
Undergraduate Topics in Computer Science

Bhim P. Upadhyaya

Programming
with Scala
Language Exploration

Undergraduate Topics in Computer Science

Series Editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter C. Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

Bhim P. Upadhyaya

Programming with Scala
Language Exploration

Bhim P. Upadhyaya
Carnegie Mellon University – Silicon Valley
NASA Ames Research Park
Bldg. 23, Moffett Field
CA 94035
USA

ISSN  1863-7310	 ISSN  2197-1781  (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-69367-5	 ISBN 978-3-319-69368-2  (eBook)
https://doi.org/10.1007/978-3-319-69368-2

Library of Congress Control Number: 2017955281

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To the United Nations
-Bhim

Preface

We are living in a very interesting time, in terms of technological advancements
among other things. In the last 60 years, humanity has made tremendous progress
in the field of computing. High level programming languages appeared in the late
1950s, but there were no microprocessors available. One can imagine how tedious
it could be to program. With the invention of microprocessors in the late 1960s,
this field got a great boost. Along with hardware developments, new high level pro-
gramming languages started emerging. Among those are Pascal, Smalltalk, C, etc.
Some of these languages are still widely used. One of the interesting facts about
these high level languages is that they had niche application areas, even though they
were widely projected as general purpose languages, including in the textbooks. For
example, Pascal was leaning toward education, C was primarily developed to ease
operating systems developments, Fortran was for scientific computing, etc. What-
ever the domains, each of these languages has shaped the history of computing.

Today, shapes, sizes, and capacities of computing devices are much different than
60 years ago. In the last 20 years, computing has shifted from localized client-server
environments to world wide client-server environments. There are several catalysts
for this change, including the invention of the world wide web, the advancements
in integrated circuits, and the innovations in device manufacturing. One of the cat-
alysts, which doesn’t get enough credit, is the advancements of programming lan-
guages. Developers are truly enabled by language innovations. The innovation that
JVM brought, has greatly impacted software engineering in general, and Internet
based applications development in particular. Being able to program, without wor-
rying about incompatibilities with hundreds of vendor specific architectures, is a
great relief for software engineers.

One of the important aspects of advancements, not discussed enough, in indus-
trial settings is knowledge evolution. I have had the privilege of working for the
world’s largest (non-profit) organization, the United Nations, which gave me an op-
portunity to work with people from almost every major cultural background. Also I
have worked for some of the largest and finest for-profit organizations in the world.
In addition to this, I was fortunate enough to be part of some of the finest universities
in the world, either through academic programs, or by working directly with aca-

vii

viii Preface

demicians in unique settings. This experience allows me to make some inferences
on knowledge evolution, specially in the field of software engineering. The first
inference is that changing a programming language is not pleasant, specially for
professional programmers. The second inference is that adapting a new language
to the level that one can sell the skills has strong limitations. The third inference
is that the popularity of a particular language is strongly affected by the industry–
academic loop, directly or indirectly. To be precise, how a language is taught, where
it is taught, what kind of learning materials are available, etc., determine how popu-
lar a language will become.

Dr. Martin Odersky, the creator of Scala, has done a great job of a language inno-
vation. Scala not only provides an opportunity to program in multiple paradigms, but
also makes developers more productive with today’s computing infrastructure. Most
of the earlier languages were not designed to program in distributed environments.
Also most of them were not designed to evolve. One of the fascinating aspects of
Scala is that it can be grown, based on developers’ needs. Remember, for every ge-
nius, there is a limit to how many languages one can become expert in. It is pretty
much like the case of natural languages. We can recall ourselves, how good we are
in our mother tongue and how good we are in other languages. Do we struggle? The
Scala creator has gifted a beautiful solution to the world of computer programmers.

With this book, I have tried to enrich the learning aspect of Scala. I strongly
believe that Scala can be a great first programming language. There is no need to
lean on any other programming language in order to learn it, except the environment,
which is JVM for a good reason. The approach that I have taken in this book was
primarily inspired by my first hand observations of how professional programmers
master a new technology. Also it is partly influenced by my experience of teaching
undergraduate computer science and engineering students, over half a decade. I have
tried to present complete and runnable programs, whenever possible. In the last
12 years, I noticed professional programmers learning faster by tweaking existing
programs. This was true for my undergraduate students as well. Tweaking allowed
learners to build self-confidence, which I found was the basis for the majority of
learners for their long term pursuits. This book can be used, both at an undergraduate
level and at a graduate level, to teach a first programming course. Also it is a great
companion for professional programmers planning to switch to Scala.

Each chapter has review questions to reinforce your learning, which makes
you ready for problem solving. You will find yourself adequate and self-confident,
thereby keeping you away from the path of frustration. I have seen many great pro-
fessional programmers being frustrated while learning a new language. Also each
chapter has problems to solve. These problems are much closer to what you will
need when you embark on your career as a professional Scala programmer. The
process of solving problems expands your knowledge boundary; you are moving
from reinforcing to developing salable skills.

Sunnyvale, California Bhim P. Upadhyaya
June 2017

Contents

1 Introduction to Computing . 1
1.1 Introduction to Computers . 3

1.1.1 Basic Components . 3
1.1.2 Operation . 4

1.2 Operating Systems . 5
1.3 Programming Languages . 6
1.4 Introduction to Scala . 9
1.5 Program Attributes . 12
1.6 Conclusion . 13
1.7 Review Questions . 14
1.8 Problems . 14
1.9 Answers to Review Questions . 15
1.10 Solutions to Problems . 16

2 Scala Fundamentals . 17
2.1 Literals . 17

2.1.1 Character Literals . 17
2.1.2 String Literals . 18
2.1.3 Integer Literals . 19
2.1.4 Floating Point Literals . 19
2.1.5 Boolean Literals . 20
2.1.6 Escape Sequences . 20
2.1.7 Symbol Literals . 21
2.1.8 Other Lexical Elements . 21

2.2 Identifiers and Reserved Words . 23
2.3 Types . 23
2.4 Declarations and Definitions . 24
2.5 Expressions . 26
2.6 Conclusion . 28
2.7 Review Questions . 28
2.8 Problems . 28

ix

x Contents

2.9 Answers to Review Questions . 29
2.10 Solutions to Problems . 29

3 Classes and Objects . 31
3.1 Class Members . 31
3.2 Class Definitions . 33
3.3 Object Definitions . 33
3.4 Conclusion . 34
3.5 Review Questions . 34
3.6 Problems . 34
3.7 Answers to Review Questions . 34
3.8 Solutions to Problems . 35

4 Control Structures . 37
4.1 Conditional Expressions . 37
4.2 For Expressions . 39
4.3 While Loops . 42
4.4 Exception Handling . 43
4.5 Conclusion . 45
4.6 Review Questions . 45
4.7 Problems . 46
4.8 Answers to Review Questions . 46
4.9 Solutions to Problems . 47

5 Operators . 51
5.1 Operators as Methods . 51
5.2 Arithmetic Operators . 52
5.3 Relational and Logical Operators . 54
5.4 Bitwise Operators . 55
5.5 Operator Precedence and Associativity . 56
5.6 Conclusion . 57
5.7 Review Questions . 58
5.8 Problems . 58
5.9 Answers to Review Questions . 58
5.10 Solutions to Problems . 59

6 Data Input and Output . 63
6.1 Regular Expressions . 63
6.2 Single Character Input . 66
6.3 Single Character Output . 67
6.4 Reading From a File . 68
6.5 Writing to a File . 69
6.6 Navigating Directories . 70
6.7 Conclusion . 72
6.8 Review Questions . 72
6.9 Problems . 72

Contents xi

6.10 Answers to Review Questions . 73
6.11 Solutions to Problems . 73

7 Inheritance and Composition . 77
7.1 Extending Classes . 77
7.2 Overriding Methods and Fields . 79
7.3 Abstract Classes . 79
7.4 Invoking Super Class Constructors . 80
7.5 Polymorphism and Dynamic Binding . 81
7.6 Composition . 82
7.7 Conclusion . 83
7.8 Review Questions . 83
7.9 Problems . 84
7.10 Answers to Review Questions . 84
7.11 Solutions to Problems . 84

8 Traits . 87
8.1 Traits as Interfaces . 87
8.2 Construction Order and Linearizing . 88
8.3 Trait Members . 90
8.4 Multiple Inheritance . 91
8.5 Traits with Implementations . 92
8.6 Conclusion . 93
8.7 Review Questions . 94
8.8 Problems . 95
8.9 Answers to Review Questions . 96
8.10 Solutions to Problems . 96

9 Functions . 99
9.1 Functions as Methods . 100
9.2 Anonymous Functions . 101
9.3 Functions as Values . 102
9.4 Function Parameters . 102
9.5 Higher Order Functions . 103
9.6 Closures . 104
9.7 Currying . 104
9.8 Writing New Control Structures . 106
9.9 Conclusion . 107
9.10 Review Questions . 107
9.11 Problems . 108
9.12 Answers to Review Questions . 108
9.13 Solutions to Problems . 109

xii Contents

10 Pattern Matching . 111
10.1 Case Classes . 111
10.2 Sealed Classes . 112
10.3 Variable Patterns . 113
10.4 Type Patterns . 114
10.5 Literal Patterns . 115
10.6 Constructor Patterns . 116
10.7 Tuple Patterns . 117
10.8 Extractor Patterns . 118
10.9 Sequence Patterns . 119
10.10XML Patterns . 120
10.11Conclusion . 121
10.12Review Questions . 121
10.13Problems . 122
10.14Answers to Review Questions . 122
10.15Solutions to Problems . 123

11 List Processing . 125
11.1 List Construction . 125
11.2 Operations . 126
11.3 Patterns . 129
11.4 List Class . 130
11.5 List Object . 132
11.6 Conclusion . 133
11.7 Review Questions . 134
11.8 Problems . 134
11.9 Answers to Review Questions . 135
11.10Solutions to Problems . 135

12 The Scala Collections Framework . 137
12.1 Mutable versus Immutable Collections . 137
12.2 Sets . 138
12.3 Maps . 139
12.4 Sequences . 140
12.5 Tuples . 143
12.6 Conclusion . 144
12.7 Review Questions . 144
12.8 Problems . 146
12.9 Answers to Review Questions . 146
12.10Solutions to Problems . 147

13 Actors . 151
13.1 The Components of Actors . 151
13.2 Creating Actors . 152
13.3 Sending and Receiving Messages . 153

Contents xiii

13.4 Life Cycle . 155
13.5 Child Actors . 156
13.6 Monitoring . 159
13.7 Conclusion . 160
13.8 Review Questions . 161
13.9 Problems . 161
13.10Answers to Review Questions . 162
13.11Solutions to Problems . 162

14 XML Processing . 165
14.1 XML Literals . 165
14.2 Data Extraction . 167
14.3 Pattern Matching . 170
14.4 Serialization and Deserialization . 171
14.5 Loading and Saving . 173
14.6 Conclusion . 175
14.7 Review Questions . 175
14.8 Problems . 176
14.9 Answers to Review Questions . 176
14.10Solutions to Problems . 177

15 Parsing . 179
15.1 Lexical Analysis and Parsing . 179
15.2 Creating and Running a Parser . 180
15.3 Regular Expression Parser . 181
15.4 JSON Parser . 182
15.5 Error Handling . 184
15.6 Conclusion . 185
15.7 Review Questions . 185
15.8 Problems . 186
15.9 Answers to Review Questions . 186
15.10Solutions to Problems . 187

References . 189

Index . 191

List of Figures

1.1 Sample Assembly Language Code Snippet . 6
1.2 Sample Pascal Program . 7
1.3 Sample C Program . 7
1.4 Sample Java Program . 8
1.5 Sample Scala Program . 8
1.6 Program to Add Two Pre-defined Numbers . 10
1.7 Program to Add Two Numbers . 10
1.8 Program for Biological Taxonomy Information Base 11

2.1 Symbol literals . 21
2.2 Types Demonstration . 24
2.3 Value Declaration and Definition . 25
2.4 Variable Declaration and Definition . 25
2.5 Type Definition . 26
2.6 Expressions . 27

3.1 Circle Application . 32

4.1 If Expression . 38
4.2 If Expression - Positive Difference . 39
4.3 Prime Number Detection . 40
4.4 Prime Number Detection using While . 42
4.5 Exception Handling . 43
4.6 Exception Handling with Custom Throw . 45

5.1 Operators as Methods . 52
5.2 Custom Operators as Methods . 52

6.1 Regular Expressions . 65
6.2 Character Level Input and Output . 66
6.3 Character Level Output . 67
6.4 Reading from a Text File . 69

xv

xvi List of Figures

6.5 Writing to a Text File . 69
6.6 Directory Navigation . 70
6.7 System Commands . 71

7.1 Extending a Class . 78
7.2 Overriding a Method . 79
7.3 Abstract Class . 80
7.4 Polymorphism and Dynamic Binding . 82
7.5 Composition . 83

8.1 Trait as an Interface . 88
8.2 Construction Order and Linearizing . 89
8.3 Multiple Inheritance . 91
8.4 Traits with Implementation . 93

9.1 Functions as Methods . 100
9.2 Writing a New Control Structure . 107

10.1 Case Classes . 112
10.2 Sealed Class . 113
10.3 Variable Pattern . 114
10.4 Type Pattern . 114
10.5 Literal Pattern . 115
10.6 Constructor Pattern . 116
10.7 Tuple Pattern . 117
10.8 Extractor Pattern . 118
10.9 Sequence Pattern . 119
10.10XML Pattern . 121

11.1 List Extraction . 130

13.1 Simple Actor . 152
13.2 Sending and Receiving Messages . 154
13.3 Actor Life Cycle . 156
13.4 Child Actors . 158
13.5 Actor Monitoring . 160

14.1 XML with Scala Code . 167
14.2 XML Pattern Matching – Any Sequence . 170
14.3 XML Serialization . 171
14.4 XML Deserialization . 172
14.5 Loading XML . 173
14.6 Saving XML . 174

15.1 Simple Product Expression Parser . 180
15.2 Regular Expression Parser . 182

List of Figures xvii

15.3 JSON Parser . 183
15.4 Parser Error Handling . 185

List of Tables

1.1 Sample Biological Taxonomy Data . 2

2.1 Integer Literals and Ranges . 19
2.2 Reserved Words . 23

5.1 Truth Table for Logical Operators . 55
5.2 Truth Table for Bitwise Operators . 55
5.3 Operator Precedence . 57

6.1 Regular Expression Notations . 64

15.1 Sample Tokenization . 179
15.2 Parser Combinators . 184

xix

Chapter 1
Introduction to Computing

The Oxford English Dictionary (OED) defines computing as “the use of operation
of computers”; similarly, computation is defined as “the action of mathematical cal-
culation.” In daily life, we often find these words being used interchangeably even
though the scientific community makes a distinction. Let’s first analyze computation
as it appeared first in human civilization, formally with the invention of numbers. It
is quite self-evident that humans performed computation before inventing numbers,
as there should be a thought process before finding suitable symbols for that thought
process. This kind of thought process is likely to be available in other Mammalias
as well as in some other Classes, categorized using traditional biological taxonomy.

Let’s take two examples to illustrate computation: 1+ 1 = 2 and 13+ 29 = 42.
Now, let’s ask ourselves these questions: What percentage of the world population
can perform first addition? What percentage of the world population can perform
second addition without using a calculating machine? What percentage of the world
population can perform second addition using a calculating machine? We should
not be surprised if the answer to our first question is not 100%. The United Nations’
data show that answers to our second and third questions are not 100% [UNL13].

Analyzing further in the same direction, there are many more questions to be
asked including: How long did it take for us to recognize real world objects? How
long did it take for us to take instructions (both in the form of signs and spoken
languages) from elders and perform an addition task for the first time in our lives?
How long did it take for us to recognize written alphabets and numerals? How long
did it take for us to perform a written addition? How long did it take for human
kind to be in this state of mind, which allows one to instruct and another to follow
instructions and perform actions? These questions might look a bit overwhelming
and unnecessary at first, but these and many other similar questions govern our
learning life cycles.

Now, let’s take a slightly different example to set the stage for our Scala lessons.
This too might look counterintuitive initially, but we will write a Scala program
for this later in this chapter. Table 1.1 shows a biological categorization of human,
dog, domestic pigeon, and cat. Here are some of the questions: Is it a computational

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate
Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_1

 1

2 1 Introduction to Computing

problem? Do we have sufficient information to decide whether it is a computational
problem?

Table 1.1: Sample Biological Taxonomy Data

SN Hierarchy Human Dog Domestic Pigeon Cat

1 Kingdom Animalia Animalia Animalia Animalia
2 Phylum Chordata Chordata Chordata Chordata
3 Class Mammalia Mammalia Aves Mammalia
4 Order Primates Carnivora Columbiformes Carnivora
5 Family Hominidae Canidae Columbidae Felidae
6 Genus Homo Canis Columba Felis
7 Species H. Sapiens C. lupus C. livia F. catus

Let’s say we are asked to build a dictionary or an information base that can be
referred to to get information. Now, it is fairly convenient to decide whether it is a
computational problem, if we have a computing background. But this might still be
confusing if we do not have any idea about computing, because computation cannot
be seen on the surface. Even Google search may not look like a computational prob-
lem on the surface, as we can’t see any regular calculations. In fact, Google search
is a complex computation.

Assume we don’t have any knowledge of computing as defined by the OED.
Probably it is fair to say that all the human beings search for at least one item in their
lives. When we are searching for something, our mind performs computation. We
might need to locate, count, or categorize items. Locating something might involve
counting. For example, if we have to locate a book in another room, then we have to
cross at least one door, assuming these are regular rooms in a regular house. Since
we have enormous practice of going from one room to another room in our lives,
we might be performing the computation even without realizing it. Now, let’s think
about what it takes to train an infant, as he/she grows, to perform the same task. Does
the infant need to learn how to count in order to perform this task? Probably the
answer is yes. And it might take years to train the infant. Learning computing is not
much different from this infant’s training. The major difference is age, along with
accumulated knowledge. And of course, infants too can start learning computing
these days.

We know how hard it is to live our lives without using any tools. Even in the stone
age, our ancestors used some sort of tools: a stone, a stick, or slightly more sophis-
ticated tools. Now, we all know why we need tools. Also we know that the same
tool cannot be utilized to solve every problem in our lives. This is true in the case
of computational tools as well. Since this book deals with a particular programming
language, Scala, in details, let’s be concrete and say that this is true for programming
languages as well. Programming languages are a type of computational tool.

1.1 Introduction to Computers 3

Now we have some ideas about computation. Let’s ask another question: Can
every computational problem be computed? Well, there are several university level
courses dedicated to answer this question. For now, we focus on our two problems—
addition and our tiny information base for biological taxonomy. The first one can
certainly be computed. We limited the scope of the second problem and made it
viable for computing. Please note that we did not go for genomics, which requires
enormous computing power.

In the next section, we will discuss the basics of computing tools, called comput-
ers.

1.1 Introduction to Computers

Computers are tools that we can use to perform some computations and they come
in various shapes and sizes. There are hundreds of companies around the world that
manufacture varieties of computers and computer parts. Generally, a computation-
ally useful computer has two categories of components—hardware and software.
Hardware consumes energy and performs computations, whereas software contains
the logic for operations. It is the software that instructs the hardware in order to
achieve a computational goal. A computational goal can be as primitive as inverting
a digit, i. e., converting 0 to 1 and vice-versa. In this book, we will learn a program-
ming language that helps us to instruct computers, in order to achieve one or more
computational goals. Clearly it is a software component that helps us to create other
software components.

1.1.1 Basic Components

Digital computers have the following basic components:

• Memory Unit
• Processing Unit
• Storage Unit
• Input Device
• Output Device

Almost every digital computing machine has some sort of memory. For exam-
ple, if we are performing the addition mentioned earlier, 1+ 1 = 2, using a digital
calculator, it remembers at least three different items: digit 1 (first operand), opera-
tion + (operator), and digit 1 (second operand). A typical laptop, say a laptop from
One Laptop per Child, has much more memory than a typical calculator [OLC17].
The reason is that a laptop has to hold much more information and has to perform
much more sophisticated operations than a typical calculator. And things might be

4 1 Introduction to Computing

different if we are referring to a scientific calculator. For now, we stick with a simple
calculator that performs addition, subtraction, multiplication, and division.

In the case of our calculator, we need a unit that performs the addition operation.
The unit that performs this kind of operation is called a Processing Unit. In the case
of digital computers, every high level operation or computational goal like opening
a file or googling a word is eventually represented with 1s and 0s; these are the only
two signals a digital computer understands. Interestingly, this transformation is a
complex process and is studied as a computer engineering degree in traditional uni-
versities. From this course’s perspective, let’s remember the fact that every program
we write will be eventually processed by a processing unit. A common terminol-
ogy used for such a processing unit is Central Processing Unit as there are other
processing units in a typical computer. For example, a keyboard has a processor to
process keyboard inputs.

Generally the term storage unit refers to permanent storage devices; these devices
can retain data even after the power is switched off. Large files or data go to storage
devices and are fetched to memory as per computational needs. Storage devices can
be a small stick like a flash drive, or a hard drive like in a laptop or in a desktop, or
an array of disks. In case of cloud computing, storage can be as big as hundreds of
data centers around the world.

There are different ways to provide data to a computational device. Typing,
speaking, and touching are common methods to provide input. Also different types
of sensors can be utilized to provide input data. For example, a wind direction sen-
sor can generate and supply data to a computational device. If we we are typing, a
keyboard is a common way to provide input. Keys are continuously scanned for pos-
sible input. Microphones are common devices to capture voice signals. These analog
signals are then converted to digital equivalents and fed to a computer. Please note
that an analog to digital converter itself does some sort of computation, in addi-
tion to signal conversion. So in a typical computer, there are numerous processing
units, commonly called processors. For touch related input, a digital keyboard can
be available; in some cases, it could just be a swipe.

Output devices present the results of computations. Most often these results are
visual and hence display devices are common output devices. Like computers, dis-
play devices can come in various shapes and sizes. Some displays are boxed to-
gether with central processing units, while others are packaged separately. Increas-
ingly, display devices have been using liquid crystal display (LCD) technology. LCD
makes displays much lighter compared with older popular technology like cathode
ray tube (CRT).

1.1.2 Operation

Computers operate in different modes as far as program execution is concerned.
A program is a set of instructions, written in computer understandable form, and
mapped to one or more computation goals. If we are using portable computers,

1.2 Operating Systems 5

like laptops, most often the computation will be in real time, unless we instruct the
machine to perform differently. But for large farm of computers and processes, the
mode of operation can be batch processing.

Batch mode is an operating mode which takes set of operations and executes
them in a non-real-time fashion. Also the results are often returned to the owner in
a batch mode. This kind of operation is very common where there is massive data
and real time processing is not feasible. For example, petabytes of data are generated
from Facebook and if we need to infer something based on this large volume of data,
real time processing based on state of the art computing technology is not practical.
So, there is a clear need for a different mode of operation. Similarly, if certain high
speed computing resources are in demand, we might need to provide time slots to
each requester. This mode of operation is called time sharing. In fact, batch mode of
operation might utilize time sharing.

1.2 Operating Systems

An operating system (OS), as the name suggests, is the software that operates hard-
ware components. In order for us to execute our programs, we need an operating
system. Our programs will be some of the software pieces that an operating system
runs. Also if we need to access a service offered by an I/O device then we have to
request the operating system for that service. One can think of the operating system
as an administrator of the hardware resources. The operating system talks to vari-
ous hardware components through drivers. Drivers are software programs that can
process signals to and from hardware components.

A computer that is generally used by one person is called a personal computer
(PC). PCs have the following popular operating systems:

• Linux family
• Mac OS family
• Windows family

Linux is the only open source operating system among the above three. Also it
is the most popular. There are many dialects of Linux including Ubuntu, Suse, and
Fedora core. In the early days Linux was difficult to install and manage. But now it
is very different and Linux is as convenient as the Windows operating system. Most
of websites, these days, are hosted in a server that runs Linux operating system.
Linux was inspired by the Unix operating system, a popular enterprise operating
system before Linux.

Mac OS is the operating system for Macintosh computers by Apple. Apple per-
sonal computers are known for their reliability and for their aesthetic value. Steve
Jobs, one of the founders of Apple, talks about taste in computing and claims that
Apple products provide good taste of computing. Remember we discussed comput-
ing and computation as defined in the OED, and now we are discussing taste in
computing. It should be noted that programming languages are developed in that

6 1 Introduction to Computing

fashion too. Like Linux, Mac OS has its roots in Unix and if we know about one of
these three, working with other two is fairly convenient.

Generally Windows is regarded as an easy operating system. It is a common
operating system for personal computing devices. Some of hardware manufacturers
have contracts with Microsoft, the company behind Windows, that allow them to
sell Windows along with new hardware devices. For example, if we buy an IBM
ThinkPad, now a Lenovo ThinkPad, we are most likely to get a Windows OS.

1.3 Programming Languages

Now we are getting closer to what we will be learning in this book. Programming
languages can be categorized into two main categories:

• Low Level Programming Languages: Machine, Assembly
• High Level Programming Languages: Pascal, C, Java, Scala

Early digital computers involved relay based switching in order to carry out a
typical computation. This means programming in 1s and 0s. The next level of pro-
gramming was assembly language. Assembly language uses mnemonics; programs
become longer and harder to comprehend.

...
mov dx, 3a8h
xor al, al
out dx, al
inc dx
mov cx, 256
xor al, al
...

Fig. 1.1: Sample Assembly Language Code Snippet

The code listing in Figure 1.1 has register level operations. A register is one of
the smallest data holding places in a computer. The width of its registers partially
determines the computational capacity of a computer. Computational capacity is
often related to the speed of a computer. So assembly language programming means
register level programming, which some programmers find interesting. It gives more
power, as a programmer can directly access the content of a register. With this power
comes a lot of responsibility on the programmer’s side.

The programmer has to take care of fine grained computational details. For exam-
ple, if a programmer is writing a program to subtract one number from another, and
if these numbers do not fit to the width of one register, then it is the programmer’s
responsibility to store and manage each digit of those numbers. While performing
subtraction, the programmer is required to take care of carry overs as well. This was
the life of a programmer before high level programming languages were created.

1.3 Programming Languages 7

mov, xor, out, and inc are called mnemonics and these provide a way to instruct a
machine. Sometimes these are also known as machine instructions although there
can be significant differences between these mnemonics and the machine instruc-
tion set of a particular microprocessor architecture. Generally, machine instruction
sets are different for different microprocessor architecture, which means programs
written for one architecture are not compatible with another architecture.

Now, we present a program to print “Welcome to programming” in each of the
four different programming languages—Pascal, C, Java, and Scala. This will give us
some idea on how programming languages have evolved in the history of computer
science.

PROGRAM sampleprogram;
BEGIN

writeln(‘Welcome to programming’);
END.

Fig. 1.2: Sample Pascal Program

Figure 1.2 shows a code snippet for a Pascal program that prints “Welcome to
programming” on the screen. The program starts with the keyword PROGRAM,
which is followed by a program name; program name can be any valid identifier.
The code to print the message on the screen is placed between two keywords–
BEGIN and END. In fact, writeln is a procedure that takes a string, in this case,
and outputs it to the screen, the output device. Please note that this procedure uti-
lizes an output device. Just to remind ourselves, the way to handle an output device
is through the operating system, which runs this Pascal program. In the case of high
level programming languages, this method of handling input and output devices is
hidden from the programmers so they can focus on solving computational problems
at hand. There are many online resources available if you want to compile and run
this program.

#include<stdio.h>
main() {

printf("Welcome to programming");
}

Fig. 1.3: Sample C Program

The program that can print “Welcome to programming” in C is shown in Fig-
ure 1.3. There are many similarities between a Pascal program and a C program.
Both contain a function, though named differently, to enclose statements; both use
output function to print on the screen. But the syntax looks different. In C, we need
to define a main function and put statements in between curly brackets. Also it uses
printf instead of writeln. Further, if we are using a library function, then we need to

8 1 Introduction to Computing

include that library file, normally a header file that contains that library function. In
this program, the first line of code (LOC) does that. Once a header file is included,
all the functions within that header file are available, for use in our program.

public class TestProgram {
public static void main(String[] arguments) {

System.out.println("Welcome to programming");
}

}

Fig. 1.4: Sample Java Program

Now, let’s try to achieve the same using a Java program. In fact, Java is the clos-
est language to Scala; Scala programs are compiled to .class files. Figure 1.4 shows
a Java program that prints “Welcome to programming” on the screen. Java syntax
looks significantly different from C syntax. First of all, we need to create a class
and then write a main method inside that class. We saw a main function in a C pro-
gram and we are seeing a main method in a Java program. There is a relationship
between the two languages, as Java language was influenced by C language. Java
methods need an access modifier, so do Java classes. We have public visibility for
both the TestProgram class and the main method inside it. println is a method from
PrintStream class; System class contains a field, out, of type PrintStream. We are
invoking println method of out object and passing our message “Welcome to pro-
gramming.” Since the field out is static in System class, we can call it as System.out.

object TestProgram {
def main(arguments: Array[String]): Unit = {

println("Welcome to programming")
}

}

Fig. 1.5: Sample Scala Program

Finally, we now discuss our much awaited Scala program. Scala uses a singleton
object, a class with a single instance, in order to run the main method. So instead
of a class, we have an object TestProgram that contains the main method. There
are syntactical differences between Java and Scala. Types are separated by a colon
in Scala and come after identifiers. Java syntax requires types to be written before
the identifiers. Also Scala uses new line as a separator, between two statements or
expressions. If we want to use two expressions in the same line, then they should be
separated by a semicolon.

Now, if we compare all four high level languages for which we wrote sample
programs, then we find main in three of them—C, Java, and Scala. In C, it is called
the main function. In Java and Scala, it is called the main method. In Java, it is a

1.4 Introduction to Scala 9

static method; the concept is the same in Scala, with slightly different arrangements.
Scala recommends singleton objects for static methods. Singleton objects are classes
with only one instance; the instance is created the first time it is used, on demand.

All four languages have some pre-defined words like class, object, PROGRAM,
BEGIN, END, etc. Also it is relatively faster to comprehend code written in Pascal,
C, Java, and Scala compared with the code written in assembly language. That’s
why these languages are called high level languages; high in the sense that they
are close to natural languages, like English. If we look at longer programs written
in Pascal, C, Java, and Scala, then we get a feeling that Scala is much more close
to English, a natural language. Similarly, Java is closer to English than C. So the
language advancements are moving away from machine dependencies and trying to
be as close as possible to human spoken languages.

1.4 Introduction to Scala

Scala was designed by professor Martin Odersky, who is also a co-designer of Java
Generics. Also Dr. Odersky implemented a reference Java compiler. He is an aca-
demician, who has significant industrial experience. This blend of experience has
allowed him to create programming languages, which are intellectually challenging
as well as of applied nature. He has done a great job of unifying the object oriented
paradigm with the functional paradigm. If there is one programming language that
brings functional programming seamlessly to large numbers of industrial software
engineers, that is Scala.

Scala programs run on a Java Virtual Machine (JVM). This has multiple advan-
tages. One of the advantages is that JVMs have been around for more than two
decades and their tools have matured. Also there are millions of applications run-
ning on JVMs. Since Scala programs compile to intermediate code, called byte code,
developers don’t have to modify their programs for new types of machines. If a new
type of machine appears in the market, the machine manufacturer writes JVM for
that machine and the same Scala programs will run in the new machine architecture.
This concept was pioneered by the Java programming language, which is also cred-
ited with defining software engineering. Scala takes it one step further by seamlessly
integrating functional programming with object oriented programming. Also Scala
is a purely object oriented programming language. Further, recent advancements in
Java were inspired by Scala.

With that short introduction, now let’s write programs for the computational
problems that we introduced in the beginning of this chapter. Figure 1.6 shows a
Scala program that defines two numbers to be added, adds the numbers, and then
prints the sum on the screen. The first line starting with package provides the pack-
age name; a Scala package is pretty much like a package in daily life, in the sense
that it is a name space to house classes, objects, traits, etc., that collectively achieve
one or more computation goals.

10 1 Introduction to Computing

package com.equalinformation.scala.programs
object AddTwoIntegers {

def main(arguments: Array[String]): Unit = {
val firstNumber = 1
val secondNumber = 1
val sum = firstNumber + secondNumber
println("The sum is "+sum)

}
}

Fig. 1.6: Program to Add Two Pre-defined Numbers

Now, if we want to perform addition for another set, 13 and 29, that we presented
earlier in this chapter, then we need to replace the two 1s by 13 and 29. The order
does not matter as addition is commutative. Once we replace the two operands and
re-run the program, we get the sum, 42, printed on the screen. This implementation
is too specific as operands are hard coded; every time we need to compute addition
of two numbers, we have to replace the two operands. Now, we can improve this
program by making it a bit more generic. In order to make it generic, we modify
the program so that it takes two integers from a keyboard. So every time we need to
compute addition, we just need to run the program and input two integers from the
keyboard. In this way, we don’t have to modify the program and re-compile.

package com.equalinformation.scala.programs
import scala.io.StdIn._
object AddTwoIntegers {

def main(arguments: Array[String]): Unit = {
print("Enter the first integer: ")
val firstNumber = readInt()
print("Enter the second integer: ")
val secondNumber = readInt()
val sum = firstNumber + secondNumber
println("The sum is "+sum)

}
}

Fig. 1.7: Program to Add Two Numbers

Figure 1.7 presents the improved version. We use readInt() method to read an
integer from the keyboard. Since this method is available in StdIn object, which is
packaged in scala.io package, we have the import statement, import scala.io.StdIn. .
The underscore, ‘ ’, at the end of the import directs the compiler to import every-
thing in the object StdIn. Note that we have re-used many LOCs from our previous
program. Re-usability is one of the desirable attributes of computer programs; this
is certainly true for Scala programs. Please note that while generalizing the program
we did not write everything from scratch; we made the least modification to meet

1.4 Introduction to Scala 11

the new requirements. The requirement change in this case was to read operands
from keyboard, instead of hard coding in our program.

Now let’s write a Scala program to solve the second computational problem that
we discussed in the beginning of this chapter. Figure 1.8 shows the implementation
for data presented in Table 1.1. Ideally, data comes from some persistence systems.
Since this volume is about Scala language exploration, we will make all the pro-
grams self-contained in terms of data.

package com.equalinformation.scala.programs
object BioTaxonomy {

def main(args: Array[String]): Unit = {
val humanTaxonomy = Map("Kingdom" -> "Animalia",

"Phylum" -> "Chordata",
"Class" -> "Mammalia",
"Order" -> "Primates",
"Family" -> "Hominidae",
"Genus" -> "Homo",
"Species" -> "H. Sapiens")

val dogTaxonomy = Map("Kingdom" -> "Animalia",
"Phylum" -> "Chordata",
"Class" -> "Mammalia",
"Order" -> "Carnivora",
"Family" -> "Canidae",
"Genus" -> "Canis",
"Species" -> "C. lupus")

val pigeonTaxonomy = Map("Kingdom" -> "Animalia",
"Phylum" -> "Chordata",
"Class" -> "Aves",
"Order" -> "Columbiformes",
"Family" -> "Columbidae",
"Genus" -> "Columba",
"Species" -> "C. livia")

val catTaxonomy = Map("Kingdom" -> "Animalia",
"Phylum" -> "Chordata",
"Class" -> "Mammalia",
"Order" -> "Carnivora",
"Family" -> "Felidae",
"Genus" -> "Felis",
"Species" -> "F. catus")

val taxonomyList = List(humanTaxonomy, dogTaxonomy,
pigeonTaxonomy, catTaxonomy)

var count = 0;
taxonomyList.foreach(_.values.foreach(x => x match {
case "Felis" => count += 1
case _ => count += 0

}))
println("Total cat taxonomy found: "+count)

}
}

Fig. 1.8: Program for Biological Taxonomy Information Base

12 1 Introduction to Computing

Figure 1.8 implements an information base for the data presented in Table 1.1.
Each category is first represented as a Map; the representation should be fairly obvi-
ous to read. We will discuss syntactical details later in other chapters. The program
then creates a list that contains all the maps; this is to create holistic data so that we
can perform a search by referring to one data structure. The LOC that contains em-
bedded foreach navigates all the values in the taxonomyList. We use pattern match-
ing to find the occurrence of Felis, which helps us to conclude the availability of
taxonomy information for the cat family. We will discuss pattern matching in detail
in Chapter 10.

