Practical
Data Science

Ju sg;ter

Explore Data Cleaning, Pre-processing, Data Wrangling, Fecture Engineering
and Machine Learning using Python and Jupyter

&

_(" PRATEEK GUPTA

Lé\! A\

Practical
Data Science with

Jupyter

Explore Data Cleaning, Pre-processing,
Data Wrangling, Feature Engineering and
Machine Learning using Python and Jupyter

Prateek Gupta

"I"F

www.bpbonline.com

http://www.bpbonline.com

FIRST EDITION 2019

SECOND EDITION 2021

Copyright © BPB Publications, India

ISBN: 978-93-89898-064

All Rights Reserved. No part of this publication may be
reproduced, distributed or transmitted in any form or by any
means or stored in a database or retrieval system, without the
prior written permission of the publisher with the exception to the
program listings which may be entered, stored and executed in a
computer system, but they can not be reproduced by the means
of publication, photocopy, recording, or by any electronic and

mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the
best of author’s and publisher’s knowledge. The author has made
every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage

arising from any information in this book.

All trademarks referred to in the book are acknowledged as
properties of their respective owners but BPB Publications cannot

guarantee the accuracy of this information.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers,

150 DN Rd. Next to Capital Cinema,

V.T. (C.S.T.) Station, MUMBAI-400 001

Ph: 22078296/22078297

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747

To View Complete E E

BPR Fublications Catalogue H
Scan the OF Code: E

Published by Manish Jain for BPB Publications, 20 Ansari Road,
Darya Ganj, New Delhi-110002 and Printed by him at Repro India
Ltd, Mumbai

www.bpbonline.com

http://www.bpbonline.com

Dedicated to

All Aspiring Data Scientists

Who have chosen to solve this world’s problem with data

About the Author

Prateek Gupta is a seasoned Data Science professional with nine
years of experience in finding patterns, applying advanced
statistical methods and algorithms to uncover hidden insights. His
data-driven solutions maximize revenue, profitability, and ensure
efficient operations management. He has worked with several

multinational IT giants like HCL, Zensar, and Sapient.

He is a self-starter and committed data enthusiast with expertise
in fishing, winery, and e-commerce domain. He has helped various
clients with his machine learning expertise in automatic product
categorization, sentiment analysis, customer segmentation, product
recommendation engine, and object detection and recognition
models. He is a firm believer in “Hard work triumphs talent when

talent doesn’t work hard”.

His keen area of interest is in the areas of cutting-edge research
papers on machine learning and applications of natural language
processing with computer vision techniques. In his leisure time,
he enjoys sharing knowledge through his blog and motivates

young minds to enter the exciting world of Data Science.

His Blog: http://dsbyprateekg.blogspot.com/

His Linkedin Profile: www.linkedin.com/in/prateek-gupta-64203354

pot.com/
in.com/in/prateek-

Acknowledgement

| would like to thank some of the brilliant knowledge sharing
minds - Jason Brownlee Ph.D., Adrian Rosebrock, Ph.D., and
Andrew Ng, from whom | have learned and am still learning
many concepts. | would also like to thank open data science
community, Kaggle and various data science bloggers for making
data science and machine learning knowledge available to

everyone.

| would also like to express my gratitude to almighty God, my
parents, my wife Pragya, and my brother Anubhayv, for being
incredibly supportive throughout my life and for the writing of this
book.

Finally, I would like to thank the entire BPB publications team,
who made this book possible. Many thanks to Manish Jain, Nrip
Jain, and Varun Jain for giving me the opportunity to write my

second book.

Preface

Today, Data Science has become an indispensable part of every
organization, for which employers are willing to pay top dollars to
hire skilled professionals. Due to the rapidly changing needs of
industry, data continues to grow and evolve, thereby increasing the
demand for data scientists. However, the questions that
continuously haunt every company — are there enough highly-
skilled individuals who can analyze how much data will be
available, where it will come from, and what the advancement are
in analytical techniques to serve them more significant insights? If
you have picked up this book, you must have already come
across these topics through talks or blogs from several experts

and leaders in the industry.

To become an expert in any field, everyone must start from a
point to learn. This book is designed with keeping such
perspective in mind, to serve as your starting point in the field of
data science. When | started my career in this field, | had little
luck finding a compact guide that | could use to learn concepts
of data science, practice examples, and revise them when faced
with similar problems at hand. | soon realized Data Science is a
very vast domain, and having all the knowledge in a small version
of a book is highly impossible. Therefore, | decided | accumulate
my experience in the form of this book, where you'll gain
essential knowledge and skill set required to become a data
scientist, without wasting your valuable time finding material

scattered across the internet.

| planned the chapters of this book in a chained form. In the first
chapter, you will be made familiar with the data and the new data
science skills set. The second chapter is all about setting up tools
for the trade with the help of which you can practice the
examples discussed in the book. In chapters three to six, you will
learn all types of data structures in Python, which you will use in
your day-to-day data science projects. In 7th chapter you will lean
how to interact with different databases with Python. The eighth-
chapter of this book will teach you the most used statistical
concepts in data analysis. By the ninth chapter, you will be all set
to start your journey of becoming a data scientist by learning how
to read, load, and understand different types of data in Jupyter
notebook for analysis. The tenth and eleventh chapters will guide

you through different data cleaning and visualizing techniques.

From the twelfth chapter onwards, you will have to combine
knowledge acquired from previous chapters to do data pre-
processing of real-world use-cases. In chapters thirteen and
fourteen, you will learn supervised and unsupervised machine
learning problems and how to solve them. Chapters fifteen and
sixteen will cover time series data and will teach you how to
handle them. After covering the key concepts, | have included four
different case studies, where you will apply all the knowledge
acquired and practice solving real-world problems. The last three
chapters of this book will make you industry-ready data scientists.
Using best practices while structuring your project and use of
GitHub repository along with your Data Science concepts will not
make you feel naive, while working with other software engineering

team.

The book you are holding is my humble effort to not only cover
fundamentals of Data Science using Python, but also save your
time by focusing on minimum theory + more practical examples.
These practical examples include real-world datasets and real
problems, which will make you confident in tackling similar or
related data problems. | hope you find this book valuable, and
that it enables you to extend your data science knowledge as a

practitioner in a short time.

