Computer
Programming
For Beginners
Quick Start Guide
Tutorial Book 3
Ray Yao
Copyright © 2015 by Ray Yao
All Rights Reserved
Neither part of this book nor whole of this book may be reproduced or transmitted in any form or by any means electronic, photographic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without prior written permission from the author. All rights reserved!
Ray Yao
About the Author: Ray Yao
Certified PHP engineer by Zend, USA
Certified JAVA programmer by Sun, USA
Certified SCWCD developer by Oracle, USA
Certified A+ professional by CompTIA, USA
Certified ASP. NET expert by Microsoft, USA
Certified MCP professional by Microsoft, USA
Certified TECHNOLOGY specialist by Microsoft, USA
Certified NETWORK+ professional by CompTIA, USA
www . amazon . com/author/ray-yao
“In 8 Hours” eBooks & Books on Amazon
Preface
“Computer Programming” covers all essential computer language knowledge. You can learn complete primary skills of computer programming fast and easily.
The book includes six crash courses, such as PowerShell, Node.js, Django, Scala, Swift, Perl.
Note:
This book is only for computer programming beginners, it is not suitable for experienced computer programmers.
Source Code for Download
This book provides source code for download; you can download the source code for better study, or copy the source code to your favorite editor to test the programs.
Table of Contents
Hour 1 Introduction
Hour 2 Basics
Hour 3 Operators
Hour 4 Statement
Hour 5 Function
Hour 6 String
Hour 7 Object
Hour 8 Pipeline
Appendix 1
Appendix 2
Source Code Download
Hour 1 Introduction
Hour 2 Basics
Hour 3 Event
Hour 4 Write/Read
Hour 5 Stream
Hour 6 File
Hour 7 Operations
Hour 8 Modules
Appendix
Source Code Download
Hour 1 Introduction
Hour 2 Basics
Hour 3 Django Tags
Hour 4 Models
Hour 5 Form/Method
Hour 6 Administration Tool
Appendix 1
Python Basic
Appendix 2
Texts & Answers
Source Code Download
Hour 1 Introduction
Hour 2 Basics
Hour 3 Operators
Hour 4 Statement
Hour 5 Methods
Hour 6 Arrays
Hour 7 Collection
Hour 8 Class/Object
Appendix 1
Appendix 2
Source Code Download
Hour 1 Introduction
Hour 2 Basics
Hour 3 Operators
Hour 4 Statements
Hour 5 String/Array
Hour 6 Collection
Hour 7 Class/Object
Hour 8 Operations
Q & A
Source Code Download
Hour 1 Introduction
Hour 2 Basics
Hour 3 Hash
Hour 4 Statement
Hour 5 Operations
Hour 6 Files
Hour 7 Functions
Hour 8 Class/Object
Appendix
Perl Q & A
Source Code Download
PowerShell
Hour 1
Introduction
What is PowerShell?
PowerShell is a command-line script environment running on a Windows machine for automate system and application management. You can think of it as an extension of the command line prompt cmd. exe. PowerShell is built on the. net platform, and all that are passed by the command are . net objects. PowerShell fully supports the use of objects. It is readable, easy to use, and powerful. From Window 7 to now, various operating systems have built-in PowerShell platforms.
Currently there are five versions of PowerShell:
Operating Systems | Versions: |
Windows Vista or Windows Server 2008 | PowerShell 1 . 0 |
Windows 7 or Windows Server 2008 R2 | PowerShell 2 . 0 |
Windows 8 or Windows Server 2012 | PowerShell 3 . 0 |
Windows 8 . 1 or Windows Server 2012 R2 | PowerShell 4 . 0 |
Windows 10 or Windows Server 2016 | PowerShell 5 . 0 |
On August 18, 2016, Microsoft announced that the open source, cross-platform version of PowerShell will support multiple operating systems including Windows, MacOS, CentOS and Ubuntu. It is called “PowerShell Core” and runs on . net Core.
Start PowerShell
Method 1:
Click Start > Windows PowerShell
Method 2:
Click Start > Type “PowerShell” in the Search field.
Method 3:
Click Start > Type “PowerShell” in the Run field.
Method 4:
Click Start > All Programs > Accessories > Windows PowerShell.
After you start the PowerShell, you can see a blue screen.
PowerShell Commands
The format of Powershell command is “verb - noun”.
The syntax to check the PowerShell commands is as follows:
Get-Command |
Example 1.1
PS C:\Users\RAY> Get-Command CommandType Name ----------- ---- Alias Add-ProvisionedAppxPackage Alias Apply-WindowsUnattend …… |
Explanation:
CommandType: There are three command types in PowerShell:
1. Alias: another name of the command.
2. Function: the command is used for a function.
3. Comlet: a powerful PowerShell command, its parameter is a . net object.
Note:
1 . For easier reading, we will omit “PS C:\Users\RAY> ” in later pages .
2 . The PowerSell commands will be shown in bold type in later pages .
Get Command Alias
The syntax to get the command alias is as follows:
Get-Command -CommandType Alias |
Example 1.2
Get-Command -CommandType Alias CommandType Name ----------- ---- Alias % -> ForEach-Object Alias ? -> Where-Object Alias ac -> Add-Content ….. |
Explanation:
The alias of the “ForEach-Object” is %.
The alias of the “Where-Object” is ?
The alias of the “Add-Content” is ac
By the way, the alias of the “Get-Command” is gcm.
Note:
1 . For easier reading, we will omit “PS C:\Users\RAY> ” in later pages .
2 . The PowerSell commands will be shown in bold type in later pages .
Get Commands with Verb
The syntax to get some commands with the specified verb is as follows:
Get-Command –verb Specified-Verb |
Example 1.3
Get-Command -verb Clear CommandType Name ----------- ---- Function Clear-BitLockerAutoUnlock Function Clear-Disk Function Clear-DnsClientCache Function Clear-FileStorageTier Function Clear-Host Function Clear-StorageDiagnosticInfo Cmdlet Clear-Content Cmdlet Clear-EventLog Cmdlet Clear-History …… |
Explanation: “Get-Command -verb Clear” gets the commands with “Clear” verb.
Get Commands with Noun
The syntax to get some commands with specified noun is as follows:
Get-Command -noun Specified-Noun |
Example 1.4
Get-Command -noun Service CommandType Name ----------- ---- Cmdlet Get-Service Cmdlet New-Service Cmdlet Restart-Service Cmdlet Resume-Service Cmdlet Set-Service Cmdlet Start-Service Cmdlet Stop-Service Cmdlet Suspend-Service …… |
Explanation:
“Get-Command -noun Service” gets the commands with “Service” noun.
Command with * Character
The syntax to use * character in the command is as follows:
Get-Command verb-* Get-Command *-noun |
Example 1.5
Get-Command Set-* CommandType Name ----------- ---- Function Set-ClusteredScheduledTask Function Set-DAClientExperienceConfiguration Function Set-DAEntryPointTableItem …… |
“Get-Command Set-*” returns all commands beginning with “Set”
Example 1.6
Get-Command *-Service CommandType Name ----------- ---- Cmdlet Get-Service Cmdlet New-Service Cmdlet Restart-Service …… |
“Get-Command *-Service” retunrs all commands ending with “Service ” .
Help Command
The syntax to get help for a command is as follows:
Help Specified_Command |
Example 1.7
Help Clear-Host NAME Clear-Host SYNOPSIS SYNTAX Clear-Host [<CommonParameters>] DESCRIPTION RELATED LINKS http://go. microsoft. com/fwlink/?LinkID=225747 REMARKS To see the examples, type: "get-help Clear-Host -examples". For more information, type: "get-help Clear-Host -detailed". For technical information, type: "get-help Clear-Host -full". For online help, type: "get-help Clear-Host -online" …… |
Explanation: “Help Clear-Host” can help to know more about the “Clear-Host” command in detail.
Man Command
Man is an alias of the Help commands.
The syntax to man a command is as follows:
Man Specified_Command |
Example 1.8
Man Start-Process NAME Start-Process SYNTAX Start-Process [-FilePath] <string> [[-Argum ring>] [-LoadUserProfile] [-NoNewWindow] [- ing>] [-RedirectStandardOutput <string>] [- Maximized}] [-UseNewEnvironment] [<CommonP Start-Process [-FilePath] <string> [[-Argum ring>] [-Wait] [-WindowStyle <ProcessWindow ALIASES saps start …… |
Explanation:
“Man” can know more about the “Man” command in detail.
Get Service
“Get-Service” command can know about the service the computer provides.
Get-Service |
Example 1.9
Get-Service Status Name DisplayName ------ ---- ----------- Stopped AeLookupSvc Application Experience Stopped ALG Application Layer Gateway Service Running AlibabaProtect Alibaba PC Safe Service Stopped AppIDSvc Application Identity Running Appinfo Application Information Stopped AppReadiness App Readiness Running Audiosrv Windows Audio Stopped AxInstSV ActiveX Installer (AxInstSV) Stopped BaiduUpdater Baidu Updater Stopped BDESVC BitLocker Drive Encryption Service Running BFE Base Filtering Engine Running BITS Background Intelligent Transfer Ser... Running Browser Computer Browser …… |
Explanation:
“Get-Service” can view the service in the current computer.
Arithmetical Operation
We can think of PowerShell as a calculator, input some numbers, add, subtract, multiply, divide and mod, then press Enter key, and see the result.
Example 1.10
10 + 20 + 30 60 100 - 20 80 2 * 80 160 90 / 2 45 10 % 3 1 |
Explanation:
“+ , - , * , / , % ” are the arithmetical operators. After you press the Enter key, you can see the result.
Execute external commands
PowerShell can run external commands as follows:
External Commands | Usages |
ipconfig | Check network configuration |
netstat | Check network port status |
route print | Check route information |
cmd | Launch the CMD console |
cmd /c help | Check available CMD commands |
exit | Exit the CMD |
Example 1.11
cmd /c help For more information on a specific command, type HELP command-name ASSOC Displays or modifies file extension associations. ATTRIB Displays or changes file attributes. BREAK Sets or clears extended CTRL+C checking. …… |
Explanation:
“cmd /c help” can check the available CMD commands.
Create a PowerShell File
PowerShell has own its scripting file, its extension name is .psl
The syntax to create a PowerShell file is as follows:
echo “ file contents ” > name . psl |
Example 1.12
echo "This is a PowerShell scripting file" > myfile.ps1 |
Explanation:
After input the above command, please press the Enter key.
“echo “ file contents ” > name. psl” creates a PowerShell file.
“This is a PowerShell scripting file” is the content of this PowerShell file.
“myfile. psl” is the file name of this PowerShell file.
View the PowerShell File
We can view the contents of the specified PowerShell file.
The syntax to view the contents of the PowerShell file is as follows:
Get-Content . / myfile. ps1 |
Example 1.13
echo "This is a PowerShell scripting file" > myfile.ps1 Get-Content ./myfile.psl This is a PowerShell scripting file |
Explanation:
“Get-Content . /myfile. psl” can show the content of the myfile. psl.
The output is “This is a PowerShell scripting file”.
“./ ” means the relative path.
Hour 2
Basics
Comment
PowerShell uses the # symbol as the comment mark. The PowerShell compiler will ignore the contents of the comments.
comment |
Example 2.1
100 + 200 # add 300 100 - 30 # subtract 70 2 * 500 # multiply 1000 27 / 3 # divide 9 8 % 2 # mod 0 |
Explanation:
“#add, #subtract, #multiply, #divide, #mod” are PowerShell comments, which are ignored by the PowerShell compiler.
Variable
Variables are used to hold data temporarily.
Define a variable:
$variable_name = value |
Show the value of a variable:
$variable_name |
Example 2.2
$x = 100 # define a variable $y = 200 # define a variable $z = 300 # define a variable $x # show $x value 100 $y # show $y value 200 $z # show $z value 300 |
Variable Name
In PowerShell, variable names start with the dollar sign $, and the remaining characters can be any alphanumer, underscore, and any letter.
PowerShell variable names are case-insensitive ($var and $VAR are the same variable). Some special characters are generally not recommended to work as variable names.
The following example will show the usages of some variables:
Example 2.3
$result=$a=$b=$c=100 # assign a value $result # show the value 100 |
Example 2.4
$x=111 $y=222 $x,$y=$y,$x # exchange the values $x 222 $y 111 |
Data Type
Any data has its own data type, we can use “gettype(). name” to check the data type of a variable value.
(data) . gettype(). name |
Example 2.5
(100).gettype().name Int32 (8888888888888888).gettype().name Int64 (168.88).gettype().name Double ("Go in 8 Hours").gettype().name String (Get-Date).gettype().name DateTime |
Explanation:
“(data). gettype(). name” can get the data type of various data.
Specify Data Type
We can specify a data type for a variable when defining a variable.
[type] $variable = value |
Example 2.6
[int]$a=100.88 $a 101 [string]$b=200.99 $b.gettype().name String |
Explanation:
“[int]$a=100. 88” specifies an “int” type for the $a.
“[string]$b=200. 99” specifies a “string” type for the $b.
Date Time Type
To define a variable with Date Time type is as follows:
[Date Time] $variable = value |
Example 2.7
[DateTime] $day=Get-Date $day 7/4/2019 17:41:28 $day.DayOfWeek Thursday $day.DayOfYear 185 |
Explanation:
“[DateTime] $day” specifies Data Time type for the $day.
“Get-Date” gets the current date.
“$day. DayOfWeek” gets the current day in the week.
“$day. DayOfYear” gets the numbers of days in the year.
Create an Array
An array is a collection of variables with the same type and name. These variables are called elements of an array, and each element has a number called an index, also called key.
The syntax to create an array is as follows:
$array_name = element0, element1, element2, element3, … |
Example 2.8
$myArray=100, 111, 112, 113 $myArray 100 111 112 113 |
Explanation:
“$myArray=100, 111, 112, 113” creates an array with four elements. Their values are 100, 111, 112, 113.
The index of the first element is 0.
The index of the second element is 1.
The index of the third element is 2.
Polymorphic Array
The elements of the PowerShell array can be polymorphic, such as int type, string type, date time type, or empty element.
(1) Create a different type array:
$array_name = int, “String”, (date type), … |
Example 2.9
$myArray = 10, “Good”, (get-date) $myArray # different type array 10 Good 7/4/2019 20:18:30 |
(2) Create an empty array:
$array_name = @() |
Example 2.10
$myArray = @() # empty array $myArray -is[array] # check if it’s a array True |
Access Array
The elements of an array can be indexed, with the first element having an index of 0 , and the last element having an index of -1.
The syntax to access the array is as follows:
$array_name[index] |
Example 2.11
$myArray=@() $myArray -is[array] True $myArray = "C#","in","8", "Hours" $myArray[0] C# $myArray[1] in $myArray[2] 8 $myArray[-1] Hours |
Explanation:
“$myArray[0]” accesses the first element “C#”.
“$myArray[-1]” accesses the last element “Hours”.
Array Element
(1) We can create an array by range.
$array_name = num1 .. num2 |
Example 2.12
$myArray = 100 .. 102 # 10 0 . . 102 is a range $myArray 100 101 102 |
(2) We can append some elements to the array.
$array_name += "new_element" |
Example 2.13
$myArray = "C++","in","8 Hours" $myArray += "is a good book!" # append $myArray C++ in 8 Hours is a good book ! |
Insert, Remove Element
To insert or remove Array elements in PowerShell, we need to convert the Array object to an ArrayList object first. Because ArrayList objects have Insert() and RemoveAt() methods, which can insert or delete array elements.
$arraylist = $array # convert array object to arraylist object $arraylist. Insert(index, element) # insert an element $arraylist . Remove(index) # remove an element |
Example 2.14
$myArray = 0..8 $arraylist = $myArray # convert $arraylist.Insert(6,'100') # insert $arraylist.RemoveAt(3) # remove $arraylist 0 1 2 # remove an element “3” 4 5 100 # insert 100 before index 6 6 7 8 |
Clone Array
We can clone a specified array as another array.
The syntax to clone an array is as follows:
$array2 = $array1 . Clone() |
Example 2.15
$array1 = "AngularJS", "in", "8", "Hours" $array2 = $array1.Clone() $array2 AngularJS in 8 Hours |
Explanation:
“$array2 = $array1.Clone() ” clones an array “array1” as another array “array2“.
Hour 3
Operators
Comparison Operators
PowerShell has following comparison operators:
Operators | Descriptions |
-eq | equal |
-ne | not equal |
-gt | greater |
-ge | greater or equal |
-lt | less |
-le | less or equal |
-contains | includes |
-noncontains | not includes |
Example 3.1
(6,7,8) -contains 3 False (1,3,6) -contains 6 True (0,2,5) -notcontains 4 True 8 -eq 6 False "C" -eq "c" True "R" -ne "r" False 10 -lt 100 True 100 -ge 100 True |
Explanation:
-eq | equal |
-ne | not equal |
-gt | greater |
-ge | greater or equal |
-lt | less |
-le | less or equal |
-contains | includes |
-noncontains | not includes |
Logical Not
The operator of negation is -not or !
Operator | Descriptions |
- not | logical not |
! | logical not |
Example 3.2
$bool = 200 -gt 100 $bool True -not $bool False !($bool) False |
Explanation:
If $bool is equal to true, then –not $bool will return false.
If $bool is equal to true, then ! $bool will return false.
Boolean Operators
The following is PowerShell boolean operators:
Operators | Descriptions |
-and | and |
-or | or |
-not | not |
Example 3.3
$x = 1 # 1 represents true
$y = 0 # 0 represents false
$x -and $y
False
$x -or $y
True
Explanation:
true -and true; returns true; | true -and false; returns false; | false -and false; returns false; |
true or true; returns true; | true or false; returns true; | false or false; return false; |
Arithmetic Operators
The following is PowerShell arithmetic operators:
Operators | Descriptions |
+ | Addition |
- | Subtraction |
* | Multiplication |
/ | Division |
% | Modulus |
Example 3.4
$a = 20 $b = 10 $a + $b #addition 30 $a - $b #subtraction 10 $a * $b #multiplication 200 $a / $b #division 2 $a % $b #modulus 0 |
Assignment Operators
The following is PowerShell assignment operators:
Operators | Meanings |
a += b | a = a + b |
a -= b | a = a - b |
a *= b | a = a * b |
a /= b | a = a / b |
a %= b | a = a % b |
Example 3.5
$a = 30
$b = 10
$a += $b
$a
40
$a = 30
$b = 10
$a -= $b
$a
20
$a = 30
$b = 10
$a *= $b
$a
300
$a = 30
$b = 10
$a /= $b
$a
3
$a = 30
$b = 10
$a %= $b
$a
0
Explanation:
a += b means a = a + b
a -= b means a = a - b
a *= b means a = a * b
a /= b means a = a / b
a %= b means a = a % b
Increase / Decrease Operators
The syntax to use ++ or -- is as follows:
Operators | Descriptions |
++ | Increase 1 |
-- | Decrease 1 |
Example 3.6
$x = 10
$x++
$x
11
$y = 10
$y--
$y
9
Explanation:
“$x++” makes the value of $x increasing 1.
“$y--” makes the value of $y decreasing 1.
If-elseif-else
The syntax to use the condition statement is as follows:
If(condition){ # if true, do this elseif(condition) { # if true, do this |
Example 3.7
$num=10 if ($num -gt 20) {"$num is greater than 20 " } else {"$num is less than 20 "} 10 is less than 20 |
“num –gt 20” is false, so the output is “10 is less than 20”.
Example 3.8
$n = +1 if($n -lt 0){"-1" } elseif($n -gt 0){"+1"} +1 |
“$n –gt 0” is true, so the output is “+1”
Example 3.9
$color = "yellow" If($color -eq "green"){ "The color is green" } Elseif($color -eq "yellow"){ "The color is yellow" } Elseif($color -eq "red"){ "The color is red" } Else{ "The color is white" } The color is yellow |
Explanation:
The condition is equal to “yellow”, so the output is “The color is yellow”.
Switch Statement
The switch statement is just like a multiple If-elseif-else statement.
switch(<test_value>) { <condition1> {<action>; break} <condition2> {<action>; break} <condition3> {<action>; break} …… } |
The test_value will compare each condition first, if equals one of the “condition” value; it will execute that “action” code. “break;” terminates the code running.
Example 3.10
switch(3){ 1 {"One"; break} 2 {"Two"; break} 3 {"Three"; break} 4 {"Four"; break} } Three |
Explanation:
The test_value is equal to 3, so it outputs “Three”.
Switch statement can be used to compare the strings.
Example 3.11
$book="Ruby" switch($book){ "Html" {"Html in 8 Hours"; break} "Ruby" {"Ruby in 8 Hours"; break} "Java" {"Java in 8 Hours"; break} "Rust" {"Rust in 8 Hours"; break} } Ruby in 8 Hours |
Explanation:
The test_value is equal to “Ruby”, so it outputs “Ruby in 8 Hours”
Hour 4
Statement
For Loop
You can use the For loop if you know exactly how many times it will repeat, For loop automatically terminates once it reaches its maximum number.
for (init; condition; repeat){ } |
Example 4.1
for ($x = 0; $x -le 4; $x++) { $x } 0 1 2 3 4 |
Explanation:
When $x is less or equal to 4, the For loop will terminate.
The following example shows how to get the sum from 1 to 100.
Example 4.2
$sum=0 for($n=1;$n -le 100;$n++){ $sum+=$n } $sum 5050 |
Explanation:
“for ($n=1;$n -le 100;$n++)” is a For loop statement.
“$n=1” initializes the variable n. The counting begins from 1.
“$n -le 100” is a condition in For loop.
“$n++” increases 1 when repeating one time. “$n” works as both a counter and an increasing value.
Foreach Loop
Foreach loop is used to iterate throughout the each element in a collection .
foreach ($element in $collection) { } |
Example 4.3
$array = ("Java", "Ruby", "Html", "Rust") foreach ($item in $array) { $item } Java Ruby Html Rust |
Explanation:
“foreach ($item in $array)” iterates throughout the each $item in $array.
$_ Symbol
$_ represents the current element in the current loop.
For example. While iterating throughout the elements in an Array (2, 5, 6, 8), $_ represents 2 in the first loop, $_ represents 5 in the second loop, $_ represents 6 in the third loop, $_ represents 8 in the fourth loop.
Example 4.4
$array = ("Java", "Ruby", "Html", "Rust") foreach ($_ in $array) { $_ } Java Ruby Html Rust |
Explanation:
In “foreach ($_ in $array)”, $_ represents the current element in this loop.
While Loop
“while loop” loops through a block of code if the specified condition is true.
while (condition) { } |
Example 4.5
$array = ("Python", "Django", "Kotlin") $increase = 0; while($increase -lt $array.length){ $array[$increase] $increase += 1 } Python Django Kotlin |
Explanation:
“while ($increase -lt $array. length)” loops through the code block while its condition is true.
“$array. length” gets the size of the array.
Do-While Loop
“do... while” loops through a block of code once first, and then repeats the loop if the specified condition is true.
do{ } while (condition); |
Example 4.6
$array = ("C#", "Go", "VB") $increase = 0; do { $array[$increase] $increase += 1 } while($increase -lt $array.length) C# Go VB |
Explanation:
“do... while($increase -lt $array. length)” loops through a block of code once first, and then repeats the loop if the specified condition is true.
Break Statement
“break” keyword is used to stop the running of a loop according to the condition.
break |
Example 4.7
$num=0 while ($num -lt 10){ if ($num=5){ break } # jump out of the while loop $num++ } $num # this command is outside the while loop 5 |
Explanation:
“if ($num=5){ break }” stops the while loop, executes the next command outside the while loop.
Example 4.8
$num=0 while($num -lt 7) { $num++ if($num -eq 5) { break # jump out of the while loop } $num # this command is inside the while loop . } 1 2 3 4 |
Explanation:
“if($num -eq 5){break}” stops the while loop, and leaves the while loop.
Continue Statement
“continue” keyword is used to stop the current loop, ignoring the following code, and then continue the next loop.
continue |
Example 4.9
$num=0 while($num -lt 5){ $num++ if($num -eq 3){ continue } else{ $num } } 1 2 4 5 |
Explanation:
“if($num -eq 3){ continue }” stops the current loop when $num is 3, and continues the next loop.
Example 4.10
$range = 0..6 foreach ($num in $range){ If($num -eq 4){continue} $num } 0 1 2 3 5 6 |
Explanation:
“If($num -eq 4){continue }” stops the current iteration, and continues to execute the next foreach().
Switch and $_
$_ can be used in Switch statement. $_ represents the current element.
Example 4.11
$nums = 0..5 Switch ($nums){ Default { "The num = $_" } } The num = 0 The num = 1 The num = 2 The num = 3 The num = 4 The num = 5 |
Explanation:
$_ represents the current element in each running.
“Default” will run this command when Switch statement has not specified the related values.
Example 4.12
$nums = 3..8 Switch ($nums){ {($_ % 2) -eq 0} {"$_ is an even number"} {($_ % 2) -ne 0} {"$_ is an odd number"} } 3 is an odd number 4 is an even number 5 is an odd number 6 is an even number 7 is an odd number 8 is an even number |
Explanation:
$_ represents the current element in each execution.
Hour 5
Function
Function
A function is a code block that can repeat to run many times. To define a function, use “function function_name { }”.
Function function_name($arg) { } |
To call a function, use “function_name;”
function_name |
Example 5.1
function myFunction { # define a function $num = 100 $num } myFunction # call the function 100 |
Explanation:
“function myFunction ” defines a function named “myFunction”.
“myFunction” call the function “myFunction”.
Function with Argument
We can call a function with parameters.
function_name parameters |
Example 5.2
function myFunc($arg1, $arg2){ $arg1 $arg2 } myFunc Very Good! # call the function with parameters Very Good ! |
Explanation:
“$arg1, $arg2” receives the parameters.
“myFunc Very Good! ” calls the function “myFunct”, passes two parameters to “$arg1, $arg2”.
“Very” and “Good! ” are parameters when calling the function.
Return Values
“return” can return a value to the caller.
function function_name ($arg) { return value } |
To call a function, use “function_name parameters”
function_name parameters |
Example 5.3
function myFunc($arg1,$arg2){ return $arg1+$arg2 # return the sum to the caller } myFunc Java Script JavaScript |
Example:
As parameters, “Java” and “Script” are sent to $arg1 and $arg2.
“return $arg1+$arg2” returns the value “JavaScript” to the caller.
Return Value Operation
We can calculate the return values with various ways.
Example 5.4
function Multiply($num){ return $num * $num } Multiply 2 $result= Multiply 3 $result++ $result $result -is [array] 4 10 False |
Explanation:
“$result++” increases 1 to the return value.
“$result -is [array]” checks the return value if it is an array.
Default Parameters
We can specify a default parameter value for the function.
function func_name ($a=v1, $b=v2,…) { } |
Example 5.5
function myFunc($a="Angular", $b="JS") { return $a + $b } myFunc AngularJS |
Explanation:
“myFunc($a="Angular", $b="JS")” specifies two default parameters for the function “myFunc”
Specify Parameter Type
We can specify the type of the function parameters.
function func_name(type $arg1, type $arg2,…) { } |
Example 5.6
function myFunc([int]$x, [int]$y) { return $x + $y } myFunc 10.123 20.5 30 |
Explanation:
“function myFunc([int] $x, [int] $y)” specifies the “int” as a parameter type.
“myFunc 10. 123 20. 5” calls the function with two float-type values, but returns an int-type result.
Datatime Parameter
We can specify the Datatime type as the function parameters.
function func_name([datetime]$arg) |
Example 5.7
function DayOfWeek([datetime]$day){ return $day.DayOfWeek } DayOfWeek 1776-7-4 Thursday DayOfWeek 1949-10-1 Saturday |
Explanation:
“DayOfWeek” is a function name.
“[datetime]$day)” specifies “datetime” as a parameter type.
“DayOfWeek 1776-7-4” calls the function “DayOfWeek” with a datetime-type parameter “1776-7-4”.
“DayOfWeek 1949-10-1” calls the function “DayOfWeek” with a datetime-type parameter “1949-10-1”.
Switch Parameters
A function with the switch parameters will allow user to specify a parameter.
function func_name([switch] $arg) { } |
Example 5.8
function Hello($name, [switch] $male) { if ($male) { "Hello Mr. $name" } else { "Hello Ms. $name" } } Hello Andy -male # input –male parameter Hello Rosy -female # input –female parameter Hello Mr. Andy Hello Ms . Rosy |
Explanation:
“Hello Andy -male” specifies a switch parameter “-male”.
“Hello Rosy -female” specifies a switch parameter “-female”.
Filter Function
Filter function can filter the content by pipeline symbol “|”.
To define a Filter function:
filter func_name(){ } |
To call a Filter function:
command | func_name |
Example 5.9
filter myFunc() { # define a filter # want to only show the files with extension . exe if ($_.extension -eq ".exe") { $_ } } dir | myFunc # call the filter function |
Output: # only show the files with extension . exe
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2019/3/28 10:36 141824 const000. exe
-a--- 2019/3/28 11:36 142848 convert000. exe
-a--- 2019/3/29 10:16 142336 fun000. exe
Explanation:
“dir | myFunc” calls the filter function, using a “|” pipeline.
Pipeline Function
The pipeline function is a special function that contains three parts, 1. begin. 2. process. 3. end.
Pipeline function is called by the command with “|” symbol.
To define a pipeline function:
function test() { begin { } process { } end { } } |
To call a pipeline function:
command | pipeline function |
Example 5.10
function myFunc() {
begin {
"Start to run"
}
process {
if ($_ -like "a*") { $_ }
find the elements beginning with "a"
}
end {
"Complete the program"
}
}
$("app", "bee", "ate", "boy", "ago", "bit") | myFunc
Output:
Start to run
app
ate
ago
Complete the program
Explanation:
“if ($_ -like "a*") { $_ }” finds the files beginning with "a".
“ $("app", "bee", "ate", "boy", "ago", "bit") | myFunc ” calls the pipeline function and finds the elements beginning with "a".
Hour 6
String
String
The String is consisted of one or more characters within single quotes or double quotes. The syntax to define a string is:
$myString = ‘ text ’ # using single quotes $myString = “ text ” # using double quotes |
The string included with the single quotes will return original content.
The string included with the double quotes will return different content.
Example 6.1
$var = 8 $string1 = 'Go in $var Hours' # single quotes $string2 = "Go in $var Hours" # double quotes $string1 Go in $var Hours $string2 Go in 8 Hours |
Explanation:
'Go in $var Hours' is included by the single quotes, so the string value is an original content.
“Go in $var Hours”' is included by the double quotes, so the string value is a different content.
$_ in the string
When there are $variable in a string, they will be replaced by the value of the variable itself.
If there is $expression in a string, the expression will be executed, they will be replaced by the value of the expression itself.
Example 6.2
"The system directory is located in th e: $env:windir" # output: The system directory is located in the: C: \Windows "The install directory is located in th e: $env:ProgramFiles" # output: The install directory is located in the: C: \Program Files "The name of this machine i s: $env:computername" # output: The name of this machine is: RAYYAO "The current datetime is: $(get-date)" # output: The current datetime is : 07/14/2019 08: 49: 01 |
Escape Character
The “ ` ” backslash character can be used to escape characters.
`n outputs content to the next new line. `r makes a return `t makes a tab `b makes a backspace `’ outputs a single quotation mark. `” outputs a double quotation mark . |
Example 6.3
"She said `"JQuery in 8 Hours`"" She said "JQuery in 8 Hours" # you can see the “ “ "He said `n Ruby in 8 hours" # output in different lines He said Ruby in 8 hours |
Explanation:
`" JQuery in 8 Hours`" escapes the double quotation marks.
“`n Ruby in 8 hours” output this text in the next line.
Multi-Line String
The @” text “@ format can define multi-line String
@” text1 text2 text3 …… “@ |
Example 6.4
@” Go in 8 Hours Ruby in 8 Hours Scala in 8 Hours AngularJS in 8 Hours JavaScript in 8 Hours “@ # Output a multi-line string Go in 8 Hours Ruby in 8 Hours Scala in 8 Hours AngularJS in 8 Hours JavaScript in 8 Hours |
User Interaction
"read-host" is used to accept the input from users
$variable = read-host " prompt " |
Example 6.5
$title = read-host "Please input the book title" # assumes you will input ‘R in 8 Hours’ . Please input the book title: R in 8 Hours |
The inputted value will be stored in $title.
Example 6.6
"The book title is: $title" The book title is: R in 8 Hours |
Explanation:
$title = read-host "Please input the book title" will accept the input from users, the inputted values will be stored in $title.
"The book title is: $title" shows the value of $title.
Password Input
“read-host” can be used to accept the password input.
$variable = Read-Host -AsSecureString " prompt " |
Example 6.7
$pwd=Read-Host -AsSecureString "Please input password" # assumes you will input ‘12345’ . Please input password: ***** |
Explanation:
The password will be stored in $pwd. But you are not able to see what the password is.
Example 6.8
$pwd # to see the password System.Security.SecureString # this is an output |
Explanation:
“$variable = Read-Host –AsSecureString” is used to accept the input of a password.
Replacement
In a text, a string can be replaced by another string.
"text" -replace "string1", "string2" |
“string1” will be replaced by the “string2”
Example 6.9
"Go in 8 Hours" -replace "Go", "C#" C# in 8 Hours |
Explanation:
“Go” was replaced by “C#”
“-replace” and “-ireplace” is used for case insensitive replacement.
“-creplace” is used for case sensitive replacement.
Example 6.10
"Go in 8 Hours" -creplace "go", "C#" Go in 8 Hours |
Explanation:
“-creplace” is used for case sensitive replacement. So the replacement fails.
String Operators
When we operate the string, we need the operators.
* Represents one string e . g. “C++ in 8 Hours” -like “*” |
+ Connects two strings e . g. “JavaScript” + “in 8 Hours” |
-replace, -ireplace Replace a string, case insensitive e . g. “Kotlin in 8 Hours” -ireplace “Kotlin” , “Django” |
-creplace Replace a string, case sensitive e . g. “Go in 8 Hours” -creplace “go” , “C#” |
-eq, -ieq Check equality, case insensitive e . g. “JQuery in 8 Hours” -ieq “jQuery in 8 Hours” |
-ceq Check equality, case sensitive e . g. “HTML in 8 Hours” -ceq “Html in 8 Hours” |
-like, -ilike Check similarity, case insensitive e . g. “Java in 8 Hours” -ilike “J*” |
- clike Check similarity, case sensitive e . g. “jQuery in 8 Hours” -clike “J*” |
-notlike, -inotlike Check inquality, case insensitive e . g. “Python in 8 Hours” -inotlike “Pg” |
-cnotlike Check inquality, case sensitive e . g. “Rust in 8 Hours” -cnotlike “RU” |
-match, -imatch Check equivalence, case insensitive e . g. “Scala in 8 Hours” -imatch “s*” |
-cmatch Check equivalence, case sensitive e . g. “PHP MySQL in 8 Hours” -cmatch “php*” |
-notmatch, -inotmatch Check inequivalence, case insensitive e . g. “Html Css in 8 Hours” -inotmatch “H*” |
-cnotmatch Check inequivalence, case sensitive e . g. “Visual Basic in 8 Hours” -cnotmatch “V*” |
Format String
“ -f ” can specify an output format of a string.
“myString {num1} {num2} {num3}” -f arg1, arg2, arg3, ... |
The num1, num2, num3 will be respectively replaced by the arg1, arg2, arg3.
Example 6.11
“Java {0} {1} {2}” -f "in", (2*4), “Hours” # Output: Java in 8 Hours |
Explanation: The {0}, {1}, {2} will be replaced respectively by the arg1, arg2, arg3 of the -f .
Example 6.12
“ActionScript {2} {0} {1}” -f "in", (2*4), “Hours” # Output: ActionScript Hours in 8 # different sequence |
Explanation: The {0}, {1}, {2} will be replaced respectively by the arg1, arg2, arg3 of the -f .
String Method
To create a String object:
$myString = “ text ” # $myString is a string object |
To use a String method:
$myString . method() |
Example 6.13
$str="jQuery in 8 Hours" $str.ToUpper() # convert to uppercase JQUERY IN 8 HOURS $str.Contains("Q") # check if contains Q True |
Explanation:
“ToUpper()” is a method which is used to convert a string to uppercase.
“Contains()” is a method which is used to check if the string contains a specified character.
String Object Methods
CompareTo() Comapre to another string e . g . (“GOOD”) . CompareTo(“Good”) |
Contains() Check if contains a specified substring . e . g . (“Good”) . Contains(“od”) |
EndsWith() Check if end with a specify substring . e . g . (“Excellent”) . EndsWith(“ent”) |
Equals() Check if equal to another string . e . g . (“string1”) . Equals("string2") |
IndexOf() Returns the index of the first match . e . g . (“Excellent”) . IndexOf(“e”) |
IndexOfAny() Returns the first matching index of any character in the string . e . g . (“Excellent”) . IndexOfAny(“len”) |
Insert() Inserts a string at the specified location e . g . (“R in 8 Hours”) . Insert(0,"Learn ") |
GetEnumerator() Enumerate all characters in a string . e . g . (“Excellent”) . GetEnumerator() |
LastIndexOf() The last matching position of the character . e . g . (“Excellent”) . LastIndexOf(“e”) |
LastIndexOfAny() The last matching position of any character e . g . (“Excellent”) . LastIndexOfAny(“ce”) |
PadLeft() Fill in the blanks on the left e . g . (“Good”) . PadLeft(8) |
PadRight() Fill in the blanks on the right e . g . (“OK ! ”) . PadRight(8) + “Good ! ” |
Remove() Removes the specified length from the specified position e . g . (“Excellent”) . Remove(3,2) |
Replace() Repladce the specified string e . g . (“Excellent”) . Replace("cel","aaa") |
Split() Cuts the string with the specified delimiter e . g . (“Excellent”) . Split(“e”) |
StartsWith() Check if start with the specified substring e . g . (“Excellent”) . StartsWith(“Ex”) |
Substring() Extracts a specified length substring from a specified position e . g . (“Excellent”) . Substring(3,4) |
ToCharArray() Convert to character array e . g . (“Excellent”) . ToCharArray() |
ToLower() Convert to lower case e . g . (“Excellent”) . ToLower() |
To Upper() Convert to upper case e . g . (“Excellent”) . ToUpper() |
Trim() Remove Spaces before and after the string e . g . (“ Excellent ”) . Trim() |
TrimStart() Remove the space at the beginning of the string e . g . (“ Excellent ”) . TrimStart() |
TrimEnd() Remove Spaces at the end of the string e . g . (“ Excellent ”) . TrimEnd() |
Chars() Returns the character at the specified position e . g . (“Excellent”) . Chars(2) |
Hour 7
Object
Object
Object refers to a concrete something. For example: a car, a book, a dog, a house, etc…
The syntax to create an object is as follows:
$myObj = New-Object object |
“$myObj = New-Object object” creates an object named “myObj”.
