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Introduction

The creative act owes little to logic or reason. In their

accounts of the circumstances under which big

ideas occurred to them, mathematicians have often

mentioned that the inspiration had no relation to the

work they happened to be doing. Sometimes it

came while they were traveling, shaving or thinking

about other matters. The creative process cannot

be summoned at will or even cajoled by sacrificial

offering. Indeed, it seems to occur most readily

when the mind is relaxed and the imagination roam-

ing freely.

Morris Kline. Scientific American , March 1955.

Experimental psychologists like to tell a story about

a professor who investigated the ability of chim-

panzees to solve problems. A banana was sus-

pended from the center of the ceiling, at a height

that the chimp could not reach by jumping. The
room was bare of all objects except several packing

crates placed around the room at random. The
test was to see whether a lady chimp would think of

first stacking the crates in the center of the room,

and then of climbing on top of the crates to get the

banana.

The chimp sat quietly in a comer, watching

the psychologist arrange the crates. She waited pa-

tiently until the professor crossed the middle of

the room. When he was directly below the fruit, the

chimp suddenly jumped on his shoulder, then

leaped into the air and grabbed the banana.

The moral of this anecdote is: A problem that

seems difficult may have a simple, unexpected solu-

tion. In this case the chimp may have been doing

no more than following her instincts or past exper-

ience, but the point is that the chimp solved the

problem in a direct way that the professor had failed

to anticipate.

At the heart of mathematics is a constant search

for simpler and simpler ways to prove theorems
and solve problems. It is often the case that a first

proof of a theorem is a paper of more than fifty

pages of dense, technical reasoning. A few years

later another mathematician, perhaps less famous,
will have a flash of insight that leads to a proof so

simple that it can be expressed in just a few lines.

Sudden hunches of this sort—hunches that lead

to short, elegant solutions of problems—are now
called by psychologists "aha! reactions." They seem
to come suddenly out of the blue. There is a famous
story about how William Rowan Hamilton, a fam-

ous Irish mathematician, invented quaternions

while walking across a stone bridge. His aha! insight

was a realization that an arithmetic system did not

have to obey the commutative law. He was so

staggered by this insight that he stopped and carved

the basic formulas on the bridge, and it is said that

they remain there in the stone to this day.

Exactly what goes on in a creative person's mind
when he or she has a valuable hunch? The truth is

that nobody knows. It is some kind of mysterious

process that no one has so far been able to teach to.

or store in. a computer. Computers solve problems

by mechanically going step-by-step through a pro-

gram that tells them exactly what to do. It is only be-

cause computers can perform these steps at such

incredible speeds that computers can solve certain

problems that a human mathematician cannot solve

because it might take him or her several thousand

years of nonstop calculation.

The sudden hunch, the creative leap of the mind

that "sees" in a flash how to solve a problem in a

simple way. is something quite different from gen-

eral intelligence. Recent studies show that persons

who possess a high aha! ability are all intelligent to a

moderate level, but beyond that level there seems

to be no correlation between high intelligence and

aha! thinking. A person may have an extremely high

I.Q.. as measured by standardized tests, yet rate low

in aha! ability. On the other hand, people who are

not particularly brilliant in other ways may possess

great aha! ability. Einstein, for instance, was not par-

ticularly skillful in traditional mathematics, and his

records in school and college were mediocre. Yet

the insights that produced his general theory of rela-

tivity were so profound that they completely revolu-

tionized physics.

This book is a careful selection of problems that

seem difficult and indeed are difficult if you go



about trying to solve them in traditional ways. But if

you can free your mind from standard problem solv-

ing techniques, you may be receptive to an aha!

reaction that leads immediately to a solution. Don't

be discouraged if. at first, you have difficulty with

these problems. Try your best to solve each one be-

fore you read the answer. After a while you will

begin to catch the spirit of offbeat, nonlinear think-

ing, and you may be surprised to find your aha! abil-

ity improving. If so. you will discover that this ability

is useful in solving many other kinds of problems

that you encounter in your daily life. Suppose, for

instance, you need to tighten a screw. Is it necessary

to go in search of a screwdriver? Will a dime in your

pocket do the job just as well?

The puzzles in this collection are great fun to try

on friends. In many cases, they will think for a long

time about a problem, and finally give it up as too

difficult. When you tell them the simple answer, they

will usually laugh. Why do they laugh? Psycholo-

gists are not sure, but studies of creative thinking

suggest some sort of relationship between creative

ability and humor. Perhaps there is a connection be-

tween hunches and delight in play The creative

problem solver seems to be a type of person who
enjoys a puzzling challenge in much the same way
that a person enjoys a game of baseball or chess.

The spirit of play seems to make him or her more
receptive for that flash of insight that solves a

problem.

aha! power is not necessarily correlated with

quickness of thought. A slow thinker can enjoy a

problem just as much, if not more, than a fast

thinker, and he or she may be even better at solving

it in an unexpected way. The pleasure in solving a

problem by a shortcut method may even motivate

one to learn more about traditional solving techni-

ques. This book is intended for any reader, with a

sense of humor, capable of understanding the

puzzles.

There certainly is a close connection, however,

between aha! insights and creativity in science, in

the arts, business, politics, or any other human en-

deavor. The great revolutions in science are almost

always the result of unexpected intuitive leaps. After

all. what is science if not the posing of difficult puz-

zles by the universe? Mother Nature does some-
thing interesting, and challenges the scientist to fig-

ure out how she does it. In many cases the solution

is not found by exhaustive trial and error, the way
Thomas Edison found the right filament for his elec-

tric light, or even by a deduction based on the rele-

vant knowledge. In many cases the solution is a

Eureka insight. Indeed, the exclamation "Eureka!"

comes from the ancient story of how Archimedes

suddenly solved an hydraulic problem while he was
taking a bath. According to the legend, he was so

overjoyed that he leaped out of the tub and ran

naked down the street shouting "Eureka! Eureka!"

(I have found it!)

We have classified the puzzles of this book into six

categories: combinatorial, geometric, number,

logic, procedural and verbal. These are such broad

areas that there is a certain amount of unavoidable

overlap, and a problem in one category could just as

well be regarded as in one of the others. We have

tried to surround each puzzle with a pleasant, amus-

ing story line intended to put you in a playful mood.
Our hope is that this mood will help you break away
from standard problem solving routines. We urge

you. each time you consider a new puzzle, to think

about it from all angles, no matter how bizarre, be-

fore you spend unnecessary time trying to solve it

the long way.

After each problem, with its delightful illustrations

by the Canadian graphic artist Jim Glen, we have

added some notes. These comments discuss related

problems, and indicate how. in many cases, the

puzzles lead into significant aspects of modem
mathematics. In some cases, they introduce prob-

lems that are not yet solved.

We have also tried to give some broad guidelines

for the channels along which aha! thinking some-

times moves:

1. Can the problem be reduced to a simpler case?

2. Can the problem be transformed to an iso-

morphic one that is easier to solve?



3. Can you invent a simple algorithm for solving

the problem?

4. Can you apply a theorem from another branch

of mathematics?

5. Can you check the result with good examples

and counterexamples?

6. Are aspects of the problem given that are actu-

ally irrelevant for the solution, and whose presence

in the story serves to misdirect you?

We are rapidly entering an age in which there will

be increasing temptation to solve all mathematical

problems by writing computer programs. The com-

puter, making an exhaustive trial-and-error search,

may solve a problem in just a few seconds, but

sometimes it takes a person hours, even days, to

write a good program and remove all its bugs. Even

the writing of such a program often calls for aha! in-

sights. But with the proper aha! thinking, it may be

possible to solve the same problem without writing a

program at all.

It would be a sad day if human beings, adjusting

to the Computer Revolution, became so intellectu-

ally lazy that they lost their power of creative think-

ing. The central purpose of this collection of puzzles

is to exercise and improve your ability in this

technique of problem solving.



Chapter 1 mbinatorial aha!





Combinatorial analysis, or combinatorics, is the

study of how things can be arranged. In slightly less

general terms, combinatorial analysis embodies the

study of the ways in which elements can be grouped

into sets subject to various specified rules, and the

properties of those groupings.

For example, our first problem is about the ways

in which differently colored balls can be grouped

together. This problem asks the reader to find the

smallest sets of colored balls that have certain prop-

erties. The second problem concerns ways in which

players can be grouped on a chart for an elimination

tournament—a problem with important counter-

parts in the computer sorting of data.

Combinatorial analysis often asks for the total

number of different ways that certain things can be

combined according to certain rules. The "enumer-

ation problem." as this is called, is introduced in the

episode about the number of ways that Susan can

walk to school. In this case, the elements to be com-

bined are the segments of a path along the edges of

a matrix. Since geometrical figures are involved, we
are in the area of "combinatorial geometry."

Every branch of mathematics has its combinato-

rial aspects, and you will find combinatorial prob-

lems in all the sections of this book. There is com-

binatorial arithmetic. combinatorial topology, com-

binatorial logic, combinatorial set theory— even

combinatorial linguistics, as we shall see in the sec-

tion on word play. Combinatorics is particularly im-

portant in probability theory where it is essential to

enumerate all possible combinations of things be-

fore a probability formula can be found. There is a

famous collection of probability problems called

Choice and Chance. The word "choice" in the title

refers to the book's combinatorial aspect.

Our very first problem concerns probability be-

cause it asks for an arrangement of colored balls that

makes certain (that is. have a probability equal to 1)

a specified task. The text suggests how endless

other probability questions arise from such simple

questions as the number of ways objects can be put

together. Enumerating Susan's paths to school pro-

vides a close link to Pascal's triangle and its use in

solving elementary probability questions.

The number of arrangements that solve a given

combinatorial problem obviously can be none, one,

any finite number, or an infinite number. There is no

way to combine two odd integers so that their sum is

odd. There is only one way to combine two prime

numbers so that their product is 21. There are just

three ways to combine two positive integers so their

sum is 7. (They are the pairs of opposite faces on a

die.) And there is an infinite number of combina-

tions of two even numbers that have an even sum.

Very often in combinatorial theory it is extremely

difficult to find an "impossibility proof" that no

combination will meet what is demanded. For

example, it was not until recently that a proof was

found that there is no way to combine the planar re-

gions of a map so that the map requires five colors.

This had been a famous unsolved problem in com-

binatorial topology. The impossibility proof required

a computer program of great complexity.

On the other hand, many combinatorial prob-

lems that seem at first to be difficult to prove

impossible can sometimes be proved easily if one

has the right aha! insight. In the problem of "The

Troublesome Tiles", we see how a simple "parity

check" leads at once to a proof of combinatorial

impossibility that would be hard to obtain in any

other way.

The second problem about the defective pills ties

combinatorial thinking into the use of different base

systems for arithmetic. We see how numbers them-

selves and the way in which they are represented in

positional notation by numerals depend on com-

binatorial rules. Indeed, all deductive reasoning,

whether in mathematics or pure logic, deals with

combinations of symbols in a "string." according to

the rules of a system that decides whether the string

is a valid or invalid assertion. This is why Gottfried

Leibniz, the seventeenth-century father of com-

binatorics, called the art of reasoning an ars

combinatoria.



A Sticky Gum Problem

Poor Mrs. Jones tried to get past

the bubble gum machine before

her twins noticed it.

First Twin: Mommy, I want

some gum.
Second Twin: Me too. Mom.
And I want the same color Billy

gets.

W*. Wig

The penny gum machine is

almost empty. There is no way
of knowing the color of the

next ball. If Mrs. Jones wants

to be sure of getting a pair of

matching balls, how many
pennies must she be prepared

to spend?

Did you get 4 cents? If so, you
can start thinking about Mrs.

Smith who tried to walk by the

same gum machine with her

triplets.

This time the machine contains

6 red balls, 4 white, and just one
blue. How many pennies must

Mrs. Smith be ready to spend to

get three matching balls?

Mrs. Jones could get 2 red balls

by spending 6 cents—4 cents to

get all the white balls out and

2 cents to get a pair or red. Or
she could get 2 white balls by
spending 8 cents. So she must

be prepared to spend 8 cents,

right?

11 blue

I red

1 green

S^AMJ
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Wrong. If the first 2 balls don't

match, the third has to match
one of the first 2. So 3 pennies

are the most she needs to

spend.

Now suppose the machine
contains 6 red balls, 4 white,

and 5 blue. Can you figure

out how many pennies Mrs.

Jones needs to have on hand
to be sure of getting a pair

of matching gum balls?



How Many Pennies?

The second gum ball problem is an easy variation of

the first one, and is solved by the same insight. In

this case the first three balls could be of different

colors— red. white and blue. This is the "worst"

case in the sense that it is the longest sequence of

drawings that fail to achieve the desired result. The
fourth ball will necessarily match one of the three.

Since it could be necessary to buy four balls to get a

matching pair. Mrs. Jones must be prepared to

spend four cents.

The generalization to n sets of balls, each set a dif-

ferent color, is obvious. If there are n sets, one must

be prepared to buy n + 1 balls.

The third problem is more difficult. Instead of

twins. Mrs. Smith has triplets. The gum machine

contains 6 red balls. 4 white, and 1 blue. How
many pennies might she have to spend to get three

matching balls?

As before, we first consider the worst case. Mrs.

Smith could get 2 red balls. 2 white, and the single

blue ball, making 5 in all. The sixth ball must be red

or white, so it is sure to make a triplet of the same
color, therefore the answer is six cents. Had there

been more than one blue ball, she could have

drawn a pair of each color, requiring a seventh ball

to complete the triplet.

The aha! insight is "seeing" the length of the

"worst" case. One might try to solve the problem

a harder way by assigning a letter to each of the

11 balls, then examining all possible drawing se-

quences to see which one has the longest initial

chain before a triplet appears. But this method of

solving the problem would require listing 11! =

39.916.800 sequences! Even if one approached

the problem by not distinguishing between balls of

the same color, it would still be necessary to list

2.310 sequences.

The generalization to matching k-tuplets is as fol-

lows. If there are n sets of balls (each a different

color, and each containing at least k balls), then to

obtain a matching k-tuplet one must draw n{k - 1)

+ 1 balls. You may enjoy investigating what hap-

pens when one or more of the color sets contain less

than k balls

Problems of this sort can be modeled in many
other ways. For example: How many cards must

you draw from a 52-card deck to be sure that you
have, say. 7 cards of matching suit? Here n = 4. k

7. The formula gives the answer: 4(7 1) I 1=25.
Although these are simple combinatorial puzzles,

they lead into interesting and difficult probability

questions. For instance, what is the probability that

you will get 7 cards of the same suit if you draw n

cards (n ranging from 7 through 24) without replac-

ing each card after it is drawn? (Obviously, the

probability is if you draw fewer than 7 cards, and 1

if you draw 25 or more. ) How do the probabilities

alter if cards are replaced and the deck shuffled after

each drawing? A more difficult question: What is the

expected number (average in the long run) of draw-

ings you have to make to get k cards of the same
suit, with or without replacement?



The Ping Pong Puzzle

The 5 members of the Millard

Fillmore Junior High School

ping pong club decided to hold

an elimination tournament.

The coach explained his

tournament chart this way.

Coach: Five is odd. so one
player gets a 'bye' in the first

round. And there has to be

another 'bye' in the next round

So altogether 4 matches must

be played.

Table tennis was so popular

next year that the club had
37 members. Again the coach

designed a tournament with the

smallest possible number of

'byes'. Can you figure out the

number of games that were

played?

You don't have it worked out

yet? You're still drawing your

chart? You've missed an aha!

Each match eliminates one
player and because there are 36
players to be eliminated, there

has to be just 36 games, doesn't

there9

How Many Byes?
If you worked on this problem the hard way. by
drawing up actual charts of a tournament for 37
players, you may have noticed that no matter how
the chart is drawn there are always just 4 byes. The
number of necessary byes is a function of n, the

number of players. How can the number of byes be

calculated?

Given n, the number of byes can be determined

as follows. Subtract n from the lowest power of 2

that is equal to or greater than n. Express this re-

mainder in binary notation. The number of byes is

equal to the number of ones in this binary expres-

sion. In our case, we subtract 37 from 64 (which is

26
) to get 27. In binary notation 27 = 11011. There

are four Ts, therefore the tournament must have

four byes. It is an interesting exercise to justify this

curious algorithm.

The type of tournament described in this problem

is often called a "knockout tournament." It corres-

ponds to what computer scientists call an algorithm

for determining the largest element in a set of n ele-

ments by comparing them pairwise. As we have

seen, exactly n — 1 pairwise comparisons are neces-

sary for determining the maximum. Computer sort-

ing can also be done by comparing sets in groups

of three, four, five and so on.

The topic of sorting is so important in computer

science and its applications that entire books have

been written about it. You can easily think of many
practical problems in which sorting procedures are

important. It is estimated that about one-fourth the

running time of computers that are used in science,

business and industry is spent on sorting problems.



Quibble's Glasses
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Barney, who works at a soda
fountain, is showing two of his

customers a puzzle that u-
glasses

Barney: There are ten glasses

in this row, the first five are filled

with Kinky Kola, the next five

are empty Can you move just 4

glasses to make a row in which

the full and empty glasses

alternate?

Barney: That's right Just

switch places with the second

and seventh glass, and with the

fourth and ninth

wiwwwuuuro
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Professor Quibble, who was

always thinking of tricky

solutions, happened to be

listening

Prof. Quibble: Why four

glasses? I can do it by just

moving two glasses Can't you 9

Prof. Quibble: It's simple Just

pick up the second glass and

pour its contents into the

seventh. And then pick up the

fourth and pour into the ninth.

Non-trivial Quibble
Although Professor Quibble solved the puzzle by a

verbal quibble, the original problem is not as trivial

as it first seems. For example, consider the same
problem with 100 full glasses in a row next to 100

empty glasses. How many switches of pairs are

necessary to arrange the row so that full and empty
glasses alternate?

Since it is impractical to work on the problem with

200 glasses, the first step is to analyze the situation

for smaller values of n, where n is the number of fil-

led (or empty) glasses, and look for a pattern. You

can work on the problem by using counters of two

different colors. (Face-up and face-down cards can

also be used, or coins that are heads and tails, or two

different values. ) The problem requires no moves
if n = 1, and has an obvious solution of one move
when n = 2. You may be surprised to discover that

one switch also solves the problem for n = 3. With a

little more effort, you may hit on the simple pattern.

When n is even, the number of required switches is

n / 2, and when n is odd, it is (n - l)/2. Therefore, if

there are 100 full and 100 empty glasses, the prob-

lem is solved in 50 switches.

This requires moving 100 glasses. Quibble's joke

method of solving the problem cuts the number of

required glasses in half.

There is a classic puzzle very similar to the one just

analyzed, but harder to solve. Begin with the same

row of n objects of one type, adjacent to n objects of

another type. (As before this can be modeled with

glasses, counters, cards and so on. ) You wish to

change the row to alternating objects, but now we
define "move" differently. In this case, you must

slide any adjacent pair of counters to any open posi-

tion on the row. without altering the order of the two

counters that are moved.

For example, here is how it is done when n = 3:

XXXOOO
XOOOXX
XOO XOX
OXOXO

X

What is the general solution? It is trivial when n =

1, and you will quickly find that it is not solvable

7



when n = 2. For all n greater than 2. the puzzle is

solved in a minimum of n moves.

It is not an easy problem to find a solution when n

= 4. and you will enjoy searching for one. Perhaps

you can formulate a procedure for solving the puz-

zle in n moves when n is 3 or more.

Many unusual variations of the problem provide

other challenges. Here are a few:

1. The rules are the same as before except that

when you move each adjacent pair of counters, you

switch the positions of the two counters if they are

different colors. Thus a black-red pair becomes

red-black before you finish the move. With 8 coun-

ters there is a solution in five moves. For 10 counters

five moves also suffice. We know of no general solu-

tion. Perhaps you can find one.

2. The rules are the same as in the original prob-

lem except there are n counters of one color and
n + 1 counters of the other color, and only pairs of

unlike colors may be moved. It has been proved
that for any n the puzzle can be solved inn 2 moves,
and that this is minimal.

3. Counters of three different colors are used.

Pairs of adjacent counters are moved in the usual

way to bring all the colors together. If n = 3 (9 coun-

ters in all), there is a solution in five moves. In this

and all previous variations, we assume that there are

no gaps in the final row. If gaps are permitted, there

is a surprising solution in four moves.

Other variants suggest themselves which, so far

as we know, have not been proposed before, let

alone solved. For instance, one could move three or

more adjacent counters at a time, and apply this

move to any of the above variants.

And what happens if one moves one counter,

then two adjacent counters, then three, then four,

and so on? Given n counters of one color and n

of another, can it always be solved in n moves?



Perplexing Paths

Susan has a problem When
she walks to school she keeps

meeting Stinky

Stinky: Hi Susan Can I walk

with you?
Susan: No Please go away.

3 ,
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Susan: I know what I'll do. I'll

walk to school a different way
every morning. Then Stinky

won't know where to find me.

This map shows all the streets

between Susan's house and her

school. On this particular path

Susan is always walking east

or south

Here is Susan on another path.

Naturally she doesn't want to

walk away from the school. But

how many paths are there?

..

Here's how she reasoned

Susan: I'll put a 1 at the corner

where I live because I have )uM

one way to start Then I'll put a 1

at each corner that's one block

away because there's only one
way to get there
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Susan: I wonder how many
different ways I can go. Let's

see. Hmm. This is going to be

tough to figure out. Hmm. Aha!

It's not hard at all. It's simple!

What insight did Susan have?

Susan: Now I'll put a 2 at this

corner because I can get to it in

two different ways
When Susan noticed that 2 is

the sum of 1 and 1. she suddenly

realized that the number on

every corner must be the sum of

the one or two nearest numbers
along the paths leading to that

Susan: There Four more
corners are labeled. I'll soon

finish the others.

Can you complete the labelling

of the corners for Susan and tell

her how many different ways
she can walk to school?



How Many Paths?

The remaining five vertices, reading top-down and

left-right, are labeled 1. 4. 9. 4 and 13. The 13 at the

last vertex shows that Susan has 13 ways to walk to

school along shortest paths.

What Susan discovered is a simple, fast algorithm

for calculating the number of shortest paths from

her house to school. Had she attempted to draw all

these paths, then count them, it would have been

tedious, and out of the question if the street grid had

contained a very large number of cells. You will bet-

ter appreciate the algorithm's efficiency if you actu-

ally trace all 13 paths.

To test your understanding of the algorithm, try

sketching a variety of other street networks and
applying the algorithm to determine the number of

shortest paths from any vertex A to any other ver-

tex B. Figure 1 gives four problems of this type.

They can be solved in other ways, using combina-

torial formulas, but the methods are tricky and
complicated.

1 (continued)

What is the number of shortest paths by which a

chess rook can move from one corner of a chess-

board to the diagonally opposite corner? This prob-

lem is quickly solved by labeling all the cells of the

board in the same manner that Susan labeled the

street corners. A chess rook moves only along or-

thogonals (horizontally and vertically), therefore the

shortest paths are obtained by confining each move
to a direction that carries the rook toward its goal.

When the entire board has been labeled correctly,

as shown in Figure 2. the labels will give at once the

number of shortest paths from the starting square to

1 a 34 120 330 792 1716 3*32

1 i 28 8* 210 92* 1716

1 6 2' 56 26 252 752

• '5 35 70 126 2» 330

4 10 20 15 56 84 120

1 3 6 5 2\ 28 36

2 3 4 5 C 7 6

1 1 i 1 1 1 1

any square on the board. The cell at the upper right

corner has the number 3.432. therefore there are

3.432 ways that the rook can go from one corner

to the diagonally opposite corner along shortest

routes.

Let us slice the chessboard in half along a diago-

nal, then turn it so it becomes the triangle shown in

Figure 3. The numbers on the bottom row of cells

give the number of shortest paths from the apex cell

to each cell at the bottom. The labeling of this

triangle is identical with the numbers of Pascal's

1<



famous number triangle. The algorithm for comput-

ing the shortest paths from the top downward is, of

course, precisely the procedure by which Pascal's

triangle is constructed. This isomorphism provides

an excellent introduction to the endless fascinating

properties of the Pascal triangle.

Pascal's triangle gives at once the coefficients for

the expansion of binomials—that is. raising (a + b)

to any power—as well as the solutions to many
problems in elementary probability theory. Note

that in Figure 3 the number of shortest paths from

the top of the triangle to the bottom row of cells is 1

on the outside border cells, and the numbers in-

crease as you move toward the center. Perhaps you

have seen one of those devices based on Pascal's

triangle in which a board is tipped and hundreds of

little balls roll past pegs to enter columns at the bot-

tom. The balls arrange themselves in a bell-shaped

binomial distribution curve precisely because the

number of shortest paths to each slot are the coeffi-

cients of a binomial expansion.

Susan's algorithm obviously works just as well

on three-dimensional grids with cells that are rec-

tangular parallelepids. Imagine a cube that is 3 units

on the side, and divided into 27 unit cubes. Con-

sider this a chessboard with a rook in one of the

corner cells. The rook can move parallel to any of

the three coordinates. In how many ways can it take

a shortest path to the cell that is opposite it along a

space diagonal?



The Bewildered Babies

In a certain hospital the

identification tags of 4 babies

got mixed up. Two babies were

tagged correctly and the other

two wrong. In how many
different ways can this happen?

f A 6 C o
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An easy way to figure this out is

to make a chart listing all of the

possibilities. It turns out that

there are only 6 different ways
of tagging just 2 babies

incorrectly.

Now suppose that after the tags

are mixed up. exactly three are

correct and only one wrong. In

how many different ways can
this happen?

~^v Did you draw up a chart to work

\ this out? Or did you discover the

aha!?

12



Mixed-Up Tags
The reason why this problem confuses so many
people is that they assume wrongly that there are

many ways that just three out of four babies can be

correctly tagged. But if you think in terms of the

"pigeon-hole principle", the answer is obvious.

Suppose there are four pigeon holes, and each

labeled with the name of one of four objects. If three

objects are placed in their proper holes, then the

fourth object has only one spot it can go, and of

course that is its correct spot. Instead of many possi-

ble cases, there is only one: namely the case in

which all four objects are correctly placed.

There is a classic mislabeling puzzle, involving

only three objects, that is also solved by an aha! in-

sight which reduces the number of cases to one.

Suppose you have three closed boxes on a table.

One contains two nickels, one contains two dimes,

and one contains a nickel and a dime. The boxes are

labeled 10c. 15c and 20c. But every label is incor-

rect. Someone reaches into the box mislabeled 15c.

removes one coin, and places it on the table in front

of the box. By seeing this coin, can you tell the con-

tents of each box?

As before, one is at first inclined to think there are

many different possibilities, but with the right insight

you can see that there is only one case. The coin

taken from the mislabeled 15c box must be either a

nickel or a dime. If it is a nickel, you know that the

box originally held two nickels. If it is a dime, you

know the box originally held two dimes. In either

case, the contents of the other two boxes are now
fully determined. To understand why, draw up a

chart of the six possible cases. You will see that the

mislabeling of all three boxes eliminates all but two

cases. The sampling of one coin from the 15c box

then eliminates an additional case, leaving only the

correct one.

This problem is sometimes given in a slightly

more difficult form. One is asked to determine the

contents of all three boxes by sampling a minimum
number of coins which may be taken from any box.

The unique answer, of course, is one coin taken

from the 15c box. Perhaps you can invent more

complicated versions with more than two objects

per box. or more than three boxes.

Many other fascinating puzzles are closely related

to the baby problem, and that also lead into alemen-

tary probability theory. For example: If the tags of

the babies are mixed at random, what is the prob-

ability that all four will be correct? That all will be

incorrect? That at least one will be correct9 That

exactly one will be correct? That at least two will be

correct? That exactly two will be correct? That at

most two will be correct? And so on.

The "at least one" question, in general form, is

one of the classics of recreational mathematics. It is

often given with a story about n men who check

their hats at a restaurant. A careless hat-check girl

makes no attempt to match hats with checks, but

hands out the checks randomly. What is the proba-

bility that at least one man gets his own hat back9 It

turns out that the probability quickly approaches a

limit of 1 - (1/e) as n increases, or a little better than

V2. Here, e is a famous irrational constant, called

Euler's constant, equal to 2.71828'
. It is as fre-

quently encountered in probability problems

as pi is in geometrical problems.

13



Quibble's Cups

ooooooooo o o

Professor Quibble has a puzzle

for you.

Prof. Quibble: Take 3 empty
styrofoam coffee cups and try to

put 11 pennies in them so that

each cup holds an odd number
of pennies.

Prof. Quibble: That wasn't so

hard, was it? There are lots of

ways to do it. You could put 3
pennies in one cup. 7 in an-

other, and 1 in the third.

OO OO ooooo o

Prof. Quibble: However, can

you put 10 coins in the same
cups so that there is an odd
number in each cup? It is

possible, but you'll have to

think in a tricky way to do it.

PTof. Quibble: I hope you
didn't give up. All you had to

do was to think of putting 1 cup
inside another. Now. isn't it easy

to arrange the cups so that

there's an odd number in each

cup?

14



Quibble's Subset
The aha! that solves Quibble's brain teaser is the

realization that by putting one cup inside another,

the same set of coins can belong to more than one

cup. In the language of set theory, our solution is a

set of 7 elements plus another set of 3 elements that

contains a subset of 1 element. This solution can be

represented with circles as follows:

You will enjoy finding all the other solutions. It is

easy to find 10 of them, of which the above is one,

but it will take another aha! to discover that there are

five more, or 15 in all.

After you have found all 15 you might try

generalizing the puzzle by varying the number of

coins, the number of cups, and the rule about the

kinds of numbers to go in each cup.

The basic insight—that part or all of one set can

be included in another set and counted twice— is

involved in many famous puzzles and paradoxes.

Here is an amusing one.

After a boy failed to attend school for several

weeks he was visited by the school's attendance of-

ficer. The boy explained why he had no time for

school.

"I sleep 8 hours a day. That makes 8 x 365 or

2.920 hours. There are 24 hours per day. so that's

the same as 2.920/24 or about 122 days.

"Saturday and Sundays are not school days. That

amounts to 104 days per year.

"We have 60 days of summer vacation.

"I need 3 hours a day for meals—that's 3 x 365

or 1.095 hours per year, or 1.095/24 which is about

45 days per year.

"And I need at least 2 hours per day for recrea-

tion. That comes to 2 x 365 or 730 hours, or

730/24 which is about 30 days per year."

The boy jotted down these figures and added up
all the days:

Sleep 122

Weekends 104

Summer 60

Meals 45

Recreation 30

361

The total came to 361 days.

"You see." said the boy, "that leaves me only 4
days to be sick, and I haven't even considered the

school holidays we get every year!"

The attendance officer studied the boy's figures

but couldn't find anything wrong with them. Try this

paradox on your friends to see how many of them

can spot the fallacy: namely, counting subsets more
than once. The boy's categories overlap like the

contents of Quibble's cups.
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Steak Strategy

Mr. Johnson has a small out-

door grill just big enough to hold

two steaks. His wife, and daugh-

ter Betsy, are hungry and anxi-

ous to eat. The problem is to

broil 3 steaks in the shortest

possible time.

Mr. Johnson: Let's see. It takes

20 minutes to broil both sides of

one steak because each side

takes 10 minutes. And since I

can cook two steaks at the same
time. 20 minutes will be enough
time to get two steaks ready.

Another 20 minutes will broil

the third steak and the job will

be done in 40 minutes.

Betsy: But you can do it much
faster. Daddy. I just figured out

how you can save 10 minutes.

What clever aha! insight did

Betsy have?

To explain Betsy's solution, call

the steaks A. B. and C; each

steak having sides 1 and 2. In

the first 10 minutes sides Al and
Bl are broiled.

Steak B is now put aside. And in

the next 10 minutes sides A2
and CI are broiled. Steak A is

now finished.

Ten more minutes and sides B2
and C2 are broiled. All three

steaks cooked in only 30
minutes, right?

16



A General Strategy

This is a simple combinatorial problem in a branch

of modern mathematics called operations research.

It brings out beautifully the fact that if one is faced

with a series of operations, and wants to complete

them in the shortest time, the best way to schedule

the operations is not immediately apparent. The
way that seems at first to be best, may be considera-

bly improved. In our problem the aha! lies in recog-

nizing that it is not necessary to cook the second side

of a steak immediately after cooking the first side.

As usual, simple problems like this can be

generalized in more ways than one. For example,

you can vary the number of steaks the grill will hold.

or vary the number of steaks to be cooked, or both.

Another generalization is to consider objects with

more than two sides, and which have to be "fin-

ished" in some way on all sides. For example, a

person may have the task of painting n cubes red on

all side, but at each step he can paint only the tops of

k cubes.

