SCALA BASICS
AND
PYTHON CODING EXAMPLES
PROGRAMMING FOR BEGINNERS
J KING
ASCII VALUE OF CHARACTER IN PYTHON
PYTHON PROGRAM TO CHECK THE GIVEN YEAR IS A LEAP YEAR OR NOT
PYTHON | SOME OF THE EXAMPLES OF SIMPLE IF ELSE
CALCULATE DISCOUNT BASED ON THE SALE AMOUNT IN PYTHON
DESIGN A SIMPLE CALCULATOR USING IF ELIF IN PYTHON
BMI (BODY MASS INDEX) CALCULATOR IN PYTHON
WRITE FUNCTIONS TO FIND SQUARE AND CUBE OF A GIVEN NUMBER IN PYTHON
CONVERT TEMPERATURE IN PYTHON PROGRAM
PYTHON PROGRAM TO CONVERT METERS INTO YARDS
PYTHON PROGRAM TO CREATE MATRIX USING NUMPY
PYTHON CODE TO PRINT TODAY'S YEAR, MONTH AND DAY
PROGRAM FOR ADDING, REMOVING ELEMENTS IN THE LIST
PROGRAM TO FIND THE DIFFERENCES OF TWO LISTS
PROGRAM TO REMOVE DUPLICATE ELEMENTS FROM THE LIST
CREATE THREE LISTS OF NUMBERS, THEIR SQUARES AND CUBES
ITERATE A LIST IN REVERSE ORDER
PRINT LIST AFTER REMOVING EVEN NUMBERS
DECLARE, ASSIGN AND PRINT THE STRING (DIFFERENT WAYS)
ACCESS AND PRINT CHARACTERS FROM THE STRING
PROGRAM TO PRINT WORDS WITH THEIR LENGTH OF A STRING
CREATE MULTIPLE COPIES OF A STRING BY USING MULTIPLICATION OPERATOR
OUR OTHER PUBLISHING
PYTHON BASICS AND PYTHON CODING EXAMPLES
PYTHON CODING AND C PROGRAMMING EXAMPLES
ANDROID BASICS AND PYTHON CODING EXAMPLES
C# BASICS AND PYTHON CODING EXAMPLES
PYTHON BASICS AND SCALA CODING EXAMPLES
JAVA BASICS AND PYTHON CODING EXAMPLES
PYTHON BASICS AND C# CODING EXAMPLES
ANDROID BASICS AND JAVA CODING EXAMPLES
C# BASICS AND C# CODING EXAMPLES
HTML AND JAVASCRIPT CODING EXAMPLES
SCALA
BASICS
PROGRAMMING FOR BEGINNERS
J KING
Scala is a programming language with a general purpose, high-level, multi-paradigm. It is a pure object-oriented programming language which also supports the approach to functional programming. There is no primitive data definition, since everything in Scala is object. Scala programs can convert to bytecodes, and they can run on JVM(Java Virtual Machine). Scala stands for Scalable language. It also provides runtimes for the Javascript. Java and some other programming languages like Lisp, Haskell, Pizza etc are highly influenced by Scala.
Scala Evolution:
Martin Odersky, teacher of programming methods at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, and a German computer scientist, designed Scala. Martin Odersky is also the co-creator of the Funnel programming language for javac (Java Compiler), Universal Java and EPFL. He began designing the Scala back in 2001. Scala was first released publicly as their first version on the Java platform in 2004. Scala was amended for the .Net Framework in June 2004. Later, second version, i.e. (v2.0) was followed in 2006. Scala was awarded as the winner of ScriptBowl contest at the 2012 JavaOne conference. As of June 2012, Scala has not supported the. Net Project. Scala's new update is 2.12.6 which was announced on 27-Apr-2018.
WHY SCALA
Simple to Start: Scala is a language of high level so it is similar to other common programming languages such as Java, C, C++. It therefore is very convenient for someone to learn Scala. Scala is easier for the Java programmers to understand.
Incorporates the best features: Scala incorporates the features of numerous languages such as C, C++, Java etc. making it more functional, versatile and efficient.
Closer integration with Java: The Scala's source code is structured to allow its compiler to understand the Java classes. The compiler can also use modules, Java libraries, and tools and so on. The Scala programs can run on JVM after compilation.
Web-Based & Desktop Application Development: Compiling to JavaScript provides support for web applications. Similarly it can be translated to JVM bytecode for desktop applications.
Big Companies : Many of the big companies like Apple, Facebook, Amazon , Google etc. switch most of their codes from several other languages to Scala. It is very flexible, and can be used in backend operations
As the Scala is syntactically almost close to other commonly used languages, codeing and learning in Scala is simpler. In Scala, programs can be written in any of the widely used text editors, such as Notepad++, gedit etc. or on any of the text editors. Save the file after writing the program with the .sc or.scala extension.
For Windows & Linux: You must have Java Development Kit(JDK) 1.8 or greater installed on your system before installing the Scala on Windows or Linux. As Scala always runs on or above Java 1.8.
We'll discuss how to run the Scala programs on online IDE's in this article.
Example: Hello Geeks has a easy application to print! Using object-focused approach.
// Scala program to print Hello, Geeks!
// by using object-oriented approach
// creating object
object Geeks {
// Main method
def main(args: Array[String])
{
// prints Hello, Geeks!
println("Hello, Geeks!")
}
}
Output:
Hello, Geeks!
Some factors, ranging from syntax details to component abstraction construct, effect the scalability of a language. The key feature of scala making it flexible is that it is a mix of both object-oriented programming as well as functional. This has strong support for all the programming structures such as high-order functions, optimized tail-call, immutable properties, matching patterns, polymorphism, abstraction, inheritance etc. Scala also includes its own interpreter that can be used to directly execute instructions, without previous compilation. Another main aspect is the parallel library of collections intended to help developers address concurrent programming trends.
Another function is as follows:
Scala is tight. It offers better support for backend activities. Scala programs, similar to Java, tend to be short up to a factor of 10. It stops code turning up over and over again to get any outcome that would strain Java program
Example: In Java, a class with constructor:
class Geek
{
// data members of the class.
String name;
int id;
// contructor would initialized data members
// with the values of passed arguments while
// object of that class created.
Geek(String name, int id)
{
this.name = name;
this.id = id;
}
}
In Scala it’ll be:
class Geek(name: String, id: Int) {}
Example : find the first uppercase letter In Java
// Function to find string which has
// first character of each word.
static char first(String str)
{
for (int i = 0; i < str.length(); i++)
if (Character.isUpperCase(str.charAt(i)))
return str.charAt(i);
return 0;
}
In scala it will be
val first = str.exists(_.isUpperCase)
Java is a general-purpose, concurrent computer programming language, class-based, object-oriented, etc. Java applications are compiled into bytecodes that can run on any virtual Java machine (JVM), independent of the architecture of the program.
Scala is a programming language with a general purpose, high-level, multi-paradigm. It is a pure object-oriented programming language which also follows the approach to functional programming. There is no primitive data definition, since everything in Scala is an entity. It is intended to express the general patterns of programming in a streamlined, succinct, and type-safe way.
