SQL AND SCALA
FOR
BEGINNERS
LEARN TO CODE FAST
BY
TAM SEL
Difference between DBMS and RDBMS
SQL SELECT from Multiple Tables
SQL ORDER BY CLAUSE WITH ASCENDING ORDER
Scala Variables and Data Types
Scala Singleton and Companion Object
Scala Case Classes and Case Object
Scala Tuple Example: Function Return Multiple Values
SQL
FOR
BEGINNERS
LEARN TO CODE FAST
BY
TAM SEL
SQL tutorial provides basic and advanced concepts of SQL. Our SQL tutorial is designed for beginners and professionals.
SQL (Structured Query Language) is used to perform operations on the records stored in the database such as updating records, deleting records, creating and modifying tables, views, etc.
SQL is just a query language; it is not a database. To perform SQL queries, you need to install any database, for example, Oracle, MySQL, MongoDB, PostGre SQL, SQL Server, DB2, etc.
What is SQL
All DBMS like MySQL, Oracle, MS Access, Sybase, Informix, Postgres, and SQL Server use SQL as standard database language.
Why SQL is required
SQL is required:
What SQL does
Data is a collection of a distinct small unit of information. It can be used in a variety of forms like text, numbers, media, bytes, etc. it can be stored in pieces of paper or electronic memory, etc.
Word 'Data' is originated from the word 'datum' that means 'single piece of information.' It is plural of the word datum.
In computing, Data is information that can be translated into a form for efficient movement and processing. Data is interchangeable.
What is Database?
A database is an organized collection of data, so that it can be easily accessed and managed.
You can organize data into tables, rows, columns, and index it to make it easier to find relevant information.
Database handlers create a database in such a way that only one set of software program provides access of data to all the users.
The main purpose of the database is to operate a large amount of information by storing, retrieving, and managing data.
There are many dynamic websites on the World Wide Web nowadays which are handled through databases. For example, a model that checks the availability of rooms in a hotel. It is an example of a dynamic website that uses a database.
There are many databases available like MySQL, Sybase, Oracle, MongoDB, Informix, PostgreSQL, SQL Server, etc.
Modern databases are managed by the database management system (DBMS).
SQL or Structured Query Language is used to operate on the data stored in a database. SQL depends on relational algebra and tuple relational calculus.
A cylindrical structure is used to display the image of a database.
Evolution of Databases
The database has completed more than 50 years of journey of its evolution from flat-file system to relational and objects relational systems. It has gone through several generations.
The Evolution
File-Based
1968 was the year when File-Based database were introduced. In file-based databases, data was maintained in a flat file. Though files have many advantages, there are several limitations.
One of the major advantages is that the file system has various access methods, e.g., sequential, indexed, and random.
It requires extensive programming in a third-generation language such as COBOL, BASIC.
Hierarchical Data Model
1968-1980 was the era of the Hierarchical Database. Prominent hierarchical database model was IBM's first DBMS. It was called IMS (Information Management System).
In this model, files are related in a parent/child manner.
ike file system, this model also had some limitations like complex implementation, lack structural independence, can't easily handle a many-many relationship, etc.
Network data model
Charles Bachman developed the first DBMS at Honeywell called Integrated Data Store (IDS). It was developed in the early 1960s, but it was standardized in 1971 by the CODASYL group (Conference on Data Systems Languages).
In this model, files are related as owners and members, like to the common network model.
Network data model identified the following components:
This model also had some limitations like system complexity and difficult to design and maintain.
Relational Database
1970 - Present: It is the era of Relational Database and Database Management. In 1970, the relational model was proposed by E.F. Codd.
Relational database model has two main terminologies called instance and schema.
The instance is a table with rows or columns
Schema specifies the structure like name of the relation, type of each column and name.
This model uses some mathematical concept like set theory and predicate logic.
The first internet database application had been created in 1995.
During the era of the relational database, many more models had introduced like object-oriented model, object-relational model, etc.
Cloud database
Cloud database facilitates you to store, manage, and retrieve their structured, unstructured data via a cloud platform. This data is accessible over the Internet. Cloud databases are also called a database as service (DBaaS) because they are offered as a managed service.
Some best cloud options are:
Advantages of cloud database
Lower costs
Generally, company provider does not have to invest in databases. It can maintain and support one or more data centers.
Automated
Cloud databases are enriched with a variety of automated processes such as recovery, failover, and auto-scaling.
Increased accessibility
You can access your cloud-based database from any location, anytime. All you need is just an internet connection.
NoSQL Database
A NoSQL database is an approach to design such databases that can accommodate a wide variety of data models. NoSQL stands for "not only SQL." It is an alternative to traditional relational databases in which data is placed in tables, and data schema is perfectly designed before the database is built.
NoSQL databases are useful for a large set of distributed data.
Some examples of NoSQL database system with their category are:
Advantage of NoSQL
High Scalability
NoSQL can handle an extensive amount of data because of scalability. If the data grows, NoSQL database scale it to handle that data in an efficient manner.
High Availability
NoSQL supports auto replication. Auto replication makes it highly available because, in case of any failure, data replicates itself to the previous consistent state.
Disadvantage of NoSQL
Open source
NoSQL is an open-source database, so there is no reliable standard for NoSQL yet.
Management challenge
Data management in NoSQL is much more complicated than relational databases. It is very challenging to install and even more hectic to manage daily.
GUI is not available
GUI tools for NoSQL database are not easily available in the market.
Backup
Backup is a great weak point for NoSQL databases. Some databases, like MongoDB, have no powerful approaches for data backup.
The Object-Oriented Databases
The object-oriented databases contain data in the form of object and classes. Objects are the real-world entity, and types are the collection of objects. An object-oriented database is a combination of relational model features with objects oriented principles. It is an alternative implementation to that of the relational model.
Object-oriented databases hold the rules of object-oriented programming. An object-oriented database management system is a hybrid application.
The object-oriented database model contains the following properties.
Object-oriented programming properties
Relational database properties
Graph Databases
A graph database is a NoSQL database. It is a graphical representation of data. It contains nodes and edges. A node represents an entity, and each edge represents a relationship between two edges. Every node in a graph database represents a unique identifier.
Graph databases are beneficial for searching the relationship between data because they highlight the relationship between relevant data.
Graph databases are very useful when the database contains a complex relationship and dynamic schema.
It is mostly used in supply chain management, identifying the source of IP telephony.
DBMS (Data Base Management System)
Database management System is software which is used to store and retrieve the database. For example, Oracle, MySQL, etc.; these are some popular DBMS tools.
Advantage of DBMS
Controls redundancy
It stores all the data in a single database file, so it can control data redundancy.
Data sharing
An authorized user can share the data among multiple users.
Backup
It providesBackup and recovery subsystem. This recovery system creates automatic data from system failure and restores data if required.
Multiple user interfaces
It provides a different type of user interfaces like GUI, application interfaces.
Disadvantage of DBMS
Size
It occupies large disk space and large memory to run efficiently.
Cost
DBMS requires a high-speed data processor and larger memory to run DBMS software, so it is costly.
Complexity
DBMS creates additional complexity and requirements.
RDBMS (Relational Database Management System)
The word RDBMS is termed as 'Relational Database Management System.' It is represented as a table that contains rows and column.
RDBMS is based on the Relational model; it was introduced by E. F. Codd.
A relational database contains the following components:
An RDBMS is a tabular DBMS that maintains the security, integrity, accuracy, and consistency of the data.
RDBMS stands for Relational Database Management Systems..
All modern database management systems like SQL, MS SQL Server, IBM DB2, ORACLE, My-SQL and Microsoft Access are based on RDBMS.
It is called Relational Data Base Management System (RDBMS) because it is based on relational model introduced by E.F. Codd.
How it works
Data is represented in terms of tuples (rows) in RDBMS.
Relational database is most commonly used database. It contains number of tables and each table has its own primary key.
Due to a collection of organized set of tables, data can be accessed easily in RDBMS.
Brief History of RDBMS
During 1970 to 1972, E.F. Codd published a paper to propose the use of relational database model.
RDBMS is originally based on that E.F. Codd's relational model invention.
What is table
The RDBMS database uses tables to store data. A table is a collection of related data entries and contains rows and columns to store data.
A table is the simplest example of data storage in RDBMS.
Let's see the example of student table.
ID-Name-AGE-COURSE
1-James-24-B.Tech
2-Michael-20-C.A
3-Robert-21-BCA
4-David-22-MCA
5-George-26-BSC
What is field
Field is a smaller entity of the table which contains specific information about every record in the table. In the above example, the field in the student table consist of id, name, age, course.
What is row or record
A row of a table is also called record. It contains the specific information of each individual entry in the table. It is a horizontal entity in the table. For example: The above table contains 5 records.
Let's see one record/row in the table.
1-James-24-B.Tech
What is column
A column is a vertical entity in the table which contains all information associated with a specific field in a table. For example: "name" is a column in the above table which contains all information about student's name.
James
Michael
Robert
David
George
NULL Values
The NULL value of the table specifies that the field has been left blank during record creation. It is totally different from the value filled with zero or a field that contains space.
Data Integrity
There are the following categories of data integrity exist with each RDBMS:
Entity integrity: It specifies that there should be no duplicate rows in a table.
Domain integrity: It enforces valid entries for a given column by restricting the type, the format, or the range of values.
Referential integrity: It specifies that rows cannot be deleted, which are used by other records.
User-defined integrity: It enforces some specific business rules that are defined by users. These rules are different from entity, domain or referential integrity.
Difference between DBMS and RDBMS
Although DBMS and RDBMS both are used to store information in physical database but there are some remarkable differences between them.
The main differences between DBMS and RDBMS are given below:
DBMS Vs RDBMS
1)
DBMS applications store data as file.
RDBMS applications store data in a tabular form.
2)
In DBMS, data is generally stored in either a hierarchical form or a navigational form.
In RDBMS, the tables have an identifier called primary key and the data values are stored in the form of tables.
3)
Normalization is not present in DBMS.
Normalization is present in RDBMS.
4)
DBMS does not apply any security with regards to data manipulation.
RDBMS defines the integrity constraint for the purpose of ACID (Atomocity, Consistency, Isolation and Durability) property.
5)
DBMS uses file system to store data, so there will be no relation between the tables.
in RDBMS, data values are stored in the form of tables, so a relationship between these data values will be stored in the form of a table as well.
6)
DBMS has to provide some uniform methods to access the stored information.
RDBMS system supports a tabular structure of the data and a relationship between them to access the stored information.
7)
DBMS does not support distributed database.
RDBMS supports distributed database.
8)
DBMS is meant to be for small organization and deal with small data. it supports single user.
RDBMS is designed to handle large amount of data. it supports multiple users.
9)
Examples of DBMS are file systems, xml etc.
Example of RDBMS are mysql, postgre, sql server, oracle etc.
After observing the differences between DBMS and RDBMS, you can say that RDBMS is an extension of DBMS. There are many software products in the market today who are compatible for both DBMS and RDBMS. Means today a RDBMS application is DBMS application and vice-versa.
SQL follows some unique set of rules and guidelines called syntax. Here, we are providing all the basic SQL syntax.
SQL statement
SQL statements are started with any of the SQL commands/keywords like SELECT, INSERT, UPDATE, DELETE, ALTER, DROP etc. and the statement ends with a semicolon (;).
Example of SQL statement:
Why semicolon is used after SQL statements:
Semicolon is used to separate SQL statements. It is a standard way to separate SQL statements in a database system in which more than one SQL statements are used in the same call.
In this tutorial, we will use semicolon at the end of each SQL statement.
SQL Commands
These are the some important SQL command:
SELECT: it extracts data from a database.
UPDATE: it updates data in database.
DELETE: it deletes data from database.
CREATE TABLE: it creates a new table.
ALTER TABLE: it is used to modify the table.
DROP TABLE: it deletes a table.
CREATE DATABASE: it creates a new database.
ALTER DATABASE: It is used to modify a database.
INSERT INTO: it inserts new data into a database.
CREATE INDEX: it is used to create an index (search key).
DROP INDEX: it deletes an index.
Data types are used to represent the nature of the data that can be stored in the database table. For example, in a particular column of a table, if we want to store a string type of data then we will have to declare a string data type of this column.
Data types mainly classified into three categories for every database.
Data Types in MySQL, SQL Server and Oracle Databases
MySQL Data Types
A list of data types used in MySQL database. This is based on MySQL 8.0.
MySQL String Data Types
CHAR(Size)
It is used to specify a fixed length string that can contain numbers, letters, and special characters. Its size can be 0 to 255 characters. Default is 1.
VARCHAR(Size)
It is used to specify a variable length string that can contain numbers, letters, and special characters. Its size can be from 0 to 65535 characters.
BINARY(Size)
It is equal to CHAR() but stores binary byte strings. Its size parameter specifies the column length in the bytes. Default is 1.
VARBINARY(Size)
It is equal to VARCHAR() but stores binary byte strings. Its size parameter specifies the maximum column length in bytes.
TEXT(Size)
It holds a string that can contain a maximum length of 255 characters.
TINYTEXT
It holds a string with a maximum length of 255 characters.
MEDIUMTEXT
It holds a string with a maximum length of 16,777,215.
LONGTEXT
It holds a string with a maximum length of 4,294,967,295 characters.
ENUM(val1, val2, val3,...)
It is used when a string object having only one value, chosen from a list of possible values. It contains 65535 values in an ENUM list. If you insert a value that is not in the list, a blank value will be inserted.
SET(val1,val2,val3,....)
It is used to specify a string that can have 0 or more values, chosen from a list of possible values. You can list up to 64 values at one time in a SET list.
BLOB(size)
It is used for BLOBs (Binary Large Objects). It can hold up to 65,535 bytes.
MySQL Numeric Data Types
BIT(Size)
It is used for a bit-value type. The number of bits per value is specified in size. Its size can be 1 to 64. The default value is 1.
INT(size)
It is used for the integer value. Its signed range varies from -2147483648 to 2147483647 and unsigned range varies from 0 to 4294967295. The size parameter specifies the max display width that is 255.
INTEGER(size)
It is equal to INT(size).
FLOAT(size, d)
It is used to specify a floating point number. Its size parameter specifies the total number of digits. The number of digits after the decimal point is specified by d parameter.
FLOAT(p)
It is used to specify a floating point number. MySQL used p parameter to determine whether to use FLOAT or DOUBLE. If p is between 0 to24, the data type becomes FLOAT (). If p is from 25 to 53, the data type becomes DOUBLE().
DOUBLE(size, d)
It is a normal size floating point number. Its size parameter specifies the total number of digits. The number of digits after the decimal is specified by d parameter.
DECIMAL(size, d)
It is used to specify a fixed point number. Its size parameter specifies the total number of digits. The number of digits after the decimal parameter is specified by d parameter. The maximum value for the size is 65, and the default value is 10. The maximum value for d is 30, and the default value is 0.
DEC(size, d)
It is equal to DECIMAL(size, d).
BOOL
It is used to specify Boolean values true and false. Zero is considered as false, and nonzero values are considered as true.
MySQL Date and Time Data Types
DATE
It is used to specify date format YYYY-MM-DD. Its supported range is from '1000-01-01' to '9999-12-31'.
DATETIME(fsp)
It is used to specify date and time combination. Its format is YYYY-MM-DD hh:mm:ss. Its supported range is from '1000-01-01 00:00:00' to 9999-12-31 23:59:59'.
TIMESTAMP(fsp)
It is used to specify the timestamp. Its value is stored as the number of seconds since the Unix epoch('1970-01-01 00:00:00' UTC). Its format is YYYY-MM-DD hh:mm:ss. Its supported range is from '1970-01-01 00:00:01' UTC to '2038-01-09 03:14:07' UTC.
TIME(fsp)
It is used to specify the time format. Its format is hh:mm:ss. Its supported range is from '-838:59:59' to '838:59:59'
YEAR
It is used to specify a year in four-digit format. Values allowed in four digit format from 1901 to 2155, and 0000.
SQL Server Data Types
SQL Server String Data Type
char(n)
It is a fixed width character string data type. Its size can be up to 8000 characters.
varchar(n)
It is a variable width character string data type. Its size can be up to 8000 characters.
varchar(max)
It is a variable width character string data types. Its size can be up to 1,073,741,824 characters.
text
It is a variable width character string data type. Its size can be up to 2GB of text data.
nchar
It is a fixed width Unicode string data type. Its size can be up to 4000 characters.
nvarchar
It is a variable width Unicode string data type. Its size can be up to 4000 characters.
ntext
It is a variable width Unicode string data type. Its size can be up to 2GB of text data.
binary(n)
It is a fixed width Binary string data type. Its size can be up to 8000 bytes.
varbinary
It is a variable width Binary string data type. Its size can be up to 8000 bytes.
image
It is also a variable width Binary string data type. Its size can be up to 2GB.
SQL Server Numeric Data Types
bit
It is an integer that can be 0, 1 or null.
tinyint
It allows whole numbers from 0 to 255.
Smallint
It allows whole numbers between -32,768 and 32,767.
Int
It allows whole numbers between -2,147,483,648 and 2,147,483,647.
bigint
It allows whole numbers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.
float(n)
It is used to specify floating precision number data from -1.79E+308 to 1.79E+308. The n parameter indicates whether the field should hold the 4 or 8 bytes. Default value of n is 53.
real
It is a floating precision number data from -3.40E+38 to 3.40E+38.
money
It is used to specify monetary data from -922,337,233,685,477.5808 to 922,337,203,685,477.5807.