Downloading the coloured images:

Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/75823

Errata

We take immense pride in our work at BPB Publications and
follow best practices to ensure the accuracy of our content to
provide with an indulging reading experience to our subscribers.
Our readers are our mirrors, and we use their inputs to reflect
and improve upon human errors, if any, that may have occurred
during the publishing processes involved. To let us maintain the
quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us
at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by
the BPB Publications’ Family.

pbonline.com

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get

in touch with us at business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

http://www.bpbonline.com
bonline.com

BPB IS SEARCHING FOR AUTHORS LIKE YOU

If you're interested in becoming an author for BPB, please visit
www.bpbonline.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You
can make a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at In
case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of books

and videos available at Check them outl!

PIRACY

If you come across any illegal copies of our works in any form
on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

IF YOU ARE INTERESTED IN BECOMING AN AUTHOR

http://www.bpbonline.com
bonline.com

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please visit

REVIEWS

Please leave a review. Once you have read and used this book,
why not leave a review on the site that you purchased it from?
Potential readers can then see and use your unbiased opinion to
make purchase decisions, we at BPB can understand what you
think about our products, and our authors can see your feedback

on their book. Thank youl

For more information about BPB, please visit

Table of Contents

1. Data Science Fundamentals
Structure

Obijective

What is data?

Structured data

Unstructured data
Semi-structured data

What is data science?

What does a data scientist do?
Real-world use cases of data science
Why_Python for data science?

Conclusion

2. Installing_Software and System Setup
Structure

Obiective

System requirements
Downloading_Anaconda

Installing_the Anaconda on Windows
Installing_the Anaconda in Linux

How to install a new Python library in Anaconda?

Open your notebook — Jupyter

Know your notebook

Conclusion

3. Lists and Dictionaries
Structure

Obijective
What is a list?

How to create a list?

Different list manipulation operations
Difference between Lists and Tuples
What is a Dictionary?

How to create a dictionary?

Some operations with dictionary

Conclusion

4. Package, Function,_and Loop
Structure
Obijective

The help()_function in Python

How to import a Python package?

How to create and call a function?
Passing_parameter in a function
Default parameter in a function

How to use unknown parameters in a function?

A_global and local variable in a function
What is a Lambda function?

Understanding_main _in Python

while and for loop in Python

Conclusion

5. NumPy Foundation

Structure
Obijective
Importing_a NumPy_package

Why_use NumPy array over list?

NumPy array_attributes

Creating_ NumPy_arrays

Accessing_an element of a NumPy_array

Slicing_in NumPy_array

Array_concatenation

Conclusion

6. Pandas and DataFrame

Structure

Objective

Importing_Pandas

Pandas data structures

Series

DatafFrame

Jdocf]_and .iloc]]

Some Useful DataFrame Functions
Handling_missing_values in DataFrame

Conclusion

7._Interacting_with Databases
Structure

Obiective

What is SQLAlchemy?
Installing_SQLAlchemy_package
How to use SQLAlchemy?

SQLAIchemy_engine configuration

Creating_a table in a database

Inserting_data in a table
Update a record

How to join two tables

Inner join
Left join

Right join
Conclusion

8. Thinking_Statistically in Data Science
Structure

Obijective

Statistics in data science

Types of statistical data/variables
Mean._median._and mode

Basics of probability

Statistical distributions

Poisson distribution

Binomial distribution

Normal distribution

Pearson correlation coefficient
Probability Density Function (PDF),

Real-world example

Statistical inference and hypothesis testing

Conclusion

9. How to Import Data in Python?

Structure

Objective
Importing_text data
Importing_CSV data
Importing_Excel data
Importing_J]SON data
Importing_pickled data

Importing_a compressed data

Conclusion

10. Cleaning_of Imported Data
Structure

Obijective

Know your data

Analyzing_missing_values

Dropping_missing_values

Automatically fill missing_values
How to scale and normalize data?
How to parse dates?

How to apply character encoding?
Cleaning_inconsistent data

Conclusion

11. Data Visualization
Structure

Obiective

Bar chart

Line chart
Histograms

Scatter plot

Stacked plot
Box_plot

Conclusion

12. Data Pre-processing
Structure

Obijective

About the case-study
Importing_the dataset

Exploratory _data analysis

Data cleaning_and pre-processing

Feature Engineering
Conclusion

13._Supervised Machine Learning
Structure

Objective

Some common ML terms
Introduction to machine learning_ (ML),
Supervised learning

Unsupervised learning
Semi-supervised learning
Reinforcement learning

List of common ML algorithms
Supervised ML fundamentals
Logistic Regression

Decision Tree Classifier

K-Nearest Neighbor Classifier
Linear Discriminant Analysis (LDA),

Gaussian Naive Bavyes Classifier
Support Vector Classifier

Solving_a classification ML problem
About the dataset

Attribute information

Why train/test split and cross-validation?

Solving_a regression ML problem

How to tune your ML model?

How to handle categorical variables in sklearn?

The advanced technique to handle missing_data

Conclusion

14. Unsupervised Machine Learning
Structure

Objective

Why_unsupervised learning?
Unsupervised learning_techniques
Clustering

K-mean clustering

Hierarchical clustering

LSNE

Principal Component Analysis (PCA)
Case study

Validation of unsupervised ML

Conclusion

15._Handling_Time-Series Data
Structure
Obijective

Why_time-series is important?

How to handle date and time?
Transforming_a time-series data
Manipulating_a time-series data
Comparing_time-series growth rates

How to change time-series frequency?

Conclusion

16. Time-Series Methods

Structure

Obijective
What is time-series forecasting?

Basic steps in forecasting

Time-series forecasting_techniques
Autoregression (AR),
Moving_Average (MA),

Autoregressive Moving_Average (ARMA),

e E—— -

Seasonal Autoregressive Integrated Moving-Average (SARIMA),

Seasonal Autoregressive Integrated Moving-Average with Exogenous
Regressors (SARIMAX),

Vector Autoregression Moving-Average (VARMA)

Holt Winter’s Exponential Smoothing (HWES)

Forecast future traffic to a web page

Conclusion

17._Case Study-1

Predict whether or not an applicant will be able to repay a loan

Conclusion

18. Case Study-2

Build a prediction model that will accurately classify which text

messages are spdim

Conclusion

19. Case Study-3
Build a film recommendation engine

Conclusion

20. Case Study-4

Predict house sales in King_County, Washington State, USA,_using

regression

Conclusion

21. Python Virtual Environment

Structure

Obijective

What is a Python virtual environment?
How to create and activate a virtual environment?

How to open Jupyter notebook with this new environment?

How to set an activated virtual environment in PyCharm IDE?

What is requirements.txt file?
What is README.md file?
Upload your project in GitHub

Conclusion

22. Introduction to An Advanced Algorithm - CatBoost

Structure

Obiective

What is a Gradient Boosting_algorithm?

