKING WITH SPARKR

From Other Data Sources

The read. df method is the general method to create a SparkDataFrame from data
sources. SparkR also supports JSON, CSV, and Parquet files. The following code creates a
SparkDataFrame from a JSON file (see Figure 9-6 for authors. json).

{"name":"Subhashini", "publiation":"Apress"}

{"name":"Dharanidhran", "publiation":"Apress"}

Figure 9-6. authors.json

authors <- read.df ("C://SparkR//authors.json", "json") > Line 1
head(authors) - Line 2

The output is shown in Figure 9-7.

> authors <- read.df ("c://sparkr//authors.json", "json")
> head(authors)
name publiation
1 subhashini Apress
2 pharanidhran Apress

Figure 9-7. Creating a SparkDataFrame using a JSON file

Let’s discuss how to create a SparkDataFrame from a . csv file. Refer to Figure 9-8 for the
authors.csv file.

name,authors

Subhashini,Apress

Dharanidhran,Apress

Figure 9-8. authors.csv file

242

CHAPTER9 WORKING WITH SPARKR

The following code creates a SparkDataFrame from a . csv file. The output is shown in
Figure 9-9.

csvdf <- read.df("C://SparkR//authors.csv", "csv", header = "true",

inferSchema = "true", na.strings = "NA") - Line 1
head(csvdf) > Line 2
> csvdf <- read.df("C://SparkrR//authors.csv”, "csv", header = "true”, inferSchema = "true”, na.strings = "
NA")

>
> head(csvdf)

name authors
1 Subhashini Apress
2 rharanidhran Apress
>

Figure 9-9. Creating a SparkDataFrame using a . csV file

From Hive Tables

To create a SparkDataFrame from a Hive table we need to create a SparkSession with
Hive support (enableHiveSupport = TRUE) to access tables in the Hive metastore. The
following code creates a SparkDataFrame from a Hive table. The output is shown in
Figure 9-10.

Create hive table authors and load data into authors table

sql("CREATE TABLE IF NOT EXISTS authors (name STRING, publication STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','")
sql("LOAD DATA LOCAL INPATH 'C:/SparkR/authors.csv' INTO TABLE authors")

Queries can be expressed in HiveQL.
results <- sql("FROM authors SELECT name,publication")

results is now a SparkDataFrame

head(results)

> Q1 ("CREATE TABLE IF NOT EXISTS authors (name STRING, publication STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','")
SparkpataFrame[)

> 5q1("LOAD DATA LOCAL INPATH 'C:/SparkR/authors.csv’ INTO TABLE authors™)

sparkpatarrame[]

> results <- sql("FROM authors SELECT name,publication™)
> head(results)
name publication
1 Subhashini Apress
2 pharanidhran Apress

> |
Figure 9-10. Creating a SparkFrame from a Hive table

243

CHAPTER9 WORKING WITH SPARKR

SparkDataFrame Operations

SparkDataFrames support several functions to perform structured data processing.

Selecting Rows and Columns

Let us consider the SparkDataFrame result created from the Hive table authors.
To get the basic information about the SparkDataFrame

results

Figure 9-11 shows the results SparkDataFrame.

To select only the "name" column

head(select(results, results$name))

> results
SparkDataFrame[name:string, publication:string]
>

Figure 9-11. results SparkDataFrame

Figure 9-12 shows the select query output.
You can also pass in column name as strings
head(select(results, "name"))
> head(select(results, resultsiname))
name
1 subhashini

2 Dharanidhran
> |

Figure 9-12. Output of select query

244

To apply filter condition to the SparkDataFrame (see Figure 9-13).

head(filter(results, results$name == 'S

> head(filter(results, results$name =
name publication

1 subhashini Apress
> head(filter(results, resultsiname ==
[1] name publication

<0 rows> (or 0-length row.names)

> |
Figure 9-13. Output of select query with

Grouping and Aggregation

CHAPTER 9

ubhashini'))

'Subhashini®))

"pharanidharan’))

condition

WORKING WITH SPARKR

SparkR DataFrames supports many functions to aggregate data after grouping. Let’s

consider the student.csv file shown in Figure 9-14.

1001 John
1002 James
1003 John
1004 James
1005 Smith
1006 Scott
1007 Shoba
1008 Taanu
1009 Anbu
1010 Aruna

45.0
85.0
45.0
85.0
60.0
70.0
80.0
90.0
95.0
85.0

Figure 9-14. student.csv file

245

CHAPTER9 WORKING WITH SPARKR
The following code creates a student DataFrame from a . csv file.

students <- read.df("C://SparkR//student.csv", "csv", header = "true",
inferSchema = "true", na.strings = "NA")

Use n operator to count the number of times each grade appears

head(summarize(groupBy(students, students$grade), count =
n(students$grade)))

The output grade count is shown in Figure 9-15.

> students <- read.df("c://sparkr//student.csv", "csv", header = "true", inferschema = "true”, na.strings = "NA")

> head(summarize(groupBy(students, students$grade), count = n(studentsigrade)))

grade count
70
80
85
45
60
a5

LU - VI S YN
R W e

Figure 9-15. Grade count output

Sort the output from the aggregation to get the most common grade.

grade_counts <- summarize(groupBy(students, students$grade), count =
n(students$grade))

head(arrange(grade_counts, desc(grade counts$count)))

The common grade output is shown in Figure 9-16.

> grade_counts <- summarize(groupBy(students, studentsigrade), count = n(students$grade))

>

> head(arrange(grade_counts, desc(grade_counts$count)))

grade count
85
45
60
80
95
90

I

VoW v un Bow o=
HE RN wW

Figure 9-16. The common grade output

246

CHAPTER9 WORKING WITH SPARKR
Let’s see how to find the average grade.
head(select(students, avg(students$grade)))

The output is shown in Figure 9-17.

> head(select(students, avg(studentss$grade)))
avg(grade)
74

Figure 9-17. Average grade

Operating on Columns

SparkR also provides functions that can be directly applied to columns for data
processing.

Add 5 marks to the grade column.

To assign this to a new column in the same SparkDataFrame
students$new_grade <- students$grade + 5

head(students)

The output is shown in Figure 9-18.

> students$new_grade <- students$grade + 5
>
> head(students)

studid name grade new_grade

1 1001 3John 45 50
2 1002 3James 85 90
3 1003 3John 45 50
4 1004 3James 85 90
5 1005 smith 60 65
6 1006 Scott 70 75
>

Figure 9-18. Addingnew_grade function

247

CHAPTER9 WORKING WITH SPARKR

Applying User-Defined Functions

SparkR supports several kinds of user-defined functions.

