
Edition

Practical
Data Science

-------with-------------

□upyter
Explore Data Cleaning, Pre-processing, Data Wrangling, Feature Engineering

and Machine Learning using Python and Jupyter

Practical

Data Science with

Jupyter

Explore Data Cleaning, Pre-processing,

Data Wrangling, Feature Engineering and

Machine Learning using Python and Jupyter

Prateek Gupta

www.bpbonline.com

http://www.bpbonline.com

FIRST EDITION 2019

SECOND EDITION 2021

Copyright © BPB Publications, India

ISBN: 978-93-89898-064

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without the

prior written permission of the publisher with the exception to the

program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means

of publication, photocopy, recording, or by any electronic and

mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the

best of author’s and publisher’s knowledge. The author has made

every effort to ensure the accuracy of these publications, but

publisher cannot be held responsible for any loss or damage

arising from any information in this book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications cannot

guarantee the accuracy of this information.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers,

150 DN Rd. Next to Capital Cinema,

V.T. (C.S.T.) Station, MUMBAI-400 001

Ph: 22078296/22078297

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747

Tti View C&rnfcilttC
BPB Publications Cataiogue
Stan the O'? Code;

Published by Manish Jain for BPB Publications, 20 Ansari Road,

Darya Ganj, New Delhi-110002 and Printed by him at Repro India

Ltd, Mumbai

www.bpbonline.com

http://www.bpbonline.com

Dedicated to

All Aspiring Data Scientists

Who have chosen to solve this world’s problem with data

About the Author

Prateek Gupta is a seasoned Data Science professional with nine

years of experience in finding patterns, applying advanced

statistical methods and algorithms to uncover hidden insights. His

data-driven solutions maximize revenue, profitability, and ensure

efficient operations management. He has worked with several

multinational IT giants like HCL, Zensar, and Sapient.

He is a self-starter and committed data enthusiast with expertise

in fishing, winery, and e-commerce domain. He has helped various

clients with his machine learning expertise in automatic product

categorization, sentiment analysis, customer segmentation, product

recommendation engine, and object detection and recognition

models. He is a firm believer in “Hard work triumphs talent when

talent doesn’t work hard”.

His keen area of interest is in the areas of cutting-edge research

papers on machine learning and applications of natural language

processing with computer vision techniques. In his leisure time,

he enjoys sharing knowledge through his blog and motivates

young minds to enter the exciting world of Data Science.

His Blog: http://dsbyprateekg.blogspot.com/

His LinkedIn Profile: www. l i n ked in.com/in/prateek-gu pta-64203354

pot.com/
in.com/in/prateek-

Acknowledgement

I would like to thank some of the brilliant knowledge sharing

minds - Jason Brownlee Ph.D., Adrian Rosebrock, Ph.D., and

Andrew Ng, from whom I have learned and am still learning

many concepts. I would also like to thank open data science

community, Kaggle and various data science bloggers for making

data science and machine learning knowledge available to

everyone.

I would also like to express my gratitude to almighty God, my

parents, my wife Pragya, and my brother Anubhav, for being

incredibly supportive throughout my life and for the writing of this

book.

Finally, I would like to thank the entire BPB publications team,

who made this book possible. Many thanks to Manish Jain, Nrip

Jain, and Varun Jain for giving me the opportunity to write my

second book.

Preface

Today, Data Science has become an indispensable part of every

organization, for which employers are willing to pay top dollars to

hire skilled professionals. Due to the rapidly changing needs of

industry, data continues to grow and evolve, thereby increasing the

demand for data scientists. However, the questions that

continuously haunt every company - are there enough highly-

skilled individuals who can analyze how much data will be

available, where it will come from, and what the advancement are

in analytical techniques to serve them more significant insights? If

you have picked up this book, you must have already come

across these topics through talks or blogs from several experts

and leaders in the industry.

To become an expert in any field, everyone must start from a

point to learn. This book is designed with keeping such

perspective in mind, to serve as your starting point in the field of

data science. When I started my career in this field, I had little

luck finding a compact guide that I could use to learn concepts

of data science, practice examples, and revise them when faced

with similar problems at hand. I soon realized Data Science is a

very vast domain, and having all the knowledge in a small version

of a book is highly impossible. Therefore, I decided I accumulate

my experience in the form of this book, where you’ll gain

essential knowledge and skill set required to become a data

scientist, without wasting your valuable time finding material

scattered across the internet.

I planned the chapters of this book in a chained form. In the first

chapter, you will be made familiar with the data and the new data

science skills set. The second chapter is all about setting up tools

for the trade with the help of which you can practice the

examples discussed in the book. In chapters three to six, you will

learn all types of data structures in Python, which you will use in

your day-to-day data science projects. In 7th chapter you will lean

how to interact with different databases with Python. The eighth­

chapter of this book will teach you the most used statistical

concepts in data analysis. By the ninth chapter, you will be all set

to start your journey of becoming a data scientist by learning how

to read, load, and understand different types of data in Jupyter

notebook for analysis. The tenth and eleventh chapters will guide

you through different data cleaning and visualizing techniques.

From the twelfth chapter onwards, you will have to combine

knowledge acquired from previous chapters to do data pre­

processing of real-world use-cases. In chapters thirteen and

fourteen, you will learn supervised and unsupervised machine

learning problems and how to solve them. Chapters fifteen and

sixteen will cover time series data and will teach you how to

handle them. After covering the key concepts, I have included four

different case studies, where you will apply all the knowledge

acquired and practice solving real-world problems. The last three

chapters of this book will make you industry-ready data scientists.

Using best practices while structuring your project and use of

GitHub repository along with your Data Science concepts will not

make you feel naive, while working with other software engineering

team.

The book you are holding is my humble effort to not only cover

fundamentals of Data Science using Python, but also save your

time by focusing on minimum theory + more practical examples.

These practical examples include real-world datasets and real

problems, which will make you confident in tackling similar or

related data problems. I hope you find this book valuable, and

that it enables you to extend your data science knowledge as a

practitioner in a short time.

Downloading the coloured images:

Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/75823

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content to

provide with an indulging reading experience to our subscribers.

Our readers are our mirrors, and we use their inputs to reflect

and improve upon human errors, if any, that may have occurred

during the publishing processes involved. To let us maintain the

quality and help us reach out to any readers who might be

having difficulties due to any unforeseen errors, please write to us

at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by

the BPB Publications’ Family.

pbonline.com

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade to

the eBook version at www.bpbonline.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get

in touch with us at business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up

for a range of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

http://www.bpbonline.com
bonline.com

bpb is searching for authors like you

If you're interested in becoming an author for BPB, please visit

www.bpbonline.com and apply today. We have worked with

thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You

can make a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at In

case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of books

and videos available at Check them out!

PIRACY

If you come across any illegal copies of our works in any form

on the internet, we would be grateful if you would provide us

with the location address or website name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming an author

http://www.bpbonline.com
bonline.com

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please visit

REVIEWS

Please leave a review. Once you have read and used this book,

why not leave a review on the site that you purchased it from?

Potential readers can then see and use your unbiased opinion to

make purchase decisions, we at BPB can understand what you

think about our products, and our authors can see your feedback

on their book. Thank you!

For more information about BPB, please visit

Table of Contents

1. Data Science Fundamentals

Structure

Objective

What is data?

Structured data

Unstructured data

Semi-structured data

What is data science?

What does a data scientist do?

Real-world use cases of data science

Why Python for data science?

Conclusion

2. Installin g Software and System Setu p

Structure

Objective

System requirements

Downloading Anaconda

Installing the Anaconda on Windows

Installing the Anaconda in Linux

How to install a new Python library in Anaconda?

Open your notebook - Jupyter

Know your notebook

Conclusion

3. Lists and Dictionaries

Structure

Objective

What is a list?

How to create a list?

Different list manipulation operations

Difference between Lists and Tuples

What is a Dictionary?

How to create a dictionary?

Some operations with dictionary

Conclusion

4. Package, Function, and Loop

Structure

Objective

The hel p() function in Python

How to import a Python package?

How to create and call a function?

Passing parameter in a function

Default parameter in a function

How to use unknown parameters in a function?

A global and local variable in a function

What is a Lambda function?

Understanding main in Python

while and for loop in Python

Conclusion

5. NumPy Foundation

Structure

Objective

Importing a NumPy package

Why use NumPy array over list?

NumPy array attributes

Creating NumPy arrays

Accessing an element of a NumPy array

Slicing in NumPy array

Array concatenation

Conclusion

6. Pandas and DataFrame

Structure

Objective

Importing Pandas

Pandas data structures

Series

DataFrame

.loc[] and .iloc[]

Some Useful DataFrame Functions

Handling missing values in DataFrame

Conclusion

7. Interacting with Databases

Structure

Objective

What is SQLAlchemy?

Installing SQLAlchemy package

How to use SQLAlchemy?

SQLAlchemy engine configuration

Creating a table in a database

Inserting data in a table

Update a record

How to join two tables

Inner join

Left join

Right join

Conclusion

8. Thinking Statistically in Data Science

Structure

Objective

Statistics in data science

Types of statistical data/variables

Mean, median, and mode

Basics of probability

Statistical distributions

Poisson distribution

Binomial distribution

Normal distribution

Pearson correlation coefficient

Probability Density Function (PDF)

Real-world example

Statistical inference and hypothesis testing

Conclusion

9. How to Import Data in Python?

Structure

Objective

Importing text data

Importing CSV data

Importing Excel data

Importing JSON data

Importing pickled data

Importing a compressed data

Conclusion

10. Cleaning of Imported Data

Structure

Objective

Know your data

Analyzing missing values

Dropping missing values

Automatically fill missing values

How to scale and normalize data?

How to parse dates?

How to apply character encoding?

Cleaning inconsistent data

Conclusion

11. Data Visualization

Structure

Objective

Bar chart

Line chart

Histograms

Scatter plot

Stacked plot

Box plot

Conclusion

12. Data Pre-processing

Structure

Objective

About the case-study

Importing the dataset

Exploratory data analysis

Data cleaning and pre-processing

Feature Engineering

Conclusion

13. Supervised Machine Learning

Structure

Objective

Some common ML terms

Introduction to machine learning (ML)

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

List of common ML algorithms

Supervised ML fundamentals

Logistic Regression

Decision Tree Classifier

K-Nearest Neighbor Classifier

Linear Discriminant Analysis (LDA)

Gaussian Naive Bayes Classifier

Support Vector Classifier

Solving a classification ML problem

About the dataset

Attribute information

Why train/test split and cross-validation?

Solving a regression ML problem

How to tune your ML model?

How to handle categorical variables in sklearn?

The advanced technique to handle missing data

Conclusion

14. Unsupervised Machine Learning

Structure

Objective

Why unsupervised learning?

Unsupervised learning techniques

Clustering

K-mean clustering

Hierarchical clustering

t-SNE

Princi pal Com ponent Analysis (PCA)

Case study

Validation of unsupervised ML

Conclusion

15. Handling Time-Series Data

Structure

Objective

Why time-series is important?

How to handle date and time?

Transforming a time-series data

Manipulating a time-series data

Comparing time-series growth rates

How to change time-series frequency?

Conclusion

16. Time-Series Methods

Structure

Objective

What is time-series forecasting?

Basic steps in forecasting

Time-series forecasting techniques

Autoregression (AR)

Moving Average (MA)

Autoregressive Moving Average (ARMA)

Autoregressive Integrated Moving Average (ARIMA)

Seasonal Autoregressive Integrated Moving-Average (SARIMA)

Seasonal Autoregressive Integrated Moving-Average with Exogenous

Regressors (SARIMAX)

Vector Autoregression Moving-Average (VARMA)

Holt Winter’s Exponential Smoothing (HWES)

Forecast future traffic to a web page

Conclusion

17. Case Study-1

Predict whether or not an applicant will be able to repay a loan

Conclusion

18. Case Study-2

Build a prediction model that will accurately classify which text

messages are spam

Conclusion

19. Case Study-3

Build a film recommendation engine

Conclusion

20. Case Study-4

Predict house sales in King County, Washington State, USA, using

regression

Conclusion

21. Python Virtual Environment

Structure

Objective

What is a Python virtual environment?

How to create and activate a virtual environment?

How to open Jupyter notebook with this new environment?

How to set an activated virtual environment in PyCharm IDE?

What is requirements.txt file?

What is README.md file?

Upload your project in GitHub

Conclusion

22. Introduction to An Advanced Algorithm - CatBoost

Structure

Objective

What is a Gradient Boosting algorithm?

Introduction to CatBoost

Install CatBoost in Python virtual environment

How to solve a classification problem with CatBoost?

Push your notebook in your GitHub re pository

Conclusion

23. Revision of All Chapters’ Learning

Conclusion

Index

CHAPTER 1

Data Science Fundamentals

“Learning from data is virtually universally useful. Master it and

you will be welcomed anywhere.”

- John Elder, founder of the Elder Research

Elder Research is America’s largest and most experienced analytics

consultancy. With his vision about data, John started his company

in 1995, yet the importance of finding information from the data

is a niche and the most demanding skill of the 21st century.

Today data science is everywhere.

The explosive growth of the digital world requires professionals

with not just strong skills, but also adaptability and a passion for

staying on the forefront of technology. A recent study shows that

demand for data scientists and analysts is projected to grow by

28 percent by 2021. This is on top of the current market need.

According to the U.S. Bureau of Labor Statistics, growth for data

science jobs skills will grow about 28% through 2026. Unless

something changes, these skill-gaps will continue to widen. In this

first chapter, you will learn how to be familiar with data, your role

as an aspiring data scientist, and the importance of Python

programming language in data science.

Structure

What is data?

What is data science?

What does a data scientist do?

Real-world use cases of data science

Why Python for data science?

Objective

After studying this chapter, you should be able to understand the

data types, the amount of the data generated daily, and the need

for data scientists with currently available real-world use cases.

What is data?

The best way to describe data is to understand the types of data.

Data is divided into the following three categories.

Structured data

A well-organized data in the form of tables that can be easily be

operated is known as structured data. Searching and accessing

information from such type of data is very easy. For example, data

stored in the relational database, i.e., SQL in the form of tables

having multiple rows and columns. The spreadsheet is another

good example of structured data. Structured data represent only

5% to 10% of all data present in the world. The following figure

1.1 is an example of SQL data, where an SQL table is holding the

merchant related data:

merchantjd merchant_name subtitle status publish_date

83 Texas Chicken 1 2018-03-22 00:00:00
84 ZALORA 1 2018-03-29 00:00:00
85 Caltex 1 2018-04-0 2 00:00:00
86 COURTS 1 2018-04-09 00:00:00
87 Aaoda 1 2018-04-07 00:00:00
88 LerkThai 1 2018-03-02 00:00:00
89 Peach Garden ® Gardens Bv the Bav 1 2018-02-16 00:00:00

Figure 1.1: Sample SQL Data

Unstructured data

Unstructured data requires advanced tools and software’s to access

information. For example, images and graphics, PDF files, word

document, audio, video, emails, PowerPoint presentations,

webpages and web contents, wikis, streaming data, location

coordinates, etc., fall under the unstructured data category.

Unstructured data represent around 80% of the data. The

following figure 1.2 shows various unstructured data types:

Figure 1.2: Unstructured data types

Semi-structured data

Semi-structured data is structured data that is unorganized. Web

data such as JSON (JavaScript Object Notation) files, BibTex files,

CSV files, tab-delimited text files, XML, and other markup

languages are examples of semi-structured data found on the web.

Semi-structured data represent only 5% to 10% of all data present

in the world. The following figure 1.3 shows an example of JSON

data:

{
"custkey": ",450002"J
"useragent": {

■'devicetype1’: "pc",
‘experience": "browser"
“platform”: "windows"

h
"pagetype": •home1',
'"productline”: '"television"
"customerproflie": (

■"age": 20,
“gender"1: "male",
“customerinterests": [

"movies",
"fashion",
"music"

]
}

}

Figure 1.3: JSON data

What is data science?

It’s become a universal truth that modern businesses are awash

with data. Last year, McKinsey estimated that Big Data initiatives

in the US healthcare system could account for $300 billion to $450

billion in reduced healthcare spending or 12-17 percent of the $2.6

trillion baselines in US healthcare costs. On the other hand though,

bad or unstructured data is estimated to be costing the US

roughly $3.1 trillion a year.

Data-driven decision making is increasing in popularity. Accessing

and finding information from the unstructured data is complex

and cannot be done easily with some BI tools; here data science

comes into the picture.

Data science is a field that extracts the knowledge and insights

from the raw data. To do so, it uses mathematics, statistics,

computer science, and programming language knowledge. A

person who has all these skills is known as a data scientist. A

data scientist is all about being curious, self-driven, and

passionate about finding answers. The following figure 1.4 shows

the skills that a modern data scientist should have:

Figure 1.4: Skills of a modern data scientist

What does a data scientist do?

Most data scientists in the industry have advanced training in

statistics, math, and computer science. Their experience is a vast

horizon that also extends to data visualization, data mining, and

information management. The primary job of a data scientist is to

ask the right question. It’s about surfacing hidden insight that can

help enable companies to make smarter business decisions.

The job of a data scientist is not bound to a particular domain.

Apart from scientific research, they are working in various domains

including shipping, healthcare, e-commerce, aviation, finance,

education, etc. They start their work by understanding the

business problem and then they proceed with data collection,

reading the data, transforming the data in the required format,

visualizing, modeling, and evaluating the model and then

deployment. You can imagine their work cycle as mentioned in the

following figure

Figure 1.5: Work cycle of a data scientist

Eighty percent of a data scientist’s time is spent in simply finding,

cleansing, and organizing data, leaving only 20 percent to perform

analysis. These processes can be time-consuming and tedious. But

it’s crucial to get them right since a model is only as good as

the data that is used to build it. And because models generally

improve as they are exposed to increasing amounts of data, it’s in

the data scientists’ interests to include as much data as they can

in their analysis.

In the later chapters of this book, you will learn all the above­

required skills to be a data scientist.

Real-world use cases of data science

Information is the oil of the 21st century, and analytics is the

combustion engine. Whether you are uploading a picture on

Facebook, posting a tweet, emailing anybody, or shopping in an e­

commerce site, the role of data science is everywhere. In the

modern workplace, data science is applied to many problems to

predict and calculate outcomes that would have taken several

times more human hours to process. Following are some list of

real-world examples where data scientists are playing a key role:

Google’s AI research arm is taking the help of data scientists to

build the best performing algorithm for automatically detecting

objects.

Amazon has built a product recommendation system to

personalize their product.

Santander Group of Bank has built a model with the help of data

scientists to identify the value of transactions for each potential

customer.

Airbus in the maritime industry is taking the help of data

scientists to build a model that detects all ships in satellite

images as quickly as possible to increase knowledge, anticipate

threats, trigger alerts, and improve efficiency at sea.

YouTube is using an automated video classification model in

limited memory.

Data scientists at the Chinese internet giant Baidu released details

of a new deep learning algorithm that they claim can help

pathologists identify tumors more accurately.

The Radiological Society of North America (RSNA®) is using an

algorithm to detect a visual signal for pneumonia in medical

images which automatically locate lung opacities on chest

radiographs.

The Inter-American Development Bank is using an algorithm that

considers a family’s observable household attributes like the

material of their walls and ceiling, or the assets found in the

home to classify them and predict their level of need.

Netflix data uses data science skills on the movie viewing patterns

to understand what drives user interest and uses that to make

decisions on which Netflix original series to produce.

Why Python for data science?

Python is very beginner friendly. The syntax (words and structure)

is extremely simple to read and follow, most of which can be

understood even if you do not know any programming. Python is

a multi-paradigm programming language - a sort of Swiss Army

knife for the coding world. It supports object-oriented

programming, structured programming, and functional

programming patterns, among others. There’s a joke in the Python

community that Python is generally the second-best language for

everything.

Python is a free, open-source software, and consequently, anyone

can write a library package to extend its functionality. Data science

has been an early beneficiary of these extensions, particularly

Pandas, the big daddy of them all.

Python’s inherent readability and simplicity makes it relatively easy

to pick up, and the number of dedicated analytical libraries

available today means that data scientists in almost every sector

will find packages already tailored to their needs, freely available

for download.

The following survey was done by KDnuggets - a leading site on

business analytics, Big Data, data mining, data science, and

machine learning - clearly shows that Python is a preferable

choice for data science/machine learning:

Top Analytics, Data Science, Machine Learning
Software 2017-2019, KDnuggets Poll

Figure 1.6: Survey by KDnuggets

Conclusion

Most of the people think that it is very difficult to become a data

scientist. But, let me be clear, it is not tough!

If you love making discoveries about the world, and if you are

fascinated by machine learning, then you can break into the data

science industry no matter what your situation is. This book will

push you to learn, improve, and master the data science skill on

your own. There is only one thing you need to keep on, that is,

LEARN-APPLY-REPEAT. In the next chapter, we will set up our

machine, and be ready for our data science journey.

CHAPTER 2

Installing Software and System Setup

In the last chapter, we covered the data science fundamentals,

and now we are ready to move ahead and prepare our system for

data science. In this chapter, we will learn about the most popular

Python data science platform - Anaconda. With this platform, you

don't need to install Python explicitly - just one installation in

your system (Windows, macOS, or Linux) and you are ready to

use the industry-standard platform for developing, testing, and

training.

Structure

System requirements

Downloading the Anaconda

Installing the Anaconda in Windows

Installing the Anaconda in Linux

How to install a new Python library in Anaconda

Open your notebook - Jupyter

Know your notebook

Objective

After studying this chapter, you should be able to install Anaconda

in your system successfully and use the Jupyter notebook. You will

also run your first Python program in your notebook.

System requirements

System architecture: 64-bit x86, 32-bit x86 with Windows or Linux,

Power8, or Power9

Operating system: Windows Vista or newer, 64-bit macOS 10.10+,

or Linux, including Ubuntu, RedHat, CentOS 6+

Minimum 3 GB disk space to download and install

Downloading Anaconda

You can download the Anaconda Distribution from the following

link:

https://www.anaconda.com/download/

Once you click on the preceding link, you will see the following

screen (as shown in figure

ft ® a httpiy/wwvb-.anacondajcom/produets/individijal

Q
Individual Edition

Your data science
toolkit
With over 20 million users worldwide, the open-source Individual

Edition (Distribution) is the easiest way to perform Python/R data

science and machine learning on a single machine. Developed for

solo practitioners, it is the toolkit that equips you to work with

thousands of open-source packages and libraries.

Download

ps://www.anaconda.com/download/

Figure 2.1 : Anaconda Distribution download page

Anaconda Distribution shows different OS options - Windows,

macOS, and Linux. According to your OS, select the appropriate

option. For this example, I have selected the Windows OS’s 64-Bit

Graphical Installer (457 MB) option as shown in the following

figure 2.2 :

Anaconda Installers

Windows SS MacOS ■ Linux A

64- Bit Graphical Installer (457 MB) 64 -Bit Graphical Installer [455 MB) 64- Bit [(36) installer 1529 MB1

32-Bit Grapnniat tnstaller (4IJ5 64-Bit Command L;rie Installer (42-0 MH) 64- Bi t [Powrtwfi and Powers) Installer |279
MBj

Figure 2.2 : Anaconda Distribution installer versions for Windows OS

Python community has stopped its support for Python 2.x and the

prior version, so it is highly recommended that you should use

Python 3.x. We are going to use Python 3.8 version throughout

this book, so I will recommend downloading this version only. For

downloading the distribution, see the two links just below the

Download button; they are showing the Graphical Installer for

each system architecture type-64-bit or 32-bit. Click on the

appropriate link, and the downloading will start. This downloading

process is the same for macOS and Linux.

Installing the Anaconda on Windows

Once the downloading is complete, double click on the installer to

launch (the recommended way is to run the installer with admin

privileges).

Click accept the terms, select the users - Just Me or All Users and

click

Select the default destination folder or add a custom location to

install the Anaconda, copy this path for later use and click

Install Anaconda to a directory path that does not contain spaces or

Unicode characters.

Deselect (uncheck) the first following option (if checked already) -

add Anaconda to my PATH environment variable, then click Install,

wait till the installation is completed.

Click click and then click

Now open the Advanced system settings in your machine and add

the following two values in your PATH environment variable:

C:\Users\prateek\Anaconda3

C:\Users\prateek\Anaconda3\Scripts

Here, replace the actual path of your Anaconda installation folder that

you copied earlier.

Save the settings and restart your system.

Verify your installation by clicking on the Windows icon in the

taskbar or simply type Anaconda in the search bar - you will see

Anaconda Navigator option, click on this option, and the following

screen will appear (as shown in figure

Figure 2.3: Anaconda Navigator

Installing the Anaconda with Graphical Installer in macOS is the

same as we did above for Windows.

Installing the Anaconda in Linux

After downloading the 64bit(x86) installer, run the following two

commands to check the data integrity:

Md5sum /path/filename

Sha256sum /path/filename

Replace /path/filename with the actual path and filename of the

file you downloaded.

Enter the following to install Anaconda for Python 3.8, just replace

~/Downloads/ with the path to the file you downloaded:

bash "/Downloads Anaconda! S.2.0-Linux x86_64.sh

Figure 2.4: Installing Anaconda in Linux

Choose Install Anaconda as a user unless root privileges are

required. The installer prompts - In order to continue the

installation process, please review the license Click Enter to view

license terms.

Scroll to the bottom of the license terms and enter Yes to agree.

The installer prompts you to click Enter to accept the default

install location, CTRL + C to cancel the installation, or specify an

alternate installation directory. If you accept the default install

location, the installer displays PREFIX=/home//anaconda<3> and

continues the installation. It may take a few minutes to complete.

The installer prompts - Do you wish the installer to prepend the

Anaconda<3> install location to PATH in your /home//.bashrc?

Enter Yes.

If you enter you must manually add the path to Anaconda or

conda will not work.

The installer describes Microsoft VS Code and asks if you would

like to install the VS Code. Enter yes or no. If you select yes,

follow the instructions on the screen to complete the VS Code

installation.

Installing VS Code with the Anaconda installer requires an internet

connection. Offline users may be able to find an offline VS Code

installer from Microsoft.

The installer finishes and displays - Thank you for installing

Anaconda<3>! Close and open your terminal window for the

installation to take effect, or you can enter the command source

After your installation is complete, verify it by opening Anaconda

Navigator, a program that is included with Anaconda - open a

Terminal window and type anaconda-navigator. If Navigator opens,

you have successfully installed Anaconda.

You can find some known issues while installing Anaconda and

their solutions in the following link:

https://docs.anaconda.com/anaconda/user-guide/troubleshooting/

ps://docs.anaconda.com/anaconda/user-

How to install a new Python library in Anaconda?

Most of the Python libraries/packages are preinstalled with the

Anaconda Distribution, which you can verify by typing the

following command in an Anaconda Prompt:

conda list

Figure 2.5: Anaconda Prompt

Now if you need to install any Python package which is not in

the preceding list and is required for your task, then follow these

steps. In the same Anaconda Prompt terminal, type conda install

For example, if you want to install scipy package, just type conda

install then press enter and then enter y to continue.

A second recommended approach to install any new package in

Anaconda is to search the same install in Google first and then

go to the first search result, which is shown as follows:

In Google search, I am searching a package for example imageio

i.e. conda install

Go to the first search result; this will open the Anaconda official

site showing the installers of the searched package. In our

example, it is like https://anaconda.org/menpo/imageio

Now copy the text under- To install this package with conda run:

and paste in the Anaconda Prompt. In our case, text is: conda

install -c menpoimageio

Open your notebook - Jupyter

After installing Anaconda, the next step is to open the notebook -

an open-source web application that allows you to create and

share documents that contain live code, equations, visualizations,

and narrative text. For the notebook, open Anaconda Navigator

and click on Launch button under the Jupyter Notebook icon or

just type Jupyter Notebook in the search bar in Windows and

then select it as shown in the following figure

Figure 2.6: Windows search bar

Once you select it, a browser window (default is IE) will be

opened showing the notebook as showing in the following figure

a ® Home X

O tar l&callwsi *
jupyter

FdM liuraini) CtirJwr.

Send ile«iH w peifcm Miion on Siam LiptMd n*™

□
□ El 30 Object a ™wJi

LJ CjCimlwt" a irwntn

□ Cj Cmir-np Sham

n q UHuTtwh month

□ CJUownisaat *n hour

II E Fjiorirei # month %
 3

■§
 H

 «

□ Er Lnks a WMhOi a-Jir

U CjMuilc ri inoMil ftfO

n ClCmThW* 12 days ago

Figure 2.7: Browser window

Know your notebook

Once your notebook is opened in the browser, click on the New

dropdown and select the default first option - Python 3 as shown

in the following figure

Figure 2.8: Dropdown menu

After clicking on Python 3 option, a new tab will be opened

containing the new untitled notebook, as shown in the following

figure

e + » QB * *■ n ■ c v; o

1* []:

Figure 2.9: New tab

Rename your notebook with a proper name by double-clicking on

the Untitled text and then enter any new name (I have named it

and click Rename (refer to the following figure

Figure 2.10: Rename

The preceding step will rename your notebook. Now it's time to

run your first Python program in your first notebook. We will print

a greeting message in Python for this purpose. In the cell (text

bar) just type any welcome message inside the print block as

shown in the following figure

B Home E3 MyFirstNgtetwOk X | + -V

O ijJj O taeaBKHt^EaB/notebaoksyWyFfrstNotebookipynb

2 jupyter MyFirstNotebook Last Checkpoint 31 minules ago (unsaved changes)

Fife Edit View Insert Cell kernel Widgets Help

a + »; ® + 4 H ■ C Code y C3

In []: printfHello python!-)

Figure 2.11: Welcome message

In the above cell, we are printing a string in Python 3.6. Now to

run this program, you can simply press Shift + Enter keys together

or click on the Play button just below the cell column (refer to

the following figure

M^FirelNotebook

BS/ncitsb<wks/M^F»rstNotebookjpynt

run cell. select below

Figure 2.12: Play button

Once you run the cell, your program will run and give you the

output, as shown just below the cell in the following figure

*S Home B MyFirstNotebock X + v

O tn) Q loMlhD5t:38Bfl7noteboo1ts/MyfirstMatetiook.ipynb

.... JUpyter MyFirstNotebook last Checkpoint 3S minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help

a + K £1 t -t> + H ■ C eerie C3

in [1]: print "Hello Python*")

Hello Python]

In (]t

Figure 2.13 : Output

Congrats! You have successfully run your first program in Python

3.7. This is just a one-line code using simple plain English text.

Let's explore some more, the simplicity of the Python by doing

some mathematical calculations.

Let's add two numbers by entering the FirstNumber +

SecondNumber and then run it as shown in the following figure

In [2]: 29+56

0ut[2]: 85

Figure 2.14 : Simple calculation

Quite interesting, right! Let's move ahead and ask the user to

input numbers and let Python do the homework. In the following

example, you need to enter the first number, press enter, then

enter the second number and press enter. The calculation will be

done, and output will be displayed within a millisecond (as shown

in the following figure

a ~ int(input())
b = int(input())
print(“adding of two numbers: ", a+b)
print(“difference in numbers: ", a-b)
print “multiplicaton of numbers: ", a*b)

4
2
adding of two numbers: 6
difference in numbers: 2
multiplicaton of numbers: 8

Figure 2.15 : Mathematical calculation

Now, suppose you have done your given task and want to share

the same with your project lead or manager. You can do it easily

by going to the File option and hover on the Download as

option, as shown in the following figure

jupyter My First Note book Last Checkpoint: an hour ago (a ulosaved)

0 Home □ My First Notebook X + v

O zr.'i 0 localhofit8888/notebooks/MyFirstNoiebook-ipynb

File Edit View Insert Cell Kernel Widgets Help

New Notebook > ♦ + H ■ C Code v E3

Open...
’ython!

Make a Copy...

Rename...

Save and Checkpoint

Revert io Checkpoint t

Print Preview

Download as

Trusted Notebook

Close and Halt

h ThiIn [7]:

Notebook (.ipynb)

Python (.py)

HTML(.html)

Markdown (.md)

reST (.rtf)

LaTeX (.lex)

PDF via LaTeX {.pdf)

i Comment in cetL

zomments in an output

Figure 2.16 : Download as option

You can save your current work in different formats - notebook,

PDF, Python, or HTML. Once you select the required option, it

will be saved in that format with the same name as you have

given while renaming the notebook in the default location of your

system. By saving in the various formats, you can carry and share

your analysis with anyone.

Conclusion

Anaconda Distribution is the fastest and easiest way to do Python

and Machine Learning work. You can load the data, pre-process it,

visualize it, train your model, and evaluate the performance in a

single notebook and then share your work with anyone easily. For

a complete walk-around of your Jupyter notebook, I have added a

cheat sheet section just after this chapter. I suggest you read that

cheat sheet and play with your notebook. In the next chapter, you

will learn about the data structures specific to data science, and

also how to use them in your analysis task.

CHAPTER 3

Lists and Dictionaries

Data structures are a way of organizing and storing data in a

programming language so that they can be accessed and worked

on efficiently. They define the relationship between data and

operations that can be performed on the data. As an aspiring

data scientist, you will use various data structures in your daily

job so learning data type is a must-have skill. In this chapter, we

will learn the two most widely used Python data structures specific

to data science when working with huge data - lists and

dictionaries. We will also compare both with the other data

structures that look the same but have fundamental differences.

Structure

What is a list?

How to create a list?

Different list manipulating operations

Difference between list and tuples

What is a dictionary?

How to create a dictionary?

Some operations with the dictionary

Objective

After studying this chapter, you will have a strong knowledge on

using list and dictionary.

What is a list?

A list is a non-primitive type of data structure in Python, which

means it stores a collection of values in various formats rather

than storing only a single value. Lists are mutable - we can

change the content of a list. In simple words, list is a collection

that is ordered, mutable, and may contain duplicate values. Here,

ordered means the order in which you entered the elements in a

list; the same order will be shown, once you print/get that list.

In Python, we can store a single value in the following primitive

data types:

float represents the rational number for examples 1.23 or 3.2

int represents numeric data like 1,2 or -3

str represents the string or text

bool represents True/False

Consider a scenario where your family doctor needs heights and

weights of every family member to calculate the body mass index.

Now creating a separate variable to store each person's height

and weight is very inconvenient. Here, Python list comes in the

picture.

How to create a list?

In Python, a list is an object which is treated like any other data

type (e.g., integers, strings, Boolean, etc.). This means that you

can assign your list to a variable, so you can store and make it

easier to access. We can create a list using the square brackets

and separating the elements by a comma.

In your notebook, you can create an empty list, store it in a

variable, and then check the type of the variable, as shown in the

following figure

In [2]: # creating an empty List in Python
height = []
type height

0ut[2]: list

Figure 3.1 : Creating an empty list in Python

Let's create a list containing the heights of family members in

meters, as shown in the following figure

In [3]: # a List containing heights
height_list = [1.76,1.64,1.79,1,57]
print height_list

[1.76, 1.64, 1.79, 1, 57]

Figure 3.2 : A list containing heights

One advantage of the list is that we can store different types int,

etc.) of values in a list and even a list of a list itself. Interesting

right? For example, we can add names of the family members,

which is the string data type and its values is in float data type

in our previously created list, as shown in the following figure

In [4]: # a List containing str and fLoat
narneheightlist = ["Tom", 1.76, ”Harry”,l.64,"Lisa”,1.79, "Hona", 1.57]
print fisme height list

[Tom', 1.76, 'Harry', 1.64, 'Lisa', 1.79, 'Mona’, 1.S7]

Figure 3.3 : A list containing str and float

Different list manipulation operations

After creating a list, you will often find a situation where you

want to update that list. This list manipulation is the exact step

you are going to learn in this section:

Let's create a list and print its element by its index one by one.

In this example, we are storing the values python, c, and java in

a list and then printing each of these values using their position

(in other words we are accessing a list by index number) in the

list.

Here, the starting point of a list begins with number zero (0),

not from one (1). To access the first element of a list, you need

to use zero indexes, not the first index as shown in the following

figure

In [6]; lang - ['python't 'c’> 'java'j

print (lang[0] + * is very easy to learn for Data Science')
print (langflj + ' is the first language I have learnt’)
print (lang[2]+ ’ is difficult to learn for Data Science’)

python is very easy to learn for Data Science
c is the first language I have learnt
java is difficult to learn for Data Science

Figure 3.4: Begin with number zero (0)

Since the list is mutable, we can change the existing value of any

element; let's do this by changing the java language with cobol

language as shown in the following figure

In [1]: lang = [’python','c* ,‘java']
print("old list:", lang)
lang[2] = ‘cobol’
print("new list:", lang

old list: ['python', 'c', 'java']
new list: ['python', 'c', 'cobol']

Figure 3.5 : Changing java with cobol language

Now you want to print all elements in the list one by one; you

can do this by using for loop as shown in the following figure

In [2]: language^list = [’python'/ccobol']
for language in language_list:

print "language is: ", language

language is: python
language is: c
language is: cobol

Figure 3.6 : Using ‘for’ loop

Let's check how many elements there are in our language list

using the list's len() method (refer to the following figure

In [3]: language_list = [1 python‘'c*,' cobol'J
print "elements in the list: ", len(language_list)

elements in the list: 3

Figure 3.7 : Using list’s len() method

Now you want to add a new language or item in your list; let's

do this using list's append() method (refer to the following figure

In [4]: languagelist = [’pythonc','cobol']
1anguage_List.append(’java')
print '’updated list is:", language list

updated list is: ['python';, 'c‘, 'cobol', 'java']

Figure 3.8 : Using list’s append() method

What if you want to add a new element in a specific position?

You have guessed it right; we can use the index herewith insert()

method. In the following figure I am adding a new language .net

in 3rd position or after the c language:

In [5]: languagelist - [’python’c','cobol','java']
language_list.insert(2, '.net')
print "modified list is:", languagelist

modified list is: ['python', 'c*, '.net*, 'cobol*, 'java']

Figure 3.9 : Adding a new language .net

Sometimes you want to remove some element from your list. This

can be done in three ways - either to remove the element by its

name using remove() method or by its index using pop() method

or by In the following figure first I am removing the cobol

language from my list and then from the updated list I am

removing java language by its index:

In [8]: language_list = ['python",'c.net'cobol'java']
remove eCement by name
language_list,remove('cobol')
print("updated list:", language_list)
remove eCement by index
languagelist.pop(3)
print "latest language_list

updated list: [’python", *c ’, '.net', 'java']
latest list: ['python', 'c‘, ’.net’]

Figure 3.10 : Removing some element from the list

The del() method use case is different from the other ones. It

also removes the element on the specified index but its syntax is

different from pop() or remove() methods. Let's create a new list

with duplicate elements to understand the difference between

remove(), del(), and pop() methods.

In the following figure digit 1 is repeated two times. When we

apply to remove() method, it's removing the element 4 from the

list. The pop() method is removing the 4th index of the list,

which is a digit at last position, whereas del() method is

removing the 4th index element with a different syntax structure:

In [11]: number_list ° [1,2,3,4,1]
number list.remove(4)
print("list after remove() example:", numberlist)

number list - [1,2,3,4,1]
number_list.pop(4)
print("list after pop() example:", numberJList)

numberlist - [lj2,3,4,l]
del(number_list[4])
print("list after del() example:", number^list

list after remove() example: [1, 2, 3, 1]
list after pop() example: [1, 2, 3, 4]
list after del() example: [1, 2, 3, 4]

Figure 3.11 : Applying different methods to remove an element

Now you want to sort your list in ascending or descending order.

This can be done by sort() method of the list as shown in the

following figure

In [18]: languagelist ■ ('python'cnet‘cobol‘java']
language_iist.sort(}
print(’sort in ascending order:1', language_list)
languages_list = ['pythoncnetcoboljava’,'cff']
languagelist.sort(reverse=True)
print "sort in descending order:", languagelist

sort in ascending order: ['.net1, c‘, cobol', java*, ’python]
sort in descending order: ['python', 'java', 'cobol', 'c’, '.net']

Figure 3.12 : Sorting list in ascending or descending order

Difference between Lists and Tuples

In Python, there is a data type - Tuples, which is similar to lists,

and it often confuses me as to which one to use in which

condition. There are two main qualities of a tuple which

distinguishes it from the list - first is the structure of a tuple,

which means tuples are initialized with small brackets () rather

than square brackets [] in lists, and the second major difference is

that tuples are immutable, which means neither can we change or

delete its value, nor can we add any new item after the

declaration of a tuple. It means there is no append(), remove(),

or pop() methods in tuples.

A tuple looks like how it’s shown in the following figure

tuple_example « ('CS’ / IT* ,1 EC * /ME *)
print (’’tuple example: "j tupleexample)
print “data type of the example is”, type(tuple_example)

tuple example: (’CS’, ‘IT’, ‘EC, *ME')
data type of the example is <class ’tuple’>

Figure 3.13 : Tuples

What is a Dictionary?

In Python, dictionaries are made up of key-value pairs. A key is

used to identify the item and the value holds the value of the

item. The main concept of dictionaries is that for every value, you

have a unique key. A dictionary is initialized by defining key-value

in the curly {} brackets, where they are separated by a colon :

sign. Unlike the list, a dictionary is a collection that is unordered,

which means the order of its element is not guaranteed when you

get or print the dictionary.

How to create a dictionary?

Let's create a dictionary to store the information of a car, where

in the key of that dictionary we store the car's property name and

in the value, we will store its name or value, as shown in the

following figure

in [19]:
'Hyundai"
’Creta* ,
SUV',
2017*

dict_ej<aniple
’brand':
’lade!’;
’type':'!
■year';

}
print '"dictionary example: ~J dlct_example

dictionary example: {'brand': 'Hyundai', 'model': ’Creta', "type’: "SUV", ’year": '2917'}

Figure 3.14 : Creating a dictionary

Some operations with dictionary

Once you create a dictionary, you may want to access any item in

that dictionary. This can be done in the following two ways - one

is to use key and second is to use get() method. Let's do both

in our newly created car information dictionary (refer to the

following figure

In [22]: # access the brand vatue by key
carbrandbykey = dict_example[brand']
print("car brand by key:", car_brand_by_key)
access the brand vatue by get()
print("car brand by method:", dictexample.get(brand'))

car brand by key: Hyundai
car brand by method: Hyundai

Figure 3.15 : Using key and get() methods

There may be a situation where you want to change any value in

your dictionary; this can be done by referring to the key name as

shown in the following figure where we are changing the car

manufacture year from 2017 to 2018:

In [24]: diet_exatnple['year'] - '201S'
print “ijpdated diet: ", diet_0kample

updated diet: {'brand': 'Hyundai', 'model': ‘Creta', 'type': ‘SUV’, 'year’: '201S'}

Figure 3.16 : Changing value in the dictionary

Sometimes you need the keys or values from a dictionary. You

can print all key names or values with the for loop as shown in

the following figure

In [26]: # printing att Keys
for carproperty in diet example:

print("key in diet:'*, car_property)

printing ait vaiues
for carpropertyvalue in dict_example.values()

print("value in diet:", car_property_val'ue)

key in diet: brand
key in diet: model
key in diet: type
key in diet: year
value in diet: Hyundai
value in diet: Creta
value in diet: SUV
value in diet: 2018

Figure 3.17 : For loop

What if a business owner wants you to display car details in a

key-value pair? No issue, we can do that in the following way

(refer to figure

In [27]; for carproperty, carpropertyvalue in dictexample.items()
print carproperty, carpropertyvalue

brand Hyundai
model Creta
type SUV
year 2018

Figure 3.18 : Displaying car details in a key-value pair

The other methods in the dictionary are the same as we used in

the list earlier; instead of the index, we need to use key here.

Conclusion

List and Dictionary are the two most used data types which are

used to efficiently work with huge amounts of data. In your daily

data clean-up process, you will need to store some information in

variables, where learning this chapter will come in handy. After

practicing notebook examples in your notebook, you will gain

confidence and will not confuse which data structure to use in

which condition. In the next chapter, we will learn about Python

functions and packages.

CHAPTER 4

Package, Function, and Loop

Package, function, and loop provide better modularity for your

application and a high degree of code reusing. For your daily data

science work, you don't need to reinvent the wheel or write some

code from scratch. Remember, in the previous chapters, we have

already used print() and type() functions. Python developers have

written mostly used functionalities, which you can leverage easily

in terms of functions. In this chapter, we will learn some other

built-in Python functions, and how to use them to organize, and

make our code reusable.

Structure

The help() function in Python

How to import a Python package?

How to create and call a function?

Passing parameter in a function

Default parameter in a function

How to use unknown parameters in a function?

A global and local variable in a function

What is a Lambda function?

Understanding main in Python

The while and for loop in Python

Objective

After studying the chapter, you will be able to use inbuilt Python

functions and packages and write your function.

The help() function in Python

You must have already used and know the name of Python inbuilt

functions, but sometimes you still have to figure out how to use

it. To know more about a function, Python provides us another

function, known as In your Jupyter notebook, you can simply type

help() and once you run this, it will give you all the information

about that function.

For example, if I want to know about the inbuilt len() function, I

will use help() function as shown in the following figure

help(len;

Help on built-in function len in module builtins:

len(obj? /)
Return the number of items in a container.

Figure 4.1: Using help() function

How to import a Python package?

To use some inbuilt functionalities, first you need to import such

a package and for that, you just need to use import keyword. For

example, you are working as a junior data scientist in an

agriculture firm and you need to calculate the area of a circular

land. You know it well that area of a circle can be calculated from

the formula pi*r A2 where r is the radius of the circle, but you

don't remember the value of the No need to worry, Python

provides a math package to help you in this scenario as shown in

the following figure

import math

define area as variabte area
area = 0
define radius as variabte r
r = 5.89
catcutate area
area = math.pi “ r**2
print "area of the land is: ", area)

area of the land is: 108.98844649760245

Figure 4.2: Math package provided by Python

Here we have imported the math package, but if we know the

specific package, then we can also import only that sub-package

from its package. For our example we don't need to import math

package completely; in fact, we can import only the pi from the

math package, as shown in the following figure

from math import pi
define radius as variabLe r
r = 5.89
caLcuLate area
area = math.pi * r**2
print "area of the land is: ", area

area of the land is: 108.98844649760245

Figure 4.3: Importing pi package from math package

How to create and call a function?

In Python, we define a function using the def keyword followed by

function name and colon. For example, if you want to print “hello

world” in a function, we first need to define the function and then

write the print() inside that function, then we will see how to call

that function. In the following figure notice the space before the it's

called Python's indentation and is required to ensure that this code

is a part of the function. You don't need to explicitly give space;

your notebook already knows it and once you press the Enter key

after the colon sign, it will automatically add a space:

defining my own function
def my_function():
print("Hello World")

caLLing my function
my_function

Hello World

Figure 4.4: Create and call a function

Passing parameter in a function

We have written a simple function; sometimes you also need to

pass some information in your function, which we can do in the

form of parameters or arguments. For example, you want to get

the sum of the two numbers with the help of a function, so we

will write a function which will take two parameters - a and b

considering both are integers, and we will give the sum of both

numbers by using return statement as shown in the following

figure

defining a function to return sum of two numbers
def add_two_numbers(aJhb):

return a + b
coLL the function
addtwonumbers 9,8

17

Figure 4.5 : Defining a function to return sum of two numbers

Default parameter in a function

Sometimes you need to pass a default value to a parameter in

your function. For example, you want to return the sum of two

numbers where the second numerical value is pre-defined, as it is

6 here. You can do this in the following way

defining a function with defauLt parameter
def addfunctionfa^b = 6):

return a + b
caLL 'add_function()' with onty "a" parameter
addjFunction a-1

7

Figure 4.6 : Default parameter in a function

In the I have shared an example to help you understand how to

pass parameters to a function in runtime and determine the

output value based on condition.

How to use unknown parameters in a function?

In previous examples you know there are only two parameters

passed, but sometimes you don't know the number of arguments

to pass in a function. In such a situation, you can pass

parameter in your function as shown in the following figure Here

we are adding three numbers with the help of inbuilt sum()

function:

Define 'add_function()' function to accept any no. of parameters
def add_function(*args) :

return sum(args)
#■ Caicutate the sum of the numbers
add function 9,4,8

21

Figure 4.7 : Sum() function to add three numbers

In the preceding example, instead of args you can give any name

but * sign is important to place before any name. Try replacing

with another name that includes the asterisk. You'll see that the

preceding code keeps working!

A global and local variable in a function

We use variables to store some values before using them in

function. But the use of declared variables in Python has some

limits. We can define them as global or as a local variable. The

main difference between both of them is that the local variables

are defined within a function block and can only be accessed

inside that function, while global variables can be accessed by all

functions that might be in your script. In the next example we

have created a global scoped variable my_text - outside of the

functions and accessing the same in both two functions (refer to

the following figure

define a GLobaL scope variabie
mytext = "I am learning Python for Data Science"

def first_function():
..... This function uses global scope variable.....
print(my_text)

first_function()

def second_function():
..... This function alse uses global scope variable"
print(my text)

second_function

I am learning Python for Data Science
I am learning Python for Data Science

Figure 4.8 : Global variable in a function

Now let us first try to print the value of globally scoped variable

just after the function declaration as shown in the following figure

The point to notice here is that my_text variable is defined

outside of the function. If we run the program, it will show

UnboundLocalError because it is treating my_text as a local

variable:

def my_f(jnction():
print(my_text)
mytext "I am also learning"
print(my text)

" define a Global scope variable
mytext « "I am learning Python for Data Science"
my function()
print my_text

UnboundLocalError Traceback (most recent call last)
cipython-input-14-45a9008ed554> in ()

6 p define a Global scope variable
7 my text "I am learning Python for Data Science"

------> 8 my_function()
9 print(my_text)

Cipython-input-14-45a90GEed554> in ()
1 def my_function():

-—J* 2 print(my_text)
3 my_text "I am also learning"
4 pr i nt(mytext)
S

UnboundLocalError: local variable 'mytext' referenced before assignment

Figure 4.9: Printing value of globally scoped variable

Now, let us comment the first print line just after the function

declaration; our program will run without any error giving you the

desired output as shown in the following figure

Figure 4.10: Commenting the first print line after function declaration

What is a Lambda function?

Lambda function is also known as anonyms function in Python.

For declaring a lambda function, we don't use a def keyword,

instead we use the lambda keyword in a different way. In the

following figure I am going to write a normal function to multiply

by 5 and then we will write the same functionality with lambda

function:

def multiply(x):
return x*5

multiply(2)

10

ffsame functionaLity with Lambda function
multiply = lambda x: x*5
multiply(2)

10

Figure 4.11 : Normal function and lambda function

Following is another example of adding two numbers with the

help of inbuilt sum() function (refer to figure

def sum(x., y):
return x+y

sum(9,8)

17

same example with lambda function
sum = lambda x, y: x+y;
sum(9,8)

17

Figure 4.12 : Adding two numbers using sum() function with lambda

function

It's quite clear now that we use lambda functions when we

require a nameless function for a short period of time, which is

created at runtime.

Understanding main in Python

Python doesn't have a defined entry point like the main() method

in other languages, i.e., Java. Rather Python executes a source file

line by line. Before executing the code, it will define a few special

variables. For example, if the Python interpreter is running that

module (the source file) as the main program, it sets the special

__ name__ variable to have a value If this file is being imported

from another module, __name__ will be set to the module's

name.

Sometimes you write a module (a Python file with .py extension)

where it can be executed directly. Alternatively, it can also be

imported and used in another module. Here you can put the

main check __name__ == so that you can have that code only be

executed when you want to run the module as a program and

not have it executed when someone just wants to import your

module and call your functions themselves.

Let's understand the preceding concept with an example. We will

use a Python IDE to create Python files. You can download and

install this IDE using the following link:

https://www.j etbrains.com/hel p/ pycharm/install-and-set-u p-

pycharm.html

After installing the PyCharm, open the IDE, and create a new

project as shown in the following figure

etbrains.com/hel

sample [C:\Users\prateek1.gupta\Downloads\sa

Edit View Navigate Code Refactor Rur

New..* Alt+lnsert

New Scratch File Ctrl+Alt+Shift+lnsert

Open...

Save As...

Open Recent

Close Project

Rename Project,..

Figure 4.13 : Creating new project

After creating the project, create a Python file with name

my_module.py and put the following line of code there (refer to

figure

my_module.py

def hello ():
print ("This is from my_module.py file!1’)

; ► if __name_ == 11 main_
print("Executing as main program”)
print ("Value of __name__ is: r,f _ name_ _)
hello()|

Figure 4.14 : Creating a Python file

You can run the previously created module by right-clicking on the

file and clicking on Run my_module as shown in the following

figure

my_module,py

1 def hello():
print("This is from my_module.py file!1’)

□
4 ► if _ name. _ -- "__main__":

print("Executing as main program")
print ("Value of _ name is: ", _ name__)
hello 0

>■
Copy Reference

Paste

Paste from History...

Paste Simple

Column Selection Mode

Ctrl+Att+Shift+C

Ctrl+V

Ctrl-*-Shift* V

Ctrl+Alt+Shift+V

Alt+Shift-*-Insert

Find Usages

Refactor

A1t+F7

>

Folding >

Go To

Generate...

>

Al t+Insert

Run 'my_module' Ctrl* Shift-*-Fl 0

Debug ’myjnodule'* Create 'myjnodule1...

Figure 4.15 : Run ‘my_module’

This will generate the following result in the console:

Figure 4.16: ‘my_module’ window

As you can see in the result, we have created a new module and

executed it as the main program, so the value of__name__ is set

to As a result, if condition is satisfied and hello() function gets

called. Now create a new file called using_module.py and import

my_module thereby writing the following code (refer to figure

Figure 4.17: Code to import ‘my_module’

Now run this file and you will see the following outcome:

Run: usingHimodiJe

C _‘■.□strsXjpra.Efrekl.grape* Vtcifflica:i3\.3axple\wn.v\Ser .exe C: /‘jaers /praetetl. jupra.■ Down, loads.! sample/usL!m_sod*Jlc.py
TM« If fah!

11
Prsctjj fiaislstd wish txn s<-dt o

Figure 4.18 : Outcome of running the file

As you can see now, the statement in my_module fails to execute

because the value of__name__ is set to my_module. From this

small program, you can understand that every module in Python

has a special attribute called The value of the __name__ attribute

is set to __main__ when the module runs as the main program.

Otherwise, the value of__ name__ is set to contain the name of

the module.

while and for loop in Python

A loop is a block of code that gets repeated over and over again,

either a specified number of times or until some condition is met.

There are two kinds of loops in Python, while loops and for

loops. The while loop repeats a section of code while some

condition is true. The while statement starts with the while

keyword, followed by a test condition, and ends with a colon (:).

The loop body contains the code that gets repeated at each step

of the loop. Each line is indented with four spaces. When a while

loop is executed, Python evaluates the test condition and

determines if it is true or false. If the test condition is true, then

the code in the loop body is executed. Otherwise, the code in the

body is skipped and the rest of the program is executed.

For example, see the following line of the code snippet

Figure 4.19 : While loop code snippet

In the preceding code snippet, integer 1 is assigned to variable x.

Then a while loop is created with the test condition x < 4, which

checks whether or not the value of x is less than 4. If x is less

than 4, the body of the loop is executed. Next, the value of x is

printed on screen, and then x is incremented by 1.

A for loop executes a section of code once for each item in a

collection of items. The number of times that the code is

executed is determined by the number of items in the collection.

The for statement begins with the for keyword, followed by a

membership expression, and ends in a colon (:). The loop body

contains the code to be executed at each step of the loop, and is

indented with four spaces. For example, see following code

snippet

for letter in "Science":
print(letter)|

Figure 4.20 : For loop code snippet

In the preceding code snippet, at each step of the loop, the

variable letter is assigned the next letter in the string and then

the value of the letter is printed. The loops run once for each

character in the string so the loop body executes seven times.

Please note, a loop inside of another loop is called a nested loop,

and they come up more often than you might expect. You can

nest while loops inside of for loops, and vice versa.

Conclusion

As an aspiring data scientist, you'll constantly need to write your

functions to solve problems that your data poses to you. In your

daily work, you will import various packages, you will write your

functions for different tasks, i.e., a function for data cleaning,

another function for modeling, and another for evaluating your

model, etc. In the next chapter, we will learn about the first

fundamental package of Python used for scientific computing -

NumPy.

CHAPTER 5

NumPy Foundation

NumPy is the fundamental package for scientific computing with

Python. Most of the other packages such as pandas , statsmodels

are built on top of it. NumPy is the short name for Numeric

Python or Numerical Python . This package contains a powerful N-

dimensional array object and useful linear algebra capabilities. In

this chapter, we will learn about this N-dimensional array - a

more powerful alternative to the list, and we will see how to use

this in data manipulation.

Structure

Importing a NumPy package

Why use NumPy array over list?

NumPy array attributes

Creating NumPy arrays

Accessing an element of a NumPy array

Slicing in NumPy array

Objective

After studying the chapter, you will be able to use the NumPy

array effectively.

Importing a NumPypackage

The NumPy package comes preinstalled in Anaconda distribution,

so we don’t need to install this package; in fact for using it we

just need to import it. We can import this package in the

following way, as shown in figure

Figure 5.1: Importing a NumPy package

In the preceding import statement, np is an alias pointing to

NumPy. We can use this alias with any import to shorten the

package name in further uses.

Why use NumPy array over list?

Say for example, you have the weather data telling about the

distance and the wind speed. Now you are supposed to calculate

and generate a new feature from the data - the time. Ideally, we

would go ahead with using the list and calculate by applying the

formula to the list of distance and speed as shown in the

following figure

Figure 5.2: Calculating speed and distance

But once you run your code, you see the unexpected result:

TypeError Traceback (most recent call last)
cipython-input-2-3554454635bc> in ()

1 distance = [55,60,45]
2 speed [6,10,7]

* — > 3 time distance/speed
4 print("time:time)

TypeError: unsupported operand type(s) for /: ’list’ and 'list'

Figure 5.3: Result of running the code

You must be confused and thinking, what I have done wrong with

the list operations, but you have no clue!

The list has some limitations. You cannot perform some

mathematical operations directly on the list and that’s why Python

has a NumPy array to solve such a problem. To solve this issue,

we need to import the NumPy package first, then we need to

convert our list into NumPy array, and then we need to perform

our operation, as shown in the following figure

import numpy as np
distance = [55,60,45]
speed = [6,10,7]
dist = np.array(distance)
spd - np.array(speed)
time= dist/spd
print(time)

[9.16666667 6. 6.42857143]

Figure 5.4: Using NumPy Array

In the preceding example, distance and speed variables are of type

NumPy array and since time variable is associated with dist and

speed NumPy arrays, its type is automatically assigned as NumPy

array.

NumPy array attributes

NumPy array has its attributes like dimension, size, and shape.

We can know these attributes by using it’s and size attributes as

shown in our wind speed example

data type
print("data type of array:", time,dtype)
no. of dimensions
print(’‘no. of dimensions: ", time.ndim)
size of each dimension
print("size of each dimension:", time.shape)
total, size of array
printC'total size of array:", time,size)

data type of array: float64
no. of dimensions: 1
size of each dimension: (3,)
total size of array: 3

Figure 5.5: NumPy attributes

Creating NumPy arrays

An array can be one, two, or three dimensions. Based on the

problem you are solving, you need to create any dimension array;

so let’s create an array using random numbers. For generating

random numbers, in our case integer numbers, we will use

NumPy’s random function and then we will check individual array

attributes as shown in the following figure

creating arrays with random voLues
np,random.seed(0) # seed for reproducibiLity

xl - np.random.randint(10, size=6) # One-dimensional. array
x2 = np.random.randint(10, size=(3, 4)) ff Two-dimensionaL array
x3 - np.random.randint(10, size=(3, 4, 5)) # Three-dimensional, array

printf'xl ndim: ", xl.ndim)
print("xl shape:", xl.shape)
print("xl size: ", xl.size)

print(”x2 ndim: ", x2.ndim)
print("x2 shape:", x2.shape)
print("x2 size: ", x2.size)

print("x3 ndim: ", xJ.ndim)
print("x3 shape:", x3.shape)
print "x3 size: ", x3.size

xl ndim: 1
xl shape: (6 J
xl size: &
x2 ndim: 2
x2 shape: 4)
x2 size: 12
x3 ndim: 3
x3 shape: 4| &:
x3 size: 60

Figure 5.6 : Creating arrays with random values

As noted, np.random.seed(o) sets the random seed to 0, so the

pseudo-random numbers you get from random will start from the

same point, and np.random.randint() function return random

integers from the discrete uniform distribution of the specified

dtype in the half-open interval (low, high). If high is None (the

default), then results are from (0,

Let’s create another array using NumPy arange() function which

returns evenly spaced values within a given interval. In the

following figure we are creating a sequence of integers from 0 to

20 with steps of 5:

f = np.arange(0, 20, 5)
print ’‘sequential array with steps of 5:\n", f

sequential array with steps of 5:
[0 5 10 15]

Figure 5.7 : Using arange() function

Accessing an element of a NumPy array

For analyzing and manipulating an array, you need to access the

elements. We will use indexes of every element in an array as we

did in the list. In a one-dimensional array, the value (counting

from zero) can be accessed by specifying the desired index in

square brackets, just as with Python lists. As shown in the

following figure we are accessing the elements of the arrays we

have created above using np.random() earlier:

print("l-d array:1’, xl)
print("second element of first array:", xl[l])
printf'last element of first array:", xl[-l])
print."first element of first array:", xl[0]

1-d array: [5 0 3 3 7 9]
second element of first array: 0
last element of first array: 9
first element of first array: 5

Figure 5.8 : Accessing elements of the arrays

What about other dimension’s array? It’s quite simple. We just

need to use a comma-separated tuple of indices as shown in the

following figure where we are accessing the first elements of 2D

and 3D arrays:

print("2-d array:\n", x2)
print("first elements of 2-d array:\n", x2[0,0])
prlnt("3-d array:\n*\ x3)
print "first element of 3-d array:\n"> x3[0,0,0]

2-d array:
[[3 5 2 4]
[7 6 8 8]
[1 & 7 7]]

first elements of 2-d array:
3

3-d array:
[[[8 1598]
[94303]
[5023 8]
[1333 7]]

[[01990]
[4 7 3 2 7]|
[2 0 0 4 5]
[5684 1]]

[[49811]
[7 9 9 3 6]
[7203 5]
[9445 4]]]

first element of 3-d array:
8

Figure 5.9 : Accessing first elements of 2D and 3D arrays

The multi-dimensional array has its importance while handling

data. For example, let’s take a look at how one might store a

movie-related data. A movie is nothing more than a time-varying

sequence of images - i.e., an array of images. Each image is a

two-dimensional array, with each element of the array representing

a color. Color has three components - Red, Green, Blue. So, a

movie can be modeled as a multidimensional array.