1.5 Program Attributes

We saw several programs in earlier sections. When we embark on a professional
programming career, there are certain attributes that fellow professionals would like
to see in our programs. These program attributes not only make projects more suc-
cessful but also help us foster our professional relationships, which create positive
dynamics for the team as well as for the community that we become part of. The
following attributes are most common in industrial software engineering.

• Comprehensible
• Maintainable
• General
• Simple
• Modular
• Efficient
• Correct and accurate

Programs that are faster to read are said to have better or higher readability. A
program that we write today might look strange in about six months and hence it is
important to write readable programs so that they are easy to maintain in the future.
Generally, software applications last more than a year and it is also true that team
members change over a period of time for various reasons. In this context, programs
that are comprehensible are much more desirable. This is one of the reason why
engineers and scientists came up with high level programming languages. High level
programming languages allow us to write much more readable programs compared
with assembly languages.

The maintainability of a program is closely related to its readability. A program
that has higher readability is easier to maintain. Many development teams recom-
mend using a meaningful identifier instead of just a single letter. Also adding com-
ments helps to understand the program better. Package naming, packages organi-
zation, configuration organization, etc. help to improve the maintenance of a code
base.

In Section 1.4, we saw an example of making a program generic. Generic pro-
grams can cover more computational cases than a specific program. Of course, in

1.6 Conclusion 13

some cases, programs have to be specific, in order to provide better value. This deci-
sion has to be made based on who is buying the software. If customers need specific
programs, then we deliver them. But as a general principle, generic programs are
more useful, in the sense that they cover larger computational cases.

A computational problem can have multiple programming solutions. Simpler so-
lutions are cost effective to maintain. In a typical software application life cycle,
maintenance consumes more resources than original development. It is also our ob-
servation that people have different attitudes toward simplicity in different dynam-
ics. But in the long run, simplicity certainly pays off.

For large and complex programs, it is very important to organize the code so that
navigation becomes faster. Also it is a common practice to group programs based
on their functionality. In this way, if something has to be fixed for a particular func-
tionality, then the developers know which module to look at. In a typical industrial
software application, there can be hundreds of classes. Modularity can be imple-
mented in different flavors. Writing several services and providing an interface to
those services, is an example of making code modular. Sometimes, modularity can
also be achieved by packaging. In fact, closely related services are packaged to-
gether.

Efficiency is equally important. A program should be able to provide a compu-
tational service by consuming minimum memory and minimum processing power.
When we design a program or collection of programs, it is important to keep ef-
ficiency in mind, as infinite computational power is not available. Even if infinite
computational power was available, we need to achieve our computational goals in
a finite amount of time, relative to human life. So time is another factor to consider
for efficiency.

Correctness indicates whether a solution satisfies requirements; generally, accu-
racy means precision. An accurate solution may not be correct. For example, we
can get a solution that is accurate to the fifth decimal place with the incorrect for-
mula. On the other hand, we can have the right formula and the wrong types, and
get unintentional rounding of decimal places. One of the things to keep in mind as a
programmer is the selection of the right data types and the right programming con-
structs, which produce accurate results. Correctness might go beyond programming
constructs, including the right algorithms and the right formulae.

1.6 Conclusion

In this chapter, we discussed introductory computing concepts, including widely
used terminologies—computing and computation. Then we discussed the tool as-
pect of computing by introducing computer components. In a typical modern digital
computer, we find a memory unit to hold run time information, a processing unit
to do processing, a storage unit for persistence, input devices to provide input, and
output devices to send output to. Every computer needs a software system to operate

14 1 Introduction to Computing

it, called the operating system. We briefly discussed three most popular operating
systems—Linux, Mac OS, and Windows.

Next, we discussed programming languages. Programming languages can be di-
vided into two main categories—low level and high level. Machine code and as-
sembly language are low level programming languages. Generally, low level pro-
gramming refers to programming that uses either machine code or mnemonics;
mnemonics map to machine instruction sets. Scala, Java, C, and Pascal are high
level programming languages; high level programming languages are closer to nat-
ural languages and use words from natural languages. Programs written in high level
programming languages are much easier to comprehend, compared with programs
written in assembly languages. Next, we introduced the topic of this book, the Scala
programming language. Then we provided solutions to two computational problems
discussed in the beginning of this chapter. Finally, we discussed elements of a good
program. In Chapter 2, we will learn Scala fundamentals.

1.7 Review Questions

1. What is a difference between computation and computing?
2. List the basic components of a typical modern digital computer.
3. What roles do operating systems play?
4. List the three most popular operating systems today.
5. Why is low level programming not efficient in terms of program development?
6. Name at least five high level programming languages.
7. Write three differences between Scala and Java.
8. What is the philosophy behind Scala?
9. Is functional programming better than object oriented programming?

10. What are some of the attributes of a good computer program?
11. Where can we find Scala installation information?

1.8 Problems

1. Write a program to print “Scala is fun.” on the screen.
2. Write a program to calculate the difference between two integers. Pre-condition:

The two integers should be read from a keyboard. Post-condition: The difference
should be displayed on the screen.

3. Write a program to print each letter of a string. Pre-condition: The string should
be read from a keyboard. Post-condition: Each letter should be printed on a sep-
arate line.

1.9 Answers to Review Questions 15

1.9 Answers to Review Questions

1. According to the Oxford English Dictionary, the word computation refers to
mathematical calculation and computing refers to the use of computing machines
in order to perform computation.

2. The basic components of a typical modern computers are:

• Memory Unit
• Processing Unit
• Storage Unit
• Input Device
• Output Device

3. Operating systems administer the hardware. In other words, operating systems
give life to the hardware. Also operating systems act as a mediator between hard-
ware and application software.

4. The three most popular operating systems today are Linux, Mac OS, and Win-
dows.

5. Low level programming languages require developers to program at register
level. Further, developers need to take care of fine grained details. Also the use
of mnemonics is not as comprehensible as natural language based words.

6. Five high level programming languages are Scala, Java, Go, Swift, and Python.
7. The three differences between Scala and Java are:

• Scala is a purely object oriented language but Java is not.
• Scala was designed with the aim of combining the object oriented paradigm

with the functional paradigm but Java was designed to be an object oriented
language. Over the course of time, Java has adopted some functional program-
ming features.

• Scala had built-in features for program parallelism from the beginning but
Java introduced it much later.

8. The Scala designer, Dr. Martin Odersky, believes that the object oriented paradigm
can be combined with the functional paradigm to provide a better computing ex-
perience. And he has proven it.

9. It depends on the nature of the computational problem. So there is no definite an-
swer. For some problems, the object oriented approach might be better, for other
problems the functional approach might work better. Further, there can be prob-
lems that can benefit from a combination of these two programming paradigms.

10. Some of the attributes of a good computer program are:

• Readable
• General enough to cover wider computational problem space
• Maintainable
• Simple
• Modular
• Efficient in term of memory and CPU

16 1 Introduction to Computing

11. Scala installation information can be found at https://www.scala-lang.
org/

1.10 Solutions to Problems

1. object SolutionToProblem1 {
def main(arguments: Array[String]): Unit = {

println("Scala is fun.")
}

}

2. import scala.io.StdIn._
object SolutionToProblem2 {

def main(arguments: Array[String]): Unit = {
print("Enter the first integer: ")
val firstNumber = readInt()
print("Enter the second integer: ")
val secondNumber = readInt()
val difference = firstNumber - secondNumber
println("The difference is "+difference)

}
}

3. object SolutionToProblem3 {
def main(arguments: Array[String]): Unit = {

print("Please enter a string: ")
val inputString = scala.io.StdIn.readLine()
inputString.toString.foreach(println)

}
}

https://www.scala-lang.org/
https://www.scala-lang.org/

Chapter 2
Scala Fundamentals

In this chapter, we will cover building blocks of the Scala programming language.
As name suggests, building blocks are like alphabets of a programming language.
One of the observations we made both in industry as well as in academia is that
learners tend to overlook basic building blocks, thinking that the subject matter is
too basic. This creates a knowledge gap and when these building blocks are com-
bined with complex algorithms, the combination looks harder to comprehend and
requires learners to come back and learn the building blocks again. To avoid this,
you should try to learn the building blocks well at the first attempt by paying atten-
tion. In isolation, building blocks look simple.

2.1 Literals

We use literals to create programs. They are directly or indirectly connected with
natural languages and how we perform computations. For example, String is a col-
lection of characters. But it turns out that we need individual characters as well.
From a machine’s point of view, this categorization helps to allocate memory effi-
ciently.

2.1.1 Character Literals

Have you ever noticed the use of a single character in your daily life? Most prob-
ably the answer is yes. It might be for tagging items, it might be for enumerating
items, etc. Well, it could equally be your grades. Scala allows us to express a single
character using a character literal. A character literal can be defined by enclosing a
single character in quotes. It can be either a printable unicode character or an escape
sequence, defined in Section 2.1.6.
Valid characters:

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

17

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_2

18 2 Scala Fundamentals

‘a’ ‘\u0061’ ‘\t’ ‘\n’

Sample declaration:

val b:Char = ‘b’

The first one is character a and the second one is also character a, because uni-
code 0061 is for letter a. The last two characters print tab and new line, respectively.
Please note the quotes: unlike how it is printed here, you have to use the same single
quote, on both sides, when you type the code.

2.1.2 String Literals

Whether we are reading a newspaper on-line or reading a book, we use text ex-
tensively. Scala facilitates textual representation with string literals. A string is a
sequence of characters. A string literal can be defined by enclosing a sequence of
characters in double quotes. The characters can be either printable unicode charac-
ters or escape sequences, defined in Section 2.1.6.
Valid strings:

"Welcome" "Welcome\tto\tprogramming"
"Scala is fun"
"\"Scala\" supports functional programming"

""" This is an example
of multi-line
string literals. """

Sample declaration:

val c:String = "Scala"

The second string literal above has a tab character in between words and hence
the output is Welcome to programming, with spacing between words equal to the
tab width. If we need double quotes, then these should be escaped, as shown in
the fourth string literal. The output of the fourth string literal is “Scala” supports
functional programming. The last string literal is an example of a multi-line string
and it should be enclosed by three consecutive double quotes.

We can perform a rich set of operations on a string. For example, reverse reverses
a given string: “this”.reverse prints siht. In order to split a sentence into words split
can be used: “Scala is powerful”.split(“ ”) prints Array[String] = Array(Scala, is,
powerful). Similarly, a word in a string can be replaced by using replace: “Scala is
powerful”.replace(“powerful”, “fun”) results Scala is fun.

2.1 Literals 19

2.1.3 Integer Literals

We use whole numbers a lot in our daily lives. We can express these numbers using
Scala integer literals. Integer literals are widely used and are of two types based on
length—Int or Long. Long integers are expressed with a suffix l or L. For example,
25 is an integer and 25L is a long integer. The permitted values for type Int are from
−231 to 231−1, inclusive. Auto conversion happens for small type: Byte, Short, and
Char. When a type falls within the range of a smaller type, the number is converted
to that smaller type along with the type information. Table 2.1 presents integer types
and corresponding ranges.

Table 2.1: Integer Literals and Ranges

Type Range

Byte −27 to 27−1
Short −215 to 215−1
Char 0 to 216−1
Int −231 to 231−1

Valid integers:

5 -5 0 25 0xAF

Sample declaration:

val a:Int = 5

Invalid declaration:

val d:Int = 3999999999

It is invalid, because the value assigned is out of integer range, as discussed above.

2.1.4 Floating Point Literals

In mathematics, we use real numbers frequently. Scala allows us to express those
real numbers with the help of floating point numbers, called floating point literals.
Floating point literals cover Float as well as Double. Float covers all IEEE 754 32-
bit single-precision binary floating point values and Double covers all IEEE 754 64-
bit double-precision binary floating point values. Float types have optional suffixes:
f, F, d, or D.
Valid floating point numbers:

1e10f 1e-10f 5.5 .5

20 2 Scala Fundamentals

Sample declaration:

val a = 1e-10f

Invalid declaration:

val a:Int = 1e-10f

It is invalid, because the value on the right hand side is not an integer value. The
right data type, in this case, is Float.

2.1.5 Boolean Literals

We need a way to express yes or no, equivalently true or false. In our daily lives, we
do that quite a lot. Similarly, Scala has a feature called boolean literal, which allows
us to express yes and no.
Valid boolean values:

true false

Sample declarations:

val a = true
val b: Boolean = false

2.1.6 Escape Sequences

Escape sequences can be used to print special characters. The following escape se-
quences can be used with character and string literals.

\b \u0008 Back space (BS)
\t \u0009 Horizontal tab (HT)
\n \u000a Line feed (LF)
\f \u000c Form feed (FF)
\r \u000d Carriage return (CR)
\" \u0022 Double quote (")
’ \u0027 Single quote (’)
\\ \u005c Back slash (\)

So when the statement print(“a\nb”) is executed, characters a and b are printed
in separate lines. First, character a is printed, then new line character is printed,
which causes b to be printed in a separate line.

2.1 Literals 21

2.1.7 Symbol Literals

Symbol is a case class. We will discuss classes in Chapter 3. A symbol ’y is a
shortcut for the expression scala.Symbol(“y”). Symbol is a case class and can be
found in package scala, with the following definition.

package scala
final case class Symbol private (name: String) {

override def toString: String = "’" + name
}

Figure 2.1 shows a typical identifier comparison with eq operator (or method).
The output is true. A string comparison may involve character to character com-
parison, in some cases, and hence lookups tend to be more efficient with symbol
literals, as eq can be applied. Comparisons, with symbol literals, are constant time
(i.e. O(1)).

Fig. 2.1: Symbol literals

object Literals {
def main(args: Array[String]): Unit = {

val a =’sampleIdentifier
println("sampleIdentifier" eq a.name)

}
}

2.1.8 Other Lexical Elements

1. Whitespace and Comments
In English, words are separated by a space, approximately equivalent to the width
of one character. Similarly, in Scala, tokens are separated by a whitespace; tokens
can also be separated by comments. Scala has two types of comments—single
line and multi-line. Single line comments start with // and extend to the end of
line. Multi-line comments are embedded within /* and */. It is a good practice to
comment our code. See the code fragment below.

...
// Length
val a = 5
// Breadth
val b = 4
val area = a * b
...

22 2 Scala Fundamentals

The code is certainly more comprehensible, with the help of comments; mainte-
nance becomes a lot easier, specially when the program is to be maintained by a
different person. Similarly, let’s look at the multi-line comment below.

...
/*
This program calculates an area
of a rectangle.

*/
val length = 5
val breadth = 4
val area = length * breadth
...

The code fragment above demonstrates a multi-line comment. Comparing this
comment with the previous comment should give you an idea of when to use
each of them. Please also note the identifier names in these two code fragments.

2. Newline Characters
Statements in Scala can be terminated by semicolons or newlines. In other words,
semicolons are optional, if we use newlines as separators, and newlines are op-
tional, if we use semicolons as separators. Let’s look at the four code fragments
below.

...
val side = 5
val area = side * side
...

...
val side = 5;
val area = side * side;
...

...
val side = 5; val area = side * side;
...

...
val side = 5; val area = side * side
println(area)
...

All of the above four code fragments are syntactically correct. You can follow the
approach that best suits you, if you have the liberty to decide. If you are working
in a team environment, it is good to have common conventions.

2.3 Types 23

2.2 Identifiers and Reserved Words

Think of a quadratic equation of the form ax2 +bx+ c = 0. x is a variable and a, b,
and c are constants. All of these are identifiers; they identify or represent values. It is
important to remember that there are rules that govern what kind of values they hold,
including whether they can hold multiple values. Also please recall the introductory
concepts from Chapter 1. We are discussing elements of a typical computing envi-
ronment. Our thought processes should be geared toward how we can organize the
computing elements so that we can achieve our computational goals.

Similarly, an identifier in Scala denotes a computational element. A computa-
tional element can be an integer, a string, a character, a class, etc. An identifier can
start with a letter and the starting letter can be followed by any arbitrary sequence
of letters, digits, or underscore. The ‘$’ character should not be used to define iden-
tifiers as it is reserved for compiler-generated identifiers. Reserved words are pre-
defined words that cannot be used as identifiers. Table 2.2 presents reserved words
in Scala.

Table 2.2: Reserved Words

abstract case catch class def
do else extends false final
finally for forSome if implicit
import lazy match new null
object override package private protected
return sealed super this throw
trait try true type val
var while with yield

: = => <– <: <% >: # @

Valid identifiers:

length _y + _MIN green_?

2.3 Types

From a user’s perspective, types are categories that have common properties. For
example, Int and Long are both integers. From our arithmetic knowledge, we know
that all integers have some common properties that can be leveraged for a com-
putational goal. For example, when we add two integers, digit by digit, there is
something called carry, which is added to the next higher position digit.

Scala has many fundamental types, which can be used as building blocks for
custom defined types. Byte, Short, Int, Long, Char are some of the basic types. Float

24 2 Scala Fundamentals

and Double are types to represent decimal numbers. All of these types together are
called numeric types. The type String is used to represent text; it is part of java.lang
package. All other types described here are part of scala package.

object TypesDemo {
def main(args: Array[String]): Unit = {

val length: Int = 5
val breadth = 2.5
val area = length * breadth
println(area)
val problemName: String = "Area of a rectangle"
val purpose = "Practice"
println(purpose+": "+problemName)

}
}

Fig. 2.2: Types Demonstration

Figure 2.2 shows three different type declarations—Int, Float, and String. Please
note that length is explicitly declared as Int but the type for breadth comes from
type inference. This is one of the advantages of programming in Scala; it has the
capability to infer type based on the corresponding value. So breadth gets type Float
and subsequently the type of the area is inferred as Float, because when an integer
is multiplied with a floating point number, the result is a floating point number.

In the case of Scala, when an Int is multiplied with a Float, the resultant type is
Float. Similarly, the first string, problemName, is declared explicitly, whereas the
type for second string, purpose, is derived from its value. The output for the second
println is the concatenation of three strings, the second one being the value within
double quotes. The output for the first println is 12.5.

2.4 Declarations and Definitions

A declaration is a way to tell the Scala compiler about names, types, parameters, etc.
Using definitions, we can provide detail information including values and steps for
computation. A value declaration takes the form val x: T; a value definition takes
the form val x: T = e, where val is a reserved word to tell the compiler that the
corresponding identifier is an immutable value, which means it cannot be changed
later; x is an identifier; T is a type, and e is an expression. So x gets a value, which
is a result of evaluation of the expression e. When we explicitly specify the type T,
the result of evaluation of expression e should be T, otherwise it is a compile time
error.

Figure 2.3 shows value declarations as well as definitions. This program has four
values: itemName, quantity, priceInDollar, and totalPrice. Scala’s values are con-
stants, which means re-assignment is a compile time error. The first three identifiers

2.4 Declarations and Definitions 25

object DeclarationsDefinitionsDemo {
def main(args: Array[String]): Unit = {

val itemName = "Orange"
val quantity = 5
val priceInDollar = 2
val totalPrice: Int = quantity * priceInDollar
println("Total price of "+itemName+" = "+totalPrice)

}
}

Fig. 2.3: Value Declaration and Definition

get their type through Scala’s type inference, whereas the fourth one is explicitly
declared. Declaration and definition are done within the same line of code. The last
line of code performs auto conversion of integer values to corresponding string val-
ues. If we have + in between string and numeric values, the numeric values are
automatically converted to string values and then concatenated.

A variable declaration has the form var x: T; a variable definition takes the form
var x: T = e. The main difference between val and var is that var can be re-assigned
a value. A very important thing to note is that var may not be safe for parallel pro-
gramming. Sequential programs written using val are easier to transform to parallel
programs. So you are highly encouraged to program using val and avoid var when-
ever possible.

object VarDeclarationsDefinitionDemo {
def main(args: Array[String]): Unit = {

var itemName = "Orange"
var quantity = 5
var priceInDollar = 2
var totalPrice = quantity * priceInDollar
println(itemName+": "+totalPrice)
itemName = "Apple"
quantity = 6
priceInDollar = 3
totalPrice = quantity * priceInDollar
println(itemName+": "+totalPrice)

}
}

Fig. 2.4: Variable Declaration and Definition

Figure 2.4 shows variable declarations as well as variable definitions. Please note
that all the variables have been re-used. First, we assign values for orange and cal-
culate total price and print the value. Next, we use the same variables and assign
values corresponding to apple and perform a similar calculation, which is followed
by a println statement.

26 2 Scala Fundamentals

This is perfectly fine in a sequential execution. We will see later how to represent
real world objects with Scala objects. Once we do that, there will be some getter and
setter methods associated with each variable. If the setter methods are called from
concurrent processes then the consistency becomes important. That’s when we start
realizing the importance of immutability.

Next, let’s take a short example of type declaration. Figure 2.5 shows a type alias
definition. intList can be used as List[Int], which is exactly what is being done in the
next LOC, val a: intList = List(1,2,3). Here a gets its type from type alias, which in
turn gets its type from its definition. So the list creation on the right hand side should
comply with the type definition of type alias. If it doesn’t, then it is a compile time
error.

object TypeDeclarationDefinitionDemo {
def main(args: Array[String]): Unit = {

type intList = List[Int]
val a: intList = List(1,2,3)
a.foreach(println)

}
}

Fig. 2.5: Type Definition

We will cover the remaining declarations and definitions in later chapters.

2.5 Expressions

Expressions can be evaluated and the result of evaluation can be assigned or returned
to the caller. Also an expression has a type, which may come from Scala inference.
If type is declared as in val x: T = e, then the type of e must match with T. The
simplest expressions are literals. For example, in val a = 5, val is a reserved word,
which directs the compiler that identifier a is value, = is an assignment operator,
and 5 is a simple expression, an integer literal. In Scala, an expression can be any
one of the following types:

1. Literal
2. The null value
3. Designator
4. this and super
5. Named and default argument
6. Method values
7. Tuples
8. Instance creation expression
9. Block

2.5 Expressions 27

10. Typed expression
11. Annotated expression
12. Conditional expression
13. While loop expression
14. Do loop expression
15. For loop
16. Return expression
17. Throw expression
18. Try expression
19. Constant expression

We will discuss each of these expression types in the relevant chapters. For now,
let’s look at an example with several expressions. Figure 2.6 shows three different
types of expression. The first one has digit 6 as an expression, which is a literal
expression. The second one is a + 1. For this expression, type inference uses the
type of a, Float, to determine the type of b. And of course, a + 1 is evaluated and
assigned to b.

object ExpressionsDemo {
def main(args: Array[String]): Unit = {

val a: Float = 6
val b = a + 1
println(b)
val c = {

val d = 2
val e = 3
d + e

}
println(c)

}
}

Fig. 2.6: Expressions

The next expression is a block expression. Scala has an interesting feature that
allows us to assign a block to an identifier and use it as a value. The block is eval-
uated and types are inferred before assigning value to the variable c. The type of d
and e can be inferred based on their value on the right hand side, and d + e will have
the same type, which is Int, in this case. Now, the last statement of the block is a
return statement; Scala does not require us to write return explicitly. So the value of
d + e is assigned to c, which is 5. The first println prints 7.0 and the second println
prints 5.

28 2 Scala Fundamentals

2.6 Conclusion

In this chapter, we covered character literals, which are the most fundamental build-
ing blocks. Then we discussed string literals; these are widely used as text represents
a large percentage of information processing. Similarly, we covered numerals and
their range. Escape sequences are important literals to remember as these become a
source of bugs if used improperly. Symbol literals are not widely used but these are
faster to lookup. Comments are an important part of program documentation. New-
line sounds obvious, but in Scala it has a special meaning, i.e., a newline eliminates
the need for a semicolon.

2.7 Review Questions

1. What is the difference between ‘a’ and “a”?
2. Where does the type come from in val languageName = “Scala”?
3. What is the range of type Int in Scala?
4. Is 0xAD a valid integer?
5. Is 0xBG a valid integer?
6. Is oxCF a valid integer?
7. Is val c: Int = 1e-20f a valid declaration?
8. Is val x = true a valid declaration and a valid definition?
9. Is val y: Boolean = 1 a valid definition?

10. How is a multi-line comment written?
11. Can a new line be used as a statement terminator?
12. Can a semicolon be used as a statement terminator?
13. When can’t a semicolon be replaced by a new line for statement termination?
14. Is forSome a reserved word?
15. Why is a type important?
16. What is the simplest possible expression?

2.8 Problems

1. Write a program to reverse the letters of a word. Hint: you can use the Scala
library.

2. Write a program to read two words from a keyboard, concatenate them, and then
reverse the letters.

3. Write a program that uses a block to read length and breadth as double precision
floating point numbers. This block also calculates the area and returns or assigns
the result to a variable called area. Print the area on the console.

2.10 Solutions to Problems 29

2.9 Answers to Review Questions

1. ‘a’ is a character literal and “a” is a string literal.
2. In val languageName = “Scala”, the type comes from inference.
3. The range of type Int is 2−31 to 231−1.
4. 0xAD is a valid integer, it is in hexadecimal representation.
5. 0xBG is not a valid integer, G is not part of hexadecimal representation.
6. oxCF is not a valid integer, it should start with 0x, not ox.
7. val c: Int = 1e-20f is not a valid declaration, because the value on the right hand

side is not an integer value.
8. val x = true is a valid declaration and definition, the type is inferred automatically.
9. val y: Boolean = 1 is not a valid definition because 1 is not part of boolean

literals.
10. A multi-line comment is embedded in /* */.
11. Yes, a new line can be used as a statement terminator.
12. Yes, a semicolon can be used as a statement terminator.
13. If there are two statements in a single line, the first one must be terminated by

using a semicolon.
14. Yes, forSome is a Scala reserved word.
15. A type helps to categorize building blocks and makes it convenient to analyze a

program. From the machine’s perspective, types are used for memory allocation.
16. The simplest possible expression is a literal.

2.10 Solutions to Problems

1. object ReverseLetters {
def main(args: Array[String]) {

print("Please enter a word: ")
val word = scala.io.StdIn.readLine();
val wordReversed = word.toString.reverse
println(wordReversed)

}
}

30 2 Scala Fundamentals

2. import scala.io.StdIn._
object StringConcat {

def main(args: Array[String]): Unit = {
print("Please enter the first word: ")
val firstWord = readLine()
print("Please enter the second word: ")
val secondWord = readLine()
val combination = firstWord.toString.concat(
secondWord.toString)

println(combination)
val wordCombreversed = combination.reverse
println(wordCombreversed)

}
}

3. import scala.io.StdIn._
object AreaCalculation {

def main(args: Array[String]): Unit = {
val area = {

print("Please enter the length: ")
val length = readDouble()
print("Please enter the breadth: ")
val breadth = readDouble()
length * breadth

}
println(area)

}
}

Chapter 3
Classes and Objects

Classes and objects in Scala allow us to model real world classes and objects. Let’s
recall our education system. If you went through a formal education system any-
where in the world, most likely you went through a classification system, i. e., you
joined in the first level, you learnt and changed your knowledge status, and then you
were promoted to the next level. In some countries, these are known as class 1, class
2, . . ., class 12. Whatever the naming convention, the idea is same, i.e., you are in a
certain level of knowledge, you learn new things, your level changes, you are tested
and then formally recognized.

What are the advantages of classification? In an education system, if two people
are enrolled in the same level, you can safely assume that their knowledge level is
close enough to be grouped together so that they benefit from common resources. Of
course, sometimes there can be exceptions; we will have similar situations in Scala
as well. Some examples of common resources are classrooms, teachers, teaching
materials, etc. Also with this classification, teachers know how to handle students.
If we look at traditional biological classification, we notice that animals with similar
behavior and structure are put in the same category. What is the advantage? It is con-
venient to study and analyze. This is true in Scala as well. Remember our discussion
in Chapter 1. We are using computers to solve real world problems.

By now, you have already seen several complete programs using objects. You
might have developed some intuitions based on that. Now, we first discuss the build-
ing blocks of a class and an object, which set the stage for declarations as well as
definitions.

3.1 Class Members

A class has two important members—field and method. A field can be a variable or
a constant value, which is used to hold a value. This value represents a state of an
object. A method is used to represent the behavior of a real world object. In other
words, a method is used to process computational parameters.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

31

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_3

32 3 Classes and Objects

Let’s take an example of a real world object and model it with Scala programs.
Let’s assume that we have a circular object with radius 5 and we need to calculate its
area. In order to create a comprehensible solution, we need to create a class called
Circle. Since radius is an attribute of a circle, we should have a field called radius.
Also we are going to calculate the area, so we need a variable to hold its value. Let’s
call it area. So we have two fields for our Circle class.

Next, we need a method to compute area. Let’s call it computeArea. This method
uses the formula, area = πr2, to calculate the area of a circle. The value of π is
available as a constant in the object Math, in the Scala package scala.math, which
forwards to java.lang.Math. Similarly, pow method is available in the same object.

class Circle {
var radius = 0
var area = 0.0
def computeArea(): Unit = {

area = Math.PI * Math.pow(radius,2)
}

}

object CircleApplication {
def main(args: Array[String]): Unit = {

val circleObj = new Circle
circleObj.radius = 5
circleObj.computeArea()
println(circleObj.area)

}
}

Fig. 3.1: Circle Application

Figure 3.1 shows a complete solution to this problem. We have the Circle class
described earlier and then we have a circle application called CircleApplication.
The two variables in the Circle class require initialization. If we are expecting a
floating point result then area should be initialized with a floating point value so
that the type Float is assigned to the variable area. There is a single LOC in the
method computeArea. Once the right hand side expression is evaluated, the result is
assigned to area, which is a class variable.

The class Circle does not run by itself. In order to make use of it, we need to cre-
ate an application. CircleApplication is a runnable application. We have seen similar
examples before, but without a class. Here, we have modularized the code. Please
remember that modularity is one of the attributes that we discussed in Chapter 1.
Also the Circle class is re-usable.

The first LOC in the main method creates an object called circleObj of type
Circle. Then the second LOC assigns value 5 to the field radius. The default access
modifier for class members is public. Please also note that a getter method and a
setter method are generated for each public variable in the class during compilation.

3.3 Object Definitions 33

For now, let’s remember that <object-name>.<field-name> gives access to a public
field in a class; a method can be accessed in the same way and parentheses are
optional if there are no parameters to pass. When we run this program, we should
see the result 78.54 on the console.

3.2 Class Definitions

Classes are defined in terms of templates; this is true for objects as well. Here is the
template definition from the Scala language specification:

TmplDef ::= [‘case’] ‘class’ ClassDef
| [‘case’] ‘object’ ObjectDef
| ‘trait’ TraitDef

It can optionally start with case, which should be followed by either class or ob-
ject and then a corresponding definition. Alternatively, it can start with trait, which
should be followed by a trait definition.

A class definition can start with case, which is for a case class. A case class is
a model class; it has fields, which can be defined as constructor parameters. If it is
a regular class, then it should start with the reserved word class, which should be
followed by a valid identifier. After the identifier, everything else should be within
curly braces. There can be various combinations inside these two curly braces. Two
common building blocks of a class definition are fields and methods, as demon-
strated in Figure 3.1. We will see various combinations throughout this book.

3.3 Object Definitions

Objects in Scala are singletons. If we have static methods and variables, we can
make use of objects, instead of classes. Static methods and variables do not change
based on an instance of a class. For example, the method to calculate a logarithm
doesn’t change; the process to calculate a logarithm is a fixed process.

Object definitions have the same structure as that of class definitions, except it
starts with the reserved word object. Also if we need a runnable application, we
need to have an object with a main method. Alternatively, we could extend Appli-
cation class and avoid writing the main method. By now, we have seen many object
definitions, starting from Chapter 1.

34 3 Classes and Objects

3.4 Conclusion

In this chapter, we discussed classes and objects. We covered two important class
members—fields and methods. A field holds a state related value of an object and a
method represents a behavior of an object. Further, we discussed class definition as
well as object definition.

3.5 Review Questions

1. What is a major difference between a class and an object?
2. Is it possible to write a Scala program without a class?
3. Is a class a runnable application by itself?
4. How can we run a class?
5. What are singleton objects?
6. When a class is instantiated multiple times and assigned to different identifiers,

do those instances have the same memory location?
7. When should a class be created?
8. Why it is important to create a class?
9. What is a case class?

3.6 Problems

1. Create a class called Rectangle with three fields: length, breadth, and area. Also
write a method called computeArea in the Rectangle class. Next, create a rect-
angle application called RectApplication, which provides length and breadth, in-
vokes computeArea method and prints the area, on the console.

2. Solve Problem #1 with a case class and a singleton object.
3. Create a class called Book that has three fields: name, price, and quantity. The

field price is of type Price that has two fields in it: currencyName and priceValue.
Next, create a runnable application to print the total price of given quantities of
a book. Create the remaining classes and methods, appropriately.

3.7 Answers to Review Questions

1. A major difference between a class and an object is that a class is a template or a
blueprint and an object is an instance of a class.

2. Yes, it is possible to write a Scala program without a class.
3. No, class cannot be run directly.

3.8 Solutions to Problems 35

4. In order to run a class, a singleton object with a main method should be created.
Next, the class should be instantiated inside this singleton object. Once instanti-
ated, public fields and methods are accessible from the singleton object.

5. As the name suggests, singleton objects have only one instance. They are used to
house methods and fields of static nature, i.e., they do not change based on class
instances. When a singleton object shares the same name as that of a class, it is
called a companion object; a companion object should be defined in the same
source file.

6. No, different instances assigned to different identifiers have different memory
locations.

7. A class should be created when there is a need for a blueprint. A good test is that
you need multiple instances of this class.

8. It is important to create a class, because it has several advantages: it is a modular
code so that maintenance becomes cost effective; it can be re-used as many times
as needed and hence reduces the cost of development as well as maintenance; it
is a natural representation of real world classes and classifications.

9. A case class is a model, i.e., it has only fields; getters and setters are auto-
generated during compilation.

3.8 Solutions to Problems

1. class Rectangle {
var length = 0
var breadth = 0
var area = 0
def computeArea(): Unit = {

area = length * breadth
}

}

object RectApplication {
def main(args: Array[String]): Unit = {

val rectObj = new Rectangle
rectObj.length = 4
rectObj.breadth = 5
rectObj.computeArea()
println(rectObj.area)

}
}

36 3 Classes and Objects

2. case class RectangleCase(length: Int, breadth: Int)

object RectangleWithCase {
def main(args: Array[String]): Unit = {

val rectObj = new RectangleCase (4, 5)
val area = rectObj.length * rectObj.breadth
println (area)

}
}

3. case class Price(currencyName: String, priceValue: Double)

class Book {
var name: String = ""
var price: Price = null
var quantity = 0
var totalPrice = 0.0
def computeTotalPrice(): Unit = {

totalPrice = price.priceValue * quantity
}

}

object BookApp {
def main(args: Array[String]): Unit = {

val priceOfBook = Price("USD", 25.5)
val bookObj = new Book
bookObj.name = "Programming with Scala"
bookObj.price = priceOfBook
bookObj.quantity = 4
bookObj.computeTotalPrice()
println(bookObj.price.currencyName+" "+bookObj.totalPrice)

}
}

Chapter 4
Control Structures

In our daily lives, we have a flow of activities. In a particular day, we do a series
of things and it is fair to say that we make several choices consciously or uncon-
sciously. Also it may not be inaccurate to say that we repeat things on a daily basis.
So there are several questions to ask ourselves—How do we make decisions regard-
ing choices? How do we decide whether to repeat something? How do we decide
the flow of activities on a particular day? What guides the flow of activities during
a day? What guides the flow of activities in an individual’s life? Can we change
our daily activities without affecting our long term goals? All of these questions
can be related to programming. Our mind can be thought of as a combination of
memory and a processing unit and rest of the body as an implementation agent. And
of course, we get help from other people and machines to achieve our goals. The
nature of computer programming is not much different from this scenario.

The Scala programming language allows us to express controlling elements with
the help of control structures. The conditional expression, as the name suggests, is
to express flow that has conditional choices. For example, if the price of the house
is less than $5M, buy the house, otherwise look for other houses that match the
price criteria. A for expression is a powerful way of expressing repeats; they have
fine controls available, which we will see later in this chapter. Similarly, a while
loop is a natural way to express while conditions. Exceptions occur when a program
encounters unexpected values. This situation can be handled using a feature called
exception handling.