Example 7.1
$Service=New-Object object $Service System . Object |
Explanation:
“$Service=New-Object object” creates a new object named “$Service”
From the output, you can know that the attribute of $Service is a “System. Object”.
About New-Object
If we want to know more about the command “New-Object”, we can use “Help New-Object”
Help New-Object |
Example 7.2
Help New-Object NAME New-Object SYNTAX New-Object [-TypeName] <string> [[-ArgumentList] <Object[]>] New-Object [-ComObject] <string> [-Strict] [-Property <IDicti ALIASES None REMARKS Get-Help cannot find the Help files for this cmdlet on this c -- To download and install Help files for the module that -- To view the Help topic for this cmdlet online, type: " go to http://go . microsoft. com/fwlink/?LinkID=113355...... |
Explanation: “Help New-Object” help you know more about the syntax and aliases of “New-Object”.
DateTime Object
The syntax to create a Datetime object is as follows:
$myObj = New-Object System . DateTime yyyy/m/d h, m, s |
The above command creates a datetime object and set a datetime with the parameters such as year, month, date, hour, minute, second
Example 7.3
$date = New-Object System.DateTime 2019,7,4, 10,30,0 $date July 4, 2019 10 : 30: 00 |
Explanation:
“$date=New-Object System. DateTime 2019,7,4, 10,30,0” creates a DateTime object, and sets a datetime with the parameters such as year, month, date, hour, minute, second.
Object Member
Object Member refers to the properties and methods of an object.
Property describes what an object is. Method() indicates what an object can do. The syntax to know the object members is:
$myObj | Get-Member |
Example 7.4
We have created an object $date in a previous page . Now we want to know about the methods and properties of the $date.
$date | Get-Member TypeName: System. DateTime Name MemberType Definition ---- ---------- ---------- Add Method datetime Add(timespan value) AddDays Method datetime AddDays(double value) AddHours Method datetime AddHours(double value) ….. Date Property datetime Date {get;} Day Property int Day {get;} …… |
Explanation:
“ $date | Get-Member ” can know the methods and properties of $data.
Object Method
Method() indicates what an object can do.
The syntax to use the method of an object is as follows:
$myObj . Method() |
Example 7.5
We have created an object “$date” in the previous page .
$date.AddDays(10) July 14, 2019 10 : 30: 00 |
Explanation:
Originally the datetime of $date was “July 4, 2019 10: 30: 00”
After adding 10 days on $date,
Now the datetime of $date is “July 14, 2019 10: 30: 00”.
Object Property
The object property indicates what an object is.
The syntax to reference the property of an object is:
$myObj . Property |
Example 7.6
We have created an object “$date” in the previous page .
$date.Month 7 |
Explanation:
Originally the datetime of $date was “July 4, 2019 10: 30: 00”, which means the month of $date is July, therefore, the program returns 7.
Add Property
We sometimes need to add some properties to an object.
$myObje | Add-Member NoteProperty Variable Value |
Example 7.7
$fruit = New-Object object $fruit | Add-Member NoteProperty Fruit Color $fruit | Add-Member NoteProperty Apple Red $fruit | Add-Member NoteProperty Pear Yellow $fruit | Add-Member NoteProperty Grape Green $fruit | Add-Member NoteProperty Blueberry Blue $fruit | Add-Member NoteProperty Tangerine Oringe $fruit Fruit : Color Apple : Red Pear : Yellow Grape : Green Blueberry : Blue Tangerine : Oringe |
Explanation:
“$fruit = New-Object object” create an object named “fruit”.
“$fruit | Add-Member NoteProperty Apple Red” add a property and value “Apple Red”.
Add Method
We sometimes need to add some methods to an object.
$myObj | Add-Member ScriptMethod name { code… } |
Example 7.8
$fruit = New-Object object $fruit | Add-Member ScriptMethod eat { "Wow! Yummy!" } $fruit | Add-Member ScriptMethod taste { "OK! Delicious!" } $fruit.eat() # call the method Wow! Yummy! $fruit.taste() # call the method OK ! Delicious! |
Explanation:
“$fruit | Add-Member ScriptMethod eat { "Wow! Yummy! " }” adds a method eat() to object “$fruit”.
“$fruit. eat()” calls the method “eat()”
“$fruit | Add-Member ScriptMethod taste { "OK! Delicious! " }” adds a method taste() to object “$fruit”.
“$fruit. taste()” calls the method “taste()”.
Check Property
We can check the property of an object:
$myObj | Get-Member -memberType NoteProperty |
Example 7.9
$fruit = New-Object object $fruit | Add-Member NoteProperty Fruit Color $fruit | Add-Member NoteProperty Apple Red $fruit | Add-Member NoteProperty Pear Yellow $fruit | Add-Member NoteProperty Grape Green $fruit | Add-Member NoteProperty Blueberry Blue $fruit | Add-Member NoteProperty Tangerine Oringe $fruit | Get-Member -memberType NoteProperty TypeName: System. Object Name MemberType Definition ---- ---------- ---------- Apple NoteProperty System. String Apple=Red Blueberry NoteProperty System. String Blueberry=Blue Fruit NoteProperty System. String Fruit=Color Grape NoteProperty System. String Grape=Green Pear NoteProperty System. String Pear=Yellow Tangerine NoteProperty System . String Tangerine=Oringe |
Explanation:
“$fruit | Get-Member -memberType NoteProperty” can view the properties of $fruit.
Check Method
We can check the method of an object:
$myObj | Get-Member -memberType ScriptMethod |
Example 7.10
$fruit = New-Object object $fruit | Add-Member ScriptMethod eat { "Wo w! Yumm y! " } $fruit | Add-Member ScriptMethod taste { "O K! Deliciou s! " } $fruit | Get-Member -memberType ScriptMethod TypeName: System . Object Name MemberType Definition ---- ---------- ---------- eat ScriptMethod System . Object eat(); taste ScriptMethod Syste m . Object taste(); |
Explanation:
“$fruit | Get-Member -memberType ScriptMethod” can view the methods of the $fruit.
Hour 8
Pipeline
PowerShell Pipeline
PowerShell is the shell language for Windows, which makes it easier to operate Windows System with the command line of an administrator.
The symbol of the pipeline is “ | ”.
The following is some common pipeline commands:
command | Foreach-Object -parameters Usage: Traverse the collection . |
command | Where-Object -parameters Usage: Filter the data |
command | Select-Object -parameters Usage: Selects specified properties of an object |
command | Sort-Object -parameters Usage: Sort the object data |
command | Tee-Object -parameters Usage: Save the output in a file or variable |
command | Group-Object -parameters Usage: Group objects by properties |
command | Measure-Object -parameters Usage: Perform statistics, get min, max, average values |
command | Compare-Object -parameters Usage: Compares two objects or two collections |
Foreach-Object
“Foreach-Object” is used to traverse each element of a collection.
command | Foreach-Object -begin{} -process{} -end{} |
-begin is a pre-processing action
-process is an operation that processes data
-end is an operation after processing
Example 8.1
0 . . 5 | Foreach-Object -begin {"go"} -process { "done $_" } -end {"ok"} go done 0 done 1 done 2 done 3 done 4 done 5 ok |
Explanation:
“0.. 5” is a collection. $_ represents the current element.
“Foreach-Object” traverse each element of a collection.
Where-Object
“Where_Object” is used to filter data. The alias is “? ”.
command | Where-Object -parameters{ } |
The following example views the computer services with the name “A ” .
Example 8.2
Get-Service | Where-Object {$_.Name -like "A*"} Status Name DisplayName ------ ---- ----------- Stopped AeLookupSvc Application Experience Stopped ALG Application Layer Gateway Service Running AlibabaProtect Alibaba PC Safe Service Stopped AppIDSvc Application Identity Stopped Appinfo Application Information Stopped AppReadiness App Readiness Stopped AppXSvc AppX Deployment Service (AppXSVC) Running AudioEndpointBu .. . Windows Audio Endpoint Builder Running Audiosrv Windows Audio …… |
Explanation:
“Get-Service” checks the computer service.
Select-Object
“Select-Object” is used to select specified properties of an object or set of objects.
command | Select-Object -parameters |
Example 8.3
Get-Process | Select-Object ProcessName ProcessName ----------- acrotray conhost dasHost dllhost dwm explorer hkcmd Idle igfxtray ktpcntr notepad powershell …… |
Explanation:
“Get-Process” checks the processes the computer is running.
Sort-Object
“Sort-Object” is used to sort the object data.
command | Sort-Object -parameters |
Example 8.4
Get-Service | Sort-Object -Property DisplayName Status Name DisplayName ------ ---- ----------- Stopped AxInstSV ActiveX Installer (AxInstSV) Running AlibabaProtect Alibaba PC Safe Service Stopped AppReadiness App Readiness Stopped BaiduUpdater Baidu Updater Running BFE Base Filtering Engine Stopped bthserv Bluetooth Support Service Stopped CertPropSvc Certificate Propagation Running KeyIso CNG Key Isolation Running Browser Computer Browser Running DcomLaunch DCOM Server Process Launcher …… |
Explanation:
“Sort-Object -Property DisplayName” sorts the service information by the “DisplayName”.
Tee-Object
“Tee-Object” is used to save the output to a file in the specified directory, or to a variable.
command | Tee-Object -parameters |
Note: Before you use Tee-Object command, you must create a new text file in C:/Users/YourName/ myFile.txt
Example 8.5
Get-Service | Tee-Object -filepath C:/Users/Ray/myFil e. txt Status Name DisplayName ------ ---- ----------- Stopped AxInstSV ActiveX Installer (AxInstSV) Running AlibabaProtect Alibaba PC Safe Service Stopped AppReadiness App Readiness Stopped BaiduUpdater Baidu Updater Running BFE Base Filtering Engine Stopped bthserv Bluetooth Support Service Stopped CertPropSvc Certificate Propagation Running KeyIso CNG Key Isolation Running Browser Computer Browser Running DcomLaunch DCOM Server Process Launcher Running DeviceAssociati .. . Device Association Service …… |
When you open the “ myFile.txt ”, You can see the service information in the file .
Display:
Status Name DisplayName ------ ---- ----------- Stopped AxInstSV ActiveX Installer (AxInstSV) Running AlibabaProtect Alibaba PC Safe Service Stopped AppReadiness App Readiness Stopped BaiduUpdater Baidu Updater Running BFE Base Filtering Engine Stopped bthserv Bluetooth Support Service Stopped CertPropSvc Certificate Propagation Running KeyIso CNG Key Isolation Running Browser Computer Browser Running DcomLaunch DCOM Server Process Launcher Running DeviceAssociati... Device Association Service …… |
Explanation:
“Tee-Object -filepath C:/Users/Ray/myFile. txt” saves the service information to a file in the path C:/Users/Ray/myFile. txt.
Group-Object
“Group-Object” is used to group objects by properties
command | Group-Object -parameters |
Example 8.6
PS C:\Users\RAY> get-childitem | group-object extension Count Name Group ----- ---- ----- 1 . eclipse { . eclipse} 1 . scalac { . scalac} 1 . tooling { . tooling} 1 . txt {myFile . txt} 1 . ps1 {MyScript . ps1} |
Explanation:
“get-childitem” gets all folder names and file names in the path “C: \Users\RAY”. (The childitem of your computer is different with mine.)
“group-object extension” groups the folders and files by extension name.
“Count” represents the number of items in each group.
“Name” represents the values of the extension name.
“Group” represents the object(s) in each Group.
Measure-Object
“Measure-Object” is used to perform the statistics, such as get min, max, average values.
command | Measure-Object -parameters |
Example 8.7
$list = 2,5,16,28,32,69,88 $num = $list | Measure-Object -Minimum -Maximum $num.Minimum # Output 2 $num.Maximum # Output 88 |
Explanation:
“$list | Measure-Object -Minimum -Maximum” performs the statistics for the $list.
“$num. Minimum” gets the minimum value of the $num.
“$num. Maximum” gets the maximum value of the $num
Compare-Object
“Compare-Object” is used to compare two objects or two collections.
compare-object -referenceobject $var1 -differenceobject $var2 |
“-referenceobject $var1” represents the first object
“differenceobject $var2” represents the second object
The comparison result is the difference of the two objects.
Example 8.8
$p1= get-process notepad # open a notepad, run one more process $p2 = get-process compare-object -referenceobject $p1 -differenceobject $p2 # Output InputObject SideIndicator ----------- ------------- Syste m . Diagnostics . Process (notepad) => |
Explanation:
“$p1= get-process” checks the process at the first time.
“notepad” command opens the notepad, the purpose is to run one more process for the next comparison.
“$p2 = get-process” checks the process at the second time.
At this moment, process1 surely is different with the process2. Because after the pocess1, the notepad was opened, one more process has been running. Therefore, the process2 is different to process1.
“InputObect” shows the different status.
The “System. Diagnostics. Process (notepad)” is the difference of two processes.
Appendix 1
Error
Sometimes we need to check any error in the code:
“If($?) ” checks the status of error. If it returns true, means no error. If it returns false, means there is an error . |
To suppress the built-in error message:
-ErrorAction "SilentlyContinue" |
Assume that we want to remove a file that doesn't exist.
Example A1
Remove-Item "ABCD E. txt" -ErrorAction "SilentlyContinue" If ($?) { # Actually ABCD E . txt doesn’t exist "File removed successfully"; break }; "File removed unsuccessfull y! " # Output: File removed unsuccessfull y ! |
Explanation:
“Remove-Item” command is used to remove specified object.
Exception
PowerShell uses “Try-Catch Statement” to resolve the exception.
try{ # exception may happen in here } catch{ # catch the exception } |
Example A2
try{ .\ABCDE.txt # try to access this file } catch{ # but ABCDE . txt file doesn’t exist "An exception is caught, the file does not exist." $_.Exception.Message # show exception message } # Output: An exception is caught, the file does not exist. The . \ ABCDE. text item could not be recognized as the name of the cmdlet, function, script file, or runnable program. Check the spelling of the name, if the path is included. |
Explanation:
Access a file that doesn’t exist, so an exception occurred.
Trap Exception
Trap command can catch the exception and display the exception message.
trap { exception message continue } exception code |
Example A3
trap{ "Trap command catches an exception" $_.Exception.Message continue } 100/0 # exception code in here # Output: Trap command catches an exception Try dividing by zero |
Exception:
“trap” catches an exception and shows an exception message.
“100/0” is an exception code.
Appendix 2
Tests
Please fill in a correct answer.
01.
The format of PowerShell command is _______.
02.
__________ can get the data type of various data.
03.
The operator of negation is _______.
04.
__ represents the current element in the current loop.
05.
To define a function, use ____________________.
06.
______________ creates an object named “myObj”.
07.
The string included with the ———— will return original content.
08.
________ is used to traverse each element of a collection.
09.
__________ gets the command alias.
10.
__________ defines a variable with Date Time type.
11.
_____ makes the value of $x increasing 1.
12.
_____ loop is used to iterate throughout the each element in a collection .
13 .
________ defines a function with the switch parameters.
14.
The syntax to create an object is ________
15.
The __________ format can define multi-line String.
16.
________ command is used to save the output to a file in the specified directory.
17.
_______ command can know about the service the computer provides.
18.
The syntax to access the array is _______.
19.
_________ is an operator that means not include .
20 .
“do / ______” loops through a block of code once first, and then repeats the loop if the specified condition is true.
21.
_________ can define a Filter function.
22.
The syntax to reference the property of an object is ______
23.
_________ command is used to accept the input from users.
24.
_________ is used to perform the statistics, such as get min, max, average values.
25.
The syntax to view the contents of the PowerShell file “myfile. psl” is ________.
26.
The syntax to clone an array is _________.
27.
“-lt” means __________ .
28.
Trap command is used to ________.
29.
The syntax to call a pipeline function is __________.
30.
The syntax to know the object members is ___________.
31.
______________ is used to accept the input of a password.
32.
___________ is used to group objects by properties.
33.
_______ checks the status of error.
Answers
01. verb – noun
02. (data). gettype(). name
03. -not
04. $_
05. function function_name { }
06. $myObj = New-Object object
07. single quotes
08. Foreach-Object
09. Get-Command -CommandType Alias
10. [Date Time] $variable = value
11. $x++
12. Foreach
13. function func_name([switch] $arg) { }
14. $myObj = New-Object object
15. @” text “@
16. Tee-Object
17. Get-Service
18. $array_name[index]
19. –noncontains
20 . while
21 . filter func_name(){ }
22. $myObj. Property
23. read-host
24. Measure-Object
25. Get-Content . / myfile. ps1
26. $array2 = $array1. Clone()
27. less
28. catch exception and show exception message.
29. command | pipeline function.
30. $myObj | Get-Member
31. $variable = Read-Host –AsSecureString
32. Group-Object
33. If($?)
Note:
This book is only for beginners, it is not suitable for experienced programmers.
PowerShell Source Code Download Link:
https://forms . aweber . com/form/97/1907095997 . htm
Source Code Download
PowerShell Source Code Download Link:
https://forms . aweber . com/form/97/1907095997 . htm
Node.Js
Hour 1
Introduction
Node . Js Introduction
What is Node.Js
Nod e . js is a server platform built on Google Chrome's JavaScript engin e . It is an open source, cross-platform running environment for server and network application s . The nod e . js application is written in JavaScript and runs at nod e . js runtime in OS X, Microsoft Windows, and Linu x .
Node. js also provides rich JavaScript libraries for various modules, it is convenient for the research and development of web applications to a large extent.
A lot of companies such as eBay, General Electric, GoDaddy, Microsoft, PayPal, Uber, Wikipins, Yahoo! and Yammer are using Node. js all the time.
The node. js interpreter will be used to interpret and execute JavaScript code.
Node. js editor includes: Windows notepad, OS Edit command, Brief, Epsilon, EMACS and VIM or Vi.
The extending name of a node. js file is ". js".
Node. js = Running environment+ JavaScript libraries
Who is suitable to read this tutorial?
If you're a front-end programmer who doesn't know dynamic programming languages like Java, C++, or Python, and you want to create your own services, node. js is a great choice.
Node. js is one kind of JavaScript that runs on the service side. If you are familiar with JavaScript, you will learn node. js easily.
Of course, if you're a back-end programmer and want to deploy some high-performance services, node. js is a great language to learn.
Who is using node.js?
The following is a list of companies that use node. js: including eBay, General Electric, GoDaddy, Microsoft, PayPal, Uber, Yahoo! Wikipins, and Yammer…etc.
Node . Js Installation
Download
Installing node. js on Windows is convenient, and you only need to access node. js's official website
Download Link: http : //www . nodejs . org/
Installation
After the download is complete, double-click the installation package directly, just like any other software installation…...
……
Select a default installation folder……
……
Complete the installation.
Click “Finish” button.
First Node . Js Code
Example 1.1
Click the Menu Start > All Programs > Node.js Folder > Node.js (green icon). You can see the Node. js interface.
Please input the following node. js code:
console. log("Hello, World! ");
Press “Enter” key.
Output:
Hello World
Explanation:
“console. log(…)” is an output command, which is used to output some texts.
Each command of Node. js should be ended by a semicolon (;).
For example:
The command “console. log("C# in 8 Hours"); ” will output the text “C# in 8 Hours”.
Calculation by Node . Js
Click the Menu Start > All Programs > Node.js Folder > Node.js
You can see the Node. js interface.
Run some simple arithmetic calculations as follows:
> 100 + 200 300 > 300 - 50 250 > 2 * 300 600 > 27 / 3 9 > 100 % 2 0 > |
Variable
The syntax to declare a variable is as follows:
var variable = value |
Example 1.2
> var x =100, y = 200; undefined > x + y 300 > var a = "Scala"; undefined > var b = " in 8 Hours" undefined > console. log(a + b) Scala in 8 Hours undefined |
Explanation:
“var” keyword is used to declare a variable.
“ _ ” variable
An underline “ _ ” symbol can represent a previous arithmetic expression.
Example 1.3
> var m = 100, n = 2; undefined > m * n 200 > var result = _ undefined > console. log(result) 200 undefined |
Explanation:
“ _ ” represents the above expression “ m * n ”.
Node . Js Comment
“ // ” symbol can be used for a comment. It is always ignored by the node. js interpreter.
// this is node.js comment |
Example 1.4
> var str = "C++ in 8 Hours" // define a variable undefined > console. log(str) // output a value of the variable C++ in 8 Hours undefined |
Explanation:
“// define a variable ” and “// output a value of the variable ” are Node. js comments, which are ignored by the Node. js interpreter.
Run Node . Js Program
Create a Working Folder
Please go to C: \Users\YourName, create a folder “myNode ”. Now the working folder is “C: \Users\YourName\myNode ”, which is used to save Node files.
Example 1.5
Please open the Windows NotePad, write the following code in it.
var x = "JavaScript "; var y = "in 8 Hours"; var str = x + y; console . log(str); |
Save the file as “myFile. js” in the working folder “myNode”.
"Start" > " Run" > type "cmd ". Open the “cmd ” command prompt, type “cd \Users\YourName\myNode”,
go to “C: \Users\YourName\myNode”.
Type “node myFile. js”, run the program.
Output:
JavaScript in 8 Hours
Explanation:
You need to create a working folder “myNode” as follows:
C: \Users\YourName\myNode.
Save the myFile. js file to the working folder “myNode”.
Open the “cmd ” command prompt,
type “cd \Users\YourName\myNode”,
go to “C: \Users\YourName\myNode”, type “node myfile.js ”, run the program “myFile. js”.
“console. log(str);” outputs the value of the variable “str”.
The syntax to run a node. js program is as follows:
node myFile . js |
Hour 2
Basics
Node . Js Function
Function is a code block that can be used repeatedly.
The syntax to define a Node function is as follows:
function Funcion_Name(){…} |
The syntax to call the function is as follows:
Function_Name(); |
Example 2.1
function fun(str) { // define a function “fun” console. log(str); } fun("MySQL in 8 Hours ! "); // call a function “fun” |
Output:
MySQL in 8 Hours!
Explanation:
“function fun(str) {…}” defines a function “fun”.
“fun(…)” calls a function “fun”.
Imbedded Function
In node. js, one function can word as an argument of another function, which means one function can imbed another function.
Example 2.2
function fun1(str) { console. log(str); } function fun2(myFun , str) { myFun(str); } fun2(fun1 , "Good! "); // call fun2 |
Output:
Good!
Explanation:
“fun2(fun1 , "Good! ");”: Its first argument is a function fun1.
When the fun2 is called, the fun1 as an argument is passed to myFun. Therefore, “myFun” is equal to “fun1”.
“myFun(str);” executes the function fun1(str){ }.
“Good! ” as the second argument is passed to “str” variable.
Anonymous Function
The anonymous function has no a function name.
The syntax to define an anonymous function is as follows:
function(){… } |
Example 2.3
function fun(myFun, str) { myFun(str); } fun(function(str){ console.log(str) } , "OK! "); // call fun // the first argument is “function(str){ console . log(str)” . // the second argument is “OK ! ” . |
Output:
OK!
Explanation:
“function(str){ console. log(str)” is an anonymous function.
When “function fun” is called, the first argument “function(str){ console. log(str)” is passed to “myFun”, therefore, “function(str){ console. log(str)” is equal to “myFun”.
The second argument is passed to “str” variable.
Callback Function
The callback function is called when the task is completed or when an error occurs.
function(param1, param2, callback(){ }) |
A callback function usually words as the last parameter.
Now let’s learn how to use the callback function.
The syntax to rename a file is as follows:
fs . rename("oldFile", "newFile", callback) |
“fs” is a file module, which is used to process files.
Example 2.4
// Assume there is already a file aaa . txt in the folder “myNode” var fs = require("fs"); console. log("This is a sample to rename a file! "); fs. rename("aaa. txt", "bbb. txt", function(err) { if (err) { return console. error(err); } console. log("aaa. txt has renamed as bbb. txt successfully! "); }); |
Output:
This is a sample to rename a file!
aaa. txt has renamed as bbb. txt successfully!
Explanation:
“fs” is a file module, which is used to process files.
Assume there is already a file aaa. txt in the folder “myNode”.
“fs. rename("aaa. txt", "bbb. txt", function(err)” renames aaa. txt as bbb. txt.
In this example, the callback function has not yet been called because no error occurs.
If an error occurs, the callback function will be called.
Example 2.5
// Assume that there is no a file ccc . txt in the folder “myNode” var fs = require("fs"); console. log("This is a sample to rename a file! "); fs. rename("ccc. txt", "ddd. txt", function(err) { if (err) { // if an error occurs, the callback function is called return console. error(err); } console. log("Try to rename ccc. txt as ddd. txt. "); }); |
Output:
This is a sample to rename a file!
{ [Error: ENOENT: no such file or directory,……] }
Explanation:
Because the file ccc. txt is not existing, an error occurs, the callback function is called and the error message is shown.
Event
Node. js provides asynchronous callback interfaces, through which a large amount of concurrency can be handled, so the performance of Node. js is very high. Node. js generates an event listener for each event and calls the callback function if an event occurs.
The following 4 steps can listen and resolve the event.
(1) Import an Event Module
var events = require('events'); |
(2) Create an Event Object
var eventObject = new events . EventEmitter(); |
(3) Bind the Event to a Callback Function.
eventObject . on('eventName', function(){…}); |
(4) Triggers the Event
eventObject . emit('eventName'); |
Example 2.6
// import events module var events = require('events'); // create an event object var eventObj = new events. EventEmitter(); // bind Event001 event to the callback function eventObj. on('Event001', function(){ console. log('Event001 Done! '); }); // bind Event002 event to the callback function eventObj. on('Event002', function(){ console. log('Event002 Done! '); }); // trigger Event001 event eventObj. emit('Event001'); // trigger Event002 event eventObj. emit('Event002'); console . log ("All events are done successfully! "); |
Output:
Event001 Done!
Event002 Done!
All events are done successfully!
Explanation:
“require('events');” imports the “events” module.
“new events. EventEmitter();” creates an event object.
“eventObj. on('Event001', function(){…})” binds the Event001 to a callback function.
“eventObj. emit ('Event001');” triggers the Event001 event.
“eventObj. on('Event002', function(){…})” binds the Event002 to a callback function.
“eventObj. emit ('Event002');” triggers the Event002 event.
This program imports the events module, and instantiates the EventEmitter class to bind and listen for events.
EventEmitter Class
The events module provides the EventEmitter class, which works for both an event trigger and an event listener.
Let’s review the whole event process:
// import event module var events = require('events'); // create an event object var eventObject = new events. EventEmitter(); // bind the event to a callback function eventObject. on('event_name', function() { }); // trigger the event event . emit('event_name'); |
Example 2.7
console. log('You can see the next message in 6 seconds: ') var EventEmitter = require('events') // import event module var eventObj = new EventEmitter(); // create an event object eventObj. on('delayEvent', function() { // bind event to callback console. log('The event delays 6000 milliseconds'); }); setTimeout(function() { // this is a delay function eventObj. emit('delayEvent'); // trigger an event }, 6000); // 6000 milliseconds |
Output :
You can see the next message in 6 seconds:
The event delays 6000 milliseconds
Explanation:
“require('events')”imports the event module.
“new EventEmitter();” creates an event object
“eventObj. on('delayEvent', function() {…}); binds the event to the callback function.
“setTimeout(function() {…}, time);” is a delay function. Note: It contains a callback function. Its second parameter is a delay time.
“6000” means 6 seconds.
“eventObj. emit('delayEvent');” triggers an event.
Methods of EventEmitter
EventEmitter provides many methods. For example: The “on method” is used to bind an event and the callback function. The “emit method” is used to trigger an event.
The methods of EventEmitte are as follows:
Methods & Descriptions |
addListener(event listener) Add a listener for an event . |
on(event listener) bind an event to the listener(callback function) . |
once(event, listener) bind an event to the one-time listener(callback function) . |
listenerCount(event) Count how many listeners working |
removeListener(event, listener) Remove a listener |
removeAllListeners([event]) Remove all listeners |
setMaxListeners(n) Set the maximum number listeners |
emit(event) Trigger an event |
Hour 3
Event
EventEmitter Examples
Example 3.1
// import "event" module var events = require('events'); // create an event object var eventObj = new events. EventEmitter(); // create listener1 var listener1 = function listener1() { console. log('listener1 run. '); } // create listener2 var listener2 = function listener2() { console. log('listener2 run. '); } // add listener1 to myEvent1 eventObj. addListener('myEvent', listener1); // add listener1 to myEvent2 eventObj. addListener('myEvent', listener2); // count how many listeners working var number = eventObj. listenerCount('myEvent'); console. log(number + " listeners run"); // trigger myEvent event eventObj. emit('myEvent'); // remove listener1 eventObj. removeListener('myEvent', listener1); console. log("listener1 has been removed. "); // trigger myEvent event eventObj. emit('myEvent'); // count how many listeners working number = eventObj. listenerCount('myEvent'); console. log(number + " listener run. "); console . log("Done! "); |
Output:
2 listeners run
listener1 run.
listener2 run.
listener1 has been removed.
listener2 run.
1 listener run.
Done!
Explanation:
Review each comment on this program.
addListener(event listener)
Add a listener to an event .
on(event listener)
Bind an event to a listener(callback function) .
once(event, listener)
Bind an event to a one-time listener(callback function)
listenerCount(event)
Count how many listeners working
removeListener(event, listener)
Remove a listener
removeAllListeners([event])
Remove all listeners
setMaxListeners(n)
Set the maximum number listeners
emit(event)
Trigger an event
Error Event
In the node. js code where may some error occur, we can set an error event listener. EventEmitter defines an ‘Error’ event. When an error happens, ‘Error’ will quit the program and output some error messages.
Example 3.2
var events = require('events'); var obj = new events. EventEmitter(); obj . emit('error '); // set an “error” event to trigger |
Output:
events. js: 189
throw err; // Unhandled 'error' event
^
Error [ERR_UNHANDLED_ERROR]: Unhandled error. (undefined)
at EventEmitter. emit (events. js: 187: 17)
at Object. <anonymous>
at Module. _compile (internal/modules/cjs/loader. js: 778:
at Object. Module. _extensions.. js (internal/modules/cjs/
at Module. load (internal/modules/cjs/loader. js: 653: 32)
……
Explanation:
The program outputs some error messages when an error occurs.
Node . Js Module
If a file need to import the code from another file, this another file is called a module. (In fact, a module is only an external file.)
(1) Create a module and export a function
exports . function_name = function() {…} |
(2) Import a module and will use the function.
var obj = require(' ./ module'); |
“ ./ ” means the current directory.
Example 3.3
// 1 . Create a module “moduleFile . js” exports.myFun = function() { // export a function myFun console. log('Go in 8 Hours! '); } // 2 . Create a file as “main . js” and run . var obj = require('./moduleFile') ; // import the moduleFile obj .myFun() ; // call myFun |
Output:
Go in 8 Hours
Explanation:
Two files should be saved in the same directory.
First, create a module and save the file as “moduleFile. js. ”
“exports. myFun = function() {…. }” exports a function “myFun”.
Second, create a main. js file and import the moduleFile. js
“var obj = require('./ moduleFile');” imports the moduleFile. js, and create a module object.
“obj. myFun();” calls the function “myFun”.
Node . Js Buffer
Node. js has a great advantage: it can process binary data, and character encoding.
Node. js includes a Buffer class that creates a Buffer area for processing binary data and character encoding.
It is possible to use the Buffer class whenever you process the file I/O stream operations in Node. js.
Node. js can process following character encodings:
Encoding | Description |
ascii | an only 7 bits encoded of ascii data |
utf8 | a multi byte encoded of unicode characters |
utf16le | 2 or 4 bytes encoded of unicode characters |
ucs2 | the alias of utf16le |
base64 | base64 encoding |
latin1 | one-byte encoded of the string |
binary | the latin1 of alias |
hex | hexadecimal character encoding |
Buffer objects
There are several methods to create Buffer objects.
The syntax to create the Buffer object is as follows : |
Buffer.alloc(size) Creates a Buffer object of the specified size . (safe) |
Buffer.allocUnsafe(size) Creates a Buffer object of the specified size . (unsafe). |
Buffer.from(array) Create a Buffer object initialized with an array |
Buffer.from(buffer) Create a Buffer object with the data of another buffer object |
Buffer.from(‘string’) Create a Buffer object initialized with a string |
Create a Buffer Object (1)
Buffer object is usually used to process character encoding.
The syntax to create an object of Buffer is as follows:
const obj = Buffer . from('string'); |
Example 3.4
const obj = Buffer. from('RayYao'); // create a Buffer object console. log(obj. toString('ascii ')); // output asscii encoding console. log(obj. toString('hex ')); // output hex encoding console . log(obj. toString('base64 ')); // output base64 encoding |
Output:
RayYao
52617959616f
UmF5WWFv
Explanation:
“const obj = Buffer. from('RayYao');” creates a Buffer object.
“console. log(obj. toString('ascii '));” outputs asscii encoding
“console. log(obj. toString('hex '));” outputs hex encoding
“console. log(obj. toString('base64 '));” outputs base64 encoding
Create a Buffer Object (2)
The syntax to create a buffer object based on the size is:
const buf = Buffer . alloc(size); |
Example 3.5
const buf = Buffer.alloc(6); console . log(buf); |
Output:
<Buffer 00 00 00 00 00 00>
Explanation:
“buf” is a buffer object.
“const buf = Buffer. alloc(6);” creates a buffer object with six bytes.
“console. log(buf);” outputs the data of the buf.
“Buffer. alloc(size)” creates a safe buffer, because it always clear all previous data in the buffer.
Create a Buffer Object (3)
The syntax to create a buffer object based on the size is:
const buf = Buffer . allocUnsafe (size); |
Example 3.6
const buf = Buffer.allocUnsafe(6); console . log(buf); |
Output:
<Buffer 0e 5c 10 3a 26 02>
Explanation:
The output may be different from yours.
“const buf = Buffer. allocUnsafe(6);” creates an unsafe buffer object with six bytes. But the unsafe buffer runs faster than the safe buffer.
This buffer is unsafe; it may contain some previous sensitive data.
Therefore, it needs to be initialized by using fill (0).
Fill Function
Because the “allocUnsafe(10)” create an unsafe buffer, we need to use fill() to clear the buffer , make it safe.
buf . fill(0); |
Example 3.7
const buf = Buffer. allocUnsafe(10); console. log(buf); buf.fill(0); // fill buffer as 0 console . log(buf); |
Output:
<Buffer 08 07 10 c9 30 a1 02 05 60 e8>
<Buffer 00 00 00 00 00 00 00 00 00 00>
Explanation:
“buf. fill(0);” will make the data of the buffer zero.
“<Buffer 08 07 10 c9 30 a1 02 05 60 e8>” is the data created by “allocUnsafe(10)”. (The buffer data is different from yours.)
“<Buffer 00 00 00 00 00 00 00 00 00 00>” is the data created by “fill(0)”. (The buffer data are all zeros now.)
After using fill(0), the buffer is safe.
Hour 4
Write/Read
Write to Buffer
The syntax to write to buffer is as follows:
length = buf . write(“string”) |
length: the size of the string.
buf: the buffer object.
string: the characters that will be written to buffer.
Example 4.1
buf = Buffer. alloc(256); len = buf.write ("MySQL in 8 Hours"); console . log("The string length is : "+ len); |
Output:
The string length is 16
Explanation:
“Buffer. alloc(256)” creates a buffer object with 256 bytes.
“buf. write(“…”)” writes a string to buffer.
Read from Buffer
The syntax to read a buffer is as follows:
buf . toString(encoding, start, end) |
encoding: such as ascii, base64, binary, hex, utf8(default)
start: buffer-reading starts from this index.
end: buffer-reading ends at this index.
Example 4.2
buf = Buffer.alloc (8); // create a buffer object buf[0] = 104; buf[1] = 101; buf[2] = 108; buf[3] = 108; buf[4] = 111; buf[5] = 33; console. log(buf.toString ('ascii')); console. log(buf.toString ('ascii',0,6)); console. log(buf.toString ('utf8',0,6)); console . log(buf.toString (undefined,0,6)); |
Output:
hello!
hello!
hello!
hello!
Explanation :
“buf = Buffer.alloc (8);” creates a buffer object with 8 bytes.
“buf[0] = 104;”: “104” is ascii code, represents “h”.
“buf[1] = 101;”: “101” is ascii code, represents “e”
“buf[2] = 108;”: “108” is ascii code, represents “l”
…..
“buf. toString('ascii')” reads the buffer, encoding with ascii.
“buf. toString('ascii',0,6)” reads the buffer from index 0 to index 6, encoding with ascii.