Operations research is used today for solving

practical problems in business, industry, military

strategy, and many other fields. To appreciate

the usefulness of even a solution as simple as the

one for our steak problem, consider the following

variation.

Mr. and Mrs. Jones have three household tasks to

perform.

1. Their first floor must be vacuumed. They have

only one vacuum, and the task takes 30 minutes.

2. The lawn must be mowed. They have only

one mower, and this task also takes 30 minutes.

3. Their baby must be fed and put to bed. This,

too. requires 30 minutes.

How should they go about performing these

tasks so as to accomplish all of them in a minimum
amount of time? Do you see how this problem is

isomorphic with the steak problem? Assuming that

Mr. and Mrs. Jones work simultaneously, one might

at first suppose it would require 60 minutes to com-

plete the tasks. But if one task, say vacuuming, is

split in half, and the second half postponed (as in the

steak problem), the three tasks can be completed in

three-fourths the time, or 5 minutes.

Here is a more sophisticated operations research

problem involving the preparation of three slices of

hot buttered toast. The toaster is the old-fashioned

type, with hinged doors on each of its two sides. It

holds two pieces of bread at once but toasts each of

them on one side only. To toast both sides it is neces-

sary to open the doors and reverse the slices.

It takes 3 seconds to put a slice of bread into the

toaster, 3 seconds to take it out. and 3 seconds to

reverse a slice without removing it. Both hands are

required for each of these operations, which means
it is not possible to put in, take out, or turn two slices

simultaneously. Nor is it possible to butter one slice

while another is being put into the toaster, turned, or

taken out. The toasting time for one side of a piece

of bread is 30 seconds. It takes 12 seconds to butter

a slice.

Each slice is buttered on one side only. No side

may be buttered until it has been toasted. A slice

toasted and buttered on one side may be returned

to the toaster for toasting on its other side. The

toaster is warmed up at the start. In how short a

time can three slices of bread be toasted on both

sides and buttered?

It is not too difficult to figure out a procedure that

will do the job in two minutes. However, the total

time can be reduced to 114 seconds if you have the

following insight: a piece of bread can be partially

toasted on one side, removed, and later returned to

complete the toasting on the same side. Even with

this necessary aha!, the task of scheduling the oper-

ations in the most efficient way is far from easy. In-

numerable practical problems in scheduling are

much more complicated than this, and call for very

sophisticated mathematical techniques involving

computers and modern graph theory.
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The Troublesome Tiles

Mr. Brown's patio is made from

40 square tiles. The tiles have

deteriorated and he wants to

cover them with a new set.

He chooses new tiles to match

his lawn furniture. Unfortunate-

ly these tiles come only in rec-

tangles, each of which covers

two of his old tiles.

Storekeeper: How many of

these do you want. Mr. Brown?
Mr. Brown: Well. 1 have to

cover 40 squares. So I'll need

20. 1 guess.

When Mr. Brown tried to cover

his patio with the new tiles he

became very frustrated. No
matter how hard he tried, he

couldn't make them fit.
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Betsy: What's the trouble.

Dad9

Mr. Brown: These blasted tiles

won't fit. It's driving me nuts. I

always end up with two squares

I can't cover.

Mr. Brown's daughter drew a

plan of the patio and colored it

like a checkerboard. Then she

studied it for several minutes.

Betsy: Aha! I see what the

trouble is. It's obvious once you
realize that each rectangular tile

must cover a red and a white

square

How does this help? Do you
know what Betsy means?

There are 19 black squares

and 21 red. So after 19 tiles are

placed there will always be two

red squares uncovered. And
these cannot be covered by the

rectangular tile The only solu-

tion is to cut one tile in half.
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The Parity Check
Mr. Brown's daughter solved the tiling problem

by applying what is called a "parity check." If two

numbers are both odd or both even, they are said to

have the same parity. If one is odd and the other

even they are said to have opposite parity. In com-
binatorial geometry one often encounters analo-

gous situations.

In this problem two squares of the same color

have the same parity, and two squares of opposite

color have opposite parity. A rectangular tile clearly

covers only pairs of opposite parity. The girl first

showed that if 19 rectangular tiles were placed on

the patio, the two remaining squares could be

covered by the last tile only if the squares were of

opposite parity. Since the two remaining squares

necessarily have the same parity, they cannot be

covered by the last tile, therefore the tiling of the

patio is impossible.

Many famous impossibility proofs in mathematics

rest on parity checks. Perhaps you are familiar with

Euclid's famous proof that the square root of 2

cannot be rational. The proof is obtained by first

assuming that the root can be expressed as a

rational fraction reduced to lowest terms. The
numerator and denominator cannot both be even

because then the fraction would not be in lowest

terms. Therefore they must both be odd. or one

must be odd and the other even. Euclid's proof then

shows that the fraction cannot be either. In other

words, the numerator and denominator cannot be

of like parity or of opposite parity. Because every

rational fraction must be one or the other, the

square root of 2 cannot be rational.

Tiling theory abounds with problems that would

be difficult to prove impossible if parity checks were

not used. This problem is extremely simple because

it involves tiling with dominoes, the simplest non-

trivial polyomino. (A polyomino is a set of unit

squares attached at their edges.) The girl's impos-

sibility proof applies to any matrix of unit squares

which, after a checkerboard coloring, has at least

one more cell of one color than it has cells of the

other color.

In our problem the patio may be regarded as a 6
by 7 matrix with two missing cells of the same color.

Obviously if the two removed cells are the same
color, the remaining 40 cells cannot be covered with

20 dominoes. An interesting related problem is

whether 20 dominoes will always tile the 6 by 7

matrix if the two removed cells are of opposite color.

The parity check fails to prove impossibility, but this

does not mean that the tiling is always possible. It

is out of the question to investigate every possible

pattern created by removing a pair of tiles of oppo-
site color, because there are too many possibilities

to analyze. Is there a simple proof of possibility for

all cases?

Yes, it is both simple and elegant, and one that re-

sulted from a brilliant aha! that occurred to Ralph

Gomory. It, too, makes use of a parity principle. As-

sume that the 6 by 7 rectangle has a closed path,

one cell wide, that completely fills it; see Figure 4.

Now imagine two cells of opposite color removed

from anywhere along the path. This breaks the

closed path into two parts. Each part consists of an

even number of cells which alternate colors. Clearly

such a portion of the path can always be tiled with

dominoes. (Think of them as little boxcars that can

be arranged along a twisted track. ) Therefore the

problem is always solvable. You may wish to exper-

iment with applications of this clever proof to ma-

trices of other sizes and shapes, and with more than

two missing cells.

Tiling theory is a vast area of combinatorial

geometry about which there is growing interest. Re-

gions to be tiled can be of any shape— finite or infi-

nite. Tiles may likewise vary in shape, and problems
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may involve sets of different tiles rather than con-

gruent shapes. Impossibility proofs often involve

coloring the field in a specified way with two or more

colors.

The three-dimensional analog of a domino is a

brick with unit dimensions of 1 x 2 x4. It is easy

to "pack" (tile in space) a 4x4x4 box with such

bricks, but is it possible to pack completely a

6x6x6 box with such bricks? This problem is

answered in exactly the same way as Mr. Brown's

patio problem. Imagine the cube divided into 27

smaller cubes, each 2x2x2. Color these order-2

cubes alternately black and white like a three-

dimensional checkerboard. If you count the num-
ber of unit cubes of each color you will find that

there are 8 more cubes of one color than of another.

No matter how a brick is placed within this col-

ored cube, it must always "cover" exactly the same
number of black unit cubes as white. But there are 8

more unit cubes of one color than another. No mat-

ter how the first 26 bricks are placed, there will al-

ways be 8 unit cubes left over of the same color.

Therefore they cannot be covered by the 27th brick.

This would be extraordinarily difficult to prove by
exhaustively examining every possible pattern of

packing.

Brick packing theory is only a portion of the

theory of tiling in 3-dimensional space. There is a

growing literature on space-packing problems, with

many tantalizing unsolved questions. Many of the

problems have applications to the packing of mer-

chandise in cartons, storage of merchandise in

warehouses, and so on.

Parity also plays an important role in particle

physics. In 1957 two Chinese American physicists

received the Nobel Prize for work that led to the

overthrow of a famous law called the "conservation

of parity." This is too technical to go into here, but

there is a delightful coin trick to illustrate one way
parity is conserved.

Toss a handful of coins on the table and count the

number of heads. If even, we say the heads have
even parity. If odd, we say they have odd parity.

Now turn a pair of coins over, then another pair,
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then another, choosing the pairs at random. You
may be surprised to find that no matter how many
pairs are reversed, the parity of heads is always con-

served. If odd at the start it remains odd. If even at

the start it remains even.

This is the basis of a clever magic trick. Turn your

back and have someone reverse the coins by pairs

for as long as the person likes, then tell the person to

cover any coin with a hand. You turn around, and
after glancing at the coins you can tell correctly

whether the coin under the hand is heads or tails.

The secret is to count the number of heads at the

outset and remember if the number is odd or even.

Since turning coins by pairs does not affect this par-

ity, you have only to count the heads at the finish to

know whether the concealed coin is heads or tails.

As a variation, let the person cover two coins with

a hand. You can then tell whether the concealed

coins are alike or different. Many ingenious card

tricks of the mindreading variety operate by similar

parity checks.



Quibble's Pets

Here's Professor Quibble again

Prof. Quibble: I've got

another teaser for you How
many pets do I have if all of

them are dogs except two. all

are cats except two. and all are

parrots except two9

1&
Have you got it'

Professor Quibble has just 3
pets: a dog. a cat. and a parrot.

All are dogs except two. all are

cats except two and all are

parrots except two.

"AM" for One
This confusing little problem can be solved in your
head if you have the insight that the word "all" can

apply to only one animal. The simplest case—one
dog. one cat, one parrot— provides the solution.

However, it is a good exercise to put the problem
into algebraic form.

Let x. y and z stand, respectively, for the number
of dogs, cats and parrots, and n for the total number
of animals. We can then write four simultaneous

equations:

n -x i-2

n=y + 2

n = z + 2

n =x -t-y +z
These equations can be solved by any of many

standard techniques. It is clear from the first three

equations that x = y =z. Since n =x + 2, and (from

the fourth equation) n = 3x. we can write

x + 2 = 3x
which gives x a value of 1. The complete answer

follows from this value of x.

Since numbers of animals are usually given in

positive integers (who has for a pet a fraction of a

cat?) we can think of Quibble's pet problem as a

trivial example of what is called a Diophantine

problem. This is an algebraic problem with equa-

tions that must be solved in integers. Sometimes a

Diophantine equation has no solution, sometimes

just one. sometimes a finite number greater than

one. sometimes an infinite number. Here is a slight-

ly more difficult Diophantine problem that also con-

cerns simultaneous equations and animals of three

different kinds.

A cow costs $10. a pig $3 and a sheep 50c.

A farmer buys 100 animals and at least one animal

of each kind, spending a total of $100. How many
of each did he buy?

Letx be the number of cows, y the number of

pigs, z the number of sheep. We can write two

equations:

10x+3y+z/2 = 100
x+y +z=100

Eliminate the fraction in the first equation by
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multiplying all terms by 2. From this result subtract

the second equation. This eliminates x and gives us:

19x + 5y = 100

What integral values mayx andy have? One way

to solve this is to arrange the equation with the

smallest coefficient on the left: 5y = 100- 19x.

Dividing both sides by 5 gives: y = (100 - 19x)/5.

Now divide 100 and 19x by 5, putting the remain-

ders (if any) over 5 to form a terminal fraction. The

result is:

y=20-3x-4x/5.
Clearly the expression 4x/5 must be integral, and

this means thatx must be a multiple of 5. The lowest

multiple is 5 itself, which gives y a value of 1 and

(going back to either of the two original equations) z

a value of 94. If x is any larger multiple of 5, y be-

comes negative. Thus the problem has only one

solution: 5 cows, 1 pig and 94 sheep.

You can discover a lot about elementary Dio-

phantine analysis merely by varying the costs of

the animals in this problem. Suppose, for instance,

cows are $4, pigs $2 and sheep a third of a dollar?

What animals can the farmer buy for $100 assuming

he buys 100 animals and at least one of each? In

this case there are just three solutions. What if cows
cost $5. pigs $2 and sheep 500? Now there is no

solution.

Diophantine analysis is an enormous branch of

number theory, with endless practical applications.

One famous Diophantine problem, known as Fer-

mat's last theorem, asks if there are integral solutions

to the equation x " +y n =z n where n is a positive in-

teger greater than 2. (If n =2, it is called a Pythago-

rean triple, and there are an infinite number of solu-

tions starting with 3 2 + 42 = 5 2
. ) It is the most famous

unsolved problem in number theory. No one has

found a solution, or proved that there is not one.
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The Medicine Mix-up Small

A drugstore received a

shipment of ten bottles of a

certain drug Each bottle

contains one thousand pills

The pharmacist. Mr White had

just put the bottles on a shelf

when a telegTam arrived.

Mr White read the telegram to

Miss Black, the store manager
Mr. White: Urgent Do not sell

any pills until all bottles are

checked. By mistake, the pills in

one bottle are each 10 milli-

grams too much Return the

faulty bottle immediately.

These 55 pills were put on the

scale to find their rnabb If it

was 5510 milligrams, or 10

milligrams too much, she knew
that one pill was too heavy It

had to come from the first

bottle

If the mass was 20 milligrams

too much, then 2 pills were too

heavy They had to come from

the second bottle And so on.

for the other bottles So. Miss

Black did only use the scale

once, didn't she'

Mr. White was annoyed.

Mr. White: Of all the luck. I'll

have to take a pill from each

bottle and find its mass. What a

nuisance.
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Mr. White started to do this

when Miss Black stopped him

Miss Black: Wait a minute.
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There s no need to use the scale

10 times, we only need to use

it once.

How is this possible?
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Miss Black's insight was to take

1 pill from the first bottle. 2 from

the second. 3 from the third,

and so on to 10 from the last

bottle.
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The Medicine Mix -Up Big

Six months later the store

received 10 more bottles of the

same pill. Then another

telegram arrived saying that a

worse mistake had been made.

This time the order included

any number of bottles that were

filled with pills that were 10

milligrams too heavy. Mr. White

was furious.

Mr. White: What shall I do now
Miss Black? The system we used

before won't work.

Miss Black thought about the

problem before replying.

Miss Black: You're right But if

we change the method we can

still use the scale only once and
identify every faulty bottle.

What did Miss Black have in

mind this time9
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The Drug Dilemmas
In the first pill weighing problem we are told that

only one bottle contains heavier pills. By taking a

different number of pills from each bottle (the

simplest way to do this is to use the sequence of

counting numbers) we have a one-to-one corres-

pondence between the set of counting numbers
and the set of bottles.

To solve the second problem we must use a se-

quence that assigns a different number to each bot-

tle, and in addition, every subset of the sequence

must have a unique sum. Are there such sequ-

ences? Yes. and the simplest is the doubling sequ-

ence: 1.2.4.8.16 These numbers are the succes-

sive powers of 2. and the sequence provides the

basis of binary notation.

The solution, in this case, is to line the bottles up
in a row. then take 1 pill from the first bottle. 2 pills

from the second. 4 from the third, and so on. The
removed pills are then weighed altogether. Let's

assume they are heavier by 270 milligrams. Since

each faulty pill is heavier by 10 milligrams, we divide

this by 10 to get 27. the number of heavier pills.

Write 27 as a binary number: 11011. The position of

the Is tell us what powers of 2 are in the set that

sums to 11011 - 27. They are 1.2.8 and 16. The Is

are in the first, second, fourth and fifth positions

from the right of 11011. Therefore the faulty bottles

are bottles 1.2.4 and 5.

The fact that every positive integer is the sum of a

unique set of powers of 2 is what makes the binary

notation so useful. It is indispensible in computer

science, and in a thousand other areas of applied

mathematics. In recreational mathematics there also

are endless applications.

Here is a simple card trick to mystify your friends.

Although it may seem to have no connection with

the pill bottle problem, the underlying binary princi-

ple is the same.

Have someone shuffle a deck of cards. Put the

deck in your pocket, then ask anyone to call out a

number from 1 through 15. You reach into your

pocket and take out a set of cards with values that

sum to the number called.

The secret is simple. Before showing the trick, put

an ace. deuce, four and eight in your pocket. The
deck will be missing four cards, but this is such a

small number that their absence will not be noticed.

The shuffled deck goes into your pocket beneath

the four cards already there. When the number is

called, mentally express it as a sum of powers of 2.

Thus if 10 is called you think"8 + 2 = 10." Reach
into your pocket and take out the deuce and
the eight.

Mindreading cards are also based on the same
binary principle. Figure 1 of Chapter 3. Number
aha!, shows a set of six cards that determine any

selected number from 1 through 63. Ask someone
to think of a number within this range— their age.

for instance— then hand you all the cards that bear

the number. You immediately name the number.

The secret is simply to add the powers of 2 that ap-

pear as the first number on each card. For example,

if you are handed cards C and F you sum their two

starting numbers. 4 and 32. This tells you that the

chosen number is 36.

What rule determines the set of numbers for each

card? Every number whose binary representation

has 1 in the first position on the right goes on card A.

the card whose set of numbers start with 1. These

are all the odd numbers from 1 through 63. Card B
contains all numbers 1 through 63 whose binary no-

tation has a 1 in the second position from the right.

Card C contains all numbers whose binary notation

has a 1 in the third position from the right, and so on

for cards D. E. and F Note that 63. which is 111111

in binary notation, has a 1 in every position, there-

fore it appears on every card.

Magicians sometimes make this trick more mys-

terious by having each card a different color. The
magician memorizes the color that stands for each

power of 2. For example, the red card is 1. the

orange card is 2. the yellow card is 4. the green card

is 8. the blue card is 16. and the purple card is 32.

(The colors are in rainbow order. ) Now the magician

can stand across a large room and ask a person to

put aside each card on which the thought-of

number appears. By noting the colors on the cards

placed aside, the magician can immediately call out

the chosen number. 25



The Broken Bracelet
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Gloria, a young lady from

Arkansas, is visiting in

California. She wants to rent a

hotel room for a week.

After thinking a while Gloria

realized that she didn't have to

cut all the links because she

could trade pieces back and
forth. She couldn't believe it

when she figured out how many
cuts the jeweler had to make.
How many cuts would you
make?

The clerk was very unpleasant.

Clerk: The room is $20 per day
and you have to pay cash.

Gloria: I'm sorry sir. but I don't

have any cash. However. I do
have this solid gold bracelet.

Each of its seven links is worth

more than $20.

O OD GEB3D
I 2. <r

Only one link need be cut. It

must be third from one end.

This makes three pieces of 1. 2.

and 4 links. And these are

sufficient to trade back and forth

so that each day the clerk gets

one more link.

Clerk: Alright, give me the

bracelet.

Gloria: No. not now. I'll have a

jeweler cut the bracelet so I can

give you 1 link a day. Then
when I get some money at the

end of the week I'll redeem it.
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The clerk finally agreed. But

now Gloria had to decide how
to cut the bracelet She was in a

dilemma.

Gloria: 1 have to be careful

because the jeweler is going to

charge me for each link that he

cuts and for each link that he

joins when the bracelet is put

back together again.



Crucial Link
Two aha! insights are needed to solve this problem.

The first is to realize that the smallest set of chains

that can be combined in various ways to form sets of

1. 2. 3. 4, 5. 6 and 7 links is a set of chains with 1. 2

and 4 links; that is. with numbers in the doubling

series. As we learned in the last problem, this is the

power series that is the basis of binary notation.

The second insight is to realize that cutting only

one link divides the bracelet into this desired set of

three chains.

The problem generalizes to chains of longer

length. For instance, suppose Gloria had a chain of

63 gold links that she wanted to cut and use in the

same way that she used her bracelet— to pay for 63
days, one link per day. The cutting of as few as three

links will do the trick. Do you see how? Can you de-

vise a general procedure that solves the problem,

with a minimum number of cut links, for a chain of

any length?

An interesting variant of the problem is to start

with n links that are joined at the ends to make a

closed loop. For example, suppose Gloria had a

necklace in the form of a closed chain of 79 gold

links. How few links need to be cut to pay for 79
days, one link per day?
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Chapter 2

Puzzles about shapes





Geometry is the study of shapes. Although true, this

definition is so broad that it is almost meaningless.

The judge of a beauty contest is, in a sense, a

geometrician because he is judging female shapes,

but this is not quite what we want the word to mean.

It has been said that a curved line is the most beauti-

ful distance between two points. Even though this

statement is about curves, a proper element of

geometry, the assertion seems more to be in the

domain of aesthetics rather than mathematics.

Let us be more precise and define geometry in

terms of symmetry. By symmetry is meant any

transformation of a figure that leaves the figure un-

changed. For example, the letter "H" possesses 180

degree rotation symmetry. This means that if we ro-

tate the letter 180 degrees—rum it upside

down—we still have the letter "H". The word
"AHA" possesses reflection symmetry. Hold it up to

a mirror and the reflection of this word looks the

same.
Every branch of geometry can be defined as the

study of properties that are unaltered when a

specified figure is given specified symmetry trans-

formations. Euclidian plane geometry, for instance,

concerns the study of properties that are "invariant"

when a figure is moved about on the plane, rotated,

mirror reflected, or uniformly expanded and con-

tracted. Affine geometry studies properties that are

invariant when a figure is "stretched" in a certain

way. Projective geometry studies properties in-

variant under projection. Topology deals with prop-

erties that remain unchanged even when a figure is

radically distorted in a manner similar to the defor-

mation of a figure made of rubber.

Although geometry pervades every portion of

this book, in this chapter we have brought together

problems in which the geometrical aspect domi-

nates, and, of course, we have selected problems
that depend on aha! insights for easy solutions. Our
first puzzle, about cheese cutting, illustrates how
many branches of mathematics can come together

in even the simplest problem. It is partly plane

geometry, partly solid geometry, partly combinato-

rial, and partly arithmetical. Moreover, it introduces

an important branch of algebra called the "calculus

of finite differences."

The "Big Knight Switch." surprisingly, is a prob-

lem of topology. The string solution shows that the

problem is equivalent to one that can be given in

terms of the points on any simple closed curve, and
it does not matter in the least what shape the closed

curve has. Only the topological properties of such a

curve are involved. We solve this problem with

points on a circle, but we could just as well have

used a square or a triangle.

The next two problems
—

"Surprising Sword"

and "Payoff at the Poles"— take us off the plane

once more into three-dimensional Euclidian

geometry. The pilot's paths suggest a famous path

problem about four bugs that shows how it is some-

times possible to avoid calculus by applying much
simpler insights. Ransom's surveying problems take

us back to the plane, introducing aspects of Euclid-

ian geometry that belong to dissection theory and

tiling theory. The tiling problem is one of com-

binatorial plane geometry. Miss Euclid's cube-

slicing problem is one of combinatorial solid

geometry.

The carpet problem, and its three-dimensional

companion about the hole in a sphere, are two

elegant examples of theorems in which a variable,

which one expects to behave like a variable, turns

out to have only one value even when other

parameters are varied. Who would expect the

sphere's volume to be a constant regardless of the

hole's width or the radius of the sphere? When a

mathematician first encounters this theorem he/she

almost always expresses amazement, followed by

the exclamation "Beautiful!"

No one knows exactly what a mathematician

means when he/she calls something beautiful— it is

somehow bound up with unanticipated simplicity

but all mathematicians recognize a beautiful

theorem, or a beautiful proof of a theorem, as easily

as one recognizes a beautiful person. Geometry,

because of its visual aspect, is unusually rich in

beautiful theorems and proofs. You will find some

good examples of them in this section.
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Crafty Cheese Cuts

The food at Joe's Diner may not

be the best, but the place is

famous for its delicious cheese.

You can have a lot of fun with

the cylindrical pieces of cheese.

With one straight cut it's easy tc

divide one piece into two
identical pieces.

With two straight cuts it's easy tc

cut it into four identical pieces

And three cuts will make six

identical pieces.

One day, Rosie. the waitress,

asked Joe to slice the cheese

into eight identical pieces.

Joe: Okay. Rosie: That's simple

enough. I can do it with four

straight cuts like this.

While Rosie was carrying the

slices to the table, she suddenly

realized that Joe could have

gotten the eight identical pieces

with only three straight cuts.

What insight did Rosie have?

Three Straight Cuts?
Rosie's insight was to realize that the cylindrical

cheese is a solid figure that can be cut in half by a

horizontal plane through the center. Figure 1 shows
how three planar cuts divide the cheese into eight

identical portions. This solution assumes that the

three cuts are made simultaneously. If the cuts are

consecutive, and one is allowed to rearrange pieces

between cuts, then it can be done in three cuts by

stacking the first two pieces, cutting to get four, then

stacking the four pieces and cutting to get eight.

Rosie's solution is so simple that it is almost trivial,

yet it provides a good introduction to significant cut-

ting problems that can be explored with the calculus

of finite differences and proved by mathematical in-

duction. The calculus of finite differences is a power-

ful tool for discovering formulas for the general term

of number sequences. Today there is a rapidly grow-

ing interest in number sequences because of their

many practical applications, and because comput-

ers can carry out operations with sequences so

quickly.

Rosie's first method of slicing the cheese was with

straight cuts that are concurrent at the center of the

top of the cheese. The top of the cheese is a flat

surface like a pancake. Let us see what kinds of

number sequences can be generated by the simple

procedure of cutting a pancake with straight lines. If

the lines are concurrent at the pancake's center, it is

obvious that n simultaneous straight cuts produce a

maximum of 2n pieces.

Does this expression 2n also give the maximum
number of pieces that can be produced by n concur-

rent cuts through any plane figure bounded by a

simple closed curve? No—as Figure 2 shows, it is

easy to draw nonconvex shapes on which even one
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cut can produce as many pieces as you like. Is it pos-

sible to draw a shape such that a single cut will pro-

duce any finite number of congruent pieces? If so.

what characteristics must a shape's perimeter have

to permit the formation of n congruent pieces by

one straight cut?

Cutting a pancake becomes more interesting

when the cuts are not concurrent. You will quickly

discover that not until n = 3 does this procedure

stan producing more than 2n pieces. We are not

here concerned with whether the pieces are con-

gruent or even of equal area. Figure 3 shows how

where n is the number of straight cuts. The first ten

terms of the sequence, starting with n = 0. are: 1, 2.

4. 7. 1 1. 16. 22. 29, 37. 46 Note that the first row

of differences is 1, 2. 3, 4. 5, 6. 7. 8, 9 and the

second row of differences is 1, 1. 1. 1. 1. 1, 1, 1

This strongly suggests that the general term for the

sequence is a quadratic.

We say "strongly suggests" because finding a

formula with the calculus of finite differences does

not guarantee that the formula is valid for the infinite

sequence. For this a proof is required. In the case

of the pancake formula, there is a simple proof by

induction that is not hard to work out.

From this point you can take off in dozens of fas-

cinating exploratory directions, many of which lead

to unusual number sequences, formulas, and

proofs by mathematical induction. Here are a few

problems to start on. What is the maximum number

of pieces that can be obtained when:

1. A pancake shaped like a horsehoe is given n

straight cuts?

2. A sphere, or cylindrical, piece of cheese like the

one cut by Rosie. is given n planar cuts?

3. A pancake is given n cuts with a circular cookie

cutter?

4. A pancake shaped like a ring (that is. with a cir-

cular hole in the center) is given n straight cuts?

5. A doughnut (torus) is given n planar cuts?

In all these problems it is assumed that the cuts

are simultaneous. How do the answers vary if the

cuts are consecutive, with rearrangements permit-

ted between cuts?

the maximum number of pieces is obtained when

n = 1. 2. 3 and 4. The number of pieces are. re-

spectively. 2. 4, 7 and 11.

This is a familiar sequence that is generated by

the formula
33



Dimensions in Disguise

In the middle of a city park there

is a large circular play area. The
city council would like to put a

diamond shaped wading pool

inside the circular area.

What simple aha! enabled them
to solve the problem so easily?

When Doris Wright, the mayor.

saw the plans she spoke to the

architect.

Mayor Wright: I like the pool's

rhombical shape, and the red

tiling; but how long is each side

of the pool?

Frank Lloyd Wrong, the

architect, was puzzled.

Mr. Wrong: Let's see. It's 5

meters from A to B. and 4
meters from B to C. Hmm.
There has to be a way to find

BD Maybe I have to use

Pythagorean theorem.

Mr. Wrong was about to give

up when suddenly her Honour
shouted:

Mayor Wright: Aha! The
pool's side is exactly 9 meters.

It's obvious.

Mr. Wrong: By golly, you're

Wright. And I'm Wrong.
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A Diagonal Radius
Ms Wright suddenly realized that each side of the

pool is the diagonal of a rectangle, and the other

diagonal in each rectangle is the radius of the circu-

lar play area. The diagonals of a rectangle are equal,

therefore the side of the pool is the same length as

the circle's radius. The radius is 5 + 4 = 9 meters,

therefore each side of the pool is 9 meters. There is

no need to apply the Pythagorean theorem.

You can better appreciate the value of this aha!

insight by trying to calculate the side of the pool in a

more conventional manner. If you use nothing but

the Pythagorean theorem and similar triangles, the

solution is long and tedious. It can be shortened

somewhat by remembering a theorem in plane

geometry that says if two chords intersect within a

circle, the product of the two parts of one chord

equals the product of the two parts of the other

chord. This theorem gives the height of the right

triangle as \ 56. By applying the Pythagorean theo-

rem you can then calculate the hypotenuse of the

right triangle as 9 meters.

A closely related problem is a famous puzzle

about a water lily that the poet Henry Longfellow

introduced into his novel Kauenaugh. When the

stem of the water lily is vertical, the blossom is 10

centimeters above the surface of a lake. If you pull

the lily to one side, keeping the stem straight, the

blossom touches the water at a spot 21 centimeters

from where the stem formerly cut the surface. How
deep is the water?

same diagram as the one for the swimming pool

problem. Our task is to determine the length of x.

Like the pool problem, this also can be solved in

more than one way But if you remember the

theorem about intersecting chords, you can solve it

with very little effort.

Here is another delightful swimming pool puzzle

that is quickly solved by an aha! A dolphin is at the

west edge of a circular pool at spot A. He swims in a

straight line for 12 meters. This causes him to bump
his nose against the pool's edge at spot B. He turns

and swims in a different direction in a straight line for

5 meters, and arrives at spot C on the pool's edge

exactly opposite A. where he first started. How far

would he have gone had he swum directly fromA to

C?
The aha! that solves the problem is knowing the

theorem that an angle inscribed in a semicircle is a

right angle, therefore ABC is a right triangle. In this

case, the sides of the right triangle are given as 5 and

12. therefore the hypotenuse is 13 meters. The

moral of all these problems is: In many cases the in-

sight that makes a geometrical problem ridiculously

easy depends on remembering a fundamental

theorem of Euclidean geometry.

The problem can be solved by first drawing the

diagram shown in Figure 4. This is essentially the
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The Big Knight Switch

At a meeting of the chess club.

Mr. Bishop posed a puzzle.

Mr. Bishop: Interchange the

positions of the black and white

knights in as few moves as

possible.

Before starting her explanation

Fanny drew a diagram in which

straight lines showed every

possible knight move.

One boy made his first two

moves this way and it took him

24 moves to get the white

knights on top and the black

knights on the bottom.

Ms. Fish: If the straight lines

are imagined to be strings, the

eight cells will be like beads on a

folded necklace, which can be

opened up to form a circle.

Another boy was able to do it in

20 moves.

Ms. Fish: Every move on the

board corresponds to a move
on the circle. To switch the

knights we just have to move
them around the circle in one

direction.

But no one could do it in less

than 18 moves until Fanny Fish

arrived.

Mr. Bishop: You're right

Fanny. And at the finish each

of the 4 knights has moved 4
times. That's 16 moves in all and
it can't be done in less.

Ms. Fish: Aha! I can do it in

only 16 moves. And I can prove

that it can't be done in less.

Fanny replaced one of the

white knights with a red one.

and asked the members to

interchange the places of the

red and white knights in as few

moves as possible. Why do you
think she had a smile on her

face when she did this?



Knights and a Star

Fanny solved the knights problem by changing it to

an isomorphic problem that had a simple aha! solu-

tion. The problem she posed is solved by the same
curious technique as before. When we join the cells

by string, and open them up into a circle, we see that

the knights are in the following cyclic order: black,

black, red. white. Fanny was smiling because she

saw the red and white knights could not interchange

their places. Their order is invariant because no

knight can jump another knight by moving around

the circle in either direction. Do you see why?
Going clockwise around the circle, the white

knight is always immediately behind the red knight.