Slicing in NumPy array

As we used square brackets to access individual array elements,

we can also use them to access subarrays with the slice notation,

marked by the colon character. Slicing is an important concept to

access the element of an array or list. But unlike the list in array

slicing, they return views rather than copies of the array data. It

means if we create a subarray for an array and then modify any

element, then the original array will also be modified. In the

following figure we created a 1D array, and then we will access its

elements using slicing:

create an array
x - np.arange(lQ)
print("our array:", x)
print("first five elements:", x[:5])
print("elements after index S:", x[5:])
print("middle sub-array:", x[4:7])
print(''every other element:", x[::2])
print(*'every other element, starting at index 1:”, x[l::2])
print "elements in reversed order:",

our array: [0123456789]
first five elements: [01234]
elements after index 5: [56789]
middle sub-array: [4 5 6]
every other element: [02468]
every other element, starting at index 1: [13579]
elements in reversed order: [9876543210]

Figure 5.10: Creating 1D array

Again, for the multi-dimensional array, we need to use multiple

slices with comma as shown in the following figure

print("2-d array:\n", x2)
print "two rows, three columns:\n", x2[:2, :3])

2-d array:
[[3 5 2 4]
[7688]
[1 6 7 7]]

two rows, three columns:
[[3 5 2]
[7 6 8]]

Figure 5.11: Using multiple slices with comma for multidimensional

array

As I mentioned previously, if we create a subarray, form an array,

and make any changes in the subarray, then it will also change

the original array. So, how can we be sure about the data integrity

of an array? In such cases, make a copy of the original array

using copy() and then modify without affecting the original array

as shown in the following figures 5.12 and

original, array
print("original 2-d array:\n"t x2)
creating a 2X2 subarray from the original array
x2_sub = x2[:2f : 2]
print("sub-array: \n", x2_sub)
modifying sub-array
x2>ub[0, 0] = 88
print("modified sub array:Xn", x2 sub)
original array after sub-array changes
print("original array after changes in sub-array:\n"t x2)
print("making a copy of the original array")
x2_sub_copy = x2[:23 :2].copy()
print("copy of the orinal array:VT, x2_sub_copy)

modifying copied array
x2_sub_copy[0, 0] = 42
print("copied array after changes An", x2_sub_copy)
print "original array:\n‘\ x2

Figure 5.12: Using copy() function

original 2-d array:
[[3 5 2 4]
[7688]
[1 6 7 7]]

sub-array:
[[3 5]
[7 6]]

modified sub array:
[[88 5]
[7 6]]

original array after changes in sub-array
[[88 5 2 4]
[7 6 8 8]
[1 6 7 7]]

making a copy of the original array
copy of the orinal array:
[[88 5]
[7 6]]

copied array after changes:
[[42 5]
[7 6]]

original array:
[[88 5 2 4]
[7 6 8 8]
[1 6 7 7]]

Figure 5.13: Modifying the array

Array concatenation

In some scenarios, you may need to combine two arrays into a

single one. For this situation, NumPy has different methods - and

The np.concatenate() method is useful for combining arrays of the

same dimensions while np.vstack() and np.hstack() are good when

you are working with arrays of mixed dimensions. For

understanding each uses, we will first see how to combine two

same dimension arrays and then we will see how to add different

dimension arrays into one, as shown in the following figures 5.14

and

creating two sampte arrays
x = np.arrayffl, 2, 3])
y = np.array([3, 2, 1])
combining both arrays using concatenate
np,concatenate [x, y])

array([l, 2, 3, 3, 2, 1])

Figure 5.14: Combining same dimension arrays

creating a sample array
x = np.array([l, 2, 3])
creating a 2-d array
grid = np.array([[9, 8, 7],

[6, 5, 4]])

vertically stack the arrays
np.vstack([x, grid])

array([[l, 2, 3],
[9, 8, 7],
[6, 5, 4]])

horizontally stack the arrays
y = np.array([[99],

[99]])
np.hstack [grid, y]

array([[9, 8, 7, 99],
[6, 5, 4, 99]])

Figure 5.15: Adding different dimension arrays into one

For seeing different NumPy inbuilt features in your notebook, just

press the tab key after the dot sign of NumPy alias

Conclusion

In this chapter, we learnt how to perform standard mathematical

operations on individual elements or complete array using NumPy.

The range of functions covered linear algebra, statistical

operations, and other specialized mathematical operations. For our

purpose, we just need to know about the N-dimensional array or

ndarray and the range of mathematical functions that are relevant

to our research purpose. Till then, go chase your dreams, have an

awesome day, make every second count. See you in the next

chapter where we will learn about the second most important

Python package - Pandas.

CHAPTER 6

Pandas and DataFrame

Pandas is a popular Python package for data science. It offers

powerful, expressive, and flexible data structures that make data

manipulation and analysis easy, among many other things. Pandas

DataFrame is one of the very powerful and useful data structure

among these. The Pandas library is one of the most preferred

tools for data scientists to do data manipulation and analysis,

next to matplotlib for data visualization and NumPy, the

fundamental library for scientific computing in Python on which

pandas was built.

Structure

Importing Pandas

Pandas data structures

.loc[] and .iloc[]

Some useful DataFrame Functions

Handling missing values in DataFrame

Objective

After studying this chapter, you will be able to create, manipulate,

and access the information you need from your data with the help

of pandas data structures.

Importing Pandas

Importing pandas in your notebook is quite simple. Pandas is

preinstalled with Anaconda distribution, so you don’t need to

install it. In any case, if it is not installed, you can install it by

typing the following command in Anaconda Prompt

Anaconda Prompt

C:\Users\prateekl.gupta>set "KERAS^BACKEND-theano”

(base) C : \Users\pnateekl. guptaxonda install -c anaconda pandas

Figure 6.1 : Installing Pandas

Once you installed the you can import it as below:

importing Pandas package using aLias
import pandas as pd

Figure 6.2 : Importing Pandas

Pandas data structures

Pandas have two main data structures widely used in data

science, which are as follows:

Series

DataFrame

Series

Pandas is a one-dimensional labeled array capable of holding any

data type such as integers, floats, and strings. It is similar to a

NumPy 1-dimensional array. In addition to the values that are

specified by the programmer, pandas assigns a label to each of the

values. If the labels are not provided by the programmer, then

pandas assigns labels (0 for the first element, 1 for the second

element, and so on). A benefit of assigning labels to data values is

that it becomes easier to perform manipulations on the dataset as

the whole dataset becomes more of a dictionary where each value is

associated with a label.

A pandas Series can be constructed using pd.Series() as shown in

the following figure

creating an empty Series
x = pd.Series()
print "empty series example: ", x)

empty series example: Series([]J dtype: float64)

Figure 6.3 : Constructing pandas Series

In the output cell, you can see that it is showing the default data

type of the Series as the float. Let’s create another example of Series

from the list of numbers

series exampLe
seriesl = pd.Series([10,20,30,50])
print seriesl

0 10
1 20
2 30
3 50
dtype: int64

Figure 6.4 : Another example of Series

In the preceding code example, you can see that the output is in

tabular form with two columns - the first one is showing indexes

starting from zero and the second one is showing the elements. This

index column is generated by Series and if you want to re-index this

with your index name, then you can do it in using index parameter

as shown in the following figure

re-indexing the defauLt index coiumn
series2 - pd.Series([10,20,30,50], index=['a','b','c‘,'d'])
print series2

a 10
b 20
c 30
d 50
dtype: int64

Figure 6.5 : Re-indexing the default index column

The ways of accessing elements in a Series object are similar to

what we have seen in NumPy. You can perform NumPy operations

on Series data arrays as shown in the following figure

accessing a Series eLement
series2i * b’]

20

Figure 6.6 : Accessing a Series element

Data manipulation with Series is also an easy task. We can apply

mathematical calculations as we did in NumPy, as shown in the

following figure

data manipuLation with Series
print("adding 5 to a Series:\n", series? + 5)
print("filtering series with greater than 30:\n", series?[series2>30])
print "square root of Series elements:\n'\ np.sqrt(series2)

adding 5 to a Series:
a IS

b 25
c 35
d 55
dtype; int64
filtering series with greater than 30:

d 50
dtype: int64
square root of Series elements:

a 3.162278
b 4.472130
c 5.477226
d 7.071068
dtype: float64

Figure 6.7 : Data manipulation with Series

Remember the dictionary data structure we have seen in an earlier

chapter? We can convert this data structure to a Series so that

dictionary’s key and value can be transformed into a tabular form, as

shown in the following figure

a sampLe dictionary
data = {‘abc‘: 1, ‘def’: 2J 'ghi‘: 3}
print(“dictionary example:Xn", data)
converting dictionary to series
pd.Series data

dictionary example:
{’abc* : 1, ’def': 2, ’ghi* : 3}

abc 1
def 2
gbi 3
dtype: int64

Figure 6.8 : A sample dictionary

DataFrame

Pandas is a two-dimensional labeled data structure with columns

of potentially different types. You can imagine a DataFrame

containing three components - index, rows, and columns. A

DataFrame is a tabular data structure in which data is laid out in

rows and column format (similar to a CSV and SQL file), but it

can also be used for higher-dimensional data sets. The DataFrame

object can contain homogenous and heterogeneous values and can

be thought of as a logical extension of Series data structures.

In contrast to where there is one index, a DataFrame object has

one index for columns and one index for rows. This allows

flexibility in accessing and manipulating data. We can create a

DataFrame using pd.DataFrame() as shown in the following figure

creating an empty dataframe
df = pd.DataFrame()
print("dataframe example:\n", df

dataframe example:
Empty DataFrame

Columns: []
Index: []

Figure 6.9 : Creating an empty DataFrame

Let’s create a DataFrame from a list where the list contains the

name and age of a person. We will also rename the column

names of our DataFrame using columns parameter as shown in

the following figure

ft a sampLe List containing name and age
data » [['Tom',10],['Harry',12],['Dim',13]]
ft creating a data frame form given List with coLumn names
df - pd.DataFrame(data,columns-['Name',‘Age'])
df

Name Age

0 Tom 10

1 Harry 12

2 Jim 13

Figure 6.10 : A sample list containing name and age

Selecting a column in a DataFrame is same as what we have

seen earlier with other data structures. For example, if you want

to know all names under the Name column from the preceding

then you can access them in two ways as shown in the following

figure

accessing a data frame coLumn- first way
df 'Name'

0 Tom
1 Harry
2 Jim
Name: Name, dtype: object

accessing a data frame coLumn- second way
df.Name

0 Tom
1 Harry
2 Jim
Name: Name, dtype: object

Figure 6.11 : Accessing a DataFrame column

Let us suppose you want to add a new column to your

DataFrame which will store the birth year of a person. You can do

it easily as shown in the following figure

adding a coLumn in existing dataframe
df['Year*] = 2008
df

Name Age Year

0 Tom 10 2008

1 Harry 12 2008

2 Jim 13 2008

Figure 6.12 : Adding a column in existing DataFrame

Next, the deleting of a column is also an easy task. You can use

.pop() to delete a column. Look at the following figure

print("original dataframe:\n", df)
del dffYear’J
print("dataframe after delAn", df)
df.pop(’Age')
print;"datafname after pop:\n", df)

original dataframe:
Name Age Year

0 Tom 10 2008
1 Harry 12 2008
2 Dim 13 2008
dataframe after del

Name Age
0 Tom 10
1 Harry 12
2 Dim 13
dataframe after pop

Name
0 Tom
1 Harry
2 Dim

Figure 6.13: Deleting a column in existing DataFrame

.loc[] and .iloc[

Selecting a row or an index in a DataFrame is quite different but

very easy if you know how to use the .loc[] and .iloc[] functions.

For understanding both, let’s first create a DataFrame to store the

company stock price, as shown in the following figure

a sompie datoframe containing compaany stock data
data = pd.OataFrameU' price’: [95, 25, 85, 41],

'ticker’:[’AXP’, ‘CSCO ’DIS’, *M5FT'],
'company'American Express', 'Cisco', 'Walt Disney'Microsoft']}}

data

company price ticker

0 American Express 55 AXP

1 Cisco 25 csco
2 wait Disney 66 DIS
3 Microsoft 41 MS FT

Figure 6.14 : A sample DataFrame containing company stock data

To access the value that is at index 0, in column you can do it

either using the label or by indicating the position. For label

based indexing, you can use .loc[] and for position based indexing

you can use .iloc[] as shown in the following figure

access the vaLue that is at index 8j in coLumn rcompany* using Loe
print(data.loc[0]['company'])
ff access the vatue that is at index 6, in column fcompanyJ using Hoc
print data.loc[0][0]

American Express
American Express

Figure 6.15 : Accessing value that is at index 0

From the preceding example, it is quite clear that .loc[] works on

labels of your index. This means that if you give in you look for

the values of your DataFrame that have an index labeled 3.

On the other hand, .iloc[] works on the positions in your index.

This means that if you give in you look for the values of your

DataFrame that are at index ‘3’.

Some Useful DataFrame Functions

DataFrame is a very useful data structure that you will use often in

your daily task. Storing data in a DataFrame has various benefits and

it’s quite simple for data analysis. Let’s see some quite useful

functions of a

inspecting top 5 rows of o dotaframe
print(* ,top five data:\n", data.head())
inspecting be Low 5 rows of a dataframe
print "below 5 data:\n", data.tail())

top five data:
company price ticker

0 American Express 95 AXP
1 Cisco 25 csco
2 Walt Disney 85 DIS
3 Microsoft
below 5 data:

41 MS FT

company price ticker
0 American Express 95 AXP
1 Cisco 25 CSCO
2 Walt Disney 85 DIS
3 Microsoft 41 MSFT

Figure 6.16: Useful DataFrame functions

The .head() and .tail() are useful when you have thousands of rows

and columns in your data and you want to inspect it in a quick

view, as shown in the preceding figure

Next, if you want to check data type of each column in your data,

you can do so by using shown in the following figure

it check data type of coLumns
data, citypes

company object
price int64
ticker object
dtype: object

Figure 6.17 : Checking data type of columns

Pandas DataFrame has also one unique method which can give you

descriptive statistics (mean, median, count, etc.) of your dataset. For

knowing these statistics you can use .describe() as shown in the

following figure From this description, we can easily say the highest

stock price is 95 and the minimum stock price is 25 and the total

no. of stocks is 4. Imagine if this data contains records of millions

of companies! Without pandas it will be much more difficult to know

the statistics of the data.

descriptive statistics of the data
data.describe()

price

count 4,000000

mean 61.500000

std 33.798422

min 25.000000

25% 37.000000

50% 63.000000

75% 87.500000

max 95.000000

Figure 6.18 : Using describe() function to know statistics

If you have non-numeric data, then applying to the describe function

would produce statistics such as count, unique, frequency. In addition

to this, you can also calculate skewness (skew), kurtosis (kurt),

percent changes, difference, and other statistics.

Next, the important function of a Pandas DataFrame is to check the

information of your data including column data type, non-null values,

and memory usage. This can be achieved using .info() as shown in

the following figure

information of the dataframe
data.info()

<class ’pandas.core.frame.DataFrame'>
Rangeindex: 4 entries., 0 to 3
Data columns (total 3 columns):
company 4 non-null object
price 4 non-null int64
ticker 4 non-null object
dtypes: int64(l)J object(2)
memory usage: 176.0+ bytes

Figure 6.19 : Checking information of the DataFrame

Similarly, there is cov() functions which you will see in the later

chapters of this book. Try these functions in your notebook and

explore what information you get from them.

Handling missing values in DataFrame

As a data scientist, you will come across uncleaned data with

missing values most of the time. Here missing means data is not

available (NA) for any reason. You cannot simply ignore those

missing data. In fact, before applying any machine learning algorithm,

you need to handle such values. Pandas provides a flexible way to

handle missing data. Pandas uses NaN (Not a number) or

sometimes NaTas, the default missing value marker; with the help of

it you can detect it easily using isnull() function. Let’s understand

this function by first creating a DataFrame with missing values as

shown in the following figure

ct sampte data frame
df = pd .DataFrame (np. random. randri(5, index=[' a', ' c‘, 'e', *h*]

columns^[’one', 'two', 'three'])
ft creating a data with missing vaLues by reindexing
df2 » df.reindex‘a‘, ' b', 'c& ‘d‘, ‘e\ ?f’, 'g', 'h'])
df2

one two three

a -1 2&2674 1 081757 -0 559330

b NaN NaN NaN

c 1.009535 0.376217 0.330363

d NaN NaN NaN

e 1.303541 -0.434903 -1.224001

f 1 995670 1 199003 -0.671072

0 NaN NaN NaN

h 0 032243 -1 033125 -0 679454

Figure 6.20: A sample DataFrame

You can see missing values as NaN. Now we can check the missing

values using isnull() function and then count the sum of the missing

values using sum() function as shown in the following figure The

isnull() function returns a Boolean same-sized object indicating if the

values are missing and sum() function counts the True values of the

Boolean:

checking missing values using isnull()
print(df2.isnull())
missingvaluescount - df2*isnull().sum()
print "count of missing values :\n'\ missing_values_count

one two three
a False False False
b True True True
c False False False
d True True True
e False False False
f False False False
g True True True
h False False False
count of missing values:
one 3

two 3
three 3
dtype: int64

Figure 6.21 : Checking missing values

Once you know the total count of missing values, you can think

about how to handle those. If you don’t have any clue about why

there are missing values, one simple way of dealing with them is by

simply dropping them using .dropna() function as shown in the

following figure

remove aLL the rows that contain a missing vatue
df2 = df2.dropna()
print df2

one two three
a -1.282674 1.081757 -0.559330
C 1.009585 0.876217 0.830863
e 1.308541 -0.434903 -1.224001
f 1.995670 1.199008 -0.671072
h 0.032248 -1.083125 -0.679454

Figure 6.22 : Removing all rows containing missing value

The dropna() function can also be applied on the basis of a column.

You can remove all columns with at least one missing value using

axis=i parameter in dropna() function. For example, let’s apply this

approach to the original df2 DataFrame. You need to rerun the

DataFrame df2 creation cell before running the following cell,

otherwise you will get the wrong output:

remove aLL cotumns with at Least one missing vaLue
columnswithnadropped = dt2.dropna(axis=l)
columns_with_na_dropped.head

a

b

c

d

e

Figure 6.23 : Removing all columns with missing values

Using column-based removal of NaN values could be risky, as you

may risk losing all the columns if every column has NaN values.

Instead, dropna() with rows approach is useful in this case.

The second approach to handle missing values is to fill them either

with zero or with the mean/median or with the occurrence of a

word. Let’s see how we can fill missing values (refer to the following

figures 6.24 an d

fiLLing NaN with zeros
df3 = df2.fillna(0)
df3

one two three

a 2.000749 -0.256641 -0.041130

b 0.000000 0.000000 0.000000

c -0.074203 -1.090353 -0.066285

d 0.000000 0.000000 0.000000

e 1.088535 -1.029808 0.553896

f 1.316821 0.125611 -0.627532

g 0.000000 0.000000 0.000000

h -0.623504 -1.266855 1.043820

Figure 6.24: Filling missing values

replace all NA's the value that comes directly after it in the same column
then replace all the reamining na's with 0
df4 = df2.fillna(method = "bfill*, axis=8).fillna{0)
df4

one two three

a 2 000749 -0.256641 -0 041130

b -0.074203 -1.090353 ■0.056285

c -0.074203 ■1.090353 ■0.066285

d 1.088535 -1.029808 0.553896
e 1.088535 -1.029808 0 553896

f 1 316821 0125611 -0 627532

g -0.623504 -1 266855 1 043820

h -0 623504 -1 266855 1 043820

Figure 6.25: Filling missing values

In the preceding code cell, we are filling the missing values using

the backward filling method of Pandas Similarly, you can use forward

filling using the ffil() method.

Conclusion

The fast, flexible, and expressive pandas data structures are

designed to make real-world data analysis significantly easier; but

this might not be immediately the case for those who are just

getting started with it. There is so much functionality built into

this package that learning the options in just one go could be

overwhelming. It is highly recommended to practice the

functionalities with suitable case-studies. So, open your notebook,

apply the learnings of this chapter, and explore more. In the next

chapter, we will learn how to interact with different databases in

Python.

CHAPTER 7

Interacting with Databases

As a data scientist, you will interact with the databases constantly.

For this purpose, you need to know how to query, build, and

write to different databases. Knowledge of SQL (Structured Query

Language) is a perfect fit for this. SQL is all about data. SQL is

used for three things. It used to Read/Retrieve data - so data is

often stored in a database. It is also used to Write data in a

database, and to update and insert new data. Python has its

toolkit - SQLAlchemy which provides an accessible and intuitive

way to query, build, and write to SQLite, MySQL, and PostgreSQL

databases (among many others). We will cover all required

database details specific to data science here.

Structure

What is SQLAlchemy?

Installing SQLAlchemy package

How to use SQLAlchemy?

SQLAlchemy engine configuration

Creating a table in a database

Inserting data in the table

Update a record

How to join two tables

Objective

After studying this chapter, you will become familiar with the

fundamentals of relational databases and relational model. You will

learn how to connect to a database and interact with it by writing

basic SQL queries, both in raw SQL as well as with SQLAlchemy.

What is SQLAlchemy?

SQLAlchemy is the Python SQL toolkit and Object Relational

Mapper that gives you the full power and flexibility of SQL. It

provides a nice Pythonic way of interacting with databases. Rather

than dealing with the differences between specific dialects of

traditional SQL such as MySQL or PostgreSQL or Oracle, you can

leverage the Pythonic framework of SQLAlchemy to streamline your

workflow and more efficiently query your data.

Installing SQLAlchemy package

Let’s start our journey by first installing the SQLAlchemy package

in our notebook. You can install this package from the Anaconda

Distribution using the command install -c anaconda in Anaconda

Prompt as shown in the following figure

Ml Anaconda Prompt

C: \User's\prateekl. gupta>set "KERAS_8ACKEND=theano"

(base) C:\Users\prateekl.guptaxonda install -c anaconda sqlalchemy

Figure 7.1: Installing SQLAlchemy package

Once this package is installed, you can import it in your notebook

as shown in the following figure

Figure 7.2: Importing package in the notebook

How to use SQLAlchemy?

Before using our toolkit, there should be a database to whom you

want to connect first. We can use SQLAlchemy to connect with

PostgreSQL, MySQL, Oracle, Microsoft SQL, SQLite, and many

others. For our learning purpose, we will use MySQL db. You can

download and install the MYSQL database from their official

website:

https://dev.mysql.com/downloads/installer/

And for creating the database, tables, etc., you can install

workbench using the following link:

https://dev.mysql.com/downloads/workbench/

After installing the MySQL workbench, you need to first create a

connection there. For this, open the workbench and click on the +

icon as highlighted in the following figure

S3 MySQL Workbench

mydb x

File Edit View Database Tools Scripting Help

MySQL Connections © ©

https://dev.m
l.com/downloads/installer/
l.com/downloads/workbench/

Figure 7.3: Open MySQL workbench and click on the + icon

Once you click on + icon, a pop-up screen will open. Here you

need to give a connection name, username, and password for

creating the connection. Note down the connection name,

hostname, port, and password because we will need this

information later. Once you complete this step, your connection is

ready to be used:

Figure 7.4: Setting up new connection

After the successful creation of a connection, the next step is to

create a schema. For this right-click in the SCHEMAS menu and

select option Create

68 MySQL Workbench

learningdb x

File Edit View Query Database Serz

Navigator

SCHEMAS

Q. Filter objects

► acris
► dump
► freelancedb
► prodseardi
► produrtsearchdb
► productsearchv2

Load Spatial Data

Create Schema...

Refresh All

Management SfflBfflSS

Figure 7.5: Creating a Schema

In the preceding figure it is showing many schemas that I created

earlier. Once you click on Create Schema option, follow the screen

by entering the schema name and then selecting default options.

In the preceding example, I have saved the schema with the

name

SQLAlchemy engine configuration

Once you know your database information, the next step is to

interact with the database. For this purpose, SQLAlchemy uses

Engine. Creating an Engine with SQLAlchemy is quite simple. You

need to use its create_engine You can import this API with the

following import - from sqlalchemy import This create_engine()

API uses the following syntax to store the database information as

parameters:

Figure 7.6: SQLAlchemy create_engine() syntax

Here, dialect names include the identifying name of the

SQLAlchemy dialect, a name such as or The drivername is the

name of the DBAPI to be used to connect to the database using

all lowercase letters. If not specified, a default DBAPI will be

imported if available - this default is typically the most widely

known driver available for that backend. You can check the name

of the DBAPI by clicking on the following link:

https://docs.sq lalchemy.0rg/en/latest/c0re/engines.html#mysq l

https://docs.sq_lalchemy.0r

In the following figure I am going to use my MySQL db

connection details in the Jupyter notebook for creating an engine:

engine - db,createengine *mysql://root:admin£127.9.0.1:3396/rms_dev‘

connection - engine.connect()

Figure 7.7 : Creating an engine

Here I am passing my db details (with username as root and

password as admin) in the required format of create_engine() API,

then I am connecting with the database using engine’s Since we

have created a new schema, there is no table. So, let’s create a

new table/data there first.

If you face No module named ‘MySQLdb’ error, it means you

need to install mysqlclient that you can install from the anaconda

prompt using ‘pip install mysqlclient’ command.

Creating a table in a database

Since we have connected to our engine, let’s create a table by

using the execute() method of Engine. In this example, I am

creating a table to hold customer-specific data-name and address.

SQL syntax for creating a table is shown in the following figure

ICfiEiTE Table [IF TJOT EXISTS] ‘TableHane’ ('fieldnane' datatype [optional parameters]) ENGINE - sto

rage Engirtt;

Figure 7.8 : Creating a table

In our case, we have already connected to our engine, so no

need to use the ENGINE parameter. First I am storing my create

table SQL query in a variable named then I am passing this query

to Engine’s execute() method. To check if my table is created or

not, I am printing the table name and in the end, I am closing

my database connection:

query - "CREATE TABLE customers (name VARCHAR(2&5), address VARCHAR(25S))"

connection.execute(query)
print("Table Name:", engine.table_names())
connection,closet)

Table Name: [’customers']

Figure 7.9 : Printing the table name

Always remember to close the database connection after any

operation, just like we did with

Inserting data in a table

Once you have created a table, it’s time to insert some data into

it. For adding new data to an existing table, we will use SQL

insert query which syntax is as shown in the following figure

Figure 7.10: Inserting data in a table

In our customers’ table, let us add a customer name and address

as shown in the following figure

engine = db.create_engine('mysql: //root:adming!27.0.0.1:3306/schemaexample')
connection = engine.connect()
sql = "INSERT INTO customers (name,, address) VALUES ('Prateek', 'India')"
connection.execute(sql)
connection.close

Figure 7.11 : Inserting data in a table

Now, to check the existing records of the table, we can use the

select query of SQL, and then we can fetch all rows using

fetchall() of sqlalchemyapi as shown in the following figure

engine = db.create_engine(*mysql://root:admin@127.0.0.1:3306/schent8ex3fflple')
Connection = engine„connect()
sql = "SELECT * from customers”
result = connection.execute(sql)
printf'table data:", result.fetchall())
connection.close

table data: [('Prateek', 'India')]

Figure 7.12 : Checking existing records

In this way, you are now able to read the data from a database

easily. You will be writing similar codes which will help you fetch

thousands of data from a database for your analysis.

Update a record

Updating an existing record is a daily task and you must know

how to run updates on your records in case a record was wrongly

inserted into the db. In the following figure we are going to

update our existing customer’s address using update SQL query:

engine = db.create_engine('mysql://root:adroingl27.S.D.1:3305/schemaexample')
connection - engine.connect()
sql = "UPDATE customer's SET address ■ 'Singapore' WHERE address = 'India'"
connection.execute(sql)
print("record(s) is updated")
q =■ "SELECT * from customers*
result - connection.execute(q)
print("table data:", result.fetchall())
connection.close

record(s) is updated
table data: [('Prateek', 'Singapore')]

Figure 7.13 : Updating a record

For deleting a record, you can use WHERE clause to delete a

record based on a column as shown in the following figure

engine = db.create_engine('mysql: //root: adfliin@127.6.0.1:3306/schemaexample')
connection -> engine .connect ()
sql ■ "DELETE FROM customers WHERE address - ‘Singapore"'
connection.execute(sql)
print<"record is deleted’")
connection.close

record is deleted!

Figure 7.14: Deleting a record

How to join two tables

In the relational database, there may be many tables, and in those

tables, there may be a relationship between their columns. In such

a condition you need to join tables. A real-world example of this

scenario is from the e-commerce domain where product-related

data is in one table, user-specific data is in another table, and

inventory is in another one; here you need to fetch product

details based on user or inventory. Joining the table can be done

in three ways - inner join, left join, and right join. Let’s

understand each of these joining.

Inner join

We can join or combine rows from two or more tables based on

a related column by using a JOIN statement. Let’s create two

tables - users and products in our db to understand this type of

joining first. Don’t forget to create and then connect your db

connection before running the following code:

query - "CREATE TABLE If NOT EXISTS users (Id INT, name VARCHAR(2S5), prod_Ld INT)“
connection.execute(query)
sql - "INSERT INTO users (id, name, prod^id) VALUES (1, Prateek', 11),(2,'lohn',12),(3,hTom',13)"
connect ion,exec ute(sq1)
queryi | "CREATE TABLE If NOT EXISTS products (id INT, name VARCHAR(2SS))”
connection.execute(query2)
sql2 = "INSERT INTO products (id, name) VALUES (11, 'Apple’),(12,'Samsung'),(IS,'Vivo’)"
c onnec t ion,exec ute(sq12)
connection,close

Figure 7.15: Inner join

Once you run the preceding code, you can also verify the

outcome in your workbench. Go to your workbench and select the

schema you created in the beginning, and then expand that

schema. You will see a new table, which you have just created

from the above cell, as shown in the following figure

E '.'/SCI Wijitfceevti

A TESTOiJ X

Figure 7.16: A new table is created

Since in our example, users and products tables have product ID

as a common column, we can join users and products tables

based on the product ID to see which user has bought which

product, as shown in the following figure

engine = db.create_engine('mysql://root:admin£127.6.0.1:3306/schemaexanipleH)
connection ■ engine.connect
joinquery ~ "SELECT \

users.name AS user, \
products.name AS favorite \
FROM users \
INNER 3OIN products ON users.prod_id - products.id“

result - connection.execute(joiri_query)
myresult - result.fetchallf)
for bo ug byproduct in myresult:

print(boughtproduct)

('Prateek', ‘Apple’)
('lohn', ’Samsung')

Figure 7.17: Joining tables based on product ID

INNER JOIN only shows the records where there is a match.

Left join

The left join returns all the rows from the table on the left even

if no matching rows have been found in the table on the right.

Where no matches have been found in the table on the right,

none is returned as shown in the following figure

leftjoin = ’’SELECT \
users.name AS user, \
products.name AS favorite \
FROM users \
LEFT JOIN products ON users.prod_id = products.id”

result = connection, executefleft join)
myresult = result.fetchall()
for bought_product in myresult:

print boughtjroduct

(’Prateek*, ’Apple*)
(‘John’, 'Samsung')
('Tom*, None)

Figure 7.18: Left join

Don’t forget to create and connect the dbconnection before

executing any query, as we have done in the earlier normal join

example.

Right join

The right join is the opposite of the left join. The right join

returns all the columns from the table on the right, even if no

matching rows have been found in the table on the left. Where

no matches have been found in the table on the left, none is

returned, as shown in the following figure

right_join = "SELECT \
users.name AS user, \
products.name AS favorite \
FROM users \
RIGHT IOIN products ON users.prod_id = products.id"

result = connection.execute(right_join)
myresult = result.fetchall()
for boughtproduct in myresult:

print'bought_product

('Prateek', ’Apple*)
('John', 'Samsung')
(None, ’Vivo')

Figure 7.19: Right join

Don’t forget to create and connect the db connection before

executing any query, as we have done in the earlier normal join

example.

Conclusion

SQL proficiency is a basic requirement for many data science jobs,

including data analyst, business intelligence developer, programmer

analyst, database administrator, and database developer. You’ll need

SQL to communicate with the database and work with the data.

Learning SQL will give you a good understanding of relational

databases, which are the bread and butter of data science. It will

also boost your professional profile, especially compared to those

with limited database experience. So, keep practicing the Python

skills of interfacing with sql shared in this chapter by creating

your databases/schemas. In the next chapter, we will learn about

the core concepts of statistics that are often used in data science.

CHAPTER 8

Thinking Statistically in Data Science

Statistics play an important role in data science. If it is used

wisely, you can extract knowledge from the vague, complex, and

difficult real world. A clear understanding of statistics and the

meanings of various statistical measures is important to

distinguish between truth and misdirection. In this chapter, you

will learn about the important statistical concepts and Python­

based statistics tools that will help you understand the data

focused on data science.

Structure

Statistics in data science

Types of statistical data/variables

Mean, median, and mode

Basics of probability

Statistical distributions

Pearson correlation coefficient

Probability density function

Real-world example

Statistical inference and hypothesis testing

Objective

After studying the chapter, you will be able to apply statistics in a

Pythonic way to analyze the data.

Statistics in data science

Statistics is the discipline of analyzing data. In data science, you

will use two types of statistics - Descriptive and Inference

statistics. Descriptive statistics include exploratory data analysis,

unsupervised learning, clustering, and basic data summaries.

Descriptive statistics have many uses, most notably helping us get

familiar with a data set. Descriptive statistics usually are the

starting point for any analysis; therefore, it enables us to present

the data in a more meaningful way, which allows a simpler

interpretation of the data.

The inference is the process of making conclusions about

populations from samples. Inference includes most of the activities

traditionally associated with statistics such as estimation,

confidence intervals, hypothesis tests, and variability. Inference

forces us to formally define targets of estimations or hypotheses.

It forces us to think about the population that we’re trying to

generalize from our sample. In statistics, population refers to the

total set of observations that can be made. For example, if we are

studying the weight of adult women, the population is the set of

weights of all the women in the world. If we are studying the

grade point average of students at Harvard, the population is the

set of GPAs of all the students at Harvard.

Types of statistical data/variables

When working with statistics, it’s important to recognize the

different types of data. Most data fall into one of two groups -

numerical or categorical. Example of numerical or quantitative data

is a measurement, such as a person’s height, weight, IQ, or blood

pressure; or they’re a count, such as the number of stocks shares

a person owns, how many teeth a dog has, or how many pages

you can read of your favorite book before you fall asleep.

Categorical or qualitative data represent characteristics such as a

person’s gender, marital status, hometown, or the types of movies

they like. Categorical data can take on numerical values (such as

“1” indicating male and “2” indicating female), but those numbers

don’t have mathematical meaning. You couldn’t add them together,

for example. (Other names for categorical data are qualitative data,

or Yes/No data).

These two types of variables in statistics can be divided further,

as shown in the following figure

Figure 8.1: Variables in statistics

Let’s understand these categorizations:

Discrete variables: Discrete variables are countable in a finite

amount of time. For example, you can count the change in your

pocket. You can count the money in your bank account. You could

also count the amount of money in everyone’s bank accounts.

Continuous variables: Continuous variables would take forever to

count. You would never finish counting them. For example, take

the example of a person’s age. You can’t count age because it

could be - 25 years, 10 months, 2 days, 5 hours, 4 seconds, 4

milliseconds, 8 microseconds, 9 nanoseconds, and so on. You

could turn age into a discrete variable and then you could count

it; for example, a person’s age in years.

Nominal variables: Nominal variables are variables that have two

or more categories, but which do not have an intrinsic order. For

example, a real estate agent could classify their types of property

into distinct categories such as houses, condos, co-ops, or

bungalows. So, the type of property is a nominal variable with 4

categories called houses, condos, co-ops, and bungalows.

Ordinal variables: Ordinal variables are variables that have two or

more categories just like nominal variables, only the categories can

also be ordered or ranked. So, if you asked someone if they liked

the policies of the Republican Party, and they answered either not

very they are or yes, a then you have an ordinal variable. Because

you have 3 categories, namely, not very they are and yes, a and

you can rank them from the most positive (yes, a lot), to the

middle response (they are OK), to the least positive (not very

much). However, even if we can rank the levels, we cannot place

value to them; we cannot say that they are OK is twice as

positive as not very much for example.

Mean, median, and mode

Mean is simply another name for average. To calculate the mean of

a data set, divide the sum of all values by the number of values. We

can compute the arithmetic mean along the specified axis using

NumPy. Following is the Pythonic way to calculate the mean:

import pandas as pd
import numpy as np
a = np.array([[l, 2], [3, 4]])
print(np.mean(a))
print(np.mean(a, axis=0))
print np.mean(a, axis=l)

2.5
[2. 3.]
[1.5 3.5]

Figure 8.2 : Pythonic way to calculate mean

Median is the number that lies in the middle of a list of ordered

numbers. The numbers may be in ascending or descending order.

The median is easy to find when there is an odd number of

elements in the data set. When there is an even number of

elements, you need to take the average of the two numbers that fall

in the center of the ordered list. Following is the way to calculate

the median:

a = np.array([[10, 7, 4], [3, 2, 1]])
print(np.median(a))
print(np.median(a, axis=0))
print(np.median(a, axis=l)

3.5
[6.5 4.5 2.5]
[7. 2.]

Figure 8.3 : Calculating the median

Mode is that value which appears the most number of times in a

data. To calculate mode, we need another package named as stats

from scipy along with

from scipy import stats
a = np.array([[1, 3, 4, 2, 2, 7],

[5, 2, 2, 1, 4, 1],
[3, 3, 2, 2, 1, 1]])

m = stats.mode(a)
print(m[0])

[[13221 1]]

Figure 8.4 : Calculating the mode

Now the question arises as to when to use mean, median, or mode.

The answer is that it depends on your dataset. The mean is a good

measure of the average when a data set contains values that are

relatively evenly spread with no exceptionally high or low values. The

median is a good measure of the average value when the data

include exceptionally high or low values because these have little

influence on the outcome. The median is the most suitable measure

of average for data classified on an ordinal scale. The mode is the

measure of average that can be used with nominal data. For

example, late-night users of the library were classified by faculty as

14% science students, 32% social science students, and 54%

biological science students. No median or mean can be calculated

but the mode is that the biological science students as students

from this faculty were the most common.

Basics of probability

We all must agree that our lives are full of uncertainties. We

don’t know the outcomes of a situation until it happens. Will it

rain today? Will I pass the next math test? Will my favorite team

win the toss? Will I get a promotion in the next 6 months? All

these questions are examples of uncertain situations we live in. If

you understand these uncertain situations, you can plan things

accordingly. That’s why probability plays an important role in the

analysis.

We must know the following terminology related to probability -

experiment is the uncertain situation which could have multiple

outcomes; the outcome is the result of a single trail, the event is

one or more outcome from an experiment, and probability is a

measure of how likely an event is.

Statistical distributions

One of the most important things you need to know while arming

yourself with prerequisite statistics for data science is the

distributions. While the concept of probability gives us the

mathematical calculations, distributions help us visualize what’s

happening underneath. Following are some important distributions

we must know:

Poisson distribution

Poisson distribution is used to calculate the number of events

that might occur in a continuous-time interval. For instance, how

many phone calls will be received at any time period, or how

many people might show up in a queue? The Poisson distribution

is a discrete function, meaning that the event can only be

measured as occurring or not as occurring, meaning the variable

can only be measured in whole numbers.

To calculate this function in Python, we can use scipy library’s

stats package and to visualize samples, we can use matplotlib

library as shown in the following figure

from scipy.stats import poisson
import matplotlib.pyplot as pit
pit.title('Probability Distribution Example')
arr = []
rv = poisson(25)
for num in range(0,40):

arr.append(rv.pmf(num))
prob - rv.pmf(28)
pit.grid(True)
pit .plot (arr, linev/idth=2.0)
pit.plot([28], [prob], marker-'o', markersize=6, color="red,t)
pit.show

Figure 8.5: Poisson Distribution

In the preceding code cell, first we have imported the Poisson

package from the scipy.statsapi with matplotlib library to plot the

distribution. Then we have created a Poisson discrete random

variable named Next, we have calculated the probability mass

function which is a function that can predict or show the

mathematical probability of a value occurring at a certain data

point. In the end, we just plotted the graph using the matplotlib

library’s plot() and show() functions.

Binomial distribution

A distribution where only two outcomes are possible, such as

success or failure, gain or loss, win or lose, and where the

probability of success and failure is the same for all the trials is

called a Binomial distribution. We can use the matplotlib Python

library which has in-built functions to create such probability

distribution graphs. Also, the scipy package helps in creating the

binomial distribution as shown in the following figure

fron* scipy. stats import binom
import matplot lib-pyplot as pit
fig, ax - pit.subplot1)
x - range(7)
n, p * 6, 0.5
rv - binointn, p)
ax.vlines(x, a, rv.pmf(x), colors*= 'k', linestyies-'-', lw=l,label^’Probablity of Success")
ax.legend(loc-'best', frameon-False)
pit.show

Figure 8.6: Binomial Distribution

In the preceding code cell, we have imported the binom package

from the Then we have created a binomial discrete random

variable named Now to plot vertical lines at each x from ymin to

ymax we have used matplotlib library’s vlines() function where we

are passing our probability mass function as one argument and

then we are plotting and displaying the distribution as we did

earlier.

Normal distribution

Any distribution is known as normal distribution if it has the

following characteristics:

The mean, median, and mode of the distribution coincide.

The curve of the distribution is bell-shaped and symmetrical about

the line, exactly half of the values are to the left of the center

and the other half to the right.

You can calculate and draw the same using Python’s scipy and

matplotlib packages as shown in the following figure

Figure 8.7: Normal Distribution

In the preceding code cell, we imported the norm package from

then we have passed the probability density function of normal

continuous - discrete variable as np argument in plot() function.

Here a pdf is a function that can predict or show the

mathematical probability of a value occurring between a certain

interval in the function. You will know more about this function

later in this chapter.

Pearson correlation coefficient

In real-world data problems, you may face hundreds of attributes

and you cannot include all of them for your analysis. That’s why

you need to find a relationship between each variable. The

Pearson correlation coefficient is a measure of the strength of a

linear association between two variables and is denoted by It

attempts to draw a line of best fit through the data of two

variables, and the Pearson correlation coefficient, indicates how far

away all these data points are to this line of best fit (i.e., how

well the data points fit this new model/line of best fit).

The Pearson correlation coefficient can take a range of values

from +1 to -1. A value of 0 indicates that there is no association

between the two variables. A value greater than 0 indicates a

positive association, that is, as the value of one variable increases,

so does the value of the other variable. A value less than 0

indicates a negative association, that is, as the value of one

variable increases, the value of the other variable decreases. The

stronger the association of the two variables, the closer the

Pearson correlation coefficient is.

Following is a guideline (depending on what you are measuring)

to interpret the Pearson’s correlation coefficient:

Coefficient, r
Strength of Association Positive Negative
Small J to .3 -0.1 to -0.3
Medium .3 to .5 -0.3 to -0.5
Laree .5 to 1.0 -0.5 to -1.0

Figure 8.8: Pearson correlation coefficient

Pythonic way to interpret Pearson’s correlation coefficient where

r_row denotes Pearson’s correlation coefficient and p_value denotes

the probability of an uncorrelated system producing datasets that

have a Pearson correlation at least as extreme as the one

computed from these datasets. The p-values are not entirely

reliable but are probably reasonable for datasets larger than 500

or so:

import scipy
from scipy.stats import pearsonr
x = scipy.array([-0.65499887, 2.34644428, 3.0])
y - scipy.array([-l.46049758, 3.86537321, 21.0])
r_row, p_value = pearsonr(x, y)
print(r_row)
print p_value

0.7961701483197555
9.41371200873701036

Figure 8.9: Calculating Pearson correlation coefficient

Probability Density Function (PDF)

Probability Density Function is used to specify the probability of

the random variable falling within a range of values, as opposed

to taking on anyone’s value. The probability density function is

nonnegative everywhere, and its integral over the entire space is

equal to one.

In Python, we can interpret the PDF in the following way - first

import norm package from scipy.stats library to create a

normalized probability density function with NumPy and matplotlib

libraries. In this example, we are creating a variable, and assigning

it to that range from -4 to 4 with an increment of 0.001, then we

plot a normalized probability density function with the line,

plt.plot(x,

Figure 8.10: Probability Density Function

Real-world example

Pearson correlation is used in thousands of real-life situations.

One recent example is - scientists in China wanted to know if

there was a relationship between how weedy rice populations are

different genetically. The goal was to find out the evolutionary

potential of the rice. Pearson’s correlation between the two groups

was analyzed. It showed a positive Pearson Product Moment

correlation of between 0.783 and 0.895 for weedy rice populations.

This figure is quite high, which suggested a fairly strong

relationship.

Statistical inference and hypothesis testing

Statistical inference is the process of deducing properties of an

underlying distribution by analysis of data. Inferential statistical

analysis infers properties about a population - this includes

testing hypotheses and deriving estimates. Statistics prove helpful

in analyzing most collections of data. Hypothesis testing can

justify conclusions even when no scientific theory exists. A

statistical hypothesis, sometimes called confirmatory data analysis,

is a hypothesis that is testable on the basis of observing a

process that is modeled via a set of random variables. Whenever

we want to make claims about the distribution of data or whether

one set of results are different from another set of results in

applied machine learning, we must rely on statistical hypothesis

tests.

In simple words, we can interpret data by assuming a specific

structure of our outcome and use statistical methods to confirm

or reject the assumption. The assumption is called a hypothesis

and the statistical tests used for this purpose are called statistical

hypothesis tests. In statistics, a hypothesis test calculates some

quantity under a given assumption. The result of the test allows

us to interpret whether the assumption holds or whether the

assumption has been violated.

Following are two concrete examples that we will use a lot in

machine learning:

A test that assumes that data has a normal distribution.

A test that assumes that two samples were drawn from the same

underlying population distribution.

The assumption of a statistical test is called the null hypothesis,

or hypothesis 0 for short). It is often called the default

assumption, or the assumption that nothing has changed. A

violation of the test’s assumption is often called the first

hypothesis, hypothesis 1, or H1 for short. H1 is shorthand for

some other as all we know is that the evidence suggests that the

H0 can be rejected.

The process of distinguishing between the null hypothesis and the

alternative hypothesis is aided by identifying two conceptual types

of errors (type 1 and type 2), and by specifying parametric limits

on, for example, how much type 1 error will be permitted.

Let’s understand these statistical concepts based on a real-world

example. In this exercise, we will aim to study how accurately we

can characterize the actual average participant experience

(population mean) from the samples of data (sample mean). We

can quantify the certainty of outcome through the confidence

intervals. In this exercise we will first create an array of total

experience in data science specialization batch of a class and

store it in a variable named as

ttnatplotlib inline
import matplotlib-pyplot as pit
import numpy as np
import pandas as pd

s array containing no of total, experience
dss_exp = np.array([12, 15, 13, 20, 19, 20, 11, 19, 11, 12, 19, 13,

12, o o M
i s w
 LU M
l

M
i M
 ® M
 o M
 in M
 u> M

12, 7, 9, 8, 12, 11, 11, 18, 19, 18, 19, 3, 6,
s, 6, 9, 11, 10, 14, 14, 15, 17, 17, 19, 0, 2
0, 3, 1, 4, 6, 6, 8, 7, 7, 6, 7, 11, 11, 10,

11, 10, 13, 13, 15, 18, 20, 19, 1, 10, 8, 16,
19, 19, 17, 16, 11, 1, 10, 13, 15, 3, 8, 6, 9,
10, 15, 19, 2, 4, 5, 6, 9, 11, 10, 9, 10, 9,
15, 16, 18, 13])

Figure 8.11 : a sample numpy array containing number of experience

Next, we will plot a histogram to see the distribution of

experiences. For histogram plotting, we will use the matplotlib

library’s hits() function. In this function, we are using bins

parameter that tells us the number of bins that our data will be

divided into:

^understanding the Underlying distribution of Experience
?f Plot the distribution of Experience
plt.hist(dss„exp, range g (0,20),, bins - 21}
Add axis Labels
plt.xlabel(HExperience in years")
pit.ylabelf"Frequency")
plt.title('Di$tribution of Experience in Oats science Specialisation’)
Prows the red vertical Line in graph at the average experience
pit.axvlioe(x’=dss_exp,inean(), linewidth-2, color = 1r‘)
pit. showQ
ff Statistics of DSS Batch experience
print ("Mean Experience of DSs Batch: {:4. 3f)", format (dss_exp.mean()))
print("Std Deviation of Experience of DSS Batch: {:4♦Jf)",format(dss_exp.Std()))

Figure 8.12 : Understanding underlying distribution of experience

The preceding cell will draw the following histogram:

Distribution of Experience in Data Science Specialization

00 2.5 5.0 7.5 10.0 12.5 15.0 17,5 20 0
Experience in years

Mean Experience of DSS Batch: 10.435
Std Deviation of Experience of DSS Batch: 5.665

Figure 8.13 : Distribution of experience in data science specialization

After this, we will estimate the experiences by taking the mean

and standard deviation:

Set the parameters for sampling
n - IB
KJH^TftlALS - 1000
^Estimating DSS Experience from samples
samp ■ np. random. chc>ice(dsS_exp^ size • n, replace ■ TrueJ^Just try for J iteration
5amp_mean = samp.mean()
samp_sd = samp. srd()
print("Sampmean - {;4.3f} SampleSD - {:4.3f}* .-format(sampmean, samp_sd))
print("sample valuessamp)

Samp_niean = 10.500 Sample_SD - 5.665
sample values: [1© J 19 9 3 13 19 15 11 9]

Figure 8.14 : Estimating experiences

Now, to see how the distribution of the sample mean to look

like, we are drawing samples for 1000 times and compute the

mean each time. The distribution is plotted to identify the range

of values it can take. The original data has experience raging

between 0 years and 20 years and spread across it:

#How tfitL the distribution of 5ampLe Mean Look Like
np.random.seed(100)
inn_array = np.zeros(NUM_JRIALS)
sd_array = np. zeros (fO4_TRIALS)

Extract Random SampLes and compute mean & standard deviation
for i in range(NUM_TRIALS):

samp - np.random.choice(dss_exp# size « n, replace - True)
mnarrayfi] ■ samp.mean()

Figure 8.15 : How distribution of sample mean look

For computing the mean and standard deviation, we have used

mean() and std() function. For computing percentile, we are using

numpy library’s percentile() function. This function computes the

percentile of the data along the specified axis and returns the

percentile(s) of the array elements:

xi - mn_arr$y .ae$,n0
sd - iin_array. $td()
*5„pct - W>P*fS*fltil*(**-* r*W* *,0')
xSS^pct ■ np.percentile(mn~array, 95.0}
print("Mean * 5td"oe'j - « Pct - {cJ.3f}„ 951 Pct - {:4.3f}'.forflat(mn, sd, xS_pct. iK_pct))
ff Plot Sorpiintp distribution of Mean
pit.hist(m_array, ran^«-(0, IS), bins - 41)
t add arts tsbeu
plt.jciabel("ftyg (xperience with n-{}"rfprnat(n))
pIt.ylabel("Frequent y“)
pit.title["Sampling Oistributian of llean")
plt.axvline(x*j(5_pct J linewidth»2d color « ' r')
plt.axvline(x-x9S_p<tP lihewidth«2, color - ’rr)
plr.ihow(>

Figure 8.16 : Computing mean, standard deviation, and percentile

The preceding code will plot the following histogram, which tells

that the original experience of students of data science is in no

way a normal distribution. It has peaks around 5 years, 10 years,

and 19 years’ experience. The following plot is the histogram of

the mean of samples for any given

Mean - 10.455, std Dev - 1.794, 5% Pct = 7.600, 95% Pct - 13,405

Figure 8.17 : Sampling distribution of Mean

Now to find an estimated range of values which is likely to

include an unknown population parameter, that is, the estimated

range being calculated from a given set of sample data, we will

select the confidence interval of our samples. In the following

code cell, we are creating a function for selecting confidence

interval. Always remember that the selection of a confidence level

for an interval determines the probability that the confidence

interval produced will contain the true parameter value. Common

choices for the confidence level are 0.90, 0.95, and 0.99. These

levels correspond to percentages of the area of the normal density

curve. For example, a 95% confidence interval covers 95% of the

normal curve - the probability of observing a value outside of this

area is less than 0.05:

4 function to rhrct if tor1 true r.enn within Sffit Confidence 1/rtervoi.
def saxfi_Bean_wlthJn_clt»n, l-ipct^ udSpetJ:

cut • True
if < l_sprt) | fan > u^sSpct):

wt - false
return out

P Csti/fotian <wt Confidence Intervet
SVnp ■ up.random,chpite('d»F.exp, site u n, replace - Triur)
iidp_neen - s an<i . nean(J
serip_sd - samp.std{)
<t divided ty sqrtfnj is dtvre so os to co^ensote for the redaction in std, dev doe to staple size of n
sd.cf ■ uap^sd/np. sqrt M
T lower S0X confidence irtt erupt (Thic is OpprOximOCe vdrifon to build LjrtutiimJ
sjHp_lower_SpLt * sa-np_rwar- ■ l.ws ’ sd_cl
e Upper 9t>X confidence Intervet (inis is pppmiriawte version to bviitf inter ionJ
S»np_vpperm$ipct - jattp_»aan + 1,11$ • sd_cl
prlnt("Pap Moan: F Sanple: L_5PCT . : H - sjap_«*m - {:4. Jfj I H_95PCT - {:4.3f J".f*t«st{dss_#xp.meant).
r Charting if the jjojKrtdtioo neon ties within Sflt Confidence Interval (CI)
■n_witliin_ci_flag - sanp_nean_wLthdo_cl(dss_exp.-"ea<i(), savp_li>wer_5pct.J 5anp_i>pjec_95pct)
prinl("lrur nesti j ir, with the ‘JEiK rqnfirirrrr Intervet • {}". format (no within cl flaj})

Pc-P Hearn 10.«s | Sanple: L_SPCT ■ 7.PM I H - sanpjttean - 8.BW | H_BSFCT - Ifl.lW
Tree nean lies with the SBX confidence Intervel • False

Figure 8.18 : Function to select confidence interval

This shows us that given the sample size we can estimate the

sample mean and confidence interval. The confidence interval is

estimated assuming normal distribution, which holds well when n

>= When n is increased, confidence interval becomes smaller,

which implies that results are obtained with higher certainty:

Pop Mean: 10.435 | Sample: L„5PCT - 7.408] M - samp_mean - 8.800 [H_95PCT - 10.192
True mean lies with the 90S confidence Intervel - False

Figure 8.19 : Estimating sample mean and confidence interval

Let’s apply the same concept to an array of old batch experienced

so that we can perform Hypothesis testing. Firstly, let’s define the

Hypotheses as follows for our example:

Ho: Average Experience of Current Batch and Previous batch is

the same.

Hi: Average Experience of Current Batch and Previous batch is

different.

The process of distinguishing between the null hypothesis and the

alternative hypothesis is aided by identifying two conceptual types

of errors (type 1 and type 2), and by specifying parametric limits

on, for example, how much type 1 error will be permitted:

ft Previous Batch Data for hnarkirrtj exjwr-ifrire
dss_eKp^prev - tip.array([1, 14, 6| 7, 10, ie, 19, 15, 19, IE

2, 2, 14, 14, 14, J, 0, 4, 11, 7,
1, 2, 1, 2, 2, 2, 1, 1, i.
4, 4, 3, 3, 3, 3, 4, 3, 3, 7,
8* 6, 6, 6, 7, H, B 8, 7,
S, a, 0j 7, 9, 9, la, g, 9, n,
11, 9, 10, 19, 11, 10, 11, 9, 9, 9,
12, 14, 13, 14, 18, 14, 11, 10, 17, 20,
IB, S, 13* 4, 2, 4, 3, 12, 12, 14,
12, 12, 10, 14, 4, 11, 9])

avg_exp_prev - dss_exp_prev,meanQ
std_exp_prev - d55_exp_prev,std()
pelnt("Previous OSS Batch: flvg Exp {:4.3f} Std Dev - {:4.3fformat (a vg_exp_prev,. std_exp_prev))

plt.hist(tfss_exp_prev, range-(0,20), bins ■ 21)
pit,axvline(x-d55_exp_prev,meant), linewidth-2, color - ' r’)
pit,show(}

Previous DS5 Batch: Avg Exp - 8.041 Std Dev - 5.034

Figure 8.20: Performing hypothesis testing

From the output, you can easily see that the previous batch

average experience is around 8 while the new batch has an

average experience of 10 years. Thus, our first Hypothesis is

fulfilled in our example, which means we can reject the null

Hypothesis:

Previous DSS Batch: Avg Exp - 8,041 Std Dev - 5.034

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 8.21: plot of hypothesis testing example

The results of a statistical hypothesis test may cause a lot of

confusion to decide whether to take the result or reject it. To

understand this, we need to interpret the P-value is a quantity

that we can use to interpret or quantify the result of the test and

either reject or fail to reject the null hypothesis. This is done by

comparing the p-value to a threshold value chosen beforehand,

called the significance level. The significance level is often referred

to by the Greek lower case letter alpha. A common value used for

alpha is 5% or 0.05. A smaller alpha value suggests a more

robust interpretation of the null hypothesis, such as 1% or 0.1%.

In the next examples, we’ll do hypothesis testing based on the

intuition from the sampling distribution of mean and then we will

interpret the p-value:

np.random.seed(10O)
n - 20

dssjnean - dss_exp.jnean()
dss_sd - dss_exp.std()
print (“Current DSS Batch : Population Mean - {:4.3f}".format(dss_mean))

dss_prev_satnp = np. random, choice (dss_exp__prev, size = n, replace ■ True)
dss_preu_samp_mean « dss prev_samp.fnean()
print("Previous DSS Batch Sample 'lean: {:4.Bf}".format(dssprevsampmean))

Current OSS Gatch : Population Mean - 10.435
Previous DSS Batch Sample Mean: 8.250

from SCipy import StatS
t_statistic - (dss_prev_samp_mean dssjrean)/(dss_sd/np.sqrt(n))
p_val - 2 * stats.t.cdf(t_statistic, df- (n-1))
print("T-Statistic : {:4.2f}, p-Value ■ {:4.2fformat(t_stat 1stic,p_val))

T-Statistic : -1.72, p-Value = 0.10

For 2-tai Led hypothesis testing
from scipy import stats
dss_exp_prev_samp = np.random.choice(dss_exp_prevJ size = 20, replace = True)
dss_exp_samp = np.random.choice(dss_exp, size = 20, replace - True)
stats. ttestind(dss_exp_prev_sampJ1 dss_exp_samp)

Ttest_indReSult(statist ic—fl.24857316405070548, pvalue^B.80502950101657478)

Figure 8.22: Hypothesis testing

In the preceding code cell, after calculating the average

experiences of previous and current batches, we are performing

the t-test using stats.ttest_ind() function. The t-test (also called

Student’s T-Test) compares two averages (means) and tells us if

they are different from each other. The t-test also tells us how

significant the differences are; In other words, it lets us know if

those differences could have happened by chance. This test gives

us a t-score. The t-score is a ratio of the difference between the

two groups and the difference within the groups. A large t-score

tells you that the groups are different. A small t-score tells you

that the groups are similar.

Every t-value has a p-value to go with it. A p-value is a probability

that the results from our sample data occurred by chance. P-

values are from 0% to 100%. They are usually written as a

decimal. For example, a p-value of 5% is 0.05. Low p-values are

good; they indicate our data did not occur by chance. So, in our

example, the p-value is greater than 0.05 or 1.0, so we cannot

reject the null hypothesis. Since the p-value is probabilistic; when

we interpret the result of a statistical test, we do not know what

is true or false, only what is likely. Rejecting the null hypothesis

means that there is sufficient statistical evidence that the null

hypothesis does not look likely. Otherwise, it means that there is

not sufficient statistical evidence to reject the null hypothesis. If

we say that we accept the null hypothesis, the language suggests

that the null hypothesis is true. Instead, it is safer to say that we

fail to reject the null hypothesis, as in, there is insufficient

statistical evidence to reject it.

Conclusion

We have covered some core concepts of statistics in this chapter

and we will cover more statistical concepts related to machine

learning during the course of later chapters in this book. Statistics

is important in data analysis and we cannot ignore it. Framing

questions statistically allows researchers to leverage data resources

to extract knowledge and obtain better answers. It also allows

them to establish methods for prediction and estimation, to

quantify their degree of certainty, and to do all of this, using

algorithms that exhibit predictable and reproducible behavior. So,

practice and implement learnings from this chapter. In the next

chapter, we will learn how to import various forms of data and

work with data.

CHAPTER 9

How to Import Data in Python?

Data importing is the first step you will do before analyzing. Since

data is present in various forms, .txt , .csv , . excel , JSON, etc.,

importing or reading of such data is also different but quite

simple in a Pythonic way. While importing external data, you need

to check various points, i.e., whether header row exists in data or

not, is there any missing values there, the data type of each

attribute, etc. In this chapter, with the help of Pandas I/O API,

you will not only learn to read the data, but also how to write

data into various formats of files.

Structure

Importing text data

Importing CSV data

Importing Excel data

Importing JSON data

Importing pickled data

Importing a compressed data

Objective

After studying this chapter, you will become an expert in

importing, reading, and refining various forms of data.