Run a Given Function on a Large Data Set Using dapply or
dapplyCollect

Use the dapply function to apply a function to each partition of a SparkDataFrame. The
function takes one parameter, a data.frame that corresponds to each partition. The
output of the function should be a data.frame. The Schema specifies the row format of
the resulting SparkDataFrame. It should match the data types of returned values.

The following code adds five marks to the grade column.

students_details <- read.df(“C://SparkR//student.csv’, “csv’, header = “true’, inferSchema
= “true’) na.strings = “NA”)

create a schema.
schema <- structType(structField("studId", "int"), structField("studName",
"string"),
structField("grade", "double"), structField("new
grade", "double"))

students new grade <- dapply(students details, function(x) { x <- cbind(x,
x$grade + 5) }, schema)

head(collect(students new grade))

The output is shown in Figure 9-19.

> students_details <- read.df("C://Sparkr//student.csv”, “csv”, header = "true”, interschema = “true”, na.strings = "NA")
> schema <- structType(structField("studid”, “int"), structField("studName”, "string"),
+ structField("grade”, “"double"), structField("new_grade”, "double"))

>
> students_new_grade <- dapply(students_details, function(x) { x <- cbind(x, x$grade + 5) }, schema)
> head(collect(students_new_grade))

studId studname grade new_grade

1 1001 John 45 50
2 1002 James 85 90
3 1003 John 45 50
4 1004 James 85 90
5 1005 smith 60 65
6 1006 Scott 70 75
>

Figure 9-19. dapply

248

CHAPTER9 WORKING WITH SPARKR

The dapplyCollect function is like dapply. It applies a function to each partition of a
SparkDataFrame and collects the result back. The output of this function should be a
DataFrame. However, schema is not required to be passed.

students new grade <- dapplyCollect(
students_details,
function(x) {
X <- cbind(x, "new_grade" = x$grade + 5)

1)

head(students_new_grade, 3)

Note dapplyCollect can fail if the output of UDF (i.e., User Defined Function)
run on all the partitions cannot be pulled to the driver and fit in driver memory.

The output is shown in Figure 9-20.

> students_new_grade <- dapplycollect(

ks students_details,

+ function(x) {

4 x <- cbind(x, "new_grade" = x$grade + 5)
+ D

> head(students_new_grade, 3)

studIid name grade new_grade

1 1001 John 45 50
2 1002 James 85 90
3 1003 3John 45 50
>
>

Figure 9-20. dapplyCollect

Running SQL Queries from SparkR

Let’s discuss how to run SQL queries from SparkR. We can register a SparkDataFrame as
a temporary view in Spark SQL and run SQL queries over its data. It returns the result as
a SparkDataFrame.

Load a JSON file
authors <- read.df("C://SparkR/authors.json"”, "json")
Register this SparkDataFrame as a temporary view.

createOrReplaceTempView(authors, "authors")
249

CHAPTER9 WORKING WITH SPARKR

SOL statements can be run by using the sql method
result <- sql("SELECT name FROM authors")
head(result)

The output is shown in Figure 9-21.

authors <- read.df("c://sparkr/authors. json", "json")
createorReplaceTempview(authors, "authors™)
result <- sql("SELECT name FROM authors")
head(result)
name
sSubhashini
pharanidhran

I
Figure 9-21. SQL query output

N = vV VVvVvy

v

Machine Learning Algorithms

Spark R supports various supervised and unsupervised machine algorithms. We have
already learned linear regression, logistic regression, and clustering algorithms in the
previous chapter and implemented the same as Spark ML pipelines. In this chapter, we
discuss the implementation of the same algorithms using SparkR libraries.

Regression and Classification Algorithms

Let’s discuss regression and classification algorithms.

Linear Regression

The spark.glm {SparkR} package is used to fit the generalized linear model against the
SparkDataFrame.

Usage: spark.glm(data, formula, family)

data: The SparkDataFrame for training the model.

formula: A symbolic description of the model to be fitted. The operators ‘~; ‘.,) “+; and
‘" are supported by the model.

family: The description of the error distribution and link function to be used in the

model.

250

CHAPTER9 WORKING WITH SPARKR

The simple linear regression equation with one dependent and one independent
variable is defined by the formula

y=a+b(x)

where y is the dependent variable score, a is a constant, b is the regression coefficient,
and x is the value of an independent variable.
spark.glmreturns a fitted generalized linear model.

spark.glm(dataFrame, y~x)

The summary and predict methods are available for the fitted model and their usage is
described next.

summary (GeneralizedLinearRegressionModel)
predict(GeneralizedLinearRegressionModel)

Also, the method write.ml(model,path) can be used to save the fitted model to any
path that can be loaded again and used later.
Let’s look at an example. Table 9-1 presents the set of given observations of y against x.

Table 9-1. Observation of y against x

X 1 3 5 7 9

y 2 4 6 8 ?

Build the linear regression model to build the relationship between the variables to
predict the value of x. Here, y is the response variable (i.e., dependent variable) and x is
the independent variable.

Start the R environment and create the spark.session as discussed earlier in this
chapter.

if (nchar(Sys.getenv("SPARK HOME")) < 1) {
Sys.setenv(SPARK HOME = "C:/Users/Administrator/Desktop/spark-2.3.0")

}

251

CHAPTER9 WORKING WITH SPARKR
Load the Spark libraries as shown here (see Figure 9-22).
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK HOME"), "R", "1ib")))

sparkR.session(master = "local[*]",
sparkHome =Sys.getenv("SPARK_HOME"),
enableHiveSupport = FALSE,
sparkConfig = list(spark.driver.memory = "2g")

)
x <- ¢(1,3,5,7)
y <- c(2,4,6,8)
dataFrameInR <- data.frame(x=c(1,3,5,7),y=c(2,4,6,8))

sparkDataFrame <- createDataFrame(dataFrameInR)

if (nchar (Sys.getenv("SPARK_HOME")) < 1) {
Sys.setenv(SPARK_HOME = "C:/Users/Administrator/Desktop/spark-2.3.0")
}
Tibrary(sparkr, 1ib.loc = c(file.path(Sys.getenv("SPARK_HOME"), "R", "1ib")))
sparkr.session(master = "local[*]",
sparkHome =Sys.getenv("SPARK_HOME"),
enableHiveSupport = FALSE,
sparkconfig = list(spark.driver.memory = "2g")
X <= €(1;3,5,7)
y <- ¢(2,4,6,8)
dataFrameInR <- data.frame(x=c(1,3,5,7),y=c(2,4,6,8))

sparkDataFrame <- createDatafFrame(dataFrameInRr)
> print(sparkDataFrame)

SparkDataFrame[x:double, y:double]

Figure 9-22. Spark DataFrame from linear model

252

CHAPTER9 WORKING WITH SPARKR
Now create the linear model using the glm package as shown here.
linearModel <- spark.glm(sparkDataFrame, y ~ x, family = "gaussian")

Use the summary function to print the summary of the created model, as shown in
Figure 9-23.