SCALA | JAVA |
Scala is a mixture of both object oriented and functional programming. | Java is a general purpose object oriented language. |
Scala is less readable due to nested code. | Java is more readable. |
The process of compiling source code into byte code is slow. | The process of compiling source code into byte code is fast. |
Scala support operator overloading. | Java does not support operator overloading. |
Scala supports lazy evaluation. | Java does not support lazy evaluation. |
Scala is not backward compatible. | Java is backward compatible means the code written in the new version can also run in older version without any error. |
Any method or function present is Scala are treated like they are variable. | Java treats functions as an object. |
In Scala, the code is written in compact form. | In Java, the code is written in long form. |
Scala variables are by default immutable type. | Java variables are by default mutable type. |
Scala treated everything as an instance of the class and it is more object oriented language as compare to Java. | Java is less object oriented as compare to Scala due to presence of primitives and statics. |
Scala does not contain static keyword. | Java contains static keyword. |
In Scala, all the operations on entities are done by using method calls. | In Java, operators are treated differently and is not done with method call. |
Python is a dynamic programming language of high level, interpreted and general purpose which focuses on readability of code. Python includes fewer programming, offers new libraries, fast prototyping and a range of new features.
Scala is a high level and object-oriented programming language. The Scala source code is built in such a way that the Java classes are interpreted by its compiler.
PYTHON | SCALA |
Python is a dynamically typed language. | Scala is a statically typed language. |
We don’t need to specify objects in Python because it is a dynamically typed Object Oriented Programming language. | We need to specify the type of variables and objects in Scala because Scala is statically typed Object Oriented Programming language. |
Python is easy to learn and use. | Scala is less difficult to learn than Python. |
An extra work is created for the interpreter at the runtime. | No extra work is created in Scala and thus it is 10 times faster than Python. |
The data types are decided by it during runtime. | This is not the case in Scala that is why while dealing with large data process, Scala should be considered instead of Python |
Python’s Community is huge compared to Scala. | Scala also has good community support. But still, it is lesser than Python. |
Python supports heavyweight process forking and doesn’t support proper multithreading. | Scala has reactive cores and a list of asynchronous libraries and hence Scala is a better choice for implementing concurrency. |
Its methodologies are much complex in Python as it is dynamic programming language. | Testing is much better in scala because it is a statically typed language. |
It is popular because of its English-like syntax. | For scalable and concurrent systems, Scala play much bigger. |
Python is easy for the developers to write code in it. | Scala is less difficult to learn than Python and it is difficult to write code in Scala. |
There is an interface in Python to many OS system calls and libraries. It has many interpreters | It is basically a compiled language and all source codes are compiled before execution |
Python language is highly prone to bugs whenever there is any change to the existing code. | No such problem is seen in Scala. |
Python has libraries for Machine learning and proper data science tools and Natural Language Processing (NLP). | Where as Scala has no such tools. |
Python can be used for small-scale projects. | Scala can be used for large-scale projects. |
It doesn’t provide scalable feature support. | It provides scalable feature support. |
Keywords or Reserved words are the words used by any internal method or represent any predefined actions in a language. Therefore, it is not permitted to use such terms as variable names or objects. This may result in an error in compile-time.
EXAMPLE
// Scala Program to illustrate the keywords
// Here object, def, and var are valid keywords
object Main
{
def main(args: Array[String])
{
var p = 10
var q = 30
var sum = p + q
println("The sum of p and q is :"+sum);
}
}
Output:
The sum of p and q is :40
SCALA KEYWORDS
EXAMPLE
// Scala Program to illustrate the keywords
// Here class keyword is used to create a new class
// def keyword is used to create Function
// var keyword is used to create a variable
class GFG
{
var name = "Tamsel"
var age = 20
var branch = "Computer Science"
def show()
{
println("Hello! my name is " + name + "and my age is"+age);
println("My branch name is " + branch);
}
}
// object keyword is used to define
// an object new keyword is used to
// create an object of the given class
object Main
{
def main(args: Array[String])
{
var ob = new GFG();
ob.show();
}
}
Output:
Hello! my name is Tamseland my age is20
My branch name is Computer Science
Identifiers are used for identification purposes in programming languages. In Scala, a class name, method name, variable name or object name can be used.
EXAMPLE
class GFG{
var a: Int = 20
}
object Main {
def main(args: Array[String]) {
var ob = new GFG();
}
}
In above example
Idenfiers are there
There are some rules to define a valid Scala ID. These rules should be observed, otherwise a compile-time error will occur.
EXAMPLE
// Scala program to demonstrate
// Identifiers
object Main
{
// Main method
def main(args: Array[String])
{
// Valid Identifiers
var `name` = "Siya";
var _age = 20;
var Branch = "Computer Science";
println("Name:" +`name`);
println("Age:" +_age);
println("Branch:" +Branch);
}
}
Output:
Name:Siya
Age:20
Branch:Computer Science
Types of Scala identifiers
Alphanumeric Identifiers: These are those identifiers starting from a letter (capital or letter) or an underscore followed by letters, digits, or underscores.
EXAMPLE FOR Alphanumaeric Identifiers
_GFG, geeks123, _1_Gee_23, Geeks
EXAMPLE
// Scala program to demonstrate
// Alphanumeric Identifiers
object Main
{
// Main method
def main(args: Array[String])
{
// main, _name1, and Tuto_rial are
// valid alphanumeric identifiers
var _name1: String = "ScalaforGeeks"
var Tuto_rial: String = "Scala"
println(_name1);
println(Tuto_rial);
}
}
Output:
ScalaforGeeks
Scala
Operator Identifiers : those identifiers that include one or more operator characters such as +,:,? , ~, # or so on.
// Scala program to demonstrate
// Operator Identifiers
object Main
{
// Main method
def main(args: Array[String])
{
// main, x, y, and sum are valid
// alphanumeric identifiers
var x:Int = 20;
var y:Int = 10;
// Here, + is a operator identifer
// which is used to add two values
var sum = x + y;
println("Display the result of + identifier:");
println(sum);
}
}
Output:
Display the result of + identifier:
30
Mixed Identifiers: These are those that contain alphanumeric and operator-identified identifiers.
EXAMPLE
// Scala program to demonstrate
// Mixed Identifiers
object Main
{
// Main method
def main(args: Array[String])
{
// num_+ is a valid mixed identifier
var num_+ = 20;
println("Display the result of mixed identifier:");
println(num_+);
}
}
Literal identification: These are identifiers in which an arbitrary string with back ticks ('...') is attached.
EXAMPLE
// Scala program to demonstrate
// Literal Identifiers
object Main
{
// Main method
def main(args: Array[String])
{
// `name` and `age` are valid literal identifiers
var `name` = "Siya"
var `age` = 20
println("Name:" +`name`);
println("Age:" +`age`);
}
}
Output:
Name:Siya
Age:20
A data type is a data categorization that tells the compiler what type of value a variable has. For instance, if a variable has an int data type, it has a numeric value. In Scala, the data types in terms of length and storage are similar to Java. Data types are treated with the same objects in Scala so that the first letter of the data type is in a capital letter.