Introduction to CatBoost

Install CatBoost in Python virtual environment

How to solve a classification problem with CatBoost?
Push your notebook in your GitHub repository

Conclusion

23, Revision of All Chapters’ Learning

Conclusion

Index

CHAPTER 1

Data Science Fundamentals

“Learning from data is virtually universally useful. Master it and
you will be welcomed anywhere.”

— John Elder, founder of the Elder Research

Elder Research is America’s largest and most experienced analytics
consultancy. With his vision about data, John started his company
in 1995, yet the importance of finding information from the data

is a niche and the most demanding skill of the 21st century.

Today data science is everywhere.

The explosive growth of the digital world requires professionals
with not just strong skills, but also adaptability and a passion for
staying on the forefront of technology. A recent study shows that
demand for data scientists and analysts is projected to grow by
28 percent by 2021. This is on top of the current market need.
According to the U.S. Bureau of Labor Statistics, growth for data
science jobs skills will grow about 28% through 2026. Unless
something changes, these skill-gaps will continue to widen. In this
first chapter, you will learn how to be familiar with data, your role
as an aspiring data scientist, and the importance of Python

programming language in data science.

Structure

What is data?

What is data science?

What does a data scientist do?

Real-world use cases of data science

Why Python for data science?

Objective

After studying this chapter, you should be able to understand the
data types, the amount of the data generated daily, and the need

for data scientists with currently available real-world use cases.

What is data?

The best way to describe data is to understand the types of data.

Data is divided into the following three categories.

Structured data

A well-organized data in the form of tables that can be easily be
operated is known as structured data. Searching and accessing
information from such type of data is very easy. For example, data
stored in the relational database, i.e., SQL in the form of tables
having multiple rows and columns. The spreadsheet is another
good example of structured data. Structured data represent only
5% to 10% of all data present in the world. The following figure
1.1_is an example of SQL data, where an SQL table is holding the

merchant related data:

merchant_id merchant_name subtite status publish_date
a3 Texas Chicken il 2015-03-22 00:00:00
a4 ZALORA 1 2018-03-29 00:00;00
a5 Caltex 1 20 150402 00:00;00
36 COURTS il 20180409 00:00:00
87 Aaoda 10 20 180407 00:00:00
b Lerk Thai s 2018-03-02 00:00:00
-

&9 Peach Garden (@ Gardens Bv the Baw

2013-02-16 00:00:00

Figure 1.1: Sample SQL Data

Unstructured data

Unstructured data requires advanced tools and software’s to access
information. For example, images and graphics, PDF files, word
document, audio, video, emails, PowerPoint presentations,
webpages and web contents, wikis, streaming data, location
coordinates, etc., fall under the unstructured data category.
Unstructured data represent around 80% of the data. The

following figure 1.2_shows various unstructured data types:

B B » @&

Text files and Server, website Sensor data Images
documents and application
logs
Video files Audio files Emails Social media
data

Figure 1.2: Unstructured data types

Semi-structured data

Semi-structured data is structured data that is unorganized. Web
data such as JSON (JavaScript Object Notation) files, BibTex files,
CSV files, tab-delimited text files, XML, and other markup
languages are examples of semi-structured data found on the web.
Semi-structured data represent only 5% to 10% of all data present

in the world. The following figure 1.3_shows an example of JSON
data:

"custkey": "432222",
"useragent”: {
“"devicetype": "pc”,
“experience”: "browser”,
“platform™: "windows”
}s
"pagetype": “home",
“productline”: "televisicn”,
"customerprofile”: {
“age": 28,
"gender”: "male",
"customerinterests™: [
"movies"”,
"fashion",
"music”

Figure 1.3: [SON data

What is data science?

It's become a universal truth that modern businesses are awash
with data. Last year, McKinsey estimated that Big Data initiatives
in the US healthcare system could account for $300 billion to $450
billion in reduced healthcare spending or 12-17 percent of the $2.6
trillion baselines in US healthcare costs. On the other hand though,
bad or unstructured data is estimated to be costing the US

roughly $3.1 trillion a year.

Data-driven decision making is increasing in popularity. Accessing
and finding information from the unstructured data is complex
and cannot be done easily with some Bl tools; here data science

comes into the picture.

Data science is a field that extracts the knowledge and insights
from the raw data. To do so, it uses mathematics, statistics,
computer science, and programming language knowledge. A
person who has all these skills is known as a data scientist. A
data scientist is all about being curious, self-driven, and

passionate about finding answers. The following figure 1.4 _shows

the skills that a modern data scientist should have:

MODERN DATA SCIENTIST

[ata Scientist, the sexiest jab of Z1th cenlury requines 3 mixture of multsdisciplinery shlls ranging from an
intersect isn of mathematics, stalistics, computer science, commanicalion and bisiness. Finding a data
scientist is hard. Finding people who understand who a datas scientist is, iz cqually hard. 5o here i a fittke
cheat sheet on wha the modem dala scientist really is

MATH PROGRAMMING
& STATISTICS & DATABASE

1§ e EF SCHE

o« A 3

s

COMMUNICATION
& VISUALIZATION

i 1o éngrage wodl) Senaoe

Figure 1.4: Skills of a modern data scientist

What does a data scientist do?

Most data scientists in the industry have advanced training in
statistics, math, and computer science. Their experience is a vast
horizon that also extends to data visualization, data mining, and
information management. The primary job of a data scientist is to
ask the right question. It's about surfacing hidden insight that can

help enable companies to make smarter business decisions.

The job of a data scientist is not bound to a particular domain.
Apart from scientific research, they are working in various domains
including shipping, healthcare, e-commerce, aviation, finance,
education, etc. They start their work by understanding the
business problem and then they proceed with data collection,
reading the data, transforming the data in the required format,
visualizing, modeling, and evaluating the model and then
deployment. You can imagine their work cycle as mentioned in the

following figure

e
H
" Data Proparation

¥ 3 L]
T

Modeling

Figure 1.5: Work cycle of a data scientist

Eighty percent of a data scientist’s time is spent in simply finding,
cleansing, and organizing data, leaving only 20 percent to perform
analysis. These processes can be time-consuming and tedious. But
it's crucial to get them right since a model is only as good as
the data that is used to build it. And because models generally
improve as they are exposed to increasing amounts of data, it's in

the data scientists’ interests to include as much data as they can

in their analysis.

In the later chapters of this book, you will learn all the above-

required skills to be a data scientist.