SQL Server Date and Time Data Type
datetime
It is used to specify date and time combination. It supports range from January 1, 1753, to December 31, 9999 with an accuracy of 3.33 milliseconds.
datetime2
It is used to specify date and time combination. It supports range from January 1, 0001 to December 31, 9999 with an accuracy of 100 nanoseconds
date
It is used to store date only. It supports range from January 1, 0001 to December 31, 9999
time
It stores time only to an accuracy of 100 nanoseconds
timestamp
It stores a unique number when a new row gets created or modified. The time stamp value is based upon an internal clock and does not correspond to real time. Each table may contain only one-time stamp variable.
SQL Server Other Data Types
Sql_variant
It is used for various data types except for text, timestamp, and ntext. It stores up to 8000 bytes of data.
XML
It stores XML formatted data. Maximum 2GB.
cursor
It stores a reference to a cursor used for database operations.
table
It stores result set for later processing.
uniqueidentifier
It stores GUID (Globally unique identifier).
Oracle Data Types
Oracle String data types
CHAR(size)
It is used to store character data within the predefined length. It can be stored up to 2000 bytes.
NCHAR(size)
It is used to store national character data within the predefined length. It can be stored up to 2000 bytes.
VARCHAR2(size)
It is used to store variable string data within the predefined length. It can be stored up to 4000 byte.
VARCHAR(SIZE)
It is the same as VARCHAR2(size). You can also use VARCHAR(size), but it is suggested to use VARCHAR2(size)
NVARCHAR2(size)
It is used to store Unicode string data within the predefined length. We have to must specify the size of NVARCHAR2 data type. It can be stored up to 4000 bytes.
Oracle Numeric Data Types
NUMBER(p, s)
It contains precision p and scale s. The precision p can range from 1 to 38, and the scale s can range from -84 to 127.
FLOAT(p)
It is a subtype of the NUMBER data type. The precision p can range from 1 to 126.
BINARY_FLOAT
It is used for binary precision(32-bit). It requires 5 bytes, including length byte.
BINARY_DOUBLE
It is used for double binary precision (64-bit). It requires 9 bytes, including length byte.
Oracle Date and Time Data Types
DATE
It is used to store a valid date-time format with a fixed length. Its range varies from January 1, 4712 BC to December 31, 9999 AD.
TIMESTAMP
It is used to store the valid date in YYYY-MM-DD with time hh:mm:ss format.
Oracle Large Object Data Types (LOB Types)
BLOB
It is used to specify unstructured binary data. Its range goes up to 232-1 bytes or 4 GB.
BFILE
It is used to store binary data in an external file. Its range goes up to 232-1 bytes or 4 GB.
CLOB
It is used for single-byte character data. Its range goes up to 232-1 bytes or 4 GB.
NCLOB
It is used to specify single byte or fixed length multibyte national character set (NCHAR) data. Its range is up to 232-1 bytes or 4 GB.
RAW(size)
It is used to specify variable length raw binary data. Its range is up to 2000 bytes per row. Its maximum size must be specified.
LONG RAW
It is used to specify variable length raw binary data. Its range up to 231-1 bytes or 2 GB, per row.
SQL statements generally contain some reserved words or characters that are used to perform operations such as comparison and arithmetical operations etc. These reserved words or characters are known as operators.
Generally there are three types of operators in SQL:
SQL Arithmetic Operators:
Let's assume two variables "a" and "b". Here "a" is valued 50 and "b" valued 100.
Example:
Operators and Descriptions and Examples
+
It is used to add containing values of both operands
a+b will give 150
-
It subtracts right hand operand from left hand operand
a-b will give -50
*
It multiply both operand's values
a*b will give 5000
/
It divides left hand operand by right hand operand
b/a will give 2
%
It divides left hand operand by right hand operand and returns reminder
b%a will give 0
SQL Comparison Operators:
Let's take two variables "a" and "b" that are valued 50 and 100.
Operator and Description and Example
=
Examine both operands value that are equal or not,if yes condition become true.
(a=b) is not true
!=
This is used to check the value of both operands equal or not,if not condition become true.
(a!=b) is true
< >
Examines the operand's value equal or not, if values are not equal condition is true
(a<>b) is true
>
Examine the left operand value is greater than right Operand, if yes condition becomes true
(a>b) is not true
<
Examines the left operand value is less than right Operand, if yes condition becomes true
(a<="" td="">
>=
Examines that the value of left operand is greater than or equal to the value of right operand or not,if yes condition become true
(a>=b) is not true
<=
Examines that the value of left operand is less than or equal to the value of right operand or not, if yes condition becomes true
(a<=b) is true
!<
Examines that the left operand value is not less than the right operand value
(a!<="" td="">
!>
Examines that the value of left operand is not greater than the value of right operand
(a!>b) is true
SQL Logical Operators:
This is the list of logical operators used in SQL.
Operator
Description
ALL
this is used to compare a value to all values in another value set.
AND
this operator allows the existence of multiple conditions in an SQL statement.
ANY
this operator is used to compare the value in list according to the condition.
BETWEEN
this operator is used to search for values, that are within a set of values
IN
this operator is used to compare a value to that specified list value
NOT
the NOT operator reverse the meaning of any logical operator
OR
this operator is used to combine multiple conditions in SQL statements
EXISTS
the EXISTS operator is used to search for the presence of a row in a specified table
LIKE
this operator is used to compare a value to similar values using wildcard operator
The SQL CREATE DATABASE statement is used by a developer to create a database.
Let's see the syntax of SQL CREATE DATABASE:
If you want to add tables in that database, you can use CREATE TABLE statement.
Create Database in MySQL
In MySQL, same command is used to create a database.
Create Database in Oracle
You don't need to create database in Oracle. In Oracle database, you can create tables directly.
You can also rename, drop and select database that is covered in next pages.
We should always remember that database name should be unique in the RDBMS.
SQL DROP statement is used to delete or remove indexes from a table in the database.
If you want to delete or drop an existing database in a SQL schema, you can use SQL DROP DATABASE
Let's see the syntax of SQL DROP DATABASE:
If you delete or drop the database, all the tables and views will also be deleted. So be careful while using this command.
SQL RENAME DATABASE is used when you need to change the name of your database. Sometimes it is used because you think that the original name is not more relevant to the database or you want to give a temporary name to that database.
Let's see how to rename MySql and SQL Server databases.
Rename MySQL database
To rename the mysql database, you need to follow the following syntax:
Rename SQL server database using T-SQL
This command is useful for SQL server 2005, 2008, 2008R2 and 2012.
If you are using SQL server 2000, you can also use this command to rename the database. But, Microsoft phased out it.
SQL SELECT Database
In MySQL database, you need to select a database first before executing any query on table, view etc. To do so, we use following query:
In oracle, you don't need to select database.
Table is a collection of data, organized in terms of rows and columns. In DBMS term, table is known as relation and row as tuple.
Note: A table has a specified number of columns, but can have any number of rows.
Table is the simple form of data storage. A table is also considered as a convenient representation of relations.
Let's see an example of an employee table:
Employee
EMP_NAME-ADDRESS-SALARY
Ankit-Lucknow-15000
Raman-Allahabad-18000
Mike-New York-20000
In the above table, "Employee" is the table name, "EMP_NAME", "ADDRESS" and "SALARY" are the column names. The combination of data of multiple columns forms a row e.g. "Ankit", "Lucknow" and 15000 are the data of one row.
The SQL Table variable is used to create, modify, rename, copy and delete tables. Table variable was introduced by Microsoft.
It was introduced with SQL server 2000 to be an alternative of temporary tables.
It is a variable where we temporary store records and results. This is same like temp table but in the case of temp table we need to explicitly drop it.
Table variables are used to store a set of records. So declaration syntax generally looks like CREATE TABLE syntax.
When a transaction rolled back the data associated with table variable is not rolled back.
A table variable generally uses lesser resources than a temporary variable.
Table variable cannot be used as an input or an output parameter.
SQL CREATE TABLE statement is used to create table in a database.
If you want to create a table, you should name the table and define its column and each column's data type.
Let's see the simple syntax to create the table.
The data type of the columns may vary from one database to another. For example, NUMBER is supported in Oracle database for integer value whereas INT is supported in MySQL.
Let us take an example to create a STUDENTS table with ID as primary key and NOT NULL are the constraint showing that these fields cannot be NULL while creating records in the table.
You can verify it, if you have created the table successfully by looking at the message displayed by the SQL Server, else you can use DESC command as follows:
SQL> DESC STUDENTS;
FIELD-TYPE-NULL-KEY-DEFAULT-EXTRA
ID-Int(11)-NO-PRI--
NAME-Varchar(20)-NO---
AGE-Int(11)-NO---
ADDRESS-Varchar(25)-YES--NULL-
4 rows in set (0.00 sec)
Now you have the STUDENTS table available in your database and you can use to store required information related to students.
SQL CREATE TABLE Example in MySQL
Let's see the command to create a table in MySQL database.
SQL CREATE TABLE Example in Oracle
Let's see the command to create a table in Oracle database.
SQL CREATE TABLE Example in Microsoft SQLServer
Let's see the command to create a table in SQLServer database. It is same as MySQL and Oracle.
Create a Table using another table
We can create a copy of an existing table using the create table command. The new table gets the same column signature as the old table. We can select all columns or some specific columns.
If we create a new table using an old table, the new table will be filled with the existing value from the old table.
The basic syntax for creating a table with the other table is:
SQL Primary Key with CREATE TABLE Statement
The following query creates a PRIMARY KEY on the "D" column when the "Employee" table is created.
MySQL
SQL Server / Oracle / MS Access
Use the following query to define a PRIMARY KEY constraints on multiple columns, and to allow naming of a PRIMARY KEY constraints.
For MySQL / SQL Server /Oracle / MS Access
A SQL DROP TABLE statement is used to delete a table definition and all data from a table.
This is very important to know that once a table is deleted all the information available in the table is lost forever, so we have to be very careful when using this command.
Let's see the syntax to drop the table from the database.
Let us take an example:
First we verify STUDENTS table and then we would delete it from the database.
FIELD-TYPE-NULL-KEY-DEFAULT-EXTRA
ID-Int(11)-NO-PRI--
NAME-Varchar(20)-NO---
AGE-Int(11)-NO---
ADDRESS-Varchar(25)-YES--NULL-
This shows that STUDENTS table is available in the database, so we can drop it as follows:
Now, use the following command to check whether table exists or not.
As you can see, table is dropped so it doesn't display it.
SQL DROP TABLE Example in MySQL
Let's see the command to drop a table from the MySQL database.
SQL DROP TABLE Example in Oracle
Let's see the command to drop a table from Oracle database. It is same as MySQL.
SQL DROP TABLE Example in Microsoft SQLServer
Let's see the command to drop a table from SQLServer database. It is same as MySQL.
The DELETE statement is used to delete rows from a table. If you want to remove a specific row from a table you should use WHERE condition.
But if you do not specify the WHERE condition it will remove all the rows from the table.
There are some more terms similar to DELETE statement like as DROP statement and TRUNCATE statement but they are not exactly same there are some differences between them.
Difference between DELETE and TRUNCATE statements
There is a slight difference b/w delete and truncate statement. The DELETE statement only deletes the rows from the table based on the condition defined by WHERE clause or delete all the rows from the table when condition is not specified.
But it does not free the space containing by the table.
The TRUNCATE statement: it is used to delete all the rows from the table and free the containing space.
Let's see an "employee" table.
Emp_id-Name-Address-Salary
1-Michael-Allahabad-22000
2-Shurabhi-Varanasi-13000
3-Pappu-Delhi-24000
Execute the following query to truncate the table:
Difference b/w DROP and TRUNCATE statements
When you use the drop statement it deletes the table's row together with the table's definition so all the relationships of that table with other tables will no longer be valid.
When you drop a table:
On the other hand when we TRUNCATE a table, the table structure remains the same, so you will not face any of the above problems.
SQL RENAME TABLE syntax is used to change the name of a table. Sometimes, we choose non-meaningful name for the table. So it is required to be changed.
Let's see the syntax to rename a table from the database.
Optionally, you can write following command to rename the table.
Let us take an example of a table named "STUDENTS", now due to some reason we want to change it into table name "ARTISTS".
Table1: students
Name-Age-City
Amrita gill-25-Amritsar
Amrender sirohi-22-Ghaziabad
Divya khosla-20-Delhi
You should use any one of the following syntax to RENAME the table name:
Or
A truncate SQL statement is used to remove all rows (complete data) from a table. It is similar to the DELETE statement with no WHERE clause.
TRUNCATE TABLE Vs DELETE TABLE
Truncate table is faster and uses lesser resources than DELETE TABLE command.
TRUNCATE TABLE Vs DROP TABLE
Drop table command can also be used to delete complete table but it deletes table structure too. TRUNCATE TABLE doesn't delete the structure of the table.
Let's see the syntax to truncate the table from the database.
For example, you can write following command to truncate the data of employee table
Note: The rollback process is not possible after truncate table statement. Once you truncate a table you cannot use a flashback table statement to retrieve the content of the table.
If you want to copy a SQL table into another table in the same SQL server database, it is possible by using the select statement.
The syntax of copying table from one to another is given below:
For example, you can write following command to copy the records of hr_employee table into employee table.
Note: SELECT INTO is totally different from INSERT INTO statement
The concept of temporary table is introduced by SQL server. It helps developers in many ways:
Temporary tables can be created at run-time and can do all kinds of operations that a normal table can do. These temporary tables are created inside tempdb database.
There are two types of temp tables based on the behavior and scope.
Local Temp Variable
Local temp tables are only available at current connection time. It is automatically deleted when user disconnects from instances. It is started with hash (#) sign.
Global Temp Variable
Global temp tables name starts with double hash (##). Once this table is created, it is like a permanent table. It is always ready for all users and not deleted until the total connection is withdrawn.
The ALTER TABLE statement is used to add, modify or delete columns in an existing table. It is also used to rename a table.
You can also use SQL ALTER TABLE command to add and drop various constraints on an existing table.
SQL ALTER TABLE Add Column
If you want to add columns in SQL table, the SQL alter table syntax is given below:
If you want to add multiple columns in table, the SQL table will be
SQL ALTER TABLE Modify Column
If you want to modify an existing column in SQL table, syntax is given below:
If you want to modify multiple columns in table, the SQL table will be
SQL ALTER TABLE DROP Column
The syntax of alter table drop column is given below:
SQL ALTER TABLE RENAME Column
The syntax of alter table rename column is given below:
The most commonly used SQL command is SELECT statement. It is used to query the database and retrieve selected data that follow the conditions we want.
In simple words, we can say that the select statement used to query or retrieve data from a table in the database.
Let's see the syntax of select statement.
Here expression is the column that we want to retrieve.
Tables indicate the tables, we want to retrieve records from.
Optional clauses in SELECT statement
There are some optional clauses in SELECT statement:
[WHERE Clause] : It specifies which rows to retrieve.
[GROUP BY Clause] : Groups rows that share a property so that the aggregate function can be applied to each group.
[HAVING Clause] : It selects among the groups defined by the GROUP BY clause.
[ORDER BY Clause] : It specifies an order in which to return the rows.
For example, let a database table: student_details;
ID-First_name-Last_name-Age-Subject-Hobby
1-Amar-Sharma-20-Maths-Cricket
2-Akbar-Khan-22-Biology-Football
3-Anthony-Milton-25-Commerce-Gambling
From the above example, select the first name of all the students. To do so, query should be like this:
Note: the SQL commands are not case sensitive. We can also write the above SELECT statement as:
Now, you will get following data:
Amar
Akbar
Anthony
We can also retrieve data from more than one column. For example, to select first name and last name of all the students, you need to write
Now, you will get following data:
Amar-Sharma
Akbar-Khan
Anthony-Milton
We can also use clauses like WHERE, GROUP BY, HAVING, ORDER BY with SELECT statement.
Here a point is notable that only SELECT and FROM statements are necessary in SQL SELECT statements. Other clauses like WHERE, GROUP BY, ORDER BY, HAVING may be optional.
Actually, there is no difference between DISTINCT and UNIQUE.
SELECT UNIQUE is an old syntax which was used in oracle description but later ANSI standard defines DISTINCT as the official keyword.
After that oracle also added DISTINCT but did not withdraw the service of UNIQUE keyword for the sake of backward compatibility.
In simple words, we can say that SELECT UNIQUE statement is used to retrieve a unique or distinct element from the table.
Let's see the syntax of select unique statement.
SQL SELECT DISTINCT statement can also be used for the same cause.
The SQL DISTINCT command is used with SELECT key word to retrieve only distinct or unique data.
In a table, there may be a chance to exist a duplicate value and sometimes we want to retrieve only unique values. In such scenarios, SQL SELECT DISTINCT statement is used.
Note: SQL SELECT UNIQUE and SQL SELECT DISTINCT statements are same.
Let's see the syntax of select distinct statement.
Let's try to understand it by the table given below:
Student_Name-Gender-Mobile_Number-HOME_TOWN
Rahul Ojha-Male-7503896532-Lucknow
Disha Rai-Female-9270568893-Varanasi
Sonoo Jaiswal-Male-9990449935-Lucknow
Here is a table of students from where we want to retrieve distinct information For example: distinct home-town.
Now, it will return two rows.
HOME_TOWN
Lucknow
Varanasi
The SQL COUNT() function is used to return the number of rows in a query.
The COUNT() function is used with SQL SELECT statement and it is very useful to count the number of rows in a table having enormous data.