If it were possible for the red and white knights to

exchange starting places, then the cyclic order

would have to be reversed and the red knight would

be immediately behind the white knight. This obvi-

ously is impossible because it would require that

one knight hop over both black knights. By chang-

ing the problem to one of topological order of four

spots on a closed curve, we have found a simple

impossibility proof that would be extremely difficult

to obtain by any other method. You will surely agree

if you try to solve the problem in a different way.

Did you like these two knight switching prob-

lems? Here is one that is even more of a challenge.

Consider the problem shown on the 3-by-4 board

in Figure 5. As before, the task is to switch the posi-

4 * *
4 5 6

7 8 9

10 11 1 M2

tions of the three black and three white knights, so

that the white knights occupy the top row. and the

black knights the bottom row, and to do this in a

minimum number of moves.

In this case the isomorphic graph is more comp-
licated, see Figure 6. The graph is. of course, a
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diagram that shows every possible knight move. As-

suming that the graph is made of strings and beads,

we cannot open the string into a circle as we did in

the previous problem. However, we can open the

bead-and-string graph to the form shown in Figure

7. The numbers in this picture correspond to cell

numbers in Figures 4 and 5.

u 2

The problem of switching black and white knights

on this graph is, therefore, isomorphic with the orig-

inal problem, but now it is much easier to work

out the solution. See if you can find the minimum

solution in 16 moves.

An old puzzle that also lends itself to analysis by
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the String-and-bead technique makes use of the

star diagram shown in Figure 8. To work on this puz-

zle you need seven pennies or small counters.

The problem is this: Place a penny on any point of

the star and move it along a black line to a different

point. Once the penny is moved it must remain on

the point to which you moved it.

Now place a second penny on any unoccupied

point of the star, and move it in similar fashion to any

other unoccupied point. Continue in this way until

all seven pennies have been placed on points.

You will soon discover that unless you place and
move the pennies according to a carefully designed

plan, you will find yourself trapped in a position that

will not permit you to continue. The problem is to

devise a system for placing and moving all seven

pennies according to the rules. Can you work out

the system?

The star graph can be opened out like the graph

of the first two knight problems into one that is circu-

lar. It is now easy to place and move all seven coun-

ters. There are many ways to do it. One simple

system is to make any move you like with the first

penny. Thereafter, always place and move the next

penny so that it ends on the spot vacated by the pre-

viously placed coin.

Try this puzzle on your friends. Very few of them
will be able to solve it even after you have dem-
onstrated (rapidly) how it can be done.
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Surprising Swords

v^1

" v^
Study this picture carefully Do
you see anything wrong with it

'

Look at the sword It cannot

possibly fit into its scabbard

If these two swords have a

uniform cross section they will

fit into a scabbard of the

corresponding shape But can

you think of a third shape for a

sword and its scabbard9

Did you have the insight to think

of three dimensional curves? It

turns out that a spiral curve

called the helix is the only other

possible shape for a sword and

its scabbard.

General Helix

The helix has become an important structure in

modern science, especially in biology and nuclear

physics. It is the structure of the DNA molecule. Un-
like its one- and two-dimensional cousins, the

straight line and the circle, the helix has a "handed-

ness"; that is, it can be right-handed or left-handed.

A straight line or a circle is identical with its mirror

image, but a helix is not. In the mirror it "goes the

other way," as Lewis Carroll's Alice said when she

looked at the room behind the looking-glass. A
neutrino, for example, travels with the speed of

light, but because it has "spin" it traces (in a sense)

a helical path in spacetime. Neutrinos and antineu-

trinos have helices of opposite handedness.

There are many examples of helices in nature and

in everyday life. A right-handed helix is traditionally

defined as one that coils clockwise as it "goes away"

from you. Screws, bolts and nuts are usually right-

handed. Helical structures such as circular stair-

cases, candy canes, springs, and the helical strands

of ropes, cables and strings, come in both forms. Do
barber poles?

Examples of spirals in nature include the horns of

many animals, conical sea shells, the long tooth of

the narwhal, the cochlea of the human ear, and um-

bilical cords. In the plant world helices turn up in

stalks, stems, tendrils, seeds, flowers, cones, leaves,

tree trunks and so on. Squirrels trace helices when
they run up and down a tree. Bats fly in helical paths

when they emerge from a cave. Conical helices are

exhibited by such weather phenomena as whirl-

pools and tornadoes. Water flows helically down
drains. For more examples of helices in nature see

The Ambidextrous Universe by Martin Gardner.

A regular helix is a curve that coils around a circu-

lar cylinder, making a constant angle with the cylin-

der's elements. (The elements are straight lines on

the surface that parallel the axis.) Call this constant

angle theta. It is easy to see that if theta is zero, the

helix is a straight line. If theta is 90 degrees, the helix

is a circle. This can be established analytically by

using the parametric equations for a helix and let-

ting theta vary between and 90 degrees. Thus, the
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straight line and the circle are limiting forms of the at once that the tube's helical edge has a length that

more general space curve called the helix. The regu- is independent of the width of the cylinder into

lar helix is the only space curve of constant curva- which the right triangle is rolled,

ture and torsion. This explains why the helix and
its two limiting forms provide the only shapes for

the swords and their scabbards.

One projection of the helix on the plane is obvi-

ously a circle. If a projection is made at right angles

to the axis of the helix, it is a sine curve. Again, this is

easily verified by examining the curve's parametric

equations. Indeed, this furnishes a pleasant intro-

duction to the sine curve and its properties.

Here is an amusing story problem involving a

helix that has a good aha! solution. A cylindrical

tower. 100 meters high, has an inside elevator.

Around the tower's outside is a helical stairway that

has a constant theta angle of 60 degrees with the

vertical. The tower's diameter is 13 meters.

One day Mr. and Mrs. Pizza rode the elevator to

the observation deck at the top of the tower. Their

son. Tomato Pizza, climbed the stairway all the way
from the bottom to the top. When he arrived at the

observation deck he was breathing heavily.

"No wonder you're beat, son." said Mr. Pizza.

"You must have gone four times the distance we
did. And you did it all on foot."

"You're wrong. Dad," said Tom. "I only went
twice as far."

Who was right, Tom or his father? One is inclined

to think it necessary to use the diameter of the circu-

lar tower in calculating the length of the helical stair-

case. Surprisingly, the tower's diameter of 13 me-
ters is extraneous information that can be ignored

entirely!

The reason the diameter is irrelevant is that the

helical stairway corresponds to the hypotenuse of a

right triangle with angles of 60, 30 and 90 degrees,

and a height of 100 meters. The hypotenuse of such

a triangle is. of course, twice the height (the side op-

posite the 30-degree angle). Therefore Tom was
right.

You can verify this by unwinding a cardboard

mailing tube, or the tube around which paper towels

come. The outcome may astonish you. You will see
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Payoff at the Poles

n 1u
w

Bet-a-dollar Dan, a famous /"
gambler, is having a drink with I

his friend Dick, an airline pilot

Dan: Dick, I'll bet you a dollar

that you can't figure this one
out. A pilot flies due south 100
kilometers, then goes east 100
kilometers, then north 100
kilometers and finds that he's

right back where he started

from. Where did he start from?

Dick: There can't be another

starting place. Dan, and 1 can

prove it. Suppose the pilot starts

anywhere between the North

Pole and the Equator.

Dick: I'll take that bet, Dan.

That's an old one. He started

from the North Pole.

Dan: Right. Here's your dollar.

Now, I'll bet you another dollar

that you can't think of a different

starting place.

Dick thought about it for a long

time.

Dick: It's obvious that he can't

get back to where he started

And if he starts on the Equator,

he'll end up about 100 kilo-

meters from his starting spot

Dick: And by starting off

anywhere south of the Equator
he'll miss his starting spot by
way more than 100 kilometers

Dan: Okay, want to bet double

or nothing that there's no other

possible starting spot?

Dick took the bet and lost Do
you see why?

Suppose the pilot starts

anywhere on circle A which is

116 kilometers from the South

Pole. Then he flies south 100

kilometers

Now when he goes 100

kilometers east he has made a

complete revolution around the

pole. So when he goes north

100 kilometers he has to be

back where he started from.

Right'

41



Dick: Right. Here's your $2.

Dan: Wanna bet another dollar

that I cant find still another

starting spot?

Dick: You mean that's not at

the North Pole and not on circle

A?
Dan: That's what I mean.

~\ Dick: Alright then, make it

A $50.

"v Poor Dick lost again. What aha!

1 did he miss this time?
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Starting Spots
The insight that Dick missed when he lost the sec-

ond bet is this. A pilot can start from a spot so near

the south pole that when he flies 100 kilometers east

he goes ridce around the pole instead of just once as

in the previous solution. This introduces a new cir-

cle, each point of which is a solution to the original

problem. Similarly, the pilot can start anywhere on a

still smaller circle so that his eastern flight takes him

three times around the pole, or four times, and so on
for every natural number. It turns out. therefore, that

the starting points that solve the problem lie on an

infinite set of concentric circles. The circles all have

their centers at the south pole, and radii that ap-

proach 100 as the limit.

Here is a different navigational problem that in-

volves a fascinating curve on the sphere known as

a loxodrome or rhumb-line. A pilot starts at the

equator and flies due northeast. Where will his flight

end? How long is the path and what does it look

like?

You may be surprised to find that the path is a spi-

ral that cuts the earth's meridians at a constant angle

and ends precisely at the north pole. The path is a

spherical helix that "strangles" the north pole, but

only after making an infinite number of circles

around it. Think of the pilot as a moving point.

Paradoxically, even though the point goes around

the pole an infinite number of times, the path has a

finite length that can be calculated. Thus, if the pilot

(represented by a point) travels at a constant speed,

he or she reaches the north pole in a finite length of

time.

A loxodrome. plotted on a flat map, has different

forms depending on the type of map projection. On
the familiar world map called the Mercator projec-

tion, it is plotted as a straight line. Indeed, this is why
a Mercator map is so useful to navigators. If a ship or

plane travels in a constant compass direction, the

path is a straight line that is easy to draw on the map.

What happens if a pilot starts at the North pole

and flies due southwest? This is a reversal of the

previous problem. The path is a loxodrome as be-

fore, but now we cannot specify the spot where it

will reach the equator. It can meet the equator at

ant; spot. You can prove this by time reversal. Just

start the plane at any spot on the equator and its

backward flight must carry it to the north pole.

However, if the pilot continues on his forward path

beyond the equator, his loxodrome will strangle the

south pole.

When a loxodrome is projected on a plane par-

allel to the equator and tangent to a pole, it is an

equiangular or logarithmic spiral. This is a spiral that

always cuts its radius vector at a constant angle.

The four-bug problem is another well-known

path problem, also involving a logarithmic spiral,

but with a beautiful aha! solution that avoids a lot of

laborious calculation. We give it here with a story

line about the Pizza family and its pet turtles.

Tom Pizza has trained his four turtles so that

Abner always crawls toward Bertha. Bertha toward

Charles. Charles toward Delilah, and Delilah to-

ward Abner. One day he put the four turtles in

ABCD order at the four corners of a square room.

He and his parents watched to see what would

happen.

"Very interesting, son." said Mr. Pizza. "Each tur-

tle is crawling directly toward the turtle on its right.

They all go the same speed, so at every instant they

are at the corners of a square" (see Figure 9).

"Yes, Dad." said Tom. "and the square keeps

turning as it gets smaller and smaller. Look 1 They're

meeting right at the center!"

Assume that each turtle crawls at a constant rate
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of 1 centimeter per second, and that the square

room is 3 meters on the side. How long will it take

the turtles to meet at the center? Of course, we must

idealize the problem by thinking of the turtles as

points.

Mr. Pizza tried to solve the problem by calculus,

using his new pocket programmable calculator.

Suddenly Mrs. Pizza shouted: "You don't need

calculus, Pepperone! Its simple. The time is 5

minutes."

What was Mrs. Pizza's insight?

Consider two adjacent turtles, say Abner and
Bertha. At every instant Bertha is moving at right

angles to Abner, who is pursuing her, because

Abner always crawls directly toward her while she is

crawling directly toward Charles. This is why the tur-

tles are at all times at the corners of a square. Since

Bertha's movement is never toward Abner or away
from him. her motion neither adds nor subtracts

from the distance between herself and Abner. Her
motion, therefore, becomes irrelevant. It is the same
as if Bertha remained in her corner and Abner
crawled toward her along the side of the square

room.

The above insight is the key to the solution.

Abner 's curved path must have exactly the same
length as the side of the square. Since the side is 300
centimeters, and Abner crawls at 1 centimeter per

second, it will take him 300 seconds, or 5 minutes,

to reach Bertha. The same is true of the other three

turtles. At the end of 5 minutes, all four turtles meet
at the square's center.

With the help of a pocket calculator, it is not dif-

ficult to diagram the paths of the turtles in small in-

crements of time, drawing the four sides of the

square at the end of each interval. The result is a

startling pattern (see Figure 10).

Can you generalize the problem to the corners of

all regular polygons? Investigate first the equilateral

triangle, then the pentagon. Can you find a general

formula for the lengths of the pursuit paths, given

the length of the side of the starting polygon? What
happens in the limiting case when an infinite num-
ber of turtles (points), starting at the corners of an
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infinite-sided polygon, chase each other? Will they

ever meet? Suppose the initial polygons are not

regular. What happens if four turtles start at the cor-

ners of a rectangular room that is not square?

Suppose that after the four turtles meet at the

square's center, in our original problem, they find

that they dislike one another so they crawl out-

wards, each moving directly away from the turtle on

its left. Will the turtles necessarily return to the four

corners of the room?



Quibble's Matches

Mabel is showing a match

puzzle to Professor Quibble

Mabel: Move just two matches

and end up with four of the

same sized squares And don't

break, overlap, or double up the

matches.

Prof. Quibble: That's an old

timer. Mabel All you have to do
is move these two matches.

Professor Quibble then took

away 4 matches, leaving 12 on

the table

Prof. Quibble: Alright now
Mabel, make six unit squares

with these 12 matches.

Mabel had to give up. But

maybe you can help her out.

45



Match Games
The insight Mabel needed to solve Professor

Quibble's match puzzle is that she has not been told

that the matches must remain on the plane. By
going into a third dimension, the 12 matches form

the 12 edges of a unit cube, which, of course, has 6

square faces. It is an insight similar to Rosie's when
she found a way to cut the cheese.

A better known version of the same problem is

to form four identical equilateral triangles with six

matches. The solution in this case is to form the

skeleton of a regular tetrahedron.

Here are six other clever match or toothpick

puzzles that have aha! solutions. Can you do them?

<f
/

A A
4. Move the smallest number of matches to make
the pig look the opposite way.

6

1. Move the smallest number of matches to make a

square.

/\
/\/\
vv
T

2. Remove the smallest number of matches to leave

four equilateral triangles of the same size as the eight

shown. There must be no loose ends.

3. Move the smallest number of matches to make
the fish swim the opposite way.
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5. Move the smallest number of matches to get the

cherry outside the old-fashioned glass. The glass

may have any orientation at the finish, but. of

course, the cherry cannot be moved.

*Hp^

6. Move the smallest number of matches to get the

olive outside the martini glass. As before, the glass at

the finish may be turned any way you like, but the

olive must not be moved.

It would spoil most of the fun if we printed the

actual solutions, so instead we will give only the

correct minimum numbers:

One.

Four.

Three.

Two.

Two.

None.



Devilish Divisions

Ransom is a surveyor who
specializes in dividing curious

shaped lots into congruent

parts

Dividing square lots into four

identical region offered no
challenge to Ransom, but when
he was asked to divide a square

lot into five congruent regions

he was puzzled

e^Jkc^-i

On one occasion he was asked

to cut this lot into four identical

regions. How do you think he

did it'

This is the only way it can be

done.

Ransom: I don't understand it

There has to be a way Hmm
Aha' I see it now
Can you figure out what Ran-

som's insight was?

Ransom: It's ridiculous The
same method could be used to

divide a square into any number
of congruent pieces

Z'&^trlp

Ransom's next job was to cut

this piece of land into four

congruent parts. And it wasn't

easy to do.

~^s. However, he persevered and
» finally found one solution.
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Dissection Theory
Ransom's three problems form a series that is great

fun to try on friends. The first two puzzles are solved

with strange shapes. These shapes subtly suggest

that the square, since it cannot be cut into five

squares, must be cut into five curious shapes. It is

surprising how few people can think of the obvious

solution. Incidentally, it is the on\y way a square can

be cut into five congruent shapes.

After you have caught a friend with this puzzle,

you can probably catch him or her a second time

with a closely related fourth problem. First show
your friend how the field in Figure 11 can be divided

into four congruent shapes. Can this field also be cut

into three identical parts?

Your friend will probably soon give this up as

much too difficult. He or she will be dumbfounded
when you show how it can be solved easily with

exactly the same insight that enabled Ransom to cut

a square into five identical regions. The answer is

given in Figure 12. As before, the technique obvi-

ously permits one to cut the field into any number of

identical regions.

Puzzles of this type, as well as the puzzles related

to our cheese cutting problem, belong to a colorful

branch of recreational mathematics sometimes

called dissection theory. They provide valuable in-

sights into the solution of many practical problems

in plane and solid geometry. Ransom's first two
problems are especially interesting because each

field is cut into pieces of the same shape as the origi-

nal field. If this can be done, the shape is called a

rep-tile.

Figure 13 shows several other rep-tiles. Can you
cut each of these into congruent shapes that repli-

cate the original shape? It is clear that if you have an
infinite supply of any rep-tile, you can tile the entire

plane in a nonperiodic way. For example, consider

the L-shaped rep-tile that is the first field solved by
Ransom. Four such pieces make a large L-tile. then

four larger L-tiles make a still larger L-tile. and this

process can be continued to infinity to tile the infinite

plane. Note also that we can go to infinity in the op-

posite direction by cutting each tile into four smaller
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L-tiles, and those in turn can be cut into still smaller

L-tiles, and so on ad infinitum.

Not much is known about rep-tiles. All known
rep-tiles also tile the plane periodically. That is, they

tile the plane in such a way that there is a fundamen-

tal region of the pattern that tiles the plane by trans-

lation, without rotation or reflection. Is there a rep-

tile that will not also tile periodically? This is an out-

standing unsolved question of tiling theory.

Even less is known about solid rep-tiles. The cube

is. of course, such a figure because eight cubes go

together to make a larger cube, just as four squares

go together to make a larger square. Can you think

of any other examples of a solid rep-tile?

If the congruent shapes are not required to be

similar to the field that is dissected, many other un-

usual puzzles can be devised. Figure 14. for exam-

ple, is a T-shape formed by five unit squares. It can-

not be cut into four smaller T's, but can you cut it

into four congruent regions of some other shape?

Even the task of dissecting a plane figure into as

few as two congruent parts can be difficult. Figure

15 shows some examples that you may enjoy solv-

ing. The solutions are shown in the back of the text.

Another elegant branch of dissection theory has

to do with cutting a given polygon into the smallest

number of pieces, of any shape, that can be re-

arranged to make a different polygon that also is

specified. For example, into how few pieces can a

square be cut that will fit together to make an

equilateral triangle. (The answer is four. ) This field is

beautifully covered in Recreational Problems in

Geometric Dissections & How to Solve Them by

Harry Lindgren.
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15 (continued)
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Miss Euclid's Cubes

Miss Euclid put a large wooden
cube on her desk.

Miss Euclid: I have a very

practical test (or you today Just

three questions about this cube

Miss Euclid: If we have a table

saw we can cut this cube into 64
unit cubes by making nine cuts.

Miss Euclid: And if we're

allowed to rearrange the pieces

before each cut. we can do it

with only six cuts. Your first

question is to prove that you
can't do it in fewer than six cuts.

While the students were

working on the first problem

Miss Euclid drew a diagonal on

two faces of the cube so that

there was a common vertex.

Miss Euclid: Your next

problem is to find the size of the

planar angle formed by these

two diagonals and their

common vertex.

Miss Euclid prepared for the last

question by placing a meter

stick on top of the cube.

Miss Euclid: What's the

simplest way to use this ruler to

measure the length of the space

diagonal from A to B7

How did you do on the test? 1

got two out of three
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Miss Euclid's Solids

Solution to Problem 1 .To prove that a 4 x 4 x 4 cube

cannot be sliced into 64 unit cubes with fewer than

six planar cuts (allowing for rearrangement of pieces

after each cut), just consider any of the 8 cubes in

the interior. Since none of these cubes has a face on

the outside of the large cube, each of its six faces

must be cut with one planar cut. Since no plane can

cut more than one of the cube's faces at a time,

clearly at least six cuts are necessary for the six faces.

Is there a systematic general procedure for slicing

any rectangular parallelepiped with integral sides

into unit cubes with a minimum number of planar

cuts, allowing rearrangements of pieces between

cuts? Yes, the method is as follows. Along each of

three edges that meet at a corner, determine the

minimum number of cuts necessary to slice the

cube through that edge to make unit-wide sections.

This minimum number is obtained by dividing the

edge as nearly in half as possible, then putting the

two pieces together and repeating this procedure

until the unit-wide sections are obtained. The sum
of these three minimums, one for each edge, is the

answer sought.

For example, a 3x4x5 block requires 7 cuts: 2

for the 3 side, 2 for the 4 side, and 3 for the 5 side, or

7 in all. A proof of this algorithm was first published

in Mathematics Magazine in 1952.

Solution to Problem 2: The insight that solves this

problem is seeing that a third diagonal can be drawn

on another face of the cube that will join the free

ends of the two diagonals drawn by Miss Euclid; see

Figure 16.

Since each angle of such a triangle is 60 degrees, we
have proved that the angle on Miss Euclid's cube is

60 degrees.

There is an elegant extension of this problem.

Suppose Miss Euclid draws two lines on a cube as

shown in Figure 17, joining three midpoints of three

edges. What is the size of the obtuse planar angle

made by the two lines?

The solution is obtained as before. First, continue

the lines by joining midpoints on the other four faces

These three lines form an equilateral triangle.
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so that the six lines make a closed path around the

cube. It is evident that the six line segments are of

equal lengths, and also that any adjacent pair makes

the same angle. The six lines, therefore, outline a

regular hexagon if we can show that the vertices are

all coplanar. This may take a bit of deduction or

analytic geometry, but you can convince yourself it

is true by actually sawing a wooden cube into two

identical parts along a plane that cuts the cube

through the six midpoints.

The fact that a cube can be cut in half so that the

cross section is a regular hexagon is quite surprising

and almost counterintuitive. Of course, once we
know that the two original lines are a pair of adjacent

sides of a regular hexagon, we know that they make
an angle of 120 degrees.

Figure 17 suggests another interesting problem.

Suppose a fly wants to crawl on the cube's surface

from midpoint A to midpoint C. Is the path traced

by the two line segments the shortest route the fly

can take?

Here the insight is to recognize that the shortest

path from A to C can be found by "unfolding" the

cube so that two adjacent sides are flat, then



drawing a straight line on the surface from A to C.

Now we must be careful because there are two ways
to do this: unfold the front and top faces, or unfold

the front and rightmost faces. The first case gives a

path of length J2; the second case gives a path of

the length J2.5. This proves that the path shown in

Figure 17 is indeed the shortest path on the cube's

surface from A to C.

Solution to Problem 3: Of course, you can mea-
sure a side of the cube, then apply the Pythagorean

theorem twice to obtain the space diagonal. But a

much simpler method is to place the cube flush with

the corner of a rectangular table. Place a small mark
on the tables edge that is distance x from the table's

corner, where x is the cube's side. Now slide the

cube along the edge of the table to the other side of

the mark, as shown in Figure 18. The distance from

A to B is obviously the same as the cube's space

diagonal, and it can be measured directly with the

ruler.

How would you measure the radius of a large

sphere if you had only a ruler that was about 2
3 the

sphere's diameter? One simple method is to smear

a bit of soot or lipstick on a portion of the sphere,

then place the sphere on the floor and push it

against the wall so that the soot or lipstick marks the

wall at the spot where the sphere touches it. The
height of this spot, easily measured with the ruler, is

the sphere's radius. Can you think of similar ingen-

ious ways to measure the heights of cones and

pyramids? How can you measure accurately the

radius of a cylindrical pipe with a carpenter's

square?
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Carpet Confusion

The Tack Carpet Company was

asked to provide wall-to-wall

carpeting for a ring shaped

corridor in a new airport.

When Mr. Tack saw the plans he

was angry. The only measure-

ment given was the length of a

chord that was tangent to the

inner wall.

Mr. Tack: Confound it. How
can I give them an estimate of

carpet cost when I don't know
the area of that blue ring

between the two circles? I'd

better go and see my designer.

Mr. Sharp.

Mr Sharp, a skilled geometer,

wasn't too upset.

Mr. Sharp: That chord is the

only length I asked for. Mr. Tack.

I just plug it into a formula I have

and it gives the ring's area.

Mr Tack looked surprised for a

minute, then smiled.

Mr. Tack: Thank you, Mr.

Sharp, but I don't need you or

your formula. I don't have to

know the areas of the two circles

either. I can give you the result

immediately.

Do you know how Mr. Tack did

it?



Astonishing Theorem
Mr. Tack reasoned as follows. I know that Mr. Sharp

is a skilled geometer, therefore there must indeed be
a formula for the area of the ring when one is given

only the length of the chord tangent to the inner

circle. Put another way, the radii of the two circles

can be any two numbers as long as the length of the

chord remains 100 meters.

Mr. Tack then asked himself what happens when
the radius of the inner circle is reduced to zero, its

minimum length. In this case the ring degenerates to

a circle, the diameter of which is the chord of 100

meters. The area of this circle is pi times 50 2 or close

to 7.854 square meters. Assuming the existence of a

formula, this must also be the area of the ring be-

tween the circles.

In general, the area of any ring is equal to the area

of a circle whose diameter is the longest straight line

that can be drawn inside the ring. This astonishing

theorem can be proved easily by using the formula

for the area of a circle.

A 3-dimensional analog of this problem is that of

determining the volume of a section of cylindrical

pipe with thick walls, when given only the length of

the longest line that can be drawn on one of the

pipe's ends (see Figure 19). This line corresponds to

problem. A cylindrical hole 6 centimeters long is

drilled straight through the center of a solid sphere.

What is the volume that remains? Again, it seems
impossible to determine the volume without more
data. However, it can be shown, without calculus,

that the volume of the sphere that remains is always

the same as the volume of a solid sphere whose
diameter is equal to the hole's length.

As before, this result is immediately obtained on
the assumption that the problem can be solved! If

there is a solution, the volume of the sphere that

remains after the hole is drilled must be inde-

pendent of the hole's diameter. So—we reduce the

hole's diameter to zero, its lowest limit. The hole

degenerates to a straight line that is the diameter of a

solid sphere. The answer, therefore, is (4/3J7r3
J =

36t7 cubic centimeters.

our tangent line, from which we can quickly de-

termine the area of the ring on the pipe's end.

Multiplying this by the pipe's length gives the pipe's

volume.

A less obvious analog is the following beautiful



The Curious Cake Cut

""N. Mr. Jones is finishing dinner

A with his wife, a teen age son.

and a seven year old daughter.

Susan.

It was Susan's birthday and Mrs.

Jones had baked a small square

cake. It was 20 centimeters by

20 centimeters and 5 centi-

meters high. Thick icing cov-

ered the top and four sides.

Mr. Jones: What a lovely cake,

my dear. Just enough for all of

us. I'll cut Susan's piece first,

and since she's just turned

seven. I'll start each cut seven

centimeters from a corner and
cut to the center.

It was a strange shaped piece.

And it wasn't long before Susan
started to complain.

Susan: You didn't give me
enough. Daddy. That's not one
quarter of the cake. And even if

it were I didn't get enough icing.

Her brother disagreed.

Susan's Brother: You're too

greedy Susan. I think that Dad
gave you too much and that you
should give some back

Mr. Jones: Well you're both

WTong. The piece is exactly

one-fourth the volume of the

cake and it also has exactly

one fourth of the icing on it.

Can you explain why Mr. Jones

said this?

All that you have to do is to

extend the two cuts past the

center of the cake to the other

side. Now it's clear why the lines

cut the cake into four congruent

parts. Isn't it
9



Cake Cutting

The cake cutting problem generalizes easily to all

other regular polygons. For example, suppose a

cake has the shape of an equilateral triangle, and
that two cuts are made from the center at an angle of

360 3 = 120 degrees as shown in Figure 20. The

piece is clearly one-third of the cake, as we can see

by drawing the dotted line. If the cake is pentagonal,

two cuts at 360/5 = 72 degrees give one-fifth of the

cake. If the cake is hexagonal, two cuts at

360/6 = 60 degrees give one-sixth of the cake. This

generalizes to all higher polygons, although the

angle is not always integral as in the cases given

above.

The dissection of the square into four congruent

pieces, as shown in Figure 21, has for decades

been a popular dissection puzzle. If you give friends

the four pieces of such a dissection, cut from a

square of cardboard, and ask them to make a

square, they usually find it difficult. After they have

solved the puzzle, ask them to use the same four

pieces to form two squares.

This is something of a swindle because it can be

done only if one has the aha! that the second square

is a hole at the center of another square as shown
in Figure 22. The size of this hole depends on
the angle that each cut makes with the side of the

original square. If the angle is zero, the hole is zero.

If the angle is 45 degrees, the hole reaches its

maximum size.
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Chapter 3 mber aha!

Puzzles about arithmetic





Arithmetic can be defined in many ways. Here we
confine arithmetic to be the study of the integers

and the results of operating on the numbers by addi-

tion, subtraction, multiplication, and division.

At some time in the childhood of the human race

(no anthropologist knows when), primitive humans
somehow slowly discovered that things can be

counted, and that it does not make a difference in

what order the counting is done. If you count two

sheep on your fingers, it does not matter which

sheep you start with, or whether you start the count

on your thumb or your little finger. You always end

on 2. And if you count two sheep, then another, you

always get 3.

Awareness of such arithmetical theorems as

2-1=3 must have slowly evolved over many cen-

turies. If we could see a motion picture of the past,

we probably would not be able to find a single cen-

tury about which we could say: "This is when the

human race discovered arithmetic." Children

slowly become aware of numbers in the same vague

way. There may be a time when a child first sa\js:

"One plus one is two." but the child may be aware of

the meaning of this sentence long before he or she

verbalizes it.

All the true theorems of arithmetic follow at once

from the axioms and definitions of the number sys-

tem, but that does not mean that we can recognize

the truth or falsity of an arithmetical statement just

by hearing it. If someone declares that 12.345.679

times 9 equals 111.111.111. you may not believe it

until you prove it by doing the multiplication. And
there are theorems in arithmetic that are simple to

state but so deep that nobody knows if they are true

or not. Goldbach's conjecture is a famous example.

Is every even number (greater than 2) the sum of

two primes? No one has yet proved that the answer

is "yes." or found a counterexample.

In this section, we consider a variety of simple

problems about counting numbers, all of which

have easy solutions if they are properly approached.

We have tried to select problems that, although very

elementary, introduce important concepts and

techniques that lead into deeper levels of what used

to be called the "higher arithmetic" and is now
called "number theory." "Broken Records," for ex-

ample, introduces Diophantine analysis: the finding

of integral solutions to equations. "One too Many"
involves the all-important concept of lowest com-
mon multiple, and leads to a magic trick based on
the valuable "Chinese remainder theorem."

Binary sorting, so important in computer search

and sort theory, underlies the technique for guess-

ing Helen's unlisted phone number, and introduces

the binary system of notation. The "pigeon hole

principle." fundamental to many deep proofs in

number theory, is invoked in proving two amusing

results: one about dollar bills, the other about hairs

on the head. The fact that two integers are "rela-

tively prime" (have no common divisors) provides a

surprisingly quick way of proving that the hour, min-

ute, and second hands of a watch are never together

except at 12 o'clock—a theorem usually proved by

tedious algebra.

A problem about counting bottles uses modulo

arithmetic to obtain an easy solution. This leads to

the "Josephus problem." a classic number problem

that can be modeled in an exciting way with a deck

of playing cards.

Although the puzzles in this section are what

mathematicians consider trivial, they open up paths

of exploration into branches of number theory that

are far from trivial. And they cannot fail to impress

you with the elegance and richness of that oldest of

all deductive systems, the system that manipulates

the symbols for the familiar counting numbers.
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Broken Records

Muzzle Shcp

Bob and Helen are enthusiastic S~
puzzle buffs. Their favorite I /
pastime is trying to stump each

other and their friends with

puzzling questions.

~\ As Bob and Helen went past a

\ record store. Bob said

Bob: Do you still have your

country western records?

Bob was puzzled because he

couldn't see how half a record

could be of any use.

Suddenly he had an aha! and
realized that not a single record

had been broken. He answered
Helen's question and she gave

him the last record. What insight

did Bob have?