Importing text data

The simplest form of flat data you will see is in .txt files. To

import text data, we need a dataset in this format. For this

purpose, we will import a real-world dataset. In the next example,

I have made use of consumer price index data obtained from the

US Labor Department. You can download the data by clicking on

the following URL:

https://catalog.data.gov/dataset/consumer-price-index-average-price-

data

Once you copy and save the preceding data in a text file in your

system, provide the path to read it. We will use

pandasread_table() function to read the text file indicating the

path where the file is stored in your system (I have stored the

file in my E:/pg/docs/BPB/data as shown in the following figure

https://catalo

import pandas as pd
cpijdata ■ pd.read_table(‘E:/pg/docs/BPB/data/cpi_us.txt’)
cpidata.head

seriesjd year period value Toot not encodes

0 APU0000701111 1995 M01 0.238
1 APU 000070W1 1995 M02 0242

2 APU0000701111 1995 M03 0242

3 APU0000701111 1995 M04 0236
4 APU0000701111 1995 M05 0244

Figure 9.1 : Importing text data

Isn’t that simple! The pd.read_table() function imports all data in

a variable If you check the type of this variable, you will notice

that this is a pandas DataFrame. The pandas library imports the

data in DataFrame format which denotes row and column with

index. This data type is easy to manipulate the data further:

type cpi_data

pandas.core.frame.DataFrame

Figure 9.2 : Importing in DataFrame

We can inspect the data using the head() function. pandas’

read_table() function has inbuilt functionality to filter blank

columns which you can use by passing as arguments separated by

a comma. For example, in the preceding cpi data, there is a blank

column By using the use cols argument as shown in the following

figure we can filter the unwanted columns:

cpijiata - pd.read_table(’E:/pg/docs/BPB/data/cpi^us.txt‘,
usecols=['seriesid', ‘year’, 'period', 'value']}

cpi_data,head

seriesJfl year period value

0 APU0000701111 1995 M01 0238

1 APU00007Q1111 1995 MOS 0242

2 APU0000701111 1995 M03 0242

3 APU0000701111 1995 M04 0.236

J APJ0C007Q1111 1995 M05 0244

Figure 9.3 : Using cols argument

Always provide correct file location to

has a lot of arguments that are very helpful in data cleaning as

per your need. You can check these by clicking on the following

Importing CSV data

CSV or comma-separated values are the favorite formats for saving

data. You will see that most of the publicly available datasets for

analysis/machine learning are in .csv format. In the next example,

I have made use of crime data to analyze the crime incidents

occurred in Chicago city. You can download this data by clicking

on the following link or save it from the datasets provided in the

GitHub repository of the book:

https://catalog.data.gov/dataset?res format=CSV

Similar to our previous example of reading data from the .txt file,

you can import and read this CSV data using the pandas

read_csv() function, as shown in the following figure This function

also has inbuilt features which you can find in following official

link: https://pandas.pydata.org/pandas-

docs/stable/generated/pandas.read csv.html

c r Lme_tfata ■ pd. read_csv(' E: \pg\d oc s\E P B data \C rime s_ -_2ee l_tc_pi'e s ent. c sv ")
crime_(f ata, head

ID Humber Cale Bloc* IUCR Primary
Type Description Location

Description Arrest Domestic -

0
10000092 HY1893€6

03718/2015
07:44 OO

PM

047XX W
O HI OST 041A BATTERY AGGRAVATED

HANDGUN STREET False False ..

f
10000094 HY19Q059

03718/2015
11:00:00

PM

066 XX S
MARSHFIELD

AVE
4625 OTHER

OFFENSE
PAROLE

VIOLATION STREET True Falsa ...

2
1000QO95 H¥190052

03/18/2016
10.45 «

PM

044XXS
LAKE PARK

AVE
0486 BATTERY

DOMESTIC
BATTERY

simple
APARTMENT FOISP TluJ ,

3 iworoos HY190054
03718/2015

10 30 00
PM

051XXS
MICHIGAN

AVE
0460 BATTERY SIMPLE APARTMENT False False .

4
10000097 HY189976

03/1872015
09 00 00

FM

047XXW
ADAMS ST 031A ROBBERY ARMED

HANDGUN SIDEWALK False False ..

Figure 9.4 : Importing CSV data

Sometimes, CSV files can be loaded with numerous rows of

datasets (our dataset is approximately 1.47 GB). Please be patient

while the importing of data is in process. You will notice a clock

icon on the top of the browser tab of your notebook indicating

the system is busy.

Importing Excel data

Excel is another most widely used dataset format that contains

numbers of the sheet in the form of a tab. You can use the

pandas read_excel() function with its sheet_name argument to

read the data from a particular sheet of Excel data. In the next

example, I have used a Superstore Excel sheet with three tabs-

Orders, Returns, People, which you can download by clicking on

the following link: https://community.tableau.com/docs/DOC-1236

qrder_data - pd.read
Qrder^dafa.head

_excel('E:\pgXcfocs\&PB\data\Sample - Superstore .xls', street. name- 'Orders')

ROW
ID

OrOer
IO

Order
Date

Snip
Dale

Ship
Mode

Cu atomer
ID

Customer
Name Srument Country City ... Postal

Code Ren ion Product
ID

Q
1

CA-
2016­

152156

2016­
11-03

2016­
11-11

Second
Class CG-1252D Claire

Gute Consumer United
Stales Henderson . 42420 scuih FUft-BO-

1 CO01753

2
CA-

2018­
152166

2016­
11-03

2016­
11-11

Second
Class CG-12520 Claire

Gute Consumer United
Slates Hendeison 42420 S-c-jlh FUA-CH-

1000045*

2

3
CA-

2016-
1J6638

2016-
D6-12

2016­
06-16

Second
ClSSS DV-13045 Damn

Vdn Helf Corporate United
Stales

Los
Angeles 90036 west OFF-LA-

tCCOMdO

Figure 9.5 : Importing Excel data

In the preceding figure we have just imported data from the

Orders sheet of the

https://community.tableau.com/docs/DOC-12

Importing JSON data

The JSON format is the most preferred form of data exchange in

today’s world of API. To deal with a JSON structured data, you

can use pandas read_json() function to read with its orient

argument as shown in the following figure

glossarydata = pd.read_json('E:\pg\dccs\BP8\data\glossary.jsonorient=’table‘)
giossarydata.head

q lessen/

GiossDiv ftitle': S’. GrossList: {'GlossEnEry: i'l

Tide exampie glossary

Figure 9.6 : Importing JSON data

Here, the orient parameter can take values as and Try these in

your notebook and see the difference in output. Please note, if

you are facing error like keyerror: update your pandas version to

V0.23, since orient=’table’ parameter has some issues in the older

version of

Importing pickled data

Any object in Python can be pickled so that it can be saved on

disk. What pickle does is that it serializes the object first before

writing it to file. The idea is that this character stream contains

all the information necessary to reconstruct the object in another

Python script. When you will work on machine learning, then you

will need to train your model many times, and picking will help

you by saving the training time. Once you pickled your trained

model, you can share this trained model to others; they don’t

need to waste their time in the retraining of the model. We will

cover that part later; let’s learn how to read a pickled file using

import pandas as pd
unpickleddata = pd.read_pickle("E:/pg/docs/BPB/data/ninist.pkl”)
print(“data type::", type(unpickled_data))
for index, digit in enumerate(unpickied_data):

print index, ,r:", digit

data type:: <class 'tuple’x
6 : (array([[e., 0., 9............ 0,, 0.],

[©., 0., 9., ..., 0., 9., 0.],
[0., 0., 9.f ..,, 0., 0. , 0.],

Figure 9.7 : Importing pickled data

Importing a compressed data

Our next type of data is in compressed form. The ZIP file format

is a common archive and compression standard. So how can you

unzip a file so that you can read the data? For this purpose,

Python has a zipfile module that provides tools to create, read,

write, append, and list a ZIP file. In this example, we will unzip

soil data from the African region which you can download from

our GitHub repository:

https:// github.com/dsbyprateekg/BPB-Publications

import zipfile
Dataset - "africd_soil_train_ddta.zip"
with zipfile.ZipFile("E:/pg/bpb/BPB-Publications/Datasets/"+Datasetj"r") as z:

z.extract*!! “E; /pg/bpb/BPB-Publicatioris/Datasets''

Figure 9.8 : Importing a compressed data

The preceding code will unzip the file in your given path; in our

example, the unzipped file is in CSV format that you can easily

read using pandas read_csv() function. There are various inbuilt

parameters for this zipfile which you can try in your notebook by

clicking on the following link:

https://docs. python.org/ 3.6/library/zi pfile.html

ithub.com/dsb
https://docs

Conclusion

Data importing is the first step to get the data. In this chapter,

we have learned various formats of data importing. Without

loading the dataset in an appropriate data type, you cannot move

further. As a data scientist, you will mostly find datasets in CSV

format, so pandas read_csv() function will be your best friend in

the data importing process. The more you practice in your

notebook, the more you will learn. So, explore the data importing

with different parameters and see the result. In the next chapter,

we will learn about the data cleaning process.

CHAPTER 1O

Cleaning of Imported Data

Before starting your analysis, you need to transform the raw data

into a clean form. As a data scientist, you will spend 80% of

your time cleaning and manipulating data. This process is also

known as data wrangling.

A machine learning model’s accuracy depends on the data it is

applied to. Hence, data cleaning is a vital step for any data

scientist. In this chapter, you will work on a couple of case

studies and apply learnings from the previous chapters to clean

the data.

Structure

Know your data

Analyzing missing values

Dropping missing values

How to scale and normalize data?

How to parse dates?

How to apply character encoding

Cleaning inconsistent data

Objective

After studying this chapter, you will have applied knowledge of the

data cleaning process.

Know your data

As a first step, you must understand the business problem and

then look upon the data given by the business team or client. In

this first case study, we are going to work on the National

Football League data. You can access the data from our GitHub

repository. As a data scientist, your first task is to read the data

in your notebook.

Since the data is in ZIP format, our first step will be to unzip

this data and read it using Pandas .zipfile() function by providing

the correct location of the file stored in the system as shown in

the following figure

D tptzippinj nfl lip <hta
iaport zipfile

- "HFt Pldy by Play 1069- SSI 1 (v4) .CSV. lip"
with zipfile, ZipFlle("E;/pfi./bpb/B* *'tt-Publications/Dataset 5/"♦Dataset, "r") as z

:. extrac c al 11 “ E: / pg/bpls/BPS -Pi*) icat ic-i’-s,.1 pat a s et s')

a unzipping building perait lip data
i apart Zip-flit
Dataset! - "Buildl<i,g_Pe™its.csv, zip"
with zipfile. ZlpFilefE!/ ;:y,/ bpb/a a B- Pub 1 ic .it Lans/DaT.iset'.."' tDataser2, ‘i,J) a* i;

1 -extractall("E; .'pg/bpt'/BPA-Publicat ions/Oa t asets'’)

* Invert ncsrutreii modules
import pandas as pd
L^Ort nciapy as up

rending NFt data
nfl_J*t* - pd-r'**d_<PV<’’ti7pjfbph?eP0-Piibllt*tiP*»/O*t*i4t*/NFl P]*y by P)*y 1W9-2M7 (vtj.tw*, lpw_*4*5i,y-Fiilse)
building jermits • pd.read_csv("E : /pg/bpb/BI-L - Public aticns/Datasets/Butiding Permits. Cpi”, low_neaary ■ F alse}

Figure 10.1: Unzipping a ZIP file

Please note, while reading the data using the pandas read_csv()

function, I am passing low_memory parameter. Otherwise, you will

get the low_memory warning because guessing dtypes (data type)

for each column is very memory demanding and pandas tries to

determine what dtype to set by analyzing the data in each

column. The pandas library can only determine what dtype a

column should have after reading the entire file. This means none

of the data can be parsed before the whole file is read unless

you risk having to change the dtype of that column when you

read the last value. For now, it’s ok to use a low_memory

parameter with setting the parameter value to False.

After reading the data, we can look at it so that we get an idea

about its attributes. For this, we can use .head() or .sample()

function. Since you have already come across how to use the

.head() function, I will use .sample() function to view the data as

shown in the following figure

fl1 Tooling up the data
nf-Sjmpls S'

Oj1e GamelO Drive QU town time Timellader Time Sec s PleyTimeUilf SidtolFHld „ yacEPA Home_WP_pre

219231 2013-
12*19 iBinznaz 20 4 NkN 03 07 4 187 0 0.0 NO MH 0955040

11358B Mil*
11-13 20111111302 20 4 1.0 II 16 12 676.0 1 0 HOU .. NSN 0.010379

214093 2013­
12-05 2013120500 13 3 2.0 1420 15 1760.0 19.0 HOU 0 228553 0.783273

299928 2015*
11-28 17 4 NON IM IT 5 257.0 d 0 CAL HaN HaN

277934 2015­
09-27 16 3 1.0 11.45 12 1605.0 5.0 16 .- NaM 0 482456

5 rows * 102 columns

Figure 10.2: Viewing the data

Tada! The data is displayed in tabular form with some columns

having NaN values; these values are called missing values. Let’s

apply the same function in building_permits dataframe as shown

in the following figure

sample 5

Permit
Number

Permit
Type

Permit
Type

definition

Permit
Creahon

Date
Stack Lot Street

Number

Street
Number

Suffix
Street
Name

Street
Suffix "

E
Constr

106029
201511162641 8

otc
alterations

permit
11/16/2015 1744 005 1237 NaN 0610 Ay

^as-50
201509116784 8 alteration:?

permit
09/11/2015 0690 116 1 NaN Darnel

Burnham Ct .

45517
201404213721 8

otc
alterations

permt
04/21/2014 1081 048 2549 NaN Post St ..

136805
201609157776 8

otc
alterations

permit
09715/2016 6534 010A 454 NaN Fair

Oaks st

?4940
201602057581 8

otc
alterations

permit
02/06/2016 3538 040 63 NaN Noe st ..

5 rows x 43 columns

Figure 10. 3: Applying .sample() function in building_permits

Analyzing missing values

After reading the data, we have found out that both datasets have

missing values. Our next step will be to calculate the number of

missing values we have in each column. For counting the null

values, pandas has .isnull() function. Since nfl_data has 102

columns, we will analyze the first ten columns containing missing

values as shown in the following figure

getting the number of missing values per column
missing_values_count = nfljlata.isnull().sum()
looking at first 16 columns missing values in nfl dataset
missing_values_count[6:10]

Date
GamelD
Drive
qtr
down
time
T imelinder
T imeSecs
PlayT imeDiff
SideofField
dtype: int64

0
0
0
0

61154
224

0
224
444
528

Figure 10. 4: Analyzing missing values

Each column name and the associated number indicates the

number of missing values - that seems like a lot! We cannot

ignore such a high number of missing values. It might be helpful

to see what percentage of the values in our dataset were missing

to give us a better sense of the scale of this problem. For this

percentage calculation, we will take help of the combination of

NumPy’s .prod() and pandas shape functions as shown in the

following figure

how many totaL missing vaLues do we have in nfidata
total_cells » np,prcd(nfl_data,shape)
totalmissing = missing_values_count sum()*
percent of data that is missing
(totaljnissing/total_cells) 199*

24.87214126835169

Figure 10. 5: Calculating percentage of values missing

That’s amazing right, almost a quarter of the cells in this dataset

are empty! Now it’s your turn to apply the same steps in the

building_permits dataset and check the percentage of missing

values there.

In the next step, we will take a closer look at some of the

columns with missing values and try to figure out what might be

going on with them. This process in data science means closely

looking at your data and trying to figure out why it is the way it

is and how that will affect your analysis. For dealing with missing

values, you’ll need to use your intuition to figure out why the value

is

To help figure this out the next question that a data scientist

must ask himself/herself - Is this value missing because it wasn’t

recorded or because it doesn’t exist?

In the first case, if a value is missing because it doesn’t exist (for

example the height of the oldest child of someone who doesn’t

have any children), then it doesn’t make any sense to try and

guess what it might be. These values you probably do want to

keep as NaN. In the second case, if a value is missing because it

wasn’t recorded, then you can try to guess what it might have

been based on the other values in that column and row. This is

called imputation that you will learn later in this chapter.

In our nfl_data dataset, if you check the column, it has a total of

224 missing values because they were not recorded. So, it would

make sense for us to try and guess what they should be rather

than just leaving them as NAs or NaNs. On the other hand,

there are other fields, like PenalizedTeam that also have a lot of

missing fields. In this case, though, the field is missing because if

there was no penalty, then it doesn’t make sense to say which

team was penalized. For this column, it would make more sense

to either leave it empty or to add a third value like none and use

that to replace the NAs.

Till now you must have understood that reading and

understanding through your data can be a tedious process.

Imagine doing such careful data analysis daily where you have to

look at each column individually until you figure out the best

strategy for filling those missing values. Now it’s your turn to look

at the columns, street number suffix, and zip code from the

building_permits datasets with a similar approach. Both contain

missing values. Which, if either, of these are missing because they

don’t exist? Which, if either, are missing because they weren’t

recorded?

Dropping missing values

If you don’t have any reason to figure out why your values are

missing, the last option you could be left with is to just remove

any rows or columns that contain missing values. But this is not

recommended for important projects! It’s usually worth taking out

some time to go through your data and carefully look at all the

columns with missing values one-by-one and understand your

dataset. It could be frustrating at the beginning, but you’ll get

used to this eventually, and it will help you evolve as a better

data scientist.

For dropping missing values, pandas do have a handy function,

dropna() to help you do this. Stay alert! When using this function,

if you don’t pass any parameter, it will remove all of the data even

if every row in your dataset has at least one missing For saving

ourselves from this situation, we can use axis parameter having

column value with this function. We will also check before and

after the effect of missing values dropping in the dataset as

shown in the following figure

ff remove all columns with at least one missing value
columns_with_na dropped - n-Fldata.dropna(axis-i)
columns_with_na_dropped.head()

ff checking how much data did we Lose?
print('Columns in original datasetnfl_data.shape[l])
print "Columns with missing values dropped:",, columns_with_na_dropped.shapefi]

Columns in original dataset: 102
Columns with missing values dropped: 41

Figure 10. 6: Dropping missing values

By passing axis=i as parameter we were able to drop columns

with one or more missing values.

We’ve lost quite a bit of data, but at this point we have

successfully removed all the NaN’s from our NFL data. Now it’s

your turn to try removing all the rows from the building_permits

dataset that contains missing values and see how many are left

and then try to remove all the columns with empty values and

check, how much of your data is left?

Automatically fill missing values

Instead of dropping missing values, we have another option to fill

these values. For this purpose, pandas have fillna() function with

the option of replacing the NaN values with the value of our

choice. In the case of our example data set, I will replace all the

NaN values with 0 in nfl_data dataset, since I have already

removed/dropped columns with NaN values. Before applying this

function, I will pick a small subset view of data in the columns

from EPA to Season so that it will print well in the notebook. For

this subsetting, you can use function and pass the range indexes

of columns after the comma inside the function. The single colon

before the comma in the .loc() function indicates data from all

rows for the subsetting:

< ncptnpr <rtt ilA'r 0
svbstznf l_daz j . f 11 Ina (0)

f get a sarf-Lt jubie-t of tfta NFL datdift
siHtset_nfl_data » nf I dita. lo<[:, 'EPA':‘Ssaion’].headfj

EPA bifEPA y*cEPA Howw_WP_pre Away_WP_pr® H™_WP_pctt W«-l_Prob WPA iwWPA yacWPA Sea-Mjn

0 7 014474 0 000000 0.000000 0 465675 0 514325 0 546433 0.453567 0.485675 0.060753 OO0OOOO OOOOOOO 2009

1 0 077947 ■ S0M189 l 1+6075 0540433 0 453567 0 561M4 0 448912 0004656 >0 032244 0436899 2009

2 d 402760 OOOOOOO 0 004000 0 5510S6 0 440012 0 510703 0.489207 0.551088 'OC45295 OOOOOOO 0 400000 2009

J -1 Tiana iJiBW MWtl UKB7 04*1217 fll»«1 -4 IM732

4 2 097796 0000000 0 000000 0 451217 0 536783 0 558929 0.441071 0.461217 0097712 0 000004 0 400000 2009

Figure 10. 7: Automatically filling missing values

In the code file, I have prepared and shared another example to

check the sum and percentage of missing values in the I hope

you’ll be surprised to see the changes in the dataset after the

example operations we performed in our previous examples. The

second option of filling missing values automatically is by

replacing missing values with the value that follows (in the next

row) it in the same column. This makes a lot of sense for

datasets where the observations have some sort of logical order

to them. Here we are using backward filling with fillna function

for this task:

* repLnce a CL f.h-r value that cmcs directly a/Eer it in Ehr pose colum^
then restate otL the reaa-CrtLflg NaN's with O'

subset_nfl_data.fIlina(method ■ "bfill", axls-e).fillna ft

CPA airEPA yacEPA H&me_WP_p« Away_WP_jwe Hwme_WPjost Awav_WP_jM.it Wirt.Prob WPA anWPA yaeWPA Season

0 2 014474 1066169 1 146076 0 465675 0 514325 0.5+6413 0453567 0 465675 0 06075® -0 032244 0 036699

1 UHW -1.MM49 1 HiJTt iwm ol*» w
2 1 402760 3.31SM1 -5 03-1+25 0 554060 0 440912 0.510793 0.469207 0 5510B6 •0 040295 0 106663 ■0 156239

a -1 rani 4 11(715 ■oiwijf

4 2 007796 0MO00Q OCHXXKHJ 0461217 0.538783 0.558929 0.441071 0 461217 0 097712 O.OOMOO OOOQCOO

II II
1

Figure 10. 8: Second option to automatically filling missing value

Try the same steps in building_permits dataset and explore the

automatic filling of missing values!

Awav_WP_jM.it

How to scale and normalize data?

Most of the machine learning algorithms do not take raw

numerical attributes of your dataset. You need to fit the numerical

values within a specific scale. For example, you might be looking

at the prices of some products in both Rupee and US Dollars.

One US Dollar is worth about 70 Rupees, but if you don’t scale

your price methods, some machine learning algorithms will

consider a difference in the price of 1 Rupee as important as a

difference of 1 US Dollar! This doesn’t fit with our intuitions of

the world. With currency, you can convert between currencies. But

what if you’re looking at something like height and weight? It’s

not entirely clear how many pounds should equal one inch (or

how many kilograms should equal one meter) because these two

are different measurement units.

In this example of this chapter, you will work on a Kickstarter

Project dataset - ks-projects-20i6i2.csv, which you can download

from our GitHub repository. Kickstarter is a community of more

than 10 million people comprising of creative, tech enthusiasts

who help in bringing creative project to life. Till now, more than

$3 billion dollars have been contributed by the members in fueling

creative projects. The projects can be literally anything - a device,

a game, an app, a film etc. Kickstarter works on all or nothing

basis, i.e., if a project doesn’t meet its goal, the project owner

gets nothing. For example, if a projects’ goal is $500, even if it

gets funded until $499, the project won’t be a success. In this

dataset, you will transform the values of numeric variables so that

the transformed data points have specific helpful properties.

These transforming techniques are known as scaling and One

difference between these two techniques is that, in scaling, you’re

changing the range of your data while in normalization you’re

changing the shape of the distribution of your data. To understand

the output of both techniques, we will need visualization also, so

we will use some visualization libraries as well. Let’s understand

each of them one-by-one.

For scaling, you will first need to install the mlxtend library which

is a Python library of useful tools for the day-to-day data science

tasks. For this installation, open Anaconda Prompt and run the

following conda install -c conda-forge mlxtend follow the

instructions.

After installing the required library, read the download data:

impart pandas as pd
import fiump/ as op

for Box-Cox Transformation
from scipy import stats

for min_f!wx scaling
froir. mlxtend,preprocessing import minmax_5caling

to for visuctizotiofi
import seaborn a$ $ns
import matplotlib,pypLot as pit

repdinj fcicfcstenters project data
kickstarters-_2et7 = pd.read_csv(Hf ;/pa/bpb/FPB-Ptitlicat£ons/DatasetsAs-prQjei:ts-2£il80i ,csw")
set seed for reproducibility
np.nandoa.seed(d)
k i c k s ta rte rs_2917.head

Figure 10.9: min max scaling example

ID name eale^wy fflaincailfrft&ry currency deadline goal Ijurirched pledged state tuckers toifiiry 1110
pledged

0
10W0A23M

Thrt Songs or
Afleuxie ?■

Ajulali
Poety PulKiStunu GBP 2*15-10-

n 1*00.0
2*15- IB-

11
12 122S

co fNt* 0 gs *.0

1
10WOTMM

Greobng From
EMU JQAC
Arts Capsule

FMfT
F*n Film 1VI fee USD 201M1­

01 30000 0
2*1 T-W-

*2
M«57

2421.0 faded 15 US 100.0

2
10000M09 Where is

Harttr?
Nanam

Frim Fdm JViMO USD 2*11-04-
25 26*0**

2*1 Wi­
ll

M 2*50
220.0 3 US 22*.O

3 TwhiCWJJ
RatonS

Needs HehUe
ComjUele

Atom

Musk Mifw USD 2*12-M-
16 5*00.0

2*1243-
IT

*124 11
1.0 iM«r 1 US 1.0

4

1W00HMS

Canvnunrfy
Film Prct»d

Tilt Art cif
Fitrnft
WdM Film 4. Video USD 2*1 5-flS'

29 1*50*0
2*15-*?-

*4
08 35*3

1213 0 canes efl 14 US 1283.0

Figure 10.10: output of the min max scaling example

By scaling your variables, you can compare different variables on

equal footing. To help solidify what scaling looks like, let’s start by

scaling the goals of each campaign in our dataset, which is how

much money they were asking for:

select the usd_goa l_real column
usd_goal = kickstarters_2017.usd_goal_real

scale the goals from Q to 1
scaled_data * minmax_scaling(usd_goalJ columns = [0])

plot the original & scaled data together to compare
figax=plt■subplots(1j2)
sns.distplot(kickstarters_2017.usd_goal_real, ax=ax[0])
ax[0].set_title("Original Data")
sns-distplot(scaled_dataJ ax=ax[l])
ax[l].set_title("Scaled data")
pit.show

Figure 10.11: Scaling the goals of each campaign

Once you run the preceding shell, the following plots will be

displayed:

Figure 10.12: Plots that are displayed

can see that scaling changed the scales of the plotsYou

dramatically but not the shape of the data and we can conclude

that it looks like most campaigns have small goals, but a few have

very large

Scaling just changes the range of your data. Normalization is a

more radical transformation. The point of normalization is to

change your observations so that they can be described as a

normal distribution. Remember here that normal distribution is a

specific statistical distribution where roughly equal observations fall

above and below the mean, the mean and the median are the

same, and there are more observations closer to the mean. The

normal distribution is also known as the Gaussian distribution.

The method we are using to normalize here is called the Box-Cox

Transformation. In the Kickstarter data example, we’re going to

normalize the amount of money pledged for each campaign:

get the index of all positive pledges (Box-Cox only takes postive values)
i nd ex_o-f_pcs it ive_p ledges ■ kickstarter&_2017.itsd_pledged_r'eal > 0

get only positive pledges (using their indexes)
positive_pledges = kick starter s_2ei7.usd_pledgecf_real .loc(index„of_positive_pledges]

w norntoliie the pledges (w/ Box-Cox)
normalited_pledges ■= stats.boxcox(po5itive_pledges)[0}

if plot both together to compare
figj, ax-plt. sjbplots(l, 2)
sns,distplot(positive„pledges, ax=ax[t>])
ax[0].set_title("Original Data")
sns,distplot(normalised_pledges, bx^bx[1])
ax[l]. set_title{"rJormalited data")
pit* show

Figure 10.13: Box-Cox Transformation

Once you run the preceding shell, you will see the following plots:

Figure 10.14: Result of Box-Cox Transformation

It’s not perfect - it looks like a lot of pledges got very few

pledges, but it is much closer to normal! Now it’s your turn to

apply the same with the pledged column. Does it have the same

info?

How to parse dates?

Many datasets have a date column and sometimes you may have

to deal with requirements like fetching transactional data for a

particular month or dates of a month. In such cases, you must

know how to parse date. For this you will work on the third case

study, where you will work on natural disaster dataset and will

learn how to parse data. Let’s import the required modules and

load our datasets:

import pandas as pd
import nutnpy as np
import seaborn as sns
import datetime

read in our data
earthquakes = pd.read_csv("Ei/pg/bpb/BPB-Publications/Datasets/database.csv")
landslides = pd.read_csv(''E:/pg/bpb/BPE-Publications/Datasets/catal&g.csv")
volcanos - pd.read_c5v<"E:/pg/bpb/BPB-Publication5/Oataset57databa5e.csv")

set seed for reprodueiblLity
np.random.seed o

Figure 10.1 5: Importing required modules

If you check the landslides dataframe using .head() function, you

will see that there is a date column on which we will build our

example:

landslides.head

id date time continent_code country_name count

0
34 3/2/07 Night NaN United States

1
42 3/22/07 NaN NaN United States

2
56 4/6/07 NaN NaN United States

3
59 4/14/07 NaN NaN Canada

4
61 4/15/07 NaN NaN United States

5 rows x 23 columns

Figure 10.1 6: Checking landslides DataFrame using .head() function

Looking at the data, we can tell that the date column contains

dates, but does Python know that they’re dates? Let’s verify the

data types of each column with the .info() function:

landslides.info

<class 'pandas.core.frame.DataFrame'>
Rangeindex: 1693 entries, 0 to 1692
Data columns (total 23 columns):
id 1693 non-null int64
date 1690 non-null object
time 629 non-null object
continent_code 164 non-null object

Figure 10.1 7: Verifying data types of each column using .info()

function

Shocked to see a strange data type of the date column! Pandas,

by default, use the object dtype for storing various types of data

types. When you see a column with the dtype it will have strings

in it. To convert the dtype object into date object, we will use

pandas to_datetime() function for parsing date value as shown in

the following figure

create a new columnj date_parsed^ with the parsed dates
landslides!'dateparsed'] = pd.to_datetime(landslides['date'format = "Xm/Sd/Ky"}
print the first few rows
landslides! 'dateparsed'] ..head

0 2007-03-02
1 2007-03-22
2 2007-04-00
3 2007-04-14
4 2007-04-15
Marne: datS-parsed, dtype; datetitne64[n$J

Figure 10.1 8: Parsing date value

The dtype object is now converted into the datetime64 format,

which is a standard one for storing dates. If you want to extract

the day of the month from the date_parsed column, use the

.dt.day function as shown in the following figure

get the day of the month from the dateparsed coLumn
dayofmonthlandslides « landslidesf’dateparsed*].dt.day
dayofmonthlandslides

0 2.6
1 22.0
2 6.0
3 14.0
4 15.0
5 20.0

Figure 10.1 9: Extracting the day of the month

Apply the same approach and try your hand at fetching the day of

the month from the volcanos dataset.

How to apply character encoding?

Character encodings are specific sets of rules for mapping from

raw binary byte strings (that look like this: 0110100001101001) to

characters that make up human-readable text (like There are many

different techniques used to encode such binary datasets and if

you try converting such data in the text without knowing the

encoding technique it was originally written in, you will end up

with scrambled text.

While working with text in Python 3, you’ll come across two main

data types. One is the string, which is what text is by default.

The other data is the bytes data type, which is a sequence of

integers. Most datasets will probably be encoded with UTF-8. This

is what Python expects by default, so most of the time you won’t

run into problems. However, sometimes you’ll get an error like

this:

UnicodeDecodeError: ‘utf-8’ codec can’t decode byte 0x99 in

position 11: invalid start byte

To understand this, let’s work on the Kickstarts project again but

this time try to read 2016 CSV file:

f tO rOOrf En e? fit? OOt ITTF‘5
kickstarter_2O16 - pd. read_csv:' "E :/pg/bpb/BPB-Publ if at ions/ Dataset s/ks- project s-201612 .csv“

Unicode-DetodeError Trace-back (most recent call last)
p»d»*/_llbs7pj>*Mr*.pyx In p4nd*t.„lib(.p*ri*rs.T«tRflatfftr._«niMrt_tft*in (pjnd*t'i_Ilbs' 1p*rf»r»,<:l'i05aX)

p a nd ai/ libs/pa rs e rs. pyx In pandas._libs .parser s.Te*tHeader._canvert_wlth_dty lpe (pandas’l lIbstparsers.t:17119)()

Figure 10.2 0: Trying to read 2016 CSV file

To solve this error, you need to pass correct encoding while

reading the file. We can check the encoding of this project’s 2018

version file which you have already downloaded using chardet

module as shown in the following figure

ft helpful character encoding module
import chardet

ft look at the first ten thousand bytes to guess the character encoding
with openfE i/pg/bpb/BPB-PublicationsAmasets/ks-pr'ojects- zeieai .csv", ’rb) as raivdata

result • chardet.detect(rawdata.read(1G00&)}

ff check what the character encoding might he
print(result)

{’encoding’: 'Windows-1252', ’confidence’: &.73, ’language1: "}

Figure 10.2 1: Checking the encoding

Encoding is Windows-125 having 73% confidence value. Let’s see if

that’s correct:

P read in tire fiie ivtrJi the encoding detected by chardet
klckst*rtsr_2fl^ii ■ pd,read_csv(”E i/pgZbpb/BPe-PutiMcdtions/Dstasets/lcs-projects-2&1612. csv"

encoding- 'Windows -1252 ' t low_ittesH>ry-False)

ff too-k pt tire first feu tines
kick starte r_2ei£. .head

10 name category maln_c atetrory currency deadline goal launched pledged slate Pa

0
111001102310

The Songs o!
Adelaide &

Abullah
Poetry Publishing GBP

2015-10­
09

11:36.00
1000

2015-tt-
11

12:12:33
0 laired

1
1000004033 Where is

Hank?
Karallve

Film Film 4. VkJm □SO
2013-02­

25
00:20:50

45000
2013-01­

12
00:20:50

220 failed

Figure 10.2 2: reading csv data with correct encoding

Cleaning inconsistent data

You may face duplicate data entry in your dataset like Karachi and

Karachi where there is a space in the second or same name with

case issues. These types of inconsistency need to be removed. To

understand this type of situation, we will work on a dataset where

suicide attacks held in Pakistan are mentioned. Let’s understand

this situation by importing the suicide attack dataset and explore

the inconsistent column as below:

* reoO in me dot
sidcidt_«ttecks ■ pd .re*d„<svfE ;/pg/lwb/BPB-ifiii>llc4tioits/Detesets/PakLstan5ulciileAitacki Ver 11 (;e-aJoveiber-301?}.ctv'

encoding-'kJ ndows-1252")

0 25
Sulrfty. JunuadJ

1 rio.Tmlv: al. HjlJay Weekend HeH Islamabad 33 J 180 HOUS CspW Nanp 1*0 148 NaN 00
iS'IWJ THaany

14 IB AH

1 klwdj)'- to ,.lprt.„
2 Nwemlw SHaPsan n. NaN HaN Karaoni 2* 5910 6699H Sta* None NaN 3 5 NaN i

420W 1421 AH

Figure 10.23: Cleaning inconsistent data

Since our focus is on inconsistency, let’s move on to the city

name column:

sulcide_attecki.keod

34 DM» * l 2*lannlG “4'^ Time City HUttide LOrtgiliMlr PKWkltf _ "’slw! K^cd Jn,u^ "'jU'c:1 &u
ua'’ Tip* r|1* arij "" w B

get alt the unique values in the 'City' column
cities ■ suitide_attacks[’City’].unique()

sort them alphabetically and then take a closer look
cities.sort()
cities

array(['ATTOCK', ‘Attack ’Bajaur Agency ‘, Bannu', Bhakkar 'Buner*,
‘Chakwal ’Chaman', 1 Charsadcfa", ‘Charsadda *, 'D. 1 Khan',
'D.G Khan', 'D.G Khan 'D.I Khan', ‘D.I Khan *, 'Dara Adam KheT,
‘Dara Adam khel't 'Fateh lang’, ‘Ghallanai, Hohmand Agency
‘Gujrat’, 'Hangu', 'Manipur", 'Hayatabad', 'Islamabad',
'Islamabad ', ’lacobabad‘’KURRAH AGENCY', 'Karachi', Karachi

Figure 10.2 4: Cleaning inconsistent data in City column

Let us format each cell data by converting every letter in lower

case and by removing white spaces from the beginning and end

of cells. You can easily do this using str module’ slower() and

strip() functions. Inconsistencies in capitalizations and trailing

white spaces are very common in text data and you can fix a

good 80% of your text data entry inconsistencies by doing this:

convert to tower cose
suicide_attacks[1 City’] = suicide_attacks[’City'].str.lower()
remove trailing white spaces
suicide_attacks['City' J - suicideattacksf'City'].str.strip

Figure 10.2 5: Fixing inconsistencies using str module functions

Conclusion

If you have read this chapter carefully and applied the learning in

your notebook, then at the end of this chapter you have gained

practical knowledge of data cleaning process. There are many

techniques to learn when it comes to mastering data science

subject. After practicing the techniques covered in this chapter on

different data sets, you’ll gain competitive skills to stay ahead in

the data science role. So, keep practicing and explore more

techniques day by day. In the next chapter, we will learn about

visualization in detail.

CHAPTER 11

Data Visualization

Data is very powerful. It’s not easy to completely understand large

data sets by looking at lots of numbers and statistics. For the

ease of understanding, data needs to be classified and processed.

It is a well-known fact that the human brain processes visual

content better than it processes plain text. That’s why data

visualization is one of the core skills in data science. In simple

words - visualization is nothing but, representing data in a visual

form. This visual form can be charts, graphs, lists, maps, etc. In

this chapter, you will work on a case study and learn different

types of charts to plot with the help of Python’s matplotlib and

seaborn libraries along with pandas .

Structure

Bar chart

Line chart

Histograms

Scatter plot

Stacked plot

Box plot

Objective

After studying the chapter, you will become an expert in

visualization using Pandas.

Bar chart

Bar charts or Bar graphs are the simplest forms of data

visualization method. They map categories to numbers; that’s why

bar graphs are good to present the data of different groups that

are being compared with each other. To understand how to plot a

bar chart, you will work on the Wine Review Points dataset, which

you can download in ZIP form from our repository. In this

dataset, wine-producing provinces of the world (category) is

compared to the number of labels of wines they produce

(number). Let’s load this ZIP file, unzip it, and read the file by

following the same steps learned in the previous chapter:

Import Zipfile
Dataset - Mwinemag-data_firstl50k.csv.zip"
with zipfile .ZipFile(HE:/pg/bpb/8PB-Publications/Datasets/’'+Dataset/'r") as z:

z.extractall E:/pg/bpb/BPB-Publications/Datasets”;

Figure 11.1: Importing Zip file

The CSV file is now extracted and stored in the location

mentioned in the .extractall() function. Read the CSV file and store

data in a pandas library’s DataFrame variable, as shown in the

following figure

iirport pandas. as pd
revfews_df - pd. read_civCE:/pg/bpb/SPtt-Publicatlcirii/Datjsets-/winenjg - d dta_firitISSIc. e sv", index_col-S)
rflvi«M5_df .head (5-

coil Mry dnscrliHRw poinic IKKt mitoc* n«la«^ vir*1y wftflery

0 us
Tlhrs bfr-rwndDUJs 1 Mftt vaneldl

mne has/; frprri Manna's Vrrtvard 234 0 Caifanua Napa Valcy Napa CabMMt
Swrigncin Httfz

1 Spain Ripe aiGfras of Fig. Hackberry and
cassis ar* .

Carodcrum Sclcccjin
EspKial Reswa 1100 Ncdhcm

Spa* Tore NaN lulls (»?■>» Bodega Carmen
FtodrfgiME

2 US M*e Wais on honors, ihe noMnoiy
of a writ once ma

Spetai Satedtd Laie
Harvest « SCO Cakfcrnia Kr^hh

Valgy Sonoma Sawdpnon ■JuuiXey

i
US

Tbs spent 2ft morvTa in new
French oat an ®0 Oii?on

VARimeflc
Vaiey

WflamcHc
Valley PW Nqi Fc*?l

Figure 11.2: Loading the wine review dataset into a DataFrame

Suppose you want to understand which province produces more

wine than any other province in the world. For this comparison

you can use the bar chart as shown in the following figure

impart matplotlib.pyplot as pit
reviews_df['province'].vaiue_counts().head(10).plot.bar()
pit.xlabel('Province')
pit.ylabel('No of Wines')
pit.title('Provice with Wine Production Data')
pit.show)

U

Province

Figure 11.3: Provinces with Wine Production Data

California produces more wine thanIsn’t it easy to clearly say that

any other province of the world? From this visualization, you can

demonstrate a chart instead of showing statistics code to your

client. That’s is the beauty of data visualization. Now coming back

to the actual code, we are using matplotlib.pyplot as our main

plotting library. Next, we are using value_counts() function to find

the frequency of the values present in the province column in

descending order. For denoting the x and y axis with a name, we

are using xlabel() and ylabel() functions of Lastly, we have used

the show() function to display the plots.

Line chart

A line chart or line graph is a type of chart that displays

information as a series of data points called markers connected by

straight line segments. Line graphs are used to display quantitative

values over a continuous interval or time period. A line graph is

most frequently used to show trends and analyze how the data

has changed over time. In our example, let us draw a line graph

to plot and understand wine review points using plot.line()

function as shown in following figure

import matplotlib-pyplot as pit
reviews_df[’points'].value_counts(),sort_index().plot.line()
pit.xlabel{’points‘)
pit.ylabelf’No of Wines')
pit.title(1 points with Wine Production Data')
pit.show

points with Wine Production Data

10000 ■

Figure 11.4: Wine Review Points using plot.line() function

Here, points in the wine review dataset denote the number of

points Wine Enthusiast rated the wine on a scale of 1-100. From

the preceding line chart, you can easily say that almost 20000

wines got 87 points in their reviews.

Histograms

A histogram looks like a bar plot. A histogram is a special kind

of bar plot that splits your data into even intervals and displays

the number of rows in each interval with bars. The only analytical

difference is that instead of each bar representing a single value,

it represents a range of values. However, histograms have one

major shortcoming. Because they break space up into even

intervals, they don’t deal very well with skewed data (meaning it

tends to have a long tail on one side or the other). For example,

let us check the number of wines which are priced less than

$200 as shown in the following figure

Figure 11.5: Number of Wines priced below $200

If you run the same code but price with greater than $200, then

the plot will not break up in even interval. This is also one of the

techniques to deal with skewness of the data. Histograms work

best for interval variables without skew as well as for ordinal

categorical variables.

Scatter plot

A scatter plot is a bivariate plot which simply maps each variable

of interest to a point in two-dimensional space. If you want to

see the relationship between two numerical variables, then you can

use the scatter plot. In our wine dataset, suppose you want to

check the relationship between price and then to visualize a

scatter plot with the best fitting in our output cell, instead of

taking all prices, we will take a sample like all the wines which

have a price below $100, and then we will plot the relationship

using scatter() function:

revieu5_df[reviewsjdff'price’] < lee].sample(10a).plot.scatter(x-'price', y-’points')
pit.show

Figure 11.6: Plotting relationship using scatter() function

The preceding plot shows us that price and points are weakly

correlated, which means that more expensive wines generally earn

more points when reviewed. Scatter plot has one weakness -

overplotting, therefore, scatter plots work best with relatively small

datasets, and with variables which have a large number of unique

values. That’s why I have taken only 100 samples while plotting.

Try without using the sample in the preceding code and see the

difference in output.

Stacked plot

A stacked chart is one which plots the variables one on top of

the other. It is like a bar graph or line chart, but it is subdivided

into its components so that the comparisons, as well as the

totals, can be seen. To plot a stacked plot, we will have to work

on another dataset which represents the top five wine reviews:

wi ne_count_df.head ()
wi ne_count _df ■ pd - readme$v(“E: /pg/ bpb/BPB - Pu bl i cat ions / Da ta s et s/top- f ive i ne - score - counts. c sv' * i ndex_col«G)

points

Bonleaui-ityle Red Blend Ciberntt Sauvltmon ChsrdonAjj1 Ptott Mbit Red Blend

*0 5.0 67.0 66.0 36.0 72 0

SI 16.0 159 0 1M0 31.0 107.0

8? 72 9 435 0 517 0 295 9 233 0

sj 95 0 570.0 6690 346 0 3840

34 266 0 421.0 1146.0 733.0 602 0

Figure 11.7: Stacked plot

In this dataset, the review score of the top five wines is

mentioned, which is a perfect example to visualize each

component as a stacked plot. Let’s plot a stacked plot:

wine_count_df.plot-bar(stacked=True)
pit.show

points

Figure 11.8: Plotting a stacked plot

Doesn’t it look beautiful? But this plot has the following two

limitations:

The first limitation is that the second variable in a stacked plot

must be a variable with a very limited number of possible values.

The second limitation is one of interpretability. As easy as they

are to make and pretty to look at, stacked plots sometimes make

it hard to distinguish concrete values. For example, looking at the

preceding plots, can you tell which wine got a score of 87 more

often: Red Blends (in purple), Pinot Noir (in red), or Chardonnay

(in green)?

Box plot

If you want to visualize a statistics summary of a given dataset,

then the box plot is your friend. As shown in the following figure

the left, and right of the solid-lined box are always the first and

third quartiles (i.e., 25% and 75% of the data), and the band

inside the box is always the second quartile (the median). The

whiskers (i.e., the blue lines with the bars) extend from the box

to show the range of the data:

Outliers

interquartile Range
(IQR)

"Minimum"
<Q1 - l.s*IORI

Outliers

Median

(25th Per; entile} [7 tit h Percent He)

"Maximum"
(Q3 + 1.5'IQR)

-4-3-2-10 1 2 3 4

Figure 11.9: Box plot

Let’s understand first these five statistical terms:

Median (Q2/5Oth The middle value of the dataset.

First quartile (Qi/25th The middle number between the smallest

number (not the and the median of the dataset.

Third quartile (Q3/75th The middle value between the median and

the highest value (not the of the dataset.

Interquartile range 25th to the 75th percentile.

Whiskers (shown in blue)

The data point that is located outside the fences

Q3 + i.5*IQR

Q1 -i.5*IQR

Let’s see how to utilize a box plot on a real-world dataset -

Breast Cancer Diagnostic, which you can download from our

repository and read it as shown in the following figure

i«wrt as pd
C - pd, n»*d„C >vC"E: /pg/bpb/BPS - Publ 1 cion f/titj sn j /br««l1 _tone r»r, c*v")
e-arKcrJ# .hfAd

Ml diKIRinii 4*dmd_meiTi iMlure.mfan ptnmewr.rrean mmjmiii imooiMieisjmjn co<nmclf»«_ni«ii eoiro*i<¥_medn CpncjWQ

points mean

0 042302 M 1790 10 55 122.30 10010 0 11340 0.Z77W 0.3001 014710

t 842517 M 20.57 1777 132 90 13260 0 08474 0 07864 0.0069 0.07017

1 fl«3W9fl$ M iSfS 11H T»W hbo 0 1WM Mi HO fl HM a HfSfl

3 84348301 M 11.42 20 38 77.58 3861 0 14ZM 0 28390 0.2414 010520

4 £4359402 M 2029 14 34 135.10 1297 0 0 lOOM 013290 0 1990 0.10430

5iws 133 otfumns

Figure 11.10: Utilizing a Box plot

The next task is to analyze the relationship between malignant or

benign tumors (a categorical feature) and area_mean (continuous

feature).

For this task, first, you need to separate the malignant or benign

tumor data from the complete dataset based on the mean area.

This time, I will use the seaborn library to plot my boxplot and

save the plot as an image. For plotting a box plot we will use

boxplot() function of the seaborn library as shown the following

figure

impart seaborn as sns
malignant_tumour = cancerdf [cancerd-f [‘diagnosis ’]==’Mr][' areantean ‘]
benigntumour = cancerdf[cancerdf[’diagnosis’]=«'B’]['areamean']
sns .boxplot(x»’diagnosis ’y»' area mean', data»cancer_df)
pit.savefig('e:/pg/bpb/BP8-Publications/0atasets/cancer_areatn€8n„diagnosis.png')
pit.show

Figure 11.11: Plotting box plot using function from seaborn library

Using the preceding graph, we can compare the range and

distribution of the area mean for malignant and benign diagnosis.

We observe that there is a greater variability for malignant tumor

area mean as well as larger outliers. Also, since the notches in

the boxplots do not overlap, you can conclude that with 95%

confidence, that the true medians do differ.

Conclusion

Data visualization is one of the core skills in data science. In

order to start building useful models, we need to understand the

underlying dataset. Effective data visualization is the most

important tool in your arsenal for getting this done, and hence a

critical skill for you to master. There are various readymade

visualization tools like Tableau and QlikView present in the market,

but you must know the basic plotting skills as we did in this

chapter. The more you practice on actual datasets, the more you

will gain your visualization knowledge; so, start practicing in your

notebook and check what you can analyze from the output. In the

next chapter, you will learn about the data pre-processing steps.

CHAPTER 12

Data Pre-processing

For achieving better results from the applied model in machine

learning projects, properly formatted data is mandatory. Some

machine learning models need the information to be in a

particular format, for example, some machine learning algorithm(s)

do not support null values. For such algorithms, null values have

to be managed in the original raw data set. Another important

reason for having formatted data is to evaluate it using more than

one machine learning and deep learning algorithms and chose

among the best fit algorithmic solution to the data problem. In

this chapter, you will learn data pre-processing steps which will

form the final step towards working with machine learning

algorithms. You will learn Feature Engineering along with data

cleaning and visualization with the help of a real-world case study.

Structure

About the case-study

Importing the dataset

Exploratory data analysis

Data cleaning and pre-processing

Feature Engineering

Objective

After studying this chapter, you will be equipped with the skills to

make your data ready to start working with machine learning

algorithms.

About the case-study

In this chapter, we will analyze datasets of two pioneer e-retail

merchants - ModCloth and Both retailers want to improve their

catalog size recommendation process and thus they asked data

scientists to help. The following type of information is available in

the datasets:

Ratings and reviews

Fit feedback (small/fit/large)

Customer/product measurements

Category information

These datasets are highly sparse, with most products and

customers having only a single transaction. Note that, here a

product refers to a specific size of a product, as your goal is to

predict fitness for associated catalog sizes. Also, since different

clothing products use different sizing conventions, you will

standardize sizes into a single numerical scale preserving the

order.

Importing the dataset

You can download the two datasets of each merchant from the

link provided in the book for downloading the dataset. Both

datasets are in the ZIP format. So before reading the actual file,

you need to unzip it first, as shown in the following code block:

import zipfile
Dataset = "modclothfinaldata.json.zip"
with zipfile.ZipFilef'E;/pg/bpb/BPB-PubiicatiDns/nataset$/"tDataset,"r") as z

z.extractall(HE:/pg/bpb/BPB-Publications/Datasets")

Figure 12. 1: Unzipping the datafile

Once you run the preceding code, it unzips the datafile which is

in JSON format. Use the pandas library’s .read_json() function to

read this JSON file and store it in a dataframe for processing

later:

modelothjdf ■ pd. read_j son(' E: /pg/bpb/BPB -Publ icai lons/Dai a set s/etHfc inaljtot*. js-on', 1 lnes-Triie)
modeloth_df.head

bra
size twn C-ntOdiV

cup
i-te nt MiflM hiO* ktnfllh flUOMy r«uiw_-ninwiirr nMHLkri she*

size
shoo

Width sue tiser_nai»t WHI

fl MO 36 W.v ■1 ■-ma* 54 6*n 360 123373
Pflt

ng« 5.0 NBN KM Nahl 7 M1571 Em*, 1 29.0

1 HO NbN b imui 54 2m 300 123373 w
nqr-t 30 km N1M MM MaN 13 507BB3 31.0

2 320 NaN new 6 smai 54 7in NaN 123373 sHHith
ions 20 MM NaN 00 NaN T 305605 U«9W 300

3 HaN Aft it HjN NaN 123373 just
ISW 5 0 KM NaN Maw *4aN 21 875543 MaN

4 360 NbN new b ?mai 542m NaN 123373 Sbflhttf 5.0 KM NaH WiN WaN IB 044540 dtwnoofril NaN

Figure 12. 2: Using pandas library’s function to read file

Exploratory data analysis

From the preceding head view of our case-study dataset, you will

notice the following points:

There are missing values (NaN) across the dataframe, which need

to be handled.

Cup-size contains some multiple preferences, which will need

handling if we wish to define cup sizes as category datatype.

Height column needs to be parsed for extracting the height in a

numerical quantity - it looks like a string (object) right now.

Let’s explore the columns and information of the dataset in

details:

modclothdf.columns

Index([’bra size’, ’bust', 'category1, ’cup size', 'fit*, ’height', ’hips',
'item_id', 'length', ‘quality’review_summary‘, ’review_text‘,
'shoe size', 'shoe width', 'size', ’user_id’, 1user_name', 'waist’],

dtype=’object')

Figure 12. 3: Exploring columns and information of dataset

It looks like there are spaces between some column names. So,

let’s rename the space with an underscore as shown in the

following figure

modeloth_df.columns = ['bra_size‘, 'bust1, 'category', 'cup_site’, 'fit', 'height', 'hips
ritem_id‘, 'length', 'quality', 'review_summary‘’review_text',
’sti0e_size', ' shoe_width’, 'size', ' userid’, ' user_name’, ’waist']

mode1oth_d f.c olumn s

Index(['bra_size', ’bust', ’category', ’cup_size', 'fit', ’height', 'hips',
’item^id’, ’length’, ’quality’, ’ revlew_s umniary’, ' reviewjtext ’,
’shoesize', ' shoewidth', 'size', ’user_id', user name’, ’waist’],

dtype-'object')

Figure 12. 4: Renaming space with an underscore

Let’s move further and check the data types of each column so

that you can make more observations:

modcloth_df.info()

<class ’pandas.core.frame.DataFrame'>
Rangelndex: 82799 entries, 0 to 82789
Data columns (total 18 columns):
bra_size 76772 non-null float64
bust 11854 non-null object
category 82790 non-null object
cup_size 76535 non-null object
it 82790 non-null object

height 81683 non-null object
hips 56064 non-null float64
item_id 82790 non-null int64
length 82755 non-null object
quality 82722 non-null float64
review_summary 76065 non-null object
review_text 76065 non-null object
shoe_size 27915 non-null float64
shoe_width 18607 non-null object
size 82790 non-null int64
user_id 82790 non-null int64
user_name 82790 non-null object
waist 2882 non-null float64
dtypes: float64(S), int64(3), object(10)
memory usage: 11.4+ MB

Figure 12.5: Checking datatypes of each column

Once again if you analyze the data type of each column, you will

find the following points:

There is a total of 18 columns but out of 18, only 6 columns

have complete data (82790).

There is a lot of data missing in various columns like - bust,

shoe width, shoe size, and waist.

You need to especially look at the items which have shoe size

and shoe width available - these could be shoes!

A lot of the columns have strings (object) datatype, which need

to be parsed into the category datatype for memory optimization.

Next, you can check the missing values in each column as shown

in the following block of code:

4nissing_ddta ■ pd.DataFrdnw({ ' totd^inissifig': mode lot h_df . isntillQ.siJinO,
■per’centagejnissing ': (modcioth_(ff .isnuH() .suin()/82790)*i00})

missing^data

Figure 12.6: Checking for missing values

percentage„missing total_missing

bra_size 7,268994 6018

bust 85,681846 70936

category 0.000000 0

cup_size 7.555260 6255

fit 0.000000 0

height 1.337118 1107

hips 32.281677 26726

itemjd 0.000000 0

length 0.042276 35

quality 0.082136 68

review_summary 8.122962 6725

review_text 8.122962 6725

shoe_size 66.282160 54875

shoe_width 77.525063 64183

size 0.000000 0

userjd 0.000000 0

user_name 0.000000 0

waist 96.518903 79908

Figure 12.7: Analyzing the missing values

Further analyzing the output under that waist column, we

surprisingly found a lot of NULL values (97%) - consider also

that Modcloth is an online retail merchant and most of the data

from Modcloth comes from the 3 categories of dresses, tops, and

Let’s dig more into the data before you dive into performing the

pre-processing tasks as shown in the following figure

modclot h_df, des.e r i bs

bra_size hips itemjd quality shoe_si» size user__id waist

count 76772.000000 56064.000000 32740.000000 82722 000000 27915.000000 82790.000000 82790.000000 2832 000000

mean 35 972125 40 358501 469325 229170 3 949050 8145318 12661692 498849 564716 31.319223

St<J 3 224907 5 327166 213999.803314 0 992783 1.336109 6.271952 286356 969459 5.302849

min 28.000000 30.000000 123373.000000 I.ODOQOO 5.000000 0.000090 6.000000 20.000000

25% 34.000000 36.000000 31498D.COOOOO 3 000000 7.000600 8000000 252897.750000 28O0O0W

50% 30.000000 30 000000 454030.000000 4 000000 8 000000 12.000'300 497913 500000 30 000900

75% 38.000000 43.000DOO 558440.400000 5.000000 S.OOQOOO 15.000000 744745 250000 J4.O0Q0O0

max 48.000000 60 000000 BOT722.0DOOOD 5.000000 3B.OOOOOO JB.OOOOOD 999972.000000 50.000000

Figure 12.8: Analyzing the data

From the preceding statistical description, you can infer the

following:

Most of the shoe sizes are around 5-9, but the maximum shoe

size is 38! It is surprising because if you check their website, you

will find that they use UK shoe sizing.

Size has a minimum of 0 and maximum size matches the

maximum shoe size.

Keeping in mind the basic statistical analysis we have done till

now, let’s check the outliers in our dataset by plotting a box plot

using numerical columns of the dataset:

numcols = [‘brasize',’hips'’quality'>' shoe size1,' size’,' waist ’]
plt.figure(figsize=(10j 5))
modcloth_df[num_cols].boxplot()
pit.title("Numerical variables in Modcloth dataset", fontsize=29)
pit.show

Figure 12.9: Plotting a box plot using numerical columns

Figure 12.10: Numerical variables in Modcloth dataset

You can analyze the following key points from the preceding box

plot:

The single maximum value of shoe size (38) is an outlier, and

you should ideally remove that row or handle that outlier value.

Since it is a single value in the whole dataset, it could be

wrongly entered by the customer or it could be a simple noise.

As of now, you can enter this as a null value.

In the bra-size, you can see that boxplot shows 2 values as

outliers, as per the Inter-Quartile Range Thus, you can visualize

the distribution of bra_size vs. size (bivariate) to arrive at an

understanding of the values.

The next step will be to handle the null values in shoe size and

then visualize the bra_size vs.

Figure 12.11: Handling null values

Figure 12.12: Joint distribution of bra_size vs. size

From the plot we can’t see any significant deviation from usual

behavior for bra-size; in fact for all other numerical variables as

well, you can expect the apparent outliers, from the boxplot to

behave similarly. Now, we ‘ll head to pre-processing the dataset

for suitable visualizations.

Data cleaning and pre-processing

Let’s handle the variables and change the data type to the

appropriate type for each column. For this purpose, you will

define a function first for creating the distribution plot of different

variables as shown in the following figure

* function for irtitinl distribution of feotures
def plot_feat tires (col, as):

mqdcloth_df[cot]J«>OtlclDth_df(col] .nptnull()] _value_CPunt50. plot (bar't facecoJpr-'b' , Px-ax)
ax.set_xlabel(’{}’ . foriTidt(col}, fontsize-20)
ax.set_title('’{} on Mode Loth Dataset”.format(col))
return ax

f, ax - pit.subplots(3,j, figslze - (20,11))
f,tight_layout(h_pad-$, w_pad-2, rect-[D, 0,0J, 1, 0.93])
cols - [Jbi*a_si2e ’,‘trust’, ’category', 'etip_si2e‘, 'fit1, ’height', ’hips’, ‘ length’, ’quality’]
k - e
for i in range(J):

for j in range(3);
plot_features(ccils[k], ax(ij(jj)
k +-’l

__ S pit.suptitle("Initial Distributions of features")
pit. show

Figure 12.13: Defining the function for creating distribution plot

Once you run the preceding function, it will draw the following,

which looks like the plot in your notebook:

Figure 12.14: Initial distribution of features

Looking at the individual plots from the output, you can analyze

and infer the following:

Although it looks numerical, it only ranges from 28 to 48, with

most of the sizes lying around 34-38. You can see here that most

of the buyers have a bra-sizing of 34 or 36. It makes sense to

convert this to the categorical data type. You can further refine

the analysis by filling the NaN values into an Unknown category.

You can see by looking at the values which are not null, that bust

should be an integer data type. You can further refine the data

where the bust is given as, ‘37-39’ and replace the entry of ‘37-39’

with its mean, i.e., 38, for analysis purposes. Later convert the

data type into

None missing; you can change it to the data type category.

cup Change the data type to the category for this column. This

column has around 7% missing values.

Change the data type to the category for this column. You can

see that a vast majority of customers gave good fit feedback for

the items on Modcloth!

You need to parse the height column as currently, it is a string

object, of the form - It will make sense to convert height to

centimeters. We also take a look at the rows where the height

data is missing.

Let’s apply these observations one by one as shown in the

following figure

modeloth_df.cup_size.fillna(Unknown', i nplace-True)
niodclothdf. cupsize = modclothdf.cupsize.astypef'category').cat.as_ordered()
modcloth_df.fit - modcloth df.fit.astype category

def change_in_cms(x);
function to chnaqe height in cm
if type(x) -- type(l.O):

return
try:

return (int(x[O])*39.48) + (int(x[4:-2])*2 .54)
except:

return (int(x[0])*30.48)
modcloth_df.height • modclothdf.height.apply change^in^cms

Figure 12.15: Applying the observations

Feature Engineering

Creating new features from existing ones is called feature This

step improves your model accuracy amazingly. To extract a new

feature, you must understand the actual business problem, it’s

dataset and you must think out of the box sometimes. In the

given dataset, we will try to do the same, so let’s start this

approach by creating a new feature of

You can use the following logic to identify first time buyer:

If has a value and and waist do not - it is a first-time buyer of

lingerie.

If has a value and and waist do not - it is a first-time buyer of

shoes.

If hips/waist have a value and and shoe_width do not - it is a

first-time buyer of a dress/tops.

You can verify the above logic as the following, before creating the

new feature:

Looking at the few rows where either bra_size or cup_size exists,

but no other measurements are available.

Looking at the few rows where either shoe_size or shoe_width

exists, but no other measurements are available.

Looking at the few rows where either hips or waist exists, but no

other measurements are available.

Now we can add a new column to the original data - with

Boolean data type which will indicate if a user/a transaction, is a

first-time user or not. This is based on the grounds that Modcloth

has no previous information about the person; in fact, it is

possible that the new user did multiple transactions for the first

time!

H<igerle_iogic * (((nodeloth_df.bra_siie !■ "Unknown-)) (sodcloth-df,cup_slie I* 'UnluKwn'))
1 (node loth_df - height. i (null ()1 ft (modcloth_df.hips,isnullfj) ft
(rridCl*Eh_df.th6fr_Sile.lSnull(}) ft (»CidClith_df. d1. ilrtu'l 1 ()) 4 (a*dclot h_df _wl 1st. 1 Srtu 11 {}>i

shoe.ld^ic ’ (tnodeloth„df -br*_*l! » — 'ISlUw.n ') ft (■odtloth_ftf,cup_sir» -- 'Unknom'} A (modiioth^df ,hfi jht. IsnilllO)
4 (nodi lot h_df.hlpi.iiO'jllf)) ft . ihot_lizt .OOtnullO} I (node loth_df .5hM_NldCh.iWEIiulH)})
1 (nodcloth_df. waist. IsnullO))

Jress_ldgic * ((s*dcloth_df .bra_siie — unkriiwi ") ft (node lot h_df. ci)p_site -- 'Unknot n‘) ft
(wnicloth_df .height. ls<iull{)} ((eodcloth_<ff .hips ,notmill()) I {«dclotb_df .waist.notnullf1
(node loth_df-IO-isnul1£}} * («odtlpth_df.jhoe„width.ijnul]()})

Dddeloth_dfl "f i rsi_t i ue_<i ser' J * (1 ingerl*_iofilf | shae_lagit I dress_logld)
prlnt("Coluwi Is added!“J
print{" lot,11 trar'..ir t ipi'. by first tie* h'.ert who bought bra. ■.hoes, or a dress; " ■ '.tr(iLm(nodcloth_df .fint^tlne.ujtr}})
print “Total first tine users: * * str£ 1 an(nodeloth_df [(1 Ingerle-loglc [shoe_l*gic | di'ess_logic)J.user_id.unique(}))

toluirn il added!
Total transactions by first ti™ users uho bought braj shoes* or a dress: SM)3
Total first time users; 545

Figure 12.1 6: Adding a new column

Let’s move further and observe other columns; you will find the

following analysis result:

Hips column has a lot of missing values ~ 32.28%! Maybe

Modcloth never got this data from the user. You cannot remove

such a significant chunk of the data, so you need another way of

handling this feature. You will learn how to bin the data - based

on quartiles.

