























Contents

Introduction

Chapter 1 Combinatorial ahal

A Sticky Gum Problem

The Ping Pong Puzzle
Quibble’s Glasses
Perplexing Paths

The Bewildered Babies
Quibble’s Cups

Steak Strategy

The Troublesome Tiles
Quibble’s Pets

The Medicine Mix-up Small
The Medicine Mix-Up Big
The Broken Bracelet
Chapter 2 Geometry aha!
C;aft;~ Cheese Cuts
Dimensions in Disguise
The Big Knight Switch
Surprising Srwords

Payoff at the Poles
Quibble’s Matches

IiDeviI‘ish Di_v;si;)ns

Miss Euclid’s Cubes

Carpet Confusion

The Curioustéié Cut
Chapter 3 Number aha!
Broken Records

Lé)ch Ness Monster

One ;l;;orMany

Eyes and Legs

The Big Bump
Myslerious Mer;l;andise

The Unlisled Phone Number
l;l;:pless Hat

f\i;)neg' Matters

Uncle Her:r:s élock
Spirtsof 1776
Ehapter 4 Logic aha!

The Crafty Cabbie

18
21
23

26
29
32
34
36
89
a1
45
47
51
54
56
59

Color Mates

Six Sneaky Riddles
The Big Holdup

Dr Ach’s Tests

The Ach Award
Holiday Haircut
Barbershop Bantor
Murder at Sun Valley
Foul Play at the Fountain
Chapter 5 Procedural ahal
Fifteen Finesse

Hippo Hangup
Dividing the Chores
The Crooked Acrobat
Island Crackup

The Lazylover
Sanitary Surgeons
Chapter 6 Word ahal
Dr. WO Wordle

Shee Lee Hoi

Elusive Eight

World's Smallest Crossword
Mary Belle Byram
Picture Puzzles

Crazy Sentences
Nosmo King

Square Family

Tavern Tease

Cryptic Symbols

Gold Tuitt

Flo Stuvy

Curious Sequences
Parting Words
Selected References

Answers to Posed Problems

148
149
151
154
156
158
160
162
163
164
166
169
175

S




Introduction

The creative act owes little to logic or reason. In their
accounts of the circumstances under which big
ideas occurred to them. mathematicians have often
mentioned that the inspiration had no relation to the
work they happened to be doing. Sometimes it
came while they were traveling. shaving or thinking
about other matters. The creative process cannot
be summoned at will or even cajoled by sacrificial
offering. Indeed. it seems to occur most readily
when the mind is relaxed and the imagination roam-
ing freely.

Mornis Kline, Scientific American, March 1955.

Experimental psychologists like to tell a story about
a professor who investigated the ability of chim-
panzees to solve problems. A banana was sus-
pended from the center of the ceiling, at a height
that the chimp could not reach by jumping. The
room was bare of all objects except several packing
crates placed around the room at random. The

test was to see whether a lady chimp would think of
first stacking the crates in the center of the room,
and then of climbing on top of the crates to get the
banana.

The chimp sat quietly in a comer. watching
the psychologist arrange the crates. She waited pa-
tiently until the professor crossed the middle of
the room. When he was directly below the fruit. the
chimp suddenly jumped on his shoulder, then
leaped into the air and grabbed the banana.

The moral of this anecdote is: A problem that
seems difficult may have a simple. unexpected solu-
tion. In this case the chimp may have been doing
no more than following her instincts or past exper-
ience, but the point is that the chimp solved the
problem in a direct way that the professor had failed
to anticipate.

At the heart of mathematics is a constant search
for simpler and simpler ways to prove theorems
and solve problems. It is often the case that a first
proof of a theorem is a paper of more than fifty
pages of dense, technical reasoning. A few years
later another mathematician, perhaps less famous.
will have a flash of insight that leads to a proof so

simple that it can be expressed in just a few lines.

Sudden hunches of this sort—hunches that lead
to short, elegant solutions of problems—are now
called by psychologists “aha! reactions.” They seem
to come suddenly out of the blue. There is a famous
story about how William Rowan Hamilton, a fam-
ous Irish mathematician, invented quaternions
while walking across a stone bridge. His aha! insight
was a realization that an arithmetic system did not
have to obey the commutative law. He was so
staggered by this insight that he stopped and carved
the basic formulas on the bridge. and it is said that
they remain there in the stone to this day.

Exactly what goes on in a creative person’s mind
when he or she has a valuable hunch? The truth is
that nobody knows. It is some kind of mysterious
process that no one has so far been able to teach to,
or store in, a computer. Computers solve problems
by mechanically going step-by-step through a pro-
gram that tells them exactly what to do. It is only be-
cause computers can perform these steps at such
incredible speeds that computers can solve certain
problems that a human mathematician cannot solve
because it might take him or her several thousand
years of nonstop calculation.

The sudden hunch, the creative leap of the mind
that “sees” in a flash how to solve a problem in a
simple way. is something quite different from gen-
eral intelligence. Recent studies show that persons
who possess a high aha! ability are all intelligent to a
moderate level, but beyond that level there seems
to be no correlation between high intelligence and
aha! thinking. A person may have an extremely high
[.Q.. as measured by standardized tests, yet rate low
in aha! ability. On the other hand. people who are
not particularly brilliant in other ways may possess
great aha! ability. Einstein, for instance, was not par-
Heularly skillful in traditional mathematics, and his
records in school and college were mediocre. Yet
the insights that produced his general theory of rela-
tivity were so profound that they completely revolu-
tionized phuysics.

This book is a careful selection of problems that
seem difficult. and indeed are difficult if you go




about trying to solve them in traditional ways. But if
you can free your mind from standard problem solv-
ing techniques, you may be receptive to an aha'
reaction that leads immediately to a solution. Don't
be discouraged if, at first, you have difficulty with
these problems. Try your best to solve each one be-
fore you read the answer. After a while you will
begin to catch the spirit of offbeat, nonlinear think-
ing, and you may be surprised to find your aha! abil-
ity improving. If so, you will discover that this ability
is useful in solving many other kinds of problems
that you encounter in your daily life. Suppose, for
instance, you need to tighten a screw. s it necessary
to go in search of a screwdriver? Will a dime in your
pocket do the job just as well?

The puzzles in this collection are great fun to try
on friends. In many cases, they will think for a long
time about a problem, and finally give it up as too
difficult. When you tell them the simple answer, they
will usually laugh. Why do they laugh? Psycholo-
gists are not sure, but studies of creative thinking
suggest some sort of relationship between creative
ability and humor. Perhaps there is a connection be-
tween hunches and delight in play. The creative
problem solver seems to be a type of person who
enjoys a puzzling challenge in much the same way
that a person enjoys a game of baseball or chess.
The spirit of play seems to make him or her more
receptive for that flash of insight that solves a
problem.

aha! power is not necessarily correlated with
quickness of thought. A slow thinker can enjoy a
problem just as much, if not more, than a fast
thinker, and he or she may be even better at solving
it in an unexpected way. The pleasure in solving a
problem by a shortcut method may even motivate
one to leam more about traditional solving techni-
ques. This book is intended for any reader, with a
sense of humor, capable of understanding the
puzzles.

There certainly is a close connection, however,
between aha! insights and creativity in science, in
the arts, business, politics, or any other human en-
deavor. The great revolutions in science are almost

always the result of unexpected intuitive leaps. After
all. what is science if not the posing of difficult puz-
zles by the universe? Mother Nature does some-
thing interesting, and challenges the scientist to fig-
ure out how she does it. In many cases the solution
is not found by exhaustive trial and error, the way
Thomas Edison found the right filament for his elec-
tric light, or even by a deduction based on the rele-
vant knowledge. In many cases the solution is a
Eureka insight. Indeed, the exclamation “Eureka!”
comes from the ancient story of how Archimedes
suddenly solved an hydraulic problem while he was
taking a bath. According to the legend, he was so
overjoyed that he leaped out of the tub and ran
naked down the street shouting “Eureka! Eureka!”
(I have found it!)

We have classified the puzzles of this book into six
categories: combinatorial, geometric, number,
logic, procedural and verbal. These are such broad
areas that there is a certain amount of unavoidable
overlap, and a problem in one category could just as
well be regarded as in one of the others. We have
tried to surround each puzzle with a pleasant, amus-
ing story line intended to put you in a playful mood.
Our hope is that this mood will help you break away
from standard problem solving routines. We urge
you, each time you consider a new puzzle, to think
about it from all angles, no matter how bizarre, be-
fore you spend unnecessary time trying to solve it
the long way,.

After each problem, with its delightful illustrations
by the Canadian graphic artist Jim Glen, we have
added some notes. These comments discuss related
problems, and indicate how, in many cases, the
puzzles lead into significant aspects of modem
mathematics. In some cases, they introduce prob-
lems that are not yet solved.

We have also tried to give some broad guidelines
for the channels along which aha! thinking some-
times moves:

1. Can the problem be reduced to a simpler case?
2. Can the problem be transformed to an iso-
morphic one that is easier to solve?




3. Can you invent a simple algorithm for solving
the problem?

4. Can you apply a theorem from another branch
of mathematics?

5. Can you check the result with good examples
and counterexamples?

6. Are aspects of the problem given that are actu-
ally irrelevant for the solution, and whose presence
in the story serves to misdirect you?

We are rapidly entering an age in which there will
be increasing temptation to solve all mathematical
problems by writing computer programs. The com-
puter, making an exhaustive trial-and-error search,
may solve a problem in just a few seconds, but
sometimes it takes a person hours, even days, to
write a good program and remove all its bugs. Even
the writing of such a program often calls for aha! in-
sights. But with the proper aha! thinking, it may be
possible to solve the same problem without writing a
program at all.

It would be a sad day if human beings, adjusting
to the Computer Revolution, became so intellectu-
ally lazy that they lost their power of creative think-
ing. The central purpose of this collection of puzzles
is to exercise and improve your ability in this
technique of problem solving.




Combinatorial aha!







Combinatorial analysis, or combinatorics, is the
study of how things can be arranged. In slightly less
general terms, combinatorial analysis embodies the
study of the ways in which elements can be grouped
into sets subject to various specified rules, and the
properties of those groupings.

For example. our first problem is about the ways
in which differently colored balls can be grouped
together. This problem asks the reader to find the
smallest sets of colored balls that have certain prop-
erties. The second problem concerns ways in which
players can be grouped on a chart for an elimination
tournament —a problem with important counter-
parts in the computer sorting of data.

Combinatorial analysis often asks for the total
number of different ways that certain things can be
combined according to certain rules. The “enumer-
ation problem,” as this is called, is introduced in the
episode about the number of ways that Susan can
walk to school. In this case, the elements to be com-
bined are the segments of a path along the edges of
a matrix. Since geometrical figures are involved, we
are in the area of “combinatorial geometry.”

Every branch of mathematics has its combinato-
rial aspects, and you will find combinatorial prob-
lems in all the sections of this book. There is com-
binatorial arithmetic,combinatorial topology. com-
binatorial logic, combinatorial set theory—even
combinatorial linguistics, as we shall see in the sec-
tion on word play. Combinatorics is particularly im-
portant in probability theory where it is essential to
enumerate all possible combinations of things be-
fore a probability formula can be found. There is a
famous collection of probability problems called
Choice and Chance. The word “choice” in the title
refers to the book's combinatorial aspect.

Our very first problem concerns probability be-
cause it asks for an arrangement of colored balls that
makes certain (that is, have a probability equal to 1)
a specified task. The text suggests how endless
other probability questions arise from such simple
questions as the number of ways objects can be put
together. Enumerating Susan'’s paths to school pro-
vides a close link to Pascal's triangle and its use in

solving elementary probability questions.

The number of arrangements that solve a given
combinatorial problem obviously can be none, one,
any finite number, or an infinite number. There is no
way to combine two odd integers so that their sum is
odd. There is only one way to combine two prime
numbers so that their product is 21. There are just
three ways to combine two positive integers so their
sum is 7. (They are the pairs of opposite faces on a
die.) And there is an infinite number of combina-
tions of two even numbers that have an even sum.

Very often in combinatorial theory it is extremely
difficult to find an “impossibility proof™ that no
combination will meet what is demanded. For
example, it was not until recently that a proof was
found that there is no way to combine the planar re-
gions of a map so that the map requires five colors.
This had been a famous unsolved problem in com-
binatorial topology. The impossibility proof required
a computer program of great complexity.

On the other hand, many combinatorial prob-
lems that seem at first to be difficult to prove
impossible can sometimes be proved easily if one
has the right aha! insight. In the problem of “The
Troublesome Tiles”, we see how a simple “parity
check” leads at once to a proof of combinatorial
impossibility that would be hard to obtain in any
other way.

The second problem about the defective pills ties
combinatorial thinking into the use of different base
systems for arithmetic. We see how numbers them-
selves and the way in which they are represented in
positional notation by numerals depend on com-
binatorial rules. Indeed. all deductive reasoning,
whether in mathematics or pure logic, deals with
combinations of symbols in a “string,” according to
the rules of a system that decides whether the string
is a valid or invalid assertion. This is why Gottfried
Leibniz. the seventeenth-century father of com-
binatorics. called the art of reasoning an ars
combinatoria.

g




A Sticky Gum Problem

I R

Poor Mrs. Jones tried to get past
the bubble gum machine before
her twins noticed it.

First Twin: Mommy, | want
some gum.

Second Twin: Me too, Mom.
And | want the same color Billy
gets.

The penny gum machine is
almost empty. There is no way
of knowing the color of the
next ball. If Mrs. Jones wants
to be sure of getting a pair of
matching balls, how many
pennies must she be prepared
to spend?

Mrs. Jones could get 2 red balls
by spending 6 cents —4 cents to
get all the white balls out and

2 cents to get a pair or red. Or
she could get 2 white balls by
spending 8 cents. So she must
be prepared to spend 8 cents,
right?

Wrong. If the first 2 balls don't
match, the third has to match
one of the first 2. So 3 pennies
are the most she needs to
spend.

Now suppose the machine
contains 6 red balls, 4 white,
and 5 blue. Can you figure
out how many pennies Mrs.
Jones needs to have on hand
to be sure of getting a pair

of matching gum balls?

Did you get 4 cents? If so, you
can start thinking about Mrs.
Smith who tried to walk by the
same gum machine with her
triplets.

This time the machine contains
6 red balls, 4 white, and just one
blue. How many pennies must
Mrs. Smith be ready to spend to
get three matching balls?

[Dolve
. red

green




How Many Pennies?

The second gum ball problem is an easy variation of
the first one, and is solved by the same insight. In
this case the first three balls could be of different
colors—red, white and blue. This is the “worst”
case in the sense that it is the longest sequence of
drawings that fail to achieve the desired result. The
fourth ball will necessarily match one of the three.
Since it could be necessary to buy four balls to get a
matching pair, Mrs. Jones must be prepared to
spend four cents.

The generalization to n sets of balls, each set a dif-
ferent color, is obvious. [f there are n sets. one must
be prepared to buy n + 1 balls.

The third problem is more difficult. Instead of
twins, Mrs. Smith has triplets. The gum machine
contains 6 red balls, 4 white. and 1 blue. How
many pennies might she have to spend to get three
matching balls?

As before, we first consider the worst case. Mrs.
Smith could get 2 red balls, 2 white, and the single
blue ball, making 5 in all. The sixth ball must be red
or white, so it is sure to make a triplet of the same
color, therefore the answer is six cents. Had there
been more than one blue ball, she could have
drawn a pair of each color. requiring a seventh ball
to complete the triplet.

The aha! insight is “seeing” the length of the
“worst” case. One might try to solve the problem
a harder way by assigning a letter to each of the
11 balls, then examining all possible drawing se-
quences to see which one has the longest initial
chain before a triplet appears. But this method of
solving the problem would require listing 11! =
39,916,800 sequences! Even if one approached
the problem by not distinguishing between balls of
the same color. it would still be necessary to list
2.310 sequences.

The generalization to matching k-tuplets is as fol-
lows. If there are n sets of balls (each a different
color, and each containing at least k balls), then to
obtain a matching k-tuplet one must draw n(k — 1)
+ 1 balls. You may enjoy investigating what hap-
pens when one or more of the color sets contain less

than k balls.

Problems of this sort can be modeled in many
other ways. For example: How many cards must
you draw from a 52-card deck to be sure that you
have, say, 7 cards of matching suit? Heren = 4,k
7. The formula gives the answer: 4(7 -~ 1) + 1 = 25,

Although these are simple combinatorial puzzes,
they lead into interesting and difficult probability
questions. For instance, what is the probability that
vou will get 7 cards of the same suit if you draw n
cards (n ranging from 7 through 24) without replac-
ing each card after it is drawn? (Obviously, the
probability is 0 if you draw fewer than 7 cards, and 1
if you draw 25 or more.) How do the probabilities
alter if cards are replaced and the deck shuffled after
each drawing? A more difficult question: What is the
expected number (average in the long run) of draw-
ings you have to make to get k cards of the same
suit, with or without replacement?



The Ping Pong Puzzle

The 5 members of the Millard
Fillmore Junior High School
ping pong club decided to hold
an elimination tournament.

The coach explained his
tournament chart this way.
Coach: Five is odd, so one
player gets a ‘bye’ in the first
round. And there has to be
another ‘bye’ in the next round.
So altogether 4 matches must
be played.

Table tennis was so popular
next year that the club had

37 members. Again the coach
designed a tournament with the
smallest possible number of
‘byes’. Can you figure out the
number of games that were
played?

) You don't have it worked out
yet? You're still drawing your
chart? You've missed an aha!
Each match eliminates one

player and because there are 36

players to be eliminated, there

has to be just 36 games, doesn't
there?

How Many Byes?
If you worked on this problem the hard way, by
drawing up actual charts of a tournament for 37
players, you may have noticed that no matter how
the chart is drawn there are always just 4 byes. The
number of necessary byes is a function of n, the
number of players. How can the number of byes be
calculated?

Given n, the number of byes can be determined
as follows. Subtract n from the lowest power of 2
that is equal to or greater than n. Express this re-
mainder in binary notation. The number of byes is
equal to the number of ones in this binary expres-
sion. In our case, we subtract 37 from 64 (which is
2%) to get 27. In binary notation 27 = 11011. There
are four 1’s, therefore the tournament must have
four byes. It is an interesting exercise to justify this
curious algorithm.

The type of tournament described in this problem
is often called a “knockout tournament.” It corres-
ponds to what computer scientists call an algorithm
for determining the largest element in a set of n ele-
ments by comparing them pairwise. As we have
seen, exactly n — 1 pairwise comparisons are neces-
sary for determining the maximum. Computer sort-
ing can also be done by comparing sets in groups
of three, four, five and so on.

The topic of sorting is so important in computer
science and its applications that entire books have
been written about it. You can easily think of many
practical problems in which sorting procedures are
important. It is estimated that about one-fourth the
running time of computers that are used in science,
business and industry is spent on sorting problems.




Quibble’s Glasses

Barney, who works at a soda
fountain, is showing two of his
customers a puzzle that uses ten
glasses.

Barney: There are ten glasses
in this row, the first five are filled
with Kinky Kola, the next five
are empty. Can you move just 4
glasses to make a row in which
the full and empty glasses
alternate?

Barney: That's right. Just
switch places with the second
and seventh glass, and with the
fourth and ninth.

Professor Quibble, who was
always thinking of tricky
solutions, happened to be
listening.

Prof. Quibble: Why four
glasses? | can do it by just
moving two glasses. Can't you?

@

Prof. Quibble: It's simple. Just
pick up the second glass and
pour its contents into the
seventh. And then pick up the
fourth and pour into the ninth.

Non-trivial Quibble

Although Professor Quibble solved the puzzle by a
verbal quibble, the original problem is not as trivial
as it first seems. For example, consider the same
problem with 100 full glasses in a row next to 100
empty glasses. How many switches of pairs are
necessary to arrange the row so that full and empty
glasses alternate?

Since it is impractical to work on the problem with
200 glasses, the first step is to analyze the situation
for smaller values of n, where n is the number of fil-
led (or empty) glasses, and look for a pattern. You
can work on the problem by using counters of two
different colors. (Face-up and face-down cards can
also be used, or coins that are heads and tails, or two
different values.) The problem requires no moves
if n = 1, and has an obvious solution of one move
when n = 2. You may be surprised to discover that
one switch also solves the problem forn = 3. With a
little more effort, you may hit on the simple pattern.
When n is even, the number of required switches is
n/2,and whennis odd, itis (n — 1)/2. Therefore, if
there are 100 full and 100 empty glasses, the prob-
lem is solved in 50 switches.

This requires moving 100 glasses. Quibble’s joke
method of solving the problem cuts the number of
required glasses in half.

There is a classic puzzle very similar to the one just
analyzed, but harder to solve. Begin with the same
row of n objects of one type, adjacent to n objects of
another type. (As before this can be modeled with
glasses, counters, cards and so on.) You wish to
change the row to alternating objects, but now we
define “move” differently. In this case, you must
slide any adjacent pair of counters to any open posi-
tion on the row, without altering the order of the two
counters that are moved.

For example, here is how it is done when n = 3:

XXXO000
XOOOXX
X000 XOX

OX0OXOX

What is the general solution? It is trivial when n =

1, and you will quickly find that it is not solvable




when n = 2. For all n greater than 2, the puzzle is
solved in a minimum of n moves.

It is not an easy problem to find a solution when n
= 4, and you will enjoy searching for one. Perhaps
you can formulate a procedure for solving the puz-
zle in n moves when n is 3 or more.

Many unusual variations of the problem provide
other challenges. Here are a few:

1. The rules are the same as before except that
when you move each adjacent pair of counters, you
switch the positions of the two counters if they are
different colors. Thus a black-red pair becomes
red-black before you finish the move. With 8 coun-
ters there is a solution in five moves. For 10 counters
five moves also suffice. We know of no general solu-
tion. Perhaps you can find one.