For example: If you have a record of the voters in selected area and want to count the number of voters then it is very difficult to do it manually but you can do it easily by using the SQL SELECT COUNT query.
Let's see the syntax of SQL COUNT statement.
Let's see the examples of sql select count function.
SQL SELECT COUNT(column_name)
It will return the total number of names of employee_table. But null fields will not be counted.
SQL SELECT COUNT(*)
The "select count(*) from table" is used to return the number of records in table.
SQL SELECT COUNT(DISTINCT column_name)
It will return the total distinct names of employee_table.
The SQL SELECT TOP Statement is used to select top data from a table. The top clause specifies that how many rows are returned.
Let's see an example. If a table has a large number of data, select top statement determines that how many rows will be retrieved from the given table.
There is an example of employee table:
EMP_ID-NAME-SIR_NAME-USER_NAME
1-RAHUL-OJHA-ra@jha
2-ANU-SHARMA-anusha1
3-RAVI-SINGHAL-ravin
Let's see the syntax for the select top statement.
Let's see the example of sql select top statement.
It will return the following table:
EMP_ID-NAME-SIR_NAME-USER_NAME
1-RAHUL-OJHA-ra@jha
2-ANU-SHARMA-anusha1
The SQL first() function is used to return the first value of the selected column.
Let's see the syntax of sql select first() function:
Here a point is notable that first function is only supported by MS Access.
If you want to retrieve the first value of the "customer_name" column from the "customers" table, you need to write following query:
Let us take the example of CUSTOMERS to examine SQL SELECT FIRST command:
Table CUSTOMERS
CUSTOMER_NAME-AGE-ADDRESS-EXPENDITURE
KAMAL SHARMA-26-GHAZIABAD-6000
ROBERT PETT-23-NEWYORK-26000
SHIKHA SRIVASTAV-22-DELHI-9000
If you want to retrieve the first value of the "customer_name" column from the "customers" table, you need to write following query:
Let's see the syntax of sql select first() function:
Note: The SELECT FIRST statement is only supported by MS Access. This statement doesn't work with other databases like Oracle, MySQL etc.
The last() function is used to return the last value of the specified column.
Syntax for SQL SELECT LAST() FUNCTION:
You should note that the last() function is only supported in MS Access. But there are ways to get the last record in MySql, SQL Server, Oracle etc. databases.
My SQL syntax:
SQL Server syntax:
Oracle syntax:
Let us take the example of CUSTOMERS to examine SQL SELECT LAST command:
Table CUSTOMERS
CUSTOMER_NAME-AGE-ADDRESS-EXPENDITURE
KAMAL SHARMA-26-GHAZIABAD-6000
ROBERT PETT-23-NEWYORK-26000
SHIKHA SRIVASTAV-22-DELHI-9000
If you want to retrieve the last value of the "customer_name" column from the "customers" table, you need to write following query:
The SQL SELECT RANDOM() function returns the random row. It can be used in online exam to display the random questions.
There are a lot of ways to select a random record or row from a database table. Each database server needs different SQL syntax.
If you want to select a random row with MY SQL:
If you want to select a random row with Microsoft SQL server:
If you want to select a random record with ORACLE:
If you want to select a random row with PostgreSQL:
SQL AS is used to assign temporarily a new name to a table column.
It makes easy presentation of query results and allows the developer to label results more accurately without permanently renaming table columns.
Let's see the example of select as:
Let us take a table named orders, it contains:
Day_of_order-Customer-Product-Quantity
11-09-2001-James-Mobile-2
13-12-2001-Mayank-Laptop-20
26-12-2004-Balaswamy-Water cannon-35
After applying this SQL AS example syntax
Result will be shown as this table:
Date-Client-Product-Quantity
11-09-2001-James-Mobile-2
13-12-2001-Mayank-Laptop-20
26-12-2004-Balaswamy-Water cannon-35
Note: SQL AS is same as SQL ALIAS
SQL IN is an operator used in a SQL query to help reduce the need to use multiple SQL "OR" conditions.
It is used in SELECT, INSERT, UPDATE or DELETE statement.
Advantage of SQL SELECT IN
It minimizes the use of SQL OR operator.
Let's see the syntax for SQL IN:
Take an example with character values.
Let's take another example with numeric values.
SQL SELECT from Multiple Tables
This statement is used to retrieve fields from multiple tables. To do so, we need to use join query to get data from multiple tables.
Let's see the example for the select from multiple tables:
Let us take three tables, two tables of customers named customer1 and customer2 and the third table is product table.
Customer1 table
Cus_id-Name1
1-Jack
2-Jill
Customer2 table
Cus_id-Name2
1-Sandy
2-Venus
Product table
P_id-Cus_id-P_name
1-1-Laptop
2-2-Phone
3-P1-Pen
4-P2-Notebook
Example syntax to select from multiple tables:
P_id-Cus_id-P_name-P_name-P_name
1-1-Laptop-Jack-NULL
2-2-Phone-Jill-NULL
3-P1-Pen-NULL-Sandy
4-P2-Notebook-NULL-Venus
SQL SELECT DATE is used to retrieve a date from a database. If you want to find a particular date from a database, you can use this statement.
For example: let's see the query to get all the records after '2013-12-12'.
Let's see the another query to get all the records after '2013-12-12' and before '2013-12-13' date.
If you want to compare the dates within the query, you should use BETWEEN operator to compare the dates.
Or if you are looking for one date in particular you can use. You should change the date parameter into the acceptable form.
It is also known as SQL SUM() function. It is used in a SQL query to return summed value of an expression.
Let's see the Syntax for the select sum function:
expression may be numeric field or formula.
This would produce the following result.
ID-EMPLOYEE_NAME-SALARY
1-JACK REACHER-32000
2-PADMA ROBERTWARI-22000
3-JOE PETRA-41000
4-AMBUJ AGRAWAL-21000
After using this SQL SELECT SUM example, it will produce the result containing the sum of the salary greater than 20000.
Total salary: 116,000
SQL SUM EXAMPLE with single field:
If you want to know how the combined total salary of all employee whose salary is above 20000 per month.
In this example, you will find the expression as "Total Salary" when the result set is returned.
SQL SUM EXAMPLE with SQL DISTINCT:
You can also use SQL DISTINCT clause with SQL SUM function.
SQL SUM EXAMPLE with SQL GROUP BY:
Sometimes there is a need to use the SQL GROUP BY statement with the SQL SUM function.
For example, we could also use the SQL SUM function to return the name of department and the total sales related to department.
Let us take a table named order_details
ID-DEPARTMENT-DATE-DAILY SALES
1-Mechanical-2012-08-13-360
2-Electrical-2012-08-13-100
2-Electrical-2012-08-14-110
3-Electronics-2012-08-13-150
3-Electronics-2012-08-14-170
After using the SQL GROUP BY statement with SUM, you will find the following result.
DEPARTMENT-SUM(DAILY SALES)
Mechanical-360
Electrical-210
electronics-320
First of all we should know that what null value is? Null values are used to represent missing unknown data.
There can be two conditions:
If in a table, a column is optional, it is very easy to insert data in column or update an existing record without adding a value in this column. This means that field has null value.
Note: we should not compare null value with 0. They are not equivalent.
Where SQL is NULL:
How to select records with null values only? (in the marks column)
There is an example of student table:
SIR_NAME-NAME-MARKS
TYAGI-SEEMA-
SINGH-RAMAN-5.5
SHARMA-AMAR-
JAISWAL-VICKY-6.2
Let's see the query to get all the records where marks is NULL:
It will return the following records:
SIR_NAME-NAME-MARKS
SHARMA-AMAR-
TYAGI-SEEMA-
Where SQL is NOT NULL:
How to select records with no null values(in marks column)? Let's see the query to get all the records where marks is NOT NULL
SIR_NAME-NAME-MARKS
SINGH-RAMAN-5.5
JAISWAL-VICKY-6.2
A WHERE clause in SQL is a data manipulation language statement.
WHERE clauses are not mandatory clauses of SQL DML statements. But it can be used to limit the number of rows affected by a SQL DML statement or returned by a query.
Actually. it filters the records. It returns only those queries which fulfill the specific conditions.
WHERE clause is used in SELECT, UPDATE, DELETE statement etc.
Let's see the syntax for sql where:
WHERE clause uses some conditional selection
=-equal
>-greater than
<-less than
>=-greater than or equal
<=-less than or equal
< >-not equal to
The SQL AND condition is used in SQL query to create two or more conditions to be met.
It is used in SQL SELECT, INSERT, UPDATE and DELETE statements.
Let's see the syntax for SQL AND:
The SQL AND condition requires that both conditions should be met.
The SQL AND condition also can be used to join multiple tables in a SQL statement.
SQL "AND" example with "INSERT" statement
This is how an SQL "AND" condition can be used in the SQL INSERT statement.
For example:
SQL "AND" example with "UPDATE" statement
This is how the "AND" condition can be used in the SQL UPDATE statement.
For example:
SQL "AND" example with "DELETE" statement
This is how an SQL "AND" condition can be used in the SQL DELETE statement.
For example:
The SQL OR condition is used in a SQL query to create a SQL statement where records are returned when any one of the condition met. It can be used in a SELECT statement, INSERT statement, UPDATE statement or DELETE statement.
Let's see the syntax for OR condition:
SQL "OR" example with SQL SELECT
SQL "OR" example with SQL INSERT
You can see in below example that how an SQL "OR" condition is used with SQL insert statement.
For example:
SQL "OR" example with SQL UPDATE
For example:
SQL "OR" example with SQL DELETE
For example:
The SQL WITH clause is used to provide a sub-query block which can be referenced in several places within the main SQL query. It was introduced by oracle in oracle 9i release2 database.
There is an example of employee table:
Syntax for the SQL WITH clause -
This syntax is for SQL WITH clause using a single sub-query alias.
When you use multiple sub-query aliases, the syntax will be as follows.
SQL ORDER BY Clause
The SQL ORDER BY clause is used for sorting data in ascending and descending order based on one or more columns.
Some databases sort query results in ascending order by default.
SQL ORDER BY syntax:
Let us take a CUSTOMERS table having the following records:
ID-NAME-AGE-ADDRESS-SALARY
1-Himani gupta-21-Modinagar-22000
2-Shiva tiwari-22-Bhopal-21000
3-James bhargav-45-Meerut-65000
4-Ritesh yadav-36-Azamgarh-26000
5-Balwant singh-45-Varanasi-36000
6-Robert -26-Mathura-22000
This is an example that would sort the result in ascending order by NAME and SALARY.
This would produce the following result.
ID-NAME-AGE-ADDRESS-SALARY
3-James bhargav-45-Meerut-65000
5-Balwant singh-45-Varanasi-36000
1-Himani gupta-21-Modinagar-22000
6-Robert -26-Mathura-22000
4-Ritesh yadav-36-Azamgarh-26000
2-Shiva tiwari-22-Bhopal-21000
This is an example to sort the result in descending order by NAME.
This would produce the following result.
ID-NAME-AGE-ADDRESS-SALARY
2-Shiva tiwari-22-Bhopal-21000
4-Ritesh yadav-36-Azamgarh-26000
6-Robert -26-Mathura-22000
1-Himani gupta-21-Modinagar-22000
5-Balwant singh-45-Varanasi-36000
3-James bhargav-45-Meerut-65000
SQL ORDER BY CLAUSE WITH ASCENDING ORDER
This statement is used to sort data in ascending order. If you miss the ASC attribute, SQL ORDER BY query takes ascending order by default.
Let's take an example of supplier
Let us take a CUSTOMERS table having the following records:
ID-NAME-AGE-ADDRESS-SALARY
1-Himani gupta-21-Modinagar-22000
2-Shiva tiwari-22-Bhopal-21000
3-James bhargav-45-Meerut-65000
4-Ritesh yadav-36-Azamgarh-26000
5-Balwant singh-45-Varanasi-36000
6-Robert -26-Mathura-22000
This is an example to sort the result in ascending order by NAME and SALARY.
This would produce the following result.
ID-NAME-AGE-ADDRESS-SALARY
3-James bhargav-45-Meerut-65000
5-Balwant singh-45-Varanasi-36000
1-Himani gupta-21-Modinagar-22000
6-Robert -26-Mathura-22000
4-Ritesh yadav-36-Azamgarh-26000
2-Shiva tiwari-22-Bhopal-21000
SQL ORDER BY CLAUSE WITH DESCENDING ORDER:
This statement is used to sort data in descending order. You should use the DESC attribute in your ORDER BY clause as follows.
Let's see an example of an employee table:
ID-NAME-AGE-ADDRESS-SALARY
1-Himani gupta-21-Modinagar-22000
2-Shiva tiwari-22-Bhopal-21000
3-James bhargav-45-Meerut-65000
4-Ritesh yadav-36-Azamgarh-26000
5-Balwant singh-45-Varanasi-36000
6-Robert -26-Mathura-22000
This is an example to sort the result in descending order by NAME.
This would produce the following result.
ID-NAME-AGE-ADDRESS-SALARY
2-Shiva tiwari-22-Bhopal-21000
4-Ritesh yadav-36-Azamgarh-26000
6-Robert -26-Mathura-22000
1-Himani gupta-21-Modinagar-22000
5-Balwant singh-45-Varanasi-36000
3-James bhargav-45-Meerut-65000
SQL ORDER BY RANDOM
If you want the resulting record to be ordered randomly, you should use the following codes according to several databases.
Here a question occurs that what is the need of fetching a random record or a row from a database?
Sometimes you may want to display random information like articles, links, pages etc. to your user.
If you want to fetch random rows from any of the databases you have to use some queries which are altered according to the databases.
Select a random row with MySQL:
If you want to return a random row with MY SQL, Use the following code:
Select a random row with Postgre SQL:
Select a random row with SQL Server:
Select a random row with oracle:
Select a random row with IBM DB2:
SQL ORDER BY LIMIT
We can retrieve limited rows from the database. I can be used in pagination where are forced to show only limited records like 10, 50, 100 etc.
LIMIT CLAUSE FOR ORACLE SQL:
If you want to use LIMIT clause with SQL, you have to use ROWNUM queries because it is used after result are selected.
You should use the following code:
This query will give you 21th to 40th rows.
SQL SORTING ON MULTIPLE COLUMNS
Let's take an example of customer table which has many columns, the following SQL statement selects all customers from the table named "customer", stored by the "country" and "Customer-Name" columns:
SQL INSERT statement is a SQL query. It is used to insert a single or a multiple records in a table.
There are two ways to insert data in a table:
1) Inserting data directly into a table
You can insert a row in the table by using SQL INSERT INTO command. But there are 2 ways to do this.
You can specify or ignore the column names while using INSERT INTO statement.
To insert partial column values, you must have to specify the column names. But if you want to insert all the column values, you can specify or ignore the column names.
If you specify the column names, syntax of the insert into statement will be as follows:
Here col1, col2, col3, colN are the columns of the table in which you want to insert data.
Note: At the time of inserting a row into table, if you add values for all columns then there is no need to specify the column name in SQL INSERT query. Moreover, you must be sure that you are entering the values in the same order as the columns exist.
But, If you ignore the column names, syntax of the insert into statement will be as follows:
2) Inserting data through SELECT Statement
SQL INSERT INTO SELECT Syntax
Note: when you add a new row, you should make sure that data type of the value and the column should be matched.
If any integrity constraints are defined for the table, you must follow them.
SQL INSERT INTO VALUE
There are two ways to insert values in a table.
In the first method there is no need to specify the column name where the data will be inserted, you need only their values.
The second method specifies both the column name and values which you want to insert.
Let's take an example of table which has five records within it.
It will show the following table as the final result.
ROLL_NO-NAME-AGE-CITY
1-ABHIRAM-22-ALLAHABAD
2-ALKA-20-GHAZIABAD
3-DISHA-21-VARANASI
4-ESHA-21-DELHI
5-MANMEET-23-JALANDHAR
You can create a record in CUSTOMERS table by using this syntax also.
The following table will be as follow:
ROLL_NO-NAME-AGE-CITY
1-ABHIRAM-22-ALLAHABAD
2-ALKA-20-GHAZIABAD
3-DISHA-21-VARANASI
4-ESHA-21-DELHI
5-MANMEET-23-JALANDHAR
6-PRATIK-24-KANPUR
SQL INSERT INTO SELECT
We know how to insert a single row or an individual data in a table at a time, but if you want to insert multiple rows in a table. In addition to INSERT INTO you will combine it with the select statement.
In this command, you are using information from another table.
Let's see the Syntax for sql insert into select:
The INSERT INTO statement can also contain many clauses like SELECT, GROUP BY, HAVING as well as JOIN and ALIAS. So the insert into select statement may be complicated some times.
Let's take an example:
There is a table, named sales_data in a database name departmental store while table store_information contains the record of those data which are sold from the store per day. If you want to move data from sales_data to store_information
You should use the following syntax:
SQL INSERT MULTIPLE ROWS
Many times developers ask that is it possible to insert multiple rows into a single table in a single statement. Currently developers have to write multiple insert statement when they insert values in a table. It is not only boring, also time consuming. To get rid from this you should try this syntax. Actually there are three different methods to insert multiple values into a single table.
Insert multiple values in SQL server
1. SQL INSERT: (TRADITIONAL INSERT)
TO CLEAN-UP:
2. INSERT SELECT: (SELECT UNION INSERT)
3.SQL Server 2008+ Row Construction
The SQL commands (UPDATE and DELETE) are used to modify the data that is already in the database. The SQL DELETE command uses a WHERE clause.