The data types available in Scala as shown in the table below:
DATATYPE | DEFAULT VALUE | DESCRIPTION |
Boolean | False | True or False |
Byte | 0 | 8 bit signed value. Range:-128 to 127 |
Short | 0 | 16 bit signed value. Range:-2 15 to 2 15 -1 |
Char | ‘\u000’ | 16 bit unsigned unicode character. Range:0 to 2 16 -1 |
Int | 0 | 32 bit signed value. Range:-2 31 to 2 31 -1 |
Long | 0L | 64 bit signed value. Range:-2 63 to 2 63 -1 |
Float | 0.0F | 32 bit IEEE 754 single-Precision float |
Double | 0.0D | 64 bit IEEE 754 double-Precision float |
String | null | A sequence of character |
Unit | – | Coinsides to no value. |
Nothing | – | It is a subtype of every other type and it contains no value. |
Any | – | It is a supertype of all other types |
AnyVal | – | It serve as value types. |
AnyRef | – | It serves as reference types. |
EXAMPLE
// Scala program to illustrate Datatypes
object Test
{
def main(args: Array[String])
{
var a: Boolean = true
var a1: Byte = 126
var a2: Float = 2.45673f
var a3: Int = 3
var a4: Short = 45
var a5: Double = 2.93846523
var a6: Char = 'A'
if (a == true)
{
println("boolean:scalaforgeeks")
}
println("byte:" + a1)
println("float:" + a2)
println("integer:" + a3)
println("short:" + a4)
println("double:" + a5)
println("char:" + a6)
}
}
Output:
boolean:scalaforgeeks
byte:126
float:2.45673
integer:3
short:45
double:2.93846523
char:A
Variables are simply the location for the storage. Each variable is known by name, and some known and unknown piece of information known as value is stored.
A data type is responsible for allocating memory to the variable, so one can define a variable by its data type and name.
There are two types of variable within Scala:
Let's get detailed understanding of each of these variables.
Mutable Variable:
These variables are those variables that allow us to change a value after a variable is declared.
The var keyword is used to define mutable variables.
The first letter of type of data should be in capital letter because it is treated as objects in the Scala data type.
Syntax:
var Variable_name: Data_type = "value";
For Example:
var name: String = "scalaforgeeks";
Immutable Variable:
These variables are the variables that do not allow you to change a value after a variable has been declared.
Immutable variables are defined using the val keyword.
The first letter should be in capital letter because it is treated as objects within the Scala data type.
Syntax:
val Variable_name: Data_type = "value";
For Example:
val name: String = "scalaforgeeks";
In Scala Rules for naming variable
The name of the variable can include letter, digit, and two special characters Underscore (_) and Dollar($).
White space in name variable is not allowed.
The name of the variable must not contain the word reserved or the keyword.
An alphabet should be the starting letter for the variable name.
Scala variable has three types of scope.
Fields
We can access such variables from any method in the object & from outside the object if we declare them with the correct access modifiers.
A field may be mutable or immutable, they may define them using 'var' or 'val.'
EXAMPLE
// Scala program of field
// scope for Scala variable
// class created with field
// variables x and y.
class disp
{
var x = 10.3f
var y = 7f
def windet()
{
println("Value of x : "+x)
}
println("Value of y : "+y);
}
object Example
{
// Main method
def main(args:Array[String])
{
val Example = new disp()
Example.windet()
}
}
Output:
Value of y : 7.0
Value of x : 10.3
Method Parameters
When we call it we use these variables if we want to pass a value inside the method.
If there is a reference to the object from outside the method, they can be accessed both inside the method and outside.
Those variables are always mutable Using the keyword 'val.'
EXAMPLE
// Scala program of Method
// scope for Scala variable
// class created with Method
// variables s1 and s2.
class rect
{
def mult(s1: Int, s2: Int)
{
var result = s1 * s2
println("Area is: " + result);
}
}
object Area
{
// Main method
def main(args:Array[String])
{
val su = new rect()
su.mult(5, 10)
}
}
Output:
Area is: 50
Local Variables
These variables are declared within a method and are only accessible within it.
These variables both mutable and immutable using keywords 'var' & 'val.'
EXAMPLE
// Scala program of Method
// scope for Scala variable
// class created with Local
// variables s1 and s2.
class Area
{
def mult()
{
var(s1, s2) = (3, 80);
var s = s1 * s2;
println("Area is: " + s)
}
}
object Test
{
// Main method
def main(args:Array[String])
{
val ex = new Area()
ex.mult()
}
}
Output:
Area is: 240
The Scala Range can be defined as an organized series of uniformly divided integers.
It is helpful to provide more strength with fewer methods so operations done here are very fast.
The ranges can be used for iteration loops.
It can be obtained through certain predefined methods, namely until, by, and to.
Three constants are defined, i.e. (start, end, and increment value).
Syntax:
val range = Range(x, y, z)
EXAMPLE
// Scala program for Ranges
// Creating object
object GFG
{
// Main method
def main(args: Array[String])
{
// applying range method
val x = Range(3, 10, 1)
// Displays given range
println(x)
// Displays starting value
// of the given range
println(x(0))
// Displays last value
// of the given range
println(x.last)
}
}
OUTPUT
Range(3, 4, 5, 6, 7, 8, 9)
3
9
Ranges - Operations performed
If we want a range that includes the end value, we can also use the method ‘ until’ , both methods (until and Range) are used for the same purpose.
EXAMPLE
// Scala program for Ranges
// Creating object
object GFG
{
// Main method
def main(args: Array[String])
{
// applying range method
val x = Range(0, 10, 2)
// applying until method
val y = 0 until 10 by 2
// Displays true if both the
// methods are equivalent
println(x == y)
}
}
Output:
True
The Range ‘ upper bound’ may be made inclusive.
EXAMPLE
// Scala program for Ranges
// Creating object
object GFG
{
// Main method
def main(args: Array[String])
{
// applying range method
val x = Range(1, 8)
// Including upper bound
val y = x.inclusive
// Displays all the elements
// of the range
println(y)
}
}
Output:
Range(1, 2, 3, 4, 5, 6, 7, 8)
Inclusive is used here to include the upper bound of the Range.
If need range of integer values,
use the t o method (both to and inclusive Ranges are equivalent).
EXAMPLE
// Scala program for Ranges
// Creating object
object GFG
{
// Main method
def main(args: Array[String])
{
// applying range method
val x = Range(1, 8)
// Including upper bound
val y = x.inclusive
// applying 'to' method
val z = 1 to 8
// Displays true if both the
// methods are equal
println(y == z)
}
}
Output:
True
(if, if-else, Nested if-else, if-else if)
programming decision-making is similar to real-life decision-making.
When the given condition is met, a piece of code is executed in decision making.
These are also sometimes referred to as the Control Flow statements.
Scala uses control statements to control the program's execution flow according to certain conditions.
These are used to advance and branch the execution flow, based on changes to a program's state.
The conditional statements
if
if-else
Nested if-else
if-else if ladder
if statement
"If" statements are the simplest statements of decision making amongst all statements of decision making.