2. The rules are the same as in the original prob-
lem except there are n counters of one color and
n + 1counters of the other color, and only pairs of
unlike colors may be moved. It has been proved
that for any n the puzzle can be solved in n? moves,
and that this is minimal.

3. Counters of three different colors are used.
Pairs of adjacent counters are moved in the usual
way to bring all the colors together. If n = 3 (9 coun-
ters in all). there is a solution in five moves. In this
and all previous variations, we assume that there are
no gaps in the final row. If gaps are permitted, there
is a surprising solution in four moves.

Other variants suggest themselves which, so far
as we know, have not been proposed before, let
alone solved. For instance, one could move three or
more adjacent counters at a time, and apply this
move to any of the above variants.

And what happens if one moves one counter,
then two adjacent counters, then three, then four,
and so on? Given n counters of one color and n
of another, can it always be solved in n moves?




Perplexing Paths
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Susan has a problem. When
she walks to school she keeps
meeting Stinky.

Stinky: Hi Susan. Can [ walk
with you?

Susan: No. Please go away.

Susan: | know what I'll do. I'll
walk to school a different way
every morning. Then Stinky
won't know where to find me.

This map shows all the streets
between Susan’s house and her
school. On this particular path
Susan is always walking east

or south.

Here is Susan on another path.
Naturally she doesn’t want to
walk away from the school. But
how many paths are there?

Susan: | wonder how many
different ways I can go. Let's
see. Hmm. This is going to be
tough to figure out. Hmm. Aha!
It's not hard at all. It's simple!
What insight did Susan have?

Here's how she reasoned
Susan: I'll put a1 at the corner
where | live because | have just
onewaytostart. ThenI'll putal
at each corner that's one block
away because there's only one
way to get there

Susan: Now ['ll put a 2 at this
corner because | can get to it in
two different ways

When Susan noticed that 2 is
the sumof 1 and 1, she suddenly
realized that the number on
every corner must be the sum of
the one or two nearest numbers
along the paths leading to that
corner.

Susan: There. Four more
corners are labeled. I'll soon
finish the others.

Can you complete the labelling
of the corners for Susan and tell
her how many different ways
she can walk to school?



How Many Paths?

The remaining five vertices, reading top-down and
left-right, are labeled 1. 4. 9, 4 and 13. The 13 at the
last vertex shows that Susan has 13 ways to walk to
school along shortest paths.

What Susan discovered is a simple, fast algorithm
for calculating the number of shortest paths from
her house to school. Had she attempted to draw all
these paths, then count them., it would have been
tedious, and out of the question if the street grid had
contained a very large number of cells. You will bet-
ter appreciate the algorithm'’s efficiency if you actu-
ally trace all 13 paths.

To test your understanding of the algorithm, try
sketching a variety of other street networks and
applying the algorithm to determine the number of
shortest paths from any vertex A to any other ver-
tex B. Figure 1 gives four problems of this type.
They can be solved in other ways, using combina-
torial formulas, but the methods are tricky and
complicated.

1
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1 (continyed) 8

What is the number of shortest paths by which a
chess rook can move from one corner of a chess-
board to the diagonally opposite corner? This prob-
lem is quickly solved by labeling all the cells of the
board in the same manner that Susan labeled the
street corners. A chess rook moves only along or-
thogonals (horizontally and vertically), therefore the
shortest paths are obtained by confining each move
to a direction that carries the rook toward its goal.
When the entire board has been labeled correctly,
as shown in Figure 2, the labels will give at once the
number of shortest paths from the starting square to

2
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any square on the board. The cell at the upper right
corner has the number 3,432, therefore there are
3.432 ways that the rook can go from one corner
to the diagonally opposite corner along shortest
routes.

Let us slice the chessboard in half along a diago-
nal, then turn it so it becomes the triangle shown in
Figure 3. The numbers on the bottom row of cells
give the number of shortest paths from the apex cell
to each cell at the bottom. The labeling of this
triangle is identical with the numbers of Pascal’s

. _ __ ___  ___ _____ __— — — — _ _ _ — —— e




famous number triangle. The algorithm for comput-
ing the shortest paths from the top downward is, of
course, precisely the procedure by which Pascal's
triangle is constructed. This isomorphism provides
an excellent introduction to the endless fascinating
properties of the Pascal triangle.

3

Pascal's triangle gives at once the coefficients for
the expansion of binomials—that is, raising (a + b)
to any power—as well as the solutions to many
problems in elementary probability theory. Note
that in Figure 3 the number of shortest paths from
the top of the triangle to the bottom row of cells is 1
on the outside border cells, and the numbers in-
crease as you move toward the center. Perhaps you
have seen one of those devices based on Pascal’s
triangle in which a board is tipped and hundreds of
little balls roll past pegs to enter columns at the bot-
tom. The balls arrange themselves in a bell-shaped
binomial distribution curve precisely because the
number of shortest paths to each slot are the coeffi-
cients of a binomial expansion.
Susan’s algorithm obviously works just as well
' on three-dimensional grids with cells that are rec-
tangular parallelepids. Imagine a cube that is 3 units
on the side, and divided into 27 unit cubes. Con-
sider this a chessboard with a rook in one of the
corner cells. The rook can move parallel to any of
the three coordinates. In how many ways can it take
a shortest path to the cell that is opposite it along a
space diagonal?
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Mixed-Up Tags

The reason why this problem confuses so many
people is that they assume wrongly that there are
many ways that just three out of four babies can be
correctly tagged. But if you think in terms of the
“pigeon-hole principle”, the answer is obvious.
Suppose there are four pigeon holes, and each
labeled with the name of one of four objects. If three
objects are placed in their proper holes, then the
fourth object has only one spot it can go, and of
course that is its correct spot. Instead of many possi-
ble cases, there is only one: namely the case in
which all four objects are correctly placed.

There is a classic mislabeling puzzle, involving
only three objects. that is also solved by an aha! in-
sight which reduces the number of cases to one.
Suppose you have three closed boxes on a table.
One contains two nickels, one contains two dimes,
and one contains a nickel and a dime. The boxes are
labeled 10¢, 15¢ and 20¢. But every label is incor-
rect. Someone reaches into the box mislabeled 15¢,
removes one coin, and places it on the table in front
of the box. By seeing this coin, can you tell the con-
tents of each box?

As before, one is at first inclined to think there are
many different possibilities, but with the right insight
you can see that there is only one case. The coin
taken from the mislabeled 15¢ box must be either a
nickel or a dime. If it is a nickel. you know that the
box originally held two nickels. If it is a dime. you
know the box originally held two dimes. In either
case, the contents of the other two boxes are now
fully determined. To understand why, draw up a
chart of the six possible cases. You will see that the
mislabeling of all three boxes eliminates all but two
cases. The sampling of one coin from the 15¢ box
then eliminates an additional case. leaving only the
correct one.

This problem is sometimes given in a slightly
more difficult form. One is asked to determine the
contents of all three boxes by sampling a minimum
number of coins which may be taken from any box.
The unique answer, of course, is one coin taken
from the 15¢ box. Perhaps you can invent more

complicated versions with more than two objects
per box, or more than three boxes.

Many other fascinating puzzles are closely related
to the baby problem, and that also lead into elemen-
tary probability theory. For example: If the tags of
the babies are mixed at random, what is the prob-
ability that all four will be correct? That all will be
incorrect? That at least one will be correct? That
exactly one will be correct? That at least two will be
correct? That exactly two will be correct? That at
most two will be correct? And so on.

The “at least one™ question. in general form, is
one of the classics of recreational mathematics. It is
often given with a story about n men who check
their hats at a restaurant. A careless hat-check girl
makes no attempt to match hats with checks, but
hands out the checks randomly. What is the proba-
bility that at least one man gets his own hat back? It
turns out that the probability quickly approaches a
limit of 1 —(1/e) as n increases, or a little better than
V5. Here, e is a famous irrational constant, called
Euler’s constant, equal to 2.71828" . It is as fre-
quently encountered in probability problems
as pi is in geometrical problems.
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Quibble’s Subset

The aha! that solves Quibble’s brain teaser is the
realization that by putting one cup inside another,
the same set of coins can belong to more than one
cup. In the language of set theory, our solution is a
set of 7 elements plus another set of 3 elements that
contains a subset of 1 element. This solution can be
represented with circles as follows:

9,

You will enjoy finding all the other solutions. It is
easy to find 10 of them, of which the above is one,
but it will take another aha! to discover that there are
five more, or 15 in all.

After you have found all 15 you might try
generalizing the puzzle by varying the number of
coins, the number of cups, and the rule about the
kinds of numbers to go in each cup.

The basic insight—that part or all of one set can
be included in another set and counted twice—is
involved in many famous puzzles and paradoxes.
Here is an amusing one.

After a boy failed to attend school for several
weeks he was visited by the school’s attendance of-
ficer. The boy explained why he had no time for
school.

“I sleep 8 hours a day. That makes 8 x 365 or
2,920 hours. There are 24 hours per day, so that's
the same as 2,920/24 or about 122 days.

“Saturday and Sundays are not school days. That
amounts to 104 days per year.

“We have 60 days of summer vacation.

“I need 3 hours a day for meals—that's 3 x 365
or 1,095 hours per year. or 1,095/24 which is about
45 days per year.

“And [ need at least 2 hours per day for recrea-
tion. That comes to 2 x 365 or 730 hours, or
730/24 which is about 30 days per year.”

P

The boy jotted down these figures and added up
all the days:

Sleep 122
Weekends 104
Summer 60
Meals 45
Recreation 30

361

The total came to 361 days.

“You see,” said the boy, “that leaves me only 4
days to be sick, and | haven't even considered the
school holidays we get every year!”

The attendance officer studied the boy'’s figures
but couldn’t find anything wrong with them. Try this
paradox on your friends to see how many of them
can spot the fallacy: namely, counting subsets more
than once. The boy’s categories overlap like the
contents of Quibble’s cups.




Steak Strategy

Mr. Johnson has a small out-
door grill just big enough to hold
two steaks. His wife, and daugh-
ter Betsy, are hungry and anxi-
ous to eat. The problem is to
broil 3 steaks in the shortest
possible time.

Mr. Johnson: Let'ssee. Ittakes
20 minutes to broil both sides of
one steak because each side
takes 10 minutes. And since |
can cook two steaks at the same
time. 20 minutes will be enough
time to get two steaks ready.
Another 20 minutes will broil
the third steak and the job will
be done in 40 minutes.

Betsy: But you can do it much
faster, Daddy. | just figured out
how you can save 10 minutes.
What clever aha! insight did
Betsy have?

To explain Betsy's solution, call
the steaks A, B, and C; each
steak having sides 1and 2. In
the first 10 minutes sides Al and
B1 are broiled.

Steak Bis now putaside. Andin
the next 10 minutes sides A2
and Cl1 are broiled. Steak A is
now finished.

Ten more minutes and sides B2
and C2 are broiled. All three
steaks cooked in only 30
minutes, right?




A General Strategy

This is a simple combinatorial problem in a branch
of modern mathematics called operations research.
It brings out beautifully the fact that if one is faced
with a series of operations, and wants to complete
them in the shortest time, the best way to schedule
the operations is not immediately apparent. The
way that seems at first to be best, may be considera-
bly improved. In our problem the aha! lies in recog-
nizing that it is not necessary to cook the second side
of a steak immediately after cooking the first side.

As usual, simple problems like this can be
generalized in more ways than one. For example,
you can vary the number of steaks the grill will hold,
or vary the number of steaks to be cooked, or both.
Another generalization is to consider objects with
more than two sides, and which have to be “fin-
ished” in some way on all sides. For example, a
person may have the task of painting n cubes red on
all side, but at each step he can paint only the tops of
k cubes.

Operations research is used today for solving
practical problems in business, industry, military
strategy, and many other fields. To appreciate
the usefulness of even a solution as simple as the
one for our steak problem, consider the following
variation.

Mr. and Mrs. Jones have three household tasks to
perform.

1. Their first floor must be vacuumed. They have
only one vacuum, and the task takes 30 minutes.

2. The lawn must be mowed. They have only
one mower, and this task also takes 30 minutes.

3. Their baby must be fed and put to bed. This,
too, requires 30 minutes.

How should they go about performing these
tasks so as to accomplish all of them in a minimum
amount of time? Do you see how this problem is
isomorphic with the steak problem? Assuming that
Mr. and Mrs. Jones work simultaneously, one might
at first suppose it would require 60 minutes to com-
plete the tasks. But if one task, say vacuuming, is
splitin half, and the second half postponed (as in the
steak problem), the three tasks can be completed in

three-fourths the time, or 5 minutes.

Here is a more sophisticated operations research
problem involving the preparation of three slices of
hot buttered toast. The toaster is the old-fashioned
type, with hinged doors on each of its two sides. It
holds two pieces of bread at once but toasts each of
them on one side only. To toast both sides it is neces-
sary to open the doors and reverse the slices.

It takes 3 seconds to put a slice of bread into the
toaster, 3 seconds to take it out, and 3 seconds to
reverse a slice without removing it. Both hands are
required for each of these operations, which means
it is not possible to put in, take out, or turn two slices
simultaneously. Nor is it possible to butter one slice
while another is being put into the toaster, turned, or
taken out. The toasting time for one side of a piece
of bread is 30 seconds. It takes 12 seconds to butter
a slice.

Each slice is buttered on one side only. No side
may be buttered until it has been toasted. A slice
toasted and buttered on one side may be returned
to the toaster for toasting on its other side. The
toaster is warmed up at the start. In how short a
time can three slices of bread be toasted on both
sides and buttered?

1t is not too difficult to figure out a procedure that
will do the job in two minutes. However, the total
time can be reduced to 114 seconds if you have the
following insight: a piece of bread can be partially
toasted on one side, removed, and later returned to
complete the toasting on the same side. Even with
this necessary aha!, the task of scheduling the oper-
ations in the most efficient way is far from easy. In-
numerable practical problems in scheduling are
much more complicated than this, and call for very
sophisticated mathematical techniques involving
computers and modern graph theory.




The Troublesome Tiles

Mr. Brown's patio is made from
40 square tiles. The tiles have
deteriorated and he wants to
cover them with a new set.

Betsy: Aha! [ see what the
trouble is. It's obvious once you
realize that each rectangular tile
must cover a red and a white
square.

How does this help? Do you
know what Betsy means?

He chooses new tiles to match
his lawn furniture. Unfortunate-
ly these tiles come only in rec-
tangles, each of which covers
two of his old tiles.
Storekeeper: How many of
these do you want, Mr. Brown?
Mr. Brown: Well,  have to
cover 40 squares. So I'll need
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20, I guess.

When Mr. Brown tried to cover
his patio with the new tiles he
became very frustrated. No
matter how hard he tried, he
couldn’t make them fit.

Betsy: What's the trouble,
Dad?

Mr. Brown: These blasted tiles
won't fit. It's driving me nuts. [
always end up with two squares
Ican't cover.

Mr. Brown's daughter drew a
plan of the patio and colored it
like a checkerboard. Then she
studied it for several minutes.

There are 19 black squares

and 21 red. So after 19 tiles are
placed there will always be two
red squares uncovered. And
these cannot be covered by the
rectangular tile. The only solu-
tion is to cut one tile in half.
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The Parity Check

Mr. Brown's daughter solved the tiling problem

by applying what is called a “parity check.” If two
numbers are both odd or both even, they are said to
have the same parity. If one is odd and the other
even they are said to have opposite parity. In com-
binatorial geometry one often encounters analo-
gous situations.

In this problem two squares of the same color
have the same parity, and two squares of opposite
color have opposite parity. A rectangular tile clearly
covers only pairs of opposite parity. The girl first
showed that if 19 rectangular tiles were placed on
the patio. the two remaining squares could be
covered by the last tile only if the squares were of
opposite parity. Since the two remaining squares
necessarily have the same parity, they cannot be
covered by the last tile, therefore the tiling of the
patio is impossible.

Many famous impossibility proofs in mathematics
rest on parity checks. Perhaps you are familiar with
Euclid's famous proof that the square root of 2
cannot be rational. The proof is obtained by first
assuming that the root can be expressed as a
rational fraction reduced to lowest terms. The
numerator and denominator cannot both be even
because then the fraction would not be in lowest
terms. Therefore they must both be odd. or one
must be odd and the other even. Euclid's proof then
shows that the fraction cannot be either. In other
words, the numerator and denominator cannot be
of like parity or of opposite parity. Because every
rational fraction must be one or the other. the
square root of 2 cannot be rational.

Tiling theory abounds with problems that would
be difficult to prove impossible if parity checks were
not used. This problem is extremely simple because
it involves tiling with dominoes, the simplest non-
trivial polyomino. (A polyomino is a set of unit
squares attached at their edges.) The girl's impos-
sibility proof applies to any matrix of unit squares
which, after a checkerboard coloring, has at least
one more cell of one color than it has cells of the
other color.

In our problem the patio may be regarded as a 6
by 7 matrix with two missing cells of the same color.
Obviously if the two removed cells are the same
color, the remaining 40 cells cannot be covered with
20 dominoes. An interesting related problem is
whether 20 dominoes will always tile the 6 by 7
matrix if the two removed cells are of opposite color.
The parity check fails to prove impossibility, but this
does not mean that the tiling is always possible. It
is out of the question to investigate every possible
pattern created by removing a pair of tiles of oppo-
site color, because there are too many possibilities
to analyze. Is there a simple proof of possibility for
all cases?

Yes, it is both simple and elegant, and one that re-
sulted from a brilliant aha! that occurred to Ralph
Gomory. It, too, makes use of a parity principle. As-
sume that the 6 by 7 rectangle has a closed path,
one cell wide, that completely fills it; see Figure 4.
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Now imagine two cells of opposite color removed
from anywhere along the path. This breaks the
closed path into two parts. Each part consists of an
even number of cells which alternate colors. Clearly
such a portion of the path can always be tiled with
dominoes. (Think of them as little boxcars that can
be arranged along a twisted track.) Therefore the
problem is always solvable. You may wish to exper-
iment with applications of this clever proof to ma-
trices of other sizes and shapes, and with more than
two missing cells.

Tiling theory is a vast area of combinatorial
geometry about which there is growing interest. Re-
gions to be tiled can be of any shape —finite or infi-
nite. Tiles may likewise vary in shape, and problems
19
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may involve sets of different tiles rather than con-
gruent shapes. Impossibility proofs often involve
coloring the field in a specified way with two or more
colors.

The three-dimensional analog of a domino is a
brick with unit dimensions of 1xX2x4. It is easy
to “pack” (tile in space) a 4 x4 x4 box with such
bricks, but is it possible to pack completely a
6% 6x 6 box with such bricks? This problem is
answered in exactly the same way as Mr. Brown'’s
patio problem. Imagine the cube divided into 27
smaller cubes, each 2x2x%2. Color these order-2
cubes alternately black and white like a three-
dimensional checkerboard. If you count the num-
ber of unit cubes of each color you will find that
there are 8 more cubes of one color than of another.

No matter how a brick is placed within this col-
ored cube, it must always “cover” exactly the same
number of black unit cubes as white. But there are 8
more unit cubes of one color than another. No mat-
ter how the first 26 bricks are placed, there will al-
ways be 8 unit cubes left over of the same color.
Therefore they cannot be covered by the 27th brick.
This would be extraordinarily difficult to prove by
exhaustively examining every possible pattern of
packing.

Brick packing theory is only a portion of the
theory of tiling in 3-dimensional space. There is a
growing literature on space-packing problems, with
many tantalizing unsolved questions. Many of the
problems have applications to the packing of mer-
chandise in cartons, storage of merchandise in
warehouses, and so on.

Parity also plays an important role in particle
physics. In 1957 two Chinese American phuysicists
received the Nobel Prize for work that led to the
overthrow of a famous law called the “conservation
of parity.” This is too technical to go into here, but
there is a delightful coin trick to illustrate one way
parity is conserved.

Toss a handful of coins on the table and count the
number of heads. If even, we say the heads have
even parity. If odd, we say they have odd parity.
Now turn a pair of coins over, then another pair,

then another, choosing the pairs at random. You
may be surprised to find that no matter how many
pairs are reversed, the parity of heads is always con-
served. If odd at the start it remains odd. If even at
the start it remains even.

This is the basis of a clever magic trick. Turn your
back and have someone reverse the coins by pairs
for as long as the person likes, then tell the person to
cover any coin with a hand. You turn around, and
after glancing at the coins you can tell correctly
whether the coin under the hand is heads or tails.
The secret is to count the number of heads at the
outset and remember if the number is odd or even.
Since turning coins by pairs does not affect this par-
ity, you have only to count the heads at the finish to
know whether the concealed coin is heads or tails.

As a variation, let the person cover two coins with
a hand. You can then tell whether the concealed
coins are alike or different. Many ingenious card
tricks of the mindreading variety operate by similar
parity checks.
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Quibble’s Pets

Here's Professor Quibble again
Prof. Quibble: I've got
another teaser for you How
many pets do | have if all of
them are dogs except two. all
are cats except two, and all are
parrots except two?

Have you got it?

Professor Quibble has just 3
pets: a dog, a cat, and a parrot.
All are dogs except two, all are
cats except two and all are
parrots except two.

“All” for One

This confusing little problem can be solved in your
head if you have the insight that the word “all” can
apply to only one animal. The simplest case —one
dog. one cat, one parrot— provides the solution.
However, it is a good exercise to put the problem
into algebraic form.

Let x, y and z stand, respectively. for the number
of dogs, cats and parrots, and n for the total number
of animals. We can then write four simultaneous
equations:

n=x-+2
n=y+2
n=z+2
n=x-+y+z

These equations can be solved by any of many
standard techniques. It is clear from the first three
equations that x=y =z. Sincen =x + 2, and (from
the fourth equation) n = 3x, we can write
x+2=23x
which gives x a value of 1. The complete answer
follows from this value of x.