SQL UPDATE statement is used to change the data of the records held by tables. Which rows is to be update, it is decided by a condition. To specify condition, we use WHERE clause.
The UPDATE statement can be written in following form:
Let's see the Syntax:
Let's take an example: here we are going to update an entry in the source table.
SQL statement:
Source Table:
Student_Id-FirstName-LastName-User_Name
1-Ada-Sharma-sharmili
2-Rahul-Maurya-sofamous
3-James-Walker-jonny
See the result after updating value:
Student_Id-FirstName-LastName-User_Name
1-Ada-Sharma-sharmili
2-Rahul-Maurya-sofamous
3-James-Walker-beinghuman
Updating Multiple Fields:
If you are going to update multiple fields, you should separate each field assignment with a comma.
SQL UPDATE statement for multiple fields:
Result of the table is given below:
Student_Id-FirstName-LastName-User_Name
1-Ada-Sharma-sharmili
2-Rahul-Maurya-sofamous
3-Johnny-Walker-beserious
MYSQL SYNTAX FOR UPDATING TABLE:
SQL UPDATE SELECT:
SQL UPDATE WITH SELECT QUERY:
We can use SELECT statement to update records through UPDATE statement.
SYNTAX:
You can also try this one -
My SQL SYNTAX:
If you want to UPDATE with SELECT in My SQL, you can use this syntax:
Let's take an example having two tables. Here,
First table contains -
Cat_id, cat_name,
And the second table contains -
Rel_cat_id, rel_cat_name
SQL UPDATE COLUMN:
We can update a single or multiple columns in SQL with SQL UPDATE query.
SQL UPDATE EXAMPLE WITH UPDATING SINGLE COLUMN:
This SQL UPDATE example would update the student_id to '001' in the student table where student_name is 'JAMES'.
SQL UPDATE EXAMPLE WITH UPDATING MULTIPLE COLUMNS:
To update more than one column with a single update statement:
This SQL UPDATE statement will change the student name to 'JAMES' and religion to 'HINDU' where the student name is 'RAJU'.
SQL UPDATE with JOIN
SQL UPDATE JOIN means we will update one table using another table and join condition.
Let us take an example of a customer table. I have updated customer table that contains latest customer details from another source system. I want to update the customer table with latest data. In such case, I will perform join between target table and source table using join on customer ID.
Let's see the syntax of SQL UPDATE query with JOIN statement.
How to use multiple tables in SQL UPDATE statement with JOIN
Let's take two tables, table 1 and table 2.
Create table1
Create table2
Now check the content in the table.
-Col 1-Col 2-Col 3
1-1-11-First
2-11-12-Second
3-21-13-Third
4-31-14-Fourth
-Col 1-Col 2-Col 3
1-1-21-Two-One
2-11-22-Two-Two
3-21-23-Two-Three
4-31-24-Two-Four
Our requirement is that we have table 2 which has two rows where Col 1 is 21 and 31. We want to update the value from table 2 to table 1 for the rows where Col 1 is 21 and 31.
We want to also update the values of Col 2 and Col 3 only.
The most easiest and common way is to use join clause in the update statement and use multiple tables in the update statement.
Check the content of the table
SELECT FROM table 1
SELECT FROM table 2
-Col 1-Col 2-Col 3
1-1-11-First
2-11-12-Second
3-21-23-Two-Three
4-31-24-Two-Four
-Col 1-Col 2-Col 3
1-1-21-First
2-11-22-Second
3-21-23-Two-Three
4-31-24-Two-Four
Here we can see that using join clause in update statement. We have merged two tables by the use of join clause.
How to update a date and time field in SQL?
If you want to update a date & time field in SQL, you should use the following query.
let's see the syntax of sql update date.
Let us check this by an example:
Firstly we take a table in which we want to update date and time fields.
If you want to change the first row which id is 1 then you should write the following syntax:
Note: you should always remember that SQL must attach default 00:00:00.000 automatically.
This query will change the date and time field of the first row in that above assumed table.
The SQL DELETE statement is used to delete rows from a table. Generally DELETE statement removes one or more records from a table.
SQL DELETE Syntax
Let's see the Syntax for the SQL DELETE statement:
Here table_name is the table which has to be deleted. The WHERE clause in SQL DELETE statement is optional here.
SQL DELETE Example
Let us take a table, named "EMPLOYEE" table.
ID-EMP_NAME-CITY-SALARY
101-Adarsh Singh-Obra-20000
102-Sanjay Singh-Meerut-21000
103-Priyanka Sharma-Raipur-25000
104-Esha Singhal-Delhi-26000
Example of delete with WHERE clause is given below:
Resulting table after the query:
ID-EMP_NAME-CITY-SALARY
102-Sanjay Singh-Meerut-21000
103-Priyanka Sharma-Raipur-25000
104-Esha Singhal-Delhi-26000
Another example of delete statement is given below
Resulting table after the query:
ID-EMP_NAME-CITY-SALARY
It will delete all the records of EMPLOYEE table.
It will delete the all the records of EMPLOYEE table where ID is 101.
The WHERE clause in the SQL DELETE statement is optional and it identifies the rows in the column that gets deleted.
WHERE clause is used to prevent the deletion of all the rows in the table, If you don't use the WHERE clause you might loss all the rows.
Invalid DELETE Statement for ORACLE database
You cannot use * (asterisk) symbol to delete all the records.
SQL DELETE TABLE
The DELETE statement is used to delete rows from a table. If you want to remove a specific row from a table you should use WHERE condition.
But if you do not specify the WHERE condition it will remove all the rows from the table.
There are some more terms similar to DELETE statement like as DROP statement and TRUNCATE statement but they are not exactly same there are some differences between them.
Difference between DELETE and TRUNCATE statements
There is a slight difference b/w delete and truncate statement. The DELETE statement only deletes the rows from the table based on the condition defined by WHERE clause or delete all the rows from the table when condition is not specified.
But it does not free the space containing by the table.
The TRUNCATE statement: it is used to delete all the rows from the table and free the containing space.
Let's see an "employee" table.
Emp_id-Name-Address-Salary
1-Michael-Allahabad-22000
2-Shurabhi-Varanasi-13000
3-Pappu-Delhi-24000
Execute the following query to truncate the table:
Difference b/w DROP and TRUNCATE statements
When you use the drop statement it deletes the table's row together with the table's definition so all the relationships of that table with other tables will no longer be valid.
When you drop a table:
On the other hand when we TRUNCATE a table, the table structure remains the same, so you will not face any of the above problems.
SQL DELETE ROW
Let us take an example of student.
Original table:
ID-STUDENT _NAME-ADDRESS
001-JAMES MAURYA-GHAZIABAD
002-RAJA KHAN-LUCKNOW
003-RAVI MALIK-DELHI
If you want to delete a student with id 003 from the student_name table, then the SQL DELETE query should be like this:
Resulting table after SQL DELETE query:
ID-STUDENT_NAME-ADDRESS
001-JAMES MAURYA-GHAZIABAD
002-RAJA KHAN-LUCKNOW
SQL DELETE ALL ROWS
The statement SQL DELETE ALL ROWS is used to delete all rows from the table. If you want to delete all the rows from student table the query would be like,
Resulting table after using this query:
ID-STUDENT_NAME-ADDRESS
SQL DELETE DUPLICATE ROWS
If you have got a situation that you have multiple duplicate records in a table, so at the time of fetching records from the table you should be more careful. You make sure that you are fetching unique records instead of fetching duplicate records.
To overcome with this problem we use DISTINCT keyword.
It is used along with SELECT statement to eliminate all duplicate records and fetching only unique records.
SYNTAX:
The basic syntax to eliminate duplicate records from a table is:
EXAMPLE:
Let us take an example of STUDENT table.
ROLL_NO-NAME-PERCENTAGE-ADDRESS
1-JAMES MAURYA-72.8-ALLAHABAD
2-CHANDAN SHARMA-63.5-MATHURA
3-DIVYA AGRAWAL-72.3-VARANASI
4-RAJAT KUMAR-72.3-DELHI
5-RAVI TYAGI-75.5-HAPUR
6-SONU JAISWAL-71.2-GHAZIABAD
Firstly we should check the SELECT query and see how it returns the duplicate percentage records.
PERCENTAGE
63.5
71.2
72.3
72.3
72.8
75.5
Now let us use SELECT query with DISTINCT keyword and see the result. This will eliminate the duplicate entry.
PERCENTAGE
63.5
71.2
72.3
72.8
75.5
SQL DELETE DATABASE
You can easily remove or delete indexes, tables and databases with the DROP statement.
The DROP index statement is:
Used to delete index in the table
DROP INDEX SYNTAX for MS Access:
DROP INDEX SYNTAX for MS SQL Server:
DROP INDEX syntax for DB2/Oracle:
DROP INDEX syntax for MySQL:
DROP DATABASE Statement:
The drop database statement is used to delete a database.
Note:
We should always note that in RDBMS, database name should be unique.
We should always remember that DROP database command may be the cause of loss of all information so we should always be careful while doing this operation.
SQL DELETE VIEW
Before knowing about what is SQL delete view, it is important to know -
What is SQL view?
A view is a result set of a stored query on the data.
The SQL view is a table which does not physically exist. It is only a virtual table.
SQL VIEW can be created by a SQL query by joining one or more table.
Syntax for SQL create view -
If you want to delete a SQL view, It is done by SQL DROP command you should use the following syntax:
SQL DROP VIEW syntax:
Why use the SQL DROP VIEW statement?
When a view no longer useful you may drop the view permanently. Also if a view needs change within it, it would be dropped and then created again with changes in appropriate places.
SQL DELETE JOIN
This is very commonly asked question that how to delete or update rows using join clause
It is not a very easy process, sometimes, we need to update or delete records on the basis of complex WHERE clauses.
There are three tables which we use to operate on SQL syntax for DELETE JOIN.
These tables are table1, table2 and target table.
SQL Syntax for delete JOIN
Syntax for update
As the name shows, JOIN means to combine something. In case of SQL, JOIN means "to combine two or more tables".
The SQL JOIN clause takes records from two or more tables in a database and combines it together.
ANSI standard SQL defines five types of JOIN :
In the process of joining, rows of both tables are combined in a single table.
Why SQL JOIN is used?
If you want to access more than one table through a select statement.
If you want to combine two or more table then SQL JOIN statement is used .it combines rows of that tables in one table and one can retrieve the information by a SELECT statement.
The joining of two or more tables is based on common field between them.
SQL INNER JOIN also known as simple join is the most common type of join.
How to use SQL join or SQL Inner Join?
Let an example to deploy SQL JOIN process:
1.Staff table
ID-Staff_NAME-Staff_AGE-STAFF_ADDRESS-Monthley_Package
1-MICHAEL-22-MUMBAI-18000
2-SUSHIL-32-DELHI-20000
3-MONTY-25-MOHALI-22000
4-AMIT-20-ALLAHABAD-12000
2.Payment table
Payment_ID-DATE-Staff_ID-AMOUNT
101-30/12/2009-1-3000.00
102-22/02/2010-3-2500.00
103-23/02/2010-4-3500.00
So if you follow this JOIN statement to join these two tables ?
This will produce the result like this:
STAFF_ID-NAME-Staff_AGE-AMOUNT
3-MONTY-25-2500
1-MICHAEL-22-3000
4-AMIT-25-3500
1-MICHAEL-22-3000
SQL OUTER JOIN
In the SQL outer JOIN all the content of the both tables are integrated together either they are matched or not.
If you take an example of employee table
Outer join of two types:
1.Left outer join (also known as left join): this join returns all the rows from left table combine with the matching rows of the right table. If you get no matching in the right table it returns NULL values.
2.Right outer join (also known as right join): this join returns all the rows from right table are combined with the matching rows of left table .If you get no column matching in the left table .it returns null value.
This diagram shows the different type of joins:
SQL LEFT JOIN
The SQL left join returns all the values from the left table and it also includes matching values from right table, if there are no matching join value it returns NULL.
BASIC SYNTAX FOR LEFT JOIN:
let us take two tables in this example to elaborate all the things:
CUSTOMER TABLE:
ID-NAME-AGE-SALARY
1-MICHAEL-51-56000
2-AROHI-21-25000
3-VINEET-24-31000
4-JAMES-23-32000
5-RAVI-23-42000
This is second table
ORDER TABLE:
O_ID-DATE-CUSTOMER_ID-AMOUNT
001-20-01-2012-2-3000
002-12-02-2012-2-2000
003-22-03-2012-3-4000
004-11-04-2012-4-5000
join these two tables with LEFT JOIN:
This will produce the following result:
ID-NAME-AMOUNT-DATE
1-MICHAEL-NULL-NULL
2-AROHI-3000-20-01-2012
2-AROHI-2000-12-02-2012
3-VINEET-4000-22-03-2012
4-JAMES-5000-11-04-2012
5-RAVI-NULL-NULL
SQL RIGHT JOIN
The SQL right join returns all the values from the rows of right table. It also includes the matched values from left table but if there is no matching in both tables, it returns NULL.
Basic syntax for right join:
let us take an example with 2 tables table1 is CUSTOMERS table and table2 is ORDERS table.
CUSTOMER TABLE:
ID-NAME-AGE-SALARY
1-MICHAEL-51-56000
2-AROHI-21-25000
3-VINEET-24-31000
4-JAMES-23-32000
5-RAVI-23-42000
and this is the second table:
ORDER TABLE:
DATE-O_ID-CUSTOMER_ID-AMOUNT
20-01-2012-001-2-3000
12-02-2012-002-2-2000
22-03-2012-003-3-4000
11-04-2012-004-4-5000
Here we will join these two tables with SQL RIGHT JOIN:
ID-NAME-AMOUNT-DATE
2-AROHI-3000-20-01-2012
2-AROHI-2000-12-02-2012
3-VINEET-4000-22-03-2012
4-JAMES-5000-11-04-2012
SQL FULL JOIN
The SQL full join is the result of combination of both left and right outer join and the join tables have all the records from both tables. It puts NULL on the place of matches not found.
SQL full outer join and SQL join are same. generally it is known as SQL FULL JOIN.
SQL full outer join:
What is SQL full outer join?
SQL full outer join is used to combine the result of both left and right outer join and returns all rows (don't care its matched or unmatched) from the both participating tables.
Syntax for full outer join:
Note:here table1 and table2 are the name of the tables participating in joining and column_name is the column of the participating tables.
Let us take two tables to demonstrate full outer join:
table_A
A-M
1-m
2-n
4-o
table_B
A-N
2-p
3-q
5-r
Resulting table
A-M-A-N
2-n-2-p
1-m----
4-o----
----3-q
----5-r
Because this is a full outer join so all rows (both matching and non-matching) from both tables are included in the output. Here only one row of output displays values in all columns because there is only one match between table_A and table_B.
SQL Cross Join
When each row of first table is combined with each row from the second table, known as Cartesian join or cross join. In general words we can say that SQL CROSS JOIN returns the Cartesian product of the sets of rows from the joined table.
We can specify a CROSS JOIN in two ways:
SYNTAX of SQL Cross Join
Let us take an example of two tables,
Table1 - MatchScore
Player-Department_id-Goals
Franklin-1-2
Alan-1-3
Priyanka-2-2
Rajesh-3-5
Table2 - Departments
Department_id-Department_name
1-IT
2-HR
3-Marketing
SQL Statement:
After executing this query , you will find the following result:
Player-Department_id-Goals-Depatment_id-Department_name
Franklin-1-2-1-IT
Alan-1-3-1-IT
Priyanka-2-2-1-IT
Rajesh-3-5-1-IT
Franklin-1-2-2-HR
Alan-1-3-2-HR
Priyanka-2-2-2-HR
Rajesh-3-5-2-HR
Franklin-1-2-3-Marketing
Alan-1-3-3-Marketing
Priyanka-2-2-3-Marketing
Rajesh-3-5-3-Marketing
A column or columns is called primary key (PK) that uniquely identifies each row in the table.
If you want to create a primary key, you should define a PRIMARY KEY constraint when you create or modify a table.
When multiple columns are used as a primary key, it is known as composite primary key.
In designing the composite primary key, you should use as few columns as possible. It is good for storage and performance both, the more columns you use for primary key the more storage space you require.
Inn terms of performance, less data means the database can process faster.
Points to remember for primary key:
When we specify a primary key constraint for a table, database engine automatically creates a unique index for the primary key column.
Main advantage of primary key:
The main advantage of this uniqueness is that we get fast access.
In oracle, it is not allowed for a primary key to contain more than 32 columns.
SQL primary key for one column:
The following SQL command creates a PRIMARY KEY on the "S_Id" column when the "students" table is created.
MySQL:
SQL Server, Oracle, MS Access:
SQL primary key for multiple columns:
MySQL, SQL Server, Oracle, MS Access:
Note:you should note that in the above example there is only one PRIMARY KEY (pk_StudentID). However it is made up of two columns (S_Id and LastName).
SQL primary key on ALTER TABLE
When table is already created and you want to create a PRIMARY KEY constraint on the "S_Id" column you should use the following SQL:
Primary key on one column:
Primary key on multiple column:
When you use ALTER TABLE statement to add a primary key, the primary key columns must not contain NULL values (when the table was first created).
How to DROP a PRIMARY KEY constraint?
If you want to DROP (remove) a primary key constraint, you should use following syntax:
MySQL:
SQL Server / Oracle / MS Access:
SQL FOREIGN KEY
In the relational databases, a foreign key is a field or a column that is used to establish a link between two tables.
In simple words you can say that, a foreign key in one table used to point primary key in another table.
Let us take an example to explain it:
Here are two tables first one is students table and second is orders table.