> summary(linearmodel)

Deviance Residuals:

(Note: These are approximate quantiles with relative error <= 0.01)
Min 1Q Median 3Q Max

-2.6645e-15 -2.6645e-15 -1.7764e-15 -1.7764e-15 0.0000e+00

Coefficients:

Estimate sStd. Error t value pr(|t|)
(Intercept) 1 2.6534e-15 3.7687e+14 0
X 1 5.7902e-16 1.7271e+15 0

(Dispersion parameter for gaussian family taken to be 6.705318e-30)

Null deviance: 2.0000e+01 on 3 degrees of freedom
Residual deviance: 1.3411e-29 on 2 degrees of freedom
AIC: -254.1

Number of Fisher Scoring iterations: 1

Figure 9-23. Summary of linear model

This summary of the linear model shows that the coefficient values are a=1 and b=1.
Hence the linear relationship between y and xisy ~ 1 + x. Now use the predict function
to predict the y values for any x values as shown in Figure 9-24.

dataFrametoPredict <- data.frame(x=c(9,11,13))
sparkDataFrameToPredict <- createDataFrame(dataFrametoPredict)
fittedModel <- predict(linearModel, sparkDataFrameToPredict)

head(select(fittedModel, "prediction"))

253

CHAPTER9 WORKING WITH SPARKR

dataFrametopPredict <- data.frame(x=c(9,11,13))
sparkDataFrameToPredict <- createDataFrame(dataFrametoPredict)
fittedModel <- predict(linearmodel, sparkDataFrameToPredict)
head(select (fittedvodel, "prediction”))

> head(select(fittedModel, "prediction”))
prediction

1 10

2 12

3 14

Figure 9-24. Predicted values using the linear model

The created model can be saved in a local path and loaded again to perform the
predictions (see Figure 9-25).

save fitted model to input path
path <- "C:/Users/Administrator/Desktop/linearModel”
write.ml(linearModel, path)

read back the saved model and print
savedModel <- read.ml(path)

save fitted model to input path

path <- "C:/Users/Administrator/Desktop/linearmModelPath”
write.ml(1inearmodel, path)

read back the saved model and print

savedModel <- read.ml(path)

summary(savedmodel)

VVVVVY

saved-loaded model does not support output ‘'Deviance Residuals’.

coefficients:

Estimate sStd. Error t value prclt])
(Intercept) 1 2.6534e-15 3.7687e+l14 0
X 1 5.7902e-16 1.7271le+l5 0

(Dispersion parameter for gaussian family taken to be 6.705318e-30)

Null deviance: 2.0000e+01 on 3 degrees of freedom
Residual deviance: 1.3411e-29 on 2 degrees of freedom
AIC: -254.1

Figure 9-25. Predicted values using the linear model

254

CHAPTER9 WORKING WITH SPARKR

Logistic Regression

The logistic regression is used to predict the categorical response. The spark.ml logistic

regression can be used to predict a binary outcome (either 0 or 1) by using binomial

logistic regression.

spark.logit (data, formula,
SparkDataFrame. It supports "binomial”. Also, the model can be printed, predictions
can be done on the produced model, and it can be saved to the input path.

The following example shows how to train binomial logistic regression models for
binary classification to predict the categorical response. Create the data set shown in

Figure 9-26 in a file named matchDetails. txt.

///:;;look,temp,humidity,played <‘\\\

sunny,hot,high,0
sunny,hot,high,0
overcast,hot,high,1
rainy,mild,high,1
rainy,cool,normal,1
rainy,cool,normal,0
overcast,cool,normal,1
sunny,mild,high,0
sunny, cool,normal,1
rainy,mild,normal, 1
sunny,mild,normal,1
overcast,mild,high,1
overcast,hot,normal,1

. . .) fits the logistic regression model against a

Qiny,mild,high,o /

Figure 9-26. matchDetails.txt file

The data set contains four variables—outlook, temp, humidity, and play—that
explained whether the match is played or not based on outlook, temperature, and
humidity conditions. Play is the response variable and the other three columns are

independent variables.

255

CHAPTER9 WORKING WITH SPARKR

Now, build a logistic regression model to predict whether the match would be played or
not based on the independent variables. Read the data from the file using the read.csv
method and create a SparkDataFrame (see Figures 9-27 and 9-28).

if (nchar(Sys.getenv("SPARK HOME")) < 1) {
Sys.setenv(SPARK HOME = "C:/Users/Administrator/Desktop/spark-2.3.0")

}
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK HOME"), "R", "lib")))

sparkR.session(master = "local[*]",
sparkHome =Sys.getenv("SPARK HOME"),
enableHiveSupport = FALSE,
sparkConfig = list(spark.driver.memory = "2g")

)

filePath = "C:/Users/Administrator/Desktop/matchDetails.txt"
dataFrame = read.csv(filePath,header = TRUE)

trainingData <- createDataFrame(dataFrame)

> dataFrame

outlook temp humidity played
1 sunny hot high 0
2 sunny hot high 0
3 overcast hot high 1
4 rainy mild high 1
5 rainy cool normal 1
6 rainy cool normal 0
7 overcast cool normal 1
8 sunny mild high 0
9 sunny cool normal 1
10 rainy mild normal 1
11 sunny mild normal 1
12 overcast mild high 1
13 overcast hot normal 1
14 rainy mild high 0

Figure 9-27. Input data to build the logistic regression model

256

CHAPTER9 WORKING WITH SPARKR

> trainingData
sparkpataFrame[outlook:string, temp:string, humidity:string, played:int]

Figure 9-28. SparkDataFrame

Now, build the logistic model using spark.logit.
logisticModel <- spark.logit(trainingData, played ~ .)
summary <- summary(logisticModel)

print(summary)

Note played ~ . refersto all the columns (i.e., played ~ outlook + temp
+ humidity).

Figure 9-29 shows the coefficients of the logistic regression model.

fitted values on training data
fittedModel <- predict(logisticModel, trainingData)

head(select(fittedModel, "outlook","temp", "humidity", "prediction"))

> print(summary)
$coefficients

Estimate
(Intercept) -34,.81937
outlook_rainy 47.57223
outlook_sunny 47.57223
temp_mild -28.27543
temp_cool -13.44601
humidity_high 16.21571

Figure 9-29. Coefficients of the logistic regression model

257

CHAPTER9 WORKING WITH SPARKR

Figure 9-30 shows the prediction.

> head(select(fittedmodel, "outlook"”,"temp", "humidity", "prediction"))
outlook temp humidity prediction

1 sunny hot high 0

2 sunny hot high 0

3 overcast hot high 1

4 rainy mild high 0

5 rainy cool normal 1

6 rainy cool normal 1

Figure 9-30. Prediction using the logistic regression model

Decision Tree

spark.decisionTree fits a decision tree regression model or a classification model on
the SparkDataFrame.