Since numbers of animals are usually given in
positive integers (who has for a pet a fraction of a
cat?) we can think of Quibble’s pet problem as a
trivial example of what is called a Diophantine
problem. This is an algebraic problem with equa-
tions that must be solved in integers. Sometimes a
Diophantine equation has no solution, sometimes
just one, sometimes a finite number greater than
one, sometimes an infinite number. Here is a slight-
ly more difficult Diophantine problem that also con-
cerns simultaneous equations and animals of three
different kinds.

A cow costs $10, a pig $3 and a sheep 50¢.

A farmer buys 100 animals and at least one animal
of each kind, spending a total of $100. How many
of each did he buy?

Let x be the number of cows. y the number of
pigs, z the number of sheep. We can write two
equations:

10x + 3y +2/2 =100
x+y+z=100

Eliminate the fraction in the first equation by
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multiplying all terms by 2. From this result subtract
the second equation. This eliminates x and gives us:
19x + 5y =100

What integral values may x and y have? One way
to solve this is to arrange the equation with the
smallest coefficient on the left: 5y =100 — 19x.
Dividing both sides by 5 gives: y = (100 — 19x)/5.
Now divide 100 and 19x by 5, putting the remain-
ders (if any) over 5 to form a terminal fraction. The
result is:

y=20—3x —4x/5.

Clearly the expression 4x/5 must be integral, and
this means that x must be a multiple of 5. The lowest
multiple is 5 itself, which gives y a value of 1 and
(going back to either of the two original equations) z
a value of 94. If x is any larger multiple of 5, y be-
comes negative. Thus the problem has only one
solution: 5 cows, 1 pig and 94 sheep.

You can discover a lot about elementary Dio-
phantine analysis merely by varying the costs of
the animals in this problem. Suppose, for instance,
cows are $4, pigs $2 and sheep a third of a dollar?
What animals can the farmer buy for $100 assuming
he buys 100 animals and at least one of each? In
this case there are just three solutions. What if cows
cost $5, pigs $2 and sheep 50¢? Now there is no
solution.

Diophantine analysis is an enormous branch of
number theory, with endless practical applications.
One famous Diophantine problem, known as Fer-
mat’s last theorem, asks if there are integral solutions
to the equationx " +y " =z " where n is a positive in-
teger greater than 2. (If n=2, it is called a Pythago-
rean triple, and there are an infinite number of solu-
tions starting with 32 + 42 = 52)) It is the most famous
unsolved problem in number theory. No one has
found a solution, or proved that there is not one.
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The Medicine Mix-up Small

A drugstore received a
shipment of ten bottles of a
certain drug Each bottle
contains one thousand pills
The pharmacist. Mr. White had
just put the bottles on a shelf
when a telegram arrived.

Mr. White read the telegram to
Miss Black. the store manager.
Mr. White: Urgent. Do not sell
any pills until all bottles are
checked. By mistake, the pills in
one bottle are each 10 milli-
grams too much. Return the
faulty bottle immediately.

Mr. White was annoyed.

Mr. White: Of all the luck. ['ll
have to take a pill from each
bottle and find its mass. What a
nuisance.

Mr. White started to do this
when Miss Black stopped him.
Miss Black: Wait a minute.
There's no need to use the scale
10 times, we only need to use

it once.

How is this possible?

Miss Black's insight was to take
1 pill from the first bottle. 2 from
the second. 3 from the third.
and so on to 10 from the last
bottle.

These 55 pills were put on the
scale to find their mass If it
was 5510 milligrams, or 10
milligrams too much, she knew
that one pill was too heavy It
had to come {rom the first
bottle

If the mass was 20 milligrams
too much, then 2 pills were too
heavy They had to come from
the second bottle And so on,
for the other bottles So, Miss
Black did only use the scale
once, didn’t she?

0000 ©0s0 000

g 900
080 o000 8° a0 ©
988 o08e0 /

28






The Drug Dilemmas

In the first pill weighing problem we are told that
only one bottle contains heavier pills. By taking a
different number of pills from each bottle (the
simplest way to do this is to use the sequence of
counting numbers) we have a one-to-one corres-
pondence between the set of counting numbers
and the set of bottles.

To solve the second problem we must use a se-
guence that assigns a different number to each bot-
tle, and in addition, every subset of the sequence
must have a unique sum. Are there such sequ-
ences? Yes, and the simplest is the doubling sequ-
ence: 1,2,4,8,16..... These numbers are the succes-
sive powers of 2, and the sequence provides the
basis of binary notation.

The solution, in this case, is to line the bottles up
in a row, then take 1 pill from the first bottle, 2 pills
from the second, 4 from the third. and so on. The
removed pills are then weighed altogether. Let’s
assume they are heavier by 270 milligrams. Since
each faulty pill is heavier by 10 milligrams, we divide
this by 10 to get 27, the number of heavier pills.
Write 27 as a binary number: 11011. The position of
the 1's tell us what powers of 2 are in the set that
sums to 11011 = 27. They are 1.2,8 and 16. The 1's
are in the first, second, fourth and fifth positions
from the right of 11011. Therefore the faulty bottles
are bottles 1,2.4 and 5.

The fact that every positive integer is the sum of a
unique set of powers of 2 is what makes the binary
| notation so useful. It is indispensible in computer
science. and in a thousand other areas of applied
mathematics. In recreational mathematics there also
are endless applications.

Here is a simple card trick to mystify your friends.
Although it may seem to have no connection with
the pill bottle problem, the underlying binary princi-
ple is the same.

Have someone shuffle a deck of cards. Put the
deck in your pocket. then ask anyone to call out a
number from 1 through 15. You reach into your
pocket and take out a set of cards with values that
sum to the number called.

The secret is simple. Before showing the trick, put

'

an ace, deuce, four and eight in your pocket. The
deck will be missing four cards, but this is such a
small number that their absence will not be noticed.
The shuffled deck goes into your pocket beneath
the four cards already there. When the number is
called, mentally express it as a sum of powers of 2.
Thus if 10 is called you think*8 + 2 = 10." Reach
into your pocket and take out the deuce and

the eight.

Mindreading cards are also based on the same
binary principle. Figure 1 of Chapter 3, Number
aha!, shows a set of six cards that determine any
selected number from 1 through 63. Ask someone
to think of a number within this range— their age,
for instance— then hand you all the cards that bear
the number. You immediately name the number.
The secret is simply to add the powers of 2 that ap-
pear as the first number on each card. For example,
if you are handed cards C and F. you sum their two
starting numbers, 4 and 32. This tells you that the
chosen number is 36.

What rule determines the set of numbers for each
card? Every number whose binary representation
has 1in the first position on the right goes on card A,
the card whose set of numbers start with 1. These
are all the odd numbers from 1 through 63. Card B
contains all numbers 1 through 63 whose binary no-
tation has a 1 in the second position from the right.
Card C contains all numbers whose binary notation
has a 1 in the third position from the right, and so on
for cards D, E, and E Note that 63, which is 111111
in binary notation, has a 1 in every position, there-
fore it appears on every card.

Magicians sometimes make this trick more mys-
terious by having each card a different color. The
magician memorizes the color that stands for each
power of 2. For example, the red card is 1. the
orange card is 2. the yellow card is 4, the green card
is 8, the blue card is 16, and the purple card is 32.
(The colors are in rainbow order.) Now the magician
can stand across a large room and ask a person to
put aside each card on which the thought-of
number appears. By noting the colors on the cards
placed aside, the magician can immediately call out
the chosen number. 25




The Broken Bracelet

Gloria, a younglady from
Arkansas, is visiting in
California. She wants to rent a
hotel room for a week.

The clerk was very unpleasant.
Clerk: Theroom is $20 per day
and you have to pay cash.
Gloria: I'm sorry sir, butl don't
have any cash. However, | do
have this solid gold bracelet.
Each of its seven links is worth
more than $20.

Clerk: Alright, give me the
bracelet.

Gloria: No, not now. I'll have a
jeweler cut the bracelet so I can
give you 1link a day. Then
when | get some money at the
end of the week I'll redeem it.

The clerk finally agreed. But
now Gloria had to decide how
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JEWELLERS to cut the bracelet. She was in a
L_,Ef’T_Eé_J dilemma.

Gloria: | have to be careful
because the jeweler is going to
charge me for each link that he
cuts and for each link that he
joins when the bracelet is put
back together again.

After thinking a while Gloria
realized that she didn’t have to
cut all the links because she
could trade pieces back and
forth. She couldn’t believe it
when she figured out how many
cuts the jeweler had to make.
How many cuts would you
make?
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Only one link need be cut. It
must be third from one end.
This makes three pieces of 1, 2,
and 4 links. And these are
sufficient to trade back and forth
so that each day the clerk gets
one more link.










Geometry aha!







Geometry is the study of shapes. Although true, this
definition is so broad that it is almost meaningless.
The judge of a beauty contest is, in a sense, a
geometrician because he is judging female shapes,
but this is not quite what we want the word to mean.
It has been said that a curved line is the most beauti-
ful distance between two points. Even though this
statement is about curves, a proper element of
geometry, the assertion seems more to be in the
domain of aesthetics rather than mathematics.

Let us be more precise and define geometry in
terms of symmetry. By symmetry is meant any
transformation of a figure that leaves the figure un-
changed. For example, the letter “H” possesses 180
degree rotation symmetry. This means that if we ro-
tate the letter 180 degrees—tum it upside
down—we still have the letter “H”. The word
“AHA" possesses reflection symmetry. Hold it up to
a mirror and the reflection of this word looks the
same.

Every branch of geometry can be defined as the
study of properties that are unaltered when a
specified figure is given specified symmetry trans-
formations. Euclidian plane geometry, for instance,
concerns the study of properties that are “invariant”
when a figure is moved about on the plane, rotated,
mirror reflected, or uniformly expanded and con-
tracted. Affine geometry studies properties that are
invariant when a figure is “stretched” in a certain
way. Projective geometry studies properties in-
varant under projection. Topology deals with prop-
erties that remain unchanged even when a figure is
radically distorted in a manner similar to the defor-
mation of a figure made of rubber.

Although geometry pervades every portion of
this book, in this chapter we have brought together
problems in which the geometrical aspect domi-
nates, and, of course, we have selected problems
that depend on aha! insights for easy solutions. Our
first puzzle, about cheese cutting, illustrates how
many branches of mathematics can come together
in even the simplest problem. It is partly plane
geometry, partly solid geometry, partly combinato-
ral, and partly arithmetical. Moreover, it introduces
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an important branch of algebra called the “calculus
of finite differences.”

The “Big Knight Switch,” surprisingly, is a prob-
lem of topology. The string solution shows that the
problem is equivalent to one that can be given in
terms of the points on any simple closed curve, and
it does not matter in the least what shape the closed
curve has. Only the topological properties of such a
curve are involved. We solve this problem with
points on a circle, but we could just as well have
used a square or a triangle.

The next two problems— “Surprising Sword”
and “Payoff at the Poles” —take us off the plane
once more into three-dimensional Euclidian
geometry. The pilot’s paths suggest a famous path
problem about four bugs that shows how it is some-
times possible to avoid calculus by applying much
simpler insights. Ransom’s surveying problems take
us back to the plane, introducing aspects of Euclid-
ian geometry that belong to dissection theory and
tiling theory. The tiling problem is one of com-
binatorial plane geometry. Miss Euclid's cube-
slicing problem is one of combinatorial solid
geometry.

The carpet problem, and its three-dimensional
companion about the hole in a sphere, are two
elegant examples of theorems in which a variable,
which one expects to behave like a variable, turns
out to have only one value even when other
parameters are varied. Who would expect the
sphere’s volume to be a constant regardless of the
hole’s width or the radius of the sphere? When a
mathematician first encounters this theorem he/she
almost always expresses amazement, followed by
the exclamation “Beautiful!”

No one knows exactly what a mathematician
means when he/she calls something beautiful —it is
somehow bound up with unanticipated simplicity
but all mathematicians recognize a beautiful
theorem, or a beautiful proof of a theorem, as easily
as one recognizes a beautiful person. Geometry,
because of its visual aspect, is unusually rich in
beautiful theorems and proofs. You will find some
good examples of them in this section.
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Crafty Cheese Cuts
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The food at Joe's Diner may not
be the best, but the place is
famous for its delicious cheese.

You can have a lot of fun with
the cylindrical pieces of cheese.
With one straight cut it's easy tc
divide one piece into two
identical pieces.

With two straight cuts it's easy tc
cut it into four identical pieces.
And three cuts will make six
identical pieces.

One day, Rosie, the waitress,
asked Joe to slice the cheese
into eight identical pieces.

Joe: Okay, Rosie: That's simple
enough. I can do it with four
straight cuts like this.
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While Rosie was carrying the
slices to the table, she suddenly
realized that Joe could have
gotten the eight identical pieces
with only three straight cuts.
What insight did Rosie have?

Three Straight Cuts?

Rosie’s insight was to realize that the cylindrical
cheese is a solid figure that can be cut in half by a
horizontal plane through the center. Figure 1 shows
how three planar cuts divide the cheese into eight
identical portions. This solution assumes that the

1

three cuts are made simultaneously. If the cuts are
consecutive, and one is allowed to rearrange pieces
between cuts, then it can be done in three cuts by
stacking the first two pieces, cutting to get four, then
stacking the four pieces and cutting to get eight.

Rasie’s solution is so simple that it is almost trivial,
yet it provides a good introduction to significant cut-
ting problems that can be explored with the calculus
of finite differences and proved by mathematical in-
duction. The calculus of finite differences is a power-
ful tool for discovering formulas for the general term
of number sequences. Today there is a rapidly grow-
ing interest in number sequences because of their
many practical applications, and because comput-
ers can carry out operations with sequences so
quickly.

Rosie’s first method of slicing the cheese was with
straight cuts that are concurrent at the center of the
top of the cheese. The top of the cheese is a flat
surface like a pancake. Let us see what kinds of
number sequences can be generated by the simple
procedure of cutting a pancake with straight lines. If
the lines are concurrent at the pancake’s center. itis
obvious that n simultaneous straight cuts produce a
maximum of 2n pieces.

Does this expression 2n also give the maximum
number of pieces that can be produced by n concur-
rent cuts through any plane figure bounded by a
simple closed curve? No—as Figure 2 shows. it is
easy to draw nonconvex shapes on which even one
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cut can produce as many pieces as you like. Is it pos-
sible to draw a shape such that a single cut will pro-
duce any finite number of congruent pieces? If so,
what characteristics must a shape’s perimeter have
to permit the formation of n congruent pieces by
one straight cut?

Cutting a pancake becomes more interesting
when the cuts are not concurrent. You will quickly
discover that not untiln = 3 does this procedure
start producing more than 2n pieces. We are not
here concerned with whether the pieces are con-
gruent or even of equal area. Figure 3 shows how
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the maximum number of pieces is obtained when
n =1, 2, 3and 4. The number of pieces are. re-
spectively, 2, 4, 7and 11.

This is a familiar sequence that is generated by
the formula

&
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where n is the number of straight cuts. The first ten
terms of the sequence, starting withn= 0, are: 1, 2,
4,7, 11,16,22, 29,37, 46, . ... Note that the first row
of differencesis 1, 2, 3,4,5,6,7,8,9,..., and the
second row of differencesis1,1,1,1,1,1,1,1,....
This strongly suggests that the general term for the
sequence is a quadratic.

We say “strongly suggests”™ because finding a
formula with the calculus of finite differences does
not guarantee that the formula is valid for the infinite
sequence. For this a proof is required. In the case
of the pancake formula, there is a simple proof by
induction that is not hard to work out.

From this point you can take off in dozens of fas-
cinating exploratory directions, many of which lead
to unusual number sequences, formulas, and
proofs by mathematical induction. Here are a few
problems to start on. What is the maximum number
of pieces that can be obtained when:

1. A pancake shaped like a horsehoe is given n
straight cuts?

2. A sphere, or cylindrical, piece of cheese like the
one cut by Rosie. is given n planar cuts?

3. A pancake is given n cuts with a circular cookie
cutter?

4. A pancake shaped like a ring (that is, with a cir-
cular hole in the center) is given n straight cuts?

5. A doughnut (torus) is given n planar cuts?

In all these problems it is assumed that the cuts
are simultaneous. How do the answers vary if the
cuts are consecutive, with rearrangements permit-
ted between cuts?
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Dimensions in Disguise

In the middle of a city park there
is a large circular play area. The
city council would like to put a
diamond shaped wading pool
inside the circular area.

What simple aha! enabled them
to solve the problem so easily?

When Doris Wright, the mayor,
saw the plans she spoke to the
architect.

Mayor Wright: [ like the pool’s
rhombical shape, and the red
tiling; but how long is each side
of the pool?

Frank Lloyd Wrong, the
architect, was puzzled.

Mr. Wrong: Let'ssee. It's 5
meters from A to B, and 4
meters from B to C. Hmm.
There has to be a way to find
BD. Maybe I have to use
Pythagorean theorem.

Mr. Wrong was about to give
up when suddenly her Honour
shouted:

Mayor Wright: Aha! The
pool’s side is exactly 9 meters.
It's obvious.

Mr. Wrong: By golly, you're
Wright. And I'm Wrong.
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A Diagonal Radius

Ms. Wright suddenly realized that each side of the
pool is the diagonal of a rectangle. and the other
diagonal in each rectangle is the radius of the circu-
lar play area. The diagonals of a rectangle are equal,
therefore the side of the pool is the same length as
the circle’s radius. The radiusis 5 + 4 = 9 meters,
therefore each side of the pool is 9 meters. There is
no need to apply the Pythagorean theorem.

You can better appreciate the value of this aha!
insight by trying to calculate the side of the pool in a
more conventional manner. If you use nothing but
the Pythagorean theorem and similar triangles, the
solution is long and tedious. It can be shortened
somewhat by remembering a theorem in plane
geometry that says if two chords intersect within a
circle, the product of the two parts of one chord
equals the product of the two parts of the other
chord. This theorem gives the height of the right
triangle as V' 56. By applying the Pythagorean theo-
rem you can then calculate the hypotenuse of the
right triangle as 9 meters.

A closely related problem is a famous puzzle
about a water lily that the poet Henry Longfellow
introduced into his novel Kavenaugh. When the
stem of the water lily is vertical, the blossom is 10
centimeters above the surface of a lake. If you pull
the lily to one side, keeping the stem straight, the
blossom touches the water at a spot 21 centimeters
from where the stem formerly cut the surface. How
deep is the water?
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The problem can be solved by first drawing the
diagram shown in Figure 4. This is essentially the

same diagram as the one for the swimming pool
problem. Our task is to determine the length of x.
Like the pool problem. this also can be solved in
more than one way. But if you remember the
theorem about intersecting chords, you can solve it
with very little effort

Here is another delightful swimming pool puzzle
that is quickly solved by an aha! A dolphin is at the
west edge of a circular pool at spot A. He swims in a
straight line for 12 meters. This causes him to bump
his nose against the pool's edge at spot B. He turns
and swims in a different direction in a straight line for
5 meters, and arrives at spot C on the pool's edge
exactly opposite A, where he first started. How far
would he have gone had he swum directly from A to
Cc?

The aha! that solves the problem is knowing the
theorem that an angle inscribed in a semicircle is a
right angle, therefore ABC is a right triangle. In this
case, the sides of the right triangle are given as 5 and
12, therefore the hypotenuse is 13 meters. The
moral of all these problems is: In many cases the in-
sight that makes a geometrical problem ridiculously
easy depends on remembering a fundamental
theorem of Euclidean geometry.




The Big Knight Switch

At a meeting of the chess club,
Mr. Bishop posed a puzzle.

Mr. Bishop: Interchange the
positions of the black and white
knights in as few moves as
possible.

One boy made his first two
moves this way and it took him
24 moves to get the white
knights on top and the black
knights on the bottom.

Before starting her explanation
Fanny drew a diagram in which
straight lines showed every
possible knight move.

Ms. Fish: If the straight lines
are imagined to be strings, the
eight cells will be like beads on a
folded necklace, which can be
opened up to form a circle.

Another boy was able to do it in
20 moves.

But no one could do it in less
than 18 moves until Fanny Fish
arrived.

Ms. Fish: Aha!lcan doitin
only 16 moves. And | can prove
that it can’t be done in less.
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Ms. Fish: Every move on the
board corresponds to a move
on the circle. To switch the
knights we just have to move
them around the circle in one
direction.

Mr. Bishop: You're right

Fanny. And at the finish each
of the 4 knights has moved 4
times. That's 16 movesin alland .
it can’t be done in less.

Fanny replaced one of the
white knights with a red one,
and asked the members to
interchange the places of the |
red and white knights in as few
moves as possible. Why do you
think she had a smile on her
face when she did this?
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Knights and a Star
Fanny solved the knights problem by changing it to
an isomorphic problem that had a simple aha! solu-
tion. The problem she posed is solved by the same
curious technique as before. When we join the cells
by string, and open them up into a circle, we see that
the knights are in the following cyclic order: black,
black. red, white. Fanny was smiling because she
saw the red and white knights could not interchange
their places. Their order is invariant because no
knight can jump another knight by moving around
the circle in either direction. Do you see why?
Going clockwise around the circle, the white
knight is always immediately behind the red knight.
If it were possible for the red and white knights to
exchange starting places, then the cyclic order
would have to be reversed and the red knight would
be immediately behind the white knight. This obvi-
ously is impossible because it would require that
one knight hop over both black knights. By chang-
ing the problem to one of topological order of four
spots on a closed curve, we have found a simple
impossibility proof that would be extremely difficult
to obtain by any other method. You will surely agree
if you try to solve the problem in a different way.
Did you like these two knight switching prob-
lems? Here is one that is even more of a challenge.
Consider the problem shown on the 3-by-4 board
in Figure 5. As before, the task is to switch the posi-
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tions of the three black and three white knights, so
that the white knights occupy the top row, and the
black knights the bottom row, and to do this in a
minimum number of moves.