4.1 Conditional Expressions

Conditional expressions, also known as if-else expressions, direct the program ex-
ecution flow based on the result of evaluation of a test condition. If the result is
true, one branch of code is executed, otherwise the other branch of code is executed.
Figure 4.1 shows how to use a conditional expression. The program reads a number
from a keyboard and prints whether the input number is less than 5, or greater than

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

37

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_4

38 4 Control Structures

or equal to 5. If is followed by a condition in parentheses, then a block of code to
be executed, if the condition evaluates to true. After that we have else, which is fol-
lowed by a block of code to be executed, if the condition evaluates to false. Please
note that the curly braces are optional if there is only one statement to be executed.

object IfElse {
def main(args: Array[String]): Unit = {

println("Enter a number: ")
val inputNumber = scala.io.StdIn.readInt()
if (inputNumber < 5)

println("Number is smaller than 5")
else

println("Number is greater than or equal to 5")
}

}

Fig. 4.1: If Expression

Now, let’s take a slightly different example. Figure 4.2 shows an if-else-if-else
structure. We can have any number of else-if in the if-structure. Also please note
the curly braces this time; these are required except for the last else, which has only
one statement. This program prints the positive difference between two numbers,
irrespective of the order of entry. If the numbers are equal the execution will fall
into the block that checks only the flag value and hence it will print Two numbers
are equal. It might look a bit non-intuitive initially, but the previous two tests check
the inequality, and the only remaining case is the equality case.

The if structure in this case has multiple conditions. First it checks whether the
flag is set to true, and then it checks whether the difference is greater than 0. The
else does the same but the order of the numbers are different for the difference
calculation.

4.2 For Expressions 39

import scala.io.StdIn._
object PositiveDifference {

def main(args: Array[String]): Unit = {
var positiveDiff = 0
val executeFlag = true
print("Please enter first number: ")
val firstNumber = readInt()
print("Please enter second number: ")
val secondNumber = readInt()
if((executeFlag == true) &&
(firstNumber - secondNumber) > 0) {

positiveDiff = firstNumber - secondNumber
println("The positive difference: "+positiveDiff)

} else if((executeFlag == true) &&
(secondNumber - firstNumber) > 0) {

positiveDiff = secondNumber - firstNumber
println("The positive difference: "+ positiveDiff)

} else if(executeFlag == true) {
println("Two numbers are equal")

} else {
println("The execution flag is not set")

}
}

}

Fig. 4.2: If Expression - Positive Difference

4.2 For Expressions

A for expression or for control structure is one of the most widely used control
structures. Also many professional programmers have the same opinion about it: it
is a powerful control structure. Let’s start with a simple for loop. Figure 4.3 shows
a program to detect a prime number. The for expression, in this program, has two
parts for variable control. i is the variable and it starts with value 2 and ends at value
number−1. All the statements to be executed are enclosed in curly braces.

The logic to calculate whether a number is prime or not comes from our knowl-
edge of mathematics. If a number is divisible only by 1 and by itself, then it is a
prime number. The operator % gives the remainder; so, 5%3 = 2.

Now, let’s look at the for expression variations. for(i <- 1 until 5) print(i) prints 1,
2, 3, and 4. With until, if we have n as the upper limit, it goes up to n−1. Next, you
are advised to look at the short programs below and experiment with the variations
on your own.

40 4 Control Structures

object PrimeNumberDetection {
def main(args: Array[String]): Unit = {

print("Please enter an integer: ")
val number = scala.io.StdIn.readInt()
var prime = true
for(i <- 2 to number - 1) {

if (number % i == 0) {
prime = false

}
}
if(prime) {

println("The number "+number+" is prime.")
} else {

println("The number "+number+" is not prime.")
}

}
}

Fig. 4.3: Prime Number Detection

1. object ForExperiment1 {
def main(args: Array[String]): Unit = {

for(i <- 1 until 5)
print(i+", ")

}
}
// Output: 1, 2, 3, 4,

2. object ForExperiment2 {
def main(args: Array[String]): Unit = {

for(i <- (1 to 5).reverse)
print(i+", ")

}
}
// Output: 5, 4, 3, 2, 1,

3. object ForExperiment3 {
def main(args: Array[String]): Unit = {

for(i <- 5 to 1 by -1)
print(i+", ")

}
}
// Output: 5, 4, 3, 2, 1,

4. object ForExperiment4 {
def main(args: Array[String]): Unit = {

for(i <- 1 to 3; j <- 1 to 2)
print(i+","+j+"; ")

}
}
// Output: 1,1; 1,2; 2,1; 2,2; 3,1; 3,2;

4.2 For Expressions 41

5. object ForExperiment5 {
def main(args: Array[String]): Unit = {
for(i <- 1 to 4; if i != 3; j <- 1 to 4; if i != j)

print(i+","+j+"; ")
}

}
// Output: 1,2; 1,3; 1,4; 2,1; 2,3; 2,4; 4,1; 4,2; 4,3;

6. object ForExperiment6 {
def main(args: Array[String]): Unit = {
for(i <- 1 to 4; startJ = 5 - i; j <- startJ to 4)

print(i+","+j+"; ")
}

}
// Output: 1,4; 2,3; 2,4; 3,2; 3,3; 3,4; 4,1; 4,2; 4,3; 4,4;

7. object ForExperiment7 {
def main(args: Array[String]): Unit = {

val square = for(i <- 1 to 4) yield i * i
print(square)

}
}
// Output: Vector(1, 4, 9, 16)

8. object ForExperiment8 {
def main(args: Array[String]): Unit = {

print(sum(3,4,5))
}

def sum(args: Int*): Int = {
var sum = 0
for (num <- args) {

sum += num
}
sum

}
}
// Output: 12

9. object ForExperiment9 {
def main(args: Array[String]): Unit = {

print(sumOfEvenNumbers(1,2,3,4,5))
}

def sumOfEvenNumbers(numbers: Int*): Int = {
var sum = 0
for(num <- numbers if num % 2 == 0) {

sum += num
}
sum

}
}
//Output: 6

42 4 Control Structures

4.3 While Loops

The general structure of the while loop is while (<condition >){<statements >}.
First, the condition is evaluated; if it is true, then the code within curly braces is
executed. After the first iteration, the condition is re-evaluated; if it is true, then the
code within curly braces is executed again. This keeps repeating until the condition
is false. When it is false the code within curly braces is skipped and the program
execution moves to the LOC immediately after the closing curly brace.

object PrimeNumbersUsingWhile {
def main(args: Array[String]): Unit = {

print("Please enter a number: ")
val inputNumber = scala.io.StdIn.readInt()
var isPrime = true
var i = 2
while(i < inputNumber) {

if(inputNumber % i == 0) {
isPrime = false

}
i += 1

}
if(isPrime) {

println("The number "+inputNumber+" is prime")
} else {

println("The number "+inputNumber+" is not prime")
}

}
}

Fig. 4.4: Prime Number Detection using While

Figure 4.4 presents a prime number detection program using a while loop. Com-
pare Figure 4.4 and Figure 4.3. A for expression has initialization as a part of the
expression, whereas a while loop has a separate LOC for initialization. Usually it
should come before the while loop. Also in case of while, the loop variable incre-
ment is done with a separate LOC, whereas for has implicit increments, i. e., it
increases automatically by 1.

While loops are natural when the final condition check is to be highlighted. One
loop can be converted to another with some effort. But you might have noticed that
a for expression has many options available. Also it is considered one of the most
powerful control structures by industrial programmers, specifically in an imperative
programming domain. Please note that for is called an expression but while is called
a loop. This is because while does not return an interesting value. The type of result
we get from while is Unit.

Scala has a do-while structure as well. The major difference between while and
do-while is that the statements in do-while are executed at least once, regardless
of the result of evaluation of the condition. So, if we know beforehand that the

4.4 Exception Handling 43

statements should be executed at least once, then do-while is the choice. The code
fragment below prints 1,2,3,4,. If we alter the condition to i >5, it still prints 1,,
because the condition is tested after the first iteration.

var i = 1
do {

print(i+",")
i += 1

} while(i < 5)

4.4 Exception Handling

Exception handling is a mechanism that saves programs from crashing during run
time. Since programmers may not know all the possible values that users of a pro-
gram supply during run time, there might be a situation when the program does not
know how to handle the values. If this occurs, it might make the program crash. A
program or an application crashing during run time is undesirable. It makes cus-
tomers run away from that application. So a software engineer has to do everything
possible to not let a program or an application crash during run time. If a program
cannot handle certain situations or values, it has to gracefully terminate.

object ExceptionDemo1 {
def main(args: Array[String]): Unit = {

print("Please enter a number: ")
try {

val inputNumber = scala.io.StdIn.readInt()
println("It was a valid input: "+inputNumber)

} catch {
case ex: NumberFormatException =>
println("Type mismatch")

case ex: Exception => println("Something went wrong")
} finally {

println("Exiting gracefully from main method")
}

}
}

Fig. 4.5: Exception Handling

Figure 4.5 demonstrates the structure of exception handling. It has a try {...}
catch {...} finally {...} structure. It is intuitive; we try certain operations and we ex-
pect some exceptional condition, which is then caught within the catch block and
handled. finally is used to execute statements, which should be executed irrespec-
tive of whether an exception occurred or not. For example, if we open an I/O file
successfully but something goes wrong during parsing and we cannot continue, then

44 4 Control Structures

there will be an exception. We might let the user know that with an appropriate mes-
sage in the catch block. Now, whether the file is successfully processed or not, we
still have to close the file to prevent dangling references or memory leakage. This is
taken care of by closing the file in the finally block.

The program shown in Figure 4.5 throws an exception if the user enters data that
is not an integer. For example, if the user enters a string instead of an integer value,
it throws NumberFormatException. That’s exactly what we are catching in the catch
block. Also there might be other sources of exception, so to cover that we have a
more generic case listed, Exception. The message for the first case is very specific,
which is more helpful. For the second message, we might need to see the stack
trace and figure out what specific thing went wrong. Further, in the catch block,
we see lambda expressions, which we will discuss in detail later, when we study
functions. For now, it is sufficient to understand that if a type mismatch occurs, we
get NumberFormatException, which matches with the first case, in the catch block,
and that results in the execution of the statement on the right side of =>.

Now, let’s take one more example of exception handling, as it is an important
feature for professional work. Figure 4.6 demonstrates how to throw an exception.
Also it demonstrates how to catch that exception in the calling method. The method
performDivision checks whether the denominator is 0 or not. If it is 0, it throws
RuntimeException, which is then propagated to the calling method, which is main,
in this case. When division by 0 occurs, it matches with the second case in the catch
block, which gets original message using the handler ex. The rest of the program
elements were discussed earlier.

4.6 Review Questions 45

import scala.io.StdIn._
object ExceptionDemo2 {

def main(args: Array[String]): Unit = {
try {

print("Enter the first integer: ")
val firstNumber = readInt()
print("Enter the second integer: ")
val secondNumber = readInt()
val quotient =
performDivision(firstNumber,secondNumber)

println("Quotient: "+quotient)
} catch {

case ex: NumberFormatException =>
println("Type mismatch")

case ex: RuntimeException => println(ex.getMessage)
case ex: Exception => println("Something went wrong")

}
}

def performDivision(num1: Int, num2: Int): Int = {
var result = 0
if(num2 == 0) {

throw new RuntimeException("Division by zero")
} else {

result = num1 / num2
}
result

}
}

Fig. 4.6: Exception Handling with Custom Throw

4.5 Conclusion

In this chapter, we discussed if-expressions, which are frequently used. Then we
explored one of the most widely used control structures, for-expression. It is consid-
ered to be one of the most powerful control structures by professional programmers.
Also we presented numerous variations of the for-expression. We covered while-
loops, including the do-while structure. Finally, we discussed a feature to prevent
an application from crashing, i. e., exception handling. We also covered exception
propagation.

4.6 Review Questions

1. Is it syntactically correct to have an if-else structure inside another if-else struc-
ture?

46 4 Control Structures

2. In for-expressions, what is the difference between until and to?
3. In for-expressions, is it possible to have multiple loop control variables?
4. If a while-loop condition is false, are statements within the loop executed at least

once?
5. What is one major difference between while loops and do-while loops?
6. What is the importance of exception handling?
7. Is it possible to propagate an exception from one method to another method?
8. Is it possible to propagate an exception from one object to another object?

4.7 Problems

1. Using for-expressions, write a program to generate Fibonacci numbers less than
40. Include 0 as well. Hint: Fibonacci numbers can be generated using the for-
mula: Fn = Fn−1 +Fn−2.

2. Use a while-loop to solve Problem #1.
3. Read an integer between 1 and 10, inclusive, from the keyboard. Then generate

Fibonacci numbers greater than this integer. The generated numbers should be
less than 30 and the program should print appropriate messages for exceptions.
Throw an appropriate exception for out of range inputs.

4. Write a program to calculate the factorial of a given non-negative number.

4.8 Answers to Review Questions

1. Yes, it is syntactically correct to have an if-else structure inside another if-else
structure. Theoretically, there is not limit on this.

2. In for-expressions, if we use until, it goes up to n−1; if we use to, it goes up to
n. For the same starting value and the same increment, until loops one less time
compared with to.

3. Yes, it is possible to have multiple loop control variables in for-expressions.
4. In a while-loop, statements are not executed if the condition is false.
5. One major difference between while loops and do-while loops is that statements

are executed at least once in do-while but this is not true for while loops.
6. Exception handling is a mechanism that prevents an application from crashing.
7. Yes, it is possible to propagate an exception from one method to another. By

having a throw clause in the called method, an exception can be propagated to
the caller method. It is important to catch this propagated exception in the caller,
otherwise the application crashes.

8. Yes, since methods are associated with objects, propagating exceptions at the
method level is equivalent to propagating exceptions at the object level.

4.9 Solutions to Problems 47

4.9 Solutions to Problems

1. object FibonacciWithFor {
def main(args: Array[String]): Unit = {

generateFibonacciSeries
}

def generateFibonacciSeries: Unit = {
var f0 = 0
var f1 = 1
var fn = 0
print(f0+", ")
for (i <- 0 until 40) {

fn = f0 + f1
if (fn >= 40)

return
print(fn + ", ")
f0 = f1
f1 = fn

}
}

}

2. object FibonacciWithWhile {
def main(args: Array[String]): Unit = {

generateFibonacciSeries
}

def generateFibonacciSeries: Unit = {
var f0 = 0
var f1 = 1
var fn = 0
print(fn+", ")
while(fn < 34) {

fn = f0 + f1
print(fn+", ")
f0 = f1
f1 = fn

}
}

}

48 4 Control Structures

3. object FibonacciCustom {
def main(args: Array[String]): Unit = {

print("Please enter an integer between 1 and 10: ")
try {

val inputNumber = scala.io.StdIn.readInt()
if (inputNumber < 0 || inputNumber > 10) {

throw new RuntimeException("Number out of range!")
}
generateCustomFibonacci(inputNumber)

} catch {
case e : NumberFormatException =>
println("Type mismatch!")

case e: RuntimeException => println(e.getMessage)
case e: Exception => println("Something went wrong")

}
}

def generateCustomFibonacci(num: Int): Unit = {
var f0 = 0
var f1 = 1
var fn = f0 + f1
for(i <- 0 to 10) {

if(fn > num && fn < 30) {
print(fn+", ")

}
f0 = f1
f1 = fn
fn = f0 + f1

}
}

}

4.9 Solutions to Problems 49

4. object Factorial {
def main(args: Array[String]): Unit = {

print("Please enter a non-negative integer: ")
try {

val inputNumber = scala.io.StdIn.readInt()
val factorial = calculateFactorial(inputNumber)
println("The factorial of "+inputNumber+" is "+
factorial+".")

} catch {
case e: NumberFormatException =>
println("Type mismatch!")

case e: RuntimeException => println(e.getMessage)
case e: Exception => println("Something went wrong!")

}
}

def calculateFactorial(num: Int): Long = {
var product = 1
if(num < 0) {

throw new RuntimeException("Number is negative!")
}
var i = num
while(i >= 1) {

product *= i
i -= 1

}
product

}
}

Chapter 5
Operators

Operators provide us with mechanisms to process values. A typical computer is
mostly about processing values. In isolation, operators look simple, but when com-
bined with other building blocks of Scala, they can quickly result in a complex pro-
gram. So it is important to pay good attention. Scala has wide variety of operators
and these operators are method calls. This is different from many other program-
ming languages that we discussed briefly in Chapter 1.

5.1 Operators as Methods

Scala operators work as methods, as shown in Figure 5.1. The first two variables a
and b are assigned integer values 2 and 3, respectively. Scala type inference assigns
type Int to both a and b. scala.Int class has over a hundred methods and + is one
of those. So, + can be used both as an infix operator or as a method. Identifier c
is assigned value 5, after evaluating the right-hand side expression. With similar
reasoning, d and e have exactly the same value, 6. The last one shows indexOf
method being used as an operator. So f gets value 4, because string indexing starts
with 0.

Let’s look at some unary operators now. The expression 2.unary - is equivalent
to −2. The identifiers that can be used as prefix operators are:

+ - ! ˜

The exclamation sign is a logical inversion and tilde is a binary bit inversion. So, (!
true) is evaluated to false.

Figure 5.2 demonstrates how to write a custom operator. This is one of the
strengths of Scala. We can develop our own domain specific language. For this par-
ticular example, we would like to have an operator that takes two strings, swaps
them, and then joins them. For that, we define a class called MyData that has this
operator method, <->+, which performs swap and join. In the application, object
CustomMethodAsOperator, we create an instance of MyData. In the next LOC, we

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

51

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_5

52 5 Operators

object OperatorsDemo {
def main(args: Array[String]): Unit = {

val a = 2
val b = 3
val c = a.+(b)
println(c)
val d = 3 + 3L
val e = 3.+(3L)
println(d,e)
val name = "Mountain"
val f = name indexOf ‘t’
println(f)
}

}

Fig. 5.1: Operators as Methods

apply the operator with parameter “05”. Finally, we print the result; it prints 05-
2017. By now, you might have realized the strength of this. Think of creating your
own SQL, or a programming language that you think better reflects your organiza-
tion’s needs. For this reason, Scala is also called a meta-language, i.e., a language
about language.

object CustomMethodAsOperator {
def main(args: Array[String]): Unit = {

val year = new MyData("2017")
println(year <->+ "05")

}
}

class MyData (item1: String) {
def <->+(item2: String): String = {

val newString = item2.concat("-").concat(item1)
newString

}
}

Fig. 5.2: Custom Operators as Methods

5.2 Arithmetic Operators

Addition, subtraction, multiplication, and division are arithmetic operations. The
operators to perform these operations are +, -, *, and /, respectively. Also the re-
mainder operator, %, is available to calculate a remainder. We make use of the Scala

5.2 Arithmetic Operators 53

interpreter to see how these operators work, as writing a complete program con-
sumes more space, and repeats many elements that you have already seen numerous
times in this book. The following code snippet shows the Scala interpreter. scala>
means we are in Scala interpreter mode and REPL (Read-Evaluate-Print Loop) is
available.

scala> 3 + 2
res0: Int = 5

One of the advantages of Scala REPL is that we don’t have to open an IDE
and write a complete program to see the output. It is an efficient way to test Scala
features. 3+2 is an expression and Scala interpreter knows how to evaluate this. We
don’t have to necessarily assign a variable, which is different if we are using IDEs
like Scala IDE, intelliJ, Eclipse, etc. IDEs require us to provide an identifier as well.
Here, 3+2 is evaluated and assigned to an identifier by the Scala interpreter. res0:
Int =5 is the output of our expression. The interpreter created an identifier res0 and
assigned the result of expression 3+2.

scala> 3 - 2
res1: Int = 1

Now, it should be fairly intuitive. This time the interpreter created identifier res1
for us. Also it evaluated the expression 3− 2 and assigned the result to the newly
created variable. Please note that the type was automatically inferred based upon
our expression.

If we type res0 in the interpreter, the value is still available. When it prints, it
assigns it to a new identifier as shown below.

scala> res0
res2: Int = 5

Now, let’s look at some more arithmetic operations. 3/2 gives us the quotient of
3 divided by 2, whereas 5%3 gives us the remainder of 5 divided by 3. Similarly, we
can simply write −5 as the subtraction operator can be used as a unary operator. If
we supply our own identifier, Scala uses that instead of creating its own.

scala> 3 / 2
res4: Int = 1

scala> 5 % 3
res5: Int = 2

scala> -5
res7: Int = -5

scala> val a = 5
a: Int = 5

54 5 Operators

5.3 Relational and Logical Operators

Relational operators help us to compare values. Scala has greater than (>), less
than (<), greater than or equal to (>=), and less than or equal to (<=) operators
for relational processing. When evaluated, these operators result in a boolean value.
Let’s look at some examples.

scala> 1 > 4.5
res8: Boolean = false

scala> ‘z’ == ‘Z’
res11: Boolean = false

scala> ("Prog"+"ramming") == "Programming"
res13: Boolean = true

scala> ! true
res18: Boolean = false

The first example compared an integer with a floating point number. Interpreter is
capable enough to do conversion and comparison. Since 1 is not greater than 4.5, it
evaluates to false. Similarly, ‘z’ and ‘Z’ have different unicode and they are not the
same, and hence the result is false. The third case is an example of object equality.
Scala allows to compare two objects with the == operator. The values of the objects
are compared and hence we have the result as true. Finally, we have an example of
unary operator, (! true) is false.

Scala has logical operators or logical methods to perform logical operations:
logical-and (&&) and logical-or(||). Logical operators differentiate themselves from
relational operators by taking Boolean operands; the result is Boolean too. Now, let’s
look at some examples.

scala> true && true
res20: Boolean true

scala> true && false
res21: Boolean = false

scala> false || true
res22: Boolean = true

Table 5.1 presents a truth table for logical-and and logical-or. So (true && true)
should evaluate to true, which is exactly what we see in the Scala interpreter. The
remaining two examples also match the truth table values. Details of Boolean logic
are available in An Investigation of the Laws of Thought by George Boole [Boo05].

5.4 Bitwise Operators 55

Table 5.1: Truth Table for Logical Operators

Operand 1 Operand 2 Logical AND Logical OR

true true true true
true false false true
false true false true
false false false false

5.4 Bitwise Operators

Bitwise manipulation may not look like a commonly used feature for typical ap-
plication programming work. But it allows low level manipulation of data, which
makes it a powerful feature. Cryptography is one area that uses bit manipulation.
Also, if we are implementing security libraries this feature might prove handy. In
any case, it is a good engineering exercise to work with bits. Sometimes, new ap-
plication areas emerge and certain features of a programming language are in high
demand.

Table 5.2 shows the truth table for bitwise operators. If we represent operand
1 with x and operand 2 with y, AND or & is equivalent to the product of x and
y. Similarly, OR or | is equivalent to special addition, denoted by +. For special
addition: 0+0 = 0, 0+1 = 1, 1+0 = 1, and 1+1 = 1. XOR or ˆ can be calculated
with the equation xy+ xy.

Table 5.2: Truth Table for Bitwise Operators

Operand 1 Operand 2 AND OR XOR
(x) (y) (x.y) (x+y) (x

⊕
y)

true true true true false
true false false true true
false true false true true
false false false false false

In order to complement a bit, Scala provides a unary operator, tilde (˜). Some-
times, we need to shift bits left or right. For that, Scala provides shift left (<<), shift
right (>>), and unsigned shift right(>>>). Now, let’s look at some examples.

scala> 1 & 2
res27: Int = 0

scala> 1 | 2
res28: Int = 3

56 5 Operators

scala> 1 ˆ 2
res29: Int = 3

scala> ˜1
res37: Int = -2

scala> 1 << 2
res30: Int = 4

scala> 1 >> 2
res31: Int = 0

scala> 1 >>> 2
res32: Int = 0

In the first example, 1&2 = 0, because for a 32-bit representation 1 is (0000 0000
0000 0000 0000 0000 0000 0001) and 2 is (0000 0000 0000 0000 0000 0000 0000
0010). When we do bitwise AND we get (0000 0000 0000 0000 0000 0000 0000
0000), which is 0. Applying the same logic, 1|2 evaluates to integer value 3. Now,
for the unary operator tilde, using 32-bit representation, (˜1) becomes (1111 1111
1111 1111 1111 1111 1111 1110), which is −2.

How about shift operators? Let’s analyze 1<<2 = 4. We know that the 32-bit
representation for 1 is (0000 0000 0000 0000 0000 0000 0000 0001). The number
after the shift operator tells us how many times to shift. Since it is shift left, we shift
bits to the left by 2 positions. Now, it becomes (0000 0000 0000 0000 0000 0000
0000 0100), which is integer value 4.

We apply the same logic to the last two examples. When we shift (0000 0000
0000 0000 0000 0000 0000 0001) by 2 positions right, it becomes (0000 0000 0000
0000 0000 0000 0000 0000) and hence 0. The last example shows shift right opera-
tion for unsigned numbers, that means there is no sign bit consideration. Since 1 is
a positive number, its sign bit is 0. When we shift right by 2 positions, we get all 0s,
which is 0 again.

High-tech companies like Apple, Google, Amazon, Intel, etc., do low-level pro-
gramming. The ultimate power comes with low level programming. Even if you are
doing projects in an academic setting, low level features will be useful, especially
when you are involved in deep engineering.

5.5 Operator Precedence and Associativity

Operator precedence is one of the important fundamentals of the Scala programming
language. It determines the order of evaluation of different parts of an expression.
Unintended order can easily produce incorrect results. Table 5.3 shows a list of
operators from highest to lowest precedence.

5.6 Conclusion 57

Table 5.3: Operator Precedence

SN Operators

1 An operator character other than listed below. (Highest precedence)
2 * / %
3 + -
4 :
5 = !
6 <>
7 &
8 ˆ
9 |

10 All letters
11 Assignment operators. (Lowest precedence)

Let’s take an example. If we execute 5+ 5 ∗ 5, in Scala interpreter, we get 30,
not 50. Why is it so? It is because of precedence. Since multiplication has higher
precedence than addition, the expression becomes 5+(5∗5). Also please note that
parentheses have highest precedence.

scala> 5 + 5 * 5
res40: Int 30

scala> (5 + 5) * 5
res41: Int = 50

The associativity of operators determines how different parts of an expression are
grouped together for calculation. Here are some rules to remember:

1. The last character in the operator/method determines the associativity.
2. If a method ends with ‘:’, grouping is done from right to left.
3. If a method does not end with ‘:’, grouping is done from left to right.

Based on the above rules, the expression a∗b∗ c is grouped as (a∗b)∗ c. Please
note that this is how Scala determines which part to evaluate first, if there are opera-
tors with the same precedence level. Now applying another rule, x ::: y ::: z is grouped
as x ::: (y ::: z). Also x ::: y becomes y. ::: (x), right to left associativity. Let’s remind
ourselves, 2+3 becomes 2.+(3), not 3.+(2); it is left to right associativity.

5.6 Conclusion

In this chapter, we started with operators as methods. Scala operators are method
calls; this is the major point to remember. Then we covered arithmetic operators
(or methods). We developed our own operator and applied that to process operands.

58 5 Operators

Relational and logical operators play important roles in programming, which was
covered along with a truth table. Similarly, we covered bitwise operators, which are
handy features if we are doing low level manipulation. Certain domains use low
level programming more than other domains. Operator precedence and associativity
determine the order in which different parts of an expression are evaluated.

5.7 Review Questions

1. Are Scala operators method calls?
2. What is the output of the expression 10%3 == 1?
3. Does ‘a’ == ‘A’ evaluate to true?
4. What is the output of the expression (true&& f alse)&&(1<5||12>10)?
5. What is the output of the expression 5 ˆ5?
6. What is the output of the expression ((1 >>2) + 1) == ((1 >>>2) + (˜1) + 3)?
7. Is a ::: b equivalent to a. ::: (b)?
8. Convert x∗ y∗ z to method call notation.

5.8 Problems

1. Using custom defined verb operators, create valid English sentences having the
form Subject+Verb+Object. You can limit your scope to 2 subjects, 2 verbs, and
2 objects.

2. Modify the solution for Problem #1 so that sentences do not have any string in
double quotes.

3. Let’s assume that lower temperature implies higher probability of rain. Input city
name and temperature for that city, from a keyboard, for two data points, and
determine which city has higher probability of rain. Temperature range should
be between 50◦F and 80◦F.

5.9 Answers to Review Questions

1. Yes, Scala operators are method calls. This is different from other programming
languages that we discussed in Chapter 1.

2. true
3. No
4. false
5. 0
6. true
7. No. a ::: b is equivalent to b. ::: (a); it is right to left associative.

5.10 Solutions to Problems 59

8. The method call notation for x∗y∗z is (x.∗(y)).∗(z); it is left to right associative.

5.10 Solutions to Problems

1. object SimpleEnglishSentence {
def main(args: Array[String]): Unit = {

val I = new Subject("I")
val You = new Subject("You")
val sentence1 = I eat "rice"
val sentence2 = You read "magazine"

}
}

class Subject(subject: String) {
def eat(anObject: String): String = {

val sentence = subject.concat(" ").concat("eat")
.concat(" ").concat(anObject).concat(".")
sentence

}

def read(anObject: String): String = {
val sentence = subject.concat(" ").concat("read")
.concat(" ").concat(anObject).concat(".")

sentence
}

}

60 5 Operators

2. case class Object(anObject: String)

object SimpleEnglishSentenceRefined {
def main(args: Array[String]): Unit = {

val I = new Subject1("I")
val You = new Subject1("You")
val rice = Object("rice")
val magazine = Object("magazine")
val sentence1 = I eat rice
val sentence2 = You read magazine

}
}

class Subject1(subject: String) {
def eat(obj: Object): String = {

val sentence = subject.concat(" ").concat("eat")
.concat(" ").concat(obj.anObject).concat(".")

sentence
}

def read(obj: Object): String = {
val sentence = subject.concat(" ").concat("read")
.concat(" ").concat(obj.anObject).concat(".")

sentence
}
}

5.10 Solutions to Problems 61

3. import scala.io.StdIn._
object WeatherForecast {

def main(args: Array[String]): Unit = {
forecastRain

}

def forecastRain: Unit = {
try {

print("Enter first city name: ")
val city1Name = readLine()
print("Enter temperature: ")
val city1Temp = readFloat()
if (city1Temp < 50 || city1Temp > 80) {

throw new scala.RuntimeException(city1Name +
" temperature out of range.")

}

print("Enter second city name: ")
val city2Name = readLine()
print("Enter temperature: ")
val city2Temp = readFloat()
if (city2Temp < 50 || city2Temp > 80) {

throw new scala.RuntimeException(city2Name +
" temperature out of range.")

}

if (city1Temp < city2Temp) {
println(city1Name +
" has higher probability of rain.")

} else {
println(city2Name +
" has higher probability of rain.")

}
} catch {

case e: NumberFormatException =>
println("Type mismatch!")

case e: RuntimeException => println(e.getMessage)
case e: Exception => println("Something went wrong!")

}
}

}

Chapter 6
Data Input and Output

Generally users interact with computers using input and output devices. That means
communication is data, i.e., either they supply data to computers or they consume
data from computers. From the users’ perspective data can be numbers, texts, im-
ages, graphs and other visualizations, etc. From the computers’ perspective, all of
this information is represented in terms of binary bits. Since it is monotonous to
work with binary bits, high level programming languages like Scala provide a higher
level representation, which is readable to the users. Character representation is a
common understandable form. Also it provides finer control on textual as well as
numeric representation.

In this chapter, we first discuss regular expressions, which provide us ways to
process character level information. Then we discuss character level input and out-
put. Also we cover character combinations like lines or strings. Once we process
characters and lines, we need a way to group them together, which is a file sys-
tem. So, we discuss reading from and writing to a file. Files can be located in many
places, within an operating system. To cover this, finally, we discuss directory navi-
gation.

6.1 Regular Expressions

Regular expressions originated from the work of S. C. Kleene [Kle56]. Scala makes
it convenient to analyze data using the regular expression library, scala.util.matching.Regex
class. Table 6.1 presents some of the notations supported by Scala, for a quick ref-
erence.

Let’s take some examples to demonstrate how notations work in Scala. In order to
use the regular expression library, we need to first import the Regex class as shown
in the interpreter below. Then we define anInteger as a value that can optionally start
with a − sign, which is followed by one or more digits. Next, we define our data
called data, which is a string containing words, integers, and floating point numbers.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

63

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_6

64 6 Data Input and Output

Table 6.1: Regular Expression Notations

Notation Meaning

+ One or more
? Zero or one
* Zero or more
- Used for range
[] Used for range
() Used for character by character representation

The findFirstIn method locates the first occurrence, which is 44 in this case. Please
note that type is Option[String] and the value is some value, Some(44).

scala> import scala.util.matching.Regex
import scala.util.matching.Regex

scala> val anInteger = """(-)?(\d+)""".r
anInteger: scala.util.matching.Regex = (-)?(\d+)

scala> val data =
"Scala programming 44 -55 is fun -1.1 3.4"
input: String =
Scala programming 44 -55 is fun -1.1 3.4

scala> anInteger findFirstIn data
res1: Option[String] = Some(44)

scala> val aWord = """([a-zA-Z]+)""".r
aWord: scala.util.matching.Regex = ([a-zA-Z]+)

scala> aWord findFirstIn input
res17: Option[String] = Some(Scala)

Similarly, we define a regular expression for a word, aWord, which is one or more
occurrence of letters ‘a’ to ‘z’ and ‘A’ to ‘Z’. Next, we ask the interpreter to locate
the first occurrence. The word “Scala” is the first word in our data, so it is a correct
finding. By now, you must have realized that regular expressions provide rich string
processing ability.

Next, let’s write a complete program to demonstrate the use of regular expres-
sions. In Figure 6.1, data has a string that contains words as well as numbers. We
would like to extract money related numbers. For that, we define a regular expres-
sion called moneyPattern: starts with “USD”, which is followed by one or more
spaces, which is followed by one or more digits, which is optionally followed by

6.1 Regular Expressions 65

object RegularExpressions {
def main(args: Array[String]): Unit = {

val data =
"""
| This is to demonstrate regular expressions.
| My assets are 2 computers, 5 shirts, and
| 35 books. Sometimes I eat USD 1.1 lunch, some
| other times, it could be USD 2.5 lunch.
""".stripMargin.toString

val moneyPattern = """((USD)\s+)(\d+)(\.\d*)?""".r
println((moneyPattern findAllIn data).toList)

}
}

Fig. 6.1: Regular Expressions

a dot, and zero or more digits. There are two matches, and hence the output is
List(USD 1.1, USD 2.5).

66 6 Data Input and Output

6.2 Single Character Input

You might be wondering why we have a separate section for single character in-
put. The primary reason is that it is a fall back method when other methods do not
work. In practice, you might be reading a whole string or a line at a time, as far as
application programming is concerned. For memory sensitive devices, character by
character calculation is important; also the range of numerals is equally important.

Another reason for handling input character by character is transmission. If there
is a limited bandwidth then it is practical to adjust the optimum number of char-
acters. For example, there could be small field devices placed on farmland, which
are capable of receiving small amounts of data. Further these devices may be capa-
ble of continuing transmission from the last successful transmission. In this kind of
systems, byte level reading and writing becomes a practical solution.

object SingleCharInput {
def main(args: Array[String]): Unit = {

println("Enter each character followed by return key: ")
val totalAvailableChars = 4
var inputChar = ’ ’
val inputBuffer = new Array[Char](totalAvailableChars)
var i = 0
while(i < totalAvailableChars) {

inputChar = scala.io.StdIn.readChar()
inputBuffer(i) = inputChar
i += 1

}
inputBuffer.foreach(print)

}
}

Fig. 6.2: Character Level Input and Output

Figure 6.2 shows how to limit the total space in terms of the number of available
characters in the buffer. The Array size can be fixed by passing the total number
of characters to be accommodated. While reading characters from a keyboard, you
can control that with a loop variable. For your system, if a character is assigned
16 bits, you are allocating a total of 64 bits, which is equal to 8 bytes. If you are
programming for a device that has limited memory, you need to calculate precisely.