Helen: No. I gave half of them,

and half a record more, to Suzy.

Helen: Then 1 gave half of what

was left, and half a record more,

to Joe.

Helen: That left me with just

one record And I'll give it to

you if you can tell mehowmany
country western records I had to

begin with.



Half Wholes
Did you fall into the trap of thinking that half of

something plus Vi can't be a whole number? If so,

you probably tried to solve the problem by thinking

of broken records and quickly became lost. The

aha! insight is the realization that half an odd
number of records, plus half a record, is a whole

number.
Since only one record remained after Helen*s last

gift, she must have had three records before she

gave one to Joe. Half of 3 is 1%, and IV2 + Vz — 2. so

Helen*s last gift was 2 records. This left her with one

whole record at the finish. It is now easy to work

backward and see that she must have started with

seven records, and given 4 to Suzy.

The problem can, of course, be solved algebra-

ically, and writing and solving the equation for it is

an excellent exercise in elementary algebra. It is

surprising that such a simple little problem has the

complicated equation:MH + r
2

+
2(H) 1

By varying the parameters, it is easy to make up

new problems of the same type. For example, as-

sume that Helen follows the same procedure of giv-

ing away at each step half her records plus half a

record, but does this three times instead of twice,

and ends with no records at all. How many did she

have at the start? You may be amused to discover

that the answer is the same as before: 7 records! The
third step consists in giving away the entire last re-

cord. How many records does she start with if she

follows the halving procedure four times and ends

with a single record? Five times? What kind of se-

quence is generated by these numbers?
The fraction given away each time may also be

varied. Suppose Helen at each step gives away a

third of her records plus one third of a record, and

after two steps finds she has three records left. How
many did she start with? Is there a solution if she fol-

lows this thirding procedure three times and ends

with three records? You will find that by varying the

parameters—number of steps, fractional amount.

and number of whole records at the finish— there

are not always solutions in the sense that no record

need ever be broken. Under what restraints can

problems of this type be devised that never require

breaking a record?

There also is no need to have the fractional

amount the same at each step. Here, for instance, is

a puzzle in which the fraction varies:

A boy has the hobby of breeding goldfish. He de-

cides to sell all his fish. He does this in five steps:

1. He sells one half of his fish plus half a fish.

2. He sells a third of what remains, plus one third

of a fish.

3. He sells a fourth of what remains, plus one

fourth of a fish.

4. He sells a fifth of what remains, plus one fifth

of a fish.

He now has 11 goldfish left. Of course, no fish is

divided or injured in any way. How many did he

start with? The answer is 59 fish, but the problem is

not as easy to solve as the previous ones. See if you

can work it out.

Here is a somewhat different problem of the same
general kind.

A lady has a certain number of dollar bills in her

purse. She has no other money.

1. She spends half the money on a hat. and gives

a dollar to a beggar outside the store.

2. She spends half the remaining dollars for

lunch, and tips the waiter two dollars.

3. She spends half the remaining dollars for a

book, then before she goes home she visits a

cocktail lounge where she spends three dollars on

drinks.

She now has one dollar bill left. Assuming that

she never changed a dollar bill, how many bills did

she start with?

The answer appears at the back of the book.

Note that in all these variations we are told the

number of items that are left at the finish. Without

this information the problem often can still be sol-

ved, but it may require the solving of indeterminate

equations in integers. The most famous problem of

this type was the basis of a short story by the Ameri-
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can writer Ben Ames Williams that appeared in the

Saturday Evening Post. October 9. 1926.

The story, titled Coconuts, tells about five men
and a monkey who were shipwrecked on an island.

They spent the first day gathering coconuts. During

the night, one man woke up and decided to take his

share of coconuts. He divided them into five piles.

One coconut was left over so he gave it to the mon-
key, then hid his share and went back to sleep.

Soon a second man woke up and did the same
thing. After dividing the coconuts into five piles, one

coconut was left over which he gave to the monkey.

He then hid his share and went back to bed. The
third, fourth and fifth man followed exactly the

same procedure. The next morning, after they all

woke up. they divided the remaining coconuts into

five equal shares. This time no coconuts were left

over.

How many coconuts did they originally gather?

The problem has an infinite number of answers,

the lowest of which is 3.121. It is not an easy

problem.

Speaking of coconuts taken from a pile, here is a

"quickie" that may stump you momentarily: If 25
coconuts are piled up in a jungle clearing, and a

monkey steals all but 7. how many coconuts will be

left? The answer is not 18.
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Loch Ness Monster

Bob: If the length of the Loch
Ness Monster is 20 meters and
half its own length, how long

is it?

Helen: Let's see. Twenty and
half of twenty is thirty. So it's 30
meters long.

Bob: Helen, I'm surprised at

you. You've contradicted

yourself. How can it have a

length of 20 meters, and also a

length of 30 meters?

Half a Length?
Bob's phrasing of the problem is as follows: The
monster's length is equal to the sum of 20 meters

and half the monster's length. Imagine the monster

divided into two equal lengths. If the monster's

length is the sum of one of these halves, plus 20
meters, then 20 meters must be the other half.

Therefore the total length is 40 meters.

The algebraic equation is simple. If x is the total

length, then:

x = 20 + x/2

Now that you see how ridiculously simple the

solution is, how quickly can you solve the following

variant? A brick on one pan of a balance scale

exactly balances with three-quarters of a brick and

three-quarters of a kilogram on the other side. How
much does the brick weigh?

The Loch Ness monster problem illustrates the

importance of understanding exactly what a ques-

tion means before trying to answer it. If your first in-

terpretation of a problem leads to a contradiction,

then either the question has no answer or you have

not correctly understood the problem.

rv
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Helen: You're right. The only

way the sentence makes sense

is if the total length is the sum of

20 meters and half the length.

It's simple enough now.

Can you figure out how long the

monster is?
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One Too Many

While Bob and Helen were
crossing the park they saw the

Nixon High School Band
practicing for a parade.

Helen: Well. I'll tell you anyway.

Have them march by in fives.

Bob: My dear. I was just about

to try five.

When the band marched by in

fives all the rows were filled and
Spiro wasn't alone any more.

How many members did the

band have?

The band came marching by.

four in a row. with one boy. poor
Spiro. bringing up the rear. The
band director was annoyed.

To eliminate that lonely

musician in the back, the

director told the band to march
by in threes. But Spiro was still

alone in the last row.

^v Even when the band marched
» by in twos, the same thing

happened.

Although it was none of her

business. Helen approached
the director.

Helen: May I make a

suggestion?

Bob: No. please go away.

Fraulein. and don't bother me.
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Wholes From Remainders
Helen simply counted the number of players in the

band and found that it was a multiple of five. But

how can you. not seeing the entire band, determine

the number of members?
Your aha! is this: The number has a remainder of

1. symbolized by Spiro. when divided by 2. 3 and 4.

The smallest number with this property obviously is

1 greater than the LCM (lowest common multiple)

of 2. 3 and 4. The LCM of these three divisors is 12.

Any number that is one more than a multiple of 12

has a remainder of 1 when divided by 2. 3 and 4.

When the band marched by in fives, there was no

remainder. Therefore, the number of persons must

also be evenly divisible by 5. The numbers that

solve the problem are the multiples of that appear

in the following sequence:

13. 25. 37. 49. 61. 73. 85. 97. 109. 121. 133.

145. . . .

Since 145 is too large for a highschool band, the

Nixon High School Band has either 85 or 25 mem-
bers. We lack sufficient information to decide be-

tween these two answers.

A good variant of this problem is the same as be-

fore except that each time the band marched by in

rows of 2. 3 and 4. the last row is one man short.

How large is the band? Now we must write a se-

quence of numbers that are one less than multiples

of 12 that are evenly divisible by 5. The sequence

is: 35. 95. 155. . . .

The American puzzle maker Sam Loyd created

the following more difficult variation. On St. Pat-

rick's Day in New York City a large number of

Irishmen were getting ready to march in the annual

parade. The Grand Marshal tried arranging them in

rows of 10. 9. 8. 7. 6, 5. 4. 3 and 2, but in every case

there was a missing man in the last row. The men
thought the gap was occupied by the ghost of

Casey, who had died a few months before. Finally.

in exasperation, the Grand Marshal ordered the

men to march in single file. Assuming the number of

men did not exceed 5.000. how many were there?

This is a good exercise for finding the LCM of a set of

numbers. The LCM in this case is 2.520. If we sub-

tract Casey from this group, we have our answer:

2.519.

The problem seems to become more difficult if we
are given a different remainder after each division,

but this is not always the case. For example, con-

sider this classic puzzle that goes back to Hindu
arithmetic books of the seventh century.

A lady is carrying a basket of eggs. Frightened by

a horse that gallops past her, she drops the basket

and all the eggs break. When asked how many eggs

the basket had contained, she replies by saying that

she is very poor in arithmetic, but she remembers
that when she counted the eggs by twos, threes,

fours and fives, she had remainders of 1, 2. 3 and 4

eggs, respectively. How many eggs were originally

in the basket?

This excellent problem seems at first to be more

difficult than the previous ones. Actually, it is exactly

the same as the first part of our second problem be-

cause in each case the remainder is one less than the

divisor. So it is solved as before by finding the LCM
and subtracting 1.

When the remainders have no uniform relation to

the divisors, the problem does indeed become more

complicated. Here is a clever pocket calculator trick

based on a problem of this kind. Your friends will

find it mystifying and intriguing.

The magician sits in a chair with his back to the au-

dience. Someone thinks of any number not great-

er than 1.000. He is asked to divide the number by 7

and call out the remainder, then divide the original

number by 11 and call out the remainder, and finally

to divide the original number by 13 and call out the

remainder.

To speed the trick, someone in the audience de-

termines the three remainders by using a pocket-

calculator. This is easy to do with the aid of the fol-

lowing algorithm: Perform the division, subtract the

whole number part of the quotient, then multiply

the result by the original divisor. Round the product

to the nearest integer and you have the desired

remainder.

The magician, knowing no more than the three

remainders, is able to guess the chosen number. He
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does this by using his own pocket calculator and the

following secret formula that he has on a small slip of

paper pasted to the face of his calculator:

715o+ 364b + 924c
1.001

In the formula, a. b and c are the three remain-

ders in the order in which they are called out. The
chosen number is the remainder after making the

calculation given by the formula.

The strange looking formula is obtained as fol-

lows: The first coefficient is the lowest multiple of be

that is one more than a multiple of a . There are rules

for finding this, but when the divisors are small, as in

this case, it is easy to get the number by inspection.

Simply go up the multiples of be (143. 286. 429.

572. 715. . . . ) until you reach a multiple that has

a remainder of 1 when divided by a. In this case.

a = 7. and the coefficient is 715.

The other two coefficients are obtained in the

same way. The second one is the lowest multiple of

ac that is one more than a multiple of b . and the

third coefficient is the lowest multiple of ab that is

one more than a multiple of c. The number below

the line in the formula is simply a x b x c. In this way
you can work out a secret formula for any set of di-

visors provided that they are prime to one another

(have no common divisors). It is not necessary that

the divisors be primes themselves, as they are in our

example.

The proof of the general formula involves mod-
ulo arithmetic and an understanding of a famous
theorem called the Chinese Remainder Theorem. It

is one of the most valuable of all number theorems,

playing a basic role in many deep proofs as well as in

the solution of scientific problems.

As an exercise, try working out the secret formula

for a simpler version of the same trick—one that

goes all the way back to Sun-tsu. a first-century

Chinese mathematician for whom the Chinese re-

mainder theorem is named. The chosen number is

limited to numbers 1 through 105. and the divisors

are 3, 5 and 7. The secret formula in this case is sim-

ple enough so that, with some practice, you can
even do the calculations in your head.
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Eyes and Legs

Before leaving the park. Bob
and Helen walked through

the zoo In one enclosure they

saw a mixture of giraffes and
ostriches.

Helen But you said that there

were 44 feet altogether So 14

giraffe feet must be in the air

That makes 7 giraffes, right'-"

After they had left the zoo. Bob
spoke to Helen.

Bob: Did you count the giraffes

and ostriches?

Helen: No, how many were

there?

Bob: You figure it out. Alto-

gether they had 30 eyes and 44
feet

Helen's first aha! was to realize

that thirty eyes meant 15

animals

Bob Right And if there are 7

giraffes there have to be 8

ostriches

Helen: Now I can try all the

possibilities, from no ostriches

and 15 giraffes to 15 ostriches

and no giraffes But I don't need

to do that.

Helen If all 15 of the animals

were to stand up on two feet

there would be 30 feet on the

ground
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Bipeds and Quadrupeds
The insight that solved this problem for Helen is

easy to understand: however, you may wish to

check the answer by algebra. Does your answer

agree?

Here is an amusing follow-up puzzle that calls for

a different kind of insight. A small circus has a certain

number of horses and riders. Between them there

are 50 feet and 18 heads. In addition, the circus has

some jungle animals that have, altogether. 11 heads

and 20 feet. There are twice as many four-footed

jungle animals as there are two-footed creatures.

How many horses, riders, and jungle animals are in

the circus?

You should have little difficulty determining that

there are 7 horses and 11 riders. But when you try

to solve for the number of jungle animals, you may
be surprised to find that you encounter a negative

number.

Can you solve the problem before looking for the

answer at the back of the book?
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The Big Bump

When they reached Bob's

sports car he offered to drive

Helen home to her parent's new
house

Bob So if we keep our steady

speeds, and 1 don't pass him,

we're sure to bump him Your

problem Helen, is to tell me how
far apart we will be 1 minute

before the crash

\ On the thruway. Bob thought of /""

^Aoiq a good problem for Helen.

Helen That's easy We'd be

250 meters apart 1 minute

before the collision

Helen was correct Can you

explain how she was able to

answer so quickly?

Bob: See that big truck ahead.

He's going pretty fast, but I'm

gaining on him.

TRUCK

/TOO

\

/6o Z«A

80.4

—

& n
V70 V
\40 50y

CAR.

Bob: Now let's suppose that

he's going a steady 65 kilo-

meters per hour, and that I'm

doing a steady 80.

W-
/soo m—;>

Bob: And let's say we're 1500

meters behind him right now.
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Thinking Backward
Although this problem can be solved the hard way

by algebra. Helen's insight made such a technique

unnecessary. She realized that by running the scene

backward in time, the answer could be obtained at

once.

The truck is rolling steadily at 65 kilometers per

hour, and Bob is driving a steady 80 kilometers per

hour, so his speed relative to the truck is 15 kilome-

ters or 15.000 meters per hour. This equals 250 me-

ters per minute. Therefore. 1 minute before the

crash, the car will be 250 meters behind the truck.

We know that when Bob posed the problem the

car was 1.5 kilometers behind the truck. But this in-

formation is unnecessary in solving the problem.

The answer is the same regardless of the initial dis-

tance between the two cars!

There are two classic brain teasers that are both

solved by the same time-reversed insight.

1. Two spaceships are moving straight toward

each other on a collision course. One ship is going

8 kilometers a minute, the other. 12 kilometers a

minute. Assume they are exactly 5.000 kilometers

apart. What will be the distance between them 1

minute before they crash?

Here again the distance they are apart at the start

is irrelevant to the problem. It misleads many people

into thinking that the problem must be solved by
considering the initial positions of the spaceships,

then moving forward in time. The simple solution,

of course, is the realization that the two ships ap-

proach each other at a speed of 20 kilometers a mi-

nute, so 1 minute before they crash they must be 20
kilometers apart.

2. A molecular biologist developed a strange

spore that splits into three spores every hour, each
new spore the same size as the original. The three

spores in turn, an hour later, each divide into three

more, and this process continues indefinitely.

The biologist put a single spore in a container at

noon one day. At midnight the container becomes
exactly filled. At what time does the container be-
come one-third filled?

The aha! solution, as before, is think backward.
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Clearly it was one-third filled at 11 o'clock, one hour

before midnight.

Now let's test your aha! ability with a new and de-

lightful variation of the last problem. The conditions

are exactly the same as before except that the

biologist put three spores in the same empty con-

tainer (instead of one) at noon. At what time will the

container become filled? The answer appears at

the end of the book.



Mysterious Merchandise

When they arrived at Helen's

house she handed her father a

package

Helen: Here's what you
wanted from the hardware

store. Daddy.

Mr. Browne: Thanks daughter.

how much did they cost?

Helen: Five hundred cost me
three dollars

Mr. Browne: Three dollars''

That means they're a dollar a

piece.

Helen: That's right Daddy.

What on earth did Helen buy?

Cost Per Numeral
The aha! here is to realize that "500" can be inter-

preted in two ways: as a number, or as three numer-

als. If one numeral costs one dollar, then three nu-

merals will cost three dollars. Helen had purchased

three house numbers.

From this problem, you learn that the given in-

formation in a stated problem should be analyzed

carefully in seeking the problem's solution.
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The Unlisted Phone Number

Bob: By the way Helen, you

haven't given me the unlisted

phone number of your new
house yet.

Helen: We're not really

supposed to give it out. but 1 will

answer 24 yes or no questions

about it for you.

Bob: But Helen, there are

almost ten million possible

phone numbers. How could I

ever guess the number in just

24 questions?

Helen: Well, stop and think.

Bob. 1 know you can do it.

It wasn't long before Bob
thought of a simple method. It

will positively determine

anyone's 7-digit phone number
in 24 questions or less. If you
can figure it out you can try it on
your friends.
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Binary Sorting

Bob realized that the most efficient way of identify-

ing a specific member of a set. by asking yes or no
questions, is as follows: If a set contains an even
number of members, we divide it into equal parts,

each containing the same number of elements. If

the set contains an odd number of members, we di-

vide it into two parts that are as close to being equal

in number as possible. We then ask which of these

two parts contains the member we are seeking.

After the answer is given, we take the designated

part and repeat the same procedure. Eventually

only one member of the original set remains. It will

be the one we are trying to identify.

One question obviously indentifies specifically a

member of a 2-element set. Two questions suffice

for a set of 4 elements, three questions for a set of 8
elements, four for a set of 16. and in general, n ques-

tions identify a chosen element in a set of 2" ele-

ments.

In our telephone number problem. 24 questions

are sufficient for guessing any number no greater

than 2- 4 = 16.777.216. This is larger than

9.999.999. the largest possible phone number
when the number's seven digits are written as a

single number. Twenty-three questions are not

enough because 223 = 8.388.608. which is smaller

than some phone numbers.

Bob's first question, therefore, is: "Is the number
greater than 5 million?" The answer immediately

cuts the possibilities in half. Continuing in this man-
ner, he is sure to zero in on the correct phone
number in 24 or fewer questions.

Most people find it hard to believe that as few

as 24 questions will identify any number from 1

through more than 16 million. This is because they

do not realize how rapidly the numbers in a dou-

bling sequence increase. It is this rapid increase that

explains why it is usually easy, by yes-and-no ques-

tions, to guess what a person is thinking of even
when he is allowed to think of any existing object

whatever. If you are skillful in your binary divisions

(for example, asking such questions as "Is it living or

nonliving?". "Is it animal or vegetable?", and so on).

it is often possible in 20 questions or less to guess

that someone is thinking, say, of the crown on the

Statue of Liberty!

The procedure we described for guessing a

phone number in 24 questions is one that computer
scientists call a "binary sorting" algorithm. A clever

mind-reading trick based on binary sorting uses the

six cards shown in Figure 1. Hand a set of these

cards to someone and ask the person to think of any
number from 1 through 63. then to give you each

card that bears the chosen number. You can im-

mediately identify the number.

The secret is simply to add the first numbers on
each card given to you. The sum will be the chosen

number.

1 Binary mind-reading cards

1 3 5 7 9 11 13 15

17 19 21 23 23 27 2 3 31

33 35 37 39 41 43 45 47

49 51 53 55 57 5 ) 61 63

2 3 6 7 10 11 14 15

18 19 2? 21 ?< 27 U 31

34 iS ie 33 4. 43 46 47

50 5: 54 55 56 39 62 63

4 5 C- 7 12 13 14 15

20 21 22 23 28 23 30 31

36 37 J8 39 44 5 i'< 47

52 53 54 55 60 61 62 63

8 9 10 n 12 13 14 15

24 25 ?€ 21 28 29 30 31

40 41 42 43 44 45 46 47

56 57 5a 33 60 61 62 63

16 17 18 19 20 2- 22 23

24 25 2£ 27 26 29 30 31

48 49 50 51 52 53 54 55

56 57 55 59 60 61 62 63

32 33 34 35 K 37 38 39

40 41 42 4 3 44 45 46 47

48 49 50 51 52 53 54 55

56 57 53 59 60 61 62 63

The cards are constructed by a system that is eas-

ily explained by writing the numbers from 1 through

63 in binary notation as shown in Figure 2. The
numbers at the left are in decimal form. Each has to

its right the same number in binary. The six numbers

at the top of the chart are the powers of 2 that are

used in forming the binary numbers. The mind-
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reading card with 1 as its first number bears all the

numbers (in decimal form) indicated by a 1 in the

last column on the right. The card with 2 as its top

number bears all the numbers indicated by a 1 in the

second column from the right, and similarly for the

other four cards.

These mind-reading cards are easily generalized

to notations based on powers of numbers other

than 2. Figure 3 shows how to construct a set of

cards based on ternary notation. In this case each

ternary number may contain 0. 1 or 2. When a 1 ap-

pears in a column, we put the corresponding deci-

mal number down once on the card represented by

that column. When a 2 appears, we put the number
down twice.

Figure 4 shows a set of three mind-reading cards

that identify a chosen number from 1 through 26.

Now, however, you ask the person to tell you, each

time you are handed a card, whether he/she saw
the chosen number once or twice on the card. If he/

she saw it twice, you must double the card's top

number as you add the key numbers.

You might wish to extend this system to six cards.

As we have seen, the six binary cards identify num-
bers from 1 through 63. Six ternary cards identify

numbers from 1 through 728. It is easy to see how to

generalize to bases higher than 3. For example, a set

of cards based on powers of 4 have some numbers
repeated twice on a card, and some repeated three

times. If three times, you must triple the top number
before you add.

The ternary cards illustrate the fact that "ternary

sorting" is more powerful in some ways than binary

sorting. If we keep dividing a set into three parts,

instead of two. and are told each time which part

contains a chosen element, the element can be
guessed with fewer questions. Of course, the ques-

tions are no longer of a "yes- no" type.

The power of ternary sorting is nicely illustrated

by the following card trick. It uses any 33 = 27 play-

ing cards. Someone looks through this packet and
thinks of any card. The magician takes the packet
and deals the cards face up into three piles. The per-

son who thought of a card must then say in which

76

pile his card appears.

The piles are assembled by the magician into one

packet and again dealt into three face-up heaps.

The spectator points to the pile that contains his/her

card, the magician assembles the piles, and deals

them for a third and last time into three heaps. After

being told which heap contains the chosen card,

he/she assembles the piles and places the packet

face down on the table. The spectator names his/

her chosen card. The magician turns over the top

card of the packet; and it is the selected card. The
trick can be repeated many times, and it never fails

to work.

The secret is simple. Each time the magician picks

up the three piles he sees that the pile containing the

chosen card goes on top when the packet is held

face down. This automatically sorts the selected

card to the top.

It is not hard to see why it works. The principle is

exactly the same as in guessing a telephone num-
ber, except that instead of dividing the set of ele-

ments in half each time, they are divided into thirds.

After the first pick-up, the card must be in the

top nine. After the second pick-up, it must be among
the top three. After the third pick-up it must be

the top card. If you run through the procedure,

with the selected card turned face up. you will be

able to follow its progress as it moves upward, in

three stages, to the top. The sorting of elements by

computers, using procedures such as this, plays a

major role in modern information retrieval theory.
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2
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1 1
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2 1

3 1 1

4 1

5 1 1

6 1 1
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8

3 1

10 1

11 i 1

12 1

13 1 1

14 1 1 1

15 1 1
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1

16 1 1 i

17 10 1

16 1 | | |
1 o

13 1 1 1

20 1

21 i ! o 1

22 1 1

23 1 1 1
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25 1

26 1 °

27 1

I

1

28
•

29 1 1

30
•
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1

31 1 1
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32

33 1

3* 1

35 1 1

36 1

37 1 1

38 1 1

39 1 1 1

40 1

.41 1
1

42 •
1

43 c 1

'

1

44 o 1

45 1

•'

1

46 ' '

1

47 1 1 1 1

48 1

49 1 1

50 1 1

51 1 1 1

52 1 1 1

53 1 1 1

54 1 1 1

55 1 1 1 1

56 1 1 i I

57 1 1

58 1 1

59 1 1 1

60 1 1

61 1 o 1

62 •

1

•

1
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DECIMAL

TERNARY
NUMBERS

NUMBERS
3 2 3'

3
°

i 1

2 2

3 1

4 1 1

5 1 2

6 2

7 2 1

a 2 2

9

10 1

ii 2

12 1

13 1 1

14 1 2

15 2 o

16 2 1

17 2 2

18 2

13 i 1

20 2 2

21 I 1

22 2 1 1

?3 2 1 2

24 2 2

25 2 2 1

26 2 2 2

1 14 - 14

2-2 16

4 17-17

5-5 19

7 20-20
8-8 22
10 23-23

11-11 ?5

13 26-26

3 15 -15

4 16 - 16

5 17 - 17

6 6 21

7-7 22

8 -8 23

12 24-24
13 25-25
14 26-26

9 16 - 18

10 19 - 19

11 20 20

12 21-21

13 22-22
14 23-23

15 24-24

16 25-25

17 26-26
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Hapless Hat

Bob and Helen decided to

spend their vacation in the

Maine woods where Uncle

Henry lived in a cabin.

They turned the canoe around
and paddled downstream until

they came to the hat

To get to the cabin they had to

rent a canoe and paddle up a

river.

Assuming that the canoe's

speed through the water was
always 6 kilometers per hour,

and that the river flowed at a

steady 2 kilometers per hour, at

what time did Helen retrieve her

hat?

Bob took the bow position and
Helen paddled stern. At two

o'clock she took off her straw

hat and put it behind her on the

stern.

«—

-

fz'-vl

Did you get the aha! that makes
the solution easy? Believe it or

not the speed of the water has

the same effect on both canoe

and hat, and can be completely

ignored.

Then a gust of wind blew it off

without Helen or Bob noticing it

at the time.

Only after they had paddled

3 kilometers upstream from

the hat did Helen suddenly

shout out.

Helen: Wait! Stop the canoe.

I've lost my beautiful hat.

^-3km^f

So, with respect to the water,

the canoe travels 3 kilometers

away from the hat and then 3

kilometers back. A total of 6

kilometers.

And because the canoe goes 6

kilometers per hour, the up and

down trip will take just an hour.

The makes it 3 o'clock when
Helen picks up her hat, doesn't

it?
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Relative Speeds
Helen and Bob made a roundtrip upstream from a

hat and back to it. The current had no affect on their

travel time because the hat was carried along with

the current. Here is a good variation in which the

roundtrip is made not from an object moving with

the current but a fixed object on the shore.

Assume there is no current in the river. Bob and

Helen row upstream for 3 kilometers from a boat-

house on the shore, then turn around and row

back to it. The travel time for the roundtrip is 20
minutes.

Now suppose that the river is flowing down-
stream at 2 kilometers per hour, as in the previous

problem. If they row 3 kilometers upstream, then

back to the boathouse. will the trip's total time be

longer or shorter than 20 minutes?

One is tempted to say that it will still be 20 min-

utes because the current will slow down the canoe

while it goes upstream by the same amount as it

speeds up the canoe while it goes downstream.

This is not correct. Why?
The insight that answers this question is as fol-

lows. The trip upstream for 3 kilometers will take

longer than the trip downstream for 3 kilometers.

Therefore the canoe will be slowed down by the

current for a longer period of time than the time dur-

ing which it is speeded up by the current. Conse-

quently, the roundtrip will take longer. This can eas-

ily be verified by setting up algebraic equations.

The same insight applies to airplanes that travel

with and against a wind. If a plane takes a certain

time to go from A to B and back to A when there is

no wind, it is sure to take longer to make the same
roundtrip if there is a steady wind blowing from

A toB. or from B to A.

Another good problem involving motion relative

to a fixed object on land is the following: A girl gets

on the last car of a train. She can't find a seat, so she

leaves her heavy suitcase in the vestibule just as she

is passing the Rat Foot Shoe Factory. She walks

forward through the train at a steady speed until 5

minutes later she reaches the front car. Having

found no seat, she turns around and walks back at

the same constant rate until she comes to her suit-

case. At that moment she is passing the Rat Head
Wig Factory which is just 5 kilometers from the Rat

Foot Shoe Factory. How fast is the train going?

As in the first problem, a simple aha! leads at once

to the solution. It is not necessary to know how fast

the girl walks or how far she walks. If it takes her 10

minutes to make the roundtrip up and down the

aisles of the train, the suitcase will have traveled 5

kilometers in the 10 minutes. Therefore, the train

has a speed of half a kilometer per minute or 30
kilometers per hour.

Here's a little-known speed puzzle that confuses

even good mathematicians. A boy and girl ran a

100-meter race. The girl crossed the finish line when
the boy had gone 95 meters, so she won the race by

5 meters.

When they raced a second time, the girl wanted

to make the contest more even so she handicapped

herself by starting 5 meters behind the start line. If

the two ran at the same constant speed as before,

who won the second race?

If you think it was a tie. you'll have to think again

and search for an aha! (Hint: At what spot along the

track will the boy and girl be neck and neck?)

An amusing quickie concerns an intoxicated

ladybug at one end of a meter stick. She wants to

crawl to the other end. Every second she goes 3

centimeters forward and 2 centimeters backward.

How long will it take the looped lady to reach the

end of the stick? (The answer is not 100 seconds.)

79



Money Matters

Just before they reached Uncle

Henry's place Helen gave this

quickie to Bob.

Helen: Which is worth more? A
piggy bank filled with five-dollar

gold pieces, or the same bank

filled with ten-dollar gold

pieces?

Bob was stumped for a while

but got the right answer

eventually. Then he gave this

one to Helen in return.

Bob: A Scotsman had 44 single

dollar bills and ten pockets.

How can he distribute the

money so that each pocket

contains a different number of

bills?

Pigeon Hole Proof

A piggy-bank filled with five-dollar gold pieces con-

tains the same amount of gold as a piggy-bank filled

with ten-dollar gold pieces, therefore the gold in

each is worth the same. You might think that small

coins would pack a bank with greater density than

large coins, but this is not the case. If you fill a bucket

with tiny pebbles, the proportion of air space to the

volume of the bucket is the same as when you fill the

bucket with big pebbles.

The problem of the Scotsman with 44 single dol-

lar bills and ten pockets is even trickier. Let's see

what happens when we put the smallest amounts
possible into the pockets. The first pocket contains a

zero number of bills, the second contains one bill,

the third contains two bills, and so on until the tenth

pocket contains nine bills. But 1+2+3+4+5+
6 + 7 + 8 + 9 = 45. so we have already gone

beyond the 44 available bills. Obviously there is no

way to cut down on the number of bills in any poc-

ket without duplicating two numbers for a pair of

pockets.

Mathematicians call this type of proof a "pigeon

hole" proof. Here is an amusing example of another

problem solved by the same technique. Suppose
that a town contains no more than 200,000 people.

Do two inhabitants of the town have exactly the

same number of hairs on their head?

At first thought you may consider this unlikely.

But let's see what happens when we apply the pi-

geon hole analysis. The number of hairs on one

person's head does not exceed 100,000. If there are

no matching heads, then one person could be bald,

another could have one hair, another could have

two. and so on. But as soon as we pass 100.000

people with distinct numbers of hairs on their heads,

we are forced to duplicate. The 100.001th person is

certain to have a head of hair that matches someone
among the 100.000. Since the town has a popula-

tion of about 200.000, it is sure to have not just two

people with matching heads, but about 100.000

people with matching heads!
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Uncle Henry s Clock

Helen had just answered Bob's

quickie when they arrived at

Uncle Henry's His cabin, which

he had built himself, had no
electricity, phone, TV or radio

Helen: Are you sure that's the

correct time9 It can't be unless

you know how far you walked

and how fast you walked

The first thing Uncle Henry said

was.

Henry: What time is it?

Helen: Sorry Uncle, we lost

our watches on our way up
here. Don't you have a clock?

Henry: Yep. But. dang it, I

forgot to wind it last night. You
two stay here while I walk to the

village to check the time and
pick up some vittles.

Henry: Nope, Helen. 1 don't

know none of them things All I

know is when I go to town and
back the same way. and go the

same speed, I can always set my
clock right.

Supposing that Uncle Henry
wound his clock before he left,

and that the grocery store's

clock is accurate, how did he

know the exact time when he

got home?