In this case the isomorphic graph is more comp-
licated, see Figure 6. The graph is. of course. a
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diagram that shows every possible knight move. As-
suming that the graph is made of strings and beads,
we cannot open the string into a circle as we did in
the previous problem. However, we can open the
bead-and-string graph to the form shown in Figure
7. The numbers in this picture correspond to cell
numbers in Figures 4 and 5.

7

The problem of switching black and white knights
on this graph is, therefore, isomorphic with the orig-
inal problem, but now it is much easier to work
out the solution. See if you can find the minimum
solution in 16 moves.

An old puzzle that also lends itself to analysis by
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the String-and-bead technique makes use of the
star diagram shown in Figure 8. To work on this puz-
zle you need seven pennies or small counters.

The problem is this: Place a penny on any point of
the star and move it along a black line to a different
point. Once the penny is moved it must remain on
the point to which you moved it.

Now place a second penny on any unoccupied
point of the star, and move it in similar fashion to any
other unoccupied point. Continue in this way until
all seven pennies have been placed on points.

X
XX
X

You will soon discover that unless you place and
move the pennies according to a carefully designed
plan, you will find yourself trapped in a position that
will not permit you to continue. The problem is to
devise a system for placing and moving all seven
pennies according to the rules. Can you work out
the system?

The star graph can be opened out like the graph
of the first two knight problems into one that is circu-
lar. It is now easy to place and move all seven coun-
ters. There are many ways to do it. One simple
system is to make any move you like with the first
penny. Thereafter, always place and move the next
penny so that it ends on the spot vacated by the pre-
viously placed coin.

Try this puzzle on your friends. Very few of them
will be able to solve it even after you have dem-
onstrated (rapidly) how it can be done.

8
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Surprising Swords

Study this picture carefully Do
you see anything wrong with it”?

Look at the sword. It cannot
possibly fit into its scabbard

If these two swords have a
uniform cross section they will
fitinto a scabbard of the
corresponding shape. But can
you think of a third shape for a
sword and its scabbard?

Did you have the insight to think
of three dimensional curves? It
turns out that a spiral curve
called the helix is the only other
possible shape for a sword and
its scabbard.

General Helix

The helix has become an important structure in
modern science, especially in biology and nuclear
physics. It is the structure of the DNA molecule. Un-
like its one- and two-dimensional cousins, the
straight line and the circle, the helix has a “handed-
ness”; that is, it can be right-handed or left-handed.
A straight line or a circle is identical with its mirror
image, but a helix is not. In the mirror it “goes the
other way,” as Lewis Carroll's Alice said when she
looked at the room behind the looking-glass. A
neutrino, for example, travels with the speed of
light, but because it has “spin” it traces (in a sense)
a helical path in spacetime. Neutrinos and antineu-
trinos have helices of opposite handedness.

There are many examples of helices in nature and
in everyday life. A right-handed helix is traditionally
defined as one that coils clockwise as it “goes away”
from you. Screws, bolts and nuts are usually right-
handed. Helical structures such as circular stair-
cases, candy canes, springs. and the helical strands
of ropes, cables and strings. come in both forms. Do
barber poles?

Examples of spirals in nature include the horns of
many animals, conical sea shells, the long tooth of
the narwhal, the cochlea of the human ear, and um-
bilical cords. In the plant world helices turn up in
stalks. stems, tendrils, seeds, flowers, cones, leaves,
tree trunks and so on. Squirrels trace helices when
they run up and down a tree. Bats fly in helical paths
when they emerge from a cave. Conical helices are
exhibited by such weather phenomena as whirl-
poals and tornadoes. Water flows helically down
drains. For more examples of helices in nature see
The Ambidextrous Universe by Martin Gardner.

A regular helix is a curve that coils around a circu-
lar cylinder, making a constant angle with the cylin-
der’s elements. (The elements are straight lines on
the surface that parallel the axis.) Call this constant
angle theta. It is easy to see that if theta is zero, the
helix is a straight line. If theta is 90 degrees, the helix
is a circle. This can be established analytically by
using the parametric equations for a helix and let-
ting theta vary between 0 and 90 degrees. Thus, the
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straight line and the circle are limiting forms of the
more general space curve called the helix. The requ-
lar helix is the only space curve of constant curva-
ture and torsion. This explains why the helix and
its two limiting forms provide the only shapes for
the swords and their scabbards.

One projection of the helix on the plane is obvi-
ously a circle. If a projection is made at right angles
to the axis of the helix, it is a sine curve. Again, this is
easily verified by examining the curve’s parametric
equations. Indeed, this furnishes a pleasant intro-
duction to the sine curve and its properties.

Here is an amusing story problem involving a
helix that has a good aha! solution. A cylindrical
tower, 100 meters high, has an inside elevator.
Around the tower’s outside is a helical stairway that
has a constant theta angle of 60 degrees with the
vertical. The tower’s diameter is 13 meters.

One day Mr. and Mrs. Pizza rode the elevator to
the observation deck at the top of the tower. Their
son, Tomato Pizza, climbed the stairway all the way
from the bottom to the top. When he arrived at the
observation deck he was breathing heavily.

“No wonder you're beat, son,” said Mr. Pizza.
“You must have gone four times the distance we
did. And you did it all on foot.”

“You're wrong, Dad,” said Tom. “I only went
twice as far.”

Who was right, Tom or his father? One is inclined
to think it necessary to use the diameter of the circu-
lar tower in calculating the length of the helical stair-
case. Surprisingly, the tower’s diameter of 13 me-
ters is extraneous information that can be ignored
entirely!

The reason the diameter is irrelevant is that the
helical stairway corresponds to the hypotenuse of a
right triangle with angles of 60, 30 and 90 degrees,
and a height of 100 meters. The hypotenuse of such
a triangle is, of course, twice the height (the side op-
posite the 30-degree angle). Therefore Tom was
right.

You can verify this by unwinding a cardboard
mailing tube, or the tube around which paper towels
come. The outcome may astonish you. You will see
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at once that the tube’s helical edger has a fength that
is independent of the width of the cylinder into
which the right triangle is rolled.
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Pavyoff at the Poles

Bet-a-dollar Dan, a famous
gambler, is having a drink with
his friend Dick, an airline pilot.

Dan: Dick, I'll bet you a dollar
that you can’t figure this one
out. A pilot flies due south 100
kilometers, then goes east 100
kilometers, then north 100
kilometers and finds that he's
right back where he started
from. Where did he start from?

Dick: I'll take that bet, Dan.
That’s an old one. He started
from the North Pole.

Dan: Right. Here's your dollar.
Now, I'll bet you another dollar
thatyou can't think of a different
starting place.

Dick thought about it for a long
time.

Dick: There can't be another
starting place, Dan, and [ can
prove it. Suppose the pilot starts
anywhere between the North
Pole and the Equator.

Dick: It's obvious that he can’t
get back to where he started
And if he starts on the Equator,
he'll end up about 100 kilo-
meters from his starting spot

Dick: And by starting off
anywhere south of the Equator
he'll miss his starting spot by
way more than 100 kilometers.

Dan: Okay, want to bet double
or nothing that there’s no other
possible starting spot?

Dick took the bet and lost. Do
you see why?

Suppose the pilot starts
anywhere on circle A which is
116 kilometers from the South
Pole. Then he flies south 100
kilometers.

Now when he goes 100
kilometers east he has made a
complete revolution around the
pole. So when he goes north
100 kilometers he has to be
back where he started from.
Right?







Starting Spots

The insight that Dick missed when he lost the sec-
ond bet is this. A pilot can start from a spot so near
the south pole that when he flies 100 kilometers east
he goes twice around the pole instead of just once as
in the previous solution. This introduces a new cir-
cle, each point of which is a solution to the original
problem. Similarly, the pilot can start anywhere on a
still smaller circle so that his eastern flight takes him
three times around the pole, or four times, and so on
for every natural number. It turns out, therefore, that
the starting points that solve the problem lie on an
infinite set of concentric circles. The circles all have
their centers at the south pole, and radii that ap-
proach 100 as the limit.

Here is a different navigational problem that in-
volves a fascinating curve on the sphere known as
a loxodrome or rhumb-line. A pilot starts at the
equator and flies due northeast. Where will his flight
end? How long is the path and what does it look
like?

You may be surprised to find that the path is a spi-
ral that cuts the earth's meridians at a constant angle
and ends precisely at the north pole. The path is a
spherical helix that “strangles™ the north pole, but
only after making an infinite number of circles
around it. Think of the pilot as a moving point.
Paradoxically, even though the point goes around
the pole an infinite number of times, the path has a
finite length that can be calculated. Thus, if the pilot
(represented by a point) travels at a constant speed.
he or she reaches the north pole in a finite length of
time.

A loxodrome, plotted on a flat map, has different
forms depending on the type of map projection. On
the familiar world map called the Mercator projec-
tion, it is plotted as a straight line. Indeed, this is why
a Mercator map is so useful to navigators. If a ship or
plane travels in a constant compass direction, the
path is a straight line that is easy to draw on the map.

What happens if a pilot starts at the North pole
and flies due southwest? This is a reversal of the
previous problem. The path is a loxodrome as be-
fore, but now we cannot specify the spot where it

will reach the equator. It can meet the equator at
any spot. You can prove this by time reversal. Just
start the plane at any spot on the equator and its
backward flight must carry it to the north pole.
However, if the pilot continues on his forward path
beyond the equator, his loxodrome will strangle the
south pole.

When a loxodrome is projected on a plane par-
allel to the equator and tangent to a pole, it is an
equiangular or logarithmic spiral. This is a spiral that
always cuts its radius vector at a constant angle.

The four-bug problem is another well-known
path problem, also involving a logarithmic spiral,
but with a beautiful aha! solution that avoids a lot of
laborious calculation. We give it here with a story
line about the Pizza family and its pet turtles.

Tom Pizza has trained his four turtles so that
Abner always crawls toward Bertha, Bertha toward
Charles, Charles toward Delilah, and Delilah to-
ward Abner. One day he put the four turtles in
ABCD order at the four corners of a square room.
He and his parents watched to see what would
happen.

“Very interesting. son.” said Mr. Pizza. “Each tur-
tle is crawling directly toward the turtle on its right.
They all go the same speed, so at every instant they
are at the corners of a square” (see Figure 9).

9

“Yes, Dad,” said Tom, “and the square keeps
turning as it gets smaller and smaller. Look! They're
meeting right at the center!”

Assume that each turtle crawls at a constant rate
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of 1 centimeter per second, and that the square
room is 3 meters on the side. How long will it take

the turtles to meet at the center? Of course, we must

idealize the problem by thinking of the turtles as
points.

Mr. Pizza tried to solve the problem by calculus,
using his new pocket programmable calculator.
Suddenly Mrs. Pizza shouted: “You don’t need
calculus, Pepperone! It's simple. The time is 5
minutes.”

What was Mrs. Pizza’s insight?

Consider two adjacent turtles, say Abner and
Bertha. At every instant Bertha is moving at right
angles to Abner, who is pursuing her, because
Abner always crawls directly toward her while she is
crawling directly toward Charles. This is why the tur-
tles are at all times at the corners of a square. Since
Bertha's movement is never toward Abner or away
from him, her motion neither adds nor subtracts
from the distance between herself and Abner. Her
motion, therefore, becomes irrelevant. It is the same
as if Bertha remained in her corner and Abner
crawled toward her along the side of the square
room.

The above insight is the key to the solution.
Abner’s curved path must have exactly the same
length as the side of the square. Since the side is 300
centimeters, and Abner crawls at 1 centimeter per
second, it will take him 300 seconds, or 5 minutes,
to reach Bertha. The same is true of the other three
turtles. At the end of 5 minutes, all four turtles meet
at the square’s center.

With the help of a pocket calculator, it is not dif-
ficult to diagram the paths of the turtles in small in-
crements of time, drawing the four sides of the
square at the end of each interval. The result is a
startling pattern (see Figure 10).

Can you generalize the problem to the corners of
all regular polygons? Investigate first the equilateral
triangle, then the pentagon. Can you find a general
formula for the lengths of the pursuit paths, given
the length of the side of the starting polygon? What
happens in the limiting case when an infinite num-
ber of turtles (points), starting at the corners of an
44
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infinite-sided polygon, chase each other? Will they
ever meet? Suppose the initial polygons are not
regular. What happens if four turtles start at the cor-
ners of a rectangular room that is not square?

Suppose that after the four turtles meet at the
square’s center, in our original problem, they find
that they dislike one another so they crawl out-
wards, each moving directly away from the turtle on
its left. Will the turtles necessarily return to the four
corners of the room?
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Match Games

The insight Mabel needed to solve Professor
Quibble’s match puzzle is that she has not been told
that the matches must remain on the plane. By
going into a third dimension, the 12 matches form
the 12 edges of a unit cube, which, of course, has 6
square faces. It is an insight similar to Rosie’s when
she found a way to cut the cheese.

A better known version of the same problem is
to form four identical equilateral triangles with six
matches. The solution in this case is to form the
skeleton of a regular tetrahedron.

Here are six other clever match or toothpick
puzzles that have aha! solutions. Can you do them?

’.
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1. Move the smallest number of matches to make a
square.
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2. Remove the smallest number of matches to leave
four equilateral triangles of the same size as the eight
shown. There must be no loose ends.
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3. Move the smallest number of matches to make
the fish swim the opposite way.
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4. Move the smallest number of matches to make
the pig look the opposite way.

s |

:

I|
5. Move the smallest number of matches to get the
cherry outside the old-fashioned glass. The glass

may have any orientation at the finish, but, of
course, the cherry cannot be moved.

|
6. Move the smallest number of matches to get the
olive outside the martini glass. As before, the glass at
the finish may be turned any way you like. but the
olive must not be moved.

It would spoil most of the fun if we printed the
actual solutions, so instead we will give only the
correct minimum numbers:

1. One.

2. Four.

3. Three.

4. Two.

5. Two.

6. None.




Devilish Divisions

Ransom is a surveyor who
specializes in dividing curious
shaped lots into congruent
parts.

On one occasion he was asked
to cut this lot into four identical
regions. How do you think he
did it?

This is the only way it can be
done.

Ransom’s next job was to cut
this piece of land into four
congruent parts. And it wasn't
easy to do.

However, he persevered and
finally found one solution.

Dividing square lots into four
identical regions offered no
challenge to Ransom, but when
he was asked to divide a square
lotinto five congruent regions
he was puzzled

Ransom: | don't understand it
There has to be a way Hmm.
Aha! | see it now

Can you figure out what Ran
som’s insight was?

Ransom: It's ridiculous The
same method could be used to
divide a squareinto any number
of congruent pieces




Dissection Theory

Ransom’s three problems form a series that is great
fun to try on friends. The first two puzzles are solved
with strange shapes. These shapes subtly suggest
that the square, since it cannot be cut into five
squares, must be cut into five curious shapes. It is
surprising how few people can think of the obvious
solution. Incidentally, it is the only way a square can
be cut into five congruent shapes.

After you have caught a friend with this puzzle,
you can probably catch him or her a second time
with a closely related fourth problem. First show
your friend how the field in Figure 11 can be divided
into four congruent shapes. Can this field also be cut
into three identical parts?

Your friend will probably soon give this up as
much too difficult. He or she will be dumbfounded
when you show how it can be solved easily with
exactly the same insight that enabled Ransom to cut
a square into five identical regions. The answer is
given in Figure 12. As before, the technique obvi-
ously permits one to cut the field into any number of
identical regions.

Puzzles of this type, as well as the puzzles related
to our cheese cutting problem, belong to a colorful
branch of recreational mathematics sometimes
called dissection theory. They provide valuable in-
sights into the solution of many practical problems
in plane and solid geometry. Ransom’s first two
problems are especially interesting because each
field is cut into pieces of the same shape as the origi-
nal field. If this can be done, the shape is called a
rep-tile.

Figure 13 shows several other rep-tiles. Can you
cut each of these into congruent shapes that repli-
cate the original shape? It is clear that if you have an
infinite supply of any rep-tile, you can tile the entire
plane in a nonperiodic way. For example, consider
the L-shaped rep-tile that is the first field solved by
Ransom. Four such pieces make a large L-tile. then
four larger L-tiles make a still larger L-tile, and this
process can be continued to infinity to tile the infinite
plane. Note also that we can go to infinity in the op-
posite direction by cutting each tile into four smaller
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L-tiles, and those in turn can be cut into still smaller
L-tiles, and so on ad infinitum.

Not much is known about rep-tiles. All known
rep-tiles also tile the plane periodically. That is, they
tile the plane in such a way that there is a fundamen-
tal region of the pattern that tiles the plane by trans-
lation, without rotation or reflection. Is there a rep-
tile that will not also tile periodically? This is an out-
standing unsolved question of tiling theory.

Even less is known about solid rep-tiles. The cube
is, of course, such a figure because eight cubes go
together to make a larger cube, just as four squares
go together to make a larger square. Can you think
of any other examples of a solid rep-tile?

If the congruent shapes are not required to be
similar to the field that is dissected, many other un-
usual puzzles can be devised. Figure 14, for exam-
ple, is a T-shape formed by five unit squares. It can-
not be cut into four smaller T's, but can you cut it
into four congruent regions of some other shape?

Even the task of dissecting a plane figure into as
few as two congruent parts can be difficult. Figure
15 shows some examples that you may enjoy solv-
ing. The solutions are shown in the back of the text.

Another elegant branch of dissection theory has
to do with cutting a given polygon into the smallest
number of pieces, of any shape, that can be re-
arranged to make a different polygon that also is
specified. For example, into how few pieces can a
square be cut that will fit together to make an
equilateral triangle. (The answer is four.) This field is
beautifully covered in Recreational Problems in
Geometric Dissections & How to Solve Them by
Harry Lindgren.










Miss Euclid’s Cubes

Miss Euclid put a large wooden
cube on her desk.

Miss Euclid: | have a very
practical test for you today. Just
three questions about this cube

Miss Euclid: [f we have a table
saw we can cut this cube into 64
unit cubes by making nine cuts.

Miss Euclid: And if we're
allowed to rearrange the pieces
before each cut, we can do it
with only six cuts. Your first
question is to prove that you
can’t do it in fewer than six cuts.

While the students were
working on the first problem
Miss Euclid drew a diagonal on
two faces of the cube so that
there was a common vertex.
Miss Euclid: Your next
problem is to find the size of the
planar angle formed by these
two diagonals and their
common vertex

Miss Euclid prepared for the last
question by placing a meter
stick on top of the cube.

Miss Euclid: What's the
simplest way to use this ruler to
measure the length of the space
diagonal from A to B?

How did you do on the test? |
got two out of three
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Miss Euclid’s Solids

Solution to Problem 1:To prove that a 4 x4 x4 cube
cannot be sliced into 64 unit cubes with fewer than
six planar cuts (allowing for rearrangement of pieces
after each cut), just consider any of the 8 cubes in
the interior. Since none of these cubes has a face on
the outside of the large cube, each of its six faces
must be cut with one planar cut. Since no plane can
cut more than one of the cube’s faces at a time,
clearly at least six cuts are necessary for the six faces.

Is there a systematic general procedure for slicing
any rectangular parallelepiped with integral sides
into unit cubes with a minimum number of planar
cuts, allowing rearrangements of pieces between
cuts? Yes, the method is as follows. Along each of
three edges that meet at a corner, determine the
minimum number of cuts necessary to slice the
cube through that edge to make unit-wide sections.
This minimum number is obtained by dividing the
edge as nearly in half as possible, then putting the
two pieces together and repeating this procedure
until the unit-wide sections are obtained. The sum
of these three minimums, one for each edge, is the
answer sought.

For example, a 3x4 x5 block requires 7 cuts: 2
for the 3 side, 2 for the 4 side, and 3 for the 5 side, or
7 in all. A proof of this algorithm was first published
in Mathematics Magazine in 1952.

Solution to Problem 2: The insight that solves this
problem is seeing that a third diagonal can be drawn
on another face of the cube that will join the free
ends of the two diagonals drawn by Miss Euclid; see
Figure 16.

16

These three lines form an equilateral triangle.
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Since each angle of such a triangle is 60 degrees, we
have proved that the angle on Miss Euclid’s cube is
60 degrees.

There is an elegant extension of this problem.
Suppose Miss Euclid draws two lines on a cube as
shown in Figure 17, joining three midpoints of three
edges. What is the size of the obtuse planar angle
made by the two lines?

The solution is obtained as before. First, continue
the lines by joining midpoints on the other four faces

'v

17

so that the six lines make a closed path around the
cube. It is evident that the six line segments are of
equal lengths, and also that any adjacent pair makes
the same angle. The six lines, therefore, outline a
regular hexagon if we can show that the vertices are
all coplanar. This may take a bit of deduction or
analytic geometry, but you can convince yourself it
is true by actually sawing a wooden cube into two
identical parts along a plane that cuts the cube
through the six midpoints.

The fact that a cube can be cut in half so that the
cross section is a regular hexagon is quite surprising
and almost counterintuitive. Of course, once we
know that the two original lines are a pair of adjacent
sides of a regular hexagon, we know that they make
an angle of 120 degrees.

Figure 17 suggests another interesting problem.
Suppose a fly wants to crawl on the cube’s surface
from midpoint A to midpoint C. Is the path traced
by the two line segments the shortest route the fly
can take?