Sometimes, we need to read a file byte by byte. In that case, you might like to
allocate space accordingly, as shown in the code snippet below. Let’s say you are
programming for some embedded devices and file size should not be greater than
2 MB, then the space allocation would be something like:

val inputBuffer = new Array[Byte](2 * 1024)

6.3 Single Character Output 67

6.3 Single Character Output

Analogous to single character input, single character output is used when character
level control is required. Let’s say we need to send a message to field devices located
thousands of miles away from host servers and these devices have limited memory
as well as limited bandwidth for transmission. In this case, engineers will be re-
quired to split data into smaller chunks which can be transmitted within available
bandwidth. Also the overall size of data is limited.

object SingleCharOutput {
def main(args: Array[String]): Unit = {

val dataToTransmit =
"""
| Soil moisture is low.
| Please open water valve.
""".stripMargin.toString

val totalChar = dataToTransmit.length
val transmissionLimitInChar = 16
val totalNumberOfChunks =

(totalChar / transmissionLimitInChar) + 1
val outputBuffer = Array.ofDim[Char](

totalNumberOfChunks,
transmissionLimitInChar)

val intermediateData = dataToTransmit.toCharArray
var dataIndex = 0
for(i <- 0 until totalNumberOfChunks;

j <- 0 until transmissionLimitInChar) {
outputBuffer(i)(j) = intermediateData(dataIndex)
if(dataIndex < (intermediateData.size - 1)) {

dataIndex += 1
}

}
outputBuffer foreach {chunk => chunk foreach print;
println}

}
}

Fig. 6.3: Character Level Output

Figure 6.3 first defines data to be transmitted, dataToTransmit. Let’s assume that
transmission is expensive and slow, which is a realistic assumption for certain farm-
ing devices, based on our experience. Further, let’s assume that a 16-character chunk
is the optimum chunk for transmission. In case the transmission fails, we need to
repeat the failed 16 characters, not the entire transmission, because the system is
capable of resuming transmission from the failure point; this is also a realistic as-
sumption.

Next, we calculate the total number of chunks by dividing the total number of
characters by the transmission length limit. Then we create an output buffer, which is

68 6 Data Input and Output

a two-dimensional character array. The first dimension represents the chunks and the
second dimension represents the contents of each chunk. So, the characters from the
given string are now re-arranged, so that they can be transmitted. The last statement
prints the outputBuffer contents, so that we can verify the data by visual inspection.

One of the reasons for taking string reference data is that it is one of the most
widely used data formats. If you navigate a professional project written in any high
level language, you are most likely to see some forms of strings. But embedded
devices, on the other hand, have limited memory and transmission capabilities. For
this reason, character level processing is required. Please note that this is just one
of those application areas; there are numerous other areas where character level
processing is preferred. For example, if you are doing some cryptographic work,
you might need to process character by character.

6.4 Reading From a File

Reading data from a flat file is a common practice in many applications. If we look
at many big data intensive applications like Facebook, Google, etc. we can find
flat file applications. In fact, many open source applications emerged from Google,
Facebook, Amazon, etc. Even though Apple is a more closed company, people who
worked there for a long time came out and started large open source projects, in-
cluding the leading Apache Software Foundation. One pioneering company in big
data, Cloudera, open sourced most of its projects. As of today, big data applications
process very large flat files: gigabytes to petabytes.

Figure 6.4 presents a program that reads data from a text file, line by line. We
are making use of the Java library, so we have the corresponding import statement.
Please note that Scala allows us to write multiple items in a single import statement.
Once we declare the file path, we create source by supplying the file path name
to fromFile method of Source class. The for expression prints each line separately.
Since there are multiple sources of exceptions, we provide cases accordingly. If the
file path is not correct, we get FileNotFoundException. Sometimes there can be a
problem with an I/O device, which is caught by IOException case. Everything else
falls into the last case, which is a broader exception case.

6.5 Writing to a File 69

import java.io.{IOException, FileNotFoundException}
import scala.io.Source
object ReadFromTextFile {

def main(args: Array[String]): Unit = {
val fileName = "/Users/.../temp/InputFile.txt"
var source: scala.io.BufferedSource = null
try {

source = Source.fromFile(fileName)
for(line <- source.getLines()) {

println(line)
}

} catch {
case e: FileNotFoundException =>
println("File not found.")

case e: IOException => println("IO problem.")
case e: Exception => println("Something went wrong.")

} finally {
source.close()

}
}

}

Fig. 6.4: Reading from a Text File

6.5 Writing to a File

Like reading from a file, writing to a file is a common operation that programmers
have to perform. Text files are common in certain areas like big data. Figure 6.5
shows a program that creates a text file called OutputFile.txt and writes a sentence
Scala is a purely OO language.

import java.io.{File, PrintWriter}
object WriteToTextFile {

def main(args: Array[String]): Unit = {
val outFileName = "/Users/.../temp/OutputFile.txt"
var printWriter: PrintWriter = null
try {

printWriter = new PrintWriter(new File(outFileName))
printWriter.write("Scala is a purely OO language.")

} catch {
case e: Exception => println("Something went wrong.")

} finally {
printWriter.close()

}
}

}

Fig. 6.5: Writing to a Text File

70 6 Data Input and Output

The first line in the main method defines the file path, including the file name. The
second LOC creates an instance of java.io.PrintWriter, which has a write method in
it that can be called to write contents in the file. That is what is being done inside
try-catch block. Then we are catching a generic exception, which covers all types
of exceptions. Finally, we close the printWriter.

6.6 Navigating Directories

Directory operation is a handy feature when we need to organize our data in I/O
devices. This is a common operation in many practical application domains. Fig-
ure 6.6 presents a program to list files in a directory and to list sub directories of a
directory.

import java.io.File
object NavigatingDirectories {

def main(args: Array[String]): Unit = {
printListOfFilesInDirectory
printListOfSubDirectories

}

def printListOfFilesInDirectory: Unit = {
val dirName = "/Users/.../temp"
val dir = new File(dirName)
var listOfFiles: List[File] = null
if (dir.exists() && dir.isDirectory) {

listOfFiles = dir.listFiles.filter(_.isFile).toList
} else {

listOfFiles = List[File]()
}
listOfFiles.foreach(println)

}

def printListOfSubDirectories: Unit = {
val dirName = "/Users/.../temp"
val dir = new File(dirName)
var listOfSubDirectories: List[String] = null
listOfSubDirectories =

dir.listFiles.filter(_.isDirectory).
map(_.getName).toList

listOfSubDirectories foreach println
}

}

Fig. 6.6: Directory Navigation

This program utilizes java.io.File and hence we have a corresponding import.
The main method invokes two other methods, which perform file listing and direc-

6.6 Navigating Directories 71

tory listing. In printListOfFilesInDirectory method, first we define a value for the
directory path. The three dots in the middle of the directory path means you can
insert the username for your machine if you are using Apple’s Mac OS; it should be
similar for Linux flavors. For Windows, you can start with a drive letter (like C:\).

A value dir is created by instantiating File, which takes the directory path as a
parameter. Then we create a place holder variable called listOfFiles to hold the list
of files. The if-condition checks two things: whether the directory exists and if it is
a directory. If both the conditions are satisfied then appropriate methods are invoked
on the object dir. Please note the listFiles method lists both files and directories; so
we need to filter them appropriately. The underscore represents any item returned by
method listFiles. Finally, the filtered items are converted to a list and then assigned
to our file list place holder. The next line prints each item in the list, i. e., prints all
the files in /Users/.../temp directory.

Now, let’s analyze the second method, printListOfSubDirectories. The place
holder, in this case, is a list of strings. The filter method checks if an item is a
directory. If it is a directory, then it maps to its getName method. The collection is,
finally, converted to the place holder list, listOfSubDirectories. The last statement
prints each element of the place holder.

Next, let’s discuss system commands. Scala allows us to execute operating sys-
tem commands from the program itself; Scala was designed to scale from simple
scripting to complex programs. This ability to have control over processes gives
programmers the ability to manipulate system level processes.

import scala.io.Source
import scala.sys.process._
object SystemCommand {

def main(args: Array[String]): Unit = {
val lsCommand = Process("ls").lineStream
lsCommand foreach println

val htmlContents = "curl https://www.scala-lang.org".!
println(htmlContents)

val html =
Source.fromURL("https://www.scala-lang.org").
mkString

println(html)
}

}

Fig. 6.7: System Commands

Figure 6.7 presents several approaches. The first approach creates a Process ob-
ject by passing a system command as a parameter. The result is stream of lines,
which can be printed using foreach. The second approach is to have the system com-
mand within double quotes and then call an exclamation method. In our example,

72 6 Data Input and Output

it crawls to https://www.scala-lang.org and gets html content, which is
then assigned to htmlContents. Alternatively, we can also use fromURL method of
scala.io.Source class, as shown in the program.

So there are different ways of doing the same thing, which is good. Based on
your preference, you could pick one over another. For example, if you are not com-
fortable with Shell scripts, you can use alternative Scala APIs, as shown in this
program. Some developers like OS commands as they get to use all the features
of OS level scripting. In any case, you can do the job. That’s why Scala provides
multiple options.

6.7 Conclusion

In this chapter, we discussed regular expressions. Regular expressions give us more
power to process strings. If string APIs do not provide the functionality that we are
looking for, then we go for regular expressions. Next, we demonstrated single char-
acter input and single character output, with the help of complete programs. Single
character processing is important in many areas, including those that have limited
memory and transmission power. Next, we covered reading from and writing to a
file. These are handy operations in many applications, including big data. Finally,
we covered directory navigation, including system commands.

6.8 Review Questions

1. If we define phone as “““(\d+)(-)(\d+)(-)(\d+) ”””.r, data as 444443 555-555-
5555 4455 3-4-4, and command as phone findFirstIn data, what is the output in
the Scala interpreter?

2. For the same pattern and data as in Problem # 1, what is the output for command
phone.findAllIn(data).toArray?

3. For the same pattern and data as in Problem #1, what is the output for command
phone.findAllIn(data).toList?

4. Let’s define digit as “““(\d+) ”””.r, data as Google 45 is 90 *search! engine, and
command as digit.findAllIn(data).toArray, what is the output?

5. When do we need single character processing?
6. When is flat file processing applicable?
7. What is the importance of scala.io.Source?

6.9 Problems

1. Write a program to read individual characters from a text file.

https://www.scala-lang.org

6.11 Solutions to Problems 73

2. Write a program to read html contents from https://www.scala-lang.
org and store this content in a text file. Display the size of this file on the console.

3. Read the contents of the file produced by the program for Problem #2 and find
the total occurrence of word Scala.

4. Browse the website of The Guardian, https://www.theguardian.com/
world. Please note the response time, qualitatively; it is pretty fast compared
with CNN, http://www.cnn.com/. This site was implemented using the
Scala based framework, Play (as of 2017). Let’s assume there is a competition
for these two sites and the winner is determined by the occurrence of the word
“news” on the home page, i.e., the higher the occurrence, the higher will be
the score. Now, write a program that reads the contents, performs the necessary
analysis, and decides the winner. Print the name and count for both the websites
and display the winner, on the console.

6.10 Answers to Review Questions

1. Option[String] = Some(555-555-5555)
2. Array[String] = Array(555-555-5555, 3-4-4)
3. List[String] = List(555-555-5555, 3-4-4)
4. Array[String] = Array(45, 90)
5. When we need character level control, we need single character processing. Also

single character processing becomes important when there is limited available
memory and/or limited transmission bandwidth.

6. Flat file processing is applicable when we use flat files as a persistence system,
instead of databases. In some cases, flat files may be used together with databases
to provide additional capabilities.

7. One of the applications of scala.io.Source is that we can create flat file data
sources.

6.11 Solutions to Problems

https://www.scala-lang.org
https://www.scala-lang.org
https://www.theguardian.com/world
https://www.theguardian.com/world
http://www.cnn.com/

74 6 Data Input and Output

1. import java.io.{IOException, FileNotFoundException}
import scala.io.Source
object ReadCharsFromTextFile {

def main(args: Array[String]): Unit = {
val fileName = "/Users/.../temp/InputFile.txt"
var source: scala.io.BufferedSource = null
try {

source = Source.fromFile(fileName)
for(char <- source) {

println(char)
}

} catch {
case e: FileNotFoundException =>
println("File not found.")

case e: IOException => println("IO Problem.")
case e: Exception => println("Something went wrong.")

} finally {
source.close()

}
}

}

2. import java.io.{File, PrintWriter}
import scala.io.Source
object ReadFromURL {

def main(args: Array[String]): Unit = {
val outFileName = "/Users/.../temp/ScalaFile.txt"
val html =

Source.fromURL("https://www.scala-lang.org").
mkString

writeToFile(outFileName, html)
val scalaFile =

new File("/Users/.../temp/ScalaFile.txt")
val fileSize = scalaFile.length
println("The size of the file written is "+
fileSize+" KB")

}

def writeToFile(fileName: String, content: String): Unit = {
var printWriter: PrintWriter = null
try {

printWriter = new PrintWriter(new File(fileName))
printWriter.write(content)

} catch {
case e: Exception => println("Something went wrong.")

} finally {
printWriter.close()

}
}

}

6.11 Solutions to Problems 75

3. import java.io.{IOException, FileNotFoundException}
import scala.io.Source
object ReadFromHtmlTextFile {

def main(args: Array[String]): Unit = {
val fileName = "/Users/.../temp/ScalaFile.txt"
var source: scala.io.BufferedSource = null
try {

source = Source.fromFile(fileName)
val allTokens = source.mkString.split("\\s+")
var count = 0
for(token <- allTokens) {

token match {
case "Scala" => count += 1
case _ => count += 0

}
}
println("Total count for word Scala: "+count)

} catch {
case e: FileNotFoundException =>
println("File not found.")

case e: IOException => println("IO problem.")
case e: Exception => println("Something went wrong.")

} finally {
source.close()

}
}

}

76 6 Data Input and Output

4. import scala.io.{BufferedSource, Source}
object CNNVsTheGuardian {

def main(args: Array[String]): Unit = {
computeNewsWinner

}

def computeNewsWinner: Unit = {
var cnnHtmlSource: BufferedSource = null
var theGuardianHtmlSource: BufferedSource = null
try {

cnnHtmlSource = Source.fromURL("http://www.cnn.com/")
theGuardianHtmlSource =
Source.fromURL("https://www.theguardian.com/us")

val cnnAllTokens = cnnHtmlSource.
mkString.split("\\s+")

val theGuardianAllTokens =
theGuardianHtmlSource.mkString.split("\\s+")

var cnnCount = 0
for (token <- cnnAllTokens) {

token match {
case "news" => cnnCount += 1
case _ => cnnCount += 0

}
}
var guardianCount = 0
for (token <- theGuardianAllTokens) {

token match {
case "news" => guardianCount += 1
case _ => guardianCount += 0

}
}
var winnerMessage = ""
if (cnnCount > guardianCount) {

winnerMessage = "CNN is the winner."
} else {

winnerMessage = "The Guardian is the winner"
}
println(winnerMessage)
println("CNN Score: " + cnnCount)
println("The Guardian Score: " + guardianCount)

} catch {
case e: Exception => println("Something went wrong.")

}
}

}

Chapter 7
Inheritance and Composition

There are numerous natural hierarchies in the real world. Also we, human beings,
have created many systems that have hierarchies. In hierarchies, sometimes things
flow from top to bottom, and at some other times, things propagate from bottom to
top. Depending upon domains, these things can be properties, behavior, instructions,
etc. When we write programs to solve problems related to hierarchies, it is natural
to model real world hierarchies with some programming features. In this way, it
is convenient to relate programs to the original problem. Also it is much easier to
maintain the programs and hence reduces cost over a period of time. Scala provides
features to represent hierarchies. Also it provides features to combine things, which
maps to syntheses or compositions, in the real world.

Inheritance is a mechanism by which one entity can get resources from another
entity; it can be used to model is-a relationships. In the real world, one entity can
inherit from multiple other entities. It is also true that multiple entities can inherit
from a single entity. Scala supports these real world scenarios through classes, in-
heritance, composition, and traits. Further, inheritance is like a parent–child rela-
tionship. One of the major advantages of inheritance is that it maintains the original
relationship and promotes code reuse.

Composition is a mechanism to combine multiple entities to form a larger entity;
it can be used to model has-a relationships. For example, a car is composed of
numerous parts. If we try to model a car, we might end up with a Car class and
many other classes related to parts, which can become fields of the Car class. For
example, there can be a Wheel class to represent wheels. Since wheels are parts of
a car, they can be combined with other classes that are parts of a car too. The whole
combination, Car class, represents a real world car.

7.1 Extending Classes

A class can inherit all non-private members from another class by using the reserved
word extends. When a class A extends class B, the type of class A, which is A,

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

77

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_7

78 7 Inheritance and Composition

becomes a sub-type of the type of class B, which is B. Figure 7.1 shows one super
class Vehicle and two sub classes—Car and Truck.

class Vehicle(make: String, model: String, year: Int) {
def calculatePrice(varFactor: Int): Double = {

val price = ((year - 2000) * varFactor) * 1000
price

}
}

class Car(make: String,
model: String,
year: Int,
mode: String) extends

Vehicle(make, model, year) {
// Car specific methods here

}

class Truck(make: String,
model: String,
year: Int,
operation: String) extends

Vehicle(make, model, year) {
// Truck specific methods here

}

Fig. 7.1: Extending a Class

The class Vehicle is a super class that has a common method called calcu-
latePrice, which is inherited by sub classes Car and Truck. Please do not worry
about the correctness of the formula, because the focus, here, is on inheriting
the class members. Also price is calculated differently by different manufacturers.
Please note that the class Vehicle has a constructor defined in the same line, with
three parameters. Similarly, each of the sub classes has a constructor defined in the
same line to that of the class declaration. The sub class Car has an additional con-
structor argument called mode and the sub class Truck has an additional constructor
parameter called operation.

The purpose of the constructor argument mode, in Car, is to represent whether a
car is for personal use or for public transportation. Similarly, the constructor argu-
ment, operation, in Truck, is to model whether a truck is operated for shipping or for
farming. Please note that three parameters are passed to the super class constructor
while declaring sub classes. This is a feature that Scala provides, you don’t have to
write a separate statement to pass parameters to the super class constructor. Please
note that a class can directly inherit from only one class using the reserved word
extends. When we need to model real world multiple inheritance scenarios, we can
use traits, which will be discussed in Chapter 8.

7.3 Abstract Classes 79

7.2 Overriding Methods and Fields

Overriding is a feature that allows programmers to re-define a behavior or a state in
sub classes. Scala allows a method to be overridden by a method or a field. Figure 7.2
has two classes—a class called Shape and another class called Rectangle. Area is a
common property for different types of shapes; it has been defined as a method in
the Shape class. Also this class has another method called message that is supposed
to print what kind of shape the current object is.

class Shape(name: String) {
def area: Double = 0.0
def message = println("This is "+name)
val numOfDimensions = 0

}

class Rectangle(name: String,
length: Double,
breadth: Double) extends

Shape(name) {
override def area: Double = length * breadth
override val numOfDimensions = 2

}

Fig. 7.2: Overriding a Method

The class rectangle inherits both area and message methods of the class Shape.
Please note that these are methods without parameters; they look like variables or
values. If the reserved word def comes before an identifier, then that is a method;
values are defined using the reserved word val and variables are defined using the
reserved word var. Also the sub class inherits the field numOfDimensions, as it is a
non-private member.

The class Rectangle overrides the behavior of the method area. In Shape class,
it is assigned value 0.0, whereas in Rectangle class, it is calculated based on values
coming from constructor parameters length and breadth. So the method of com-
putation has changed in the sub class. Similarly, the field numOfDimensions has
been redefined in the sub class, by assigning it a different value. Please note that re-
assignment to a val is not allowed in the same class, but it can be overridden using
the reserved word, override.

7.3 Abstract Classes

Abstract classes are those classes that do not have implementations for all of their
methods. Sometimes, we need to defer the implementation to sub classes; that’s

80 7 Inheritance and Composition

when we use abstract classes. Classes can be declared as abstract by using a modifier
abstract, as shown in Figure 7.3.

abstract class BankAccount(custName: String,
accNumber: Int,
accType: String,
principal: Double) {

def calculateAmount(timeInYears: Double): Double
}

class CheckingAccount(custName: String,
accNumber: Int,
accType: String,
principal: Double,
interestRate: Double) extends

BankAccount(custName,
accNumber,
accType,
principal) {

override def calculateAmount(duration: Double): Double = {
val totalAmount =
principal * (1 + (interestRate * duration))

totalAmount
}

}

Fig. 7.3: Abstract Class

The class BankAccount is an abstract class and hence the method calculateAmount
does not have an implementation. If the class is not declared abstract, we get a com-
pile time error. The class CheckingAccount extends BankAccount and hence should
either implement the inherited abstract method or declare itself as an abstract class.
Please note that the method does not require the modifier abstract. It is automati-
cally inferred, if the method does not have a body.

7.4 Invoking Super Class Constructors

Invoking a superclass constructor is fairly straight-forward. In fact, we have already
seen several examples. When a class extends another class, the reserved word ex-
tends is followed by a class name, which becomes a superclass. We can call a super-
class constructor by passing parameters in the parentheses as shown in Figure 7.3.

Just to be clear, let’s say there are two classes—A and B. Further let’s assume A
has two constructor parameters and B has three constructor parameters, as shown
below. Please note how parameters x and y are being passed to A; this is superclass
constructor invoking.

7.5 Polymorphism and Dynamic Binding 81

class A(a: Int, b: Int) {
// Code here

}

class B(x: Int, y: Int, z: Int) extends A(x,y) {
// Code here

}

7.5 Polymorphism and Dynamic Binding

The literal meaning of polymorphism is many forms. In chemistry, we have sub-
stances that crystallize into two or more chemically identical but crystallographi-
cally distinct forms. Similarly, animals make sounds but these sounds are different.
Figure 7.4 demonstrates a program that models animal sounds using Scala’s poly-
morphism and dynamic binding.

The class Animal is a super class to classes Cat, Cow, and Duck. Each of these
sub classes have overridden the super class method makeSound. In the singleton
object AnimalSoundApp, we have the makeAnimalSound method that has Animal as
a parameter. In the body of this method, it invokes the makeSound method on the
object animal, which is of type Animal.

When we run this program, it does not print “Abstract sound” four times. In
fact, it prints the sound from each of the four classes. How does this happen? Even
though the type of animal is Animal, the binding happens during run time. So if
we create an object of type Cat and pass it to the method makeAnimalSound, then
makeSound of type Cat is invoked. This is happening because of dynamic binding
and polymorphism. We have different forms of makeSound in the superclass and its
sub classes.

82 7 Inheritance and Composition

class Animal(name: String) {
def makeSound(): Unit = {

println(name+" : Abstract sound")
}

}

class Cat(name: String) extends Animal(name) {
override def makeSound(): Unit = {

println(name+" : Meow")
}

}

class Cow(name: String) extends Animal(name) {
override def makeSound(): Unit = {

println(name+ " : Moo")
}

}

class Duck(name: String) extends Animal(name) {
override def makeSound(): Unit = {

println(name+" : Quack")
}

}

object AnimalSoundApp {
def main(args: Array[String]): Unit = {

makeAnimalSound(new Animal("Abstract"))
makeAnimalSound(new Cat("Cat"))
makeAnimalSound(new Cow("Cow"))
makeAnimalSound(new Duck("Duck"))

}
def makeAnimalSound(animal: Animal): Unit = {

animal.makeSound()
}

}

Fig. 7.4: Polymorphism and Dynamic Binding

7.6 Composition

Like inheritance, composition is a mechanism that allows one class to get features
from another class. Unlike inheritance, composition satisfies a has-a relationship.
This is more like a whole-part relationship. For example, if we would like to model
a university, then we can have a University class. One of the building blocks of a
university is a department; so we can have a Department class.

Figure 7.5 shows two classes—University and Department. The university class
has two fields, one for a biology department and one for a computer department. The
type for both of these departments is Department. So we can say that a university has
departments; in this case, it has a biology department and a computer department.

7.8 Review Questions 83

class University(name: String) {
val biologyDept = new Department("Biology")
val computerDept = new Department("Computer")
// Code here

}

class Department(name: String) {
var speciality: String = null
var size: Int = 0
def registerStudentForCourse(name: String): Unit = {

// Code here
}

}

Fig. 7.5: Composition

The Department is a regular class and has two field variables, speciality and size,
and a method called registerStudentForCourse. Please note that this class does not
extend University class, because a department is not a type of university, rather it
is a part of a university. Sometimes, parts can get some state related attributes and
some behaviors from the whole. In that case, we can group such common items in a
feature called trait, which will be discussed in Chapter 8.

7.7 Conclusion

In this chapter, we discussed inheritance and composition. Inheritance models is-
a relationships and composition models has-a relationships. We discussed how to
extend classes so that non-private members can be re-used. Sometimes, we need to
change the imported state and behavior. For that, Scala provides method overriding
and field overriding. Next, we discussed abstract classes and demonstrated how to
call super class constructors. We wrote a complete program for polymorphism and
dynamic binding. Finally, we discussed composition, sometimes known as a whole-
part relationship.

7.8 Review Questions

1. What is the major difference between inheritance and composition?
2. When do we use the reserved word extends?
3. What is overriding?
4. Can we override fields?
5. When do we use abstract classes?
6. What is polymorphism and what is its application?

84 7 Inheritance and Composition

7. When do we use composition?

7.9 Problems

1. For the program in Figure 7.1, write code for a singleton object, with a main
method, which instantiates three classes. Then invoke the method calculatePrice
of each of those instances, and print the results on the console.

2. For the program in Figure 7.2 , write the necessary code to instantiate the Rect-
angle class and invoke all of its methods.

3. Using the classes in Figure 7.3, find the total amount for: principal = USD
74,000.00, interest rate = 5%, and duration = 3 years and 6 months. Print the
result on the console.

7.10 Answers to Review Questions

1. The major difference between inheritance and composition is that inheritance is
a is-a relationship, whereas composition is a has-a relationship.

2. We use the reserved word extends when we need to inherit members of a class.
3. Overriding is a feature that allows us to redefine fields and methods in a sub class.
4. Yes, we can override fields.
5. We use abstract classes when we need to defer some of the implementation to

sub classes.
6. Polymorphism is a feature which allows the same name but different behavior.

One of the methods to implement it is dynamic binding.
7. We use composition when we need to model has-a or whole-part relationships.

7.11 Solutions to Problems

1. object VehicleApp {
def main(args: Array[String]): Unit = {

val vehicle = new Vehicle("Rolls-Royce", "Phantom", 2015)
val car = new Car("Toyota", "Rav4", 2006, "Personal")
val truck = new Truck("Ford", "Raptor", 2017, "Farm")
println(vehicle.calculatePrice(2))
println(car.calculatePrice(4))
println(truck.calculatePrice(3))

}
}

7.11 Solutions to Problems 85

2. object ShapeApp {
def main(args: Array[String]): Unit = {

val rect = new Rectangle("Rectangle", 2.0, 4.0)
println(rect.message)
println(rect.area)

}
}

3. object BankAccountApp {
def main(args: Array[String]): Unit = {

val checkingAccount =
new CheckingAccount("James Janowski",

12345, "Checking", 740000.00,0.05)
println(checkingAccount.calculateAmount(3.5))

}
}

Chapter 8
Traits

In the real world, we have different ways to interact with things. Most of the time,
we can find some sort of interface for interaction. Also most human made things
have interfaces. For example, if we are driving a car, we interact with the dashboard,
steering being a part of it. All of these interfaces represent certain kinds of attributes.
Sometimes, it is convenient to classify these attributes and model attributes as well
as entities as classes. Sometimes, it is convenient to group attributes and mix them
as needed to form a new entity that represents part of a computational problem. This
is when traits come into the picture.

8.1 Traits as Interfaces

Traits can be used as interfaces. If we have many classes forming a module, then we
can expose the members through traits. Figure 8.1 shows how to use a trait. First we
define a trait called Socializable, which has a single method interact. A class can
implement a trait using the keywords extends or with. If we are implementing only
one trait, then we must use extends. If we are implementing multiple traits, the first
one must use extends and the remaining ones must use with; there cannot be two
extends.

In Figure 8.1, the classes Adult and Child implement the trait Socializable. Each
of these classes has a body for the method interact. This scenario is similar to inher-
iting from an abstract class. We could make the trait Socializable an abstract class
and the rest of the code would work fine, as far as the syntax is concerned. But there
is one major modeling problem with this, i.e., Socializable is not a natural hierarchy
for Adult and Child. It is more of an attribute.

One might ask, why don’t we make Socializable an attribute of Adult and Child?
In terms of modeling, that is a good representation. Since Socializable has a method,
it should appear as a class somewhere so that we can make it a part of Adult and
Child through composition. But Socializable is not an entity and hence not a good
candidate for a class. What is the best thing to do? It would be better as a trait.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

87

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_8

88 8 Traits

trait Socializable {
def interact()

}

class Adult extends Socializable {
def interact(): Unit = {

println("Interact")
}

}

class Child extends Socializable {
def interact(): Unit = {

println("Play")
}

}

Fig. 8.1: Trait as an Interface

8.2 Construction Order and Linearizing

Traits have constructors, but the parameters are not passed using parentheses, like in
a class constructor. Statements in the body of a trait are parts of the trait constructor.
Trait constructors are invoked after the super class constructors and before the class
constructor. Trait constructors are executed from left to right, i.e., the one on the
left is executed first and so on; the right-most trait constructor is the last one to
be executed. Also the parent constructor is executed before the trait constructor is
executed. A trait can extend a class as well as a trait. The use of reserved words
extends and with is the same as in a class definition or in a class declaration. In the
case of a shared parent, it is evaluated only once.

Let’s look at Figure 8.2 and examine the rules. We have four traits—Friendly,
Climbing, Agile, and Powerful. Similarly, we have three abstract classes—Carnivore,
Felis, and Panthera and two concrete classes—Cat and Lion. The abstract class Fe-
lis extends another abstract class Carnivora, in accordance with the conventional
classification presented in Table 1.1, page 2. Similarly, class Panthera inherits from
class Carnivora.

The class Cat inherits from class Felis and implements traits Agile, Climbing, and
Friendly. The class Lion inherits from class Panthera and implements trait Powerful.
The modeling should be intuitive. Now, if write a singleton object with necessary
code to invoke method befriend of instance of type Cat, we get the following output,
which complies with the rules discussed earlier.

Abstract class Carnivore: I am a carnivore.
Abstract class Felis: I am Small
Trait Agile: I am agile.
Trait Climbing: I can climb.
Trait Friendly: I am friendly.
Cat: I can befriend.

8.2 Construction Order and Linearizing 89

trait Friendly {
println("Trait Friendly: I am friendly.")
def befriend()

}
trait Climbing {

println("Trait Climbing: I can climb.")
def climb()

}
trait Agile {

println("Trait Agile: I am agile.")
def moveQuick()

}
trait Powerful {

println("Trait Powerful: I am powerful.")
def fight()

}
abstract class Carnivore(name: String) {

println("Abstract class Carnivore: I am a carnivore.")
def eatMeat()

}
abstract class Felis(name: String) extends Carnivore(name){

println("Abstract class Felis: I am "+size)
def size = "Small"

}
abstract class Panthera(name: String) extends Carnivore(name){

def size = "Big"
println("Abstract class Panthera: I am "+size)

}
class Cat(name: String) extends Felis(name)

with Agile with Climbing with Friendly {
def befriend(): Unit = {println("Cat: I can befriend.")}
def eatMeat(): Unit = {println("Cat: I eat meat.")}
def climb(): Unit = {println("Cat: I can climb.")}
def moveQuick(): Unit = {println("I can move quickly.")}

}
class Lion(name: String) extends Panthera(name) with Powerful {

def eatMeat() = {println("Lion: I eat meat.")}
def fight(): Unit = {println("Lion: I can fight and win.")}

}

Fig. 8.2: Construction Order and Linearizing

How does Scala handle the mix of traits, abstract classes, and classes? It does
something called linearization. The mixing of classes and objects is called mix-in.
The linearization gives us a technical specification of all super types of a type. One
more rule to remember: the order in which constructors are executed is the reverse
of the linearization. Linearization is defined as:
If A extends B with C with ... with Z, then linear(A) = A � linear(Z)� ... linear(C)
� linear(B), where linear(x) is the linearization of x and � is “concatenation and
duplication removal, with the right overriding the left”.

90 8 Traits

Now, let’s analyze Cat extends Felis with Agile with Climbing with Friendly.
linear(Cat)
⇒Cat � linear(Friendly)� linear(Climbing)� linear(Agile)� linear(Felis)
⇒ Cat � (Friendly � AnyRe f � Any)� (Climbing � AnyRe f � Any)� (Agile �
AnyRe f �Any)� (Felis� (Carnivore�AnyRe f �Any))
⇒Cat �Friendly�Climbing�Agile�Felis�Carnivore�AnyRe f �Any

The constructor invocation order is Any, AnyRe f , Carnivore, Felis, Agile, Climbing,
Friendly, and Cat. For the custom written mix-in, the constructor invocation order
is Carnivore, Felis, Agile, Climbing, Friendly, and Cat.

8.3 Trait Members

A trait can have fields and methods, as well as blocks. Blocks should be assigned to
a val or to a var. A field can be of custom defined type, as shown below. The custom
defined type can be an abstract class or a concrete class. The statements that are not
method definitions are parts of the trait constructor.

trait TraitExperiments {
val length = 5
var breadth: Int
def area()
def sumOfLenBreadth(customLength: Int) =
customLength + breadth
val experiment: TraitExp
val output = {

println(length)
println(breadth)

}
}

abstract class TraitExp {
def expMethod()

}

In the definition above, length is defined as value 5. breadth is declared as a vari-
able and can be overridden later. Similarly, the method area is an abstract method
and can be implemented by a class that inherits from this trait. experiment is a vari-
able of type TraitExp and should be overridden later by a class inheriting from this
trait; a trait that inherits from this trait does not have to implement.

The identifier output does not have any interesting value assigned to it. If we
write the necessary code to implement the trait TraitExperiments and invoke output,
we get a message printed. So it is up to us, the programmers, to provide the cor-
rect meanings to the programming elements. The syntax of the language is flexible

8.4 Multiple Inheritance 91

enough to enable a wide variety of combinations, but this flexibility should be used
meaningfully.

8.4 Multiple Inheritance

It is common to encounter a multiple inheritance scenario in the real world. For
example, we have departments in universities. The Department of Biology is a tra-
ditional department; this is somewhat true for the Department of Computer Science
as well. But the Department of Computational Biology is relatively new. If we are
developing a program to keep track of activities in all the departments then we need
to model correctly. Department, Biology, Computer, ComputationalBiology, and Bi-
ologicalComputation, all are good candidates for class names. If we model all of
them as classes, it can form a diamond inheritance with ambiguity. Further we can-
not get properties of both Biology and Computer, because Biology does not extend
Computer naturally and vice-versa.

trait Department {
val name = "Department"

}

trait Biology extends Department {
override val name = "Biology"

}

trait Computer extends Department {
override val name = "Computer"

}

class ComputationalBiology extends Biology with Computer

class BiologicalComputation extends Computer with Biology

object DepartmentApp {
def main(args: Array[String]): Unit = {

val compBio = new ComputationalBiology
println(compBio.name)
val bioComp = new BiologicalComputation
println(bioComp.name)

}
}

Fig. 8.3: Multiple Inheritance

Scala allows us to model this kind of scenario effectively using traits. Figure 8.3
shows a solution for a typical diamond inheritance. Scala forces us to override the
common members, which resolves ambiguity. Further, the order in which traits ap-

92 8 Traits

pear in a class definition also determines the overriding. The classes Computation-
alBiology and BiologicalComputation have a different order for traits and hence
different outcomes. The first println prints “Computer”, whereas the second println
prints “Biology”. Remember, for traits, the order of constructor invocation is left to
right.

8.5 Traits with Implementations

Traits can have all abstract members, or some abstract members and some concrete
members, or all concrete members. Figure 8.4 shows traits with different levels of
implementation. The trait Teaching has two abstract fields—courseName and credit.
The method teach has implementation, whereas the method writeBook is an abstract
method. Similarly, the trait Researching has two abstract fields—researchArea and
durationInMonth. Further, it has one method research, which is abstract. So the trait
Teaching is richer than the trait Researching. Traits with less implementation are
also known as thinner traits.

The class Professor inherits from both the traits and is a concrete class; hence
it is required to implement all the abstract members; field members are assigned
values and methods are assigned corresponding implementations. Finally, we have
the singleton object TeachingApp, which creates an instance of the class Professor
and invokes its teach method, which has its definition in the trait Teaching.