“buf. toString('utf8',0,6)” reads the buffer from index 0 to index 6, encoding with utf8.
“buf. toString(undefined',0,6)” reads the buffer from index 0 to index 6, encoding with utf8 by default.
Buffer Length
The syntax to get the length of the buffer is as follows:
buf . length; |
Return the size of memory occupied by the Buffer object.
Example 4.3
var buf = Buffer. from('C# in 8 Hours'); console . log("Buffer length: " + buf.length); |
Output:
Buffer length: 13
Explanation:
“buf. length” returns the size of memory occupied by the Buffer object.
Buffer Merge
The syntax to merge two buffers is as follows:
buffer3 = Buffer . concat(buffer1, buffer2); |
“buffer 3” means the merged buffer.
Example 4.4
var buf1 = Buffer. from(('Kotlin ')); var buf2 = Buffer. from(('in 8 Hours')); var buf3 = Buffer.concat([buf1,buf2]); console . log("The buf3 is: " + buf3. toString()); |
Output:
The buf3 is Kotlin in 8 Hours
Explanation:
“Buffer. concat([buf1,buf2])” merges two buffers.
“buf3” is a merged buffer.
Buffer Compare
The syntax to compare two buffers is as follows:
result = buffer1 . compare(buffer2); |
The result may be equal to 0, greater than 0, or less than 0.
Example 4.5
var buffer1 = Buffer. from('100'); var buffer2 = Buffer. from('200'); var result = buffer1.compare(buffer2); if(result < 0) { console. log(buffer1 + " is less than " + buffer2); } else if(result == 0) { console. log(buffer1 + " is equal to " + buffer2); } else { console. log(buffer1 + "is greater than " + buffer2); } |
Output: 100 is less than 200
Explanation:
“buffer1. compare(buffer2);” compares two buffers.
Buffer Copy
The syntax to copy a buffer is as follows:
buffer2 . copy(buffer1, index); |
Copy buffer2 to the specified position of the buffer1.
index: the specified position.
Example 4.6
var buf1 = Buffer. from('Java guide in 8 Hours'); var buf2 = Buffer. from('Script'); buf2.copy(buf1, 4); // copy buf2 to the index 4 of buf1 console . log(buf1. toString()); |
Output:
JavaScript in 8 Hours
Explanation:
“buf2. copy(buf1, 4);” copies buf2 to the index 4 of the buf1.
Buffer Slice
The syntax to get a buffer slice is as follows:
var buffer2 = buffer1 . slice(start,end); |
“buffer2” is a new small buffer coming from buffer1.
start: the new buffer starts at this index.
end: the new buffer ends at this index.
Example 4.7
var buf1 = Buffer. from('Scala in 8 Hours'); var buf2 = buf1.slice(6,16); console . log("The buf2 content is: " + buf2. toString()); |
Output:
The buf2 content is: in 8 Hours
Explanation:
“buf1. slice(6,16);” gets a slice of the buf1 from index 6 to index 16.
Buffer Index
The syntax to get an index of a string in the buffer is as follows:
buf . indexOf('string')); |
Returns the index of the string.
Example 4.8
const buf = Buffer. from('Linux Shell in 8 Hours'); console. log(buf. toString()); console. log("The index of Shell is: "+ buf.indexOf ('Shell')); console . log("The index of Hours is: "+ buf.indexOf ('Hours')); |
Output:
Linux Shell in 8 Hours
The index of Shell is: 6
The index of Hours is: 17
Explanation:
“buf. indexOf('Shell'));” returns an index of “Shell”.
“buf. indexOf('Hours'));” returns an index of “Hours”.
Buffer Equality
The syntax to check the buffer equality is as follows:
buffer1 . equals(buffer2); |
Returns true or false.
Example 4.9
const buffer1 = Buffer. from('abc'); const buffer2 = Buffer. from('abc'); const buffer3 = Buffer. from('abcde'); console. log(buffer1.equals (buffer2)); console . log(buffer1.equals (buffer3)); |
Output:
true
false
Explanation:
“buffer1. equals(buffer2)” checks if buffer1 is equal to buffer2.
“buffer1. equals(buffer3)” checks if buffer1 is equal to buffer3.
Buffer ASCII
The syntax to get an ASCII code of a character is as follows:
buf[index] |
Returns an ASCII code of a character at the specified index.
index: an index of a character.
Example 4.10
const buf = Buffer. from('abcdefgh'); console. log(buf[2]); // index 2 is "c" console . log(buf[6]); // index 6 is "g" |
Output:
99
103
Explanation:
The ASCII code of “c” is 99.
The ASCII code of “g” is 103.
Buffer to Json
A Buffer can be converted to a Json object.
var json = buf . toJSON(buf); |
“json” is a Json object, “buf” is a Buffer object.
Example 4.11
const buf = Buffer. from("Ray Yao"); var json = buf.toJSON(buf); // convert to Json object console . log(json); // show data in Json format |
Output:
{ type: 'Buffer', data: [82, 97, 121, 32, 89, 97, 111] }
Explanation:
“var json = buf.toJSON(buf); ” converts the Buffer object to a Json object.
“console. log(json);” shows the data in Json format.
Hour 5
Stream
File Stream
File Stream is an abstract interface, there are many objects in Node that implement this interface.
The method to process the file stream is reading or writing the file stream.
To read or write a file stream, we need to import “fs” module before processing the file stream:
var fs = require("fs"); |
“fs” means the file system module.
“fs” module is used to read or write the file.
When a file stream is being read or written, four events may be triggered:
1. data event: triggered when there is data to read.
2. end event: triggered when there is no more data to read.
3. error event: triggered when an error occurs.
4. finish event: triggered when there is no more data to write.
Read Stream
The syntax to create an object to read a file stream is:
var obj = fs . createReadStream('myfile. txt'); |
Example 5.1
1. Create an external file named “myfile. txt”, the content is:
“C# IN 8 HOURS” |
Save the file “myfile. txt” in the working folder “myNode”.
2. Create a main file named “readstream. js”, and save it in the working folder “myNode” too.
var fs = require("fs"); // import “fs” module var data = 'Read the File Stream: '; // initialize the data var obj = fs.createReadStream('myfile.txt'); obj. setEncoding('utf8'); // reading & encoding with utf8 obj. on('data', function(datas) { // bind data event to callback data += datas; // keep reading data }); obj. on('end',function(){ // bind end event to callback console. log(data); }); obj. on('error', function(e){ // bind error event to callback console. log(e. stack); // show error messages }); console . log("An example of reading a file stream"); |
Output:
An example of reading a file stream
Read the File Stream: C# IN 8 HOURS
Explanation:
“require("fs");” imports “fs” module
“ fs.createReadStream('myfile.txt'); ” creates a reading stream object of the “myfile. txt”.
“obj. on(…)” binds an event to callback function. When an event is triggered, the callback function will be called.
“e. stack”: the error messages.
Write Stream
The syntax to create an object to write a file stream is:
var obj = fs . createWriteStream('newfile. txt'); |
Example 5.2
1. Create a main file named “writestream. js”, and will save the file in the working folder “myNode”.
var fs = require("fs"); // import “fs” module var data = 'Write the File Stream: GO IN 8 HOURS'; // contents var obj = fs.createWriteStream('newfile.txt'); obj. write(data,'utf8'); // writing & encoding with utf8 obj. end(); // mark the end of the file obj. on('finish', function() { // bind finish event to callback console. log("Finish Writing, please check newfile. txt"); }); obj. on('error', function(e){ // bind error event to callback console. log(e. stack); // show error message }); console . log("An example of writing a file stream"); |
2. Run “writestream. js”, and then check “newfile. txt”.
Output:
An example of writing a file stream
Finish Writing, please check newfile. txt
Explanation:
Please open the “newfile. txt”, you will find its new contents:
“Write the File Stream: GO IN 8 HOURS”
“require("fs");” imports “fs” module
“ fs. createWriteStream('newfile. txt');” creates a writing stream object of the “newfile. txt”.
“obj. end();” marks the end of the file.
“obj. on(…)” binds an event to callback function. When an event is triggered, the callback function will be called.
“e. stack”: the error messages.
Piping Stream
We can get data from one stream and pass it to another stream, which is called Piping Stream.
The syntax o Piping Stream is as follows:
readstream . pipe(writestream); |
Read the contents of one file and write them to another file.
Example 5.3
1. Create an external file named “infile. txt”, the content is:
“PHP MYSQL IN 8 HOURS” |
Save the file “infile. txt” in the working folder “myNode”.
2. Create a main file named “main. js”, and save it in the working folder “myNode” too.
var fs = require("fs"); // create an object of reading stream var readstream = fs. createReadStream('infile. txt'); // create an object of writing stream var writestream = fs. createWriteStream('outfile. txt'); // read the contents of the infile . txt & write to outfile . txt readstream.pipe(writestream); console. log("The example of piping stream. "); console . log("Please check the outfile. txt. "); |
Output:
The example of piping stream.
Please check the outfile. txt.
Explanation:
Please open the “outfile. txt”, you will find its new contents:
“PHP MYSQL IN 8 HOURS”
“fs. createReadStream('infile. txt');” creates a reading stream object of the infile. txt.
“fs. createWriteStream('outfile. txt');” creates a writing stream object of the outfile. txt.
“readstream. pipe(writestream);” reads the contents of the infile. txt and then writes to outfile. txt.
__filename
“__filename” can get the name of the current file and its path.
Example 5.4
// create a file named “study . js”, its code is as follows : console . log(__filename); |
Output:
C: \Users\RAY\myNode\study. js
Explanation:
“__filename” returns the name of the current file and its path.
__dirname
“__dirname” can get path and the directory name where the current file locates.
Example 5.5
// create a file named "learn . js", its code is as follows : console . log(__dirname); |
Output:
C: \Users\RAY\myNode
Explanation:
“__dirname” returns the path and the directory name where the current file locates.
setTimeout()
“setTimeout()” creates a timer, and executes a specified function after several seconds.
setTimeout(function, time) |
Example 5.6
function delay(){ // define a function console. log("Rust in 8 Hours! "); } console. log("Show a message after 3 seconds: "); setTimeout(delay, 3000); // 3000 milliseconds |
Output:
Show a message after 3 seconds:
Rust in 8 Hours!
Explanation:
“setTimeout(delay, 3000);” is a timer, executes the function “delay(){}” after 3000 milliseconds.
clearTimeout(t)
“clearTimeout(t)” clears the timer previously set up.
clearTimeout(t) |
“t” is an object of the timer.
Example 5.7
function delay(){ console. log("Rust in 8 Hours! "); } var t = setTimeout(delay, 3000); clearTimeout(t); // clear the above timer console . log("The timer has been cleared up! "); |
Output:
The timer has been cleared up!
Explanation:
“clearTimeout(t)” clears the timer previously set up.
setInterval()
“setInterval()” creates a timer, and executes a specified function every other several seconds. Until press “ctrl+c” to stop running.
setInterval(function, time) |
Example 5.8
function interval(){ console. log("Keep running, until press ctrl+c"); } // executes the above function every other 3 seconds setInterval(interval, 3000); |
Output:
Keep running, until press ctrl+c
Keep running, until press ctrl+c
Keep running, until press ctrl+c
……
Explanation:
“setInterval(interval, 3000);” is a timer, executes the function “interval(){}” every other 3000 milliseconds, until press “ctrl+c” to stop running.
Hour 6
File
Open a File
The syntax to open a file is as follows:
fs . open(path/filename, mode, callback) |
“fs” module is used to process files.
“mode” sets how to open a file, please see the following chart.
Mode | Description |
r | Open the file in read mode. An exception occurs if the file does not exist . |
r+ | Open the file in read or write mode. An exception occurs if the file does not exist . |
w | Open the file in write mode. If the file does not exist, it will be created . |
w+ | Open the file in write or read mode. If the file does not exist, it will be created . |
a | Open the file in append mode. If the file does not exist, it will be created . |
a+ | Open the file in append or read mode. If the file does not exist, it will be created . |
Example 6.1
// Please create a file “myfile . txt” in the working folder in advance . var fs = require("fs"); console. log("A sample of opening a file. "); fs.open('myfile.txt', 'r+', function(err) { if (err) { return console. error(err); } console. log("The file is opened successfully! "); }); |
Output:
A sample of opening a file.
The file is opened successfully!
Explanation:
“fs. open(…)” open a file.
'myfile. txt' has been created in advance.
“r+” opens the file in read or write mode.
File Status
The syntax to obtain the status of a file is as follows:
fs . stat(path/filename, callback); |
Stats class has two important methods:
Stats. isFile() checks an item if it is a file.
Stats. isDirectory() checks an item if it is a directory.
Example 6.2
var fs = require("fs"); fs.stat('myfile.txt', function (err, stats) { if (err) { return console. error(err); } console. log("The file information was retrieved successfully! "); console. log("This item is a file? " + stats.isFile()); console. log("This item is a directory ? " + stats.isDirectory()); }); |
Output:
The file information was retrieved successfully!
This item is a file? true
This item is a directory ? false
Explanation:
“fs. stat(…) {…}” obtains the information of the specified file.
“function (err, stats)” is a callback function. If the file doesn't exist, it will return some error messages.
“stats. isFile()” checks the “myfile. txt” if it is a file.
“stats. isDirectory()” checks the “myfile. txt” if it is a directory.
Write a File (1)
The syntax to write a file is as follows:
fs . writeFileSync(file, data); |
Write contents to a file synchronously
Example 6.3
var fs = require("fs"); // import “fs” module for writing files fs.writeFileSync('syncfile.txt', 'Go in 8 Hours'); console. log("Write contents to a file successfully! "); console . log("Please check the syncfile. txt"); |
Output:
Write contents to a file successfully!
Please check the syncfile. txt
Explanation:
“require("fs")” imports “fs” module.
“fs” module is used to write or read a file.
“fs. writeFileSync('syncfile. txt', 'Go in 8 Hours');” writes the text “Go in 8 Hours” to the syncfile. txt synchronously.
Please open “syncfile. txt”, you can see its contents is “Go in 8 Hours”.
Read a File (1)
The syntax to read a file is as follows:
fs . readFileSync(file) |
Read the contents from a file synchronously
Example 6.4
var fs = require("fs"); // import “fs” module for reading files var data = fs.readFileSync('syncfile.txt'); console. log("The contents of the syncfile. txt is: "); console . log(data. toString()); |
Output:
The contents of the syncfile. txt is:
Go in 8 Hours
Explanation:
“require("fs")” imports “fs” module.
“fs” module is used to write or read a file.
“var data = fs. readFileSync('syncfile. txt');” reads the contents from syncfile. txt synchronously.
“data. toString()” converts the data to a text string.
Write a File (2)
The syntax to write a file is as follows:
fs . writeFile(file, data, callback) |
Write contents to a file asynchronously
Example 6.5
var fs = require("fs"); fs.writeFile('asyncfile.txt', 'R in 8 Hours', function(err) { if (err) { return console. error(err); } console. log("Write to a file successfully! "); console. log("Please check the asyncfile. txt"); }); |
Output: Write to a file successfully!
Please check the asyncfile. txt
Explanation:
“fs. writeFile('asyncfile. txt', 'R in 8 Hours', function(err)” writes the data ”R in 8 Hours” to the file “asyncfile. txt” asynchronously. If an error occurs, the callback function will be called.
Please open asyncfile. txt, check its contents.
Read a File (2)
The syntax to read a file is as follows:
fs . readFile(file, callback) |
Read the contents from a file asynchronously
Example 6.6
var fs = require("fs"); fs.readFile ('asyncfile. txt', function (err, data) { if (err) return console. error(err); console. log("The content of the asyncfile. txt is: "); console. log(data. toString()); }); |
Output: The content of the asyncfile. txt is:
R in 8 Hours
Explanation:
“fs. readFile('asyncfile. txt', function (err, data)” reads the contents from asyncfile. txt asynchronously. If an error occurs, the callback function will be called.
“data. toString()” converts the data to a text string.
Close a File
The syntax to close a file is as follows:
fs . close(fd, callback) |
fd: using fd. open().
callback: a function will be called when an error occurs.
Example 6.7
var fs = require("fs"); var buf = new Buffer. alloc(1024); fs. open('myfile. txt', 'w+', function(err, fd) { if (err) { return console. error(err); } console. log("myfile. txt is opened successfully! "); fs.close(fd, function(err) { if (err){ console. log(err); } console. log("myfile. txt is closed successfully! "); }); }); |
Output:
myfile. txt is opened successfully!
myfile. txt is closed successfully!
Explanation:
“fs. close(fd, function(err)” closes a file “myfile. txt”.
Remove a File
The syntax to remove a file is as follows:
fs . unlink(file. txt, callback) |
Example 6.8
var fs = require("fs"); console. log("This is a sample to delete a file! "); fs.unlink('myfile.txt', function(err) { if (err) { return console. error(err); } console. log("myfile. txt has been deleted successfully! "); }); |
Output:
This is a sample to delete a file!
myfile. txt has been deleted successfully!
Explanation:
“fs. unlink('myfile. txt', function(err)” removes myfile. txt.
FS Methods
The following chart lists other frequently-used “fs” methods:
fs.access(file, mode, callback) Check the permission of a specified file |
fs.appendFile(filename, data, callback) Append contents to a file |
fs.chmod(file, mode, callback) Change the permission of a file |
fs.exists(file, callback) Check whether the file exists |
fs.link(path1, path2, callback(err)) Create a link between two paths |
fs.truncate(file, length, callback) Truncate the contents of a file |
fs.utimes(file, access_time, modify_time, callback) Modify the timestamp of a file |
fs.watchFile(file, listener) View the modification of a file |
Hour 7
Operations
Create a Directory
The syntax to create a new directory is as follows:
fs . mkdir(path, callback) |
Example 7.1
var fs = require("fs"); console. log("Create a new directory 'newDir'"); fs.mkdir("/Users/Ray/myNode/newDir/",function(err) { if (err) { return console. error(err); } console. log("The directory 'newDir' is created successfully! "); }); |
Output:
Create a new directory 'newDir'
The directory 'newDir' is created successfully!
Explanation:
“fs. mkdir("/Users/Ray/myNode/newDir/",function(err)” creates a new folder “newDir” in the working folder “myNode”.
Read a Directory
The syntax to read a directory is as follows:
fs . readdir(path, function(err, files)) |
path: the directory and files that will be read.
files: all files in the path.
Example 7.2
// Please create three files a . txt, b . txt, c . txt, and put them to the folder “newDir” var fs = require("fs"); fs.readdir("/Users/Ray/myNode/newDir/",function(err, files) { if (err) { return console. error(err); } files. forEach(function (file){ // iterates through all files console. log(file); // display each file in the folder }); }); |
Output:
a. txt
b. txt
c. txt
Explanation:
We can see there are three files in the directory “newDir”.
“fs. readdir("/Users/Ray/myNode/newDir/",function(err, files)” reads the directory “newDir”.
“function(err, files)” is a callback function, returns an error message or all files in the folder “newDir”.
“files. forEach(function (file)” iterates through all files in the folder “newDir”. “file” parameter represents each file.
Remove a Directory
The syntax to remove an empty directory is as follows:
fs . rmdir(path, callback) // remove empty folder only |
Example 7.3
// Please delete the three files a . txt, b . txt, c . txt first . var fs = require("fs"); console. log("The sample to remove a folder 'newDir'"); fs.rmdir("/Users/Ray/myNode/newDir/",function(err) { if (err) { return console. error(err); } console. log("The folder 'newDir' is removed successfully! "); }); |
Output: The sample to remove a folder 'newDir'
The folder 'newDir' is removed successfully!
Explanation:
“fs. rmdir("/Users/Ray/myNode/newDir/")” removes “newDir”.
Callbackify
“util. callbackify()” can call a callback function asynchronously.
“util” is a tool module, which contains many built-in functions such as a callback (), insptect(), isArray()….. etc.
The main function should be prefixed by a keyword “async”.
Let’s learn how to use “callbackify” function.
1. Define a main function by using “async” keywowd
async function mainFunction() {…} |
2. Call the callback function by using callbackify();
const callbackFunction = util . callbackify(mainFunction); |
3. Define a callback function by using “=>” symbol
callbacFunction => {…} |
Example 7.4
const util = require('util'); // import “util” module async function mainFunction() { // using “async” return 'Ruby in 8 Hours'; } const cbFunction = util.callbackify(mainFunction); // call cbFunction((err, data) => { // define a callback function if (err) throw err; console. log(data); }); |
Output:
Ruby in 8 Hours
Explanation:
“util” is a tool module, containing many built-in functions.
“async function mainFunction() {…}” defines a main function by using “async” keyword.
“const cbFunction = util. callbackify(mainFunction);” calls the callback function by using “callbackify()”.
“cbFunction((err, data) => {…}” defines a callback function by using “=>” symbol.
Inspect
“inspect(object)” can display the data of an object.
util . inspect(object) |
Example 7.5
var util = require('util'); function Book() { // "this" represents the Book object this. title = 'Html'; this. when = 'in'; this. number = '8'; this. unit = 'Hours'; } var obj = new Book(); // create a Book object & call Book console . log(util.inspect(obj)); |
Output:
Book { title: 'Html', when: 'in', number: '8', unit: 'Hours' }
Explanation: “this” represents the current object.
“util. inspect(obj)” returns the data of the Book object.
Inherits
The feature of a constructor can be inherited by another constructor.
The syntax to inherit a constructor is as follows:
util . inherits(sub_constructor, super_constructor) |
sub_constructor inherits all feature of a super_constructor.
Example 7.6
var util = require('util'); // import util module function Super() { // super constructor this. value = "a + b"; a = 'Linux Shell'; b = ' in 8 Hours' } function Sub() { // sub constructor this. value = a + b; } util.inherits(Sub, Super); // inheritance var objSuper = new Super(); console. log(objSuper); var objSub = new Sub(); console . log(objSub); |
Output:
Super { value: 'a + b' }
Sub { value: 'Linux Shell in 8 Hours' }
Explanation:
“function Super()” creates a super constructor.
“function Sub()” creates a sub constructor.
“this” represents the current object.
“util. inherits(Sub, Super);”: Sub constructor inherits all feature of the Super constructor.
“this. value = a + b;” in sub constructor: “this” means objSub, and
“a” value is “Linux Shell”.
“b” value is “ in 8 Hours”.
isArray
“isArray()” can check whether an object is an array.
var data = util . isArray(object); |
Example 7.7
var util = require('util'); var myArr = new Array; // create an array “myArr” var data1 = util.isArray (myArr); console. log(data1); var data2 = util.isArray (new Array); console. log(data2); var data3 = util.isArray ("Array"); console . log(data3); |
Output:
true
true
false
Explanation:
“isArray(object)” can check whether an object is an array.
isDate
“isDate()” can check whether an object is a date.
var data = util . isDate(object); |
Example 7.8
var util = require('util'); var data1 = util.isDate (new Date()) console. log(data1); var data2 = util.isDate (Date()) // without new console. log(data2); var data3 = util.isDate ("12/20/2019") // this is a string console . log(data3); |
Output:
true
false
false
Explanation:
“isDate(object)” can check whether an object is a date.
isRegExp
“isRegExp()” can check whether an object is a Regular Expression.
var data = util . isRegExp(object); |
Example 7.9
var util = require('util'); var data1 = util.isRegExp (/Rust in 8 Hours/) console. log(data1); var data2 = util.isRegExp (new RegExp('string')) console. log(data2); var data3 = util.isRegExp (12/20/2019) console . log(data3); |
Output:
true
true
false
Explanation:
“isRegExp(object)” can check whether an object is a regular expression.
Hour 8
Modules
OS Module
OS Module contains many operating system functions.
OS Module can get the information about the operating system.
var os = require("os"); // import os module |
Example 8.1
var os = require("os"); console. log('The information of the current os is as follows: '); // The host name is : console. log('The host name is: ' + os.hostname()); // The type of the operating system is : console. log('The type of the operating system is: ' + os.type()); // The platform is : console. log('The platform is: ' + os.platform()); // The total memory is : console. log('The total memory is: ' + os.totalmem() + " bytes. "); // The free memory is : console. log('The free memory is: ' + os.freemem() + " bytes. "); // The os version is : console. log('The os version is: ' + os.release() + " version. "); // The os runtime is : console . log('The os runtime is: ' + os.uptime() + " seconds. "); |
Output:
The information of the current os is as follows:
The host name is: rayyao
The type of the operating system is: Windows_NT
The platform is: win32
The total memory is: 4181934080 bytes.
The free memory is: 2413699072 bytes.
The os version is: 6. 3. 9600 version.
The os runtime is: 15966 seconds.
Explanation:
“os. hostname()” returns the host name of the current os.
“os. type()” returns the type of the current os.
“os. platform()” returns the platform of the current os.
“os. totalmem()” returns the total memory of the machine.
“os. freemem()” returns the free memory of the machine.
“os. release()” returns the version of the os.
“os. uptime()” returns the run time of the machine.
Path Module
Path Module contains many small tools to process the file path.
var path = require("path"); // import path module |
Example 8.2
var path = require('path') ; console. log("The result to process path are as follows: "); console. log("Join the path names: "); console. log(path.join ('/app', 'ban', 'cat/egg', 'myfolder')); // Output : \app\ban\cat\egg\myfolder console. log("Search the first absolute path from left to right: "); console. log(path.resolve ('/foo/bar', '/ray/baz')); // Output : C : \ray\baz console. log("Make the first absolute path from left to right: "); console. log(path.resolve ('/foo/bar', 'baz')); // Output : C : \foo\bar\baz console. log("Check whether it is an absolute path: "); console. log(path.isAbsolute ('/ray/baz')); // Output : true console. log("Convert to relative path: "); console. log(path.relative ('/for/bar', '/ray/baz')); // Output : .. \ .. \ray\baz console. log("Return the last folder: "); console. log(path.basename ('/for/bar/myfolder')); // Output : myFolder console. log("Return the extension name of a file: "); console. log(path.extname ('/for/bar/myfolder/myfile. txt')); // Output : . txt console. log("Return the folder part, not include file: "); console. log(path.dirname ('/for/bar/myfolder/myfile. txt')); // Output : /for/bar/myfolder |
Explanation:
“path. join()” joins the path names.
“path. resolve()” makes the first absolute path from left to right.
“path. isAbsolute()” checks whether it is an absolute path.
“path. relative()” converts the current path to a relative path.
“path. basename()” returns the last folder name.
“path. extname()” returns the extension name of the file.
“path. dirname()” returns folder names, not include file names.
DNS Module
DNS Module can interpret domain name.
var dns = require("dns") // import “dns” module |
The syntax to get an IP address from a website is as follows:
dns . lookup(website, callback) |
Example 8.3
var dns = require('dns'); dns.lookup('www.yahoo.com', function(err, address) { console. log('The IP of www. yahoo. com: ', address); if (err) { console. log(err. stack); } }); |
Output: The IP of www. yahoo. com: 72. 30. 35. 9
Explanation:
“dns. lookup('www. yahoo. com', function(err, address)” returns an IP address of the website “www. yahoo. com”.
The syntax to get a domain name from an IP address is:
dns . reverse(address, callback) |
Example 8.4
var dns = require('dns'); dns.reverse('72.30.35.9', function (err, domain_name) { if (err) { console. log(err. stack); } console. log("The domain name of 72. 30. 35. 9 is: "); console. log(domain_name); }); |
Output:
The domain name of 72. 30. 35. 9 is:
['media-router-fp1. prod1. media. vip. bf1.yahoo.com ']
Explanation:
“dns. reverse('72. 30. 35. 9', function (err, domain_name)” returns a domain name of 72. 30. 35. 9.
The domain name is: yahoo. com
Domain Module
Domain Module can handle the error and exception.
var domain = require("domain") // import a domain module |
The syntax to create a domain object is as follows:
var domain_obj = domain . create(); |
Example 8.5
var EventEmitter = require("events"). EventEmitter; // import “events” module for event emitter var domain = require("domain"); // import “domain” module var domain_obj = domain.create(); // create a domain object domain_obj. on('error', function(err){ console. log(err. message + " has been handled! "); }); domain_obj. run(function(){ var emit_obj = new EventEmitter(); // create an object emit_obj. emit('error',new Error(' The error')); // trigger error event }); |
Output:
The error has been handled!
Explanation:
Domain Module can handle the error and exception.
“var EventEmitter = require("events"). EventEmitter;” imports “events” module for event emitter.
“var domain_obj = domain. create();”creates a domain object.
“domain_obj. on('error', function(err){…}” binds the error event to a callback function, when an error occurs, the callback function will be called.
“var emit_obj = new EventEmitter();” creates an EventEmitter object.
“emit_obj. emit('error',new Error());” triggers an error event.
Net Module
Net Module is a tool for networking communication.
The syntax to import the “net” module is as follows:
var net = require("net") |
1. The syntax to create a server is as follows:
var server = net . createServer(function(connection){}); |
“connection” parameter is used for client end.
Example 8.6
// Please open the first cmd window, create a server : var net = require('net'); var server = net.createServer(function(connection) { connection. write('Hello, Welcome to Server! \r\n'); // write data console. log('A client has connected to the server! '); }); server. listen(8080, function() { // listening port 8080 for client console. log('Server is listening…'); }); |
Output:
Server is listening…
Explanation:
“var server = net. createServer(function(connection)” creates a server and connect to the client end.
“connection. write();” writes data, will show data at the client end.
“server. listen(8080, function() {…}” is listening the port 8080, because the client end connects server through the port 8080.
2. The syntax to create client end is as follows:
var client = net . connect({port: number}, function() { } |
{port number} is the code to connect the server and client end.
Example 8.7
// Please open the second cmd window, create a client end . // Note : server and client end cannot use the same window . var net = require('net'); var client = net.connect({port: 8080}, function() { console. log('Connect to the server! '); }); client. on('data', function(data) { // bind ‘data’ event to callback console. log(data. toString()); // show data from server }); |
Output:
Connect to the server!
Hello, Welcome to Server!
Explanation:
“var client = net. connect({port: 8080}, function()” creates a client end and connects the server through port 8080.
“client. on('data', function(data)” receives the data from the server, and executes the callback function.
// Please check the server :
// Please check the client end :
Appendix
Test
01.
function fun(myFun, str) {
myFun(str);
}
fun(fill in (str){ console. log(str) }, "OK! ");
// anonymous function
A. fun
B. myFun
C. func
D. function
02.
// import event module
var events = require('events');
// create an event object
var eventObject = new events. fill in ();
A. event
B. Object
C. EventEmitter
D. EventObject
03.
buf = Buffer.alloc (8);
buf[0] = 104;
buf[1] = 101;
buf[2] = 108;
buf[3] = 108;
buf[4] = 111;
console. log(buf. fill in ('ascii')); // read from buffer
A. toString
B. read
C. readFile
D. readFrom
04.
var data = 'Read the File Stream: ';
var obj = fs.createReadStream('myfile.txt');
obj. setEncoding('utf8');
obj. fill in ('data', function(datas) { // bind an event to a listener
data += datas;
});
A. add
B. on
C. bind
D. require
05.
var fs = require("fs");
fs. fill in ('myfile. txt', function (err, callback) {
// get status of a file myfile . txt
if (err) {
return console. error(err);
}
A. status
B. statu
C. stats
D. stat
06.
var util = require('util');
function Book() {
this. title = 'Html';
this. when = 'in';
this. number = '8';
this. unit = 'Hours';
}
var obj = new Book();
console. log(util. fill in (obj)); // show data of the object
A. data
B. inspect
C. stat
D. callbackify
07.
console. log("Return the last folder: ");
console. log(path. fill in ('/for/bar/myfolder'));
// return the name of last folder .
A. lastname
B. foldername
C. basename
D. lastfolder
08.
// trigger Event001 event
eventObj. fill in ('Event001');
// trigger Event002 event
eventObj. fill in ('Event002');
A. trigger
B. emit
C. EventEmitter
D. Emitter
09.
const obj = Buffer. fill in ('RayYao'); // create a Buffer object
console. log(obj. toString('ascii '));
A. from
B. new
C. create
D. object
10.
var buf1 = Buffer. from(('Kotlin '));
var buf2 = Buffer. from(('in 8 Hours'));
var buf3 = Buffer. fill in ([buf1,buf2]); // merge buffers
console. log("The buf3 is: " + buf3. toString());
A. merge
B. join
C. concat
D. connect
11.
var fs = require("fs");
var readstream = fs. createReadStream('infile. txt');
var writestream = fs. createWriteStream('outfile. txt');
readstream. fill in (writestream); // piping stream
console. log("The example of piping stream. ");
console. log("Please check the outfile. txt. ");
A. piping
B. pipe
C. tubing
D. tube
12.
var fs = require("fs");
fs. fill in ('asyncfile. txt', 'R in 8 Hours', function(err) {
// write contents to a file asynchronously
if (err) {
return console. error(err);
}
console. log("Write to a file successfully! ");
console. log("Please check the asyncfile. txt");
});
A. writeFileAsync
B. write
C. writeSync
D. writeFile
13.
const cbFunction = util. fill in (mainFunction);
// call the callback function
cbFunction((err, data) => {
if (err) throw err;
console. log(data);
});
A. callback
B. callbackify
C. callify
D. backify
14.
var dns = require('dns');
dns. fill in ('www. yahoo. com', function(err, address) {
// get a IP address from a website
console. log('The IP of www. yahoo. com: ', address);
if (err) {
console. log(err. stack);
}
});
A. ip
B. address
C. lookup
D. http
15.
fill in (function() { // this is a delay function
eventObj. emit('delayEvent');
}, 6000);
A. delay
B. callback
C. timeoutSet
D. setTimeout
16.
const buf = Buffer. fill in (6);
// create an unsafe buffer
console. log(buf);
A. allocUnsafe
B. fromUnsafe
C. buffUnsafe
D. objUnsafe
17.
const buf = Buffer.from('string');
console.log(buf[fill in]); // get a ascii code of the string
A. ascii
B. string
C. index
D. character
18.
function interval(){
console. log("Keep running, until press ctrl+c");
}
// executes the above function every other 3 seconds
fill in (interval, 3000);
A. setTimeout
B. setInterval
C. timoutSet
D. intervalSet
19.
var fs = require("fs");
console. log("This is a sample to delete a file! ");
fs. fill in ('myfile. txt', function(err) { // remove a file
if (err) {
return console. error(err);
}
A. remove
B. delete
C. erase
D. unlink
20.
var util = require('util');
var data = util. fill in (/Rust in 8 Hours/)
// check whether an object is a regular expression .
console. log(data);
A. isRegularExpression
B. isRegExp
C. ReguarExpression
D. RegExp
21.
var dns = require('dns');
dns. fill in ('72. 30. 35. 9', function (err, domain_name) {
// get a domain name form the ip
if (err) {
console. log(err. stack);
}
console. log(domain_name);
});
A. domain
B. name
C. domainName
D. reverse
Node.js Source code download link:
https : //forms . aweber . com/form/12/162246712 . htm
Answers
01 . D | 08 . B | 15 . D |
02 . C | 09 . A | 16 . A |
03 . A | 10 . C | 17 . C |
04 . B | 11 . B | 18 . B |
05 . D | 12 . D | 19 . D |
06 . B | 13 . B | 20 . B |
07 . C | 14 . C | 21 . D |
Source Code Download
Node.js Source code download link:
https : //forms . aweber . com/form/12/162246712 . htm
Django
Hour 1
Introduction
Django Introduction
What is Django?
Django is an open source web application framework written in Python using the framework pattern of MVC, namely model M, view V, and controller C. It was originally developed to manage some news-focused websites of Lawrence publishing's, namely it is a CMS, released under the BSD license in July 2005. The framework is named after Django Reinhardt, a Belgian gypsy jazz guitarist.
Who is suitable for reading this book?
The people who know the Python programming.
The people who want to create web applications and build websites.
The beginners who want to become a Django programmer.
Install Django
Because Django was written in Python, you should install Python first before install Django.
Download Python
Free download Python-3. 7. 1 installer at:
https : //www . python . org/downloads/
Install Python
When the download finishes, run the installer by double-clicking it. Install Python to your local computer, check “Add Python 3.7 to PATH ”.
Then click “Customize installation ” into next step.
Click “next”.
Customize install location as ”C:\Python37 ”, then click “Install”.
Finally, you can see that the Python installation was successful.
Run Python
Please click “Start > Programs > Python3. 7 > IDLE (Python GUI)”.
Or
Click “Start > Programs > Python3. 7 > Python (Command Line)”.
You will see Python prompt:
>>>
Test Python Program
print() |
“print ()” is used to print text or string to the screen.
For example
>>> print ("Hello World! ")
Output: Hello World!
For example
>>> print ("Python is a very good language! ")
Output: Python is a very good language!
Download Django
https : //www . djangoproject . com/download/
On the right side of the download web page, please click the “Latest Release: Django-2.1.3.tar.gz ”, download the Django to your local computer, and unzip the software “Django-2 . 1 . 3 . tar . gz ” in current folder.
After you unzip the software, you can see a folder name “Django-2. 1. 3”. Please copy “Django-2. 1. 3” folder and its contents to C:\.
Now make sure that there are “Python37” folder and “Django-2. 1. 3” folder under C: \ root directory.
And make sure that there is a file “setup. py” under “Django-2. 1. 3” folder.
Under the C: \Django-2. 1. 3, you can see the file “setup. py”.
Install Django
Open a command prompt with “cmd ” command, input following commands:
Explanation:
“cd\ ” returns to C:\ root directory.
“cd django-2.1.3 ” goes to the folder “django-2. 1. 3”.
“python setup.py install ” installs the Django to your computer.
When installation is finished, you can see something like this:
Congratulation! Django is installed successfully!