Here the insight is to recognize that the shortest
path from A to C can be found by “unfolding” the
cube so that two adjacent sides are flat, then




drawing a straight line on the surface from A to C.
Now we must be careful because there are two ways
to do this: unfold the front and top faces, or unfold
the front and rightmost faces. The first case gives a
path oflength J2: the second case gives a path of
the length J2.5. This proves that the path shown in
Figure 17 is indeed the shortest path on the cube’s
surface from A to C.

Solution to Problem 3: Of course, you can mea-
sure a side of the cube, then apply the Pythagorean
theorem twice to obtain the space diagonal. But a
much simpler method is to place the cube flush with
the corner of a rectangular table. Place a small mark
on the table’s edge that is distance x from the table’s
corner. where x is the cube’s side. Now slide the
cube along the edge of the table to the other side of
the mark, as shown in Figure 18. The distance from
A to B is obviously the same as the cube’s space
diagonal, and it can be measured directly with the
ruler.

18

How would you measure the radius of a large
sphere if you had only a ruler that was about %3 the
sphere’s diameter? One simple method is to smear
a bit of soot or lipstick on a portion of the sphere,
then place the sphere on the floor and push it
against the wall so that the soot or lipstick marks the
wall at the spot where the sphere touches it. The
height of this spot, easily measured with the ruler, is
the sphere’s radius. Can you think of similar ingen-
ious ways to measure the heights of cones and
pyramids? How can you measure accurately the
radius of a cylindrical pipe with a carpenter’s
square?
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Carpet Confusion

. \ The Tack Carpet Company was
( ~ asked to provide wall-to-wall
i:“ < carpeting for a ring shaped

corridor in a new airport.

When Mr. Tack saw the plans he
was angry. The only measure-
ment given was the length of a
chord that was tangent to the
inner wall.

Mr. Tack: Confound it. How
can | give them an estimate of
carpet cost when I don’t know
the area of that blue ring
between the two circles? I'd
better go and see my designer,
Mr. Sharp.

Mr. Sharp, a skilled geometer,
wasn’t too upset.

Mr. Sharp: That chord is the
only length | asked for, Mr. Tack.
ljust plugitinto a formula ]l have
and it gives the ring’s area.

Mr. Tack looked surprised for a
minute, then smiled.

Mr. Tack: Thank you, Mr.
Sharp, but I don’t need you or
your formula. ] don’t have to
know the areas of the two circles
either. | can give you the result
immediately.

Do you know how Mr. Tack did
it?




Astonishing Theorem

Mr. Tack reasoned as follows. | know that Mr. Sharp
is a skilled geometer, therefore there must indeed be
a formula for the area of the ring when one is given
only the length of the chord tangent to the inner
circle. Put another way, the radii of the two circles
can be any two numbers as long as the length of the
chord remains 100 meters.

Mr. Tack then asked himself what happens when
the radius of the inner circle is reduced to zero, its
minimum length. In this case the ring degenerates to
a circle, the diameter of which is the chord of 100
meters. The area of this circle is pi times 507 or close
to 7.854 square meters. Assuming the existence of a
formula, this must also be the area of the ring be-
tween the circles.

In general, the area of any ring is equal to the area
of a circle whose diameter is the longest straight line
that can be drawn inside the ring. This astonishing
theorem can be proved easily by using the formula
for the area of a circle.

A 3-dimensional analog of this problem is that of
determining the volume of a section of cylindrical
pipe with thick walls, when given only the length of
the longest line that can be drawn on one of the
pipe’s ends (see Figure 19). This line corresponds to

=
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our tangent line, from which we can quickly de-
termine the area of the ring on the pipe’s end.
Multiplying this by the pipe's length gives the pipe’s
volume.

A less obvious analog is the following beautiful

problem. A cylindrical hole 6 centimeters long is
drilled straight through the center of a solid sphere.
What is the volume that remains? Again, it seems
impossible to determine the volume without more
data. However. it can be shown, without calculus,
that the volume of the sphere that remains is always
the same as the volume of a solid sphere whose
diameter is equal to the hole's length.

As before, this result is immediately obtained on
the assumption that the problem can be solved! If
there is a solution, the volume of the sphere that
remains after the hole is drilled must be inde-
pendent of the hole's diameter. So—we reduce the
hole’s diameter to zero, its lowest limit. The hole
degenerates to a straight line that is the diameter of a
solid sphere. The answer, therefore, is (4/3)73°=
36 cubic centimeters.
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The Curious Cake Cut

\ It was Susan’s birthday and Mrs.

Mr. Jones is finishing dinner
with his wife, a teen age son,
and a seven year old daughter,
Susan.

Jones had baked a small square
cake. It was 20 centimeters by
20 centimeters and 5 centi-
meters high. Thick icing cov-
ered the top and four sides.

Mr. Jones: What alovely cake,
my dear. Just enough for all of
us. I'll cut Susan's piece first,
and since she's just turned
seven, I'll start each cut seven
centimeters from a corner and
cut to the center.

It was a strange shaped piece.
And it wasn'tlong before Susan
started to complain.

Susan: You didn't give me
enough, Daddy. That's not one
quarter of the cake. And even if
it were [ didn’t get enough icing.

Her brother disagreed.
Susan’s Brother: You're too
greedy Susan. I think that Dad
gave you too much and that you
should give some back

All that you have to do is to

Mr. Jones: Well you're both
wrong. The piece is exactly
one-fourth the volume of the
cake and it also has exactly
one fourth of the icing on it.
Can you explain why Mr. Jones
said this?

extend the two cuts past the
center of the cake to the other
side. Now it's clear why the lines
cut the cake into four congruent
parts. Isn't it?
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Cake Cutting

The cake cutting problem generalizes easily to all
other regular polygons. For example, suppose a
cake has the shape of an equilateral triangle, and
that two cuts are made from the center at an angle of
360/3=120 degrees as shown in Figure 20. The

20

piece is clearly one-third of the cake, as we can see
by drawing the dotted line. If the cake is pentagonal,
two cuts at 360/5 = 72 degrees give one-fifth of the

21
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cake. If the cake is hexagonal, two cuts at
360/6 = 60 degrees give one-sixth of the cake. This

generalizes to all higher polygons, although the
angle is not always integral as in the cases given
above.

The dissection of the square into four congruent
pieces, as shown in Figure 21, has for decades
been a popular dissection puzzle. If you give friends
the four pieces of such a dissection, cut from a
square of cardboard, and ask them to make a
square, they usually find it difficult. After they have
solved the puzzle, ask them to use the same four
pieces to form two squares.

This is something of a swindle because it can be
done only if one has the aha! that the second square
is a hole at the center of another square as shown
in Figure 22. The size of this hole depends on
the angle that each cut makes with the side of the
original square. If the angle is zero, the hole is zero.
If the angle is 45 degrees, the hole reaches its
maximum size.













Arithmetic can be defined in many ways. Here we
confine arithmetic to be the study of the integers
and the results of operating on the numbers by addi-
tion, subtraction, multiplication. and division.

At some time in the childhood of the human race
(no anthropologist knows when). primitive humans
somehow slowly discovered that things can be
counted, and that it does not make a difference in
what order the counting is done. If you count two
sheep on your fingers, it does not matter which
sheep vou start with, or whether you start the count
on your thumb or your little finger. You always end
on 2. And if you count two sheep, then another, you
always get 3.

Awareness of such arithmetical theorems as
2 +1 = 3 must have slowly evolved over many cen-
turies. [f we could see a motion picture of the past,
we probably would not be able to find a single cen-
tury about which we could say: “This is when the
human race discovered arithmetic.” Children
slowly become aware of numbers in the same vague
way. There may be a time when a child first says:
“One plus one is two,” but the child may be aware of
the meaning of this sentence long before he or she
verbalizes it.

All the true theorems of arithmetic follow at once
from the axioms and definitions of the number sys-
tem, but that does not mean that we can recognize
the truth or falsity of an arithmetical statement just
by hearing it. If someone declares that 12,345.679
times 9 equals 111.111,111, you may not believe it
until you prove it by doing the multiplication. And
there are theorems in arithmetic that are simple to
state but so deep that nobody knows if they are true
or not. Goldbach's conjecture is a famous example.
Is every even number (greater than 2) the sum of
two primes? No one has yet proved that the answer
is “yes.” or found a counterexample.

In this section, we consider a variety of simple
problems about counting numbers, all of which
have easy solutions if they are properly approached.
We have tried to select problems that, although very
elementary, introduce important concepts and
techniques that lead into deeper levels of what used

to be called the “higher arithmetic™ and is now
called "number theory.” “Broken Records.” for ex-
ample, introduces Diophantine analysis: the finding
of integral solutions to equations. “One too Many”
involves the all-important concept of lowest com-
mon multiple, and leads to a magic trick based on
the valuable “Chinese remainder theorem.”

Binary sorting, so important in computer search
and sort theory. underlies the technique for guess-
ing Helen’s unlisted phone number, and introduces
the binary system of notation. The “pigeon hole
principle,” fundamental to many deep proofs in
number theory, is invoked in proving two amusing
results: one about dollar bills, the other about hairs
on the head. The fact that two integers are “rela-
tively prime” (have no common divisors) provides a
surprisingly quick way of proving that the hour, min-
ute, and second hands of a watch are never together
except at 12 o'clock—a theorem usually proved by
tedious algebra.

A problem about counting bottles uses modulo
arithmetic to obtain an easy solution. This leads to
the “Josephus problem.” a classic number problem
that can be modeled in an exciting way with a deck
of playing cards.

Although the puzzles in this section are what
mathematicians consider trivial, they open up paths
of exploration into branches of number theory that
are far from trivial. And they cannot fail to impress
you with the elegance and richness of that oldest of
all deductive systems, the system that manipulates
the symbols for the familiar counting numbers.
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Broken Records

o= GUIBBLES
QuzzLE Skee
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Bob and Helen are enthusiastic
puzzle buffs. Their favorite
pastime is trying to stump each
other and their friends with
puzzling questions.

10\

As Bob and Helen went past a
record store, Bob said.

Bob: Do you still have your
country western records?

Helen: No. | gave half of them.
and half a record more, to Suzy.

Helen: Then I gave half of what
was left, and half a record more,
to Joe.

Helen: That left me with just
one record. And I'll give it to
you if you can tell me how many
country westernrecords | had to
begin with.

Bob was puzzled because he
couldn’t see how half a record
could be of any use.

Suddenly he had an aha! and
realized that not a single record
had been broken. He answered
Helen's question and she gave
him the last record. Whatinsight
did Bob have?




Half Wholes

Did you fall into the trap of thinking that half of
something plus %2 can't be a whole number? If so,
you probably tried to solve the problem by thinking
of broken records and quickly became lost. The
aha! insight is the realization that half an odd
number of records, plus half a record, is a whole
number.

Since only one record remained after Helen's last
gift, she must have had three records before she
gave one toJoe. Half of 3is 1Y2, and 1% + %2 =2, so
Helen'’s last gift was 2 records. This left her with one
whole record at the finish. It is now easy to work
backward and see that she must have started with
seven records, and given 4 to Suzy.

The problem can, of course, be solved algebra-
ically, and writing and solving the equation for it is
an excellent exercise in elementary algebra. It is
surprising that such a simple little problem has the
complicated equation:

BHE ]

By varying the parameters, it is easy to make up
new problems of the same type. For example, as-
sume that Helen follows the same procedure of giv-
ing away at each step half her records plus half a
record, but does this three times instead of twice,
and ends with no records at all. How many did she
have at the start? You may be amused to discover
that the answer is the same as before: 7 records! The
third step consists in giving away the entire last re-
cord. How many records does she start with if she
follows the halving procedure four times and ends
with a single record? Five times? What kind of se-
quence is generated by these numbers?

The fraction given away each time may also be
varied. Suppose Helen at each step gives away a
third of her records plus one third of a record, and
after two steps finds she has three records left. How
many did she start with? [s there a solution if she fol-
lows this thirding procedure three times and ends
with three records? You will find that by varying the
parameters—number of steps, fractional amount,

and number of whole records at the finish —there
are not always solutions in the sense that no record
need ever be broken. Under what restraints can
problems of this type be devised that never require
breaking a record?

There also is no need to have the fractional
amount the same at each step. Here, for instance, is
a puzzle in which the fraction varies:

A boy has the hobby of breeding goldfish. He de-
cides to sell all his fish. He does this in five steps:

1. He sells one half of his fish plus half a fish.

2. He sells a third of what remains, plus one third
of a fish.

3. He sells a fourth of what remains, plus one
fourth of a fish.

4. He sells a fifth of what remains, plus one fifth
of a fish.

He now has 11 goldfish left. Of course, no fish is
divided or injured in any way. How many did he
start with? The answer is 59 fish, but the problem is
not as easy to solve as the previous ones. See if you
can work it out.

Here is a somewhat different problem of the same
general kind.

A lady has a certain number of dollar bills in her
purse. She has no other money,.

1. She spends half the money on a hat, and gives
a dollar to a beggar outside the store.

2. She spends half the remaining dollars for
lunch, and tips the waiter two dollars.

3. She spends half the remaining dollars for a
book, then before she goes home she visits a
cocktail lounge where she spends three dollars on
drinks.

She now has one dollar bill left. Assuming that
she never changed a dollar bill, how many bills did
she start with?

The answer appears at the back of the book.

Note that in all these variations we are told the
number of items that are left at the finish. Without
this information the problem often can still be sol-
ved, but it may require the solving of indeterminate
equations in integers. The most famous problem of
this type was the basis of a short story by the Ameri-
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can writer Ben Ames Williams that appeared in the
Saturday Evening Post, October 9, 1926.

The story, titled Coconuts, tells about five men
and a monkey who were shipwrecked on an island.
They spent the first day gathering coconuts. During
the night, one man woke up and decided to take his
share of coconuts. He divided them into five piles.
One coconut was left over so he gave it to the mon-
key, then hid his share and went back to sleep.

Soon a second man woke up and did the same
thing. After dividing the coconuts into five piles, one
coconut was left over which he gave to the monkey.
He then hid his share and went back to bed. The
third, fourth and fifth man followed exactly the
same procedure. The next morning, after they all
woke up, they divided the remaining coconuts into
five equal shares. This time no coconuts were left
over.

How many coconuts did they originally gather?

The problem has an infinite number of answers,
the lowest of which is 3.121. It is not an easy
problem.

Speaking of coconuts taken from a pile, here is a
“quickie” that may stump you momentarily: If 25
coconuts are piled up in a jungle clearing. and a
monkey steals all but 7. how many coconuts will be
left? The answer is not 18.




Loch Ness Monster

Bob: If the length of the Loch  Half a Length?
Ness Monster is 20 meters and Bob's Dhrasi .
halfits own length, how fong ob’s phrasing of the problem is as follows: The

is it? monster’s length is equal to the sum of 20 meters
and half the monster's length. Imagine the monster
divided into two equal lengths. If the monster’s
length is the sum of one of these halves, plus 20
meters, then 20 meters must be the other half.
Therefore the total length is 40 meters.

‘ The algebraic equation is simple. If x is the total
Heen:Lotssee Toenyard length, then:
meters long. x =20 +x/2
Now that you see how ridiculously simple the

solution is, how quickly can you solve the following
variant? A brick on one pan of a balance scale
exactly balances with three-quarters of a brick and
three-quarters of a kilogram on the other side. How
much does the brick weigh?

e = The Loch Ness monster problem illustrates the

you. You've contradicted importance of understanding exactly what a ques-

yourself. How canit have a tion means before trying to answer it. If your first in-

length of Z meters andaksoa 4o rotation of a problem leads to a contradiction

length of 30 meters? P pr J
then either the question has no answer or you have
not correctly understood the problem.

Helen: You're right. The only
way the sentence makes sense
is if the total length is the sum of
20 meters and half the length.
It's simple enough now.

Can you figure out how long the
monster is?

w..rr FEED ‘
EASE DO )
ALREADY 20 M
AND HALF MY

FULL LEPQQTHJ
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One Too Many

While Bob and Helen were
crossing the park they saw the
Nixon High School Band
practicing for a parade.

The band came marching by,
four in a row, with one boy, poor
Spiro, bringing up the rear. The
band director was annoyed.

To eliminate that lonely
musician in the back, the
director told the band to march
by in threes. But Spiro was still
alone in the last row.

Even when the band marched’
by in twos, the same thing
happened.

Although it was none of her
business, Helen approached
the director.

Helen: May [ make a
suggestion?

Bob: No, please go away,
Fratlein. and don't bother me.

Helen: Well, I'll tell you anyway.
Have them march by in fives.
Bob: My dear, | was just about
to try five.

When the band marched by in
fives all the rows were filled and
Spiro wasn't alone any more.
How many members did the
band have?




Wholes From Remainders

Helen simply counted the number of players in the
band and found that it was a multiple of five. But
how can you, not seeing the entire band, determine
the number of members?

Your aha! is this: The number has a remainder of
1. symbolized by Spiro, when divided by 2, 3and 4.
The smallest number with this property obviously is
1 greater than the LCM (lowest common multiple)
of 2, 3and 4. The LCM of these three divisors is 12.
Any number that is one more than a multiple of 12
has a remainder of 1 when divided by 2, 3 and 4.

When the band marched by in fives, there was no
remainder. Therefore, the number of persons must
also be evenly divisible by 5. The numbers that
solve the problem are the multiples of that appear
in the following sequence:

13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133,
145, ...

Since 145 is too large for a highschool band, the
Nixon High School Band has either 85 or 25 mem-
bers. We lack sufficient information to decide be-
tween these two answers.

A good variant of this problem is the same as be-
fore except that each time the band marched by in
rows of 2, 3 and 4, the last row is one man short.
How large is the band? Now we must write a se-
quence of numbers that are one less than multiples
of 12 that are evenly divisible by 5. The sequence
is: 35, 95,155, . ..

The American puzzle maker Sam Loyd created
the following more difficult variation. On St. Pat-
rick’s Day in New York City a large number of
Irishmen were getting ready to march in the annual
parade. The Grand Marshal tried arranging them in
rows 0f 10,9, 8,7, 6. 5, 4, 3and 2. but in every case
there was a missing man in the last row. The men
thought the gap was occupied by the ghost of
Casey, who had died a few months before. Finally,
in exasperation, the Grand Marshal ordered the
men to march in single file. Assuming the number of
men did not exceed 5.000, how many were there?
This is a good exercise for finding the LCM of a set of
numbers. The LCM in this case is 2,.520. If we sub-

tract Casey from this group, we have our answer:
2,519.

The problem seems to become more difficult if we
are given a different remainder after each division,
but this is not always the case. For example, con-
sider this classic puzzle that goes back to Hindu
arithmetic books of the seventh century.

A lady is carrying a basket of eggs. Frightened by
a horse that gallops past her, she drops the basket
and all the eggs break. When asked how many eggs
the basket had contained, she replies by saying that
she is very poor in arithmetic, but she remembers
that when she counted the eggs by twos, threes,
fours and fives, she had remainders of 1, 2, 3 and 4
eggs. respectively. How many eggs were originally
in the basket?

This excellent problem seems at first to be more
difficult than the previous ones. Actually, it is exactly
the same as the first part of our second problem be-
cause in each case the remainder is one less than the
divisor. So it is solved as before by finding the LCM
and subtracting 1.

When the remainders have no uniform relation to
the divisors, the problem does indeed become more
complicated. Here is a clever pocket calculator trick
based on a problem of this kind. Your friends will
find it mystifying and intriguing.

The magician sits in a chair with his back to the au-
dience. Someone thinks of any number not great-
er than 1,000. He is asked to divide the number by 7
and call out the remainder. then divide the original
number by 11 and call out the remainder, and finally
to divide the original number by 13 and call out the
remainder.

To speed the trick. someone in the audience de-
termines the three remainders by using a pocket:-
calculator. This is easy to do with the aid of the fol-
lowing algorithm: Perform the division, subtract the
whole number part of the quotient, then multiply
the result by the original divisor. Round the product
to the nearest integer and you have the desired
remainder.

The magician. knowing no more than the three
remainders, is able to guess the chosen number. He
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does this by using his own pocket calculator and the
following secret formula that he has on a small slip of
paper pasted to the face of his calculator:
715a +364b + 924c¢
1,001

In the formula, a, b and ¢ are the three remain-
ders in the order in which they are called out. The
chosen number is the remainder after making the
calculation given by the formula.

The strange looking formula is obtained as fol-
lows: The first coefficient is the lowest multiple of bc
that is one more than a multiple of a. There are rules
for finding this, but when the divisors are small, as in
this case, it is easy to get the number by inspection.
Simply go up the multiples of bc (143, 286, 429,
572,715, . .. ) until you reach a multiple that has
a remainder of 1 when divided by a. In this case,

a =7, and the coefficient is 715.

The other two coefficients are obtained in the
same way. The second one is the lowest multiple of
ac that is one more than a multiple of b, and the
third coefficient is the lowest multiple of ab that is
one more than a multiple of ¢. The number below
the line in the formula is simply a X b X c. In this way
you can work out a secret formula for any set of di-
visors provided that they are prime to one another
(have no common divisors). It is not necessary that
the divisors be primes themselves, as they are in our
example.

The proof of the general formula involves mod-
ulo arithmetic and an understanding of a famous
theorem called the Chinese Remainder Theorem. It
is one of the most valuable of all number theorems,
playing a basic role in many deep proofs as well as in
the solution of scientific problems.

As an exercise, try working out the secret formula
for a simpler version of the same trick—one that
goes all the way back to Sun-tsu, a first-century
Chinese mathematician for whom the Chinese re-
mainder theorem is named. The chosen number is
limited to numbers 1 through 105, and the divisors
are 3, 5and 7. The secret formula in this case is sim-
ple enough so that, with some practice, you can
even do the calculations in your head.
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Eves and Legs

Before leaving the park, Bob
and Helen walked through
the zoo. In one enclosure they
saw a mixture of giraffes and
ostriches.