In this statement, the code block will only be executed when the given condition is true and, if the condition is false then that code block will not be executed.
Syntax:
if(condition)
{
// Code to be executed
}
FLOW CHART
EXAMPLE
// Scala program to illustrate the if statement
object Test {
// Main Method
def main(args: Array[String]) {
// taking a variable
var a: Int = 50
if (a > 30)
{
// This statement will execute as a > 30
println("ScalaforGeeks")
}
}
}
Output:
ScalaforGeeks
if-else statement
The if statement alone tells us that it will execute a block of statements if a condition is true and if the condition is false it won't.
But what if we want to do something different, if the condition is wrong.
Here comes else statement.
When the condition is wrong, we can use the else statement with if statement to execute a block of code.
Syntax:
if (condition)
{
// Executes this block if
// condition is true
}
else
{
// Executes this block if
// condition is false
}
FLOW CHART
EXAMPLE
// Scala program to illustrate the if-else statement
object Test {
// Main Method
def main(args: Array[String]) {
// taking a variable
var a: Int = 650
if (a > 698)
{
// This statement will not
// execute as a > 698 is false
println("ScalaorGeeks")
}
else
{
// This statement will execute
println("Sudo Placement")
}
}
}
OUTPUT
Sudo Placement
Nested if-else statement
A nested if an if statement is the target of a different if-else statement.
Nested if-else statement refers to an if-else statement within an if statement or in a else statement.
Scala lets us nest if-else statements into if-else statements.
Syntax:
// Executes when condition_1 is true
if (condition_1)
{
if (condition_2)
{
// Executes when condition_2 is true
}
else
{
// Executes when condition_2 is false
}
}
// Executes when condition_1 is false
else
{
if (condition_3)
{
// Executes when condition_3 is true
}
else
{
// Executes when condition_3 is false
}
}
FLOW CHART
EXAMPLE
// Scala program to illustrate
// the nested if-else statement
object Test {
// Main Method
def main(args: Array[String]) {
// taking three variables
var a: Int = 70
var b: Int = 40
var c: Int = 100
// condition_1
if (a > b)
{
// condition_2
if(a > c)
{
println("a is largest");
}
else
{
println("c is largest")
}
}
else
{
// condition_3
if(b > c)
{
println("b is largest")
}
else
{
println("c is largest")
}
}
}
}
Output:
c is largest
if-else if Ladder
Here a user can choose between multiple options.
The if declarations are executed from top down.
As soon as one of the conditions controlling the if is true;
Then the statement associated with that ‘if’ it is executed, and it bypasses the rest of the ladder.
If none of the conditions are true, then the final other declaration will be executed.
Syntax:
if(condition_1)
{
// this block will execute
// when condition_1 is true
}
else if(condition_2)
{
// this block will execute
// when condition2 is true
}
.
.
.
else
{
// this block will execute when none
// of the condition is true
}
FLOW CHART
EXAMPLE
// Scala program to illustrate
// the if-else-if ladder
object Test {
// Main Method
def main(args: Array[String]) {
// Taking a variable
var value: Int = 50
if (value == 20)
{
// print "value is 20" when
// above condition is true
println("Value is 20")
}
else if (value == 25)
{
// print "value is 25" when
// above condition is true
println("Value is 25")
}
else if (value == 40)
{
// print "value is 40" when
// above condition is true
println("Value is 40")
}
else
{
// print "No Match Found"
// when all condition is false
println("No Match Found")
}
}
}
OUTPUT
No Match Found
Looping into programming languages is a feature that facilitates repeatedly executing a set of instructions / functions while some condition evaluates to true.
Loops make task simpler for the programmers.
Scala provides the various loop types for dealing with the condition-based situation in the program.
In Scala the loops are:
WHILE LOOP
A while loop usually takes a condition in parenthesis.
If the condition is True, the code will be executed within the while loop 's body.
A while loop is used when we don't know how many times we want the loop to be executed but we do know the loop termination condition.
It is also known as a loop controlled by entry, as the condition is checked before the loop is executed.
The while loop can be considered a repeat in if statement.
Syntax:
while (condition)
{
// Code to be executed
}
FLOW CHART
EXAMPLE
// Scala program to illustrate while loop
object whileLoopDemo
{
// Main method
def main(args: Array[String])
{
var x = 1;
// Exit when x becomes greater than 4
while (x <= 4)
{
println("Value of x: " + x);
// Increment the value of x for
// next iteration
x = x + 1;
}
}
}
Output:
Value of x: 1
Value of x: 2
Value of x: 3
Value of x: 4
do..while Loop
A do .. while a loop is nearly the same as a ‘while loop’.
The only difference is that do .. when loop is running at least once.
After first execution the condition is checked. When we want the loop to run at least once, we use a do .. while loop.
It is also known as the exit loop controlled, as the condition is checked after the loop has been executed.
Syntax:
do {
// statements to be Executed
} while(condition);
FLOW CHART
EXAMPLE
// Scala program to illustrate do..while loop
object dowhileLoopDemo
{
// Main method
def main(args: Array[String])
{
var a = 10;
// using do..while loop
do
{
print(a + " ");
a = a - 1;
}while(a > 0);
}
}
Output:
10 9 8 7 6 5 4 3 2 1
For loop
For Loop - similar functionality as while loop
But different syntax.
It's basically a repetition control structure that allows the programmer to write a loop that has to execute a certain number of times.
EXAMPLE
// Scala program to illustrate for loop
object forloopDemo {
// Main Method
def main(args: Array[String]) {
var y = 0;
// for loop execution with range
for(y <- 1 to 7)
{
println("Value of y is: " + y);
}
}
}
Output:
Value of y is: 1
Value of y is: 2
Value of y is: 3
Value of y is: 4
Value of y is: 5
Value of y is: 6
Value of y is: 7
Nested Loops
The loop inside a loop which contains a loop is known as the nested loop.
It may contain a while loop inside a while loop or
The for loop inside a for loop
A while loop may also contain the for loop and vice-versa.
EXAMPLE
// Scala program to illustrate nested loop
object nestedLoopDemo {
// Main Method
def main(args: Array[String]) {
var a = 5;
var b = 0;
// outer while loop
while (a < 7)
{
b = 0;
// inner while loop
while (b < 7)
{
// printing the values of a and b
println("Value of a = " +a, " b = "+b);
b = b + 1;
}
// new line
println()
// incrementing the value of a
a = a + 1;
// dispalying the updated value of a
println("Value of a Become: "+a);
// new line
println()
}
}
}
OUTPUT
(Value of a = 5, b = 0)
(Value of a = 5, b = 1)
(Value of a = 5, b = 2)
(Value of a = 5, b = 3)
(Value of a = 5, b = 4)
(Value of a = 5, b = 5)
(Value of a = 5, b = 6)
Value of a Become: 6
(Value of a = 6, b = 0)
(Value of a = 6, b = 1)
(Value of a = 6, b = 2)
(Value of a = 6, b = 3)
(Value of a = 6, b = 4)
(Value of a = 6, b = 5)
(Value of a = 6, b = 6)
Value of a Become: 7
PYTHON CODING EXAMPLES
PROGRAMMING FOR BEGINNERS
J KING
ASCII value of character in Python
In python, we use the function ord() to obtain an ASCII code of a character. Ord() accepts a character, returns its ASCII value.