There are only 35 missing rows in Most probably the customers

did not leave behind the feedback or the data was corrupted in

these rows. However, you should be able to impute these values

using review related fields (if they are filled!). Or you could also

simply choose to remove these rows. For the sake of this

analysis, we will remove these rows.

There are only 68 missing rows in Just like we assumed the

possibility for length column, the customers did not leave behind

the feedback or the data was corrupted in these rows. We will

remove these rows and convert the data type to an ordinal

variable (ordered categorical).

cLeaning hips column
modeIoth_df.hips - modclothjdf.hips.filing(-1.e)
bins - >5,9,^137,40,44,75]
labels - ['unknown','XS','S',L,XL’]
modclothdf.hips - pd.c^t(modelot hjdf.hips, bins, labels=labels)

cleaning Length coLumn
missingrows = modclothdf[modclothdf.length.isnullQ].index
modcloth_df.drop(missing_rows, axis - 0, inplace-Triu?)

ff cLeaning quality
mis5ing_rows = modclothjif [modclothdf .quality■. isnull()]. index
modclothdf.drop(missing rows, axis - 0, inplace-True)
modcloth_df.quality = modcloth_df.quality.astype('category’).cat.asordered

Figure 12.1 7: Cleaning the columns

Let’s analyze the remaining columns:

The NaN values are there because these reviews are simply not

provided by customers. Let’s just fill those as

Roughly 66.3% of the shoe_size data is missing. We will have to

change the shoe_size into category data type and fill the NaN

values as

Roughly 77.5% of the shoe_width data is missing. We will have to

fill the NaN values as

Waist column has the highest number of missing values - 96.5%!

We will have to drop this column.

85.6% missing values and highly correlated to We’ll have to

remove them.

user_name itself is not needed with the user_id given. We’ll have

to remove them.

Let’s apply the above analysis to our dataframe:

modcloth_df.review_summary - modcloth_df.review_sunimary.fillna(‘Unknown')
modcloth_df,review_text = modcloth^df.review_text.fillna(‘Unkown’)
modclath_df.shoe_size = modeloth_df.shoe_size.fi Lina(‘Unknown*)
modcloth_df,shoe_size = modcloth_df.shoe_size.astype(* category').cat.as_ordered()
modcloth_df.shoe_width = mode loth_df.shoejwidth.fillna ‘Unknown'
modcloth_df,drop([‘waist‘t ‘bust*, ‘user_name*], axis^-l, inplace=True)
missing_rows = modcloth_dt[modcloth_df,height.isnull()].index
modcloth_df,drop(missing_row5, axis = Q, inplace=True)

modeloth_df.shoe_size.fi

Figure 12.1 8: Applying the analysis

Now if you check the dataset using you will find that there are

no more missing values! You can move onto visualizing and

gaining more insight into the data.

Here, you will visualize how the items of different categories fared

in terms of - fit, length, and This will tell Modcloth which

categories need more attention! For this, you can plot 2

distributions in categories like the following:

Unnormalized Viewing the frequency counts directly - for

comparison across categories. We also include the best fit, length,

or quality measure in this plot.

Normalized Viewing the distribution for the category after

normalizing the counts, amongst the category itself - it will help

us compare what the major reason was for return amongst the

category itself. We exclude the best sizing and quality measures,

to focus on the predominant reasons for return per category (if

any).

For this purpose, I have used various functions in the next code

block as shown in the following figure

ff funccions for urtnorwLized and norraiiied distributions
def plotbaehfcff .col, cmap - None, stacked-FaIse, norm • Norte}:

df .plot (kind-’ barli', colormap-cmap, stacked-stacked)
fig - Plt.f«|6
fig. se t_sile_inches(2a,12)
pit.title("Category vs [J-feedback Modcloth {}",format col, '(Normalized}' if norm else '' }
plt.ylabel(’Category', fontsiie - 18}
plot - pit.Kiabel('Frequency', fontsize-16)

def narm_cqunts(t):
norms - np, linalg. nom(t .f illna(&), axis-l)
t_norm - t[0:b]

for row, sue in zip(t.iterrows(), norms}:
t_norm.loc[r'ciw[0]] ■ list (map (lambda x: x/euc, list(r&n[l]))}

return t norm

Figure 12.1 9: Using various functions

Let’s apply our functions to visualize the comparison of category

and

Category vs. Fit
group_by_category = modcloth~df.groupby(‘category')
cat fit = group_by_category[‘fit *]. value_counts()
cat_fit = cat-fit.unstack()
cat_fit_norm = norm_counts(cat_fit)
cat_fit_norm,drop([1 fit1]axis=l, inplace=True)
plot_barh(cat_fit, ’fit')
pit.show;;

Figure 12.2 0: Visualizing comparison of category and fit

The output will look like below:

Categtuy vs fit-feedback - Mocfcloth

Frequency

Figure 12.21: Output of comparison

Analyze the preceding plot, and you can find the following

observation:

Best-fit response (fit) has been highest for new, dresses, and tops

categories.

Overall maximum bad-fit feedback has belonged mostly to 2

categories - new and tops! Dresses and bottoms categories follow.

Weddings, outerwear, and sale are not prominent in our

visualization - mostly due to the lack of transactions in these

categories.

You can draw the same plot to see the comparison between

category and length; try at your end and analyze what observation

you can make! There is another dataset of RentTheRunWay

merchant, which I have provided in the datasets for your practice.

Try implementing the learnings from this chapter to the dataset

and see what observations you can make.

Conclusion

Feature Engineering and visualization are very impactful skills in

data analysis. If done in the right way, they can push your

machine learning modeling in a very positive way. Achieving the

expertise in both skills requires practicing all the previous

chapters, as well as this chapter learning in different datasets.

Don’t just load the dataset in your notebook - try to understand

the actual business problem first, explore each attributes of the

dataset, think how you can extract a new feature from the existing

one, and what will be the impact of it on analysis. Keep

practicing and in the next chapter you will start your machine

learning journey.

CHAPTER 13

Supervised Machine Learning

In the previous chapters of this book, you have gained all the

required skills to jump into the machine learning (ML) world.

ML is the field of teaching machines and computers to learn from

existing data to make predictions on new data without being

explicitly programmed. In this chapter, you will learn about

different types of machine learning, deep dive into some

supervised machine learning techniques, and how to use Python

to perform supervised learning. You will also learn how to build

predictive models, tune their parameters, and tell how well they

will perform on unseen data, all this while using real-world

datasets. You will do so using scikit-learn , one of the most

popular and user-friendly machine learning libraries for Python.

Structure

Some common ML terms

Introduction to machine learning (ML)

List of common ML algorithms

Supervised ML fundamentals

Solving a classification ML problem

Solving a regression ML problem

How to tune your ML model?

How to handle categorical variables in Sklearn?

The advance technique to handle missing data

Objective

After studying and practicing this chapter, you will be an expert in

solving supervised ML problems.

Some common ML terms

It is a collection of data that is organized into some types of

data structure.

The representation of what an ML system has learned from the

training data. To generate a machine learning model, you will

need to provide training data to a machine learning algorithm to

learn from.

The process of determining the ideal parameters comprising a

model.

The output of the training process is a machine learning model

that you can then use to make predictions. This process is called

learning.

Training The subset of the data set used to train a model.

Validation A subset of the data set; disjunct from the training

dataset that you use to adjust hyperparameters.

Testing The subset of the data set that you use to test your

model after the model has gone through initial vetting by the

validation set.

It is a parameter whose value is set before training a machine

learning or deep learning model. Different models require different

hyperparameters and some require none.

A variable of a model that the ML system trains on its own.

The target is the output of the input variables. A target variable is

also called a dependentvariable or

They are individual independent variables that act as the input in

your system. You can consider one column of your data set to be

one feature. Sometimes these are also called predictorvariables or

independentvariables or attributes and the number of features is

called dimensions.

Labels are the final output. You can also consider the output

classes to be the labels.

Capture patterns from provided data. This is the heart of

modeling.

Determine how accurate the model’s predictions are.

It is the method to estimate a preferred complexity of the

machine learning model so that the model generalizes, and the

over-fit/under-fit problem is avoided.

Introduction to machine learning (ML)

Machine learning algorithms are divided into the following four

categories according to their purpose:

Supervised learning

Unsupervised learning

Semi-supervised learning

Reinforcement learning

Supervised learning

Supervised ML learning algorithms try to model relationships and

dependencies between the target prediction output and the input

features such that we can predict the output values for new data

based on those relationships which it learns from the original data

set. Supervised ML algorithm is further divided into the following

two categories based on two types of problems:

The classification problem can be defined as the problem that

brings output variable, which falls just in particular categories,

such as the “red” or “blue”, “male” or “female” or it could be

“disease” and “no disease”. Some examples are - A mail is spam

or not? Is this a picture of a car or a bus?

Regression problem is when the output variable is a real value,

such as “dollars”, “Rupees” or it could be “weight”. Some

examples are - What is the price of a house in a specific city?

What is the value of the stock?

Unsupervised learning

Unsupervised ML Learning algorithms are used when

computer/system is trained with unlabelled data - meaning the

training data does not include targets or in other sense, we don’t

tell the system where to go. On the contrary, a system will arrive

at an understanding by itself from the data we provide. These

algorithms are useful in cases where the human expert doesn’t

know what to look for in the data. Clustering is the most

important unsupervised ML problem, where we group similar

things. For the grouping of data, we don’t provide the labels, the

system understands from data itself and clusters the data. Some

examples are - given a set of tweets, cluster data based on the

content of tweets, or based on a set of images or clusters into

different objects.

Semi-supervised learning

The semi-supervised ML Learning algorithm falls in between the

two types of algorithms mentioned earlier. In many practical

situations, the cost to label is quite high, since it requires skilled

human experts to do that. So, in the absence of labels in most of

the observations (but present in few), semi-supervised algorithms

are the best candidates for the model building. Speech analysis

and web content classification are two classic examples, of semi­

supervised learning models.

Reinforcement learning

The reinforcement ML learning algorithm allows machines/software

agents to automatically determine the ideal behavior within a

specific context, in order to maximize its performance. In this

process-input state, which is observed by the agent, the decision­

making function is used to make the agent perform an action;

after the action is performed, the agent receives reward or

reinforcement from the environment and then the state-action

pairing information about the reward is stored. Some applications

of the reinforcement learning algorithms are computer played

board games (Chess, Go), robotic hands, and self-driving cars.

List of common ML algorithms

The following is a list of must-know algorithms:

Linear regression

Logistic regression

Decision tree

SVM

Naive Bayes

kNN

K-Means

Random Forest

Dimensionality Reduction algorithms

Gradient Boosting algorithms

GBM

XGBoost

LightGBM

CatBoost

In the next few chapters, we will learn to apply these algorithms,

like Logistic Regression, Linear Discriminant Analysis, k-Nearest

Neighbors, Decision Trees, Gradient Boosting, and Support Vector

Machine to real-life case studies, and understand how they help

provide human-like solutions.

Supervised ML fundamentals

In supervised ML problems, we act as the teacher where we feed

the computer with training data containing the input/predictors.

We show the system correct answers (output) obtained from

analyzing the data and from the analysis the computer should be

able to learn the patterns to predict the output values for new

input data based on relationships it learned by analyzing the

original datasets. In more simple words, we first train the model

with lots of training data (inputs and targets), then with new data

and the logic we got earlier, we predict the output.

The following image shows thumb rule to distinguish between two

types of supervised ML problems:

The target variable consists of categories

The target variable is continuous.

The first type of supervised ML algorithm - classification

algorithms, are used when the desired output is a discrete label.

In other words, they’re helpful when the answer to your question

about your business falls under a finite set of possible outcomes.

Many use cases, such as determining whether an email is a spam

or not, have only two possible outcomes. This is called a binary

classification.

Multi-label classification captures everything else and is useful for

customer segmentation, audio and image categorization, and text

analysis for mining customer sentiment.

Following is a list of some common classification ML algorithms:

Linear Classifiers: Logistic Regression and Naive Bayes Classifier

Support Vector Machines

Decision Trees

Boosted Trees

Random Forest

Neural Networks

Nearest Neighbor

The second type of Supervised ML algorithm - regression, is

useful for predicting continuous outputs. That means the answer

to your question is represented by a quantity that can be flexibly

determined based on the inputs of the model rather than being

confined to a set of possible labels. Linear regression is one form

of regression algorithm. The representation of linear regression is

an equation that describes a line that best fits the relationship

between the input variables and the output variables by finding

specific weightings for the input variables called coefficients For

example: y = Bo + Bi * x

We will predict y given the input x as the goal of the linear

regression learning algorithm is to find the values for the

coefficients Bo and

In machine learning, there’s something called the “No Free Lunch”

theorem. In a nutshell, it states that no one algorithm works best

for every problem, and it’s especially relevant for supervised

learning (i.e., predictive modeling).

Logistic Regression

Don’t confuse with the name, it is a classification model. Logistic

regression is used to describe data and to explain the relationship

between one dependent binary variable and one or more nominal,

ordinal, interval, or ratio-level independent variables. Behind the

scenes, the logistic regression algorithm uses a linear equation

with independent predictors to predict a value. The predicted value

can be anywhere between negative infinity to positive infinity. We

need the output of the algorithm to be class variable, i.e., 0-no, 1-

yes. LR is based on the probability (p) so if the probability > 0.5,

the data is labeled as ‘1’, otherwise data is labeled as ‘0’. By

default, the value of the probability threshold (p) in LR is 0.5.

Decision Tree Classifier

The decision tree classifiers organized a series of test questions

and conditions in a tree structure. In the decision tree, the root

and internal nodes contain attribute test conditions to separate

records that have different characteristics. All the terminal node is

assigned a class label - Yes or No. Once the decision tree has

been constructed, classifying a test record is straightforward.

Starting from the root node, we apply the test condition to the

record and follow the appropriate branch based on the outcome

of the test. It then leads us either to another internal node, for

which a new test condition is applied or to a leaf node. When we

reach the leaf node, the class label associated with the leaf node

is then assigned to the record. Various efficient algorithms have

been developed to construct a reasonably accurate, albeit

suboptimal, decision tree in a reasonable amount of time. For

example, Hunt’s algorithm, ID3, C4.5, CART, SPRINT are greedy

decision tree induction algorithms.

K-Nearest Neighbor Classifier

The principle behind the nearest neighbor classification consists of

finding a predefined number, i.e., the ‘k’ - of training samples

closest in distance to a new sample, which has to be classified.

The label of the new sample will be defined by these neighbors.

L-nearest neighbor classifiers have a fixed user-defined constant for

the number of neighbors which has to be determined. There are

also radius-based neighbor learning algorithms, which has a

varying number of neighbors based on the local density of points,

all the samples inside of a fixed radius. The distance can, in

general, be any metric measure; standard Euclidean distance is the

most common choice. Neighbors-based methods are known as

non-generalizing machine learning methods since they simply

remember all of its training data. Classification can be computed

by a majority vote of the nearest neighbors of the unknown

sample.

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is a dimensionality reduction

technique but can also be used as a linear classifier technique.

Since Logistic regression can become unstable when the classes

are well separated or when there are few examples from which to

estimate the parameters; LDA is a better technique in such cases.

LDA model consists of the statistical properties of your data,

calculated for each class. For a single input variable this is the

mean and the variance of the variable for each class. For multiple

variables, these are the same properties calculated over the

multivariate Gaussian, namely the means and the covariance

matrix.

These statistical properties are estimated from your data and plug

into the LDA equation to make predictions. These are the model

values that you would save to file for your model.

Gaussian Naive Bayes Classifier

A Gaussian Naive Bayes algorithm is a special type of NB

algorithm. It’s specifically used when the features have continuous

values. It’s also assumed that all the features are following a

Gaussian distribution, i.e., normal distribution. Remember that

Bayes’ theorem is based on conditional probability. The conditional

probability helps us in calculating the probability that something

will happen, given that something else has already happened.

Support Vector Classifier

Support Vector Machine is a supervised machine learning

algorithm that can be used for either classification or regression

challenges. In the SVM Classifier algorithm, we plot each data

item as a point in n-dimensional space (where n is the number

of features you have) with the value of each feature being the

value of a particular coordinate. Then, we perform classification by

finding the hyper-plane that differentiates the two classes very well.

SVMs are simply the coordinates of individual observation. SVM is

a frontier that best segregates the two classes (hyper-plane/line).

Solving a classification ML problem

For solving a supervised machine learning problem, you need

labeled data. You can get labeled data either in the form of a

historical data with labels or you can perform experiments like

A/B testing to get labeled data or get from crowdsourcing labeled

data. In all cases, our goal is to learn from the data and then

make a prediction on new data based on past learning. To

understand this in our next example, we will use Python’s sci-kit

learn or sklearn library to solve a classification problem. Except for

there are TensorFlow and keras libraries also widely used in

solving ML problems.

Sklearnapi expects inputs in numpy array, so always check the

data type of the data and convert it accordingly. Also, it expects

that the data should not have missing values so handle the

missing values before training the model.

About the dataset

You will work on the best known and simple dataset named Iris,

to be found in the pattern recognition. Iris is a plant that has

three species. This dataset was introduced by the British

statistician Ronald Fisher in 1936. Based on the features of this

plant, Fisher developed a linear discriminant model to distinguish

the Iris species with each other. The data set contains 3 classes

of 50 instances each, where each class refers to a type of iris

plant. One class is linearly separable from the other 2; the latter

are NOT linearly separable from each other.

Attribute information

sepal length in cm

sepal width in cm

petal length in cm

petal width in cm

class:

Iris Setosa

Iris Versicolour

Iris Virginica

Goal: Your goal is to predict the class of an iris plant.

From the above description of the problem, you can understand

that sepal length/width and petal length/width are the features,

whereas Species is the Target variable. Species have three

possibilities - Versicolor, Virginica, Setosa. This is a multi-class

classification problem. Along with many datasets, the iris dataset

is also present in the sklearn library, so you don’t need to

download it. The complete solution of this exercise has been done

as a notebook for your reference, named as Solving a

classification ML Let’s start our step-by-step process to solve the

problem:

Loading the dataset from sklearn library:

from sklearn import datasets
import pandas as pd
import numpy as np
import matplotlib.pyplot as pit
pit.style.use(‘ggplot')

#Load the iris dataset
iris = datasets.load_iris()

Figure 13. 1: Loading dataset

After importing the dataset, check the type of the dataset as

shown in the following figure

print(type(iris))

cclass 1sklearn.utils.Bunch'>

Figure 13. 2: Checking type of dataset

It will show that the datatype is of class which is like a dictionary

containing key-value; each key will be unique in the key-value pair

and the values can be accessed if you know the keys. To find out

the list of keys present in the dataset iris, you can print the keys

with .keys() function as shown in the following figure

print(iris.keys{))

dict_keys([data'> ’target', "target names *> ‘DESCR’, 'featurenames‘])

Figure 13. 3: Printing keys with .keys() function

After diagnosis of a data key with the shape attribute, you will

notice that there are a total of 150 samples (observations) and 4

features in iris data:

ffcheck rows(samples) and columns(features) in iris data
iris.data.shape

(150, 4)

Figure 13. 4: Diagnosis of the data key

Let’s look at the values associated with the target variable as

shown in the following figure

#check target variabLes
iris.targetnames

array(['setosa', ’versicolor', 'virginica'], dtype-'<U10‘)

Figure 13. 5: Values associated with target variable

Figure 13.6

In the next step, we will store iris plant’s length/width and

species in separate variables so that you can pass these two

variables in further processing. Here, you can also convert the iris

data, which is in n-dimensional array data type, into a Pandas

data frame using Pandas DataFrame() function:

X = iris.data
y = iris-target
{(converting data in Pandas Datafra/ne
iris_df » pd.DataFrame(Xi eoluans-iri^.feature_nan>es)
ffcheck first five rows of iris dataframe
print(iris_df.head())

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 5,1 3.5 1-4 0.2
1 4-9 3.0 1.4 9.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 l.S 0,2
4 5,0 3.6 1.4 0.2

Figure 13.7: Converting iris data

Next, to visualize the relationship between samples, we can plot a

histogram plot as shown in the following figures 13.8 and

({plotting histogram of features
pd.plotting.scatter_iitatrix(iris_rdf^ c-y, figsi'€=[8,8]. s»150, marker-’D)

pit.show()

Figure 13.8: Plotting histogram of features

Figure 13.9: Scatter plot matrix of Iris dataframe

Here, we have created a scatter plot matrix of our Iris dataframe

using the scatter_matrix method in In simple words, the scatter

matrix is plotting each of the columns specified against other

columns which you can see as the diagonal of the matrix.

As a next step, we will split the loaded dataset into two sets -

80% of which we will use to train our models and 20% of which

we will hold back as a validation dataset. Splitting a dataset is an

important and highly recommended step while testing and

applying a machine learning solution to a problem:

- 8.29
seed ■ 7
from iaport madel_selectifln
X_tr»in, Y_tr’ainJ Y_V*lid*tiM * »odel_i*Leetion . tritin_test_5plit(7:, y,

test_si ze. va lidat ltin_s Lze ,
randpa^state.seedi

Figure 13.1 0: Splitting a dataset

Here, we have used train_test_split() function of sklearn’s

model_selection package. This function splits arrays or matrices

into a random train, and test subsets. In this function we pass

the feature data as the first argument, target as the second

argument, and proportion of the original data for testing as

test_size and last the seed for random number generations. This

function returns four arrays - the training data, the test data, the

training labels, and the test labels; so we have unpacked these

four into variables named as Y_validation respectively. Now you

have training data in the X_train and Y_train for preparing models

and an X_validation and Y_validation sets that we can use later

as validation.

Next, for estimating the accuracy of your model, you can use the

Cross-validation technique which is a statistical method used to

estimate the skill of machine learning models. It is commonly

used in applied machine learning to compare and select a model

for a given predictive modeling problem. Here we used 10 in

place of k so 10-fold cross-validation will split our dataset into 10

parts - train on 9 and test on 1 and repeat for all combinations

of train-test splits.

Why train/test split and cross-validation?

For understanding the importance of train/test split and cross­

validation, we need to first understand the two types of problems

in ML - Overfitting and Underfitting a model. Overfitting means

that the model we trained has been trained too well and is now,

well, fit too closely to the training dataset. This usually happens

when the model is too complex (i.e., too many features/variables

compared to the number of observations). This model will be very

accurate on the training data but will probably be not very

accurate on untrained or new data. It is because this model is

not generalized, meaning you can generalize the results, and can’t

make any inferences on other data, which is, ultimately, what you

are trying to do. In contrast to overfitting, underfitting is when a

model is underfitted, which means that the model does not fit the

training data and therefore misses the trends in the data. It also

means the model cannot be generalized to new data.

Train/test split and help to avoid overfitting more than

underfitting. But train/test split does have its dangers — what if

the split we make isn’t random? In order to avoid this, we

perform cross-validation. It’s very similar to train/test split, but it’s

applied to more subsets. Meaning, we split our data into k

subsets, and train on k-1 one of those subsets. What we do is to

hold the last subset for the test. We’re able to do it for each of

the subsets.

Next, we will use the metric of accuracy to evaluate models. In

classification, accuracy is a commonly used metric for measuring

the performance of a model. This is a ratio of the number of

correctly predicted instances divided by the total number of

instances in the dataset multiplied by 100 to give a percentage

(e.g., 95% accurate). We will be using the scoring variable when

we run to build and evaluate each model next:

seed = 7
scoring = 'accuracy

Figure 13.1 1: Using scoring variable

Before testing out any algorithm(s), we would not know which

would be good to use for a problem or what configurations to

use. We get an idea from the plots that some of the classes are

partially linearly separable in some dimensions, so we are

expecting generally good results. So here we will apply some

classification algorithms and evaluate each model. For this

purpose, we will reset the random number seed before each run

to ensure that the evaluation of each algorithm is performed

using the same data splits. It ensures the results are directly

comparable. Since we have to repeat the logic for all algorithms

we are going to use, we will take the help of for loop in this

case. Import the required algorithms like Logistic Regression,

Linear Discriminant Analysis, K Nearest Neighbors, Decision Trees

Classifier, Gaussian Naive Bayes, and Support Vector Classifier,

then follow this code cell:

ftCheck ALgorithms
models - [}
models,append((' i ft’, LogistlcRe^pfrSsionQ))
models,append((’LEW, LinearDiscriminantAnalysisO))
models,append‘KHrt’, KHeighborsC1 a 5 s if ier ()))
models.append(('cart'. DecisLonireeClasslfier()jj
models,append(('rjg', GausslonHBt)))
models.appendj ('SWT , 5VC()))
v evotuiote each Model tn ford
results - []
names - [J
for name, modal in models:

kfold - nadel_selectian.Kfojd(nusplits-10, randpm^state-seed)
<jv_results - model_se lecti on. cross^al^s core (model, X_train, Vjtrgin, cv-kfold, scoring-5 cor log)
result s.append(c v_re soIts)
names,append(name)
msg - "Sts: Kf (V)" K (name, cv_resuits,mean(), cv_results,std())
print: 015g

Lft: 0,966667 (0,040325)
IDA: 0.975000 (0.033133)
KUH: 0.933333 (0.033333)
CART; 0.975W9 (0.038183)
H3: 0.975000 (0.053359)
5VH: 0.991667 (0.925000)

Figure 13.1 2: Code cell

Code explanation: Here we have first initialized an empty list

where we can store our models. Next, we are adding six

classification algorithms in these models so that we can compare

the result of each. For evaluating each model one by one and

saving the result of each model, we have defined results variable

for storing the model’s accuracy and names variable for storing

algorithm name. Both these variables are of type list.

In the next step inside the for loop, we are iterating the models’

list. In this iteration, we are using the KFold() function of

model_selection which provides train/test indices to split data into

train/test sets. It split the dataset into k consecutive folds

(without shuffling by default).

For evaluating our metrics by cross-validation and also recording

fit/score times, we are using cross_val_score() function. From the

output, it looks like the SVM classifier has the highest estimated

accuracy score (99%).

You can also create a plot of the model evaluation results and

compare the spread and the mean accuracy of each model. There

is a population of accuracy measures for each algorithm because

each algorithm was evaluated 10 times (10-fold cross-validation):

fig = plt.figure()
fig.suptitle('Compare Algorithm Accuracy’)
ax = fig.add, subplot(111)
pit.boxplot(results)
ax.set_xticklabels(names)
pit.show()

Figure 13.1 3: Code snippet for accuracy comparison

Once you run the preceding cell, you will see below result:

Compare Algorithm Accuracy

0 875 *

0 850 '

O
0 825 - ■ । । । ■ ।

LR LDA KNN CART NB SVM

Figure 13.1 4: Plot of accuracy comparison

Now we can run the SVM model directly on the validation set

and summarize the results as a final accuracy score, a confusion

matrix, and a classification report. Always remember accuracy is

not always an informative metric, that’s why evaluate the

performance of your binary classifiers by computing the confusion

matrix and generating a classification report. For generating our

accuracy score and report we will use the sklearn’s classification

metrics Here metrics.classification_report() will build a text report

showing the main classification metrics.confusion_matrix() will

compute confusion matrix to evaluate the accuracy of a

classification and metrics.accuracy_score() will tell us the accuracy

classification score of our model:

tiimport required metrics
from sklearn,metrics import
from sklearn.metrics import
from sklearn,metrics import

classification_report
confusion_matrix
accuracy_score

svm SVC()
svm. fit(Xjt rain, Y_train)
predictions « svm.predict(Xvalidation)
print(accuracy_score(Y_validationJ predictions))
print(confusion_matrix(Y_validation/ predictions))
print(classification_report(Y_validation, predictions))

0,9333333333333333
[[7 0 0]
[9 10 2]
[0 11]]

precision recall fl-score support

0 1.60 1.00 1.00 7
1 1.00 0.83 0,91 12
2 0.85 1.00 0.92 11

avg Jf total 0.94 0.93 0.93 30

Figure 13.15: Generating accuracy score and report

To train our model, we have used .fit() function which is a default

function in many algorithms for training. After training the model,

to make predictions, we have used call. Inside fit() method, we

pass two required arguments - features and target as numpy array.

The sklearnapi requires data in numpy array format only. Another

point to remember is that there should be no missing values in

data, otherwise you will face unexpected errors.

From the output, we can deduce that the accuracy is 0.933333 or

93%. The confusion matrix provides an indication of the three

errors made. Finally, the classification report provides a breakdown

of each class by precision, recall, f1-score, and support, showing

excellent results (granted the validation dataset was small). The

support gives the number of samples of the true response that lie

in that class (no. of species in our case on the test dataset).

Details of the Here, the classification report is a report of

Precision/Recall/F1-score - for each element in your test data. In

multiclass problems, it is not a good idea to read Precision/Recall

and F1-score over the whole data because any imbalance would

make you feel you’ve reached better results. The confusion matrix

is a much-detailed representation of what’s going on with your

labels. So, there are 7 [7+0+0] points in the first class (label 0).

Out of these, your model was successful in identifying 7 of those

correctly in label 0. Similarly, look at the second row. There were

12 [0+10+2] points in class 1, but 10 of them were marked

correctly.

Coming to They are some of the most used measures in

evaluating how good your system works. Now you had 7 points in

the first species (call it 0 species). Out of them, your classifier

was able to get 7 elements correctly. That’s your recall. 7/7 = 1.

Now look only at the first column in the table. There is one cell

with entry 7, rest all are zeros. This means your classifier marked

7 points in species 0, and all 7 of them were actually in species

0. This is precision. 7/7 = 1. Look at the column marked 2. In

this column, there are elements scattered in two rows. 11 of them

[0+2+11=13] were marked correctly. Rest [2] is incorrect. So that

reduces your precision.

Save your model in your disk so that the next time you don’t

need to run all steps again in your notebook, instead you can

predict any new iris species directly. For this purpose, you can use

Python’s pickle library. The pickle library serializes your machine

learning algorithms and saves the serialized format to a file as

shown in the following figure

save the modeL to disk
import pickle
filename = ’finalized_model.sav'
pickle.dump(svmJ open(filename, 'wb’))
Load the modeL from disk for next time you open this notebook
loadedjnodel = pickle.load(open(filename, 'rb'))
result = loadedjnodel.score(X_validationJ Y_validation)
print result

9.9333333333333333

Figure 13.1 6: Pickle library serializes ML algorithms

Running the example saves the model to finalized_model.sav in

your local working directory. Load the saved model; evaluating it

provides an estimate of the accuracy of the model on unseen

data. Later you can load this file to deserialize your model and

use it to make new predictions.

Solving a regression ML problem

There are many different types of regression problems based on

different data. The specific type of regressions we are going to

learn is called generalized linear The important thing for you to

know is that with this family of models, you need to pick a

specific type of regression you’re interested in. The different type

of data with respect to regression is shown in the following figure

When you are predicting a continuous value. (What temperature

will it be today?)

When you are predicting which category, your observation is in. (Is

this a car or a bus?)

When you are predicting a count value. (How many cats will I

see in the park?)

Linear
Logistic
Poisson

Family
Gaussian
Binomial
Poisson

Type of data
Continuous
Categorical
Count

A quick guide to the three types of regression we've talked about.

Figure 13.1 7: Three types of regression

About the problem - you are going to work on the GapMinder

dataset. This dataset is already in a clean state. GapMinder is a

non-profit venture promoting sustainable global development and

achievement of the United Nations Millennium Development It seeks

to increase the use and understanding of statistics about social,

economic, and environmental development at local, national, and

global levels.

Goal: Your goal will be to use this data to predict the life

expectancy in a given country based on features such as the

country’s GDP, fertility rate, and population.

Load the dataset into Pandas dataframe and inspect the columns

and data types:

gapmi nde r_df ■ pd. readjc sv('E i / pg/ bp Ij/ BP6 - Pub litat ion 5 i Data 5 et 5/ r egress to n / c.-_200E_reg 1 on □ CSV")

gapmi nde $df.i nf0 ()

< clas s 'panda s.core,f name,Dat a F rone'>
Rangelndeic! 139 entries^ 0 to 138
Data columns (total 10 columns}:
population
fertility

139 non-null float64
139 OOn-nuU floatM

HIV 139 non-null, float64
CM 139 non-null float64
BMIjnale 139 nOn-null float64
GDP 139 non-null floatM
BMI_female 139 non-null float64
life 139 non-null float64
child_mortality 139 nan-null float64
Region 139 npn-null object

Figure 13.1 8: Inspecting columns and data types

Always not accept non-numerical features. In our a categorical

variable, so you cannot include it in your training process until

you handle it. You will learn how to handle this later.

In this dataset, our target variable is life and the features variable

is Both these variables are of a float data type but sklearnapi

accepts numpy array input. We need to convert our variables into

arrays:

Create arrays for features and target variabLe
y = gapminderdf['life1].values
X = gapminder_df[1 fertility *].values

Figure 13.1 9: Creating arrays for features and target variable

If you check the dimension of the variables, you will notice that

you are working on only one feature variable. With you will need

to reshape it:

Print the dimensions of X and y before reshaping
print(■‘Dimensions of target variable before reshaping: {}".format(y.shape))
printC'Dimensions of feature variable before reshaping: {}”.format(X.shape))

Dimensions of target variable before reshaping; (139,)
Dimensions of feature variable before reshaping: (139,)

Figure 13.2 0: Reshaping the variables

After reshaping both variables, dimension will be changed:

Reshape X and y
y - y.reshape^!,!)
X ;w X.reshapef-lj 1)
Print the dimensions of X and y after reshaping
print("Cimensions of target after reshaping; {}"* format(/.shape))
print('Dimensions of feature variable after reshaping: {}'.format(X.shape))

Dimensions of target after reshaping: (139, 1)
Dimensions of feature variable after reshaping: (139, 1)

Figure 13.2 1: Changing the dimension

Now to check co-relation between different features of our

dataframe, we can take the help of heatmap function. For this,

instead of matplotlib library, we will use the seaborn library

because it generates more beautiful plots; so first import the

seaborn library and then follow this code cell:

Figure 13.2 2: Heat map

In the preceding heat map, green cells show a positive correlation,

while cells that are in red show a negative correlation. Here, we

can say that life and fertility are poorly correlated. Linear

regression should be able to capture this trend.

Next, we will solve our problem using linear regression. Before

applying this, let’s know some fundamentals of this algorithm. In

this algorithm, we try to fit a line to the data in such a way that

it follows the equation: y=ax+b or for higher dimensions: Here y

is the target, x is the single feature, a and b are the parameters

of the model that you want to learn. So here the first question is

how to choose a and

For this, we define an error function (loss or cost function) for

any given line and choose the line that minimizes the error

function. In the sklearn library, when we train the data using the

fit() method, it automatically applies this loss function behind the

scene. This function is also called ordinary least squares The

default accuracy metrics of this algo is R^2 (R square) instead of

accuracy in classification problem.

Let’s apply Linear Regression to our dataset without splitting it

first:

Import LinearRegression
from sklearn.linear_model import LinearRegression
Create the regressor: reg
reg ■ LinearRegression()
Create the prediction space
prediction^ pace = np. linspace(min(X), niax(X)) *reshape(-l, 1)
Fit the model to the data
reg.fit(X, y)
Compute predictions over the prediction space: ypred
y_pred = reg.predict(predictionspace)
Print R'2
print(reg.score(X, y))
Plot regression Line
pit.plot(prediction_space, ypred., color=1 black* linewidth=3)
pit.show()

0.6192442167740035

Figure 13.23: Applying Linear Regression

Now you will split the GapMinder dataset into training and testing

sets and then fit and predict a linear regression’s overall features,

just like we did for our classification problem. In addition to

computing the R^2 score, you will also compute the Root Mean

Squared Error (RMSE), which is another commonly used metric to

evaluate regression models. Here R^2 score (R square) is a

regression metric for evaluating predictions on regression machine

learning problems:

ft Import necessary moduLes
from 5ki^OT.» linearimport linearRegression
from sklearn.metries impart mean_SqLiared_errar
from ski earn.model^selection import t rain^test^split
Create training and test sets
X_train, X_test, yjtrain, y„test = train_test_split(X, y, test_size - 6.3, randcm_state-42)
ft Create the regressor: reg^aLL
reg_all = lines rfipgressionO
ft Fit the regressor to the train! nq data
reg^a11.fit(X_train, yjtrain)
ff Predict on the test data: y_pred
ypred - reg_allrpredict(X_test)
ft Compute and print R-'S and RASE
printC*R Al; {}",format(reg_ail*s«?re(X_tettj
cmse - np.5qrt(mean^s<)ijared_error(y_t«t, y_pred))
print "Ftoot Mean Squared Error: {}“.format(rase)

ITO: 0.7298907360907494
Root Mean Squared Error: 4.194027914110243

Figure 13.24: Evaluating predictions on regression ML problems

If you compare this output with the output of the previous cell,

you can easily say that all features have improved the model

score, because our model fit is increased from 0.619 to 0.729.

Model performance is dependent on the way the data is split.

This makes sense, as the model has more information to learn

from.

But as said earlier, it is important to do cross-validation because

it maximizes the amount of data that is used to train the model.

During the course of training, the model is not only trained but

also tested on all of the available data as explained in the

following figure

Import the necessary modules
from sklearn.linear_model import LinearRegression
from sklearn,model_selection import cross_val_score
ff Create a Linear regression object: reg
reg = LinearRegression()
Compute 5-fold cross-validation scores: cv_scores
cv_scores = cross„val_5core(reg, X, y, cv^S)
Print the S-fold cross-validation scores
print(cvscores)
Print the average S-foLd cross-validation score
print "Average 5-Fold CV Score: {}".format(np.mean(cv_scores))

[0.71001079 0.75007717 0.55271526 0.547501 0.52410561]
Average 5-Fold CV Score: 0.6168819644425119

Figure 13.2 5: Cross validation code snippet

In the preceding example, we have applied 5-fold cross-validation

on the GapMinder data. By default, the scikit-learn library’s

cross_val_score() function uses R^2 (R square) as the metric of

choice for regression. Since we are performing 5-fold cross­

validation, the function will return 5 scores. Hence, we have

computed these 5 scores and then taken their averages.

Cross-validation is essential, but do not forget, the more folds you

use, the more computationally expensive cross-validation becomes.

Define the k as per your system capabilities.

Since linear regression minimizes a loss function by choosing a

coefficient for each feature variable, largely chosen coefficients can

lead your model to overfit. To avoid this situation, we can alter

the loss function; this technique is known as regularization. In

this technique, we try to find out the most important features and

shrink the large coefficients to almost zero, so that only important

ones remain. Two regularization techniques are widely used in ML

- Lasso Regression and Ridge regression. Let’s understand each

one by one:

Lasso Performs Li regularization, i.e., adds penalty equivalent to

the absolute value of the magnitude of coefficients. Along with

shrinking coefficients, lasso performs feature selection as well.

Here some of the coefficients become exactly zero, which is

equivalent to a particular feature being excluded from the model.

It is majorly used to prevent overfitting as well as feature

selection. The default value of the regularization parameter in

Lasso regression (given by alpha) is 1

Ridge Performs L2 regularization, i.e., adds penalty equivalent to

the square of the magnitude of coefficients. It includes all (or

none) of the features in the model. Thus, the major advantage of

ridge regression is coefficient shrinkage and reducing model

complexity. It is majorly used to prevent overfitting. It generally

works well even in the presence of highly correlated features, as it

will include all of them in the model, but the coefficients will be

distributed among them depending on the correlation.

Let’s understand how you can apply Lasso with Python in the

breast cancer research dataset. This dataset is already there in

First, we will import the Lasso package from the

sklearn.linear_model library followed by the breast cancer dataset

from and then we will apply the Lasso in our dataset as shown

in the following figure

from sklearn.llnear_o»del import Lasso
from sklearn.<fata»et j import lg*d_treast_cancer
cancer ■ load_breasc_caneer(}
pc int(cancer, keys ())
pr1 nt(cancer,tfata-shape)
caciCer_df - pd. Oat mF rune (C input1-dSCa. Cplunns-cancer■fCmturo_naBo!J

X - cancer.data
V ■ cancer.target
x^tnaf mutest,y_rnaln,ynX'»Jt-Triin_it»St,.spItest^slie-a. ‘, rjridc«_$tate-51)
lasts - LassoQ
lasso, fIt(X_train,/-train)
t na in_score-i asso,score(x_t ra in,/_tra in)
tHt_»Cer*->l as K». score CX.TOSt, /_tlHt}
coeff_i>sed • np.sun{lasso.coef_E—0>
pi intfcraSnlnu scpil1:". Traln_score)
print("test score: ", test_score)
prlntCnnntier of features used: ', coeff„u sad)
pit. tube 1(’ta’ fit lent Intfex' ,fp«site-io}
pit.y!abe1('Coef Fit lait Hagnitude',font s1ze*J 6)
pit ■ lege«id(fontslze»13,loc-a)
pit-subploti1,1,1)
pit.plot(lasso.coef_.alpha-O.7.linestyle>‘none’.darker-‘ ■ ‘.Barkers!ze-^.color-’ red’.Latie 1-r’Lasso; J\aJpise - 1J’,torder-7}
pit.tight-layout()
plt.sltfi^O

Figure 13.2 6: Applying Lasso package

Once you run the preceding cell, you will see the following

output:

dict_keys([‘data*, ‘target', ‘target_rtames‘, 'DESCR', ’feature-names’])
(569? 36)
training score: 0.5600974529893979
test score: 0.583224461E81E156
number of features used: 4

D OOO& ■ T r* e*>**Te*e rittttit eta-tee

-0.0005 - '

"0 0010 -

—0.0015 -

-O 0020 ■

-0.0025

-0.0030 ■
T

0 10 20 30

Figure 13.2 7: Output of running Lasso package

In our dataset, there are a total of 30 features initially, but on the

application of Lasso regression, only 4 features are used; rest are

all shrunk to zero (see the red stars on the preceding plot). The

training and test scores are 56% and 58% respectively, which are

very low -- it means our model is underfitting. Now you can

reduce this under-fitting by increasing the number of iteration and

reducing the alpha. Try with alpha=0.0001 and number of feature

=22 [lasso = Lasso(alpha=o.oooi, max_iter=ioe5)] and see how much

accuracy you get!

Next, we will learn how to apply Ridge Regression in Python. Here

we will use Boston house price dataset from

from sklearn.datasets import load^boston
from sklearn.linear model import Ridge
boston=load_boston()
bostonjjf-pd.DataFrame(boston.data^columns-boston.feature_names)
boston_df['Price'J-boston.target
newX=boston_df.drop('Price',axis=l)
newY=boston_df[Price’]

Figure 13.2 8: Applying Ridge Regression

Here axis=1 means we are applying logic row-wise. We have

separated the target column - Price from the dataframe and stored

it as target column:

X_t ra in, x_t« st,y_tra tf* ln_t* st, >pl it (n»*K, ns *V,t wt. s i ie-0 ■ i, random 1}
print flrn(li_test), len(y_«$t})
It ■ Linsai’Segressionf)
Ir. fit(X_train, y^rain)
rr - fiidgflOipha-0. Ell)
pp.fit(X_crain. y_traln)
tral(i_sc«pe ■lr l sea re(X_c rain. y_train)
test_acore-Ir.sepre(x_t«st, y_test)
Rl<fgc_tralft_iC<lne - fr.SCdrr[X_rr*in,y_tr*lH)
Hidgc_,t<«_i<llP» - rr.f(^rf(X_tc>X, y_tTit)
print (-linp*r regrspiion trpjn score:"; train_score}
prlrt(*1 1 near regressfois test score:"; test_score)
printC'rldp r»gr".:or. train s:ar» I::., alpha:-, ftldg»ritr*lri i_scpi'c)
print[“ri^ge regression rest score l^.r alpha:". RHrge_test_s<ore)
pit.slot rr.coef-.alphi"?!;?. jlnestyle* 'none' ;iurk»r.' " ’. ma rierslie^h, color*' red ', label «r'nidge; (.'.alpha - d iorder.7
pit.plot{1r.coefalpha-e.t,)1nestyle-'none',marker-'o',markersiie»7,color-' ,■ i n<n',1abe1-'ijnear heg-essioo')
plt.Klabelf’Corf fit lent I idrx',font Si:e-16)
pic.ylabelf'Coefficient Magnitude".f<mtslie*16).
pit. legeini(fontsi:eaU,loc»4)
pit. shoN<)

Figure 13.2 9: Separating a column and storing as target column

Here, in X-axis, we plot the coefficient index, which is the features

of our dataset. In our case, Boston data has 13 features. Once

you run the preceding code, you will see the following output:

152 152
linear regression train score: 0.7419034960343789
linear regression test score- 0.7146895989294312
ridge regression train score low alpha: 0.7419030253527293
ridge regression test score low alpha: 0.7145115044376255

I I I I I I I

0 2 4 6 0 10 12
Coefficient Index

Figure 13.3 0: Plot of coefficient index vs magnitude

You will notice in the preceding plot, that the low value of alpha

(0.01) is denoted as a red star, and when the coefficients are less

restricted, the coefficient magnitudes are almost the same as of

linear regression. Try with alpha=100 and you will see that for this

higher value of alpha for coefficient indices 3,4,5, the magnitudes

are considerably less compared to linear regression case. From the

preceding exercises, you can say that Lasso is great for feature

selection, but when building regression models, ridge regression

should be your first choice.

If you noticed, the steps we have followed to solve classification

and regression problems have a similarity. We can summarize the

common steps in the following simple words:

Perform the necessary imports.

Instantiate your classifier or regressor.

Split your dataset into training and test sets.

Fit the model on your training data.

Predict on your test set.

How to tune your ML model?

Till now you have learned the required steps to build an ML

model. But sometimes, implementing a model is not the ultimate

solution. You may be required to fine-tune your model for better

accuracy. For the example explained earlier, you can tune your

models:

By choosing the right alpha parameter value in Lasso/Ridge

regression.

By choosing the right n_neighbors parameter value in K-NN.

The preceding parameters are chosen before training the model

and are called These parameters cannot be learned by fitting the

model. So how can you choose the right one? Till now only one

possible solution is found - try with different hyperparameters

values, fit all of them separately, do cross-validation, and then

choose the right one after comparing the results.

Now, you will learn how to do the same using GridSearchCV

library which exhaustive searches over specified parameter values

for an estimator. Here you only need to specify the

hyperparameter as a dictionary in which keys are the

hyperparameter’s name like alpha or n_neighbors and the values

in this dictionary area list containing the values for which we

choose the relevant hyperparameters.

Let’s see how to use the GridSearchCV with logistic regression.

Logistic Regression has a parameter - C which controls the inverse

of the regularization strength, so a large C can lead to an overfit

model, while a small C can lead to an underfit model. Now see

how you can set up the hyperparameter grid and perform grid­

search cross-validation on a diabetic dataset. This dataset was

prepared on diabetes patients for the use of participants for the

1994 AAAI Spring Symposium on Artificial Intelligence in

from sklearn. linearniodel import Logistic Regress ion
from sklearn.modelselection import GridSearchCV

df = pd.readmesv("E:/pg/bpb/BPB-Publications/Datasets/diabetes.csv")
print(df.columns)

y-df 'diabetes']
X-df,drop('diabetes',axis-1)

the hyperparameter grid
c_space | up,logspacef■5, 8, 15)
param_grid - {'C': c_space}

logreg = LogisticRegressionQ
logreg_cv ■ GridSeardiCVUogreg, paramgrld, cv-5)
logreg_cv.fit(X, y)

print("Tuned Logistic Regression Parameters: {}" .format(logreg_cv.best_params_))
print(Best score is {}".format(logreg_cv.best_score_))

Figure 13.3 1: Setting up hyperparameter grid and performing grid­

search cross-validation

Here in param_grid variable, you can also use penalty argument

along with C to specify what you want, to use Ii or l2

regularization:

Index([‘pregnancies*, glucose', ’diastolic’, ’triceps’, ’insulin*, ’bmi*
‘dpf‘, ‘age’, ’diabetes’],

dtype=’object‘)
Tuned Logistic Regression Parameters: 163789.3706954068}
Best score is 0,7721354166666666

Figure 13.3 2: Using penalty argument with C

In the preceding output cell, you can see the different properties

of diabetes patients as columns. With proper hyperparameter grid

setup, we have achieved the best score of our logistic regression

model.

One drawback of GridSearchCV is - it can be computationally

expensive, especially if you are searching over a large

hyperparameter space and dealing with multiple hyperparameters.

As an alternative, you can also use RandomizedSearchCV in which

a fixed number of hyperparameter settings is sampled from

specified probability distributions. Let’s understand how to use this

in a decision tree classifier. As the name suggests, the decision

tree classifiers organized a series of test questions and conditions

in a tree structure. Decision Tree Classifier poses a series of

carefully crafted questions about the attributes of the test record.

Each time it receives an answer, a follow-up question is asked

until a conclusion about the class label of the record is reached:

H J«port neressory nodules
frtx» ftipy,itatf (wort rjuflint
f™» skleai'n .tree import DecisionTreeClassifier
fro* jlclearn. node) ^election 1 apart KudOBizedSeaRHCV

paraoi_dist - {"nax^depth* ; [3, Hane),
"max_features-: randiotfl, 9).
''nln^samples^leaf; randint(1, J),
■criterion"! ("giri-, "entropy-]}

tree ■ DecisicmTreetlassifier()
tree_<v - RandM14edSearchCV(tree, paraa_dist, qv-S}

tree_<v.flt(y, y)

print("Tuni:d Decision Tree Paran., ter : '. fo™at(tree_cv. hest_params_}}
print ("Best scone is {}-.'foreat(tree_cv.best_score_)}

Tuned Decision Tree Parameters; {'criterion'; 'entropy', 'majc_depth'I 3, 'maK_features': ?, ■■ln_samples_leaf'; 4}
Best score is 0. 7447S15W666W66

Figure 13.3 3: Decision Tree Classifier example

In the preceding code cell, we have set the hyperparameter grid

using RandomizedSearchCV to find the best parameters and as a

result, we found the best hyperparameters and min_simple_leaf as

and 4 respectively. You have now understood that hyperparameter

tuning skill depends on your practice. The more you try with

different parameters with different algorithms, the more you will

be able to understand.

How to handle categorical variables in sklearn?

If you recollect, in one of the preceding examples, there is a

categorical variable Region in GapMider dataset which is not

accepted by You need to learn how to handle this case because

sometimes it is not good to just leave such variables. One way to

convert a non-numeric variable in the desired format of sklearn is

to binarize using Pandas get_dummies() function. Let’s see how to

do the same:

handling categorical variable 'Region 1 by binarizing it creating duirany variables,
H Create dutimy variables: df_region
df_regicn - pd ,get_dumnties(df)

Print the columns of dfregion
print (d-F_region. columns)

ff Drop 'RegionAmerica' from df^region
df^region = pd.get_dummies(df, drop -first=True)

if Print the n&v coLums of dfregion
print(d-F^region .columns)

Figure 13.3 4: Converting non-numeric variable in desired format

Here pd.get_dummies(df) is converting the categorical variable of

our dataframe into variable. Once you run the preceding cell, you

will see that Region column is suffixed by region names:

Index(['population'* 'fertility‘, ‘HIV’, ‘CO2‘, ' BMIjnale', ‘GDP’,
‘BHIfemale', 'life', 'child mortality', 'Region America',
'RegionEast Asia & Pacific', 'Region_Europe & Central Asia
'RegionMiddle East & North Africa'„ 'RegionSouth Asia'.,
'Region_Sub-Saharan Africa'],

dtypeV object')

Figure 13.3 5: Region DataFrame columns

Now you can perform regression technique on the whole

GapMinder dataset as shown in the following figure

from sklearn.model selection import crossvalscore
from sklearn.linearmodel import Ridge

ridge - Ridge(alpha-0.5, normalize=True)
y=df_region['life"].values
X=df_region.drop('life'j axis=l).values

ff Perform 5-fold cross-validation: ridge_cv
ridge_cv - cross_val_score(ridgeJ X, y, cv=S)
print(ridge_cv)

[0.86808336 0.80623545 0.84004203 0.7754344 0.87503712]

Figure 13.3 6: Regression technique on GapMinder dataset

Here axis=1 means we are applying logic row-wise; for column­

wise operation, change it to

The advanced technique to handle missing data

You have already learned to handle the missing data either by

removing it or replacing it with mean, median, or mode or

forward/backward values in previous chapters. But what about if

your dataset has many zero values? Here you will learn how to

use sklearnapi to handle such values. The sklearn.preprocessing

has imputer package and imputer has transform() function, which

we can use in the following way to fill zero/missing values in the

Pima Indians Diabetes Dataset that involves predicting the onset

of diabetes within 5 years in Pima Indians given medical details:

df - pd.r*ad_csv(1 Ei/pg/ttpb/B PB-Public at ions/Data set s/pimjin di a ns-diabetes, dot a. csv", header - Norte)
df.info()

<C La ss ' pend a 5. Core . f rame. Pat a F raise" >
Rangelndes: 568 entries, 0 to W
Data columns (total 9 columns):
S 768 non-null int64
1 768 non-null int64
1 768 non‘null int&4
3 768 non-null Lnt64
4 768 non-null irit64
5 768 non-null float64
6 768 non-null ■floated
7 768 non-null int64
8 768 non-null int64
dtypes: floatw(l), int64(7)

Figure 13.3 7: Handling missing data

Once you check the count of the dataset, you will find that there

are no missing values here:

missing_values_count = df.isnull(),sum()
print("count of missing values:\n'\ missingvaluescount)

count of missing values:
0 0

1 0
2 O
3 0
4 0
S 0
6 0
7 0
8 0

Figure 13.3 8: Counting missing values

But you should not blindly believe the preceding output; you must

perform statistical analysis as shown in the following figure

df .describeO

0 1 2 3 4 5 6 7 8

count 768.000000 768000000 768 000000 768 000000 768.000000 768.000000 768 000000 768.000000 768.000000

mean 3 845062 120.894531 69.1054N 20 53646$ 79.799479 31.992578 0.471876 33.240885 0348958

std 3 36957S 31.972618 19.355807 15.952218 115.244002 7.884160 0 331329 11.760232 0.476951

mln 0.000000 OOOOOOD 0 000000 0 000000 0.000000 o.oodooo 0 078000 21.000000 0.000000

25% 1 000000 09.000000 62 000000 0 000000 0 000000 37 300000 0 243790 24.000000 0 000000

3.000000 117.000000 72.000000 .23.000000 30.500000 32.000000 0.372500 29.000000 0.000000

6.000000 14O.250D0D 80.060O00 32.000000 127.250000 36.6000O0 0 626250 41.000000 1.000000

max 17.000m 199.000000 122 OOQODO 99.000090 846.000000 67 10DQO0 2.420000 81.000000 1.000000

Figure 13.3 9: Performing statistical analysis

Since this is a diabetic data, many attributes of this data cannot

be zero, for example, blood pressure or Body mass index. Hence,

you must replace such zero values with logical ones. This

observation is very important, and you must review carefully your

data and the problem.

Let’s first replace zeros of some columns with actual missing

value - NaN and then we will handle NaN:

mark some coLumns zero values as missing or NaN
import numpy as np
df[[1,2,3,4,5]] = df[[1,2,3,4,5]].replace(0, np.NaN)
print(df.isnull().sum())

0
1
2
3
4
5
6
7
8

0
5

35
227
374
11
0
0
0

Figure 13.4 0: Replacing zero with actual missing value

As you already know that missing values in a dataset can cause

errors with some machine learning algorithms like LDA algorithm,

let’s impute these values and then we will apply LDA:

from sklearn.preprocessing import Imputer
fill missing values with mean column values
values - df.values
imputer = Imputerf)
transfermedvalues = imputer.fittransform(values)
count the number of NaN values in each column
print(np.isnan(transformedvalues).sum())

0

Figure 13.4 1: Imputing missing values

Now you can easily apply LDA algorithm on imputed data:

ft evaluate an LDA itiodeL on the dataset using k-fold cross validation
model = LinearQiscriminaritAnalysisQ
kfold ■ KF01d(n_splitSn3J randomstate-7)
result - cross_val_score model, transformed^alues, y, cv=kfold^ scoring'accuracy'
print(result;mean())

0.7669270833333334

Figure 13.4 2: Applying LDA algorithm

That’s it! It is quite easy to impute zero values, right? Let’s see

another example of Impute with pipeline with another algorithm

known as SVM Classifier:

from sklearn.preprocessing import Imputer
from sklearn.svrn impart SVC
imp - Imputer(mi55ing_values =' JJaN’j Strategy^'mast frequent \ axi$=0)

Instantiate t??e SVG cLassi/ier: ctf
elf = SVC()

Setup the pipe Line with the required steps: steps
steps - [('imputation > imp),,*

('swr, elf)] ’

Figure 13.4 3: Example of imputing

Here steps variable is a list of tuples where the first tuple

consists of the imputation step and the second consists of the

classifier. This is the pipeline concept for imputing. After setting it

up you can use it for classification as shown in the following

figure

from sklearn,preprocessing import Jmputer
from sklearn.pipeline import Pipeline
from sklearn.sum import SVC
from sklearn.nxsdel^selection import train_test_split
from sklearn.metrics import classification_report

Setup the pipeline steps: steps
steps - [('imputation', Imputer(missing_value5-'tlaH', strategy-'mo5t_frequent’, axis-3}),

(SVH', SVC())]

ff Create the pipe Line: pipeline
pipeline = Pipeline(steps)

K Create training and test sets
X^train, X_test, y^train, y_test ■ train_test_split(X, y, test_size«0-J, random_state*42)

ff Fit the pipeline to the train set
pipeline.fit(X_train, y_train)

Predict the Labels of the test set
y_pred ■ pipeline.predict(X_test)

ff Compute metrics
print(classificat ion_report(y_test, y_pred))

Figure 13.4 4: Using for classification

Figure 13.45: classification report result

precision recall fl-score support

0,0 0,65 1,00 0,79 151
1,0 0,00 0,00 0,00 80

avg / total 0.43 0,65 0,52 231

See, how easy it is to handle such data with pipeline!

Conclusion

You have now learned the fundamentals, as well as some

advanced techniques of supervised machine learning algorithms.

You have also solved a real-world supervised problem. But there is

so much to explore and learn in this field. That can be only done

if you try different approaches and algorithms by your own; so try

as much as you can. Until then go chase your dreams, have an

awesome day, make every second count. See you later in next

chapter of this book, where you will learn about unsupervised

machine learning.

CHAPTER 14

Unsupervised Machine Learning

The main feature of unsupervised learning algorithms, when

compared to classification and regression methods, is that input

data are unlabeled (i.e., no labels or classes given), and the

algorithm learns the structure of the data without any assistance.

This is the world of unsupervised learning - you are not guiding

or supervising the pattern discovery by some prediction task, but

instead uncovering hidden structure from unlabeled data.

Unsupervised learning encompasses a variety of techniques in

machine learning, from clustering to dimension reduction to matrix

factorization. In this chapter, you will learn the fundamentals of

unsupervised learning and implement the essential algorithms

using scikit-learn and scipy .

Structure

Why unsupervised learning?

Unsupervised learning techniques

K-means clustering

Principal Component Analysis (PCA)

Case study

Validation of unsupervised Ml

Objective

After studying and practicing this chapter, you will be familiar with

unsupervised learning, and will be able to cluster, transform,

visualize, and extract insights from unlabeled datasets.

Why unsupervised learning?

The unsupervised learning inputs (training data) are unlabeled and

we have no output results to validate the efficiency of the learning

process. However, once the training process is complete, we are

able to label our data. The described process is similar to how

humans acquire knowledge through experience. Even though the

machine works in the dark, it somehow manages to extract

features and patterns from the probability distributions of data

(e.g., images, texts), which are fed to it.

However, why would we even need unsupervised learning if we

have so many efficient and tested supervised ML methods

around? There are several reasons for the growing popularity of

unsupervised methods:

Sometimes we don’t know in advance as to which class/type our

data belongs to. For example, in the consumer segmentation

problem, we don’t know what similarities consumers share and

how they differ as groups.

Structured data can be expensive and not always available.

Supervised learning requires properly labeled, cleaned up, and

regularized data. What’s worse is that many AI start-ups might not

have access to structured data at all. To acquire the data needed

to train their AI systems, start-up has to buy the license from

commercial platforms.

Supervised methods are a good fit for classification and

prediction, but not as suitable for content generation.

Unsupervised learning is an excellent option when we want to

generate content (e.g., images, videos) similar to the original

training data.

Now, thanks to the cheaper cloud-based computing power and

new deep learning techniques, we may efficiently use unsupervised

learning in combination with neural networks trained on powerful

GPUs.

Unsupervised learning techniques

Some applications of unsupervised machine learning techniques

include the following:

Clustering allows you to automatically split the dataset into groups

according to similarity. Often, however, cluster analysis

overestimates the similarity between groups and doesn’t treat data

points as individuals. For this reason, cluster analysis is a poor

choice for applications like customer segmentation and targeting.

Anomaly detection can automatically discover unusual data points

in your dataset. This is useful in pinpointing fraudulent

transactions, discovering faulty pieces of hardware, or identifying

an outlier caused by a human error during data entry.

Association mining identifies sets of items that frequently occur

together in your dataset. Retailers often use it for basket analysis,

because it allows analysts to discover goods often purchased at

the same time, and develop more effective marketing and

merchandising strategies.

Latent variable models are commonly used for data pre-processing,

such as reducing the number of features in a dataset

(dimensionality reduction) or decomposing the dataset into

multiple components.

The two unsupervised learning techniques that we will explore are

clustering the data into groups by similarity and reducing

dimensionality to compress the data while maintaining its

structure and usefulness.