Use spark.decisionTree {SparkR}.Read the same data that were created in the
previous example from the file matchDetails.txt using the read.csv method and create

a SparkDataFrame as shown here.

if (nchar(Sys.getenv("SPARK HOME")) < 1) {
Sys.setenv(SPARK HOME = "C:/Users/Administrator/Desktop/spark-2.3.0")

}
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK HOME"), "R", "1ib")))

sparkR.session(master = "local[*]",
sparkHome =Sys.getenv("SPARK HOME"),
enableHiveSupport = FALSE,
sparkConfig = list(spark.driver.memory = "2g")

)

filePath = "C:/Users/d.a.ganesan/Desktop/matchDetails.txt"
dataFrame = read.csv(filePath,header = TRUE)

trainingData <- createDataFrame(dataFrame)

258

CHAPTER9 WORKING WITH SPARKR

Now create the decision tree model using spark.decisionTree.

Fit a DecisionTree classification model with spark.decisionTree
decisionTreemodel <- spark.decisionTree
(trainingData, played ~ . , "classification")

summary <- summary(decisionTreemodel)
print(summary)

Refer to Figure 9-31 for the decision tree summary.

> print(summary)
Formula: played ~ .
Number of features: 5
Features: outlook_rainy outlook_sunny temp_mild temp_cool humidity_high
Feature importances: (5,[0,1,2,4],[0.19892473118279586,0.4354838709677421,0.07526881720430112,0.29032258064516103])
Max Depth: 5
pecisionTreeClassificationModel (uid=dtc_fblccl5eb071) of depth 3 with 11 nodes
If (feature 4 in {0.0})
if (feature 0 in {0.0})
predict: 0.0
Else (feature 0 not in {0.0})
If (feature 2 in {1.0})
Predict: 0.0
Else (feature 2 not in {1.0})
predict: 0.0
Else (feature 4 not in {0.0})
1f (feature 1 in {0.0})
If (feature 0 in {0.0})

predict: 0.0
Else (feature 0 not in {0.0})
Predict: 0.0

else (feature 1 not in {0.0})
predict: 1.0

Figure 9-31. Summary of decision tree model

The prediction can be done using the predict method as shown in Figure 9-32.

predictions <- predict(decisionTreemodel, trainingData)
head(predictions)

> head(predictions)
outlook temp humidity played rawPrediction probability prediction
hi

1 sunny hot gh 0 <environment: 0x000000001cb9c818> <environment: 0x000000001cbc2368> 0
2 sunny hot high 0 <environment: 0x000000001cba3258> <environment: 0x000000001cbc7ed8> 0
3 overcast hot high 1 <environment: 0x000000001cba8d70> <environment: 0x000000001cbcf078> 1
4 rainy mild high 1 <environment: 0x000000001cbae0d0> <environment: 0x000000001cbd4b90> 1
5 rainy cool normal 1 <environment: 0x000000001cbb4b48> <environment: 0x000000001cbd9ef0> 1
6 rainy cool normal 0 <environment: 0x000000001cbba660> <environment: 0x000000001cbe0968> 1

Figure 9-32. Prediction of decision tree

259

CHAPTER9 WORKING WITH SPARKR

Points to Remember

o SparkR is an R package that allows us to use Apache Spark from R.

o Spark provides a distributed DataFrame, which is like R data frames
to perform select, filter, and aggregate operations on large data sets.

o SparkR also supports distributed machine learning algorithm using
MLIib.

In the next chapter, we discuss real-time use cases for Spark.

260

CHAPTER 10

Spark Real-Time Use Case

In the previous chapters, the fundamental components of Spark such as Spark Core,
Spark SQL, Spark Streaming, Structured Streaming, and Spark MLIib have been covered.
In this chapter, we discuss one simple real-time use case to understand how we can use
Spark in real-time scenarios.

The recommended background for this chapter is an understanding of Spark
fundamentals. The mandatory prerequisite for this chapter is completion of the previous
chapters. Also, it is assumed that you have practiced all the demos and completed the
hands-on exercises given in the previous chapters.

By end of this chapter, you will be able to do the following:

e Understand the industry applications of Spark.
e Understand the data analytics project architecture.

e Understand the real-time use cases and the need for Spark
Streaming.

Note Itis recommended that you read the complete chapter and understand the
scenarios, where Spark is used in real time.

261
© Subhashini Chellappan, Dharanitharan Ganesan 2018

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9_10

CHAPTER 10 SPARK REAL-TIME USE CASE

Data Analytics Project Architecture

Let’s examine the project architecture, shown in Figure 10-1.
Data
Source

Batch Processing

Data Storage

Data
Visualization

*Batch D_ata «Distributed Storage *Batch P.rocessing
*Streaming Data eIndex based storage -itreamlpg eVisual analysis
*No SQL based rocessing eReal time

Data Ingestion

storage dashboards
Data
Processing

Real time processing

Figure 10-1. Project architecture stages

Data Ingestion

Data ingestion is the first layer of the project architecture, where the data are collected
from multiple sources and stored in the storage layer or processed immediately.

In simple words, it is defined as the process of bringing the data to the storage and
processing system. The data can be ingested in batches or streamed in real time.

Data ingestion parameters include the velocity of data, size and frequency of data arrival,
and the format of data such as structured, semistructured, or unstructured data. The
data are ingested as chunks of data at a regular time interval in the batch ingestion. The
effective data ingestion is obtained by prioritizing the data sources and routing the data
to the correct data storage (i.e., destination), as shown in Figure 10-2.

262

CHAPTER 10 SPARK REAL-TIME USE CASE

Y [N . N
+'.—
iy DATA
VISUALIZATION
Web
e o tableau)
source) e ﬁ
% kQFsz Real Time h
Processing <hz DATA
- Spo K \ PROCESSING &
—)) iIVE ANALYSIS
S
ﬁ‘ Batch Time Processing @
.
DATA DATA CErlbEm DATA
SOURCE INGESTION HUES) STORAGE
| — J
Powered by Apress

Figure 10-2. Project architecture components in various stages

Data Storage

Data storage becomes challenging when the volume of data increases. Data storage

layers focus on how to store a huge volume of data effectively, which provides faster read

and write operations for processing engines.

The storage layer should take care of storing any type of data and keep scaling to keep

up with the growth of data exponentially. It should provide higher input and output

operations per second (IOPS) to provide faster data delivery to the processing layer

components.

Data Processing

Active analytic processing happens in the data processing layer. Data processing can be

done as batch processing and real-time processing. A batch processing system gets data

from the storage layer, where the batches of data were ingested, and it is applicable for

offline analytics. A real-time processing system connects directly to the data ingestion

layer and it is applicable for online analytics; it should provide low-latency processing

results.