Uncle Henry walked to town

and spent about half an hour at

the grocery store.

And when he got home, the first

thing he did was to set his clock.



Setting the Clock
The aha! insight that leads to a solution of this

problem is the realization that Uncle Henry can

wind his stopped clock before he leaves, and use it

to determine the total time that elapses between

leaving home and returning. He cannot, of course,

set the clock correctly after he winds it, because

he does not yet know the correct time. He does,

however, note the time on the clock before

he leaves.

When he gets back, the clock tells him how long it

took for him to walk to town, spend time at the groc-

ery store, then walk back. Since there is a clock at

the store, he has no trouble determining the time he

spent at the store. He subtracts this from the total

time he was away from his house (as measured by

the clock at home) to get the time he spent walking

to and from town. Because he always walks the

same way. at the same constant rate, half his walk^

ing time is the time it takes him to walk home. He
then adds this to the time on the store clock when he

left, and that gives him the correct time of his arrival

home. Since he sees exactly when he arrived home,

he is able to set his house clock correctly.

Here is a tricky clock question that nine out of ten

people answer incorrectly. How many times does

the minute hand pass the hour hand between 12

o'clock noon and 12 midnight? Most people say 11

times, but the correct answer is 10! If you don't be-

lieve it, try moving the hands of your watch to con-

vince yourself it is true.

This somewhat surprising fact is involved in the

solution of a problem that seems at first to be un-

solvable without writing algebraic equations. A
clock has a sweep second hand. At 12 noon all

three hands coincide. Is there another time, before

it is 12 o'clock again, when all three hands are ex-

actly together?

Let us first determine at how many spots the hour
and minute hand coincide. You might think that

they coincide at 12 spots, but. as we have seen, this

occurs only 10 times between 12 noon and 12 mid-
night. The coincidence of the hands at 12 makes a

total of 11 different spots at which the two hands
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coincide. By the same reasoning, the second hand
and minute hand coincide at 59 different spots.

Thus, the coincidences for the hour and minute

hand are separated by 11 equal time periods, and
the coincidences for the minute and second hand
are separated by 59 equal time periods.

Let us call the number of intervals between the

first coincidences A, and the number of intervals be-

tween the second coincidences B. If A and B have

a common factor k. there will be k spots where the

two coincidences will occur simultaneously. But 11

and 59 have no common factor. Therefore, there

cannot be a spot between 12 noon and 12 midnight

when both coincidences occur at the same time. In

other words, the three hands are exactly together

only at 12 o'clock.

Now for two quickie clock questions that catch

most of your friends. A clock takes 5 seconds to

strike 6 o'clock. How many seconds will it take to

strike 12 o'clock?

Suppose Uncle Henry was so tired that he went to

bed at 9 o'clock with plans to sleep until 10 the next

morning. He set his alarm clock for 10, and fell as-

leep 20 minutes later. How long did he sleep before

the clock woke him up?

Both quickies are answered at the end of the

book.



Spirits of 1776

On the last day of their visit. Bob
and Helen told Uncle Henry
they had decided to get

married

Uncle Henry: Wonderful, my
dears This calls for a celebration

Uncle Henry then produced five

bottles of wine that he had been
saving for a special occasion.

But nobody could agree on
which bottle to open.

Uncle Henry: I know. Let's put

the bottles in a row. Then I'll

count back and forth according

to my lucky system. Here's how
it works. One, two, three, four,

five. . .

.

Bob: Yes, I do Uncle, but how
high are you going to count up

to?

Uncle Henry: Ain't this the

bicentennial year. \91i> > Let's

count to 1976

Helen: (groan) Oh dear. Uncle

Henry, that will take forever

Hmm Wait a minute You don't

have to count. I can tell you

right now where the count will

end

Helen: It'll end up on the second

bottle I've just figured it out

Uncle Henry didn't believe her

and had to count the bottles

himself. Fifteen minutes later he

ended his count on the second

bottle.

Uncle Henry: Heavens to Betsy

How did you know, Helen?

Uncle Henry: Six, seven,

eight, nine

See if you can figure out an easy

way to tell where the count will

end, no matter how big the

number counted You might

want to try some variations on

your friends.

Uncle Henry: Ten, eleven.

twelve, thirteen Get the

idea?
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Modulo Arithmetic

Helen's insight, which avoided tedious counting of

the bottles from 1 to 1.976. was the realization that

the question could be answered quickly by applying

what is called modulo or clock arithmetic.

A clock models a finite arithmetic of just 12 num-

bers. Actually. 12 corresponds to in a modulo

arithmetic based on 12. Suppose it is 12 o'clock, and

you wish to know what time the clock will show 100

hours later. This can be calculated merely by divid-

ing 100 by 12 and noting the remainder. The re-

mainder. 4. tells us that the time will be 4 o'clock.

Only the remainder concerns us. The number 100 is

said to be equal to 4 (modulo 12). meaning no more
than that 4 is the remainder when 100 is divided by

12.

Do you see how Uncle Henry's method of count-

ing is equivalent to clock arithmetic? The only dif-

ference is that each of the three middle bottles repre-

sents two numbers because it is counted in two dif-

ferent directions. The count of 8 ends on the second

bottle, then the counting cycle begins again. The
counting procedure therefore models a modulo 8
arithmetic.

Helen had only to determine the value of 1.976

(modulo 8). In other words, she divided 1.976 by 8

and obtained a remainder of 0. In modulo 8 arith-

metic. 8 = (modulo 8). therefore the count of

1.976 must end on the second bottle from the end
where the counting started.

Suppose you wanted to know where Uncle

Henry's count would end if he counted to a large

number such as 12.345.678.987.654.321. Is it

necessary to divide this entire number by 8? No. not

if you have another aha! Since 1.000 = (modulo

8) you need only divide the last three digits. 321.

by 8 to get a remainder of 1. This tells you that

12.345.678.987.654.321 = 1 (modulo 8). so the

count will end on the first bottle.

By changing the number of bottles, you produce
models of finite arithmetics with other even mod-
ulos. If the bottles are counted in the usual manner,
from left to right only, then you can model a finite

arithmetic with any modulo, odd or even.
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A famous problem involving the counting of ob-

jects in a cyclical manner is called the Josephus
problem because it dates back to an ancient Roman
story that involves a man named Josephus. There is

a large literature on the problem and its many vari-

ants. Here is a new version you will find amusing.

Once upon a time, a rich king had a beautiful

daughter named Josephine. Hundreds of young
men wanted to marry her. She finally eliminated all

of her suitors except the ten she liked best.

Several months went by and the king became
annoyed because Josephine couldn't make up her

mind. "My dear." he said, "next month you'll be 17.

As you know, it's the custom of all princesses to

marry before that age."

"But father." she replied. "I'm still not sure that I

like George the best."

"In that case, my pretty one. we'll have to settle

the matter today by our secret ritual."

The king then explained to his daughter how the

ancient ritual worked. "The ten men." he said, "will

stand in a circle. You can pick any man you like and
call him 1. Then you must start counting clockwise

around the circle of men until you reach 17—your

age. The 17th man must drop out of the circle. We'll

send him back home with a consolation gift of 100

gold pieces."

"After he is gone, you must count again from 1 to

17. this time starting your count on the next man
after the one who dropped out. When you reach 17.

the 17th man will be eliminated as before. Continue

doing this, always counting the men that remain,

until only one is left. He'll be the man you must

marry."

Josephine frowned and said: "I'm not sure I un-

derstand, father. Do you mind if I practice it once

using 10 gold pieces?"

The king agreed. Josephine put the ten gold

pieces in a circle and counted around, removing

every 17th piece until only one remained. The king

watched, and saw that his daughter understood the

secret ritual perfectly

The ten suitors were then ordered into the throne

room. They formed a circle around Josephine.



Without hesitation she started her count on Perci-

val. and counted rapidly until every man was elimi-

nated except George, the man she had privately

decided she wanted to marry.

What insight did Josephine have that made it

easy for her to begin a count that she knew would

end by selecting George?

Here is how Josephine managed it. When she

made her practice count with the gold pieces she

remembered that the single piece that remained was

number three from the spot where she began the

count. So when she started to count the men. she

began the count at a spot that would give George

the count of 3.

An interesting generalization of the Josephus

problem can be modeled with the thirteen spades

of a deck of playing cards. Can these cards be ar-

ranged into a sequence so that you can perform the

following Josephus count?

The count begins with the packet of 13 cards held

face down in one hand. Call the top card 1, turn it

over, and it is the ace of spades. Deal the ace to the

table. Then count 1.2. placing the first card beneath

the packet. The second card is turned over and it is

the two of spades. Deal it to the table. Now count

1,2.3. putting the first two cards beneath the packet,

and turning the third one. It is the three of spades.

Deal it to the table. Continue in this way. transferring

cards one at a time from top to bottom (which is the

equivalent of a Josephus count around a circle) until

you have correctly turned over and dealt the thir-

teen spades in consecutive order from ace to king.

Here is how the cards are arranged, from top

down, to make such a count possible: A. 8, 2, 5. 10,

3. Q.J. 9. 4.7. 6. K.

You might suppose that it took someone many
hours of trial and error to devise such a clever ar-

rangement. Actually, there is a very simple algo-

rithm (procedure) for obtaining such sequences.

Many magicians, working on counting tricks of this

sort, have indeed wasted vast amounts of time be-

fore they had the aha! that made the task trivial. See

if you can think of it before you read the solution at

the end of the book.
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Chapter 4

Puzzles about re<





In this section we are not concerned with formal

logic, but with problems that can be solved by

reasoning, without any special expertise in

mathematics. Some of the short puzzles are close to

riddles in the sense that they contain deliberately

misleading statements, or the answers hinge on

word play, but most of them are puzzles that play fair

with the reader.

There is a general way in which logic puzzles of

this sort are related to mathematics. All mathemati-

cal problems are solved by reasoning within a de-

ductive system in which basic laws of logic are em-

bedded. Although you need not know formal logic

to work on any of the problems in this section, the

informal reasoning that solves them is essentially

like the reasoning that mathematicians and scien-

tists use when confronted with a perplexing ques-

tion.

By "perplexing" we mean a problem of such a na-

ture that one does not know how to go about solv-

ing it. Naturally, if there is a known procedure— for

example, the technique for cracking a quadratic

equation— everything is cut and dried and there is

no real perplexity. One simply applies the proper al-

gorithm and grinds out the answer.

The interesting and challenging problems that

arise in mathematics and science are those for which

the method of solution is not apparent. One must

think long and hard about the question, searching

the memory for all relevant information, and hope

for that moment of aha! insight that suggests a solu-

tion. In this general way. the solving of amusing logic

puzzles is good training for solving more serious

problems.

Several puzzles in this chapter have even closer

ties to significant mathematics. For example, "Color

Mates" and the problems that follow it lend them-

selves to a chart method of solution that is very simi-

lar to techniques used in formal logic. One of these

puzzles introduces an important logic relation called

"material implication". In the propositional calculus

(a fundamental branch of symbolic logic) implica-

tion is symbolized byD. The relationADB means
that ifA is true, thenB must be true. It is one way

of interpreting the statement in set theory that

all of setA is included in setB.

The word "induction" has two essentially diffe-

rent meanings. Scientific induction is a process by

which scientists make observations of particular

cases, such as noticing that some crows are black,

then leap to the universal conclusion that all crows

are black. The conclusion is never certain. There is

always the possibility that at least one unobserved

crow is not black.

Mathematical induction, to which you are intro-

duced in the comments on the hat tests in "Dr. Ach's

Awards," is an entirely different procedure. Al-

though it, too, leaps from the knowledge of particu-

lar cases to knowledge about an infinite sequence of

cases, the leap is purely deductive. It is as certain as

any proof in mathematics, and an indispensable

tool in almost every branch of mathematics.

Most of the puzzles in this section are not as

serious or as complicated as the hat problems.

Nevertheless, they are sure to sharpen your wits.

They will teach you the value of looking carefully for

verbal pitfalls in the statement of a problem, and,

above all, the value of going out on a limb in consid-

ering offbeat possibilities. The more possibilities you

consider, however bizarre, the more likely it is that

the right insight will come. It is one of the secrets of

all creative mathematicians.
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The Crafty Cabbie

One day. this lady in New York

city hailed a passing taxicab.

On the way to her destination

the lady talked so much that the

driver got quite annoyed.

Driver: I'm sorry lady, but I

can't hear a word you're saying.

I'm deaf as a post, and my
hearing aid hasn't worked all

day.

When she heard this, the lady

stopped yakking. But after she

left the cab she suddenly

realized that the cabbie had lied

to her. How did she know?
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Observant Lady
The story of the lady and the cab typifies many situ-

ations in both ordinary life and in science. There is a

puzzling situation which at first one cannot under-

stand. But if all the relevant factors are carefully con-

sidered, suddenly the mind has a flash of insight into

a forgotten aspect of the problem that furnishes a

key to its solution.

If you cannot answer the crafty cabbie puzzle

right away, try to put yourself in the position of the

lady, then in your mind act out the entire sequence

of events. What is the first thing you say when you

get in a cab? The answer, of course, is that you tell

the cab driver where you want to go. But if the driver

is deaf, how will he know where to take you? The
lady suddenly realized, after she had paid the fare,

that the cabbie could not be deaf because he drove

her to her proper destination.

Logic puzzles based on real life situations are

often not well-defined. They frequently require

many unstated assumptions, and this problem is no
exception. For example, it may have occured to you

that if the cabbie saw the lady's face when she told

him her destination, he might have read her lips.

This is not an irrelevant quibble, but a shrewd ob-

servation on your part.

A careful analysis of every aspect of a sequence of

events has often led to major insights in the history

of science. A beautiful example was the solution to

the puzzling question of how worker bees know
where to go to obtain a supply of honey that has

been discovered by one worker bee that returns to

the hive. Karl von Frisch observed that when the

scouting bee returns, it engages in a curious kind

of "dance." Could it be that the nature of this

dance communicates the destination of the honey

source? In a brilliantly designed series of elegant

experiments, von Frisch finally proved that this is

indeed the case.

If you found the crafty cabbie puzzle amusing,

here are two other taxicab problems. A cabbie

picked up a customer at the Waldorf Hotel in New
York City who wanted to go to Kennedy Airport.

The traffic was heavy, and the cab's average speed

for the trip was 30 kilometers per hour. The total

time of the trip was 80 minutes and the customer

was charged accordingly. At Kennedy Airport, the

cabbie picked up another passenger who. by coin-

cidence, wanted to be taken to the Waldorf Hotel.

The taxi driver returned to the hotel along the same
route he had traveled before, with the same average

speed. But this time the trip took an hour and
twenty minutes. Can you explain why?

It may take a while before it dawns on most

people that 80 minutes is the same as one hour and

twenty minutes! It is an amusing catch puzzle to try

on friends.

Another catch problem involving a taxicab goes

like this:

You are a taxi driver. Your cab is yellow and black,

and has been in use for seven years. One of its

windshield wipers is broken, and the carburator

needs adjusting. The tank holds 20 gallons, but at

the moment is only three-quarters full. How old is

the taxi driver?

This is even a bigger swindle than the previous

problem, although logically it is perfectly consistent.

You were told at the outset that you are the driver.

Therefore, the driver is whatever age you are!
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Color Mates

The cabbie next picked up three

young couples and took them to

a discotheque. One girl was
dressed in red. one in green,

and one in blue. The boys wore

outfits of the same three colors.

That leaves the girl in red with

the boy in green and our

problem is solved, isn't it?

When all three couples were

dancing, the boy in red danced

close to the girl in green and

spoke to her.

Frank: Isn't it funny, Mabel?

Not one of us is dancing with a

partner dressed in the same
color.
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Given this information, can you

deduce the color the partner of

the girl in red is wearing?

The boy in red must be with the

girl dressed in blue. She can't be

red because then they would

match. And she can't be green

because the boy in red spoke to

the green girl when she was
dancing with someone else.

The same argument shows that

the girl in green can't be with

either of the boys in red or

green. So she must be with

someone in blue.

El blue

red

HI green



Color Opposites
Most people do not find it easy to follow the reason-

ing in the solution to this problem. One is not likely

to have an aha! insight until one fully understands

what is being asserted by each statement. A good
way to organize this information is to classify it on a

square matrix of the type shown below:

r 9 b

R

G

5

The capital letters on the left side of the matrix

stand for the colors of the boys: R = red, G = green.

B = blue. The lower case letters at the top stand for

the colors of the girls.

We are told that no boy matches a girl in color. We
can. therefore, eliminate three possible combina-

tions: Rr, Gg. and Bb. This is indicated on the matrix

by shading the corresponding three cells:

r 9 b

R

G

B

Because the boy in red danced over to the girl in

green, we know he is not with a green girl. This al-

lows us to eliminate theRg cell. Now only one cell

remains on the R row. which proves that the boy in

red is with the girl in blue. We indicate this by putting

a check in the Rb cell. Our chart now looks like this:

y

Since we know that the girl in blue is with the

boy in red, she cannot be with any other boy. There-

fore, we can shade the Gb cell. Only the Gr cell

remains open in the second row. This tells us that

the green boy is with the r girl, so we put a check in

that cell:

r g b

y

y

Since the red girl is with the green boy, she cannot

be with any other boy, so we shade the Br cell. This

leaves open only the Bg cell, so it gets a check to

show that the boy in blue is with the girl in green.

Our problem has been solved:

y

y

y

Here is a more difficult logic problem of essen-

tially the same kind. Very few people can solve it

without the help of a matrix.

Paul, John and George are three rock stars. One
plays a guitar, one plays the drums, and one plays

the piano, but not necessarily, respectively.

The drummer tried to hire the guitarist for a

recording session, but was told that he was out of

town doing shows with the pianist. The drummer
admired the work of both musicians.

1. The pianist earns more money than the drum-

mer.

2. Paul earns less than John.

3. George has never heard of John.

4. What instrument does each of the rock stars

play?

See if you can draw the 3-by-3 matrix, and elimi-
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nate all impossibilities in the manner previously

explained. If you do it properly, you will obtain the

following correct answer: Paul plays the guitar. John

the drums, and George the piano.

Solving logic problems by the use of such charts is

very similar to the techniques of solving problems in

formal logic by the use of Venn diagrams. In both

cases, solutions are obtained by a progressive elimi-

nation of impossible combinations of "truth values"

until only one combination, the correct one. re-

mains. As Sherlock Holmes, in The Sign of Four.

once said to Watson: "When you have eliminated

the impossible, whatever remains, however im-

probable, must be the truth."

Here is a problem more challenging than the pre-

vious ones. It will introduce you to a fundamental

binary relation in formal logic that is known as

"implication." It is a statement that has the form:

if... then..."

Four college girls who share an apartment are

listening to an album of music while one of them
does her nails, one does her hair, one puts on
make-up. and one is reading.

1. Myra isn't doing her nails and she isn't reading.

2. Maud is not putting on make-up and she is not

doing her nails.

3. If Myra is not putting on make-up. Mona is not

doing her nails.

4. Mary is not reading and she is not doing her

nails.

5. Mona is not reading and she is not putting on
make-up. What is each girl doing?

You should have no difficulty drawing a 4-by-4

matrix for the four girls and the four tasks. State-

ments 1. 2. 4 and 5 each eliminated two cells.

Statement 3 is the statement of implication. It as-

serts that if Myra is not putting on make-up. then

Mona is not doing her nails. LetA stand for the "if"

clause. andB for the "then" clause. The "if-then"

binary relation tells us that the truth ofA cannot be
combined with the falsity of B. but it tells us nothing
about the truth values ofA andB when A is false.

Statement 3. therefore, allows for the following

three combinations of truth values:

1. Myra is not putting on make-up. and Mona is

not doing her nails.

2. Myra is putting on make-up. and Mona is not

doing her nails

3. Myra is putting on make-up. and Mona is doing

her nails.

After you have eliminated eight "impossible"

combinations by shading the eight cells that are

ruled out by statements 1. 2. 4 and 5. you will then

have to test each of the three possible combinations

given by statement 3. Two of them lead to logical

contradictions: that is. to two girls doing the same
task. Only the combination of "Myra is doing her

make-up. and Mona is doing her nails" does not

conflict with the information provided by the other

statements. The final solution is:

Myra is putting on make-up.

Maud is reading.

Mary is doing her hair.

Mona is doing her nails.

A shorter solution, proposed by Peter Stangl. is to

recognize that since statements 1.2.4 and 5 show
that neither Myra. Maud, nor Mary are doing their

nails, therefore Mona must be the girl who is doing

her nails. This contradicts the second part of

the "if-then" assertion of statement 3. therefore the

first part of this assertion must also be false.

Consequently. Myra is putting on her make-up.

and this leaves Mary as the girl doing her hair.

Logic puzzles of this sort are not hard to invent. You
might enjoy trying your skill at designing one your-

self. There are many different techniques for solving

such problems—algebraic techniques, methods

using graph theory, different types of logic diagrams,

and so on. Maybe you can also invent a method of

your own that is as good or better than the matrix

method given here.
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Six Sneaky Riddles

When the music stopped the six f
friends returned to their table

and amused themselves by

asking each other riddles. How
many can you get?

The girl in green said

Mabel: This morning one of my
eaiTings fell into my coffee

Even though my cup was full

the ring didn't get wet How
come?

The boy in red asked his first.

Frank: Last week I turned off

the light in my bedroom and
managed to get to bed before

the room was dark. If the bed
was 10 feet from the light switch,

how did I do it?

The boy in blue said.

Henry: Whenever my Aunt

comes to visit me at the

apartment she always gets off

five floors too soon and walks

up the rest of the way. Can you
tell me why?

The boy in green said.

Inman: What common word
starts with "IS ", ends with

"ND," and has "LA" in the

middle?

The girl in blue asked the last

riddle.

Laura: Yesterday, my father

was caught in the rain without a

hat or umbrella. There was
nothing over his head and his

clothes got soaked But not a

hair on his head got wet? Why
was that?

The girl in red said.

Jane: One night my uncle was

reading an exciting book when
his wife turned out the light.

Even though the room was

pitch dark he went right on

reading. How could he do that?
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Sneaky Answers
The six riddles are more than just funny catches.

They teach you not to make unnecessary assump-

tions, but to consider all possibilities no matter how
unlikely or bizarre they may seem. Some of the

greatest revolutions in science would never have

taken place if great minds had not questioned as-

sumptions that everyone took for granted. Their

next step—the aha! insight—was to consider a

possibility that others thought crazy. For example:

Copernicus guessed that the sun (not the earth) was

the center of the solar system. Darwin guessed that

mankind evolved from a lower form of animal life,

and Einstein guessed that the structure of space

need not conform to Euclidean geometry.

Our six sneaky riddles are answered as follows:

1. The unnecessary assumption that almost

everyone makes in trying to figure out this problem

is that the time is at night. But this is not stated in the

problem. The room did not get dark because it was

day time.

2. The false assumption is that the Aunt is of nor-

mal height. Actually, she is a midget who cannot

reach high enough to push the button for her

nephew's floor.

3. The false assumption is that there are other let-

ters between the three pairs of letters. The word is

"ISLAND."

4. The false assumption is the belief that one can

read only with the eyes. The man was blind, and
was reading a book in braille.

5. The false assumption is that "coffee" means
liquid coffee. The ring fell into a can of dry coffee, so

naturally it did not get wet.

6. The false assumption is that the father had hair

on his head. The father is bald, therefore he has no
hair to get wet.

There are hundreds of amusing brain teasers that

are based on the same basic idea—misleading one
into making a false assumption that prevents one
from thinking of the true explanation. Here are six

more.

1. A man found a dead fly in his soup. The waiter

was apologetic. He took the bowl to the kitchen and
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returned with what apparently was a new bowl of

soup. A moment later the man called the waiter

over.

"This is the same bowl of soup I had before!" he

shouted angrily. How did he know?
2. While an ocean liner was anchored. Mrs. Smith

felt too ill to leave her cabin. At noon the porthole by
her bed was exactly 7 meters above the water line.

The tide was raising the water line at a rate of 1

meter per hour. Assuming this rate doubles every

hour, how long will it take the water line to reach her

porthole?

3. The Reverend Sol Loony announced that on a

certain day. at a certain time, he would perform a

great miracle. He would walk for twenty minutes on
the surface of the Hudson River without sinking into

the water. A big crowd gathered to witness the

event. The Reverend Sol Loony did exactly what he

said he would. How did he manage it?

4. Two train tracks run parallel except for a spot

where they go under a tunnel. The tunnel is not

wide enough to accommodate both tracks, so they

become a single track for the distance of the tunnel.

One afternoon a train entered the tunnel going

one direction, and another train entered the same
tunnel going the opposite direction. Both trains

were going at top speed, yet there was no collision.

Explain.

5. An escaped convict was walking along a coun-

try road when he saw a police car speeding toward

him. Before he ran into the woods he ran 10 meters

directly toward the approaching car. Did he do this

just to show his contempt for the police, or did he

have a better reason?

6. Why are 1977 dollar bills worth more than

1976 dollar bills?

The answers are at the back of the book, but do

not look at them until you have tried hard to answer

each question.



The Big Holdup

The next day. when the

discotheque's waiter reported

for work, he heard shouting

coming from the attic.

The manager told his story to

the police.

Manager: Last night, after we
closed, two robbers came and
took all the money. Then they

carried me to the attic and tied

me to the beam.

&uxg

Here's how he did it He used

the ladder to tie one end of the

rope to the beam Then he

carried the ladder out of the

room

He rushed to the attic and found /""

the manager with a rope around I

his waist and hanging from an

overhead beam.
Manager: Quick. Get me
down Call the police. We've
been robbed.

He returned with a huge block

of ice he had prepared in the

freezer.

He stood on the ice, tied

the rope around himself and
waited.

The police believed his story

because the attic room was
completely empty. He couldn't

have tied himself to the high

beam, there was nothing to

stand on. There was a step

ladder used by the thieves, but it

was just outside the door.

When the waiter found him the

next day, all the ice had melted

and the manager was left

hanging in mid-air Clever,

wasn't he?

However, a few weeks later, the

manager was arrested for

robbing himself. Can you figure

out how the manager, without

any help, tied himself in

mid-air?
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Missing Evidence

Many famous mystery stories have been based on

problems like this one. which the detective solves by

a flash of intuition. Melting ice has been a favorite

device of early mystery writers. For example, a vic-

tim is found stabbed. Where is the murder weapon?
It turns out to have been a piece of ice with a sharp

point like an icicle. A man is found murdered inside

a room locked on the inside by a latch that had been

earlier propped up with piece of ice. When the ice

melted, the latch fell and locked the door.

A classic puzzle mystery of this type is "The Prob-

lem of Thor Bridge." by A. Conan Doyle. A woman
is found shot in the head on a bridge that has a

parapet of stone on either side. There is no trace of

the pistol that had fired the bullet, yet Sherlock

Holmes, in a flash of insight, thinks of how the

woman may have committed suicide and disposed

of the weapon.

The solution is that she had tied the pistol to one

end of a long cord. The string passed over the stone

parapet and had a heavy stone tied to the other end.

After shooting herself, the gun dropped from her

hand and the stone pulled it into the water.

Holmes's solution of this problem, like so many of

his others, is an excellent model of how science

operates. First the great detective, by a flash of intui-

tion, developed a theory to explain the disappear-

ance of the weapon. He then deduced a conse-

quence of the theory— namely, that the pistol

striking the parapet would chip the stone. He found
just such a chip mark. Finally, he devised a test to

confirm the significance of the chip. He tied a stone

to a string, and the other end to Watson's revolver.

To simulate the suicide, he stood where the body
had been found, and released the revolver. When
he discovered that it made a second chip mark on
the parapet, identical with the other one. his theory

was amply confirmed.

This is precisely how science solves its problems.

First a theory, then a deduction of practical conse-

quences if the theory is true, then a search for the

evidence and the devising of experiments to test the

theory.
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Here is a new mystery problem that also can be
solved by a clever theory. The body of Mr. Jones

was found slumped on his desk with a bullet hole

through the head. Detective Shamrock Bones saw a

tape recorder on Mr. Jones's desk. He pressed the

play button and was suprised to hear Jones's voice

saying:

"This is Jones speaking. Smith just telephoned to

say that he's coming here to kill me. I'm not going

to try to escape. If he carries out the threat I'll be

dead in ten minutes. This recording will tell the po-

lice who killed me. I hear his footsteps now in the

hallway. The door is opening. .

.

"

There was a click to indicate that Jones had
turned off the recorder.

"Shall I pick up, Smith?" asked Lieutenant Suzy

Wong, who was Captain Bones's assistant.

"No." said Bones. "I'm convinced that someone
else, who was good at imitating Jones's voice,

killed Jones and made this recording to incriminate

Smith."

Bones's theory later proved to be correct. Can
you think of what made him suspect that the record-

ing was a fake? Try to do this before you look at the

answer at the back of the book.



Dr. Ach's Tests

The police would never have

solved the case without the help

of Dr Ach. a psychology

professor who specialized in

problem solving He called his

aha! insights "Ach" phenomena
and devised many tests for

them

Dr. Ach: But you musn't touch

the bottle with any part of your

body or anything else And, of

course, not a drop of beer must

be spilled.

If you didn't pass the last test,

maybe you'll get this one.

~~\ One involved two long strings f
» that hung from the ceiling of an

/|~J5_
empty room.

^

Dr. Ach: For my last test you
need a sheet of newspaper The
problem is for you and a friend

to stand on it in such a way that

you can't touch each other

Naturally you can't step off the

paper

This is your last chance to pass

one of Dr. Ach's tests.

^Dr. Ach: These strings are so

far apart that if you hold one
end, you can't reach the other.

Dr. Ach: The problem is to

tie the two ends of the rope

together using nothing more
than a pair of scissors.

Could you pass this test?

*Z^

Doctor Ach doesn't like to

remember that test because one
of his students answered it and
challenged him with another

Student: Alright, Dr. Ach, try

to throw this tennis ball so it

goes a short distance, comes to

a dead stop, then reverses itself

and goes the opposite way.

Dr. Ach: May I bounce it

against something?

Student: No. bouncing is not

allowed. And you can't hit it

with anything or tie anything to

it either

Dr. Ach: Another of my
favorite tests is to put an open
bottle of beer in the center of a

small oriental rug. The problem

is to get the beer off the rug.

After Dr. Ach gave up. the girl

surprised him by taking the ball

and doing exactly what she

said.

Dr. Ach: Ach. why didn't I

think of that.

What was it that he failed to

think of?
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Dr. Ach's Solutions

Dr. Ach's Strings: You may think one could

solve this by grabbing a string and swinging on it like

Tarzan in the manner shown in one of the pictures.

This would not work for two reasons: the string is

not strong enough to support a person, and even if it

were, the person could not reach the other string.

However, the picture does give a clue to the correct

solution.

If you tie the scissors to one end of a string, you
can set the string swinging like a pendulum. This al-

lows you to pull the end of the other string as near as

possible to the swinging string, and catch the scis-

sors when they swing toward you.

It takes two insights to solve this task problem.

One is to think of swinging strings, and the second is

to think of using the scissors in a way for which they

were not designed. Psychologists have a term called

"functional fixedness" for the difficulty people have

in using devices in unaccustomed ways. The mind
thinks only of how scissors can cut string. Of course,

cutting a string is no help in solving the problem.

Dr. Ach s Rug: You are not allowed to touch the

bottle with any part of your body, or with anything

else. The insight that solves this task is the realization

that, since the rug is already touching the bottle,

perhaps the rug itself can be used for moving the

bottle off the rug.

This proves to be true. Merely roll up the rug at

one end. When you get to the bottle, roll it slowly

with your hands at each end, and the middle of the

roll will slowly push the bottle off the rug without

tipping the bottle over.

As in the previous problem, functional fixedness

is a mental block to the solution. One thinks of a rug

only as a floor covering, not as an object that can be
used as a pushing tool.

Dr. Ach's Newspaper: The aha! that solves this

task is the realization that a door separates two per-

sons who stand on the same sheet of newspaper.
Simply put the sheet under an open door. The boy
stands on the paper at one side of the door, and the

girl stands on the other side. The door prevents
them from touching each other without stepping off
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the paper.

Tennis Ball: The mental block here is the as-

sumption that the ball is tossed horizontally. But
there is nothing in the statement of the problem to

prevent one from tossing the ball straight up in the

air. Naturally it comes to a complete stop, reverses

its motion, and goes the opposite way!

Another solution is to roll the ball up a hill. This

could have been ruled out by stating that the ball

must travel through the air without touching any-

thing, but since we didn't say this, it counts as a

legitimate solution.

More Task Problems: Here are six more task

problems that you and your friends will enjoy. Try to

solve them before reading the answers.