Clustering

Clustering is the process of grouping similar entities together. The

goal of this unsupervised machine learning technique is to find

similarities in the data point and group similar data points

together. Grouping similar entities together gives us insight into

the underlying patterns of different groups. For example, you can

identify different groups/segments of customers and market each

group in a different way to maximize the revenue. Clustering is

also used to reduce the dimensionality of the data when you are

dealing with a copious number of variables. The most popular

and widely used clustering algorithms are K-mean clustering and

hierarchical clustering.

K-mean clustering

In K-mean clustering, K means the input, which is how many

clusters you want to In this algorithm, you place K centroids in

random locations in your space, rather than using the Euclidean

distance between data points and centroids. You assign each data

point to the cluster which is close to it, then recalculate the

cluster centers as a mean of data points assigned to it, and then

again repeat the preceding steps until no further changes occur.

In mathematics, the Euclidean distance or Euclidean metric is the

ordinary straight-line distance between two points in Euclidean

space. With this distance, Euclidean space becomes a metric

space and the centroids are like the heart of the cluster; they

capture the points closest to them and add them to the cluster.

You might be thinking, how I decided the value of K in the first

step? One of the methods is called the Elbow method - which

can be used to decide an optimal number of clusters. The idea is

to run K-mean clustering on a range of K values and plot the

percentage of variance explained on the Y-axis and K on X-axis. For

example, in the following screenshot, you will notice that as we

add more clusters after 3, though it doesn’t give much better

modeling on the data. The first cluster adds a lot of information,

but at some point, the marginal gain will start dropping:

Figure 14.1: Elbow method plot

See the preceding plot - it almost looks like a human elbow

structure. Let’s see how to apply k-means on an actual dataset

and evaluate a cluster. To understand and practice the code

examples, kindly load the unsupervised learning notebook provided

inside the code bundle.

In this exercise you will get the poker training/testing dataset from

a url and then perform k-means with Elbow method:

read training and test tfflta from the url tint and save the fiie to your narking directory
url - "http;//archive.Ics.uci.edu/ml/machine-learning-iiatabases/poker/poicer-hand-ti'aining-true. data"

ur Ilib. request. ui'lretrleve(url1 'Er/pg/bpb/BPE' Pub'll cations/Batas ets/unsuptrvls ed/poker_tra In, csv"}

urll • ~http://arciilve-ics,tic1,edu/mi/machine-learn 1 ng.databases/poker/poter.hand.testing.data"

ur11lb.req west, urlretrieve(url2, " E: /pg/bpb/BPB’pub 1 icat 1 ons/OatasetsZttnsuper* 1 sed/poker_test.csv")

read the data in and add cottesn names
datatriiin - pd.read_csv(“£:/pg/bp b/BPB-Publica11 mu/DatasetsJunsupervlsed/poker_train. csv", htader-None,

names-[rSlr, ’Cl', 'S2', 'C2', 'S3't CS /Sfl', 'Cd', ‘SS’, 'CLASS)}

data test - pd.read e$v(*E i/pg/bpb/BPB-Publlcations/ttatasets/unsupervised/poker test.csv", headar-None,
names-[Sr, Cl, 5Z‘, W, 'Si'J C3 , Cd , C5\ CLASS'])

file:////archive.Ics.uci.edu/ml/machine-learning-iiatabases/poker/poicer-hand-ti'aining-true
http://arciilve-ics,tic1,edu/mi/machine-learn

Figure 14. 2: Performing k-means with elbow method

In the preceding code cell, first, we read the train and test data

from a url using urllib.request.urlretrieve() function, which takes url

as one required argument. This function is the easiest way to

store the content of a page in a variable; so, we will do the same

by storing the train and test data in url and url2 variables.

Here, we have saved the train and test CSV files in our local

directory. From there, we will read and store them in Pandas

Dataframe for further processing. Next, we subset the training

dataset:

subset clustering vorfabtes
Cluster’SI', ’Cl', ‘C2’, ‘ S3 ‘ J 'C3'/S*', 'SS', ’CSJ]

Figure 14. 3: Subset clustering variables

Next, in order to cluster the data effectively, you’ll need to

standardize these features first. For equally contributing to the

variables, we will scale them using preprocessing.scale() function

as shown in the following screenshot:

from sklearn import preprocessing
Standardize clustering variables to have mean-'O and sd^l so that card suit and
rank are on the sore state as to have the variables equally contribute to the analysis
clustervar = cluster,copy() # create a copy
dustervar(' 51']-preprocessing. scale(duttervar[SI'] .a$type('f loatW))
dustervarf'Cl1)-preprocessing,scale(clustervar['Cl' J.astype('float64r})
dustervar['52'j-preprocessing.scale(dustervar['52'J.astypef'float64 ‘))

dustervar[C2']=preproces5ing.scale(dustervar[C2'].astype('float64'))
dustervar['S3’]-preprocessing,scale clustervarf S3‘].astype(‘floatW)
clustervar('C3'^preprocessing.scale(dustervar(C3'].astype('float64'))
dustervarj 54']-preprocessing. scale(dustervar[' 54'].astypef float64'))
dustervarj C4']=preproce&sing,scale(dustervarj <4'],astypeCfloat64'))
dustervarj'SS']-preprocessing*scale(dustervar['55*],a$type(‘float64‘))
dustervarj 'C5h]-preprocessing.scale(dustervar(*C5" J .astype('float64r))

The data has been already split data intra trotfl and test sets
dus_train ■ clustervar

Figure 14. 4: Scaling variables

The preprocessing.scale() function standardizes a dataset along any

axis [Center to the mean and component-wise scale to unit

variance].

Next, for computing distance between each pair of the two

collections of inputs, you don’t need to do any calculation. Using

scipy.spatial.distance object’s cdist library, we can do that. After

calculating the distance, we will loop through each cluster and fit

the model to the train set, and then we will generate the

predicted cluster assignment and append the mean distance by

taking the sum divided by the shape, as shown in the following

screenshot:

from skLearn,cluster import KMeans

ft k-means cluster analysis for 1-10 clusters due to the ie possible class outcomes for poker bonds
from scipy.spatLalxdistanee import edi$t
clu sters-range(j,20)
meandist-[]

n loop through each cluster ord fit the Model to the troin set
generate the predicted cluster assingment and append the crean distance my taking the sum divided
for k in clusters:

mode1-KMeans(n_clust er$■k)
model.fit(cLui^train)
clu sass ign*rnc>ctel,pr edict (cl us_t rain)
meandist.append(sum(np,min(cdist(clus_train, rente l.cluster_centers_, 'euclidean'), axis-1))
/ clus_traln,shape[0])

HMM

Plot average distance from observations from the cluster centroid
to use the flbow Hethod to Identify number of clusters to choose
M » W
p It. pUt(clusters, meandist)
pit.xLabel('Number of clusters')
plt.ylabel('Average distance')
pit .title(‘Selecting k with the Elbou Method’) ft pick the fguest number of clusters that reduces th

16*1(0.5,1, Selecting k with the Elbow Method')

Figure 14. 5: Finding value of k with Elbow method

Once you run the preceding cell, you will see, as shown in the

following output plot, that 3 (see X-axis in the plot) will be the

right choice of k as after this you will not get a better model.

The number of clusters = the X-axis value of the point, that is,

the corner of the elbow (the plot looks often like an elbow):

Av
er

ag
e

di
st

an
ce

Figure 14.6: Selecting k with the elbow method

Hierarchical clustering

Unlike K-mean clustering, hierarchical clustering starts by assigning

all data points as their cluster. As the name suggests, it builds

the hierarchy, and in the next step, it combines the two nearest

data points and merges it to one cluster. Following are the steps

to implement this technique:

Start with N clusters, assign each data point to its cluster.

Find the closest pair of clusters using Euclidean distance and

merge them into a single cluster.

Calculate distance between two nearest clusters and combine until

all items are clustered into a single cluster.

In a nutshell, you can decide the optimal number of clusters by

noticing which vertical lines can be cut by horizontal lines without

intersecting a cluster and cover the maximum distance. Let’s see

how you can use hierarchical clustering on Iris dataset:

catcutate fuLL dendrogram
from scipy.cluster,hierarchy import dendrogram, linkage
ff generate the Linkage matrix
Z o linkage(iris, 'ward')
set cut-off to 56
niax d = 7.08 ff maxd as in max distance

pit ,f igure(f igsize^(2S, 10))
pit.title('Iris Hierarchical Clustering Dendrogram")
plt.xlabel('Species’)
pit.ylabel('distance')
dendrogramf

truncatejnode*' lastp", ff show onLy the Last p merged dusters
p=lS0, ff Try changing vaLues of p
leaf_rotation=90., ff rotates the x axis Labets
leaf_font_size*8. , ff font size for the x axis LabeLs

)
pit.axhline(y=max_d, c='k')
pit.show

Figure 14.7: Using hierarchical clustering on Iris dataset

Here, we are using linkage() function with ward argument to

obtain a hierarchical clustering of the iris samples, and

dendrogram() to visualize the result. Here, ward is a linkage

method that minimizes the variant between the clusters. Once you

run the preceding cell, it will display the following plot:

Figure 14.8: dendogram plot example

See, dendrograms are a great way to illustrate the arrangement of

the clusters produced by hierarchical clustering! In our example,

you can see a straight black horizontal line between the clusters.

This line is currently crossing the 3 clusters, so the number of

clusters will be three in this case.

Remember, hierarchical clustering can’t handle big data well, but

K-means clustering can. In K-means clustering, as we start with an

arbitrary choice of clusters, the results generated by running the

algorithm multiple times might differ, while results are

reproducible in hierarchical clustering.

t-SNE

Another clustering technique often used in visualization is t-

distributed stochastic neighbor embedding It maps higher

dimension space to 2D or 3D space so that we can visualize

higher-dimensional data. It’s a dimensionality reduction technique.

In the case of the Iris dataset, which has four measurements, its

samples are 4D. For this dataset, t-SNE technique can map

samples to 2D for easy visualization. In you can use t-SNE from

sklearn.ma library and then can use its fit_transform() method for

fitting the model and transforming the data simultaneously. But it

has one limit - you cannot extend it to include new samples, you

have to start over each time. One important parameter of t-SNE

is the learning rate, which you choose according to the dataset

but a value between 50-200 is often a fine choice. One strange

behavior of this technique is that every time you apply t-SNE, you

will get different visualization results on the same dataset, so

don’t be confused with this behavior. In fact, it is perfectly fine to

run t-SNE a number of times (with the same data and

parameters), and to select the visualization with the lowest value

of the objective function as your final visualization. One drawback

of using this technique is that it is a memory consuming

technique; so, be careful to apply on a simple computer, otherwise

you may get memory errors.

Let’s see how you can use sklearnapi to apply t-SNE in the

MNIST digit dataset. You can load this dataset from the

sklearn.datasetsapi using fetch_mldata function as shown in the

following code cell:

from sklearn.datasets import fetchjnldata
mnist = fetch_mldata("MNIST original")
X mnist.data / 255.0
y = mnist.target
print X.shape, y.shape

(70000, 784) (70000,)

Figure 14.9: Using fetch_mldata function

If you face any issue while loading the data from you can then

download the dataset from any other resources like Google or

GitHub or the download link provided in the book. Next, import

the basic libraries - numpy and pandas and then convert the

preceding training data into a pandas dataframe. From this newly

created dataframe, extract the target variable as shown in the

following code cell:

^convert the matrix and vector to a Pandas DataFrame
featcols - [’pixel’+str(i) for i in range(X.shapefl])]

df = pd.DataFrame(X?columns=feat_cals)
df[’label'] - y
df [‘label'] = df[‘label'].apply(lambda i: str(i))

X? y - None, None

print(’Size of the dataframe: {}'.format(df.shape))

Size of the dataframe: (70960, 78S)

Figure 14.10: Extracting target variable

Next, we will take a random subset of the digits. The

randomization is important as the dataset is sorted by its label

(i.e., the first seven thousand or so are zeros, etc.). To ensure

randomization, we’ll create a random permutation of the number

0 to 69,999, which allows us later to select the first five or ten

thousand for our calculations and visualizations:

Figure 14.11: Random selecting the permutations

We now have our dataframe and our randomization vector. Let’s

first check what these numbers look like. To do this, we’ll

generate 30 plots of randomly selected images. Don’t forget to

import the matplotlib.pyplot as plt before running the following

code:

plt.gray()
fig = pit.figure! fig£i3e-(16,7))
for i in range(0,3e):

ax = fig.add_5ubplot(3,10,i+l, title-‘Digit: ' t strfdf.lot[rndpermfi]/label*]))
ax.matshow(df.lot[rndpei'm[i]J feat_col.s].values.reshape^(2S,23)) .astypeffloat))

pit. show()

Figure 14.12: code snippet for plotting the numbers

These are 28-by-28-pixel images and therefore have a total of 784

each holding the value of one specific pixel. What we can do is

reduce the number of dimensions drastically, whilst trying to retain

as much of the variation in the information as possible:

Digits6j0 cDjgito3afc jDigitsJjO Digit; 7.0 oDjgit&Qbfls digits Sift

Figure 14.13: result of the plotting code snippet

In case if you are not seeing the actual image as output or

seeing the object as output; you need to put a semicolon after

the plt.show() line, i.e., To make sure that we don’t burden our

machine in terms of memory and power/time, we will only use

the first 7,000 samples to run the algorithm on:

import time
from sklearn.manifold import TSflE

nsne = 7000

time_start = time.time()
tsne = TSHE(n_components=2, verbose=lj perplexity=40, n_iter=308)
tsneresults = tsne.fit_transform(df.loc[rndperm[:nsne],feat_cols].values)

print(’t-SHE done! Time elapsed: {} seconds'.format(time.time()-timestart))

Figure 14.1 4: use of TSNE

In the preceding code cell, we have taken the 7000 samples as a

variable n_sne and then in the TSNE() function, we are passing

Dimension of the embedded space as Verbosity level as verbose,

Number of nearest neighbors as perplexity and the Maximum

number of iterations for the optimization as n_iter arguments. The

fit_transform() method fits the data into an embedded space and

returns that transformed output.

Based on my system configuration, the output looks like the

following screenshot:

[t-SNE] Computing 121 nearest neighbors
[t-SNE] Indexed 7009 samples in 8.329s.
[t-SNE] Computed neighbors for 7000 samples in 59.903s...
[t-SNE] Computed conditional probabilities for sample 1060 / 70S9
[t-SNE] Computed conditional probabilities for sample 2000 / 7000
[t-SNE] Computed conditional probabilities for sample 3000 / 7000
[t-SNE] Computed conditional probabilities for sample 4000 } 7000
[t-SNE] Computed conditional probabilities for sample 5000 / 7000
[t-SNE] Computed conditional probabilities for sample 6000 1 7000
[t-SNE] Computed conditional probabilities for sample 7000 1 7000
[t-SNE] Mean sigma: 2.239101
[t-SNE] KL divergence after 2SG iterations with early exaggeration: S3.187843
[t-SNE] Error after 300 iterations: 2.422179
t-SNE done! Time elapsed: 135.07717204093933 seconds

Figure 14.1 5: Result of the TSNE code snippet

We can visualize the two dimensions by creating a scatter plot

and coloring each sample by its respective label. This time we will

use ggplot to visualize our data. To install this package with run

one of the following in the Anaconda prompt:

conda install -c conda-forge ggplot

conda install -c conda-forge/label/gcc7 ggplot

conda install -c conda-forge/label/cf2oi9oi ggplot

from ggplot import *
df_t$ne ■ df. loc[r'ndper'mf :n_sne], :) .copy()
df_tsne[x-tsne'] - tsne_resuits[:* 0]
df_tsne['y-tsne’i » tsneresultsf:,1}

tsne plot 1- ggplot(df_tsneJ1 aes(x='x-t5ne\ y=*y-tsne ‘, colors* label‘)) \
+ geom_point(size=70Jalpha-0,i) \
+ ggtitle(”tSHE dimensions colored by digit")

tsne_plot

Figure 14.1 6: ggplot code snippet

Once you run the preceding code, you will see the following

beautiful plot. In case if you are getting an object instead of plot,

you need to add and run following code-

Figure 14.17: tSNE dimensions colored by digit

We can see that the digits are very clearly clustered in their little

group (see the label colors as each color is denoting a separate

color). The same visualization you cannot do without t-SNE, if you

include higher dimensions.

Principal Component Analysis (PCA)

One of the most common tasks in unsupervised learning is

dimensionality reduction. On one hand, dimensionality reduction

may help with data visualization (e.g., t-SNA method) while, on

the other hand, it may help deal with the multicollinearity of your

data and prepare the data for a supervised learning method (e.g.,

decision trees). Multicollinearity of data is a type of disturbance in

the data, and if present in the data, the statistical inferences

made about the data may not be reliable. PCA is one of the

easiest, most intuitive, and most frequently used methods for

dimensionality reduction.

PCA aligns the data with axes, which means that it rotates data

samples to be aligned with axes in such a way that no

information is lost. Here you can understand a principal

component as the direction of variance. Let’s see how we can

apply PCA on a student details dataset. Don’t forget to rerun the

required packages like pandas before running the following line if

you are starting your work:

KXxH see .ign mhi untslM ugWus Made w.pb F|ob ,,, <arW irwlaae nwut Dais Wi hteup rtMaoai Gt Gs GJ

Student_datS_»St - pd.rfrad_esv(“E PublidSt J7.tr S,.11,nsLip1 ■■■.'! rst-CS'c'. dellniter-" ;*)
»tudent_dati_iwr - pd. r»ad_csv(*E: /pE.'Spb/BPe ■ Fubi i cat lons/Oat*sats7 unsupers I sed? PtA/student -por. csvu. del falter- ’ 1 “)
Studenl_dat ■ - p<f. nerje (SHidrnt_djtj_wt. st udent_d*t J_por. haw- "Out r
Sti;dant_dJt j.hrjJi.-}

Q GP F IB V GT3 A 4 d <Jh<m taacoar 4 3 4 1 1 3 & 5 0 5

1 OP F n U <313 T 1 1 HJ1«™ wher .. 5 3 3 T 1 3 4 5 5 0

2 CP F is U LE3 T 1 1 aljione MM 4 3 2 2 3 3 10 7 « 10

3 GP F 15 U GTS T 4 2 r*6Rn servitti .. 3 2 2 1 1 § 2 15 14 15

4 GP F IB U GT3 T 3 3 ouier cfflitr „ 4 3 2 1 2 5 4 5 10 IO

5 rows » 33 aoMmns

Figure 14.1 8: Loading example datasets

This dataset contains the details about student achievement in

secondary education of two Portuguese schools. The data

attributes include student grades, demographic, social, and school-

related features, and it was collected by using school reports and

questionnaires. Two datasets are provided regarding the

performance in two distinct subjects: Mathematics (mat) and

Portuguese language (por). Here the target attribute G3 has a

strong correlation with attributes G2 and G3 is the final year

grade (issued at the period), while G1 and G2 correspond to the

and grades.

Here, some columns look like categorical variables, so let’s handle

such columns:

Student_data.isnull().values - any()

False

colstr = student_data,columns!student_data,dtypes ■- object]

from sklearn.preprocessing import LabelEncoder
Lenc = LabelEncoder()
student datafcolstr] - student datafcolstrJ.apply(lenc.fittransform)

Figure 14.1 9: Handling categorical columns

Let’s check the correlation between and G3 columns of the

dataset, using .corr() function:

print(student_data[["GI”,”G2","GB"]].corn())

GI G2 G3
GI 1.000000 0.858739 0.809142
G2 0.858739 1.000000 0.910743
G3 0.809142 0.910743 1.000000

Figure 14.2 0: Using .corr() function

From the preceding output cell, you can easily say that and G3

are highly correlated, so we can drop Gi and G2 for further

analysis:

if Sincej G3.tG2tG3 have very high correLation, we can drop G1..G2
student_data.dropfaxis - [”G1"^’’G2“])

Figure 14.2 1: Dropping Gi and G2

The next step is to separate targets and samples from the

dataset, and then apply PCA using the sklearn.decomposition

package. Here, our target variable is so we will separate it from

the dataset. In the following code cell, we are putting the target

in label variable and rest of the data in the predictor variable.

Later, we import the PCA library from the sklearn.decompositionapi

and initialize it using PCA() function. Then, we use .fit() method

to train our data, and explained_variance_ration() method to get

the percentage of variance explained by each of the selected

components. Next, we will use numpy’ cumsum() method, which

returns the cumulative sum of the elements along a given axis:

label ■* stvdent_data[-G3'']-values
predictors ■ student_data[student_dat3.columns[: 1 J].values

'from sklearn.decomposition import PCA
pea = P€A(n_comp(>nent5“len(student_d3ta,columns)-!)
pea.fit(predictors)
variance_ratio - pca.eKplained_variance_ratio_
va r1ance_rat io_cum_sum-np,c urns um(n p.row nd(pc a,expla ined_va r i a nce_rat io_, d ec 1 ma 1 s=4) * 100)
pr i n t (v a rian ce^ra t io_C um_s urn)
plt.plot(variant e_ra t iO_cum_su m)
plt.show()

Figure 14.2 2: PCA code snippet example

Here, variance means summative variance or multivariate variability

or overall variability or total variability. PCA replaces original

variables with new variables, called principal components, which

are orthogonal (i.e., they have zero covariations), and has

variances (called eigenvalues) in decreasing order. Once you run

the preceding cell, the following plot will be displayed:

Figure 14.23: Plot of the code snippet

In the preceding output, the red line is the regression line or the

set of the predicted values from the model. The variance

explained, can be understood as the ratio of the vertical spread of

the regression line (i.e., from the lowest point on the line to the

highest point on the line) to the vertical spread of the data (i.e.,

from the lowest data point to the highest data point).

Case study

By now, you must have grasped the basic knowledge of regression

techniques. It’s time to apply your knowledge to a real problem.

Here, you will work on the MNIST computer vision dataset, which

consists of 28 x 28 pixel images of digits. Let’s import the train

data first:

train - pci.re3d_csv("Ei/pg/bpb/fiPB-Publications/Datasets/regression/MHlST/train.csv”)
print(train, shops)
train.head

(42000, 735)

label pixetO pixeM pixels pixel? pixel4 pixels pixels pixel? pixels ... pixel?74 pixel775 pixel776

01 0 0 0 0 0 0 0 0 0.„ 0 0 0

10000000000... 0 0 0

Figure 14.2 4: Importing train data

The MNIST set consists of 42,000 rows and 785 columns. There

are 784 columns, as well as one extra label column, which is

essentially a class label to state whether the row-wise contribution

to each digit gives a 1 or a 9. Each row component contains a

value between one and zero, which describes the intensity of each

pixel.

Let’s conduct some cleaning of the train data by saving the label

feature and then removing it from the dataframe:

save the LabeLs to a Pandas series target
target ® train['label1]
Drop the LabeL feature
train = train.drop(Hlabel”,axis=l?

Figure 14.2 5: target column handling

Since our dataset consists of a relatively large number of features

(columns), it is a perfect time to apply the Dimensionality

Reduction method (PCA). For this, it may be informative to

observe how the variances look like for the digits in the MNIST

dataset. Therefore, to achieve this, let us calculate the eigenvectors

and eigenvalues of the covariance matrix as follows:

ff Standardizing ftfilST dataset features by removing the meaS and seating to unit uorionce
from sklearn.prep recessing import StandardScaler
train_X = train.values
train_X_std - StandardScaier() .fit_jtransforffl(train_X)

ff Colcuioting figenvectcrs and Eigenvalues of Covariance matrix
coveriance_n>atrix - np,cov(trai.n_X_std,T)
elgerevalues, eigenvectors - np.linalg.eig(covariance_nMtr£x)

ff Creating □ tist of (eigenvalue, eigenvector)
eigen_pair$. - [(rip-abs(eigenvali>es[i]).eigenvector^ :,!]) For 1 in range(leri(eigenvalues))]

ff Sorting the eigenvalue, eigenvector pair front high to £<*(■/
eigen_psirs,sort(key - lambda x: x[&], reverse- True)

ff Colcuioting Indivitfuai and Cumulative explained variance
total_ei£eri_¥alue5 - sum (eigenvalues)
indivl$u31_expvir " [(1/totsi vl6en_values)*lt^ For i in sort ^(eigenvalues., reverse-Troe)]
cumulative^exp^var - np.cinnsLrm(intiivistiaIuexp_v3r)

Figure 14.2 6: Calculating eigenvectors and eigenvalues of covariance

matrix

After calculating Individual Explained Variance and Cumulative

Explained Variance values, let’s use the plotly visualization package

to produce an interactive chart to showcase this. The first import

required plotly libraries. If this library is not installed in your

notebook, install it using the command, conda install -c

import plotly.offline as py
py.init_notebook_mode(connected=True)
from plotly.offline import initnotebookmode, iplot
import plotly.graph_objs as go
import plotly.tools as tls
import seaborn as sns

Figure 14.2 7: Installing plotly libraries

Next, we will plot a simple scatter plot using Since these plots

are interactive, you can move up and down over it. In the

following code cell, first, we will set the scatter plot parameters

like name, mode, and color for cumulative and individual

explained variances, then we will append these two scatter plot

variables into a subplot using make_subplots() function:

cumulative_plot ■ go.Scatter(
x=list(range(784)),
y- cumulative_exp_var,
mode=’lines+markers't
name^” Cumulative Explained Variance*",
line"dict(

shape=* spline* ,
color = 'limegreen*

) .
individualplot = go.Scatter(

X-=list (range (7S4)),
y= indivisualexpvar,
mode=*lines+markers',
name="‘Individual Explained Variance"",
line=dict(

shape=* linear',
color - ‘black’

>
)
fig = tls.make_subplots(insets=[{‘cell’; I1; £.7, ’b’; 6.5}]

print grid=True)

fig.append_trace(cumulativeplot, 1, 1)
fig.append_trace(individualplot,1,1)
fig.layout.title = 'Explained Variance plots - Full and Zoomed-in’
fig.layout.xaxis - dict(range=[G, title = ‘Feature columns')
fig.layout.yaxis = dict(range=[0, 40], title = Explained Variance)
iplot(fig)

Figure 14.2 8: scatter plot code snippet

Once you run the preceding cell, you will get the following plot:

Figure 14.29: Explained variance plots

As we can see, out of our 784 features or columns, approximately

90% of the Explained Variance can be described by using just

over 200 features. So, if you want to implement a PCA on this,

extracting the top 200 features would be a very logical choice, as

they already account for the majority of the data.

The PCA method seeks to obtain the optimal directions (or

eigenvectors) that captures the most variance (spreads out the

data points the most). Therefore, it may be informative to

visualize these directions and their associated eigenvalues. For

speed, I will invoke PCA to only extract the top 30 eigenvalues

(using sklearn’s .components_ from the digit dataset and visually

compare the top 5 eigenvalues to some of the other smaller ones

to see if we can glean any insights. Import the PCA package from

if you are restarting your work, and then follow this code:

Invoke SKLearn's PCA method
ncomponents = 30
pea - PCA(ncomponents-ncomponents).fit(train.values)
eigenvalues - pea.components^.reshape(n_components, 28, 28)
ft Extracting the PCA components (eignevaLues)
eigenvalues - pea.components_

Figure 14.3 0: checking eigenvalues

n_row = A
n_col * 7
PLot the first 8 eignenvatues
pit.figure(figsize=(13,12))
for i in list(range(n_row * n_col)):

offset =6
pit. subplot(njow, n_col, i + 1)
plt.imshow(eigenvaliies[i].reshape(28,28), cmap='jet1)
titletext = 'Eigenvalue ' + 5tr(i + 1)
pit .title(title text, size-6.5)
plt.xticks(O)
plt.yticks(O)

pit.show

Figure 14.3 1: code snippet for plotting eigen values

The preceding cell will draw the following plots:

Figure 14.32: plot of different eigen values

The preceding subplots portray the top 5 optimal directions or

principal component axes that the PCA method has decided to

generate for our digit dataset. If you compare the first component

Eigenvalue 1 to the 25th component Eigenvalue it is obvious that

more complicated directions or components are being generated in

the search to maximize variance in the new feature subspace.

Now using the sklearn toolkit, we implement the PCA algorithm

as follows:

DeLete our eartier created trainX object
del train_X
Taking onLy the first N rows to speed things up
X= train[:6000].values
del train
Standardising the vaLues
X_std = StandardScaier().fit_transform(X)

CaLL the PCA method with 5 components.
pea - PCA(n_components-5)
pca.fit(X_std)
X_5d = pea.transform(X_std)

Restrict the target vetoes aLso for speed up
Target = target[:6000]

Figure 14.3 3: Implementing PCA algorithm

In the preceding code, we are first normalizing the data (actually

no need to do so for this data set, as they are all 1’s and 0’s)

using sklearn’s convenient StandardScaler() call. Next, we invoke

the sklearn library’s inbuilt PCA function by providing into its

argument the number of components/dimensions we would like to

project the data on. As a general practice, for selecting the

number of components or dimensions, always look at the

proportion of cumulative variance and the individual variance,

which you have already done earlier in this chapter.

Finally, we’ll call both fits and transform methods that fit the PCA

model with the standardized digit data set, and then perform a

transformation by applying the dimensionality reduction on the

data.

Imagine just for a moment that we were not provided with the

class labels to this digit set, because PCA is an unsupervised

method. How will we be able to separate our data points in the

new feature space? We can apply a clustering algorithm on our

new PCA projection data, and hopefully arrive at distinct clusters

that would tell us something about the underlying class separation

in the data.

To start, we set up a KMeans clustering method with Sklearn’s

KMeans call, and use the fit_predict method to compute cluster

centers, and predict cluster indices for the first and second PCA

projections (to see if we can observe any appreciable clusters):

from sklearn.cluster import KMeans
5et a KMeans clustering with 9 components
kitieans - KMeans(n_clusters=9)
Compute cluster centers and predict duster indices
Xclustered - kmeans.fit_predict(X_5d)

trace_Kmeans =■ go,Scatter(x-X_5d[:, 6], y= X_5d[:, 1], mode-' markers",
showlegend=False,
marker=dict(

size=8J
color = X_clustered,
colorscale ■ 'Portland',
showscale=FalseJ
line ■ diet

width = 2,
color = 'rgb(25Sj 25S, 25S)*

)
))

Figure 14.3 4: KMeans clustering code snippet

layout = go.Layout(
title= 'KMeans Clustering',
hovermode- 'closest',
xaxis= dict(

title= 'First Principal Component
ticklen^ 5,
zeroline^ False,
gridwidth= 2,

yaxis=dict(
title® 'Second Principal Component
ticklen» 5,
gridwidth= 2,

)>
showlegend= True

)
data = [trace_Kmeans]
figl = dict(data=data, layout= layout)
figl.append-trace(contour_List)
py.iplot(figl, filename®"svm")

Figure 14.3 5: clustering plot code snippet

The output of the preceding input looks like as shown in the

following screenshot:

Figure 14.36: K-means clustering

Visually, the clusters generated by the K-Means algorithm appear

to provide a clearer demarcation amongst clusters, as compared

to naively adding in class labels into our PCA projections. This

should come as no surprise as PCA is meant to be an

unsupervised method, and therefore not optimized for separating

different class labels.

Validation of unsupervised ML

Validation of an unsupervised ML depends on which class of

unsupervised algorithms you are referring to.

For example, dimensionality reduction techniques are generally

evaluated by computing the reconstruction You can do this, using

similar techniques with respect to supervised algorithms, for

example, by applying a k-fold cross-validation procedure.

Clustering algorithms are more difficult to evaluate. Internal

metrics use only information on the computed clusters to evaluate

whether clusters are compact and well-separated. Also, you can

have external metrics that perform statistical testing on the

structure of your data.

Density estimation is also rather difficult to evaluate, but there is

a wide range of techniques that are mostly used for model

tuning, for example, cross-validation procedures.

In addition, unsupervised strategies are sometimes used in the

context of a more complex workflow, in which an extrinsic

performance function can be defined. For example, if clustering is

used to create meaningful classes (e.g., clustering documents), it

is possible to create an external dataset by hand-labeling and

testing the accuracy (the so-called gold standard). Similarly, if

dimensionality reduction is used as a pre-processing step in a

supervised learning procedure, the accuracy of the latter can be

used as a proxy performance measure for the dimensionality

reduction technique.

Conclusion

This chapter has taught you the basic concepts of unsupervised

learning along with practical use cases of dimensionality reduction

techniques. It is strongly recommended that you apply the

learnings from this chapter, as well as other supervised

dimensionality reduction techniques - LDA, and compare the

results with each other. As always said, practice more and more

on different datasets and you will find new insights in every

practice. In the next chapter, you will learn how to handle time­

series data.

CHAPTER 15

Handling Time-Series Data

In previous chapters, you have learned how to solve supervised

and unsupervised machine learning problems. In this chapter, you

will gain knowledge to understand and work with time-series data.

Whether it is analyzing business trends, forecasting company

revenue, or exploring customer behavior, every data scientist is

likely to encounter time series data at some point during their

work. Time series is a series of data points indexed (or listed or

graphed) in time order. Therefore, the data is organized by

relatively deterministic timestamps, and compared to random

sample data, may contain additional information that we can

extract.

Structure

Why time-series is important?

How to handle date and time?

Transforming a time-series data

Manipulating a time-series data

Comparing time-series growth rates

How to change time-series frequency?

Conclusion

Objective

After studying this chapter, you will be able to manipulate and

visualize the time-series data in order to extract meaningful

statistics and other characteristics of the data.

Why time-series is important?

Since time-series is a collection of data points collected at

constant time intervals, they are analyzed to determine the long­

term trend. Time-series forecasting is the use of a model to

predict future values based on previously observed values. In

business scenarios, that’s like predicting stock price or predicting

the weather conditions for tomorrow, time-series has a significant

role. In your day-to-day job, you will come across situations with

time series-connected tasks. For example, think about the following

frequent question a person may think daily — What will happen

with our metrics in the next day/week/month? How many people

will install the app? How much time will a user spend online?

How many actions will the users do? Analyzing such kind of data

can reveal things that at first were not clear, such as unexpected

trends, correlations, and forecast trends in the future bringing a

competitive advantage to anyone who uses it. For these reasons,

time-series can be applied to a wide range of fields.

How to handle date and time?

Pandas have dedicated libraries for handling time-series objects,

particularly the datatime64[ns] class, which stores time information

and allows us to perform some operations fast. Here ns means

nano-seconds. Besides you will need statsmodels library that has

tons of statistical modeling functions, including time series. You

can install the statsmodels by running the following command in

Anaconda prompt:

conda install -c anaconda statsmodels

When you load the data in a pandas any column can contain the

date for time information, but it is most important as a

Dataframe index, because it converts the entire dataframe into a

Time Series. The complete examples of this chapter are in Time

Series Data.ipynb as a notebook. First, let’s understand the pandas

capability of handling time-series data by importing basic libraries:

import pandas as pd
from datetime import datetime # for manuaLLy creating dates

Figure 15.1: Importing basic libraries

Now, we will create a pandas dataframe and check its datatype as

shown in the following screenshot:

creating pandas timestamp
time_stamp = pd.Timestamp(datetime(2019>lJl))

using a date string as datetime object
pd.Timestamp(datetime(2019^1Jl)) =- time-stamp

Figure 15.2: Creating pandas dataframe and checking datatype

In the preceding cells, the type of our time_stamp variable is

Timestamp and a default time with midnight value is added, and

date string also generates the same result, which means that you

can use the date as string also. Pandas Timestamp has various

attributes like a etc., to store time-specific information which you

can access as shown in the following screenshot:

time_stamp.year

2019

time_stamp.month

1

time_stamp.day

1

Figure 15. 3: Accessing time-specific information

Pandas has also a data type for handling time periods. The Period

object always has a frequency with month as default. It also has

a method to convert between frequencies, as well as the period

object to convert back in its timestamp format. You can also

convert a Timestamp object to period and vice versa. What more

to say! You can even perform basic date arithmetic operations.

Let’s understand how you can practically implement this:

period = pd.Period(’2019-01’)
print("period:: "> period)

^convert period to daiLy from month
print(period.asfreq('□'))

^convert period to timestamp back
print(period+to_timestamp().to_period('M'))

tfbasic date arithmetic operation
print period + 3

period:: 2019-01
2019-01-31
2019-01
2019-04

Figure 15. 4: Handling time periods

Next, you will create a time-series with sequences of Dates using

the pandas date_range() function. This function returns a fixed

frequency You can also convert the index to period index just like

See the following cells for each one and notice the data type in

output cells:

index - pd.daterangefstart-'2018-1-1', periods-12, freq-'M')
index

DatetiiMeIndex(['2018-01-31’, ’2018-02-28,t ‘2018-03-31’, ‘2018-04-30',
'2918-05-31', '2018-06-30', 2018-07-31', '2018-08-31',
'2018-09-30', ’2618-10-31‘, '2018-11-30', '2018-12-31'],

dtype-rdatetime64[ris]’, freq-'M')

indexfO]

TimestampC2018-01-31 00:00:00’, freq-‘M‘j

index.toperiod

Periodlndex([’2018-01', ’2018-02', *2918-03', *2018-04'2018-08', '2018-06',
'2018-07', 2018-08', 2018-09', 2018-10', '2018-11', '2018-12']

dtype-'period[M]’, freq^'M')

Figure 15. 5: How to use date_range()

Now we can easily create a time-series (Pandas For example, we

will create a random 12 rows with 2 columns using

numpy.random.rand() to match the date-time index and then

create our first time-series as shown in the following screenshot:

pd.DataFrame({'date' : index}). info()
print ("==-======================================"
import numpy as np
my_data = np.random.rand(12, 2)
pd.DataFrame(data = my_data, index index).info

<class 'pandas.core.frame.DataFrame'>
Rangeindex: 12 entries, 0 to 11
Data columns (total 1 columns):
date 12 non-null datetime64[ns]
dtypes: datetime64[ns](1)
memory usage: 176.0 bytes

{class ’pandas,core.frame.DataFrame'>
Datetimeindex: 12 entries, 2018-01-31 to 2018-12-31
Freq: M
Data columns (total 2 columns):
0 12 non-null float64
1 12 non-null float64
dtypes: float64(2)
memory usage: 608.0 bytes

Figure 15. 6: Creating a time series data with DataFrame

In the preceding output cells, you can see that each date in the

resulting pd.Datetimelndex is a pd.Timestamp and since this

Timestamp has various attributes, you can easily access and

obtain information about the date. In the following example, we

will create a week of data, iterate over the result, and obtain the

dayofweek and weekday_name for each date:

Creote the range of dates here
seven days - pd.date_range(' 2019-1-1', periods-?)

ff Iterate over the dates and print the number and name of the weekday
for day in sevenedays:

print day.dayofweek, day.weekday_name

1 Tuesday
2 Wednesday
3 Thursday
4 Friday
5 Saturday
6 Sunday
0 Monday

Figure 15. 7: Creating a week of data to obtain result

The preceding examples will help you to handle and manipulate

time-series data with statsmodel library very easily. Next, you will

learn how to transform a time-series data.

Transforming a time-series data

While analyzing the time-series data, it is common to transform

your data into a better one. For example, your date column is in

object form and you will need to parse this string object and then

convert it to datetime64 datatype, or you may need to generate

new data from the existing time-series data. That’s why it is

important to know all these transformations. Let’s understand the

importance of transformation by working on Google’s stock price

data, which you can download from the download link provided at

the start of the book:

goog le_df - pd. readme tv(“ E : / pg/b p b/BP B - Piibl leal ion t / Dat a s et j/t 1 me s er1e t/ttoc k_d ata/goog la.c tv“)
google_df.head

Date C ktse

0 2014-0102 566.00

1 2014-0103 55195

2 2014-01-04 NaN

3 2014-01-05 NaN

4 2014-01-06 554.10

Figure 15. 8: Understanding importance of transformation

The Date column looks fine at first, but when you check its data

type, it’s a string:

google_df.info

<class 'pandas.core.frame.DataFrame'>
Rangeindex: 1094 entries, 0 to 1093
Data columns (total 2 columns):
Date 1094 non-null object
Close 756 non-null float64
dtypes: float64(l), object(l)
memory usage: 17.2+ KB

Figure 15. 9: Datatype is a string

Since many machine learning algorithms don’t accept string input,

you must convert data column datatype to correct data type. You

can convert a string data type to dateTime64[ns] using pandas as

shown in the following screenshot:

google_df.Date - pd.to_datetime(google_df.Date)
google_df.info

<class 'pandas.core.frame.DataFrame’>
Rangeindex: 1094 entries, 0 to 1093
Data columns (total 2 columns):
Date 1094 non-null datetime64[ns]
Close 756 non-null float64
dtypes: datetime64[ns](l), float64(l)

Figure 15.1 0: Converting string datatype to dateTime64[ns]

Now, our Date column is an incorrect datatype and we can set it

as the index as shown in the following screenshot:

googledf.$et_index('Date', inplace=True)
google_df.info

<class ’pandas * core.fname.DataFrame’>
DatetimeIndex: 1094 entries, 2014-61-02 to 2916-12-39
Data columns (total 1 columns):
Close 756 non-null float64
dtypes: float64(l)

Figure 15.1 1: How to set date as index

If you get an error like keyerror: add argument in the preceding

code cell. So your new code will be google_df.set_index(‘Date’,

inplace=True,

Here, we are setting the Date column as index and the argument-

inplace=True means don’t create a new copy of the

Once you have corrected the datatype, you can easily visualize the

stock price data as shown in the following screenshot:

Figure 15.12: Visualizing stock price data

You might have noticed here that there is no frequency in our

date time index; the calendar day frequency can be set, as shown

in the following screenshot:

googlejlf.asfreq('D*).info

<class ‘pandas.core.fname.DataFrame1>
Datetinielndex: 1094 entries, 2014-01-92 to 2016-12-30
Freq: D
Data columns (total 1 columns):
Close 756 non-null float64
dtypes: float64(l)

Figure 15.1 3: Setting calendar day frequency

After this transformation, let’s check the new data, because there

may be some null values added. It’s good to check the head of

the dataset, as shown in the following screenshot:

google_df.asfreq('D*).head()

Close

Date

2014-01-02 556.00

2014-01-03 551.95

2014-01-04 NaN

2014-01-05 NaN

2014-01-06 558.10

Figure 15.1 4: Head of dataset

As you can see, these new dates have missing values; this is

called upsampling. This means, higher frequency implies new

dates, therefore the missing values. We will handle this later in

this chapter.

Manipulating a time-series data

Time-series data manipulation means shifting or lagging values

back or forward in time, getting the difference in value for a given

time period, or computing the percent change over any number of

periods. The pandas library has built-in methods to achieve all

such manipulations.

In the next example, we will explore the power of the We will

reload Google stock price data using Pandas but with some

additional parameters, as shown in the following screenshot:

googl e_d f - pd. re« d_c s v (“ E: /pg/ bpb/ BPS ■ I >ub I i c at i on s/Data set s/1 i me series/ stoc k. d at a / googl e.c sy"
parse_dates-['Date'],
ind ex_c<?l ”' Date *}

google_df,head

CJosc

Dale

20^014)2 556 00

2014-01-03 551 9$

2014-01-04 NaN

2011-0106 NaN

2011-01.06 558.10

Figure 15.1 5: Reloading Google stock price data with additional

parameters

In this case, while loading the dataset, you will notice the date

column is automatically transformed in the correct format. Here,

pandas does all parsing for you and provides us with the properly

formatted time series dataset!

Let’s understand the different methods of pandas for manipulating

our time-series data. First, we will see the shift() method, which

by default, shifts by 1 period into the future, as shown in the

following screenshot:

google_df[‘shifted‘] - google_df.Close.shift()
google_df.head)

Date

Close shifted

2014-01-02 556.00 NaN

2014-01-03 551.95 556.00

2014-0104 NaN 551.95

2014-01-05 NaN NaN

2014-01-06 558.10 NaN

Figure 15.16: Using shift() method

Similarly, there is alagged() method, which by default, shifts by 1

period into the past. You can try this in your notebook!

You can also calculate one-period finance change or financial

return using div() method and some arithmetic operation on it, as

shown in the following screenshots:

google_df[’change’] » googledf.Close.div(google_df.shifted)
google_df.head

Date
Close shifted change

2014-01-02 556.00 NaN NaN
2014-01 -03 551.95 556 00 0.992716
2014-01-04 NaN 551 95 NaN
2014-01-05 NaN NaN NaN
2014-01 -06 558.10 NaN NaN

Figure 15.1 7: Calculating one period finance using div()

google_df['return'] = google_df.change.sub(l).mul(100)
google_df.head

Date

Close shifted change return

2014-01-02 556.00 NaN NaN NaN

2014-01-03 551.95 556.00 0.992716 -0.728417

2014-01-04 NaN 551.95 NaN NaN

2014-01-05 NaN NaN NaN NaN

2014-01-06 558.10 NaN NaN NaN

Figure 15.1 8: Peek of the DataFrame

You can also calculate the difference in value for two adjacent

periods using diff() method. Try this in your notebook! Since you

are able to use the preceding knowledge to visually compare a

stock price series for Google, let us now shift 90 business days

into both past and future, as shown in the following screenshot:

Set data frequency to business datLy
google = google_df.asfreq('B')

Create 'Lagged' and 'shifted'
google['lagged1] = google.Close.shift(periods=-90)
google['shifted *] = google.Close.shift(periods-90)

PLot the googLe price series
google.plot()
pit.show

Jan
2014

Jul Jan
2015

Jul

Date

Jan
2016

Jul Jan
2017

800

600

400

200

------ Close
------ shifted
------ change
------ return
------ lagged

Figure 15.1 9: Visually comparing time series

Thus, you can visually compare the time series to itself at

different points in time.

Comparing time-series growth rates

Comparing the time-series growth rate is a very common task,

and you will come across it in your time series analysis. For

example, comparing the stock performance. However, this is not a

piece of cake, because stock price series are very hard to compare

at different levels. There is a solution to tackle this problem -

normalize price series to start at 100. To achieve this solution,

you just need to divide all prices in series and then multiply the

same by 100. As a result, you will get the first value as 1 and all

prices relative to the starting point. Let’s apply this solution in

our Google stock price data, as shown in the following

screenshot:

first_price = google. Close, Hoc [0]
normaLize a singLe series
normalized = google.Close,div(first_price) .tnui(100)
normalized.plot(title-'Google Normalized Price')
pit.show

120

100

Figure 15.20: Comparing time-series growth

Notice the output plot here! It is starting at 100.

In the same way, you can normalize multiple series as well. We

just need to ensure that row labels of our series align with the

columns headers of the For this confirmation, you don’t need to

worry, because the div() method will take care of this. For

example, we will normalize different companies’ stock price, as

shown in the following screenshot:

- pd.i'&ad7_es^(J,Ei/pi!/bpb/BPB-Pul>Lieai:lfirfS/Ditdsets/tiaeseries./stack data/stcek_data*civ"
par$e_dates-('Date'},
i ndex_col* ’Gate’)

pi'ice_d’f .h&ad: 3

Date

AAPL AMGN AMZN CPRT EL GS H.MN MA PAA RtO TEE UPS

2G1G-ai.-04 30.57 57.72 133.90 4.56 24.27 173.03 30.55 25.63 27.00 56.03 28.55 58.13

30 63 57 22 134 63 4.55 24 19 17514 30.35 25.61 27.30 56.50 26 53 56.26

2010 01.05 30.14 50.79 132 25 4.53 24.25 174 26 32 22 25.55 27.29 58.64 28.23 57.85

Figure 15.21: Normalizing stock price of different companies

Now, we will plot different stock prices of different companies

using the plot() method. Here, we will again use div() method to

ensure that row labels of our series align with the column

headers of the as shown in the following screenshot:

Figure 15.22: Using div() method

Once you normalize the price of the stocks, as shown in the

preceding screenshot, you can also compare the performance of

various stocks against a benchmark. Let’s learn this by comparing

the three largest stocks from the NYSE to the Dow Jones

Industrial Average datasets, which contain the 30 largest US

companies, as shown in the following screenshots:

t Impart Stock prices and index here
stock s * pd, read_c sv (' £: I pg /iipb/BPS - P ubl if at ion 5 /Oa ta set s ! t imps eries / stoc k_cfat e/ nys e - C sv',

parse_dates-('date'], index_c61»’date'j
don_jone$ ■ pd.rtad_CSv(’ E7/pg/tipb/8PB-Publicatians/0'atasets/tiniEseri&s/stcCk_data/tfOw_jDnes. CSV '

psrse_dstes-[’date'J, index_col-’date’)

P Concatenate data and inspect result
data n. pdrconcat((stocks, dosr_jones], axis-1)
print(data.infof))

K HOrrnaLize and plot your data
data.div(data.iloc^']) rmul(i<30) ,iplot()
pit .shon

Figure 15.23: Comparing various stocks data

Figure 15.24: Plot of the stocks comparison

Next, we will learn how to compare the performance of Microsoft

(MSFT) and Apple (AAPL) to the S&P 500 dataset over the last

10 years, as shown in the following screenshots:

S Create, tickers
tickers - ['HSFT’, ’MPl’]

fl Jittport stocfr data here
stocks • pd. read_csy(' t::/pg/bpb/&PB-Publications/Datasets/tinesenies/stock_data/msft_aapl.csv

parse_dates-[’date1], Index_col* ’date')

fl Impart index here
spSefl • pd, read_csv{ ' E i/pg/bpb/BPB-Publications/Datasets/timeseries/stoc^tfdta/spSoe.csv’t

parse_dates-['date’], index_col*'date')

fl Concatenate sftjcfrs and index here
data - pd.concat([stocks, sp50&], axis-i}Ldropna()

fl Normaliie data
normalized - data.di'u'fdata.Hoc(e]) .miil(l£H3)

fl Subtract tf>e norn>atized index from the nomaLized stock prices, and plot the resuLt
nprmali:ed[tickers]<subnormaliied[SP5ae‘], PKi$-0).plot()
plt.shon

Figure 15.25: Comparing performances of Apple and Microsoft stock

data

600

500

400

300

200

100

0

date

------- MSFT
------ AAPL

Figure 15.26: Plot of the comparison

Now you can compare these stocks to the overall market, so that

you can easily spot trends and outliers.

How to change time-series frequency?

Change in frequency also affects the data. If you are doing

upsampling, then you should fill or handle the missing values,

and if you are doing downsampling, then you should aggregate

the existing data. First, we will find out the quarterly frequency of

the time series data, then from this quarterly frequency, we will

take out the monthly frequency so that in the end, we can use

this monthly frequency for upsampling and downsampling:

dates = pd.date_range(start='2018‘periods=4, freq='Q')
my_data = range(1,5)
quaterly ° pd.Series(data=my_data, index-dates)
quaterly

2018-03-31 1
2018-06-30 2
2018-09-30 3
2018-12-31 4
Freq; Q-DEC, dtype: int64

upsampLing quoterty to Month
monthly = quaterly. asfreq('M')
monthly

2018-03-31 1.0
2018-04-30 NaN
2018-05-31 NaN
2018-06-30 2.0
2018-07-31 NaN
2018-08-31 NaN
2018-09-30 3.0
2018-10-31 NaN
2018-11-30 NaN
2018-12-31 4.0
Freq: dtype: float64

Figure 15.2 7: Using monthly frequency for upsampling and

downsampling

Now let’s see how we can achieve this in each case:

monthly - monthly,to_frame('baseline')
handLing missing values using forward fill
monthly^'ffill'] - quaterly-asfreq('M', method=*ffill *)
handling missing values using backward fill
monthly^'bfill'] = quaterly-asfreq(*H ‘, method=’bfill')
handling missing values with 0
monthlyf‘ffill‘= quaterly.asfreq(’M', fill_value=9)
monthly

baseline ffill bfilt

2018-03-31 1.0 1 1

2018-04-30 NaN 0 2

2018-05-31 NaN 0 2

2018-06-30 2.0 2 2

2018-07-31 NaN 0 3

Figure 15.2 8: Handling missing values

Now you will learn about the interpolate^ method. Pandas

dataframe.interpolate() function is basically used to fill NA values

in the dataframe or series. But this is a very powerful function to

fill the missing values. It uses various interpolation techniques to

fill the missing values, rather than hard-coding the value. To

understand the Pandas interpolate^ method, which Interpolates

values according to different methods, let’s take an example of a

new dataset:

if Import 6 inspect ifato
data^df ■ pd .readmesvf' E: /pg/bpb/BPB-Publications/DatasEts/t ire series/ s toe k_data/debt _un?TipLoyr-Ent .csv

pjf'5e_dat* s-["date']
ifidex_col-'date')

datajtf. iflfof)

(class 'pandas,Core.frame.DataFrame’>
CMtetiaelndeK: 89 entries, 2010-81-91 to 2917-05-01
Data coLunns {total 2 columns}:
Debt/GW 19 non*null flMHH
Unemployment S? non-null float&4
dtypes; float64(2)

Figure 15.2 9: Understanding interpolate^ method

Now we will interpolate debt/GDP and compare to unemployment,

as shown in the following screenshot:

interpolated = datadf.interpolate()
interpolated.info()

<class ’pandas.core.frame.DataFrame* >
Datetimeindex: 89 entries, 2010-01-01 to 2017-05-01
Data columns (total 2 columns):
Debt/GDP 89 non-null float64
Unemployment 89 non-null float64
dtypes: float64(2)

Figure 15.3 0: Interpolating dept/GDP

Later, we can visualize this as shown in the following screenshot:

Figure 15.31: Plot of the GDP and unemployment data

In the preceding plot, you can see Debt/GDP column of our

dataframe as a blue line, whereas Unemployment as a brown line.

From the plot, you can understand that Debt/GDP rate is

increasing with some variation between 2015 and 2016, while

Unemployment is decreasing steadily since 2010.

So far, we have done upsampling, fill logic, and interpolation.

Now we will learn how to do downsampling. For downsampling,

you can choose options like mean, median, or last value to fill

the missing values. For understanding this, let’s work on the air

quality dataset:

ozone_df - pd. read_c sv (' E: I pg/ bpb/BPB * pu b11cat ions /Data 5 ets/t 1 me sen les /al r_q:ua 11 ty_dat a/oronejiyla, c sv
parse dates-['date'], index_col-‘date'}

nzone_df.into

<class 'panda?-tore.frame.Data?name')
Daretimelhtfea: 6291 entries, 2M0-ttl-Ol to 2017-03-Ji
Data columns (total 2 columns):
Los Angeles 54Sfi non-null float64
Hew vark 6157 non-Fiull float54
dtypes: float64(2)

Figure 15.32: To understand how to do downsampling

First, we calculate and plot the monthly average ozone trend, as

shown in the following screenshot:

Figure 15.33: Calculating and plotting monthly average ozone trend

Next, we calculate and plot the annual average ozone trend, as

shown in the following screenshot:

Figure 15.34: Calculating and plotting annual average ozone trend

You can easily see how changing the resampling period changes

the plot of the time series.

Now you can compare higher-frequency stock price series to lower-

frequency economic time series easily. As a first example, let’s

compare the quarterly GDP growth rate to the quarterly rate of

return on the (resampled) Dow Jones Industrial index of 30 large

US stocks. GDP growth is reported at the beginning of each

quarter for the previous quarter. To calculate matching stock

returns, you’ll resample the stock index to quarter start frequency

using the alias and aggregating using the .first() observations, as

shown in the following screenshot:

i? Import and inspect gdp_$roirth
RdP_grpHt h ■ pd. rea d_c s v (' E: /pg(bpb/ B P B - Put 1 i c a t io n s/Dat a set s/t i mepe r i /s toe k_dat a/g d p grout h. c S v

parse dates- ["date'], index_col- 'date')
gdp^growth.info()

ff Import and inspect djio
d jiP • pd.rEaducsv(’E:/pg/bpb/eP6-P^lbl3cations/Datasets/ti=ese^ies/5to<;k:_d3taZdjia.csv, ,

parse^dates-f’date’J, index_coi-'date'}
djia.infpQ

CclasS ' pandas .core, franc .DataF rente' >
DatetimeIndex: 41 entries, IDS?-01’01 to 2317-01-01
Data columns (total 1 columns):
gdp_groutb 41 non-null floated
dtypes: floatM(l)
menory usage: 656,0 bytes
eclass ' pandas, core, frane. Oat aF rente' >
Datetimelndex: Z6I0 entries, 2007-36-29 to 2317-06’29
Data columns (total 1 columns):
djia 2S19 non-null float64
dtypes: #loat64(l)
memory usage: 4@,g K&

Figure 15.3 5: Loading gdp growth and DJI datasets

Since we have stored the data as a dataframe, let’s calculate the

quarterly return and plot it with respect to GDP growth, as shown

in the following screenshot:

Calculate djia quarterly returns
djia_quarterly = djia.resample(QS').first()
djia_quarterly„return » djiaquarterly.pct_change().mid(10Q}

if Concatenate, rename and plot djia_quarterly_return and gdp_growth
data = pd-concat([gdp_groHth, djia_quarterly_return], axis=l)
data.columns = ['gdp'j "djia']

data.plot()
plt.show();

2007 2009 2011 2013 2015 2017
date

Figure 15.3 6: Calculating quarterly return and plotting with GDP

growth

Let’s explore how the monthly mean, median, and standard

deviation of daily S&P500 returns have trended over the last 10

years. In this example, we will aggregate the mean, median, and

standard deviation with resample() method:

? Import data
sp5G6 = pd.read_csv('Ei/pg/bpb/SPB-Publications/Datasots/tinieset'ios/stcck-data/sp^e.csv',

parse_dates»['date'], index_col* "date‘J

Calculate cfaity returns here
daily_r&turns = spS^O,squeeze().pct_change()

* Resampte and caLcutote statistics
stats ■ daily_returns*resampie(’H')*agg([’mean’., 'median't ’std’])

stats.plot()
pit.show()

005

004

003

002

00 J

coo

“O.oi

Me

Figure 15.3 7: Aggregating mean, median, and standard deviation with

resample() method

From the preceding plot, you can easily see the statistical average

methods like mean as a blue line, green as standard deviation,

and orange as median of daily S&P500 returns in the last 10

years.

ZOOB 2009 2010 2011 2012 2013 2014 2015 2010 2017

Conclusion

In this chapter, you have learned how to manipulate and visualize

time-series data. If you practice the preceding exercise in your

notebook, time-series data is no more difficult for you to

understand. But to know more, you need to practice more with

new data. The learning from this chapter will definitely help you

when you work with stock price prediction or weather prediction

or sales data. In the next chapter, you will learn different time­

series forecasting machine learning methods.

CHAPTER 16

Time-Series Methods

In the previous chapter, you learned the techniques of

manipulating and visualizing varying types of time-series data

analysis. In this chapter, you will learn about the various time­

series forecasting methods using the statsmodels library. These

statistical techniques are important to know before applying any

machine learning model on time-series data. You will learn

different APIs of this library to forecast time-series, by working on

different examples. Having a working code example as a starting

point will greatly accelerate your progress, when you apply these

methods with machine learning models. You can find all the

examples mentioned in this chapter in a notebook named, Time

Series Methods.ipynb .

Structure

What is time-series forecasting?

Basic steps in forecasting

Time-series forecasting techniques

Forecast future traffic to a web page

Conclusion

Objective

After studying this chapter, you will be familiar with the various

time-series forecasting methods and apply the techniques to

forecast any time-series problem.

What is time-series forecasting?

Time-series forecasting is an important area of machine learning,

because there are so many prediction problems present in this

world that involve a time component. Since Time-series adds an

explicit order dependence between observations - time dimension,

this additional dimension is both a constraint and a structure that

provides a source of additional information. Making predictions is

called extrapolation in the classical statistical handling of time­

series data. More modern fields focus on the topic and refer to it

as time-series forecasting.

Forecasting involves taking models to fit on historical data and

using them to predict future observations. An important distinction

in forecasting is that the future is completely unpredictable and

must only be estimated from what has already happened. Some

examples of time-series forecasting are as follows: forecasting the

closing price of stock each day, forecasting product sales in units

sold each day for a store, forecasting the number of passengers

through a train station each day, forecasting unemployment for a

state each quarter, forecasting the average price of petrol in a city

each day, etc.

Basic steps in forecasting

Famous statisticians and econometricians, Dr. Hyndman and Dr.

have summarized 5 basic forecasting steps, which are as follows:

business The careful consideration of who requires the forecast

and how the forecast will be used.

Information The collection of historical data to analyze and model

data. This also includes getting access to domain experts and

gathering information that can help to best interpret the historical

information, and ultimately the forecasts that will be made.

The use of simple tools, like graphing and summary statistics, to

better understand the data. Review plots and summarize and note

obvious temporal structures, like trends seasonality, anomalies like

missing data, corruption, and outliers, and any other structures

that may impact forecasting.

Choosing and fitting Evaluate two, three, or a suite of models of

varying types on the problem. Models are configured and fit to

the historical data.

Using and evaluating a forecasting The model is used to make

forecasts and the performance of those forecasts is evaluated and

the skill of the models estimated.

The preceding basic steps are very useful and effective, so always

remember and apply the same whenever you deal with time-series

data.

Time-series forecasting techniques

The statsmodels library has many methods for time-series

forecasting. You must know some of these time-series

methods/techniques, because you will not get better accuracy by

only applying a machine-learning algorithm to a time-series data.

The following are some common techniques, which we will cover

in this chapter:

Autoregression (AR)

Moving Average (MA)

Autoregressive Moving Average (ARMA)

Autoregressive Integrated Moving Average (ARIMA)

Seasonal Autoregressive Integrated Moving-Average (SARIMA)

Seasonal Autoregressive Integrated Moving-Average with Exogenous

Regressors (SARIMAX)

Vector Autoregression Moving-Average (VARMA)

Holt Winter’s Exponential Smoothing (HWES)

Autoregression (AR)

Autoregression is a time-series model that uses observations from

previous time steps as input to a regression equation to predict

the value at the next time step. An autoregression model makes

an assumption that the observations at previous time steps are

useful to predict the value at the next time step. This relationship

between variables is called correlation. If both variables change in

the same direction (e.g., go up together or down together), it is

called a positive correlation. If the variables move in opposite

directions as values change (e.g., one goes up and one goes

down), then it is called a negative correlation. The method is

suitable for univariate time-series without trend and seasonal

components. The following is an example of using Autoregression

model using statsmodels library’s API:

Autoregression(AR) exampLe
from statsmodels.tsa.ar_model import AR
from random import random
create a sampLe dataset
data ® [a + random() for a in range(lj 100)]
fit modeL
model = AR(data)
modelfit = model.fit()
make prediction
prediction = model_fit.predict(len(data), len(data))
prediction

array([100.6504S61])

Figure 16. 1: Example of using Autoregression model

In the preceding code cell, we fit the unconditional maximum

likelihood of an AR process using statsmodels.tsa.ar_model.AR.fit()

and later we return the in-sample and out-of-sample prediction

using the predict() method. The predict() method takes the first

argument as the starting number of forecasting and second

argument takes a number where you want to end the forecasting.