8.6 Conclusion 93

trait Teaching {
val courseName: String
val credit: Int
def teach() = {

println("Teaching")
// Code here

}
def writeBook()

}

trait Researching {
val researchArea: String
val durationInMonth: Int
def research()

}

class Professor(name: String) extends
Teaching with Researching {

val courseName = "Scala"
val credit = 3
def writeBook() = {

println("Book")
// Code here

}
val researchArea = "Language Technology"
val durationInMonth = 6
def research() = {

println("Research")
// Code here

}
}

object TeachingApp {
def main(args: Array[String]): Unit = {

val prof = new Professor("Charles Darwin")
println(prof.teach())

}
}

Fig. 8.4: Traits with Implementation

8.6 Conclusion

First we saw how traits can be used to model real world interfaces. Then we dis-
cussed the construction order of traits along with classes. The construction order is
an important element as it determines the order of execution of mix-in. Lineariza-
tion helps us to understand how Scala builds the order to execution when there are
many traits and classes. Also we covered trait members and how Scala helps us to
model multiple inheritance. Finally, we discussed traits with implementations; traits
that have implementation are like abstract classes.

94 8 Traits

8.7 Review Questions

1. In terms of inheritance, what is the major difference between an abstract class
and a trait?

2. If a class extends from another class and implements two traits, what is the con-
struction invocation order?

3. Can we implement a method in a trait?
4. What Scala feature helps us to model real world multiple inheritance?
5. For the following code snippet, what is the output for c.isInstanceOf[A],

c.isInstanceOf[B], and c.isInstanceOf[C]?

scala> trait A
scala> trait B extends A
scala> class C extends B with A

6. What is the output when the following program is executed?

trait A {
print("A")

}
trait B extends A {

print("B")
}
class C extends B with A {

print("C")
}
object TraitApp {

def main(args: Array[String]): Unit = {
val c = new C

}
}

7. What is the output when the following program is executed?

trait A {
print("A")

}
trait B extends A {

print("B")
}
class C extends A with B {

print("C")
}
object TraitApp {

def main(args: Array[String]): Unit = {
val c = new C

}
}

8.8 Problems 95

8. What is the output when the following program is executed?

trait A {
print("A")

}
trait B {

print("B")
}
class C extends B with A {

print("C")
}
object TraitApp {

def main(args: Array[String]): Unit = {
val c = new C

}
}

9. What is the output when the following program is executed?

trait A {
print("A")

}
trait B {

print("B")
}
class C extends A with B {

print("C")
}
object TraitApp {

def main(args: Array[String]): Unit = {
val c = new C

}
}

8.8 Problems

1. For the program in Figure 8.2, write necessary code to invoke the method be-
friend.

2. Using traits, write a program to calculate the area of two-dimensional objects
with edges. You can limit your code to rectangles and triangles for this exercise.

3. Write a mix-in to calculate the salaries of a full professor and of an assistant
professor. Make realistic assumptions whenever required. Also make the program
as re-usable as possible.

96 8 Traits

8.9 Answers to Review Questions

1. In terms of inheritance, the major difference between an abstract class and a trait
is that we cannot directly inherit from more than one abstract class, but we can
directly inherit from more than one trait.

2. The construction invocation order is: super class, traits left to right, and this class.
3. Yes, we can implement a method in a trait. In that case, it becomes a rich inter-

face.
4. Traits help us to model real world multiple inheritance. We can combine traits

with abstract classes as well as with concrete classes, to model real world multi-
ple inheritance.

5. true, true, and true.
6. ABC
7. ABC
8. BAC
9. ABC

8.10 Solutions to Problems

1. object TraitsConstructorOrderApp {
def main(args: Array[String]): Unit = {

val cat = new Cat("Ramse")
println(cat.befriend())

}
}

8.10 Solutions to Problems 97

2. trait Rectangular {
val length: Double
val breadth: Double
def area(): Double = length * breadth

}

trait Triangular {
val base: Double
val height: Double
def area(): Double = 0.5 * (base * height)

}

class MyRectangle(len: Double, bre: Double) {
val length = len
val breadth = bre

}

class MyTriangle(bas: Double, hei: Double) {
val base = bas
val height = hei

}

object AreaApp {
def main(args: Array[String]): Unit = {

println((new MyRectangle(2,4) with Rectangular).area())
println((new MyTriangle(2,4) with Triangular).area())

}
}

98 8 Traits

3. trait Teaching {
val grade: Int
val salaryInUSD: Double
def monthlySalaryInUSD = salaryInUSD + (grade * 10)

}

trait Researching {
val grade: Int
val compensationInUSD: Double
def monthlyCompInUSD = compensationInUSD + (grade * 2)

}

class Professor(name: String) extends
Teaching with Researching {

val grade = 10
val salaryInUSD = 12000.00
val compensationInUSD = 3000.00

}

class AsstProfessor(name: String) extends Professor(name) {
override val grade = 5
override val salaryInUSD = 8000.00
override val compensationInUSD = 4000.00

}

object ProfSalaryApp {
def main(args: Array[String]): Unit = {

val prof = new Professor("Darwin")
println(prof.monthlyCompInUSD + prof.monthlySalaryInUSD)
val asstProf = new AsstProfessor("Newton")
println(asstProf.monthlyCompInUSD+
asstProf.monthlySalaryInUSD)

}
}

Chapter 9
Functions

Functions date back several centuries and are some of the most widely used tech-
niques in mathematics [Hod05] [Dur88][Dur89a][Dur89b]. They provide rigorous
methods for analysis and inference. The history of mathematics shows that functions
were used to express thought [Boo05] [Hod05]. This is very well aligned with com-
puter programming. You might have already realized that we express our thought
when we program; we tell a computer what to do, with the help of a language that
the computer understands and we, human beings, understand. Remember the defi-
nition of computing and computation from Chapter1. In each chapter, we are doing
either computing, or computation, or both.

Now coming closer to Scala programming, let’s remember functions from our
mathematics lessons. We might ask ourselves: Where did we use functions? What
computational goals were achieved? Could we do without functions?. Most likely,
our answers will converge to a common point: functions are necessary tools. Func-
tions were developed to solve complex computational problems and they help us
to express our thought, in the form of solutions or solutions steps. The Scala pro-
gramming language provides features to encode our solutions or solutions steps, in
a machine understandable form so that we can achieve our computational goals. In
this chapter, we discuss different aspects of Scala functions.

In previous chapters, we discussed mostly object oriented programming although
functional aspects were involved. Now, we add one of the major features from the
functional programming paradigm, i.e., functions as first class citizens. In Scala,
functions can be treated as values, discussed in detail later in this chapter. Since
Scala is both an object oriented and a functional programming language, we can
mix objects with functions and vice-versa. One of the advantages of using Scala
is that we don’t have to switch programming languages, in order to program in
different paradigms.

Based on our needs, we can mix different features that Scala provides. Not only
that, if we think we don’t have sufficient features to meet our needs, we can extend
the language; Scala was designed to be extended. We will see, later in this chapter,
how convenient it is to create our own control structures. This is one of the ad-
vantages of functional programming. And don’t forget, we can do all this without

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

99

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_9

100 9 Functions

changing the programming language. You will soon see one of the major advantages
of using the Scala programming language.

9.1 Functions as Methods

Functions can be used as as methods, by defining them as a member of an object.
We have presented numerous examples in previous chapters. Just as a refresher, Fig-
ure 9.1 presents two objects: SomeObjects and SomeObjectsApp. SomeObjectsApp
has a main method that invokes the public method calculateArea in SomeObjects.

object SomeObjects {
def calculateArea(objType: String, dim: Int*): Double = {

if(objType.equals("Rectangle")) {
rectangleArea(dim(0), dim(1))

} else if(objType.equals("Square")){
squareArea(dim(0))

} else {
0

}
}

private def rectangleArea(length: Double,
breadth: Double): Double = {
length * breadth

}

private def squareArea(dimension: Double): Double = {
dimension * dimension

}
}

object SomeObjectsApp {
def main(args: Array[String]): Unit = {

println(SomeObjects.calculateArea("Rectangle",3,2))
println(SomeObjects.calculateArea("Square",3))

}
}

Fig. 9.1: Functions as Methods

Since singleton objects have only only instance, member methods are more like
functions. In other words, this is a typical implementation of functions as methods.
Two private methods rectangleArea and squareArea are not visible from SomeOb-
jectsApp. These methods are internally used by the public method calculateArea,
to calculate the area of respective real world objects. dim: Int* means zero or more

9.2 Anonymous Functions 101

integer values. It is to take care of different types of objects that have different di-
mensional elements like length, breadth, height, etc.

In this program, calculateArea is a common method that can be used to calculate
the area of rectangles and squares. This is a generalized code, one of the attributes
discussed in Section 1.5, page 12. By adding one more if-else block we can cover
circles as well.

9.2 Anonymous Functions

It is not necessary to provide a name for a function. This is a handy feature when
we have a small algorithm to apply. For example, if we have an array containing
all prime numbers smaller than 10 and would like to calculate the square of those
numbers, we can pass pass the squaring function to another function or to another
method, as shown below.

scala> List(1, 2, 3, 5, 7).map((x: Int) => x * x)
res2: List[Int] = List(1, 4, 9, 25, 49)

Here, (x: Int) => x * x is an anonymous function that takes an argument of type
integer and returns its square. Also it is syntactically correct to use infix notation.

scala> List(1, 2, 3, 5, 7) map ((x: Int) => x * x)
res2: List[Int] = List(1, 4, 9, 25, 49)

Further, parentheses could be replaced by curly braces, as shown below.

scala> List(1, 2, 3, 5, 7) map {(x: Int) => x * x}
res2: List[Int] = List(1, 4, 9, 25, 49)

Let’s say we would like to find the square of all the even numbers below 10. The
code snippet below uses filter, which takes an anonymous function as a parameter.
The first anonymous function takes a number and checks if it is divisible by 2. If
a number is divisible by 2, it returns true, otherwise it returns false. Based on this
truth value, numbers are filtered, and the result is an array with even numbers.

For the result array, the map method uses a function that takes an integer and
multiplies it by itself, which results in the square. This function is applied to every
number in the filtered array and hence we get the square of all even numbers below
10. Please note that the pipe sign has nothing to do with the anonymous function;
it just means continuation of the code in the Scala interpreter. If you press the enter
key for incomplete code, you will get it automatically.

scala> Array(1,2,3,4,5,6,7,8,9).filter(
| (x:Int) => x % 2 == 0).map((x: Int) => x * x)
res11: Array[Int] = Array(4, 16, 36, 64)

102 9 Functions

9.3 Functions as Values

In Scala, a function can be assigned to a variable and passed around as if it is a
value. This makes it convenient to implement algorithms as functions and apply
those algorithms to certain data. This is one of the reasons why Scala is a preferred
language in the big data area.

scala> val cubeFun = (x: Int) => x * x * x
cubeFun: Int => Int = <function1>

scala> List(1,2,3,4,5).map(cubeFun)
res12: List[Int] = List(1, 8, 27, 64, 125)

In the code snippet, first a function is assigned to an indentifier cubeFun. This
function calculates the cube of an integer. Next, map is invoked on the list and it
takes cubeFun as a parameter. So the map takes a list and then applies the cube
function to each member of the list, and returns the resultant list.

We can also have multiple statements in the function literal as shown below; mul-
tiple statements should be enclosed by curly braces. The function returns the value
created by evaluating the last statement in the function literal. So if we change the
order of statements, we get a different result. This is an important point to remem-
ber, as the wrong order of statements creates the wrong results, and it might be time
consuming to spot the fix if it is a complex program.

scala> var square = (x: Int) => {println(x); x * x}
square: Int => Int = <function1>

scala> List(1,2,3,4).map(square)
1
2
3
4
res17: List[Int] = List(1, 4, 9, 16)

9.4 Function Parameters

A function can be passed as a parameter to another function. In the code snippet
below, doubleFun is a function that takes an integer as a parameter and doubles it.
Next, the map method takes takes the function doubleFun as a parameter and applies
it to each number in the sequence; the result is a vector.

scala> val doubleFun = (x: Int) => 2 * x
doubleFun: Int => Int = <function1>

9.5 Higher Order Functions 103

scala> (1 to 5).map(doubleFun)
res21: scala.collection.immutable.IndexedSeq[Int] =
Vector(2, 4, 6, 8, 10)

Scala methods can be converted to functions. For example, the following code
snippet imports from the package scala.math; the underscore immediately after the
dot means everything. Then the identifier is assigned a function ceil; here, the un-
derscore means function and there should be a space between the word ‘ceil’ and
the underscore. Next, the function upper is applied to 1.4, which gives 2.0. Finally,
we have upper taking upper as a parameter with two levels of embedding.

scala> import scala.math._
import scala.math._

scala> val upper = ceil _
upper: Double => Double = <function1>

scala> upper(1.4)
res22: Double = 2.0

scala> upper(2.2 + upper(upper(1.2)+ 3.6))
res28: Double = 9.0

9.5 Higher Order Functions

When a function is passed to another function as a parameter, the combination be-
comes a higher order function. We have already seen several such examples in previ-
ous sections. Let’s discuss a few more interesting examples. The code snippet below
has a string containing a list of words, which are split into separate words. sortWith
takes a binary function that compares two words. The end result is a sorted array.

scala> "Lime apple Orange".split(" ")
.sortWith(_.toLowerCase < _.toLowerCase)
res47: Array[String] = Array(apple, Lime, Orange)

Similarly, the following code snippet shows another example of higher order
functions. Here we add numbers between 1 and 5, using reduceRight, which takes a
binary function to perform addition. The whole expression is equivalent to (1 + (2 +
(3 + (4 + 5)))). If we had used reduceLeft, it would have been ((((1 + 2) + 3) + 4) +
5).

scala> (1 to 5).reduceRight(_ + _)
res48: Int = 15

104 9 Functions

If we analyze both the code snippets, we find something common—the code is
concise. Try to write the same program without using functions and higher order
functions, and see how long it becomes. Also these code snippets are fairly conve-
nient to analyze. Now this should give us intuition on why Scala is a better language
for analytics and big data. Big data involves heavy analytics, in addition to the dis-
tributed nature of programming. Functional programming makes it convenient to
distribute computational tasks.

9.6 Closures

Scala allows us to use free variables in the definition of a function. In the code
snippet below, product is a free variable. Since the function literal has a free variable,
(1 to 5).foreach(product +=) is an open term. An open term requires variable
binding during run time, when a function value is created. When binding of free
variables happens, it is like closing the function and hence the name closure.

scala> var product = 1
product: Int = 1

scala> (1 to 5).foreach(product *= _)

scala> product
res62: Int = 120

In contrast, the function area has a closed term, because length and breadth are
defined within the function definition and the term length * breadth has variables,
which are always in scope. The variable binding information is available within the
function definition and hence such terms are known as closed terms.

scala> def area(length: Int, breadth: Int) =
length * breadth
area: (length: Int, breadth: Int)Int

9.7 Currying

Currying is a technique by which a function with one argument list can be converted
to a function with multiple argument lists. In the code snippet below, the function
sumOfThreeNums is an example of non-curried style, which takes all three argu-
ments as a single parameter list and performs the addition. In contrast, the function
curriedSumOfThreeNums takes one argument list at a time and applies it, which
results in a function for the second argument and so on.

scala> def sumOfThreeNums(x: Int, y: Int, z: Int) =

9.7 Currying 105

x + y + z
sumOfThreeNums: (x: Int, y: Int, z: Int)Int

scala> def curriedSumOfThreeNums(x: Int)(y: Int)
(z: Int) = x + y + z
curriedSumOfThreeNums: (x: Int)(y: Int)(z: Int)Int

scala> sumOfThreeNums(2,3,4)
res65: Int = 9

scala> curriedSumOfThreeNums(2)(3)(4)
res66: Int = 9

Let’s take one more example. Here we have a curried function that takes three
parameter lists for first name, middle name, and last name, respectively. The func-
tion then forms a complete name, based on these parameter lists. Please note that
we have only one member in each list. A partial name can be formed by supplying
partial lists, as shown in the code snippet. The underscore provides a place holder
for the third parameter list. So we can use the function partialName and supply the
remaining list in order to form a full name.

scala> def name(fName: String)(mName: String)
(lName: String) = fName + " " + mName + " " + lName
name: (fName: String)(mName: String)
(lName: String)String

scala> val partialName = name("Charles")("Anthony")_
partialName: String => String = <function1>

scala> val fullName = partialName("Darwin")
fullName: String = Charles Anthony Darwin

The advantage of doing this may not be obvious with this small code snippet. It
is allowing us to perform partial computation. If it is in a distributed environment,
which has different timing for those three lists, then partial computation helps us to
continue with our computational steps, i. e., continue creating the combination of
first names and middle names, which is an intermediate result. Whenever the last
name cluster is available, we can form the full names, by calling partialName.

Of course, this is an oversimplified version of the process. There are Scala based
frameworks, dedicated to this kind of distributed computing, for big data. Since
functional programming is much closer to mathematics, its reasoning for correctness
and soundness is much more convenient compared with imperative programming.

106 9 Functions

9.8 Writing New Control Structures

Writing new control structures is convenient with higher order functions. Let’s de-
fine a control structure that invokes a function. In the code snippet below, we define
a function funPrint, which prints a string, which it receives as a parameter. Please
note that the pipe sign that the Scala interpreter automatically inserts in a new line
has been removed. Next, we define a function called invoke, which invokes a func-
tion. Also it accepts a parameter for the function to be called. Finally, we invoke a
function, making use of our custom new control structure. This shows how efficient
it is to write domain specific language (DSL) using Scala.

scala> def funPrint = (toPrint: String) =>
{println(toPrint)}
funPrint: String => Unit

scala> def invoke(name: String =>
Unit, param: String) = name(param)
invoke: (name: String => Unit, param: String)Unit

scala> invoke(funPrint,
"Hello Functional Programming!")
Hello Functional Programming!

Next, let’s write a double-if control structure that checks two conditions, then ex-
ecutes the code block if both the conditions are true. Figure 9.2 presents a complete
solution. If we look at the function definition for doubleIf, we see that it takes three
arguments; the first two represent test conditions and the third one represents the
code to be executed when both the test conditions evaluate to true.

Please note that the function has been defined within the main method; this is an
example of a local function. From the main method, we are making a function call
by supplying necessary parameters. The first test condition contains two conditions
to test. As long as it evaluates to a Boolean value, we can have any number of con-
ditions. The second condition has only one condition to check. The third parameter
list contains the code block to be executed when both the conditions are satisfied.
So the output for this program is:

Rank: Exceptional.
Qualified for scholarship.

Please note that it is a relatively short program compared with many programs
that we wrote earlier in this book. Yet, we were able to define a new control structure.
This is one of the areas where functional programming is most productive.

9.10 Review Questions 107

object DoubleIfApp {
def main(args: Array[String]): Unit = {

val age = 21
val numCollegeDegree = 1
doubleIf(age > 18 && age < 22)(numCollegeDegree > 0) {

println("Rank: Exceptional.")
println("Qualified for scholarship.")

}

def doubleIf(test1: => Boolean)(test2: => Boolean)
(codeBlock: => Unit): Unit = {

if(test1 && test2){
codeBlock

}
}

}
}

Fig. 9.2: Writing a New Control Structure

9.9 Conclusion

In this chapter, we talked about the history of mathematical functions and how Scala
functions are related to mathematical functions. Then we discussed functions as
methods. Scala allows us to convert methods into functions. Also we don’t have
to necessarily name a function. We discussed functions as values to demonstrate
functions as first class citizens. Higher order functions are those functions that have
functions as parameters. This is one of the powerful features of Scala that enables us
to write our own control structures. Next, we covered closures and currying. Finally,
we wrote a couple of our own control structures.

9.10 Review Questions

1. When do Scala methods become Scala functions?
2. How can we explicitly convert methods to functions?
3. Identify the anonymous function in the following code snippet.

scala> Array(1, 2, 3) map ((x: Int) => x + 3)
res0: Array[Int] = Array(4, 5, 6)

4. What is the output of the following code snippet?

scala> def sum(x: Int)(y: Int)(z: Int) = x + y + z
sum1: (x: Int)(y: Int)(z: Int)Int

scala> sum(2)(3)(4)

108 9 Functions

5. What is the output of the following code snippet?

scala> def sum(x: Int) = (y: Int) => (z: Int) =>
x + y + z

sum: (x: Int)Int => (Int => Int)

scala> sum(2)(3)(4)

6. What is the output of the following code snippet?

scala> val whatFunction = (x: Int) => x + 1 - 1
whatFunction: Int => Int = <function1>

scala> List(1, 3, 5, 7).map(whatFunction)

7. What is the output of the following code snippet?

scala> def whatFunction(x: Int)(y: Int)(z: Int) =
x * y * z

whatFunction: (x: Int)(y: Int)(z: Int)Int

scala> val whatFunction1 = whatFunction(2)(3)_
whatFunction1: Int => Int = <function1>

scala> val whatFunction2 = whatFunction1(4)

9.11 Problems

1. Write a program to calculate the factorial of a number, using a function.
2. For a given string, write a program to split strings into words and sort them based

on their length. Make use of a higher order function to achieve this computational
goal.

3. Write a new control structure called checkedWhile, which is similar to while
except it does not allow a negative loop counting variable.

9.12 Answers to Review Questions

1. Scala methods become Scala functions when we explicitly convert the methods
to functions. Also methods in singleton objects are more like functions, as these
methods do not associate with multiple instances.

2. We can convert methods to functions by using underscore after the name of the
functions. For example, if there is a method called calculateArea, val calArea =
calculateArea converts the method to a function and assigns it to the identifier,

9.13 Solutions to Problems 109

calArea. Now, calArea can be treated like a function. If the method calculateArea
takes parameters, calArea will take those parameters with the same signature.

3. (x: Int) => x + 3
4. 9
5. 9
6. List[Int] = List(1, 3, 5, 7)
7. 24

9.13 Solutions to Problems

1. object FactorialApp {
def main(args: Array[String]): Unit = {

val num = 5
println(factorial(num))

def factorial(number: Integer): Long = {
if(number == 0)

return 1
else

return number * factorial(number - 1)
}

}
}

2. object WordSortingApp {
def main(args: Array[String]): Unit = {

val givenString = "Scala is Fun"
val sortedWords = givenString.split(" ")
.sortWith(_.length < _.length)
sortedWords.foreach(println)

}
}

110 9 Functions

3. object CheckedWhileApp {
def main(args: Array[String]): Unit = {

var i = 1
checkedWhile(i > 0)(i < 5) {

println(i)
i += 1

}

def checkedWhile(test1: => Boolean)(test2: => Boolean)
(codeBlock: => Unit): Unit = {

while(test1 && test2) {
codeBlock

}
}

}
}

Chapter 10
Pattern Matching

Pattern matching has a long history in computer science and mathematics [Ray65].
Ideas have manifested in different forms. In our day-to-day activities, we perform
many pattern matching related thought processes. For example, in order to go to
my work place, I need to remember many patterns, including the office building
and the road. In fact, as soon as we wake up, our pattern matching starts. How do
we know which is the kitchen? We have a pattern stored in our brain, based on
previous knowledge activities. These knowledge activities can be reading, talking
to somebody and gaining knowledge about kitchens, observing kitchens, etc.

In fact, in order to reach to kitchen, we need to perform other many pattern
matching activities. Since these things are done repeatedly, we don’t think hard
about them. But think about the first time you learned to recognize a kitchen as
a kitchen. When did our parents have confidence in us about our mastery? Learning
pattern matching is like that. But it will not take as long as it took for us to master
different things as children. We already have a significant background knowledge
base with us. In this chapter, we will explore how Scala enables us to express pat-
tern matching, in order to achieve our computational goals.

10.1 Case Classes

Case classes can be created by using the modifier case, which is a reserved word in
Scala, as shown in Table 2.2. These are special classes that can be used in pattern
matching. Like regular classes, they can extend from other classes. The parameters
are val by default. The special thing about a case class is that the compiler automat-
ically generates methods toString, equals, hashCode, and copy.

Figure 10.1 shows a typical declaration and use of case classes. Class Person is
a regular abstract class, which is extended by the case class Buyer. We have another
case class called Book, which has a method called calculatePrice. This shows that
case classes can have members like regular classes.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

111

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_10

112 10 Pattern Matching

abstract class Person(firstName: String, lastName: String)

case class Book(title: String, Author: String,
priceInUSD: Double) {

def calculatePrice(quantity: Int): Double = {
priceInUSD * quantity

}
}

case class Buyer(fName: String, lName: String,
location: String)
extends Person(fName, lName)

object CaseClassApp {
def main(args: Array[String]): Unit = {

val book = new Book("Scala","James",4.5)
val buyer = new Buyer("Charles","Darwin","Palo Alto")
println(buyer.location)
println(book.calculatePrice(2))

}
}

Fig. 10.1: Case Classes

10.2 Sealed Classes

Sealed classes provide a mechanism to restrict sub classing a class. A sealed class
can only be extended in the same file; any attempt to sub class in a different file is
a compile time error. This make it convenient to write a complete pattern matching.
If we allow sub classing in a different file or in a different compiler unit, it is hard
to track sub classes. If it is hard to track sub classes, then it is hard to write a com-
plete pattern matching. Also, with sealed classes, the Scala compiler is expected to
provide a warning message if the pattern matching is not complete.

Figure 10.2 shows a sealed abstract class called Bird. The classes Pigeon, Eagle,
and Duck inherit from the class Bird. The method whichBird demonstrates the use
of case classes in pattern matching. If the supplied object bird matches with type
Pigeon, then a corresponding message is returned. If none of the other cases match,
then the last case takes care of that situation; it is like a fallback.

10.3 Variable Patterns 113

sealed abstract class Bird

case class Pigeon(name: String, owner: String) extends Bird

case class Eagle(name: String, habitat: String) extends Bird

case class Duck(name: String, mode: String) extends Bird

object SealedClassApp {
def main(args: Array[String]): Unit = {

println(whichBird(Pigeon("Hem","James")))
}

def whichBird(bird: Bird): String = bird match {
case Pigeon(_,_) => "Detected pigeon."
case Eagle(_,_) => "Detected eagle."
case Duck(_,_) => "Detected duck."
case _ => "No match."

}
}

Fig. 10.2: Sealed Class

10.3 Variable Patterns

A variable pattern enables us to match any object and then process that object fur-
ther. Figure 10.3 demonstrates a typical variable pattern. For the first matching pat-
tern, we have three cases. The first case matches the incoming string with “Sigma”;
if it is a match, it returns “Sigma case”. The second case matches the incoming string
with “alpha” and then returns “Alpha case”, if it is a match. The third case is a bit
different, it is more like a default case and matches any object and binds that object
with a variable name called name. Then it returns a string, which is a concatenation
of “Received” and the incoming object. The identifier matchResult1 is assigned a
value returned by the pattern matching.

For the second matching pattern, everything else is the same except the last case,
which is known as wildcard pattern. This pattern matches any object but doesn’t
bind it to a name for further processing. We use this pattern, if we do not need to
process the object further.

114 10 Pattern Matching

object VariablePatternsApp {
def main(args: Array[String]): Unit = {

val matchResult1 = "be"+"ta" match {
case "Sigma" => "Sigma case"
case "alpha" => "Alpha case"
case name => "Received " + name

}
println(matchResult1)

val matchResult2 = "be"+"ta" match {
case "Sigma" => "Sigma case"
case "alpha" => "Alpha case"
case _ => "Received something else"

}
println(matchResult2)

}
}

Fig. 10.3: Variable Pattern

10.4 Type Patterns

Type patterns or typed patterns enable us to test types. Figure 10.4 presents an ex-
ample to demonstrate typed patterns. When 2.5 is passed to the function detectType,
it matches with type Double. So the function returns string “Double”, which is then
printed on the console. Similarly, when the string “Test” is passed to the function
detectType, the type matches with String. Accordingly, “String” is returned to the
caller and eventually printed on the console.

object TypedPatternsApp {
def main(args: Array[String]): Unit = {

println(detectType(2.5))
println(detectType("Test"))

def detectType(len: Any): String = len match {
case x: Int => "Integer"
case y: Double => "Double"
case z: String => "String"
case _ => "Unknown type"

}
}

}

Fig. 10.4: Type Pattern

Now, what happens if we supply 2.5 f to the function detectType. Even though
double precision numbers are similar to floating point numbers, the types are not the

10.5 Literal Patterns 115

same. Since we have specifically mentioned that the type is Float, there should be a
case to catch Float type. Since there is no such case, it falls to default. The default
case returns “Unknown type”, which is then printed on the console.

10.5 Literal Patterns

We can use literals in pattern matching, as shown in Figure 10.5. The first case
matches the input with the literal “Scala”. If it is a match, the string literal “Scala”
is returned back to the caller. In this case, the caller prints it on the console. The
second case matches the input with the Boolean literal false; if it is a match, the
literal “false” is returned. Similarly the literal “five” is returned, if the input is integer
value 5.

object LiteralPatternsApp {
def main(args: Array[String]): Unit = {

println(detectLiterals("Scala"))
println(detectLiterals(6.7f))
println(detectLiterals(Nil))

def detectLiterals(input: Any) = input match {
case "Scala" => "Scala"
case false => "false"
case 5 => "five"
case 6.7f => "Six decimal seven float"
case _ => "Unknown case"

}
}

}

Fig. 10.5: Literal Pattern

For floating point, it should be exactly 6.7 f , because if we supply 6.7 then we
are supplying 6.7 of type Double, which is not the same as 6.7 of type Float. For an
exact match, “Six decimal seven float” is returned to the caller. Finally, the last case
is the default case, i.e., if the input does not match with any other cases, it matches
with the default case, returning “Unknown case” to the caller. So, the output of this
program is as shown below.

Scala
Six decimal seven float
Unknown case

116 10 Pattern Matching

10.6 Constructor Patterns

Constructor patterns provide some of the most powerful pattern matching abilities
in Scala. Also these patterns allows us to match to any level of depth, called deep
matching. Figure 10.6 shows a typical implementation of constructor patterns. We
have three case classes. The case class Number takes one integer type of argument
and constructs a Number. Similarly, RealNumber takes numerator and denominator
to create a real number. The last case class, ComplexNumber, takes takes two real
numbers and creates a complex number.

case class Number(num: Int)

case class RealNumber(num: Number, den: Number)

case class ComplexNumber(reaPart: RealNumber,
imgPart:RealNumber) {

def complexNumber() = {
val imgNumber = reaPart + " + i * " + imgPart
imgNumber

}
}

object ConstructorPatternsApp {
def main(args: Array[String]): Unit = {

construct(Number(0))
construct(ComplexNumber(RealNumber(Number(2), Number(7)),
RealNumber(Number(8), Number(9))))
construct(Some("apple", 1, 2.5))

def construct(x: Any) = x match {
case Number(0) => println("Integer value zero")
case RealNumber(Number(2), Number(5)) =>
println("Real number 2/5")

case ComplexNumber(RealNumber(Number(2), Number(7)),
RealNumber(Number(8), Number(9))) =>
println(y.imaginaryNumber)

case _ => println("No match")
}

}
}

Fig. 10.6: Constructor Pattern

The construct function takes an argument of type Any and tries to match with
one of the four cases. The first case matches input with type Number as well as
the value 0. So it already does two levels of matching. The second case does three
levels of matching. The first level is the type RealNumber, the second level is the
type Number, and the third level is a value match. Similarly, the third case does four

10.7 Tuple Patterns 117

levels of matching—type ComplexNumber, type RealNumber, type Number, and
values. If a match occurs, it invokes the method complexNumber on object y, which
is the name assigned for the complex number created in that case. Finally, the last
case is the default case, i. e., if no other cases match, then the input matches with
this wild card case and returns the string “No match”. So, the output of this program
is as shown below. Line number 2 and line number 3 are printed on the same line.
We split it here to fit the width of the book.

Integer value zero
RealNumber(Number(2),Number(7)) +
i * RealNumber(Number(8),Number(9))
No match

10.7 Tuple Patterns

A tuple pattern matches an input with a tuple; this pattern does not match the val-
ues. Figure 10.7 demonstrates a typical tuple pattern implementation. The function
detectTuple has four cases. The first case matches the input x with a tuple with two
elements. If the input is a tuple with two elements, then this is the match and those
two elements are printed on the console. Similarly, the second case matches the in-
put with a tuple containing three elements. If there is a match, all the elements are
printed.

object TuplePatternsApp {
def main(args: Array[String]): Unit = {

detectTuple(1)
detectTuple(2,4)
detectTuple(1,"test",5,7)

def detectTuple(x: Any) = x match {
case (a, b) => println(a + "," + b)
case (a,b,c) => println(a + "," + b + "," + c)
case (a,b,c,d) => println(a+","+b+","+c+","+d)
case _ => println("No match")

}
}

}

Fig. 10.7: Tuple Pattern

The third case matches the input with a tuple containing four elements. All four
elements are printed, if it is a match. Finally, the default case provides the fall back.
If the input does not match with any other cases, then it is matched with the default
case, because it has a wild card matching pattern. For the default case, the output is
“No match”. The output of this program is:

118 10 Pattern Matching

No match
2,4
1,test,5,7

10.8 Extractor Patterns

An extractor pattern, as the name suggests, helps us to extract different parts. Fig-
ure 10.8 shows a typical implementation of an extractor patter for United States (US)
phone numbers. US phone numbers are 11-digit numbers with different separators.
One of the common separators is hyphen (-).

object Phone {
def apply(countryCode: Int, areaCode: Int,
part1: Int, part2: Int) = {
countryCode+"-"+areaCode+"-"+part1+"-"+part2

}
def unapply(phoneNumber: String): Option[(String, String,
String, String)] = {
val parts = phoneNumber.split("-")
if(parts.length == 4) {

Some(parts(0), parts(1), parts(2), parts(3))
} else {

None
}

}
}

object ExtractorPatternsApp {
def main(args: Array[String]): Unit = {

extractPhone("1-650-324-5674")
extractPhone("1-304-506")

def extractPhone(x: Any) = x match {
case Phone(country,area,pt1,pt2) =>
println("country code: "+country+", "+"area code: "+
area+", "+"part1: "+pt1+", "+"part2: "+pt2)

case _ => println("No match")
}

}
}

Fig. 10.8: Extractor Pattern

In the program, we see a singleton object called Phone, which has apply and
unapply methods. These are standard methods that the compiler recognizes, in order
to construct and de-construct the object, Phone in this case. The apply method takes
four different parts and then constructs a phone number. As opposed to that, the

10.9 Sequence Patterns 119

unapply methods takes a string, which is a complete phone number, and splits it
into meaningful parts, as shown in the program.

From the main method, we are making two calls: one with a proper number
and the other with incomplete parts. For the first call, it matches with the extractor
pattern and then prints all the parts—country code, area code, part1, and part2.
Since the second call does not have a proper number, it falls to the default case and
the corresponding message is printed. The output for this program is (divided to fit
the width of the book):

country code: 1, area code: 650,
part1: 324, part2: 5674
No match

10.9 Sequence Patterns

Sequence patterns enable us to match sequences. Figure 10.9 demonstrates List and
Array pattern matching. The detectSequence method takes the input and tries to
match it with one of the cases. The first case matches the input with an array con-
taining three elements; the first two elements should be 0 and 0, the third element
can be anything. The second case matches a list containing two elements; the first
element should be 1 and second element can be anything. The third case matches
with a variable length list. In order to match, the list should have at least one element
and its value must be 0. After that, the list can have any number of elements, with
any type. The variables a and b bind the matching object so that the object can be
processed further. The final case is the default case.

object SequencePaternsApp {
def main(args: Array[String]): Unit = {

detectSequence(Array(0,0,"test"))
detectSequence(Array(0,1,2))
detectSequence(List(1,3))
detectSequence(List("delta","sigma"))
detectSequence(List(0,"test",3))

def detectSequence(x: Any) = x match {
case a @ Array(0,0,_) => println(a(0),a(1),a(2))
case b @ List(1,_) => println(b(0),b(1))
case List(0,_*) =>
println("Matched with variable length list")

case _ => println("No match")
}

}
}

Fig. 10.9: Sequence Pattern

120 10 Pattern Matching

Now, let’s analyze each call. The first call has a parameter, which is an array
containing three elements. The first two are 0 and 0 respectively, and the last one is
a string. In the first match clause, we have the first two elements as 0 and 0 respec-
tively, and the last element is anything. So it matches with the first case, printing
all three elements of the array on the console. In the second call, the first and the
third elements match but the second element does not and hence it matches with the
default case.