Test Django
Open a command prompt with “cmd ” command, input following commands:
C: \Django-2. 1. 3>python
>>> import django
>>> print django. get_version()
Output:
2. 1. 3
Explanation:
The output shows the “2. 1. 3”, which is the installed Django version. That means the Django installation is successful!
Hour 2
Basics
Creating Project
django-admin startproject myProject |
“django-admin startproject myProject” can create a project.
Example 2.1
Open a command prompt window with “cmd ” command, input following commands:
C: \...... \cd\ C: \>cd Django-2. 1. 3 C: \Django-2. 1. 3>md myFolder C: \Django-2. 1. 3>cd myFolder C : \Django-2. 1. 3\myFolder>django-admin startproject myProject |
Explanation:
“C: \...... \cd\” goes back to the C: \ root directory.
“C: \>cd Django-2. 1. 3” goes to the folder “Django-2. 1. 3”
“md myFolder” creates a folder “myFolder”.
“cd myFolder” goes to the folder “myFolder”
“django-admin startproject myPorject” creates a project “myProject”
Project Structure
If you want to know the structure of the project, open a command prompt with “cmd ” command, and input following commands:
Example 2.2
C: \>cd \Django-2. 1. 3\myFolder\myProject C : \Django-2. 1. 3\myFolder\myProject>dir |
Output:
Explanation:
The structure of the myProject looks like this:
myProject/ |-- myProject | |-- __init__. py | |-- settings. py | |-- urls. py | |-- wsgi. py |-- manage . py |
There are one file “manage. py” and one sub folder “myProject”.
“manage. py” is used to manage the project.
Sub folder “myProject” includes four files.
“_init_. py” is used to declare a module.
“settings. py” is used to configure the project.
“urls. py” is used to configure the url of the project.
“wsgi. py” is used to connect the application and web server.
Start up Server
python manage . py runserver 0. 0. 0. 0: 8000 |
“python manage. py runserver 0. 0. 0. 0: 8000” can start up the server.
Now we can start up the server:
Example 2.3
C: \>cd Django-2. 1. 3\myFolder\myProject C : \Django-2. 1. 3\myFolder\myProject>python manage.py runserver 0.0.0.0:8000 |
Explanation:
IP 0. 0. 0. 0 allows other computers to connect to the development server, the default server port is 8000.
Preview Web Page
Open a browser, and enter your server IP and port number:
Example 2.4
Output:
|
Congratulations! The first project of Django runs successfully!
Next step we will configure the project, and make the web page have a perfect view.
Note:
1. Make sure that the server has been started up before you open the browser to view the output. Using “python manage. py runserver 0. 0. 0. 0: 8000” can start up the server.
2. Using the browser with http : //127 . 0 . 0 . 1 : 8000 can view the output.
Create a View File
Open the Python editor(IDLE), create a new file named “view.py ”, and write code as follows:
Example 2.5
from django. http import HttpResponse def greeting(request): return HttpResponse("Hi, My Friend ! How are you! ") |
Save the file to the following folder: C: \Django2. 1. 3\myFolder\myProject\myProject.
And name the file as “view. py”.
Create an URL File
Open the Python editor(IDLE), create a new file named “urls.py ”, and write code as follows:
Example 2.6
from django. conf. urls import url from . import view urlpatterns = [url(r'^$', view. greeting),] |
Save the file to the following folder: C: \Django2. 1. 3\myFolder\myProject\myProject.
And name the file as “urls. py”, this new file should replace the original file “urls. py” in the same folder.
View the Web Page
Start up the server, open a browser, and enter your server IP and port number:
Example 2.7
Output:
|
Congratulations! This project has been completed successfully!
Template
A template is a text that separates the presentation and content of a document.
Example 2.8
We will create a template in C: \Django2. 1. 3\myFolder\myProject\templates,
the template file name is “greeting. html”.
myProject/ |-- myProject | |-- __init__. py | |-- settings. py | |-- urls. py | |-- view. py | |-- wsgi. py |-- manage. py |-- templates |-- greeting.html |
The code of the “greeting.html ” is as follows:
<h1>{{ greeting }}</h1> |
Template Path
We need to tell the path of the template file to Django, please modify myProject/ setting. py, and change the DIRS in TEMPLATES to [BASE_DIR+"/ TEMPLATES ",], as shown below:
C: \Django-2. 1. 3\myFolder\myProject\myProject\setting. py
TEMPLATES = [{ 'BACKEND': 'django. template. backends. django. DjangoTemplates', 'DIRS': [BASE_DIR+"/templates",], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': ['django. template. context_processors. debug', 'django. template. context_processors. request', 'django. contrib. auth. context_processors. auth', 'django. contrib. messages. context_processors. messages',], }, },] |
Save the file. “ 'DIRS': [BASE_DIR+"/templates",], ” is a new setting in the file “setting. py”.
Modify view . py
We are now modifying view.py to add a new object for submitting data to the template.
C: \Django-2. 1. 3\myFolder\myProject\myProject\view. py
Example 2.9
#from django. http import HttpResponse from django. shortcuts import render def greeting(request): context = {} context['greeting'] = 'Hello! This is a template sample! ' return render (request, 'greeting. html', context) |
Explanation:
In the above example, we're using “render” to replace the HttpResponse. “render” also uses a context as the parameter. The key value of the context “greeting” corresponds to the variable "{{greeting }}}" in the template.
The “greeting” value is 'Hello! This is a template sample! '.
View the Web Page
Start up the server, open a browser, and enter your server IP and port number:
Example 2.10
Output:
|
Hour 3
Django Tags
Django Template Tags
There are a lot of built-in template tags in Django for programmers to use.
When you create a template file, you can use the template tags.
For example, in here we can edit the template file “greeting.html ” by using the template tags.
Now please open the template file “greeting.html ” to try the template tags.
If/Endif Tag
{% if condition %} …… {% endif %} |
Run the code based on the condition.
Example 3.1
{% if greeting == 'Hello! This is a template sample! ' %} <h1>Django template is fun! </h1> {% endif %} |
Note:
1. Make sure that the server has been started up before you open the browser to view the output. Using “python manage. py runserver 0. 0. 0. 0: 8000” can start up the server.
2. Using the browser with http : //127 . 0 . 0 . 1 : 8000 can view the output.
Output:
Django template is fun!
Elif/Endif Tag
{% if condition1 %} …… {% elif condiiton2 %} …… {% else %} …… {% endif %} |
Run the code based on the various conditions,
Example 3.2
{% if greeting == 'I am a template' %} <h1>Django template is fun! </h1> {% elif greeting == 'Hello! This is a template sample! ' %} <h1><i>AngularJS in 8 Hours! </i></h1> {% else %} <h1>Good! </h1> {% endif %} |
Output:
AngularJS in 8 Hours
For Tag
{% for X in Y %} {% endfor %} |
for tag can iterate over a sequence.
Tthe loop syntax is for X in Y, X is the name of the variable used in each particular loop, and Y is the sequence to iterate.
Example 3.3
First, let’s modify the “view.py ” by writing the following code:
C: \Django-2. 1. 3\myFolder\myProject\myProject\view. py
#from django. http import HttpResponse from django. shortcuts import render def greeting(request): week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] return render(request, "greeting . html", { "week" : week}) |
Please save the file “view. py”.
Second, modify the “greeting.html ” by writing the following code:
C: \Django-2. 1. 3\myFolder\myProject\templates\greeting.
{% for days in week %} {{days}} {% endfor %} |
Please save the file “greeting. html”
Third, open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
Mon Tue Wed Thu Fri Sat Sun
Comment Tag
{# This is a comment . #} |
The comment tag of Django is {# #} . The interpreter of Django will ignore the comments.
Example 3.4
{# The following is a For Tag example #} {% for days in week %} {{days}} {% endfor %} |
Output:
Mon Tue Wed Thu Fri Sat Sun
Include Tag
{% include "myFile . html" %} |
Include another html file to current template file.
Example 3.5
(1) Create an external file “myFile.html ”
C: \Django-2. 1. 3\myFolder\myProject\templates\myFile. html
<h2> Java in 8 Hours </h2> |
Save the “myFile. html” in the template folder.
(2) Modify the “greeting.html ” by writing the following code:
C: \Django-2. 1. 3\myFolder\myProject\templates\greeting. html
{% include "myFile. html" %} {% for days in week %} {{days}} {% endfor %} |
Save the “greeting. html” in the template folder.
(3) Open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
Java in 8 Hours
Mon Tue Wed Thu Fri Sat Sun
Convert to Lower Case
{{ variable|lower }} |
{{ variable|lower }} can convert the upper case to lower case.
Example 3.6
{# modify the greeting . html #} {% for days in week %} {{ days|lower }} {% endfor %} |
Please open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
mon tue wed thu fri sat sun
Convert to Upper Case
{{ variable|upper }} |
{{ variable|upper }} can convert the lower case to upper case.
Example 3.7
{# modify the greeting . html #} {% for days in week %} {{ days|upper }} {% endfor %} |
Please open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
MON TUE WED THU FRI SAT SUN
String Length
{{ string | length }} |
{{ string | length }} returns each string length.
Example 3.8
{# modify the greeting . html #} {% for days in week %} {{ days|length }} {% endfor %} |
Please open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
3 3 3 3 3 3 3
Truncating Tag
{{ string | truncatewords : "number" }} |
{{ string | truncatewords: "number" }} can truncate the string before the number. So you only see the words before the number.
Example 3.9
First, modify the “view.py ” by writing the code as follows:
C: \Django-2. 1. 3\myFolder\myProject\myProject\view. py
#from django. http import HttpResponse from django. shortcuts import render def greeting(request): context = {} context['greeting'] = 'Hello! This is a template sample! ' return render(request, 'greeting . html', context) |
Please save the file “view. py”.
Second, modify the “greeting.html ” by writing the following code:
C: \Django-2. 1. 3\myFolder\myProject\templates\greeting. html
{% if greeting == 'Hello! This is a template sample! ' %} {{ greeting|truncatewords:"3" }} {% endif %} |
Please save the file “greeting. html”
Third, open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
Hello! This is ...
Explanation:
The original string is 'Hello! This is a template sample! '.
Now you only see three words appearing.
Block & Extend Tag
{% block name %} |
“{% block name %}” defines a block.
{% extends "another . html" %} |
“{% extends "another. html" %}” extends another html file.
Example 3.10
Create Another.html
First, let’s create an html file named “another.html ” like this:
C: \Django-2. 1. 3\myFolder\myProject\templates\another. html
<h3> This is a block. </h3> {% block myBlock %} <p>Here will be replaced. </p> {% endblock %} |
Save “another. html” in the folder “template”.
Modify Greeting.html
Second, modify the file “greeting.html ”;
C: \Django-2. 1. 3\myFolder\myProject\templates\greeting. html
{% extends "another. html" %} {% block myBlock %} <h3>Extend Successfully! </h3> {% endblock %} |
Save the “greeting. html” in the template folder.
View the Result
Third, Start up the server, open a browser with url: http : //127 . 0 . 0 . 1 : 8000
Output:
This is a block.
Extend Successfully!
Hour 4
Models
Models
The Django model is database dependent, and database-specific code is generally written in model. py. Django supports databases such as PostgreSQL, MySQL, SQLite, and Oracle etc.
SQLite3 is the default database in Django web applications. In this section we will introduce SQLite3 as an example.
Create an App
python manage . py startapp myApp |
“python manage. py startapp myApp” can create an app.
Example 4.1
Open the command line window with “cmd” command and input following command:
C: \ > cd\ C: \> cd \Django-2. 1. 3\myFolder\myProject C : \Django-2. 1. 3\myFolder\myProject\python manage.py startapp myApp |
After the myApp has been set up, the directory looks like this:
myProject |-- myApp | |-- __init__. py | |-- admin. py | |-- models. py | |-- tests. py | |-- views. py | |-- apps. py |-- manage. py |-- db . sqlite3 |
Modify the models . py
In order to use myApp, we need to modify the models.py.
C: \Djanog-2. 1. 3\myFolder\myProject\myApp/models. py:
Example 4.2
models. py from django. db import models class myDataBase(models. Model): name = models . CharField(max_length=20) |
“myDataBase” is a name of this database. “name” is the field name of the table. “CharField” is the varchar. “max_length” is the maxmum length of the field name.
Modify the setting . py
We need to tell Djano that an App has been installed and modify the setting. py.
C: \Djanog-2. 1. 3\myFolder\myProject\myProject\setting. py
Example 4.3
INSTALLED_APPS = ['django. contrib. admin', 'django. contrib. auth', 'django. contrib. contenttypes', 'django. contrib. sessions', 'django. contrib. messages', 'django. contrib. staticfiles', 'myApp ', # add this item] |
We have added an item “myApp” in the setting. py.
Create a Data Table
Open the command line window with “cmd” and run the following commands to create a data table.
Example 4.4
C : \ > cd\ C : \> cd \Django-2 . 1 . 3\myFolder\myProject C : \Django-2 . 1 . 3\myFolder\myProject\python manage . py migrate C : \Django-2 . 1 . 3\myFolder\myProject\python manage . py makemigrations myApp C : \Django-2 . 1 . 3\myFolder\myProject\python manage . py migrate myApp |
Explanation:
python manage. py migrate
Get ready for data table structure
python manage. py makemigrations myApp
Let Django know that the updated model
python manage. py migrate myApp
Create a data table structure for myApp
Modify urls . py
Modify the urls.py so that a database test file can be found by Django.
C: \Djanog-2. 1. 3\myFolder\myProject\myProject\urls. py
Example 4.5
from django. conf. urls import * from . import view,testdb urlpatterns = [url(r'^testdb$', testdb. testdb),] |
testdb. py is a file that is used to add some data to the data table.
Create a file testdb . py
The functionality of the testdb.py is just like the INSERT in SQL.
C: \Djanog-2. 1. 3\myFolder\myProject\myProject\testdb. py
Example 4.6
from django. http import HttpResponse from myApp. models import myDataBase def testdb(request): db = myDataBase(name='R in 8 Hours') db. save() return HttpResponse("Data added is : R in 8 Hours") |
“R in 8 Hours ” has been added to the database.
Test Database
Example 4.7
Start up the server, visit http : //127 . 0 . 0 . 1 : 8000/testdb , you can see the message of data added successfully.
Output:
Retrieve Data
list = MyDataBase. objects. all() # all() is equivalent to SELECT * FROM in SQL result = MyDataBase. objects. filter(id=1) # filter is equivalent to WHERE in SQL result = MyDataBase. objects. get(id=1) # returns a single object |
The above commands can get the data from the database. Please edit the testdb. py.
Example 4.8
C: \Django-2. 1. 3\myFolder\myProject\myProject\testdb. py
from django. http import HttpResponse from myApp. models import myDataBase # get the data def testdb(request): list = myDataBase.objects.all() result = "" for var in list: result = var. name + " " return HttpResponse("<p>" + result + "</p>") |
Start up the server, browse with url: http : //127 . 0 . 0 . 1 : 8000/testdb
Output:
R in 8 Hours
Explanation:
Because a data “R in 8 Hours” has been added previously, now the output should be “R in Hours”.
Update the Data
If you want to update the data table, please use following command:
Example 4.9
C: \Django-2. 1. 3\myFolder\myProject\myProject\testdb. py
from django. http import HttpResponse from myApp. models import myDataBase # update the data def testdb(request): db = myDataBase(name='C# in 8 Hours') db. save() return HttpResponse(db . name) |
Start up the server, browse with url: http : //127 . 0 . 0 . 1 : 8000/testdb
Output:
C# in 8 Hours
Delete the Data
If you want to delete a data in data table, please use delete() and following command:
Example 4.10
C: \Django-2. 1. 3\myFolder\myProject\myProject\testdb. py
from django. http import HttpResponse from myApp. models import myDataBase # delete data def testdb(request): myDataBase. objects. all().delete() return HttpResponse("<p>Delete Successfully . </p>") |
Start up the server, browse with url: http : //127 . 0 . 0 . 1 : 8000/testdb
Output:
Delete Successfully
Hour 5
Form/Method
Django Form
HTML forms are a classic feature of web interactivity. This chapter will show you how to handle the data from the user-submitted form with Django.
The HTTP protocol works by "request-reply" mode when a client sends a request; it can attach data to the request. The server can parse the request to get the data from the client, respond the user and provide a specific service based on the URL.
Get Method
Example 5.1
Create Search.py
We will create a file “search. py” to receive user requests.
C: \Django-2. 1. 3\myFolder\myProject\myProject\search. py
from django. http import HttpResponse from django. shortcuts import render_to_response # form def myForm(request): return render_to_response('myForm. html') # receive the requesting data def search(request): if 'str' in request.GET: text = 'The search text is: ' + request.GET ['str'] else: text = 'You have submitted an empty form. ' return HttpResponse(text) |
Create myForm.html
Then, we create a form “myForm. html” for user input.
C: \Django-2. 1. 3\myFolder\myProject\templates\myForm. html
<html> <body> <form action="/search" method="get"> <input type="text" name="str"> <input type="submit" value="search"> </form> </body> </html> |
Modify Urls.py
Finally, we modify the urls.py to tell the path to Django.
C: \Django-2. 1. 3\myFolder\myProject\myProject\urls. py
from django. conf. urls import url from . import view,testdb,search urlpatterns = [url(r'^greeting$', view. greeting), url(r'^testdb$', testdb. testdb), url(r'^myForm$', search. myForm), url(r'^search$', search. search),] |
Test the Form
Example 5.2
Start up the server, visit http : //127 . 0 . 0 . 1 : 8000/myForm , and input “JQuery in 8 Hours” into the text field:
Output:
After clicking the “search” button, you can see the following output:
Output:
Calculation
We can use Get() method to calculate math problems.
Example 5.3
Create a Project
Open the command line window with “cmd”, input the following commands:
C: \>cd\
C: \>cd \Django-2. 1. 3\myFolder
C: \Django-2. 1. 3\myFolder
django-admin startproject Calculation cd calculation python manage . py startapp Calculating |
In the above commands, we create a project “Calculation” first, then we create an app “Calculating” under the project.
Now the structure of this project looks like this:
Calculation/ ├── Calculating │ ├── __init__. py │ ├── admin. py │ ├── apps. py │ ├── models. py │ ├── tests. py │ └── views. py ├── manage . py |
Modify The Views.py File.
C: \Django-2. 1. 3\myFolder\Calculation\Calculating\views. py
from django. shortcuts import render from django. http import HttpResponse def add(request): x = request. GET['x'] y = request. GET['y'] z = int(x)+int(y) return HttpResponse(str(z)) |
Modify The Urls.py File.
C: \Django-2. 1. 3\myFolder\Calculation\Calculation\urls. py
from django. conf. urls import url from django. contrib import admin from Calculating import views as calculating_views urlpatterns = [url(r'^add/$', calculating_views. add, name='add'), url(r'^admin/', admin. site. urls),] |
Start up the server, open a browser with the following url: http : //127 . 0 . 0 . 1 : 8000/add/?x=100&y=200
Output:
Explanation:
The url has the parameters “x=100” and “y=200”, therefore, the web page output is 300.
Post Method
POST methods are more commonly used when submitting data.
We'll use this method next and use a URL and handler to display the view and process the request at the same time
Example 5.4
Create myPost.html
We will create a file “myPost. html” in the folder “template”. This form is used to receive the input from users.
C: \Django-2. 1. 3\myFolder\myProject\templates\myPost. html
<html> <body> <form action="/postMethod" method="post"> {% csrf_token %} <input type="text" name="str"> <input type="submit" value="Submit"> </form> Your search text is: {{ message }} </body> </html> |
{% csrf_token %} is used to prevent the forger submit of a request. CSRF means that Cross Site Request Forgery.
Create Find.py
Then we create the find. py file and use the postMethod function to process the POST request.
C: \Django-2. 1. 3\myFolder\myProject\myProject\find. py
from django. shortcuts import render from django. views. decorators import csrf # receive post requesting data def postMethod(request): var ={} if request.POST: var['message'] = request.POST ['str'] return render(request, "myPost . html", var) |
The above code uses the Post method.
Modify urls.py
Finally, we will modify the urls. py to tell the path to the Django.
C: \Django-2. 1. 3\myFolder\myProject\myProject\urls. py
from django. conf. urls import url from . import view,testdb,search, find urlpatterns = [url(r'^greeting$', view. greeting), url(r'^testdb$', testdb. testdb), url(r'^myForm$', search. myForm), url(r'^search$', search. search), url(r'^postMethod$', find. postMethod),] |
Test the Form
Example 5.5
Start up the server, visit http : //127 . 0 . 0 . 1 : 8000/postMethod , and input “C# in 8 Hours” into the text field:
Output:
Please click the “Submit” button.
Output:
Redirection
Sometimes we want to redirect the user's current page to another page.
redirect("https : //www. xxxxxxxx. com") |
Example 5.6
Create Redirect.py
We create a file “redirect. py”in the:
C: \Django-2. 1. 3\myFolder\myProject\myProject\redirect. py
#redirection from django. shortcuts import render, redirect def visit(request): return redirect ("http: //www. google. com") |
The above code will redirect to Google page.
Modify Urls.py
Modify the “urls. py” to let Django know about the new file “redirect. py”.
from django. conf. urls import url from . import view,testdb,search,find,redirect from django. contrib import admin urlpatterns = [url(r'^greeting$', view. greeting), url(r'^testdb$', testdb. testdb), url(r'^myForm$', search. myForm), url(r'^search$', search. search), url(r'^postMethod$', find. postMethod), url(r'^admin/', admin. site. urls), url(r'^visit$', redirect.visit),] |
View the Result
Start up the server, open the browser with the link:
http : //127 . 0 . 0 . 1 : 8000/visit
The above link will redirect to www . google . com .
Output:
Hour 6
Administration Tool
Administration Tools
Django provides web-based management tool. Its automatic management tool is part of django. contrib. You can see it on INSTALLED_APPS in the project's settings. py.
View Setting.py
C: \Django-2. 1. 3\myFolder\myProject\myProject\settings. py
INSTALLED_APPS = ('django. contrib. admin', 'django. contrib. auth', 'django. contrib. contenttypes', 'django. contrib. sessions', 'django. contrib. messages', 'django. contrib. staticfiles',) |
Django. contrib is a huge function collection, which is a part of Django basic code.
Activation of Management Tools
We can set up the urls. py to activate the Management Tools.
Example 6.1
C: \Django-2. 1. 3\myFolder\myProject\myProject\urls. py
from django. conf. urls import url from . import view,testdb,search, find from django.contrib import admin urlpatterns = [url(r'^greeting$', view. greeting), url(r'^testdb$', testdb. testdb), url(r'^myForm$', search. myForm), url(r'^search$', search. search), url(r'^postMethod$', find. postMethod), url(r'^admin/', admin.site.urls),] |
“from Django. contrib import admin” imports the administration tools.
“url(r'^admin/', admin.site.urls)” sets up a url to use admin tools.
When the above file urls. py is configured, the Django administration tools can start to run.
Start up the server, and open the browser with url: http : //127 . 0 . 0 . 1 : 8000/admin/ ,
Output:
|
Create a Super User
python manage . py createsuperuser |
“Python manages. py createsuperuser” can create a super user.
Example 6.2
C: \Django-2. 1. 3\myFolder\myProject>python manage.py createsuperuser
Username (leave blank to use 'root'): admin Email address: admin@in8hours. com Password: Password (again): Superuser created successfully . |
The password is set as 12345.
Start up the server, and open the browser with url: http : //127 . 0 . 0 . 1 : 8000/admin/
Output:
Please input the user name “admin” and password “12345”, and login the site of administration.
Manage Database
In order to manage the database, we need to register the database to “admin” first and modify the “admin. py” file.
Example 6.3
C: \Django-2. 1. 3\myFolder\myProject\myApp\admin. py
from django. contrib import admin from myApp. models import myDataBase # Register your database here . admin.site.register(myDataBase) |
Open the browser with url: http : //127 . 0 . 0 . 1 : 8000/admin/ ,
Output:
Another Database
We can create more databases. Because the functionality of the administration tools is so powerful that it can manage many databases at the same time.
Modify the models . py
To create one more database, we need to modify the models. py.
Example 6.4
C: \Django-2. 1. 3\myFolder\myProject\myApp\models. py
models. py from django. db import models class myDataBase(models. Model): name = models. CharField(max_length=20) class newDataBase (models. Model): username = models. CharField(max_length=200) age = models. IntegerField(default=0) email = models . EmailField() |
In here, we create a database named “newDatabase ”.
Register the New Database
Then, we need to register the “newDatabase” to “admin” by modifying the “admin. py” file.
Example 6.5
C: \Django-2. 1. 3\myFolder\myProject\myApp\admin. py
from django. contrib import admin from myApp. models import myDataBase,newDataBase # Register your models here . admin.site.register([myDataBase, newDataBase]) |
Open the browser with url: http : //127 . 0 . 0 . 1 : 8000/admin/ ,
Output:
We can see another database “newDatabase” has been set up successfully.
Back-End Sample
Django can be powerful if we add less code in the back end,.
The back-end code is always related to the admin. py file in each app.
Example 6.6
1. Create A Project
C : \Django-2 . 1 . 3\myFolder>django-admin startproject myBlog
2. Create A App
C : \Django-2 . 1 . 3\myFolder> cd myBlog
C : \Django-2 . 1 . 3\myFolder\myBlog>python manage . py startapp Blog
3. Modify the Models.py
C: \Django-2. 1. 3\myFolder\myBlog\Blog\models. py
from django. db import models class Essay(models. Model): title = models. CharField(u'Titile', max_length=256) content = models. TextField(u'Content') pub_date = models. DateTimeField(u'Publish Time', auto_now_add=True, editable = True) update_time = models . DateTimeField(u'Update Time',auto_now=True, null=True) |
4. Add Blog to Settings.pys
Add the blog to INSTALLED_APPS in settings. py.
C: \Django-2. 1. 3\myFolder\myBlog\myBlog\settings. py
INSTALLED_APPS = ('django. contrib. admin', 'django. contrib. auth', 'django. contrib. contenttypes', 'django. contrib. sessions', 'django. contrib. messages', 'django. contrib. staticfiles', 'Blog' , # add this item) |
5. Synchronize All Data Tables
Open the command line window with cmd command:
C : \Django-2 . 1 . 3\myFolder\myBlog>python manage . py makemigrations C : \Django-2 . 1 . 3\myFolder\myBlog>python manage . py migrate |
Output:
After input above commands, you can see the output:
……
Creating table django_content_type
Creating table django_session
Creating table blog_article
6. Create an Account
python manage . py createsuperuser |
“Python manages. py createsuperuser” can create a super user.
C: \Django-2. 1. 3\myFolder\myBlog>python manage.py createsuperuser
Username (leave blank to use 'root'): admin Email address: admin@in8hours. com Password: Password (again): Superuser created successfully . |
The password is set as 12345.
7. Register the Blog
Enter the Blog folder and modify the admin. py file.
C: \Django-2. 1. 3\myFolder\myBlog\Blog\admin. py
from django. contrib import admin from . models import Essay admin.site.register(Essay) |
8. View the Results
Open the browser with url: http : //127 . 0 . 0 . 1 : 8000/admin/ ,
Output:
You can click the Essay to manage the database.
Appendix 1
Python Basic
What is Python?
Python is a general-purpose, object-oriented and open source computer programming language, it is a high-level, human-readable and a corresponding set of software tools and libraries.
Download Python
Free download Python installer at:
https : //www . python . org/downloads/
Install Python
When the download finishes, run the installer by double-clicking it. Install Python to your local computer, For example: at C:\Python35. Click “Next”.
Make sure to select the option “Add Python. exe to Path”.
Please complete the installation of Python.
Run Python
Please click “Start > Programs > Python3. 5 > IDLE (Python GUI)”.
Or click “Start > Programs > Python3. 5 > Python (Command Line)”.
You will see Python prompt:
>>>
First Python Program
print() |
“print ()” is used to print text or string to the screen.
Example 1.1
>>> print ("Hello World! ")
Output: Hello World!
Example 1.2
>>> print ("Python is a very good language! ")
Output: Python is a very good language!
>>> print ("Learn Python in 8 Hours! ")
Output: Learn Python in 8 hours.
Explanation:
“>>> ” is a Python primary prompt.
“print ()” displays the text.
The Shell Prompt
>>> |
“>>> ” is the Python interactive command shell prompt, requests the input from the user.
For example:
>>> 10 + 8 18 >>> 100 - 2 98 >>> " Hello " + " World! " ' Hello World! ' >>> " Very Good! " * 3 ' Very Good ! Very Good! Very Good! ' |
Explanation:
“>>> ” prompts that you can input data, and press Enter.
The lines without >>> are responded by Python.
For example:
>>> 100 * 2 200 >>> 72 / 9 8 >>> (2 + 3) * 4 20 >>> 10 % 3 1 >>> 2 ** 3 8 |
Explanation:
* | multiplication |
/ | division |
% | remainder |
** | exponentiation |
Configure Editor
In order to run the whole Python program instead line by line, or easily copy or paste whole code, you need to configure the python editor.
Please click “Start > All Programs > Python3. 5 > IDLE (Python GUI)”.
Click “Option > Configure IDLE > General > Open Edit Window” > OK.
After selecting “Open Edit Window”, you can run the whole Python program instead line by line. Press “F5 ” key to run the program.
(Run>Run Module)
Note:
Option “Open Edit Window” runs the program by whole code.
Execute the whole program by pressing F5 key.
(Run>Run Module)
Option “Open Shell Window” runs the program line by line.
Execute the one line code by pressing Enter key.
Variables
A “variable” is a container that stores a data value. The variable value may change when program is running.
variableName = value variableName1 = variableName2 = value variableName1, variableName2 = value1, value2 |
“variableName” is a variable name.
Example 1.3
var = 100 var1 = var2 = var3 = 100 var1, var2, var3 = 100, 200, 300 |
Explanation:
“var = 100” defines a variable named “var”, whose value is 100.
“var1 = var2 = var3 = 100” assigns the value “100” to “var1”, var2”, “var3”.
“var1, var2, var3 = 100, 200, 300” respectively assigns the value “100, 200,300” to “var1”, var2”, “var3”.
Variables & Comment
A variable's value can be used in Python programs.
variableName = value print (variableName) |
Symbol can be used in a comment.
comment |
Example 1.4
var01 = 100
print (var01) # Output : 100
Example 1.5
var02 = "Python is very good! "
print (var02) # Output : Python is very good !
Explanation:
“print ()” is used to display content.
is a symbol of comment.
“# Output : 100” is a comment.
“# Output : Python is very good ! ” is a comment.
Arithmetic Operator
Operator | Operation |
+ | Addition |
- | Subtraction |
* | Multiplication |
/ | Division |
% | Remainder |
// | Integer Division |
** | Exponentiation |
Note:
“%” modulus operator divides the first operand by the second operand, returns the remainder.
“//” works like “/”, but returns an integer.
“**” returns the result of the first operand raised to the power of the second operand.
Example 1.6
a = 100 + 200 b = 72/ 9 c = 25 % 7 d = 7 // 3 e = 8 ** 2 print (a, b, c, d, e) |
Output:
(300, 8, 4, 2, 64)
Explanation:
“100 + 200” returns 300
“72/9” returns 8
“25 % 7” returns 4.
“7 // 3” returns 2.
“8 ** 2” returns 64.
Assignment Operators
“x += y” equals “x = x + y”, please see the following chart:
Operators | Examples: | Equivalent: |
+= | x+=y | x=x+y |
- = | x - =y | x=x - y |
* = | x * =y | x=x * y |
/ = | x / =y | x=x / y |
%= | x%=y | x=x%y |
//= | x // =y | x=x // y |
= | x=y | x=x**y |
Example 1.7
x=20 y=2 x %= y print (x) |
Output:
0
Explanation:
“x %= y” equals “x = x % y”
Example 1.8
m=100 n=18 m%= n print (m) |
Output:
10
Explanation:
“m %= n” equals “m = m % n”.
Comparison Operators
Operators | Running |
> | greater than |
< | less than |
>= | greater than or equal |
<= | less than or equal |
== | equal |
! = | not equal |
After using comparison operators, the result will be true or false.
Example 1.9
a=100 b=200 result1= (a> b) print (result1) result2= (a== b) print (result2) result3= (a!= b) print (result3) |
Output:
False
False
True
Explanation:
result = (a>b) # test 100>200 outputs false .
result = (a==b) # test 100==200 outputs false .
result = (a! =b) # test 100 ! =200 outputs true .
Logical Operators
Operators | Equivalent |
and | logical AND |
or | logical OR |
not | logical NOT |
After using logical operators, the result will be True or False.
Example 1.10
x=True y=False a=x and y print (a) b=x or y print (b) c=not x print (c) |
Output:
False
True
False
Explanation:
True and True returns true | True and False returns False | False and False returns False |
True or True returns True | True or False returns True | False or False returns False |
not False returns True | not True returns False |
Conditional Operator
The syntax of conditional operator looks like this:
(if-true-do-this) if (test-expression) else (if-false-do-this) |
(test-expression) looks like a<b, x! =y, m==n. etc.
Note: The syntax of the conditional operator in Python is different from the “ ? : “ ternary operator in C++ or Java.
Example 1.11
a=100 b=200 result = "apple" if (a<b) else "banana" print (result) |
Output:
apple
Explanation:
The conditional operator use (a<b) to test the “a” and “b”, because “a” is less than “b”, it is true. Therefore, the output is “apple”.
Convert Data Type
Function | Operation |
int(x) | convert x to an integer number |
str(x) | convert x to a string |
chr(x) | convert x to a character |
float(x) | convert x to a floating point number |
hex(x) | convert x to a hexadecimal string |
oct(x) | convert x to a an octal string |
round(x) | round a floating-point number x . |
type(x) | detect x data type |
Example 1.12
num1 = int (8. 67) print (num1) # returns 8 num2 = round (8. 67) print (num2) # returns 9 . 0 num3 = float (5) print (num3) # returns 5 . 0 |
Explanation:
dataType() can convert the data type of a value.
Triple Quotes
Triple Quotes are used to display multiple lines of text.
‘‘‘ ’’’ |
For example:
multiString = '''Python is a very good language! ''' print (multiString) |
Output:
Python
is a very
good language!
Explanation:
The text included inside the triple quotes can cross over multilines.
Exercise : Ticket Fare
If…else…
Please click “Start > Programs > Python3. 5 > IDLE (Python GUI)”.
Write the following code to the IDLE editor:
age = 15 ticket = "Child Fare" if (age < 16) else "Adult Fare" print (ticket) |
Save the file, and run the program by pressing F5 key.
(Run>Run Module).
Output:
Child Fare
Explanation:
The conditional operator use (age < 16) to test the “age” and “16”, because “age” is less than “16”, it is true. Therefore, the output is “Child Fare”.
Summary
“print ()” is used to print text or string to the screen.
“>>> ” is the Python interactive command shell prompt, requests the input from the user.
A “variable” is a container that stores a data value. The variable value may change when program is running.
variableName = value
Symbol can be used in a comment.
“%” modulus operator divides the first operand by the second operand, returns the remainder.
“//” works like “/”, but returns an integer.
“**” returns the result of the first operand raised to the power of the second operand.
“x += y” equals “x = x + y”
Comparison operators: >, <, >=, <=, ==, ! =.
Logical operators: and, or, not.
Conditional operator:
(if-true-do-this) if (test-expression) else (if-false-do-this)
int(x) converts x to an integer number.
Triple Quotes ‘‘‘ ’’’ are used to display multiple lines of text.
Appendix 2
Texts & Answers
Tests
Please choose the correct answer.
(1)
“Python manages. py fill in ” can create a super user.
A. createuser
B. createsuper
C. createusersuper
D. createsuperuser
(2)
“fill in myProject” can create a Django project.
A. startproject
B. django startproject
C. django-admin startproject
D. django-manage startproject
(3)
{% if greeting == 'Hello! This is a template sample! ' %}
<h1>Django template is fun! </h1>
{% fill in %}
A. if B. end C. endif D. ifend
(4)
“ fill in myApp” can create an app.
A. python admin. py startapp
B. python manage. py startapp
C. django admin. py startapp
D. django manage. py startapp
(5)
from django. http import HttpResponse
from django. shortcuts import render_to_response
form
def myForm(request):
return render_to_response('myForm. html')
receive the requesting data
def search(request):
if 'str' in fill in . GET:
text = 'The search text is: ' + request. GET['str']
else:
text = 'You have submitted an empty form. '
A. request B. demand C. appeal D. ask
(6)
Django provides web-based management tool. Its automatic management tool is part of django. contrib. You can see it on INSTALLED_APPS in the project's settings. py file.
fill in = ('django. contrib. admin', 'django. contrib. auth', 'django. contrib. contenttypes', 'django. contrib. sessions', 'django. contrib. messages', 'django. contrib. staticfiles',) |
A. INSTALL_APPLICATIONS
B. INSTALLED_APPPLICATIONS
C. INSTALL_APPS
D. INSTALLED_APPS
(7)
The structure of the myProject looks like this:
myProject/ |-- myProject | |-- __init__. py | |-- settings. py | |-- urls. py | |-- wsgi. py |-- manage . py |
“fill in . py” is used to connect the application and web server.
A. _init_ B. settings C. ursl D. wsgi
(8)
{% for days fill in week %}
{{days}}
{% endfor %}
A. to B. at C. in D. on
(9)
python manage. py migrate
Get ready for data table structure
python manage. py makemigrations myApp
Let Django know that the updated model
python manage. py fill in myApp
Create a data table structure for myApp
A. create B. migrate C. table D. structure
(10)
Before opening the browser with http : //127 . 0 . 0 . 1 : 8000 to view the Django result, we should start up the fill in .
A. printer B. laptop C. server D. monitor
(11)
“from Django. contrib import admin” imports the administration tools.