1. Can you drop a paper match from a height of

about 1 meter so that it falls on its edge and remains

on its edge?

2. Some workmen are making mortar with sand

and cement so they can lay the foundations of a

building. One of the large concrete blocks has a

small rectangular hole 2 meters deep. A baby bird

has fallen into the hole. The hole is too narrow for an
arm to be squeezed into it; besides, the bird is too

deep to be reached by an arm. Trying to grasp the

bird with two sticks would injure it. Can you think of

a simple way to get the bird out of the hole?

3. Tie one end of a piece of string, about 2 meters

long, to the handle of a coffee cup. Tie the other end
to a hook in the ceiling, or over an open doorway, so

that the cup hangs suspended. The problem is to cut

the center of the cord with a pair of scissors so that

the cup will not fall to the floor. No one may hold the

cup. or touch the string while it is being cut.

4. A dike in Holland is missing a single brick.

Water is pouring through the rectangular hole which

is 5 centimeters by 20 centimeters. The man who
discovered the hole has with him a saw and a cylin-

drical wooden pole with a diameter of 50 millime-

ters. What is the best way he can cut the pole so as

to plug up the hole?

5. A wine bottle has a cylindrical shape for its

lower section. The section is % of the bottle's height.

The upper fourth of the bottle is irregularly shaped.



The bottle is filled half-way up. Without opening the

bottle, and with the aid of only a ruler, how can you

determine exactly what percentage of the bottle's

total volume is filled?

The answer to these five problems appear at the

end of the book.

101



The Ach Award

At the end of every course in

Ach thinking. Dr. Ach gave a

special Ach medal to his best

student. One year there were

three students tied for the

honor.

Dr. Ach used a test to break the

tie. He seated the three students

on a bench and told them to

close their eyes.

Dr. Ach: I'm going to put a red

or a blue hat on each of you But

don't open your eyes until I tell

you.

Dr. Ach put a red hat on each of

them.

Dr. Ach: Now open your eyes

and raise your hand if you see a

red hat on someone. The first

person to deduce the color of

his own hat gets the medal.

Of course, all three raised their

hands But several minutes

passed before John stood up
and shouted.

John: Ach, I know my hat is

red.

John: If my hat were blue,

Mary would know at once that

her hat was red because that

would be the only way to

explain Barbara's raised hand.

John: Naturally Barbara would

think the same way. She would
know that her hat was red

because that would be the only

way to explain Mary's raised

hand.

John: But neither girl could

name the color of their own hat

So they must be seeing a red hai

on me too.

It's easy to understand this

classic logic puzzle when there

are only three persons. But

suppose there are four, and all

get red hats. Can you figure out

what would happen9

t ...

is -
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Inductive Color Thought
Going from three persons in this problem to four,

then generalizing to any number of persons, is an

excellent introduction to a valuable technique of

proof called "mathematical induction." It applies

only when there are statements that can be ordered

like the rungs of a ladder. You first show that any

statement is true if the previous one is true. If the first

is true, then all the others must be true. If you can

step on the first rung of the ladder, you can climb it

all the way to the top. Or if you start on a higher

rung, you can climb all the way up or down.

Suppose there are four men who all get red hats.

All raise their hands. Assume that one of them has

more aha! insight than the others. He or she reasons

as follows:

"Suppose my hat is blue. The other three will all

see that it is blue. Each person, therefore, will see

two red hats and wonder about his own. But this is

exactly the situation of the previous problem when
there are just three people. Eventually one of the

three will deduce that his hat is red.

"However, suppose enough time has elapsed for

such a deduction, but no one has made it. There can

be only one reason, and that is because they all see

that my hat is red also. Therefore my original as-

sumption is false. My hat must be red."

This generalizes to n persons. If there are five per-

sons with red hats, the cleverest will see four red hats

and realize that after a sufficient time one of the four

persons has to reason as explained above, and
know that his/her hat is red. But if no one is able to

do this, it indicates that his/her own hat must also be

red. And so on for any number of persons. The
cleverest among n people can always reduce the

situation to the previous case, which in turn reduces

to the previous case, and so on back down to the

case of three persons, which is solved.

The general problem can lead to interesting ar-

guments about whether it is sharply defined, or

whether it is too ambiguous in its conditions to have

a sharp answer. What assumptions must be made to

make the general solution valid? Is it necessary that

the reasoning abilities of the n persons form a

heirarchy? Is it necessary to assume that as n in-

creases, the length of time it takes for a person to

deduce his/her hat is red also increases? Is it correct

to say that if there are 100 persons, then after a very

long length of time the cleverest will know that his/

her hat is red. then after another lapse of time, the

second cleverest will know, and so on down to the

least clever last man or woman?
There are endless variants of the classic hat prob-

lem. Here is one that shows how the problem can be

complicated by introducing hats of more than two

colors. Suppose that five men are given hats

selected from a set of five white, two red. and two

black. If all the hats are white, how does one man,

cleverer than the rest, deduce that his hat is white?

A particularly elegant three-person variant of the

original two-color problem eliminates all of its am-
biguities. Assume that three men are seated in three

chairs, one behind the other and all facing the same
way. The man in the back chair can see the hats of

the two men in front. The man in the middle sees

only the hat of the man in front. And the man in

front sees no hat. Think of the men as progressively

"blind", with the man in the front chair totally blind.

An umpire picks three hats from a set of three

white and two black. The men close their eyes until

the hats are placed, and the unused hats concealed.

The umpire asks the man in back if he knows the

color of his hat. He replies "No."

The man in the middle is asked the same ques-

tion. He, too, says "No."

When the man in front is asked, he replies. "Yes.

my hat is white." How did he deduce this?

He reasoned as follows: "The man in the back

chair will say 'yes' only if he sees two black hats. His

'no' answer proves that the two hats he sees are not

both black. Suppose now that my hat is black. The

man in the middle sees it is black. As soon as the

middle man hears the man behind him say 'no', he

knows that his own hat must be white—otherwise

he would see two black hats and say 'yes.' There-

fore, the middle man would say 'yes.' However, he

actually said 'no.' This proves that the middle man
sees a white hat on my head. Therefore, my original
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assumption is false, and my hat is white."

Like the earlier version, this also generalizes eas-

ily by mathematical induction to n "progressively

blind" men seated in a row of n chairs. Questions

start with the man in back, then go forward. The

supply of hats consists of n white hats and n-1 black.

Consider the case of n = 4. The "blind" man in front

knows that if his hat is black, the three men behind

him see his black hat and know that only two black

hats are left for themselves. This reduces the prob-

lem to the previous case. If the first two men say

'no,' the third man (seated directly behind the blind

man) would then say 'yes', as in the previous case.

If, however, he says 'no', it proves to the blind man
that his assumption is false, and his hat must be

white. Mathematical induction then extends the

proof to n persons. If all but the blind man say 'no',

all must be wearing white hats.

A more difficult question can now be asked. Sup-

pose that in the three-man case the umpire gives

them any combination of hats from the set of five

(three white, two black). The men are questioned in

the same order as before. Will one of them always

answer yes? You may enjoy working this out, and
proving that it generalizes to n persons and a set of n

white and n-1 black hats. Someone will always

answer yes. The first person who does is always'the

first one asked who is wearing a white hat and who
sees no white hat in front of him.

Hats of two colors are equivalent to hats labeled

and 1. the integers of binary notation. There are

many hat problems involving more than two colors

(such as the one given earlier), but they are easier to

understand if instead of colors we use positive inte-

gers. Consider, for example, the following two-

person game.

The umpire chooses any pair of consecutive posi-

tive integers. A disk with one of the numbers is stuck

on the forehead of one player, and a disk with the

other number is stuck to the forehead of the other

player. Each sees the other's number, but not his

own. Both men are honest and rational.

The umpire asks each man if he knows his

number, and the questioning continues back and
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forth until one man says yes. Using mathematical

induction, you can show that if the higher of the two

numbers is n, one man will say yes to question n or

question (n-1). The proof starts by considering the

simplest case: numbers 1 and 2. The man with 2 will

say yes to the first or second question (depending

on who is asked first) because, seeing 1, he knows
his number is 2.

Now consider the 2, 3 case. The first time the man
with 3 is asked, he will say no because he could be 1

or 3. Assume he is 1. In that case the man with 2

would say yes (as in the previous case). Conse-

quently, if he says no, this proves to the other player

that his number is 3, rather than 1, therefore he says

yes when asked the second time. As in the hat prob-

lems, this generalizes for any pair of consecutive

numbers.

For the full solution you need to know just when a

player will say yes on question n, and when on

(n-1). You will find that this depends on which man
is asked first, and whether n is odd or even.

A more sophisticated generalization has been in-

vestigated recently by the famous Cambridge

mathematician John Horton Conway. It goes like

this. Numbered disks are placed on the foreheads of

n men. The numbers can be any set whatever of

non-negative integers. The sum of all these integers

is one of n or fewer numbers written on a black-

board. The blackboard numbers must have no two

alike. The men are assumed to be infinitely intelli-

gent and honest. Each can see all the disks except

his own, as well as all the blackboard numbers.

The first man is asked if he can deduce the

number on his forehead. If he says no, the question

is asked of the second man, and this questioning

continues cyclically around the men until one of

them says yes. Conway asserts that, incredible as it

may seem, the questioning always terminates with a

yes.



Holiday Haircut

John was driving to Las Vegas

for a vacation when his car

broke down in a small town
While the car was being fixed

John decided to get a haircut

The town had just two barber

shops. Joe's and Bill's.

John looked through the

window of Bill's shop and was

disgusted.

John: What a dirty shop. The
mirror needs cleaning, there's

hair all over the floor, the barber

needs a shave, and he has a

terrible haircut.

/^— s It's no wonder that John left

Bill's shop and went up the

street to check on Joe's barber

shop.

But John didn't go In Instead,

he walked back to get his hair

cut at Bill's dirty shop Why''

John peeked through Joe's

window.

John: What a difference. The
mirror is clean, the floor's clean.

and Joe's hair is neatly trimmed.
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Which Barber?

No barber cuts his own hair. Since the town has only

two barbers, each must have to cut the hair of the

other. John wisely had his hair cut in the dirty bar-

bershop because its barber had given such a neat

haircut to the owner of the clean shop.

A problem very similar to this one goes as follows.

Two miners, who had been working all day in a coal

mine, finished their work and came up to the sur-

face. One of them had a clean face, the other had a

face covered with coal dust. They said goodnight to

one another. The man with the clean face wiped his

face with his handkerchief before he started home,

but the man with the dirty face did nothing to his

face. Can you explain this peculiar behavior?
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Barbershop Bantor

y 1 1 >
v

Bill was a talkative barber and
could hardly wait to get started

Bill: So you're from out of

town, hm hmm' 1 like to cut the

hair of strangers

Bill: In fact. I'd rather cut the

hair of two people from out of

town than the hair of anybody
who lives here.

John: Why is that9

Bill: Because I get twice as

much money.

HOME E -;-
;
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John: Okay, you caught me on

that one. But here's one for you.

Ten days ago our college

basketball team won a game
with a score of 76 to 40. And yet

not one man on our team got a

basket. Can you tell me why?

The barber was stumped, so

John explained.

John: There aren't any men on
our team. They're all girls.

Surprising Solutions

The problems in this section are all humorous
"catches" based on verbal ambiguity. Here are eight

more problems of the same type to catch your

friends with.

1. Howard Youse. an eccentric billionaire, off-

ered a prize of half a million dollars to the racing car

driver whose car came in last in a race. Ten drivers

entered the contest, but were puzzled by Mr. Youse's

conditions.

"How can we run the race?" one of them asked.

"We'll all just go slower and slower, and the race will

never finish."

Suddenly one of them said. "Aha! I know how we
can manage it." What did he think of?

2. How can you make a match burn under wa-

ter?

3. A criminal took his wife to a movie theater that

was showing a shoot-em-up western. During one

scene, when many guns were fired, he murdered his

wife by shooting her in the head. He then took his

wife's body out of the theater, but no one stopped

him. How did he manage it?

4. Professor Quibble says he can put a bottle in

the center of a room and crawl into it. How does he

doit?

5. Uriah Fuller, the famous Israeli superpsychic.

can tell you the score of any baseball game before

the game even starts. What is his secret?

6. A man who lived in a small town married

twenty different women of the same town. All are

still living, and he never divorced a single one of

them. Yet he broke no law. Can you explain?

7. "This myna bird." said the pet shop salesman,

"will repeat any word it hears." A week later the lady

who bought the bird was back in the shop to com-

plain that the bird had not yet spoken a single word.

Yet the salesman told the truth. Explain.

8. A wine bottle is half filled and corked. How
can you drink all the wine without breaking the bot-

tle or removing the cork from the bottle?

The answers are at the back of the book.
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Murder at Sun Valley
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When John got to Las Vegas the

papers were headlining a story

about a local gambler and his

wife who had been skiing at Sun

Valley.

The wife had died after a skiing

accident. The gambler had

been the only witness to her fall

when she skidded over a

precipice.

A clerk in Vegas read about the

accident and phoned the Idaho

police. The gambler was

arrested on suspicion of murder.

The reporters were surprised

with the clerk's story.

Clerk: I don't know the

gambler or his wife and 1 didn't

suspect foul play until I read

about the accident.

Why then, did the clerk call the

police?

Because he had sold the

gambler a round trip ticket to

Sun Valley, but only a one way
ticket for his wife.



The One Way Ticket

Now see how well you do on these two mystery

problems. Like the previous one. they cannot be

solved by any kind of algorithm or planned proce-

dure, but a correct aha! reaction leads quickly to the

answers.

1. On a thruway to San Francisco, a father was

driving with his small son in the front seat. He
swerved to avoid hitting a stalled car. lost control of

his car. and smashed into a bridge abutment. The
father was unhurt but the boy suffered a broken leg.

An ambulance took them to a nearby hospital.

The boy was wheeled into the emergency operating

room. The surgeon was about to operate. Suddenly

the surgeon cried out: "I can't operate on this boy.

He's my son!" Explain.

2. The following story is adapted from Puzzle-

Math, a delightful collection of problems by George

Gamow and Marvin Stern. At the time of the Ger-

man occupation of France, during World War II.

four people were riding a hotel elevator in Paris.

One passenger was a Nazi officer in uniform,

another was a native Frenchman who was a secret

member of the underground. The third passenger

was a young, pretty girl, and the fourth was an el-

derly lady. They were all strangers to one another.

Suddenly a power failure occurred. The elevator

stopped and the lights went out. leaving the car in

total darkness. There was the sound of a kiss, fol-

lowed by the sound of a punch in the face. A mo-
ment later the power was back on. The Nazi officer

had a fresh bruise under one eye.

The elderly lady thought: "Serves him right! I'm

glad that young girls these days know how to take

care of themselves."

The young girl thought: "What strange tastes

these Nazis have! Instead of kissing me. he must

have tried to kiss this older woman or this nice

young man. I can't figure it out!"

The Nazi officer thought: "What happened? I

didn't do anything. Maybe this Frenchman tried to

kiss the girl and she hit me by mistake."

Only the Frenchman knew exactly what had

happened. Can you deduce what took place?

Both problems are answered at the back of the

book; but try to solve the problems first! (before

looking).
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Foul Play at the Fountain

John checked into a Vegas hotel f
on the strip and while he was I

reading a newspaper, a

gorgeous girl rushed into the

lobby.

But then the man lowered his

knife and he and the lady began
to laugh. What on earth is going

on?

Then she ran over to the water

fountain, took a long drink, and

disappeared.

Three minutes later the same
girl came back for another long

drink. This time she was
followed by a strange looking

There was a mirror in back of

the fountain. And when she

raised her head she saw the

man standing behind her with a

big knife in his upraised fist as if

to stab her in the back.

Lady screams.

"^N. John leaped to the rescue.
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Mirror Vision

The strange behavior of the lady is easily explained.

She had the hiccups, and the man was trying to

frighten her out of them.

Now for a last chance to test your aha! logic abil-

ity. First an operational task problem, then a clever

question based on an unwarranted assumption.

1. Cleopatra keeps her diamonds in a box with a

sliding lid on top. To foil thieves she has a live and

deadly asp inside the box with the jewels.

One day a slave was left alone in a room with the

box for only a few minutes. He managed to steal

several priceless gems without taking the snake out

of the box and without touching or influencing the

snake in any way. He wore nothing to protect his

hands. The theft took only a few seconds. When the

slave left the room, the box and snake were in

exactly the same condition as before except for the

absence of several diamonds. What ingenious

method did the slave use to steal the gems?

2. A lady did not have her driver's license with

her. She failed to stop at a railroad crossing, then ig-

nored a one-way traffic sign and traveled three

blocks in a wrong direction down the one-way

street. All this was observed by a policeman, yet he

made no effort to arrest the lady. Why?
The answers are at the back of the book.
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Chapter 5 ocedural aha!

Puzzles about routines





Since the computer revolution began, the word "al-

gorithm" has become a familiar term in the lexicon

of mathematics. It simply means a procedure—one

made up of a series of well-defined steps— that will

solve a problem. When you divide one big number
by another, you do it by using a division algorithm.

Since computers cannot solve a problem without

being told exactly what to do, the art of computer

programming is mostly the art of constructing effi-

cient algorithms. We say "art" rather than

"technique" because the mysterious aha! plays a

significant creative role in the discovery of good al-

gorithms.

By "good" we mean an algorithm that solves a

problem in the shortest time. It costs money to run a

computer, just as it costs money to hire laborers for a

job. As a result, there are great practical advantages

in having efficient (good) algorithms. Indeed, a

flourishing branch of mathematics called O.R. (Op-

erations Research) is concerned explicitly with find-

ing the most efficient ways for solving complicated

problems.

Although the procedural problems in this section

have been selected because they are entertaining,

you will find yourself painlessly learning many deep
mathematical concepts. The first puzzle, for exam-
ple, brings out vividly what mathematicians mean
when they say two seemingly unrelated problems

are "isomorphic." A carnival betting game involving

numbers turns out to have a strategy with a structure

that is identical with the strategy of playing tick-

tack-toe! This, in turn, is shown to be isomorphic

with a clever word game invented by the Canadian

mathematician Leo Moser. as well as a game played

on a network. And all these games have strategies

based on the 3-by-3 magic square, one of the most

ancient of all combinatorial curiosities.

Other tie-ins with significant concepts include:

Archimedes' law of floating bodies that solves a

hippopotamus-weighing task: an unsolved general

problem in decision theory that follows from a sim-

ple task of dividing household chores: some classic

combinatorial problems suggested by the thief and
bell rope: and important graph theory problems

suggested by the problem of "The Lazy Lo\

Graph theory is the study of sets of points that are

joined by lines. Many practical problems in opera-

tions research can be modeled by graphs. Some
have elegant solutions, such as the minimal span-

ning tree that we learn how to construct by " Kruskal's

algorithm." We consider another closely-related

problem, known as "Steiner's tree problem," that is

still unsolved in general. Since Steiner trees have so

many practical applications, a great deal of work is

now going on in the search for efficient computer al-

gorithms that find such frees.

Steiner's problem belongs to a fascinating class of

problems known as NP-complete. These are prob-

lems that are unsolved in the sense that no good al-

gorithms for them are known, nor is it known if such

algorithms exist. The best known algorithm for find-

ing a Steiner tree for n points is such that, as n in-

creases, the time required for finding the tree grows

exponentially. Indeed, it grows so fast that even for a

relatively small number of points (say a few

hundred) a computer might take millions of years to

produce the best answer!

NP-complete problems are related to one another

in a curious way. If an efficient computer algorithm is

found for one of them it can immediately be applied

to all the others. And if any one of the algorithms is

shown to be such that there is no efficient algorithm,

this also settles the matter at once for all the others.

Mathematicians suspect that the latter is true. A
great amount of work is now going on in searching

for efficient algorithms that will find, not the best

Steiner tree, but one reasonably close to the best.

This section, more than any other in the book,

opens vistas on current research that is being done

by some of the top minds in modern mathematics.
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Fifteen Finesse

When a country fair opens,

everybody gets excited. That is

everybody except the cows.

This year, there's a new game
called "Fifteen" on the carnival

midway.

Mr. Carny: Step right up folks.

The rules are simple. We just

take turns putting down coins

on these numbers from 1 to 9. It

doesn't matter who goes first.

Mr. Carny: You put down
nickels, I put down silver

dollars. Whoever is first to cover

three different numbers that

add to 15 gets all the money on
the table.

Let's watch a typical game This

lady goes first by putting a nickel

on 7. Because 7 is covered, it

can't be covered again by either

player. And it's the same for the

other numbers.

The carnival man puts a dollar

on 8.

The lady's next move is to put a

nickel on 2 so that one more
nickel on 6 will make 15 and win

the game for her.

But the man blocks her with a

dollar on 6. Now he can win by

playing a 1 on his next turn.

The lady sees the threat and
blocks his win with a nickel on 1.

The carnival operator is

chuckling as he places his next

dollar on 4. The lady, seeing

that he can win by playing on 5

next, has to block him again.
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So she puts a nickel on 5 What insight did the Mayor
have v May!'.

how to play fifteen with your

friends and never lose a game

But the man now places a dollar

on 3 and wins because 8 and 4
and 3 add to 15. The poor lady

has lost four nickels

His Honor, the town's Mayor,

was fascinated by the game.

After watching it for a long time

he decided that the carnival

man was using a secret system

that made it impossible for him

to lose except when he wanted

to

The Mayor was awake all night

trying to figure out the secret

system.

Suddenly he leaped out of bed.

Mayor: Aha! I knew he had a

system 1 know how he does it

now. It really is impossible for a

customer to win.
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Tick-tack-toe!

The insight that solves the 15 game is the recogni-

tion that it is mathematically equivalent to tick-tack-

toe! Surprisingly, the equivalence is established by

way of lo-shu, the well known 3-by-3 magic square

that was first discovered in ancient China.

To appreciate the elegance of this magic square,

first list all combinations of three digits (no two alike

and excluding zero) that add to 15. There are just

eight such triplets:

1 + 5 + 9=15
1 + 6 + 8=15
2 + 4 + 9=15
2 + 5 + 8=15
2 + 6+7=15
3 + 4+8=15
3 + 5 + 7=15
4+5 + 6=15

Now look closely at the unique 3-by-3 magic

square:

2 9 4

6 1 8

Note that there are eight sets of cells that each lie

on a straight line: the three rows, the three columns,

and the two main diagonals. Each of these straight

lines identifies one of the eight triplets that add up to

15. Therefore, each winning set of three digits in the

carnival game is represented on the magic square by
a row. a column, or a diagonal.

It is now easy to see that every carnival game is

equivalent to a game of tick-tack-toe played on the

magic square. The carnival operator has the lo-shu

drawn on a card that he can see (but no one else

can) by looking below the playing table. There is

only one lo-shu pattern, but. of course, it can be ro-

tated to four different positions, each of which can
be mirror-reflected to make four other forms. Any
one of these eight forms is as good as any other to

use as the secret key for playing the game.
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As the 15 game proceeds, the carnival operator

mentally plays a corresponding game of tick-tack-

toe on his secret card. If one plays tick-tack-toe cor-

rectly, it is impossible to lose. If both players play

correctly, the game is a draw. However, players of

the carnival game are at an enormous disadvantage

because they do not realize they are playing tick-

tack-toe. This makes it easy for the operator to set

up traps that are winning positions.

To see exactly how this works, let's play through

the game shown in the pictures of this section. The
moves are shown in Figure 1. Even though the car-

nival man went second, he was able to set a trap on
move 6 that gives him a sure win on move 8 regard-

less of how the lady plays on move 7. Anyone who
learns to play a perfect game of tick-tack-toe can.

with the aid of the magic square, play an unbeatable

game of 15.

move 1 move Z

move 3

o

move 4-

X

move 5

o

X O

X

O X o

move G
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The concept of isomorphism (mathematical

equivalence) is one of the most important ideas in

mathematics. There are many cases in which a dif-

ficult problem can be solved easily by transforming

the problem to an isomorphic one that has already

been solved. As mathematics grows more compli-

cated, it also at the same time grows more unified in

the sense that it is simplified by the discovery of

isomorphisms. For example, when the famous

four-color map theorem was proved true in 1976. it

simultaneously proved true dozens of other impor-

tant conjectures, in other branches of mathematics,

that were known to be isomorphic with the four-

color theorem.

To develop further your understanding of the

fundamental concept of isomorphism, consider the

following word game. It is played with these nine

words:

HOT
TANK
TIED
FORM
HEAR
BRIM
WOES
WASP
SHIP

Two players take turns crossing out a word and
initialing it. The first player who crosses out three

words that have the same letter in common is the

winner. It may take a lot of playing before one

realizes that he is simply playing tick-tack-toe! The
isomorphism is easy to see by writing the words in

the cells of a tick-tack-toe board as shown in Figure

2. A careful inspection shows that every triplet of

words with one letter in common is in a straight

line— horizontally, vertically, or diagonally. Playing

this word game is, therefore, the same as playing

either tick-tack-toe or the 15 game.

MOT FORM WOES

TANK NEAR WASP

TIED BRIM SHIP

See if you can think of other sets of nine words

that can be used for this game. The words need not.

of course, be in English. Also, why not use sets of

symbols, such as the set shown in Figure 3?

3

+
* A

fi o
+ A

V o »v

A
r + f +

The best way to play all of these games is to write

each of the digits, words, or symbols on one of nine

blank cards. The cards are spread face up on a table,

and two players take turns drawing a card until one

player wins.

After you fully understand the isomorphism of all

these games, consider the following network game.

It is played on the road map shown in Figure 4.

Eight towns are connected by roads. One player

has a pencil of one color, the other player has a pen-

cil of another color. They take turns coloring the

complete length of any road. Note that some roads

pass through towns. If this is the case, the entire road

must be colored. The first to color three roads that
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enter the same town is the winner. At first glance this

game seems to have no relation whatever to the

games we have analyzed. Actually, it too is isomor-

phic with tick-tack-toe!

The isomorphism is established by numbering

the roads as shown in Figure 4. Each row corres-

ponds to a numbered cell on the magic square.

Each town on the map corresponds to a straight line

of three cells on the magic square. As before, the

isomorphism is complete. Anyone who plays a per-

fect game of tick-tack-toe can also play a perfect

map coloring game.

Figure 5 shows one of the 880 different kinds (not

counting rotations and reflections) of 4-by-4 magic

squares. The magic sum is 34. Would such a square

provide a key for playing a perfect game of 34? That

is. a game in which players alternately choose a

number from 1 through 16 (no number can be cho-

sen twice) until a player wins by getting four num-
bers that add to 34. Is this game isomorphic to a

4-by-4 game of tick-tack-toe played on the magic

square shown? The answer is no. Do you see why?
Is it possible to alter the rules of tick-tack-toe. al-

lowing winning four-cell patterns other than straight

lines, so that an isomorphism can be established

between the two games?
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Hippo Hangup

.ars ago the chief of a

wealthy tribe took very good
care of the tribe's sacred

hippopotamus

The poor tax collector was so

frightened that he could hardly

think

Even. year, on the chief's

birthday, he and his tax

collector would take the animal

with them in the royal barge for

a trip up the river to the tax

collection hut.

After a few hours of

concentration, he suddenly had
a brilliant idea. Can you guess

what it was?

It was the natives' custom to

give the chief the number of

gold pieces that were necessary

to match the mass of the sacred

hippo Beside the hut was a

large balance that could be

loaded with the hippo on one
side and balanced with gold

pieces on the other.

It was really quite simple. The
tax collector put the hippo alone

on the royal barge. He marked
the water level on the outside of

the boat.

The chief fed the sacred hippo

so well, and the hippo grew so

much larger, that one year the

balance broke. There was no
way to repair the beam without

several days of delay.

He then had the hippo removed
from the barge which was then

loaded with gold pieces until the

water reached the same mark as

before. When that happened,

the barge had to contain an

amount of gold equal to the

hippo's mass.

The chief was livid. He told his

tax collector.

The Chief: I want my gold

today. And it must be the proper
amount. If you can't think of a

way to figure it out before

sunset. I'll have you beheaded.
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Eureka!
According to a principle discovered by Archimedes,

a floating object always displaces a volume of water

equal in mass to the mass of the floating object.

Thus, when the hippo is on the barge, the barge

sinks deeper into the water, displacing an amount of

water with a mass equal to the hippo's mass.

Here is a related problem. Suppose that the barge

is floating in a tank small enough so that an accurate

measure of the tank's water level can be made. The

hippo has been replaced by an equivalent mass of

gold coins. The level of water on the side of the tank

is marked.

Now suppose that all the gold coins are tossed

overboard and sink to the bottom of the tank. We
know that the water level on the barge will go down.

But what about the tank's water level? Will it rise or

fall?

Even physicists have difficulty with this question.

Some will say that the water level in the tank re-

mains the same. Others will say that it goes up be-

cause of the water displaced by the sunken gold.

Both answers are wrong.

To see why let's go back to Archimedes' principle.

Every floating object displaces a volume of water

with a mass equal to the mass of the object. Gold is

much heavier than water, therefore the volume of

water it displaces when it is in the barge is much
larger than the volume of the gold itself. But when
the gold is at the bottom of the tank, it displaces only

the amount of water that is equal to its volume.

Since this is much less water than it displaces when
inside the barge, the water level in the tank must go
down.

The physicist George Gamow once explained it

in this dramatic way. Some stars are made of matter

that is millions of times as dense as water. A cubic

centimeter of this matter would weigh many metric

tons. If such a cubic centimeter is tossed overboard
and sinks to the bottom, it replaces only one cubic

centimeter of water—a trivial amount—therefore,

the water level of the tank would go way down. The
situation with the gold is exactly the same, except

that the water level would drop by a much smaller

amount.

After the gold has been tossed out of the barge,

suppose that a new water level mark is placed on
the barge's side. The hippo decides to go for a swim
in the tank. When he enters the water, assume that

the level in the tank rises by 2 centimeters. How
much higher does it rise above the mark on the

barge?

Imagine that you are drinking kinky cola from a

bottle. You wish to leave in the bottle an amount of

cola equal to half the volume of the entire bottle. An
easy way to do this is just to drink until the horizontal

surface of the liquid in the tilted bottle reaches the

spot where the bottle's bottom and sides meet.

Here is a similar problem that must be solved by a

different procedure. A transparent glass bottle has

an irregular shape. It contains a powerful acid. Only

two marks are on the bottle's side. The higher mark
indicates 10 liters of acid, the lower mark indicates 5

liters.

Someone has used an unknown small quantity of

the acid, lowering the liquid's level a trifle below the

10-liter mark. You wish to pour out of the bottle

exactly 5 liters to use in an experiment. The acid

is too dangerous and volatile to pour into other

measuring containers. By what simple procedure

can you make sure that you pour out exactly the

right amount?
The clever solution is to put into the bottle a quan-

tity of small glass marbles until the level rises to the

top mark. Now merely pour out the acid until the

level falls to the lower mark.

122



Dividing the Chores

Mr. and Mrs Buster Jones have

just been married Each has a

steady job. so they have agreed

to share the household chores

To divide the chores fairly, the

Joneses made a list of all the

jobs that had to be done in their

apartment every week.

Buster: I've checked half the

items, my love. Those are the

chores for you to do.

Mother listened while Buster

and lus wife explained the

trouble Suddenly she smiled

and said

Mrs. Smith: I've just thought

of a marvelous solution I'll

show you how to divide the

chores so both of you will be

completely satisfied

Mrs. Smith: One of you splits

the list into two parts so that you
would be willing to take either

part. Then the other person gets

to pick the half he or she wants
first Isn't that simple?

Janet: Sorry Buster, but I don't

think you divided the list fairly.

You've given me all the dirty

jobs and you've taken all the

easy ones.

Then Mrs. Jones went over the

list and marked the jobs she

wanted to do. But Buster

wouldn't agree.

Janet: If you expect me to do
all these things you're out of

your bird.

While they were still arguing the

doorbell rang. It was Mrs.

Jones' mother.

Mrs. Smith: What are you two

love birds fighting about? 1

could hear you shouting as

soon as I got off the elevator.

But it wasn't so simple a year

later when Mother moved into

the apartment. She agreed to

take over one third of the chores

but they couldn't decide how to

divide the list fairly between the

three of them. How do you
suggest they do it?
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Fair Division

The fair-division problem that has been answered is

more usually given in terms of dividing a cake be-

tween two people so that each is satisfied he/she has

at least half. The problem left unanswered is the

same as that of dividing a cake fairly among three

people so that each is satisfied he/she has at least

a third.