In our case, the autoregression model has predicted values as

100.65 for a sample dataset.

Moving Average (MA)

This algorithm helps us to forecast new observations based on a

time-series. This algorithm uses smoothing methods. The moving

average algorithm is used only on the time-series that DON’T

have a trend. This method is suitable for univariate time-series

without trend and seasonal components. It consists of making the

arithmetic mean of the last n observations contained by the time­

series to forecast the next observation.

We can use the ARMA class to create an MA model and set a

zeroth-order AR model. We must specify the order of the MA

model in the order argument, as shown in the following

screenshot:

Moving Average(MA) exampLe
from statsmodels.tsa.arima model import ARMA
from random import random
create a sampte dataset
data = [a + random() for a in range(l_, 100)]
fit modei
model = ARMA(data> order=(0, 1))
model_fit = model.fit(disp=False)
make prediction
ma_predict = model_fit.predict(len(data), len(data))
ma_predict

array([75.32920306])

Figure 16. 2: Order of MA model in order argument

In the preceding code cell, we have fitted the MA model by exact

maximum likelihood via Kalman filter using

statsmodels.tsa.arima_modeLfit() method with disp as a false

parameter, and later we have returned the in-sample and out-of­

sample prediction using the predict() method. In our sample

dataset example, we are getting moving average prediction as

Autoregressive Moving Average (ARMA)

In ARMA forecasting model, both autoregression analysis and

moving average methods are applied to well-behaved time-series

data. ARMA assumes that the time-series is stationary and

fluctuates more or less uniformly around a time-invariant mean.

Non-stationary series needs to be differenced one or more times

to achieve stationarity. ARMA models are considered inappropriate

for impact analysis or for data that incorporates random shocks:

ARMA exampLe
from statsmodels.tsa.arimamodel import ARMA
from random import random
create a sample dataset
data = [randomO for x in range(i, 100)]
fit model
model = ARMA(data> order=(2> 1))
modelfit = model.fit(disp=False)
w make prediction
armapred = modelfit.predict(lentdata), len(data))
arma_pred

array([0.58318755])

Figure 16. 3: ARMA model example

In the preceding code cell, we have fitted ARIMA (p,d,q) model by

exact maximum likelihood via Kalman filter using

statsmodels.tsa.arima_model.fit() method, and later we have

returned the in-sample and out-of-sample prediction using the

predict() method. Here disp argument controls the frequency of

the output during the iterations. The predict() method forecasted

0.58 as the prediction of our sample dataset.

Autoregressive Integrated Moving Average (ARIMA)

ARIMA method combines both Autoregression and Moving Average

methods, as well as a differencing pre-processing step of the

sequence to make the sequence stationary, called integration

ARIMA models can represent a wide range of time-series data and

are used generally in computing the probability of a future value

lying between any two limits. Although this method can handle

data with a trend, it does not support time-series with a seasonal

component. ARIMA models are denoted with the notation ARIMA

(p, d, q). These three parameters account for seasonality, trend,

and noise in data.

ARINA example
from statsmodels.tsa.arimamcdel import ARIMA
from random import random

create a sample dataset
data = [x + random() for x in rangefi., 199)]
ff fit model
model - ARjMA(data, order-Cl, 1, 1))
model_fit = model.fit(disp^False)
ff make prediction
arimaj?red = model_fit.predict(len(data), len(data), typ-’levels')
arima pred

array(I10e.57016293])

Figure 16. 4: ARIMA model example

In the preceding code cell, we fit the ARIMA (p, d, q) model by

exact maximum likelihood via Kalman filter, and then predicted it’s

ARIMA model in-sample and out-of-sample using .predictQ

method.

Seasonal Autoregressive Integrated Moving-Average (SARIMA)

An extension to ARIMA that supports the direct modeling of the

seasonal component of the series is called SARIMA. SARIMA

model combines the ARIMA model with the ability to perform the

same autoregression, differencing, and moving average modeling at

the seasonal level. This method is suitable for univariate time­

series with the trend and/or seasonal components. The big

difference between an ARIMA model and a SARIMA model is the

addition of seasonal error components to the model:

SARIMA example
from statsmodels.tsa.statespace.sarimax import SARIJ4AX
from random import random
create a sample dataset
data = [x + randomf) for x in rartge(l, 160)]
fit model
model = SARlMAX(data, order^f!, 1, 1), seasonal_order=(lJ 1, 1, 1))
model_fit = model, fit (dispraise)
make prediction
sarimapred = model_fit,predict(len(data)j len(data))
sarima_pred

array([100.5407515])

Figure 16. 5: SARIMA model

In the preceding code cell, we have fitted the model by maximum

likelihood via Kalman filter, and then we have returned the fitted

values using predict() method. Here the SARIMAX method has

one extra argument - which has 4 parameters. The (p, d, q, s)

order of the seasonal component of the model are for AR

parameters, differences, MA parameters, and periodicity.

Here d must be an integer indicating the integration order of the

process, while p and q may either be an integers indicating the

AR and MA orders (so that all lags up to those orders are

included) or else iterables giving specific AR and/or MA lags to

include. s as an integer giving the periodicity (number of periods

in season), often it is 4 for quarterly data or 12 for monthly data.

The default is no seasonal effect. Next, you will see the same

SARIMA model with an X factor.

Seasonal Autoregressive Integrated Moving-Average with Exogenous

Regressors (SARIMAX)

The SARIMAX model is an extension of the SARIMA model that

also includes the modeling of exogenous variables. Here,

exogenous variables are also called covariates and can be thought

of as parallel input sequences that have observations, and at the

same time steps as the original series. The method is suitable for

univariate time-series with the trend and/or seasonal components

and exogenous variables:

ejcoflrpte
from statsmodels.tsa.statespace.sarimax import Sarimax
front random import random

create datasets
datai ■ [x + random() for x in rangefi^ 100)]
data2 • [x + randomO for X in range(191, 200)]
ft fit trtodeL
model = SARIflAXfdatal, exog=:data2J order=(1^, lf 1), seasonal_order«(0f 0j 0))
model^fit ■ model * fit(disp-False)
fif make prediction
exog2 - [200 + randoin()]
sarimax pred - wodel_fit.predict(len(datal)len^datai), exogB[exog2])
sarimax_pred

array([100.09306379])

Figure 16. 6: SARIMAX method

Consider an example of food supply chain research. During the

retail stage of the food supply chain food waste and stock-outs

occur mainly due to inaccurate sales forecasting, which leads to

the inappropriate ordering of products. The daily demand for a

fresh food product is affected by external factors, such as

seasonality, price reductions, and holidays. In order to overcome

this complexity and inaccuracy, while doing sales forecasting, try to

consider all the possible demand influencing factors. SARIMAX

model tries to account all the effects due to the demand

influencing factors to forecast the daily sales of perishable foods

in a retail store; it is found that the SARIMAX model improves

the traditional SARIMA model.

Vector Autoregression Moving-Average (VARMA)

The VARMA method models the next step in each time-series

using an ARMA model. It is the generalization of ARMA to

multiply parallel time-series, e.g., multivariate time-series. The

method is suitable for multivariate time-series without trend and

seasonal components:

1Z4WM exampLe
from statsmodels.tsa.statespace,varmax import VARI-IAX
from random import random
create dataset with dependency
data = list()
for i in rangefieo):

vl = random()
v2 - vl + randomf)
row = [vl, v2]
data.append(row)

fit modeL
model = VARMAX(data, order=(l, 1))
model_fit = model.fit(disp-False)
make prediction
varma_pred = model_fit,forecast()
varma_pred

array([[0.58299814, 1.10249435]])

Figure 16. 7: VARMA method

From the preceding code example, you can see that the VARMAX

class in statsmodels allows estimation of and VARMA models

(through the order argument), optionally with a constant term (via

the trend argument). Exogenous regressors may also be included

(as usual in by the exog argument), and in this way, a time trend

may be added. Finally, the class allows measurement error (via the

measurement_error argument), and allows specifying either a

diagonal or unstructured innovation covariance matrix (via the

error_cov_type argument).

Holt Winter’s Exponential Smoothing (HWES)

The Holt Winter’s Exponential Smoothing also called the Triple

Exponential Smoothing method, models the next time step as an

exponentially weighted linear function of observations at prior time

steps, taking trends and seasonality into account. The method is

suitable for univariate time-series with the trend and/or seasonal

components:

HWFS example
from statsmodels.tsa.holtwinters import Exponentialsmoothing
from random import random
create dataset
data = [x + random() for x in range(l_, 100)]
fit model
model = ExponentialSmoothing(data)
model_fit = model.fit()
make prediction
hwes^pred = model_fit-predict(len(data), len(data))
hwes_pred

array([99.90409631])

Figure 16. 8: HWES method

Exponential smoothing promises you the possibility of peeking into

the future by building models, with which you can solve the

following kind of problems - How many iPhone XR will be sold in

the first 7 months? What’s the demand trend for Tesla after Elon

Musk smokes weed on a live show? Will this winter be warm?

Forecast future traffic to a web page

Now it’s time to apply the learnings from this and the previous

chapter to an actual time-series problem. In the following exercise,

your goal is to forecast future traffic to Wikipedia pages. You can

download the dataset required to form this exercise from our

repository. Let’s start our analysis by loading the dataset:

train, - pd.readi_csv(’E:/pg/bpti/BPB-Putilitaticins/Datasets/ti*fleseries/'wlki/trairt_ l.csv’).fillria(e)
train.head()

Page 2045
07-01

2015
07-02

2015
07-03

2015­
07-04

2015­
07-05

2015­
07-06

2015­
07.07

2015
07-06

2015­
07-09 "

2016­
" 12-22

2016­
12-23

0 2NE i_2iYv4kipedia.w-g_aii-
attass_spidar 16.0 110 5.0 130 140 0.0 0.0 22 0 26.0 . 32.0 63.0

1 2PM_ZTi wlapedra.org.all-access.spKfer 11.0 14.0 150 lft.0 110 13.0 22.0 11.0 10.0 . . 17.0 42 0

2 3C_*h k; peciiii Qrg_aU-attsss_spWef 1.0 00 1 0 1 0 00 4 0 0.0 30 40 , 3,0 1.0

3 4minule_2?i v.ikip0dia.<w-g_all-
MCK5_spitfer 35.0 13.0 10.0 94.0 40 26 0 14.0 9.0 11.0 .. . 32.0 10 0

4 52 H’ I Lave Yau 2h.wdapedia.«o all-
apcfrss_s. . 0.0 0.0 00 00 00 00 0.0 0.0 0,0 .. . 46.0 9.0

5 rows x 551 columns

Figure 16. 9: Loading the dataset

The training dataset has 5 rows and 551 columns. Let’s first find

how language affects web traffic. For this, we will use a simple

regular expression to search for the language code in the

Wikipedia URL. First, import the re library, and then follow this

code:

def get_language(page):
res = re.search('[a-z][a-z].wikipedia.org',page)
if res:

return res[0][0:2]
return *na*

trainf* lang’] = train.Page.map(get_language)
from collections import Counter
Counter train.lang

Counter({’de* : 18547,
' en ‘: 24108,
' es ’: 14069,
'fr': 17802,
•ja‘: 20431,
na: 17855,
’ ru': 15022,
' zh': 17229})

Figure 16.1 0: Searching language code using regular expression

For each language, Wikipedia has different pages. To make our

analysis easy, we will create dataframes to hold each language, as

shown in the following screenshot:

lang_sets['de'] = train[train.lang=='de'J.iloc[:,B:-1]
lang_er['en'] - train [tram, lang--’en'].iloc[-1J
lang_sets["es"] = train[train.lang=-"es'].iloc[:,0:-1]
lang sets[fr'] - traiii[train* lang-.'fr'].iloc[:,0:-1]
lang_sets['ja‘] = train[train.lang=='ja'J.iloc[:,S:-1]
lang_$ets[na'] g traxn[train*lang-- na'].lloc[:,0: 1]
lang_sets['ru'] = train[train.lang=='ru'].ilocf:,0:-1]
lang_sets[’zh■] - train[train.lang--zh'].iloc[:,0:-1)

sums ■ (>
■for key in lang sets:

sumsfkey] ■ langsetspcey].iloc[:,i:J.suin(axisB0) / lang_sets[key]* shape O

Figure 16.1 1: Creating dataframes to hold each language

Let’s plot all the different sets on the same plot to know how the

total number of views changes over time:

days = [r for r in range(sums['en'J.shape[0])]
fig = pit.figure(l^figsize=[10,10])
pit,ylabel(‘Views per Wiki Page’)
pit.xlabel('Day’)
pit.title(’Wiki Pages in Different Languages*)
labels={' en':’English', ' ja ‘: 'Japanese’,'de'i’German',

' na' : ’Media *, *fr ’: ‘French'/zh': 'Chinese' t
'ru':’Russian'j *es ':’Spanish*

}

for key in sums:
pit.plot(days,sums[key],label = labels[key])

pit-legend()
pit.show

Figure 16.1 2: Plotting different sets on same plot

Figure 16.13: Wiki pages in different languages

From the preceding plot, you can deduce the following - English

shows a much higher number of views per page. This is expected,

since Wikipedia is a US-based site. The English and Russian plots

show very large spikes around day 400. There’s also a strange

pattern in the English data around day 200. The Spanish data

(see the green line) is very interesting as well. There is a clear

periodic structure there, with a ~1-week fast period and what looks

like a significant dip around every 6 months or so.

Since it looks like there is some periodic structure here, we will

plot each of these separately, so that the scale is more visible.

Along with the individual plots, we will also look at the magnitude

of the Fast Fourier Transform because Peaks in the FFT show us

the strongest frequencies in the periodic signal. You can import

the fft from the calculate the magnitude of fft using as shown in

the following screenshot:

from scipy.fftpack import fft
def plot_with_fft(key);

fig = pit.figure(i,figsite-[l&,5])
plt.ylibel("Vieus per Page’)
plt.xlabei('Day')
pit.title'labels[key])
pit.plot'days,sums[key],label = labels[key])

fig = pit,figur&(2,figsite-[IS,5])
fft_complex = fft(sums[key])
fft_mag • [np. sqpt(np.real(x)*np.real(x) i-np.ifliag(x)J,np. imag(x)) for X in fft_con>plex]
fft_xvals - [day 1 days[-l] for day in days]
npts - len(fft_xwls) H 2 + 1
fft^mag » fft_nag[inptsJ
fft_XvilS - fft_xvals[;tipts]

plt.ylabei(’FFT Magnitude’)
pit.xlabel(r"Freqijency [days] JJ’l{-ajS")
pit.title'-Fourier Transform’)
plt.plot(fft_xvals[l:],fft_mag[llabel • ldbels[key])
pit. axvline(x-l. !~1, color-' red ’, alpha-0.3)
pit.axvline(x-2./7,color-’red’,alpha-®.3)
pit axvline(x-3.77,color- ’red ’,alpha-0.3)

pit.show()
for key in suns;

plot_with_fft key

Figure 16.14: Oce snippet for FFT magnitude

For the ease of understanding, I am only showing the German

plot; rest you can see in your notebook:

Figure 16.15: German plot

Once you see all the plots in your notebook, you will find the

following insights - the Spanish data has the strongest periodic

features compared to most of the other languages. For some

reason, the Russian and media data do not seem to reveal any

pattern. I plotted red lines, where a period of 1, 1/2, and 1/3­

weeks’ patterns would appear. We see that the periodic features

are mainly at 1 and 1/2 weeks. This is not surprising, since

browsing habits may differ on weekdays compared to weekends,

leading to peaks in the FFTs at frequencies of n/(i week) for

integer

We’ve learned now that not all page views are smooth. There is

some regular variation from day to day, but there are also large

effects that can happen quite suddenly. Most likely, a model will

not be able to predict the sudden spikes, unless it can be fed

more information about what is going on in the world that day.

Now we will look at the most popular pages, which will generally

be the main pages for the languages in this dataset. We will loop

over the language sets using for loop, and then look over the

pages using the key Pages for each language. After calculating the

total, we will sort the results in the descending order. The

following function will do this for us:

For each Language get highest few pages
npages = 5
top_pages = {}
for key in lang_sets:

print(key)
sumset = pd.DataFrame(lang sets[key][['Page']])
sum_set[‘total*] » langsetsfkey].sum(axis=l)
sumset = sumset.sort_values('total* ^ascending^False)
print(sum_set.head(10))
top_pages[key] - sum_set.index[0]
print(*\n\n')

Figure 16.16: Most popular pages code snippet

The preceding cell will generate popular pages’ list for all

languages; here is an example of the German language:

de
Page total

139119 Wikipedia:Hauptseitede.Wikipedia.orgall-acce... 1.683934e+09
116196 Wikipedia iHauptseitede.wikipecfia.orgmobile-w... 1.1126S9e+09
67049 Wikipedia:Hauptseite_de.wikipedia.org_desktop_... 4.269924e+08
140151 Spezial:Suche_de. wikipedia. or*g_all-access_all-. .. 2.2342596+08
66736 Sp&zialtSuchede.wikipedia.org desktop all-agents 2.196368e+0S
140147 Spezial7Anmelden_de.wikipedia.org„all-acce£s_a... 4.029181e+07
138800 Special:Search_de.Wikipedia.orgall-accessall... 3.988154e+07
68104 Spetial:Anmelden_de.wikipedia.org_desktop_all-... 3.535S23&+07
68511 SpecialiMyPage/toolserverhelfer'leinconfig. js_d... 3.258496e+07

Figure 16.17: Popular pages of German language

zialtSuchede.wikipedia.org

Let’s analyze more! We have seen earlier, the the statsmodels

package includes quite a few tools for performing time-series

analysis. Here, I’ll show the autocorrelation and partial

autocorrelation for the most-viewed page for each language. Both

methods show correlations of the signal with a delayed version of

itself. At each lag, the partial autocorrelation tries to show the

correlation at that lag after removing correlations at shorter lags:

Figure 16.18: autocorrelation and partial autocorrelation

In most cases, you will see strong correlations and anticorrelations

every 7 days due to weekly effects. For the partial autocorrelation,

the first week seems to be the strongest, and then things start

settling down:

Figure 16.19: Partial autocorrelation

Let’s apply one of the classical statistical forecasting methods -

the ARIMA model -for a small set of pages and then we will see

the insights we get from these plots:

cols = train.columns[l:-1]
for key in top_pages:

data » np.array(train.loc[top_pages[key]jCols]/f*)
result = None
with warnings.catch_warnings():

warnings.filterwarnings('ignore’)
try:

arima ■ ARIMA(data,[2,1^4])
result » arima.fit(disp-False)

except:
try:

arima = ARIMAfdata^(2^1,2])
result - arima.fit(disp-False)

except:
print(train.loc[top_pages[key]j'Page'])
print('\tARIMA failed’

pred » result,predict(2J599Jtyp-'levels')
X - [i for i in range(60G)]
i=e

pit.plot(x[2:len(data)],data[2:] ,label-'Data')
pit.plot(x[2:],pred,label-'ARIMA Model')
pit.title(train.loc[top_pages[key],‘Page'])
pit.xlabel(‘Days’)
pit.ylabel(‘Views’)
pit.legend()
pit.show()

Figure 16.20: ARIMA model applied

The preceding code will plot the data as a blue line and the

ARIMA model will be denoted as the orange line for each

language. Some of the plots will look like the following

screenshots. You can see the rest of the plots in your notebook:

Figure 16.21: ARIMA model denoted in orange line

3ai[£pBHa a jCTpantiuanj .Wikipedia orgall-accessall-agents

Vi
ew

s

Days

Figure 16.22: ARIMA model vs Data plot example

Figure 16.23: ARIMA model vs Data plot example

Take a good look at all the plots, and you will understand that

the ARIMA model, in some cases, is able to predict the weekly

substructure of the signal effectively. In other cases, it seems to

just give a linear fit. This is potentially very useful in the weekly

substructure of the signal.

What will happen when you just blindly apply the ARIMA model

to the whole dataset? Try this and you will see that the results

are not nearly as good as just using a basic median model.

Conclusion

The time-series method of forecasting is the most reliable, when

the data represents a broad time period. Information about

conditions can be extracted by measuring data at various time

intervals - e.g., hourly, daily, monthly, quarterly, annually, or at any

other time interval. Forecasts are the soundest when based on

large numbers of observations for longer time periods to measure

patterns in conditions. To get more confidence, start working on

any new stock or weather dataset, and apply this chapter’s

learnings in forecasting. In the next chapter, you will go through

various case study examples.

CHAPTER 17

Case Study-1

In the previous chapters, you have learned the basics and some

advanced concepts, with the help of real-world data science

problems. To begin the journey of a data scientist, as I mentioned

earlier, the more you practice your learning, the more you will

gain confidence. Let us work on some case studies covering the

application of supervised and unsupervised machine learning

techniques. These case studies will walk you through different

business domains and give you a grip as a data scientist.

Predict whether or not an applicant will be able to repay a loan

Your goal: In our first study, you work for an insurance client and

help them implement a machine learning model to predict the

probability of whether or not an applicant will be able to repay a

loan.

Your client: Your client is an international consumer finance

provider with operations in 10 countries.

About dataset: The client has given his datasets having static data

for all applications. One row represents one loan in their data,

which you can download from our repository.

Our baseline ML models: In this example, I will apply logistic

regression and random forest algorithms.

Since the objective of this competition is to use historical loan

application data to predict whether or not an applicant will be

able to repay a loan, this is a standard supervised classification

task. Let’s import all required basic libraries and read the datasets:

u Ituffpy flritf parMctf for tffltCJ
import numpy at np
import pandas as pd

ft sktearn preprocessing for dealing with categorical variables
from sklearn.preprocessing import LabelEncader

suppress jaemin^s
import warnings
warnings.fLiter-rjarnIngs(' ignore ')

’otpLottib and seaborn for plotting
import matplot1ib.pyplot as pLt
»atplotlib inline
import seaborn as Sns

* toad and explore training data
t rain_df - pd. read_c sv{'E:/pg/bpb/8PB-Public at1ans/Dat aset s/Case Studles/case_st udy_1/applic at Lon_t ra1n.csv")
prlntf"Training data shape: traln_df.shape}
train_df.head{)

Figure 17. 1: Importing basic libraries and the dataset

Training data shape: (307511, 122)

SKJD„CURR TARGET N AME.COHTRACT.TY PE CODE_GENDER FLAG_OWhl„CAR FLAG„OWN„REALTY

0 100002 1 Cash loans M N Y1 100003 0 Cash loans F N N

2 100004 0 Revolving loans M Y Y

3 100006 0 Cash loans F N Y

4 100007 0 Cash loans M N Y

5 rows x 122 columns

Figure 17. 2: Peek of the imported dataset

The training data has 307511 observations (each one a separate

loan) and 122 features (variables) including the TARGET (the label

we want to predict). Details related to every loan is present in a

row and is identified by the feature The training application data

comes with the TARGET indicating “0: the loan was repaid”, or

“1: the loan was not repaid”. Similarly, we will check the testing

dataset that is also provided in a separate file named

<t [mo1 end explore testing data
test_df - pd. reail_cSv('t: /pg/bpb/BPS-Public.ations/Datasets/'Case Studies/case_study_l/applicatlon_test. csv’)
print ("ret ting data mopo: t*it_df,sh*pt)
test.df-headfj

TtSTlnjj date sh*p«: (46744, 111)

FLAGwOWH_CAR FtAG.OWH.KEALTY CKT_CHILDften JUnjNQQME-TUTJU.SKJtl.CURR NAME„COHIRACr_TYPE COOE.GENDEiR
0 100 001 CasOkiins F N Y 0 135000 0

1 100005 Cash loans M N Y 0 99000.0

? 100013 Cash leant M t Y 0 202600 0

1 100023 Caeli Mans F N Y 2 315000 0

4 1M033 Cain loans M ¥ N 1 1BOOMO

5 rpw? x 121 csiumms

Figure 17. 3: Loading Testing dataset

In the next step, we will do Exploratory Data Analysis this is an

open-ended process, where we calculate statistics and make figures

to find trends, anomalies, patterns, or relationships within the

data. The target is what we are asked to predict: either a 0 for

the loan was repaid on time, or a 1 indicating the client had

payment difficulties. We will first examine the number of loans

falling into each category. Referring to the following plot, you can

say that this is an imbalanced class problem. It indicates more

loans were repaid on time compared to the loans that were

defaulted:

train_df['TARGET']■value_counts()

0 282586
1 24825
Name: TARGET, dtypei int64

0 means the loan was repaid on time
1 indicating the client had payment difficulties

train_df['TARGET'].astype(int).plot.hist()

cmatplotlib.axes.subplots.AxesSubplot at 0xl4ee2ebfc50>

250000 1

200000

§ 150000
O’
u

100000

50000 H

Figure 17. 4: Distribution of the target

Let’s examine the missing values. Here, we will look at the

number and percentage of missing values in each column by

writing a function. Remember, it is a coding standard to write

some common functionalities in a function:

If check number and percentage of missing values in each COluan
def missing_values_table(df):

Biis_val - df_isnuli().Sun() - To tat jntsitag vcrlues
mis_val_percent - 160 * dfxisnull().SUB() / len(df) # Percentage of .missing values
mi s_ valuable - pd.concat([mis_val, mls_val_per£erit), a^is-1) ■■ '.-lake a tabie with the results
nds_vsl_tablo_ren_tolumns - mis_val_table.rename(
columns ■ {0 : 'Hissing Values', it 'X of Total Values’}) * Rename the coturns

9 Sort the table by percentage of missing descending
mis_val_tablc_ren_columns - mis_val_t4bl*_ren_columr's[

mis_val_table_ren_eolumns.ilo-c[: ,1} !- 0],sort_values(
"X of Total Values’, astending-Fa Ise).round(1)

9 Print some sunwy information
print ("Your selected cfattframe has " t str(df.shape[l]:} t “ columns.\n“

"There are " + str(mi5_val_table_cen_columns,shape[$]) t
_ columns that have missing values,")

fieturn the datafrente tri th missing in/flrmation
return uiis_val_table_ren_columns

Figure 17. 5: Examining missing values

Now, we will apply the preceding function in training dataframe,

and fill these missing values later:

Missing vaiues statistics
missingvalues = missing_values table(train df)
missingvalues.head()

Your selected dataframe has 122 columns.
There are 67 columns that have missing values.

Missing Values % of Total Values

COMMONAREA_MEDl 214865 69.9

COMMONAHEA AVG 214865 69.9

COMMONAREA_MODE 214865 69.9

NONLiVINGAPARTMENTS„MEDI 213514 69.4

NONLMNGAPARTMENTS-MODE 213514 69.4

Figure 17. 6: Missing values statistics

Let’s now look at the number of unique entries in each of the

object (categorical) columns:

data types of each type of column
train^df.dtypes.value_counts()

float64 65
int64 41
object 16
dtype: int64

f? Number of unique classes in each object column
train_df.select_dtypes('object').apply(pd.Series.nunique, axis = G)

NAME_COFJTRACT_TYPE 2
CODEGENDER “ 3
FLAG_OWN_CAR 2
FLAG_OWN_REALT¥ 2
MAMETYPE—SUITE 7
NAMEJINCOME-TYPE 8
NAJ-1E_EDUCATIOR_TYPE 5
NAME-FAMILY-STATUS 6
namejkwsing_type 6
OCCUPATION_TYPE IS
WEEKDAY_APPR_PROCESS-START 7
ORGANIZATION-TYPE SS
FONDKAPREr-lOMT_MODE 4
HOUSETYPE-MODE 3
WALLSr-WTERIAL-MODE 7
EMERGENCYSTATE MODE 2

Figure 17. 7: Checking unique entries

Let’s encode these Categorical Variables or the preceding object

datatype columns. We will follow the following thumb rule - if we

only have two unique values for a categorical variable (such as

Male/Female), then label encoding method is fine, but for more

than 2 unique categories, one-hot encoding method is the safe

option to handle categorical features:

le « LabelEncoder()
le_count = &

for col in train_dft
if train_df[col].dtype == 'object':

If 2 or fewer unique categories
if len(list(train_df [col] .uniqueO)) <= 2:

Train on the training data
le.fit(train_df[co1]>
Transform both training and testing data
trairi_df [col] = le. transform (tr<ain_df [col])
test_df[col] - le.transform(test_df[colJ)
if Keep track of how many coLumns were tabet encoded
lecount += 1

print(‘%d columns were label encoded.' % le_count)

3 columns were label encoded.

Figure 17. 8: Handling categorical columns

one-hot encoding of categorical, variabl.es
train_df = pd.get_dummies(train_df)
testdf = pd.get_dummies(test_df)
print('Training Features shape: traindf.shape)
print('Testing Features shape: test_df.shape)

Training Features shape: (307511, 243)
Testing Features shape: (48744, 239)

Figure 17. 9: Shape of the data

variabl.es

One-hot encoding has created more columns in the training data

because there were some categorical variables with categories not

represented in the testing data. To remove the columns in the

training data that are not in the testing data, we need to align

the dataframes.

First, we extract the target column from the training data (because

this is not in the testing data, but we need to keep this

information). When we align, we must make sure to set axis = 1

to align the dataframes based on the columns and not on the

rows:

separate target variable
train_labels ■ train_d-F['TARGET 1]
ff combine the training and testing datoJ keep only columns present in both dotafratr.es
trainjlf, test_df - train_df.align(test_df, join = ’inner’, axis = 1)
add the target back in
train_df[’TARGET'] » trainlabels

print(’Training Features shape: trainjlf.shape)
print(’Testing Features shape: '* test_df,shape)

Training Features shape: (397S11, 240)
Testing Features shape: (46744, 239)

Figure 17.1 0: Preparing train and test data

Now the training and testing datasets have the same features

which are required for machine learning. One problem we always

want to lookout for before doing EDA is to find anomalies within

the data. These may be due to mistyped numbers, errors in

measuring equipment or that they could be valid but have extreme

measurements. One way to support anomalies quantitatively is by

looking at the statistics of a column using the describe method.

dotafratr.es

Try using the .describe() on DAYS_EMPLOYED column and see

what you find:

anomalous_tllents - train_df[triin_df[’DAYS-EMPUWfD'] -- 565243]
non^popmalou5„cllents * trainjif [train^cff [' OAY$_EuPLCrvfD'] 1- J6S243)
printf'The non-a noma lies default on Xe.ZfXX of loans' % (16& * non_anomalauS_tlients['TARGET]Lmean()J)
prints'The aiwiulias default on X9.2fXX of loans' X (105 * anomalous_cllents['target'Jrmean()j)
print('There are Xd anomalous days, of employment' X lenfanoma loused lent s))

The non-anomalies default on B.66K of loans
The anomalies default on S,49% of loans
There are 5S374 anomalous days of employment

Figure 17.1 1: Using .describe() method

It turns out that the anomalies have a lower rate of default.

Handling the anomalies depends on the exact situation, with no

set rules. One of the safest approaches is just to set the

anomalies to a missing value and then have them filled in (using

Imputation) before machine learning.

In our case we will fill in the anomalous values with not a

number and then create a new Boolean column indicating whether

or not the value was anomalous:

Create an anomatous ftag coLumn
traln_df[DAY5_EMPL0YED_ATOM') - train_df["CAYS_EMPLQ¥E[)"] “ 365243

RepLace the anomatous vatues with nan
train_df['DAYSEMPLOYED’].replace({365243: np.nanjj inplace - True)

Days Employment Histogram

train_df[DAYSEMPLOYED'].plot.hist(title - Days Employment Histogram')
pit.xlabel('Days Employment')
pit.show()

Days Employment

Figure 17.12: Days Employment Histogram

As an extremely important note, anything we do to the training

data, we also have to do to the testing data. Repeat the

preceding step in the testing dataset on your own. Now that we

have dealt with the categorical variables and the outliers, we’ll

look for correlations between the features and the target. We can

calculate the Pearson correlation coefficient between every variable

and the target using the .corr dataframe method:

Find corretations with the target and sort
correlations = trainjjf,corr()['TARGET’].sortvalues()
Disptay corretations
print(Most Positive Correlations:\n', correlations.tail())
print('\nMost negative Correlations:\n’r correlations.head())

Most Positive Correlations:
REGION_RATING_CLIENT 0.058899

REGION_RATING_CLIENT_W_CITY 0.660893
DAY5EHPLOYED 0.674958
DAYSJ3IRTH 0.078239
TARGET 1.000000
Name: target, dtype: floats

Most Negative Correlationsr
EXTSOURC E_3 -0.178919

EXTSOURC E_2 -0.160472
EXTSOURCEl -0.155317
NAf-1E_EDUCATION_TYPE_Higher education -0.656593
CODE_GEHDER_F -0.054704
Name: TARGET, dtype: float64

Figure 17.1 3: Using .corr dataframe method

Let’s take a look at some of the more significant correlations: the

DAYS_BIRTH is the most positive correlation (except for TARGET

because the correlation of a variable with itself is always 1!).

DAYS_BIRTH is the age in days of the client at the time of the

loan in negative days (for whatever reason!). The correlation is

positive, but the value of this feature is negative, meaning that as

the client gets older, they are less likely to default on their loan

(i.e., the target == That’s a little confusing, so we will take the

absolute value of the feature and then the correlation will be

negative:

Find the correiation of the positive days since birth and target
train_df['DAYS^BIRTH'] - abs(traindf['DAYS_BIRTH']>
train_df['DAYSBIRTH’].corr(train df['TARGET'])

-6.67323930830982712

Figure 17.1 4: Finding correlation of positive days since birth and target

As the client gets older, there is a negative linear relationship with

the target meaning that as clients get older, they tend to repay

their loans on-time more often. Let’s start looking at this variable.

First, we can make a histogram of the age. We will put the X-axis

in years to make the plot a little more understandable:

pit.hist(train_df[DA¥S_BIRTH'] / 365, edgecolon - 1k‘, bins = 25)
pit.title('Age of Client*); pit.xlabel(‘Age (years)'); pit.ylabel(’Count')
plt.show()

Figure 17.15: Age of client

By itself, the distribution of age does not tell us much more than

that! There are no outliers (no age more than 70 years) as all the

ages are reasonable. Next, we will try two simple feature

construction methods for feature engineering: polynomial features

and domain knowledge features. Polynomial models are a great

tool for determining which input factors drive responses and in

what direction. In the polynomial method, we make features that

are powers of existing features as well as interaction terms

between existing features, and in domain knowledge, we use our

logic specific to a domain:

fake a new dataframe for polynomial features
poly_features ■ train_df[(lext_source..l', 'ext.,sojrce_2', 'ext_source_3‘, ■da¥S..birth' , 'target"]]
polyjwtures_t«t - test_df((7Exr_souhce_1\ 7ext_swrce_2‘ , 7ext source_3\ ‘cays_birth’]]

insurer for handling ntfssing voices
frqm sklearn.preprocessing import Imputer
imputer - Inputer(strategy £ 'median')

poly_tsrget - poly featuresf TARGET ’]

poiy_features - pblyjfmatureS.drOp{eollimns - ('TARGET'])

c Need to impute missing values
pbly_fea tu res - imput er . f it_t ra n S f c r.n (eatu re s)
poly_jfeatures_test ■ imputer-transform(poly_festures_test)

from s!ilearn. preprseesstrig import PolyrtemialFeatures
poly transformer w PolynomialFeatures (degree ■ 3)

Figure 17.16: New dataframe for polynomial features

Train the potynomiat features
poly _transf ormer.-Fit (poly_features)
#■ Transform the features
poly_featLtres = poly_trans^ormer. transform(poly_features)
polyjfeaturos iest » poly transformer.transform(poly featuresjtest)
print('Polynomial Features shape: \ poly features.shape)

Polynomial Features shape: (B07Sllj 35)

Figure 17.17: Training and transforming polynomial features

The preceding code will create a considerable number of new

features. To get the names, you have to use the polynomial

features get_feature_names() method. In this method, pass the

input features’ names and it will show the output as follows:

r get the reraei
poiy_transformer.4«r_feature_iwffles(inpijt_featiires - ['EXT_5MJftCS_l', 'EXT_S(WR£E_1 *. ’EXT_SC<'PC£_J'. 'WTS-BIftTM' J>[:1S]

IT.
’EXT.WUflCE.l',
' EJiT-SOjSCE _1 ■,
EXT_S<XJKE_3',

' OA¥S_B IRTH',
’EXT_SCURCE_1*2'
" EXT_SCXJRCE_1
■ EXT_SCXJFICE_1
' EKT_SO(JfiCE_l
,EXT_MUACt„2-'i\
'EXT.SCUfiCE.t 6Xr_4**«.i',
LEXT_SOUHCE 2 MY5_EmTH'H
■EXT_Sft*C£_3*r,
■ ExT^WUfiCE.3 DAv5._»iaTW,

EXT_54XfflCE_2’
£XT_S0U«CE_3J
M¥5 amin',

Figure 17.1 8: Getting names of new features

There are 35 features with individual features raised to powers up

to degree 3 and interaction terms. Now, we can see whether any

of these new features are correlated with the target:

~ Create a datafrare of the features
poly_-features - pd.OataFrose(paly_features,

column? ~ poly_transformer.get_fe3ture_names{[’EXT SOURCE lr, ' EXT_StAJftC£ _2 ' t
■6xrS0UR«Zr, □AYS-9IHTH'])}

Add <o the forget
poly_features[’TARGET’] 8 poly_target

w Ftrttf tfte carreieticrts n-Ttfi the target
poly_corrs ■ poLy_fEatures.rorr()(’TAKLEI"J□aort_VBluea()

DtSpEoy most negcrtivie and most positive
pri nt(paly_corrs.head())
print(po Ly-torr s,tai10)

EXI_5OUR€E_2 EKT_5OURCE_3 -fl.193939
EXI_SfXJRCE_l EXT..SOURCE_2 EXT_SDURCE_3 -0.189665
EXT-SWCEJ EXT2SOUKE_3 WW3_£imH -6,181183
EXT_STXJR<E_2'‘2 EXT_50URCE_3 -6,176423
EX3-SOURCE_2 EXT„S0URCE_3'2 -O.1722S2
Wane; TARGET, dtypai fjpatpi
DAV5_BIRTH -0.078239
pAVS_BIRTH''2 -0.076621
M¥5_BIRTH'-3 -0.074273
TARGET 1.000000
1 NaN
Name: TARGET, dtype: flea 164

Figure 17.1 9: Checking correlation between target and input features

Most of the new variables have a greater (in terms of absolute

magnitude) correlation with the target than the original features.

When we build machine learning models, we can try with and

without these features to determine if they help the model learn.

We will add these features to a copy of the training and testing

data and then evaluate models with and without the features

because many times in machine learning, the only way to know if

an approach will work is to try it out:

Put test features into datafrare
poly_features_test ■ pd.&ataFrane(poty_features_testj

columns - (Wly_tr'*nsfOr'*er'.gJ ,t_f*itui'*_n*m«s(('EXT_S(XJRGE_r , 'EXT_WUiRCf_l ‘,
'EXT_5WRCE_?\

? Merge patynanial features into training datafrorre
poly^ffetureil'SK^lD-tUWt] ■ train_df[,5K_ID_CUR«,J
ippjtriin paly ■ traindfr*erge(poly_featvnes, on . ’SK-lDCUfW, how - 'left')

Merge polnomiaL features into testing dataframe
poiy_features_test['5K_1D_CURK'] ■ test_df(JSK_ID_CU::R']
app_test_poly - test_df .merge (poly_f eat ures_tEst, on ■ ' SKI t>_CuftR ' t how™ 'left')

r >Ui0n ffie fotrfrtmts
app_tpaln_poly, Jipp_test_poly - app^train^poly.align(app_test_poly, join - "inner'J axis * 1)

Print out the new scopes
print(■ Training data with polynomial features shape; app_trai<i_pdy-shape)
print{’Testing data with polynoni-;1 features shape; app_test_poly.shape)

Training data with polynomial features shape: (367511, 27$)
Testing data with polynomial features shape; (d87J4, 175)

Figure 17.2 0: Preparing data with new features

Let’s do feature engineering by domain knowledge. We can make

a couple of features that attempt to capture what we think may

be important for telling whether a client will default on a loan.

For this, you need to read about the client; for example, here you

can read about the client from their website or Google, and their

business on your own, and then create new features:

« Domain KPowtedge Features
app_train_doffialn - train_df .cafyO
appxjt«t„do"wlF> - WSt_df. Cdpyf)

app^traln_dcnnain[CREOIT_IbCOHE_PERCr.1T’J - app_inain_*5*ialti[' AHT_CREDIT*] / app_tra 1 n_do<nai n [AMT _!NCulE_TOTAL ’ J
app2tral^2d*B^i^[’A^^^^uI’r?_lWCa1E_PES^:EHT■ j ■ Ppp„tralnudMln(‘ AHT_AHhUITV'] / Ppp_triin_<fc«airt [AHTIHCOHETOTAL']
app_train_damain['CREOIT_TERW] ■ app_traln_doMln{‘M1T_ANrR:ITVJ) 7 app_train_<foTiaiii[LAHT_CREOIT']
App.traln.dPmainj W .EfVLOTED, PERCENT’J - app_tr*in_*m»lft['DAVS EHP!OVED’] / »pp_ti'ale>_<fc«ilft['DAYS,BIRTH' j

itrtpeat for test
aW_tMt_dOWin['CRE0IT_HKflHE_PERCEHTr] - Spp_t*tt_taHin[’WT_CH£0IT’] 1 app^t*sW^al<< AHTjnCflHE^rflTAL']
app_test_doisaln['A?j;ulty_i';cw:. _PERCi.';r‘] > app_test_doaiain[' A'l7_.V,';di TY'] / app_test_doiwln[''.t_incC*iE _total ‘]
app_teH_danaln('tAEDTT_TEItH-I - app_test^O*iaii,ri(’AMT_AI/JLJ]TY’) / app_test_dt>maln[AMT .CREDIT’)
app_Te st_dppal n [' &AY5_EHPLOYE[>_PE RCEHT ’] - app_test_domain[1OA’, S_ Ent’LtrvEL)1] / app_test_do«ain [' M¥5_BIR1H ‘ J

Figure 17.2 1: Domain knowledge features

Now we will make a baseline model. In this example, I will use

Logistic Regression and Random Forest model, but you must

apply some new models as well. To get a baseline, we will use all

features after encoding the categorical variables. We will pre­

process the data by filling in the missing values (imputation) and

normalizing the range of the features (feature scaling). The

following code performs these pre-processing steps:

get a baseLine
from sklearn.preprocessing import MinMaxScaler, Imputer
Drop the target from the training data
if ’TARGET' in train_df:

train = traindf.drop(columns = [‘TARGET'])
else:

train = train_df.copy()
■ Feature names
features = list(train.columns)
Copy of the testing data
test » test_df.copy()
Median imputation of missing vaLues
imputer = Imputer(strategy - ‘median’)
ff ScaLe each feature to 0-2
scaler = MinMaxScaler(feature_range = (0, 1))
■ Fit on the training data
inputer.fit(train)
Transform both training and testing data
train = imputer.transform(train)
test » imputer.transform(testdf)
Repeat with the scaLer
scaler.fit(train)
train = scaler.transform(train)
test = scaler.transfcrm test
print(’Training data shape: \ train.shape)
print(’Testing data shape: ‘, test.shape)

Training data shape: (307511, 240)
Testing data shape: (48744, 240)______________________

Figure 17.2 2: Code for pre-processing

Now we create the model and train the model using .fit()

method, as shown in the following screenshot:

from sklearn.linearjnodel import LogisticRegression
Make the model with the specified regularization parameter
logreg - LogisticRegression(C ■ 9.9001)
if Train on the training data
log_reg.fit(train, train_lat>els)

LogistlcRegression(C=0.0001, class weight=Kone, dual=False,
fit_intertept=True, inter£ept_scaling=l, max_iter=109,
multi class-'ovr', nJobs-1, penalty-'12’, random_state-None,
solver-‘liblinaar\ tol-0.0001, verbcse-9, warm_start*False)

Figure 17.2 3: Using .fit() method

Now that the model has been trained, we can use it to make

predictions, as shown in the following screenshot. We want to

predict the probability of not paying a loan, so we use the model

predict.proba() method. This will return m x 2 array, where m is

the number of observations. The first column is the probability of

the target being 0 and the second column is the probability of

the target being 1 (so, for a single row, the two columns must

sum to 1). We want the probability, the loan is not repaid, so we

will select the second column:

Figure 17.24: Making predictions

Now we will prepare our submission format in a CSV format, so

that you can share it with the client. There will be only two

columns: SK_ID_CURR and TARGET in CSV.

We will create a dataframe, named submit, which will have one

column named as SK_ID_CURR from the test set and one column

named as TARGET filled with the predictions as shown in the

following screenshot:

Submission dotaframe
submit = test_df[['SK_ID_CURR']]
submit[’TARGET'] = log_reg_pred
submit.head()

SK1DCURR TARGET

0 100001 0.087750

1 100005 0.163957

2 100013 0.110238

3 100028 0.076575

4 100038 0.154924

Figure 17.2 5: Submitting dataframe

Later we save this in a CSV file with the .to_csv() method of

dataframes as shown in the following screenshot:

< Sfire the to tsv file
lubait.to_ctv "£ :/pg/lpb/ OPE PublicatianE/DataEfrts/Caie Studlet/case-_st ■ i>g_bjs eline, csv’, index - Fa lie

Figure 17.2 6: Saving in a CSV file

Now try a second model - Random Forest - on the same

training data to see how that affects performance:

from sklearn.. ensemble impart RandpmforestClassifler
ff >tafce tJie rantJan forest Classifier
randoiH-forest - RandomForest<:lassifier(n_estl4nat0rs - 100, random_state - 50, verbose - 1, n_jobs • 1)

Figure 17.2 7: Random Forest Classifier model

Here, like any other model, we have initialized the Random Forest

Classifier model with some parameters, like no. of estimators,

random state, verbose, and no. of jobs. You can modify these

parameters and try with different values:

f Trtrin on fhr cfdEu
randai*_f orest. fi t (r ra lo, train_i abels)
r Extract feature iepartances
feature_inportance_values - randM_foreEt.feature_l<iporca<ices_
feature_lnportances ■ pd.DataFrane{{'feature"! features, 'importanceL: feature_dnportance_values})
e Hake predictions uji tfte test date
predictions » randce>_f orest. predi.ct_probe(test) [1]

(P*r*l lei (n Jobs-. 1)]: Dune 41 tasks I elapsed: S1.4S
(Parallolrn_jobt--1)]: Dune 100 out of lea | «lapied: l.lulo finished
[Parollei(n_jobs-4J]: Don* 42 tasks | elapsed: e.is
[Parallel(n_jobs-4)J: Done 100 out of 100 I elapsed: B.7s finished

< AdtjAjc* □ (forcr/rpffle
fvbait - test_dfLCS»!_Tti_cuRRr)J
subaltl'TAROEr'J - predictions
r Save tfle subeissitM ddca/rome
submit. to_csv(' I':/pj/bpb/EPE Pub! It at !;■::■■ Dat-i. ots.-’Ca:.- Studies/ease_ tuJy_l/rando«_foFest_bas*line. csv ’, index - false)

Figure 17.2 8: Modifying the parameters

Now we will make predictions using engineered features as shown

previously. The only way to see if the previously created

polynomial features and domain knowledge improved the model is

to train and test a model on these features. We can then

compare the submission performance to the one without these

features to gauge the effectiveness of our feature engineering, as

shown in the following screenshots:

poly_features_naiwi ■ 1 is t(-app_train_poly. columns)
ff Impute ths pOtyrtcwicL featuret
imputer - Imputer(strategy ■ 'median')

poly .features ■ imputer.fit t re nsform(app_it rain., poly)
polyjfeature^test - imputer,transform^app_test_poly)

f Stale the potyrrswial features
Staler - MinHixStaler(feature_range - (0, 1})

poly^features - staler,!ll^trjnjfpra(pQly_fe#ttirei)
poly_+ejtcres_test - stalerrtransfor<»(pely_fojtures_test)

randoni_forest_poly - RandomForestClasSifier(n_estimatorS - 100, randan_state - 50, verbose - 1, n_Jobs - -1)

Figure 17.2 9: Imputing and training with RFC

tf Train an the training data
randcm_-Farest_poly. fit(po ly_featu res. trad n_la&el s)

If Kake predictions on the test data
predictions - nandomT.forest_poiy.predictTproha(poly_featbres_test}[:, 1]

[Pa ra J lei (o_j obs» -1)]; Gone 42 tasks I elapsed; 47.0s
[Parallel(n_johs*-1)]: Done 18C out of IK | elapsed: l.Smln finished
[p*rpHel(n_jobs-4)J: Dour « tasks f elapsed: &, is
[Paraklel(o_Jcibs"4)J; Cone IBS out of IOS] elapsed: B.ds finished

r Kake a suiraission datafrcme
subaiC - t*it„df[('SKJUjrWIT])
subnltf‘TARGET'] - predictions

f Save the sobmissioo datefro’M
subnit. t o_csv(' E: / pg / bph /B3 a - Pub 11 c at loti s / Data set s/Ca se Stud les/ca se_st udy_l! randoei_f orest _base 11 ne_engl neered .csv

Figure 17.3 0: Making prediction and submission

In the same way, we should also check domain features like we

did using the logistic model earlier:

app_tralri_jfOaal<i - jpp_trii<i_d«rjJn.d rep (Columns * 1 TJkfiGtTifiJ
dassain.featsiresjiaoes a li s t (a p#_t ra In.dooaln, colitis)
JV fnpute the dcvKCrflM [ert /edtures
l^utcr • loputectstrategy si Median")
de-ojln.fearures - luputer.flt_crahsfnrti(app_train_donal«i)
doaair^features^test ■ impirt:er,transfoM[app„testjloBai«i)
r fcdle Efrc lJqto n rnorriirf ftatut'ti
scaler - «inHa}fScaler(featui’eL.range • (fl, 1} j
do»iain_featcres - scaler. flc_transfor*(dorsln_f eat ures)
domaln_feat«res_test - scaler.tran5fora(domain_features_test)
randan_forest_dooaid - KanddeFore£cClassifler{n_esctracers ■ 190. randco.scate - 58, verbose ■ 1. *JcH - -1)
a rng(j> gn tht dsto
rando*_farestjfooalii . fit (da<ral n_f en cures. train.labeIs)
» frtrwt fcgrurc (uportaraces
feature_impgrtafice_valires_dooaiii - rprufcie.fgreit.dooain, feature.! opart areas.
feature.lFipertances.doJiain ■ pd.DacaFrame { feature": doflaln.features.nanes, ’importance": featdre_inpartadce_valijes_d«ial<i}
ff Hake prediction^ an the trit d'ata
predictions ■ rand»_foresc_do*a in. predictjr-oba(doiMin_features_test)(:, 1]

foarallel(n_jobs--1)): Done n tasks I elapsed: 11.8s
{Para 11 cl(n_jobs-.1)J: Bane 199 Oct at 1*J | elapsed: l.i.ln finished
(Parallel(n.jobsi-a)]: Done 42 tasks L elapsed: e.Js
tfarilleirn.jabs-dJJ: Done iM out of 199 I elapsed: 9.7: finished

Figure 17.3 1: Checking domain features

a MsJte o suboE Satori ifatcfr^tn
subolt > test„df{{'M_iP„CfflHL)]
sufc*lr:[" TrtP.GS r '] - predictions
k Stvw t*e suMasiovr dpta/raw
subrlt.co.csv{ '£: /pg/bpb/BPS-Pubilcacioos/8arasetsAase £tudies/case_study_l/randM_farest_basellfie_deuln.csv", Index ■ False)

Figure 17.3 2: Saving submission dataframe

You can measure each model prediction by the ROC AUC metric.

Calculate this for each of the preceding models and see if there

is any improvement in accuracy.

Now to see which variables are the most relevant, we can look at

the feature importance of the Random Forest. We may use these

feature-importance as a method of dimensionality reduction in

future work. So, it is important to do this step as well:

def plot_feat ure_importantes(df) •
? Sort features according to importance
df = df. sort_valiies(" importance', ascending = False).reset_index()

Normalize the feature importances to add up to one
df['importance normalized] - df['importance'] / df [’ importance'].sum()

Make a horizontal bar chart of feature importances
plt.figure(figsize - (8> 4))
ax - pit.subplot()

Need to reverse the index to plot most important on top
ax.barh(list(reversed(list(df.indexf:15J))),

df['importancenormalized1].head(15),
align ~ 'center', edgecolor - 'k')

ff Set the yticks and labels
ax.set_yticks(list(reversed(list(df.index]:15]))))
ax-set_yticklabels(df[feature'].head(i5))

ff Plot Labeling
pit.xlabel('Normalized Importance’); pit.title('Feature Importances’)
plt.Shov/Q
return df

Figure 17.3 3: Plotting feature-importance

ff 5/iow the feature importances for the default features
feature_importances_sorted = plot_feature_importances(feature_importantes)

Figure 17.34: Feature importances

As expected, the most important features are those dealing with

EXT_SOURCE and We can see that there are only a handful of

features with significant importance to the model, which suggests

we may be able to drop many of the features without a decrease

in performance (and we may even see an increase in

performance.)

Conclusion

In this exercise you have made a baseline model solve an actual

supervised machine learning problem. We have tried with LR and

Random Forest classifiers, but other models are waiting for you to

extend this base model, and see how to improve the accuracy of

the model. Try to apply different models and don’t forget to check

the performance of your model using the ROC AUC metric! In

next chapter we are going to work on another case study of spam

or ham message detection.

CHAPTER 18

Case Study-2

Build a prediction model that will accurately classify which text

messages are spam

Your Build a prediction model that will accurately classify which

text messages are spam.

About The SMS Spam Collection is a set of SMS-tagged messages

that have been collected for SMS Spam research. It contains one

set of 5,574 SMS messages in English, tagged according to being

ham (legitimate) or spam. The files contain one message per line.

Each line is composed of two columns: v1 contains the label

(ham or spam) and v2 contains the raw text in spam.csv file.

Our ML Multinomial Naive Bayes and Support Vector Machines.

Let’s import the required basic libraries and load the dataset in a

pandas dataframe:

impart numpy as np
import pandas as pd
import marplotlib.pyplot as pit
from collections import Counter
from sklearn import feature_extraction, model_selection, naive_bayes, metrics, svm
from IPythqn*di splay import Image
import warnings
warnings.filterwarnings("ignore")
Smatplotlib inline

Figure 18. 1: Importing required libraries

In this case study, we will use Naive Bayes and support vector

machine algorithms. In the preceding block of code, we have

imported these two libraries along with some basic ones:

teirtdf - pd.read_csv(‘Ei/pg/!>pb/BPB-Puhllcatlon5/Data5etj/Ca5e StudiesAase,_study_2ApaB.ctv'.l encoding*'latln-1')

tfl ft Unnamed: 2 Unnamed; 3 Unnamed: 4

» ham <it> untu jw&ng pv»ir crazy.. Aranaffle enf? Hatt NAN HjH

1 ham Ofc Jar Joking ivrtiiecu NAN NaN NAN

2 spam Free wiry m2 a tvWy canplown FACupTma NAN NAN NAM

3 ham U oun Mj aa party her U a already then gay NAN nan NAM

4 tiarn Nafli 14fMii flunk, h? floes to ufT, Pia tws ato tai NaN NaH

Figure 18. 2: Loading the spam dataset

Although this dataset is in a clean state, before proceeding

further, it is always a good practice to check the data type of the

columns or missing values, which you can check using .info() and

.isnull() methods. Let’s check the distribution of spam vs. non­

spam messages by plotting them. Since we have two categories, it

is always good to plot a bar or pie chart to see the distribution.

So, first we will draw the bar chart, and then we will plot a pie

chart:

Distribution of spam/non-spam
countclass « pd,value_counts(text_df["vl"]sort=> True)
countclass.plot(kind- 'bar*, color- [''green", "red"])
pit-title(’Distribution of spam vs non-spam')
pit.show()

Figure 18.3: Plotting of bar graph

In the preceding screenshot, we have the same result, which in

another way can be plotted as a pie chart, as shown in the

following screenshot, demonstrating the result in percentage:

Figure 18.4: Plotting of pie chart

In the preceding chart, you can easily see that 13% of the

messages are defined as spam while the rest are not spam. Next,

we will see the frequencies of each word in spam and non-spam

texts. For this calculation, I will use because it stores elements as

dictionary keys, and their counts are stored as dictionary values:

ff find frequencies of words tn tde spam and non*spew messages
haro^count ■ Counter^" ", join(text_df [text_df J ’vlS J-^'bam'] ["V2"]), split())Jmost_cofflii»n(20)
ham_df = pd.Q^tfrMte'frvivdictChMLCovnt)
ham_df - bam_dfrreMme(columns-{fl: "words in non-spam*, 1 : "count"}}

spam_cojnt ■ Counter(" ". join(teKt_df(text_df [’vl']*-' spain'] [”v2" j}. spli.t()).inost_comiiion(20)
spamjlf - p(J-DataFrame.fr’oin_dicl;(spafli_caDnt)
Spam^f - $pam_dfTreriOiae(coliimns-{0; "words iffl Spam"j 1 ; "count"}}

Figure 18. 5: Using collections.Counter()

In the preceding code cell, we are counting the frequencies of

spam and ham messages using the Counter() function, and then

storing each count in separate dataframes - ham_df and Later, we

are plotting the frequencies. First, we plot the most frequently

appearing words in non-spam messages, as shown in the

following screenshot:

pLot frequency of words in ham
ham_df.plot.bar(legend = False, color - 'green')
y_pos = np,arange(len(ham_df["words in non-spam"]))
pit.xtlcks(y_pos, ham_df [’’words in non-spam"])
pit.title('More frequent words in non-spam messages')
pit.xlabelf'words')
plt.ylabelf"number')
pit.show()

More frequent words in non-spam messages

Figure 18. 6: Plotting most frequently appearing words in non-spam

messages

Later, we plot the most frequently appearing words in spam

messages:

ptot frequency of words in spam
spamdf.plot.bar(legend = False^ color = 'red')
y_pos = np.arange(len(spam_df["words in spam"]))
pit.xtickstypoSj spamdf["words in spam"])
pit-title(’More frequent words in spam messages')
pit.xlabel('words')
pit.ylabel('number')
pit-show()

words

Figure 18. 7: Plotting most frequently appearing words in spam

messages

From the preceding plots, you can see that the majority of

frequent words in both classes are stop words, such as and so

on. Stop words are the most common words in a language that

has very rare or no meaning in machine learning. It will be good

to remove such words. Besides this, creating new features is also

a good choice to improve model accuracy.

We’ll learn how to do this in two simple steps. The

sklearn.feature_extraction module can be used to extract features

in a format supported by machine learning algorithms from

datasets consisting of formats such as text. We will use sklearn

library’s CountVectorizer API to convert a collection of text

documents to a matrix of token counts and remove stop words,

as shown in the following screenshot:

remote the stop words and create new features
f = feature_extraction. text .Countvectorizertstopj-jords = 'english')
X = f.fitmtransform(textj±f ["vi"])
np.shape(X)
(5572, 8494)

Figure 18. 8: Removing stop words and creating new features

With this, we have created more than 8400 new features. Now we

will start the predictive analysis. We will first map spam messages

as 1 and no-spam messages as Later, we will split our data set

into training set and test set:

tfflCt_df[TftnS - [--.-S-] .tap,■(' ■ -y,ir.'; 1, ••■i:a}.
X_tr*ln, Hjtn, y.tfiin, le<;t!<>", <riin_T»*t_*pj lt(X, vl'], «M_tf w-$. Ji,
prirt([<ip.5hape(X_train), np.shspe[K_test)])

[(WM, saw), (1859.

Figure 18. 9: Splitting data into training and test set

We will train different Bayes models by changing the regularization

parameter and evaluate the accuracy, recall, and precision of the

model with the test set:

list_alpha = np. a range(1/1&000*3. 20, 9.11)
5 co restrain = np. zeros (len(list_alpbia})
score^test = np.zeros(len(list^alphaj)
recall_test = np.zeros(len(list_alpha))
precision_test= np.zeros(ien(list_alpha))
count - 6
for alpha in listalpha;

bayes ■ naivebayes.MultinomialrJ8(alphai>alpha)
t>ayes.fit(X_train., ytrain)
score_train[count] = bayes.score^Xtrain, y_train)
score_test[count]= bayes.score(X_testj ytest)
recall_test[count] - metrics.recall_score(y_testJ bayes.predict(X_test))
precision_test[count] = metrics.precision_score(y_testJ bayes.predict(X_test))
count - count + i

Figure 18.1 0: Training and Evaluating the performance of the model

In the preceding code cell, we are first defining parameters used

in Naive Bayes; in our case, we are using Multi Nomial Naive

Bayes algorithm. The process of training is the same as other

sklearn API - fit the model and then make predictions. For

computing the recall, we are using metrics.recall_score() function.

The recall is the ratio tp / (tp + fn) where tp is the number of

true positives and fn is the number of false negatives. The recall

is intuitively the ability of the classifier to find all the positive

samples, so the best value is 1 and the worst value is o.

After computing the recall, we are also computing the precision,

which is the ratio of tp / (tp + fp) where tp is the number of

true positives and fp is the number of false positives. Precision is

intuitively the ability of the classifier not to label as positive, a

sample that is negative.