Syntax:
ord(character);
Example:
Input:
char_var = 'A'
Function call:
ord(char_var)
Output:
65
Code to find ASCII value of a character
python program to print ASCII
value of a given character
Assigning character to a variable
char_var = 'A'
printing ASCII code
print("ASCII value of " + char_var + " is = ", ord(char_var))
char_var = 'x'
printing ASCII code
print("ASCII value of " + char_var + " is = ", ord(char_var))
char_var = '9'
printing ASCII code
print("ASCII value of " + char_var + " is = ", ord(char_var))
Output
ASCII value of A is = 65
ASCII value of x is = 120
ASCII value of 9 is = 57
We use the following formula to calculate simple interest,
(P * R * T) / 100
Where,
Example:
Input:
p = 250000
r = 36
t = 1
formula
si = (p*r*t)/100
print(si)
Output:
90000
Python program for simple interest
Python program to find simple interest
p = float(input("Enter the principle amount : "))
r = float(input("Enter the rate of interest : "))
t = float(input("Enter the time in the years: "))
calculating simple interest
si = (p*r*t)/100
printing the values
print("Principle amount: ", p)
print("Interest rate : ", r)
print("Time in years : ", t)
print("Simple Interest : ", si)
Output
First run:
Enter the principle amount : 10000
Enter the rate of interest : 3.5
Enter the time in the years: 1
Principle amount: 10000.0
Interest rate : 3.5
Time in years : 1.0
Simple Interest : 350.0
Second run:
Enter the principle amount : 250000
Enter the rate of interest : 36
Enter the time in the years: 1
Principle amount: 250000.0
Interest rate : 36.0
Time in years : 1.0
Simple Interest : 90000.0
We use the equation below to calculate compound interest
P(1 + R / 100) T
Where,
P – Principle amount
R – Rate of the interest, and
T – Time in the years
Example:
Input:
p = 250000
r = 36
t = 1
formula
ci = p * (pow((1 + r / 100), t))
print(ci)
Output:
339999.99999999994
Python program
Python program to find compound interest
p = float(input("Enter the principle amount : "))
r = float(input("Enter the rate of interest : "))
t = float(input("Enter the time in the years: "))
calculating compound interest
ci = p * (pow((1 + r / 100), t))
printing the values
print("Principle amount : ", p)
print("Interest rate : ", r)
print("Time in years : ", t)
print("compound Interest : ", ci)
Output
First run:
Enter the principle amount : 10000
Enter the rate of interest : 3.5
Enter the time in the years: 1
Principle amount : 10000.0
Interest rate : 3.5
Time in years : 1.0
compound Interest : 10350.0
Second run:
Enter the principle amount : 250000
Enter the rate of interest : 36
Enter the time in the years: 1
Principle amount : 250000.0
Interest rate : 36.0
Time in years : 1.0
compound Interest : 339999.99999999994
Python program to check the given year is a leap year or not
A leap year is a year that can be divided by 4, except for the century year (a year that ends with 00). A year of a century is a leap year if it is divisible by 400. Here, the user presents a year, and we will test if the year in question is a leap year or not. We can solve this problem in two ways first by using the calendar module, and second by simply checking the state of the leap year.
1) By using the calendar module
Initially we learn a little about the calendar module before we go to solve the problem. Calendar module is built into Python which provides us with various functions to solve the date, month and year related problem.
PROGRAM
importing the module
import calendar
input the year
year=int(input('Enter the value of year: '))
leap_year=calendar.isleap(year)
checking leap year
if leap_year: # to check condition
print('The given year is a leap year.')
else:
print('The given year is a non-leap year.')
Output
RUN 1:
Enter the value of year: 2020
The given year is a leap year.
RUN 2:
Enter the value of year: 2021
The given year is a non-leap year.
2) By simply checking method
As we know it is a leap year, or not, to test the year in question. So, we'll introduce the condition here and try to write the Python programme.
Program
input the year
y=int(input('Enter the value of year: '))
To check for non century year
if y%400==0 or y%4==0 and y%100!=0:
print('The given year is a leap year.')
else:
print('The given year is a non-leap year.')
Output
RUN 1:
Enter the value of year: 2020
The given year is a leap year.
RUN 2:
Enter the value of year: 2000
The given year is a leap year.
Python | Some of the examples of simple if else
Example1: Enter a number and check whether it is 10 or not
a=int(input("Enter A : "))
if a==10:
print("Equal to 10")
else:
print("Not Equal to 10")
Output
Enter A : 10
Equal to 10
Example2: Find which is largest of two numbers
a=int(input("Enter A: "))
b=int(input("Enter B: "))
if a>b:
g=a
else:
g=b
print("Greater = ",g)
Output
Enter A: 36
Enter B: 24
Greater = 36
Example3: Find which is largest of two numbers using single statement
a=int(input("Enter A: "))
b=int(input("Enter B: "))
c= a if a>b else b
print("Greater = ",c)
Output
Enter A: 24
Enter B: 36
Greater = 36
Calculate discount based on the sale amount in Python
The discount rates are:
Amount Discount
0-5000 5%
5000-15000 12%
15000-25000 20%
above 25000 30%
Program:
input sale amount
amt = int(input("Enter Sale Amount: "))
checking conditions and calculating discount
if(amt>0):
if amt<=5000:
disc = amt*0.05
elif amt<=15000:
disc=amt*0.12
elif amt<=25000:
disc=0.2 * amt
else:
disc=0.3 * amt
print("Discount : ",disc)
print("Net Pay : ",amt-disc)
else:
print("Invalid Amount")
Output
Enter Sale Amount: 30000
Discount : 9000.0
Net Pay : 21000.0
Design a simple calculator using if elif in Python
Given two numbers, and we will build a calculator-type program that will use Python to add, subtract, multiply and divide operations.