Here orders are given by students.
First table:
S_Id-LastName-FirstName-CITY
1-MAURYA-JAMES-ALLAHABAD
2-JAISWAL-DAVID-GHAZIABAD
3-ARORA-SAUMYA-MODINAGAR
Second table:
O_Id-OrderNo-S_Id
1-99586465-2
2-78466588-2
3-22354846-3
4-57698656-1
Here you see that "S_Id" column in the "Orders" table points to the "S_Id" column in "Students" table.
The foreign key constraint is generally prevents action that destroy links between tables.
It also prevents invalid data to enter in foreign key column.
SQL FOREIGN KEY constraint ON CREATE TABLE:
(Defining a foreign key constraint on single column)
To create a foreign key on the "S_Id" column when the "Orders" table is created:
MySQL:
SQL Server /Oracle / MS Access:
SQL FOREIGN KEY constraint for ALTER TABLE:
If the Order table is already created and you want to create a FOREIGN KEY constraint on the "S_Id" column, you should write the following syntax:
Defining a foreign key constraint on single column:
MySQL / SQL Server / Oracle / MS Access:
DROP SYNTAX for FOREIGN KEY COSTRAINT:
If you want to drop a FOREIGN KEY constraint, use the following syntax:
MySQL:
SQL Server / Oracle / MS Access:
Difference between primary key and foreign key in SQL:
These are some important difference between primary key and foreign key in SQL-
Primary key cannot be null on the other hand foreign key can be null.
Primary key is always unique while foreign key can be duplicated.
Primary key uniquely identify a record in a table while foreign key is a field in a table that is primary key in another table.
There is only one primary key in the table on the other hand we can have more than one foreign key in the table.
By default primary key adds a clustered index on the other hand foreign key does not automatically create an index, clustered or non-clustered. You must manually create an index for foreign key.
SQL Composite Key
A composite key is a combination of two or more columns in a table that can be used to uniquely identify each row in the table when the columns are combined uniqueness is guaranteed, but when it taken individually it does not guarantee uniqueness.
Sometimes more than one attributes are needed to uniquely identify an entity. A primary key that is made by the combination of more than one attribute is known as a composite key.
In other words we can say that:
Composite key is a key which is the combination of more than one field or column of a given table. It may be a candidate key or primary key.
Columns that make up the composite key can be of different data types.
SQL Syntax to specify composite key:
In all cases composite key created consist of COLUMN1 and COLUMN2.
MySQL:
MySQL:
Oracle:
SQL Server:
Let's see the Syntax for the select top statement:
A unique key is a set of one or more than one fields/columns of a table that uniquely identify a record in a database table.
You can say that it is little like primary key but it can accept only one null value and it cannot have duplicate values.
The unique key and primary key both provide a guarantee for uniqueness for a column or a set of columns.
There is an automatically defined unique key constraint within a primary key constraint.
There may be many unique key constraints for one table, but only one PRIMARY KEY constraint for one table.
SQL UNIQUE KEY constraint on CREATE TABLE:
If you want to create a UNIQUE constraint on the "S_Id" column when the "students" table is created, use the following SQL syntax:
SQL Server / Oracle / MS Access:
(Defining a unique key constraint on single column):
MySQL:
(Defining a unique key constraint on multiple columns):
MySQL / SQL Server / Oracle / MS Access:
SQL UNIQUE KEY constraint on ALTER TABLE:
If you want to create a unique constraint on "S_Id" column when the table is already created, you should use the following SQL syntax:
(Defining a unique key constraint on single column):
MySQL / SQL Server / Oracle / MS Access:
(Defining a unique key constraint on multiple columns):
MySQL / SQL Server / Oracle / MS Access:
DROP SYNTAX FOR A FOREIGN KEY constraint:
If you want to drop a UNIQUE constraint, use the following SQL syntax:
MySQL:
SQL Server / Oracle / MS Access:
Alternate Key in SQL
Alternate key is a secondary key it can be simple to understand by an example:
Let's take an example of student it can contain NAME, ROLL NO., ID and CLASS.
Here ROLL NO. is primary key and rest of all columns like NAME, ID and CLASS are alternate keys.
If a table has more than one candidate key, one of them will become the primary key and rest of all are called alternate keys.
In simple words, you can say that any of the candidate key which is not part of primary key is called an alternate key. So when we talk about alternate key, the column may not be primary key but still it is a unique key in the column.
An alternate key is just a candidate key that has not been selected as the primary key.
There are a lot of databases used today in the industry. Some are SQL databases, some are NoSQL databases. The conventional database is SQL database system that uses tabular relational model to represent data and their relationship. The NoSQL database is the newer one database that provides a mechanism for storage and retrieval of data other than tabular relations model used in relational databases.
Following is a list of differences between SQL and NoSQL database:
SQL Vs NoSQL
1)
Databases are categorized as Relational Database Management System (RDBMS).
NoSQL databases are categorized as Non-relational or distributed database system.
2)
SQL databases have fixed or static or predefined schema.
NoSQL databases have dynamic schema.
3)
SQL databases display data in form of tables so it is known as table-based database.
NoSQL databases display data as collection of key-value pair, documents, graph databases or wide-column stores.
4)
SQL databases are vertically scalable.
NoSQL databases are horizontally scalable.
5)
SQL databases use a powerful language "Structured Query Language" to define and manipulate the data.
In NoSQL databases, collection of documents are used to query the data. It is also called unstructured query language. It varies from database to database.
6)
SQL databases are best suited for complex queries.
NoSQL databases are not so good for complex queries because these are not as powerful as SQL queries.
7)
SQL databases are not best suited for hierarchical data storage.
NoSQL databases are best suited for hierarchical data storage.
8)
MySQL, Oracle, Sqlite, PostgreSQL and MS-SQL etc. are the example of SQL database.
MongoDB, BigTable, Redis, RavenDB, Cassandra, Hbase, Neo4j, CouchDB etc. are the example of nosql database
There is given sql interview questions and answers that has been asked in many companies. For PL/SQL interview questions, visit our next page.
1) What is SQL?
SQL stands for the Structured Query Language. SQL is a standard query language used for maintaining the relational database and perform many different operations of data manipulation on the data. SQL initially was invented in 1970. It is a database language used for database creation, deletion, fetching rows and modifying rows, etc. sometimes it is pronounced as 'sequel.'
2) When SQL appeared?
It appeared in 1974. SQL is one of the often used languages for maintaining the relational database. SQL. In 1986 SQL become the standard of American National Standards Institute (ANSI) and ISO(International Organization for Standardization) in 1987.
3) What are the usages of SQL?
4) Does SQL support programming?
SQL refers to the Standard Query Language, which is not actually the programming language. SQL doesn't have a loop, Conditional statement, logical operations, it can not be used for anything other than data manipulation. It is used like commanding (Query) language to access databases. The primary purpose of SQL is to retrieve, manipulate, update and perform complex operations like joins on the data present in the database.
5) What are the subsets of SQL?
There is three significant subset of the SQL:
6) What is a Data Definition Language?
Data definition language (DDL) is the subset of the database which defines the data structure of the database in the initial stage when the database is about to be created. It consists of the following commands: CREATE, ALTER and DELETE database objects such as schema, tables, view, sequence, etc.
7) What is a Data Manipulation Language?
Data manipulation language makes the user able to retrieve and manipulate data. It is used to perform the following operations.
8) What is Data Control Language?
Data control language allows you to control access to the database. DCL is the only subset of the database which decides that what part of the database should be accessed by which user at what point of time. It includes two commands GRANT and REVOKE.
GRANT: to grant the specific user to perform a particular task
REVOKE: to cancel previously denied or granted permissions.
9) What are tables and fields in the database?
A table is a set of organized data. It has rows and columns. Rows here refers to the tuples which represent the simple data item and columns are the attribute of the data items present in particular row. Columns can categorize as vertical, and Rows are horizontal.
A table contains a specified number of the column called fields but can have any number of rows which is known as the record. So, the columns in the table of the database are known as the fields and they represent the attribute or characteristics of the entity in the record.
10) What is a primary key?
A primary key is a field or the combination of fields which uniquely specify a row. The Primary key is a special kind of unique key. Primary key values cannot be NULL. For example, the Social Security Number can be treated as the primary key for any individual.
11) What is a foreign key?
A foreign key is specified as a key which is related to the primary key of another table. A relationship needs to be created between two tables by referencing foreign key with the primary key of another table. Foreign key acts like a cross-reference between tables as it refers to the primary key of other table and the primary key-foreign key relationship is a very crucial relationship as it maintains the ACID properties of database sometimes.
12) What is a unique key?
Unique key constraint uniquely identifies each record in the database. This key provides uniqueness for the column or set of columns.
The Unique key cannot accept a duplicate value.
The unique key can accept only on Null value.
13) What is the difference between primary key and unique key?
Primary key and unique key both are the essential constraints of the SQL, but there is a small difference between them
Primary key carries unique value but the field of the primary key cannot be Null on the other hand unique key also carry unique value but it can have a single Null value field.
14) What is a Database?
A Database is an organized form of data. The database is the electronic system which makes data access, data manipulation, data retrieval, data storing and data management very easy and structured. Almost every organization uses the database for storing the data due to its easily accessible and high operational ease. The database provides perfect access to data and lets us perform required tasks.
The Database is also called a structured form of data. Due to this structured format, you can access data very easily.
15) What is DBMS?
DBMS stands for Database Management System. This is a program which is used to control them. It is like a File Manager that manages data in a database rather than saving it in file systems.
Database management system is an interface between the database and the user. It makes the data retrieval, data access easier.
Database management system is a software which provides us the power to perform operations such as creation, maintenance and use of a data of the database using a simple query in almost no time.
Without the database management system, it would be far more difficult for the user to access the data of the database.
16) What are the different types of database management systems?
There are four types of database:
RDBMS is one of the most often used databases due to its easy accessibility and supports regarding complex queries.
17) What is RDBMS?
RDBMS stands for Relational Database Management System. It is a database management system based on a relational model. RDBMS stores the data into the collection of tables and links those table using the relational operators easily whenever required. It facilitates you to manipulate the data stored in the tables by using relational operators. Examples of the relational database management system are Microsoft Access, MySQL, SQLServer, Oracle database, etc.
18) What is Normalization in a Database?
Normalization is used to minimize redundancy and dependency by organizing fields and table of a database.
There are some rules of database normalization which commonly known as Normal From and they are:
Using these steps, the redundancy, anomalies, inconsistency of the data in the database can be removed.
19) What is the primary use of Normalization?
Normalization is mainly used to add, delete or modify a field that can be made in a single table. The primary use of Normalization is to remove redundancy and to remove the insert, delete and update distractions. Normalization breaks the table into small partitions and then link them using different relationships so that it will avoid the chances of redundancy.
20) What are the disadvantages of not performing Database Normalization?
The major disadvantages are:
21) What is an inconsistent dependency?
Inconsistent dependency refers to the difficulty of accessing particular data as the path to reach the data may be missing or broken. Inconsistent dependency will leads users to search the data in the wrong table which will afterward give the error as an output.
22) What is Denormalization in a Database?
Denormalization is used to access the data from higher or lower normal form of database. It also processes redundancy into a table by incorporating data from the related tables. Denormalization adds required redundant term into the tables so that we can avoid using complex joins and many other complex operations. Denormalization doesn?t mean that normalization will not be done, but the denormalization process takes place after the normalization process.
23) What are the types of operators available in SQL?
Operators are the special keywords or special characters reserved for performing particular operations and are used in the SQL queries. There is three type of operators used in SQL:
24) What is view in SQL?
A view is a virtual table which contains a subset of data within a table. Views are not originally present, and it takes less space to store. A view can have data from one or more tables combined, and it depends on the relationship. Views are used to apply security mechanism in the SQL Server. The view of the database is the searchable object we can use a query to search the view as we use for the table.
25) What is an Index in SQL?
SQL indexes are the medium of reducing the cost of the query as the high cost of the query will lead to the fall in the performance of the query. An index is used to increase the performance and allow faster retrieval of records from the table. Indexing reduces the number of data pages we need to visit to find a particular data page. Indexing also has a unique value that means that the index cannot be duplicated. An index creates an entry for each value, and it will be faster to retrieve data. For example, suppose you have a book which carries the details of the countries, and you want to find out the information about India than why you will go through every page of that book you could directly go to the index, and then from index you can go to that particular page where all the information about India is given.
26) Which are the different types of indexes in SQL?
There are three types of Indexes in SQL:
27) What is the unique Index?
Unique Index:
For creating a unique index, the user has to check the data in the column because the unique indexes are used when any column of the table has unique values. This indexing does not allow the field to have duplicate values if the column is unique indexed. A unique index can be applied automatically when a primary key is defined.
28) What is Clustered Index in SQL?
Clustered Index:
The clustered index is used to reorder the physical order of the table and search based on the key values. Each table can have only one clustered index. The Clustered index is the only index which has been automatically created when the primary key is generated. If moderate data modification needed to be done in the table then clustered indexes are preferred.
29) What is the Non-Clustered Index in SQL?
Non-Clustered Index:
The reason to create non-clustered index is searching the data. We well know that clustered indexes are created automatically primary keys are generated, but non-clustered indexes are created when multiple joins conditions and various filters are used in the query. Non-Clustered Index does not alter the physical order of the table and maintains logical order of data. Each table can have 999 non-clustered indexes.
30) What is the difference between SQL, MySQL and SQL Server?
SQL or Structured Query Language is a language which is used to communicate with a relational database. It provides a way to manipulate and create databases. On the other hand, MySQL and Microsoft's SQL Server both are relational database management systems that use SQL as their standard relational database language.
MySQL is available for free as it is open source whereas SQL server is not an open source software.
31) What is the difference between SQL and PL/SQL?
SQL or Structured Query Language is a language which is used to communicate with a relational database. It provides a way to manipulate and create databases. On the other hand, PL/SQL is a dialect of SQL which is used to enhance the capabilities of SQL. It was developed by Oracle Corporation in the early 90's. It adds procedural features of programming languages in SQL.
In SQL single query is being executed at once whereas in PL/SQL a whole block of code is executed at once.
SQL is like the source of data that we need to display on the other hand PL/SQL provides a platform where the SQL the SQL data will be shown.
SQL statement can be embedded in PL/SQL, but PL/SQL statement cannot be embedded in SQL as SQL do not support any programming language and keywords.
32) Is it possible to sort a column using a column alias?
Yes. You can use the column alias in the ORDER BY instead of WHERE clause for sorting.
33) What is the difference between clustered and non-clustered index in SQL?
There are mainly two type of indexes in SQL, Clustered index and non clustered index. The differences between these two indexes is very important from SQL performance perspective.
34) What is the SQL query to display the current date?
There is a built-in function in SQL called GetDate() which is used to return the current timestamp.
35) Which are the most commonly used SQL joins?
Most commonly used SQL joins are INNER JOIN and LEFT OUTER JOIN and RIGHT OUTER JOIN.
36) What are the different types of joins in SQL?
Joins are used to merge two tables or retrieve data from tables. It depends on the relationship between tables.
Following are the most commonly used joins in SQL:
Inner Join: inner joins are of three type:
Outer Join: outer joins are of three type:
37) What is Inner Join in SQL?
Inner join:
Inner join returns rows when there is at least one match of rows between the tables. INNER JOIN keyword joins the matching records from two tables.
38) What is Right Join in SQL?
Right Join:
Right Join is used to retrieve rows which are common between the tables and all rows of a Right-hand side table. It returns all the rows from the right-hand side table even though there are no matches in the left-hand side table.
39) What is Left Join in SQL?
Left Join:
The left join is used to retrieve rows which are common between the tables and all rows of the Left-hand side table. It returns all the rows from the Left-hand side table even though there are no matches on the Right-hand side table.
40) What is Full Join in SQL?
Full Join:
Full join return rows when there are matching rows in any one of the tables. This means it returns all the rows from the left-hand side table and all the rows from the right-hand side table.
41) What is a "TRIGGER" in SQL?
42) What is self-join and what is the requirement of self-join?
A self-join is often very useful to convert a hierarchical structure to a flat structure. It is used to join a table to itself as like if that is the second table.
43) What are the set operators in SQL?
SQL queries which contain set operations are called compound queries.
Union, Union All, Intersect or Minus operators are the set operators used in the SQL.
44) What is the difference between BETWEEN and IN condition operators?
The BETWEEN operator is used to display rows based on a range of values. The values can be numbers, text, and dates as well. BETWEEN operator gives us the count of all the values occurs between a particular range.
The IN condition operator is used to check for values contained in a specific set of values. IN operator is used when we have more than one value to choose.
45) What is a constraint? Tell me about its various levels.
Constraints are the rules and regulations which are applied to the table column which enforces yours to store valid data and prevents users to store irrelevant data. There are two levels :
46) Write an SQL query to find names of employee start with 'A'?
47) Write an SQL query to get the third maximum salary of an employee from a table named employee_table.
48) What is ACID property in a database?
ACID property is used to ensure that the data transactions are processed reliably in a database system.
A single logical operation of a data is called transaction.
ACID is an acronym for Atomicity, Consistency, Isolation, Durability.
Atomicity: it requires that each transaction is all or nothing. It means if one part of the transaction fails, the entire transaction fails and the database state is left unchanged.
Consistency: the consistency property ensure that the data must meet all validation rules. In simple words you can say that your transaction never leaves your database without completing its state.
Isolation: this property ensure that the concurrent property of execution should not be met. The main goal of providing isolation is concurrency control.