Real-world use cases of data science

Information is the oil of the 21st century, and analytics is the
combustion engine. Whether you are uploading a picture on
Facebook, posting a tweet, emailing anybody, or shopping in an e-
commerce site, the role of data science is everywhere. In the
modern workplace, data science is applied to many problems to
predict and calculate outcomes that would have taken several
times more human hours to process. Following are some list of

real-world examples where data scientists are playing a key role:

Google’s Al research arm is taking the help of data scientists to
build the best performing algorithm for automatically detecting

objects.

Amazon has built a product recommendation system to

personalize their product.

Santander Group of Bank has built a model with the help of data
scientists to identify the value of transactions for each potential

customer.

Airbus in the maritime industry is taking the help of data
scientists to build a model that detects all ships in satellite
images as quickly as possible to increase knowledge, anticipate

threats, trigger alerts, and improve efficiency at sea.

YouTube is using an automated video classification model in

limited memory.

Data scientists at the Chinese internet giant Baidu released details
of a new deep learning algorithm that they claim can help

pathologists identify tumors more accurately.

The Radiological Society of North America (RSNA®) is using an
algorithm to detect a visual signal for pneumonia in medical
images which automatically locate lung opacities on chest

radiographs.

The Inter-American Development Bank is using an algorithm that
considers a family’s observable household attributes like the
material of their walls and ceiling, or the assets found in the

home to classify them and predict their level of need.

Netflix data uses data science skills on the movie viewing patterns
to understand what drives user interest and uses that to make

decisions on which Netflix original series to produce.

Why_Python for data science?

Python is very beginner friendly. The syntax (words and structure)
is extremely simple to read and follow, most of which can be
understood even if you do not know any programming. Python is
a multi-paradigm programming language — a sort of Swiss Army
knife for the coding world. It supports object-oriented
programming, structured programming, and functional
programming patterns, among others. There’s a joke in the Python
community that Python is generally the second-best language for
everything.

Python is a free, open-source software, and consequently, anyone
can write a library package to extend its functionality. Data science
has been an early beneficiary of these extensions, particularly
Pandas, the big daddy of them all.

Python’s inherent readability and simplicity makes it relatively easy
to pick up, and the number of dedicated analytical libraries
available today means that data scientists in almost every sector
will find packages already tailored to their needs, freely available

for download.

The following survey was done by KDnuggets — a leading site on
business analytics, Big Data, data mining, data science, and
machine learning — clearly shows that Python is a preferable

choice for data science/machine learning:

Top Analytics, Data Science, Machine Learning
Software 2017-2019, KDnuggets Poll

0% 10% 20% 30% 40% 50% 60% 70%

Python |
RapidMiner
RLlanguage

Excel |
Anaconda
5QLLanguage
Tensorflow

Keras
scikit-learn

Tableau

Apache Spark ‘

H 2019 %share
W 2018 %share
W 2017 %share

Figure 1.6: Survey by KDnuggets

Conclusion

Most of the people think that it is very difficult to become a data

scientist. But, let me be clear, it is not tough!

If you love making discoveries about the world, and if you are
fascinated by machine learning, then you can break into the data
science industry no matter what your situation is. This book will
push you to learn, improve, and master the data science skill on
your own. There is only one thing you need to keep on, that is,
LEARN-APPLY-REPEAT. In the next chapter, we will set up our

machine, and be ready for our data science journey.

CHAPTER 2

Installing_Software and System Setup

In the last chapter, we covered the data science fundamentals,

and now we are ready to move ahead and prepare our system for
data science. In this chapter, we will learn about the most popular
Python data science platform — Anaconda. With this platform, you
don't need to install Python explicitly — just one installation in
your system (Windows, macOS, or Linux) and you are ready to
use the industry-standard platform for developing, testing, and

training.

Structure

System requirements

Downloading the Anaconda

Installing the Anaconda in Windows

Installing the Anaconda in Linux

How to install a new Python library in Anaconda

Open your notebook — Jupyter

Know your notebook

Objective

After studying this chapter, you should be able to install Anaconda
in your system successfully and use the Jupyter notebook. You will

also run your first Python program in your notebook.

System requirements

System architecture: 64-bit x86, 32-bit x86 with Windows or Linux,
Power8, or Powerg

Operating system: Windows Vista or newer, 64-bit macOS 10.10+,
or Linux, including Ubuntu, RedHat, CentOS 6+

Minimum 3 GB disk space to download and install

Downloading Anaconda

You can download the Anaconda Distribution from the following
link:

https: //www.anaconda.com/download

Once you click on the preceding link, you will see the following

screen (as shown in figure

i U B httpsyfwss.anacondacom, productssindivica

-

Individual Edition

Your data science
toolkit

With over 20 million users worldwide, the open-source Individual
Edition (Distribution) is the easiest way to perform Python/R data
science and machine learning on a single machine. Developed for
solo practitioners, it is the toolkit that equips you to work with

thousands of open-source packages and libraries,

ps://www.anaconda.com/download/

Figure 2.1: Anaconda Distribution download page

Anaconda Distribution shows different OS options — Windows,
macOS, and Linux. According to your OS, select the appropriate
option. For this example, | have selected the Windows OS’s 64-Bit
Graphical Installer (457 MB) option as shown in the following

figure 2.2 :
Anaconda Installers
Windows 58 MacO5 & Linux
G3- it Graphical Imstaller (457 MB] Gd -Bit Graphical Installer [435 MB] G4} -Bit [kB 6] installer |520 MB)

32- Bat Graphiscal [nahaller {4035 MB 54-B5it Cormmvaand Line Intalber (928 MB 54 - Bit [Peritserd arwd Porerd) Installer (279
MB

Figure 2.2: Anaconda Distribution installer versions for Windows OS

Python community has stopped its support for Python 2.x and the
prior version, so it is highly recommended that you should use
Python 3.x. We are going to use Python 3.8 version throughout
this book, so | will recommend downloading this version only. For
downloading the distribution, see the two links just below the
Download button; they are showing the Graphical Installer for
each system architecture type-64-bit or 32-bit. Click on the
appropriate link, and the downloading will start. This downloading

process is the same for macOS and Linux.

Installing_the Anaconda on Windows

Once the downloading is complete, double click on the installer to
launch (the recommended way is to run the installer with admin

privileges).

Click accept the terms, select the users — Just Me or All Users and

click

Select the default destination folder or add a custom location to

install the Anaconda, copy this path for later use and click

Install Anaconda to a directory path that does not contain spaces or
Unicode characters.

Deselect (uncheck) the first following option (if checked already) —
add Anaconda to my PATH environment variable, then click Install,

wait till the installation is completed.