The puzzle of fairly dividing a cake into thirds can

be solved as follows. One person moves a large

knife slowly over a cake. The cake may be any

shape, but the knife must move so that the amount
of cake on one side continuously increases from

zero to the maximum amount. As soon as any one

of the three believe that the knife is in a position to

cut a first slice equal to V3 of the cake, he/she shouts

"Cut!" The cut is made at that instant, and the per-

son who shouted gets the piece. Since he/she is

satisfied that he/she got V3, he/she drops out of the

cutting ritual. In case two or all three shout "Cut!"

simultaneously, the piece is given to any one of

them.

The remaining two persons are. of course, satis-

fied that at least % of the cake remain. The problem
is thus reduced to the previous case, and the cake

can be fairly divided by having one person cut and
the other choose.

This clearly generalizes to n persons. As the knife

moves across the cake, the first person to shout

"Cut!" gets the first slice (or it is given arbitrarily to

one of the two or more who shout simultaneously).

Then the procedure is repeated with the n -1 persons
who remain. This continues until only two persons
are left. The final portion of cake is divided as be-

fore, or. if you prefer, simply by continuing the pro-

cedure with the moving knife. The general solution

is an excellent example of proving an algorithm

by mathematical induction. It is easy to see how the

algorithm can be applied to a list of household
chores to be divided among n participants so that

each person is satisfied he is getting his fair share.

John H. Conway, a Cambridge University math-
ematician, has investigated the fair-division problem
when the satisfaction demanded by the participants
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is much stronger. Instead of a procedure that gives

each person what he/she thinks is at least his/her fair

share, is there a procedure which guarantees that

each person is also convinced that no one else has a

share greater than his/her own? If you think about it

you will see that the algorithm given above does not

provide this guarantee if there are three or more
people. Conway and others have found solutions

for this stronger version when there are three par-

ticipants, but so far as we know the problem remains

unsolved for four or more persons.



The Crooked Acrobat

@M=a

In the tower of a medieval

church there are two priceless

old bellropes They pass

through small holes in a high

ceiling. The two holes are 25
centimeters apart and just big

enough to allow the ropes

through

Tony is an acrobat who became
a thief He wants to steal as

much of both ropes as he can by

cutting them with a knife.

Tony's solution was really

! Irsl of .ill ha Bed
together the bottom ends of

both ropes Then he climbed to

the top of one rope Suppose
it's rope A

When he was at the top he cut

rope B about half a meter below
the ceiling He tied what was left

of B into a loop

"N. Tony: How shall I do it
9

1 can't f-
» get to the room above because ' ^

the door is triple locked.

Tony: I'll have to climb the

ropes and cut them as high as I

can. But the ceiling is so high

that if I cut them off one-third of

the way up I can't drop to the

floor without breaking my legs.

Tony thought about it a long

time before he hit on a way to

get almost all of both ropes.

What would you do if you were

he?

Then Tony put one arm through

the loop and hung there while

he cut rope A near the ceiling,

taking extreme care not to let it

fall. Next he passed rope A
through the loop and pulled it

until the knotted ends were at

the top

He was now able to climb down
the double rope, pull it free of

the loop, and make off with all

of rope A and almost all of B.

Could you have done that9
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Rope and Other Tricks

Because this story problem is not sharply defined, it

has more than one solution. The one just given is

probably the most practical, but you may be able to

think of many other procedures that the thief could

have used. Some may be even better than the solu-

tion given here.

For example, the thief could tie a sheepshank knot

at the top of rope B. as shown in Figure 6. Hanging

on B. he cuts A at the top and lets the end fall. Then
he cuts the middle strand of the sheepshank at spot

X. As all mountain climbers know, the knot will hold

until he slides to the ground on rope B. Shaking

rope B will release the knot, giving the thief all of B
except a small portion at the top.

Another possibility: The thief climbs to the top of

rope A. With one hand he grabs B. keeping his

weight on A, then with his knife he weakens A at the

top until he feels the rope is about to break. He then

brings A and B together and hangs by both ropes

while he frays B at the top in the same manner that

he cut A. The two damaged ropes support his

weight while he goes down both of them. At the bot-

tom, a hard yank on each rope snaps them off at

the top.

A third method assumes that the holes in the ceil-

ing are fairly large. First the thief ties A and B to-

gether at the bottom. He climbsA , cuts B at the very
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top. then pushes its end up through its hole. By
reaching up into the hole for A. he grasps the end of

B and pulls it down through the hole until the cut

end is near the floor and the knot is near the top of

the hole for B. He now can grasp and hold together

the top of rope B and what was formerly the bottom

of rope A but now is near the ceiling under the hole

for B. While he hangs on this double rope he cuts

rope A off at the top, directly beneath its hole, then

slides down the double rope, and finally pulls the

rope down.

Here is a clever variation on the previous method.

The ropes remain untied at the bottom. The thief

climbs rope A. cuts B, pushes the end up through

the hole and down through the other hole. The end

is then looped around itself and firmly knotted as

shown in Figure 7. The thief transfers to rope B, cuts

A. and ties the end of A to the knot. He goes down
B. Now he has only to pull on A. Rope B slides

through its own loop, and both ropes are pulled free

of the ceiling.

Still another variant. The thief climbs A, ties a

loop at the top of B. He hangs on this loop, cuts A,

brings its end up through the hole and down
through the hole for B. He ties the end to the loop.

Hanging on both ropes, he cuts B at the top, above

the loop, goes down both ropes, then pulls on

rope B to obtain all of both ropes.

Some of these methods undoubtedly would

cause the bells to ring and the thief to be caught.

One of the virtues of the original solution is that the

thief, by pulling gently on rope B before he hangs in

its loop, can avoid ringing bell B. Of course, when



he first climbs A he also pulls on it slowly before he

starts his climb.

A number of classic procedural puzzles, similar to

river crossing problems, involve the use of a long

rope that goes over a pulley and has a basket at each

end. Here is one version of such a problem that was

a favorite of Lewis Carroll.

A queen and her son and daughter are being held

captive in the top room of a high tower. Outside

their window is a pulley with a rope over it, and a

basket at each end of the rope. The baskets are of

equal weight. The one outside the window is empty,

and the one on the ground contains a stone with

a mass of 30 kilograms. The stone serves as a

counterweight.

There is enough friction in the pulley so that it is

safe for anyone to be lowered in one basket pro-

vided his or her mass is not greater than the mass in

the other basket by more than 6 kilograms. If the dif-

ference is greater than 6 kilograms, they come down
with such speed that the bump at the bottom might

injure them. Of course, when one basket goes

down, the other basket goes up to the window.

The queen's mass is 78 kilograms, the daughter's

is 42 kilograms, and the son's is 36 kilograms. What
is the simplest algorithm—simple in the sense of

the fewest number of steps—by which they all can

get safely to the ground? The basket is large enough
to hold any two people, or one person and the

stone. No one assists the prisoners in escaping, nor

can they help themselves by pulling on the rope. In

other words, the pulley operates only when the

mass in one basket exceeds the mass in the other.

The simplest solution is most easily found by

simulating the problem. Write the masses on sepa-

rate cards, and move the cards up and down.
You will not be able to get all three persons down in

fewer than nine steps. Here's how it's done:

1. Son down, stone up.

2. Daughter down, son up.

3. Stone down.

4. Queen down, stone and daughter up.

5. Stone down.

6. Son down, stone up.

7. Stone down.

8. Daughter down, son up.

9. Son down, stone up.

Problems of this sort are sometimes made more
difficult by including animals that cannot climb in

and out of the baskets without the help of persons.

Lewis Carroll proposed the following version of the

preceding problem. In addition to the Queen, son.

daughter and stone there are at the top of the tower a

pet pig of mass 24 kilograms, a dog of 18 kilograms,

and a cat of 12 kilograms. The restrictions on differ-

ences in mass between the two baskets remain the

same, but now there must always be someone at

each end to put the pets in and out of the baskets.

See if you can find a solution in as few as 12 steps.

Note that in both problems the last person to step

out of the basket must move aside quickly, other-

wise the basket with the stone may drop on his/her

head!
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Island Crackup

Orville has parked his car at the

edge of a small lake.

Orville: This is a nice flat spot

for flying my radio controlled

model plane. There are no trees

or rocks except that one big tree

on the little island in the middle

of the lake.

Orville tried to maneuver his

plane around the tree, but he

misjudged the distance and the

plane crashed into the tree and

fell to the ground.

Orville was very upset. He
wanted to get his expensive

plane back, but the water was
very deep and he didn't know
how to swim. He had a rope in

his car that was a few meters

longer than the widest part of

the lake but he didn't see any
way to use it.

All at once Orville had a flash of

insight.

Orville: Why there's nothing

to it. I'll get wet. but I'll have my
plane back in no time.

What procedure did Orville

think of?
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Thinking Instead of Swimming
Orville retrieves his model plane by the following in-

genious procedure. He ties one end of the long rope

to the front bumper of his car. which is parked close

to the edge of the lake. Holding the free end of the

rope he walks completely around the tree at the is-

land's center. He tightens the rope and ties the free

end to the bumper. This creates a firm double rope

stretched between car and tree. Although Orville

can't swim, he can pull himself through the water,

hand over hand along the double rope, and easily

get over to the island and back.

Another splendid old puzzle also deals with the

task of using material on hand for getting from a

shore to a small island. In this case the "island" is in

the center of a square lake as shown in Figure 8. A
man wishes to get from the shore to the island. As

before, he cannot swim. Two identical planks are on

the shore, but each plank's length is a trifle too short

to extend from the side of the lake to the island.

How does he manage to use the two planks for get-

ting to the island?

Figure 9 shows the solution.

Let us generalize by assuming there are more
than two identical planks. Can the planks be shorter

than those used before, and still produce a bridge to

the island?

You may have little difficulty thinking of the

3-plank bridge shown in Figure 10. but not many
persons are likely to discover how five or eight

planks can be still shorter and still span the water.

Figure 11 shows the 8-plank solution.

We can idealize the problem by making the island

a point and the planks line segments, allowing them
to "overlap" by just touching one another. Imagine

the procedure extended to an infinite number of

identical planks. The limiting case is shown in Figure 12.

If the side of the square lake is 2 units, then V2/2 is

the shortest length each plank can be, provided

there is an infinite number of them. This can be

proved by applying the Pythagorean theorem.

You may enjoy investigating similar idealized

plank problems for "lakes" with boundaries other

than squares, such as circles and regular polygons.
129



130



The Lazylover

L2

Jack fancies himself as the

world's greatest lover He is

planning to rent an apartment in

Washington DC.

Jack has three girl friends who
live in the city and he wants to

live in a spot that will be as close

as possible to all three.

Jack marked the corners where
the girls lived on a city map.
Jack: Let's see now. 1 must pick

a spot to live so that the sum of

the distances to each girl's

house is as small as possible.
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Jack tried and tried, and was
about to give up when he

shouted.

Jack: Aha! I see an easy way to

find the spot I'll live in

Jack: Anita and Bunny would
vote "yes" for this move
because I'd be closer to them
Candy would vote "no " But

the distance I save is more than 1

lose, so I'll accept the majority

vote

So whenever a majority vote

was "yes." Jack made the

move. And whenever it was
"no." he tried a different move
Eventually he reached a corner

where he couldn't move
without a "no" vote This was
where he decided to live

Luckily. Jack was able to rent an

apartment at just the right place

Then, a week later. Bunny
moved 7 blocks away

Jack: Holy cow! Now I'll have

to move to a new location

But when Jack checked the

map he was surprised to find

that he could stay right where he

was Can you explain how this

could happen?
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Jack's clever procedure was
to ask himself how the girls

would vote if he moved from

one place to another He started

with a spot that looked

reasonable and then considered

moving a block east
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Voting Algorithm

If Bunny moves seven blocks due east, her new
residence has no effect on the location of Jack's

residence. Indeed, she could move any distance

whatever east, and Jack's present apartment will

continue to be at the optimal spot.

You can better appreciate the efficiency of the

voting algorithm if you try it on larger grids on which

more than three spots are marked. You will find that

the procedure quickly locates the position x that

minimizes the sum of the distances for x to all spots,

but only provided the number of spots is odd. Why
does it not work when the number is even? The

answer is that if the number is even a tie vote is pos-

sible. Whenever a tie vote occurs, the procedure

halts.

You may wish to investigate the following related

questions:

1. Can you invent a procedure that applies when
the number of spots is even?

2. Under what conditions can the displacement

of one or more spots have no influence on the loca-

tion of x?

3. Is the voting procedure affected if street widths

are taken into account?

4. Is it affected if the spots, including x, are not

confined to street intersections?

5. Will the voting procedure work if the grid is

composed of straight streets that may have any
orientation on the plane?

6. Will the procedure work if streets are crooked

or curved?

Athough the voting procedure applies to any sort

of network, it fails on the unmarked plane because

travel is no longer confined to certain paths. The
general problem is this. Given n points on the plane,

find a point x such that the sum of the straight-line

distances from x to all the points is as small as possi-

ble. For example, consider three cities. A, B and C.

Where should an airport be located so that the sum
of the distances by plane to the three cities is mini-

mal? This obviously is not the same as asking for a

minimal sum of distances to the cities by car. In other

words, the ideal location for an airport may not be

the same as an ideal location for a bus station.

The answer, which is not easy to prove geometri-

cally, is that the airport should be where the three

lines from it to the three cities make three 120 c
-angles.

In the case of four cities, if they are the corners of a

convex quadrilateral, the airport should be at the in-

tersection of the two diagonals. This is not hard to

prove. The general problem of locating x for any
number of given points on the plane is more
difficult.

Can you think of a simple mechanical device

(analog computer) that quickly finds the location of

x for any three points on the plane? Let the plane be

represented by the surface of a table. At each of the

three spots we drill a hole through the tabletop. Tie

the ends of three pieces of string together. Pass the

free ends through the holes, one to a hole, and at-

tach weights of equal mass to each end. The equal

forces on the strings correspond to the three equal

"votes" by residents at the three spots. The position

assumed by the knot above the table indicates spot

x. This works, of course, because of an isomor-

phism between the problem's mathematical struc-

ture and the structure of the physical model.

Let us now complicate our original puzzle. Sup-

pose that instead of a single girl friend at spots A, B.

C, these spots represent buildings in which school

children are living. There are 20 children at A. 30 at

B, and 40 at C. All attend the same school. Where
should the school be located so as to minimize the

sum of the walking distances of all 90 pupils?

If their walking is restricted to the streets of a city.

we can apply the same voting procedure as before,

allowing each child a single vote. This will soon find

the spot where the school should be located. How-
ever, if the three buildings are on a plane, and the

students may walk to school in direct straight lines

(such as children in the country who can cut across

open fields ), can we modify our analog computer so

it works as well as before?

Yes. Instead of equal weights, we use unequal

weights with masses that are proportional to the
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number of pupils in each building. The strings will

assume a position at which the knot locates the

school.

Will our computer work if the number of pupils at

one building is more than the sum of the pupils at

the other two? For example: 20 children at A. 30
at B, and 100 at C? Yes. it works just as well. The
weight corresponding to the 100 students will pull

the strings until the knot catches at the top of hole C.

This indicates (correctly!) that the school should be

at site C.

Will our analog computer work for more than

three spots? Yes. it generalizes to n spots even when
they are not corners of a convex polygon. However,

friction becomes such a factor that with more than

three spots the system does not work efficiently.

Graph theory is a rapidly growing branch of

mathematics concerned with vertices (points) con-

nected by lines. There are dozens of important

graph theory applications to the finding of minimal

paths. Some have been solved, some remain un-

solved. An example of a famous solved problem is

the following.

Given n points on a plane, join them to one
another by straight lines so that the total length of

the network is as short as possible. We are not al-

lowed to add new vertices to the plane. Such a net-

work is called a "minimal spanning tree." Can you
invent an algorithm for finding such a network?

Kruskal's algorithm (named after Joseph B. Krus-

kal who was the first to give it) finds the minimum
network as follows:

Determine the distances between every pair of

points, and label these distances in increasing order

of lengths. The shortest is 1. the next shorter is 2,

and so on. If two distances are equal it does not mat-

ter which is numbered first. Draw a straight line

between the two points separated by distance 1. Fol-

low with straight lines for distances 2. 3. 4. 5. and so

on. Never add a line that completes a circuit. If draw-

ing a line produces a circuit, ignore that pair of points

and go on to the next higher distance. The final re-

sult is a minimal spanning tree connecting all points.

Such spanning trees have interesting properties.

For example, the lines will intersect only at the

spots, and no more than five lines will meet at any
point.

Minimal spanning trees are not necessarily the

shortest networks joining n points. Remember: we
are restricting the network to one that does not have

additional vertices. If new vertices are allowed, the

network may be shorter. A simple example is pro-

vided by four corners of a unit square. The minimal

spanning tree consists of any three sides of the

square (Figure 13 left). Suppose we are allowed to

add new vertices. Is there a network joining the four

corners that is shorter than 3?

Most people assume that the minimal network

consists of the square's two diagonals (Figure 13

center), but this is not the case. Figure 13 right shows

the solution. The two diagonals of the square have a

total length of 2V^ = 2.82^. The network in Figure

13 has a shorther total length of 1 + V3~= 2.73 \

The general problem of finding a minimal length

network connecting n points on the plane, when
new vertices are permitted, is known as Steiner's

problem. It is solved in special cases, but there is no

known efficient algorithm that locates the "Steiner

points" (new vertices) of a minimal Steiner tree that

connects n points on the plane. The problem has

many engineering applications, from the design of

microprocessor chips used in electronic calculators

to the finding of minimal networks for railroads,

airplane routes, telephone lines and other forms of

travel and communication.
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Sanitary Surgeons

Deep in a tropical jungle there is

a hospital where three surgeons

—Jones. Smith, and Robison

—

are on staff.

Dr. Jones: Only two pairs? If

I operate first both sides of my
gloves could be contaminated.

If Smith operates next both
sides of his gloves could be con-

taminated. Then no sterile

gloves will be left for Robison.

The local tribal chief is sus-

pected of having a rare disease

that is highly infectious. The
three surgeons must operate on

him. one at a time. To compli-

cate matters any one of the

three doctors could have caught

the disease while examining the

chief.

Each surgeon must wear rub-

ber gloves when he operates. If

he has the disease, its germs will

infect the side of any glove that

touches his hand. And if the

chief has the disease, it will con-

taminate the outside of any

glove worn.

The operation was about to

start when Miss Kleene. the

nurse, rushed into the room.

Nurse Kleene: I have bad
news for you. Doctors.

Nurse Kleene: We have only

two pairs of sterile gloves left.

One pair is blue, and the other

pair is white.

Suddenly Dr. Smith made a

suggestion.

Dr. Smith: Suppose I wear
both pairs of gloves, the blue on
top of the white. One side of

each pair might get infected, but

each pair would still have one
side that was sterile.

Jones caught on quickly.

Dr. Jones: I see. I can wear the

blue pair, sterile side in. Then
Robison can reverse the white

pair and wear them sterile side

in as well. None of us will run

the risk of catching the disease

from the chief or from each

other.

Nurse Kleene: That's fine for

you doctors, but how about the

chief? If any of you is infected,

and the chief isn't, he could

catch the disease from one of

you.

The surgeons were floored by

this remark. What should they

do? A moment later Miss Kleene

exclaimed.

Nurse Kleene: I know how
all three of you can operate

without you or the chief running

any risk of catching the disease.



None of the doctors could figure

out what Miss Kleene had in

mind But when she explained,

they all agreed that it would
work Can you figure it out':'

Dblue

Inside and Out
Before explaining Miss Kleene's brilliant procedure,

lets make sure we understand the first procedure

that protects only the surgeons.

Let Wl stand for the insides of the white pair of

gloves, and W2 for the outsides. Let Bl stand for

the insides of the blue pair, B2 for the outsides.

Dr. Smith puts on both pairs of gloves, first the

white, then the blue. Sides Wl can become con-

taminated by him, and sides B2 may become con-

taminated by the tribal chief. After Smith operates

he removes both pairs of gloves. Dr. Jones puts

on the blue pair with sterile sides Bl touching his

hands. Dr. Robison then turns the white pair inside

out and wears them with sterile sides W2 touching

his hands.

Now for Miss Kleene's procedure.

Dr. Smith wears both pairs of gloves as before.

Sides Wl and B2 may become contaminated,

while W2 and Bl remain sterile.

Dr. Jones wears the blue pair with sides Bl

against his hands.

Dr. Robison turns the white pair inside out and

puts them on with sides W2 against his hands. Then

he puts the blue pair on. over the white, with sides

B2 on the outside.

In all three cases only sides B2 touch the chief,

therefore he runs no risk of catching the disease

from any of the surgeons.

So far as we know, this problem has not yet been

fully generalized. Given n surgeons who have to

operate on k patients, what is the minimum number

of pairs of gloves that will guarantee that neither

they nor the patients run a risk of catching the dis-

ease from one of the others?
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Chapter 6 rd aha!

Puzzles about letters, words, and sentences





Mathematicians tend to be addicted to word play.

For example, there is a famous footnote in a sober

textbook Graphical Enumeration (by Frank Harary

and Edgar M. Palmer) pointing out that "Read

and Wright are both wrong:" the reference is to a

claim by mathematicians Ronald C. Read and E.M.

Wright. We could fill a book with other examples.

It is not hard to understand why mathematicians

enjoy such jokes. Words are nothing more than

combinations of letters, in an accepted order, just

as sentences are strings of words that are linked to-

gether according to the formation rules of syntax.

Language, therefore, has about it a strong flavor of

combinatorial mathematics, with many striking re-

semblances to combinatorial number theory. Word
squares are similar to magic number squares. The

use of punctuation marks in a sentence corresponds

to the use of mathematical symbols (parentheses,

plus and minus signs, and so on) to "punctuate" a

sentence of algebra.

All of the above pleasant analogies are examined

in this section, as well as many others. The palin-

drome— a sentence that reads the same backward

as forward— is similar to a palindromic number. As

we shall see. there is a notorious "palindrome con-

jecture" in number theory that is still not settled. And
there are interesting theorems about palindromic

primes and palindromic numbers that are squares

and cubes. Other puzzles in this section involve the

dividing of words into parts in much the same way
that sums are divided into parts in partition theory, a

branch of number theory.

If we view letters as geometric figures, a host of

unusual puzzles arise. We will see how some prob-

lems of this type concern two important kinds of

symmetry: 180-degree rotation symmetry (some-

times called "two-fold symmetry"), and mirror re-

flection symmetry. We will discover that certain

words, even entire sentences, can be turned upside

down without altering their pattern. The fact that

each digit resembles a letter when rotated 180 de-

grees is the basis for a type of amusement that has

become very popular since pocket calculators be-

came common.

Let us view the letters not as rigid patterns that

keep their shapes when rotated and reflected, but

as topological figures that can be twisted and de-

formed like elastic strings. This. too. leads to recre-

ational problems that you will find explored here,

and which give basic insights into topological

structure.

Finally, we will encounter word problems that in-

troduce some important conceptions of mathemati-

cal logic. A trivial riddle about the opposite of "not

in" ties in with rules about negation in logic, and the

handling of negative signs in algebra. Many of our

ridiculous riddles become clear only when you rec-

ognize that you cannot talk about the words and

sentences of a language without expressing your-

self in a higher-level language that logicians call a

"metalanguage"

We intended this final section of the book to be

the lightest and the funniest. Have you wondered

why a section on word play appears at all in a book

about mathematical recreations? We have already

given the answer. It is not just that mathematicians

love word play, or that it has a combinatorial aspect,

but the fact that even word puzzles can lead into un-

expected and significant aspects of serious mathe-

matics.
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Dr. W.O. Wordle

Meet Dr. Wally O. Wordle. a

famous mathematician.

Dr. Wordle: Did you get those

two quickies? The opposite of

"Not in" is "in". And the word
all Yale graduates spell incor-

rectly is "incorrectly". There's

much more of the same on
today's exciting show. So let's

bring on our first guest.

Dr. Wordle is the host of

'Winning Wordles'. a popular

TV game show that he
invented. Guests on the show
win fabulous prizes when they

solve Dr. Wordles clever word
puzzles.

Dr. Wordle: Word play is just

like mathematics. The symbols
are letters and words. And the

rules of spelling and grammar
tell us what particular combi-
nations are allowed.

Dr. Wordle: Let me give you a

couple of examples. First, what
is the opposite of "Not in"?

Dr. Wordle: And what 11-letter

word do all Yale graduates spell

incorrectly?
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Not Not
There is a strong tendency to think that the opposite

of "not in" is "out." but. of course, the opposite is

"not not-in" which is the same as "in." Two nega-

tives make a positive in grammatically correct En-

glish as well as in multiplication and formal logic. In

fact, you sometimes encounter a chain of three or

more negatives. The rule is that any even number of

negatives make a positive, and any odd number of

negatives make a negative. Here are some exam-

ples of statements that illustrate the rule:

1.x =(7-3) -[(-4+1)] 3
.

2. Headline in New York Times (May 6. 1965):

"Albany Kills Bill to Repeal Law Against Birth Con-

trol."

3. The philosopher Alfred North Whitehead once

thanked a speaker for having "left the darkness of

his subject unobscured."

4. A young man received the following letter from

his girl: "I must explain that I was only joking when I

wrote that I didn't mean what I said about reconsid-

ering my decision not to change my mind. I really

mean this."

5. Mathematics teacher: "I can't seem to make
you understand the meaning of negation, so I'm not

going to try any more."

Student: "Ah. I see what you mean, and I'm

pleased that you are willing to continue."

6. In the colloquial dialect of certain ethnic

groups, double negatives are often used, in viola-

tion of the rule, to reinforce a negative. Here are a

few examples:

"Don't give me no back talk."

"We ain't never going to stand for nobody
using no double negatives around here."

"I got spurs that jingle-jangle jingle.

As I go riding merrily along.

And they sing, 'Oh ain't you glad you're single."

And that song ain't so very far from wrong."

7. A professor of logic tells his class that he knows
of no natural language in which two positives, in vio-

lation of the standard rule, are used to mean a nega-

tive. Sarcastic voice from rear of room: "Yeah, yeah."

The riddle about the word "incorrectly" catches

people off guard because they take the word to

mean an adverb modifying the verb "spell" rather

than the word itself. In modern semantics, any ques-

tion about a word or sentence is in what is called a

"metalanguage." while the word or sentence be-

longs to what is called an "object language." The
two languages are frequently distinguished by put-

ting quotation marks around statements in an object

language. For example, quotation marks around

"incorrectly," in the original wording of the ques-

tion, would have made the question less ambigu-

ous. Confusion often results by failing to recognize

the two levels of language. Here are some puzzling

statements that illustrate this:

What-do-you-think was the horse's name.

How Long is a Chinese mathematician.

Can you explain the meaning of this sentence?

That that that that that signifies is not the that to

which I refer.

And how about this one? Wouldn't the sentence

"I want to put a hyphen between the words Fish and

And and And and Chips in my Fish-And-Chips

sign" have been clearer if quotation marks had been

placed before Fish, and between Fish and and. and

and and And, and And and and, and and and And.

and And and and. and and and Chips, as well as

after Chips?
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Shee Lee Hoi

/S+T
»04- 337 331+5"

Dr. Wordle picked Mr. Hoi as a

guest as soon as he found out

his phone number Do you
see the unusual connection

between Shee Lee Hoi and his

phone number?

^3+T€£. Lee hoT^
337 33L+5-

Turn Mr. Hoi's name upside

down and it becomes his phone
number.
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IOH 331 33HS

Every electronic numeral can be interpreted as a

letter when viewed upside down. This is the basis of

scores of stunts with pocket calculators that have

become popular in recent years.

The first of these stunts, which apparently started

the craze, had a story line about the Arab- Israeli

war. The following version was devised by Donald

E. Knuth. a well-known computer scientist: 3 3

1

Arabs and 33" Israelis were fighting over a square

of property that is 8,ic 1 meters on the side. Who
won? To find out. obtain the square oi 33" and

add it to the square of fl.V <? 1 to get the sum
1 1.0 11.3HS. When this is looked at upside

down it spells "SHELL OIL".

Entire books have been written about numbers

that become words when viewed upside down in a

calculator's read-out. The following chart shows

how each digit, when inverted, resembles a letter:

5 S
f 1 6 g

? Z 7 L
3 E 8 B
v h 5 b

With the aid of this chart, you'll find that it is not

hard to make up amusing calculator problems of

your own that end with an answer that can be read

as an appropriate word when the machine is turned

upside-down. If you like, the decimal point can be

used to separate two words.

Here are some good examples:

1. What is the capital of Idaho? 4 times 8.777.

2. What did the astronaut say when he first

stepped out on the moon? 13.527 divided by 3.

3. The more you take away, the larger it grows.

What is it? V13719616.
4. If Bourbon whisky is $8 a bottle in Chicago,

what is Scotch in New York? 8 times 4001.

5. What did Dr. Livingstone say after Stanley said.

"Dr. Livingstone. I presume?" 18 times 4. then di-

vided by 3 and the result decreased by 10.

6. Are there similar calculator stunts that use

foreign words? Add 1 to the previous answer.
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Elusive Eight

ElfflE

Dr. Wordle Mr. Hoi. our

first problem uses these 18

chopsticks For S5 can you
remove just 8 sticks and
leave "8"'

BfflE

Mr. Hoi: Confucius say. "A

problem that cannot be solved

should be kissed and left."

Dr. Wordle Don't give up yet

Mr Hoi. Remember, this is a

word game show. "Eight" is

a word that can be spelled

Mr. Hoi I thought of that. But

"eight" has too many letters.

There's no way to spell it.

Dr. Wordle Time's up. Too bad

you forgot that "eight" can be

spelled another way



Arithmetic Puns
The solution to the chopstick puzzle required the

insight that the word which Professor Wordle

pronounced like the name for the numeral "8"

can also be taken as the word "ate".

Here is a variant of the same puzzle that calls for a

different aha! The chopsticks (or matches) are ar-

ranged the same as before, but this time the task is to

take away 13 sticks and leave 8. The solution is to

leave the numeral 8 as shown below:

I •

II JL

If your friends find the two previous puzzles too

easy, try this more difficult version on them. The
starting pattern again is the same. Take away 7 sticks

and leave 8. The solution this time is to form an

expression that equals "8":

•-

J

^== t

9 1

II 1 '1

.

m i

•

—

1

1

1

i
1

.

m

11

i I

• •

There are endless other puzzles with sticks such

as chopsticks, matches, toothpicks, coffee stirrers,

soda straws, pencils, or whatever is most conve-

nient. Here are two more to try on friends.

Arrange 12 sticks like this:

• •

The task is to move one stick to make a correct

equation. Here are four of many different solutions:

Start with the sticks as shown below:

Take away four sticks to leave a word that spells

what matches are made of. Most people try to make

"WOOD"; however, the solution comes with recog-

nizing a play on the word "match":
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World's Smallest Crossword

q. to *M^or 2Tb imploy
5! Eav«0*o*»«fc S.C1C1 MA* TWo

Dr. Wordle Now Mr. Hoi.

here's a chance to win $20. This

crossword puzzle is so simple

that it only has six definitions.

You have just three minutes to

figure it out.

After three minutes, Mr. Hoi had
done no more than guess the

first row.

Mr. Hoi: Sorry, Dr. Wordle. I

can't think of any other words

that make sense.

NceiroNTAu wrnwt
insect 1" fcTiMceai

<|. TO ANHOY 2 Tb "MPLOY
.j'. Ea^reoeoppie 5. Cici h»&two

Dr. Wordle: We're sorry too

Mr. Hoi. You didn't see that all

three horizontal words were the

same. Remember, the same
word can have different

meanings.

Dr. Wordle: While we're

waiting for our next guest here's

another quickie for you home
viewers. Can you take the

seven letters in the two words
"NEW" and "DOOR" and
rearrange them to make one
word?
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Squares and Anagrams
Crossword puzzles are combinatorial problems that

involve intersecting sequences of symbols. Now
that computers can store in their memory all the

words of a natural language, it is possible to write

computer programs that solve crossword puzzles

with great efficiency. Programs also can be written

that will construct crossword puzzles.

Most crossword puzzles have patterns with

"holes" — black cells that serve to separate words.

An ancient and pure form of crossword, which has

no holes at all (like our joke crossword puzzle), is

known as a "word square." Here, for example, is a

word square of order 4 (four-letter words):

K I

I D

N

N X T

T

four words ("king." "idea." "next" and
"gate" ) can be read both horizontally and vertically.

If the horizontal and vertical words differ, it is called

a "double word square":

ORAL
MAR

V

N

N

T

The higher the square's order, the more difficult

it is to compose word squares of either type. You

might enjoy trying to compose some order-

4

squares. If successful, try orders 5 and 6. Order-7

squares are extremely difficult. Although squares

of orders 8. 9 and 10 have been constructed by

word play experts, they almost always require

the use of unusual, obscure words.