Next, in the following code cell, we are calculating our model

performance using different matrices:

ft let's see scwe learning mode Is and their refries
matrix - np,matrix(np,c_[li5t_alpha, seoretraln, score_test, recalljtett, precisiori_test]}
models * pd.Dateframe(data - matrix, columns -

[’alpha', 'Train Accuracy*, 'Test Accuracy', 'Test Recall', ’Test Precision’]}
models,head()

alpha Train Accuracy Test Accuracy Test Recall Test Precision

0 0 CCK1O1 0.97444,3 0 920635 0 895753

1 011001 0.99785? 0 976074 0 936543* 0 893939

2 9 22001 0.99785? 0.577162 0 936508 0 9007W

3 0 33001 0.997&B9 0.977162 0 936508 0 900763

4 0 44001 0 997053 0 977162 0 936608 0 900763

Figure 18.1 1: Calculating performance

As you can see, there are different learning models with their

precisions in the preceding output cell. Now we will select the

model with the best test precision, as shown in the following

code cell:

bestindex = models['Test Precision']. idxmaxQ
models.iloc[best_index, :]

alpha 15,730019
Train Accuracy 0.979641
Test Accuracy 0.969549
Test Recall 0,777778
Test Precision 1,000060
Name: 143, dtype: float64

Figure 18.1 2: Selecting model with best test precision

From the preceding output cell, we can see that the train and test

accuracy score is almost the same, which means there is no

overfitting in our model. Let’s also check if there is more than

one model with 100% precision:

models[models[’Test Precision’J==l],head()

alpha Train Accuracy Test Accuracy Test Recall Test Precision

143 15.73001 0.979641 0.969549 0.777778 1.0

144 15.84001 0.979641 0.969549 0.777778 1.0

145 15.95001 0.979641 0.969549 0.777778 1.0

146 16.06001 0.979373 0.969549 0.777778 1.0

147 16.17001 0.979373 0.969549 0777778 1.0

Figure 18.1 3: Checking other models with 100% precision

As you can see, there are more than one model having 100%

precision, but there are some point differences in alpha and train

accuracy score. Let’s select the model which has more test

accuracy:

best_index = models[models['Test Precision']==1][’Test Accuracy‘].idxmax()
bayes - naivebayes.HultinomialNB(alpha=list_alpha[be5t_index])
bayes.fit(X_train, y_train)
models.iloc(bestindexj :]

alpha 15,730610
Train Accuracy 0.979641
Test Accuracy 0.969549
Test Recall 0.777778
Test Precision 1,000000
Name: 143, dtype: float64

Figure 18.1 4: Using model with more test accuracy

From the preceding output, you can easily say that the model has

an alpha score of 15.730010. The model, with train accuracy

0.979641 and test accuracy 0.969549 is our best model and that

is at index number 143. Let’s also generate confusion Matrix for

our Naive Bayes Classifier:

ff Confusion matrix with naive bayes classifier
m_con+usion_test = metrics.confus ion jnatrix(y_test, bayes.predict(X_test))
pd.DataFrame(data - m_confusion_test, columns - ['Predicted 0‘, Predicted 1],

index = ['Actual 9', 'Actual 1’])

Predicted o Predicted 1

Actual 0 1587 0

Actual 1 56 196

Figure 18.1 5: Generating confusion matrix

See the preceding confusion matrix result, and you can say that

we misclassify 56 spam messages as non-spam emails, whereas

we don’t misclassify any non-spam message and our model has

96.95% test accuracy, which you found out just earlier. Now we

will repeat the preceding steps with our second model - Support

Vector Machine:

ff repeat same steps with Support Vector Machine
list„C - np.grange(500, 2000, 100}
score_train = np.zeros(len(list_0)
score_test =■ np.zeros(len(list_C))
recalI test - np.zeros (len(listjG))
precision_test= np.zeros(len(list_C))
count = 0
for C in list_C:

svc - Svrn.SVC(C«C)
svc.fit(Xtrain, ystrain)
secret rain[count] » svc.scoretXtrain, ytrain)
score_test[count]- svc.score(X_test, y_test)
recall_test[count] = metrics.recall_score(y_test, svc.predict(X_test))
precision_test[count] = metrics.precision_score(y_test, svc.predict(Xtest))
count - count + 1

Figure 18.1 6: Using Support Vector Machine

matrix = np.matrix(np.c_[list_C, scorestrain, score_test, recall_test, precision_test])
models - pd.oataFramefdata - matrix, columns =■

[rC, 'Train Accuracy', ’Test Accuracy', 'Test Recall'Test Precision’])
models.head()

C Train Accuracy Test Accuracy Test Recall Test Precision

0 500.0 0 994910 0 982599 0 873016 1.0

1 600.0 0.995982 0.982599 0.873016 10

2 700.0 0.99678S 0.982599 0.873016 10

3 800 0 0.997053 0.983143 0.87&9B4 10

4 900.0 0.997589 0 983143 0 876984 1 0

beSt_index ■ models['Test Precision'].idxmaxQ
models.iloc[best_index, :]

C 500.000000
Train Accuracy 0.994910
Test Accuracy 0.982599
Test Recall 0.S7301&
Test Precision 1.000000
Name: e, dtype: floats

Figure 18.1 7: Preparing dataframe with matrix data

models[models['Test Precision']--l],head()

C Train Accuracy Test Accuracy Test Recall Test Precision

0 500 0 0994910 0 982599 0.873016 1 0

1 600 0 0.995982 0.982599 0373016 1 0

1 7000 0 996785 0.982599 0 873015 1 0

3 800 0 0.997053 0 983143 0 876984 1 0

4 900 0 0.997589 0.983143 0.876984 1 0

best_index - modeIs[models[Test Precision']==1][’Test Accuracy‘].idxmax()
svc = svm.SVt(C=list_C[beSt_index])
svc.fit(X_train> y_train)
models, iloc [bestindex., :]

C 800.000000
Train Accuracy 0.997053
Test Accuracy 0.983143
Test Recall 0.876984
Test Precision 1.000000
Name: 3, dtype: float64

Figure 18.1 8: Training with SVM model

mjconfusiontest - metrics.confusion matri^y testj, svc.predict(X_test))
pd.DataFrame(data = m_confusion_test, columns =■ [‘Predicted 0‘, 'Predicted 1’},

index >> [‘Actual S',, ‘Actual 1‘])

Predicted 0 Predicted 1

Actual 0 1587 0

Actual 1 31 221

Figure 18.1 9: Confusion matrix with SVM model

In this case, we misclassify 31 spam as non-spam messages,

whereas we don’t misclassify any non-spam messages, indicating

that the SVC model has 98.3% test accuracy, which is better than

our Naive Bayes model. That completes our goal!

Now you can classify any new text to spam or non-spam with the

help of your SVM model, as shown in the following screenshot:

I predicting a nep text using eur iw model
V - [”h lean fur £954 it jpprV.vtd for you If ybu receive ibii 4HS. 1 min vtrifItalian & Caih tn 1 hr It *w.tkaeple.ca.uk
f - feeture_witrjCTien,test-teiMitVeCtflrlI«r(»XBp_wgrds - ' ■•■■[;] iih')

Jt - f. transform V)
re5«svc.predlct[X)
if ret—l:

printf'Thli t»ct is ip*"')
rile"

printf' This ten is nat a spas'}

This t»rt Si spin

Figure 18.2 0: Predicting new text using SVM model

As you can see in the preceding output cell, I have added a new

sentence for testing our model. Here, first we store it in a

variable, as we used Y for this, then we have initialized the

CountVectorizer() function with English stop words. Next, we have

trained the model, and after the transformation of our new

sentence, we are predicting the outcome, and our model has

recognized this sentence as spam, which is a correct prediction.

w.tkaeple.ca.uk

Conclusion

If you follow this case-study, you will find that classifying any mail

or message is not a tough task. Gmail, Yahoo Mail, and other

email platforms are already using similar types of algorithms for

such tasks. Naive Bayes and Support Vector Machines are the two

most used algorithms in spam vs. non-spam classification

problems. What more you can do with this model is, try different

parameters, and see what variation in accuracy you can achieve

with your changes.

CHAPTER 19,

Case Study-3

Build a film recommendation engine

Your Build a film recommendation engine.

About TMDB dataset contains around 5000 movies and TV series

with data on the plot, cast, crew, budget, and revenues. The credit

CSV contains the movie id, title, cast, and crew details, while

movie CSV file contains the movie budget, genre, revenue,

popularity, etc.

Main ML TfidfVectorizer and

About recommendation A recommendation engine filters the data

using different algorithms, and recommends the most relevant

items to users. It first captures the past behavior of a customer,

and based on that, recommends products that the users might be

likely to buy. Here, we will build a movie recommendation engine

based on popularity and content-based engines.

Let’s load the datasets and explore them first to have a better

understanding of the data:

c redits ■ pd. read_csv (' E : /pg/bpb/B P0 - Public ation s/Dat a 5 et s/Case Stud i es/c ase_study_J/t Bdb_5M0_c red i ts.c sv')
credits .infoQ

«1MS 'pandas.. Cere, frame. DataFrame1 >
ftangelndeX: 4803 entries, U to 4802
Data columns (total 4 columns):
movie_ld 4603 non-null int64
title non-null object
CHt 4B93 non-null object
ere™ 4803 non-noll object
dtypeii lnt64(lj, objecc(3)
memory usage; IE.0.1+ <e

Figure 19.1: Loading the datasets

me v les - pd. read_c.sv (L E: /pg/ bpb/B ps ■ Pub 11c at 1 ons/Pat a set s/Case Studies/c a se_s tudy_3/ tmdb_6Mffl_mcy 1es.csv')
movies, infofj

(class 'pandas.core.frame.Data?rams'>
Rangelndex: 4$$? erttrieij 0 to u??!
Oat* columns (total 29 columns):
budget 4803 non-null int64
genres 4$03 non-null object
horaepage 1712 non-null Object
id 4893 non-null jot 64
keywords 4893 non-null object
or jginal-'language 4893 non-null object
origlnal_title 4803 non-null object
overview 4890 non-null object
popularity 4893 non-null f loat(34
product ion_eompanies 4893 non-null object
production_tountriei 4893 non-null object
release_date 4802 non-null object
revenue 4893 non-null lnt64
runtime 4891 non-null floats*
spoke n_lanjjuages 4803 non-null object
status 4893 non-null object
tagline 3959 non-null object
title 4803 non-null object
vote_average 4893 non-null floats*
vote.count 4803 non-null int64
dtypes: flo*t64(3)J 10164(4), object (13)

Figure 19. 2: Exploring the datasets

Now, before starting our analysis, first we will think about a

metric that can rate or score a movie, because a movie with a

7.9 average rating and only 2 votes cannot be considered better

than the movie with 7.8 as an average rating but 45 votes. In the

movie’s dataset, vote_average is already present. We just have to

find out the mean vote across the whole data, which can be

calculated, as shown in the following screenshot:

catcutate mean vote
C = movies['voteaverage'].mean()
C

6.092171559442011

Figure 19. 3: Calculating the mean vote

It shows a mean rating for all the movies as approximately 6 on

a scale of 10.

The next step is to determine an appropriate value for the

minimum votes required to be listed in the chart. We will use the

90th percentile as our cutoff. In other words, for a movie to

feature in the charts, it must have more votes than at least 90%

of the movies in the list:

catcuLate minimum votes required to be Listed in the chart
ni = movies [' vote_count ']. quantile (0.9)
m

1838.4006000000015

Figure 19. 4: Calculating the required minimum votes

Now, we can filter out the movies that qualify for the chart:

fitter out the movies that quaLify for the chart
qjnovies » movies.copy().loc[moviesf'votecount'] >= m]
q jnovies;shape

(481, 23)

Figure 19. 5: Filtering out movies qualified for the chart

We see that there are 481 movies that qualify to be on this list.

Now, we need to calculate our metric for each qualified movie.

To do this, we will define a function, This function will calculate

our metric for each qualified movie. Next, we will also define a

new feature called score; the value of this feature is calculated by

applying this weighted_rating() function to our DataFrame of

qualified movies. This is our first step toward making our first

basic recommender. For writing weighted_rating() function, you can

take help from the IMDB site itself by click on the following link:

https://help.imdb.com/artide/imdb/track-movies-tv/faq-for-imdb-

ratings/G67Y87TFYYP6TWAV#

I have represented the same formula as the following function for

your ease:

https://help.imdb.com/artide/imdb/track-movies-tv/faq-for-imdb-

co I cutate our metric for each qualified movie
def weightedrating^x, m=mJ C=C):

v = x['vote_count"]
R = x["voteaverage’]
Ccrtcwlation based on the IMDB formula
return (v/(v+m) ’ R) + * C)

Define o neu feature 'score' and calculate its value with ~weighted_rating()
q_movies('score"] » qjrovies.apply(weighted_rating, axis-1)
ffSort nrovtes based on score calculated above
qjnovies = qjnovies. sort_values(' score' r ascen<fing=False)
^Print the top 5 movies
qjnovies[["title"t 'votecount’, 'voteaverage", "score"]].head

ItUe voie_coufit vole„average score

1881 The Shawshank Redemption 8205 8.5 8059258

662 Figm Club 9413 S3 7.939256

65 The Dark Knighl 12002 8.2 7.920020

3232 Pulp Fiction 8428 8.3 7 904645

96 inception 13752 8 1 7.863239

Figure 19. 6: metric calculation for qualified movies

Now, let’s understand how to visualize five popular movies that

we got from the preceding code cell:

plot 5 popular KiOvitS
popelar^novies * oit)vi*s,5Pr't_va lues ("popularity', iscwiding-False)
pit.figure(figsize* (S 2, 4)}
pit.barh(papular jncivies[? tit Le '].head (),populai*_movies [' populari ty'].head(), align* "center

color*' yellow’)
p1r.gc*().i pyent_yaKi t()
plt.KlatslCPr>pularlty“)
pit.title "Popular Movies"

Text(B.S,l,'Popular Movies")

Figure 19. 7: Preparing visual graph

See! It was quite easy to create our first basic popularity-based

recommendation engine. But there is something to keep in mind

- these popularity-based recommenders provide a general chart of

recommended movies to all the users. They are not sensitive to

the interests and tastes of a particular user. Now we will tackle

this problem as well and we will create a more refined system -

content-based recommendation engine - by including other

columns like overview, cast, crew, keyword, tagline, etc., in our

analysis. For this, we need to handle these texts, so that a

machine learning model can understand them. We will use scikit-

learn’s built-in TfIdfVectorizer class that produces the TF-IDF

matrix in a couple of lines. In this matrix, each column represents

a word in the overview vocabulary (all the words that appear in at

least one document), and each column represents a movie, as

before. TfIdfVectorizer has two parts - Term and Inverse Document

Frequency TF simply tells us how many times a particular word

appears in a single doc, and IDF solves the frequent and rare

words in a given doc. After importing this library, we will initialize

it with stop word parameter as English. This stop_words

parameter is used to remove less-meaningful English words. Then,

we will handle the missing values in the overview column, as

shown in the following screenshot:

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf » TfidfVectorizer(stop_words='english')
handLe missing vatues
movies^‘overview'] = movies[’overview'].fillna('')
tfidfmatrix =■ tfidf.fit_transform(movies['overview'])
tfidfjnatrix.shape

(4803, 20978)

Figure 19. 8: train movies data with TF-IDF Vectorizer

With this matrix in hand, we can now compute a similarity score.

We will be using the cosine similarity to calculate a numeric

quantity that denotes the similarity between the two movies. We

use the cosine similarity score, because it is independent of

magnitude (or size) and is relatively easy and fast to calculate.

Cosine similarity is a metric used to measure how similar the

documents are, irrespective of their size. Since we have used the

TF-IDF vectorizer, calculating the dot product will directly give us

the cosine similarity score. Therefore, we will use sklearn’s

linear_kernel() instead of because it is faster in executing inputs:

from sklearn.metrics.pairwise import linear kernel
ff compute the cosine simiLurity matrix
cosinessin = linearjcernel tfidf_matriXj tfidf_matrix

Figure 19. 9: Using sklearn’s linear_kernel()

Now, we will define a function that takes in a movie title as an

input and outputs a list of the 10 most similar movies. Firstly, for

this, we need a reverse mapping of movie titles and DataFrame

indices. In other words, we need a mechanism to identify the

index of a movie in our metadata given its title:

construct a reverse map of indices and movie tit Les
indices - pd.Series(movies.index, index=movies[title']).drop_duplicates

Figure 19.1 0: Constructing reverse map of indices and movie titles

Next, we will define our recommendation function that will do the

following steps:

Set the index of the movie, given its title.

Get the list of cosine similarity scores for that particular movie

with all movies.

Convert it into a list of tuples, where the first element is its

position and the second is the similarity score.

Sort the aforementioned list of tuples based on the similarity

scores, that is, the second element.

Get the top 10 elements of this list.

Ignore the first element as it refers to self (the movie most

similar to a particular movie is the movie itself).

In the last return, the titles corresponding to the indices of the

top elements.

ff define our recommendation function
def getreconunendatians (title, cosine_sim=cosine sim):

idx = indicesftitle]
sim^scores ■ 1ist(enumerate(cosinesim[idx]))
sim_scores =■ sorted(sim_scores;, key-lambda x: x[l], reverse=True)
simscores ■> sim_scores[l:11]
fnovie indices = [i[0] for i in simscores]

return movies['title'].iloc[movie_indices]

Figure 19.11: defining recommendation function

test our function
get_recomrnendations ' Spectre'

1343
4071
3162
1717
11

Never Say Never Again
From Russia with Love

4339
29

Thunderball
Safe Haven

Quantum of Solace
Dr. No

skyfall
1880
3336
1743

Dance Flick
Diamonds Are Forever

Octopussy
Name: title, dtype: object

Figure 19.12: Testing the function

That’s great! Our recommendation engine has been improved.

Let’s make it more mature by including the following metadata: 3

top actors, director, related genres, and movie plot keywords. From

the cast, crew, and keywords features, we need to extract the

three most important actors, the director and the keywords

associated with that movie. Right now, our data is present in the

form of stringfied lists; we need to convert it into a safe and

usable structure:

ff parse the stringified features into their corresponding python objects
from ast import literal_eval
features ® [*cast\ 'crew', 'keywords't ’genres'}
for feature in features:

movies[feature) = movies[feature].apply literal_eval

Figure 19.1 3: converting data into usable structure

Next, we’ll write functions that will help us extract the required

information from each feature:

Get tiie director's name from the Crew feature
def get_director(x):

for i in x:
if if job'] -= 'Director':

return i['name’]
return np.nan

fleturns the fist tap 3 eLements or entire List
def get^list(x):

if isinstance(x, list):
names = (i[’nanie'] for i in x]
if len(names) > 3:

names ■ names[:3]
return names

return []

Define new directorj cast, genres and keywords features that are in a suitabie form
movies[1 director'] ■ movies[1 crew'].apply(get_director)
features - feast’, keywords', 'genres’]
for1 feature in features:

movies[feature] ■ movies[feature].apply get^list

Figure 19.1 4: Writing function to extract information from features

f Print the new ywrturrs
H»owies[[‘titIff' J ‘(Irt1, ‘director‘keyword 5 \ 1 'genrti']],head

not CM d^ntw hejwHij

fl Ara tor |3am 7.'art- ng;cm. Sahara Sfgpuim-f
WMWil Jaws Came«o<i loiAire d-i-sh. hjlure spacebar] [Acton. Aftenhire Fantasy J

1 Pwito or Iho C#ntown Wortff
End IJthnny Dew, Oriwdo Blown Keira Kraohtfey [GortVHBfiNM [«»)■ cma abuit e-m IA4vwtuie. Fflrtity, Acwflj

2 Sptotr* KMlMGMb ChnsTosti'.'.'i'L- 3am Mondrf |sp) btwa on rwrtl. «tw
«tn(]

fActon. Adwenflur0. Cmwj

3 Th» Daric Kfnjft FUk UChfetan Bale. Muhatf Caine, Gaiy WnwiJ
QtwK

Ndan
|dc cofTwcs. criTt nghlcr

lerronM]
;Ai;bqn. Cmw Dramaj

J Joflfi Cider ITa-j toi KfliLfl. Lynn Cofcni 3&nar4ui Mafloni An-j-er* sianlon ItJtFM) pn rwffii
iMMiicil

[*don AJ»Rn|ur». 5c>fn:e
Fitwn)

Figure 19.1 5: peek of the data withnew features

The next step would be to convert the names and keyword

instances into lowercase and strip all the spaces between them.

This is done so that our vectorizer doesn’t count the John of

JohnCena and JohnCleese as the same:

ff Function to convert aLL strings to Lower cose and strip names of spaces
def clean_data(x):

if IsinstanceCx, list):
return [str. lower(i. replace(,r ", ’'")) for 1 in x]

else:
if isinstancefx, str):

return str.lower(x.replace(" ",
else:

return ''

ft Appiy cLean^data function to our features>
features = [’cast', 'keywords', 'director', 'genres1]
for feature in features:

movies[feature] = movies[feature].apply clean_data

Figure 19.1 6: Converting names and keyword instances into lowercase

and stripping spaces

We are now in a position to create our metadata which is a

string that contains all the metadata that we want to feed to our

vectorizer (namely actors, director, and keywords):

def create^souptir):
return ' '.joln{*['keywords']) +■ ' ' + ’ ’.join(x[’cast’]) + ' ' ♦ x{’director'J + ' ’ t joln(x[’genres'])

movies [■'.□up'] * movlet. apply create-^joup, ax 15-1

Figure 19.1 7: creating meta data soup

Now, we will use sklearn’s CountVectorizer() instead of TF-IDF to

remove stop words and transform our newly created soup column:

from sklearn,feature_extraction,text import CountVectorizer
count = CountVectorizer(stop_words='english')
countmatrix - count.fittransform(movies['soup'])

compute the Cosine Simitarity matrix based on the count^matrix
from sklearn.metrics.pairwise import cosinesimilarity
cosine_sim2 = cosine_similarity count_matrix, count_matrix

Figure 19.1 8: use of Count Vectorizer and similarity check

ft test our getrecommendations () function witfi our new arguement
get_ re commend at ions('Spectre', cosine_sim2)

Skyfall
Quantum of Solace

The Glimmer Man
The Art of War

Maney Drew

29 S
11 Quantum of
1QS4 The Glimm
1234 The Art
2156 Mane
4638 Amidst the Devil's
62 The Legend of
3373 The Other Side of
4 lohn
72 Suicide
Name: title., dtype: object

Amidst the Devil's Wings
The Legend of Tarzan

The Other Side of Heaven
lohn Carter

Suicide Squad

Figure 19.1 9: testing recommendation function

Wow! You see that our recommendation engine has been

successful in capturing more information due to more metadata

and has given us (arguably) better recommendations. Still, there

are a lot of work pending for you to improve your engine, like

the language of the film was not checked; in fact, this could be

important to ensure that the films recommended are in the same

language as the one chosen by the user. So, add a feature in

your model and see if are you getting a better result or not. This

is one example of a recommendation engine that you can use as

a base model. You can extend this model for different problems

like product recommendation or a product category

recommendation.

Conclusion

Recommendation systems are widely used in almost every e­

commerce and in over the top media services. For a user these

systems make the experience better by helping to select the best

choice over other options, as well as increase the probability of

earning more revenue for a company. After completing this

exercise, you have hands-on experience in building a movie

recommendation engine. Now don’t stop here, apply your

knowledge to build a product recommendation engine or a song

recommendation engine, and feel the value of a Data Scientist’s

work to this society.

CHAPTER 20

Case Study-4

Predict house sales in King County, Washington State, USA, using

regression

Your Online property companies offer valuations of houses using

machine learning techniques. This case study aims to predict

house sales in King County, Washington State, USA, using

regression.

About This dataset contains house sale prices for King County,

which includes Seattle. It includes houses sold between May 2014

and May 2015 as described in

Our ML Linear Regression and Polynomial Regression.

Let’s first read the housing data, for which I have defined an

empty dataframe named evaluation. This dataframe includes Mean

Squared Error R-squared, and Adjusted R-squared, which are the

important metrics to compare different models. Having an R-

squared value closer to one and smaller MSE means a better fit.

In the following example, I will calculate these values and store

them in this dataframe with my results. For this purpose, first, we

will import all basic libraries along with the sklearn library:

import numpy as np
import pandas as pd
from sklearn,modelselection import train_test_split
from sklearn import linearmodel
from sklearn.neighbors import KMeighborsRegressor
from sklearn.preprocessing import PolynomialFeatures
from sklearn import metrics
import matplotlib.pyplot as pit
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
ftnatplotlib inline

create evaluation metrics
evaluation ■ pd.DataFrame({'Model': [],

’Details':[}>
‘Mean Squared Error
*R-squared (training)1:[],
’Adjusted R-squared (training)’:[],
'R-squared (test)':[],
'Adjusted R-squared (test)':[]})

Figure 20. 1: Importing all basic libraries

After creating our evaluation dataframe, we will load the King

County dataset in a dataframe and will look into the head of this:

f rrwf thnd ezplore Artd
df - pd.read c?v(' t:/pg/bpb/SPH Public at ionx/Batnr.rts/C.iie Studley/cflic itudy 4/kc houie data.csv")
df.hMd()

id date PflCD bedrooms boUircoms xqlt ir«ing sqlljot Hoofs waltrtranl view grade sxjrti above Mjflbjxcnieirii

a 7taJ0M£g 2014101 yrwww 221900 O' 3 >W 1130 M5O 16 0 0 7 1180 0 1955

i huunisz 201412091000000 usaxm s a» 2570 73-Q 20 0 0 _ 7 2170 400 1951

2 5t)15W4W 201502251000000 iaoooo.0 2 1 00 770 1MK0 10 0 0 _ 6 770 0 19B

3 20141ZWTMHXHW M4000 0 ■S 300 1900 5W0 10 0 0 - 7 1050 910 19®

4 2015021«T000000 il0000.0 3 2.00 1640 soao 1 0 0 0 t 16M 0 19®7

5 rows * 21 columns

Figure 20. 2: peek of the housing data

Please note here, when we model a linear relationship between a

response and just one explanatory variable, it is called simple

linear regression. Here, I want to predict the house prices, so our

response variable is the price. However, for a simple model, we

also need to select a feature. When I look at the columns of the

dataset, the living area (sqft) seemed the most important feature.

When we examine the correlation matrix, we may observe that the

price has the highest correlation coefficient with living area (sqft),

and this also supports my opinion. Thus, I decided to use the

living area (sqft) as a feature, but if you want to examine the

relationship between price and another feature, you may prefer

that feature. We will apply this logic in our dataframe, but we will

first split our dataset into 80:20 ratio, so that we can train on

80% data, and then validate our model on 20% data. Then, we

will separate the target variable - price - from the training dataset,

and then fit the Linear regression model on this training and

target input using the fit() method. We will apply the same for

the testing dataset. Then, we will predict the result on test data

using predict() method. At last, we will calculate the loss of our

model, using MSE metric, as shown in the following screenshot:

%%capture
traindata,testdata = train_test_split(dfjtrainsize = 0.8jrandom_state=3)

lr = linear_f(iQdel, Linear Regression ()
X train = np. array(train_data{1 sqftliving']_, dtype=pd .Series). reshape(-lj 1)
yjtrain = np. array(train_data[‘ price']., dtype-pd.Series)
Ir.f it (X_t rain., y_t rain)

Xtest = np.array(test_data[*sqftliving’dtype-pd.Series),reshape(-1,1)
y_test - np.array(test_data[price']j dtype=pd-Series)

pred - lr,predict(X_test)
msesm - format(np. sqrt(metrics .in€an_squared_error(y_test#pred))#' >3f')
rtrsm - format(lr;score(X_trainJ yjtrain),*.3f')
rtesm - format(lr,score(X_test, y_test)#',3f)

print ("Average Price for Test Data: {:. 3f)".format(y_test.tnean())}
print('Intercept: {}'.format(lr.intercept))
print('Coefficient: {}'.format(lr.coef_))

r = evaluation.shape[O]
evaluation.lot[r] = [Simple r-lodel' t' -' ,msesmJ rtrsm, ' - ‘, rtesm, ’ -']
evaluation

Figure 20. 3: training and prediction on housing data

In the last three lines of the preceding code cell, we used our

evaluation dataframe to calculate the metric by passing the metric

scores - msesm, rtrsm, and rtesm.

You will notice in the following output that we are getting mean

squared error or regression loss as 254289.149 for our simple

model:

Aver#lj« Prict Tejfc Bats; 539744,135
Intflf'cept: -472 35.Bli30219OW3
CMfficitrtt: [282.2*68 1S3]

C:Wser4\prac#e-kl.£upc*XApp<>aT-a\L(Kal\C0riTiniruaYanacor^dJ\libXsite-packages\skleirnXrt&tfel_setecTlon_sfliic.py;2026: Fuiur-ewarni
ng: froa version B.21^ tcst_slxe will dlHays coop]ctterat traln_slze unless both arc specified..

Futurewarning)

Adiuslcd R squjred (lest) Adiusled K-squajed |tu**nma) DeUils Mean Equaled Error |MSE[Model R-sqmied |lrsl) R-squaied llrjinirau)

0 &mpte Model r 25*289149 0 4»2 0 496

1 Stmpi? MoJei - 25*289140 0 492 - 0495 -

i 5<mp^ Mad cl > 25*2891:49 0 492 - 0496 -

Figure 20. 4: Average price for test data

Because we have just two dimensions at the simple regression, it

is easy to draw it. The below chart determines the result of the

simple regression. It does not look like a perfect fit but when we

work with real-world datasets, having a perfect fit is not easy:

plt.figure(figsize=(6.S,S))
plt.scatter(X_testJy_testJcolor=’darkgreen' Jlabel-"Data~, alpha=.l)
pit. plot (X_test, lr.preciict(X_test), color**' ’rec!", labels" Predicted Regression line")
pit.xlabelf’Living Space (sqft)", fontsize-lS)
plt.ylabelf'Price (S)"j ffflrtsize-lS)
plt.xticks(fontsize-13)
pit.ytieksffontsite-13)
pit.legend(J

plt.gca().$pines[’right"].set_visible(False)
plt.gca().spines['top'].set_visible False

Figure 20. 5: plot the house price vs space

Figure 20.6: Predicted regression line data

In the preceding case, we have used a simple linear regression

and found a poor fit, because data looks scattered around the

line. To improve this model, I am planning to add more features.

However, in this case we should be careful about the overfit,

which can be detected by the high difference between the training

and test evaluation metrics. When we have more than one feature

in linear regression, it is defined as multiple regression. Then, it

is time to check the correlation matrix before fitting a multiple

regression.

Having too many features in a model is not always a good thing,

because it might cause overfit and worse results when we want to

predict values for a new dataset. Thus, if a feature does not

improve your model a lot, not adding it may be a better choice.

Another important thing is a correlation; if there is a very high

correlation between two features, keeping both of them is not a

good idea (most of the time). For instance, sqt_above and

sqt_living columns in the datasets are highly correlated. This can

be estimated when you look at the definitions of the dataset.

Just to be sure, you can double-check this by looking at the

correlation matrix, which we will draw next. However, this does

not mean that you must remove one of the highly correlated

features, for instance, bathrooms and They are highly correlated,

but I do not think that the relation between them is the same as

the relation between sqt_living and Let’s draw a correlation matrix

with all these features:

features - ['price">'bedrooms'j'batbrooms",’sqft_living'f 'sqft_lot','floors'^
'waterfront1,'view', 'condition’, ■grade',’sqft above \"sqftbasement’,
'yr_bui.lt *,’yr^renovated',’tipcode’, "sqft_livingl5't ’sqft_lotIS’]

mask ■ np.;eros_like(df[features].corr(), dtype-np.bool)
mask[np.triu_indices_froiii(niask)] True

f, ax - pit.subplots(figsiie=-(16, 12))
pit.title('Pearson Correlation Matrix',font$ite»25)

sns.heatmap(df[features] .corr(),linewidths*=0,25,vmax=l.O, square=True,cmap=’rBuGn_r"
linecolor- hw‘'annot-True^mask-niask,char Jcws-{Hshrink"; .75});

Figure 20.7: Correlation matrix

yr_bui.lt

Pearson Correlation Matrix
price -

bedrooiris - 0 3

bathrooms ■ 0 53 052

iqft living '

floors - 0 26

009 0032 008B

0.7 058 0 75

sqftlot '

Figure 20.8: Pearson Correlation Matrix

waterfront r 0 27 0 0060 0064

After looking into the correlation matrix, we can examine the

features and reach some useful analytical conclusions. Furthermore,

plotting charts and examining the data before applying a model is

a very good practice, because we may detect some possible

outliers or decide to do some normalizations. This is not a must,

but getting to know the data using visualization is always good.

Now, to determine bedrooms, floors, or bathrooms/bedrooms vs.

price comparison, I preferred boxplot, because we have numerical

data and they are not continuous as 1,2,... bedrooms, 2.5, 3,...

floors (probably 0.5 stands for the penthouse):

f, axes = plt.subplots(lj 2,figsize=(15,5))
sns.boxplot(x=train_data[bedrooms']..y^traindatat'price']> ax=axes[6])
sns.boxplot(x-train_data[floors'],y-train_data[price'], ax-axes[1])
axes[G].set(xlabel=‘Bedrooms', ylabel-'Price')
axes[1].yaxis.set_label_position("right”)
axes[1].yaxis.tick_right()
axesfl]. set(xlabel='Floors', ylabel='Price')

f, axe - pit.subplots(Ij igsize=(12.ISjS))
sns.boxplot(x-train_data['bathrooms *],y=train_data['price'], ax=axe)
axe.set(xlabel=’Bathrooms / Bedrooms’, ylabel='Price’);

Figure 20.9: creating box plot

Figure 20.1 0: Graphical representation of bathrooms and bedrooms

Let’s create a complex model manually to find out if we get a

better regression loss or not. For this purpose, we will include six

features of the dataset for predicting the outcome, and then we

will repeat the same steps as we have done earlier:

features! - ['bedrtx>«i.r.' sijf t_ltf E" / f l&ws’, 'zipcode’j
C^ple^^Odel,! ■■ llntar_®Qd»lr LineaJ’Itfigr^ssitfflO
«wplex_*od»l_l it (t raiei_ci«a(features!) 11 rain_date(‘price‘))

pr!ftt(' 1 ftctrcepi: {}r,farwat(£CwpleK_i»Mlfrl_l.intercept-))
print('Coefficients: {)' .fPMt(COaplex_oPdeJ_l..£Oe-f_>)

predl - coupl&x_Bodfll_l .predict(toitdata[tcjlur-cil])
■?«■! - fDrHat{np.tqrt(»*tricj.Bflan_fqyariKi_?rrflr(y_tejt,pr?dS)h ' r?f')
rtrcBl ■ fprH.it {cQBpiex_Bcd»l_l,iC0re(traln_CIa.ti(feitprfl-5i J,tr-#ira_C!^t*["price1])/ , 5f 1)
irtrcHl * fa raw t C*djustedR2 (c>^]ex js«xtel^i. score (tr«lnjdrtaE features!), crftlpjfotep pice' I htriinjiata, shaped), ii?n(<eaturesl>},
rtecirt - farr.dt(cc*piexj«xjel_l .score(test jJataffeatoresl^rest/fatef ’ price]), • .3f’)
arrecfil • forget (adjust edRZtcoiiplexjiwdel-l. score (test-date [features 1] jtest-datal price’])Jiest_datd.siiape(Oi^ len (features!))/ .3

r - evaluation, shape [il]
evaluation.loc[r] - ['Complex Model -1‘,‘ nl.rtrcnl, art real „rteciilB artccnl]
evaluatj«i.»grt_valueji(t»y - 1F:- squared (test)', ascendSng-Falw)

Figure 20.1 1: creating a complex model

InttrCfpt: -57iilHJ, 1MS5877
Coefficients l [-5. 689582796404 1.]J3.ieQ6264W 3,lSiBg287e»02 -2.9125076286-01
-5,79699S!if*&5 s.Maiin4«*n)

Adjusted R-squased (test) Adjusted R-suM^re^l {(raining D-ecarls Mean Squared Error |MSE> Model R-squaied (tesO R-squared Ufalnlnu)

3 Cwnplwc - 0514 0.514 0519 0.510

0 Simple Hoilel - 254H9149 0.492 0.496 ...

1 Simple MMsl - 25lMSi*9 0.491 0.4« ■

? Simple Model - 254289 0 492 0.496

Figure 20.1 2 prediction on complex data

From the preceding output, you can say that the uurfirst complex

model decreased the MSE to 248514.011, which means we can

add additional features to our model and again plot boxplots for

further examination, as shown in the following screenshot:

f, axes - pit, subplots (1, 2,f igsize/lS, E>))
sns,boxplot(x=traifi_dataf 'waterfront'J ,y4t:rain_d ata ['price'], ax=axes[e])
5ns.boxplot(x=traindata['view"]5y=train_data['price'], ax=axes[1]}
axes[9].set(xl.abel=’waterfrontylabel= Price‘)
axes[1].yaxis.set-label-position("right")
axes[1].yaxi s.tic k_right()
axes(1].set(xlabel="View', ylabel^'Price’)

fj axe - pit.subplots(i, 1,figsize-(12.13,5)}
sns.boxplot(x=train_data['grade’]Jy=train_data['price"J, ax=axe)
axe.set(xLabel"‘Grade‘t ylabel-'Price*);

fprH.it

Figure 20.1 3: plot the box plot
PM

ce

BOODOPO

7000000

6M00M

SMOOOO

4000000

3000000

2000000

UMMOO

0

34 5 *7 44»U1213
Qi de

Figure 20.1 4: box plot of house price vs grade

Let’s add some more features and repeat the same steps:

features! * ['bedro&as ’ *' bathraefts' *'' sqfi_llvln.fi \ ’sqfi_ldt'* f l&0rs\ 'waterfront’view\
'grade’,'yr_bulit" * ’1ipcode1*]

coaplex_Dadcl_2 - Jinear_Bodel-LincdirftegiressicjnQ
coupleM_Bad»l_2.flt(tra[n_dat a[features!]r Era in_data['price"])

print(' Intercept: {)■' .fematCcdBplex^BMfel^. Intercept^))
print('Coefficients: {}\feuspwt(c«^iex_eodel_2.c<>ef_))

prcdi - Co«plex_«jdfrl_.2.prfrdict(te5t_d*ta[features!])
■seen! - forcat (np. sqrt («et ric 1. BBcan_squjred_errar(y_testil pred2))p" . 3f')
rtrc»? - farflit(cciBfi]»K_HiCrffel_a1 scorettralfi^ataCfeaCuresZl^tra-j^datat ‘price’])/ . ')
artrcii! - fe.reat (ad just«iR2 (C0R>l#x_Badel_2. sc&re(traln_data(feature s!train_data('pri ce ')) >train^data. shape [fl] „ len (features!)),
rtec®2 - feraat(complexj*otfel^2. score Ctest_data(features!), test jlata [' price'])*' . if')
artecn! • f<K*at(ad)ustedR2(cMplex._«odel_2 .scere(tesi_dM*Ifeatures!]jtest_data('price'])jtest_daca.shipe[0j*len(features!))> \3

r • evaluation.shape[fl]
evaluation.locjr] » [Complex Model-2 ' f' -' J.nsec®2J.rtrc*2 #arTrc*2 J.rTecr2,arTec*2i
evaluati&fl.sdrt_values by * rR-squared (te5t)\ *sc.efidi<ig-false

Figure 20.1 5: adding more features and making prediction

Intercept: 1.^59209,611222725
[-3.8OS81W2t.O4 fr 830317274*84 1.713704754*01 ■ 2-6801S419e-01

2.2194«'JI2h+iM 5 .S3865817e*BS 4.7O338164e*e4 1.23642134e*S5
-3>n38Hn*M9 ■6.821884064*81]

ft4Jutlrd R-iquued Ad|i.tie4 R-miMted (iHiniitoi dci^i* Men* Squired End* |M$E) MdiIl'I R iqiHied R-tqu«red U.tlriliig)

4 Cfflnfltw mcJei -2 - 2l<HMtSS 1551 s«o cus 0.654

3 Complex Modd-1 * 244514 011 0514 0 514 0519 0518
0 StHipte Model - 254233 148 0,432 - 0496

1 Sirups Mpdti - 254289 >49 (492 - 0.4»5

2 S:mpy Mpdll ■ 254249 149 0 492 «■ 0.496

sqfi_llvln.fi

Figure 20.1 6: result of the prediction on more data

From the preceding result, you can see that adding more features

in our complex model 2 is decreasing the regression log, i.e., in

our case, it is now 210486.689. Always remember, for the linear

models, the main idea is to fit a straight line to our data.

However, if the data has a quadratic distribution, this time

choosing a quadratic function and applying a polynomial

transformation, may give us better results. Let’s see how we can

choose a quadratic function and apply the polynomial

transformation in the following screenshot:

polyfeat ■ PolynomialFeatures(degree-2)
X_trainpoly ■ polyfeat.fit_transforffl(train_data(featuces?))
X_testpoly • polyfeat.fit_transform(testjiata[Features!3)
poly - Iinearjnodel.LinearRegression().fit(X_trainpoly, train_data['price'])

predp - poly.predict(X^testpoly)
flisepolyl - format(np.sqrt(metrics.mean_squared_error(test_data['price' ^pred}),' .3f')
rtrpolyl - f o rma t(poly, sc ore (X_trainpolyihtraini_dat a ['price']) >' - 3f')
rtepolyi = foraiat(poly.score(x_testpoly,test_data['price' J), \3f')

polyfeat = po1ynomialFeature$(degree-3)
x_trainpoly - poly feat, fit_trari$forni(tr'ain_date[featiires2])
X_testpoly - polyfeat.f£t_transforirt(test_data[features2])
poly = linear_model,lioearRegres6icin(). fit (x_ train poly, train_data['price']}

predp 7 poly.predict(X_testpoly)
tusepoly2 - format(fip.sqrt(metrics.inean_squared_error{testw.data['price'],pred)),'.3fr)
rt r po) y2 ■ f o ruiat (poly. sc ore (X_t rainpoly, t r ain_data (’ p rice']),'. 3f ')
rtepoly2 ■ format(poly.score(X_testpoly,test_data['price'J),’.3f')

r • evaluation.shape[0]
evaluation. loc[r] - [' Polynomial Regression \ 'degree-2' ..msepolyl, rtrpolyl, '-' frtepolyl, '■' J
evaluation.loc[r«-l] - ['Polynomial Regression', 'degrecTi', nisepolyl^rtrpoly!,'- L,rtepoly2f]
evaluation, so revalues by - 'R-squared (test)’, ascending-False

Figure 20.1 7: Applying polynomial transformation

In the preceding code cell, we have first initialized the Polynomial

Features with degree 2 for generating polynomial and interaction

features. Then we have fit and transformed these features using

fit_transform() method, and then we have trained our linear

regression model using the fit() method as we did earlier.

Next, we repeat the same step but for degree 3. After this, you

can calculate each degree’s regression log and score, and then

apply our evaluation dataframe to it, just as we did earlier.

You will get the following result after executing the preceding

steps:

Adjusled R-squared lies') AJjusleO R-squared Jiramloal Oe'ails l^ean Squared- Error rMStl Model R-squared lies') K-squared "ralnirqj

& Foly-iuffiial Rejreisxm degrees 2M289 149 0749- 0.723

b Polynomial Regression degreei2 2M2S9 140 ftTW 0.T16

4 Cwplei MXMM 21WM W9 0 6W .MS 0S&4

3 Complex Medel-1 248514 011 0.514 0.514 0.519 0.510

0 Smp’e Model 234280 W9 0402 0 4W

1 Srnpm Mow 2M280 140 0492 MH

1 Smipte Model 254289 149 04M 0 496 -

Figure 20.1 8: comparison of all predictions

When we look at the preceding evaluation table, MSE values are

confusing to select the best model, because many models have

the same MSE value. For removing this confusion, we must see

the R-squared (test) values also. An R-squared value, closer to

100%, denotes a good correlation; so, in our case it seems our

3rd-degree Polynomial Regression model is the best model for our

problem having a 74.9% R-squared value. That completes our

goal!

Always start with a simple model, and then increase its complexity

by adding its features and check different evaluation metric scores.

Although it is a time-consuming process, it is one of the best

ways to get a stable and highly accurate model.

Try to add some new features, check the evaluation metric, and

see if you are getting a more valid score or not.

Conclusion

Congratulations! You have built a very good model to predict

house sales. Such types of models are very helpful for sales, and

they can help the sales representatives to focus on important

features of a property to sell. Now you have hands-on experience

in dealing with sales-related problems. So, go on and apply this

knowledge to predict store sales or product sales, and see how

you can help the company with your data-driven skills.

CHAPTER 21

Python Virtual Environment

After completing the last 20 chapters of this book, you are quite

ready to transform your title from an Aspiring Data Scientist to a

Data Scientist . In the real-world, when you will work with a

company, you will often find yourself in a new project from time

to time. To share my experience with you, I had worked on three

different projects in a single year, and each project had different

Python environments: one was using Python 2.7, the second was

on Python 3.6, and third was on Python 3.7. Uninstalling a version

and then reinstalling the required version in your machine with a

project to project is a tedious task. Also, it is not a good

practice. Not only do we have to do this step for Python, we also

need to do this for various libraries that we have installed. In the

first bonus chapter of this book, you will learn about the Python

virtual environment to solve this environment change issue. Along

with this, you will also learn some of the best practices while

working on your first Data Science project.

Structure

What is a Python virtual environment?

How to create and activate a virtual environment?

How to open Jupyter notebook with this new environment?

How to set up an activated virtual environment in PyCharm IDE?

What is the requirements.txt file?

What is README.md file?

Upload your project in GitHub

Objective

The main objective of this chapter is to teach you some best

practices while working on a project. In the real world, you use

your Jupyter notebook for your analysis. Still, you will share your

final analysis in the form of a project consisting of Python

file/files, txt files organized in several folders. After completing this

chapter, you will be quite familiar with such best practices.

What is a Python virtual environment?

If you open the Anaconda Prompt, you will see the following text

is showing at the start of the prompt - (base) just as in the

following screenshot:

Figure 21.1: Anaconda prompt

As the name says, it is the default base environment of your

Python and other libraries installed. Instead of using this base

environment, from now onwards, you will use an isolated Python

environment, known as the Python virtual environment. The benefit

of using this environment is that every new project has its own

Python version and other dependent Python libraries. You don’t

need to uninstall and reinstall Python with every new project. The

beauty of using a Python virtual environment is that there are no

limits to its number. You can create as many environments as you

want.

How to create and activate a virtual environment?

Since we are using Anaconda from the beginning of this book, we

will use conda to create and activate a virtual environment in our

machine. To create a Python virtual environment, open Anaconda

Prompt with admin rights and use the following command: conda

create --name python=

Please replace with any name and with your specific Python

version. If you want to check the Python version installed in your

machine, just run python -version in the same Anaconda prompt.

Following is a screenshot of my Anaconda Prompt:

(base) C:\Uindows\system32>concla create --name new_py_virtual python-3.7.3

Figure 21.2: new_py_virtual Anaconda prompt

In the preceding example, I have given my virtual environment

name as new_py_virtual, and my Python version is Once you run

this command, the prompt will take a few seconds, and it will

collect all required packages for creating your new Python virtual

environment:

Figure 21.3: New Python virtual environment

When asked, press y and enter. It will install the required

packages, and your new Python virtual environment will be

created:

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done

To activate this environment^ use

$ conda activate new_py_virtual
#
To deactivate an active environment use
#
$ conda deactivate

(base) C:\Windows\system32>

Figure 21. 4: Installing required packages

Once the new environment is created, we need to activate it. You

can activate it by running the following command: conda activate

The same command you can also see in your Anaconda Prompt

console:

Figure 21. 5: Activating the new enviornment

Notice the starting line of your console. In my example, the

(base) environment is changed to In the same way, you will see

your environment name. This means you have successfully created

and activated the environment. Now you can install any Python

package using command pip install in this newly created virtual

environment. Once you finish your work, you can close this

console, and when you want to start your work again, you just

need to open Anaconda Prompt, run the following command

conda activate That’s it. Your previous environment is ready for

reuse. If you want to create another Python virtual environment,

open a different Anaconda Prompt, and repeat the previously

mentioned steps with your required Python version and with a

different environment name.

How to open Jupyter notebook with this new environment?

Once you create your new Python virtual environment and install

all required Python packages, the next step is to open your

Jupyter notebook with this environment. The step is

straightforward. You just need to use the jupyter notebook

command in the same Anaconda Prompt. Before using that

command, you will first create a new directory, and from there,

you will open your Jupyter notebook. It is our first good practice

to create a directory structure for our project. For this first step,

create a new folder in your local disk and copy its path. For

example, I have created a new folder named as example_notebook

in the following path E:\prateekg\docs\BPB\Bonus\ and copied the

path till the newly created folder. In my case, the full path is

E:\prateekg\docs\BPB\Bonus\ example. Now in the same Anaconda

Prompt, go to the path you have copied and run the following

command: jupyter notebook --notebook-dir

My Anaconda Prompt screen looks like the following screenshot:

|(ncw_py_virtual) €: X.VJindows\sy st cm32> jupyter notebook --notebook-dir E:\prateekg\docs\BPB\Bonus\exaiiple_notebook

Figure 21. 6: Opening a Jupyter Notebook

Once you press a new browser window will open showing your

notebook folder. In my case, it looks like the following screenshot:

Q toCihlOStJ&BSa/lree ft

^jupyter om

Ffcs Rurtnng Ctasleft

SetecE«rtisi»jjwfiyfn*£boftstjfi twwi He* • £?

□ ft * b/ Narr^ * ljs! Ltodted Fie iutt

The ndBbooh irs4 s wnpfy

Figure 21. 7: Browser window

In the same way, you can also open any existing notebook. You

just need to give its path to the command jupyter notebook For

creating a new Jupyter notebook, just click on New dropdown,

select Python 3, and it will open a new notebook in a new tab.

How to set an activated virtual environment in PyCharm IDE?

Till now, you have learned the setup of the Python virtual

environment with your notebook. Next step is to learn how to do

the same with PyCharm IDE. Once you set this up, you can

directly run your Python files in PyCharm console. Since in the

real-world project, you will most probably use PyCharm IDE, I will

show you how to complete this setup. If you have not installed

PyCharm IDE in your machine, please follow Chapter 4: Package,

Function and Loop of this book, where I have already described

this. Open PyCharm, go to File and click on the Open link. Paste

the path of your newly created folder. Make sure that after pasting

the path, your folder should be selected automatically. If not, then

manually select the folder. The screen will look like the following

screenshot:

Figure 21.8: PyCharm IDE screen

Click on OK button, PyCharm will be opened and it will start the

indexing of your imported project. The project will look like the

following screenshot in PyCharm:

PH File Edit View Navigate Code Refactor Run Tools VCS Window

example notebook

t> @ Project ▼ t —
C ■ ;

► Bi exam ple_note book E:\prateekg\d0cs\8PB\Bonus\example_noteixJ0k
> lllli External Libraries

Scratches and Consoles

Figure 21.9: Project in PyCharm

Now, we will setup our virtual environment with this project. For

this purpose, press keys or choose File | Settings (for Windows

and Linux or PyCharm) | Preferences for macOS. Then select

Project name> | Project It will open the following pop-up in your

screen:

S !■■■ Li' V-v <:-! |l,I.,,’:- >j-. |;- .

te rurnpicntfi cheek

v W! rn#s » E Swiuifl

*■ hl «xam pk? rrt'trtHxA

* Hl Eriarwd libraries

^ScraidMM*̂ Consoles ’ ft Behalf

AppWKjt

► Syrte'n Settings

Project: rumple notebook Project Inteipreter

Project rnta-p<e«r Q P^_rori 1.7

Vasson

StOK*

PJdlihcjflkjra

□.ick lists

Parts Variable?

Kcymop

► Editor

Flu gpm 1

► Vet lion Ctotrol

* Project; ̂earn pie n^ebe^k

Project Stn-c+uie

► Huitf. Execution, Depkyjf'M-nt

► Language! ft f ririHwtclil

► Twh

Figure 21.10: Project Interpreter in PyCharm

Once you select the Project Interpreter option, on the right-hand

side, you will see a drop-down under the name Project Click on

that drop-down and select Show All... option. Now select the

option having your newly created environment name, if it exists,

or click on + icon to manually search it. In my case, I clicked on

+ icon, and a new pop up appeared. From there, select Conda

Environment as shown on the left menu and then select Existing

Next, from the dropdown next to this option, select the option

having your newly created virtual environment name and click on

Ok buttons till you come in the main PyCharm window:

Figure 21.11: Virtual environment Settings

Once you click on all OK buttons, PyCharm will start the indexing

of your project. You can see this process in the bottom right-most

corner of your PyCharm IDE. It looks like the following screenshot:

Q Event lag

V Updating skeletons for CAUsers^prateekgV^ppData\LiKail\£cxi5jnuum\anaccHTda3\eiwsSfxwjp¥ wrWalXprthHDn.™’.-

Figure 21.12: Indexing in PyCharm

Wait for this indexing to complete. Once it’s done, your project is

configured with this virtual environment. When you open PyCharm

IDE next time, you don’t need to do this step again. PyCharm will

automatically use this virtual environment with this project.

What is requirements.txt file?

Till now, we have created our project directory and imported it in

PyCharm IDE with a virtual environment. The next step is to

make a requirements.txt file in our project. requirements.txt file is

a simple text file containing your installed Python libraries with its

version as key-value pairs. This file is required to setup your

project quickly in any new environment. Any new user can read

this file and simply run this instead of installing packages one by

one. To create this file, we will use the pip freeze command.

Open a new Anaconda Prompt, activate your newly created Python

virtual environment, and go to the path of your project directory.

In my case, it looks like the following screenshot:

M Administrator Anaconcfa Prompt (anaconda!)

(base) C :\uiridovjs\systenBZactivate new_py_yiftual

(neH_py_vjrtual) C;\WindoH&\system32>cd E:\prateekB\docs\BPB\Bonus\exaiflple_ntJtebook

(new_py_virtual) C:\UindoHs\system32>ei

(new_py_virtual) E: \pr'ateek£\does\BPB\Boiuis\exainple_notebook>

Figure 21.13: Path of the project directory

Now run the following command: pip freeze > This command will

save all your Python libraries in a newly created .txt file. Once you

run the preceding command, go to your project folder, where you

will find your requirements.txt file. The same you can also see in

PyCharm IDE. For my project, it looks like the following in

PyCharm:

Figure 21.14: requirements.txt file view

If you see requirements.txt file, as shown in the preceding

screenshot, it means you have successfully created it. Now anyone

can install all required libraries of your project in his/her machine

by just running the following command: pip install -r

What is README.md file?

The next best practice to use in your project is to have a

README.md file. This file contains information about your project

in such a way that a new user can understand the goal of your

project, how to setup, and be able to run the code. Since this is

the first file that any new user searches in a project, it should be

good enough to understand. You can create a simple text file and

change its extension to .md from .txt for creating this file. Here,

the extension .md means markdown. It’s a mark-up language for

text formatting. You can edit this file in any text editor. For

creating this file in PyCharm, right-click on your project, go to and

select File option:

El fife £di1 yiew tJavi?ale £ode BefacLor Rm Tools VtS JJftudow t!elp example ncrteboo* : prateek)g\dc<s\BPB\6on ^example,

ta example ixeleboek

■J I?? Project •

■C T h exampk.netciwok
h B ipynb.chcckpoints

(J lenTiiremmicntl

i1 UntiUed.ipynb

► lllli Ertr™l Libraries
^Scittwtw andCtwotet

i'3 rcq-jirttmcsi'slxl

» B He

X Cut CtrUJt ff New Scratch File Ctrl tAlRShi ft<- Fnseil

'□ Copy Ctfl+C ■ Dfrecttny

Cfipy P$|h Ctrt*$h|f|+C tl Python Paffiaqe

Copy Relative PjUi Qjl-Aft*Shift*C rj Python File

B Pane Ctrl*V J HTML File

AH+F7 tt Editflltonllg File

find in- Path । ■Ctrl* Shift-F r,| Aesciurce Bundle

Replace in Paifx. CW»Shi(l*FL x«i==e.6.e

Inspect Code. jots..0.3

Figure 21.1 5: Creating readme.md file

Enter the name as README.md and click on the OK button. This

file is created in your project directory. The next step is to fill this

file as per your project. Here, I am sharing a snippet of this file,

in which you can use a template for your project and can easily

edit as per your need.

■# Project Titte

Title of your project goes here

frft Project Description

Describe what is the aim of your project and what problem it solves

Prerequisites

What things you need to install the software and how to install them

Give examples

■ ### TnStot Lotion

A step by step series of examples that tell yOu how to get a development Snv running

Say what the step will be

Give the example

Figure 21.1 6: README.md file preview

You can find the complete project structure in our shared

repository. In the next few chapter, you will add on new files in

this project structure, and in the end, you will have a complete

project structure.

Upload your project in GitHub

Once your project is ready, you will need to share it with other

team members, so that they can use it. For sharing, copy-pasting

the code and shaing via mail or pen-drive, is a very bad practice,

and often restricted in an organization. For this purpose, you

should know how to use GitHub. GitHub is a Git repository

hosting service, and it provides a web-based interface. To use this,

you need to register yourself in GitHub first. Open the following

link in the browser: https://github.com/ and click on Sign up link

for registration. Once you are successfully registered, the next step

is to create a repository there. After logging into GitHub, you will

see the new button on the right side of the

Figure 21.17: Repository in GitHub

ithub.com/

Click on New button. A new screen will be opened and you will

be asked to enter the repository name. Fill the name field and

click on Create repository button:

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository elsewhere?

Import a repository.

Owner Repository name *

dsbyprateekg' / sample_project_repcj

Great repositoiy names are short and memorable. Meed inspiration? How about redesigned-umbrella?

Description {optional)

* . ’ Public
Mr—' Anyone can see this repository. You choose who can commit

Private
(□ You choose ■■'■hi? can see and commit to this repository.

Skip this Step if you’re importing an existing repository.

Initialize this repository with a README
This will let you rm mediately clone (he repository to your Computer.

Add .gitignore: Non? v Add a license: None t (£)

Create repository

Figure 21.1 8: Creating new repository

Once you click on Create a new screen will be opened, asking

you to upload existing code in the repository. For this, we will use

the command-line option. For the command-line option, we will

use the Git Bash. You can download the Git Bash from the

following link:

Once you download and install the Git Bash, just type Git Bash

from search option in your windows machine and click on Git

Bash. It will open a command-line console. Now, copy your newly

created project directory path and paste the following: cd Don’t

forget to replace with before running the command. It looks like

the following screenshot:

M]NGW64ye/pra:eekq/docs/BPB/Bonus/exannp!e_notebook — □

prateek. q(£EBSLAP80 ~
S cd E:/prateekg/docs/BPB/Bonus/example_notebook

prateek.g E0SLAP8O ’ /e/prateekg/docs/BPB/BonLis/example_notebook
S 1

Figure 21.1 9: GitBash command window

Next, you just need to run the following commands one-by-one:

git init

git add

git commit -m <“commit_message”>

git remote add origin

git push -u origin master

For example, when I run command git in it, my repository is

initialized:

prateek. i;‘EBSLAP80 /e/prateekg/docs/BPB/Bonus/exampl^notebook
S git init
Initialized empty Git repository in £:/prateekg/docs/BPB/Bonus/example_notebook/
■ git/

prateek.g3EBSLAP80 /e/prateekg/docs/BPB/Bonus/example_notebook (mas ter)
* I

Figure 21.2 0: initializing the repo in GitBash

Next, the second command will add my files to the repository. If

you want to add all files at once, you just need to give a instead

of the file name. I recommend adding files one by one to avoid

any error:

prateek . g0EBSLAP8O /e/prateekg/doCs/BPB/Bonus/exan:ple„nctebook (master)
S git add README,usd

prateek,g^LBSLAp80 . /e/p rate ekg/d ac s/BPB/Bon us/exan>ple_ notebook (master)
$ git add requiremeiits.txt

Figure 21.2 1: Adding files

After adding files, we need to commit these files with a message

using the third command:

prateek.g.-EBSLAPBO /e/prateekg/docs/BP8/Bonus/example_nGtebook (master)
$ git commit -m “first commit1'
[master (root-commit) 2clbd3O] first commit
Committer: Prateek Gupta <prateek. gi&droisys , locals-

Your name and email address were configured automatically based
on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly. Run the
following command and follow the instructions in your editor to edit
your configuration file:

git config --global --edit

After doing this, you may fix the identity used for tins commit with:

git commit --amend —reset-author

2 files changed, 113 insertions(+)
create mode 100644 README.md
create mode 100644 requirenient5.txt

Figure 21.2 2: Committing files

After committing the files, we need to push our local repository

to the remote repository using the fourth command:

prateek.gfJEBSLAPB0 .. - /e/prateekg/docs/BPB/Bonus/example„notebook (master)
S git remote add origin https://github.com/dsbyprateekg/saniple_project~repo.git

Figure 21.2 3: Pushing local repository to remote repository

As the last step, we just need to push local changes to our

GitHub repository using the fifth command:

prateek. gt&EBSl APfiO /e/prateekg/dOCs/BPB/Bonus/example_notebook (master)
S git push -u origin master
Enumerating objects: 4. done.
Counting objects: 100% (4/4), done.
Delta compression using up to 12 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 1.24 KiB | 1.24 MiB/st done.
Total 4 (delta 0). reused 0 (delta 0)
To https://github.com/dsbyprateekg/sample_project_repo.git
* [new branch] master -> master

Branch 'master* set up to track remote branch 'master' from 'origin'.

https://github.com/dsbyprateekg/saniple_project%7Erepo.git

Figure 21.2 4: Pushing local changes to GitHub repository

That’s it! Now, when you refresh your GitHub profile, you will see

your added files, README.md and as shown in the following

screenshot:

dsbyprateekg /sample. project, nepo aurwiih* i o e

OCode - Hs-'jc-s 4 H Pull requests 0 O Adxxis I'l Projects 6 . Wki I Security -h Insights CJ Settings

example of creasing « repo i n githkib t*
Manage lepcc

1 conirwl P1 branch. Qy -0 packages 0 release? XL 0 <Qn/iribut<xs

Erjixri. ffUHttr • New pull itqueti Cieac* new file 'Upload fin Find fita

Prvleck Gupta fnC commit Lat-r^t tomn’ji ?<: LbdW 3 minutes aijn

[l>! Rf/kHMF md lirM cofnrriil 9 nhinu|.n Jiga

Ei requirenwnis.txl iim commit 9 minutes ago

Oiiirt ur dewnlGJkd -

Figure 21.2 5: Files added

Conclusion

In this chapter, you have learned some of the best practices that

you will use in any organization. Python virtual environment gives

you the ability and freedom to install a specific version of

packages. On the other hand, requirements.txt file makes your

project easy to install in any other system, and from README.md

file, any new user can understand your work easily. You also

learned how to use GitHub. Follow the steps mentioned in this

chapter, or download the project from our repository, import it in

PyCharm, and use this as a template for any of your projects. In

the next chapter, you will learn about a new gradient boosting

algorithm - CatBoost.

CHAPTER 22

Introduction to An Advanced Algorithm - CatBoost

In Chapter 13: Supervised Machine Learning_and Chapter 14:

Unsupervised Machine Learning_, you have learned how to solve

supervised and unsupervised machine learning problems using

Python’s scikit-learn library. One essential step in using the scikit-

learn library is to handle categorical data before modeling. What

technique we use for converting the categorical data into

numerical form affects the model performance directly. Leaving

certain features means making your prediction weak. So it is an

important step and requires strong knowledge of your dataset.

What if this step can be automated? What if instead of focusing

on this conversion, you can give your attention to training?

Sounds interesting! In this chapter, you will learn one of the

advanced algorithm - CatBoost, which will automate this

conversion for you.

Structure

What is a Gradient Boosting algorithm?

Introduction to CatBoost

Install CatBoost in Python Virtual Environment

How to solve a classification problem with CatBoost?