Example:
Message:
Calculator
1.Add
2.Substract
3.Multiply
4.Divide
Input:
Enter Choice(1-4): 3
Enter A:10
Enter B:20
Output:
Product = 200
Program
menus
print("Calculator")
print("1.Add")
print("2.Substract")
print("3.Multiply")
print("4.Divide")
input choice
ch=int(input("Enter Choice(1-4): "))
if ch==1:
a=int(input("Enter A:"))
b=int(input("Enter B:"))
c=a+b
print("Sum = ",c)
elif ch==2:
a=int(input("Enter A:"))
b=int(input("Enter B:"))
c=a-b
print("Difference = ",c)
elif ch==3:
a=int(input("Enter A:"))
b=int(input("Enter B:"))
c=a*b
print("Product = ",c)
elif ch==4:
a=int(input("Enter A:"))
b=int(input("Enter B:"))
c=a/b
print("Quotient = ",c)
else:
print("Invalid Choice")
Output
Calculator
1.Add
2.Substract
3.Multiply
4.Divide
Enter Choice(1-4): 3
Enter A:10
Enter B:20
Product = 200
BMI (Body Mass Index) calculator in Python
Example:
Input:
Height = 1.75
Weigth = 64
Output:
BMI is: 20.89 and you are: Healthy
Program
getting input from the user and assigning it to user
height = float(input("Enter height in meters: "))
weight = float(input("Enter weight in kg: "))
the formula for calculating bmi
bmi = weight/(height**2)
** is the power of operator i.e height*height in this case
print("Your BMI is: {0} and you are: ".format(bmi), end='')
#conditions
if (bmi < 16):
print("severely underweight")
elif (bmi >= 16 and bmi < 18.5):
print("underweight")
elif (bmi >= 18.5 and bmi < 25):
print("Healthy")
elif (bmi >= 25 and bmi < 30):
print("overweight")
elif (bmi >=30):
print("severely overweight")
Output
Enter height in meters: 1.75
Enter weight in kg: 64
You'r BMI is 28.8979s9183673468 and you are: Healthy
Write functions to find square and cube of a given number in Python
Example:
Input:
Enter an integer number: 6
Output:
Square of 6 is 36
Cube of 6 is 216
Function to get square:
def square (num):
return (num * num)
Function to get cube:
def cube (num):
return (num * num * num)
Program
python program to find square and cube
of a given number
User defind method to find square
def square (num):
return (num*num)
User defind method to find cube
def cube (num) :
return (num*num*num)
Main code
input a number
number = int (raw_input("Enter an integer number: "))
square and cube
print "square of {0} is {1}".format(number, square(number))
print "Cube of {0} is {1}".format(number, cube (number))
Output
Enter an integer number: 6
square of 6 is 36
Cube of 6 is 216
Of a bank account based on the transactions
Example:
Input:
Enter transactions: D 10000
Want to continue (Y for yes): Y
Enter transaction: W 5000
Want to continue (Y for yes): Y
Enter transaction: D 2000
Want to continue (Y for yes): Y
Enter transaction: W 100
Want to continue (Y for yes): N
Output:
Net amount: 6900
Program
computes net bank amount based on the input
"D" for deposit, "W" for withdrawal
define a variable for main amount
net_amount = 0
while True:
input the transaction
str = raw_input ("Enter transaction: ")
get the value type and amount to the list
seprated by space
transaction = str.split(" ")
get the value of transaction type and amount
in the separated variables
type = transaction [0]
amount = int (transaction [1])
if type=="D" or type=="d":
net_amount += amount
elif type=="W" or type=="w":
net_amount -= amount
else:
pass
#input choice
str = raw_input ("want to continue (Y for yes) : ")
if not (str[0] =="Y" or str[0] =="y") :
break the loop
break
print the net amount
print "Net amount: ", net_amount
Output
Enter transaction: D 10000
want to continue (Y for yes) : Y
Enter transaction: W 5000
want to continue (Y for yes) : Y
Enter transaction: D 2000
want to continue (Y for yes) : Y
Enter transaction: W 100
want to continue (Y for yes) : N
Net amount: 6900
Convert temperature in Python program
From Celsius to Fahrenheit and vice-versa
Formula used:
Celsius to Fahrenheit: °C= (5/9)*(°F-32)
Fahrenheit to Celsius: °F= (9/5)*(°C) + 32
Program
Define a function to convert
celsius temperature to Fahrenheit
def Celsius_to_Fahrenheit(c) :
f = (9/5)*c + 32
return f
Define a function to convert
Fahrenheit temperature to Celsius
def Fahrenheit_to_Celsius(f) :
c = (5/9)*(f - 32)
return c
Driver Code
if __name__ == "__main__" :
c = 36
print(c, "degree celsius is equal to:",Celsius_to_Fahrenheit(c),"Fahrenheit")
f = 98
print(f,"Fahrenheit is equal to:",Fahrenheit_to_Celsius(f),"degree celsius")
Output
36 degree celsius is equal to: 96.8 Fahrenheit
98 Fahrenheit is equal to: 36.66666666666667 degree Celsius
Python program to convert meters into yards
Key: 1 meter = 1.094 yards
Example:
Input:
Meters: 245
Output:
Yards: 268.03000000000003
Python code to convert Meters to yards
Python program to convert Centimeter to Inches
taking input
num = float(input("Enter the distance measured in centimeter : "))
converting from cms to inches
""" 1 inch = 2.54 centimeters"""
inc = num/2.54
printing the result
print("Distance in inch : ", inc)
Output
First run:
Enter the distance measured in meters : 245
Distance in yards : 268.03000000000003
Second run:
Enter the distance measured in meters : 54
Distance in yards : 59.07600000000001
Third run:
Enter the distance measured in meters : 100
Distance in yards : 109.4
In this question, the user will provide a particular date which could be from the past or the future and we need to locate the weekday.
To this end, we'll use the calendar module that provides us with various functions to solve the date, month and year related problem.
Until we go to find a specific date's weekday, we must test if the date given is correct or not.
If the date given is not correct then we get some mistake.
So we will use the try-except statement to resolve this form of mistake.
Syntax of try-except statement:
try:
#statement
except error_types:
#statement
Program
importing the module
import calendar
d,m,y=map(int,input('Enter the value of date,month and year: ').split())
a=['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday']
try:
s=calendar.weekday(y,m,d)
print('Weekday:',a[s])
except ValueError:
print('You have entered an invalid date.')
Output
RUN 1:
Enter the value of date, month and year: 28 10 2019
Weekday: Monday
RUN 2:
Enter the value of date, month and year: 32 10 2019
You have entered an invalid date.
Consider the below example,
mat = [
[10, 20, 30],
[40, 50, 60],
[70, 80, 80]
]
It can be considered a 3x3 matrix,
There are 3 rows and 3 columns in ' mat ' matrix.
Program
Python matrix creation
mat = [
[10, 20, 30],
[40, 50, 60],
[70, 80, 80]
]
printing the matrix
print("mat: ", mat)
printing rows
print("mat[0]: ", mat[0])
print("mat[1]: ", mat[1])
print("mat[2]: ", mat[2])
printing specific elements
print("mat[0][0]: ", mat[0][0])
print("mat[0][1]: ", mat[0][1])
print("mat[0][2]: ", mat[0][2])
print("mat[1][0]: ", mat[1][0])
print("mat[1][1]: ", mat[1][1])
print("mat[1][2]: ", mat[1][2])
print("mat[2][0]: ", mat[2][0])
print("mat[2][1]: ", mat[2][1])
print("mat[2][2]: ", mat[2][2])
printing matrix using loop (matrix form)
print("Matrix is: ")
for i in range(3):
for j in range(3):
print(mat[i][j], end = " ")
print() # prints new line
Output
mat: [[10, 20, 30], [40, 50, 60], [70, 80, 80]]
mat[0]: [10, 20, 30]
mat[1]: [40, 50, 60]
mat[2]: [70, 80, 80]
mat[0][0]: 10
mat[0][1]: 20
mat[0][2]: 30
mat[1][0]: 40
mat[1][1]: 50
mat[1][2]: 60
mat[2][0]: 70
mat[2][1]: 80
mat[2][2]: 80
Matrix is:
10 20 30
40 50 60
70 80 80
Python program to create matrix using numpy
Using numpy.array()
mat = numpy . array ([[10 , 20 , 30],[40 , 50 , 60],[70 , 70 , 90]])
Using numpy.matrix()
mat = numpy . matrix ("10 20 30; 40 50 60; 70 80 90")
Program
Python matrix creation using numpy
importing the numpy
import numpy as np
creating matrix using numpy.array()
mat1 = np.array([[10,20,30],[40,50,60],[70,70,90]])
printing matrix
print("mat1...")
print(mat1)
creating matrix using numpy.matrix()
mat2 = np.matrix("10 20 30; 40 50 60; 70 80 90")
printing matrix
print("mat2...")
print(mat2)
Output
mat1...