The third call matches with the second case and outputs two elements on the
console. The fourth call has two parameters, which are strings. There is no case that
has a list with the first element as a string, and hence it falls to the default case. The
fifth call has the first element matching with the third case. The third case matches
with a variable length list, which has only the first element fixed. The remaining
elements could be of any type and there can be any number of elements. At the
minimum, in order to match, the input should have at least one element; the value
must be 0, if it is the first element. So, the output of this program is:

(0,0,test)
No match
(1,3)
No match
Matched with variable length list

10.10 XML Patterns

XML patterns can be used to process XML data. Figure 10.10 demonstrates a typical
application of XML patterns. The function detectXML takes scala.xml.Node type of
object and tries to match it with one of the cases. Please note that you need to include
something equivalent to libraryDependencies += “org.scala-lang” % “scala-xml”
% “2.11.0-M4”, in your build.sbt file, if you are using an SBT project to program
and using Scala version 2.11.0 or higher. The version can be different than shown
here, based on your other setup parameters. This dependency fetches the necessary
jar file so that we can use XML library.

The first case matches data for a first name; the XML representation is <first-
Name ></firstName >. Similarly, the second case matches a last name. If incoming
data does not match either of these cases, then it falls into the default case, which
prints “No match” on the console. We will discuss XML processing details in Chap-
ter 14. The output for the program in Figure 10.10 is as shown below.

First name: Charles
Last name: Darwin
No match

10.12 Review Questions 121

object XMLPatternsApp {
def main(args: Array[String]): Unit = {

detectXML(<firstName>Charles</firstName>)
detectXML(<lastName>Darwin</lastName>)
detectXML(<Phone>111-222-4567</Phone>)

def detectXML(x: scala.xml.Node) = x match {
case <firstName>{content}</firstName> =>
println("First name: "+content)

case <lastName>{content}</lastName> =>
println("Last name: "+content)

case _ => println("No match")
}

}
}

Fig. 10.10: XML Pattern

10.11 Conclusion

In this chapter, we first discussed case classes, which can be used in pattern match-
ing. Then we covered sealed classes. Once a class is sealed, it can only be extended
in the same file, thereby making it convenient for developers to write complete
match cases. We then covered numerous patterns. Variable patterns enable us to
bind a matched object with a name so that object can be processed further. A wild-
card pattern uses underscore () to represent any. Generally, it is used for a default
case. A type pattern enables us to perform type checking. Literal patterns, as the
name suggests, are to match with literals. Constructor patterns help us to check the
construction process. This is one of the most powerful pattern matching features in
Scala. A tuple pattern enables us to match with tuples and to process tuple elements
further. Extractor patterns are used to extract parts of a whole. Sequence patterns
enable us to match with sequences, like Array, List, etc. Finally, we discussed XML
patterns, which allow us to match and to process XML data.

10.12 Review Questions

1. Write one application of case classes.
2. Why do we need to seal a class?
3. What is the benefit of variable in a variable pattern?
4. Which pattern is the best candidate for type matching?
5. What is the name of pattern that helps us to match literals?
6. Theoretically, is there a limit for the depth level in constructor matching?
7. If a function called tupMatch(x: Any) contains a case: case (a,b,c) =>, what is

the output for tupMatch(2,3,4)?

122 10 Pattern Matching

8. If a function called seqMatch(x: Any) contains a case: case a @ List(0, *) =>
println(a(0)), what is the output for seqMatch(List(0,1,2))?

9. For the function mentioned in the previous problem, is the output always 0?
10. If a function called detXML(x: scala.xml.Node) has a case: <phone >{content}

</phone > =>, how can we extract phone data?

10.13 Problems

1. Using pattern matching, write a program to detect the type of given data. You can
restrict to your types to Int, Double, Char, and String.

2. There are two fruits baskets—A and B. Basket A contains an even number of
apples and an odd number of oranges; basket B contains an odd number of apples
and an even number of oranges. For a given number of apples and oranges, write
a program to detect which basket the combinations were picked from. Here are
the rules:

a. If an odd number of apples and an even number of oranges are required, these
should be picked from basket B.

b. If an even number of apples and an odd number of oranges are required, these
should be picked from basket A.

c. If an even number of apples and an even number of oranges are required, these
should be picked from somewhere else.

3. Using pattern matching, find whether a given array contains an odd number of
elements or an even number of elements. For both the cases, find how many
elements are odd numbers and how many are even numbers.

10.14 Answers to Review Questions

1. Case classes can be used for pattern matching.
2. We seal a class so that it cannot be sub classed from files other than where it is

located. This makes it convenient for developers to write complete match cases.
3. A variable in a variable pattern allows us to process the matched object further.
4. A type pattern is the best candidate for type matching.
5. Literal pattern
6. Theoretically, there is no limit for the depth level in constructor matching.
7. It is a match; but the right side of the lambda expression does not have anything,

so it does not do anything.
8. 0
9. Yes, the output is always 0. In order for a match to occur, the first element of the

input list should always be 0. The right side of the lambda expression prints the
first element of the matched input list.

10.15 Solutions to Problems 123

10. The identifier content binds the matching phone data, use content for extraction.

10.15 Solutions to Problems

1. object TypeDetectionApp {
def main(args: Array[String]): Unit = {

val givenData = "Functional programming"
detectType(givenData)

def detectType(x: Any) = x match {
case x: Int => println(x + " is of Int type.")
case x: Double => println(x + " is of Double type.")
case x: Char => println(x + " is of Char type.")
case x: String => println(x + " is of String type.")
case _ => println("Some other type.")

}
}

}

2. object CombDetectionApp {
def main(args: Array[String]): Unit = {

detectBasket(List("apples",3,"oranges",3))

def detectBasket(x: Any) = x match {
case List(a,b,c,d) if(b.asInstanceOf[Int] % 2 == 0 &&
d.asInstanceOf[Int] % 2 != 0) =>
println("Picked from basket A")

case List(a,b,c,d) if(b.asInstanceOf[Int] % 2 != 0 &&
d.asInstanceOf[Int] % 2 == 0) =>
println("Picked from basket B")

case _ => println("Picked from somewhere else.")
}

}
}

124 10 Pattern Matching

3. object EvenAndOddNumApp {
def main(args: Array[String]): Unit = {

detectEvenOrOdd(Array(2,2,5,2,1))

def detectEvenOrOdd(x: Array[Int]) = x match {
case a @ Array(_*) if(a.size % 2 == 0) => {

println("Even number of elements.")
detectElements(a)

}
case b @ Array(_*) if(b.size % 2 != 0) => {

println("Odd number of elements.")
detectElements(b)

}
case _ => println("Something went wrong.")

}

def detectElements(x: Array[Int]): Unit = {
var oddCount = 0
var evenCount = 0
for (elem <- x) {

if (elem % 2 == 0) {
evenCount += 1

} else if(elem % 2 != 0) {
oddCount += 1

} else {
println("Wrong element.")

}
}
println("Total number of even elements: "+evenCount)
println("Total number of odd elements: "+oddCount)

}
}

}

Chapter 11
List Processing

In our day-to-day lives, we need to deal with lists in a regular basis. For example, if
we are going to buy groceries, we make a grocery list. Also we tend to list items for
mental clarity, when we are planning. If we are moving from one place to another
and would like to delegate the task to a mover, then we make lists of items. Also,
movers make their own list of items accepted for moving and use that list as an
important element of the moving contract. So lists are everywhere.

Scala brings together features from different programming paradigms. With one
set of syntactical elements, we can program in multiple paradigms. In this chapter,
we discuss Scala’s features that enable us to model real world list processing.

11.1 List Construction

Lists can be constructed using Scala’s collection library. Each element of the list is
separated by a comma and strings should be inside double quotes, as usual. The list,
cityList, in the following code snippet, contains three elements of type String. The
index starts from 0, so the first city can be accessed using cityList(0). The size of the
list can be found by executing citiList.size, as shown in the code snippet.

scala> val cityList = List("Sunnyvale", "San Jose",
"Palo Alto")
cityList: List[String] = List(Sunnyvale, San Jose,
Palo Alto)

scala> cityList.size
res0: Int = 3

Scala lists can contain elements of different types. If elements are of different
types then the type of the list is Any. The way to access list element does not change
even if the list contains elements of different types. But the type of element is con-
verted to a common type Any. So if we need to treat an element as a specific type,

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

125

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_11

126 11 List Processing

we need to first type cast. Also the type specific operations are available after a
successful type cast.

scala> val bag = List("book", 2, "pen")
bag: List[Any] = List(book, 2, pen)

scala> bag(0)
res2: Any = book

The list construction process is right associative, as shown in the code snippet
below. If we remove the parentheses, the Scala interpreter will still construct a list
from right to left, i. e., starting with an empty list, Nil. The two consecutive colons
(::), pronounced cons, is a list extension operator and a new element is added in the
front of the list. If there is no element in the list to be concatenated, the new element
is concatenated with an empty list, Nil.

scala> val cityList = "Sunnyvale" :: ("San Jose" ::
("Palo Alto" :: Nil))
cityList: List[String] = List(Sunnyvale, San Jose,
Palo Alto)

11.2 Operations

Lists support various interesting operations. There are three fundamental operations,
which form the basis for remaining operations. head returns the first element of the
list and tail returns all elements of the list except the first; isEmpty returns true if the
list is empty, otherwise it returns false.

scala> cityList.head
res6: String = Sunnyvale

scala> cityList.tail
res7: List[String] = List(San Jose, Palo Alto)

scala> cityList.isEmpty
res8: Boolean = false

Let’s define a list called lett as val lett = List(“a”,“b”,“c”); we will use this list
to demonstrate various operations.

1. head : It returns the first element of the list. Example: lett.head returns a.
2. tail : It returns all the elements except the first one. Example. lett.tail returns

List(b, c).
3. isEmpty : It returns a Boolean value. If the list is empty, it returns true, otherwise

it returns false. Example: lett.isEmpty returns false.

11.2 Operations 127

4. Nil : It means empty list. Example:

scala> val a = Nil
a: scala.collection.immutable.Nil.type = List()

scala> a.size
res16: Int = 0

5. List() : It is equivalent to Nil.
6. last : It gives the last element of the list. Example:

scala> lett.last
res17: String = c

7. :: : It is a list extension operator; the newest element is added in the front of the
list. Example:

scala> "z" :: lett
res18: List[String] = List(z, a, b, c)

8. ::: : It concatenates two lists. Example:

scala> val num = List(1,2,3)
num: List[Int] = List(1, 2, 3)

scala> num ::: lett
res21: List[Any] = List(1, 2, 3, a, b, c)

9. <ListName >(<index >) : It provides a way to access a list element; list index
starts from 0. Example:

scala> lett(0)
res22: String = a

10. count : It returns the count of elements satisfying certain criteria. Example:

scala> lett.count(x => x < "c")
res26: Int = 2

11. drop : It drops the specified number of elements from the beginning of the list.
Example:

scala> lett.drop(1)
res29: List[String] = List(b, c)

12. dropRight : It drops the specified number of elements from the end of the list.
Example:

scala> lett.dropRight(1)
res31: List[String] = List(a, b)

13. exists : It checks the existence of elements that satisfy certain conditions. Exam-
ple:

128 11 List Processing

scala> lett.exists(x => x == "c")
res32: Boolean = true

14. filter : It filters the elements based on provided criteria. Example:

scala> lett.filter(x => x < "c")
res33: List[String] = List(a, b)

15. forall : It applies given criteria to all elements of the list. Example:

scala> lett.forall(x => x < "z")
res36: Boolean = true

16. foreach : It applies given criteria or functions to each element of the list. Exam-
ple:

scala> lett.foreach(x => print(x))
abc

17. init : It returns a list containing all the elements except the last element. Example:

scala> lett.init
res38: List[String] = List(a, b)

18. length : It returns the size of the list. Example:

scala> lett.length
res40: Int = 3

19. map : It returns a list, which is the result of applying a function passed as a
parameter. Example:

scala> lett.map(x => x + "e")
res41: List[String] = List(ae, be, ce)

20. mkstring : It converts all the elements of the list to a single string. Example:

scala> lett.mkString
res44: String = abc

scala> lett.mkString("-")
res45: String = a-b-c

21. reverse : It reverses the order of elements in the list and returns the newly ordered
list. Example:

scala> lett.reverse
res52: List[String] = List(c, b, a)

22. sorted : It returns the sorted version of the given list. Example:

scala> val nums = List(5,4,7,6)
nums: List[Int] = List(5, 4, 7, 6)

scala> nums.sorted
res61: List[Int] = List(4, 5, 6, 7)

11.3 Patterns 129

11.3 Patterns

In addition to the patterns that we discussed in Chapter 10, lists support additional
pattern matching features. These features provide higher flexibility to developers
so that they can program for diverse requirements. The members of one list can be
transferred to another list by creating a list variable that contains an equal number
of elements to that of the source list. Each variable in the target list is bound to the
value with the same index in the source list.

scala> val drinks = List("Coke","Pepsi","Fanta",
"Wine")
drinks: List[String] = List(Coke, Pepsi, Fanta, Wine)

scala> val List(p,q,r,s) = drinks
p: String = Coke
q: String = Pepsi
r: String = Fanta
s: String = Wine

If we do not know the size of the source list, we can use the cons operator as
shown below. In this case, we are telling the interpreter that we know there are at
least two elements but we don’t know how many there are after that. Scala binds
the first two elements to the variables that we provided and creates a list for the
remaining elements in the source list.

scala> val x :: y :: remaining = drinks
x: String = Coke
y: String = Pepsi
remaining: List[String] = List(Fanta, Wine)

Now, let’s look at a complete program that uses pattern matching to extract the
head and tail of a list. Figure 11.1 shows a typical way to extract the head and tail
using the cons operator. The identifier before the cons operator represents the head
of the list and the identifier after the cons operator represents the tail of the list. The
output of this program is:

Head: tiger
Size of tail: 2

130 11 List Processing

object ListExtractionApp {
def main(args: Array[String]): Unit = {

extractFromList(List("tiger", "lion", "leopard"))

def extractFromList(x: List[String]) = x match {
case a :: b => {

println("Head: " + a)
println("Size of tail: " + b.size)

}
case _ => println("Malformed input")

}
}

}

Fig. 11.1: List Extraction

11.4 List Class

The list class has many first order and higher order methods available to facilitate
developers with their work. In this section, we discuss some of those, especially the
ones that we have not covered so far.

1. List concatenation (:::) : The concatenation operator joins two lists and it is right-
associative. In the following code snippet, the first list consists of the first three
prime numbers and the second list has the next two primes. When these two lists
are concatenated, we get the combination as one list. The assigned identifier is
res67, so if we execute res67(4), we get the value 7.

scala> List(1,2,3) ::: List(5,7)
res67: List[Int] = List(1, 2, 3, 5, 7)

2. take : It returns a new list with the number of elements mentioned in the param-
eter; the elements are taken from the beginning of the list. In the code snippet
below, take(3) returns a list containing the first three primes.

scala> List(1,2,3,5).take(3)
res70: List[Int] = List(1, 2, 3)

3. splitAt : It splits a list into two separate lists at a given index. The split index is
included in the second list. In the code snippet below, element 5 is at index 3 and
hence is the first element of the second list, after the split.

scala> List(1,2,3,5,7).splitAt(3)
res71: (List[Int], List[Int]) = (List(1, 2, 3),
List(5, 7))

4. zip : It takes two lists and combines elements having the same index in such a
way that they form a pair. So the resultant list is a list of pairs. In the code snippet
below, the first list contains indices and the second list contains items. When we
zip, we get pairs of indices and items.

11.4 List Class 131

scala> List(0,1,2) zip List("coke","fanta","pepsi")
res1: List[(Int, String)] = List((0,coke),
(1,fanta), (2,pepsi))

5. unzip : It is the reverse process of the zip operation. In the code snippet below,
we are re-using the list that we constructed for the previous step. When we unzip
the zipped list, we get our original two lists back.

scala> res1.unzip
res2: (List[Int], List[String]) = (List(0, 1, 2),
List(coke, fanta, pepsi))

6. toArray : It converts a list to an array. Array is a fundamental data structure and
is available in most high level programming languages, in one form or another.
Scala arrays can contain data of different types; this is achieved by converting
elements to a common higher type.

scala> List(1,2,3,5).toArray
res3: Array[Int] = Array(1, 2, 3, 5)

7. copyToArray : It copies the elements of a list to an array. If the index is not
specified, elements will be copied from the beginning index, otherwise elements
will be copied from the specified index. This is another very useful operation as
it allows us to control the data population.

scala> val target = new Array[Int](5)
target: Array[Int] = Array(0, 0, 0, 0, 0)

scala> val source = List(3,5)
source: List[Int] = List(3, 5)

scala> source.copyToArray(target,2)

scala> target
res11: Array[Int] = Array(0, 0, 3, 5, 0)

8. map : It applies a parameterized function to specified elements of a list. In the
code snippet below, * 2 is a function that takes each element of the list and
multiplies it by two. When all the elements are processed, it forms a result, which
is a new list with elements doubled. We have covered this method earlier in this
book; this is a refresher. We have intentionally repeated many things as it helps
us to remember them.

scala> List(1,2,3) map (_ * 2)
res14: List[Int] = List(2, 4, 6)

9. flatMap : Like map, it applies a parameterized function to specified elements of
a list, but merges the inner lists, as shown below.

132 11 List Processing

scala> val oddNumList = List(1,3,5)
oddNumList: List[Int] = List(1, 3, 5)

scala> val evenNumList = List(2,4)
evenNumList: List[Int] = List(2, 4)

scala> val numList = List(oddNumList,evenNumList)
numList: List[List[Int]] = List(List(1, 3, 5),
List(2, 4))

scala> numList flatMap(_.toList)
res15: List[Int] = List(1, 3, 5, 2, 4)

10. filter: It filters the elements of a list based on a parameterized predicate. The new
list contains the elements that satisfy the condition in the predicate. In the code
snippet below, odd numbers form the new list.

scala> List(1,2,3,4) filter (_ % 2 != 0)
res21: List[Int] = List(1, 3)

11. partition : It partitions a list into two lists, based on criteria expressed in the
parameterized predicate. Those elements that satisfy the criteria form the first
list and remaining elements form the second list.

scala> List(1,2,3,4) partition (_ % 2 != 0)
res22: (List[Int], List[Int]) = (List(1, 3),
List(2, 4))

12. find : It returns the first element that matches the criteria expressed in the param-
eterized predicate.

scala> List(1,2,3,4) find (_ % 2 != 0)
res23: Option[Int] = Some(1)

13. forall : It returns true if the parameterized predicate holds true for all the elements
of a list.

scala> List(1,3,5,5,7,3) forall (_ % 2 != 0)
res36: Boolean = true

14. exists : It returns true if the parameterized predicate holds true for at least one
elements of a list.

scala> List(1,3,2,5,5,7,3) exists (_ % 2 == 0)
res39: Boolean = true

11.5 List Object

Scala’s List class has a companion object called List, which contains numerous util-
ities. We discuss some of those utilities here.

11.6 Conclusion 133

1. List.range : It creates a List for a specified range of elements. The first parameter
provides the from value and the second parameter provides the until value. Also
an additional step parameter can be supplied, which can be positive as well as
negative.

scala> List.range(1,7)
res41: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> List.range(1,7,2)
res42: List[Int] = List(1, 3, 5)

scala> List.range(7,1,-2)
res43: List[Int] = List(7, 5, 3)

2. List.fill : It creates a list by replicating a value. The first parameter provides the
dimension or the repeat and the second parameter provides the value; the method
takes one parameter at a time. There are several variations of this method.

scala> List.fill(5)("cat")
res55: List[String] = List(cat, cat, cat, cat, cat)

scala> List.fill(2,3)(1)
res61: List[List[Int]] = List(List(1, 1, 1),
List(1, 1, 1))

3. List.tabulate : It creates a list containing values of a specified function, which is
the second parameter, over a range of integer values starting from 0. There are
several variations of this method.

scala> List.tabulate(3)(x => x + 1)
res70: List[Int] = List(1, 2, 3)

11.6 Conclusion

In this chapter, we started with the list construction process. Then we discussed
simple list operations. These operations are handy for analytical programming. We
covered list patterns and list element extraction. Next, we discussed additional meth-
ods in the List class, covering both first order and higher order methods. There are
several popular big data processing frameworks, including Apache Spark, that heav-
ily utilize higher order list methods. We also covered some of the utility methods
available in the companion object List.

134 11 List Processing

11.7 Review Questions

1. Search on the Internet for the word “Lisp” and locate resources for the Lisp
programming language. Is there any relationship between Lisp and Scala lists?

2. What is the output of the following code snippet?

val mix = List("tomato",2,"pepsi")

3. What is the output for mix.head?
4. What is the output for mix.tail?
5. What is the output for the following code snippet?

scala> val oddDigits = List(1,3,5,7,9)
oddDigits: List[Int] = List(1, 3, 5, 7, 9)

scala> val evenDigits = List(2,4,6,8)
evenDigits: List[Int] = List(2, 4, 6, 8)

scala> oddDigits zip evenDigits

6. What is the output for the following code snippet?

scala> oddDigits exists (x => x%2 == 0)

7. What is the output for the following code snippet?

scala> oddDigits forall (x => x%2 != 0)

8. What is the output for the following code snippet?

scala> evenDigits partition (x => x < 6)

9. What is the output for the following code snippet?

scala> evenDigits take(3)

10. What is the output for the following code snippet?

scala> oddDigits splitAt(3)

11.8 Problems

1. Assume that Basket A contains all apples and Basket B contains all oranges. The
number of apples in Basket A is equal to the number of oranges in Basket B.
Further, all apples and oranges are numbered starting from 1, in an increasing
order, without repeating. Using list, write a program to extract the last apple and
orange pair.

11.10 Solutions to Problems 135

2. In the context of the previous problem, add Basket C, which combines the con-
tents of Basket A and Basket B. The criteria for combination is that apples and
oranges should be separable without losing the labels. Print the total number of
pairs available in Basket C, on the console. Sell the last two pairs and stop the
day’s transaction.

3. In the context of the previous problem, for the remaining pairs, separate apples
from oranges and move them back to their respective baskets. Print the total
number of apples and oranges available in each basket, on the console.

11.9 Answers to Review Questions

1. Lisp is the first artificial intelligence high level programming language based on
lambda calculus. It is also the second oldest high level programming language,
the first being Fortran. Lisp has strong support for list processing. Scala brings
together many features, including list processing.

2. mix: List[Any] = List(tomato, 2, pepsi)
3. res71: Any = tomato (Note: res71 is specific to a particular session, it is ok to

have different values)
4. res72: List[Any] = List(2, pepsi)
5. List[(Int, Int)] = List((1,2), (3,4), (5,6), (7,8))
6. res76: Boolean = false
7. res78: Boolean = true
8. res79: (List[Int], List[Int]) = (List(2, 4),List(6, 8))
9. res80: List[Int] = List(2, 4, 6)

10. res81: (List[Int], List[Int]) = (List(1, 3, 5),List(7, 9))

11.10 Solutions to Problems

1. object AppleOrangeBasketApp1 {
def main(args: Array[String]): Unit = {

val basketA = List("apple1","apple2","apple3","apple4")
val basketB =
List("orange1","orange2","orange3","orange4")
extractLastPair(basketA, basketB)

def extractLastPair(apples: List[String],
oranges: List[String]): Unit = {

val mix = apples zip oranges
println(mix(mix.size - 1))

}
}

}

136 11 List Processing

2. object AppleOrangeBasketApp2 {
def main(args: Array[String]): Unit = {

val basketA =
List("apple1", "apple2", "apple3", "apple4")

val basketB =
List("orange1", "orange2", "orange3", "orange4")

val basketC = (basketA zip basketB).dropRight(2)
basketC.foreach(println)

}
}

3. object AppleOrangeBasketApp3 {
def main(args: Array[String]): Unit = {

var basketA =
List("apple1", "apple2", "apple3", "apple4")

var basketB =
List("orange1", "orange2", "orange3", "orange4")

val basketC = (basketA zip basketB).dropRight(2)
val tempBasket = basketC.unzip
basketA = tempBasket._1
basketB = tempBasket._2
println("Total apples in Basket A: "+basketA.size)
println("Total oranges in Basket B: "+basketB.size)

}
}

Chapter 12
The Scala Collections Framework

As indicated in Chapter 1, high level programming languages are close to natural
languages whenever possible. The Scala collections represent higher level natural
language constructs. In some cases, these constructs might represent some math-
ematical structures for preciseness. We deal with sets of things in our daily lives.
Also we need to map some items with some other items. Sometimes, we create in-
dices for faster searching and so on. In this chapter, we discuss sets, maps, different
types of sequences, and tuples. All of these collections are frequently used to solve
programming problems.

12.1 Mutable versus Immutable Collections

Scala provides two sets of collections—immutable and mutable. Immutable collec-
tions are like val, i.e., we cannot change them but we can make copies of them.
Mutable collections are changeable. While programming, one might suit better than
the other depending upon the problem to be solved. But in general, immutable col-
lections are recommended over mutable collections for several reasons.

First of all, immutable collections are modification safe, i. e., if we have a com-
plex distributed environment, then it might be error prone to keep track of who
is modifying what. Also it is relatively much more complex to reason about the
program because of uncertainties in a distributed environment. In such scenarios,
immutable collections can help.

Second of all, immutable collections have relatively compact representations for
small collections. This maps to efficiency and performance. So it is good practice to
start with immutable collections and move to mutable collections, if required. The
other direction can also be adopted but it might be a bit complex to replace all the
networked modifications correctly.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

137

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_12

138 12 The Scala Collections Framework

12.2 Sets

A set contains a list of non-repeated elements. So it is obvious when to use set;
storing elements in a set guarantees uniqueness. In the code snippet below, a set is
created with three elements in it. By default, Set from the scala.collection.immutable
package is used, i.e., we create an immutable collection by default. If we want to
change it to mutable, then we can import the scala.collection.mutable package and
then the corresponding collection.

scala> val cities =
Set("Sunnyvale", "San Jose", "Palo Alto")
cities: scala.collection.immutable.Set[String] =
Set(Sunnyvale, San Jose, Palo Alto)

Sets support numerous operations.

1. + : It adds an element to a set. In the following code snippet, the first fragment
creates a set containing numbers from 1 to 5. The second fragment adds number
6 to the numSet.

scala> val numSet = Set(1,2,3,4,5)
numSet: scala.collection.immutable.Set[Int] =
Set(5, 1, 2, 3, 4)

scala> numSet + 6
res11: scala.collection.immutable.Set[Int] =
Set(5, 1, 6, 2, 3, 4)

2. - : It removes an element from a set. Example:

scala> numSet - 6
res12: scala.collection.immutable.Set[Int] =
Set(5, 1, 2, 3, 4)

3. ++ : It adds a collection to a collection. Example:

scala> numSet ++ Set(6,7)
res16: scala.collection.immutable.Set[Int] =
Set(5, 1, 6, 2, 7, 3, 4)

4. - - : It removes a collection from a set. Example:

scala> numSet -- Set(6,7)
res17: scala.collection.immutable.Set[Int] =
Set(5, 1, 2, 3, 4)

5. size : It provides the size of a set. Example:

scala> numSet.size
res19: Int = 5

12.3 Maps 139

6. contains : It checks whether given element is present in a set. Example:

scala> numSet.contains(1)
res21: Boolean = true

More operations can be seen in the API documentation online. Please note that
there are some operations specific to mutable sets.

12.3 Maps

Like sets, maps also come in two different flavors—immutable and mutable. A map
is a structure whose elements are key-value pairs. In the code snippet below, we
create a map of two countries, USA and Canada, with keys 1 and 2, respectively.
Both the keys and values can be any objects.

scala> val countryMap = Map(1 -> "USA", 2 -> "Canada")
countryMap: scala.collection.immutable.Map[Int,String]
= Map(1 -> USA, 2 -> Canada)

Next, let’s look at some useful map operations.

1. + : It adds an entry to a map. Example.

scala> countryMap + (3 -> "UK")
res24: scala.collection.immutable.Map[Int,String] =
Map(1 -> USA, 2 -> Canada, 3 -> UK)

2. - : It removes an entry from a map. We can remove an entry using its key. Exam-
ple:

scala> countryMap - (3)
res26: scala.collection.immutable.Map[Int,String] =
Map(1 -> USA, 2 -> Canada)

3. ++ : It adds another map or a collection to a map. Example:

scala> countryMap ++ Map(3 -> "UK", 4 -> "Japan")
res28: scala.collection.immutable.Map[Int,String] =
Map(1 -> USA, 2 -> Canada, 3 -> UK, 4 -> Japan)

4. - - : It removes multiple entries. We can remove entries using the corresponding
keys. Example:

scala> countryMap -- List(3,4)
res31: scala.collection.immutable.Map[Int,String] =
Map(1 -> USA, 2 -> Canada)

5. contains : It returns a Boolean value if it finds a corresponding entry. Example:

scala> countryMap.contains(2)
res33: Boolean = true

140 12 The Scala Collections Framework

6. size : It provides the size of a map. Example:

scala> countryMap.size
res34: Int = 2

7. <name of the map >(<key >) : It returns the corresponding value for the key.
Example:

scala> countryMap(2)
res36: String = Canada

8. isEmpty : It returns true if a map is empty and returns false if a map is non-empty.
Example:

scala> countryMap.isEmpty
res37: Boolean = false

9. keys : It returns all the keys of that map, as an Iterable. Example:

scala> countryMap.keys
res38: Iterable[Int] = Set(1, 2)

10. keySet : It returns keys as a set. Example:

scala> countryMap.keySet
res39: scala.collection.immutable.Set[Int] =
Set(1, 2)

11. values : It returns all the values of a map, as an Iterable. Example:

scala> countryMap.values
res40: Iterable[String] = MapLike(USA, Canada)

12.4 Sequences

Sequences have indexed elements and inherit from the trait Seq. When a data struc-
ture is indexed, we can refer to each element by its index. Scala has numerous se-
quences and we discuss some of them here.

1. List : We discussed List details in Chapter 11. Lists are immutable and are widely
used. Insertion and removal from the beginning of the list is fast, but this is not
true for any arbitrary index.

2. List Buffer : As opposed to a List, a ListBuffer is mutable and performs in a
constant time for both append as well as prepend. The operator += appends an
item to a ListBuffer and +: prepends an item to a list buffer. Examples:

scala> val fruitBuffer = new ListBuffer[String]
fruitBuffer: scala.collection.mutable.
ListBuffer[String] = ListBuffer()

12.4 Sequences 141

scala> fruitBuffer += "apple"
res45: fruitBuffer.type = ListBuffer(apple)

scala> "mango" +: fruitBuffer
res46: scala.collection.mutable.ListBuffer[String]
= ListBuffer(mango, apple)

3. Array : We have used Array before in this book. An array is a mutable data
structure and is efficient in accessing an element at an arbitrary index. Just as a
refresher, we create a couple of Arrays below. The first code snippet creates an
array called evenNums and initializes it with even numbers below 10. The third
code snippet creates an array called oddNums to hold odd numbers. The fourth
code snippet shows how to insert an element in an array.

scala> val evenNums = Array(2,4,6,8)
evenNums: Array[Int] = Array(2, 4, 6, 8)

scala> evenNums(0)
res53: Int = 2

scala> val oddNums = new Array[Int](5)
oddNums: Array[Int] = Array(0, 0, 0, 0, 0)

scala> oddNums(0) = 1

scala> oddNums
res55: Array[Int] = Array(1, 0, 0, 0, 0)

4. Array Buffer : ArrayBuffer is a mutable data structure. In order to use it, we need
to import scala.collection.mutable.ArrayBuffer. An ArrayBuffer is like an array
with additional append and prepend operations. Also elements can be removed
from the beginning as well as from the end. Examples:

scala> import scala.collection.mutable.ArrayBuffer
import scala.collection.mutable.ArrayBuffer

scala> val fruitBuff = new ArrayBuffer[String]()
fruitBuff: scala.collection.mutable.
ArrayBuffer[String] = ArrayBuffer()

scala> fruitBuff += "apple"
res56: fruitBuff.type = ArrayBuffer(apple)

scala> fruitBuff.length
res58: Int = 1

142 12 The Scala Collections Framework

5. Stack : Stack is available both as an immutable as well as a mutable data structure
in Scala. This is a classical data structure in computer science that simulates last-
in-first-out activities of the real world. Let’s look at some common operations on
Stack. The examples are self-explanatory.

scala> import scala.collection.mutable.Stack
import scala.collection.mutable.Stack

scala> val stackSim = new Stack[String]
stackSim: scala.collection.mutable.Stack[String]
= Stack()

scala> stackSim.push("Scala Book")
res60: stackSim.type = Stack(Scala Book)

scala> stackSim.push("Java Book")
res61: stackSim.type = Stack(Java Book, Scala Book)

scala> stackSim
res62: scala.collection.mutable.Stack[String] =
Stack(Java Book, Scala Book)

scala> stackSim.top
res66: String = Java Book

scala> stackSim.pop
res69: String = Java Book

scala> stackSim
res70: scala.collection.mutable.Stack[String] =
Stack(Scala Book)

6. Queue : Like stack, queue is also available both as an immutable and a mutable
data structure, and simulates first-in-first-out activities of the real world. The code
snippets below present several common queue operations.

scala> import scala.collection.mutable.Queue
import scala.collection.mutable.Queue

scala> val queueSim = new Queue[Int]
queueSim: scala.collection.mutable.Queue[Int]
= Queue()

scala> queueSim += 1
res72: queueSim.type = Queue(1)

12.5 Tuples 143

scala> queueSim ++= List(3,5)
res73: queueSim.type = Queue(1, 3, 5)

scala> queueSim.dequeue
res74: Int = 1

scala> queueSim
res75: scala.collection.mutable.Queue[Int] =
Queue(3, 5)

scala> queueSim.enqueue(1)

scala> queueSim
res77: scala.collection.mutable.Queue[Int] =
Queue(3, 5, 1)

12.5 Tuples

A tuple combines multiple items into one group so that multiple items could be
processed as one item. When it groups, it doesn’t lose the identity of an individual
item so that the item can be extracted and processed individually. A tuple can be a
handy feature to represent certain combinations, which don’t have to be necessarily
expressed using classes. So it is the developer who decides which one models the
given situation better. Tuples are immutable and can hold objects of different types.
Scala can infer the type of a tuple based on its elements.

The following code snippet creates a tuple containing two elements. Since the
type of both the elements is String, the type of tuple is (String, String). The first
element of the tuple is accessed by writing the tuple name followed by a dot, which
is followed by an underscore and 1, as shown in the code snippet below. Similarly,
the second element can be accessed with 2 and so on. The number here looks more
like a subscript. Please note that the index starts from 1, not from 0.

scala> val statePair = ("CA", "California")
statePair: (String, String) = (CA,California)

scala> statePair._1
res78: String = CA

scala> statePair._2
res79: String = California

144 12 The Scala Collections Framework

As far as assignment is concerned, a tuple can be treated as a single unit. For
example, in the following code snippet, we have assigned tuple (1,2) to tuple (a,b).
The first identifier of the target gets the first element of the source and so on. Next,
we’ve treated the tuple elements as individual variables and performed an addition.

scala> val (a,b) = (1,2)
a: Int = 1
b: Int = 2

scala> a + b
res81: Int = 3

12.6 Conclusion

In this chapter, we discussed mutable and immutable collections. Mutable collec-
tions provide convenience for program reasoning. Next, we discussed sets and re-
lated operations. Scala sets are like mathematical sets and contain unique elements.
Then we covered maps, which are key-value pairs. Next, we discussed different
types of sequences—list, list buffer, array, array buffer, stack, and queue. Finally,
we discussed tuples.