Push your notebook in your GitHub repository

Objective

Data Science is an emerging field. The frequency of new algorithm

coming in this field is very rapid. Every new algorithm comes in

the market with improved features, and they outperform older

algorithms. As a Data Scientist, we need to update ourselves daily,

and we should try to use them in our work. Following the same

thought, in this chapter, you will learn about gradient boosting

and CatBoost algorithms. Also, you will learn how to use CatBoost

in solving a real dataset problem.

What is a Gradient Boosting algorithm?

Gradient boosting is an efficient algorithm for converting weak

learners into better learners. Here, a weak learner is also known

as a weak hypothesis. Adaptive Boosting, also known as AdaBoost,

was the first boosting algorithm. The three essential elements

used by a gradient boosting algorithm are loss function, weak

learner, and additive model. You have used different loss functions

in classification, and regression problems, for example, mean

squared error and logarithmic loss. So, as per the type of

problem, gradient boosting algorithm uses the loss function. For

choosing the weak learner, gradient boosting chooses decision

trees. Here, trees are constructed with best split points, and

subsequent models are added to correct the errors in predictions.

Please note here that trees are added one at a time, and existing

trees are not changed in this algorithm. While adding the trees,

this algorithm makes sure to minimize the loss. Examples of

gradient boosting algorithms are CatBoost, XGBoost, and

LightGBM. These algorithms have achieved the state-of-the-art

results in a variety of practical tasks. Our focus in this chapter

will be on CatBoost.

Introduction to CatBoost

CatBoost, developed by Yandex researchers and engineers in 2017,

is a high performance open source library for gradient boosting

on decision trees. With default parameters, CatBoost gives

excellent results, and it works very fast on large datasets using

GPU. It reduces overfitting while constructing a model, and it can

handle certain features automatically. CatBoost can be used to

solve both classification and regression problems. The most

attractive feature of CatBoost is to handle certain features. Here,

certain feature is a feature having a discrete set of values that are

not necessarily comparable with each other, for example, city

name. We generally convert these features into numerical form

before the training. CatBoost handles categorical features during

the training time and we don’t need to convert them into

numerical form. You will learn about its parameters later in this

chapter.

Install CatBoost in Python virtual environment

In the previous chapter, you created a virtual environment using

conda command. We will use the same environment from now

onwards. You can again use that environment. For this open

Anaconda Prompt with admin rights, activate the environment by

just running the following command: conda activate Your base

location will be changed to your virtual environment name. Now,

install the CatBoost using the following command: pip install

Figure 22.1: Installing CatBoost

CatBoost has some inbuilt visualization capability. For using this

capability, you need to run the following command as well: pip

install and then you need to activate the notebook widget by

running the following command: jupyter nbextension enable --py

(new_py_vir*tual) C:\Windows\systeit!32>jupyter* nbextension enable --py widgetsnbextension
Enabling notebook extension jupyter-js-widgets/extension...

- Validating: ok

Figure 22. 2: Enabling catboost widgets

Once you see the ok message in the console, it means you have

successfully installed the CatBoost. While installing, if you get any

Module Not found Error, then please install that library using pip

install command and then proceed to the next step.

How to solve a classification problem with CatBoost?

Once you complete the previous step, you are ready to use

CatBoost. Let’s open our notebook in our activated virtual

environment, as we did in the previous chapter:

(new_py_virt ua1) C:\Windofd4\4ysteiiJ2ijupyter’ notebook --notebook-dir E: \.prateekg\docs\BP8\Sonu5\eKa«ple_notebook

Figure 22. 3: Open notebook

Once the notebook is opened in the browser, create a new

notebook there and give it a name. Now to understand how to

use CatBoost, we must use a dataset. Infact, to understand

CatBoost’s categorical feature handling capability, we need a

dataset that has more certain features; also that dataset should be

a real-world dataset. We don’t need to go anywhere to download

such a dataset. CatBoost provides inbuilt datasets processing with

some real-world datasets, including UCI Adult Data Set, Kaggle

Amazon Employee Access Data Set, Kaggle Titanic Data Set, etc.;

you can load these datasets from catboost.datasets directly. For

our first example of this chapter, we will use the Titanic Data Set.

You can find this dataset description from the following link: Let’s

load this dataset along with NumPy, as shown in the following

screenshot:

Load titanic dataset and numpy Library
from catboost.datasets import titanic
import numpy as np

Figure 22. 4: Loading Titanic Data set

After running the preceding cell, the Titanic dataset will be

imported. After importing the dataset, the next step is to load the

training and testing dataset. For this, we just need to fetch the

titanic() function. Let’s fetch both datasets and check the shape of

the loaded datasets:

read training and test dataset
|train_df} test_df = titanic()
print datasets shape
train_df.shape, test_df.shape

((891, 12), (418, 11))

Figure 22. 5: Checking shape of datasets

So, we have 891 samples in the training dataset and 418 samples

in the testing dataset. Let’s check the top five data of the training

dataset using dataframe’s head() function:

• rhecfe trffininj dataset top 5 content
traln_df tad

Passthgtrla 5ljfVr«*d Ptliss Nam# Sai Aq< Si&Sp Parch Ticmai Fart Cl Di fi Embarktd

0 1 fl 3 Bitfj-d Mi Owen Hams male 22 0 1 0 4*5 21171 725OD NON S

1 3 t 1 CwTungs. f.Ui John flrad k> (Ftotence Hi 995 Th ternate MO i 0 PC 175M 71 J&33 CM C

2 3 T 3 Heddanen 'Ass Lara SemaJe MO 0 0 STOWttf 11013S2 7 9250 rw s

3 4 1 1 futreiJe Mbs Jacques Healfi ijUty May Peefi kfluk 3$6 1 0 113W 43 10M C13 £

4 $ 0 3 Alefi. Mr W*am Perry flur* 350 0 0 J*3*W SdSW 5

Figure 22. 6: Using head() function

Here, the Survived column is our target variable, which we need

to predict for testing dataset. 1 (yes) means a person had

survived, and 0 (no) means the person has not survived. Next,

we will check the data type of the columns:

check data types
train_df-dtypes

Passengerld
Survived
Pciass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
dtype: object

int64
int64
int64

object
object

float64
int64
int64

object
float64
object
object

Figure 22. 7: Checking datatype of columns

As you can see, there are many categorical columns in this

dataset, which is indeed needed here! But before applying

CatBoost, we must check the missing values and then fix them.

Let’s check the missing values first:

check missing vaLues
train_df.isnull().sum()

Passengerld
Survived
Pciass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked
dtype: int64

0
0
0
0
0

177
0
0
0
0

687
2

Figure 22. 8: Checking missing values

From the preceding output cell, we can see that the Age column

has 177, Cabin column has 687, and the Embarked column has

two missing values in our training dataset. Check for yourself, the

missing values in the testing dataset, as well! Now we will fix

each missing value one-by-one. Let’s fill the Age column’s missing

values with it’s median:

fit I missing values in Age column with median
train_df[‘Age1] = train_ df [‘Age‘].fillna((train_df[1 Age'].median^)))
test_dff'AgeT] - test_df['Age'],fillna((test_df[1 Age'].median()))

Figure 22. 9: Fixing missing values

Next, we will fill the Embarked column’s missing values with the

most frequent one:

fill missing values in Embarked column with the most frequent one
train_df. Embarked.fillna(’$' } inplace=True)
te$t_df.Embarked*fillna('S' > inplace=True)

Figure 22.1 0: Filling missing values in Embarked column

Now, the last remaining column with missing values is Cabin, and

it is in very high number. Instead of removing this column, let’s

fill this column’s missing values with any random string:

Replace missing values with "U0" in Cabin column in both dataset
train_df['Cabin'l[t rain_df^ Cabin. isni410] = fue'
testjdf['Cabin'] [testjdf.Cabin. isnullQ] - ’US'

Figure 22.1 1: Replacing missing values in Cabin column

Have you checked the missing values in the testing dataset? If

yes, you will see there is an extra column with missing values -

Let’s handle this column’s missing values also:

fill missing value in Fare column with median
test_df'[' Fare.' 1 = test_d-F[Fare'] .fillnaf (te$t_df['Fare'] .median())}

Figure 22.1 2: Handling missing values in Fare column

Now, if you check the missing values in both dataset again, you

will find all missing values are filled. In the next step, we will

separate the target column from our training dataset:

Now our train and test dataset have no missing values
let's seperate target variable from training dataset
X = traindf,drop(’Survived1} axis=l)
y = train_df.Survived

Figure 22.1 3: Separating target column from training dataset

Next, we will split the training dataset into training and validation

dataset to avoid overfitting:

5p(it OUT training dptaset into trpin pnpf votiffpte (fatosets
from Skieanrt.mOdel_selectl.Oi1 import trtalrt .test, Split

Xjtrain, X_validation, y_train, y_validation * train_test_split(X, y, train_siie=6.75J i-andoni_state-i2J)

X test = test df

Figure 22.1 4: Splitting training dataset

Until now, all steps that we have followed here, you have already

seen in Chapter 13_and Chapter 14_ of this book. There is nothing

new. Now, we can move to our main goal - how to use

CatBoost? For this, let’s import CatBoost and other required

libraries and then create CatBoost classifier model, as shown in

the following screenshot:

ff import CatBoost and required libraries
from catboost import CatBoostdassifier, Pool, cv
from sklearn,metrics import accuracy_score

tt create a simple CatBoost .model
model = CatBoosttlassifier(evaljnetric=‘Accuracy*, use-bestjnodel^True, randcxn_seed=42)

Figure 22.1 5: Importing CatBoost

In the preceding input cells, we have first imported the since our

problem is a classification ml problem. If you are working on the

regression ml problem, then you need to use Next, we have

imported Pool class is used for data processing in We pass our

features data into the Pool constructor. The cv is used for doing

cross-validation. You will see the exact use of these in further

steps. While initializing our classifier, we have enabled

use_best_model parameter for saving the best model:

Next, we will make a list of certain features. Here, I am making

this list with all columns having object data type. You can update

the list as per your understanding of the categorical features. Then

I will pass this list in the model training step, as shown in the

following screenshot:

String_featurES - I'Uame1, 'Sex', "ticket’, ‘Cabin* > 'Embarked’J

jt start training of the model
model.fit(X train, vitrain, cat features - string, features, eval_sets(x validation, y. validation}, plot^True)

Figure 22.1 6: Training of the model

Here, for model training, we are using mode.fit() function, which

you already know. Along with parameters like - input training and

target variable(y_train), here, we are passing our categorical

features list in cat_features parameter. This is the parameter that

will take care of all heavy lifting with certain features. For

validation purposes, we have used eval_set parameter with our

validation dataset, and also enabled another interesting parameter

- plot. The plot feature will plot metric values, custom loss values,

and time data during training. Once you run the preceding cell,

model training will start, and during the training, you will see a

running plot in the Jupyter notebook output cell until the training

ends. In the end, you will see the number of boosting steps with

the best accuracy on validation dataset, as shown in the following

screenshot:

bestlest = 0.8744394619
bestiteration = 165

Shrink model to first 166 iterations.

: ccatboost.core.CatBoostClassifier at 0xle479c26b00>

Figure 22.1 7: Best iteration and accuracy

See, without handling certain features on your own, you have got

87% validation accuracy. Sounds great, right! Let’s cross-validate

our model by doing some cross-validation also. For this, we will

use 5-fold cross-validation with Pool constructor, as shown in the

following screenshot:

#/or tjfe (fatrr is not so big, we use the cross - vat idatton(cv) for the inodet., to find how
itgood the modet is ,l just use the 5-fotd cv
cv_params = roodel.get_params()
Cv_params.update({

'loss function‘Legless*
})
ev_data = cv(Pool(X,yJcat_features=string_featur&s),cv_paramsjfold^ount^S,plot=True)

Figure 22.1 8: Using 5-fold cross-validation with Pool constructor

Here, we are using logarithmic loss as our loss function and five­

fold for cross-validation. You can change the value of fold_count

from 5 to 10, or it’s default value three and see the effect on

your own. Once you run the preceding cell, you will again see the

plot during the cross-validation. You can click anywhere on this

plot and it will show you some interesting points in zoom:

Figure 22.19: Plot of CV during training

Once the cross-validation is done, you will see the training and

validation accuracy, as shown in the following screenshot:

9M;
99J:
996:
997;
999:
999:

learn; 0.9826047
learn: 0.9826647
learn: 0.9826047
learn; 0.982694?
learn; 0,9826047
learn: 0.9826047

test: 0.81J40M best: 0-0266354 (103)
test; 0.8114033 best; 0.3260354 (103)
test; 6-8125330 best: 0,0260354 (1£>3)
test: 0.8125330 best; 0.3260354 (103)
test: 6.8114030 best: 0.0263354 (103)
test: 0.8114030 best: 0.3260354 (103)

total; 2m 17s
total; 2m 17s
total: 2m 17s
total; 2m 17s
total: 2m 17s
total: 2m 17$

remaining: 683ms
remaining: 551ms
remaining: 413ms
remaining: 276ms
remaining: 139ms
remaining: 0u$

Figure 22.2 0: Training and validation accuracy

You can also print the best cv accuracy, as shown in the following

screenshot:

if print best result
print('Best validation accuracy score: {:.2f}+{:.2f} on step (}‘.format(

np.max(cv_data[1test-Accuracy-mean1]),
cv_data{'test-Accuracy-std1][np.argniax(cv_data['test-Accuracy-mean'])],
np.argmax(cv data['test-Accuracy-mean'])

Figure 22.2 1: Printing best cv accuracy

The output of the preceding cell is shown in the following

screenshot:

Best validation accuracy score: 0.83+0.05 on step 103

Figure 22.2 2: Best accuracy result

Let’s print the precise validation score as well:

a validate accuracy
printf'Precise validation accuracy score: {}’.format(np.fliax(cv_data['test-Accuracy-mean']))

Precise validation accuracy score: 0.8383838383838383

Figure 22.2 3: Printing precise validation score

We are getting 83% accuracy with It’s amazing right? Try the same

dataset and use some other classification algorithms, which you

have learnt earlier and see if you can match this accuracy. Next,

you can make prediction on some data with this model. For

making prediction, you just need to call In the next step, you can

save this model, and then reload the saved model for your further

use, as shown in the following screenshot:

save our model
model.save model(’catboosttitanicmodel.dump’)

Load saved model
model.load jnodel('catboosttitanic jnodel.dump')

<catboost.core.CatBoostClassifier at 0xle479c26b00>

Figure 22.2 4: Reloading saved model

Since this dataset is from Kaggle, it requires final submission in

specific CSV format having PassengerId and Survived columns

only. Let’s make prediction on test data and save them in Kaggle

required format:

make the haggle submission file
import pandas as pd
submission - pd.DataFrame()
submissionf1Passengerld’] = X_test['Passengerld']
submission[1 Survived'] = model.predict;x_test)

submission.to_csv(’titanicsubmission.csv’j index=False)

Figure 22.2 5: Making Kaggle submission file

Push your notebook in your GitHub repository

In the previous chapter, you uploaded your project structure in

your GitHub repository. Since you have solved problem in this

chapter, it’s time to push your changes to your repository. If you

have successfully ended this chapter, then you will have a

notebook, your saved model in .dump format, and your final

submission file. You will push all these into your GitHub

repository. Before committing, it’s better to make a new folder

inside your project directory catboost_example and paste all

required files there. Now, open GitBash and go to your project

directory/path and run git commands, which you ran in the

previous chapter one-by-one. Following are some screenshots of

my terminal with output for the same:

MI NG W64:/e/p rateekg/d ocs/B P B/ B onus/examp lejiotebo ok

prateek-g^EBSLAPSO ' ‘.l/.T ~
S cd E :/pratee!<g/docs/BPB/Bonus/exaniple_notebool:

prateek. n'PLBSi APBO /e/prateekg/dccs/BPB/BoniJs/exaniple..notet>OQk (master)
5 git init
Reinitialized existing Git repository in E:/prateekg/docs/BPB/Bonus/example„note
book/.git/

prateek, ■: <i BS! AP80 /e/prateekg/docs/BPB/Bonus/exantple„notebook (master)
S git add catboost^example
warning: LF will be replaced by CRLF in catboost^example/Solving_a_classificatio
n mil _p rob 1 eftLus i n g_C a t Boos t. i pyn b.
The file will have its original line endings in your working directory

Figure 22.2 6: Initialize and add changes to the Repo

! । a! eek. g -E:BSt. af 8(■ /e/prateekg/docs/BPB/Bonus/example_notebook (waster)
5 git commit -m "first commit"
[master 95f8769] first commit
Committer; Prateek Gupta <prateek-gftdroisys-local>

Your name and email address were configured automatically based
on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly. Run the
following command and follow the instructions in your editor to edit
your configuration file:

git config --global --edit

After doing this, you may fix the identity used for this commit with:

git commit --antend --reset-author

3 files changed, 7556 insert!ons(+)
create mode 100644 catboos t_e x amp le/Solving_a_c las si fi cat ion_nil_ probl ern_using_C

atBoost.ipynb
create mode 100644 catboost_example/catboost_titanic_model.dump
create mode 100644 catboost_example/titanic_submission.csv

। rateek.g^EBSLAPBO /e/prateekg/docs/BPB/Bonus/exaniple_notebook (master)
5 git push -u origin master
Enumerating objects: 7. done.
Counting objects: 100% (7/7), done.
Delta compression using up to 12 threads
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6). 581.16 KiB I 8.18 MiB/s. done.
Total 6 (delta 0). reused 0 (delta 0)
To https://github.com/dsbyprateekg/sample_project_repo.git

2clbd3O..95ffi769 master -> master
Branch 'master' set up to track remote branch master’ from ’origin'.

Figure 22.27: Pushing changes to the Repo

Once you refresh your GitHub repository page, you will see

catboost_example folder with added files in your repository as I

see in my repository:

Bi.i......mister- New pull request CierHr new file Upload files Find file Clone or dtcwnlaiid

Pi ate elc CSupta i .r it corr.rr.i Litesl commit 4 mmules ago

W cdtboostjjxdrriple-

a README.md

. J reeju irertienls.txt

first com mil

first commll

first com mil

4 minutes ago

yesterday

yesterday

Figure 22.28: CatBoost example folder with added files

Conclusion

In this chapter, you learnt an advanced gradient boosting

algorithm, which, as of now, is being widely used in solving

classification machine learning problems due to its higher speed

and accuracy. You can find more details of CatBoost from their

official link as well: All the steps mentioned in this chapter are

present as a Jupyter notebook

Solving_a_classification_ml_problem_using_CatBoost.ipynb in our

repository. I have also added an advanced notebook named as

which will guide you to use the best of the CatBoost to achieve

the number one rank in a Go ahead and download the notebook

and see yourself in the first rank of that In the next final chapter

of this book, you will find a question-answer series related to the

learning of all chapters, which will help you in your interview

preparation as well.

CHAPTER 23

Revision of All Chapters’ Learning

If you have completed all previous chapters of this book, you

have gained all the essential skills of a Data Scientist that any

company expects from a fresher. You have learned the required

theory plus code implementation by working on real-world

datasets. In this chapter, you will revise 51 must-know data science

questions and their answers. These questions-answers will help

you in your coming interviews since these basic questions are a

must-know for cracking any Data Science interview. Although Data

Science is a vast field, the starting point of any of your interviews

will be these questions. So, let’s start your revision.

What do you understand by Data in Data Science?

Data is the plural form of datum, which means a single piece of

information. Structured data, unstructured data, and semi­

structured data are the three types of data we see on a daily

basis. SQL data or tabular data is the example of structure data,

images/audio/video/email, etc., are examples of unstructured data,

and data in CSV/XML/JSON, etc., are known as semi-structured

data.

Explain Data in terms of Statistics?

In statistics, most of the data fall into the following two

categories: Numerical data and Categorical data. Numerical data is

also known as Quantitative data. Numerical data is further divided

into the following two categories: Discrete data and Continuous

data. Discrete data have distinct and separate values. We can only

count the discrete data, but we cannot measure it. For example,

the number of heads count in 12 flips of a coin is discrete data.

Continuous data can be measured but not counted, for example,

the weight of a person. Categorical data represents characteristics,

for example, a person’s gender. We can represent them in number,

but they don’t have any meaning. Categorical data is also divided

into the following two categories: Nominal and Nominal data

represents discrete units and has no order, for example, language

you speak. Ordinal data represents discrete units, but with an

order, for example, your educational background.

What essential tools with Python do you use for your Data

Science work?

Anaconda. It is an industry-standard for open source data science.

We don’t need to install Python separately if Anaconda is

installed. It provides Jupyter notebook, which we use for our data

science work. Besides Anaconda, we use PyCharm IDE for coding

and GitHub repository for code pushing into the repository.

What do you understand by machine learning (ML)?

Machine learning is the science of getting computers or machines

to act without being explicitly programmed. Machine learning helps

computers to learn from past data and act accordingly for the

new unseen data.

What are the different types of machine learning (ML)?

Based on the various data problem, machine learning (ML) is

divided into the following three main types: and Reinforcement

learning. In supervised ML, we have the past/previous data of a

problem having input examples with the target variable. To solve

such problems, this learning uses a model to learn the mapping

between input and target. A model is fit on training data and

then used to predict test data having input examples only.

Unsupervised ML operates only on input data without the target

variable. It works without any guidance. In reinforcement ML, an

agent operates in an environment and learns from the feedback;

for example, teaching a computer to play a game.

What are the main types of supervised ML problems?

Classification and Regression are the two types of supervised ML

problems. In classification, we predict a class label, for example,

predicting if a mail is a spam or ham. In regression, we predict a

numerical value, for example, predicting house prices of an area.

What algorithms do you use for solving a classification ML

problem?

Logistic Regression, Decision Tree, K Nearest Neighbors, Linear

Discriminant Analysis, Naive Bayes, Support Vector Machine,

Random Forest, CatBoost, XGBoost, etc.

What algorithms do you use for solving a regression ML problem?

Linear Regression, Decision Tree, K Nearest Neighbors, Support

Vector Machine, Random Forest, CatBoost, XGBoost, etc.

What are the main types of unsupervised ML problems?

Clustering and Association are the two main types of unsupervised

ML problems. Clustering involves finding groups in data, for

example, grouping online customers by their purchasing behaviors.

The association involves finding rules that describe more

significant portions of data, for example, person who purchased

product A also tend to purchase product B.

What are some popular unsupervised ML algorithms?

K-Means Clustering, Hierarchical Clustering, Principal component

analysis, etc.

What are parametric and non-parametric machine learning

algorithms?

Any algorithm that makes strong assumptions about the form of

the mapping or target function is called a parametric algorithm,

and those who do not make strong assumptions about the

mapping or target function are known as non-parametric ML

algorithms. Linear Regression and Linear Discriminant Analysis are

two examples of parametric algorithms. Decision Trees, Naive

Bayes, and Support Vector Machines are three examples of non­

parametric ML algorithms.

What is mapping function?

The mapping function, also known as the target function is a

function that a supervised ML algorithm aims to approximate.

What is Bias in machine learning (ML)?

Bias is the simplifying assumptions made by a model in machine

learning (ML) to make the mapping/target function more

comfortable to learn. Generally, parametric algorithms are high bias

in nature.

What is the Variance in machine learning (ML)?

Variance is the amount that the estimate of the target function

will change if different training data was used. Generally, non­

parametric algorithms are high variance in nature.

What is the Bias-Variance trade-off?

Any supervised machine learning algorithm aims to achieve low

bias and low variance. As we know, parametric algorithms often

have a high bias, but a low variance and non-parametric

algorithms have high variance but low bias. Therefore, there is

often a battle to balance out bias and variance in machine

learning. This tension is known as the Bias-Variance trade-off.

While solving an ML problem, we try to make a balance between

bias and variance.

What is overfitting and underfitting in ML?

Overfitting and underfitting are the two leading causes of poor

performance in machine learning. Overfitting means learning the

training data so well but performing very poorly on new unseen

data. Underfitting means neither learning the training data properly

nor working properly in new unseen data. Overfitting is the most

common problem in machine learning.

How can you limit overfitting while solving an ML problem?

We can limit overfitting by applying the following two essential

techniques: Use k-fold cross-validation and Hold back a validation

The benefit of using k-fold cross-validation technique is that it

allows us to train and test our model k-times on different subsets

of training data and build up an estimate of the performance of a

machine learning model on unseen data. A validation dataset is

simply a subset of our training data that we hold back from our

machine learning algorithms until the very end of our project and

then compare the training and validation dataset accuracy. Both

techniques assure our model is generalized very well.

Explain some common statistical summary you use in your

analysis?

1) Mean is the average of the numbers in a list or a dataset’s

column.

2) Mode is the most common number in a dataset or a list.

3) Median is the middle of the set of numbers.

4) Standard It is the average spread of the points from the mean

value.

What is a Linear Regression?

Linear Regression is a statistical and machine learning model that

assumes a linear relationship between the input variable and the

single output variable When there are multiple input variables, it

is known as multiple linear regression. The representation equation

of a simple linear regression model is y = c + m * x where c is

the also known as bias coefficient and m is slope of the line.

Learning a linear regression model means estimating the values of

the coefficients used in the representation. So, the goal is to find

the best estimates for the coefficients to minimize the errors in

predicting y from We use linear regression to solve supervised

(regression) ML problems. In Python, we use scikit-

learn.linear_model.LinearRegression class to use this algorithm.

What are the key assumptions of linear regression?

To make best use of linear regression model, we must structure

our data according to the following assumptions:

1) Linear regression assumes that the relationship between our

input and output is linear.

2) Linear regression assumes that our input and output variables

are not noisy.

3) Linear regression assumes that our input variables are not

highly correlated.

4) Linear regression assumes that our input and output variables

have a Gaussian distribution.

5) Linear regression assumes that our input variables are in same

scale.

What is the most common method to calculate the values of the

coefficients regression model?

Ordinary Least When we have more than one input, we can use

Ordinary Least Squares to estimate the values of the coefficients.

In Ordinary Least Squares method, for a given regression line

through the data, we calculate the distance from each data point

to the regression line, square it, and sum all of the squared

errors together. This is the quantity that ordinary least squares

seek to minimize.

What are the two regularization methods for linear regression

Regularization methods are extensions of the training of the linear

model. These methods not only minimize the sum of the squared

error of the model on the training data using Ordinary Least

Squares, they also reduce the complexity of the model. Two

regularization methods for linear regression are as follows:

1) Lasso It is also called L1 regularization where Ordinary Least

Squares method is modified to also minimize the absolute sum of

the coefficients.

2) Ridge It is also called L2 regularization where Ordinary Least

Squares method is modified to also minimize the squared

absolute sum of the coefficients.

What is Logistic Regression?

Logistic Regression is a statistical and machine learning model,

which is used to solve supervised (classification) ML problems. In

fact, logistic regression is made for solving binary (two-class)

classification problems, but it can be used for solving multi-class

problem also. Logistic regression uses logistic or sigmoid function

to model the probability of the default class. Logistic function is

an S-shaped curve that can take any real number and map it

between o and The equation of this function is 1 / (1 + e A -

value) where e is the base of natural logarithms and value is the

actual numerical value we want to transform. Since logistic

regression predicts the probabilities, the probability prediction is

transformed into 0 or 1 by the logistic function. If the probability

is greater than 0.5, we can take the output as a prediction for the

default class (class 0), otherwise the prediction is for the other

class (class 1). The coefficients of the logistic regression algorithm

must be estimated from our training data. This is done using

maximum-likelihood estimation. In Python, we use

sklearn.linear_model.LogisticRegression class to use this algorithm.

What are logistic regression assumptions?

The assumptions made by logistic regression about the

distribution and relationships in our data are much the same as

the assumptions made in linear regression:

1) Logistic regression assumes a linear relationship between the

input variables and the output.

2) Logistic Regression predicts the output in binary form.

3) Logistic regression assumes no error (outliers) in the output

variable.

4) Logistic Regression assumes that our input variables are not

highly correlated.

5) Logistic Regression assumes that input variables are in the

same scale.

What is Linear Discriminant Analysis?

Logistic regression is a classification algorithm, traditionally limited

to solve only two-class classification problems, and it can become

unstable when the classes are well separated. If we have more

than two classes, then the Linear Discriminant Analysis addresses

these points, and is the go-to linear method for multiclass

classification problems. LDA assumes that our data is Gaussian

(each variable is shaped like a bell curve when plotted) and each

attribute has the same variance (values of each variable vary

around the mean by the same amount on average). With these

assumptions, the LDA model estimates the mean and variance

from our data for each class. We use

sklearn.discriminant_analysis.LinearDiscriminantAnalysis class to use

this algorithm in Python.

What are Decision Trees?

Decision Trees are also known as Classification and Regression

Trees because this algorithm can be used to solve both types of

supervised ML problems. The representation for the CART model

is a binary tree, where each node represents a single input

variable and a split point on that variable, assuming the variable

is numeric. The leaf nodes of the tree contain an output variable

which is used to make a prediction. CART uses a greedy approach

to divide the input space where all the values are lined up, and

different split points are tried and tested using a cost function.

The split with the lowest cost is selected. A split point is a single

value of a single attribute. All input variables and all possible split

points are evaluated, and the very best split point is chosen each

time. For classification ML problems, the Gini index function is

used, which indicates how pure the leaf nodes are. For regression

problems, the cost function, that is minimized to choose spit

points, is the sum squared error.

What is Naive Bayes?

Naive Bayes is a classification algorithm for solving both binary

and multiclass classification problems. It is called Naive Bayes

because the calculation of the probabilities for each hypothesis is

simplified to make their calculation tractable. Instead of calculating

the values of each attribute value, they are assumed to be

conditionally independent, given the target value. This assumption

is extreme but works very well in real-world data. Training with

this algorithm is high-speed, since no coefficients are needed to

be fitted by optimization procedures, and only the probability of

each class, and the probability of each class given different input

values, need to be calculated. We use sklearn.naive_bayes class to

use this algorithm.

What is hypothesis?

A hypothesis is a function that best describes the target in our

supervised machine learning problems. We can say that it is a

guess that requires some evaluation. The hypothesis, that an

algorithm would come up with, depends upon our data and also

depends upon the restrictions and biases that we have imposed

on our data. In statistics, we conduct some hypothetical tests on

our data to draw some conclusion. A reasonable hypothesis is

testable; it can be either true or false. These tests are conducted

based on some assumptions, which lead us to the following two

terms: Null Hypothesis and Alternate Hypothesis H0 is the default

assumption and suggests no effect, while H1 suggests some

effect. H1 is the violation of the test’s assumption. H1 means that

the evidence suggests that the H0 can be rejected.

What is k-Nearest Neighbors algorithm?

K-Nearest Neighbors algorithm is used to solve both classification

and regression ML problems. KNN stores the entire dataset for

modeling; so, it makes a prediction using the training dataset

directly. Predictions are made for a new data point by searching

through the entire training set for the k’s most similar instances

and then summarizing the output variable for those k instances.

For regression, this might be the mean output variable; in

classification, this might be the mode (or most common) class

value. To determine which of the k instances in the training

dataset are most similar to a new input, a distance measure is

used. For real-valued input variables, the most popular distance

measure is Euclidean distance. Euclidean distance is calculated as

the square root of the sum of the squared differences between a

point x and point y across all input attributes. Other popular

distance measures are Hamming distance, Manhattan distance,

etc. Euclidean is a good distance measure to use if the input

variables are similar in type (e.g., all measured widths and

heights). Manhattan distance is an excellent measure to use if the

input variables are not similar in type (such as age, gender,

height, etc.). We use sklearn.neighbors class to use this algorithm

in Python.

What is Support Vector Machines?

Support Vector Machines or SVM algorithm is used to solve both

classification and regression ML problems. According to this

algorithm, the numeric input variables in our data form an n-

dimensional space. For example, if we had three input variables,

this would form a three-dimensional space. A hyperplane is a line

that splits these input variable spaces. In SVM, a hyperplane is

selected to best separate the points in the input variable space by

their class - either class 0 or class 1. The distance between the

line and the closest data points is referred to as the margin. The

best or optimal line that can separate the two classes is the line

that has the largest margin. This is called the Maximal-Margin

The margin is calculated as the perpendicular distance from the

line to only the closest points. These points are called the support

vectors. Since real data is messy, we cannot separate them

perfectly with a hyperplane. To solve this problem, a soft margin

classifier is introduced. In practice, SVM algorithm is implemented

using a kernel. This kernel can be linear, polynomial, or radial,

based on our data problem. SVM assumes that our inputs are

numeric, so if we have categorical inputs, we may need to convert

them to binary dummy variables. We use sklearn.svm class to use

this algorithm in Python.

What is Random Forest?

Random Forest is a type of ensemble machine learning algorithm

called Bootstrap Aggregation or The bootstrap is a powerful

statistical method for estimating a quantity from a data sample

and an ensemble method is a technique that combines the

predictions from multiple machine learning algorithms together to

make more accurate predictions than any individual model.

Bootstrap Aggregation is a general procedure that can be used to

reduce the variance for those algorithms that have high variance,

like decision trees (CART). Decision trees are very sensitive to

data; they train on, and so if training data is changed, the

resulting decision tree can be quite different. Random Forest

algorithm handles this drawback by learning subtress in such a

way that resulting predictions from all of the subtrees have less

correlation. In other words we can say that a random forest is a

meta estimator that fits a number of decision tree classifiers on

various sub-samples of the dataset and uses averaging to improve

the predictive accuracy. We use sklearn.ensemble class to use

RandomForestClassifier() or RandomForestRegressor() in Python.

What is Boosting?

Boosting is an ensemble technique that attempts to create a

strong classifier from a number of weak classifiers. This is done

by building a model from the training data, then creating a

second model that attempts to correct the errors from the first

model. Models are added until the training set is predicted

perfectly or a maximum number of models are added. CatBoost is

an example of boosting technique.

What performance metrics do you use for evaluating a

classification ML problem?

Classification Accuracy, Log Loss, Area under ROC Curve,

Confusion Matrix, Classification Report.

Explain Classification Accuracy?

Classification Accuracy is the most common evaluation metric for

classification problems. It is the number of correct predictions

made as a ratio of all predictions made. We can use

accuracy_score() function from sklearn.metrics class or

classification_report() function from sklearn.metrics class to

calculate accuracy.

Explain Log Loss?

Log loss is a performance metric for evaluating the predictions of

probabilities of membership to a given class. Smaller log loss is

better and a value of 0 represents a perfect log loss. We can use

log_loss() function from sklearn.metrics class to calculate log loss.

What is Area Under ROC Curve?

Area Under ROC Curve (or ROC is a performance metric for

evaluating binary classification problems mainly. An ROC Curve is

a plot of the true positive rate and the false positive rate for a

given set of probability predictions at different thresholds. These

different thresholds are used to map the probabilities to class

labels. The area under the curve is then the approximate integral

under the ROC Curve. We can use roc_auc_score() function from

sklearn.metrics class to use this metric.

What is Confusion Matrix?

The confusion matrix is a presentation table of the accuracy of a

model with two or more classes. The table presents predictions

on the x-axis and accuracy outcomes on the y-axis. The cells of

the table are the number of predictions made by a machine

learning algorithm. The confusion matrix shows the ways in which

our classification model is confused when it makes predictions.

What is a Classification Report?

Python’s scikit-learn library provides a convenience report, when

working on classification problems to give us a quick idea of the

accuracy of a model using a number of measures. The

classification_report() function from sklearn.metrics class displays

the precision, recall, f1-score, and support for each class.

What are some common metrics for evaluating a regression ML

problem?

Mean Absolute Error, Mean Squared Error, RA2.

Explain Mean Absolute Error?

Mean Absolute Error is the average of the absolute differences

between predictions and actual values. It gives an idea of how

wrong the predictions were. We can sue mean_absolute_error()

function from sklearn.metrics class to use this metric. The best

value of MAE is 0.0.

Explain Mean Squared Error?

Mean Squared Error is similar to the mean absolute error. It

provides a gross idea of the magnitude of the error. Best value of

MSE is 0.0 and we can use mean_squared_error() function from

sklearn.metrics class to calculate this metric.

Explain RA2?

Ra2 (R Squared) metric provides an indication of the goodness of

fitting of a set of predictions to the actual values. This measure

is also called the coefficient of determination. Best possible score

of RMSE is 1.0 and it can be negative. A perfect model would get

score of 0.0. We can sue r2_score() function form sklearn.metrics

class to compute this metric.

Is accuracy a right metric for every classification ML problem?

No, accuracy metric can be misleading if we have an unequal

number of observations in each class or if we have more than

two classes in our dataset. We must calculate confusion matrix,

which can give us a better idea of what our classification model

is getting right and what types of errors it is making. Besides

this, Precision, Recall, and f1-score from classification report can

give us correct performance measurement.

How do you calculate confusion matrix?

For calculating a confusion matrix, first we need a test or

validation dataset with expected outcome values, then we make a

prediction for each row in our test dataset. At last, from the

expected outcomes and predictions count, we see the following

two points: the number of correct predictions for each class and

the number of incorrect predictions for each class, organized by

the class that was predicted. These numbers are organized in a

table or in a matrix, where each row of the matrix corresponds to

a predicted class and each column of the matrix corresponds to

an actual class. The counts of correct and incorrect classification

are then filled into the matrix. The total number of correct

predictions for a class go into the expected row for that class

value, and the predicted column for that class value. In the same

way, the total number of incorrect predictions for a class go into

the expected row for that class value and the predicted column

for that class value. In Python, from sklearn.metrics class, we

import confusion_matrix() function to calculate this matrix.

Explain classification report values?

From sklearn.metrics class, we use classification_report() function

to calculate the report. This report displays the precision, recall,

f1-score and support for each class. Precision is the number of

positive predictions divided by the total number of positive class

values predicted. It is also called the Positive Predictive Value

Precision can be thought of as a measure of a classifier’s

exactness. Recall is the number of positive predictions divided by

the number of positive class values in the test data. It is also

called Sensitivity or the True Positive Rate. Recall can be thought

of as a measure of a classifier’s completeness. F1-Score conveys

the balance between the precision and the recall. If we are looking

to select a model based on a balance between precision and

recall, the F1-Score is our choice. Formulas of these three metrics

are as follows:

F1_Score = 2 * ((Precision * Recall) / (Precision + Recall))

Precision = True Positives / (True Positives + False Positives)

Recall = True Positives / (True Positives + False Negatives)

What do you mean by Rescaling? What techniques have you used

for rescaling?

Data rescaling is an important part of data preparation before

applying machine learning algorithms. Most of the machine

learning algorithms work very well, if data is on same scale and

give worst results if we avoid this. Converting features in same

scale is known as rescaling. Normalization is a technique for

rescaling. Normalization refers to rescaling real valued numeric

attributes into the range 0 and 1. We can use sklean.preprocessing

class for rescaling and normalize() function is used for this

purpose. Other than this function, we can also use MinMaxScaler

class from sklean.preprocessing for rescaling.

What is Standardization?

Standardization refers to shifting the distribution of each attribute

to have a mean of zero and a standard deviation of one. It is a

useful technique to transform attributes with a Gaussian

distribution and differing means and standard deviations to a

standard Gaussian distribution with a mean of 0 and a standard

deviation of 1. We can use StandardScaler class from

sklean.preprocessing for standardization.

How do you improve your machine learning model result?

For improving our machine learning model result, we use scikit-

learn.model_selection class’s Grid Search CV or Randomized

Search CV method. Grid Search CV method builds and evaluates a

model for each combination of algorithm parameters specified in a

grid. Randomized Search CV method samples algorithm

parameters from a random distribution for a fixed number of

iterations, then a model is constructed and evaluated for each

combination of parameters chosen.

What cycle do you follow while working on a predictive modeling

data science problem?

I follow the following 5 cycle while solving my predictive modeling

data science problem: define the problem, prepare the data, spot­

check different algorithms, improve the model, save and deploy

the model.

What is data leakage in ML?

Data leakage is a problem in machine learning while developing a

predictive model. Data leakage is when information from outside

the training dataset is used to create the model. It is a serious

problem for the following reason: creating overly optimistic

models that are practically useless and cannot be used in

production. To overcome this problem, we should always use

cross validation and hold back validation dataset. If possible, we

should use both techniques. As a good practice, we must perform

data preparation steps (feature selection, outlier removal, encoding,

feature scaling, etc.) within cross validation folds.

How do you select the best features from your dataset?

If we have a lot of input features and we want to use only

important features to our model, then we can use the feature

selection technique. One common feature selection technique from

scikit-learn’s library is: Recursive Feature Elimination It works by

recursively removing attributes and building a model on those

attributes that remain. It uses the model accuracy to identify

which attributes contribute the most to predict the target attribute.

Some algorithms, like Random Forest and CatBoost have inbuilt

feature importance methods - feature_importances_ and

eval_features() respectively.

Conclusion

You have come a long way in a short amount of time. You have

developed the important and valuable skillset of being able to

solve different machine learning problems. This is just the

beginning of your journey. Data Science is very broad and you

need to practice daily and make a habit of reading about new

algorithms/techniques coming in this field. To master the data

science, your next step is to get familiar with various real world

problems and their solutions. For this, I recommend you to join

participate in any past challenge there, apply your learning to

solve that challenge without seeing the solutions, and in the end,

compare your approach with a winner approach. In this way, you

will gain practical knowledge of solving a business problem with

Data Science. You can follow BPB Publications’s catalog and also

my GitHub profile: I want to take a moment and sincerely thank

you for letting me help you start your journey with Data Science.

I hope you keep learning and have fun as you continue to master

Data Science.

Index

symbols

.describe() method 248

.fit() method 255

.iloc[] function 60

.loc[] function 60

A

Adaptive Boosting (AdaBoost) 308

Alternate Hypothesis (Hi) 325

Anaconda

downloading 11

installing, in Linux 13

installing, on Windows 12

Python library, installing in 14

system requirements 10

Anaconda Distribution

reference link 10

anomalies

handling 249

Area Under ROC Curve (ROC AUC) 328

array concatenation 51

association 321

Autoregression (AR)

Autoregressive Integrated Moving Average (ARIMA) 229

Autoregressive Moving Average (ARMA) 230

B

bagging 327.
bar chart 123

basic libraries

importing 244

best-fit response (fit) 144

Bias 321

bias coefficient 322

Bias-Variance trade-off 322

binary classification 149,

Binomial distribution 85

Boosting 327.

Bootstrap Aggregation 327

Box-Cox Transformation 114

box plot

about

key points 137.

C

CatBoost

about 308

installing, in Python virtual environment 309

used, for solving classification problem

categorical variable

encoding 247.

handling, in sklearn 173

character encoding

applying 117.

classification 320

Classification Accuracy 327.

classification algorithm

about 149,

list 149

Classification and Regression Trees (CART) 325

classification ML problem

accuracy metric 329

algorithms 321

attribute information

cross-validation, testing need for

cross-validation, training need for

dataset 152

performance metrics 327.

solving 152

split-validation, testing need for

split-validation, training need for

classification problem

solving, with CatBoost

Classification Report 328

classification report values 329

clustering 321

complex model

creating 287.

compressed data

importing 104

confirmatory data analysis 89

confusion matrix

about 328

calculating 329

Continuous data 320

continuous variables 81

correlations

about 250

checking, between target and input features 253

CountVectorizer() method

using 27.8

cross-validation

testing, need for

training, need for

CSV data

importing 102

D

data

about 107

in data science 319

inserting, in table 73

normalizing

overview 319

pre-processing 254

scaling

semi-structured data 4

structured data 2

unstructured data 3

database

table, creating in 7.2

data cleaning

DataFrame

about

creating 256

functions 62

missing values, handling

data leakage 331

data pre-processing

data science

about 4

Python, need for 8

statistics 80

use cases 7.

data scientist 6

dataset

analyzing 132

feature selection 331

importing 244

testing 248

training 248

data structure, Pandas

Series

date

parsing 116

date and time

handling

Decision Tree 325

decision tree classifier 150

default parameter

in function 34

dependentvariable 146

dictionary

about 27

creating 27

operations

Discrete data 320

discrete variables 81

domain knowledge 254

E

Elbow method 182

Euclidean distance 181

Euclidean metric 181

Excel data

importing 103

Exploratory Data Analysis (EDA) 245

F

Fast Fourier Transform (FFT) 236

feature engineering

film recommendation engine

building 279,

food supply chain (FSC) 231

forecasting

basics 227

for loop

in Python 41

function

calling 33

creating 33

default parameter 34

global variable 36

local variable 36

parameter, passing in 33

unknown parameter, using in 35

writing, to extract information 277.

G

Gaussian distribution 114,

Gaussian Naive Bayes classifier 151

Gaussian Naive Bayes (NB) algorithm 151

Git Bash

reference link 302

GitHub

project, uploading

GitHub repository

global variable

in function 36

grade point average (GPA) 80

Gradient Boosting algorithm 308

H

help() function

in Python 32

hierarchical clustering 186

histogram 125

Holt Winter’s Exponential Smoothing (HWES) 233

hypothesis 325

hypothesis 0 (H0) 89

hypothesis testing

I

inconsistent data

cleaning 119.

independentvariables 146

inner join 7.5

integration (I) 229

Inter-Quartile Range (IQR) 137.

Inverse Document Frequency (IDF) 27.4.

J

JavaScript Object Notation (JSON) 3

JSON data

importing 103

Jupyter 16

Jupyter notebook 295

K

k-fold cross-validation 322

K-mean clustering

k-nearest neighbor classifier 151

K-Nearest Neighbors (KNN) algorithm 326

L

Li regularization 323

L2 regularization 323

Lambda function 37.

Lasso Regression 323

left join 7.6

Linear Discriminant Analysis (LDA) 324,

linear regression

about 322

key assumptions 323

regularization method 323

linear regression model

common method 323

line chart 124

Linux

Anaconda, installing in 13

list

about 22

creating 23

versus tuple 26

list manipulation

operations

local variable

in function 36

logistic regression (LR)

about 324,

assumptions 324,

Log Loss 327.

M

machine learning (ML)

about 320

algorithms 149

supervised learning 147

types 320

unsupervised learning 147

machine learning (ML) terms

dataset 146

evaluate 147

feature 146

fit 146
hyperparameter 146

label 146

learning 146

model 146

parameter 146

regularization 147

target 146

testing dataset 146

training 146

training dataset 146

validation dataset 146

machine learning model

implementing 243

result, improving 330

main() method

in Python

mapping function 321

markers 123

Maximal-Margin hyperplane 326

mean 322

Mean Absolute Error (MAE) 328

Mean Squared Error (MSE) 328

median 322

metadata soup

creating 27.8

missing data

advanced technique, handling

missing values

analyzing 109

automatic fill 111

dropping 110

examining 246

ML model

tuning

MNIST dataset

case study

mode 322

model performance

calculating, with matrices 266

Moving Average (MA) 229

multi-dimensional array 48

multiple linear regression 322

MYSQL database

reference link 69

N

Naive Bayes

about 325

using 262

National Football League (NFL) 106

Nominal data 320

nominal variables 81

non-parametric algorithm 321

normal distribution

about 86

characteristics 86

normalized distributions 143

notebook

np.concatenate() method 51

np.hstack() method 51

np.vstack() method 51

Null Hypothesis (Ho) 325

Numerical data 319

NumPy array

attributes 45

creating 47

element, accessing 48

need for, over list 45

slicing in

NumPy package

importing 44

O

Ordinal data 320

ordinal variables 81

Ordinary Least Squares (OLS) 323

Overfitting

about 322

limitations 322

P

Pandas

data structure 54

importing 54

parameter

passing, in function 33

parametric algorithm 321

Pearson correlation coefficient

about 87

example 88

pickled data

importing 104

pie chart

plotting 263

Poisson distribution 84

polynomial models

about 251

get_feature_names() method, using 252

Positive Predictive Value (PPV) 329

prediction model

building, to classify text messages 261

predictions

creating 255

predictive modeling data

cycle 330

predictorvariables 146

Principal Component Analysis (PCA)

probability

basics 83

Probability Density Function (PDF) 88

probability mass function (pmf) 85

PyCharm

reference link 38

Python

about 7

for loop 41

help() function 32

main() method

need for, data science 8

tools 320

while loop 41

Python library

installing, in Anaconda 14

Python package

importing 33

Python virtual environment

about 292

activating

CatBoost, installing in 309

creating

setting up, in PyCharm IDE

Q

Quantitative data 319

R

Random Forest 327.

Random Forest Classifier model

features 259

initializing 257.

README.md file 300

record

updating 7,4,

Recursive Feature Elimination (RFE) 331

regression

about 320

used, for predicting house sale

regression algorithm 150

regression ML problem

algorithms 321

common metrics 328

solving

regression, types

linear 162

logistic 162

poisson 162

regularization methods

for linear regression 323

reinforcement learning 320

requirements.txt file 29,9,

rescaling

about 330

techniques 330

responsevariable 146

Ridge Regression 323

right join 77

Root Mean Squared Error (RMSE) 165

R Squared (R©) 328

S

scatter plot 126

Seasonal Autoregressive Integrated Moving-Average (SARIMA) 231

Seasonal Autoregressive Integrated Moving-Average with Exogenous

Regressors (SARIMAX) 232

semi-structured data 4

semi-supervised learning 148

Series

sklearn

categorical variable, handling in 173

sklearn.feature_extraction module

using 265

slicing

about 48

in NumPy array

spam messages

words, plotting 264

split-validation

testing, need for

training, need for

SQLAlchemy

about 68

engine configuration 71

package, installing 68

usage 70

stacked plot

about 127

limitations 127

standard deviation 322

Standardization 330

statistical data

types 80

statistical distributions

about 83

Binomial distribution 85

normal distribution 86

Poisson distribution 84

statistical inference

statistical variables

types 80

structured data 2

supervised learning

about 320

classification 147

regression 147

supervised ML fundamentals

about 14,9

decision tree classifier 150

Gaussian Naive Bayes classifier 151

k-nearest neighbor classifier 151

Linear Discriminant Analysis (LDA) 151

logistic regression (LR) 150

Support Vector Machine (SVM) 151

supervised ML problems

classification algorithm 149

regression algorithm 150

types 320

Support Vector Machine (SVM)

about 326

used, for classifying text 27.0

using 268

T

table

creating, in database 7.2

data, inserting in 73

inner join 7.5

joining 74

left join 7.6

right join 77

target function 321

t-distributed stochastic neighbor embedding (t-SNE)

techniques, unsupervised learning

clustering 181

hierarchical clustering 186

K-mean clustering

Term Frequency (TF) 274

test accuracy 267

text data

importing 101

time-series

need for 204

time-series data

manipulating

transforming

time-series forecasting

about 226

techniques 227

time-series frequency

modifying

time-series growth rates

comparing

Titanic Data Set

reference link 310

Triple Exponential Smoothing method 232

tuple

versus list 26

U

Underfitting 322

unique entries

checking 247.

unknown parameter

using, in function 35

unnormalized distributions 143

unstructured data 3

unsupervised learning

about 320

reinforcement learning 148

semi-supervised learning 148

techniques 181

unsupervised ML

validating 201

unsupervised ML algorithms 321

unsupervised ML problems

types 321

V

validation dataset 322

variance 321

Vector Autoregression Moving-Average (VARMA) 232

W

web page

traffic, forecasting

while loop

in Python 41

Windows

Anaconda, installing on 12

workbench

reference link 69

Z

zipfile, inbuilt parameters

reference link 104

	Dedicated to

	About the Author

	Acknowledgement

	Preface

	Downloading the coloured images:

	Errata

	Structure

	Objective

	What is data?

	Structured data

	Unstructured data

	What is data science?

	What does a data scientist do?

	Real-world use cases of data science

	Conclusion

	Installing Software and System Setup

	Structure

	Objective

	System requirements

	Downloading Anaconda

	Q

	Individual Edition

	Your data science toolkit

	Installing the Anaconda on Windows

	Installing the Anaconda in Linux

	bash "/Downloads Anaconda! S.2.0-Linux x86_64.sh

	How to install a new Python library in Anaconda?

	Open your notebook - Jupyter

	Know your notebook

	In [2]: 29+56

	0ut[2]: 85

	Conclusion

	Lists and Dictionaries

	Structure

	Objective

	What is a list?

	How to create a list?

	0ut[2]: list

	In [3]: # a List containing heights height_list = [1.76,1.64,1.79,1,57] print height_list

	[1.76, 1.64, 1.79, 1, 57]

	Different list manipulation operations

	Difference between Lists and Tuples

	What is a Dictionary?

	How to create a dictionary?

	Some operations with dictionary

	Conclusion

	Package, Function, and Loop

	Structure

	Objective

	The help() function in Python

	help(len;

	Help on built-in function len in module builtins:

	len(obj? /)

	Return the number of items in a container.

	How to import a Python package?

	import math

	area = 0

	r = 5.89

	area = math.pi “ r**2

	print "area of the land is: ", area)

	area of the land is: 108.98844649760245

	from math import pi

	area = math.pi * r**2

	print "area of the land is: ", area

	area of the land is: 108.98844649760245

	#	defining my own function def my_function():

	print("Hello World")

	#	caLLing my function my_function

	Hello World

	Passing parameter in a function

	return a + b

	17

	Default parameter in a function

	7

	How to use unknown parameters in a function?

	A global and local variable in a function

	What is a Lambda function?

	def multiply(x):

	return x*5

	multiply(2)

	10

	multiply = lambda x: x*5

	multiply(2)

	10

	def sum(x., y):

	return x+y

	sum(9,8)

	17

	# same example with lambda function sum = lambda x, y: x+y;

	sum(9,8)

	17

	Understanding main in Python

	def hello ():

	print ("This is from my_module.py file!1’)

	; ► if 	name	 == 11 main	

	print("Executing as main program”)

	print ("Value of 	name	 is: r,f 	name	_)

	hello()|

	1 def hello():

	print("This is from my_module.py file!1’) □

	4 ► if _ name. _ -- "	main	":

	print("Executing as main program")

	print ("Value of 	name is: ", _ name)

	hello 0

	while and for loop in Python

	for letter in "Science": print(letter)|

	Conclusion

	NumPy Foundation

	Structure

	Objective

	Importing a NumPypackage

	Why use NumPy array over list?

	NumPy array attributes

	print("data type of array:", time,dtype)

	print(’‘no. of dimensions: ", time.ndim)

	print("size of each dimension:", time.shape)

	printC'total size of array:", time,size)

	data type of array: float64

	no. of dimensions: 1

	size of each dimension: (3,)

	total size of array: 3

	Creating NumPy arrays

	f = np.arange(0, 20, 5)

	print ’‘sequential array with steps of 5:\n", f

	sequential array with steps of 5:

	[0 5 10 15]

	Accessing an element of a NumPy array

	print("l-d array:1’, xl)

	print("second element of first array:", xl[l]) printf'last element of first array:", xl[-l]) print."first element of first array:", xl[0]

	1-d array: [5 0 3 3 7 9]

	second element of first array: 0

	last element of first array: 9

	first element of first array: 5

	Slicing in NumPy array

	print("2-d array:\n", x2)

	print "two rows, three columns:\n", x2[:2, :3])

	2-d array:

	[[3 5 2 4]

	[7688]

	[1 6 7 7]]

	two rows, three columns:

	[[3 5 2]

	[7 6 8]]

	Array concatenation

	x = np.arrayffl, 2, 3])

	y = np.array([3, 2, 1])

	np,concatenate [x, y])

	array([l, 2, 3, 3, 2, 1])

	Conclusion

	Pandas and DataFrame

	Structure

	Objective

	Importing Pandas

	import pandas as pd

	Pandas data structures

	Series

	# series exampLe

	# accessing a Series eLement

	series2i * b’]

	20

	DataFrame

	# creating an empty dataframe df = pd.DataFrame()

	.loc[] and .iloc[

	top five data:

	it check data type of coLumns

	Handling missing values in DataFrame

	# fiLLing NaN with zeros df3 = df2.fillna(0) df3

	Conclusion

	Interacting with Databases

	Structure

	Objective

	What is SQLAlchemy?

	Installing SQLAlchemy package

	How to use SQLAlchemy?

	MySQL Connections © ©

	SCHEMAS

	SQLAlchemy engine configuration

	Creating a table in a database

	Inserting data in a table

	Update a record

	How to join two tables

	Inner join

	Left join

	Right join

	Conclusion

	Thinking Statistically in Data Science

	Structure

	Objective

	Statistics in data science

	Types of statistical data/variables

	Mean, median, and mode

	Basics of probability

	Statistical distributions

	Poisson distribution

	Binomial distribution

	Normal distribution

	Pearson correlation coefficient

	Coefficient, r

	Strength of Association Positive Negative

	import scipy

	from scipy.stats import pearsonr

	x = scipy.array([-0.65499887, 2.34644428, 3.0])

	y - scipy.array([-l.46049758, 3.86537321, 21.0]) r_row, p_value = pearsonr(x, y)

	print(r_row)

	print p_value

	0.7961701483197555

	9.41371200873701036

	Probability Density Function (PDF)

	Real-world example

	Statistical inference and hypothesis testing

	Mean Experience of DSS Batch: 10.435

	Std Deviation of Experience of DSS Batch: 5.665

	Conclusion

	How to Import Data in Python?

	Structure

	Objective

	Importing text data

	type cpi_data

	pandas.core.frame.DataFrame

	Importing JSON data

	Importing pickled data

	Importing a compressed data

	Conclusion

	Cleaning of Imported Data

	Structure

	Objective

	Know your data

	Analyzing missing values

	Dropping missing values

	Automatically fill missing values

	II II 1

	How to scale and normalize data?

	How to parse dates?

	How to apply character encoding?

	Cleaning inconsistent data

	Conclusion

	Data Visualization

	Structure

	Objective

	Bar chart

	Figure

	Line chart

	Histograms

	Stacked plot

	wine_count_df.plot-bar(stacked=True) pit.show

	Box plot

	Conclusion

	Data Pre-processing

	Structure

	Objective

	About the case-study

	Importing the dataset

	Exploratory data analysis

	Data cleaning and pre-processing

	Feature Engineering

	Conclusion

	Supervised Machine Learning

	Structure

	Objective

	Some common ML terms

	Unsupervised learning

	Semi-supervised learning

	Reinforcement learning

	List of common ML algorithms

	Supervised ML fundamentals

	Logistic Regression

	Linear Discriminant Analysis (LDA)

	Gaussian Naive Bayes Classifier

	Support Vector Classifier

	Solving a classification ML problem

	About the dataset

	Attribute information

	print(type(iris))

	cclass 1sklearn.utils.Bunch'>

	Why train/test split and cross-validation?

	seed = 7

	scoring = 'accuracy

	O

	Solving a regression ML problem

	Coefficient Index

	How to tune your ML model?

	How to handle categorical variables in sklearn?

	The advanced technique to handle missing data

	df[[1,2,3,4,5]] = df[[1,2,3,4,5]].replace(0, np.NaN) print(df.isnull().sum())

	0

	5

	35

	227

	374

	11

	0

	0

	0

	from sklearn.preprocessing import Imputer

	transfermedvalues = imputer.fittransform(values) # count the number of NaN values in each column print(np.isnan(transformedvalues).sum())

	0

	Conclusion

	Unsupervised Machine Learning

	Structure

	Objective

	Why unsupervised learning?

	Unsupervised learning techniques

	Clustering

	K-mean clustering

	Hierarchical clustering

	t-SNE

	Principal Component Analysis (PCA)

	Case study

	train = train.drop(Hlabel”,axis=l?

	del train_X

	X= train[:6000].values

	del train

	X_std = StandardScaier().fit_transform(X)

	pea - PCA(n_components-5)

	pca.fit(X_std)

	X_5d = pea.transform(X_std)

	Target = target[:6000]

	Validation of unsupervised ML

	Conclusion

	Handling Time-Series Data

	Structure

	Objective

	Why time-series is important?

	How to handle date and time?

	# creating pandas timestamp time_stamp = pd.Timestamp(datetime(2019>lJl))

	time_stamp.year

	2019

	time_stamp.month

	1

	time_stamp.day

	1

	Transforming a time-series data

	google_df.asfreq('D*).head()

	Close

	Date

	2014-01-02 556.00

	2014-01-03 551.95

	2014-01-04	NaN

	2014-01-05	NaN

	2014-01-06 558.10

	Manipulating a time-series data

	google_df[‘shifted‘] - google_df.Close.shift() google_df.head)

	Comparing time-series growth rates

	How to change time-series frequency?

	interpolated = datadf.interpolate() interpolated.info()

	<class ’pandas.core.frame.DataFrame*>

	Datetimeindex: 89 entries, 2010-01-01 to 2017-05-01

	Data columns (total 2 columns):

	Debt/GDP	89 non-null float64

	Unemployment	89 non-null float64

	dtypes: float64(2)

	Conclusion

	Time-Series Methods

	Structure

	Objective

	Time-series forecasting techniques

	Autoregressive Moving Average (ARMA)

	Autoregressive Integrated Moving Average (ARIMA)

	Seasonal Autoregressive Integrated Moving-Average (SARIMA)

	Seasonal Autoregressive Integrated Moving-Average with Exogenous

	Regressors (SARIMAX)

	Vector Autoregression Moving-Average (VARMA)

	Holt Winter’s Exponential Smoothing (HWES)

	Forecast future traffic to a web page

	Conclusion

	Case Study-1

	Predict whether or not an applicant will be able to repay a loan

	submit = test_df[['SK_ID_CURR']] submit[’TARGET'] = log_reg_pred submit.head()

	0	100001	0.087750

	1	100005	0.163957

	2	100013	0.110238

	3	100028	0.076575

	4	100038	0.154924

	Conclusion

	Build a prediction model that will accurately classify which text messages are spam

	bestindex = models['Test Precision']. idxmaxQ models.iloc[best_index, :]

	alpha	15,730019

	Train Accuracy	0.979641

	Test Accuracy	0.969549

	Test Recall	0,777778

	Test Precision	1,000060

	Name: 143, dtype: float64

	Conclusion

	Build a film recommendation engine

	Conclusion

	Predict house sales in King County, Washington State, USA, using regression

	Conclusion

	Python Virtual Environment

	Structure

	Objective

	What is a Python virtual environment?

	How to create and activate a virtual environment?

	How to open Jupyter notebook with this new environment?

	How to set an activated virtual environment in PyCharm IDE?

	What is requirements.txt file?

	What is README.md file?

	Upload your project in GitHub

	Conclusion

	Introduction to An Advanced Algorithm - CatBoost

	Structure

	Objective

	What is a Gradient Boosting algorithm?

	Introduction to CatBoost

	Install CatBoost in Python virtual environment

	How to solve a classification problem with CatBoost?

	# Load titanic dataset and numpy Library from catboost.datasets import titanic import numpy as np

	Push your notebook in your GitHub repository

	Conclusion

	Revision of All Chapters’ Learning

	Conclusion

	Index