Dr. Wordle's "NEW DOOR" puzzle belongs to a

puzzle category called "anagrams"— the rearrang-

ing of the letter of a word, phrase or sentence to

make a new word, phrase or sentence. (For the

solution, see the back of the book.) There are

thousands of amusing anagrams in which the

second permutation of letters has a meaning that is

related in some appropriate way to the original

permutation:

Lawyers: Sly ware.

Halitosis: Lois has it!

Punishment: Nine thumps
The Mona Lisa; No hat, a smile.

One hug: Enough?
The eyes: They see.

The nudist colony: No untidy clothes.

Maybe you can invent some better ones. It also is

fun to rearrange the letters of your own name, or a

friend's, or the name of a famous person to make an

appropriate phrase or sentence. Here are two classic

anagrams of William Shakespeare:

I ask me, has Will a peer?

We all make his praise.
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Mary Belle Byram

Dr. Wordle's next guest is Man,'

Belle Byram. What is so

unusual about her name?

Maybe the words on this sign

will help you. They have the

same property.

ADA
Can you compose other names of people that have

palindromic symmetry? (It's not as easy as you
might think!) here are some examples:

Leona Noel

Nella Allen

Blake Dana de Kalb

Edna Lalande

Duane Rollo Renaud
N.A. Gahagan
N.Y Llewellyn

R.J. Drakard. Jr

"Hat. Utah" and "Mary Belle

Byram" are palindromes—
sequences of letters that

read the same backwards
and forwards.
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Picture Puzzles

Dr. Wordle: Welcome to the

Show. Mary Your first problem

involves pictures Each repre-

sents a familiar mathematical

term.

Mary: I don't know what you

mean. Dr Wordle

Dr. Wordle: Well here's an

example. This picture stands for

the geometrical constant "pi
'

Mary: Ohhh. I see. I just have to

guess what the picture stands

„ for.

Dr. Wordle: Right you are.

Now try to guess the others for

$10 each. Here's the first.

Mary: I've got it. It's "polly

gone", or "polygon
"

Dr. Wordle: Yes. it is. Now
what about the second one?

Mary: Hmm. The lips are

shaped like an "E." Is it

"ellipse"?

Dr. Wordle: It sure is, Mary.

See if you can get this last one.

Mary: Oh. that one's easy. It's a

"radical."
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Picture Words
Pictures that represent words in some puzzling way
are called rebuses. You might try your skill at invent-

ing other rebuses for other familiar mathematical

terms.

A cousin to the "rebus" is the writing of a word so

that it somehow depicts the meaning of the word.

The term "mathemadics" has been used for math-

ematical words and phrases designed in this way.

Figure 1 will give you the basic idea. Mathemadics

is a refreshing variant of the older rebus puzzle.

Drawing words so that they become symbolic pic-

tures of their meaning is an important aspect of

modern advertising, especially in advertising for

motion pictures. Movie titles are frequently printed

in such a way that the lettering symbolizes the title's

meaning. (See Figure 2.) Artists often do the same
thing with titles on book jackets. The use of symbols

in traffic signs on streets and highways is another in-

stance of how words and symbols can be combined
to dramatize the word's meaning.

Examples of mathemadics

BIS ECT

W M

1L aTA'

LIMI T p In.

POME NT

5Ub.

tP
AN

5
LA tI

oM

PE RI OD IC

A
D
D

MULTIPL
Y

RO
T

A British poster

N oiT

5
E
C

INTER
I

N

MAT
RIX
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Crazy Sentences

STRAW'1 WO, TOO
STUPID A FAD X
PUT 'oOOT ON
wARfS

Dr. Wordle: Your next task, my
dear, is to tell me what is so

remarkable about each of the

sentences I'm going to show
you You'll get $20 for each one

you solve.

Dr. Wordle: Here's the first

one Read it carefully And
please stop tickling me.

Mary: I can't help it. You're so

handsome that that 1 want

you to be tickled pink with me

X DO **OT <"tuCM emtoy
SrKiMG DA.NOMC qORlLLAS

Dr. Wordle: Tickling me isn't

going to get you $20
Mary: Alright then. This

sentence is a palindrome just

like my name. It spells the same
both ways.

Dr. Wordle: Right again Mary,

dear Now for the last one

Mary: I see the pattern Each
word has one more letter than

the word before

Dr. Wordle: Splendid. Here's

another $20. What are you
going to do with all that money?
Mary: I'm taking you to dinner

tonight, sweetie, then to my
apartment to show you my
collection of dictionaries.

rp -±
NOW NO 5WIM9 ON MON

Dr. Wordle: Very good, my
love How about this one?

Dr. Wordle: Alright. Mary.

That's a good idea. See you
then. Now we have time for

another quickie before our next

guest comes on

Mary: Let's see. It's almost a

palindrome but not quite.

Hmm. I've got it. It reads the

same when you turn it upside

down.

Dr. Wordle: What five-letter

word does every Harvard

graduate pronounce "wrong"?
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More Palindromes
Thousands of marvelous palindromes have been

constructed in every major language. They are not

hard to invent, and you may wish to try creating

some yourself. Here are a few famous examples:

A man. a plan a canal —Panama!

Egad! A base tone denotes a bad age.

Was it a can on a cat I saw?

Live dirt up a side track carted is a putrid evil.

Ten animals I slam in a net.

In the classic palindrome, letters are the units.

Palindromes can also be written in which words are

the units. Here are two excellent specimens by J. A.

Lindon. a British expert:

1. You can cage a swallow, can't you. but you

can't swallow a cage, can you?

2. Girl bathing on Bikini, eyeing boy. finds boy
eyeing bikini on bathing girl.

Poems have also been written by palindromists in

which either the letter is the unit, or the word, or the

line.

Palindromes are analogs of what mathematicians

call bilateral symmetry. Humans and most animals

are bilaterally symmetric. Many man-made objects

also have bilateral symmetry: chairs, for example,

coffee cups, and thousands of other things. Any
bilaterally symmetric figure, on the plane or in three

dimensions, looks the same in a mirror. This is the

analog of the palindrome's property that if you re-

verse the order of its symbols, the sequence is un-

changed.

Numerals, like letters, also are symbols, and a

palindromic number is simply a number that is the

same when you read its digits in both directions.

There is a famous unsolved number problem called

the "palindrome conjecture." Take any number
whatever, in decimal form, reverse it, and add the

two numbers. Now repeat this procedure by revers-

ing the sum and adding it to itself, and continue

doing this until you get a palindrome. For example.

68 generates a palindrome in just three steps:

68
+ 86

152

154

+ 451

605
+ 506

1.111

The palindrome conjecture is that no matter what

number you start with, you will arrive at a palin-

drome after a finite number of steps.

No one yet knows whether the conjecture is true

or false. It has been shown false for all numbers in

binary notation, or any notation based on a power

of 2. It has not yet been proved for numbers in any

other notation.

The smallest decimal number that may be a

counterexample to the conjecture is 196. Comput-
ers have carried it to hundreds of thousands of steps I

without obtaining a palindrome, but nobody has yet I

proved that it will never produce one.

Mathematicians have also investigated palin-

dromic numbers that are also primes (numbers with

no factors except 1 and themselves). It is believed

that there are an infinite number of such palin-

dromic primes, but this is not yet proved. It is also

conjectured that there are an infinite number of

palindromic prime pairs such as 30.103 and 30.203.

in which all digits are the same except the middle

digits, which are consecutive.

A palindromic prime must have an odd number
of digits. Every palindromic number with an even

number of digits is a multiple of 11, and therefore

not a prime. Can you prove that such a number is

always divisible by 11? (Hint: A number is divisible

by 1 1 if the difference between the sum of all digits in

even positions . and the sum of all digits in odd posi-

tions, is a multiple of 11.)

Square numbers are unusually rich in palin-

dromes, such as 11 x 11 = 121. A square number is

much more likely to be palindromic than an inte-

ger picked at random. The same is true of cubes.

Moreover, a palindromic cube is almost certain to

have a cube root that is also a palindrome (example:

11 x 11 x 11 = 1331). A computer search for palin-



dromic fourth powers has failed to find a single one ations. What word do Califomians pronounce best?

that has a fourth root that is not a palindrome. No Of all seven-letter words, which is spelled easiest?

one has yet found a fifth power that is a palindrome. And so on.

It is conjectured that there is no palindromic number
of the form x \ where k is greater than 4.

The sentence "NOW NO SWIMS ON MON," is

one of the longest ever discovered with "two-fold

symmetry" — that is. it is unchanged by a 180-

degree rotation. There are many examples of single

words with the property, either printed or in long-

hand. Figure 3 shows a few.

Invertible signature and upside-down words

WMM
OYUMTYhp

bunq

NOON

The sentence. "I do not much enjoy dancing

gorillas", is called a "snowball" sentence because

successive words grow in size like a rolling snowball.

Here are two even more remarkable specimens:

I do not know where family doctors acquired illegibly

perplexing handwriting; nevertheless, extraordinary

pharmaceutical intellectuality, counterbalancing inde-

cipherability. transcendentalizes intercommunications- in-

comprehensibleness.

I am not very happy acting pleased whenever prominent

scientists overmagnify intellectual enlightenment, stout-

heartedly outvociferating ultrareactionary retrogressionists.

characteristically unsupernaturalizing transubstantiatively

philosophicoreligious incomprehensiblenesses

anthropomorphologically.

The answer to Dr. Wordle's last quickie is: The
five-letter word that Harvard graduates pronounce
wrong is the word "wrong" . It is easy to think of vari-
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Nosmo King

The next guest is Nosmo King.

President of a cigarette com-
pany in Hackettstown. New
Jersey. Do you see why Dr
Wordle was amused by his

name?

60 ajotOKicj
j

"j\ If you shift the spacing between
' the first and last names. Nosmo

King becomes "No Smoking.

"

Isn't that something?

€$£)
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CHO PHO USE
Although this may seem trivial, it brings out the im-

portance of the empty space as a symbol essential to

the understanding of sentences. Spaces between

words play a role analogous to such arithmetical

symbols as parentheses, spacings. zero, and so on.

The meaning of a mathematical expression is often

completely altered by a minor change in the posi-

tion of one parenthesis, just as "No Smoking" is

drastically altered by shifting the position of the

space between the two words.

Many words can be changed in meaning by put-

ting a space inside them. "Nowhere." for instance,

becomes "now here." Lewis Carroll wrote a short

story about a man who thinks he has seen a sign that

said "Romancement." when it actually said "Ro-

man cement."

Here is an old puzzle sign said to have been at-

tached to a post on a village street back in horse and

buggy days:

TOT1 EMU LESTO

Can you make sense of it by altering the spacing?

A perennially popular type of puzzle, along simi-

lar lines, is finding names concealed in a sentence.

For example, a state and its capital are concealed

within:

Can Eva dance outside, with cars on city streets?

The hidden words, shown above, are "Nevada"
and "Carson City."

See if you can find the states and their capitals in the

following sentences:

Al. ask Anne and June a useful question!

Ken. tuck your shirt in and be frank, forthright,

and courageous.

Go north. Carol, in a car owned by Flora Leigh.

Are you afraid a hobo is entering your house?

This is where I connect. I cut the hart for dinner.

Mathematical terms are just as easily hidden. For

instance. "A happy ram identifies a good farm."

conceals a familiar name for a geometrical solid.

It is even possible to construct sentences in which

a series of concealed words form a second sen-

tence, and when those words are deleted, the letters

that remain spell a third sentence! For example:

Hone sha//owed feather acorns wise restrained.

The italicized words spell: "on all the corn is rain.

"

And if those words are deleted, the remaining letters

spell: "He showed fear as we rested."

This type of construction has its arithmetic

analogs. For instance: 15 + 11 = 26. The under-

lined numbers form 5 + 1=6, and if these are de-

leted, 1+1=2 remains. Maybe you can invent

more complicated examples.
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Square Family

Dr. Wordle: Your first problem.

Nosmo. for six boxes of fine

Cuban cigars, has to do with this

square card which contains the

names of four people in a

family.

•pER
Dr. Wordle: It's easy to put

each name in a separate

compartment by drawing three

straight lines, but can you do it

with just two straight lines?

Mr. King puffed silently on his

cigar until his time was up.

Mr. King: It can't be done.

Dr. Wordle: Wrong. Mr. King.

It's simple That cigar smoke
must be fogging your brain.
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Straight and Equal
The aha! here is the realization that each name can

be broken into two parts, and the parts combined

in a different way to form the same four names.

Many puzzles have been based on the problem of

drawing straight lines in such a way that pictures of

objects on the page are each put into a separate

region. Figure 4 is typical. Can you draw 3 straight

lines that will put each circle in a separate region?

The solution follows the insight that the regions

need not be rectangular, and that 3 lines can inter-

sect in such a way that as many as 7 regions are

created.

Interesting variations of this idea involve numbers

instead of circles. The puzzle is to draw straight lines

so that the sums of the numbers in each region are

the same, or so the numbers in each region all share

some other common property. Try your skill at this

type of division on Figure 5. The task is to draw four

straight lines so that the numbers in each of 11 re-

gions have the same sum of 10. The solution to

this task appears at the back of the book.
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Tavern Tease

Dr. Wordle: I'll give you
another chance to win those six

boxes of cigars. A tavern has

this sign in its window.

Dr. Wordle: But when kids

under 18 go inside, they get

tossed out for violating a law.

Dr. Wordle: The tavern owner
says the sign painter forgot an

exclamation mark and a

question mark. Your task is to

put in those two marks so that

the sign says what the owner
intended.

Whati Do YokTT\
Trxn* If Your*

But Nosmo couldn't solve that

one either. Dr. Wordle had to

show him how to do it.
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Marks and Signs

Puzzles in which a nonsense statement is made sen-

sible by altering punctuation can be found in many
old puzzle books. Here is a poem that seems to

describe impossible things:

Though seldom from my yard I roam,

I saw some queer things here at home
I saw wood floating in the air;

I saw a skylark, bigger than a bear;

I saw an elephant with arms and hands;

I saw a baby breaking iron bands;

I saw a blacksmith, weighing half a ton;

I saw a statue sing and laugh and run;

1 saw a schoolboy nearly ten feet tall:

I saw an oak tree span Niagara fall;

I saw a rainbow, black and white and brown;

I saw a parasol walking through the town;

I saw a politician doing as he should;

1 saw a good man— and 1 saw some wood

The poem makes sense if the semicolons are

shifted to the middle of each line:

"... I saw wood: floating in the air

I saw a skylark: bigger than a bear

I saw an elephant; ..."

and so on to the end.

Once more there are analogs with number puz-

zles. Consider the following false equation:

1-2-3-4 + 5 + 6 + 7 + 8 + 9 = 100

The task is to make this a correct equation by alter-

ing the "punctuation" on the left side. Only plus and

minus signs may be used, but the spacing between

the digits can be altered to make larger numbers.

Here is the only solution with as few as three signs:

123-45-67 + 89 = 100

The solution with the largest number of plus and
minus signs is:

1-2-3-4-5-6 + 78 + 9 = 100

There are just nine other solutions:

123 - 45 - 67 - 89 = 100

123 + 4-5 + 67-89 = 100

123 + 45-67 + 8-9 = 100
123-4-5-6-7 + 8-9 = 100

12 -3-4+5-6-7 + 89 = 100

12 + 3 + 4+5-6-7 + 89 = 100

1 + 23-4+5 + 6 + 78-9 = 100

1 + 2 + 34 - 5 + 67 - 8 + 9 = 100

12 + 3-4 + 5 + 67 + 8 + 9 = 100

1 + 23 - 4 + 56 + 7 + 8 + 9 = 100

1 + 2 + 3-4 + 5 + 6 + 78 + 9 = 100

The same problem can be posed with the digits in

descending order. This has 15 solutions if we
exclude, as in the previous problem, the use of a

minus sign in front of the first number:

98-76 + 54 + 3 + 21 = 100

9-8+76 + 54-32 + 1 = 100
98-7-6-5-4 + 3 + 21 = 100

9-8+7 + 65-4 + 32-1 = 100

9-8 + 76 -5 + 4 + 3 + 21 = 100

98-7 + 6 + 5 + 4-3-2-1 = 100

98 +7-6+5-4 + 3-2-1 = 100

98+7 + 6-5-4-3 + 2-1 = 100

98+7-6 + 5-4-3 + 2 + 1 = 100

98 -7 + 6 + 5-4 + 3-2 + 1 = 100

98-7 + 6-5 + 4 + 3 + 2-1 = 100

98+7-6-5 + 4 + 3-2 + 1 = 100

98-7-6 + 5 + 4+3 + 2 + 1 = 100

9 + 8 + 76 + 5 + 4-3 + 2-1 = 100

9 + 8 + 76 + 5-4 + 3 + 2 + 1 = 100

If a minus sign is allowed in front of the first

number, there are three more answers for the de-

scending series and one more for the ascending:

-9 + 8+76 + 5-4 + 3 + 21 = 100

-9 + 8+7 + 65-4+32 + 1 = 100

-9-8+ 76 -5 + 43 + 2 + 1 = 100

-1 + 2-3 + 4+5 + 6+78 + 9 = 100

The "punctuation" need not, of course, be li-

mited to plus and minus signs, nor need the sum on

the right be 100. For example, the sum could be the

last two digits of the current year, or any other

number you like.

See if you can place just one pair of parentheses

in the following equation to make it correct:

1-2-3+4-5+6=9

The answer is at the end of the book.
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Cryptic Symbols

O
W8IM8

Dr. Wordle: Now. Mr. King,

we're going to show you three

pictures of strange symbols.

Each conceals a word. Solve

any of them and you get the

cigars. Here's the first one. Do
you see the solution?

Mr. King was still unable to

answer and Dr. Wordle had to

add black lines above and
below the symbols to bring out

the word "SMOKE."

Mr. King: No It sure beats me.

What is it?

Dr. Wordle: It's your first

name. Nosmo. We made the

symbols by reflecting your

name below a line the same way
a shoreline is reflected in a lake.

KIUNIGO

"artr

Dr. Wordle: Alright, maybe
you'll get the next one.

Mr. King just shook his head as

Dr. Wordle explained.

Dr. Wordle: This time the

symbols were obtained by

reflecting each letter over a

vertical axis of symmetry. See
how simple it is

9

Mr. King: It's not so simple for

me.

h:hh*
Dr. Wordle: Well, here's the

last one. You still have a chance.
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Symmetrical Fun
In the first set of strange symbols, each letter is re-

flected by a horizontal axis of symmetry. Note that

some letters in NOSMO KING are unchanged by

the reflection. These are the letters "O", "K" and "I ".

which have a horizontal axis of symmetry.

In the second set of symbols, each of which is re-

flected about a vertical axis of symmetry, certain let-

ters also are unchanged. These are the letters "O",

"M" and "I", which have vertical axes of symmetry.

Because "O" and "I" have both kinds of axes, these

letters are unchanged when reflected by a mirror

above or below, or on either side. You might be in-

terested in analyzing all the letters of the alphabet, in

both capital and lower case form, to see what kind

of symmetry each has.

Can you construct a word which is unchanged by

a mirror held above it? Yes, the word "CHOICE" is

one of hundreds of such words. Are there words

which when printed vertically are unchanged by a

mirror on the side? Yes, the word "TOMATO" is one

of hundreds of such words.

Any plane figure with at least one axis of sym-

metry looks the same in a mirror, although one

image may have to be rotated to give the same
orientation to the object and its image. Any solid

figure with a plane of symmetry also looks the same
in a mirror. The reason we look the same when we
see our mirror reflection is that a plane of symmetry

bisects our body from head to toes.

Many interesting variations of our two mirror puz-

zles can be devised. What, for example, do we have

here?

rl S2 83 M 5 36 Y7
This one is even harder to recognize:

ww xx vy xz
The letters of SMOKE are disguised in an entirely

different way. The mind tends to see the black areas

as odd-shaped figures rather than see the white

spaces in between as the shapes that are the letters.

It is like looking at the negative of a photograph.

When there are no horizontal boundaries shown
above and below the word, it is difficult to see the

word. Try printing other words in a similar fashion.
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Gold Tuitt

Dr. Wordle: Sorry you didn't

win the cigars. Mr. King. But you

were such a good sport that I'm

going to give you this gold

plated "tuitt."

Mr. King: Thank you. Dr.

Wordle But what in the world is

a "tuitt"?

Dr. Wordle: Isn't there

something you've always

wanted to do if you could only

get around to it?

Mr. King: Yes I've always

wanted to learn how to fly

a plane

Dr. Wordle: Well, now you've

got a round tuitt! Good luck Mr.

King. And thanks for being

with us.

Dr. Wordle: While our next

guest is in make-up. I've got

another quickie for my
audience. This is the Christmas

card I sent to all my friends last

year Can you find its secret

message?
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Flo Stuvy

The last guest on the show is

Miss Flo Stuvy Why do you

think she was picked as a

contestant'

The letters in her name are in

alphabetical order. Names like

this are not easy to find. See
how many you can search out in

the phone book.

Agony
Names in alphabetical order are not easy to find.

"Betty" is a common example. One of the longest

that uses actual first and second names is Abbe F

Gillott. Can you find any words of more than four

letters that are alphabetized? "Billowy" is one of the

longest. Short words, like "Dirt", are easy to find,

but longer words are much harder to discover.

From time to time poems have been written in

which the initial letters of the words run from A to Z.

One of the best is John Updikes's poem "Capacity"

in his book The Carpentered Hen and Other Tame
Creatures.
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Curious Sequences

Dr. Wordle: Are your brains

groovy. Miss Stuvy? We're

going to show you three letter

sequence problems. Solve one
and you get a bathing suit.

Solve two and you get a purse

to go with it. Solve all three and
you get a mink coat as well

|NQ»«*STIJVW»YZ-J

Dr. Wordle: Here's the first

one. Notice that some of the

letters are red and the rest blue.

What rule did the artist follow

when he partitioned the

alphabet into these two colors?

TSOl HXhi
LMEITLTTEORMS

Dr. Wordle: Good show. Flo.

Now for the mink coat. See if

you can cross out just six letters

in the following sequence and
leave an ordered set of letters

that spells the name of a famous
poet.

Miss Stuvy thought for quite a

while before she got the right

insight. Then she solved the

problem neatly by crossing out

S-I-X-L-E-T-T-E-R-S, "six

letters."

=SJ(£"

Miss Stuvy studied the letters

for almost a minute before

replying.

Miss Stuvy: Eureka 1 Every red

letter has at least one curved

line while the blue letters are

made up entirely of straight

lines.

ASCDEFG-HITKLM
Hopor5tu*V* y*

Dr. Wordle: You've won the

bathing suit. Miss Stuvy. Now
let's try for the purse. What is

the rule for the partitioning of

this alphabet into red and green

letters?

/ABCdeps-hi TrcLM
M°P<3RSTWW*YZ

Miss Stuvy: Let's see. It's not

curves. It's not holes. It's not

letters that rhyme. Hmm. Aha! I

see the rule. The red letters are

all topologically equivalent.

They're all like a straight line.

She was so happy with her gifts

that she gave Dr. Wordle a big

hug and kiss.
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Topology of the Alphabet
The first problem hinges on the geometrical differ-

ence between straight lines and curves. The second

is based on the topological difference between a

simple open curve and one that closes or branches.

Think of a capital letter as made of an elastic

material that can be stretched or contracted, or even

picked up from the plane and replaced in a different

spot. Two letters are topologically equivalent if one

can be changed to the other by such a deformation

process. You are not permitted, of course, to cut a

letter apart, or attach parts of it to itself. An interest-

ing excercise is to classify all the capital letters into

their topologically equivalent classes.

For example, E. F, Y. T and J are topologically the

same, but not the same as K and X which belong to

a different class. Similar classifications can be made
of lower case letters, and also numerals, but you
must watch out for variations in the way letters are

printed.
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Parting Words

Dr. Wordier And now viewers,

I have three more quickies that

I will leave with you. First, what

five-letter word becomes
shorter when you add two

letters to it'
5

Second, what four letter word
ends with "ENY"?

And third, can you think of a

nine-letter word that has only

one vowel?

Dr. Wordle: That's all for

tonight, "wordlers." You were a

great audience. See you next

week. Same time. Same
station.
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Last Words
The quickies are answered as follows:

1. "Short" becomes "shorter" when two letters

are added.

2. The four-letter word ending in "eny" is "deny."

3. The nine-letter word with only one vowel actu-

ally appears in the picture in singular form. The
word is "strengths."

Here are some more word quickies of a similar

sort:

1. Name a state that begins with 10 and is not

Tennessee.

2. Name a state that ends with 10.

3. Rearrange the letters of "CHESTY" to spell

another English word of six letters.

4. Read this couplet so that it rhymes correctly:

There was an old lady and she

Was deaf as a post.

5. Which word doesn't belong on this list?

Uncle

Cousin

Mother

Sister

Father

Aunt

6. What do these pairs of letters represent?

ST ND RD TH
7. Read these two sentences:

UALLS WETHER
NOW

The answers all appear at the back of the book.
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Chapter 3—Number aha!
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Answers to Posed Problems





Chapter 2 - Geometry aha!

Devilish Divisions: Dissection Theory

Chapter 3 • Number aha!

Broken Records: Half Wholes
42

Eyes and Legs: Bipeds and Quadrupeds
The insight that leads to the solution is the

realization that some animals have no
feet—namely snakes! Once you have this aha!

insight, it is not hard to find the only solution: four

4-footed beasts, two 2-footed animals, and five

snakes.

The Big Bump: Thinking Backward
Did you answer this by saying that it took one-third

as long as in the original problem— namely 12/3 =

4 hours? If so, you are wrong. The answer is exactly

the same as before!

In the original version, the first spore becomes
three at the end of the first hour, which is precisely

the way the variation begins. Therefore, if it took 12

hours for the container to become filled in the origi-

nal problem, in the variation it takes one less hour,

or 11 hours. The container is filled at 11 o'clock.

Uncle Henry's Clock: Setting the Clock
If a clock takes 5 seconds to strike 6, there is a one-

second interval between strikes. Therefore, it will

take 11 seconds to strike 12.

Uncle Henry slept 40 minutes.

Spirits of 1776: Modulo Arithmetic

The insight, like the one that solved two of our pre-

vious problems, is to time reverse the procedure.

Hold the king of spades face down in one hand.

Pick up the queen, which has a value of 12, put it

beneath the king, then one at a time move 12 cards

from bottom to top. Pick up the jack (value 11), put it

on the bottom of the packet, and transfer 11 cards,

one at a time, from bottom to top. Continue in this

manner, which is merely a time reversal of the

Josephus count, and you will end with a packet of

13 cards in correct order.

The Josephus count need not be limited to con-

secutive numbers. The procedure just described ar-

ranges a packet for a Josephus count in which the

numbers are entirely arbitrary; that is. they may be

any numbers whatever, and in any desired order!

This can be strikingly demonstrated by the follow-

ing card trick using the same packet of 13 spades.

Instead of counting numbers, however, we spell the

name of each card by moving a card from top to bot-

tom for each letter. Begin with the cards in the fol-

lowing order from top down: Q. 4. A. 8. K, 2. 7. 5,

10, J, 3, 6, 9. Spell A-C-E. moving cards one at a

time to the bottom. The card for E is turned face up.

It is the ace. Put the ace aside, then spell T-W-O. and



so on for the other cards until all thirteen have been

spelled.

The initial arrangement of the cards was obtained

by the same time-reversed procedure described

above. Indeed, one can arrange an entire deck of 52

cards in this way so that all 52 can be spelled, using

the full name for each card, such as A-C-E-O-F-

S-P-A-D-E-S. and taking them in, say, spades,

hearts, clubs, diamonds order.

The Josephus count procedure is so general that

it obviously works with the spelling of any name
whatever. For example, you can prepare a deck of

file cards bearing any kinds of pictures you like

—

animals, zodiac signs, faces of famous people, and
so on. The time-reversed procedure enables you to

arrange the cards so you can go through the deck,

spelling the name of each picture, and always deal-

ing the conesponding card at the end of each spel-

ling.

Chapter 4 - Logic aha!

Six Sneaky Riddles: Sneaky Answers
1. The man had salted his soup before he noticed

the fly.

2. The water will never reach the porthole be-

cause the ship rises with the tide.

3. The Hudson River was frozen near the shore

when the Reverend Sol Loony walked on it.

4. One train went through the tunnel an hour
after the other train had gone through it.

5. The convict was near the end of a long bridge.

He had to run toward the approaching police car to

get off the bridge before the car reached him.

6. 1.977 dollar bills are worth $1,977 and 1,976
bills are worth only $1,976.

The Big Holdup: Missing Evidence
If you are familiar with casette tape recorders, you
will know that had Jones stopped the recording

when Smith entered the room, the tape would not
have been rewound. The real killer must have lis-

tened to the recording several times to make sure it

sounded authentic, and then made the fatal mistake
of leaving the tape rewound.
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Dr. Ach's Tests: Dr. Ach's Solutions

1. Bend the match in the middle before you drop

it.

2. By pouring sand slowly into the hole, the baby

bird is raised to the top.

3. Form a small loop in the string, and tie a knot at

its base. Cut the loop.

4. A 20 centimeter piece, cut from the pole, has a

rectangular cross section of 20 centimeters by 50
millimeters (or 5 centimeters), therefore, it will fit the

hole snugly.

5. With the ruler, measure the bottle's inside

diameter and the height of the liquid. The liquid

forms a cylinder, so its volume is easily calculated.

Turn the bottle upside down. The air space now
forms another cylinder of smaller height, also easily

measured and its volume determined. Addition of

the volume of air space to the volume of liquid gives

the bottle's total capacity. The percentage of liquid is

now easily calculated. Since the two cylindrical

volumes have the same diameter, actually only their

heights need be measured to get the percentage.

Barbershop Banter: Surprising Solutions

1. He suggested that each driver drive another

man's car. The billionaire had offered the prize to the

man whose car came in last, not the driver himself.

2. Hold the burning match under a glass of water.

3. The theater was a drive-in.

4. He goes into another room, gets on his hands

and knees, and "crawls in" to the bottle.

5. The score of any ball game, before it starts, is

nothing to nothing.

6. The man was a minister.

7.The myna bird was deaf.

8. Push the cork into the bottle.

Murder At Sun Valley: The One Way Ticket

1. The surgeon was the boy's mother.

2. The Frenchman kissed his own hand, then

bashed the Nazi officer in the face.

Foul Play at the Fountain: Mirror Vision

1. The slave turned the box upside down, then

slid the lid back just enough to allow a few diamonds



to fall out.

2. The lady was on foot, not in a car.

Chapter 6 - Word aha!

World's Smallest Crossword: Squares and
Anagrams
The answer to Dr. Wordle's quickie is: The letters

of "NEW DOOR" can be rearranged to spell

"ONE WORD."

Square Family: Straight and Equal
The 11 regions formed by drawing four straight lines

on top of Figure 5 of Chapter 6. Word aha!, are

shown in the following figure:
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Tavern Tease: Marks and Signs
1 - (2-3 + 4-5) + 6 = 9

Parting Words: Last Words
1. Iowa.

2. Ohio.

3. Scythe.

4. There was an old lady and she was deaf as a

PO.S.T
5. Cousin— it is the only word that does not indi-

cate a person's sex.

6. The letter pairs are the endings of "first", "sec-

ond." "third" and "fourth."

7. All between us is over now.
A bad spell of weather.
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aha! Insight challenges the reader's reasoning

power and intuition while encouraging the

development of "aha! reactions": those sudden,

creative leaps of the mind leading to short, ele-

gant solutions to seemingly impossible prob-

lems. A confounding collection of brain-twisters

in six categories— combinatorial, geometric,

numerical, logical, procedural, and verbal— this

book contains puzzles to first baffle and then

delight both problem-solving addicts and nov-

ices alike. Like the author's aha! Gotcha (W. H.

Freeman and Company, 1982), aha! Insight

grew out of a collaborative effort between Bob

Tappay and Martin Gardner to enliven the

learning of mathematics.

Martin Gardner is best known as the author of

Scientific American's Mathematical Games col-

umn, a feature popular throughout its 25-year

lifespan. A philosopher of science by training,

Gardner writes on a wide variety of subjects

beyond recreational mathematics. His books

include those based on the Mathematical Games
column, works of literary criticism, Science:

Good, Bad and Bogus, and aha! Gotcha.

Bob Tappay is a teacher who moved from the

mathematics classroom to the worlds of educa-

tional television, writing, and lecturing. Tappay

saw the educational potential of Gardner's

material and worked with him on "The Paradox

Box" and "aha! Insight Box," classroom film-

strips that gave rise to the popular aha! books.

Tappay lives in Markham, Ontario, and is active

as a lecturer and writer.
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