12.7 Review Questions

1. What is a major difference between a mutable collection and an immutable col-
lection?

2. What is the output of the following code snippet? The auto-generated identifier
may not match, which is expected.

scala> val nums = Set(10,11,12,15)
nums: scala.collection.immutable.Set[Int] =
Set(10, 11, 12, 15)

scala> nums - 15

3. What is the output of the following code snippet? Please note that nums was
defined in the previous question.

scala> nums -- Set(10,11)

4. What is the output of the following code snippet?

scala> nums

5. What is the output of the following code snippet?

12.7 Review Questions 145

scala> val westCities =
Map(1 -> "San Jose", 2 -> "Palo Alto")

westCities: scala.collection.immutable.Map[Int,String]
= Map(1 -> San Jose, 2 -> Palo Alto)

scala> val eastCities =
Map(1 -> "Boston", 2 -> "New York")

eastCities: scala.collection.immutable.
Map[Int,String] = Map(1 -> Boston, 2 -> New York)

scala> westCities.contains(1) ==
eastCities.contains(1)

6. What is the output of the following code snippet?

scala> westCities -- List(1,2)
res88: scala.collection.immutable.Map[Int,String]
= Map()

scala> westCities

7. What is the output of the following code snippet?

scala> val num = new ListBuffer[Int]
num: scala.collection.mutable.ListBuffer[Int]
= ListBuffer()

scala> num += 2
res90: num.type = ListBuffer(2)

scala> num(0)

8. What is the output of the following code snippet?

scala> val ranStack = new Stack[Int]
ranStack: scala.collection.mutable.Stack[Int]
= Stack()

scala> ranStack.push(2).push(3)
res96: ranStack.type = Stack(3, 2)

scala> ranStack.pop

9. What is the output of the following code snippet?

scala> val ranQueue = new Queue[Int]
ranQueue: scala.collection.mutable.Queue[Int]
= Queue()

146 12 The Scala Collections Framework

scala> ranQueue.enqueue(2)

scala> ranQueue.enqueue(1)

scala> ranQueue.dequeue

10. What is the output of the following code snippet?

scala> val ranTuple = ("pi", 3.1416)
ranTuple: (String, Double) = (pi,3.1416)

scala> val dumTuple =("mi", 2.1416)
dumTuple: (String, Double) = (mi,2.1416)

scala> ranTuple._2 == dumTuple._2

12.8 Problems

1. Assume that there are two baskets—A and B. Basket A was shipped from Mexico
to USA and basket B was shipped from China to USA. In order to reduce the
shipping cost, the fruits were mixed and shipped in one basket, i.e., both the
baskets have apples as well as oranges. Each fruit item is labeled uniquely. For
example, an apple from China is labeled as CA1 and an apple from Mexico is
labeled as MA1. Each student is given exactly one apple and one orange. Using
set, write a program to calculate the maximum number of students that can be
served by basket A and basket B. You can create sample data, with hard coded
values.

2. Assume that data center A has a map containing 3 key-value pairs and data center
B has a map containing 2 key-value pairs. Each key-value pair represents an
available virtual box; a key represents an id and a value represents a capacity.
Write a program to select the last virtual box from the combined map of virtual
boxes. Hard coded sample data is fine to solve this problem.

3. Write a program to remove the last virtual box from the context of the previous
problem and to find a virtual box with the highest capacity.

12.9 Answers to Review Questions

1. A mutable collection can be re-assigned but an immutable collection cannot be
re-assigned.

2. res82: scala.collection.immutable.Set[Int] = Set(10, 11, 12). (Note: your auto-
generated identifier can be different.)

12.10 Solutions to Problems 147

3. res83: scala.collection.immutable.Set[Int] = Set(12, 15)
4. res84: scala.collection.immutable.Set[Int] = Set(10, 11, 12, 15)
5. true
6. res89: scala.collection.immutable.Map[Int,String] = Map(1 -> San Jose, 2 ->

Palo Alto)
7. res95: Int = 2
8. res99: Int = 3
9. res104: Int = 2

10. res105: Boolean = false

12.10 Solutions to Problems

148 12 The Scala Collections Framework

1. object BasketApp {
def main(args: Array[String]): Unit = {

val basketA =
Set("CA1","CA2","CA3","CO1","CO2","CO3","CO4")

val basketB =
Set("MA1","MA2","MA3","MA4","MO1","MO2","MO3")

def findServInA(x: Set[String]): (Int,Int) = {
var appCount = 0
var oraCount = 0
for(elem <- x) {

if (elem.startsWith("CA")) {
appCount += 1

} else if(elem.startsWith("CO")) {
oraCount += 1

}
}
(appCount,oraCount)

}

def findServInB(y: Set[String]): (Int,Int) = {
var appCount = 0
var oraCount = 0
for(elem <- y) {

if (elem.startsWith("MA")) {
appCount += 1

} else if(elem.startsWith("MO")) {
oraCount += 1

}
}
(appCount,oraCount)

}

val (chinaApp, chinaOra) = findServInA(basketA)
val (mexApp, mexOra) = findServInB(basketB)

val totalApples = chinaApp + mexApp
val totalOranges = chinaOra + mexOra
val servRef = if (totalApples < totalOranges) totalApples
else totalOranges

println("Max. students that can be served = " + servRef)

}
}

2. object DataCenterApp1 {
def main(args: Array[String]): Unit = {

val datcen1 = Map(1 -> 234, 2 -> 100, 3 -> 400)
val datcen2 = Map(100 -> 200, 101 -> 1024)
val combDataCenter = datcen1 ++ datcen2
println(combDataCenter.toList.last)

}
}

12.10 Solutions to Problems 149

3. object DataCenterApp2 {
def main(args: Array[String]): Unit = {

val dataCenter1 = Map(1 -> 234, 2 -> 100, 3 -> 400)
val dataCenter2 = Map(100 -> 200, 101 -> 1024)
val combDataCenter = dataCenter1 ++ dataCenter2
val lastElemAsList = combDataCenter.toList.last
val refreshedDataCenter = combDataCenter --
List(lastElemAsList._1)

val maxCapacityValue = refreshedDataCenter.values.max
println("Highest capacity virtual box id is "+
keyForValue(refreshedDataCenter, maxCapacityValue))

}

def keyForValue(aMap: Map[Int,Int], aValue: Int): Int = {
val aList = aMap.toList
var aKey = 0
for(elem <- aList) {

if(elem._2 == aValue) {
aKey = elem._1

}
}
aKey

}
}

Chapter 13
Actors

The actor model of computation has a long history [HBS73]. It is an interesting
model of computation in the sense that each actor is like a human agent that is capa-
ble of receiving, processing, and sending messages. Also the actor model provides a
hierarchy of actors so that work can be divided or can be delegated. This makes the
system fault tolerant, because if one actor dies, the work can be assigned to another
actor.

Scala actors pass immutable messages so as to enable better program reasoning.
Originally the actor library was a part of Scala and later it transitioned to the Akka
actor library. The transition allows the actor library to evolve as a separate module,
as it is a significant computational module. There are programming languages pri-
marily based on the actor model of computation, including Erlang. For the purpose
of our discussions, please include something equivalent to libraryDependencies +=
“com.typesafe.akka” %% “akka-actor” % “2.5.1” in your build.sbt file, if you are
using an SBT project in an IDE. At the time of writing, version 2.5.1 was the latest
stable release of the Akka toolkit.

13.1 The Components of Actors

In order to write a simple custom actor, all we need to do is write a class that extends
the trait Actor and implement the receive method. The remaining things are taken
care of by the framework itself. In Figure 13.1, the class SimpleActor extends the
trait Actor. This trait has numerous methods; we will be discussing some of these
later in this chapter. receive is the only method that is required in order to recognize
the class as an actor.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

151

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_13

152 13 Actors

import akka.actor.{Props, ActorSystem, Actor}
class SimpleActor extends Actor {

def receive = {
case "Scala" => println("Scala programming")
case "Java" => println("Java programming")
case _ => println("No match found")

}
}

object SampleActorApp {
def main(args: Array[String]): Unit = {

val actorSystem = ActorSystem("SampleActorSystem")
val simpleActor = actorSystem.actorOf(Props[SimpleActor],
name = "simActor")

simpleActor ! "Scala"
simpleActor ! "Java"
simpleActor ! "Erlang"

}
}

Fig. 13.1: Simple Actor

13.2 Creating Actors

In order to create an actor, we need to create an ActorSystem, which has necessary
methods that allow us to create and manage actors. Also it is common practice to
create one ActorSystem per application. We supply a name to ActorSystem so that
it can be referred, as shown in Figure 13.1. ActorSystem is responsible for allocat-
ing one or more threads for our application. This is one of the advantages of the
Akka toolkit over low level threads oriented programming, like Java multi-threaded
programming.

Once we have an instance of ActorSystem, we can use its actorOf operation to
create an actor. We supply two arguments—Props of SimpleActor and a name to
our actor. Please note that SimpleActor is the class we defined and Props is part of
the Akka toolkit, which contains necessary members to make SimpleActor an actor,
including mailbox, routerConfig, and dispatcher.

If we look at the signature of actorOf, def actorOf(props : akka.actor.Props, name
: scala.Predef.String) : akka.actor.ActorRef, we find that it returns an instance of Ac-
torRef, which is a handle to the actor. When we call the operation actorOf, an actor
is started asynchronously. ActorRef is more like an interface between a programmer
and the actual actor. ActorRef is serializable, immutable, and network aware. Also
it has a one-to-one relationship with the actor, SimpleActor in our case.

13.3 Sending and Receiving Messages 153

13.3 Sending and Receiving Messages

Communication with actors is done through message passing. Figure 13.2 presents
a typical message passing between two actors and a driver program. It has two
actors—BankOfAmerica and Chase, which communicate with each other for the
purpose of account validation. The driver program creates two actors called boa and
chase. When the chase actor is created, an actor reference to boa is passed, which
enables direct message passing from chase to boa.

Once the actors are created, the message deposit is passed to the actor chase,
which matches with the case “deposit”, which causes the code in this case to be
executed. The last line of code sends the message deposit-complete to the actor boa.
This matches with the case “deposit-complete”, which sets the flag and prints Ready
for debit. From the user’s perspective, this chain of communication ends here.

Next, the message debit is sent to the actor chase. If the depositCompleted flag
is set to true, it will print the message Debit completed, on the console. In the next
LOC, it passes the message debit-complete to the actor boa. There is a correspond-
ing case to handle this message, which first checks whether the depositComplete
flag is set to true. If it is set to true, it will print the message Process completed, on
the console. The order of the messages printed on the console may be different in
different run, because the communication is an asynchronous process.

154 13 Actors

import akka.actor.{ActorRef, Props, ActorSystem, Actor}
class BankOfAmerica extends Actor {

var depositComplete = false
def receive = {

case "deposit-complete" => {
depositComplete = true
println("Ready for debit")

}
case "debit-complete" => {

if(depositComplete == true) {
println("Process completed")

}
}
case _ => println("Unknown status")

}
}
class Chase(boa: ActorRef) extends Actor {

var depositCompleted = true
def receive = {

case "deposit" => {
depositCompleted = true
println("Deposit complete")
boa ! "deposit-complete"

}
case "debit" => {

if(depositCompleted == true) {
println("Debit completed")
boa ! "debit-complete"

}
}
case _ => println("Unknown status")

}
}
object MessageExchangeActorApp {

def main(args: Array[String]): Unit = {
val actorSystem = ActorSystem("AccountVerification")
val boa =
actorSystem.actorOf(Props[BankOfAmerica],"boa-actor")

val chase = actorSystem.actorOf(Props(new Chase(boa)),
"chase-actor")

chase ! "deposit"
chase ! "debit"

}
}

Fig. 13.2: Sending and Receiving Messages

13.4 Life Cycle 155

13.4 Life Cycle

The actor life cycle starts when an actor is created and the life cycle can be under-
stood through life cycle related methods:

• preStart : This method is called as soon as an actor is started and is called before
the receive method is called.

• receive : As the name suggests, it receives messages and processes them.
• postStop : It is called after an actor is stopped and can be used for cleanup. For

example, if an actor is closely tied with a database connection, that connection
can be closed as a part of post operations.

• preRestart : It is called before an actor is restarted and is used to inform what
caused the restart. It takes an exception and a message as parameters; the ex-
ception is the cause of restart and there might be a message that caused that
exception.

• postRestart : It is called immediately after an actor is restarted and takes an ex-
ception that caused the restart as its parameter.

Figure 13.3 overrides actor life cycle methods to show when they are called. All
of these methods have at least one line of code that prints on the console so that we
can compare messages and see the order of invocation. The output for this program
is as shown below.

CarActor constructor
CarActor: preStart
Some message
CarActor: preRestart
Cause: Force restart
Message: ForceRestart
CarActor constructor
CarActor: postRestart
Cause: Force restart
[ERROR] [06/08/2017 19:05:30.459] [Actor...
java.lang.Exception: Force restart
...
Terminating actor system
CarActor: postStop

Process finished with exit code 0

Please note that the method postStop was not called when the actor carActor was
restarted. The method receive is more like the body of the actor and was invoked
after preStart. When we created an artificial exception, the actor was restarted au-
tomatically. We did not explicitly pass the exception or the message, but those were
captured by the toolkit.

156 13 Actors

import akka.actor.{Props, ActorSystem, Actor}
case object ForceRestart
class CarActor extends Actor {

println("CarActor constructor")
override def preStart: Unit = {

println("CarActor: preStart")
}
override def postStop: Unit = {

println("CarActor: postStop")
}
override def preRestart(cause: Throwable,
message: Option[Any]): Unit = {
println("CarActor: preRestart")
println(s" Cause: ${cause.getMessage}")
println(s" Message: ${message.getOrElse("None")}")

}
override def postRestart(cause: Throwable): Unit ={

println("CarActor: postRestart")
println(s" Cause: ${cause.getMessage}")

}
def receive = {

case ForceRestart => throw new Exception("Force restart")
case _ => println("Some message")

}
}
object ActorLifecycleApp {

def main(args: Array[String]): Unit = {
val actorSystem = ActorSystem("ActorLifeCycle")
val carActor = actorSystem.actorOf(Props[CarActor], name
= "car")

carActor ! "first message"
Thread.sleep(2000)
carActor ! ForceRestart
Thread.sleep(2000)
actorSystem.stop(carActor)
println("Terminating actor system")
actorSystem.terminate()

}
}

Fig. 13.3: Actor Life Cycle

13.5 Child Actors

The actor model of computation is an interesting computing paradigm. For the pur-
pose of analysis, let’s take an example of an organization. An organization has a
president or CEO. There can be multiple vice presidents, as each of them will be
looking after a specific aspect of business like finance, engineering, operations, etc.

13.5 Child Actors 157

When a big task is assigned to the organization, it is assigned to the CEO. But it is
not the CEO who does all the work.

The CEO breaks down the task in terms of organization segments; these seg-
ments are responsible for a particular type of task. Next, the CEO delegates tasks to
vice presidents, based on their expertise. Vice presidents break down the tasks and
delegate to their sub-ordinates, who could be senior directors. Now the senior direc-
tors may break down the task and delegate to the next level. This continues until it
reaches the working level. Actor hierarchy is similar to this context.

Figure 13.4 presents two actors President and VicePresident. We have a couple
of case classes to help create actors. In the actor President, we have a case to create
an actor of type VicePresident. From the driver program, when a message of type
CreateVicePresident is sent, it matches with the first case in the President actor’s
receive method. In the first case, an actor of type VicePresident is created. Please
note that we use context, which is of type ActorContext, when we create a child
actor from a parent actor. This is different from when we create an actor from the
driver program, which uses ActorSystem.

The name passed as a parameter to the message of type CreateVicePresident
is assigned to the identifier name. Please note the prefix s; this allows us to write
expressions inside double quotes, which eventually evaluate to a string value before
assignment is made. The name after the dollar sign indicates an identifier, not a
literal value. In the next LOC, an object Name with a parameter name is passed to
the newly created actor vp. In the corresponding case within the VicePresident actor,
there is only assignment, so nothing is printed on the console.

Next, the actor vp is passed a message hello, which matches with the default case
in the VicePresident actor that causes the corresponding string to be printed, on the
console. Please note that this string also has an identifier, which has a default value
None. We have overridden the postStop method so that we can see an output on the
console, when an actor of type VicePresident is terminated.

On the driver program side, the actor president gets a message of type CreateVi-
cePresident, which is parameterized. We have already discussed the corresponding
case, in the President actor, for this. This creates a VicePresident actor. Next, we
select that vice president actor using actorSelection. Please note how names and
the URL-like structure are related. The names that we provided during actor cre-
ation can be used to locate the actor. Also please note that the child actor is within
the parent actor in the URL-like structure. Next, we kill the vice president actor by
passing PoisonPill. PoisonPill is a case object provided by the Akka toolkit. When
we pass it as a message to an actor, it kills that actor. Finally, we wait for a second
and then terminate the actor system.

158 13 Actors

import akka.actor._
case class Name(name: String)
case class CreateVicePresident(name: String)
class President extends Actor {

def receive = {
case CreateVicePresident(name) => {

val vp = context.actorOf(Props[VicePresident],
name = s"$name")

vp ! Name(name)
vp ! "hello"

}
case _ => println("President got a message")

}
}
class VicePresident extends Actor {

var name = "None"
def receive = {

case Name(name) => this.name = name
case _ =>
println(s"Vice president, $name, got a message")

}
override def postStop: Unit = {

println(s"I, $name, got stopped")
}

}

object ChildActorsApp {
def main(args: Array[String]): Unit = {

val actorSystem = ActorSystem("ChildActorSystem")
val president = actorSystem.
actorOf(Props[President], name = "President")

president ! CreateVicePresident("Hilbert")
Thread.sleep(1000)

val hilbert = actorSystem.actorSelection(
"/user/President/Hilbert")

hilbert ! PoisonPill
Thread.sleep(1000)
actorSystem.terminate()

}
}

Fig. 13.4: Child Actors

13.6 Monitoring 159

13.6 Monitoring

The ability to know whether sub-ordinate actors are functional is important as work
is delegated to sub-ordinate actors, also known as child actors. The Akka framework
provides features so that a parent actor can automatically detect when a child actor
is stopped. When a parent actor calls the watch operation on context, the parent is
notified when a child actor is dead.

Figure 13.5 has two actors—Developer and Manager. Manager is the parent
actor and is responsible for creating a Developer actor. Manager can watch the
Developer actor by calling watch on context. The watch operation takes a child
actor as its parameter, developer in this case. When developer is killed, the message
Manager receives matches with the case Terminated(developer).

Now, let’s look at the driver program. After creating the actor system, we create
a Manager actor, manager. Since the child actor creation is part of the construc-
tor code, developer actor is created when manager actor is created. Also devel-
oper watch is created during the creation process. Next, we select Developer and
pass PoisonPill to it so that it is killed. When Developer is terminated, the Ter-
minated(developer) case of Manager holds true and the corresponding code is ex-
ecuted. So it is evident that the supervisor or the parent actor is aware when its
sub-ordinate actor is no longer functional. This is how it knows when to delegate
the task to some other sub-ordinate actors, in case of failure. In other words, this
feature makes it practical to develop fault-tolerant systems.

160 13 Actors

import akka.actor._

class Developer extends Actor {
def receive = {

case "start" => println("Developer started working")
case _ => println("Developer received a message")

}
}

class Manager extends Actor {
val developer = context.actorOf(Props[Developer], name =
"Developer")

developer ! "start"
context.watch(developer)

def receive = {
case Terminated(developer) =>
println("Developer got poison pill")

case _ => println("Manager received a messsage")
}

}

object ActorMonitoringApp {
def main(args: Array[String]): Unit = {

val actorSystem = ActorSystem("Management")
val manager = actorSystem.actorOf(Props[Manager], name =
"Manager")

val dev =
actorSystem.actorSelection("/user/Manager/Developer")

dev ! PoisonPill
Thread.sleep(3000)
actorSystem.terminate()

}
}

Fig. 13.5: Actor Monitoring

13.7 Conclusion

In this chapter, we started with the basic components of an actor and then demon-
strated how to create actors. Actors communicate with each other by sending and
receiving messages. Also driver programs and the framework communicate with the
help of messages. We presented a detailed example for sending and receiving mes-
sages. Next, we covered important life cycle methods. Tracking the messages from
these methods is an important aspect of actor management. Further, we discussed
how to create and manage child actors, an important aspect of hierarchical actors.
Finally, we discussed actor monitoring.

13.9 Problems 161

13.8 Review Questions

1. Write one major difference between the object model of computation and the
actor model of computation.

2. Write one major difference between the functional model of computation and the
actor model of computation.

3. As of Akka version 2.5.1, what is one mandatory method that we need to imple-
ment in order to make a class an actor?

4. Which class is used to create an actor system?
5. In order for the following code snippet to work, what actor class is required?

val actorSystem = ActorSystem("University")
val admin = actorSystem.actorOf(
Props[Administrator], name = "Admin")

6. Describe a circumstance which requires the following type of code snippet in
order to create an actor.

val myActor = context.actorOf(Props[MyActor],
name = "myAct")

7. In chem ! PoisonPill, what is the name of the actor? What is the use of PoisonPill?
8. Is the PoisonPill a system defined object?
9. In the following code snippet, what is the name of the actor that we are trying to

select?

val actorSystem = ActorSystem("UniversitySys")
val findChild = actorSystem.
actorSelection("/user/University/Professor")

10. In the following code snippet, what is $name?

val vp = context.actorOf(Props[VicePresident],
name = s"$name")

11. Write a code snippet that watches a child actor called tester.

13.9 Problems

1. Implement an actor called Instructor, which adds a student to a common list of
students, when it receives a message of type Student. Make necessary assump-
tions and choices in order to create a realistic solution.

2. Implement an actor called TeachingAsst that can delegate the course registration
task from the actor Instructor implemented for the previous problem. Next, mod-
ify the actor Instructor so that it creates a teaching assistant as its child actor. In
addition to this, create one more teaching assistant child actor, which is respon-
sible for registering teaching materials. Delegate the tasks appropriately. Also

162 13 Actors

include code to watch the child actors. Make realistic assumptions to solve the
problem.

3. Write a driver program for the actors implemented for the previous two problems.
Pass necessary sample messages to demonstrate course registration and teaching
material registration. Also add case classes, if needed.

13.10 Answers to Review Questions

1. The object model of computation models real world objects with programming
language objects. The actor model of computation models real world actors with
programming language actors.

2. The functional model of computation models computational elements with func-
tions. For example, algorithms can be embedded in a function. The actor model
of computation represents real world agents with programming language actors.

3. As of Akka version 2.5.1, the one method that is mandatory to make a class an
actor is receive.

4. The class ActorSystem is used to create an actor system.
5. In order for the code snippet to work, we need an actor class called Administrator.
6. We use context, which is of type akka.actor.ActorContext, in order to create a

child actor from within a parent actor.
7. chem is the name of an actor. When we send a message PoisonPill to an actor, it

terminates that actor.
8. Yes, PoisonPill is part of the Akka toolkit and it is a case object.
9. Professor is the name of the actor that we are trying to select.

10. $name inside double quotes means it is an identifier, which can be replaced by a
corresponding value. Eventually, the expression, s“$name”, forms a string.

11. context.watch(tester)

13.11 Solutions to Problems

13.11 Solutions to Problems 163

1. import akka.actor.Actor
import scala.collection.mutable.ArrayBuffer

case class Student(name: String, course: String)

class Instructor extends Actor {
var allStudents = new ArrayBuffer[Student]()
def receive = {

case student @ Student(x,y) => {
allStudents.append(student)

}
case _ => println("Unknown message")

}
}

2. import akka.actor.{Actor, Props}
import scala.collection.mutable.ArrayBuffer

case class Student(name: String, course: String)

case class Material(courseName: String, materialID: String)

class Instructor extends Actor {
val hari =
context.actorOf(Props[TeachingAsst], name = "Hari")

val sam = context.actorOf(Props[TeachingAsst], name = "Sam")
context.watch(hari)
context.watch(sam)

def receive = {
case Student(x,y) => {

hari ! Student(x,y)
}
case Material(x,y) => {

sam ! Material(x,y)
}
case _ => println("Instructor got a message")

}
}

class TeachingAsst extends Actor {
var allStudents = new ArrayBuffer[Student]()
var allMaterials = new ArrayBuffer[Material]()

def receive = {
case student @ Student(x,y) => {

allStudents.append(student)
}
case material @ Material(x,y) => {

allMaterials.append(material)
}
case _ => println("TA got a message")

}
}

164 13 Actors

3. import akka.actor.{ActorSystem, Props}

object InstructorActorApp {
def main(args: Array[String]): Unit = {

val actorSystem = ActorSystem("InstructorActSystem")
val instructor = actorSystem.actorOf(Props[Instructor],
name = "instructor")

instructor ! Student("Newton", "Physics")
instructor ! Student("Darwin", "Biology")
instructor ! Student("Rutherford", "Chemistry")

instructor ! Material("Physics", "Lect1")
instructor ! Material("Biology", "Lect1")
instructor ! Material("Chemistry", "Lect1")

Thread.sleep(1000)
actorSystem.terminate()

}
}

Chapter 14
XML Processing

XML is a common way of structuring data for Internet based applications. If you
are part of a team that develops web applications, then it is highly likely that you
will encounter XML in some way. It is a common requirement to convert raw data
to XML and vice-versa. Raw data might come from databases, might be generated
from within the application using programs, etc. In any case, it is helpful to be
equipped with tools that allow us to process XML.

Scala supports XML processing through its XML module. If you are using Scala
REPL, you can simply import required classes. If you are using an IDE and an
SBT based project, then you need to include a required dependency so that the
corresponding jar file is fetched. A typical dependency entry in the build.sbt file
looks like libraryDependencies += “org.scala-lang” % “scala-xml” % “2.11.0-
M4”. Please note that the version might differ depending upon what version you
would like to work with. Also the double quotes will look different in your editor.
You can simply use the double quotes available on your keyboard.

14.1 XML Literals

In Scala, XML processing can be done as if it is a language core feature. We can
use XML as a literal to form a valid expression. For example, in the following code
snippet, we have <fruit > as a tag and apple as a value. The type of this expression
is scala.xml.Elem.

scala> <fruit> apple </fruit>
res1: scala.xml.Elem = <fruit> apple </fruit>

Now, let’s take one more example to illustrate how embedded tags are inter-
preted. The code snippet below defines an XML element person that has two child
elements—fName and lName. Scala interprets it like an embedded XML structure.

scala> val person =

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

165

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_14

166 14 XML Processing

<person>
<fName>Charles</fName>
<lName>Darwin</lName>
</person>
person: scala.xml.Elem =
<person><fName>Charles</fName>
<lName>Darwin</lName></person>

The scala.xml package has numerous classes and objects to process XML. Here
we list some of these, along with their definitions from the Scala API documenta-
tion.

• Seq[Node] : It is a sequence of type Node.
• NodeSeq : It implements a wrapper around Seq[Node], which adds XPath and

comprehension methods.
• Document : It represents a document information item.
• Node : It is an abstract class that represents XML with nodes of labelled trees.

Also it contains implementation for subsets of XPath for navigation purposes. It
is an abstract superclass of all XML node classes.

• Elem : It provides an immutable data object representing an XML node. It ex-
tends the Node class.

• Group : It is used to group XML nodes in one node for output.
• SpecialNode : It is a special XML node that represents either text (PCDATA), a

comment, or an entity reference.
• Atom : It provides an XML node for text (PCDATA).
• EntityRef : It implements an XML node for entity reference.
• ProcInstr : It provides an XML node for processing instructions.
• Comment : It implements an XML node for comments.
• Text : It implements an XML node for text (PCDATA). For example, Charles in

<firstName > Charles </ firstName > is of type Text.
• PCData : It represents parseable character data.
• Unparsed : It represents an XML node for unparsed content.

Scala gives developers more power by allowing them to write Scala code within
an XML tag. Figure 14.1 has two occurrences of val representing first name and
last name. Next, it defines an XML structure to represent names. The corresponding
identifiers can be placed within the tags to pull values. Please note the curly braces;
the content inside curly braces is evaluated. So we can put Scala code inside the
curly braces. This allows processing logic to be placed inside the tags.

The output for the program in Figure 14.1 is as shown below. firstName was re-
placed by “Isaac” and secondName was replaced by “Newton”. When we work as
professional programmers in industry, we encounter many business needs that re-
quire us to generate XML tags. Many business-to-business (B2B) communications
happen with XML exchanges. So this feature is a handy feature for developers solv-
ing real world software engineering problems.

14.2 Data Extraction 167

object MixingXMLAndScalaApp {
def main(args: Array[String]): Unit = {

val firstName = "Isaac"
val lastName = "Newton"

val myXML =
<name>
<firstName>{firstName}</firstName>
<lastName>{lastName}</lastName>

</name>

println(myXML)
}

}

Fig. 14.1: XML with Scala Code

<name>
<firstName>Isaac</firstName>
<lastName>Newton</lastName>
</name>

The code snippet belows shows a tag sum. Within this tag, we have an arith-
metic expression. When this tag is processed, the expression within curly braces is
evaluated and hence we get the result, 5.

scala> <sum>{2+3}</sum>
res2: scala.xml.Elem = <sum>5</sum>

14.2 Data Extraction

Once we receive XML, we need to extract data so that further action can be taken.
Scala provides numerous operations to extract data from an XML input. We don’t
have to bother too much about the structure of XML in order to extract data. We
present some of the most useful operations below.

• Text Extraction (text) : The text within a tag can be extracted using the text op-
eration. The code snippet below has one tag cityName and has “Sunnyvale” as a
value. When we call the text operation on the XML, we get the value “Sunny-
vale”.

scala> <cityName>Sunnyvale</cityName>.text
res3: String = Sunnyvale

• Label Extraction (label) : The tag label can be extracted using the label operation,
as shown in the code snippet below.

168 14 XML Processing

scala> <cityName>Sunnyvale</cityName>.label
res4: String = cityNam

• Searching Immediate Child Nodes (\) : The immediate child nodes can be
searched using a single back slash (\). The code snippet below extracts all the
immediate child nodes with label p.

scala> <html><p>San Jose</p><p>Sunnyvale<a>warm
</p> </html> \ "p"

res5: scala.xml.NodeSeq = NodeSeq(<p>San Jose</p>,
<p>Sunnyvale<a>warm</p>)

• Searching Any Depth (\\) : The child nodes can be searched at any depth using
double back slashes (\\). The code snippet below searches all the child nodes, at
any depth, with label a.

scala> <html><p>San Jose</p><p>Sunnyvale<a>warm
</p> </html> \\ "a"

res7: scala.xml.NodeSeq = NodeSeq(<a>warm)

• Attribute Value Extraction (attribute(<attribute name >)) : An attribute value
can be extracted by passing an attribute name to either the attribute or attributes
operation, as shown below.

scala>
This is a link.attribute("href")

res8: Option[Seq[scala.xml.Node]] =
Some(https://www.w3schools.com)

scala>
This is a link.attributes("href")
res9: Seq[scala.xml.Node] =
https://www.w3schools.com

• Attribute Values Processing : This is an elaboration of the previous operation,
attributes. The attributes can be extracted as keys and values. Also the attributes
can be extracted as a map.

scala> val xmlData = <stock day="Mon"
date="Jun 14 2017"
low="103" high="105" />

xmlData: scala.xml.Elem = <stock day="Mon"
date="Jun 14 2017"
low="103" high="105"/>

scala> xmlData.attributes
res10: scala.xml.MetaData = day="Mon"
date="Jun 14 2017"

14.2 Data Extraction 169

low="103" high="105"

scala> for(att <- xmlData.attributes)
println(s"key: ${att.key}, value: ${att.value}")

key: day, value: Mon
key: date, value: Jun 14 2017
key: low, value: 103
key: high, value: 105

scala> xmlData.attributes.asAttrMap
res12: Map[String,String] = Map(day -> Mon,
date -> Jun 14 2017,
low -> 103, high -> 105)

• Child Nodes Extraction (child) : Child nodes can be extracted using the child
operation, as shown below.

scala> val cityData = <city><name>Sunnyvale</name>
<state>CA</state></city>

cityData: scala.xml.Elem = <city>
<name>Sunnyvale</name>
<state>CA</state></city>

scala> cityData.child
res13: Seq[scala.xml.Node] =
ArrayBuffer(<name>Sunnyvale</name>,
<state>CA</state>)

scala> for(a <- cityData.child) println(a)
<name>Sunnyvale</name>
<state>CA</state>

scala> for(a <- cityData.child) yield a.text
res18: Seq[String] = ArrayBuffer(Sunnyvale, CA)

scala> cityData.child(1)
res15: scala.xml.Node = <state>CA</state>

scala> cityData.child(1).label
res16: String = state

scala> cityData.child(1).text
res17: String = CA

• String Conversion (toString) : It converts an XML structure to a string.

scala> cityData.toString

170 14 XML Processing

res20: String = <city><name>Sunnyvale</name>
<state>CA</state></city>

Scala allows deep XML searching using XPath expressions. Also there are many
other operations which can be used to process XML. In this volume, we aim for
content that gives a good start.

14.3 Pattern Matching

We demonstrated an example of XML pattern matching in Section 10.10, page 120.
In this section, we cover an additional method. When one or more child nodes is
present, the pattern matching syntax should be different than what we used earlier.
Figure 14.2 presents an implementation for any sequence pattern matching.

import scala.xml.Node
object EmbeddedXMLProcessingApp {

def main(args: Array[String]): Unit = {
val weatherData =
<city>

<name>
Sunnyvale

</name>
<highTemp>80</highTemp>
<lowTemp>55</lowTemp>

</city>

detectXML(weatherData)
}

def detectXML(node: Node): Unit = node match {
case <city>{children @ _*}</city> => {

println(children)
}
case _ => println("No match")

}
}

Fig. 14.2: XML Pattern Matching – Any Sequence

If an XML element contains child elements, we need to use any sequence (*).
This means match the XML element that contains any sequence of child elements.
The match output is of type ArrayBuffer. In our program, we have several child
elements. One of the child elements has an embedded tag in it. So the inner XML
structure can vary. When we use any sequence matching, we are telling the pattern
matcher that the structure of child elements does not matter, just match the parent
tag and return everything embedded by this tag.

14.4 Serialization and Deserialization 171

14.4 Serialization and Deserialization

Serialization is a process of converting data to XML. One of the situations can be
that we have data represented by one or more Scala classes, which need to be sent
to the target system in XML format. There are many business cases in industry that
require us to transmit data in XML format. Often the structure of XML is seen as a
part of the contract between two agents.

case class Stock(ticker: String,
dayMax: Float,
dayMin: Float) {

def toXML =
<stock>

<ticker>{ticker}</ticker>
<dayMax>{dayMax}</dayMax>
<dayMin>{dayMin}</dayMin>

</stock>
}

object XMLSerializationApp {
def main(args: Array[String]): Unit = {

val appleStock = new Stock("AAPL",145, 152)
println(appleStock.toXML)

}
}

Fig. 14.3: XML Serialization

Figure 14.3 presents an application that converts typical Scala representation of
data to XML format. The class Stock is a case class, with three constructor param-
eters. It has the toXML method to convert Scala data to an XML format. The outer-
most tag is Stock, which is also the name of the class. There are three child nodes
representing the constructor parameters. Please note how the values are pulled to
XML structure using identifiers within curly braces.

In the driver program, we have an object created, with sample values. Next, we
call toXML on this object, which converts the Scala object to its corresponding XML
form. The output of this program is as shown below.

<stock>
<ticker>AAPL</ticker>
<dayMax>145.0</dayMax>
<dayMin>152.0</dayMin>

</stock>

Deserialization is the reverse of serialization, i.e., converting back from XML
representation. In our case, it is converting XML to Scala. This is a common re-
quirement as data transmission is often bidirectional between agents. Let’s say two

172 14 XML Processing

business entities A and B are exchanging business data in XML format. It is com-
mon to have bidirectional exchange needs, because there can be several steps in a
business flow. In this kind of situation, business A should have both serialization
and deserialization capabilities. This is true for business B as well.

This is primarily because the data are processed using some programming lan-
guages, on each side. While exchanging, XML format is used as it is programming
language independent. Being independent of programming language allows loose
coupling between two businesses. Each business can decide what programming lan-
guage to use based on their convenience.

import scala.xml.Node
class Person {

var firstName: String = null
var lastName: String = null
var age: Int = 0
override def toString = firstName+" "+lastName+", "+age

}

object XMLDeserializationApp {
def main(args: Array[String]): Unit = {

def xmlData =
<person>

<firstName>Charles</firstName>
<lastName>Darwin</lastName>
<age>36</age>

</person>

println(fromXML(xmlData))
}

def fromXML(node: Node): Person = new Person {
firstName = (node \ "firstName").text
lastName = (node \ "lastName").text
age = (node \"age").text.toInt

}
}

Fig. 14.4: XML Deserialization

Figure 14.4 presents an application that takes XML as input data and converts
that XML to a corresponding Scala object. We have a class called Person, which has
three field members. And then it overrides the toString method so that the output is
readable. On the driver program side, we define a sample of XML data, xmlData.
We implemented an operation called fromXML that takes XML, extracts data, and
assigns those data to corresponding fields of a newly created Person instance.