Helen But you said that there
were 44 feet altogether So 14
giraffe feet must be in the air
That makes 7 giraffes, right?

Bob Right And if there are 7
giraffes there have to be 8
ostriches.

After they had left the zoo, Bob
spoke to Helen.

Bob: Did you count the giraffes
and ostriches?

Helen: No, how many were
there?

Bob: You figure it out. Alto-
gether they had 30 eyes and 44
feet.

Helen'’s first aha! was to realize
that thirty eyes meant 15
animals.

Helen: Now | can try all the
possibilities, from no ostriches
and 15 giraffes to 15 ostriches
and no giraffes. Butl don't need
to do that.

Helen. If all 15 of the animals
were to stand up on two feet
there would be 30 feet on the
ground
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When they reached Bob's
sports car he offered to drive

Helen home to her parent's new

house.

On the thruway, Bob thought of

a good problem for Helen.

Bob: See that big truck ahead.
He's going pretty fast, but I'm
gaining on him.

Bob: Now let's suppose that
he's going a steady 65 kilo-
meters per hour, and that I'm
doing a steady 80.

Bob: And let’s say we're 1500
meters behind him right now.

Bob. Soif we keep our steady
speeds, and | don’t pass him,
we're sure to bump him Your
problem Helen, is to tell me how
far apart we will be 1 minute
before the crash

Helen: That's easy. We'd be
250 meters apart 1 minute
before the collision.

Helen was correct. Can you
explain how she was able to
answer so quickly?
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Thinking Backward

Although this problem can be solved the hard way
by algebra. Helen's insight made such a technique

unnecessary. She realized that by running the scene
backward in time, the answer could be obtained at

once.

The truck is rolling steadily at 65 kilometers per
hour, and Bob is driving a steady 80 kilometers per
hour. so his speed relative to the truck is 15 kilome-
ters or 15.000 meters per hour. This equals 250 me-
ters per minute. Therefore, 1 minute before the
crash, the car will be 250 meters behind the truck.

We know that when Bob posed the problem the
car was 1.5 kilometers behind the truck. But this in-
formation is unnecessary in solving the problem.
The answer is the same regardless of the initial dis-
tance between the two cars!

There are two classic brain teasers that are both
solved by the same time-reversed insight.

1. Two spaceships are moving straight toward
each other on a collision course. One ship is going
8 kilometers a minute. the other. 12 kilometers a
minute. Assume they are exactly 5,000 kilometers
apart. What will be the distance between them 1
minute before they crash?

Here again the distance they are apart at the start
is irrelevant to the problem. It misleads many people
into thinking that the problem must be solved by
considering the initial positions of the spaceships,
then moving forward in time. The simple solution,
of course, is the realization that the two ships ap-
proach each other at a speed of 20 kilometers a mi-
nute, so 1 minute before they crash they must be 20
kilometers apart.

2. A molecular biologist developed a strange
spore that splits into three spores every hour. each
new spore the same size as the original. The three
spores in turn, an hour later. each divide into three
more, and this process continues indefinitely.

The biologist put a single spore in a container at
noon one day. At midnight the container becomes
exactly filled. At what time does the container be-
come one-third filled?

The aha! solution. as before, is think backward.

Clearly it was one-third filled at 11 o’clock. one hour
before midnight.

Now let's test your aha! ability with a new and de-
lightful variation of the last problem. The conditions
are exactly the same as before except that the
biologist put three spores in the same empty con-
tainer (instead of one) at noon. At what time will the
container become filled? The answer appears at
the end of the book.










Binary Sorting

Bob realized that the most efficient way of identify-
ing a specific member of a set, by asking yes or no
questions, is as follows: If a set contains an even
number of members, we divide it into equal parts,
each containing the same number of elements. If
the set contains an odd number of members, we di-
vide it into two parts that are as close to being equal
in number as possible. We then ask which of these
two parts contains the member we are seeking.
After the answer is given, we take the designated
part and repeat the same procedure. Eventually
only one member of the original set remains. It will
be the one we are trying to identify.

One question obviously indentifies specifically a
member of a 2-element set. Two questions suffice
for a set of 4 elements, three questions for a set of 8
elements, four for a set of 16, and in general, n ques-
tions identify a chosen element in a set of 2" ele-
ments.

In our telephone number problem, 24 questions
are sufficient for guessing any number no greater
than 224 =16,777.216. This is larger than
9.999,999, the largest possible phone number
when the number’s seven digits are written as a
single number. Twenty-three questions are not
enough because 223 = 8,388,608, which is smaller
than some phone numbers.

Bob's first question, therefore, is: “Is the number
greater than 5 million?” The answer immediately
cuts the possibilities in half. Continuing in this man-
ner. he is sure to zero in on the correct phone
number in 24 or fewer questions.

Most people find it hard to believe that as few
as 24 questions will identify any number from 1
through more than 16 million. This is because they
do not realize how rapidly the numbers in a dou-
bling sequence increase. It is this rapid increase that
explains why it is usually easy, by yes-and-no ques-
tions, to guess what a person is thinking of even
when he is allowed to think of any existing object
whatever. If you are skillful in your binary divisions
(for example. asking such questions as “Is it living or
nonliving?”, “Is it animal or vegetable?”. and so on).

it is often possible in 20 questions or less to guess
that someone is thinking, say. of the crown on the
Statue of Liberty!

The procedure we described for guessing a
phone number in 24 questions is one that computer
scientists call a “binary sorting™ algorithm. A clever
mind-reading trick based on binary sorting uses the
six cards shown in Figure 1. Hand a set of these
cards to someone and ask the person to think of any
number from 1 through 63, then to give you each
card that bears the chosen number. You can im-
mediately identify the number.

The secret is simply to add the first numbers on
each card given to you. The sum will be the chosen
number.

1 Binary mind-reading cards
13579”1315'[2367101114!5
17 19 21 23 25 27 29 31 ‘ 18 19 22 23 26 27 30 3
33 35 37 39 41 43 45 47 | 34 35 38 39 42 43 46 47

49 51 53 55 57 59 61 63 50 51 54 55 58 59 €2 &3

4 5 6 712131415 & 910 N 12 13 14 15
20 21 22 23 28 29 30 3) 24 25 26 27 28 29 30 3!
36 37 38 39 44 45 46 47 40 41 42 43 44 45 46 47
52 53 54 55 GO 61 62 63 56 57 58 5% 60 61 62 63

24 25 26 27 28 29 30 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 48 49 50 51 52 53 54 55
56 57 58 59 60 6! 62 63 56 57 58 59 60 61 62 €3

The cards are constructed by a system that is eas-
ily explained by writing the numbers from 1 through
63 in binary notation as shown in Figure 2. The
numbers at the left are in decimal form. Each has to
its right the same number in binary. The six numbers
at the top of the chart are the powers of 2 that are
used in forming the binary numbers. The mind-
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reading card with 1 as its first number bears all the
numbers (in decimal form) indicated by a 1 in the
last column on the right. The card with 2 as its top
number bears all the numbers indicated by a 1 in the
second column from the right, and similarly for the
other four cards. !

These mind-reading cards are easily generalized
to notations based on powers of numbers other
than 2. Figure 3 shows how to construct a set of
cards based on ternary notation. In this case each
ternary number may contain 0, 1 or 2. When a 1 ap-
pears in a column, we put the corresponding deci-
mal number down once on the card represented by
that column. When a 2 appears, we put the number
down twice.

Figure 4 shows a set of three mind-reading cards
that identify a chosen number from 1 through 26.
Now, however, you ask the person to tell you, each
time you are handed a card, whether he/she saw
the chosen number once or twice on the card. If he/
she saw it twice, you must double the card’s top
number as you add the key numbers.

You might wish to extend this system to six cards.
As we have seen, the six binary cards identify num-
bers from 1 through 63. Six ternary cards identify
numbers from 1 through 728. Itis easy to see how to
generalize to bases higher than 3. For example, a set
of cards based on powers of 4 have some numbers
repeated twice on a card, and some repeated three
times. If three times, you must triple the top number
before you add.

The ternary cards illustrate the fact that “ternary
sorting™ is more powerful in some ways than binary
sorting. If we keep dividing a set into three parts,
instead of two. and are told each time which part
contains a chosen element, the element can be
guessed with fewer questions. Of course, the ques-
tions are no longer of a “yes—no” type.

The power of ternary sorting is nicely illustrated
by the following card trick. It uses any 3% = 27 play-
ing cards. Someone looks through this packet and
thinks of any card. The magician takes the packet
and deals the cards face up into three piles. The per-
son who thought of a card must then say in which

¢
/

pile his card appears.

The piles are assembled by the magician into one
packet and again dealt into three face-up heaps.
The spectator points to the pile that contains his/her
card, the magician assembles the piles, and deals
them for a third and last time into three heaps. After
being told which heap contains the chosen card,
he/she assembles the piles and places the packet
face down on the table. The spectator names his/
her chosen card. The magician turns over the top
card of the packet; and it is the selected card. The
trick can be repeated many times, and it never fails
to work.

The secret is simple. Each time the magician picks
up the three piles he sees that the pile containing the
chosen card goes on top when the packet is held
face down. This automatically sorts the selected
card to the top.

It is not hard to see why it works. The principle is
exactly the same as in guessing a telephone num-
ber, except that instead of dividing the set of ele-
ments in half each time, they are divided into thirds.
After the first pick-up, the card must be in the
top nine. After the second pick-up, it must be among
the top three. After the third pick-up it must be
the top card. If you run through the procedure,
with the selected card turned face up, you will be
able to follow its progress as it moves upward, in
three stages, to the top. The sorting of elements by
computers, using procedures such as this, plays a
major role in modern information retrieval theory.
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Hapless Hat

They turned the canoe around
and paddled downstream until
they came to the hat.

Bob and Helen decided to
spend their vacation in the
Maine woods where Uncle
Henry lived in a cabin.

Assuming that the canoe’s
speed through the water was

always 6 kilometers per hour,
and that the river flowed at a
steady 2 kilometers per hour, at
what time did Helen retrieve her
hat?

To get to the cabin they had to
rent a canoe and paddle up a
river.

Zrmlh -~—

Did you get the aha! that makes
the solution easy? Believe it or
not the speed of the water has
the same effect on both canoe
and hat, and can be completely
ignored.

Bob took the bow position and
Helen paddled stern. At two
o'clock she took off her straw
hat and put it behind her on the
stern.

Then a gust of wind blew it off
without Helen or Bob noticing it
at the time.

So, with respect to the water,
the canoe travels 3 kilometers
away from the hat and then 3
kilometers back. A total of 6
kilometers.

And because the canoe goes 6
kilometers per hour, the up and J§
down trip will take just an hour.
The makes it 3 o'clock when

3 kilometers upstream from
the hat did Helen suddenly
shout out.

Helen: Wait! Stop the canoe.

I've lost my beautiful hat it?

Helen picks up her hat, doesn’t i *
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Relative Speeds

Helen and Bob made a roundtrip upstream from a
hat and back to it. The current had no affect on their
travel time because the hat was carried along with
the current. Here is a good variation in which the
roundtrip is made not from an object moving with
the current but a fixed object on the shore.

Assume there is no current in the river. Bob and
Helen row upstream for 3 kilometers from a boat-
house on the shore, then turn around and row
back to it. The travel time for the roundtrip is 20
minutes.

Now suppose that the river is flowing down-
stream at 2 kilometers per hour, as in the previous
problem. If they row 3 kilometers upstream, then
back to the boathouse, will the trip’s total time be
longer or shorter than 20 minutes?

One is tempted to say that it will still be 20 min-
utes because the current will slow down the canoe
while it goes upstream by the same amount as it
speeds up the canoe while it goes downstream.

This is not correct. Why?

The insight that answers this question is as fol-
lows. The trip upstream for 3 kilometers will take
longer than the trip downstream for 3 kilometers.
Therefore the canoe will be slowed down by the
current for a longer period of time than the time dur-
ing which it is speeded up by the current. Conse-
quently, the roundtrip will take longer. This can eas-
ily be verified by setting up algebraic equations.

The same insight applies to airplanes that travel
with and against a wind. If a plane takes a certain
time to go from A to B and back to A when there is
no wind. it is sure to take longer to make the same
roundtrip if there is a steady wind blowing from
A toB, or fromB toA.

Another good problem involving motion relative

to a fixed object on land is the following: A girl gets
on the last car of a train. She can't find a seat. so she
leaves her heavy suitcase in the vestibule just as she
is passing the Flat Foot Shoe Factory. She walks
forward through the train at a steady speed until 5
minutes later she reaches the front car. Having
found no seat, she turns around and walks back at

the same constant rate until she comes to her suit-
case. At that moment she is passing the Flat Head
Wig Factory which is just 5 kilometers from the Flat
Foot Shoe Factory. How fast is the train going?

As in the first problem, a simple aha! leads at once
to the solution. It is not necessary to know how fast
the girl walks or how far she walks. If it takes her 10
minutes to make the roundtrip up and down the
aisles of the train, the suitcase will have traveled 5
kilometers in the 10 minutes. Therefore, the train
has a speed of half a kilometer per minute or 30
kilometers per hour.

Here’s a little-known speed puzzle that confuses
even good mathematicians. A boy and girl ran a
100-meter race. The girl crossed the finish line when
the boy had gone 95 meters, so she won the race by
5 meters.

When they raced a second time, the girl wanted
to make the contest more even so she handicapped
herself by starting 5 meters behind the start line. If
the two ran at the same constant speed as before.
who won the second race?

If you think it was a tie, you'll have to think again
and search for an aha! (Hint: At what spot along the
track will the boy and girl be neck and neck?)

An amusing quickie concerns an intoxicated
ladybug at one end of a meter stick. She wants to
crawl to the other end. Every second she goes 3
centimeters forward and 2 centimeters backward.
How long will it take the looped lady to reach the
end of the stick? (The answer is not 100 seconds.)
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Money Matters
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Just before they reached Uncle
Henry's place Helen gave this
quickie to Bob.

Helen: Which is worth more? A
piggy bank filled with five-dollar
gold pieces, or the same bank
filled with ten-dollar gold
pieces?

Bob was stumped for a while
but got the right answer
eventually. Then he gave this
one to Helen in return.

Bob: A Scotsman had 44 single
dollar bills and ten pockets.
How can he distribute the
money so that each pocket
contains a different number of
bills?

Pigeon Hole Proof

A piggy-bank filled with five-dollar gold pieces con-
tains the same amount of gold as a piggy-bank filled
with ten-dollar gold pieces, therefore the gold in
each is worth the same. You might think that small
coins would pack a bank with greater density than
large coins, but this is not the case.If you fill a bucket
with tiny pebbles, the proportion of air space to the
volume of the bucket is the same as when you fill the
bucket with big pebbles.

The problem of the Scotsman with 44 single dol-
lar bills and ten pockets is even trickier. Let’s see
what happens when we put the smallest amounts
possible into the pockets. The first pocket contains a
zero number of bills, the second contains one bill,
the third contains two bills, and so on until the tenth
pocket contains nine bills. But1 + 2+ 3+ 4 +5 +
6 + 7+ 8 + 9 =45, so we have already gone
beyond the 44 available bills. Obviously there is no
way to cut down on the number of bills in any poc-
ket without duplicating two numbers for a pair of
pockets.

Mathematicians call this type of proof a “pigeon
hole” proof. Here is an amusing example of another
problem solved by the same technique. Suppose
that a town contains no more than 200,000 people.
Do two inhabitants of the town have exactly the
same number of hairs on their head?

At first thought you may consider this unlikely.
But let's see what happens when we apply the pi-
geon hole analysis. The number of hairs on one
person’s head does not exceed 100,000. If there are
no matching heads, then one person could be bald,
another could have one hair, another could have
two. and so on. But as soon as we pass 100,000
people with distinct numbers of hairs on their heads,
we are forced to duplicate. The 100,001th person is
certain to have a head of hair that matches someone
among the 100,000. Since the town has a popula-
tion of about 200,000, it is sure to have not just two
people with matching heads, but about 100,000
people with matching heads!




Uncle Henry’s Clock

Helen had just answered Bob's
quickie when they arrived at
Uncle Henry's. His cabin, which
he had built himself, had no
electricity, phone, TV or radio.

The first thing Uncle Henry said

JowW
was. —
Henry: What time is it? COUNTRY

S

Helen: Sorry Uncle, we lost
our watches on our way up
here. Don’t you have a clock?
Henry: Yep. But, dangit, |
forgot to wind it last night. You
two stay here while [ walk to the
village to check the time and
pick up some vittles.

Uncle Henry walked to town
and spent about half an hour at
the grocery store.

And when he got home, the first
thing he did was to set his clock.

Helen: Are you sure that's the
correct time? It can't be unless
you know how far you walked
and how fast you walked

Henry: Nope, Helen. [ don't
know none of them things All |
know is when | go to town and
back the same way. and go the
same speed, | can always set my
clock right.

Supposing that Uncle Henry
wound his clock before he left,
and that the grocery store's
clock is accurate, how did he
know the exact time when he
got home?
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Setting the Clock

The aha! insight that leads to a solution of this
problem is the realization that Uncle Henry can
wind his stopped clock before he leaves, and use it
to determine the total time that elapses between
leaving home and returning. He cannot, of course,
set the clock correctly after he winds it, because

he does not yet know the correct time. He does,
however, note the time on the clock before

he leaves.

When he gets back, the clock tells him how long it
took for him to walk to town, spend time at the groc-
ery store, then walk back. Since there is a clock at
the store, he has no trouble determining the time he
spent at the store. He subtracts this from the total
time he was away from his house (as measured by
the clock at home) to get the time he spent walking
to and from town. Because he always walks the
same way, at the same constant rate, half his walk-
ing time is the time it takes him to walk home. He
then adds this to the time on the store clock when he
left, and that gives him the correct time of his arrival
home. Since he sees exactly when he arrived home,
he is able to set his house clock correctly.

Here is a tricky clock question that nine out of ten
people answer incorrectly. How many times does
the minute hand pass the hour hand between 12
o'clock noon and 12 midnight? Most people say 11
times, but the correct answer is 10! If you don’t be-
lieve it, try moving the hands of your watch to con-
vince yourself it is true.

This somewhat surprising fact is involved in the
solution of a problem that seems at first to be un-
solvable without writing algebraic equations. A
clock has a sweep second hand. At 12 noon all
three hands coincide. Is there another time, before
itis 12 o'clock again, when all three hands are ex-
actly together?

Let us first determine at how many spots the hour
and minute hand coincide. You might think that
they coincide at 12 spots. but, as we have seen, this
occurs only 10 times between 12 noon and 12 mid-
night. The coincidence of the hands at 12 makes a
total of 11 different spots at which the two hands
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coincide.By the same reasoning, the second hand
and minute hand coincide at 59 different spots.
Thus, the coincidences for the hour and minute
hand are separated by 11 equal time periods, and
the coincidences for the minute and second hand
are separated by 59 equal time periods.

Let us call the number of intervals between the
first coincidences A, and the number of intervals be-
tween the second coincidences B. If A and B have
a common factor k, there will be k spots where the
two coincidences will occur simultaneously. But 11
and 59 have no common factor. Therefore, there
cannot be a spot between 12 noon and 12 midnight
when both coincidences occur at the same time. In
other words, the three hands are exactly together
only at 12 o'clock.

Now for two quickie clock questions that catch
most of your friends. A clock takes 5 seconds to
strike 6 o'clock. How many seconds will it take to
strike 12 o’clock?

Suppose Uncle Henry was so tired that he went to
bed at 9 o'clock with plans to sleep until 10 the next
morning. He set his alarm clock for 10, and fell as-
leep 20 minutes later. How long did he sleep before
the clock woke him up?

Both quickies are answered at the end of the
book.
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- Spirits of 1776

On the last day of their visit, Bob
and Helen told Uncle Henry
they had decided to get

married

Uncle Henry: Wonderful, my
dears. This calls for a celebration.

Uncle Henry then produced five
bottles of wine that he had been
saving for a special occasion.

4+ | But nobody could agree on

which bottle to open.

Uncle Henry: Lknow Let's put
the bottles in a row. Then I'll
count back and forth according
to my lucky system. Here's how
it works. One, two, three, four,
five, . ..

Uncle Henry: Six, seven,
eight, nine, ...

Uncle Henry: Ten, eleven,
twelve, thirteen, ... Get the
idea?

Bob: Yes, | do Uncle, but how
high are you going to count up
t0?

Uncle Henry: Ain't this the
bicentennial year, 19762 Let's
count to 1976

Helen: (groan) Oh dear, Uncle
Henry, that will take forever
Hmm. Wait a minute. You don't
have to count. [ can tell you
right now where the count will
end.

Helen: It'll end up on the second
bottle. I've just figured it out.
Uncle Henry didn't believe her
and had to count the bottles
himself. Fifteen minutes later he
ended his count on the second
bottle.

Uncle Henry: Heavens to Betsy.
How did you know, Helen?

See if you can figure out an easy
way to tell where the count will
end, no matter how big the
number counted. You might
want to try some variations on
your friends.




Modulo Arithmetic

Helen's insight, which avoided tedious counting of

the bottles from 1 to 1.976, was the realization that

the question could be answered quickly by applying
what is called modulo or clock arithmetic.

A clock models a finite arithmetic of just 12 num-
bers. Actually, 12 corresponds to 0 in a modulo
arithmetic based on 12. Suppose it is 12 o'clock, and
you wish to know what time the clock will show 100
hours later. This can be calculated merely by divid-
ing 100 by 12 and noting the remainder. The re-
mainder, 4, tells us that the time will be 4 o’clock.
Only the remainder concerns us. The number 100 is
said to be equal to 4 {(modulo 12). meaning no more
than that 4 is the remainder when 100 is divided by
12.