263

CHAPTER 10 SPARK REAL-TIME USE CASE

Data Visualization

The data visualization layer is the presentation layer. Real-time dashboards can be
created to help the user perform the visual analysis directly from the ingested source or
the processed data. In big data—Hadoop and the Spark ecosystem—there are no built-in
components for data visualization. Tableau can be used as a visualization tool to present
the real-time dashboard to perceive the value of data.

Use Cases

In certain business scenarios, it is necessary to detect some events and respond to them
based on business requirements. Let’s examine the common event detection use case.

Event Detection Use Case

Spark Streaming helps to detect and quickly respond to any unusual behaviors or
changes in the input data pattern. For example, financial applications use triggers to
detect fradulent transactions and stop fraud in a real-time manner.

The event detection use case that follows was designed for Apress publications to trigger
an event if ther are any user mentions in the Twitter feed for the official Apress account,
@apress. Figure 10-3 displays the architecture for implementation.

Twitter APIs
Twitter Source (Scala)

Spark
Streaming

Figure 10-3. Event detection: Twitter source

264

CHAPTER 10 SPARK REAL-TIME USE CASE

The application is designed to fetch the tweets from Twitter based on a specified hashtag
or user account by using the Twitter APIs for Spark Streaming. The Spark Streaming
application processes the tweets and triggers any events if there are any described user
mentions in the tweets.

The Twitter APIs for Spark Streaming are available in the following Java archives (jars).
1. spark-streaming-twitter 2.11-1.6.3.jar
2. twitter4j-core-4.0.6.jar

3. twitter4j-stream-4.0.6.jar

Note The versions of jar files can be changed as needed.

The application needs some authentication tokens and secret keys to connect the
Twitter source: the Consumer key, Consumer secret, Access token, and Access token
secret. These keys can be obtained by creating an application in https://apps.twitter.
com/ by logging in using Twitter credentials, as shown in Figure 10-4.

B Secure | https://apps.twitter.com
W Application Managament 5-
e e —]

Twitter Apps Crate Nw Agp

Figure 10-4. Twitter apps login

265

https://apps.twitter.com/
https://apps.twitter.com/

CHAPTER 10 SPARK REAL-TIME USE CASE

Next, create a new Twitter app, as shown in Figure 10-5.

https://apps.twitter.com/app/new

Create an application

Application Details
MName *
ApressTwitter_Application01

Your application name. This is used lo aliribute the source of a fweelf and in |'J::|".|’-.-'<'.‘:'.‘.(Ig al

Description *
To fetch tweets on @apress

Your aj

ation descripfion, which will be shown in user-facing authorizafion screens. Bet

Website *
https://www.apress.com

Your application’s y accessibie home page, B USers can go to downioad, make

aftribution for fweels created by your application and will be s) in user-facing authorz.

{If you don't have a URL yet, just put a placehoider here but remember to change it later.)

Callback URL

icating? OAuth 1.0a appiications shoulc

2 this fiefd blank.

Developer Agreement

[Yes, | have read and agree o the Twiller Developer Agreement.

Create your Twitter application

Figure 10-5. Twitter app creation

266

CHAPTER 10 SPARK REAL-TIME USE CASE

Once the application is created, the keys can be obtained in the Keys and Access Tokens
section shown in Figure 10-6.

ApressTwitter_ApplicationO1

Details Settings Keys and Access Tokens Permissions
Application Settings

Consumer Key (API key) [
Gonsumer Secret (API Secret)
Figure 10-6. Keys and Access Tokens tab

Figure 10-7 shows the access tokens created to authenticate the application.
Your Access Token
access oren secret |

Access Level Read and write

Figure 10-7. Twitter apps access keys and tokens

267

CHAPTER 10 SPARK REAL-TIME USE CASE

Once the authentication keys are created, add the mentioned jars to the Spark classpath
and import the APIs shown in Figure 10-8.

scala> import twitter4j._
import twitter4j._

scala> import twitter4j.status
import twitter4j.Status

scala> import collection.JlavacConversions._
import collection.JavacConversions._

scala> import org.apache.spark.streaming.twitter._
import org.apache.spark.streaming. twitter._

scala> import org.apache.spark.Sparkconf
import org.apache.spark.sparkconf

scala> import org.apache.spark._
import org.apache.spark._

scala> val CONSUMER_KEY = " "
CONSUMER_KEY: Stri ng =

scala> val CONSUMER_SECRET = "
CONSUMER_SECRET: String =

scala> val ACCESS_TOKEN = " T
ACCESS_TOKEN: String =

scala> val ACCESS_TOKEN_SECRET = " "
ACCESS_TOKEN_SECRET: String =

scala> System.setProperty("twitter4j.oauth.consumerkKey", CONSUMER_KEY)
res0: Sstring = null

scala> System.setProperty("twitter4j.oauth.consumersecret”, CONSUMER_SECRET)
resl: string = null

scala> System.setProperty("twitter4j.oauth.accessToken", ACCESS_TOKEN)
res2: string = null

scala> System.setProperty("twitter4j.oauth.accessTokenSecret", ACCESS_TOKEN_SECRET)
res3: String = null

Figure 10-8. Importing the APIs

After setting all the properties and the authentication keys, create the Twitter instance
and search the tweets for @apress as shown in Figure 10-9.

scala> val twitterInstance = new TwitterFactory().getInstance

scala> val tweets = twitterInstance.search(new Query("@apress")).getTweets
scala> tweets.foreach(tweet => printin(tweet.getText + "\n"))

Figure 10-9. Searching the tweets for @apress

268

CHAPTER 10 SPARK REAL-TIME USE CASE

The getText function (see Figure 10-10) retrieves the tweet text from all the tweets.

Today's @Apress $9.99 eBook (Apr. 20): "Pro Oracle Identity and Access Managemen
t suite" by Kenneth Ramey? https://t.co/Z178velbqi

we're thinking about #0Aweek which is just 6 months away! Check out our blog fro
m last time about #openaccess where? https://t.co/C7sn0hiGGD

RT @Apress: Interested in Machine Learning? Register for our first Apress webina
r where author & #ML scientist @geoffHulten discusses what?

RT @SN_OAbooks: we're halfway to the next #0Aweek - just 6 months away! Did you
catch our blog about #openaccess last time? Editors from @s?

RT @LouiseEditor: "The Four Horsemen of the Test Suite: Stubs, mocks, spies and
dummies” - New blog post from @Apress author @deletemanl23?

RT @LouiseEditor: Exciting times at @Apress as we are accepting video proposals!
Contact me for more details: Tlouisecorrigan@apress.com -us?

RT @SN_OAbooks: We're halfway to the next #OAweek - just 6 months away! Did you
catch our blog about #openaccess last time? Editors from @s?