Durability: durability simply means that once a transaction has been committed, it will remain so, come what may even power loss, crashes or errors.
49) What is the difference between NULL value, zero and blank space?
Ans: A NULL value is not the same as zero or a blank space. A NULL value is a value which is 'unavailable, unassigned, unknown or not applicable.' On the other hand, zero is a number, and a blank space is treated as a character.
The NULL value can be treated as unknown and missing value as well, but zero and blank spaces are different from the NULL value.
50) What is the usage of SQL functions?
Functions are the measured values and cannot create permanent environment changes to SQL server. SQL functions are used for the following purpose:
SCALA
FOR
BEGINNERS
LEARN TO CODE FAST
BY
TAM SEL
Scala tutorial provides basic and advanced concepts of Scala. Our Scala tutorial is designed for beginners and professionals.
Scala is an object-oriented and functional programming language.
Our Scala tutorial includes all topics of Scala language such as datatype, conditional expressions, comments, functions, examples on oops concepts, constructors, method overloading, this keyword, inheritance, final, exception handling, file handling, tuples, string, string interpolation, case classes, singleton objects, collection etc.
What is Scala
Scala is a general-purpose programming language. It supports object oriented, functional and imperative programming approaches. It is a strong static type language. In scala, everything is an object whether it is a function or a number. It does not have concept of primitive data.
It was designed by Martin Odersky. It was officially released for java platform in early 2004 and for .Net framework in June 2004. Later on, Scala dropped .Net support in 2012.
Scala is influenced by Java, Haskell, Lisp, Pizza etc. and influenced to F#, Fantom, Red etc.
File extension of scala source file may be either .scala or .sc.
You can create any kind of application like web application, enterprise application, mobile application, desktop based application etc.
Scala Program Example
Let's see the simple program of scala. A detailed description of this program is given in next chapters.
Where to use Scala
In Scala, you can create any type of application in less time and coding whether it is web based, mobile based or desktop based application. Scala provides you powerful tools and API by using which you can create applications. Here, You can use play framework which provides a platform to build web application rapidly.
Scala is a general purpose programming language. It was created and developed by Martin Odersky. Martin started working on Scala in 2001 at the Ecole Polytechnique Federale de Lausanne (EPFL). It was officially released on January 20, 2004.
Scala is not an extension of Java, but it is completely interoperable with it. While compilation, Scala file translates to Java bytecode and runs on JVM (Java Virtual machine).
Scala was designed to be both object-oriented and functional. It is a pure object-oriented language in the sense that every value is an object and functional language in the sense that every function is a value. The name of scala is derived from word scalable which means it can grow with the demand of users.
Popularity of Scala
There are following features of scala:
Type Inference
In Scala, you don't require to mention data type and function return type explicitly. Scala is enough smart to deduce the type of data. The return type of function is determined by the type of last expression present in the function.
Singleton object
In Scala, there are no static variables or methods. Scala uses singleton object, which is essentially class with only one object in the source file. Singleton object is declared by using object instead of class keyword.
Immutability
Scala uses immutability concept. Each declared variable is immutable by default. Immutable means you can't modify its value. You can also create mutable variables which can be changed.
Immutable data helps to manage concurrency control which requires managing data.
Lazy Computation
In Scala, computation is lazy by default. Scala evaluates expressions only when they are required. You can declare a lazy variable by using lazy keyword. It is used to increase performance.
Case classes and Pattern matching
Scala case classes are just regular classes which are immutable by default and decomposable through pattern matching.
All the parameters listed in the case class are public and immutable by default.
Case classes support pattern matching. So, you can write more logical code.
Concurrency control
Scala provides standard library which includes the actor model. You can write concurrency code by using actor. Scala provides one more platform and tool to deal with concurrency known as Akka. Akka is a separate open source framework that provides actor-based concurrency. Akka actors may be distributed or combined with software transactional memory.
String Interpolation
Since Scala 2.10.0, Scala offers a new mechanism to create strings from your data. It is called string interpolation. String interpolation allows users to embed variable references directly in processed string literals. Scala provides three string interpolation methods: s, f and raw.
Higher Order Functions
Higher order function is a function that either takes a function as argument or returns a function. In other words, we can say a function which works with another function is called higher order function.
Higher order function allows you to create function composition, lambda function or anonymous function etc.
Traits
A trait is like an interface with a partial implementation. In Scala, trait is a collection of abstract and non-abstract methods. You can create trait that can have all abstract methods or some abstract and some non-abstract methods.
Traits are compiled into Java interfaces with corresponding implementation classes that hold any methods implemented in the traits.
Rich Set of Collection
Scala provides rich set of collection library. It contains classes and traits to collect data. These collections can be mutable or immutable. You can use it according to your requirement. Scala.collection.mutable package contains all the mutable collections. You can add, remove and update data while using this package.
Scala.collection.immutable package contains all the immutable collections. It does not allow you to modify data.
In this tutorial, you will learn how to write scala programs. To write scala program you need to install scala on your machine. You must have latest jdk installed on your machine because scala compiler creates .class file which is a byte code. Scala interpreter executes this byte code by using jvm (Java Virtual Machine).
Scala Example: Hello Scala
The following code example is a simple scala program.
In the above code, we have created an object ScalaExample. It contains a main method and display message using println method.
This file is saved with the name ScalaExample.scala.
Command to compile this code is: scalac ScalaExample.scala
Command to execute the compiled code is: scala ScalaExample
After executing code it yields the following output.
Output:
Hello Scala
You can also use IDE (Integrated Development Environment) for executing scala code.
The above example is written using object oriented approach. You can also use functional approach to write code in scala.
Scala Example: Hello Scala
Below is the example by using functional approach.
Output:
Hello Scala
Scala Variables and Data Types
Variable is a name which is used to refer memory location. You can create mutable and immutable variable in scala. Let's see how to declare variable.
Mutable Variable
You can create mutable variable using var keyword. It allows you to change value after declaration of variable.
In the above code, var is a keyword and data is a variable name. It contains an integer value 100. Scala is a type infers language so you don?t need to specify data type explicitly. You can also mention data type of variable explicitly as we have used in below.
Another example of variable
Immutable Variable
The above code throws an error because we have changed content of immutable variable, which is not allowed. So if you want to change content then it is advisable to use var instead of val.
Data Types in Scala
Data types in scala are much similar to java in terms of their storage, length, except that in scala there is no concept of primitive data types every type is an object and starts with capital letter. A table of data types is given below. You will see their uses further.
Data Type-Default Value-Size
Boolean-False-True or false
Byte-0-8 bit signed value (-27 to 27-1)
Short-0-16 bit signed value(-215 to 215-1)
Char-'\u0000'-16 bit unsigned Unicode character(0 to 216-1)
Int-0-32 bit signed value(-231 to 231-1)
Long-0L-64 bit signed value(-263 to 263-1)
Float-0.0F-32 bit IEEE 754 single-precision float
Double-0.0D-64 bit IEEE 754 double-precision float
String-Null-A sequence of characters
Scala provides if statement to test the conditional expressions. It tests boolean conditional expression which can be either true or false. Scala use various types of if else statements.
Scala if statement
The scala if statement is used to test condition in scala. If block executes only when condition is true otherwise execution of if block is skipped.
Syntax
Scala Example: If Statement
Output:
Age is greate than 18
Scala If-Else Statement
The scala if-else statement tests the condition. If the condition is true, if block executes otherwise else block executes.
Syntax
Scala if-else example
Output:
Odd number
Scala If-Else-If Ladder Statement
The scala if-else-if ladder executes one condition among the multiple conditional statements.
Syntax
Scala If-Else-If Ladder Example
Output:
A Grade
Scala If Statement as better alternative of Ternary Operators
In scala, you can assign if statement result to a function. Scala does not have ternary operator concept like C/C++ but provides more powerful if which can return value. Let's see an example
Example
Output:
-1
Pattern matching is a feature of scala. It works same as switch case in other programming languages. It matches best case available in the pattern.
Let's see an example.
Scala Pattern Matching Example
In the above example, we have implemented a pattern matching.
Here, match using a variable named a. This variable matches with best available case and prints output. Underscore (_) is used in the last case for making it default case.
Output:
One
Match expression can return case value also. In next example, we are defining method having a match with cases for any type of data. Any is a class in scala which is a super class of all data types and deals with all type of data. Let's see an example.
Scala Pattern Matching Example2
Output:
Hello
In Scala, while loop is used to iterate code till the specified condition. It tests boolean expression and iterates again and again. You are recommended to use while loop if you don't know number of iterations prior.
Syntax
Scala while loop Example
Output:
10
12
14
16
18
20
Scala Infinite While Loop Example
You can also create an infinite while loop. In the below program, we just passed true in while loop. Be careful, while using infinite loop.
Output:
10
12
14
16
...
Ctr+Z // To stop execution
Scala do-while loop example
Output:
10
12
14
16
18
20
Scala Infinite do-while loop
In scala, you can create infinite do-while loop. To create infinite loop just pass true literal in loop condition.
Let's see an example.
Output:
10
12
14
16
...
Ctrl+Z // To stop execution of program
In scala, for loop is known as for-comprehensions. It can be used to iterate, filter and return an iterated collection. The for-comprehension looks a bit like a for-loop in imperative languages, except that it constructs a list of the results of all iterations.
Syntax
In the above syntax, range is a value which has start and end point. You can pass range by using to or until keyword.
Scala for-loop example by using to keyword
Output:
1
2
3
4
5
6
7
8
9
10
In the below example, until is used instead of to. The major difference between until and to is, to includes start and end value given in the range, while until excludes last value of the range. So, the below example will print only 1 to 9.
Scala for-loop Example by using until keyword
Output:
1
2
3
4
5
6
7
8
9
It is helpful to apply until keyword when you are iterating string or array, because array range is 0 to n-1. until does not exceed to n-1. So, your code will not complain of upper range.
Scala for-loop filtering Example
You can use for to filter your data. In the below example, we are filtering our data by passing a conditional expression. This program prints only even values in the given range.
Output:
2
4
6
8
10
Scala for-loop Example by using yield keyword
In the above example, we have used yield keyword which returns a result after completing of loop iterations. The for use buffer internally to store iterated result and after finishing all iterations it yields the final result from that buffer. It does not work like imperative loop.
Output:
1
2
3
4
5
6
7
8
9
10
Scala for-loop in Collection
In scala, you can iterate collections like list, sequence etc, either by using for each loop or for-comprehensions.
Let's see an example.
Scala for- loop Example for Iterating Collection
Output:
1
2
3
4
5
6
7
8
9
10
Scala for-each loop Example for Iterating Collection
In the below code we have use three approaches of for-each loop. You can implement any of them according to your need.
Output:
1
2
3
4
5
6
7
8
9
123456789
1 2 3 4 5 6 7 8 9
Scala for-loop Example using by keyword
In the above example, we have used by keyword. The by keyword is used to skip the iteration. When you code like: by 2 it means, this loop will skip all even iterations of loop.
Output:
1
3
5
7
9
Break is used to break a loop or program execution. It skips the current execution. Inside inner loop it breaks the execution of inner loop.
In scala, there is no break statement but you can do it by using break method and by importing scala.util.control.Breaks._ package. Let's see an example.
Scala Break Example
Output:
1
3
5
Scala Break Example: Break inner Loop
You can use break statement to terminate execution of inner loop in nested loop.
Let's see an example.
Output:
1 1
1 2
1 3
2 1
3 1
3 2
3 3
The scala comments are statements which are not executed by the compiler or interpreter. The comments can be used to provide information or explanation about the variable, method, class or any statement. It can also be used to hide program code details.
In scala, there are three types of comments
Scala Single Line Comment Example
Single line comment is used to comment single line of code.
Output:
1
Scala Multiline Comment
Multiline comment is used to comment multiple lines of code in the program.
Output:
1
Scala Documentation Comment Example
Output:
1
Scala supports functional programming approach. It provides rich set of built-in functions and allows you to create user defined functions also.
In scala, functions are first class values. You can store function value, pass function as an argument and return function as a value from other function. You can create function by using def keyword. You must mention return type of parameters while defining function and return type of a function is optional. If you don't specify return type of a function, default return type is Unit.
Scala Function Declaration Syntax
In the above syntax, = (equal) operator is looking strange but don't worry scala has defined it as:
You can create function with or without = (equal) operator. If you use it, function will return value. If you don't use it, your function will not return anything and will work like subroutine.
Scala functions don?t use return statement. Return type infers by compiler from the last expression or statement present in the function.
Scala Function Example without using = Operator
The function defined below is also known as non parameterized function.
Output:
This is a simple function
Scala Function Example with = Operator
Output:
10
Scala Parameterized Function Example
when using parameterized function you must mention type of parameters explicitly otherwise compiler throws an error and your code fails to compile.
Output:
30
Scala Recursion Function
In the program given below, we are multiplying two numbers by using recursive function.
In scala, you can create recursive functions also. Be careful while using recursive function. There must be a base condition to terminate program safely.
Output:
30
Function Parameter with Default Value
Scala provides a feature to assign default values to function parameters. It helps in the scenario when you don't pass value during function calling. It uses default values of parameters.
Let's see an example.
Scala Function Parameter example with default value
Output:
17
15
0
Scala Function Named Parameter Example
In scala function, you can specify the names of parameters during calling the function. In the given example, you can notice that parameter names are passing during calling. You can pass named parameters in any order and can also pass values only.
Let's see an example.
Output:
17
17
17
Higher order function is a function that either takes a function as argument or returns a function. In other words we can say a function which works with function is called higher order function.
Higher order function allows you to create function composition, lambda function or anonymous function etc.
Let's see an example.
Scala Example: Passing a Function as Parameter in a Function
Output:
60
Scala Example: Function Composition
In scala, functions can be composed from other functions. It is a process of composing in which a function represents the application of two composed functions.
Let's see an example.
Output:
24
Scala Anonymous (lambda) Function
Anonymous function is a function that has no name but works as a function. It is good to create an anonymous function when you don't want to reuse it latter.
You can create anonymous function either by using => (rocket) or _ (underscore) wild card in scala.
Let's see an example.
Scala Anonymous function Example
Output:
20
20
Scala Multiline Expression
Expressions those are written in multiple lines are called multiline expression. In scala, be carefull while using multiline expressions.
The following program explains about if we break an expression into multiline, the scala compiler throw a warning message.
Scala Multiline Expression Example
The above program does not evaluate complete expression and just return b here. So, be careful while using multiline expressions.
Output:
MainObject.scala:3: warning: a pure expression does nothing in statement
position; you may be omitting necessary parentheses
a
^
one warning found
10
You can apply following ways to avoid above problem.
Scala Example Multiline Expression
Output:
20
20
Scala Function Currying
In scala, method may have multiple parameter lists. When a method is called with a fewer number of parameter lists, then this will yield a function taking the missing parameter lists as its arguments.
In other words it is a technique of transforming a function that takes multiple arguments into a function that takes a single argument.
Scala Function Currying Example
Output:
20
Scala Nested Functions
Scala is a first class function language which means it allows you to passing function, returning function, composing function, nested function etc. An example below explain about how to define and call nested functions.
Scala Nested Functions Example
Output:
30
Scala Function with Variable Length Parameters
In scala, you can define function of variable length parameters. It allows you to pass any number of arguments at the time of calling the function.
Let's see an example.
Scala Example: Function with Variable Length Parameters
Output:
45
Unlike java, scala is a pure object oriented programming language. It allows us to create object and class so that you can develop object oriented applications.
Object
Object is a real world entity. It contains state and behavior. Laptop, car, cell phone are the real world objects. Object typically has two characteristics:
1) State: data values of an object are known as its state.
2) Behavior: functionality that an object performs is known as its behavior.
Object in scala is an instance of class. It is also known as runtime entity.
Class
Class is a template or a blueprint. It is also known as collection of objects of similar type.
In scala, a class can contain:
You must initialize all instance variables in the class. There is no default scope. If you don't specify access scope, it is public. There must be an object in which main method is defined. It provides starting point for your program. Here, we have created an example of class.
Scala Sample Example of Class
Output:
0 null
Scala Sample Example2 of Class
In scala, you can create class like this also. Here, constructor is created in class definition. This is called primary constructor.
Output:
100 Martin
Scala Example of class that maintains the records of students
Output:
101 Raju
102 Martin
Scala Anonymous object
In scala, you can create anonymous object. An object which has no reference name is called anonymous object. It is good to create anonymous object when you don't want to reuse it further.
Scala Anonymous object Example
Output:
Sum = 20
Scala Singleton and Companion Object
Scala Singleton Object
Singleton object is an object which is declared by using object keyword instead by class. No object is required to call methods declared inside singleton object.
In scala, there is no static concept. So scala creates a singleton object to provide entry point for your program execution.
If you don't create singleton object, your code will compile successfully but will not produce any output. Methods declared inside Singleton Object are accessible globally. A singleton object can extend classes and traits.
Scala Singleton Object Example
Output:
Hello, This is Singleton Object
Scala Companion Object
In scala, when you have a class with same name as singleton object, it is called companion class and the singleton object is called companion object.
The companion class and its companion object both must be defined in the same source file.
Scala Companion Object Example
Output:
Hello, this is Companion Class.
And this is Companion Object.
Scala Case Classes and Case Object
Scala case classes are just regular classes which are immutable by default and decomposable through pattern matching.
It uses equal method to compare instance structurally. It does not use new keyword to instantiate object.
All the parameters listed in the case class are public and immutable by default.