Do you see how Uncle Henry's method of count-
ing is equivalent to clock arithmetic? The only dif-
ferenceis that each ofthe three middle bottles repre-
sents two numbers because it is counted in two dif-
ferent directions. The count of 8 ends on the second
bottle, then the counting cycle begins again. The
counting procedure therefore models a modulo 8
arithmetic.

Helen had only to determine the value of 1,976
(modulo 8). In other words. she divided 1,976 by 8
and obtained a remainder of 0. In modulo 8 arith-
metic, 8 = 0 (modulo 8), therefore the count of
1.976 must end on the second bottle from the end
where the counting started.

Suppose you wanted to know where Uncle
Henry's count would end if he counted to a large
number such as 12.345.678,987,654.321. Is it
necessary to divide this entire number by 8? No, not
if you have another aha! Since 1,000 = 0 (modulo
8) you need only divide the last three digits, 321.
by 8 to get a remainder of 1. This tells you that
12,.345.678.987.654.321 = 1 (modulo 8). so the
count will end on the first bottle.

By changing the number of bottles. you produce
models of finite arithmetics with other even mod-
ulos. If the bottles are counted in the usual manner.
from left to right only. then you can model a finite
arithmetic with any modulo, odd or even.
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A famous problem involving the counting of ob-
jects in a cyclical manner is called the Josephus
problem because it dates back to an ancient Roman
story that involves a man named Josephus. There is
a large literature on the problem and its many vari-
ants. Here is a new version you will find amusing.

Once upon a time, a rich king had a beautiful
daughter named Josephine. Hundreds of young
men wanted to marry her. She finally eliminated all
of her suitors except the ten she liked best.

Several months went by and the king became
annoyed because Josephine couldn’t make up her
mind. “My dear,” he said, “next month you'll be 17.
As you know, it's the custom of all princesses to
marry before that age.”

“But father,” she replied, “I'm still not sure that I
like George the best.”

“In that case. my pretty one, we'll have to settle
the matter today by our secret ritual.”

The king then explained to his daughter how the
ancient ritual worked. “The ten men,” he said, “will
stand in a circle. You can pick any man you like and
call him 1. Then you must start counting clockwise
around the circle of men until you reach 17 —your
age. The 17th man must drop out of the circle. We'll
send him back home with a consolation gift of 100
gold pieces.”

“After he is gone, you must count again from 1 to
17, this time starting your count on the next man
after the one who dropped out. When you reach 17,
the 17th man will be eliminated as before. Continue
doing this, always counting the men that remain,
until only one is left. He'll be the man you must
marry.”

Josephine frowned and said: “I'm not sure I un-
derstand, father. Do you mind if [ practice it once
using 10 gold pieces?”

The king agreed. Josephine put the ten gold
pieces in a circle and counted around, removing
every 17th piece until only one remained. The king
watched, and saw that his daughter understood the
secret ritual perfectly.

The ten suitors were then ordered into the throne
room. They formed a circle around Josephine.




Without hesitation she started her count on Perci-
val, and counted rapidly until every man was elimi-
nated except George, the man she had privately
decided she wanted to marry.

What insight did Josephine have that made it
easy for her to begin a count that she knew would
end by selecting George?

Here is how Josephine managed it. When she
made her practice count with the gold pieces she
remembered that the single piece that remained was
number three from the spot where she began the
count. So when she started to count the men, she
began the count at a spot that would give George

the count of 3.
An interesting generalization of the Josephus

problem can be modeled with the thirteen spades
of a deck of playing cards. Can these cards be ar-
ranged into a sequence so that you can perform the
following Josephus count?

The count begins with the packet of 13 cards held
face down in one hand. Call the top card 1, turn it
over, and it is the ace of spades. Deal the ace to the
table. Then count 1,2, placing the first card beneath
the packet. The second card is turned over and it is
the two of spades. Deal it to the table. Now count
1.2.3, putting the first two cards beneath the packet,
and turning the third one. It is the three of spades.
Deal it to the table. Continue in this way, transferring
cards one at a time from top to bottom (which is the
equivalent of a Josephus count around a circle) until
you have correctly turned over and dealt the thir-
teen spades in consecutive order from ace to king.

Here is how the cards are arranged, from top
down. to make such a count possible: A, 8, 2, 5, 10,
3.Q,4,9,4,7,6,K.

You might suppose that it took someone many
hours of trial and error to devise such a clever ar-
rangement. Actually, there is a very simple algo-
rithm (procedure) for obtaining such sequences.
Many magicians, working on counting tricks of this
sort, have indeed wasted vast amounts of time be-
fore they had the aha! that made the task trivial. See
if you can think of it before you read the solution at
the end of the book.












In this section we are not concerned with formal
logic, but with problems that can be solved by
reasoning, without any special expertise in
mathematics. Some of the short puzzles are close to
riddles in the sense that they contain deliberately
misleading statements, or the answers hinge on
word play, but most of them are puzzles that play fair
with the reader.

There is a general way in which logic puzzles of
this sort are related to mathematics. All mathemati-
cal problems are solved by reasoning within a de-
ductive system in which basic laws of logic are em-
bedded. Although you need not know formal logic
to work on any of the problems in this section, the
informal reasoning that solves them is essentially
like the reasoning that mathematicians and scien-
tists use when confronted with a perplexing ques-
tion.

By “perplexing” we mean a problem of such a na-
ture that one does not know how to go about solv-
ing it. Naturally, if there is a known procedure —for
example, the technique for cracking a quadratic
equation —everything is cut and dried and there is
no real perplexity. One simply applies the proper al-
gorithm and grinds out the answer.

The interesting and challenging problems that
arise in mathematics and science are those for which
the method of solution is not apparent. One must
think long and hard about the question, searching
the memory for all relevant information, and hope
for that moment of aha! insight that suggests a solu-
tion. In this general way, the solving of amusing logic
puzzles is good training for solving more serious
problems.

Several puzzles in this chapter have even closer
ties to significant mathematics. For example, “Color
Mates™ and the problems that follow it lend them-
selves to a chart method of solution that is very simi-
lar to techniques used in formal logic. One of these
puzzles introduces an important logic relation called
“material implication”. In the propositional calculus
(a fundamental branch of symbolic logic) implica-
tion is symbolized by D. The relation A D B means
that ifA is true, then B must be true. It is one way
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of interpreting the statement in set theory that
all of setA is included in set B.

The word “induction” has two essentially diffe-
rent meanings. Scientific induction is a process by
which scientists make observations of particular
cases, such as noticing that some crows are black,
then leap to the universal conclusion that all crows
are black. The conclusion is never certain. There is
always the possibility that at least one unobserved
crow is not black.

Mathematical induction, to which you are intro-
duced in the comments on the hat tests in “Dr. Ach's
Awards,” is an entirely different procedure. Al-
though it, too, leaps from the knowledge of particu-
lar cases to knowledge about an infinite sequence of
cases, the leap is purely deductive. [t is as certain as
any proof in mathematics, and an indispensable
tool in almost every branch of mathematics.

Most of the puzzles in this section are not as
serious or as complicated as the hat problems.
Nevertheless, they are sure to sharpen your wits.
They will teach you the value of looking carefully for
verbal pitfalls in the statement of a problem, and,
above all, the value of going out on a limb in consid-
ering offbeat possibilities. The more possibilities you
consider, however bizarre, the more likely it is that
the right insight will come. It is one of the secrets of
all creative mathematicians.
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Observant Lady

The story of the lady and the cab typifies many situ-
ations in both ordinary life and in science. There is a
puzzling situation which at first one cannot under-
stand. But if all the relevant factors are carefully con-
sidered, suddenly the mind has a flash of insight into
a forgotten aspect of the problem that furnishes a
key to its solution.

If you cannot answer the crafty cabbie puzzle
right away. try to put yourself in the position of the
lady. then in your mind act out the entire sequence
of events. What is the first thing you say when you
get in a cab? The answer, of course, is that you tell
the cab driver where you want to go. But if the driver
is deaf, how will he know where to take you? The
lady suddenly realized, after she had paid the fare,
that the cabbie could not be deaf because he drove
her to her proper destination.

Logic puzzles based on real life situations are
often not well-defined. They frequently require
many unstated assumptions, and this problem is no
exception. For example, it may have occured to you
that if the cabbie saw the lady’s face when she told
him her destination, he might have read her lips.
This is not an irrelevant quibble, but a shrewd ob-
servation on your part.

A careful analysis of every aspect of a sequence of
events has often led to major insights in the history
of science. A beautiful example was the solution to
the puzzling question of how worker bees know
where to go to obtain a supply of honey that has
been discovered by one worker bee that returns to
the hive. Karl von Frisch observed that when the
scouting bee returns. it engages in a curious kind
of “dance.” Could it be that the nature of this
dance communicates the destination of the honey
source? In a brilliantly designed series of elegant
experiments, von Frisch finally proved that this is
indeed the case.

If you found the crafty cabbie puzzle amusing,
here are two other taxicab problems. A cabbie
picked up a customer at the Waldorf Hotel in New
York City who wanted to go to Kennedy Airport.
The traffic was heavy, and the cab'’s average speed

for the trip was 30 kilometers per hour. The total
time of the trip was 80 minutes and the customer
was charged accordingly. At Kennedy Airport, the
cabbie picked up another passenger who, by coin-
cidence, wanted to be taken to the Waldorf Hotel.
The taxi driver returned to the hotel along the same
route he had traveled before, with the same average
speed. But this time the trip took an hour and
twenty minutes. Can you explain why?

It may take a while before it dawns on most
people that 80 minutes is the same as one hour and
twenty minutes! It is an amusing catch puzzle to try
on friends.

Another catch problem involving a taxicab goes
like this:

You are a taxi driver. Your cab is yellow and black,
and has been in use for seven years. One of its
windshield wipers is broken, and the carburator
needs adjusting. The tank holds 20 gallons, but at
the moment is only three-quarters full. How old is
the taxi driver?

This is even a bigger swindle than the previous
problem, although logically it is perfectly consistent.
You were told at the outset that you are the driver.
Therefore, the driver is whatever age you are!
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Color Mates

The cabbie next picked up three
young couples and took them to
a discotheque. One girl was
dressed in red, one in green,
and one in blue. The boys wore
outfits of the same three colors.

When all three couples were
dancing, the boy in red danced
close to the girl in green and
spoke to her.

Frank: Isn't it funny, Mabel?
Not one of us is dancing with a
partner dressed in the same
color.

Given this information, can you
deduce the color the partner of
the girl in red is wearing?

The boy in red must be with the
girl dressed in blue. She can’t be
red because then they would
match. And she can’t be green
because the boy in red spoke to
the green girl when she was
dancing with someone else.

The same argument shows that
the girl in green can’t be with
either of the boys in red or
green. So she must be with
someone in blue.

That leaves the girl in red with
the boy in green and our
problem is solved, isn’t it?

Mblue
W
8 green
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. Color Opposites

Most people do not find it easy to follow the reason-
ing in the solution to this problem. One is not likely
to have an aha! insight until one fully understands
what is being asserted by each statement. A good
way to organize this information is to classify it on a
square matrix of the type shown below:

r g b

G

B

The capital letters on the left side of the matrix
stand for the colors of the boys: R= red, G = green,
B = blue. The lower case letters at the top stand for
the colors of the girls.

We are told that no boy matches a girl in color. We
can, therefore, eliminate three possible combina-
tions: Rr, Gg, and Bb. This is indicated on the matrix
by shading the corresponding three cells:

(7 g b

Because the boy in red danced over to the girl in
green, we know he is not with a green girl. This al-
lows us to eliminate the Rg cell. Now only one cell

- remains on the R row, which proves that the boy in

red is with the girl in blue. We indicate this by putting
a check in the Rb cell. Our chart now looks like this:

r (¢} b
R v
G
B

Since we know that the girl in blue is with the
boy in red. she cannot be with any other boy. There-
fore. we can shade the Gb cell. Only the Gr cell
remains open in the second row. This tells us that
the green boy is with the r girl. so we put a check in
that cell:

r q b

R : v

Since the red girl is with the green boy, she cannot
be with any other boy. so we shade the Br cell. This
leaves open only the Bg cell, so it gets a check to
show that the boy in blue is with the girl in green.
Our problem has been solved:

r g b
R v
a| v
) 7

Here is a more difficult logic problem of essen-
tially the same kind. Very few people can solve it
without the help of a matrix.

Paul, John and George are three rock stars. One
plays a guitar, one plays the drums, and one plays
the piano, but not necessarily. respectively.

The drummer tried to hire the guitarist for a
recording session, but was told that he was out of
town doing shows with the pianist. The drummer
admired the work of both musicians.

1. The pianist earns more money than the drum-
mer.

2. Paul earns less than John.

3. George has never heard of John.

4. What instrument does each of the rock stars

play?
See if you can draw the 3-by-3 matrix, and elimi-
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nate all impossibilities in the manner previously
explained. If you do it properly, you will obtain the
following correct answer: Paul plays the guitar, John
the drums, and George the piano.

Solving logic problems by the use of such chartsis
very similar to the techniques of solving problems in
formal logic by the use of Venn diagrams. In both
cases, solutions are obtained by a progressive elimi-
nation of impossible combinations of “truth values”
until only one combination, the correct one, re-
mains. As Sherlock Holmes, in The Sign of Four.
once said to Watson: “When you have eliminated
the impossible, whatever remains, however im-
probable, must be the truth.”

Here is a problem more challenging than the pre-
vious ones. It will introduce you to a fundamental
binary relation in formal logic that is known as
“implication.” It is a statement that has the form:
“If...then...”

Four college girls who share an apartment are
listening to an album of music while one of them
does her nails, one does her hair, one puts on
make-up, and one is reading.

1. Myra isn't doing her nails and she isn’t reading.

2. Maud is not putting on make-up and she is not
doing her nails.

3. If Myra is not putting on make-up, Mona is not
doing her nails.

4.Mary is not reading and she is not doing her
nails.

5. Mona is not reading and she is not putting on
make-up. What is each girl doing?

You should have no difficulty drawing a 4-by-4
matrix for the four girls and the four tasks. State-
ments 1, 2, 4 and 5 each eliminated two cells.

Statement 3 is the statement of implication. It as-
serts that if Myra is not putting on make-up. then
Mona is not doing her nails. Let A stand for the “if”
clause, and B for the “then™ clause. The “if-then™
binary relation tells us that the truth of A cannot be
combined with the falsity of B, but it tells us nothing
about the truth values of A and B when A is false.

Statement 3, therefore. allows for the following
three combinations of truth values:

1. Myra is not putting on make-up, and Mona is
not doing her nails.

2. Myra is putting on make-up, and Mona is not
doing her nails

3. Myra is putting on make-up. and Mona is doing
her nails.

After you have eliminated eight “impossible”
combinations by shading the eight cells that are
ruled out by statements 1, 2, 4 and 5, you will then
have to test each of the three possible combinations
given by statement 3. Two of them lead to logical
contradictions; that is, to two girls doing the same
task. Only the combination of “Myra is doing her
make-up. and Mona is doing her nails™ does not
conflict with the information provided by the other
statements. The final solution is:

Muyra is putting on make-up.
Maud is reading.

Mary is doing her hair.
Mona is doing her nails.

A shorter solution, proposed by Peter Stangl. is to
recognize that since statements 1.2,4 and 5 show
that neither Myra, Maud, nor Mary are doing their
nails, therefore Mona must be the girl who is doing
her nails. This contradicts the second part of
the “if-then” assertion of statement 3, therefore the
first part of this assertion must also be false.
Consequently, Myra is putting on her make-up.
and this leaves Mary as the girl doing her hair.

Logic puzzles of this sort are not hard to invent. You
might enjoy trying your skill at designing one your-
self. There are many different techniques for solving
such problems—algebraic techniques, methods
using graph theory, different types of logic diagrams,
and so on. Maybe you can also invent a method of
your own that is as good or better than the matrix
method given here.
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Six Sneaky Riddles

When the music stopped the six
friends returned to their table
and amused themselves by
asking each other riddles. How
many can you get?

The boy in red asked his first.
Frank: Last week I turned off
the light in my bedroom and
managed to get to bed before
the room was dark. If the bed
was 10 feet from the light switch,
how did I do it?

The boy in blue said.

Henry: Whenever my Aunt
comes to visit me at the
apartment she always gets off
five floors too soon and walks
up the rest of the way. Can you
tell me why?

The boy in green said.
Inman: What common word
starts with “IS”, ends with
“ND,” and has “LA" in the
middle?

The girl in red said.

Jane: One night my uncle was
reading an exciting book when
his wife turned out the light.
Even though the room was
pitch dark he went right on
reading. How could he do that?

The girl in green said

Mabel: This morning one of my
earrings fell into my coffee
Even though my cup was full
the ring didn't get wet How
come?

The girl in blue asked the last
riddle.

Laura: Yesterday. my father
was caught in the rain without a
hat or umbrella. There was
nothing over his head and his
clothes got soaked. But not a
hair on his head got wet? Why
was that?
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Sneaky Answers

The six riddles are more than just funny catches.
They teach you not to make unnecessary assump-
tions. but to consider all possibilities no matter how
unlikely or bizarre they may seem. Some of the
greatest revolutions in science would never have
taken place if great minds had not questioned as-
sumptions that everyone took for granted. Their
next step—the aha! insight—was to consider a
possibility that others thought crazy. For example:
Copernicus guessed that the sun (not the earth) was
the center of the solar system, Darwin guessed that
mankind evolved from a lower form of animal life,
and Einstein guessed that the structure of space
need not conform to Euclidean geometry.

Our six sneaky riddles are answered as follows:

1. The unnecessary assumption that almost
everyone makes in trying to figure out this problem
is that the time is at night. But this is not stated in the
problem. The room did not get dark because it was
day time.

2. The false assumption is that the Aunt is of nor-
mal height. Actually, she is a midget who cannot
reach high enough to push the button for her
nephewss floor.

3. The false assumption is that there are other let-
ters between the three pairs of letters. The word is
“ISLAND.”

4. The false assumption is the belief that one can
read only with the eyes. The man was blind, and
was reading a book in braille.

5. The false assumption is that “coffee™ means
liquid coffee. The ring fell into a can of dry coffee. so
naturally it did not get wet.

6. The false assumption is that the father had hair
on his head. The father is bald, therefore he has no
hair to get wet.

There are hundreds of amusing brain teasers that
are based on the same basic idea—misleading one
into making a false assumption that prevents one
from thinking of the true explanation. Here are six
more.

1. A man found a dead fly in his soup. The waiter
was apologetic. He took the bowl to the kitchen and

returned with what apparently was a new bowl of
soup. A moment later the man called the waiter
over.

“This is the same bowl of soup | had before!” he
shouted angrily. How did he know?

2. While an ocean liner was anchored, Mrs. Smith
felt too ill to leave her cabin. At noon the porthole by
her bed was exactly 7 meters above the water line.
The tide was raising the water line at a rate of 1
meter per hour. Assuming this rate doubles every
hour, how long will it take the water line to reach her
porthole?

3. The Reverend Sol Loony announced that on a
certain day. at a certain time, he would perform a
great miracle. He would walk for twenty minutes on
the surface of the Hudson River without sinking into
the water. A big crowd gathered to witness the
event. The Reverend Sol Loony did exactly what he
said he would. How did he manage it?

4. Two train tracks run parallel except for a spot
where they go under a tunnel. The tunnel is not
wide enough to accommodate both tracks, so they
become a single track for the distance of the tunnel.

One afternoon a train entered the tunnel going
one direction, and another train entered the same
tunnel going the opposite direction. Both trains
were going at top speed, yet there was no collision.
Explain.

5. An escaped convict was walking along a coun-
try road when he saw a police car speeding toward
him. Before he ran into the woods he ran 10 meters
directly toward the approaching car. Did he do this
just to show his contempt for the police, or did he
have a better reason?

6. Why are 1977 dollar bills worth more than
1976 dollar bills?

The answers are at the back of the book. but do
not look at them until you have tried hard to answer
each question.
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The Big Holdup

ul‘P' "“f'

The next day, when the
discotheque's waiter reported
for work, he heard shouting
coming from the attic.

He rushed to the attic and found
the manager with a rope around
his waist and hanging from an
overhead beam.

Manager: Quick. Get me
down. Call the police. We've
been robbed.

The manager told his story to

the police.

Manager: Last night, after we
closed, two robbers came and
took all the money. Then they
carried me to the attic and tied
me to the beam.

The police believed his story
because the attic room was
completely empty. He couldn’t
have tied himself to the high
beam, there was nothing to
stand on. There was a step
ladder used by the thieves, but it
was just outside the door.

However, a few weeks later, the
manager was arrested for
robbing himself. Can you figure
out how the manager, without
any help, tied himself in
mid-air?
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Here's how he did it. He used
the ladder to tie one end of the
rope to the beam. Then he
carried the ladder out of the
room

He returned with a huge block
of ice he had prepared in the
freezer.

He stood on the ice, tied
the rope around himself and
waited.

When the waiter found him the
next day, all the ice had melted
and the manager was left
hanging in mid-air. Clever,
wasn't he?
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Missing Evidence

Many famous mystery stories have been based on
problems like this one, which the detective solves by
a flash of intuition. Melting ice has been a favorite
device of early mystery writers. For example, a vic-
tim is found stabbed. Where is the murder weapon?
It turns out to have been a piece of ice with a sharp
point like an icicle. A man is found murdered inside
aroom locked on the inside by a latch that had been
earlier propped up with piece of ice. When the ice
melted. the latch fell and locked the door.

A classic puzzle mystery of this type is “The Prob-
lem of Thor Bridge.” by A. Conan Doyle. A woman
is found shot in the head on a bridge that has a
parapet of stone on either side. There is no trace of
the pistol that had fired the bullet, yet Sherlock
Holmes, in a flash of insight, thinks of how the
woman may have committed suicide and disposed
of the weapon.