Figure 10-10. The getText function results

The complete code for this use case is given next and the build procedure is also
explained.

package com.apress.twitteranalysis

import twitter4j._

import twitter4j.Status

import collection.JavaConversions.

import org.apache.spark.streaming.twitter.
import org.apache.spark.SparkConf

import org.apache.spark.

object ApressTwitterTweetsEventDetection {
def main(args: Array[String]): Unit = {

val sparkSession = SparkSession.builder
.appName("ApressEventDetectionExample")
.master("local[*]")
.getOrCreate()

269

CHAPTER 10 SPARK REAL-TIME USE CASE
import sparkSession.implicits._

val CONSUMER KEY = "<Specify your key>"

val CONSUMER_SECRET = "<Specify your key>"
val ACCESS_TOKEN = "<Specify your key>"

val ACCESS TOKEN SECRET "<Specify your key>"

System.setProperty("twitter4j.oauth.consumerKey", CONSUMER KEY)
System.setProperty("twitter4j.oauth.consumerSecret™, CONSUMER SECRET)
System.setProperty("twitter4j.oauth.accessToken", ACCESS_TOKEN)
System.setProperty("twitter4j.oauth.accessTokenSecret", ACCESS_
TOKEN_SECRET)

val twitterInstance = new TwitterFactory().getInstance
val tweets = twitterInstance.search(new Query("@apress")).getTweets

tweets.foreach(tweet => println(tweet.getText + "\n"))

Note To execute the given code in any IDE that supports Scala, it is mandatory
to add the Scala library to the project workspace and all the Spark jars to the
classpath.

In this example, we just print the tweets in the console. Now it can be checked for any
word or any event in the tweet and any custom implementation can be triggered based
on the content of the tweets.

Build Procedure

The jars files can be downloaded from the Maven central repository or using SBT to build
the application.

spark-streaming-twitter_2.11-1.6.3.jar
http://central.maven.org/maven2/org/apache/spark/spark-streaming-
twitter 2.11/1.6.3/spark-streaming-twitter 2.11-1.6.3.jar

270

CHAPTER 10 SPARK REAL-TIME USE CASE
The dependency is added in SBT as follows:

libraryDependencies += "org.apache.spark" %% "spark-streaming-twitter"
%"1.6.3"

twitterqj-core-4.0.6.jar
http://central.maven.org/maven2/org/twitter4j/twittersj-core/4.0.6/
twitter4j-core-4.0.6.jar

The dependency is added in SBT as follows:

libraryDependencies += "org.twitter4j" % "twitter4j-core" % "4.0.6"
twitterqj-stream-4.0.6.jar
http://central.maven.org/maven2/org/twitter4j/twitter4j-stream/4.0.6/
twitter4j-stream-4.0.6.jar

The dependency is added in SBT as follows:

libraryDependencies += "org.twitter4j" % "twitter4j-stream" % "4.0.6"

Building the Application with SBT

The SBT installation procedure has already been discussed in the previous chapters.
Follow the further steps to add the Twitter and Spark Streaming dependencies in the
build.sbt file as shown here. Add the content shown in Figure 10-11 in the build. sbt file.

/name 1= "ApressTwitterTweetsEventDetection” \

version := "1.0"

scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-streaming-twitter" % "1.6.3"

libraryDependencies += "org.twittersj" % "twitter4j-core" % "4.0.6"

libraryDependencies += "org.twitter4j" % "twitter4j-stream" % "4.0.6"

-

Figure 10-11. build.sbt file

271

CHAPTER 10 SPARK REAL-TIME USE CASE

SBT downloads the required dependencies for the Spark SQL and keeps them in the
local repository if it is not available while building the jar.

Note It is recommended to use the SBT for building and packaging the Scala
classes.

Create the folder structure as displayed in Figure 10-12 for the SBT build.

ApressTwitter

ey
I gy

main

ApressTwitterTweetsEventDetection.scala I

Figure 10-12. Directory structure for SBT build

ApressTwitter is the parent directory and src/main/scala are subdirectories. Navigate
to the folder ApressTwitter (i.e., cd /home/ApressTwitter). Now execute the Scala
build package command to build the jar file.

> cd /home/ApressTwitter
> sbt clean package

Once the build has succeeded, it creates the project and target directory as shown in
Figure 10-13.

~

Name v Type Size
project File folder
src File folder
target File folder
'] build.sbt SBT File 1KB

Figure 10-13. SBT build directory structure
272

CHAPTER 10 SPARK REAL-TIME USE CASE

SBT creates the application ApressTwitterTweetsEventDetection-1.0 2.11.jar inthe
target directory. Now, the application can be submitted to the Spark cluster by using this
command:

spark-submit --class ApressTwitterTweetsEventDetection --master
spark://<hostIP>:<port> ApressTwitterTweetsEventDetection-1.0 2.11.jar

where spark://<hostIP>:<port> is the URI for Spark master. By default, the Spark
master runs on port 7077. However, it can be changed in the configuration files.

Points to Remember

o Data analytics life cycle and layers are data ingestion, data storage,
data processing, and data visualization.

o Data ingestion is the process of extracting data from multiple sources
(batch or real-time) and persisting in the storage layer.

o The storage layer should take care of storing any type of data and
keep scaling to keep up with the growth of data exponentially.

o The data processing system connects directly to the data ingestion
layer or storage layer and it is applicable for online and offline
analytics to provide faster and low-latency processing results.

o Dashboards can be created to help the user to perform visual analysis
directly from the ingested source or the processed data in the

visualization layer.

273

Index

A

Apache Spark, 60, 141, 237
installation, 73-76
master UI, 76-77
persisting RDD, 104
prerequisites, 71-73
scala code, 109
storage levels, 104

Apache Zookeeper, 178

Application programming

interfaces (APIs), 80

B

Batch processing, 142, 263

C

Currying function, 31

D

dapplyCollect function, 249
dapply function, 248
Data analytics project architecture
components, 263
data ingestion, 262
processing data, 263
stages, 262
storage, 263
visualization, 264

© Subhashini Chellappan, Dharanitharan Ganesan 2018

DataFrames
creation, 117
JSON content, 118
show() method, 118
operations, 118
filter() transformation, 119
groupBy() transformation, 120
select() transformation, 119
view, creation, 121-122
Data ingestion, 262
Data processing, 142, 263
Datasets
BookDetails.json, 123
operations, 123-124
reflection-based approach, 125
class attributes, 127
DataFrame, creation, 126
RDD, creation, 125
schema creation, 128
Data storage, 263
Data streaming, 142
Decision tree regression model
creation, 259
predict method, 259
SparkDataFrame, 258
spark.decisionTree {SparkR}, 258
Direct Acylic Graph (DAG), 79
lineage graph, 104
scheduler, 101
visualization, 103
Discretized Streams (DStream), 144