“url(r'^admin/', admin. site. urls)” sets up a fill in to use adminstration tools.
A. Django B. application C. app D. url
(12)
“python manage. py fill in 0. 0. 0. 0: 8000” can start up the server.
A. runserver B. startserver C. start D. server
(13)
The comment tag of Django is fill in . The interpreter of Django will ignore the comments.
A. {{ }} B. {# #} C. {% %} D. {? ?}
(14)
list = MyDataBase. objects. all()
all() is equivalent to SELECT * FROM in SQL
result = MyDataBase. objects. filter(id=1)
filter is equivalent to WHERE in SQL
result = MyDataBase. objects. fill in (id=1)
returns a single object
A. return B. set C. get D. filter
(15)
from django. shortcuts import render
from django. views. decorators import csrf
receive post requesting data
def postMethod(request):
var ={}
if fill in . POST:
var['message'] = request. POST['str']
return render(request, "myPost. html", var)
A. request B. demand C. appeal D. ask
(16)
from django. contrib import admin
from myApp. models import myDataBase
Register your database here .
admin. site. fill in (myDataBase)
A. sign up B. login C. enroll D. register
(17)
fill in variable fill in can show the value of a variable.
A. (()) B. {{ }} C. [[]] D. << >>
(18)
{{ string | fill in : "number" }} can truncate the string before the number.
A. truncateword
B. truncatetext
C. truncatewords
D. truncatetexts
(19)
the following code will delete a data .
from django. http import HttpResponse
from myApp. models import myDataBase
def testdb(request):
myDataBase. objects. all(). fill in () # delete data
return HttpResponse("<p>Delete Successfully. </p>")
A. delete B. remove C. erase D. expunge
(20)
the following code will redirect to a new web site .
from django. shortcuts import render, redirect
def visit(request):
fill in ("http://www.google.com")
redirection
A. redirection
B. redirect
C. return redirection
D. return redirect
---The End---
Answers
01 . D | 11 . D |
02 . C | 12 . A |
03 . C | 13 . B |
04 . B | 14 . C |
05 . A | 15 . A |
06 . D | 16 . D |
07 . D | 17 . B |
08 . C | 18 . C |
09 . B | 19 . A |
10 . C | 20 . D |
Note:
This book is suitable for the programmers who have Python knowledge previously .
Django Source code download link:
https : //forms . aweber . com/form/31/448508031 . htm
Source Code Download
Django Source code download link:
https : //forms . aweber . com/form/31/448508031 . htm
Scala
Hour 1
Introduction
What is Scala Language?
The Scala language is a general-purpose programming language that can be executed on the JVM and. net platforms for both large-scale application development and lightweight programming. It was developed by Martin Odersk in 2001. Scala is widely used for its elegant type-safe programming scheme.
Scala is a pure object-oriented language with OO features, but it's also a functional language that allows you to write code with functional ideas.
Scala is built on top of the JVM and interoperates seamlessly with Java.
The great advantage of Scala: The Scala language is scalable, allowing you to write both small scripts and complex server-side programs.
The Feature of Scala
Scala is a pure object-oriented programming language
Scala is a functional programming language
Scala is very compatible and portable
Install JDK
Before installing Scala, you must install Java JDK first.
About JDK (also called Java SE)
JDK (Java Development Kit) contains all Java class libraries, all tool building and running Java programs. JDK can create a Java development environment.
Download JDK
http : //oracle . com/download
or
http : //www . oracle . com/technetwork/java/javase/downloads/index . html
Please click the link to download the newest version JDK at Oracle website. (Figure 1)
(Figure 1 Download JDK at Oracle Website)
If your computer is a 32-bit operating system, download the JDK with x86; If your computer is a 64-bit operating system, download the JDK with x64. (Figure 2)
(Figure 2)
Install the JDK
Please install the newest version of the JDK to your computer. For example, install Java SE 12.0.1.
After installing the Java SE 12. 0. 1, please check the directory:
C: \Program Files\Java\jdk-12. 0. 1
You can find the “jdk-12.0.1 ” in there.
Please remember the installation path and jdk version.
Configure Java Environment Variables
The following chart is the configure parameters:
Variable Name | JAVA_HOME |
Variable Value | C : \Program Files\Java\jdk-12 . 0 . 1 |
Variable Name | Path |
Variable Value | ; %JAVA_HOME%\bin;%JAVA_HOME%\jre\bin ; |
1. Please click Control Panel > System > Advanced System Settings > Environment Variables
2. Click “ New… ”
3. Input “JAVA_HOME”.
4. Input “C: \Program Files\Java\jdk-12. 0. 1”. As follows:
5. Click “OK ”
6. Select “Path”.
7. Click “Edit… ”
8. Append “ ; %JAVA_HOME%\bin;%JAVA_HOME%\jre\bin; ”
As follows:
(Note: If in Windows 10, you need to add the variable values one by one as follows:)
9. Click “OK ”, and restart the computer.
Test Java Environment
"Start" > " Run" > type "cmd ". Go to “C: \Users\YourName”.
Type “Java -version ” as follows
Congratulation! The JDK has been installed successfully!
Install Scala
Download the Scala
https : //www . scala-lang . org/download/
Click Scala-2.12.8.msi.
Install the Scala
Please install scala-2.12.8 in C: \Program Files (x86)\scala.
And remember the directory:
C: \Program Files (x86)\scala
Configure Scala Environment Variables
The following chart is the configure parameters:
Variable Name | SCALA_HOME |
Variable Value | C : \Program Files (x86)\scala |
Variable Name | Path |
Variable Value | ; %SCALA_HOME%\bin;%SCALA_HOME%\jre\bin ; |
Variable Name | Classpath |
Variable Value | . ; %SCALA_HOME%\bin ; |
Note: the method of the configure Scala environment variables is the same as the method of the configure Java environment variables.
Click “New…”
Click “OK” , and restart the computer.
Test Scala Environment
"Start" > " Run" > type "cmd ". Go to “C: \Users\YourName”.
Type “scala -version ” as follows
Congratulation! The Scala has been installed successfully!
Hour 2
Basics
“Hello World” Program
Working Folder
Please go to C: \Users\YourName, create a folder “myScala ”. Now the working folder is “C: \Users\YourName\myScala ”, which is used to save Scala files.
Example 2.1
Please open the Windows NotePad, write the following code in it.
object HelloWorld { def main(args: Array[String]) { println("Hello, world!") } } |
Save the file as “HelloWorld. scala” in the working folder “myScala”.
"Start" > " Run" > type "cmd ". Go to “C: \Users\YourName\myScala”. Type “scala HelloWorld. scala”, run the program
Output:
Hello world!
Explanation:
“object HelloWorld” means that the object name is “HelloWorld”
Note: The file name of the Scala file should be the same as object name.
The Scala extension name is “. scala”.
The Scala files should be saved in the working folder “myScala”
“def main(args: Array[String])” is the main function that is always executed first.
“args: Array[String]” is the argument which is used to accept the input of the string.
“println()” outputs the contents.
“scala HelloWorld. scala” is a command to run the HelloWorld program.
Basic Grammar
Scala is a case-sensitive language.
For example: Hello and hello is different.
The first letter of all class names should be capitalized.
For example: HelloWorld
The file name should be the same as object name.
For example: HelloWorld. scala & object HelloWorld
All method names start with a lowercase letter.
For example: def myMethod()
A semicolon is used to end a line of statement.
For example: println(“Hello”);
Scala Keywords
Scala keywords are reserved by Scala Language. We cannot use the following keywords as variables, constants, or function names.
abstract | case | catch | class |
def | do | else | extends |
false | final | finally | for |
forSome | if | implicit | import |
lazy | match | new | null |
object | override | package | private |
protected | return | sealed | super |
this | throw | trait | try |
true | type | val | var |
while | with | yield | |
- | : | = | => |
<- | < : | <% | > : |
| @ |
Scala Comment
/*….. */ is a symbol for multi-line comment // is a symbol for single-line comment |
Example 2.2
object HelloWorld { /* * Here is a hello-world program * Here is a Scala program sample */ def main(args: Array[String]) { println("Hello, world! ") // output Hello, world ! } } |
Output: Hello, world!
Explanation:
/*…*/ is used for multi-line comments
// is used in single-line comments
Package
A package is a code module that has some functionality, The Scala package provides specific functionality to the program.
Define a package:
package package_name class class_name |
For example:
package myPackage{ // define a package
class HelloWorld // the content of the package
}
Import a package
import package_name |
For example:
import java. awt. Color // import Color package
Data Type
The data type of the Scala is the same as the data type of the Java.
Data Type | Description |
Byte | 8-bit signed integer |
Short | 16-bit signed integer |
Int | 32-bit signed integer |
Long | 64-bit signed integer |
Float | 32-bit floating point number |
Double | 64-bit floating point number |
Char | 16-bit unsigned unicode character |
String | character series |
Boolean | true or false |
Unit | no value |
Null | empty reference |
Nothing | sub class of any other type |
Any | super class of any other type |
AnyRef | base class for all referenced classes |
Int Type
For example:
100
88
Long Type
A long type number is followed by a L.
For example:
0868L
3000L
Float Type
A float type number is followed by an F.
For example:
2c60F
3. 14159F
Boolean Type
For example:
true
false
Character Type
Character types are defined by single quotes ‘ ’.
For example:
‘ a’
‘ B’
String Type
String Types are defined by double quotes “ ”.
For example:
“ Go in 8 Hours”
“ Rust in 8 Hours”
Multi-line String Type
Multi-line String Type are defined by treble quotes “““ ”””.
For example:
“““ Django in 8 Hours
& AngularJS in 8 Hours
are very good books ”””
Null Type
Null type contains an empty value.
For example:
Scala. Null
Scala. Nothing
Escape Sequences
The “ \ ” backslash character can be used to escape characters.
\n outputs content to the next new line.
\r makes a return
\t makes a tab
\’ outputs a single quotation mark.
\” outputs a double quotation mark.
For example:
println("Hello, \t\t\t World! ") // Output : Hello, Would !
Hour 3
Operators
Variables
Variable: the value of which may change while the program is running. The syntax to define a variable is as follows:
var variable_name = value |
Example 3.1
object Var000 { def main(args: Array[String]) { var myVar = 100 // define a variable print(myVar) } } |
Output:
100
Explanation:
“var myVar = 100” define a variable “myVar”, its value is 100.
Declare Variable Type
The syntax of declaring a variable type is as follows:
var variable : type = value |
Example 3.2
object Var001 { def main(args: Array[String]){ var myVar1:Int = 1000 // define Int variable var myVar2:String = " Good " // define String variable print(myVar1) print(myVar2) } } |
Output: 1000 Good
Explanation:
“var myVar1: Int = 1000” define an Int type variable.
“var myVar2: String = " Good "” define a String variable.
Declare Multi Variables
The syntax to declare multi variables are as follows:
var variable1, variable2, variable3 = value |
Example 3.3
object Var002 { def main(args: Array[String]){ var var1, var2, var3 = 10000; // define multi variables println(var1); println(var2); println(var3) } } |
Output:
10000
10000
10000
Explanation:
“var var1, var2, var3 = 10000;” defines multi variables.
Constants
Constant: the value of which cannot change while the program is running. There are two formats to define a constant as follows:
val Constant_Name = value |
val Constant_Name : type = value |
Example 3.4
object Val002 { def main(args: Array[String]){ val Con1 = "C# in " // define a constant val Con2 : Int = 8 // define a constant val Con3 : String = " Hours" // define a constant print(Con1 + Con2 + Con3); } } |
Output:
C# in 8 Hours
Explanation:
The first letter of a constant name should be capitalized.
Arithmetical Operators
Operators | Running |
+ | add or connect strings |
- | subtract |
* | multiply |
/ | divide |
% | get modulus |
% modulus operator divides the first operand by the second operand, returns the remainder. e. g. 4%2, the remainder is 0.
Example 3.5
object Arith000 { def main(args: Array[String]) { var add=100 + 200; println (add); // output 300 Var div=800 / 2; println (div); // output 400 var mod=10 % 3; println (mod); // output 1 } } |
Output:
300
400
1
Explanation:
+ | add or connect strings |
/ | divide |
% | get modulus |
Comparison Operators
Operators | Running | Returns |
> | greater than | true or false |
< | less than | true or false |
>= | greater than or equal | true or false |
<= | less than or equal | true or false |
== | equal | true or false |
! = | not equal | true or false |
Example 3.6
object com000 { def main(args: Array[String]) { var x = 200; var y = 100; println(x == y); // output false println(x ! = y); // output true println(x > y); // output true println(x <= y); // output false } } |
Output:
false
true
true
false
Explanation:
> | greater than |
< | less than |
>= | greater than or equal |
<= | less than or equal |
== | equal |
! = | not equal |
Logical Operators
Operators | Equivalent | Returns |
&& | and | true or false |
|| | or | true or false |
! | not | true or false |
Example 3.7
object log000 { def main(args: Array[String]) { var x=true; var y=false; var a = x && y; println (a); var b = x || y; println (b); var c = ! x; println (c); } } |
Output:
false
true
flase
Explanation:
true && true; returns true; | true && false; returns false; | false &&false; returns false; |
true II true; returns true; | true II false; returns true; | false II false; return false; |
! false; returns true; | ! true; returns false; |
Assignment Operators
Operators | Examples: | Equivalent: |
+= | x+=y | x=x+y |
-= | x-=y | x=x-y |
= | x=y | x=x*y |
/= | x/=y | x=x/y |
%= | x%=y | x=x%y |
Example 3.8
object log000 { def main(args: Array[String]) { var x=90; var y=2; x+=y; println (x); x/=y; println (x); x%=y; println (x); x-=y; println (x); } } |
Output:
92
46
0
-2
Explanation:
x+=y | is equal to x=x+y |
x-=y | is equal to x=x-y |
x%=y | is equal to x=x%y |
x/=y | is equal to x=x/y |
Hour 4
Statement
If Statement
if (test-expression) { // if true do this; } |
“if statement” executes codes inside { … } only if a specified condition is true, does not execute any codes inside {…} if the condition is false.
Example 4.1
object If000 { def main(args: Array[String]) { var a=200; var b=100; if (a>b) { // if true, do this print ("a is greater than b"); }}} |
Output:
a is greater than b
Explanation:
(a>b) is a test expression, namely (200>100), if returns true, it will execute the codes inside the { }, if returns false, it will not execute the codes inside the { }.
If-else Statement
if (test-expression) { // if true do this; } else { // if false do this; } |
“if... else statement” runs some code if a condition is true and runs another code if the condition is false
Example 4.2
object Ifelse001 { def main(args: Array[String]) { var a=100; var b=200; if (a>b) {print ("a is greater than b. ")} else { print ("a is less than b");} // do this }} |
Output:
a is less than b
Explanation:
(a>b) is a test expression, namely (100>200), if returns true, it will output ”a is greater than b. ” if returns false, it will output “a is less than b”.
If…else if…else
“If…else if…else” is a multi-test expression.
if (test expression){ // if true, do this } else if (test expression){ // if true, do this } else if (test expression){ // if true, do this } else { // if true, do this } |
Example 4.3
object IfStatement { def main(args: Array[String]) { var x = 200; if (x == 100){ println("The value of x is 100"); }else if (x == 200){ // if true , do this println("The value of x is 200"); }else if (x == 300){ println("The value of x is 300"); }else { println("Do know the value of X"); }}} |
Output:
The value of x is 200
Explanation:
Because the precondition is “var x = 200;”, therefore the “if(x == 200)” is true, then output the “The value of x is 200”.
While Loop
while (test-expression) { // some code in here; } |
“while loop” loops through a block of code if the specified condition is true.
Example 4.4
object While000 { def main(args: Array[String]) { var counter = 0 while (counter < 8) { // run 8 times print ("&"); counter = counter + 1; } } } |
Output:
&&&&&&&&
Explanation:
“counter< 8” is a test expression, if the condition is true, the code will loop less than 8 times, until the counter is 8, then the condition is false, the code will stop running.
Do-While Loop
Do { // some code in here } while (test-expression); |
“do... while” loops through a block of code once, and then repeats the loop if the specified condition is true.
Example 4.5
object Do000 { def main(args: Array[String]) { var counter = 0 do { print ("@"); counter = counter +1; } while (counter<8); // run 8 times }} |
Output:
@@@@@@@@
Explanation:
“counter< 8” is a test expression, if the condition is true, the code will loop less than 8 times, until the counter is 8, then the condition is false, the code will stop running.
For Loop (1)
for(variable < - number1 to number2) { // some code; } |
“for(variable <- number1 to number2){}” runs the code block by the specified number of times from number1 to number 2.
Example 4.6
object For000 { def main(args: Array[String]) { var x = 0; for(x <- 0 to 8) { // run from 0 to 8 times print(x); } } } |
Output:
012345678
Explanation:
“for(x <- 0 to 8)” runs the code from 0 to 8 times.
For Loop (2)
for(variable < - number1 until number2) { // some code; } |
“for(variable <- number1 until number2){}” runs the code block by the specified number of times from number1 until number 2.
Example 4.7
object For001 { def main(args: Array[String]) { var y = 0; for(y <- 0 until 8) { // run from 0 until 8 times print(y); } } } |
Output:
01234567
Explanation:
“for(x <- 0 until 8)” runs the code from 0 until 8 times.
For Loop (3)
for(variable < - List) { // some code; } |
“for(variable <- List) { // some code; }” runs the block of code based on the values of the List.
Example 4.8
object For002 { def main(args: Array[String]) { var z = 0; val myList = List(0,1,2,3,4,5); for(z <- myList){ // run the code based on the List print(z); }}} |
Output:
012345
Explanation:
“for(z <- myList)” runs the code based on the values of the List.
Hour 5
Methods
Method
A method is a code block that can repeat to run many times. To define a method.
(1) The syntax to define a method is as follows:
def method_name() : return_type={……} |
If the method has no return value, the return type can be Unit.
(2)To call a method, use “method_name ();”
method_name (); |
Example 5.1
object Test { def main(args: Array[String]) { println("The result is : " + mul(50,2)); // call the method } def mul(x:Int, y:Int) : Int = { // define a method var result: Int = 0 result = x * y return result // return value } } |
Output:
The result is : 100
Explanation:
“def mul(x: Int, y: Int) : Int = { } “ defines a method
“x: Int” specifies that the data type of x is Int.
“”mul(50,2)); “ calls the method. 50 and 2 are parameters which are passed to x and y.
If the method has no return value, the return type can be specified as Unit , for example: def method_name():Unit ={……}
Default Parameters
When defining a method, you can use the default parameters.
method_name(arg1=value1, arg2=value2) |
Example 5.2
object Defa000 { def main(args: Array[String]) { println(mul()); // call the method without parameters } def mul(a:Int=100, b:Int=2) : Int = { // default parameters var result: Int = 0 result = a * b return result }} |
Output:
200
Explanation:
“a: Int=100, b: Int=2” are default parameters. When you call a method without using parameters, in this case, the default parameters will work.
Closure
Closure: the left part of the arrow is the parameter list, the right part of the arrow is the function body.
var variable = (parameters) => function body |
Example 5.3
object Anony000 { def main(args: Array[String]) { println("adds(1) value is " + adds(1)) // calling println("adds(2) value is " + adds(2)) // calling } var num = 100 val adds = (n:Int) => n + num // define a closure } |
Output:
adds(1) value is 101
adds(2) value is 102
Explanation:
“val adds = (n: Int) => n + num” defines a closure.
(n: Int) is a parameter
“n + num” is a function body.
String
String is consisted of a series of characters, and it is always enclosed in double quotation marks.
A string is an immutable object, therefore the String object cannot be modified. The syntax to create a string is as follows:
var string_name = "string_value"; |
or
var string_name : String = "string_value"; |
Example 5.4
object Str000 { val book = "Go in 8 Hours" // create a string def main(args: Array[String]) { println(book) }} |
Output:
Go in 8 Hours
Explanation:
“val book = "Go in 8 Hours" ” creates a string.
String Length
The syntax to get the length of a string is as follows:
myString . length() |
Example 5.5
object Leng000 { def main(args: Array[String]) { var myString = "Rust in 8 Hours"; var leng = myString.length() ; // get the length println("The string length is : " + leng); } } |
Output:
The string length is : 15
Explanation:
“myString. length();” gets the length of the string.
String Connection
The syntaxes to connect two strings are as follows:
string1 . concat(string2); |
string1 + string2 ; |
Example 5.6
object Con000 { def main(args: Array[String]) { var str1 = "JAVA"; var str2 = "C#"; var str3 = "in 8 Hours: "; println(str1.concat(str3)); // connecting println(str2 + str3); // connecting }} |
Output: JAVA in 8 Hours
C# in 8 Hours
Explanation:
“str1. concat(str3));” connects str1 with str3.
“str2+str3” connects str2 with str3.
String Functions
Frequently Used String Functions List |
char charAt(int index) Returns the character of the specified position |
int compareTo(Object o) Compare strings with objects |
int compareTo(String anotherString) Compare two strings in dictionary order |
int compareToIgnoreCase(String str) Compare two strings in dictionary order, regardless of case |
String1 concat(String2 str) Connects the specified string2 to the end of the string1 |
boolean contentEquals(StringBuffer sb) Compares this string to the specified stringbuffer . |
boolean endsWith(String suffix) Tests whether this string ends with the specified suffix |
boolean equals(Object anObject) Compares this string to the specified object |
int hashCode() Returns the hash code for this string |
int indexOf(int ch) Returns the index of this string |
int indexOf(String str) Returns the index of the specified string at the first occurrence |
String intern() Returns a canonical representation of a string object |
int lastIndexOf(int ch) Returns the index of the specified character at the last occurrence |
int lastIndexOf(String str) Returns the index where the string appears on the right |
int length() Returns the length of this string |
boolean matches(String regex) Tells whether this string matches a given regular expression |
String replace(char oldChar, char newChar) Newchar replaces oldchar |
String[] split(String regex) Split this string according to the regular expression |
boolean startsWith(String prefix) Tests whether this string starts with the specified prefix |
boolean startsWith(String prefix, int toffset) Tests whether this string starts with the specified prefix . |
String substring(int beginIndex) Returns a new substring |
String substring(int beginIndex, int endIndex) Returns a substring |
char[] toCharArray() Convert a string to an array of characters |
String toLowerCase() Convert all characters in string to lowercase |
String toString() Returns a string |
String toUpperCase() Convert all characters in string to uppercase |
String trim() Removes the beginning and end blank of the string |
Hour 6
Arrays
Array
An array is a particular variable, which can contain one or more values at a time.
(1) The first syntax to create an array is as follows:
val array_name = new Array[Type](length) array-name(index0) = value0; array-name(index1) = value1; array-name(index2) = value2; |
Example 6.1
val color = new Array[String](3) // create an array color(0) = "Red"; // assign value color(1) = "Blue"; color(2) = "Green" |
Explanation:
Above code creates an array, array name is “color”, and it has three elements: color (0), color (1), color (2). Its indexes are 0, 1, and 2. Its values are red, blue, and green.
Note: The index of the first element is 0, and the index of the last element is “array. length -1”.
(2) The second syntax to create an array as follows:
val array_name = Array (“value0”, “value1”, “value2”); |
The syntax to access an array element is as follows:
array_name(index) |
Note: The index of the first array element is 0.
Example 6.2
object Arr000 { def main(args: Array[String]) { var color = Array("Red", "Blue", "Green") // create an array print(color(0)) // access the first array element }} |
Output:
Red
Explanation:
“Array("Red", "Blue", "Green")” creates an array with three elements. “color(0)” accesses the first array element.
Access Array Elements
The syntax to access all elements of the array is as follows:
for (each_element < - array_name) { } |
Example 6.3
object Acc000 { def main(args: Array[String]) { var myArray = Array(0. 1, 0. 2, 0. 3, 0. 4, 0. 5) for (num <- myArray) { // access all elements println(num) } // Calculate the sum of all elements of an array var sum = 0. 0; for (n <- 0 to (myArray.length - 1)) { // access elements sum += myArray(n); } println("The sum is " + sum); } } |
Output:
0. 1
0. 2
0. 3
0. 4
0. 5
The sum is 1. 5
Explanation:
“for (num <- myArray) { }” accesses all elements.
“myArray. length-1” accesses the last element of the array.
Connect Array
The syntax to connect two arrays is as follows:
concat(array1, array2) |
Befor using concat(), you need to import Array. _ tool.
Example 6.4
import Array._ // import array tools for concat() object Merge000 { def main(args: Array[String]) { var array1 = Array(0. 1, 0. 2, 0. 3) var array2 = Array(0. 4, 0. 5, 0. 6) var array3 = concat(array1, array2) // connect two arrays for (elements <- array3) { println(elements) }}} |
Output:
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
Explanation:
Before using concat(), you need to import Array. _ tool.
“concat(array1, array2)” connects two arrays
Reverse Array Elements
The syntax to reverse all elements of an array is as follows:
array . reverse. toBuffer |
Before using array function, you need to import Array. _ package
Example 6.5
import Array. _ object Rev000 { def main(args: Array[String]) { var myArray = Array(0, 1, 2, 3, 4) for (a: Int <- myArray.reverse.toBuffer){ // reverse elements print(a + " ") }}} |
Output:
4 3 2 1 0
Explanation:
“myArray. reverse. toBuffer){ }” reverses elements of the array.
Array Operations
ArrayBuffer is a mutable object, which can be changed during program running.
The syntax to create an ArrayBuffter is as follows:
val arr = ArrayBuffer[Int]() |
Before using ArrayBuffer, you need to import scala. collection. mutable. ArrayBuffer
The functions handling list:
arr += element // append an element at the end of the array arr ++= Array() // appends another array at the end of the array arr . trimEnd(n) // remove last elements of the array arr . insert(index, elements) // insert elements at the specified index ar r . remove(index, elements) // remove elements at the specified index |
Example 6.6
import scala. collection. mutable. ArrayBuffer import Array. _ object Arr008 { def main(args: Array[String]) { val arr = ArrayBuffer[Int]() // create an empty array arr += 10 // append an element at the end // now the element is 10 arr += (11,12,13) // append multi elements // now the elements are 10 11 12 13 arr ++= Array(14,15,16) // append another array // now the elements are 10 11 12 13 14 15 16 arr. trimEnd(2) // remove last two elements // now the elements are 10 11 12 13 14 arr. insert(2,100, 200) // insert elements at index 2 // now the elements are 10 11 100 200 12 13 14 arr. remove(4,2) // remove elements at index 4 // now the elements are 10 11 100 200 14 for (myArray: Int <- arr){ // output all elements print(myArray + " ") }}} |
Output:
10 11 100 200 14
Explanation:
See the function-handling list on the above.
Array Sort
The syntax to sort an array is as follows:
array . sorted. toBuffer |
Example 6.7
object Sort003{ def main(args: Array[String]) { val arr = Array(5, 3, 1, 4, 2, 0) val sortArr = arr.sorted.toBuffer // sort the array for (myArray: Int <- sortArr){ // output all elements print(myArray + " ") } } } |
Output:
0 1 2 3 4 5
Explanation:
“arr. sorted. toBuffer” sorts the array.
Before sorted, the sequence of the elements is: 5,3,1,4,2,0
After sorted, the sequence of the elements is: 0,1,2,3,4,5
Hour 7
Collection
Scala List
List is an immutable object, which cannot be changed during program running. List can store duplicated objects.
The syntax to define a list is as follows:
val list_name : List[Type] = List(val1, val2, val3, …) |
The operation of List is as follows:
list_name. head // returns the first element of the list list_name. last // returns the last element of the list list_name. tail // returns a list except the first element list_name . isEmpty // returns true when the list is empty |
Example 7.1
object Color000 { def main(args: Array[String]) { val colors = List("Red", "Yellow", "Green") val color0 = List() println("The first color is: " + colors.head) println("The last color is: " + colors.last) println("The tail color is: " + colors.tail) println("The color0 list is empty ? " + color0.isEmpty) } } |
Output:
The first color is Red.
The last color is Green
The tail color is List(“Yellow”, “Green”)
The color0 is empty? true
Explanation:
list_name. head // returns the first element of the list
list_name. last // returns the last element of the list
list_name. tail // returns a list except the first element
list_name. isEmpty // returns true when the list is empty
Connect Two Lists
The syntax to connect two lists are as follows:
List1 ::: List2 |
or
List . concat (List1, List2) |
A new List will return after two lists are connected.
Example 7.2
object conlist000 { def main(args: Array[String]) { val title1 = List("Java", "in") val title2 = List("Ruby", "in") val title3 = List("8", "Hours") println(title1 ::: title3) // connect two lists println(List.concat(title2, title3)) // connect two lists } } |
Output:
List(“Java”, “in”, “8”, Hours)
List(“Ruby”, “in”, “8”, Hours)
Explanation:
“title1 ::: title3” connects two lists, returns a new list.
“List. concat(title2, title3)” connects two lists, returns a new list.
Scala Set
A Scala Set is a collection of non-repeating objects, all elements of which are unique.
The syntax to create a Set is as follows:
val set_name = Set(val1, val2, val3,…) |
The operation of List is as follows:
set_name. head // returns the first element of the set set_name. last // returns the last element of the set set_name. tail // returns a set except the first element set_name . isEmpty // returns true when the set is empty |
Example 7.3
object Set000 { def main(args: Array[String]) { val pets = Set("Tiger", "Lion", "Bear") val pet0 = Set() // define an empty Set println("The first pet is: " + pets. head) println("The last pet is: " + pets. last) println("The tail pet is: " + pets. tail) println("The pet0 Set is empty ? " + pet0. isEmpty) }} |
Output:
The first pet is Tiger.
The last pet is Bear
The tail pet is List(“Lion”, “Bear”)
The pet0 is empty? true
Explanation:
set_name. head // returns the first element of the set
set_name. last // returns the last element of the set
set_name. tail // returns a set except the first element
set_name. isEmpty // returns true when the set is empty
Set Operations
Some operating functions of Set are as follows:
set1 ++ set2 // connect two Sets, returns a disorder Set set. max // get the maximum value in the Set set . min // get the minimum value in the Set |
Example 7.4
object Test { def main(args: Array[String]) { val set1 = Set(0,1,2,3,4,5) val set2 = Set(6,7,8,9) var set3 = set1 ++ set2 println("The connected Set is : ") println(set3) println("The minimum element is : " + set3. min) println("The maximum element is : " + set3. max) }} |
Output:
The connected Set is :
Set(0, 5, 1, 6, 9, 2, 7, 3, 8, 4)
The minimum element is : 0
The maximum element is : 9
Explanation:
set1 ++ set2 // connect two Sets, returns a disorder Set
set. max // get the maximum value in the Set
set. min // get the minimum value in the Set
Scala Map
Map is a collection of key/value structures, all its values can be obtained by its key, the key in the Map is unique.
The syntax to create a Map is as follows:
val Map_name = Map("key1" - > "val1", "key2" -> "val2", …) |
If use Map, you need to import scala. collection. mutable. Map
The operating methods of Map are as follows:
map_name. keys // return a Map with all keys map_name. values // return a HashMap with all values map_name . isEmpty // return true if the Map is empty |
Example 7.5
import scala. collection. mutable. Map object Map001 { def main(args: Array[String]) { val house = Map("door" -> "big", "window" -> "small", "wall" -> "high") val house0 = Map() // define an empty Map println("All keys in the map are : ") println(house.keys) println("All values in the map are : ") println(house.values) println("The hourse is empty ? " + house.isEmpty) println("The hourse0 is empty ? " + house0.isEmpty) }} |
Output:
All keys in the map are :
Set(window, door, wall)
All values in the map are :
HaspMap(small, big, high)
The house is empty ? false
The house0 is empty ? true
Explanation:
map_name. keys // return a Set with all keys
map_name. values // return a HashMap with all values
map_name. isEmpty // return true if the Map is empty
Connect Two Maps
The syntax to connect two Maps is as follows:
map1 ++ map2 |
Example 7.6
object Map004 { def main(args: Array[String]) { val colors1 = Map("green" -> "#006600", "purple" -> "#ff00ff") val colors2 = Map("grey" -> "#666666", "black" -> "#000000") var colors = colors1 ++ colors2 // connect two maps println("The connected map is : ") println(colors) }} |
Output:
The connected map is:
Map(green -> #006600, purple -> #ff00ff, grey -> #666666, black -> #000000)
Explanation: “colors1 ++ colors2” connects two maps
Map Key & Value
Using “foreach()” can get the Map keys and Values.
map_name . keys. foreach (k => map(k)) |
For every loop iteration, each key of the map element is assigned to “k”, each value is assigned to “map(k)”, until iterates the last map element.
Example 7.7
object Map002 { def main(args: Array[String]) { val books = Map("title" -> "Rust in 8 Hours", "author" -> "Ray Yao", "website" -> "www. amazon. com") books.keys.foreach { k => // iteration print("Key is: " + k) println(". Value is: " + books(k))} } } |
Output:
Key is title. Value is Rust in 8 Hours
Key is author. Value is Ray Yao
Key is website. Value is www. amazon. com
Explanation:
“books. keys. foreach{ k => books(k)}” outputs each book’s title and each book’s value.
Hour 8
Class/Object
Tuple
Tuple is a kind of collection that can contain different types of elements.
The syntax to create a Tuple is as follows:
val tuple_name = (Int_val, Float_val, String_val,…) |
The syntax to access the elements of Tuple is as follows:
tuple_name. _1 // access the first element tuple_name. _2 // access the second element tuple_name . _3 // access the third element |
Example 8.1
object Test { def main(args: Array[String]) { val t = (100, 200.88, "Go in 8 Hours") // create a tuple println(t._1) // access the first element println(t._2) // access the second element println(t._3) // access the third element } } |
Output:
100
200
Go in 8 Hours
Explanation:
“val t = (100, 200. 88, "Go in 8 Hours") “ creates a tuple
“println(t. _1)” accesses the first element
“println(t. _2)” accesses the second element
“println(t. _3)” accesses the third element
Tuple Iteration
The syntax to iterate the Tuple elements is as follows:
tuple_name . productIterator. foreach{ k => v } |
“k” is the keys of the tuple.
“v” is the values of the tuple.
Example 8.2
object Tup001 { def main(args: Array[String]) { val t = (10, 20, 30, 40, 50) t.productIterator.foreach { // iterate the tuple k => println("The value is : " + k) }}} |
Output:
The value is : 10
The value is : 20
The value is : 30
The value is : 40
The value is : 50
Explanation:
“t. productIterator. foreach{ k=>v} iterates all elements of the tuple.
Scala Iterator
Iterator is used to access all elements in a collection.
The syntax to use Iterator is as follows:
val obj = Iterator("val1", "val2", "val3", "val4") |
“obj” is an object of Iterator.
The operating methods of Iterator are as follows:
obj. next() // access the next element of the iterator obj . hasNext // check if the next element exists |
Example 8.3
object Test { def main(args: Array[String]) { val obj = Iterator("C#", "in", "8", "Hours") // use iterator while (obj.hasNext){ // check if the next element exists Print (obj. next () + " ") // access the next element }}} |
Output:
C# in 8 Hours
Explanation:
“val obj = Iterator("C#", "in", "8", "Hours") “ uses an iterator.
“obj. hasNext)” checks if the next element exists
“obj. next()” accesses the next element in the iterator.
Useful Function in Iterator
There four useful functions in Iterator:
obj. max // get the maximum value in the iterator obj. min // get the minimum value in the iterator obj. size // get the number of elements in the iterator obj . length // get the number of elements in the iterator |
“obj” is an iterator object
Example 8.4
object It003 { def main(args: Array[String]) { val obj1 = Iterator(10,20,30,40,50) println("The minimum value is : " + obj1.min) val obj2 = Iterator(60,70,80,90) println("The maximum value is : " + obj2.max) val obj3 = Iterator("C#", "in", "8", "Hours") println("The number of elements is : " + obj3.size) val obj4 = Iterator("C#", "Interview", "Exam") println("The number of elements is : " + obj4.length) }} |
Output:
The minimum value is : 10
The maximum value is : 90
The number of elements is : 4
The number of elements is : 3
Explanation:
obj. max // get the maximum value in the iterator
obj. min // get the minimum value in the iterator
obj. size // get the number of elements in the iterator
obj. length // get the number of elements in the iterator
Class
Class is an abstract concept, a class represents the commonness and characteristics of something or someone.
Objects are concrete things or people, an object is an instance of one thing or person.
Class is an abstraction of an object, Object is a concrete instance of a class. For example: If the vehicle is a class, then your car is an object.
(1) The syntax to define a class is as follows:
class Class_Name (parameters){ …… } |
The first letter of class name should be capitalized.
Example 8.5
class Color (num: Int){ …… } |
Explanation:
“Color” is a class name
“num: Int” is a parameter.
Object
An object is an instance of a class.
val obj = new Class_Name(); // create an object obj. variable_name obj . function_name() |
“obj = new Class_Name();” creates a new object named “obj” for the class.
“obj. variable;” means that “obj” references a variable.
“obj. function_name ();” means that “obj” references a method.
Example 8.6
val obj = new Color() ; // create an object “obj” obj. c1= “yellow"; // an object references a variable c1 obj. c2=”purple”; // an object references a variable c2 obj . brightness (); // an object calls a method brightness() |
Explanation:
“val obj = new Color;” creates an object named ”obj”, then references variable “c1” and “c2”.
“obj. brightness ();” calls the function “brightness ();”
Class & Object
Example 8.7
import java. io. _ // import the java package for class & object class MyClass(val a: Int, val b: Int) { // define a class var x: Int = 0 // the member of the class var y: Int = 0 // the member of the class def func(){ // the member of the class x = a * 2 y = b * 3 } } object Study { def main(args: Array[String]) { val obj = new MyClass(100, 200) // create an object obj.func() // the object calls the method println (obj.x); // the object references the variable x println (obj.y); // the object references the variable y }} |
Output:
200
600
Explanation:
“class MyClass(val a: Int, val b: Int) { }” defines a class.