Click click and then click

Now open the Advanced system settings in your machine and add

the following two values in your PATH environment variable:

C:\Users\prateek\Anaconda3

C:\Users\prateek\Anaconda3s\Scripts

Here, replace the actual path of your Anaconda installation folder that

you copied earlier.

Save the settings and restart your system.

Verify your installation by clicking on the Windows icon in the

taskbar or simply type Anaconda in the search bar — you will see

Anaconda Navigator option, click on this option, and the following

screen will appear (as shown in figure

{2 ANACONDA NAVIGATOR

1]

@ Environments
8 Frojects beta)
W Learning

% Community

(=t L
Developer Blog

Feedback

Applications on ot > ek
o &
& L]
a, ¥
Jupyter IPly
:-r" —
nateboak Glionsee
432

nfeb=based, interactive computing noteboock Py QL GUN that suppocts infioe ligeres, procer

envronment. BdL sod run humaneesdable
ecs while Cemrsing L gt sl

meltling ed Zingowith synbax highlghting,
o el LB, dod e

Ak

ot devigewd to heda
you B 7 i wiLB B includes B
eusentisls and noteboods.

3
nasice and enpert. ke wordlows
wikth 4 large toalbon,

R
Scientific Prihon CGevelopment
ErwiRmnment. Powerful Bython IDE with
Aaied eding, LIV lesling
S g 0 Neeiien el

Figure 2.3: Anaconda Navigator

glueviz
[0
Muldmennionad dala viualzaton soow
Fles. Exglone relsthonshiog within and smang
(L =E

Installing the Anaconda with Graphical Installer in macOS is the

same as we did above for Windows.

Installing_the Anaconda in Linux

After downloading the 64bit(x86) installer, run the following two

commands to check the data integrity:

Mdssum /path/filename

Sha256sum /path/filename

Replace /path/filename with the actual path and filename of the
file you downloaded.

Enter the following to install Anaconda for Python 3.8, just replace

~/Downloads/ with the path to the file you downloaded:

bash Downloads /Anaconda3-- .2 .7 -Linux-x86_64.sh

Figure 2.4: Installing Anaconda in Linux

Choose Install Anaconda as a user unless root privileges are
required. The installer prompts — In order to continue the
installation process, please review the license Click Enter to view

license terms.

Scroll to the bottom of the license terms and enter Yes to agree.
The installer prompts you to click Enter to accept the default
install location, CTRL + C to cancel the installation, or specify an
alternate installation directory. If you accept the default install
location, the installer displays PREFIX=/home//anaconda<3> and

continues the installation. It may take a few minutes to complete.

The installer prompts — Do you wish the installer to prepend the
Anaconda<3> install location to PATH in your [home//.bashrc?
Enter Yes.

If you enter you must manually add the path to Anaconda or

conda will not work.

The installer describes Microsoft VS Code and asks if you would
like to install the VS Code. Enter yes or no. If you select yes,
follow the instructions on the screen to complete the VS Code

installation.

Installing VS Code with the Anaconda installer requires an internet
connection. Offline users may be able to find an offline VS Code
installer from Microsoft.

The installer finishes and displays — Thank you for installing
Anaconda<3>! Close and open your terminal window for the

installation to take effect, or you can enter the command source

After your installation is complete, verify it by opening Anaconda

Navigator, a program that is included with Anaconda — open a

Terminal window and type anaconda-navigator. If Navigator opens,

you have successfully installed Anaconda.

You can find some known issues while installing Anaconda and
their solutions in the following link:

https://docs.anaconda.com/anaconda/user-guide/troubleshooting/

ps://docs.anaconda.com/anaconda/user-

How to install a new Python library in Anaconda?

Most of the Python libraries/packages are preinstalled with the
Anaconda Distribution, which you can verify by typing the

following command in an Anaconda Prompt:

conda list

| B Anaconda Prompt
\prateekl.gupta>set "KERAS_BACKEND=theano”

cages in

Build Channel
py36hes757f0_a

@ =
"

conda-forge

e 1
a

@

conda-forge

[S = T T

@

anaconda

B B

Figure 2.5: Anaconda Prompt

Now if you need to install any Python package which is not in
the preceding list and is required for your task, then follow these

steps. In the same Anaconda Prompt terminal, type conda install

For example, if you want to install scipy package, just type conda

install then press enter and then enter y to continue.

A second recommended approach to install any new package in
Anaconda is to search the same install in Google first and then

go to the first search result, which is shown as follows:

In Google search, | am searching a package for example imageio
i.e. conda install

Go to the first search result; this will open the Anaconda official

site showing the installers of the searched package. In our

example, it is like https://anaconda.org/menpo/imageio

Now copy the text under— To install this package with conda run:
and paste in the Anaconda Prompt. In our case, text is: conda

install -c menpoimageio

Open your notebook — Jupyter

After installing Anaconda, the next step is to open the notebook —
an open-source web application that allows you to create and
share documents that contain live code, equations, visualizations,
and narrative text. For the notebook, open Anaconda Navigator
and click on Launch button under the Jupyter Notebook icon or
just type Jupyter Notebook in the search bar in Windows and

then select it as shown in the following figure

A

M vay Filters \v/ !
Best match

“=< Jupyter Notebook

S

Desktop app

Search suggestions

L jupyt - See web results >
L Project Jupyter - Organization b
£ jupyter notebook) |
£ jupyter notebook online 5 1
£ jupyter notebook download S ‘
£ jupyter online >

Figure 2.6: Windows search bar

Once you select it, a browser window (default is IE) will be

opened showing the notebook as showing in the following figure

| -EI]' Hame X 4 N
e [[LF 10T RS g

=
= Jupyter Logat

Fies Iguroiing Chiptors

Sabhe] flera b0 P rkandin ACH0MKE N Ham Upisad Mawe O
O -~ = Name 4 LastModSed 4
] ™ 1D Dbjeces u mandh mg
O 3 Conecn B IRhNEh g
O 3 Desatop 5 haurs ago
O 0 vseenments & manth 2ga
O o owndanity 1 byt 0
[[Fasorites & month aga
0 1 Lk & rvmineh A
O 2 s a mand @z
O 23 Oaslidke 12 day= aga

Figure 2.7: Browser window

Know your notebook

Once your notebook is opened in the browser, click on the New
dropdown and select the default first option — Python 3 as shown

in the following figure

| I = Hae R : - =]
&) locathost e Ja A S
_ Jupyter
Files
Belect Bems fo perform aclions om them Uphoad | N = | EX
- I :
Python 3 u
"
Tt File "
Foldar)
»

Figure 2.8: Dropdown menu

After clicking on Python 3 option, a new tab will be opened

containing the new untitled notebook, as shown in the following

figure

B A Hime X O Untitleds I -
O o localhost ¥ g
: Ju Fj}fte‘! Untitled?2 Lass Checkpolt 2 minutes age {aulasaved) . Logou

=« . B R

m
+

Figure 2.9: New tab

Rename your notebook with a proper name by double-clicking on
the Untitled text and then enter any new name (I have named it

and click Rename (refer to the following figure

E-u'[m | Y uiged2 « [=
o

Ranamsa MNobabook

[Ender & rpw resbebook rams

WeF e tntonk.