S. Chellappan and D. Ganesan, Practical Apache Spark, https://doi.org/10.1007/978-1-4842-3652-9

275

https://doi.org/10.1007/978-1-4842-3652-9

INDEX

E

Event detection
Apress publications, 264
code, 269-270
getText function, 269
import API, 268
Spark streaming, 264
tweets, @apress, 268
Twitter APIs, 265
Twitter apps, 265
creation, 266
keys and tokens, 267
Twitter source, 264-265

F G
Fault tolerance, 87
Full-session-based tracking, 152-154
Functional programming (FP), 2
anonymous function, 27-28
function composition, 30
function currying, 31
higher order functions, 29
nested functions, 32-34
pure function, 2
example, 3
and impure function, 4
variable length
parameters, 34-36
Function currying, 31-32
Fundamental components,
Spark, 261

H

Hadoop Distributed File System
(HDFS), 80, 85, 97, 143
Hive metastore, 243

276

I, J

Immutability, 87

In-memory computation, 87

Input and output operations
per second (IOPS), 263

Integer indices, 212

K

Kafka
APIs, 176-177
architecture, 178
cluster, 180
concepts, 177-178
consumer console, 182
distributed streaming platform, 175
folder, 181
integration
Spark application, 182
Spark structured streaming, 185
partitioned log, 179

L

Linear regression, 224
fitted model, 251
predict function, 253
predict values, 254
R environment, 251
Spark DataFrame, 252
spark.glm {SparkR} package, 250
Spark libraries, 252
write.ml(model,path), 251
Logistic regression, 229
binomial, 255
coefficients, 257
prediction, 258
read.csv method, 256

SparkDataFrame, 256-257
spark.logit, 255
spark.ml, 255

M,N, O
Machine algorithms, 250
Machine learning (ML), 190
Maven central repository, 270
ML pipelines
classification algorithms, 229
creation, 219
estimator, 216
importing, APIs, 217
K-Means clustering algorithm, 234-235
predicting tables, 220, 222
Spark Shell, 217
test documents, 219
testing time usage, 223
training time usage, 223
transformer, 216
Multinode cluster setup
Oracle VirtualBox (see VirtualBox)
Spark, 60
application UI, 68
installation, 62
master UI, 67
prerequisites, 61
stopping, Spark cluster, 70

PQ

Partitioning, 87

Pattern matching, 13-14

Pearson chi-square (y?) tests, 198-199

Pearson correlation, 195-196

Product-moment correlation coefficient
(PMCC), 195

INDEX

Pure function, 2
example, 3
and impure function, 4

R

read.df method, 242
Read, evaluate, print loop (REPL), 85
Real-time processing, 80, 142
Regression algorithms, 224
Relational database management system
(RDBMS), 121
Resilient distributed data set (RDD)
actions, 87
count(), 96
first(), 96
foreach(func), 97
foreach(println), 98
reduce(func), 95
result data set, 96
take(n), 97
clusters, 86
creation
Hadoop File System, 90
parallelize method, 88
partitioning, 90
textFile() method, 89
fault tolerance, 87
immutability, 87
in-memory computation, 87
lazy evaluations, 87
operations, 88
partitioning, 87
transformations, 87
distinct([numTasks]), 94
filter(func), 92
flatMap(func), 91
intersection(otherDataset), 94

277

INDEX

Resilient distributed data set (RDD) (cont.)

map(func), 91
mapPartitions(func), 92-93

mapPartitionsWithIndex(func), 93

union(otherDataset), 93-94
variables, 105
accumulators, 106-107
broadcast, 106
RStudio, 238

S

Scala programming

case classes, 18, 20-21

class vs. object, 14-15

companion classes and
objects, 17-18

getOrElse() method, 23

immutablity, 7

iterating over collection, 23-24

lazy evaluation, 8, 10

methods of collection, 25-26

Option|[T] collection, 23

pattern matching, 13-14

singleton object, 15-16

string interpolation (see String
interpolation)

type inference, 6

variable declaration and
initialization, 5

Simple Build Tool (SBT), 79, 270-271

ApressTwitterTweetsEvent
Detection-1.0_2.11.jar, 273

build directory structure, 272

build.sbt file, 271

Spark cluster, 273

Spark master, 273

Spark SQL, 272

278

Spark
architecture, 82
cluster manager, 83
components, 84
data frame distribution, 85
GraphX, 85
MLib, 85
RDD, 84
SQL data, 84
streaming, 85
DAG (see Direct Acylic
Graph (DAG))
vs. Hadoop MapReduce, 81
pair RDDs
groupByKey([numTasks]), 98
reduceByKey (func,
[numTasks]), 99
sortByKey([ascending],
[numTasks]), 100-101
SBT, 107
folder structure, 108
output directory, 111
Spark cluster, 110
target directory, 109
Spark binaries, 62
SparkDataFrame
column operations, 247
creation
.csv file, 242-243
data sources, 242
Hive table, 243
JSON file, 242
local R DataFrame, 241
read.df method, 242
defined, 237
grouping and
aggregation, 245-246
select query, 244-245

Spark environment
variable, 240
Spark Machine Learning Library
(Spark MLIlib), 189
correlation, 195
DataFrame-based APIs, 190
features, 190
extraction, 201
StopWordsRemover, 207-209
StringIndexer, 209-211
tokenizer, 206
VectorSlicer, 212-215
hypothesis testing, 198
pipelines (see ML pipelines)
sparse vectors, 193-194
TF-IDE 201, 203, 205
vectors in Scala, 191-192
Spark master, 65, 67, 273
SparkR
dapplyCollect
function, 249
dapply function, 248
RStudio, 238-240
sparkR.session, 240
SQL queries, 249-250
Spark single-node cluster
setup, 70-71
SparkSession, 116, 238
Hive support, 133
Spark Shell, 85-86, 117, 185, 217
Spark SQL
DataFrame (see DataFrames)
dataset (see Datasets)
data sources, 129
format() functions, 130
JDBC connectivity, 132
load/save functions, 129
Hive tables, 133-135

INDEX

SBT building, 135
cluster, 137
directory structure, 137
folder structure, 136
Spark streaming, 142, 264
architecture, 143
DStream, 144
features, 143
internal working, 143
stateful streaming, 149
applications, 155
full-session-based tracking, 152-154
window-based
streaming, 149-152
Streaming Context, 144
using TCP socket, 145-148
Spark structured streaming
DataFrames/Datasets (see Streaming
DataFrames/Datasets)
definition, 158
programming model, 158-159
word count example, 160-162
stateful streaming
watermarking, 170-171
window operations, 167-170
triggers, 171
fault tolerance, 173
type, 172-173
Sparse vectors, 193-194
Spearman correlation, 195, 198
Streaming DataFrames/Datasets
creation, 163-164
operation, 164-167
String indices, 212
String interpolation, 10
finterpolator, 12-13
raw interpolator, 13
s interpolator, 11