“val obj = new MyClass(100, 200)” creates an object.
“obj. func()”: the object calls the method func()
“obj. x” : the object references the variable x
“obj. y” : the object references the variable y
Appendix 1
Extends
A class can be extended by a subclass. The subclass will inherit all members of the super class.
If the parameter or method in the subclass overrides the parameters or method in the super class, you should use the keyword “override”.
The syntax to extend a super class is as follows:
class SubClass (override arg : type) extends SuperClass(arg) |
Example A1
import java. io. _ // import the java package for class & object
class MyClass (val a: Int, val b: Int) { // super class
var x: Int = 0 // the member of the class
var y: Int = 0 // the member of the class
def func(){ // the member of the class
x = a * 2
y = b * 3
}
}
class SubClass(override val a: Int, override val b: Int) extends MyClass (a, b){ // subclass extends the super class
var z: Int = a + b // the member of the subclass
}
object Study {
def main(args: Array[String]) {
val obj = new SubClass (100, 200) // create a sub object
obj. func() // func() becomes a member of the subclass
println (obj. x); // x becomes a member of the subclass
println (obj. y); // y becomes a member of the subclass
println (obj. z);
}
}
Output:
200
600
300
Explanation:
class SubClass(override val a: Int, override val b: Int) extends MyClass (a, b){ } // subclass extends the super class
While a subclass extends a super class, the subclass will inherit all members of the super class.
Access Modifiers
The access modifiers of Scala are: private, protected, and the public. “public” is a default access modifier.
Private
The private members in the nested class cannot be accessed by the outer class.
The private members in the current class cannot be accessed by the other class.
The private member in the current class can be only accessed by the current class.
Example A2
object Acc000{
class Study{
private def func(){ println("……") } // private function
......
func() // Correct ! Call a private function in the same class
}
class Another{
obj.func() // Error! Call a private function in another class
}
}
Explanation:
“private def func(){ println("…") }“ defines a private function
“func()”: Correct! Call a private function in the same class.
“obj. func()”: Error! Call a private function in another class.
Example A3
import java. io. _
class MyClass(val a: Int, val b: Int) {
var x: Int = 0
var y: Int = 0
private def func(){ // define a private method
x = a * 2
y = b * 3
}
func() // Correct ! Call the private method in the same class
}
object Study {
def main(args: Array[String]) {
val obj = new MyClass(100, 200)
println (obj. x);
println (obj. y);
}
}
Output:
200
600
Explanation:
“private def func(){ }” defines a private method.
“func()” calls the private method in the same class successfully! Correct!
Protected
A Protected member can be accessed by a subclass of the class, and cannot be accessed by another class.
Example A4
class Super{
protected def m() { // define a protected member
println("...... ")
}
}
class Sub extends Super{ // inherit
m() // Correct ! Subclass can access the protected member
}
class Another{
obj.m() // Error! Another class can ’ t access protected member
}
Explanation:
“protected def m() { }”defines a protected member.
“m()”: Correct! Subclass can access the protected member
“obj. m()”: Error! Another class can’t access protected member
Example A5
import java. io. _
class MyClass(val a: Int, val b: Int) {
var x: Int = 0
var y: Int = 0
protected def func(){ // define a protected member
x = a * 2
y = b * 3
}
}
class SubClass(override val a: Int, override val b: Int) extends MyClass (a, b){ // inherit
var z: Int = a + b
func() // OK ! SubClass can accesses the protected member .
}
object Study {
def main(args: Array[String]) {
val obj = new SubClass(100, 200)
println (obj. x);
println (obj. y);
println (obj. z);
}
}
Output:
200
600
300
Explanation:
“protected def func(){ }” defines a protected member.
“func()”: SubClass can accesses the protected member successfully. Correct!
Exception
If an exception happens in Scala program, Scala terminates the code by throwing an exception
The Scala program usually has following exceptions:
Column 1 | Column 2 |
ArithmeticException ArrayStoreException AwtException ClassCastException ClassNotFoundException IllegalArgumentException IndexOutOfBoundsException InstantiationException InterruptedException NoSuchMethodException NumberFormatException RuntimeException | EOFException FileNotFoundException InterruptedIOException IOException UTFDataException |
To resolve the exceptions in column 1, please import Java. lang. *
To resolve the exceptions in column 2, please import Java. io. *
The syntax to handle the exception is as follows:
try { // try some code where exception may happen } catch { // catch one of the exceptions case e: Exception 1 => { } case e: Exception 2 => { } case e: Exception 3 => { } } finally { // must execute } |
Example A6
import java. io. FileReader
import java. io. FileNotFoundException
import java. lang. RuntimeException
import java. lang. NumberFormatException
object Except000 {
def main(args: Array[String]) {
try { // try some code where the exception may happen
val myFile = new FileReader("myFile. txt")
} catch { // catch one of the exceptions
case e: FileNotFoundException => {
println("The file cannot be found. ")
}
case e: RuntimeException => {
println("Runtime Exception")
}
case e: NumberFormatException => {
println("Number Format Exception")
}
} Finally { // must execute
println("Check the file carefully! ")
}
}
}
Output:
The file cannot be found.
Check the file carefully!
Explanation:
Assume myfile. txt does not exist, so exception happens.
“try { }” tries some code where exception may happen
“catch { }” catches one of the exceptions.
“Finally { }” must execute these codes.
Appendix 2
Tests
Please choose the correct answer.
01.
fill in HelloWorld { // This is a Hello World program
def main(args: Array[String]) {
println("Hello, world! ")
}
}
A. program B. class C. public D. object
02.
object Var001 {
def main(args: Array[String]){
var myVar1: fill in = 1000 // declare a data type
print(myVar1)
}
}
A. string B. float C. Int D. int
03
object Ifelse001 {
def main(args: Array[String]) {
var a=100; var b=200;
if (a>b) {print ("a is greater than b. ")}
fill in { print ("a is less than b");} // do this
}
}
A. then B. else C. than D. otherwise
04.
object Test {
def main(args: Array[String]) {
println("The result is : " + mul(50,2)); // call the method
}
fill in mul(x: Int, y: Int) : Int = { // define a method
var result: Int = 0
result = x * y
return result // return value
}
}
A. function B. void C. method D. def
05.
object Arr000 {
def main(args: Array[String]) {
var color = fill in ("Red", "Blue", "Green") // create an array
print(color(0)) // access the first array element
}
}
A. Array B. new Array C. array D. new array
06.
list_name. head // returns the first element of the list
list_name. tail // returns fill in ?
list_name. isEmpty // returns true when the list is empty
07.
// create a tuple
val t = fill in 100, 200. 88, "Go in 8 Hours" fill in
A. [] B. () C. { } D. < >
08.
The syntax to extend a super class is as follows:
class SubClass (override arg : type) fill in SuperClass(arg) |
A. inherit B. inherits C. extend D. extends
09.
About Multi-line String Type
Multi-line String Type are defined by fill in quotes.
A. single B. double C. treble D. quadruple
10.
object Val002 {
def main(args: Array[String]){
fill in Con1 = "C# in " // define a constant
fill in Con2 : Int = 8 // define a constant
fill in Con3 : String = " Hours" // define a constant
print(Con1 + Con2 + Con3);
}
}
A. val B. var C. const D. constant
11.
object For001 {
def main(args: Array[String]) {
var y = 0;
for(y <- 0 fill in 8){ // run 7 times
print(y);
}
}
}
A. to B. till C. < D. until
12.
About Closure: the left part of the arrow is _______, the right part of the arrow is the function body.
var variable = (fill in) => function body |
A. a closure name
B. a parameter list
C. a return type
D. a loop statement
13.
The syntax to create an array is as follows:
val array_name = fill in [Type](length) array-name(index0) = value0; array-name(index1) = value1; array-name(index2) = value2; |
A. Array B. new Array C. array D. new array
14.
object conlist000 {
def main(args: Array[String]) {
val title1 = List("Java", "in")
val title2 = List("Ruby", "in")
val title3 = List("8", "Hours")
println(title1 fill in title3) // connect two lists
println(List. concat(title2, title3)) // connect two lists
}
}
A. : B. :: C. ::: D. ::::
15.
The syntax to define a class is as follows:
fill in (parameters){ …… } |
A. Class_Name Class
B. Class_Name class
C. Class Class_name
D. class Class_Name
16.
Which following statement is not correct?
A. The private members in the nested class cannot be accessed by the outer class.
B. The private members in the current class cannot be accessed by the other class.
C. The private member in the current class can be only accessed by the current class.
D. The private members in the nested class can be accessed by the outer class.
17.
Which following statement is not correct?
A. The first letter of all class names should be capitalized.
B. All method names start with a lowercase letter.
C. Scala is a case-insensitive language.
D. A semicolon is used to end a line of statement.
18.
What is the output according to the following code?
object log000 {
def main(args: Array[String]) {
var x=true; var y=false;
var a = x && y; print (a + “ “);
var b = x || y; print (b + “ “);
var c = ! x; print (c + “ “);
}
}
A. true false false
B. false true false
C. true true false
D. false false true
19.
object For000 {
def main(args: Array[String]) {
var x = 0;
for(x <- 0 fill in 8){ // run 8 times
print(x);
}
}
}
A. to B. till C. < D. until
20.
object Con000 {
def main(args: Array[String]) {
var str1 = "JAVA";
var str2 = "C#";
var str3 = "in 8 Hours: ";
println(str1. fill in (str3)); // connect two strings
println(str2 + str3);
}
}
A. connect B. join C. concat D. link
21.
import Array. _
object Rev000 {
def main(args: Array[String]) {
var myArray = Array(0, 1, 2, 3, 4)
for (a: Int <- myArray. fill in){ // reverse elements
print(a + " ")
}
}
}
A. reverse
B. reverse()
C. reverse. ArrayBuffer
D. reverse. toBuffer
22.
object Map004 {
def main(args: Array[String]) {
val colors1 = Map("green" -> "#006600", "purple" -> "#ff00ff")
val colors2 = Map("grey" -> "#666666", "black" -> "#000000")
var colors = colors1 fill in colors2 // connect two maps
println("The connected map is : ")
println(colors)
}
}
A. + B. ++ C. +++ D. ++++
23.
val obj = fill in Class_Name(); // create an object
obj. variable_name()
obj. function_name()
A. create B. object C. new D. class
24.
try {
} catch {
case e: Exception 1 => {
}
case e: Exception 2 => {
}
case e: Exception 3 => {
}
} fill in { // must execute
}
A. last B. lastly C. final D. finally
Answers
01 . D | 13 . B |
02 . C | 14 . C |
03 . B | 15 . D |
04 . D | 16 . D |
05 . A | 17 . C |
06 . C | 18 . B |
07 . B | 19 . A |
08 . D | 20 . C |
09 . C | 21 . D |
10 . A | 22 . B |
11 . D | 23 . C |
12 . B | 24 . D |
Scala Source Code Download Link:
https : //forms . aweber . com/form/76/1081568876 . htm
Source Code Download
Scala Source Code Download Link:
https : //forms . aweber . com/form/76/1081568876 . htm
Swift
Hour 1
Introduction
What is Swift?
Swift, a new development language released by Apple at WWDC Apple Developer Conference in 2014, runs alongside Objective-C on macOS and iOS platforms for building applications based on the Apple system.
Swift is a new programming language for writing iOS and macOS applications. Swift combines the advantages of C and Objective-C and is not limited by C compatibility. Swift uses a secure programming mode and adds a lot of new features that will make programming easier, more flexible, and more fun. Swift grew as the Cocoa and Cocoa Touch frameworks came of age. Swift shows the new direction of software development.
Swift, Apple claims, is fast, modern, secure, interactive and generally superior to Objective-C. The Xcode Playgrounds feature is the biggest innovation Swift has brought to Apple's development tools. It provides a powerful, interactive effect that enables Swift source code to display its running results in real time during the program writing process.
Swift Working Platform
Swift Online IDE
This book uses Online IDE as a Swift working Platform. Please click the following link, open the Swift Online IDE.
https : //www . tutorialspoint . com/compile_swift_online . php
If you want to run the Swift program, just copy and paste the Swift code in the “main.swift ” of Online IDE, and click the “Execute ” tag to run the program, then the result will be shown on the right-side window.
Note: “STDIN ” is used to input interactive data from a user.
If you don’t want to use Swift Online IDE, then please install Swift to your local computer.
Install Swift
Download Swift Xcode
If you don’t want to use Swift Online IDE, then please install Swift Xcode to your local computer.
You need to have a MAC, because the integrated development environment(XCode) only runs on OS X. The Operating System of your computer must be OS 10. 9. 3 or above.
The download links of Swift XCode as follows:
https : //developer . apple . com/xcode/download/
https : //swift . org/download/#latest-development-snapshots
Install Swift Xcode
When the download is complete, double-click the downloaded DMG file to install it.
Once the installation is complete, we need to move the Xcode icon into the Application folder.
Start Playground
“Playground” is used to run the Swift program.
So let's open up Xcode in the Application folder……
1.
After opening the Xcode, select “Get started with a playground”.
Or at the top of the Xcode screen, click the tags:
File -> New -> Playground
2.
In the Playground screen, please set up a name for Playground, for example: “MyPlayground”.
3.
Set up a platform as “iOS”.
4.
Click “Next ” button to start the Playground…...
5.
You can see the default code in the Playground as follows:
import UIKit var str = "Hello, playground" |
6.
The output in the right-side window:
Hello, playground |
Congratulation! Your Swift IDE has been set up successfully!
The First Swift Program
The working platform of this book is Swift Online IDE, because some readers use Windows OS, some readers use Apple OS.
Example 1.1
var myString = "Hello, World! " print(myString) |
Output:
Hello, World!
Explanation:
“var” is used to declare a variable.
“myString” is a variable.
“Hello, World! ” is a string.
“print()” is an output command, which shows the value of the variable.
Swift Comment
// is used in a single - line comment /*…… */ is used in multi-line comments |
The comment symbol is always ignored by the Swift parser.
Example 1.2
var myString = "Hello, World! " // var declares a variable print(myString) /* “myString” is a variable. “print()” is an output command, which shows the value of the variable. */ |
Output:
Hello, World!
Explanation:
// is used in a single - line comment
/*…… */ is used in multi-line comments
The comment is always not executed.
Semicolon
; |
Swift does not use semicolon as an ending symbol of each line, but when you write multiple statements on the same line, you must separate them with semicolons.
Example 1.3
// semicolon example var str = "Hello ! " ; print(str) |
Output:
Hello!
Explanation:
“var str = "Hello! " ; print(str)”: There are two different statements on the same line, which need a semicolon to separate them.
Identifier
Identifiers are the names given to variables, constants, methods, functions, enumerations, structures, classes, and so on.
The rules of the Swift identifier are:
* Case Sensitive
* Identifiers can start with an underscore (_) or a letter
* Identifiers can not start with a number
* If you want to use a keyword as an identifier, you can add an accent (`) before and after the keyword
Example 1.4
JQuery and jQuery is two different identifiers. 3Cars is an invalid identifier. Cars3 is a valid e identifier. ` public ` is a valid identifier. |
Note:
` is an accent, it is not a single quote.
` key locates in the same key with ~ key on keyboard.
Swift Keywords
Keywords are reserved and used by Swift language itself. Any variable name, constant name, function name, array name… cannot use keyword as their name.
The following chart lists basic Swift keywords:
class | deinit | enum | extension |
func | import | init | internal |
let | operator | private | protocol |
public | static | struct | subscript |
typealias | var | where | while |
break | case | continue | default |
do | else | fallthrough | for |
if | in | return | switch |
as | dynamicType | false | is |
nil | self | Self | super |
associativity | convenience | dynamic | didSet |
final | get | infix | inout |
lazy | left | mutating | none |
nonmutating | optional | override | postfix |
precedence | prefix | Protocol | required |
right | set | Type | unowned |
weak | willSet | true | false |
COLUMN | _FILE_ | _FUNCTION_ | _LINE_ |
Swift Space
There should be a space between an operator and any variable, constant, number . |
Example 1.5
var x= 10 + 20 // error var x = 10 + 20 // correct let y = 30+ 40 // error let y = 30 + 40 // correct |
Explanation:
In “x=”, there is no a space between x and =, it is incorrect.
In “30+”, there is no a space between 30 and +, it is incorrect.
"var" is used to declare a variable.
"let" is used to declare a constant.
User Input
“readLine()” is used to accept the input from a user.
let variable = readLine() |
In Online IDE, “STDIN” is used to input data from a user.
Example 1.6
print("Please enter your name: ") if let name = readLine() { print(name) } // Assume that I input my name “Ray Yao” |
Output:
Please enter your name:
Ray Yao
Explanation:
“let name = readLine ()” accepts the data input from a user, and assigns the value to the constant “name”.
Hour 2
Basics
Data Type
All variables have data types. When declaring a variable, you must specify its data type.
There are several main data types in Swift as follows:
Type | Description |
Bool | Bool has three values: true, false, nil. e . g. true |
String | Characters enclosed by double quotes. e . g. “Scala in 8 Hours” |
Character | A single letter enclosed by double quotes. e . g. “c” |
Optional | Deal with a situation of missing value. e . g. A variable with a value or without value. |
The next chart will list the data type about number variables.
Type | Size | Range |
Int8 | 1 byte | -128 ~ 127 Signed type integer |
UInt8 | 1 byte | 0 ~ 255 Unsigned type integer |
Int32 | 4 bytes | -2147483648 ~ 2147483647 Signed type integer |
UInt32 | 4 bytes | 0 ~ 4294967295 Unsigned type integer |
Int64 | 8 bytes | -9223372036854775808 ~ 9223372036854775807 integers |
UInt64 | 8 bytes | 0 ~ 18446744073709551615 Unsigned type integer |
Float | 4 bytes | 1. 2E-38 ~ 3. 4E+38 (~6 digits) |
Double | 8 bytes | 2. 3E-308 ~ 1. 7E+308 (~15 digits) |
Alias of Data Type
We can give an alias to a data type by using “typealias”.
typealias alias = type |
Example 2.1
typealias miles = Int var highway: miles = 200 print(highway) |
Output:
200
Explanation:
“typealias miles = Int” defines an alias “miles” for the data type “Int”.
Then, “miles” is a data type “Int”.
Code Checks
Swift does code checking automatically when compiling your code, to make sure that the code is safe.
Example 2.2
var myVariable = "C# in 8 Hours" myVariable = 100 print(myVariable) |
Output: (error message)
mai n . swif t : 2 : 1 4 : erro r : cannot assign value of type 'Int' to type 'String'
myVariable = 100
^~~
Explanation:
“var myVariable = "C# in 8 Hours"” defines the data type of “myVariable” as a String.
“myVariable = 100” wants to define a data type of “myVariable” as an Int again, so an error occurs.
Type Inference
If you do not explicitly specify a type for a variable, Swift will use “Type Inference” feature to select the appropriate type.
Example 2.3
var myVariable = 100 // “myVariable” will be inferred as an Int type by Swift . // “var” is used to declare a variable . |
Example 2.4
let e = 2. 7182818 // “e” will be inferred as a Double type by Swift . // “let” is used to declare a constant . |
Example 2.5
var myBook = "Shell Scripting in 8 Hours" // “myBook” will be inferred as a String type by Swift . |
Variable Declaration
“var” can be used to declare a variable.
The value of the variable is changeable at runtime.
var name : type = value |
“type” is optional to declare a data type.
Example 2.6
var myVar = 100 print(myVar) var e:Double = 2. 7182818 // double type print(e) |
Output:
100
2. 7182818
Explanation:
“var myVar” declares a variable “myVar”.
“var e: Double” declares a variable “e”.
Variable Name
Variable names can be letters, numbers, underscores. Variable names cannot start with a number. Variable names are case sensitive . |
Example 2.7
var _var = 800 print(_var) var mp3 = "Good Musics! " print(mp3) |
Output:
800
Good Musics!
Explanation:
“_var” is a valid variable name.
“mp3” is a valid variable name.
Output Variable Value
If want to output a variable value that is inside the double quotes, you can use backslashes and parentheses to insert variables.
“ \(variable) ” |
Example 2.8
var title = "'R in 8 Hours'" var author = "Ray Yao" print("The author of \(title) is \(author) ") |
Output:
The author of 'R in 8 Hours' is Ray Yao
Explanation:
“ \(variable) ” can output the variable value that is inside the double quotes.
Constant Declaration
“let” can be used to declare a constant.
The value of the constant is unchangeable at runtime.
let name : type = value |
“type” is optional to declare a data type.
Example 2.9
let myCon = 100 print(myCon) let e:Double = 2. 7182818 // double type print(e) |
Output:
100
2. 7182818
Explanation:
“let myCon” declares a Constant “myCon”.
“let e: Double” declares a Constant “e”.
Constant Name
Constant names can be letters, numbers, underscores. Constant names cannot start with a number. Constant names are case sensitive . |
Example 2.10
let _con = 800 print(_con) let mp4 = "Good Movies! " print(mp4) |
Output:
800
Good Movies!
Explanation:
“_con” is a valid constant name.
“mp4” is a valid constant name.
Output Constant Value
If want to output a constant value that is inside the double quotes, you can use backslashes and parentheses to insert constants.
“ \(constant) ” |
Example 2.11
let title = "'Kotlin in 8 Hours'" let author = "Ray Yao" print("The author of \(title) is \(author) ") |
Output:
The author of 'Kotlin in 8 Hours' is Ray Yao
Explanation:
“ \(constant) ” can output the constant value that is inside the double quotes.
Print Attributes
Print statement has “separator” and “terminator” attributes.
print("… ", separator : " " , terminator: " ") |
Example 2.12
print ("Scala", "in", "8", "Hours", separator: "**" , terminator: "! ") |
Output:
Scala**in**8**Hours!
Explanation:
In above print statement,
the separator is “**”,
the terminator is “! ”.
Hour 3
Operators
Optional Type
An optional type variable means that it may have no value, may have a value. Using a “? ” can define an optional type variable.
var myVariable : Type? |
If myVariable has a value, the “! ” can get the value.
myVariable ! |
// ! can get the value of optional variable
Example 3.1
var myVar:String? myVar = "Rust in 8 Hours" print(myVar!) |
Output:
Rust in 8 Hours
Explanation:
“myVar: String? ” defines myVar as an optional type by using “? ”
“myVar! ” gets the value of myVar by using “! ”
Nil Value
1.
If an optional variable has no initial value, its default value is “nil” . |
Example 3.2
var myVar:String? // myVar has no initial value if myVar == nil { // ‘==’ checks if they are equal print("The value of myVar is nil") } |
Output: The value of myVar is nil
2.
Using the “ ! ” to get a nil value will cause a runtime error. |
Example 3.3
var myVar: String? if myVar == nil { print(myVar!) // use ! to get myVar’s value } |
Output: Fatal Error……
“ ! ” Declaration
“! ” can declare an optional variable too, in this case, you don’t need to use “! ” to get the value of an optional variable.
var myVariable : Type ! |
Example 3.4
var myVar:String! // use ! to declare myVar myVar = "Django in 8 Hours" print(myVar) // don’t need ! to get the value |
Output:
Django in 8 Hours
Explanation:
“var myVar: String! ” uses “! ” to declare an optional variable.
“print(myVar)” does not use “! ” to get the value.
Arithmetical Operators
Operators | Running |
+ | add or connect strings |
- | subtract |
* | multiply |
/ | divide |
% | get modulus |
% modulus operator divides the first operand by the second operand, returns the remainder. e. g. 4%2, the remainder is 0.
Example 3.5
var add = 100 + 200; print (add) // output 300 var div = 800 / 2; print (div) // output 400 var mod = 10 % 3; print (mod) // output 1 |
Explanation:
var add=100+200; print (add) will output 300
var div=800/2; print (div) will output 400;
var mod=10%3; print (mod) will output 1;
Logical Operators
Operators | Equivalent | Return |
&& | and | true or false |
|| | or | true or false |
! | not | true or false |
Example 3.6
var x = true; var y = false var a = x && y; print (a) // output : false var b = x || y; print (b) // output : true var c = ! x; print (c) // output : false |
Explanation:
true && true; returns true; | true && false; returns false; | false &&false; returns false; |
true II true; returns true; | true II false; returns true; | false II false; return false; |
! false; returns true; | ! true; returns false; |
Assignment Operators
Operators | Examples: | Equivalent: |
+= | x+=y | x=x+y |
-= | x-=y | x=x-y |
= | x=y | x=x*y |
/= | x/=y | x=x/y |
%= | x%=y | x=x%y |
Example 3.7
var x = 200; var y = 100 x %= y; print (x) // output 0 x += y; print (x) // output 100 x /= y; print (x) // output 1 |
Explanation:
x % y; // x = x % y;
x += y; // x = x + y;
x / = y; // x = x / y;
Comparison Operators
Operators | Running | Return |
> | greater than | true or false |
< | less than | true or false |
>= | greater than or equal | true or false |
<= | less than or equal | true or false |
== | equal | true or false |
! = | not equal | true or false |
Example 3.8
var a = 100; var b = 200 print(a == b) // false print(a != b) // true print(a > b) // false print(a < b) // true print(a >= b) // false print(a <= b) // true |
Conditional Operator
(test-expression) ? (if-true-do-this) : (if-false-do-this); |
(test-expression) looks like a<b, x! =y, m==n. etc.
Example 3.9
var a = 100; var b = 200 var result = (a < b) ? "apple" : "banana" // (test-expression) ? (if-true-do-this) : (if-false-do-this); print (result) |
Output:
apple
Explanation:
The conditional operator use (a<b) to test the “a” and “b”, because “a” is less than “b”, it is true. Therefore, the output is “apple”.
Range Operator
The range operator defines a number range from one value to another value.
There are two kinds of range operators in Swift:
1.
value1 … value2 |
For example:
“1…6 ” means that its range value is 1, 2, 3, 4, 5, 6.
2.
value1 .. < value2 |
For example:
“1.. <6 ” means that its range value is 1, 2, 3, 4, 5.
Precedence of Operators
Operators | Precedence |
Logincal Not | ! |
Mul Div Mod | * / % |
Add Sub | + - |
Range | < |
Compare | ! = >= <= > < == |
Logical And | && |
Logical Or | || |
Conditional | ? : |
Assignment | %= /= *= += - = = |
Character
A character usually means a single letter enclosed by a double quote. For example: “C”.
Example 3.10
var cha1: Character = "X " var cha2: Character = "Y " print("The value of cha1 is \(cha1)") print("The value of cha2 is \(cha2)") |
Output:
The value of cha1 is X
The value of cha2 is Y
Explanation:
var cha1: Character = "X " defines a character X as cha1.
var cha2: Character = "Y " defines a character Y as cha2.
Append Character
“append()” can append a character to a string.
string . append(character) |
Example 3.11
var string1: String = "computer language: " var letter2: Character = "R" string1.append (letter2) print("Learn a \(string1)") |
Output:
Learn a computer language: R
Explanation:
“string1. append(letter2)” appends a leter2 to string1.
Hour 4
Statements
Escape Sequences
The “ \ ” backslash character can be used to escape characters.
\b makes a backspace
\n outputs content to the next new line.
\r makes a return
\t makes a tab
\’ outputs a single quotation mark.
\” outputs a double quotation mark.
Example 4.1
print("He said \" Hello \n World! \" ") // \” outputs a double quote // \n outputs contents to a new line . |
Output:
He said "Hello
World! "
Explanation:
\” outputs a double quotation mark.
\n outputs the contents into a new line.
If Statement
if (test-expression) { // if true do this } |
“if statement” executes codes inside { … } only if a specified condition is true, does not execute any codes inside {…} if the condition is false.
Example 4.2
var a = 200; var b = 100 if a > b { // if true, do this print ("a is greater than b") } |
Output:
a is greater than b
Explanation:
(a>b) is a test expression, namely (200>100), if returns true, it will execute the codes inside the { }, if returns false, it will not execute the codes inside the { }.
If-else Statement
if (test-expression) { // if true do this } else { // if false do this } |
“if... else statement” runs some code if a condition is true and runs another code if the condition is false
Example 4.3
var a = 100; var b = 200 if a > b { // if true do this print ("a is greater than b. ") } else { // if false do this print ("a is less than b") } |
Output:
a is less than b
Explanation:
(a>b) is a test expression, namely (100>200), if returns true, it will output ”a is greater than b. ” if returns false, it will output “a is less than b”.
Switch Statement
switch (variable) { case 1: if equals this case, do this case 2: if equals this case, do this case 3: if equals this case, do this default : if not equals any case, run default code } |
The value of the variable will compare each case first, if equals one of the “case” value; it will execute that “case” code.
Example 4.4
var number = 20 switch (number) { // number value compares each case case 10 : print ("Running case 10") case 20 : print ("Running case 20") case 30 : print ("Running case 30") default : print ("Running default code") } |
Output: Running case 20
Explanation: The number value is 20; it will match case 20, so it will run the code in case 20.
Fallthrough Statement
“fallthrough” works between “case 1…case n” statements.
switch (variable) { case 1: if equals this case, do this …… fallthrough case n: must do the next one. …… default : if not equals any case, run default code } |
“fallthrough” is used to continue to execute the next case statement, regardless of whether the condition is met or not.
Example 4.5
var number = 20 switch (number) { // number value compares each case case 10 : print ("Running case 10") case 20 : print ("Running case 20") fallthrough case 30 : print ("Running case 30") // run this too case 40 : print ("Running case 30") default : print ("Running default code") } |
Output:
Running case 20
Running case 30
Explanation:
After using “fallthrough” statement, although the “case 30” does not meet the condition, it still executes.
For-in Loop
“For-in loop” is used to iterate over all the elements in a collection.
for index in collection { } |
“index” means the index of each element in the collection.
Example 4.6
for key in 1... 4 { print("\(key) adds 2 equal to: \(key + 2)") } |
Output:
1 adds 2 equal to: 3
2 adds 2 equal to: 4
3 adds 2 equal to: 5
4 adds 2 equal to: 6
Explanation:
“for key in 1... 4” iterates over all elements in range 1… 4.
While Loop
while (test-expression) { …… } |
“while loop” loops through a block of code if the specified condition is true.
Example 4.7
var key = 1 while key < 4 { print("The value of the key is \(key)") key = key + 1 } |
Output:
The value of the key is 1
The value of the key is 2
The value of the key is 3
Explanation:
“key< 4” is a test expression, if the condition is true, the code will loop less than 4 times, until the key is 4, then the condition is false, the code will stop running.
Repeat-While Loop
repeat{ …… } while (test-expression); |
“repeat... while” loops through a block of code once, and then repeats the loop if the specified condition is true.
Example 4.8
var key = 1 repeat { print("The value of the key is \(key)") key = key + 1 } while key < 4 |
Output:
The value of the key is 1
The value of the key is 2
The value of the key is 3
Explanation:
“key<4” is a test expression, if the condition is true, the code will loop less than 4 times, until the counter is 4, then the condition is false, the code will stop running.
Continue Statement
“continue” command works inside the loop.
continue |
“continue” keyword is used to skip the current iteration, ignoring the following code, and then continue the next loop.
Example 4.9
var num=0 while num < 10 { num = num + 1 if num == 5 { continue // go the next while loop } print(num) } |
Output:
1
2
3
4
6
7
8
9
10
Explanation:
Note that the output has no 5.
“if num==5 continue;” means: When the num is 5, the program will run “continue” command, skipping the next command “print(num)”, and then continue the next while loop.
Break Statement
break |
“break” keyword is used to stop the running of a loop according to the condition.
Example 4.10
var num = 0 while num < 10 { if num == 5 { break // leave the while loop } num = num + 1 } print(num) |
Output: 5
Explanation:
“if num==5 break;” is a break statement. If num is 5, the program will run the “break” command, the break statement will leave the loop, then run “print(num)”.
Hour 5
String/Array
String
A string is a collection of many characters, the string is always enclosed by a pair of double quotes.
“ string ” |
Example 5.1
var str1 = "Shell Scripting in 8 Hours " print(str1) let str2 = "C# in 8 Hours " print(str2) |
Output:
Shell Scripting in 8 Hours
C# in 8 Hours
Explanation:
“Shell Scripting in 8 Hours” is a string.
“C# in 8 Hours” is a string.
String Connection
Strings can be connected by using “+” operator.
string1 + string2 |
Example 5.2
let str1 = "Kotlin" let str2 = " in 8 Hours" var myStr = str1 + str2 // connection print(myStr) |
Output:
Kotlin in 8 Hours
Explanation:
“str1 + str2” connects two strings.
String Length
“string. count” can get the size of a string.
string . count |
Example 5.3
var str = "POWERSHELL" print("The length of \(str) is: ") print("\(str.count)") |
Output:
The length of POWERSHELL is:
10
Explanation:
“str. count” returns the size of the string “str”.
String Comparison
“==” is used to compare two strings to check if they are equal.
string1 == string2 |
Example 5.4
var str1 = "'C# in 8 Hours'" var str2 = "'Go in 8 Hours'" if str1 == str2 { print("\(str1) is equal to \(str2) ") } else { print("\(str1) is not equal to \(str2) ") } |
Output:
'C# in 8 Hours' is not equal to 'Go in 8 Hours'
Explanation:
“str1 == str2” compares two strings to check if they are equal.
String Empty Value
“isEmpty” can check if the value of a string is empty.
string . isEmpty |
Example 5.5
var myString = "" if myString.isEmpty { print("myString is empty") } else { print("myString is not empty") } |
Output:
myString is empty
Explanation:
“myString. isEmpty” checks if the value of the string is empty.
Creating Array (1)
An array is a particular variable, which can contain one or more value at a time.
The syntax to create an array:
var myArray = [Int]() // create an array myArray. append(value1) myArray. append(value2) myArray . append(value3) |
“myArray. append(value)” assigns a value to the array.
Example 5.6
var myArray = [Int]() myArray.append (100) myArray.append (101) myArray.append (102) print("#0 element value is \(myArray[0])") print("#1 element value is \(myArray[1])") print("#2 element value is \(myArray[2])") |
Output:
#0 element value is 100
#1 element value is 101
#2 element value is 102
Explanation:
“var myArray = [Int]()” creates an Int type array “myArray”.
“myArray. append(100)” assigns value 100 to myArray.
“myArray. append(200)” assigns value 200 to myArray.
“myArray. append(300)” assigns value 300 to myArray.
There are three elements in myArray:
myArray[0] : its index is 0, its value is 100.
myArray[1] : its index is 1, its value is 101.
myArray[2] : its index is 2, its value is 102.
“index” also is called as “key” in Array.
Note that index begins from zero by default.
Creating Array (2)
The syntax to create an array with values is:
var myArray : [type] = [val1, val2, val3, …] |
“val1, val2, val3” are three elements of the myArray.
Example 5.7
var myArray:[Int] = [100, 101, 102] print("#0 element value is \(myArray[0])") print("#1 element value is \(myArray[1])") print("#2 element value is \(myArray[2])") |
Output:
#0 element value is 100
#1 element value is 101
#2 element value is 102
Explanation:
“var myArray: [Int] = [100, 101, 102]” creates an array with three element values.
Modifying Array
The syntax to modify an array is:
myArray[index] = value |
Example 5.8
var myArray: [Int] = [100, 101, 102] print("#0 element value is \(myArray[0])") print("#1 element value is \(myArray[1])") print("#2 element value is \(myArray[2])") myArray[1] = 888 print("#1 element value is \(myArray[1])") |
Output:
#0 element value is 100
#1 element value is 101
#2 element value is 102
#1 element value is 888
Explanation:
“myArray[1] = 888” modifies the value of the myArray[1] as 888.
Iterate Through Array
The syntax to iterate through all elements in an array is:
for element in myArray {……} |
Example 5.9
var books = [String]() books. append("R in 8 Hours") books. append("C# in 8 Hours") books. append("Go in 8 Hours") for title in books { print(title) } |
Output:
R in 8 Hours
C# in 8 Hours
Go in 8 Hours
Explanation:
“for title in books{……}” iterates through all elements “title” in the array “books”.
Merge Arrays
The syntax to merge two arrays is as follows:
array1 + array2 |
Example 5.10
var array1: [Int] = [100, 101, 102] var array2: [Int] = [900, 901] var array3 = array1 + array2 for element in array3 { print(element) } |
Output:
100
101
102
900
901
Explanation:
“array1 + array2” merges two arrays as “array3”.
How Many Elements
The syntax to know how many elements is an array is:
array. count // returns the length of the array array . isEmpty // checks if the array is empty |
Example 5.11
var array1: [Int] = [100, 101, 102] var array2: [Int] = [] print("The size of array1 is \(array1.count)") print("Is array2 empty? \(array2.isEmpty)") |
Output:
The size of array1 is 3
Is array2 empty? true
Explanation:
“array1. count” returns the size of array1.
“array2. isEmpty” checks if the array2 is empty.
Hour 6
Collection
Dictionary
A dictionary is a data structure for storing pairs of values with the format [key:value]. The dictionary’s keys should be unique. The type of each dictionary value should be the identical.
var dictionary: [keyType: valueType] = [key1 : value1, key2: value2, key3: value3, …] |
“dictionary[key]! ” can return a value of the dictionary.
Example 6.1
var myDict:[Int:String] = [1:"A", 2:"B", 3:"C"] print("key = 1, value is \(myDict[1]!)") print("key = 2, value is \(myDict[2]!)") print("key = 3, value is \(myDict[3] !)") |
Output:
key = 1, value is A
key = 2, value is B
key = 3, value is C
Explanation:
[1: "A", 2: "B", 3: "C"] defines a dictionary.
“dictionary[key]! ” returns a value of the dictionary.