Figure 2.10: Rename

The preceding step will rename your notebook. Now it's time to
run your first Python program in your first notebook. We will print
a greeting message in Python for this purpose. In the cell (text
bar) just type any welcome message inside the print block as

shown in the following figure

| 1
= ~a| Heme ‘El MyFirsthatebook o o

~ = 0O (2 |ocalhost:A B35/ noisbooks /Pt ooy

: JUthET MYFifB[NG[EbGDk Lazi Checkpaint: 31 minules ago (unsaved changes)
Fite Exie View Insar Celi Kemsl fidgels Help

B+ &G B * 4+ HE C o | | B3

In []+ print{"Hellc Python!™}

Figure 2.11: Welcome message

In the above cell, we are printing a string in Python 3.6. Now to
run this program, you can simply press Shift + Enter keys together
or click on the Play button just below the cell column (refer to

the following figure

B A Harme B nayfirstiotebook X [N
. ¥

(] {n localhost

j Jjupyter MyFirstNotebook Last Checkpoint: 36 minutes ago (autosaved)

= - =S mum cell, selact belaw — =
n E i fipas &me W c:;:,_.;_, He I;

B +| = & B 4+ H M \- C | |Code v | B

In []: print(“Hello Python!™)|

‘‘‘‘‘

P—

Figure 2.12: Play button

Once you run the cell, your program will run and give you the
output, as shown just below the cell in the following figure

B A Home 1 MyFirsthoebook X

3] 1At localhost:

‘: JUD}’l’E"r MyFirstNotebﬂDk Last Checkpeinl 38 minutes ago junsaved changes)
File Edit Insed Cel Kemel ¥Widget Help

B o+ 2 D o+ + H B T Coge v B

In [1]: print("Hello Pythent™

Hallo Python!

ﬂ In []

Figure 2.13: Output

Congrats! You have successfully run your first program in Python
3.7. This is just a one-line code using simple plain English text.
Let's explore some more, the simplicity of the Python by doing

some mathematical calculations.

Let's add two numbers by entering the FirstNumber +

SecondNumber and then run it as shown in the following figure

In [2]: | 29456

Out[2]: 85

Figure 2.14: Simple calculation

Quite interesting, right! Let's move ahead and ask the user to
input numbers and let Python do the homework. In the following
example, you need to enter the first humber, press enter, then
enter the second number and press enter. The calculation will be
done, and output will be displayed within a millisecond (as shown

in the following figure

a = int(input())

b = int(input())

print(“adding of two numbers: ™, atb)
print{"difference in numbers: ", a-b)
print("multiplicaton of numbers: ", a*b)

4
2

adding of two numbers: &6
difference in numbers: 2
multiplicaton of numbers: 8

Figure 2.15: Mathematical calculation

Now, suppose you have done your given task and want to share
the same with your project lead or manager. You can do it easily
by going to the File option and hover on the Download as

option, as shown in the following figure

l
B | Home B myFirstNotebook X [

O i localhost:

: Jupyter MyFirstNotebook Last Checkpoint: an hour ago {aulosaved)

Filg Edit Wigw Insert el kernel Widgets Help
Mewr Nolebook A+ H BT code | |
Open...

Wthan!
Make a Copy...
Hename...

Save and Checkpaint
inlv
Rever 1o Checkpaint ¥ Py

Print Preview

Download as ¥ MWotlebook (.ipynk)
Python {.py)
s'.
Trusied Motebook HTML { hterl)
Clogse and Hall Miakkciomm g md]
! P pmm———e N (- i) I comment in fell
LaTeX { tex)
In [7]: """ Thi ppF iaLaTex {pdfj ‘omments in an cutput *°

Figure 2.16: Download as option

You can save your current work in different formats — notebook,
PDF, Python, or HTML. Once you select the required option, it
will be saved in that format with the same name as you have
given while renaming the notebook in the default location of your
system. By saving in the various formats, you can carry and share

your analysis with anyone.

Conclusion

Anaconda Distribution is the fastest and easiest way to do Python
and Machine Learning work. You can load the data, pre-process it,
visualize it, train your model, and evaluate the performance in a

single notebook and then share your work with anyone easily. For
a complete walk-around of your Jupyter notebook, | have added a
cheat sheet section just after this chapter. | suggest you read that
cheat sheet and play with your notebook. In the next chapter, you
will learn about the data structures specific to data science, and

also how to use them in your analysis task.

CHAPTER 3

Lists and Dictionaries

Data structures are a way of organizing and storing data in a
programming language so that they can be accessed and worked
on efficiently. They define the relationship between data and
operations that can be performed on the data. As an aspiring
data scientist, you will use various data structures in your daily
job so learning data type is a must-have skill. In this chapter, we
will learn the two most widely used Python data structures specific
to data science when working with huge data — lists and
dictionaries. We will also compare both with the other data

structures that look the same but have fundamental differences.

Structure

What is a list?

How to create a list?

Different list manipulating operations

Difference between list and tuples

What is a dictionary?

How to create a dictionary?

Some operations with the dictionary

Objective

After studying this chapter, you will have a strong knowledge on

using list and dictionary.

What is a list?

A list is a non-primitive type of data structure in Python, which
means it stores a collection of values in various formats rather
than storing only a single value. Lists are mutable — we can
change the content of a list. In simple words, list is a collection
that is ordered, mutable, and may contain duplicate values. Here,
ordered means the order in which you entered the elements in a

list; the same order will be shown, once you print/get that list.

In Python, we can store a single value in the following primitive

data types:

float represents the rational number for examples 1.23 or 3.2

int represents numeric data like 1,2 or -3

str represents the string or text

bool represents True/False

Consider a scenario where your family doctor needs heights and
weights of every family member to calculate the body mass index.
Now creating a separate variable to store each person's height
and weight is very inconvenient. Here, Python list comes in the

picture.