[[10 20 30]
[40 50 60]
[70 70 90]]
mat2...
[[10 20 30]
[40 50 60]
[70 80 90]]
Python program to print current hour, minute, second and microsecond
Steps:
Import the datetime class, from “ datetime module”
Create an object by -
calling the now() function of datetime class
Extract and print the current hour, minute, second and microsecond using the object of datetime.now() .
Program
Python program to print current hour,
minute, second and microsecond
importing the datetime class from
datetime module
from datetime import datetime
creating object
obj_now = datetime.now()
printing the current date and time
print("Current date & time: ", obj_now)
extracting and printing the current
hour, minute, second and microsecond
print("Current hour =", obj_now.hour)
print("Current minute =", obj_now.minute)
print("Current second =", obj_now.second)
print("Current microsecond =", obj_now.microsecond)
OUTPUT
Current date & time: 2020-07-30 14:43:52.294475
Current hour = 14
Current minute = 43
Current second = 52
Current microsecond = 294475
Python code to print today's year, month and day
In the example below – a python program is being implemented to print the current / current year, month and year.
CODE
Python program to
print today's year, month and day
importing the date class datetime module
from datetime import date
creating the date object of today's date
current_date = date.today()
printing the current date
print("Current date: ", current_date)
extracting the current year, month and day
print("Current year:", current_date.year)
print("Current month:", current_date.month)
print("Current day:", current_date.day)
OUTPUT
Current date: 2020-07-30
Current year: 2020
Current month: 7
Current day: 30
>
Program for Adding, removing elements in the list
Python List append() Method
It is used to add / append an item to the list (that will be passed as a parameter in method).
Syntax:
list.append(element)
Here,
List-is a list name.
Append()-is the name of the method which is used to add element / object to the list.
Item-is an element to be added to the list (which is known as an object or item).
Python List pop() Method
Using this to remove / pop an item from the list
Syntax:
list.pop()
Here,
List - is the list name.
Pop() - is the name of the method used to delete last item from the list.
PROGRAM
Declaring a list with integer and string elements
list = [10, 20, 30, "New Delhi", "Mumbai"]
printing list
print "List elements are: ", list
adding elements
list.append (40)
list.append (50)
list.append ("Chennai")
printing list after adding elements
print "List elements: ", list
removing elements
list.pop () ;
printing list
print "List elements: ", list
removing elements
list.pop () ;
printing list
print "List elements: ", list
Output
List elements are: [10, 20, 30, 'New Delhi', 'Mumbai']
List elements: [10, 20, 30, 'New Delhi', 'Mumbai', 40, 50, 'Chennai']
List elements: [10, 20, 30, 'New Delhi', 'Mumbai', 40, 50]
List elements: [10, 20, 30, 'New Delhi', 'Mumbai', 40]
Program to find the differences of two lists
Given two integer lists, we will find the differences, i.e. the elements that do not exist in the second lists.
Example:
Input:
List1 = [10, 20, 30, 40, 50]
List2 = [10, 20, 30, 60, 70]
Output:
Different elements:
[40, 50]
PROGRAM
list1 - first list of the integers
lists2 - second list of the integers
list1 = [10, 20, 30, 40, 50]
list2 = [10, 20, 30, 60, 70]
printing lists
print "list1:", list1
print "list2:", list2
finding and printing differences of the lists
print "Difference elements:"
print (list (set(list1) - set (list2)))
Output
list1: [10, 20, 30, 40, 50]
list2: [10, 20, 30, 60, 70]
Difference elements:
[40, 50]
PROGRAM 2
With mixed element type, print 1) the elements that do not exist in list 2 and 2) those that do not exist in list 1.
list1 - first list with mixed type elements
lists2 - second list with mixed type elements
list1 = ["Amit", "Shukla", 21, "New Delhi"]
list2 = ["Aman", "Shukla", 21, "Mumbai"]
printing lists
print "list1:", list1
print "list2:", list2
finding and printing differences of the lists
print "Elements not exists in list2:"
print (list (set(list1) - set (list2)))
print "Elements not exists in list1:"
print (list (set(list2) - set (list1)))
Output
list1: ['Amit', 'Shukla', 21, 'New Delhi']
list2: ['Aman', 'Shukla', 21, 'Mumbai']
Elements not exists in list2:
['Amit', 'New Delhi']
Elements not exists in list1:
['Aman', 'Mumbai']
Program to remove duplicate elements from the list
Example:
Input:
list1: [10, 20, 10, 20, 30, 40, 30, 50]
Output:
List after removing duplicate elements
list2: [10, 20, 30, 40, 50]
Logic
It is too easy to implement the program by adding elements one by one to another list by checking whether or not element is available in the new list.
Let's assume that 20 is available in list 1 three times, and when we add 20 (first occurrence) to list 2, it will be added, but when we add 20 (second occurrence) to list 2, condition will be false and element will not be added to list. And finally, without duplicate elements we'll get list.
PROGRAM
declare list
list1 = [10, 20, 10, 20, 30, 40, 30, 50]
creating another list with unique elements
declare another list
list2 = []
appending elements
for n in list1:
if n not in list2:
list2.append(n)
printing the lists
print "Original list"
print "list1: ", list1
print "List after removing duplicate elements"
print "list2: ", list2
Output
Original list
list1: [10, 20, 10, 20, 30, 40, 30, 50]
List after removing duplicate elements
list2: [10, 20, 30, 40, 50]
Program (Defining By User defines function):
Function to remove duplicates
def removeDuplicates (list1):
declare another list
list2 = []
appending elements
for n in list1:
if n not in list2:
list2.append (n)
return list2
Main code
declare a list
list1 = [10, 20, 10, 20, 30, 40, 30, 50]
print the list
print "Original list: ", list1
print "List after duplicate remove: ", removeDuplicates (list1)
Output
Original list: [10, 20, 10, 20, 30, 40, 30, 50]
List after duplicate remove: [10, 20, 30, 40, 50]
Create three lists of numbers, their squares and cubes
Example:
Input:
Start = 1
End = 10
Output:
numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
squares: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
cubes : [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
Logic
Three lists to declare.
Defining range, here we define beginning with 1 and ending with 10.
Run a loop with the range as range (start, end + 1) and count as loop counter.
Connect the count of the loop counter to the list named numbers, connect the square to the list called squares and add the cube to the list called cubes.