Syntax
Scala Case Class Example
Output:
a = 10
b = 10
Case classes support pattern matching. So, you can use that in patterns. Following is the example of case classes and pattern.
Scala Case Class and Pattern Matching Example
A case class which has no arguments is declared as case object instead of case class. case object is serializeable by default.
Output:
a = 10 b =10
a = 10
No Argument
In scala, constructor is not special method. Scala provides primary and any number of auxiliary constructors. We have explained each in details in the following example.
Scala Default Primary Constructor
In scala, if you don't specify primary constructor, compiler creates a constructor which is known as primary constructor. All the statements of class body treated as part of constructor. It is also known as default constructor.
Scala Default Primary Constructor Example
Output:
Hello from default constructor
Scala Primary Constructor
Scala provides a concept of primary constructor with the definition of class. You don't need to define explicitly constructor if your code has only one constructor. It helps to optimize code. You can create primary constructor with zero or more parameters.
Scala Primary Constructor Example
Output:
101 Rama
Scala Secondary (auxiliary) Constructor
You can create any number of auxiliary constructors in a class. You must call primary constructor from inside the auxiliary constructor. this keyword is used to call constructor from other constructor. When calling other constructor make it first line in your constructor.
Scala Secondary Constructor Example
Output:
101 Rama 20
Scala Example: Constructor Overloading
In scala, you can overload constructor. Let's see an example.
Output:
101
100
100 India
Scala provides method overloading feature which allows us to define methods of same name but having different parameters or data types. It helps to optimize code.
Scala Method Overloading Example by using Different Parameters
In the following example, we have define two add methods with different number of parameters but having same data type.
Output:
20
30
Scala Method Overloading Example by using Different Data Type
In the following example, we have created two add method having same number of parameters but different data types.
Output:
20
30.0
In scala, this is a keyword and used to refer current object. You can call instance variables, methods, constructors by using this keyword.
Scala this Example
In the following example, this is used to call instance variables and primary constructotr.
Output:
101 Martin
Scala Constructor Calling by using this keyword
In the following example this is used to call constructor. It illustrates how we can call constructor from other constructor. You must make sure that this must be first statement in the constructor while calling to other constructor otherwise compiler throws an error.
Output:
Rama 100
Inheritance is an object oriented concept which is used to reusability of code. You can achieve inheritance by using extends keyword. To achieve inheritance a class must extend to other class. A class which is extended called super or parent class. a class which extends class is called derived or base class.
Syntax
Understand the Simple Example of Inheritance
Scala Single Inheritance Example
Output:
Salary = 10000.0
Bonus = 5000
Types of Inheritance in Scala
Scala supports various types of inheritance including single, multilevel, multiple, and hybrid. You can use single, multilevel and hierarchal in your class. Multiple and hybrid can only be achieved by using traits. Here, we are representing all types of inheritance by using pictorial form.
Scala Multilevel Inheritance Example
Output:
salary1 = 10000
salary2 = 20000
When a subclass has the same name method as defined in the parent class, it is known as method overriding. When subclass wants to provide a specific implementation for the method defined in the parent class, it overrides method from parent class.
In scala, you must use either override keyword or override annotation to override methods from parent class.
Scala Method Overriding Example 1
Output:
Bike is running
Real example of method overriding
Flowchart
Scala Method Overriding Example 2
This example shows how subclasses override the method of parent class.
Output:
SBI Rate of Interest: 8
ICICI Rate of Interest: 7
AXIS Rate of Interest: 9
In scala, you can override fields also but it has some rules that need to be followed. Below are some examples that illustrate how to override fields.
Scala Field Overriding Example1
Output:
Error - variable speed needs 'override' modifier
In scala, you must use either override keyword or override annotation when you are overriding methods or fields of super class. If you don't do this, compiler reports an error and stops execution of program.
Scala Field Overriding Example2
Output:
100
In scala, you can override only those variables which are declared by using val keyword in both classes. Below are some interesting examples which demonstrate the whole process.
Scala Field Overriding Example3
Output:
variable speed cannot override a mutable variable
Scala Field Overriding Example4
Output:
Error - variable speed needs to be a stable, immutable value
Final is a keyword, which is used to prevent inheritance of super class members into derived class. You can declare final variables, methods and classes also.
Scala Final Variable Example
You can't override final variables in subclass. Let's see an example.
Output:
Error - value speed cannot override final member
Scala Final Method
Final method declare in the parent class can't be override. You can make any method to final if you don't want to get it overridden. Attempt to override final method will cause to a compile time error.
Scala Final Method Example
Output:
method show cannot override final member
override def show(){
^
one error found
Scala Final Class Example
You can also make final class. Final class can't be inherited. If you make a class final, it can't be extended further.
Output:
error: illegal inheritance from final class Vehicle
class Bike extends Vehicle{
^
one error found
A class which is declared with abstract keyword is known as abstract class. An abstract class can have abstract methods and non-abstract methods as well. Abstract class is used to achieve abstraction. Abstraction is a process in which we hide complex implementation details and show only functionality to the user.
In scala, we can achieve abstraction by using abstract class and trait. We have discussed about these in detail here.
Scala Abstract Class Example
In this example, we have created a Bike abstract class. It contains an abstract method. A class Hero extends it and provides implementation of its run method.
A class that extends an abstract class must provide implementation of its all abstract methods. You can't create object of an abstract class.
Output:
running fine...
Scala Abstract Class Example: Having Constructor, Variables and Abstract Methods
Output:
Running fine...
a = 10
b = 20
c = 30
Performance awesome
Scala Abstract Class Example: Abstract Method is not implemented
In this example, we didn't implement abstract method run(). Compiler reports an error during compilation of this program. Error message is given below in output section.
Output:
error: class Hero needs to be abstract, since method run in class Bike of type ()Unit is not defined
class Hero extends Bike{
^
one error found
To avoid this problem either you must implement all abstract members of abstract class or make your class abstract too.
A trait is like an interface with a partial implementation. In scala, trait is a collection of abstract and non-abstract methods. You can create trait that can have all abstract methods or some abstract and some non-abstract methods.
A variable that is declared either by using val or var keyword in a trait get internally implemented in the class that implements the trait. Any variable which is declared by using val or var but not initialized is considered abstract.
Traits are compiled into Java interfaces with corresponding implementation classes that hold any methods implemented in the traits.
Scala Trait Example
Output:
Hello
If a class extends a trait but does not implement the members declared in that trait, it must be declared abstract. Let's see an example.
Scala Trait Example
Scala Trait Example: Implementing Multiple Traits in a Class
If a class implements multiple traits, it will extend the first trait, class, abstract class. with keyword is used to extend rest of the traits.
You can achieve multiple inheritances by using trait.
Output:
This is printable
This is showable
Scala Trait having abstract and non-abstract methods
You can also define method in trait as like in abstract class. I.e. you can treat trait as abstract class also. In scala, trait is almost same as abstract class except that it can't have constructor. You can't extend multiple abstract classes but can extend multiple traits.
Scala Trait Example
Output:
This is print method
This is show method
In scala, trait mixins means you can extend any number of traits with a class or abstract class. You can extend only traits or combination of traits and class or traits and abstract class.
It is necessary to maintain order of mixins otherwise compiler throws an error.
You can use mixins in scala like this:
Scala Trait Example: Mixins Order Not Maintained
In this example, we have extended a trait and an abstract class. Let's see what happen.
Output:
error: class PrintA4 needs to be a trait to be mixed in
class A6 extends Print with PrintA4{
^
one error found
The above program throws a compile time error, because we didn't maintain mixins order.
Scala Mixins Order
The right mixins order of trait is that any class or abstract class which you want to extend, first extend this. All the traits will be extended after this class or abstract class.
Scala Trait Example: Mixins Order Maintained
Output:
print sheet
Print A4 Sheet
Another Example of Scala Trait
Here, we have used one more approach to extend trait in our program. In this approach, we extend trait during object creation. Let's see an example.
Output:
print sheet
Print A4 Sheet
Access modifier is used to define accessibility of data and our code to the outside world. You can apply accessibly to classes, traits, data members, member methods and constructors etc. Scala provides least accessibility to access to all. You can apply any access modifier to your code according to your application requirement.
Scala provides only three types of access modifiers, which are given below:
In scala, if you don't mention any access modifier, it is treated as no modifier.
Scala Example: Private Access Modifier
In scala, private access modifier is used to make data accessible only within class in which it is declared. It is most restricted and keeps your data in limited scope. Private data members does not inherit into subclasses.
Output:
error: variable a in class AccessExample cannot be accessed in AccessExample
p.a = 12
^
one error found
Scala Example: Protected Access Modifier
Protected access modifier is accessible only within class, sub class and companion object. Data members declared as protected are inherited in subclass. Let's see an example.
Output:
a = 10
Scala Example: No-Access-Modifier
In scala, when you don't mention any access modifier, it is treated as no-access-modifier. It is same as public in java. It is least restricted and can easily accessible from anywhere inside or outside the package.
Output:
a = 10
Array is a collection of mutable values. It is an index based data structure which starts from 0 index to n-1 where n is length of array.
Scala arrays can be generic. It means, you can have an Array[T], where T is a type parameter or abstract type. Scala arrays are compatible with Scala sequences - you can pass an Array[T] where a Seq[T] is required. It also supports all the sequence operations.
Following image represents the structure of array where first index is 0, last index is 9 and array length is 10.
Scala Types of array
Scala Single Dimensional Array
Single dimensional array is used to store elements in linear order. Array elements are stored in contiguous memory space. So, if you have any index of an array, you can easily traverse all the elements of the array.
Syntax for Single Dimensional Array
Scala Array Example: Single Dimensional
Output:
1
2
3
4
5
Third Element = 3
Scala Example 2: Single Dimensional
In this example, we have created an array by using new keyword which is used to initialize memory for array. The entire array elements are set to default value, you can assign that later in your code.
Output:
0
0
0
0
0
Third Element before assignment = 0
Third Element after assignment = 10
Scala Passing Array into Function
You can pass array as an argument to function during function call. Following example illustrate the process how we can pass an array to the function.
Output:
1
2
3
4
5
6
Third Element = 3
Scala Array Example: Iterating By using Foreach Loop
You can also iterate array elements by using foreach loop. Let's see an example.
Output:
1
2
3
4
5
Multidimensional array is an array which store data in matrix form. You can create from two dimensional to three, four and many more dimensional array according to your need. Below we have mentioned array syntax. Scala provides an ofDim method to create multidimensional array.
Multidimensional Array Syntax
Scala Multidimensional Array Example by using ofDim
In This example, we have created array by using ofDim method.
Output:
0 0
15 0
Third Element = 0
Scala Multidimensional Array by using Array of Array
Apart from ofDim you can also create multidimensional array by using array of array. In this example, we have created multidimensional array by using array of array.
Output:
1 2 3 4 5
6 7 8 9 10
Scala Addition of Two Matrix Example
You can manipulate array elements in scala. Here, we are adding two array elements and storing result into third array.
Output:
2 4 6 8 10
12 14 16 18 20
In scala, string is a combination of characters or we can say it is a sequence of characters. It is index based data structure and use linear approach to store data into memory. String is immutable in scala like java. You can manipulate string and can apply method to get desire result but you can't change original string object.
Scala String Example
This is a simple string example in which we have created a string variable.
Output:
Scala string example
Scala Immutable String Example 1
In this example, we are creating a string variable and trying to modify string object. Let's see what happen.
Output:
Scala string example
Scala Immutable String Example 2
In this example, we are modifying the string and assigning it to a variable so that we can keep reference of modified string. Here, a new string object is created after modification. The s1 variable now refers to new string object. The old string object is still available in the memory but does not have any reference.
Output:
This is Scala string example
Scala String Comparison Example
In scala, you can compare two string objects by using == (equal) method. The following program describes how to use equal operator. It returns boolean value either true or false.
Output:
false
true
Scala String equals() Method Example
You can also use equal() method to compare two string objects. It returns true if both string object are equal otherwise returns false.
Output:
false
true
Scala compareTo() Method Example
The compareTo() method compares the given string with current string lexicographically. It returns positive number, negative number or 0.
If first string is greater than second string, it returns positive number (difference of character value). If first string is less than second string, it returns negative number and if first string is equal to second string, it returns 0.
Output:
11
0
Scala Concatenation Example by using + (Plus) Operator
In scala, you can concatenate string by using + operator. An example is given below in which two strings are concatenated by using + operator.
Output:
This is Scala string example
Scala String concat() Method Example
Apart from + operator, you can also use concat() method to concatenate two strings. It is a predefined method of string class.
Output:
This is Scala string example
Scala substring() Method Example
The substring() method is used to get substring from a string. By specifying start and end index as argument you can get substring according to your requirement. It is a predefined method of string class.
Output:
Scala
Starting in Scala 2.10.0, Scala offers a new mechanism to create strings from your data. It is called string interpolation. String interpolation allows users to embed variable references directly in processed string literals. Scala provides three string interpolation methods: s, f and raw.
Scala Program Example: Without using s Method
This is simple example which does not use s method in string.
Output:
value of pi = 3.14
Scala String Interpolation Example
This program use string interpolation in print function. You can see the advantage of interpolation. Here, we did not use + operator to concatenate string objects.
Output:
value of pi = 3.14
Scala String Interpolation Example By using s Method
The s method of string interpolation allows us to pass variable in string object. You don't need to use + operator to format your output string. In the following example, a string variable is passed to string in the print function. This variable is evaluated by compiler and variable is replaced by value.
Output:
This is Scala string example
Scala String Interpolation Example By using f Method
The f method is used to format your string output. It is like printf function of c language which is used to produce formatted output. You can pass your variables of any type in the print function.
Output:
This is Scala string example, scala version is 2.12
Scala String Interpolation Example By using raw Method
The raw method of string interpolation is used to produce raw string. It does not interpret special char present in the string. Let's see an example.
Output:
Scala string
example
Scala \nstring \nexample
Exception handling is a mechanism which is used to handle abnormal conditions. You can also avoid termination of your program unexpectedly.
Scala makes "checked vs unchecked" very simple. It doesn't have checked exceptions. All exceptions are unchecked in Scala, even SQLException and IOException.
Scala Program Example without Exception Handling
Output:
java.lang.ArithmeticException: / by zero
Scala provides try and catch block to handle exception. The try block is used to enclose suspect code. The catch block is used to handle exception occurred in try block. You can have any number of try catch block in your program according to need.
Scala Try Catch Example
In the following program, we have enclosed our suspect code inside try block. After try block we have used a catch handler to catch exception. If any exception occurs, catch handler will handle it and program will not terminate abnormally.
Output:
java.lang.ArithmeticException: / by zero
Rest of the code is executing...
Scala Try Catch Example 2
In this example, we have two cases in our catch handler. First case will handle only arithmetic type exception. Second case has Throwable class which is a super class in exception hierarchy. The second case is able to handle any type of exception in your program. Sometimes when you don't know about the type of exception, you can use super class.
Output:
found a unknown exceptionjava.lang.ArrayIndexOutOfBoundsException: 10
Rest of the code is executing...
The finally block is used to release resources during exception. Resources may be file, network connection, database connection etc. the finally block executes guaranteed. The following program illustrate the use of finally block.
Scala Finally Block Example
Output:
java.lang.ArrayIndexOutOfBoundsException: 10
Finally block always executes
Rest of the code is executing...
You can throw exception explicitly in you code. Scala provides throw keyword to throw exception. The throw keyword mainly used to throw custom exception. An example is given below of using scala throw exception keyword.
Scala Throw Example
Output:
java.lang.ArithmeticException: You are not eligible
Scala Throws Keyword
Scala provides throws keyword to declare exception. You can declare exception with method definition. It provides information to the caller function that this method may throw this exception. It helps to caller function to handle and enclose that code in try-catch block to avoid abnormal termination of program. In scala, you can either use throws keyword or throws annotation to declare exception.
Scala Throws Example
Output:
Exception handeled here
Rest of the code executing...
In scala, you can create your own exception. It is also known as custom exceptions. You must extend Exception class while declaring custom exception class. You can create your own exception message in custom class. Let's see an example.
Scala Custom Exception Example
Output:
Exception Occured : InvalidAgeException: Not eligible
Scala provides rich set of collection library. It contains classes and traits to collect data. These collections can be mutable or immutable. You can use them according to your requirement. Scala.collection.mutable package contains all the mutable collections. You can add, remove and update data while using this package.
Scala.collection.immutable contains all the immutable collections. It does not allow you to modify data. Scala imports this package by default. If you want mutable collection, you must import scala.collection.mutable package in your code.
Scala Immutable Collections Hierarchy
The scala.collection.immutable package contains all the immutable abstract classes and traits for collections.
Scala Traversable
It is a trait and used to traverse collection elements. It is a base trait for all scala collections.
It implements the methods which are common to all collections.
Some Significant Methods of Traversable Trait
Method and Description
def head: A
It returns the first element of collection.
def init: Traversable[A]
It returns all elements except last one.
def isEmpty: Boolean
It checks whether the collection is empty or not. It returns either true or false.
def last: A
It returns the last element of this collection.
def max: A
It returns the largest element of this collection.
def min: A
It returns smallest element of this collection
def size: Int
It is used to get size of this traversable and returns a number of elements present in this traversable.
def sum: A
It returns sum of all elements of this collection.
def tail: Traversable[A]
It returns all elements except first.
def toArray: Array[A]
It converts this collection to an array.
def toList: List[A]
It converts this collection to a list.
def toSeq: Seq[A]
It converts this collection to a sequence.
def toSet[B >: A]: immutable.Set[B]
It converts this collection to a set.