In Python, a list is an object which is treated like any other data
type (e.g., integers, strings, Boolean, etc.). This means that you
can assign your list to a variable, so you can store and make it
easier to access. We can create a list using the square brackets

and separating the elements by a comma.

In your notebook, you can create an empty list, store it in a
variable, and then check the type of the variable, as shown in the

following figure

In [2]): # creating an empty list in Python
height = []
type(height)

Out[2]: list
Figure 3.1: Creating an empty list in Python

Let's create a list containing the heights of family members in

meters, as shown in the following figure

In [3]: | # a lList containing heights
height list = [1.76,1.64,1.79,1,57]
print(height list)

[1.76;, 9. 64,4%79. 4. 57

Figure 3.2: A list containing heights

One advantage of the list is that we can store different types int,
etc.) of values in a list and even a list of a list itself. Interesting
right? For example, we can add names of the family members,

which is the string data type and its values is in float data type

in our previously created list, as shown in the following figure

In [4]: # o list containing str ond float
name_height_list = ["Tem",1.76,"Harry".1.64,"Lisa",1.79,"Mona",1.57]
print(name_heipht list)

['Tom', 1.76, 'Harry’, 1.54, "Lisa’, 1.79, 'Mona’, 1.57]

Figure 3.3: A list containing str and float

Different list manipulation operations

After creating a list, you will often find a situation where you
want to update that list. This list manipulation is the exact step

you are going to learn in this section:

Let's create a list and print its element by its index one by one.
In this example, we are storing the values python, ¢, and java in
a list and then printing each of these values using their position
(in other words we are accessing a list by index number) in the
list.

Here, the starting point of a list begins with number zero (0),
not from one (1). To access the first element of a list, you need

to use zero indexes, not the first index as shown in the following

figure

In [€): lang = {'python',’c’, 'java’]

print (lang[@] + " 1is very easy tc learn for Data Science')
print (lang[1] + ° is the first languapge I have learnt’)
print (lang[2]+ ' is difficult to learn for Data Science')

python is very ¢asy to learn for Data Science
¢ is the first language I have learnt
java is difficult to learn for Data Science

Figure 3.4: Begin with number zero (o)

Since the list is mutable, we can change the existing value of any
element; let's do this by changing the java language with cobol

language as shown in the following figure

In [1]: lang = ['python’,'c', 'java’]
print(“old list:", lang)
lang[2] = 'cobol’
print{"new list:", lang)

old list: ['python', 'c’', 'java']
new list: | "python’, "c°, "cobol’]

Figure 3.5: Changing java with cobol language

Now you want to print all elements in the list one by one; you

can do this by using for loop as shown in the following figure

In [2]: | language list = ["python’, c’, "cobol’]
for language in language list:
print(”language is: “, language)

language is: python
language is: ¢
language is: cobol

Figure 3.6: Using ‘for’ loop

Let's check how many elements there are in our language list

using the list's len() method (refer to the following figure

In [3]: language_list = ['python','c’,'cobol’]
print("elements in the 1list: ", len(language_list))

elements in the list: 3

Figure 3.7: Using list’s len() method

Now you want to add a new language or item in your list; let's

do this using list's append() method (refer to the following figure

In [4]: language_list = ["python’,’'c’, 'cobol’]
language list.append(java')
print("updated list is:™, language list)

updated list is: ['python', 'c', 'cobol’, 'java']

Figure 3.8: Using list’s append() method

What if you want to add a new element in a specific position?
You have guessed it right; we can use the index herewith insert()
method. In the following figure | am adding a new language .net

in 3rd position or after the ¢ language:

In [5]: language_list = ['python’, c’, 'cobol”, "java']
language list._insert(2, '.net')
print("modified list is:", language list)

L} L] 1

modified list is: ['pythen', 'c’, '.net’, 'cobel’, 'java']

Figure 3.9: Adding a new language .net

Sometimes you want to remove some element from your list. This
can be done in three ways — either to remove the element by its
name using remove() method or by its index using pop() method
or by In the following figure_first | am removing the cobol
language from my list and then from the updated list | am

removing java language by its index:

In [8]: language_list = ['python’,"c’,’ . net’, 'cobel”, "java']
remove element by nume
language list.remove(cobol’)
print("updated list:", language_list}
remove element by index
language list.pop{3)
print("latest list:", language_list

¢', '.net’, "java'l]
cl, !‘nEtI}

updated list: ['pythen’,
latest list: ['python’,

Figure 3.10: Removing some element from the list

The del() method use case is different from the other ones. It
also removes the element on the specified index but its syntax is
different from pop() or remove() methods. Let's create a new list
with duplicate elements to understand the difference between

remove(), del(), and pop() methods.

In the following figure digit 1 is repeated two times. When we
apply to remove() method, it's removing the element 4 from the

list. The pop() method is removing the 4th index of the list,

which is a digit at last position, whereas del() method is

removing the 4th index element with a different syntax structure:

In [11]: | number_list = [1,2,3,4,1]
number_list.remove(4)
print(“list after remove() example:", number_list)

number list = [1,2,3,4,1]
number_list.pop(4)
print{”list after pop() example:", number_list)

number_list = {1,2,3,4,1]
del{number_list[4])
print{"list after del() example:", number_list)

list after remove() example: [1, 2, 3, 1]
list after pop() example: [1, 2, 3, 4]
list after del() example: [1, 2, 3, 4]

Figure 3.11: Applying different methods to remove an element

Now you want to sort your list in ascending or descending order.
This can be done by sort() method of the list as shown in the

following figure

In [18]: language_list = ["python’,"c',".net’,'cobel’, " java’]
language_list.sort(}
print{"sort in ascending order:", language_list)
languages_list = ["python®,'c’,"'.net’, cobel’, 'java", 'c&"]
languape_list.sort{reverse=True}
print("sort in descending order:", language_list)

sort in ascending order: ['.net’, 'c’, 'cobol’, "java’, 'python’]

sort in descending order: ['python', "java', “cobol’, 'c¢', '.net’]

Figure 3.12: Sorting list in ascending or descending order

Difference between Lists and Tuples

In Python, there is a data type — Tuples, which is similar to lists,
and it often confuses me as to which one to use in which
condition. There are two main qualities of a tuple which
distinguishes it from the list — first is the structure of a tuple,
which means tuples are initialized with small brackets () rather
than square brackets [] in lists, and the second major difference is
that tuples are immutable, which means neither can we change or
delete its value, nor can we add any new item after the
declaration of a tuple. It means there is no append(), remove(),

or pop() methods in tuples.