279

INDEX

T, U virtual machine creation, 49

hard disk, creation, 51-52

hard disk file location,
specification, 54

hard disk storage type, selection, 53

iso disk file, 56

memory specification, 50

VW X Y,Z network adapter selection, 57

network configuration, 58

network settings, 57

settings, 56

Tableau tool, 264

TCP socket, 143, 145-148, 160

Term Frequency-Inverse Document
Frequency (TF-IDF), 201, 203, 205

VirtualBox
installation, 41-47
manager, 40

SparkMaster machine, 59-60 welcome page, 48

280

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Scala: Functional Programming Aspects
	What Is Functional Programming?
	What Is a Pure Function?
	Example of Pure Function

	Scala Programming Features
	Variable Declaration and Initialization
	Type Inference
	Immutability
	Lazy Evaluation
	String Interpolation
	String - s Interpolator
	String - f Interpolator
	String - raw Interpolator

	Pattern Matching
	Scala Class vs. Object
	Singleton Object
	Companion Classes and Objects
	Case Classes
	Pattern Matching on Case Classes

	Scala Collections
	Iterating Over the Collection
	Common Methods of Collection

	Functional Programming Aspects of Scala
	Anonymous Functions
	Higher Order Functions
	Function Composition
	Function Currying
	Nested Functions
	Functions with Variable Length Parameters

	Reference Links
	Points to Remember

	Chapter 2: Single and Multinode Cluster Setup
	Spark Multinode Cluster Setup
	Recommended Platform
	Operating System

	Prerequisites
	Spark Installation Steps
	Spark Web UI
	Spark Master UI
	Spark Application UI

	Stopping the Spark Cluster

	Spark Single-Node Cluster Setup
	Prerequisites
	Spark Installation Steps
	Spark Master UI

	Points to Remember

	Chapter 3: Introduction to Apache Spark and Spark Core
	What Is Apache Spark?
	Why Apache Spark?
	Spark vs. Hadoop MapReduce
	Apache Spark Architecture
	Spark Components
	Spark Core (RDD)
	Spark SQL
	Spark Streaming
	MLib
	GraphX
	SparkR

	Spark Shell
	Spark Core: RDD
	RDD Operations
	Transformations
	Actions

	Creating an RDD
	Using Parallelized Collection
	From External Data Source
	Creating an RDD from the Hadoop File System
	Creating an RDD: File Partitioning

	RDD Transformations
	RDD Actions
	Working with Pair RDDs
	Direct Acylic Graph in Apache Spark
	How DAG Works in Spark
	How Spark Achieves Fault Tolerance Through DAG

	Persisting RDD
	Shared Variables
	Broadcast Variables
	Accumulators

	Simple Build Tool (SBT)
	Assignments
	Reference Links
	Points to Remember

	Chapter 4: Spark SQL, DataFrames, and Datasets
	What Is Spark SQL?
	Datasets and DataFrames

	Spark Session
	Creating DataFrames
	DataFrame Operations
	Untyped DataFrame Operation: Select
	Untyped DataFrame Operation: Filter
	Untyped DataFrame Operation: Aggregate Operations

	Running SQL Queries Programatically
	Creating Views

	Dataset Operations
	Interoperating with RDDs
	Reflection-Based Approach to Infer Schema

	Different Data Sources
	Generic Load and Save Functions
	Manually Specifying Options
	Run SQL on Files Directly
	JDBC to External Databases

	Working with Hive Tables
	Building Spark SQL Application with SBT

	Points to Remember

	Chapter 5: Introduction to Spark Streaming
	Data Processing
	Streaming Data
	Why Streaming Data Are Important

	Introduction to Spark Streaming
	Internal Working of Spark Streaming
	Spark Streaming Concepts
	Discretized Streams (DStream)
	Streaming Context
	DStream Operations

	Spark Streaming Example Using TCP Socket
	Stateful Streaming
	Window-Based Streaming
	Full-Session-Based Streaming

	Streaming Applications Considerations
	Points to Remember

	Chapter 6: Spark Structured Streaming
	What Is Spark Structured Streaming?
	Spark Structured Streaming Programming Model
	Word Count Example Using Structured Streaming

	Creating Streaming DataFrames and Streaming Datasets
	Operations on Streaming DataFrames/Datasets
	Stateful Streaming: Window Operations on Event-Time
	Stateful Streaming: Handling Late Data and Watermarking
	Triggers
	Fault Tolerance
	Points to Remember

	Chapter 7: Spark Streaming with Kafka
	Introduction to Kafka
	Kafka Core Concepts
	Kafka APIs

	Kafka Fundamental Concepts
	Kafka Architecture
	Kafka Topics
	Leaders and Replicas

	Setting Up the Kafka Cluster
	Spark Streaming and Kafka Integration
	Spark Structure Streaming and Kafka Integration
	Points to Remember

	Chapter 8: Spark Machine Learning Library
	What Is Spark MLlib?
	Spark MLlib APIs
	Vectors in Scala
	Vector Representation in Spark

	Basic Statistics
	Correlation
	Hypothesis Testing

	Extracting, Transforming, and Selecting Features
	Feature Extractors
	Term Frequency–Inverse Document Frequency (TF–IDF)
	Example

	Feature Transformers
	Tokenizer
	StopWordsRemover
	StringIndexer

	Feature Selectors
	VectorSlicer

	ML Pipelines
	Pipeline Components
	Estimators
	Transformers
	Pipeline Examples

	Machine Learning Regression and Classification Algorithms
	Regression Algorithms
	Linear Regression

	Classification Algorithms
	Logistic Regression

	Clustering Algorithms
	K-Means Clustering

	Points to Remember

	Chapter 9: Working with SparkR
	Introduction to SparkR
	SparkDataFrame
	SparkSession

	Starting SparkR from RStudio
	Creating SparkDataFrames
	From a Local R DataFrame
	From Other Data Sources
	From Hive Tables

	SparkDataFrame Operations
	Selecting Rows and Columns
	Grouping and Aggregation
	Operating on Columns

	Applying User-Defined Functions
	Run a Given Function on a Large Data Set Using dapply or dapplyCollect

	Running SQL Queries from SparkR
	Machine Learning Algorithms
	Regression and Classification Algorithms
	Linear Regression

	Logistic Regression
	Decision Tree

	Points to Remember

	Chapter 10: Spark Real-Time Use Case
	Data Analytics Project Architecture
	Data Ingestion
	Data Storage
	Data Processing
	Data Visualization

	Use Cases
	Event Detection Use Case
	Build Procedure
	Building the Application with SBT

	Points to Remember

	Index