In the end, print out the lists.
PROGRAM
declare lists
numbers = []
squares = []
cubes = []
start and end numbers
start = 1
end = 10
run a loop from start to end+1
for count in range (start, end+1) :
numbers.append (count)
squares.append (count**2)
cubes.append (count**3)
print the lists
print "numbers: ",numbers
print "squares: ",squares
print "cubes : ",cubes
Output
numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
squares: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
cubes : [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
Iterate a list in reverse order
Given a list, and in python we can iterate it in reverse order.
Example:
Input:
List = [10, 20, 30, 40, 50]
Output:
list = [50, 40, 30, 20, 10]
Input;
list = ['Hello', 10 'World', 20]
Output:
list = [20, 'World', 10, 'Hello']
PROGRAM
define a list
list1 = [10, 20, 30, 40, 50]
print the list
print "original list: ", list1
iterate the list
list1 = list1[::-1]
print the list
print "list in reverse order: ", list1
another list with string and integer elements
list2 = ['Hello', 10, 'world', 20]
print the list
print "Original list: ", list2
iterate the list
list2 = list2[::-1]
print the list
print "list in reverse order: ", list2
Output
original list: [10, 20, 30, 40, 50]
list in reverse order: [50, 40, 30, 20, 10]
Original list: ['Hello', 10, 'world', 20]
list in reverse order: [20, 'world', 10, 'Hello']
Print list after removing EVEN numbers
Example:
Input:
list = [11, 22, 33, 44, 55]
Output:
list after removing EVEN numbers
list = [11, 33, 55]
LOGIC
Using for ... in loop to traverse every number in the sequence.
Test the condition, i.e. the number is divisible by 2 or not – the number must be divisible by 2 .
If number is divisible by 2 Then Remove the number from list
Using list.remove() method to remove the number from list.
PROGRAM
list with EVEN and ODD number
list = [11, 22, 33, 44, 55]
print original list
print "Original list:"
print list
loop to traverse each element in the list
and, remove elements
which are EVEN (divisible by 2)
for i in list:
if(i%2 == 0):
list.remove(i)
print list after removing EVEN elements
print "list after removing EVEN numbers:"
print list
Output
Original list:
[11, 22, 33, 44, 55]
list after removing EVEN numbers:
[11, 33, 55]
Declare, assign and print the string (Different ways)
Ways | Syntax | Description |
Way1 | Single quotes | Assign a single line string. |
Way2 | Double quotes | Assign a single line string. |
Way3 | Triple single quotes | Assign single line as well as multi-line string. |
Way4 | Triple double quotes | Assign single line as well as multi-line string. |
PROGRAM
Declare, assign string (1)
using single quotes 'string'
str1 = 'Hello world, How are you?'
Declare, assign string (2)
using double quotes "string"
str2 = "Hello world, How are you?"
Declare assign string (3)
using triple single quotes '''string'''
str3 = '''Hello world, How are you?'''
Declare assign string (4)
using triple double quotes """string"""
str4 = """Hello world, How are you?"""
Declare, assign multi-line string (5)
Triple double quotes allows to assign
multi-line string
str5 = '''Hello world,
How are you?'''
print the string
print "str1: ", str1
print "str2: ", str2
print "str3: ", str3
print "str4: ", str4
print "str5: ", str5
Output
str1: Hello world, How are you?
str2: Hello world, How are you?
str3: Hello world, How are you?
str4: Hello world, How are you?
str5: Hello world,
How are you?
Access and print characters from the string
Example:
Input:
str: "Hello world"
Output:
First character: H
Second character: e
Last character: d
Second last character: l
Characters from 0th to 4th index: Hello
And, so on...
PROGRAM
access characters in string
declare, assign string
str = "Hello world"
print complete string
print "str:", str
print first character
print "str[0]:", str[0]
print second character
print "str[1]:", str[1]
print last character
print "str[-1]:", str[-1]
print second last character
print "str[-2]:", str[-2]
print characters from 0th to 4th index i.e.
first 5 characters
print "str[0:5]:", str[0:5]
print characters from 2nd index to 2nd last index
print "str[2,-2]:", str[2:-2]
print string character by character
print "str:"
for i in str:
print i,
#comma after the variable
it does not print new line
Output
str: Hello world
str[0]: H
str[1]: e
str[-1]: d
str[-2]: l
str[0:5]: Hello
str[2,-2]: llo wor
str:
H e l l o w o r l d
Program to print words with their length of a string
Example:
Input:
str = "Hello World How are you?"
Output:
Hello (5)
World (5)
How (3)
are (3)
you? (4)
String.split() Method
To split the string into words, we use the method split(), an inbuilt method that splits the string into sub-string (words) defined by the given delimiter.
split() Method Syntax:
String.split(delimiter)
EXPLANATION
For example, there's a string str = "ABC PQR XYZ" and we want to break it into words using space to divide it, then space here would be delimiter. The statement will be str.split(" ") to break the string into words, and then output will be "ABC" "PQR" "XYZ."
PROGRAM
Function to split into words
and print words with its length
def splitString (str):
split the string by spaces
str = str.split (' ')
iterate words in string
for words in str:
print words," (", len (words), ")"
Main code
declare string and assign value
str = "Hello World How are you?"
call the function
splitString(str)
Output
Hello (5)
World (5)
How (3)
are (3)
you? (4)
Example:
Input:
Str = "Hello world"
Output:
Total vowels are: 3
PROGRAM
count vowels in a string
declare, assign string
str = "Hello world"
declare count
count = 0
iterate and check each character
for i in str:
check the conditions for vowels
if(i=='A' or i=='a' or i=='E' or i=='e'
or i=='I' or i=='i' or i=='O' or i=='o'
or i=='U' or i=='u'):
count +=1;
print count
print "Total vowels are: ", count
Output
Total vowels are: 3
Create multiple copies of a string by using multiplication operator
Using multiplication operator to create multiple copies of a string,
the multiplication operator (*) will be used
Example:
Input:
str1 = "Hello"
n = 3
logic:
str2 =str1*3
Output:
str2= "HelloHelloHello"
Program:
Python program to create N copies
of a given string
define inputs: string and N
str1 = "Hello"
n = 3
create copies
str2 = str1 * 3
print "str1: ", str1
print "str2: ", str2
Output
str1: Hello
str2: HelloHelloHello
Table of Contents
ASCII value of character in Python
Python program to check the given year is a leap year or not
Python | Some of the examples of simple if else
Calculate discount based on the sale amount in Python
Design a simple calculator using if elif in Python
BMI (Body Mass Index) calculator in Python
Write functions to find square and cube of a given number in Python
Convert temperature in Python program
Python program to convert meters into yards
Python program to create matrix using numpy
Python code to print today's year, month and day
Program for Adding, removing elements in the list
Program to find the differences of two lists
Program to remove duplicate elements from the list
Create three lists of numbers, their squares and cubes
Iterate a list in reverse order
Print list after removing EVEN numbers
Declare, assign and print the string (Different ways)
Access and print characters from the string
Program to print words with their length of a string
Create multiple copies of a string by using multiplication operator