A tuple looks like how it's shown in the following figure

tuple_example = (°CS°,"IT,'EC’, "ME")

print("tuple example: ", tuple example)

print(“data type of the example is", type(tuple_example))
tuple example: (°C5°, "IT', "EC', "ME")

data type of the example is <class 'tuple’>

Figure 3.13: Tuples

What is a Dictionary?

In Python, dictionaries are made up of key-value pairs. A key is
used to identify the item and the value holds the value of the
item. The main concept of dictionaries is that for every value, you
have a unique key. A dictionary is initialized by defining key-value
in the curly {} brackets, where they are separated by a colon :
sign. Unlike the list, a dictionary is a collection that is unordered,
which means the order of its element is not guaranteed when you

get or print the dictionary.

How to create a dictionary?

Let's create a dictionary to store the information of a car, where
in the key of that dictionary we store the car's property hame and
in the value, we will store its name or value, as shown in the

following figure

In [18]: dict_sxample = {
“trand’: ‘Hyundat’®,
'made] ': 'Creta’,
type’: TSN,
‘year':'ag1dc

1

print("dictionary example: -, dict_example

dictionary example: {'brand”: "Hyundal®, "model’: "Creta”™, 'type’: "SUV7, “year . 2817}

Figure 3.14: Creating a dictionary

Some operations with dictionary

Once you create a dictionary, you may want to access any item in
that dictionary. This can be done in the following two ways — one
is to use key and second is to use get() method. Let's do both
in our newly created car information dictionary (refer to the

following figure

In [22]: # access the brand volue by key
car_brand_by_key = dict_example["brand’]
print(“car brang by key:", car brand by key)
access the brand value by get()
print(“car brand by method:", dict_example.get('brand’}}

car brand by key: Hyundai
car brand by method: Hyundai

Figure 3.15: Using key and get() methods

There may be a situation where you want to change any value in
your dictionary; this can be done by referring to the key name as
shown in the following figure where we are changing the car

manufacture year from 2017 to 2018:

In [24]: dict_example['year”] = '2818°
print("updated diect: ", diect_sxample

updated dict: { 'brand”: “Hyundai', “madel®: “Creta’, "type’: "SUWT, ‘year’: "2018'})

Figure 3.16: Changing value in the dictionary

Sometimes you need the keys or values from a dictionary. You

can print all key names or values with the for loop as shown in

the following figure

In [26]:

printing all Reys
for car_property in dict_example:
print{“key in dict:", car_property)

printing all velues
for car_property_value in dict example.values():
print{"value in dict:", car_property value)

key in dict: brand
key in dict: model
key in dict: type
key in dict: year

value in dict:
value in dict:
value in dict:
value in dict:

Hyundail
Creta
SUV
20138

Figure 3.17: For loop

What if a business owner wants you to display car details in a

key-value pair? No issue, we can do that in the following way

(refer to figure

In [27]:

for car_property, car_property_value in dict_example.items():
print(car_property, car_property value)

brand Hyundai
model Creta
type SUV

year 2018

Figure 3.18: Displaying car details in a key-value pair

The other methods in the dictionary are the same as we used in

the list earlier; instead of the index, we need to use key here.

Conclusion

List and Dictionary are the two most used data types which are
used to efficiently work with huge amounts of data. In your daily
data clean-up process, you will need to store some information in
variables, where learning this chapter will come in handy. After
practicing notebook examples in your notebook, you will gain
confidence and will not confuse which data structure to use in
which condition. In the next chapter, we will learn about Python

functions and packages.

CHAPTER 4

Package, Function,_and Loop

Package, function, and loop provide better modularity for your
application and a high degree of code reusing. For your daily data
science work, you don't need to reinvent the wheel or write some
code from scratch. Remember, in the previous chapters, we have
already used print() and type() functions. Python developers have
written mostly used functionalities, which you can leverage easily
in terms of functions. In this chapter, we will learn some other
built-in Python functions, and how to use them to organize, and

make our code reusable.

Structure

The help() function in Python

How to import a Python package?

How to create and call a function?

Passing parameter in a function

Default parameter in a function

How to use unknown parameters in a function?

A global and local variable in a function

What is a Lambda function?

Understanding main in Python

The while and for loop in Python

Objective

After studying the chapter, you will be able to use inbuilt Python

functions and packages and write your function.

The help()_function in Python

You must have already used and know the name of Python inbuilt
functions, but sometimes you still have to figure out how to use
it. To know more about a function, Python provides us another
function, known as In your Jupyter notebook, you can simply type
help() and once you run this, it will give you all the information

about that function.

For example, if | want to know about the inbuilt len() function, |

will use help() function as shown in the following figure

helpflen)

Help on built-in function len in module builtins:

len(obj, /)
Return the number of items in a container.

Figure 4.1: Using help() function

How to import a Python package?

To use some inbuilt functionalities, first you need to import such
a package and for that, you just need to use import keyword. For
example, you are working as a junior data scientist in an
agriculture firm and you need to calculate the area of a circular
land. You know it well that area of a circle can be calculated from
the formula pi*rA2 where r is the radius of the circle, but you
don't remember the value of the No need to worry, Python
provides a math package to help you in this scenario as shown in

the following figure

import math

define area as variable area

area = ©

define radius as variable r
r=5.89

calculate area

area = math.pi * r**2

print("area of the land is: ", area

area of the land is: 108.98844649760245

Figure 4.2: Math package provided by Python

Here we have imported the math package, but if we know the
specific package, then we can also import only that sub-package
from its package. For our example we don't need to import math
package completely; in fact, we can import only the pi from the

math package, as shown in the following figure

from math import pi

define radius as variable r

P ol

calculate area

area = math.pi * r**2

print(“area of the land is: ™, area)

area of the land is: 108.98844649760245

Figure 4.3: Importing pi package from math package

How to create and call a function?

In Python, we define a function using the def keyword followed by
function name and colon. For example, if you want to print “hello
world” in a function, we first need to define the function and then
write the print() inside that function, then we will see how to call
that function. In the following figure notice the space before the it's
called Python's indentation and is required to ensure that this code
is a part of the function. You don't need to explicitly give space;
your notebook already knows it and once you press the Enter key

after the colon sign, it will automatically add a space:

defining my own function
def my function():
print(“Hello World™)

calling my function
my_ function()

Hello World

Figure 4.4: Create and call a function

Passing_parameter in _a function

We have written a simple function; sometimes you also need to
pass some information in your function, which we can do in the
form of parameters or arguments. For example, you want to get
the sum of the two numbers with the help of a function, so we
will write a f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>