Modify Dictionary
The syntax to modify the value of a dictionary is:
dictionary[key] = newValue |
Example 6.2
var myDict: [Int: String] = [1: "A", 2: "B", 3: "C"] var oldVal = myDict[2] myDict[2] = "New" // modify the value print("key = 1, value is \(myDict[1]!)") print("key = 2, old value is \(oldVal!)") print("key = 2, new value is \(myDict[2]!)") print("key = 3, value is \(myDict[3] !)") |
Output:
key = 1, value is A
key = 2, old value is B
key = 2, new value is New
key = 3, value is C
Explanation:
“myDict[2] = "New"” modifies the value of the dictionary as “New”
Remove a “Key : Value”
The syntax to remove a “key: value” is:
dictionary[key] = nil |
After a “key: value” is removed, the compiler may show a warning message. (It depends on the different Swift version).
Example 6.3
var myDict: [Int: String] = [1: "A", 2: "B", 3: "C"] myDict[2] = nil // remove a key : value print("key = 1, value is \(myDict[1]!)") print("key = 2, value is \(myDict[2])") print("key = 3, value is \(myDict[3] !)") |
Output:
key = 1, value is A
key = 2, value is nil
key = 3, value is C
(warning message……)
Explanation:
“myDict[2] = nil” removed the “2: ’B’”, and the compiler may show a warning message. (It depends on the different Swift version).
Iterate Through Dictionary
The syntax to iterate through a dictionary is:
for (key, value) in dictionary {…} |
Note: Dictionary is an unordered collection.
Example 6.4
var myDict: [Int: String] = [1: "A", 2: "B", 3: "C"] for (key, value) in myDict { print(" The key \(key) 's value is \(value)") } |
Output:
The key 1 's value is A
The key 2 's value is B
The key 3 's value is C
Explanation:
“for (key, value) in myDict {…}” iterates through the dictionary.
Note: Dictionay’s output is unordered.
How Many Key : Value
The syntax to count how many “key: value” in a dictionary is:
dictionary . count |
Example 6.5
var myDict1: [Int: String] = [1: "A", 2: "B", 3: "C"] var myDict2: [Int: String] = [4: "D", 5: "E"] print("myDict1 contains \(myDict1.count) key/value pairs") print("myDict2 contains \(myDict2.count) key/value pairs") |
Output:
myDict1 contains 3 key/value pairs
myDict2 contains 2 key/value pairs
Explanation:
“myDict1. count” and “myDict2. count” counts how many key/value pairs in the dictionaries.
Create a Dictionary
The syntax to create an empty dictionary is:
var dictionary = [keyType : valueType]() |
Example 6.6
var myDict = [Int: String]() // create a dictionary myDict[1] = "Rust " // assign a value to the dictionary myDict[2] = "in " myDict[3] = "8 Hours" print("\(myDict[1]!)\(myDict[2]!)\(myDict[3]!)") print("Is myDict empty? \(myDict.isEmpty)") // check |
Output:
Rust in 8 Hours
Is myDict empty? false
Explanation:
“var myDict = [Int: String]()” creates an empty dictionary.
myDict[1] = "Rust " assigns a value to the empty dictionary.
“myDict. isEmpty” checks if the dictionary is empty.
Functions
A function is a code block that can repeat to run many times. To define a function, use “func functionName () { }”.
func funcName () { } |
To call a function, use “functionName ()”
funcName () |
Example 6.7
func title () { // define a function “title” print ("Java in 8 Hours") } title () // call the function “title” |
Output:
Java in 8 Hours
Explanation:
“func title()” defines a function “title”.
“title()” calls the function “title”.
Return Value
“return” command is used to return its value to the caller of the function.
func funcName - > returnType () { return … } |
Example 6.8
func title() -> String { return "Java in 8 Hours" // return the value to the caller } print(title()) // call the function “title” |
Output:
Java in 8 Hours
Explanation:
“return” command is used to pass its value to the caller, just like assigning the value “Java in 8 Hours” to the caller “title()”.
“title()” is a caller of the function.
Function with Parameter
The syntax to define a function with a parameter is:
func funcName(parameter) - > returnType{ return } |
The syntax to call a function with parameter is:
funcName (parameter) |
Example 6.9
func title (book : String) -> String { return (book) } print (title (book : "R in 8 Hours")) // pass the parameter |
Output:
R in 8 Hours
Explanation:
“book : String” is a String type parameter, which is used to receive the parameter value.
“title(book : "R in 8 Hours")” calls the function “title”, and passes the parameter value to the function.
Vary Type Parameters
The type of parameters may be different from the caller.
The syntax to define a function with different type parameter is:
func funcName <Type> (parameters: Type...) { } |
The above can apply to the function containing different type parameters.
Example 6.10
func myFunc<Type>(paras: Type...){ for val in paras{ print(val) } } myFunc(paras: 100, 200, 300) // Int type myFunc(paras: 0. 1, 0. 2, 0. 3) // Float type myFunc(paras : "Go ", "in ", "8 Hours") // String type |
Output:
100
200
300
0. 1
0. 2
0. 3
Go
in
8 Hours
Explanation:
“func myFunc<Type>(paras: Type...){ }” defines a function that can deal with various type parameters.
The type of the parameters includes Int type, Float type, and String type.
Default Parameters
The parameters of a function can be set up a default value.
func funcName (variable: type = value) |
If a function is called without parameters, then the default parameters will work.
Example 6.11
func member (name : String, age: Int = 18 , height: Float = 6.9) { print("name: \(name) age: \(age) height: \(height)") } member(name: "Andy", age: 16, height: 7. 2) member(name : "Mike") |
Output:
name: Andy age: 16 height: 7. 2
name: Mike age: 18 height: 6. 9
Explanation:
“name : String, age: Int = 18 , height: Float = 6. 9” is the default parameters.
Hour 7
Class/Object
Closures
Closures are the blocks which contain a particular functional code. It is a little bit like an anonymous function.
The syntax to define a closure is:
let constant = {…} or var variable = {…} |
The {…} is a closure.
The syntax to call a closure is:
constant() or variable() |
Example 7.1
let book = { print("PHP in 8 Hours") } book() |
Output:
PHP in 8 Hours
Explanation:
“{ print("PHP in 8 Hours") }” defines a closure.
“book()” calls the closure.
Closure with Parameters
The syntax of a closure with parameter is:
{(parameters) - > returnType in……} |
Example 7.2
var add = {(n1: Int, n2: Int) -> Int in // closure return (n1 + n2) } var sum = add(10, 20) // call the closure print (sum) |
Output:
30
Explanation:
The above example defines a closure with parameters.
The closure is always defined by a { }.
Enumeration
An enum type provides a well-organized way to define a set of named integral constants that may be assigned to a variable.
The syntax to declare an Enumeration is:
enum enumName { case member1 case member2 case member3 } |
“enum enumName{ }” defines an enumeration.
“member1, member2, member3” is three enum members.
Example 7.3
enum Today { // define a enum “Today” case Morning // enum member case Afternoon case Evening } |
The syntax to access the enumeration member is:
enumName . member |
Example 7.4
enum Today { // define an enumeration case Morning // define an enum member case Afternoon case Evening } var dayTime = Today.Afternoon // access a member switch dayTime { case Today. Morning: print("It is Morning now. ") case Today. Afternoon: print("It is Afternoon now") case Today. Evening: print("It is Evening now") } |
Output: It is Afternoon now
Explanation:
“enum Today {…}” defines an enumeration “Today”.
“Today. Afternoon” access the member “Afternoon”.
Structure
A struct type is a value type that is typically used to encapsulate small groups containing related variables.
The syntax to declare a struct type is:
struct structName { member 1 member 2 member 3 } |
“struct structName{ }” defines a structure
“member1, member2, member3” is three struct members.
Example 7.5
struct Car { // defines a structure var speed1 = 68 // structure member var speed2 = 70 var speed3 = 82 } |
The syntax to access the structure member is:
structName() . member |
Example 7.6
struct Car { // define a structure var speed1 = 68 var speed2 = 70 var speed3 = 82 } print("Speed1 is \(Car().speed1) miles/hr") print("Speed2 is \(Car().speed2) miles/hr") print("Speed3 is \(Car().speed3) miles/hr") |
Output:
Speed1 is 68 miles/hr
Speed2 is 70 miles/hr
Speed3 is 82 miles/hr
Explanation:
“struct Car {…}” defines a structure “Car”
“Car(). speed1” accesses the member “speed1”.
Class
A class is a template for an object, and creates an object.
The syntax to create a class is:
class ClassName { member 1 member 2 …… member n } |
A class always includes some members.
Example 7.7
class Fruit { // create a class “Fruit” var color: String // member var size: String var price: Int } |
Note: the class name usually should be capitalized.
Object
Object is an instance of a class.
The syntax to create an object is:
var obj = ClassName () // create an object “obj” obj. member 1 // an object references a member obj. member 2 obj . member n |
The object need to use dot symbol to reference a member.
Example 7.8
var apple = Fruit() // create an object “apple” apple. color // object reference member apple. size apple . price |
Sometimes the object needs to reference a function by using dot symbol, the syntax is as follows:
obj . myFunc() |
Class & Object
Example 7.9
class Fruit { // create a class "Fruit" var color: String = "Red" var size: String = "Big" var price: Int = 100 } var apple = Fruit() // create an object "apple" print("The apple's color is \(apple.color)") print("The apple's size is \(apple.size)") print("The apple's price is $\(apple.price)") |
Output:
The apple's color is Red
The apple's size is Big
The apple's price is $100
Explanation:
“class Fruit {…}” creates a class “Fruit”.
“var apple = Fruit()” creates an object "apple"
“apple. color” means “ apple’s color ”.
Property
A variable in a class is called as “property”, which can be modified by assigning a new value.
obj . property = value |
Example 7.10
class Fruit { var price: Int = 100 // initialization } var apple = Fruit() apple.price = 200 // modify the property value print("The apple's price is $\(apple . price)") |
Output:
The apple's price is $200
Explanation:
“apple. price = 200” modifies the property value of the object.
Method
A function in a class is called as “method”, which can be referenced by an object.
obj . methodName() |
Example 7.11
class Fruit { var size: String = "Big" func meth() { // define a method print ("That is a \(size) Apple! ") } } var apple = Fruit() apple.meth() // reference the method |
Output:
That is a Big Apple!
Explanation:
“func meth() {.. }” defines a method.
“apple. meth()” references the method.
Modify a Method
The variable in a method can by modified by using “let”.
let constant = value |
Example 7.12
class Fruit { var size: String = "Big" func meth() { let size = "Small" // modify the property value print ("This is a \(size) Apple! ") } } var apple = Fruit() apple . meth() |
Output:
This is a Small Apple!
Explanation:
“let size = "Small"” modifies a property value in a method.
Hour 8
Operations
Inheritance
Inheritance means that a child class can use the methods and properties in a parent class .
Namely, the child class can call and access methods and properties of the parent class .
The syntax of inheritance is :
class ChildClass : ParentClass {…} |
Example 8.1
class Book{ // parent class func show(){ myBook . title() } } class eBook : Book{ // inheritance func title(){ print("C# in 8 Hours") } } let myBook = eBook() // create an object of the child class myBook.show() // call the method in the parent class |
Output:
C# in 8 Hours
Explanation:
“class Book{…} ” creates a parent class.
“class eBook : Book{…} ”: a child class inherits a parent class.
“myBook . show() ”: an object of the child calls a method of the parent class.
“myBook . title() ” calls the method in the child class.
Parent class is also known as “super class”.
Child class is also known as “sub class”.
Overriding
The method of child class can override the method of the parent class, if the method name and argument are the same.
The syntax of overriding is:
override func child-method() {…} |
Example 8.2
class ParentClass { func display() { print("Parent Class in here") } } class ChildClass: ParentClass { override func display() { // overriding print("Child Class in here") } } let parentObj = ParentClass() parentObj. display() let childObj = ChildClass() childObj . display() |
Output:
Parent Class in here
Child Class in here
Explanation:
There is a method “display()” in both parent class and child class. By using a keyword “override”, the display() in child class can override the display() in the parent class.
“override func display() {…}” can override the method in the parent class.
Initializer
The initializer is used to initialize each property of the class by using “init()”, the syntax of the initializer is as follows:
init() {…} |
Example 8.3
class square { var length: Int var width: Int init() { // initializer length = 100 // initialization width = 100 } } var area = square() print("The area of the square is : \(area. length*area. width)") |
Output: The area of the square is: 10000
Explanation:
“init() {…}” initializes each property value of the class.
Self
In the initializer, the keyword “self” represents the current object. “self” is used to initialize each property of the class.
self . property = value |
Example 8.4
class addition { let a: Int let b: Int let sum: Int init(a: Int, b: Int) { self.a = a // self represents the current object self.b = b sum = a + b print("20 + 80 = \(sum)") } } let obj = addition(a : 20, b: 80) |
Output: 20 + 80 = 100
Explanation: “self. a = a” initializes the property “a”.
Deinitializer
When an object is removed, the deinitializer will be executed to free resources. The syntax of deinitializer is:
deinit { ... } |
Example 8.5
class Students { var name: String init(name: String) { self. name = name print("The boy's name is \(name)") } deinit { // deinitializer print("The boy was dismissed from his school") } } var boy: Students? = Students(name: "Tomy") boy = nil // remove an object and execute the deinit |
Output:
The boy's name is Tomy
The boy was dismissed from his school
Explanation:
“var boy: Students? = Students(name: "Tomy")” creates an object “boy”, the parameter is “name, Tomy”.
“Students?” means that the data type is optional. Its variable value “boy” may be equal to nil, so its data type needs a “? ”.
“boy = nil” removes the object “boy” and executes the deinit{…}. The deinitializer will free the resource and show a message.
Subscript
The keyword “Subscript” is used to process the index of an array, and accesses and assigns an instance with an index value.
The syntax of the subscript is as follows:
subscript(index: Int) -> Type { set(newValue) { // assign value } get { // return the value to the caller } } |
Example 8.6
class OneDay { var day = ["Morning", "Afternoon", "Evening"] // "day" includes three "dayValues" subscript(key: Int) -> String { // process "key" set(dayValues) { self. day[key] = dayValues // assign dayValues } get { return day[key] // return dayValues to the caller } } } var d = OneDay() // create an object print(d[0]) print(d[1]) print(d[2]) |
Output:
Morning
Afternoon
Evening
Explanation:
“subscript(key: Int) -> String {…}” is used to precess the index of an array.
“key” is the index of the array.
“dayValues” means Morning, Afternoon, Evening.
set(dayValues) is equal to set(Morning, Afternoon, Evening).
d[0], d[1], d[2] accesses day[key] respectively.
Data Type Conversion
The keyword “as” is used to convert the data type.
The syntax to convert a data type is:
value as newType |
Example 8.7
var num1 = 100 as Double var num2 = 10 as Float var num3 = (100 / 3) as Int print (num1) print (num2) print (num3) |
Output:
100. 0
10. 0
33
Explanation:
“100 as Double” converts the type of 100 as Double type.
Underline
The underline “_” is used to ignore a value or a parameter name.
“_” means “ignore”.
Example 8.8
var base = 2 var power = 3 var num = 1 for _ in 1... power { // using “_” to ignore the item on “_” num *= base } print("\(base) to the power of \(power) is \(num)") |
Output:
2 to the power of 3 is 8
Explanation:
“for _ in 1... power”: The “_” means that the item on “_” is no longer used.
Q & A
Questions
Please choose the correct answer.
01.
// Please fill in a symbol
var str = "Hello! " fill in print(str)
A. ,
B. .
C. !
D. ;
02.
fill in miles = Int // define an alias of Int
var highway: miles = 200
print(highway)
A. typealias
B. type
C. alias
D. typename
03.
var myVar:String?
myVar = "Rust in 8 Hours"
print(myVar fill in) // Please fill in a symbol
A. ,
B. .
C. !
D. ;
04.
\b makes a backspace
fine in makes an output to the next new line.
\r makes a return
\t makes a tab
A. \l B. \m C. \n D. \o
05.
var str = "POWERSHELL"
print("The length of \(str) is: ")
print("\(str. fill in)") // get the length of the string
A. length
B. count
C. size
D. length()
06.
var myDict:[Int:String] = [1:"A", 2:"B", 3:"C"]
print("key = 1, value is \(myDict[1] fill in)") // fill in a symbol
print("key = 2, value is \(myDict[2] fill in)")
print("key = 3, value is \(myDict[3] fill in)")
A. ,
B. .
C. !
D. ;
07.
The syntax of a closure with parameter is:
{(parameters) -> returnType fill in ……}
A. on
B. at
C. by
D. in
08.
The syntax of inheritance is:
class ChildClass fill in ParentClass {…}
A. inherit
B. :
C. extends
D. <
09.
"var" is used to declare a variable.
"fill in " is used to declare a constant.
A. let
B. con
C. const
D. final
10.
Which following variable name is invalid?
A. _invalid
B. non_variable
C. 100percentvalid
D. InvalidVariable.
11.
Using the “ fill in ” to get a nil value will cause a runtime error.
var myVar: String?
if myVar == nil {
print(myVar fill in)
}
A. ;
B. !
C. ?
D. $
12.
The keyword “fill in ” is used to continue to execute the next case statement, regardless of whether the condition is met or not.
switch (variable) {
case 1: if equals this case, do this
fill in
case n: must do the next one.
default : if not equals any case, run default code
}
A. continue
B. break
C. return
D. fallthrough
13.
Which following command is correct to create an array?
A. var myArray: [type] = [val1, val2, val3, …]
B. var myArray: [type] = (val1, val2, val3, …]
C. var myArray: [type] = {val1, val2, val3, …}
D. var myArray: [type] = <val1, val2, val3, …>
14.
var myDict: [Int: String] = [1: "A", 2: "B", 3: "C"]
myDict[2] = fill in // remove a key : value
print("key = 1, value is \(myDict[1]!)")
print("key = 2, value is \(myDict[2])")
print("key = 3, value is \(myDict[3]!)")
A. remove
B. delete
C. nil
D. eliminate
15.
fill in Fruit { // create a class “Fruit”
var color: String // member
var size: String
var price: Int
}
A. create
B. new
C. public
D. class
16.
fill in () { // initializer
length = 100 // initialization
width = 100
}
A. initialize
B. init
C. initial
D. initialization
17.
print("Please enter your name: ")
if let name = fill in () { // user-input function
print(name)
}
A. userInput()
B. input()
C. inputLine()
D. readLine()
18.
var title = "'R in 8 Hours'"
var author = "Ray Yao"
print("The author is fill in (author) ")
// outputs the variable value inside the double quotes .
A. /
B. \
C. $
D. !
19.
var string1: String = "computer language: "
var letter2: Character = "R"
string1. fill in (letter2) // append letter2 to string1
print("Learn a \(string1)")
A. append()
B. add()
C. join()
D. connect()
20.
What is the output according to the following code?
var num = 0
while num < 10 {
if num == 8 {
break // leave the while loop
}
num = num + 1
}
print(num)
A. 6
B. 7
C. 8
D. 9
21.
var array1: [Int] = [100, 101, 102]
var array2: [Int] = [900, 901]
var array3 = array1 fill in array2 // merge two arrays
for element in array3 {
print(element)
}
A. +
B. -
C. *
D. /
22.
The syntax to define a function with different type parameter is:
func funcName fill in Typefill in (parameters: Type...) { }
A. []
B. { }
C. ()
D. < >
23.
var apple = Fruit() // create an object “apple”
apple fill in color // object reference member
apple fill in size
apple fill in price
A. ,
B. .
C. !
D. ;
24.
class addition {
let a: Int
let b: Int
let sum: Int
init(a: Int, b: Int) {
fill in .a = a // a keyword represents the current object
fill in .b = b
sum = a + b
print("20 + 80 = \(sum)")
}
}
let obj = addition(a: 20, b: 80)
A. obj
B. object
C. myObj
D. self
Swift Source code download link:
https : //forms . aweber . com/form/22/1538006522 . htm
Answers
01 . D | 09 . A | 17 . D |
02 . A | 10 . C | 18 . B |
03 . C | 11 . B | 19 . A |
04 . C | 12 . D | 20 . C |
05 . B | 13 . A | 21 . A |
06 . C | 14 . C | 22 . D |
07 . D | 15 . D | 23 . B |
08 . B | 16 . B | 24 . D |
Source Code Download
Swift Source code download link:
https : //forms . aweber . com/form/22/1538006522 . htm
Perl
Hour 1
Introduction
What is Perl?
Perl is an abbreviation for “Practical Extraction Report Language”.
Perl language is an interpreted scripting language, which was developed by Larry Wall in 1986 as a scripting language designed to handle system-oriented tasks in Unix environments. Perl has a strong ability to transform files and characters, it is especially suitable for tasks related to system management database and network interconnection as well as WWW programming, which makes Perl the tool language of choice for system maintenance managers and CGI programmers.
Perl is a high-level, universal, literal, dynamic programming language.
The most important features of Perl are the built-in integration of regular expression capabilities, as well as the huge third-party code library CPAN.
Perl can easily do the following tasks: 1. Text data processing. 2. Network program processing. 3. Database processing. 4. XML document processing. 5. System maintenance processing. 6. Image processing.
Install Perl
Download Perl
The official download link of Perl is as follows:
http : //strawberryperl . com/
Install Perl
After downloading the Perl, Please double click it, and start to install Perl by following the instruction of the installer.
Click “Next” button to install the Perl step by step……
When the installation is complete, please click the “Finish” button.
Create a Working Folder
In order to run Perl program easily, we can create a working folder in the root directory of C: disk. The working folder will be named “myPerl”. For example:
C:\myPerl
All Perl files will be saved in the working folder “myPerl”.
Run First Program of Perl
1. Click the Perl (Command Line) icon, open the Perl as follows:
2. Access the working folder “myPerl” in C: disk.
Please enter “cd C:\myPerl ”, specify the “myPerl” as a current working folder.
3. Open the Notepad, input the following Perl code to the Notepad editor.
It will output "Hello, World" print "Hello, world ! "; |
Save the file named “Hello.pl ” to the folder “myPerl ”.
4. In Perl (Command Line), enter “perl Hello.pl ” to execute this Perl program.
You can see the output: “ Hello, world! ”
Congratulation! Your first Perl program run successfully!
The syntax to run a Perl program with Command Line is as follows:
perl filename.pl |
“. pl” is an extension name of Perl.
Perl Comment
|
is used to single-line comment.
=pod …… …… =cut |
“=pod……=cut” is used to multi-line comment.
Example 1.1
print "Hello! "; # single-line comment =pod multi-line comment multi-line comment multi-line comment =cut |
Output: Hello!
Explanation: The Perl interpreter will ignore the comments.
Data Type
Perl has various basic data types, such as variables, arrays, hashes, integer, floating point, and string.
1. Variable
The value of a variable may change at runtime.
The “$” symbol is used to declare a variable.
For example: $myVariavle
2. Array
The array is a special variable, which contains a series of values.
The “@” symbol is used to declare an array.
For example: @myArray
3. Hash
A hash is an unordered collection of key/value pairs.
The “%” symbol is used to declare a hash.
For example: %myHash
4. Integer
Integer means the number without decimal places.
For example: 100
5. Floating Point
The floating point means the number with decimal places.
For example: 2 . 718
6 . String
The string consists of a series of characters, spaces and numbers .
A string is always enclosed with double quotes or single quotes .
For example : “ myString ”
Example 1.2
$int = 100; # define an integer $str = " Good "; # define a string $flt = 2. 718; # define a floating point print $int, $str, $flt; |
Output: 100 Good 2. 718
Explanation:
$int, $str and $flt are integer, string and floating point variables.
Escape Sequences
The “ \ ” backslash character can be used to escape characters.
\b makes a backspace
\n outputs content to the next new line.
\r makes a return
\t makes a tab
\’ outputs a single quotation mark.
\” outputs a double quotation mark.
Example 1.3
print("He said \" Hello \n World! \" "); // \” outputs a double quote // \n outputs contents to a new line . |
Output:
He said "Hello
World! "
Explanation:
\” outputs a double quotation mark.
\n outputs the contents into a new line.
Print command is used to output contents.
print “……” print ‘……’ |
print “ ……” will output an interpreted value or a calculated value by using double quotes.
print ‘ ……’ will output an original value by using single quotes.
Example 1.3
$score = 100; # $score is a variable print " $score \n" ; # using double quotes print ' $score \n' ; # using single quotes |
Output:
100
$score \n
Explanation:
The contents inside the double quotes can be interpreted.
The contents inside the single quotes cannot be interpreted, the output is the original values.
Here Document
"Here Document" is used to define a series of texts and output multi-line texts.
The syntax of “Here Document” is as follows:
<< "Here"; …… Here |
Example 1.4
$var = << "Here"; "Here Document" can define a series of texts. \n "Here Document" can show multi-line texts. Here print "$var"; |
Output:
"Here Document" can define a series of texts.
"Here Document" can show multi-line texts.
Explanation:
“<<"Here";……Here” is a Here Document.
Identifier
An identifier is a name when the programmer writes the code. The variable name, constant name, function name, block name used in the program are collectively referred to as identifiers.
For example:
The identifier $myVariable is a variable name. The identifier @myArray is an array name. The identifier %myHash is a hash name . |
The rule of the Perl identifier is as follows:
1. Identifiers consist of letters (a~z, A~Z), numbers (0~9) and underscores (_). e. g. $mark_10 is a variable name.
2. Identifiers begin with letters or underscores, and cannot begin with numbers. e. g. $10score is an invalid variable name.
3. Identifiers are case sensitive.
e. g. $myVariable and $MyVariable represent two different variable names.
Hour 2
Basics
Variable
The value of the variable is changeable at runtime.
“$” can be used to declare a variable. Its syntax is:
$variable = value |
Variables do not need to declare a data type.
Example 2.1
$myVariable = "Hello, World! "; print $myVariable ; |
Output:
Hello, World!
Explanation:
“$” is a variable symbol.
“myVariable” is a variable name.
In Perl, each instruction is ended with a semicolon (;).
Constant
The value of the constant is unchangeable at runtime.
The syntax to define a constant is as follows:
use constant CONSTANT_NAME => value; |
The constant name is usually capitalized.
Example 2.2
use constant MON => "Monday"; use constant SUN => "Sunday"; print MON . "\n"; print SUN . "\n"; |
Output:
Monday
Sunday
Explanation:
“use constant MON” defines a constant name “MON”.
“use constant SUN” defines a constant name “SUN”.
“. \n” is used to output the string value in the next line.
String
The string consists of a series of characters, spaces, numbers.
The string is always enclosed by double quotes or single quotes.
The dot “. ” symbol can connect two strings.
Example 2.3
$str1 = "Shell Scripting" ; $str2 = " in 8 Hours" ; $myString = $str1 . $str2; print $myString; |
Output:
Shell Scripting in 8 Hours
Explanation:
"Shell Scripting" is a string enclosed by a double quote.
“$str1 . $str2” connects two strings by using a dot “. ” symbol.
Array
The array is a special variable that contains a series of values, the array can be a different data type.
The syntax to create an array is as follows:
@arrayName = (val1, val2, val3) |
“val1, val2, val3” is three element values of the array.
The syntax to access an array element is:
$arrayName [index] |
“index” is the element number, it begins with zero
Example 2.4
@book = ("Go", " in", " 8 Hours"); # create an array print "$book[0]"; # the index is 0, accesses “Go” print "$book[1]"; # the index is 1, accesses “in” print "$book[2]"; # the index is 2, accesses “ 8 Hours” |
Output: Go in 8 Hours
Explanation:
“@book” is the name of the array, which contains three elements.
Element Range
The range (startValue .. endValue) can access all elements from the startValue to the endValue, its syntax is as follows:
(startValue .. endValue) |
“(startValue .. endValue)” represents all elements from startValue to endValue.
Example 2.5
@array1 = (0..8) ; # create an array @array2 = (A..N) ; # create an array print "@array1\n"; # output from 0 to 8 print "@array2\n"; # output from A to N |
Output:
0 1 2 3 4 5 6 7 8
A B C D E F G H I J K L M N
Explanation:
“(0.. 8)” represents all elements from 0 to 8.
“(A.. N)” represents all elements from A to N.
Array Size
The syntax to get the size of an array is:
$size = @arrayName; print $size |
“@arrayName” can get the size of an array.
The value of $size will be the length of the array.
Example 2.6
@myArray=(1,2,3,4,5,6); $len=@myArray ; print "The size of myArray is $len "; |
Output:
The size of myArray is 6
Explanation:
“$len=@myArray;” assigns the value of myArray size to $len.
The First Element
The syntax to add an element to the beginning of an array is:
unshift(@array, newElement); |
The syntax to remove the first element of an array is:
shift(@array); |
Example 2.7
@arr = ("A","B","C"); # create an array unshift (@arr, "OK"); # add an element "OK" to the beginning print " $arr[0]", " $arr[1]", " $arr[2]", " $arr[3]"; print "\n"; shift (@arr); # remove the first element "OK" print " $arr[0]", " $arr[1]", " $arr[2]"; |
Output:
OK A B C
A B C
Explanation:
“unshift()” and “shift()” adds or removes the first element.
The Last Element
The syntax to add an element to the end of an array is:
push(@array, "newElement"); |
The syntax to remove the last element of an array is:
pop(@array); |
Example 2.8
@arr = ("A","B","C"); # create an array push(@arr, "OK") ; # add an element "OK" to the end print " $arr[0]", " $arr[1]", " $arr[2]", " $arr[3]"; print "\n"; pop(@arr) ; # remove the last element "OK" print " $arr[0]", " $arr[1]", " $arr[2]"; |
Output:
A B C OK
A B C
Explanation:
“push()” and “pop()” adds or removes the last element.
Extract Elements
The syntax to extract some elements from an array is:
@array[index1, index2, index3…]; |
“index1, index2, index3…” specifies the elements to extract by index.
Example 2.9
@arr1 = ("A","B","C", "D", "E", "F"); @arr2 = @arr1[1,3,5] ; // extract elements by index print @arr2; |
Output:
BDF
Explanation:
“@arr1[1,3,5]” extracts the elements by index1, index3, index5, their values are B, D, F respectively.
By the way, you can also use Range to extract elements
For example: @myArray[index1 .. index2].
Sort Elements
The syntax to sort all elements of an array is:
sort(@array); |
Example 2.10
create an array @arr = ("E","D","B", "F", "A", "C"); print "Before sorting: @arr\n"; @arr = sort(@arr) ; # sort the array print "Having sorted : @arr\n"; |
Output:
Before sorting: E D B F A C
Having sorted: A B C D E F
Explanation:
“sort(@arr)” sorts all elements of the array.
Conversion
A string can be converted to an array, and an array can also be converted to a string.
@array = split('seperator', $string); # convert string to array $string = join('seperator', @arring); # convert array to string |
“seperator” can be a space, “*”, “-”, “#”, “@”……
Example 2.11
$myStr = "Hello My Friends"; # create a string @arr = split (' ', $myStr); # convert to array $str = join ('**', @arr); # convert to string print "$arr[0] $arr[1] $arr[2] \n"; print "$str\n"; |
Output:
Hello My Friends
Hello**My**Friends
Explanation:
“split()” can convert a string to an array.
“join()” can convert an array to a string.
Merge Arrays
The syntax to merge two arrays is as follows:
(@array1 , @array2) |
Example 2.12
@arr1 = ("Shell", "Scripting"); @arr2 = ("in", "8", "Hours"); @mergeArr = (@arr1, @arr2) ; // merge two arrays print "@mergeArr"; |
Output:
Shell Scripting in 8 Hours
Explanation:
“(@arr1, @arr2)” merges two arrays.
Hour 3
Hash
Hash
A hash is a collection of “key/value”. The symbol “%” is used to make a hash name. ${key} is used to access a hash element.
The syntax to create a hash is as follows:
%hash = ('key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3',...); |
Example 3.1
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent'); print "$score{'60'}\n"; print "$score{'85'}\n"; print "$score{'100'}\n"; |
Output:
passed
ok
excellent
Explanation:
“%score = (…)” creates a hash with three elements.
"$score{'60'}” accesses the element whose key is 60.
Check Existing
The exists() function can check whether the key/value is existing, If a key/value pair does not exist, the “undefined” value is returned. The syntax to use the exists() is as follows:
exists($hash{'key'}) |
Example 3.2
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent'); if(exists($data{'90'})){ # chick existing print "The score 90 is $data{'90'} \n"; } else{ print "The score 90 is not existing. "; } |
Output:
The score 90 is not existing.
Explanation:
“exists($data{'90'}” checks whether the key “90” and its value exist.
Get Hash Values
The syntax to get all values of the hash is as follows:
@array = values %hash |
The above returns an array containing all values of the hash.
Example 3.3
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent'); @arr = values %score; # get all element values of the hash print "$arr[0]\n"; print "$arr[1]\n"; print "$arr[2]\n"; |
Outout:
passed
ok
excellent
Explanation:
The output is unordered.
“values %score” gets all the values of the hash “score”, and returns an array include these values.
Hash Size
The syntax to get the hash size is as follows:
@array = keys %hash; # get all keys in the hash $size = @array; # get the total number of keys |
Example 3.4
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent'); @arr = keys %score; $size = @arr; print "The total number of the keys is : $size\n"; |
Output:
The total number of the keys is: 3
Explanation:
“@arr = keys %score;” gets all keys in the hash “score”, and returns an array including these keys.
“$size = @arr;” gets the total number of keys.
Add or Remove Element
$hash{'key'} = 'value'; # add a hash element delete $hash{'key'}; # remove a hash element |
Explanation 3.5
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent'); $score{'101'} = 'superhero!'; # add an element delete $score{'60'}; # remove an element @arr = values %score; print "$arr[0] ";print "$arr[1] ";print "$arr[2] "; |
Output:
ok excellent superhero
Explanation:
The output is unordered.
“$score{'101'} = 'superhero! ';” adds an element “superhero” to the hash.
“delete $score{'60'};” removes an element whose key is 60 in the hash.
Iterate Through Hash
foreach $key (keys %hash){ } |
“foreach $key (keys %hash){…}” is used to iterate through the elements of the hash.
Example 3.6
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent'); foreach $key (keys %score){ print "$score{$key}\n"; } |
Output:
passed
ok
excellent
Explanation:
“foreach $key (keys %score){…}” iterates through the elements of the hash “%score”.
Arithmetical Operators
Operators | Running |
+ | add or connect strings |
- | subtract |
* | multiply |
/ | divide |
% | get modulus |
** | power |
Example 3.7
$a = 4; $b = 2; $c = $a + $b; print '$a + $b = ' . $c . "\n"; # output : $a + $b = 6 $c = $a * $b; print '$a * $b = ' . $c . "\n"; # output : $a * $b = 8 $c = $a % $b; print '$a % $b = ' . $c. "\n"; # output : $a % $b = 0 $c = $a ** $b; print '$a ** $b = ' . $c . "\n"; # output : $a ** $b = 16 |
Comparison Operators
Operators | Running | Returns |
> | greater than | true or false |
< | less than | true or false |
>= | greater than or equal | true or false |
<= | less than or equal | true or false |
== | equal | true or false |
! = | not equal | true or false |
For example:
$x=100;
$y=200;
($x == $y) returns false
($x != $y) returns true
($x >= $y) returns false
($x <= $y) returns true
Logical Operators
Operators | Result |
and | If both operands are true, returns true |
or | If one of the operands is true, returns true |
not | If the operand is true, returns false |
For example:
$x=true;
$y=false;
($x and $y) returns false
($x or $y) returns true
not ($x) returns false
not ($y) returns true
Assignment Operators
Operators | Examples: | Equivalent: |
+= | x+=y | x=x+y |
-= | x-=y | x=x-y |
= | x=y | x=x*y |
/= | x/=y | x=x/y |
%= | x%=y | x=x%y |
= | x=y | x=x**y |
Example 3.8
$x = 100; $y = 200; $y += $x; print "$y\n"; # $y=$y+$x output : 300 $x = 100; $y = 200; $y *= $x; print "$y\n"; # $y=$y*$x output : 20000 $x = 100; $y = 200; $y /= $x; print "$y\n"; # $y=$y/$x output : 2 $x = 100; $y = 200; $y %= $x; print "$y\n"; # $y=$y%$x output : 0 |
Dot Operators
Operators | Usage | Result |
. | string . string | connect two strings |
.. | num1 .. num2 | from num1 to num2 |
Example 3.9
$x = "Very "; $y = "Good! "; $result = $x . $y ; print "\$x . \$y = $result\n"; @result = (1..8) ; print "(1 .. 8) = @result\n"; |
Output:
$x . $y = Very Good!
(1.. 8) = 1 2 3 4 5 6 7 8
Explanation:
“$x . $y ” connects two strings “Very” and “Good”.
“(1..8) ” returns a range from 1 to 8.
Increase & Decrease
++ | add 1 |
- - | subtract 1 |
Example 3.10
$x= 100; $x++ ; # x increases 1 $result = $x ; print "\$x++ = $result\n"; $y = 100; $y- - ; # y decreases 1 $result = $y ; print "\$y-- = $result\n"; |
Output: $x++ = 10
$y- - = 99
Explanation:
“$x++” # x increases 1
“$y- -” # y decreases 1
Hour 4
Statement
If Statement
if (boolean_expression){ # code } |
If the boolean expression returns true, the code within the if statement will be executed. If returns false, will not be executed.
Example 4.1
$num = 100; if($num < 200) { printf "The num is less than 200\n"; } |
Output:
The num is less than 200
Explanation:
Because “if($num<200)” returns true, the code within the “if statement” has been executed, and prints the result.
If-Else Statement
if (boolean_expression){ # code1 } else { # code2 } |
If the boolean expression returns true, the code1 within the if statement will be executed. If returns false, the code2 within the else statement will be executed.