When we call fromXML, by passing sample XML data, we get a result as an in-
stance of Person class. println uses the object’s toString method to print values. The

14.5 Loading and Saving 173

output of this program is as shown below. The output corresponds to our implemen-
tation of the toString method.

Charles Darwin, 36

14.5 Loading and Saving

Loading XML from a file is a common operation required in many programming
contexts. Most times, XML files are transmitted and persisted. In order to process
these persisted files, we need to load them into memory. . I/O operations are slower
compared to memory operations; this is one of the reasons why we load data into
memory for processing. If the memory is not sufficient, then we need to chunk data
and then load the chunks into the memory step wise.

class Scientist {
var firstName: String = null
var lastName: String = null
var age: Int = 0
override def toString = firstName+" "+lastName+", "+age

}

object XMLLoadingApp {
def main(args: Array[String]): Unit = {

val scientists =
xml.XML.loadFile("src/main/resources/Scientist.xml")

println(fromXML(scientists))
}

def fromXML(node: Node): Scientist = new Scientist {
firstName = (node \ "firstName").text
lastName = (node \ "lastName").text
age = (node \"age").text.toInt

}
}

Fig. 14.5: Loading XML

Figure 14.5 presents an application that loads XML data from a file, converts it
into a Scala object, and prints data on the console. The class Scientist has three field
members representing first name, last name, and age. Also we override the toString
method so that the output is readable, on the console. On the driver program side,
we have the fromXML method that extracts data from the XML structure and assigns
data to corresponding field members of a newly created object of type Scientist.

Scala provides a convenient method to load an XML file. The method loadFile,
as shown in the application, takes the file name and assigns the XML content to

174 14 XML Processing

the identifier on the left, scientists in this case. Now, we have XML in the mem-
ory. Next, we call the method fromXML by passing this in-memory XML structure.
As mentioned earlier, fromXML takes the XML apart and assigns values to corre-
sponding fields of a newly created object, which is an instance of the Scientist class.
The println calls the toString method of the object, in order to print values on the
console. The output of this program is as shown below.

Charles Darwin, 36

The content of the Scientist.xml file is as shown below.

<person>
<firstName>Charles</firstName>
<lastName>Darwin</lastName>
<age>36</age>>

</person>

case class Book(title: String,
author: String,
price: Double) {

def toXML = {
<book>

<title>{title}</title>
<author>{author}</author>
<price>{price}</price>

</book>
}

}

object XMLSavingApp {
def main(args: Array[String]): Unit = {

val progWithScala = new Book("Programming with Scala",
"Bhim Upadhyaya", 49.99)

val xmlData = progWithScala.toXML

scala.xml.XML.save("src/main/resources/Book.xml",
xmlData, "UTF-8", true, null)

}
}

Fig. 14.6: Saving XML

Saving the XML structure to a file is another common operation that persists
data so that data can be utilized later. It is common practice to create an XML
file before transmitting data. Figure 14.6 presents a typical implementation to save
XML data. In this application, we have a Book class, which has author and price
as its constructor parameters. Also it has an operation toXML, to convert the Scala
representation to the XML equivalent.

14.7 Review Questions 175

On the driver program, first, we create an object of type Book and then we call
the toXML method to get the corresponding XML representation. Then we call the
save method to save our XML content. The first parameter in the save method is
the file name, along with the path. The second parameter specifies what encoding
to use. The third parameter says whether XML declaration information should be
added in the beginning of the file. We are not making use of the last parameter and
hence we have the null value. The content of the output file, Book.xml, is as shown
below.

<?xml version=’1.0’ encoding=’UTF-8’?>
<book>

<title>Programming with Scala</title>
<author>Bhim Upadhyaya</author>
<price>49.99</price>

</book>

14.6 Conclusion

In this chapter, we started with XML literals and demonstrated how XML and Scala
code can be intermixed. Then we discussed numerous data extraction operations.
Data extraction is a common requirement in many projects, as most of the pro-
cessing work is done by using some programming languages. We covered a pattern
matching technique that helps to match an XML structure that has varying child
nodes structures. Next, we discussed serialization, a method that allows develop-
ers to convert programming language representation of data to XML format. The
reverse of this process is called deserialization, which was covered subsequently.
Loading XML from a file is also a commonly required feature. We presented a
complete example to load XML from a file. Similarly, we discussed how to persist
XML structure using a file.

14.7 Review Questions

1. What is the type of bookXML, when the following expression is evaluated?

scala> val bookXML = <book>Scala</book>

2. What is the type of sum, when the following expression is evaluated?

scala> val sum = <sum>{2+3}</sum>

3. What is the value and the type of cityName, when the following expression is
evaluated?

val cityName = <city>Sunnyvale</city>.text

176 14 XML Processing

4. What is the output of the following expression?

scala> <tag>tag</tag>.label

5. What is the output, when the following expression is evaluated?

scala> <name><fname>Charles</fname>
<lname>Darwin</lname>
</name>.child(1).text

6. What is the output, when the following expression is evaluated?

<name><fname>Charles</fname><lname>Darwin</lname>
</name> \ "lname"

7. Write a code snippet to load an XML file called Sample.xml and assign it to a val
called sampleXML.

8. Write a code snippet to save an XML structure called bookXMLData without
XML definition in the beginning of the file. Use the file name BookData.xml.

9. For the code snippet shown below, what is the type of cities?

case <country>{cities @ _*}</country>

14.8 Problems

1. Write a program to find whether a CD with title “Romanza” exists in https://
www.w3schools.com/xml/cd_catalog.xml. If the URL does not exist
for your browser, find an XML file online and write a program to detect the
existence of one of its items.

2. Write a program to find the food that has the least calories from the online data
source https://www.w3schools.com/xml/simple.xml. If the URL
does not exist for your browser, find an XML file online that has many child
nodes. In your program, make sure you compare at least one item from each
child node.

14.9 Answers to Review Questions

1. scala.xml.Elem
2. scala.xml.Elem
3. Value: Sunnyvale, type: String
4. res23: String = tag (Note: the auto-generated identifier can differ.)
5. res25: String = Darwin (Note: the auto-generated identifier can differ.)
6.

res26: scala.xml.NodeSeq =
NodeSeq(<lname>Darwin</lname>)

https://www.w3schools.com/xml/cd_catalog.xml
https://www.w3schools.com/xml/cd_catalog.xml
https://www.w3schools.com/xml/simple.xml

14.10 Solutions to Problems 177

(Note: The auto-generated identifier can differ.)
7.

val sampleXML = xml.XML.loadFile("Sample.xml")

8.

scala.xml.XML.save("BookData.xml", "UTF-8",
false, null)

9. ArrayBuffer

14.10 Solutions to Problems

1. import java.io.{File, PrintWriter}
import scala.io.Source

object FindingOnlineCDApp {
def main(args: Array[String]): Unit = {

val outFileName = "src/main/resources/CDData.xml"
val cdDataString = Source.fromURL(
"https://www.w3schools.com/xml/cd_catalog.xml").mkString

writeToFile(outFileName, cdDataString)

val cdDataXML = xml.XML.loadFile(outFileName)
for(a <- cdDataXML.child) {

if(a.text.contains("Romanza")) {
println("Corresponding record: "+a.text)

}
}

}

def writeToFile(fileName: String, content: String): Unit = {
var printWriter: PrintWriter = null
try {

printWriter = new PrintWriter(new File(fileName))
printWriter.write(content)

} catch {
case e: Exception => println("Something went wrong.")

} finally {
printWriter.close()

}
}

}

178 14 XML Processing

2. import java.io.{File, PrintWriter}
import scala.io.Source

object LeastCaloriesFoodApp {
def main(args: Array[String]): Unit = {

val outFileName = "src/main/resources/FoodData.xml"
val foodDataString = Source.fromURL(
"https://www.w3schools.com/xml/simple.xml").mkString

writeToFile(outFileName, foodDataString)

var foodItem: scala.xml.Node = null; var leastCal: Int
= 0

var currentCal: Int = 0; var firstValue = true
val foodDataXML = xml.XML.loadFile(outFileName)
for(food <- foodDataXML.child) {

val cal = (food \ "calories").text.stripPrefix("$")
if(cal != null && cal != "") {

currentCal = cal.toInt
if(firstValue) {

leastCal = currentCal; firstValue = false }
}
if(currentCal < leastCal) {

leastCal = currentCal; foodItem = food }
}

println("Least calories food: ")
println("Name: "+(foodItem \ "name").text)
println("Calories: "+leastCal)
println("Price: "+(foodItem \ "price").text)

}

def writeToFile(fileName: String, content: String): Unit = {
var printWriter: PrintWriter = null
try {

printWriter = new PrintWriter(new File(fileName))
printWriter.write(content)

} catch {
case e: Exception => println("Something went wrong.")

} finally {
printWriter.close()

}
}

}

Chapter 15
Parsing

Parsing is a common requirement for industrial projects. It might be required for
academic projects as well, depending upon the project type. Often, developers en-
counter situations which require them to parse special purpose languages or spe-
cial purpose structures. For example, it is very common to encounter custom JSON
structures.

Whatever the reason, it is good to be equipped with parser tools. Scala provides
parser libraries that have building blocks which can be used to create parsers and
domain specific languages. The major advantage of using a Scala parser library is
that we don’t have to integrate with any external tool, as far as parsing is concerned.
The Scala parser library is the same language, and the output of a parser can be
easily integrated with the rest of the programming. It is seamless programming.

15.1 Lexical Analysis and Parsing

Lexical analysis is a process of converting a sequence of characters to a sequence
of tokens. These tokens are then analyzed by a parser to find meanings. Let’s take
an example of an expression, product = 4 ∗ 5. Table 15.1 presents tokens for this
expression.

Table 15.1: Sample Tokenization

Token Category
product Identifier
= Assignment operator
4 Integer literal
* Multiplication operator
5 Integer literal

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

179

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2_15

180 15 Parsing

It is the lexical analysis process that identifies the five tokens shown in Table 15.1.
The next thing to identify is whether it is an arithmetic expression, or a logical ex-
pression, or something else. Parsing tools can be used to make such identifications.
We identify so that we can find the meanings of given data. Once we find the mean-
ings, we can process further. For example, in this case, once we know that it is an
arithmetic expression, we can apply the arithmetic operation and get the result. That
is the purpose of writing such expressions; we would like to evaluate them.

In the case of complex data, let’s say a JSON structure, we would like to extract
data so that further action can be taken. Even though a JSON structure looks simple,
sometimes it can be heavily nested, making it harder to extract values correctly. Even
popular parsers like Google’s gson parser may not meet your needs completely. In
such a situation, you will need to write your own custom parser using Scala’s parser
building blocks.

15.2 Creating and Running a Parser

Now, let’s create a grammar that is sufficient to handle the expression tokenized in
Table 15.1. The left hand side has an identifier called product and then we have
an assignment operator, followed by an expression. If we would like to parse an
expression of the form product = integer * integer, then the following grammar
should be sufficient.

EXPR ::= TERM * TERM
TERM ::= INTEGER

import scala.util.parsing.combinator._

class Prod extends JavaTokenParsers {
def expr: Parser[Any] = term˜"*"˜term
def term: Parser[Any] = wholeNumber

}

object ProductParserApp extends Prod {
def main(args: Array[String]): Unit = {

val input = "4 * 5"
println(parseAll(expr,input))

}
}

Fig. 15.1: Simple Product Expression Parser

Figure 15.1 presents an implementation for the above grammar. You need to
include parser combinators dependency in the build.sbt file, if you are using an SBT
project. A typical value is libraryDependencies += “org.scala-lang” % “scala-
parser-combinators” % “2.11.0-M4”. There is a trait called JavaTokenParsers in

15.3 Regular Expression Parser 181

the package scala.util.parsing.combinator, which contains basic elements. We make
use of this trait and implement the grammar. Each production rule becomes a method
and its result is Parser[Any]. The sequential composition is expressed by the tilde
symbol and hence there should be a tilde between two symbols of a production rule.

Once we define a class that contains parsers, we can use those parsers to parse
inputs. The method parseAll comes from the trait RegexParsers and takes two
arguments—parser and input. Please note that there are multiple overloaded meth-
ods for parseAll. The output of the parser is as shown below. We get the message
“parsed” and position 6 is the end of the input string, as there are five characters,
including white spaces. This means it parsed the input successfully.

[1.6] parsed: ((4˜*)˜5)

Now, let’s try to parse an ill-formed input, 4 + 5. It is ill-formed because we have
not defined the addition expression. Also we have not defined three-term multipli-
cation. So the input 4 * 5 * 6 is also ill-formed. When we try to parse 4 + 5, we get
the following output. It gives us a message mentioning that it expected ‘*’ but found
‘+’. Also it points to the correct character, ‘+’; the index of this character is 3.

[1.3] failure: ‘*’ expected but ‘+’ found
4 + 5

ˆ

15.3 Regular Expression Parser

Regular expression parsers are powerful parsers as they analyze input character by
character. These are widely used to analyze character sequences that form some
meaningful data for human readers. Figure 15.2 presents an implementation that
parses a word and a sentence. A valid word is defined as a combination of characters
from ‘a’ to ‘z’, including upper cases. A valid sentence is defined as one or more
words ending with a full stop; rep indicates repetition. Of course, this does not
guarantee a valid English sentence, but we supply this definition to get the feeling
of a regular expression parser.

The second parser definition, sentence, makes use of the first parser definition,
word. The class LanguageParser extends the trait RegexParsers, which defines the
method parseAll. If we want to parse a word type of input, we need to supply a
word parser. Similarly, if we want to parse a sentence type of input, we need to
supply a sentence parser. If we supply a word parser and a sentence type of input to
the method parseAll, it will treat the sentence as an ill-formed word. This is because
our definition of a word doesn’t contain any white space or a full stop.

Similarly, if we supply a sentence parser and a word to the method parseAll, it
will not be able to find all the components of a sentence from our definition of a
sentence, and hence will show an error message. The output of this program is as
shown below. Both the word and the sentence were parsed successfully.

182 15 Parsing

import scala.util.parsing.combinator.RegexParsers

class LanguageParser extends RegexParsers {
def word: Parser[Any] = """([a-zA-Z]+)""".r
def sentence: Parser[Any] = word˜rep(word)˜"."

}

object LanguageParserApp extends LanguageParser {
def main(args: Array[String]): Unit = {

val wordInput = "sunnyvale"
val sentenceInput = "Sunnyvale is sunny."
println(parseAll(word,wordInput))
println(parseAll(sentence,sentenceInput))

}
}

Fig. 15.2: Regular Expression Parser

[1.10] parsed: sunnyvale
[1.20] parsed: ((Sunnyvale˜List(is, sunny))˜.)

15.4 JSON Parser

JSON is a popular data exchange format. If the available parsers don’t meet our
needs, we end up writing our own parsers. This is not an uncommon situation; even
the most sophisticated JSON parsers available from reputed sources may not parse
certain JSON data correctly.

Now, let’s write a grammar that can parse some JSON data, having an embed-
ded structure. A JSON structure can have key-value pairs within curly braces. There
can be multiple values for a particular key, embedded within a pair of square brack-
ets. There can be an embedded JSON structure and so on. We assume that you are
familiar with JSON structure, as it is outside the scope of this book.

In the grammar below, we have four production rules. The first rule tries to cover
possible combinations. A JSON structure can be a literal or a structure. If it is a
structure, it can be one or more elements within curly braces. Also a structure can be
another JSON-like structure. Further a structure can be a list of elements separated
by commas and embedded within a pair of square brackets. The last rule covers the
key-value pair separated by a colon. A key always has to be a string but a value can
be either a literal or another structure.

JSON ::= ENTITY | LIST | STRING | NUMBER
| “true” | “false” | “null”

ENTITTY ::= “{” [ELEMENT {“,” ELEMENT}] “}”
LIST ::= “[” [JSON {“,” JSON}] “]”
ELEMENT ::= STRING “:” JSON

15.4 JSON Parser 183

Figure 15.3 implements the above grammar. The class JSONParser has four def-
initions, corresponding to four production rules in the grammar. stringLiteral and
floatingPointNumber are members of the trait JavaTokenParsers and hence are au-
tomatically recognized. The boolean literals and null are within double quotes, as
we would like to treat them as strings. The reason is that JSON returns these val-
ues as strings. The operator formed by combining a tilde sign and a greater than
sign means keep right only. If it is turning toward the left, i.e., a combination of a
less than sign and a tilde sign, then it means keep left only. We present a table that
collects this kind of operator, called parser combinators, later in this section.

import scala.util.parsing.combinator.JavaTokenParsers

class JSONParser extends JavaTokenParsers {
def json: Parser[Any] = entity | list | stringLiteral |
floatingPointNumber | "true" | "false" | "null"

def entity: Parser[Any] = "{"˜>repsep(element,",")<˜"}"
def list: Parser[Any] = "["˜>repsep(json,",")<˜"]"
def element: Parser[Any] = stringLiteral˜":"˜json

}

object JSONParserApp extends JSONParser {
def main(args: Array[String]): Unit = {

val jsonInput =
"""
|{
| "book" : {
| "name" : "Programming with Scala",
| "details" : {
| "pages" : "250",
| "type" : ["Technical","Programming"],
| "price" : "USD 49.99"
| }
| }
|}
""".stripMargin

println(parseAll(json, jsonInput))
}

}

Fig. 15.3: JSON Parser

Now, on the driver program side, we define a sample JSON string. Please note
a multi-line string value within three consecutive quotes. Since the object JSON-
ParserApp extends the class JSONParser, the method parseAll is available for in-
vocation. When we invoke this method by supplying json as a parser and jsonInput
as a JSON string, we get the following output. The output was manually split into
multiple lines in order to fit into the page; originally, it was a single line output.
We got the message “parsed”, which means the input was parsed successfully. The

184 15 Parsing

output is in the form of lists. Table 15.2 presents a collection of operators, including
the ones that help to clean up the output so that it becomes more readable. There are
many more such combinators available; this table is just to get started. Please refer
to the Scala API documentation.

[12.7] parsed: List((("book"˜:)˜List((("name"˜:)˜
"Programming with Scala"), (("details"˜:)˜
List((("pages"˜:)˜"250"), (("type"˜:)˜
List("Technical", "Programming")), (("price"˜:)˜
"USD 49.99"))))))

Table 15.2: Parser Combinators

Combinator Description
| Alternate. E.g.: X | Y
(tilde sign) Sequential composition.
<˜ Keep left
(tilde sign)> Keep right
opt(P) Option
repsep(P, Q) Interleaved repetition
P ˆˆ f Result conversion
rep(P) Zero or more matches of P
rep1(P) One or more matches of P
repN(n, P) n matches of P

15.5 Error Handling

The error messages that the combinator parser utility displays are mostly compre-
hensible. However, it is useful to provide domain specific error messages when we
implement a domain specific parser. In this way, the user of the parser becomes
much quicker at fixing the problem with the input. Also, Scala can be used as a
meta-language to write domain specific languages.

Figure 15.4 presents a simple addition parser that has custom error handling in
place. The first production in the addition defines a valid addition. This parser only
parses two-operand based addition. If the input does not comply with two-operand
addition, then it falls into the failure option, which has a custom message “Invalid
input”. When an invalid input is supplied, this custom message is printed on the
console. The output of the program is shown below.

The error message printed on the console is the one that we provided while defin-
ing the parser expr. The expression, *6 + 7, has two operands and there is an infix
addition operator. This is as expected. But the starting character, asterisk, is not ex-

15.7 Review Questions 185

import scala.util.parsing.combinator.JavaTokenParsers

class AdditionParser extends JavaTokenParsers {
def expr: Parser[Any] = term˜"+"˜term |
failure("Invalid input")

def term: Parser[Any] = wholeNumber
}

object ParserErrorHandlingApp extends AdditionParser {
def main(args: Array[String]): Unit = {

val inputString = "*6 + 7"
println(parseAll(expr,inputString))

}
}

Fig. 15.4: Parser Error Handling

pected as we have not defined it. There are only two productions. The first defines
what constitutes an addition operation, in terms of term. The second production
defines what a valid term is. In this case, it is expected to be a whole number.

[1.1] failure: Invalid input

*6 + 7
ˆ

15.6 Conclusion

We started with the importance of parsing and then discussed lexical analysis and
parsing, in general. Then we discussed a simple grammar and its implementation, in
order to parse a two-operand product expression. Regular expressions are powerful
tools to process input character sequences. We presented a sample regular expres-
sion parser to demonstrate the ability to parse input using regular expressions. Next,
we presented a JSON parser. JSON is a popular data exchange format and hence the
skill to implement JSON parsers is highly desirable. Finally, we demonstrated how
to write a custom error message, in a combinator parser.

15.7 Review Questions

1. Name two popular data formats that are used for data exchange in Internet based
applications.

2. Parsing comes before lexical analysis. True or false?
3. The method parseAll has to be custom implemented. True or false?
4. Why do we write a grammar before we implement a parser?

186 15 Parsing

5. Which trait should be extended in order to implement a regular expression
parser?

6. In the code snippet below, what is sentence?

println(parseAll(sentence,sentenceInput))

7. When should we use the combinator rep(P)?
8. Which combinator can be used to check the exact number of occurrences?
9. In the following code snippet, how many combinators are there? What is the

function of the first and the last combinators?

def entity: Parser[Any] =
"{"˜>repsep(element,",")<˜"}"

15.8 Problems

1. Implement a parser that successfully parses the following expression.

(3 + 4) * (2 + 5)

2. Implement a parser that successfully parses a two-word sentence, ending with an
exclamation sign. Example of valid input: Hey Bhim!

15.9 Answers to Review Questions

1. As of this writing, the two popular data formats that are used for data exchange
in Internet based applications are XML and JSON.

2. False. Generally, lexical analysis comes before parsing.
3. False. It is available in the trait RegexParsers, which is a part of Scala’s parser

module library.
4. Writing a grammar before implementing a parser gives clarity in thinking. Gram-

mar can be written using paper and pencil. If there is a language, then there is
some sort of grammar associated with it. Generally, the accuracy of a language
is checked using a grammar and hence it is important to write grammar before
writing a parser.

5. In order to implement a regular expression parser, we need to extend the trait
RegexParsers.

6. In the given code snippet, sentence is the name of the parser that this invocation
of parseAll should be using. Also sentence corresponds to a production rule in
the corresponding grammar.

7. When we need to check zero or more occurrences of P, we should use rep(P).
8. The combinator repN(n, P) can be used to check the exact number of occurrences.

15.10 Solutions to Problems 187

9. There are three combinators in the given code snippet. According to Table 15.2,
the first combinator causes the opening brace to be thrown away and the last
combinator causes the closing brace to be thrown away. This is one of the ways
in which we remove unwanted characters from the output of a parser.

15.10 Solutions to Problems

1. import scala.util.parsing.combinator.JavaTokenParsers

class ProdOfSumParser extends JavaTokenParsers {
def expr: Parser[Any] = "("˜term˜"+"˜term˜")"˜
"*"˜"("˜term˜"+"˜term˜")"

def term: Parser[Any] =
wholeNumber | failure("Invalid operand")

}

object ProdOfSumParserApp extends ProdOfSumParser {
def main(args: Array[String]): Unit = {

val input = "(3 + 4) * (2 + 5)"
println(parseAll(expr, input))

}
}

2. import scala.util.parsing.combinator.JavaTokenParsers

class TwoWordSentenceParser extends JavaTokenParsers {
def word: Parser[Any] = """([a-zA-Z]+)""".r
def sentence: Parser[Any] = word˜repN(1,word)˜"!"

}

object TwoWordSentenceParserApp extends TwoWordSentenceParser {
def main(args: Array[String]): Unit = {

val input = "Hey Bhim!"
println(parseAll(sentence,input))

}
}

References

Boo05. George Boole. An Investigation of the Laws of Thought. Gutenberg, https://www.
gutenberg.org/files/15114/15114-pdf.pdf, Rel. 2005.

Dur88. Peter Duren, editor. A Century of Mathematics in America, volume 1. American Mathe-
matical Society, 1988.

Dur89a. Peter Duren, editor. A Century of Mathematics in America, volume 2. American Mathe-
matical Society, 1989.

Dur89b. Peter Duren, editor. A Century of Mathematics in America, volume 3. American Mathe-
matical Society, 1989.

HBS73. Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for
artificial intelligence. In International Joint Conference on Artificial Intelligence, pages
235–245, 1973.

Hod05. Luke Hodgkin. A History of Mathematics: From Mesopotamia to Modernity. Oxford
University Press, Oxford, 2005.

Kle56. S. C. Kleene. Representation of events in nerve nets and finite automata. Automata
Studies, pages 3–41, 1956.

OLC17. One laptop per child. http://one.laptop.org/, 2017.
Ray65. John C. Raynolds. COGENT Programming Manual. Argonne National Laboratory,

Argonne, IL, 1965.
UNL13. United nations adult literacy rate. http://data.un.org/Data.aspx?d=SOWC&

f=inID%3A74, 2013.

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

189

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2

https://www.gutenberg.org/files/15114/15114-pdf.pdf
https://www.gutenberg.org/files/15114/15114-pdf.pdf
http://one.laptop.org/
http://data.un.org/Data.aspx?d=SOWC&f=inID%3A74
http://data.un.org/Data.aspx?d=SOWC&f=inID%3A74

Index

abstract, 92
abstract class, 80
abstract method, 90
actor

Actor trait, 151
ActorSystem, 152
hierarchy, 157
parent, 159
reference, 153

actor model, 151
actors, 151
Akka, 151, 152, 157
algorithm, 101
algorithms, 102
anonymous function, 101
architecture, 7
argument list, 104
Array, 141
array, 101
ArrayBuffer, 141, 170
assembly language, 6
associative

right, 126
associativity, 57
automatically, 111

batch mode, 5
bidirectional, 171
big data, 68, 69
binding, 104
bitwise operators, 55
blocks, 90
buffer, 66
building blocks, 33

calculation, 57
calculator, 4

child elements, 170
child nodes, 168
chunks, 67
class

case, 111
definition, 33
field, 31
member, 31
method, 31
regular, 111
sealed, 112

closure, 104
collections

immutable, 137
mutable, 137

communication, 153
compact, 137
compiler, 111
composition, 82, 87
composition

sequential, 181
computation, 1, 151
computational

capacity, 6
goal, 3
goals, 111

computer, 99
computer programming, 99
computing, 1
computing

machine, 3
concrete, 92
constructor, 78, 88, 92, 116
constructor

parameters, 88
constructor argument, 78
constructor parameters, 33, 79

© Springer International Publishing AG 2017
B.P. Upadhyaya, Programming with Scala, Undergraduate

191

Topics in Computer Science, https://doi.org/10.1007/978-3-319-69368-2

192 Index

constructors, 88
control structures, 99, 106
correctness, 13
cryptography, 55
currying, 104
custom operator, 51

data structure, 131, 140
declaration

val, 24
var, 25
type, 26

deep matching, 116
dependency, 165
deserialization, 171
diamond inheritance, 91
dimension, 133
directory, 70
directory listing, 71
distributed, 104, 137
do-while, 42
driver program, 157
DSL, 106
dynamic binding, 81

efficiency, 13
encode, 99
Erlang, 151
error messages, 184
exception, 155
exception

NumberFormatException, 44
RuntimeException, 44

exception handling, 43
expression, 26
extends, 77
extractor, 118

fault-tolerant, 159
file listing, 70
fileds, 90
filtered, 101
flag, 38
flat file, 68
for expression, 39
framework, 151
frameworks, 105
free variables, 104
function

as a parameter, 103
curried, 105
definition, 104
higher order, 103, 106

function literal, 102

functional programming, 9
functional programming language, 99
functional programming paradigm, 99
functions, 99

generic, 12
grammar, 180

has-a, 77, 82
head, 129
hierarchy, 87, 151
history, 99, 151

IDE, 53
identifiers, 23
if-else, 37
immutable, 138, 139, 143
import, 70
in-memory, 174
indexed, 140
inherit, 77
integer, 101
interfaces, 87
interpreter, 101, 129
is-a, 77

JSON, 180, 182
JSON

data, 182
structure, 182

JVM, 9

Kleene, 63

level
first, 116
second, 116
third, 116

life cycle, 155
linearization, 89
Linux, 5
List, 140
list

class, 130
head, 126
operations, 126
tail, 126

literals, 17
literals

boolean, 20
characters, 17
comments, 21
integers, 19
lexical elements, 21

Index 193

newline characters, 22
strings, 18
symbol, 21
whitespace, 21

loading, 173
LOC, 8, 32
logical methods, 54
logical-and, 54
logical-or, 54

Mac OS, 5
machine, 99
main method, 33
maintainability, 12
map method, 102
mathematical structures, 137
mathematics, 99, 111
member methods, 100
memory, 3, 173
message passing, 153
messages, 151
messages

immutable, 151
meta-language, 52
methods, 79, 90
microprocessor, 7
mix-in, 89
model, 32, 33, 91
modifier, 80
modularity, 13
module, 151
multiple conditions, 38
multiple inheritance, 78, 91
mutable, 139, 141

natural language, 137
Node, 166

object
companion, 132
definition, 33
member, 100
singleton, 81, 100, 118

OOP, 9
operating system, 5
operator

cons, 129
arithmetic, 52
concatenation, 130
custom, 51
extension, 127
unary, 51

output device, 4
overriding, 79, 92

paradigms, 99
parameter

step, 133
parser, 179
parser

building blocks, 180
combinators, 180
domain specific, 184

pattern
variable, 113
wildcard, 113

pattern matching, 111
PCDATA, 166
pipe, 106
polymorphism, 81
precedence, 56
predicate, 132
prefix, 157
PrintWriter, 70
process

asynchronous, 153
program, 4
program

driver, 153
program attributes, 12
program crashing, 43
programming

multi-threaded, 152
programming language

C, 7
high level, 6
Java, 8
low level, 6
Pascal, 7
Scala, 8

programming languages
high level, 137

propagated, 44

Queue, 142

re-usable, 32
readability, 12
regular expression, 64
relational, 54
REPL, 53
reserved words, 23
reserved words

=>, 23
extends, 77
<–, 23

restrict, 112
rigorous, 99
runnable application, 33

194 Index

save, 174
SBT, 180
Scala API, 184
Scala interpreter, 53
security, 55
sequence, 140
sequences, 119
serialization, 171
set, 138
shift operators, 56
simplicity, 13
space, 66
Stack, 142
storage, 4
string indexing, 51
sub classes, 112
super class, 80
super class

constructor, 80
supervisor, 159

tail, 129
target system, 171
term

closed, 104
open, 104

text, 166
text file, 68
thinner traits, 92
thought, 99

threads, 152
tokens, 179
trait, 87
traits, 91
transmission, 66, 67
truth table, 54
try-catch, 70
try-catch-finally, 43
tuple, 117, 143
type

declaration, 24
type inference, 51
types, 23, 114

underscore, 103

variations, 39
vector, 102

while loop, 42
whole-part, 82
wild card, 117
Windows, 6

XML, 120, 165
XML

element, 165
module, 165
pattern, 170

XPath, 170

	Preface
	Contents
	List of Figures
	List of Tables
	1
Introduction to Computing
	1.1 Introduction to Computers
	1.1.1 Basic Components
	1.1.2 Operation

	1.2 Operating Systems
	1.3 Programming Languages
	1.4 Introduction to Scala
	1.5 Program Attributes
	1.6 Conclusion
	1.7 Review Questions
	1.8 Problems
	1.9 Answers to Review Questions
	1.10 Solutions to Problems

	2
Scala Fundamentals
	2.1 Literals
	2.1.1 Character Literals
	2.1.2 String Literals
	2.1.3 Integer Literals
	2.1.4 Floating Point Literals
	2.1.5 Boolean Literals
	2.1.6 Escape Sequences
	2.1.7 Symbol Literals
	2.1.8 Other Lexical Elements

	2.2 Identifiers and ReservedWords
	2.3 Types
	2.4 Declarations and Definitions
	2.5 Expressions
	2.6 Conclusion
	2.7 Review Questions
	2.8 Problems
	2.9 Answers to Review Questions
	2.10 Solutions to Problems

	3
Classes and Objects
	3.1 Class Members
	3.2 Class Definitions
	3.3 Object Definitions
	3.4 Conclusion
	3.5 Review Questions
	3.6 Problems
	3.7 Answers to Review Questions
	3.8 Solutions to Problems

	4
Control Structures
	4.1 Conditional Expressions
	4.2 For Expressions
	4.3 While Loops
	4.4 Exception Handling
	4.5 Conclusion
	4.6 Review Questions
	4.7 Problems
	4.8 Answers to Review Questions
	4.9 Solutions to Problems

	5
Operators
	5.1 Operators as Methods
	5.2 Arithmetic Operators
	5.3 Relational and Logical Operators
	5.4 Bitwise Operators
	5.5 Operator Precedence and Associativity
	5.6 Conclusion
	5.7 Review Questions
	5.8 Problems
	5.9 Answers to Review Questions
	5.10 Solutions to Problems

	6
Data Input and Output
	6.1 Regular Expressions
	6.2 Single Character Input
	6.3 Single Character Output
	6.4 Reading From a File
	6.5 Writing to a File
	6.6 Navigating Directories
	6.7 Conclusion
	6.8 Review Questions
	6.9 Problems
	6.10 Answers to Review Questions
	6.11 Solutions to Problems

	7
Inheritance and Composition
	7.1 Extending Classes
	7.2 Overriding Methods and Fields
	7.3 Abstract Classes
	7.4 Invoking Super Class Constructors
	7.5 Polymorphism and Dynamic Binding
	7.6 Composition
	7.7 Conclusion
	7.8 Review Questions
	7.9 Problems
	7.10 Answers to Review Questions
	7.11 Solutions to Problems

	8
Traits
	8.1 Traits as Interfaces
	8.2 Construction Order and Linearizing
	8.3 Trait Members
	8.4 Multiple Inheritance
	8.5 Traits with Implementations
	8.6 Conclusion
	8.7 Review Questions
	8.8 Problems
	8.9 Answers to Review Questions
	8.10 Solutions to Problems

	9
Functions
	9.1 Functions as Methods
	9.2 Anonymous Functions
	9.3 Functions as Values
	9.4 Function Parameters
	9.5 Higher Order Functions
	9.6 Closures
	9.7 Currying
	9.8 Writing New Control Structures
	9.9 Conclusion
	9.10 Review Questions
	9.11 Problems
	9.12 Answers to Review Questions
	9.13 Solutions to Problems

	10
Pattern Matching
	10.1 Case Classes
	10.2 Sealed Classes
	10.3 Variable Patterns
	10.4 Type Patterns
	10.5 Literal Patterns
	10.6 Constructor Patterns
	10.7 Tuple Patterns
	10.8 Extractor Patterns
	10.9 Sequence Patterns
	10.10 XML Patterns
	10.11 Conclusion
	10.12 Review Questions
	10.13 Problems
	10.14 Answers to Review Questions
	10.15 Solutions to Problems

	11
List Processing
	11.1 List Construction
	11.2 Operations
	11.3 Patterns
	11.4 List Class
	11.5 List Object
	11.6 Conclusion
	11.7 Review Questions
	11.8 Problems
	11.9 Answers to Review Questions
	11.10 Solutions to Problems

	12
The Scala Collections Framework
	12.1 Mutable versus Immutable Collections
	12.2 Sets
	12.3 Maps
	12.4 Sequences
	12.5 Tuples
	12.6 Conclusion
	12.7 Review Questions
	12.8 Problems
	12.9 Answers to Review Questions
	12.10 Solutions to Problems

	13
Actors
	13.1 The Components of Actors
	13.2 Creating Actors
	13.3 Sending and Receiving Messages
	13.4 Life Cycle
	13.5 Child Actors
	13.6 Monitoring
	13.7 Conclusion
	13.8 Review Questions
	13.9 Problems
	13.10 Answers to Review Questions
	13.11 Solutions to Problems

	14
XML Processing
	14.1 XML Literals
	14.2 Data Extraction
	14.3 Pattern Matching
	14.4 Serialization and Deserialization
	14.5 Loading and Saving
	14.6 Conclusion
	14.7 Review Questions
	14.8 Problems
	14.9 Answers to Review Questions
	14.10 Solutions to Problems

	15
Parsing
	15.1 Lexical Analysis and Parsing
	15.2 Creating and Running a Parser
	15.3 Regular Expression Parser
	15.4 JSON Parser
	15.5 Error Handling
	15.6 Conclusion
	15.7 Review Questions
	15.8 Problems
	15.9 Answers to Review Questions
	15.10 Solutions to Problems

	References
	Index