Scala Iterable
It is a next trait from the top of the hierarchy and a base trait for iterable collections. It extends traversable trait and provides important methods to concrete classes.
It is used to store unique elements in the set. It does not maintain any order for storing elements. You can apply various operations on them. It is defined in the Scala.collection.immutable package.
Scala Set Syntax
Scala Set Example
In this example, we have created a set. You can create an empty set also. Let's see how to create a set.
Output:
Set() // an empty set
Set(Cricket,Football,Hocky,Golf)
Scala Set Example 2
In Scala, Set provides some predefined properties to get information about set. You can get first or last element of Set and many more. Let's see an example.
Output:
Cricket
Set(Football, Hocky, Golf)
false
Scala Set Example: Merge two Set
You can merge two sets into a single set. Scala provides a predefined method to merge sets. In this example, ++ method is used to merge two sets.
Output:
Elements in games set: 4
Elements in alphabet set: 5
Elements in mergeSet: 9
Set(E, Football, Golf, Hocky, A, B, C, Cricket, D)
This example also proves that the merge set does not maintain order to store elements.
Scala Set Example 2
You can check whether element is present in the set or not. The following example describe the use of contains() method.
Output:
Set(Cricket, Football, Hocky, Golf)
Elements in set: 4
Golf exists in the set : true
Racing exists in the set : false
Scala Set Example: Adding and Removing Elements
You can add or remove elements from the set. You can add only when your code is mutable. In this example, we are adding and removing elements of the set.
Output:
Set(Cricket, Football, Hocky, Golf)
Set(Football, Golf, Hocky, Cricket, Racing)
Set(Football, Golf, Hocky, Cricket, Racing)
Set(Football, Hocky, Cricket, Racing)
Scala Set Example: Iterating Set Elements using for loop
You can iterate set elements either by using for loop or foreach loop. You can also filter elements during iteration. In this example have used for loop to iterate set elements.
Output:
Cricket
Football
Hocky
Golf
Scala Set Example Iterating Elements using foreach loop
In this example, we are using foreach loop to iterate set elements.
Output:
Cricket
Football
Hocky
Golf
Scala Set Example: Set Operations
In scala Set, you can also use typical math operations like: intersection and union. In the following example we have used predefined methods to perform set operations.
Output:
Intersection by using intersect method: Set(Golf, C)
Intersection by using & operator: Set(Golf, C)
Set(E, Football, Golf, Hocky, A, B, C, Cricket, D)
Scala SortedSet
In scala, SortedSet extends Set trait and provides sorted set elements. It is useful when you want sorted elements in the Set collection. You can sort integer values and string as well.
It is a trait and you can apply all the methods defined in the traversable trait and Set trait.
Scala SortedSet Example
In the following example, we have used SortedSet to store integer elements. It returns a Set after sorting elements.
Output:
1
2
4
5
6
7
8
9
HashSet is a sealed class. It extends AbstractSet and immutable Set trait. It uses hash code to store elements.
It neither maintains insertion order nor sorts the elements.
Scala HashSet Example
In the following example, we have created a HashSet to store elements. Here, foreach is used to iterate elements.
Output:
0
6
2
45
3
8
4
Bitsets are sets of non-negative integers which are represented as variable-size arrays of bits packed into 64-bit words. The memory footprint of a bitset is determined by the largest number stored in it. It extends Set trait.
Scala BitSet Example
Output:
0
1
5
6
8
9
Scala BitSet Example: Adding and Removing Elements
You can perform basic operations like adding and deleting in the bitset. In the following example, we have applied these operations.
Output:
0 1 5 6 8 9
After adding 20: 0 1 5 6 8 9 20
After deleting 0: 1 5 6 8 9 20
In scala, ListSet class implements immutable sets using a list-based data structure. Elements are stored internally in reversed insertion order, which means the newest element is at the head of the list. It maintains insertion order.
This collection is suitable only for a small number of elements. You can create empty ListSet either by calling the constructor or by applying the function ListSet.empty. Its iterate and traversal methods visit elements in the same order in which they were first inserted.
Scala ListSet Example
Output:
4
2
8
0
6
3
45
Scala ListSet Example: Creating ListSet and Adding Elements
Output:
listset: ListSet()
listset2: ListSet()
After adding new elements:
listset: ListSet(India)
listset2: ListSet(Russia)
Seq is a trait which represents indexed sequences that are guaranteed immutable. You can access elements by using their indexes. It maintains insertion order of elements.
Sequences support a number of methods to find occurrences of elements or subsequences. It returns a list.
Scala Seq Example
In the following example, we are creating Seq and accessing elements from Seq.
Output:
52 85 1 8 3 2 7
Accessing element by using index
1
You can also access elements in reverse order by using reverse method. Below we have listed some commonly used method and their description.
Commonly used Methods of Seq
Method and Description
def contains[A1 >: A](elem: A1): Boolean
Check whether the given element present in this sequence.
def copyToArray(xs: Array[A], start: Int, len: Int): Unit
It copies the seq elements to an array.
def endsWith[B](that: GenSeq[B]): Boolean
It tests whether this sequence ends with the given sequence or not.
def head: A
It selects the first element of this seq collection.
def indexOf(elem: A): Int
It finds index of first occurrence of a value in this immutable sequence.
def isEmpty: Boolean
It tests whether this sequence is empty or not.
def lastIndexOf(elem: A): Int
It finds index of last occurrence of a value in this immutable sequence.
def reverse: Seq[A]
It returns new sequence with elements in reversed order.
Scala Seq Example
In this example, we have applied some predefined methods of Seq trait.
Output:
52 85 1 8 3 2 7
is Empty: false
Ends with (2,7): true
contains 8: true
last index of 3 : 4
Reverse order of sequence: List(7, 2, 3, 8, 1, 85, 52)
Vector is a general-purpose, immutable data structure. It provides random access of elements. It is good for large collection of elements.
It extends an abstract class AbstractSeq and IndexedSeq trait.
Scala Vector Example
Output:
Vector(5, 8, 3, 6, 9, 4)
Vector(5, 2, 6, 3)
Vector(
Scala Vector Example
In the following example, we have created a vector. You can also add new element and merge two vectors.
Output:
Vector Elements: Hocky Cricket Golf
Vector Elements after adding: Hocky Cricket Golf Racing
Vector Elements after merging: Hocky Cricket Golf Racing Swimming
Vector Elements after reversing: Swimming Racing Golf Cricket Hocky
Vector Elements after sorting: Cricket Golf Hocky Racing Swimming
List is used to store ordered elements. It extends LinearSeq trait. It is a class for immutable linked lists. This class is good for last-in-first-out (LIFO), stack-like access patterns.
It maintains order of elements and can contain duplicates elements also.
Scala List Example
In this example, we have created two lists. Here, both lists have different syntax to create list.
Output:
List(1, 8, 5, 6, 9, 58, 23, 15, 4)
List(1, 8, 5, 6, 9, 58, 23, 15, 4)
Scala List Example: Applying Predefined Methods
Output:
Elements: 1 8 5 6 9 58 23 15 4
Element at 2 index: 5
Element after merging list and list2: 1 8 5 6 9 58 23 15 4 88 100
Element after sorting list3: 1 4 5 6 8 9 15 23 58 88 100
Elements in reverse order of list5: 100 88 4 15 23 58 9 6 5 8 1
Queue implements a data structure that allows inserting and retrieving elements in a first-in-first-out (FIFO) manner.
In scala, Queue is implemented as a pair of lists. One is used to insert the elements and second to contain deleted elements. Elements are added to the first list and removed from the second list.
Scala Queue Example
Output:
Queue(1, 5, 6, 2, 3, 9, 5, 2, 5)
Queue(1, 5, 6, 2, 3, 9, 5, 2, 5)
Scala Queue Example 2
Output:
Queue Elements: 1 5 6 2 3 9 5 2 5
First element in the queue: 1
Element added in the queue: 1 5 6 2 3 9 5 2 5 100
Element deleted from this queue: (1,Queue(5, 6, 2, 3, 9, 5, 2, 5))
Stream is a lazy list. It evaluates elements only when they are required. This is a feature of scala. Scala supports lazy computation. It increases performance of your program.
Scala Stream Example
In the following program, we have created a stream.
Output:
Stream(100, ?)
In the output, you can see that second element is not evaluated. Here, a question mark is displayed in place of element. Scala does not evaluate list until it is required.
Scala Stream Example: Applying Predefined Methods
In the following example, we have used some predefined methods like toStream, which is used to iterate stream elements.
Output:
Stream(100, ?)
Stream(1, ?)
1
Stream(1, ?)
Stream(200, ?)
Map is used to store elements. It stores elements in pairs of key and values. In scala, you can create map by using two ways either by using comma separated pairs or by using rocket operator.
Scala maps Example
In the following example, we have both approaches to create map.
Output:
Map(A -> Apple, B -> Ball)
Map(A -> Aple, B -> Ball)
Empty Map: Map()
Scala Map Example: Adding and Removing Elements
You can add and remove new elements in maps. Scala provides you lots of predefined method. You can use them to perform operations on the Maps. In the following example, we have created a new Map.
Output:
Apple
Map(A -> Apple, B -> Ball, C -> Cat)
Map(A -> Apple, C -> Cat)
HashMap is used to store element. It use hash code to store elements and return a map.
HashMap Example
In this example, we have created a HashMap.
Output:
Map()
Map(A -> Apple, B -> Ball, C -> Cat)
Scala HashMap Example: Adding and Accessing Elements
In the following example, we have created a HashMap. this program add elements and access elements as well.
Output:
A -> Apple
B -> Ball
C -> Cat
Ball
A -> Apple
B -> Ball
C -> Cat
D -> Doll
This class implements immutable maps by using a list-based data structure. It maintains insertion order and returns ListMap. This collection is suitable for small elements.
You can create empty ListMap either by calling its constructor or using ListMap.empty method.
Scala ListMap Example
In this example, we have created an empty ListMap and non-empty ListMap as well.
Output:
ListMap(Rice -> 100, Wheat -> 50, Gram -> 500)
ListMap()
ListMap()
Scala ListMap Example: Applying Basic Operations
Output:
Rice->100
Wheat->50
Gram->500
500
Rice -> 100
Wheat -> 50
Gram -> 500
Pulses -> 550
A tuple is a collection of elements in ordered form. If there is no element present, it is called empty tuple. You can use tuple to store any type of data. You can store similar type or mix type data also. You can use it to return multiple values from a function
Scala Tuple Example
In the following example, we have created tuple of different types of elements.
Output:
(1,5,8,6,4)
(Apple,Banana,Gavava)
(2.5,8.4,10.5)
(1,2.5,India)
Scala Tuple Example: Accessing Tuple Elements
In this example, we are accessing tuple elements by using index. Here, we are using productIterator for iterating tuple elements.
Output:
iterating values:
1
2.5
India
Accessing values:
1
2.5
Scala Tuple Example: Function Return Multiple Values
You can return multiple values by using tuple. Function does not return multiple values but you can do this with the help of tuple. In the following example, we are describing this process.
Output:
Iterating values:
1
2.5
India
Scala provides predefined methods to deal with file. You can create, open, write and read file. Scala provides a complete package scala.io for file handling.
In this chapter, we will discuss all these file operations in detail.
Scala Creating a File Example
Scala doesn't provide file writing methods. So, you have to use the Java PrintWriter or FileWriter methods.
The above code will create a text file ScalaFile.txt. After creating file printwriter is used to write content to this file.
Scala Reading File Example: Reading Each Charecter
Output:
H
e
l
l
o
,
T
h
i
s
i
s
s
c
a
l
a
f
i
l
e
Scala provides file reading methods. In the above code, we have imported scala.io package and Source class is used to access file related methods like fromFile().
You must close file refernce after reading or writing file by using close() method.
Scala Reading a File Example: Reading Each Line
Output:
Hello, This is scala file
Apart from these for all kind of file handling operations, you need to use java.io package to access file methods.
Multithreading is a process of executing multiple threads simultaneously. It allows you to perform multiple operations independently.
You can achieved multitasking by using Multithreading. Threads are lightweight sub-processes which occupy less memory. Multithreading are used to develop concurrent applications in Scala.
Scala does not provide any separate library for creating thread. If you are familiar with multithreading concept of Java, you will come to know that it is similar except the syntax of Scala language itself.
You can create thread either by extending Thread class or Runnable interface. Both provide a run method to provide specific implementation.
Scala Thread Life Cycle
Thread life cycle is a span of time in which thread starts and terminates. It has various phases like new, runnable, terminate, block etc. Thread class provides various methods to monitor thread's states.
The Scala thread states are as follows:
1) New
This is the first state of thread. It is just before starting of new thread.
2) Runnable
This is the state when thread has been started but the thread scheduler has not selected it to be the running thread.
3) Running
The thread is in running state if the thread scheduler has selected it.
4) Non-Runnable (Blocked)
This is the state when the thread is still alive, but is currently not eligible to run due to waiting for input or resources.
5) Terminated
A thread is in terminated or dead state when its run() method exits.
There are two ways to create a thread:
Scala Thread Example by Extending Thread Class
The following example extends Thread class and overrides run method. The start() method is used to start thread.
Output:
Thread is running...
Scala Thread Example by Extending Runnable Interface
The following example implements Runnable interface and overrides run method. The start() method is used to start thread.
Output:
Thread is running...
1) What is Scala?
Scala is a general-purpose programming language. It supports object-oriented, functional and imperative programming approaches. It is a strong static type language. In Scala, everything is an object whether it is a function or a number. It was designed by Martin Odersky in 2004.
Scala Program Example
2) What are the features of Scala?
There are following features in Scala:
3) What is pattern matching?
Pattern matching is a feature of Scala. It works same as switch case in other languages. It matches the best case available in the pattern.
Example
4) What is for-comprehension in Scala?
In Scala, for loop is known as for-comprehensions. It can be used to iterate, filter and return an iterated collection. The for-comprehension looks a bit like a for-loop in imperative languages, except that it constructs a list of the results of all iterations.
Example
5) What is the breakable method in Scala?
In Scala, there is no break statement, but you can do it by using break method and importing Scala.util.control.Breaks._ package. It can break your code.
Example
6) How to declare a function in Scala?
In Scala, functions are first-class values. You can store function value, pass a function as an argument and return function as a value from other function. You can create a function by using the def keyword. You must mention return type of parameters while defining a function and return type of a function is optional. If you don't specify the return type of a function, default return type is Unit.
Scala Function Declaration Syntax
7) Why do we use =(equal) operator in Scala function?
You can create a function with or without = (equal) operator. If you use it, the function will return value. If you don't use it, your function will not return anything and will work like the subroutine.
Example
8) What is the Function parameter with a default value in Scala?
Scala provides a feature to assign default values to function parameters. It helps in the scenario when you don't pass value during function calls. It uses default values of parameters.
Example
9) What is a function named parameter in Scala?
In Scala function, you can specify the names of parameters while calling the function. You can pass named parameters in any order and can also pass values only.
Example
10) What is a higher order function in Scala?
Higher order function is a function that either takes a function as an argument or returns a function. In other words, we can say a function which works with function is called a higher-order function.
Example
11) What is function composition in Scala?
In Scala, functions can be composed from other functions. It is a process of composing in which a function represents the application of two composed functions.
Example
12) What is Anonymous (lambda) Function in Scala?
An anonymous function is a function that has no name but works as a function. It is good to create an anonymous function when you don't want to reuse it later. You can create anonymous function either by using ⇒ (rocket) or _ (underscore) wildcard in Scala.
Example
13) What is a multiline expression in Scala?
Expressions those are written in multiple lines are called multiline expression. In Scala, be careful while using multiline expressions.
Example
The above program does not evaluate the complete expression and return b here.
14) What is function currying in Scala?
In Scala, the method may have multiple parameter lists. When a method is called with a fewer number of parameter lists, this will yield a function taking the missing parameter lists as its arguments.
Example
15) What is a nexted function in Scala?
In Scala, you can define the function of variable length parameters. It allows you to pass any number of arguments at the time of calling the function.
Example
16) What is an object in Scala?
The object is a real-world entity. It contains state and behavior. Laptop, car, cell phone are the real world objects. An object typically has two characteristics:
1) State: data values of an object are known as its state.
2) Behavior: functionality that an object performs is known as its behavior.
The object in Scala is an instance of a class. It is also known as runtime entity.
17) What is a class in Scala?
The class is a template or a blueprint. It is also known as a collection of objects of similar type.
In Scala, a class can contain:
Example
18) What is an anonymous object in Scala?
In Scala, you can create an anonymous object. An object which has no reference name is called an anonymous object. It is good to create an anonymous object when you don't want to reuse it further.
Example
19) What is a constructor in Scala?
In Scala, the constructor is not a special method. Scala provides primary and any number of auxiliary constructors. It is also known as default constructor.
In Scala, if you don't specify a primary constructor, the compiler creates a default primary constructor. All the statements of the class body treated as part of the constructor.
Scala Primary Constructor Example
20) What is method overloading in Scala?
Scala provides method overloading feature which allows us to define methods of the same name but having different parameters or data types. It helps to optimize code. You can achieve method overloading either by using different parameter list or different types of parameters.
Example
Table of Contents
Difference between DBMS and RDBMS
SQL SELECT from Multiple Tables
SQL ORDER BY CLAUSE WITH ASCENDING ORDER
Scala Variables and Data Types
Scala Singleton and Companion Object
Scala Case Classes and Case Object
Scala Tuple Example: Function Return Multiple Values