Example 4.2
$num = 300; if($num < 200){ printf "The num is less than 200\n"; } else { printf "The num is greater than 200\n"; } |
Output: The num is greater than 200
Explanation:
Because “if($num < 200)” returns false, the code within the else statement has been executed, and prints the result.
Unless Statement
unless(boolean_expression){ # execute when boolean_expression returns false } |
“unless(boolean_expression)” returns false, the code within the unless statement will be executed
Example 4.3
$num = 300; unless($num < 200) { printf "The num is greater than 200\n"; } |
Output:
The num is greater than 200
Explanation:
Because “unless($num<200)” returns false, the code within the unless statement has been executed, and prints the result.
Unless Statement
unless(boolean_expression){ # execute when boolean_expression returns false } else { # execute when boolean_expression returns true } |
“unless(boolean_expression)” returns false, the code within the unless statement will be executed. If returns true, the code within the else statement will be executed.
Example 4.4
$num = 100; unless($num < 200){ print "The num is greater than 200\n"; } else { print "The num is less than 200\n"; } |
Output: The num is less than 200
Explanation:
Because “unless($num < 200)” returns true, the code within the else statement has been executed, and prints the result.
Ternary Operators
The ternary operators are “ ? : ”.
(boolean_expression) ? code1 : code2; |
If boolean_expression returns true, the code1 will be executed;
If boolean_expression returns false, the code2 will be executed.
Example 4.5
$score = 100; $result = ($score >= 60)? "passed" : "failed" ; print "The examination is $result"; |
Output:
The examination is passed
Explanation:
Because ($score >= 60) returns true, “passed” has been executed.
The value of $result is passed.
While Loop
while(condition){ code; } |
The loop is executed when the condition is true, and exits when the condition is false
Example 4.6
$num = 1; while($num <= 8) { # run 8 times print "$num "; $num = $num + 1; } |
Output:
1 2 3 4 5 6 7 8
Explanation:
“while($num <= 8) ” checks whether the condition is true, if the condition is false, the program exits the loop.
Do…While Loop
do{ code; } while(condition); |
Run the code first, then check whether the condition is true.
The loop is executed when the condition is true, and exits when the condition is false.
Example 4.7
$num = 1; do { print "$num "; $num = $num + 1; } while($num <= 8) # run 8 times |
Output:
1 2 3 4 5 6 7 8
Explanation: Run the code within the do loop first, then:
“while($num <= 8) ” checks whether the condition is true, if the condition is false, the program exits the loop.
Until Loop
until(condition){ code; } |
The loop is executed when the condition is false, and exits when the condition is true.
Example 4.8
$num = 1; until($num > 8) { # run 8 times print "$num "; $num = $num + 1; } |
Output:
1 2 3 4 5 6 7 8
Explanation:
Because until($num > 8) returns false, the code within the until loop has been executed for 8 times, until the condition is true.
For Loop
for (init; condition; increment){ code; } |
The loop is executed when the condition is true, and exits when the condition is false
Example 4.9
for($num = 1; $num <= 8; $num++) { print "$num "; } |
Output:
1 2 3 4 5 6 7 8
Explanation:
“$num = 1” sets up the initial value.
“$num <= 8” sets up the condition of the loop.
“$num++” sets up the increment of each loop.
“for(…)” keeps looping until the condition is false.
Foreach Loop
foreach variable (list) { code } |
“foreach loop” is used to iterate through all variable values in a collection.
Example 4.10
@myArray = (1, 6, 9, 8); foreach $var (@myArray) { print "$var "; } |
Output:
1 6 9 8
Explanation:
“foreach” statement iterates through all elements in the @myArray, assigns the values to the $var, and outputs its all values.
Continue
while(condition){ code1; }continue{ code2; } |
The continue statement is used to continue next loop.
Example 4.11
$num = 10; while($num <= 15){ print "$num "; } continue { $num = $num + 1; } |
Output:
10 11 12 13 14 15
Explanation:
“continue { $num = $num + 1;}” continues running next while loop after the current block.
Last
last; |
The last statement is used to exit the loop block, end the loop.
Example 4.12
$num = 10; while($num < 18){ if($num == 15){ last; } $num++; print "$num "; } |
Output:
11 12 13 14 15
Explanation:
“if($num == 15){ last; }” exits the loop block when $num is 15.
Hour 5
Operations
Local & Greenwich Time
localtime() # returns a local time gmtime() # returns a Greenwich time time() # returns the seconds accumulated since 1/1/1970 |
Example 5.1
$local_time = localtime() ; print "The local time is: $local_time\n"; $grw_time = gmtime() ; print "The Greenwich time is: $grw_time\n"; $epoc = time() ; print "The cumulative seconds since 1/1/1970 is : $epoc\n"; |
Output:
The local time is: Tue Oct 13 15: 11: 30 2020
The Greenwich time is: Tue Oct 13 19: 11: 30 2020
The cumulative seconds since 1/1/1970 is: 1602618009
Explanation:
localtime() returns a local time, gmtime() returns a Greenwich time, time() returns the seconds accumulated since 1/1/1970.
Subprogram
Subprogram is a function in Perl, it can be used repeatedly.
1. The syntax to define a subprogram is:
sub subName{ # subprogram is a function in Perl } |
2. The syntax to call a function is:
subName(); |
Example 5.2
sub book { # define a subprogram print "Scala in 8 Hours! "; } book() ; # call the subprogram |
Output:
Scala in 8 Hours!
Explanation:
“sub book{…} ” defines a subprogram “book”.
“book() ” calls the subprogram “book”.
Subprogram With Parameters
1. The syntax to define a subprogram is:
sub subName{ code @_ # @_ accepts all come-in parameters } |
@_[0] represents the number 0 parameter.
@_[1] represents the number 1 parameter.
@_[2] represents the number 2 parameter.
2. The syntax to call a function is:
subName(parameters); |
Example 5.3
sub books{
print "All books are : @_ \n";
print "$_[0] in 8 Hours\n";
print "$_[1] in 8 Hours\n";
print "$_[2] in 8 Hours\n";
}
books("C#", "GO", "VB") ;
Output:
All books are : C# GO VB
C# in 8 Hours
GO in 8 Hours
VB in 8 Hours
Explanation:
Subprogram is a function in Perl.
“books("C#", "GO", "VB");” calls the subprogram “books” with parameters “C#, GO, VB”
“@_” represents all come-in parameters.
@_[0] represents the number 0 parameter C#.
@_[1] represents the number 1 parameter GO.
@_[2] represents the number 2 parameter VB.
Return
“return” command is used to return its value to the caller.
return |
Example 5.4
sub addition{ $sum = $_[0]+$_[1]; return $sum ; # return its value to the caller } print addition(10, 20) # caller |
Output:
30
Explanation:
“return $sum ” returns its value to the caller “addition(…)”, just like “addition(10, 20) = $sum;”
Public & Private Variable
The variable defined outside a working scope is a public variable.
The variable defined inside a working scope is a private variable.
Working scope means a {…} range of a function, if, while, for, foreach. A private variable is invisible outside the working scope.
my $variable # “my” defines a private variable |
Example 5.5
$var = "Public String" ; # define a public variable sub show{ my $var = "Private String" ; # define a private variable print "$var\n"; # print private variable } print "$var\n"; # print public variable show(); |
Output: Public String
Private String
Explanation:
$var = "Public String" is a public variable outside “sub show{}”
my $var = "Private String" is a private variable in “sub show{}”
Static Variable
Static variable makes its value last. Once a static variable is assigned a value, its value will persist until this static variable is given a new value .
use feature 'state'; # import ‘state’ before using static state $variable; # define a static variable |
Example 5.6
use feature 'state' ; # import ‘state’ feature sub show{ state $number ; # define a static variable $number++; print "$number "; } for (0 .. 7){ show(); } # call show() 7 times |
Output: 1 2 3 4 5 6 7 8
Explanation:
“state $number;” defines a static variable, its value will last until being updated.
Reference
The reference is a pointer, which points to a variable, array, hash, subprogram. The value of a reference is a memory address.
By using a “\”, we can create a reference like this:
$var = \ $variable; # variable reference $arr = \ @array; # array reference $ha = \ %hash; # hash reference $sub = \ &subprogram; # subprogram reference |
Example 5.7
$var = "ok"; $v = \$var; # reference print "$v\n"; @arr = (10, 20, 30); $a = \@arr; # reference print "$a\n"; |
Output: SCALAR(0x55f27b7c29f8)
ARRAY(0x55f27b7c2ab8)
Explanation:
“$v = \$var; ” defines a variable reference.
“$a = \@arr; ” defines an array reference.
Cancel Reference
By adding a symbol $, @, %, & before a reference, we can cancel the reference.
$ $var # cancel reference @ $arr # cancel reference % $ha # cancel reference & $sub # cancel reference |
Example 5.8
$var = "ok"; $v = \$var; print "$$v\n "; # cancel reference @arr = (10, 20, 30); $a = \@arr; print " @$a\n "; # cancel reference |
Output: ok
10 20 30
Explanation:
"$ $v\n" cancels reference by adding a $ before the reference.
"@ $a\n" cancels reference by adding a @ before the reference.
Format Output (1)
We can use “format ” to format the contents, and use “write ” to output the formatted contents.
The syntax to define a format contents is as follows:
format STDOUT = # define a format contents . |
The syntax to output a formatted contents is as follows:
write; # output the formatted contents |
Example 5.9
format STDOUT = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ "In 8 Hours" Programming ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . write; |
Output:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"In 8 Hours" Programming
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Explanation:
“format STDOUT = . ” defines a format contents.
“write;” outputs the formatted contents.
Format Output (2)
We can use “format ” to format the contents, and use “write ” to output the formatted contents.
The syntax to define a format contents is as follows:
format myFormat = # define a format contents named “myFormat” . |
The syntax to output a formatted contents is as follows:
$~ = "myFormat"; # reference the myFormat write; # output the contents of $~ |
Example 5.10
format myFormat = ********************************** "In 8 Hours" Series Books ********************************** . $~ = "myFormat"; write; |
Output:

"In 8 Hours" Series Books

Explanation:
“format myFormat = . ” defines a format content.
“myFormat” is a name of the format contents.
“$~ = "myFormat ";” specifies the format contents to be used.
“write;” outputs the formatted contents.
Hour 6
Files
Open a File
The syntax to open a file is as follows:
open(DATA, ‘mode’, ‘myfile . txt’) or die $! ; |
“DATA” is the file handle, which is used for I/O connection.
“mode” is a command to open a file in a specified way.
“die $! ” shows a warning if fail to process the file.
The mode to open a file is as follows:
Mode | Description |
< or r | read only |
> or w | write only |
>> or a | append |
+< or r+ | read or write |
+> or w+ | write or read |
+>> or a+ | append (write or read) |
For example:
“open(DATA, ‘ < ’, ‘myfile.txt’) or die $!; ” means that open the “myfile. txt” in read-only mode.
Write to File
The syntax to write to file is as follows:
print DATA $contents; |
“$contents” is something that needs to write to a file.
Example 6.1
my $str = "Rust in 8 Hours"; # the contents to write my $f = 'C: \myPerl\myfile. txt'; # the path to write open(DATA, '>', $f) or die $! ; print DATA $str; # write the contents to myfile . txt close(DATA); # close the file print "Write to myfile . txt successfully! \n"; |
Output:
Write to myfile. txt successfully!
Explanation:
Please check ‘'C: \myPerl\myfile. txt'’, you can find the contents “Rust in 8 Hours” in myfile. txt.
“print DATA $str;” writes the contents to myfile. txt.
Read from File
The syntax to read contents from a file is as follows:
while(<DATA>){ print $_; } |
“$_” represents all contents in the file.
Example 6.2
my $f = 'C: \myPerl\myfile. txt'; # the path & file to read open(DATA, '<', $f) or die $! ; while(<DATA>){ print $_; # read all contents from myfile . txt } print "\nRead a file successfully! "; close(DATA); # close the file |
Output:
Rust in 8 Hours
Read a file successfully!
Explanation:
“while(<DATA>){ print $_; } ” reads contents from myfile. txt.
Input by User
The syntax to input data from a user to a file is as follows:
$data = <STDIN>; |
Example 6.3
print "What is your name?\n"; $data = <STDIN> ; print "My name is : $data\n"; |
Output:
What is your name?
Ray Yao
My name is: Ray Yao
Explanation:
“$data = <STDIN>; ” is used to input data by users.
STDIN, STDOUT, and STDERR represent standard input, standard output, and standard error respectively.
File Copy
The syntax to copy a file is as follows:
while(<DATA1>){ # copy data1 to data2 print DATA2 $_; } |
Example 6.4
open(DATA1, '<', 'C: \myPerl\myfile. txt'); # open an old file open(DATA2, '>', 'C: \myPerl\ourfile. txt'); # open a new file while(<DATA1>){ # copy print DATA2 $_; } print "Copy a file successfully! "; close(DATA1); close(DATA2); |
Output:
Copy a file successfully!
Explanation:
Please check 'C: \myPerl\ourfile. txt'.
DATA1 represents file1, DATA2 represents file2.
File Rename
The syntax to rename a file is as follows:
rename (file1, file2); |
Change the name of file1 to file2.
Example 6.5
my $file1 = 'C: \myPerl\myfile. txt'; my $file2 = 'C: \myPerl\yourfile. txt'; rename ($file1, $file2); print "Rename a file successfully ! "; |
Output:
Rename a file successfully!
Explanation:
Please check 'C: \myPerl\yourfile. txt'.
“rename ($file1, $file2);” rename the “myfile. txt” as “yourfile. txt”.
File Remove
The syntax to remove a file is as follows:
unlink (file); |
Example 6.6
my $file = 'C: \myPerl\ourfile. txt'; unlink ($file) ; print "Remove a file successfully ! "; |
Output:
Remove a file successfully!
Explanation:
Please check 'C: \myPerl\ourfile. txt', which is no longer existing.
“unlink ($file) ;” removes the “ourfile. txt”.
File Information
“_ _” can return the information of a file.
_ _FILE_ _ returns the current file name _ _PACKAGE_ _ returns the package name of the file |
Note: “_ _” is two underlines.
Example 6.7
print "The file name is : " . __FILE__ . "\n"; print "The package name is : " . __PACKAGE__ . "\n"; |
Please save this file and its name as “myScript. pl”
Output:
The file name is : myScript. pl
The package name is : main
Explanation:
_ _FILE_ _ returns the current file name.
_ _PACKAGE_ _ returns the package name of the current file.
Directory Operation
The standard commands to process a directory is as follows:
Commands | Operations |
opendir | open a dirctory |
readdir | read a directroy |
mkdir | create a directory |
chdir | specify a current directory |
rmdir | remove a directory |
telldir | return the position of the current directory |
seekdir | return the position of the specified directory |
closedir | close a directory |
Create a Directory
The syntax to create a directory is as follows:
mkdir(“ path / directory ”); |
Create a new directory under the specified path.
Example 6.8
$d1 = "/myPerl/Directory1"; $d2 = "/myPerl/Directory2"; mkdir($d1) or die "$! "; mkdir($d2) or die "$! "; print "Create two directories successfully ! \n"; |
Output:
Create two directories successfully!
Explanation:
Please check the directories “C: \myPerl”, you will find that two new directories “Directory1” and “Directory2” have been created.
“mkdir($d1) ” creates a “Directory1” under “C: \myPerl”.
“mkdir($d2) ” creates a “Directory2” under “C: \myPerl”.
Open & Read a Directory
The syntax to open or read a directory is as follows:
opendir (DIR, ‘ \directory ’); # open a directory read DIR # read the directory |
Example 6.9
opendir (DIR, 'C:\myPerl') or die $! ; while ($contents = readdir DIR) { print "$contents\n"; # show anything under \myPerl } closedir DIR; |
Output:
Directory1
Directory2
……
Explanation:
“opendir (DIR, 'C: \myPerl')” opens the directory “\myPerl”.
“readdir DIR” reads the directory “\myPerl”.
Change & Remove a Directory
The syntax to change or remove a directory is as follows:
chdir(‘\directory’); # change as the current directory rmdir(‘\directory’); # remove the specified directory |
Example 6.10
$d1 = "/myPerl/Directory1"; chdir($d1) or die \$! ; # specify the current directory print "The directory you are in is $d1\n"; $d2 = "/myPerl/Directory2"; rmdir($d2) or die $! ; # remove the specified directory print "Remove Directory2 successfully ! \n"; |
Output:
The directory you are in is /myPerl/Directory1.
Remove Directory2 successfully!
Explanation:
“chdir($d1)” specifies Directory1 as the current directory.
“rmdir($d2)” removes Directory2.
Please check “C: \myPerl”, you cannot find Directory2 now.
Hour 7
Functions
Die Function
When an error happens, “die function” stops the running program, and outputs the error messages.
die “ error message ”, $! ; |
Example 7.1
open(DATA,"<", abc. txt) or die "Error! Cannot open abc.txt! \n", $! ; # assume that there is no abc . txt # in the current directory . close(DATA); |
Please Save the file as “test01.pl ” in “C: \myPerl”, and run it.
Output:
Error! Cannot open abc. txt!
No such file or directory at test01. pl line 1.
Explanation:
Because there is no “abc. txt” in the current directory, “die()” stopped the running program, and outputs the error message.
Warn Function
When an error happens, “warn function” outputs the warning messages.
warn " warning message "; |
Example 7.2
open(DATA,"<", abc. txt) or warn "Warning: Cannot open abc.txt!" ; # assume that there is no abc . txt # in the current directory . close(DATA); |
Please Save the file as “test02.pl ” in “C: \myPerl”, and run it.
Output:
Warning: Cannot open abc. txt! at test02. pl line 1.
Explanation:
Because there is no “abc. txt” in the current directory, “warn()” outputs the warning message.
Sysopen Function
Sysopen function is used to open a file in different modes.
The syntax of sysopen() is:
sysopen(DATA, "file . txt", mode); |
The usage of the parameter “mode” is as follows:
Modes | Open the file for this purpose: |
O_RDWR | read or write |
O_RDONLY | read only |
O_WRONLY | write only |
O_CREAT | create a file |
O_APPEND | append a file |
O_EXCL | check whether the file exists |
For example:
sysopen (DATA, "myfile. txt", O_WRONLY);
open a file “myfile . txt”, for writing only .
Match Operator
Match operator is used to check if a string contains a substring.
=~ /…/ # check whether some characters match !~ /.../ # check whether no characters match |
Example 7.3
$book = "Kotlin in 8 Hours"; if ($book =~ /8 Hours/){ # check match print "Some words match '8 Hours' \n"; } if ($book !~ /8 Hours/){ # check doesn’t match print "No words match '8 Hours' \n"; } |
Output:
Some words match '8 Hours'
Explanation:
“$book =~ /8 Hours/” checks whether some words in the $book match “8 Hours”.
“$book ! ~ /8 Hours/” checks whether no words in $book match “8 Hours”
RegExp Variable
There are three RegExp variables that can match different strings.
$` # gets the previous substring of the matching string $& # gets the matching string $' # gets the following substring of the matching string |
Note: The symbol of $` is different from $'
Example 7.4
$str = "HTML CSS in 8 Hours"; $str =~ /CSS/; print "The previous string: $` \n"; print "The matching string: $& \n"; print "The following string : $' \n"; |
Output:
The previous string: HTML
The matching string: CSS
The following string: in 8 Hours
Explanation: $`, $&, $' return the previous string, the matching string, and the following string respectively.
Substitute Operator
The syntax to substitute a string1 as a string2 is as follows:
=~ s / string1 / string2 /; |
“s” is a substitute operator parameter.
Example 7.5
$str = "Visual C# in 8 Hours"; $str =~ s/C#/Basic/ ; # substitution print "$str\n"; |
Output:
Visual Basic in 8 Hours
Explanation:
“=~ s / C# / Basic /;” substitutes the substring1 “C#” as the substring2 “Basic”.
Lowercase & Uppercase Convert
The syntax to convert lowercase and uppercase is as follows:
=~ tr / A-Z / a-z /; # convert to lowercase =~ tr / a-z / A-Z /; # convert to uppercase |
Example 7.6
$str1 = 'Shell Scripting in 8 Hours'; $str1 =~ tr/A-Z/a-z/ ; print "$str1\n"; $str2 = 'Shell Scripting in 8 Hours'; $str2 =~ tr/a-z/A-Z/ ; print "$str2\n"; |
Output:
shell scripting in 8 hours
SHELL SCRIPTING IN 8 HOURS
Explanation:
“$str1=~ tr/A-Z/a-z/;” converts the str1 to lowercase.
“$str2=~ tr/A-Z/a-z/;” converts the str2 to uppercase.
Remove Double Character
The words with double characters are like these: good, leek, see, woo, vacuum, ……
The syntax to remove one of the double characters is:
=~ tr /a-z / a-z /s; |
“/s” converts the double characters to a single character.
Example 7.7
$str = 'I see a bee over the book'; $str =~ tr/a-z/a-z/s; # remove a double character print "$str\n"; |
Output:
I se a be over the bok
Explanation:
“=~ tr/a-z/a-z/s;” removes one of the double characters. Therefore, the “see” becomes “se”, the “bee” becomes “be”, the “book” becomes “bok”.
Delete Specified Characters
The syntax to delete the specified characters is:
=~ tr /character / /d; |
“/d” deletes the specified characters.
Example 7.8
$str = 'HTML CSS in 8 Hours'; $str =~ tr/CSS/ /d; # delete CSS print "$str\n"; |
Output:
HTML in 8 Hours
Explanation:
“=~ tr/CSS/ /d;” deletes the specified characters “CSS” in the string.
Default Variable
When no any variable is defined explicitly, $_ is a default variable which contains all input values.
Therefore, $_ is a special default variable in Perl.
Example 7.9
foreach ('JAVE','HTML','PERL') { print $_ ; # $_ represents all element values print " "; } |
Output:
JAVE HTML PERL
Explanation:
In the above program, no any variable is defined explicitly, $_ is a default variable that contains all values “JAVA, HTML, PERL”.
Show the Perl comments
“__DATA__” is a parameter to make the comments to be shown.
The syntax to show the Perl comments is as follows:
while(<DATA>){ print $_; } __DATA__ |
Example 7.10
while(<DATA>){ print $_; } __DATA__ # make the following comments shown =pod =head1 This is a pod document, which is used as a Perl comment. =head2 Perl usually ignores the comment, but now I will be shown. =cut # I am a Perl comment # This comment will be shown by __DATA__ |
Output:
=pod
=head1
This is a pod document, which is used as a Perl comment .
=head2
Perl usually ignores the comment, but now I will be shown .
=cut
I am a Perl comment
This comment will be shown by __DATA__
Explanation:
“__DATA__” is a parameter to make the comments to be shown.
The following is a pod document, which work as a comment.
The structure of a pod document is as follows:
=pod =head1 ….... =head2 …… =head3 …… =cut |
Hour 8
Class/Object
Class & Object
Class
Class is the general name for all things related, is a template of an object.
In Perl, a class is just a simple package, we can use a package as a class. The syntax to create a class is as follows:
package MyClass; |
Object
Object is an instance of a class. We can create an object of a class. The syntax to create an object is as follows:
new MyClass(parameters); |
Constructor
Constructor is used to initialize the properties of the class.
The syntax to create a constructor is as follows:
sub new {……} |
Constructor
When creating an object, we need a constructor to initialize.
In Perl the structure of the constructor is a little complicated, so we need to study it in detail.
The structure of the constructor is as follows:
sub new { my $class = shift; # “shift” accepts all come-in parameters my $self = { key => shift }; # { key => shift } is a hash bless $self, $class; # “bless” relates two parameters return $self; # “self” represents the instance of the class . } |
Explanation:
“sub new{…}” create a constructor.
“$class = shift;” accepts all come-in parameters when creating an object.
“shift” is a keyword which is used to process multi parameters.
{ key => shift } is a hash which assigns a value to a key.
“bless” is a keyword which is used to relate two parameters.
“return $self” returns a reference to the object.
Class & Object Example
Example 8.1
package Student; # create a class sub new { # create a constructor my $class = shift; my $self = { username => shift, surname => shift, number => shift, }; print "Username: $self - > {username}\n"; print "Surname: $self - > {surname}\n"; print "Number: $self - > {number}\n"; bless $self, $class; return $self; } new Student(" Ann", " Rose", " 1688") ; # create an object |
Output:
Username: Ann
Surname: Rose
Number: 1688
Explanation:
“package Student;” creates a class.
“sub new{……}” creates a constructor.
“shift” is a keyword which is used to process multi parameters.
“$self” keyword represents the instance of the class.
“bless $self, $class;” relates two parameters “$self” & “$class”.
“return $self;” returns the reference to object.
“new Student(" Ann", " Rose", " 1688");” creates an object and passes three parameters to the constructor.
Define a Method
The syntax to define a method is as follows:
sub myMethod { my ($self, $variable) = @_; return $self - > {$variable}; } |
Note: The first parameter should be a “$self” in Perl method.
“@_” accepts all come-in parameters
“return $self - > {$variable};” returns the value to the caller.
Example 8.2
package Student; # create a class sub new{ # create a constructor my $class = shift; my $self = { username => shift, surname => shift, number => shift, }; print "Username: $self - > {username}\n"; print "Surname: $self - > {surname}\n"; print "Number: $self - > {number}\n"; bless $self, $class; return $self; } sub getUserName { # define a method my ($self, $username) = @_; # @_ accepts parameters return $self - > {username}; # returns value to the caller } 1; # The “1” indicates that the file is loaded successfully $object = new Student(" Ann", " Rose", " 1688"); # create an object $username = $object - > getUserName(); # call the method print "The student username is : $username\n"; |
Output:
Username: Ann
Surname: Rose
Number: 1688
The student username is : Ann
Explanation:
“sub getUserName {……}” defines a method “getUserName”
“@_” accepts all come-in parameters.
“return $self - > {username};” returns the value to the caller
“$object = new Student(……");” creates an object.
“$object - > getUserName();” calls the method “getUserName”.
Inheritance
A child class can inherit the feature of the parent class.
The syntax of the inheritance is as follows:
package ChildClass; # create a child class our @ISA = ParentClass; # inherit a parent class |
Example 8.3
package Student; # create a class sub new{ # create a constructor my $class = shift; my $self = { username => shift, surname => shift, number => shift, }; print "Username: $self - > {username}\n"; print "Surname: $self - > {surname}\n"; print "Number: $self - > {number}\n"; bless $self, $class; return $self; } # define a method sub getUserName { my ($self, $username) = @_; return $self - > {username}; } 1; $object = new Student(" Ann", " Rose", " 1688"); # create an object $username = $object - > getUserName(); # call the method print "The student username is : $username\n"; package Pupil; # create a child class “Pupil” our @ISA = Student; # inherit the parent class “Student” $object = new Pupil(" Tom", " Watt", " 1689"); $username = $object - > getUserName(); print "The pupil username is : $username\n"; |
Output:
Username : Ann
Surname : Rose
Number : 1688
The student username is : Ann
Username : Tom
Surname : Watt
Number : 1689
The pupil username is : Tom
Explanation:
“package Pupil;” creates a child class “Pupil”
“our @ISA = Student;” inherits a the parent class “Student”.
Package
A package is equal to a class. The default package name is “main” package, but we can create a new package.
package myPack; # create a new package __PACKAGE__ # get the name of the package |
Example 8.4
in the default package print "The Package Name : " , __PACKAGE__ , "\n"; package ipack ; # create a new package “ipack” print "The Package Name : " , __PACKAGE__ , "\n"; package main ; # return the main package print "The Package Name : " , __PACKAGE__ , "\n"; 1; |
Output:
The Package Name : main
The Package Name : ipack
The Package Name : main
Explanation: __PACKAGE__ gets the name of the package
BEGIN & END Modules
BEGIN{…} # execute before any other statements END{…} # execute after any other statements . |
Example 8.5
package myPack; print "Note the sequence of statement running\n"; BEGIN { print "Run the GEGIN module first. \n" } END { print "Run the END module last. \n" } 1; |
Output:
Run the GEGIN module first.
Note the sequence of statement running
Run the END module last.
Explanation:
“BEGIN{…}” is the first statement to run.
“END{…}” is the last statement to run.
Module
A Perl module is a reusable package, the module name is the same as the package name.
The syntax to create a module is as follows:
package MyModule; |
The module will be referenced by another file.
The extension name of the module is “. pm”
Example 8.6
package MyModule; # create a module sub func{ print "I am MyModule. pm\n"; print "I am called by main. pl\n"; } 1; |
Please save the module as “MyModule. pm” at C: \myPerl.
“package MyModule;” creates a module “MyModule. pm”;
This module will be referenced by another Perl file.
Require
“require” command is used to import a module. Its syntax is:
require “ path/module . pm ”; # import a module |
module :: function(); # call the module’s function |
Example 8.7
require "C:/myPerl/MyModule.pm"; # import the module MyModule::func(); # call the function in the module print "I am main. pl\n"; print "I am calling func in MyModule"; |
Please save the file as “main. pl” at C: \myPerl, and run it.
Output:
I am MyModule . pm
I am called by main . pl
I am main . pl
I am calling func in MyModule
Explanation:
‘require "C: /myPerl/MyModule. pm";’ imports a module.
‘MyModule:: func();’ calls func() in MyModule. pm.
Appendix
Perl Q & A
Questions :
Please fill in the correct answers.
01.
print "Hello! "; # single-line comment
= fill in
multi-line comment
multi-line comment
multi-line comment
=cut
A. block B. comment C. module D. pod
02.
fill in constant MON => "Monday"; # define a constant
fill in constant SUN => "Sunday";
print MON . "\n";
print SUN . "\n";
A. public B. private C. use D. dim
03.
fill in score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent');
print "$score{'60'}\n";
print "$score{'85'}\n";
print "$score{'100'}\n";
A. $ B. % C. @ C. &
04.
fill in (boolean_expression){
execute when boolean_expression returns false
}
A. except B. if not C. unless D. if
05.
localtime() # returns a local time
fill in () # returns a Greenwich time
time() # returns the seconds accumulated since 1/1/1970
A. Greenwich B. GreenwichTime C. gntime D. gmtime
06.
“open(DATA, ‘ +>> ’, ‘myfile. txt’) or die $! ;” means
A. open the “myfile. txt” in append mode.
B. open the “myfile. txt” in read-only mode.
C. open the “myfile. txt” in write-only mode.
D. open the “myfile. txt” in read & write mode.
07.
die “ error message ”, fill in ;
show error message from Perl
A. $_ B. $! C. $$ D. $*
08.
fill in MyClass;
create a class
A. class B. new C. create D. package
09.
fill in "Here"; # define a Here Document
……
Here
A. <= B. => C. << D. >>
10.
Which following statement can create an array?
A. &arrayName = [val1, val2, val3];
B. @arrayName = [val1, val2, val3];
C. &arrayName = (val1, val2, val3);
D. @arrayName = (val1, val2, val3);
11.
Which following statement can create a hash?
A. &hash = ('key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3',...);
B. %hash = ('key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3',...);
C. &hash = ['key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3',...];
D. %hash = ['key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3',...];
12.
fill in (condition){
code;
}
The loop is executed when the condition is false, and exits the loop when the condition is true .
A. until B. switch C. while D. do
13.
sub subName{
code fill in ; # accepts all come-in parameters
}
A. &_ B. $_ C. %_ D. @_
14.
my $f = 'C: \myPerl\myfile. txt'; # the path & file to read
open(DATA, '<', $f) or die $! ;
while(<DATA>){
print fill in ; # read all contents from myfile . txt
}
print "\nRead a file successfully! ";
close(DATA); # close the file
A. &_ B. $_ C. %_ D. @_
15.
“sysopen(DATA, "myfile. txt", O_EXCL);” means
A. open a file “myfile. txt”, for read only.
B. open a file “myfile. txt”, for writing only.
C. open a file “myfile. txt”, for append only.
D. open a file “myfile. txt”, check whether the file exists.
16.
The syntax of the inheritance is as follows:
package ChildClass; # create a child class
our fill in = ParentClass; # inherit a parent class
A. @ASI B. @IAS C. @ISA D. @SIA
17.
$score = 100; # $score is a variable
print " $score \n" ; # using double quotes
print '$score \n'; # using single quotes
What is the outup?
A. 100
B. 0
C. nothing
D. $score \n
18.
$myStr = "Hello My Friends"; # create a string
@arr = split (' ', $myStr); # convert to array
$str = fill in ('**', @arr); # convert to string
print "$arr[0] $arr[1] $arr[2] \n";
print "$str\n";
A. convert B. join C. string D. str
19.
%score = ('60'=>'passed', '85'=>'ok', '100'=>'excellent');
@arr = fill in %score; # get all element values of the hash
print "$arr[0]\n";
print "$arr[1]\n";
print "$arr[2]\n";
A. values B. elements C. hash D. %
20.
$num = 10;
while($num < 18){
if($num == 15){ fill in ; } # exit the loop block, end the loop
$num++;
print "$num ";
}
A. first B. exit C. break D. last
21.
$var = "Public String" ; # define a public variable
sub show{
fill in $var = "Private String" ; # define a private variable
print "$var\n"; # print private variable
}
print "$var\n"; # print public variable
show();
A. private B. priv C. my D. state
22.
my $file = 'C: \myPerl\ourfile. txt';
fill in ($file) ; # remove the file
print "Remove a file successfully! ";
A. remove B. delete C. eradicate D. unlink
23.
while(<DATA>){
print $_;
}
fill in # make the following comments shown
=pod
=head1
This is a pod document, which is used as a Perl comment.
=head2
Perl usually ignores the comment, but now I will be shown.
=cut
I am a Perl comment
This comment will be shown
A. __PACKAGE__
B. __DATA__
C. __FILE__
D. __COMMENT__
24.
fill in "C:/myPerl/MyModule.pm"; # import the module
MyModule::func(); # call the function in the module
print "I am main. pl\n";
print "I am calling func in MyModule";
A. import B. include C. reference D. require
Perl source code download link:
https://forms.aweber.com/form/04/1810519104.htm
Answers :
01 . D | 09 . C | 17 . D |
02 . C. | 10 . D | 18 . B |
03 . B | 11 . B | 19 . A |
04 . C | 12 . A | 20 . D |
05 . D | 13 . D | 21 . C |
06 . A | 14 . B | 22 . D |
07 . B | 15 . D | 23 . B |
08 . D | 16 . C | 24 . D |
Source Code Download
Perl Source Code Download Link:
https://forms.aweber.com/form/04/1810519104.htm
Source Code
Download
PowerShell Source Code Download Link:
https://forms . aweber . com/form/97/1907095997 . htm
Node.js Source code download link:
https : //forms . aweber . com/form/12/162246712 . htm
Django Source code download link:
https : //forms . aweber . com/form/31/448508031 . htm
Scala Source Code Download Link:
https : //forms . aweber . com/form/76/1081568876 . htm
Swift Source code download link:
https : //forms . aweber . com/form/22/1538006522 . htm
Perl source code download link:
https://forms.aweber.com/form/04/1810519104.htm
Table of Contents
Hour 1 Introduction
Hour 1 Introduction
Hour 2 Basics
Hour 2 Basics
Hour 3 Operators
Hour 3 Operators
Hour 4 Statement
Hour 4 Statement
Hour 5 Function
Hour 5 Function
Hour 6 String
Hour 6 String
Hour 7 Object
Hour 7 Object
Hour 8 Pipeline
Hour 8 Pipeline
Appendix 1
Appendix 2
Source Code Download
Hour 1 Introduction
Hour 1 Introduction
Hour 2 Basics
Hour 2 Basics
Hour 3 Event
Hour 3 Event
Hour 4 Write/Read
Hour 4 Write/Read
Hour 5 Stream
Hour 5 Stream
Hour 6 File
Hour 6 File
Hour 7 Operations
Hour 7 Operations
Hour 8 Modules
Hour 8 Modules
Appendix
Source Code Download
Hour 1 Introduction
Hour 1 Introduction
Hour 2 Basics
Hour 2 Basics
Hour 3 Django Tags
Hour 3 Django Tags
Hour 4 Models
Hour 4 Models
Hour 5 Form/Method
Hour 5 Form/Method
Hour 6 Administration Tool
Hour 6 Administration Tool
Appendix 1
Python Basic
Appendix 2
Texts & Answers
Source Code Download
Hour 1 Introduction
Hour 1 Introduction
Hour 2 Basics
Hour 2 Basics
Hour 3 Operators
Hour 3 Operators
Hour 4 Statement
Hour 4 Statement
Hour 5 Methods
Hour 5 Methods
Hour 6 Arrays
Hour 6 Arrays
Hour 7 Collection
Hour 7 Collection
Hour 8 Class/Object
Hour 8 Class/Object
Appendix 1
Appendix 2
Source Code Download
Hour 1 Introduction
Hour 1 Introduction
Hour 2 Basics
Hour 2 Basics
Hour 3 Operators
Hour 3 Operators
Hour 4 Statements
Hour 4 Statements
Hour 5 String/Array
Hour 5 String/Array
Hour 6 Collection
Hour 6 Collection
Hour 7 Class/Object
Hour 7 Class/Object
Hour 8 Operations
Hour 8 Operations
Q & A
Source Code Download
Hour 1 Introduction
Hour 1 Introduction
Hour 2 Basics
Hour 2 Basics
Hour 3 Hash
Hour 3 Hash
Hour 4 Statement
Hour 4 Statement
Hour 5 Operations
Hour 5 Operations
Hour 6 Files
Hour 6 Files
Hour 7 Functions
Hour 7 Functions
Hour 8 Class/Object
Hour 8 Class/Object
Appendix
Perl Q & A
Source Code Download