The solution is that she had tied the pistol to one
end of a long cord. The string passed over the stone
parapet and had a heavy stone tied to the other end.
After shooting herself, the gun dropped from her
hand and the stone pulled it into the water.

Holmes's solution of this problem, like so many of
his others. is an excellent model of how science
operates. First the great detective, by a flash of intui-
tion, developed a theory to explain the disappear-
ance of the weapon. He then deduced a conse-
quence of the theory—namely, that the pistol
striking the parapet would chip the stone. He found
just such a chip mark. Finally, he devised a test to
confirm the significance of the chip. He tied a stone
to a string. and the other end to Watson's revolver,
To simulate the suicide. he stood where the body
had been found, and released the revolver. When
he discovered that it made a second chip mark on
the parapet. identical with the other one. his theory
was amply confirmed.

This is precisely how science solves its problems.
First a theory. then a deduction of practical conse-
quences if the theory is true. then a search for the
evidence and the devising of experiments to test the
theory.
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Here is a new mystery problem that also can be
solved by a clever theory. The body of Mr. Jones
was found slumped on his desk with a bullet hole
through the head. Detective Shamrock Bones saw a
tape recorder on Mr. Jones's desk. He pressed the
play button and was suprised to hear Jones'’s voice
saying:

“This is Jones speaking. Smith just telephoned to
say that he's coming here to kill me. I'm not going
to try to escape. If he carries out the threat I'll be
dead in ten minutes. This recording will tell the po-
lice who killed me. [ hear his footsteps now in the
hallway. The door is opening..."

There was a click to indicate that Jones had
turned off the recorder.

“Shall I pick up. Smith?” asked Lieutenant Suzy
Wong, who was Captain Bones'’s assistant.

“No.” said Bones. “I'm convinced that someone
else, who was good at imitating Jones's voice,
killed Jones and made this recording to incriminate
Smith.”

Bones's theory later proved to be correct. Can
you think of what made him suspect that the record-
ing was a fake? Try to do this before you look at the
answer at the back of the book.




Dr. Ach’s Tests
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The police would never have
solved the case without the help
of Dr Ach, a psychology
professor who specialized in
problem solving. He called his
aha'insights “Ach” phenomena
and devised many tests for
them.

One involved two long strings
that hung from the ceiling of an
empty room.

Dr. Ach: These strings are so
far apart that if you hold one
end, you can't reach the other.

Dr. Ach: The problem is to
tie the two ends of the rope
together using nothing more
than a pair of scissors.
Could you pass this test?

Dr. Ach: Another of my
favorite tests is to put an open
bottle of beer in the center of a
small oriental rug. The problem
is to get the beer off the rug.

Dr. Ach: But you musn’t touch
the bottle with any part of your
body or anything else And, of
course, not a drop of beer must
be spilled

If you didn't pass the last test,
maybe you'll get this one

Dr. Ach: For my last test you
need a sheet of newspaper The
problem is for you and a friend
to stand on it in such a way that
you can't touch each other.
Naturally you can’t step off the
paper.

This is your last chance to pass
one of Dr. Ach’s tests.

Doctor Ach doesn't like to
remember that test because one
of his students answered it and
challenged him with another.
Student: Alright, Dr. Ach, try
to throw this tennis ball so it
goes a short distance, comes to
a dead stop, then reverses itself
and goes the opposite way.

Dr. Ach: May [ bounce it
against something?

Student: No, bouncing is not
allowed. And you can't hit it
with anything or tie anything to
it either.

After Dr. Ach gave up, the girl
surprised him by taking the ball
and doing exactly what she
said.

Dr. Ach: Ach, why didn’t]
think of that.

What was it that he failed to
think of?




Dr. Ach’s Solutions

Dr. Ach’s Strings: You may think one could

solve this by grabbing a string and swinging on it like
Tarzan in the manner shown in one of the pictures.
This would not work for two reasons: the string is
not strong enough to support a person, and even if it
were, the person could not reach the other string.
However, the picture does give a clue to the correct
solution.

If you tie the scissors to one end of a string, you
can set the string swinging like a pendulum. This al-
lows you to pull the end of the other string as near as
possible to the swinging string, and catch the scis-
sors when they swing toward you.

It takes two insights to solve this task problem.
One is to think of swinging strings, and the second is
to think of using the scissors in a way for which they
were not designed. Psychologists have a term called
“functional fixedness™ for the difficulty people have
in using devices in unaccustomed ways. The mind
thinks only of how scissors can cut string. Of course,
cutting a string is no help in solving the problem.

Dr. Ach’s Rug: You are not allowed to touch the
bottle with any part of your body, or with anything
else. The insight that solves this task is the realization
that, since the rug is already touching the bottle,
perhaps the rug itself can be used for moving the
bottle off the rug.

This proves to be true. Merely roll up the rug at
one end. When you get to the bottle, roll it slowly
with your hands at each end, and the middle of the
roll will slowly push the bottle off the rug without
tipping the bottle over.

As in the previous problem, functional fixedness
is a mental block to the solution. One thinks of a rug
only as a floor covering, not as an object that can be
used as a pushing tool.

Dr. Ach’s Newspaper: The aha! that solves this
task is the realization that a door separates two per-
sons who stand on the same sheet of newspaper.
Simply put the sheet under an open door. The boy
stands on the paper at one side of the door, and the
girl stands on the other side. The door prevents
them from touching each other without stepping off

the paper.

Tennis Ball: The mental block here is the as-
sumption that the ball is tossed horizontally. But
there is nothing in the statement of the problem to
prevent one from tossing the ball straight up in the
air. Naturally it comes to a complete stop, reverses
its motion, and goes the opposite way!

Another solution is to roll the ball up a hill. This
could have been ruled out by stating that the ball
must travel through the air without touching any-
thing, but since we didn't say this, it counts as a
legitimate solution.

More Task Problems: Here are six more task
problems that you and your friends will enjoy. Try to
solve them before reading the answers.

1. Can you drop a paper match from a height of
about 1 meter so that it falls on its edge and remains
on its edge?

2. Some workmen are making mortar with sand
and cement so they can lay the foundations of a
building. One of the large concrete blocks has a
small rectangular hole 2 meters deep. A baby bird
has fallen into the hole. The hole is too narrow for an
arm to be squeezed into it; besides, the bird is too
deep to be reached by an arm. Trying to grasp the
bird with two sticks would injure it. Can you think of
a simple way to get the bird out of the hole?

3. Tie one end of a piece of string, about 2 meters
long, to the handle of a coffee cup. Tie the other end
to a hook in the ceiling, or over an open doorway, so
that the cup hangs suspended. The problem is to cut
the center of the cord with a pair of scissors so that
the cup will not fall to the floor. No one may hold the
cup, or touch the string while it is being cut.

4. A dike in Holland is missing a single brick.
Water is pouring through the rectangular hole which
is 5 centimeters by 20 centimeters. The man who
discovered the hole has with him a saw and a cylin-
drical wooden pole with a diameter of 50 millime-
ters. What is the best way he can cut the pole so as
to plug up the hole?

5. A wine bottle has a cylindrical shape for its
lower section. The section is 3% of the bottle’s height.
The upper fourth of the bottle is irregularly shaped.







The Ach Award
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At the end of every course in
Ach thinking, Dr. Ach gave a
special Ach medal to his best
student. One year there were
three students tied for the
honor.

Dr. Ach used a test to break the
tie. He seated the three students
on a bench and told them to
close their eyes.

Dr. Ach: I'm going to put a red
orablue hat on each of you. But
don’t open your eyes until I tell

you.

Dr. Ach put a red hat on each of
them.

Dr. Ach: Now open your eyes
and raise your hand if you see a
red hat on someone. The first
person to deduce the color of
his own hat gets the medal.

Of course, all three raised their
hands. But several minutes
passed before John stood up
and shouted.

John: Ach, | know my hat is
red

John: If my hat were blue,
Mary would know at once that
her hat was red because that
would be the only way to
explain Barbara's raised hand.

John: Naturally Barbara would
think the same way. She would
know that her hat was red
because that would be the only
way to explain Mary's raised
hand.

John: But neither girl could
name the color of their own hat
So they must be seeinga red hat
on me too.

It's easy to understand this
classic logic puzzle when there
are only three persons. But
suppose there are four, and all
get red hats. Can you figure out
what would happen?
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Inductive Color Thought

Going from three persons in this problem to four,
then generalizing to any number of persons, is an
excellent introduction to a valuable technique of
proof called “mathematical induction.™ It applies
only when there are statements that can be ordered
like the rungs of a ladder. You first show that any
statement is true if the previous one is true. If the first
is true, then all the others must be true. If you can
step on the first rung of the ladder, you can climb it
all the way to the top. Or if you start on a higher
rung, you can climb all the way up or down.

Suppose there are four men who all get red hats.
All raise their hands. Assume that one of them has
more aha! insight than the others. He or she reasons
as follows:

“Suppose my hat is blue. The other three will all
see that it is blue. Each person, therefore, will see
two red hats and wonder about his own. But this is
exactly the situation of the previous problem when
there are just three people. Eventually one of the
three will deduce that his hat is red.

“However, suppose enough time has elapsed for
such a deduction, but no one has made it. There can
be only one reason, and that is because they all see
that my hat is red also. Therefore my original as-
sumption is false. My hat must be red.”

This generalizes to n persons. If there are five per-
sons with red hats, the cleverest will see four red hats
and realize that after a sufficient time one of the four
persons has to reason as explained above, and
know that his/her hat is red. But if no one is able to
do this, it indicates that his/her own hat must also be
red. And so on for any number of persons. The
cleverest among n people can always reduce the
situation to the previous case, which in turn reduces
to the previous case, and so on back down to the
case of three persons, which is solved.

The general problem can lead to interesting ar-
guments about whether it is sharply defined. or
whether it is too ambiguous in its conditions to have
a sharp answer. What assumptions must be made to
make the general solution valid? Is it necessary that
the reasoning abilities of the n persons form a

heirarchy? [s it necessary to assume that as n in-
creases, the length of time it takes for a person to
deduce his/her hat is red also increases? Is it correct
to say that if there are 100 persons, then after a very
long length of time the cleverest will know that his/
her hat is red, then after another lapse of time, the
second cleverest will know, and so on down to the
least clever last man or woman?

There are endless variants of the classic hat prob-
lem. Here is one that shows how the problem can be
complicated by introducing hats of more than two
colors. Suppose that five men are given hats
selected from a set of five white, two red, and two
black. If all the hats are white, how does one man,
cleverer than the rest, deduce that his hat is white?

A particularly elegant three-person variant of the
original two-color problem eliminates all of its am-
biguities. Assume that three men are seated in three
chairs, one behind the other and all facing the same
way. The man in the back chair can see the hats of
the two men in front. The man in the middle sees
only the hat of the man in front. And the man in
front sees no hat. Think of the men as progressively
“blind”, with the man in the front chair totally blind.

An umpire picks three hats from a set of three
white and two black. The men close their eyes until
the hats are placed, and the unused hats concealed.

The umpire asks the man in back if he knows the
color of his hat. He replies “No.”

The man in the middle is asked the same ques-
tion. He, too, says “No.”

When the man in front is asked, he replies, “Yes,
my hat is white.” How did he deduce this?

He reasoned as follows: “The man in the back
chair will say ‘yes’ only if he sees two black hats. His
‘no’ answer proves that the two hats he sees are not
both black. Suppose now that my hat is black. The
man in the middle sees it is black. As soon as the
middle man hears the man behind him say ‘no’. he
knows that his own hat must be white —otherwise
he would see two black hats and say ‘yes.” There-
fore. the middle man would say ‘ves.” However, he
actually said ‘no.” This proves that the middle man
sees a white hat on my head. Therefore. my original
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assumption is false, and my hat is white.”

Like the earlier version, this also generalizes eas-
ily by mathematical induction to n “progressively
blind” men seated in a row of n chairs. Questions
start with the man in back, then go forward. The
supply of hats consists of n white hats and n-1 black.
Consider the case of n.= 4. The “blind” man in front
knows that if his hat is black, the three men behind
him see his black hat and know that only two black
hats are left for themselves. This reduces the prob-
lem to the previous case. If the first two men say
‘no,” the third man (seated directly behind the blind
man) would then say ‘ves’, as in the previous case.
If, however, he says ‘no’, it proves to the blind man
that his assumption is false, and his hat must be
white. Mathematical induction then extends the
proof to n persons. If all but the blind man say ‘no’,
all must be wearing white hats.

A more difficult question can now be asked. Sup-
pose that in the three-man case the umpire gives
them any combination of hats from the set of five
(three white, two black). The men are questioned in
the same order as before. Will one of them always
answer yes? You may enjoy working this out, and
proving that it generalizes to n persons and a set of n
white and n—1 black hats. Someone will always
answer yes. The first person who does is always the
first one asked who is wearing a white hat and who
sees no white hat in front of him.

Hats of two colors are equivalent to hats labeled 0
and 1. the integers of binary notation. There are
many hat problems involving more than two colors
{such as the one given earlier), but they are easier to
understand if instead of colors we use positive inte-
gers. Consider, for example, the following two-
person game.

The umpire chooses any pair of consecutive posi-
tive integers. A disk with one of the numbers is stuck
on the forehead of one player, and a disk with the
other number is stuck to the forehead of the other
player. Each sees the other's number, but not his
own. Both men are honest and rational.

The umpire asks each man if he knows his
number, and the questioning continues back and
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forth until one man says yes. Using mathematical
induction, you can show that if the higher of the two
numbers is n, one man will say yes to question n or
question (n—1). The proof starts by considering the
simplest case: numbers 1 and 2. The man with 2 will
say yes to the first or second question (depending
on who is asked first) because, seeing 1, he knows
his number is 2.

Now consider the 2, 3 case. The first time the man
with 3 is asked, he will say no because he could be 1
or 3. Assume he is 1. In that case the man with 2
would say yes (as in the previous case). Conse-
quently, if he says no, this proves to the other player
that his number is 3, rather than 1, therefore he says
yes when asked the second time. As in the hat prob-
lems, this generalizes for any pair of consecutive
numbers.

For the full solution you need to know just when a
player will say yes on question n, and when on
(n—1). You will find that this depends on which man
is asked first, and whether n is odd or even.

A more sophisticated generalization has been in-
vestigated recently by the famous Cambridge
mathematician John Horton Conway. It goes like
this. Numbered disks are placed on the foreheads of
n men. The numbers can be any set whatever of
non-negative integers. The sum of all these integers
is one of n or fewer numbers written on a black-
board. The blackboard numbers must have no two
alike. The men are assumed to be infinitely intelli-
gent and honest. Each can see all the disks except
his own, as well as all the blackboard numbers.

The first man is asked if he can deduce the
number on his forehead. If he says no, the question
is asked of the second man, and this questioning
continues cyclically around the men until one of
them says yes. Conway asserts that, incredible as it
may seem, the questioning always terminates with a
yes.










Barbershop Bantor

Bill was a talkative barber and
could hardly wait to get started
o Bill: So you're from out of
town, hm hmm? [ like to cut the
hair of strangers

Bill: In fact, I'd rather cut the

hair of two people from out of
town than the hair of anybody
who lives here.

John: Why is that?

Bill: Because | get twice as
much money.

John: Okay. you caught me on
that one. But here’s one for you.
Ten days ago our college
basketball team won a game
with a score of 76 to 40. And yet
not one man on our team got a
basket. Can you tell me why?

w The barber was stumped, so

John explained.
John: There aren’t any men on
our team. They're all girls.

Surprising Solutions

The problems in this section are all humorous
“catches” based on verbal ambiguity. Here are eight
more problems of the same type to catch your
friends with.

1. Howard Youse, an eccentric billionaire, off-
ered a prize of half a million dollars to the racing car
driver whose car came in last in a race. Ten drivers
entered the contest, but were puzzled by Mr. Youse's
conditions.

“How can we run the race?” one of them asked.
“We'll all just go slower and slower, and the race will
never finish.”

Suddenly one of them said, “Aha! l know how we
can manage it.” What did he think of?

2. How can you make a match burn under wa-
ter?

3. A criminal took his wife to a movie theater that
was showing a shoot-em-up western. During one
scene, when many guns were fired, he murdered his
wife by shooting her in the head. He then took his
wife's body out of the theater. but no one stopped
him. How did he manage it?

4. Professor Quibble says he can put a bottle in
the center of a room and crawl into it. How does he
do it?

5. Uriah Fuller, the famous Israeli superpsychic,
can tell you the score of any baseball game before
the game even starts. What is his secret?

6. A man who lived in a small town married
twenty different women of the same town. All are
still living, and he never divorced a single one of
them. Yet he broke no law. Can you explain?

7. “This myna bird,” said the pet shop salesman,

“will repeat any word it hears.” A week later the lady
who bought the bird was back in the shop to com-
plain that the bird had not yet spoken a single word.
Yet the salesman told the truth. Explain.

8. A wine bottle is half filled and corked. How
can you drink all the wine without breaking the bot-
tle or removing the cork from the bottle?
The answers are at the back of the book.




Murder at Sun Valley

\ When John got to Las Vegas the :
K : papers were headlining a story

about a local gambler and his \

wife who had been skiing at Sun g

Valley.

MBLERS WIFE
C':nzs IN SUNG
ACCIDENT

The wife had died after a skiing .

= \ accident. The gambler had '
been the only witness to her fall §
when she skidded over a

precipice. -

- —_ |

A clerk in Vegas read about the
accident and phoned the Idaho {
police. The gambler was -
arrested on suspicion of murder.

The reporters were surprised
with the clerk’s story. §
Clerk: | don’t know the
gambler or his wife and I didn’t
suspect foul play until I read
about the accident.

Why then, did the clerk call the
police?

Because he had sold the
gambler a round trip ticket to
Sun Valley, but only a one way
ticket for his wife.




The One Way Ticket

Now see how well you do on these two mystery
problems. Like the previous one, they cannot be
solved by any kind of algorithm or planned proce-
dure, but a correct aha! reaction leads quickly to the
answers.

1. On a thruway to San Francisco. a father was
driving with his small son in the front seat. He
swerved to avoid hitting a stalled car, lost control of
his car, and smashed into a bridge abutment. The
father was unhurt but the boy suffered a broken leg.

An ambulance took them to a nearby hospital.
The boy was wheeled into the emergency operating
room. The surgeon was about to operate. Suddenly
the surgeon cried out: “I can’t operate on this boy.
He's my son!” Explain.

2. The following story is adapted from Puzzle-
Math, a delightful collection of problems by George
Gamow and Marvin Stern. At the time of the Ger-
man occupation of France, during World War II,
four people were riding a hotel elevator in Paris.
One passenger was a Nazi officer in uniform,
another was a native Frenchman who was a secret
member of the underground. The third passenger
was a young, pretty girl, and the fourth was an el-
derly lady. They were all strangers to one another.

Suddenly a power failure occurred. The elevator
stopped and the lights went out, leaving the car in
total darkness. There was the sound of a kiss. fol-
lowed by the sound of a punch in the face. A mo-
ment later the power was back on. The Nazi officer
had a fresh bruise under one eye.

The elderly lady thought: “Serves him right! I'm
glad that young girls these days know how to take
care of themselves.”

The young girl thought: “What strange tastes
these Nazis have! Instead of kissing me. he must
have tried to kiss this older woman or this nice
young man. | can't figure it out!”

The Nazi officer thought: “What happened? [
didn’t do anything. Maybe this Frenchman tried to
kiss the girl and she hit me by mistake.”

Only the Frenchman knew exactly what had
happened. Can you deduce what took place?

Both problems are answered at the back of the
book: but try to solve the problems first! (before
looking).



Foul Play at the Fountain

John checked into a Vegas hotel
on the strip and while he was
reading a newspaper, a
gorgeous girl rushed into the
lobby.

Then she ran over to the water
fountain, took a long drink, and
disappeared.

Three minutes later the same
girl came back for another long
drink. This time she was
followed by a strange looking
man.

There was a mirror in back of
the fountain. And when she
raised her head she saw the
man standing behind her with a
big knife in his upraised fist as if
to stab her in the back.

Lady screams.

John leaped to the rescue.

But then the man lowered his
knife and he and the lady began
to laugh. What on earth is going
on?
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Mirror Vision

The strange behavior of the lady is easily explained.
She had the hiccups, and the man was trying to
frighten her out of them.

Now for a last chance to test your aha! logic abil-
ity. First an operational task problem. then a clever
question based on an unwarranted assumption.

1. Cleopatra keeps her diamonds in a box with a
sliding lid on top. To foil thieves she has a live and
deadly asp inside the box with the jewels.

One day a slave was left alone in a room with the
box for only a few minutes. He managed to steal
several priceless gems without taking the snake out
of the box and without touching or influencing the
snake in any way. He wore nothing to protect his
hands. The theft took only a few seconds. When the
slave left the room, the box and snake were in
exactly the same condition as before except for the
absence of several diamonds. What ingenious
method did the slave use to steal the gems?

2. Alady did not have her driver’s license with
her. She failed to stop at a railroad crossing, then ig-
nored a one-way traffic sign and traveled three
blocks in a wrong direction down the one-way
street. All this was observed by a policeman, yet he
made no effort to arrest the lady. Why?

The answers are at the back of the book.
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Procedural aha!






Since the computer revolution began, the word “al-
gorithm” has become a familiar term in the lexicon
of mathematics. It simply means a procedure —one
made up of a series of well-defined steps —that will
solve a problem. When you divide one big number
by another. you do it by using a division algorithm.
Since computers cannot solve a problem without
being told exactly what to do, the art of computer
programming is mostly the art of constructing effi-
cient algorithms. We say “art” rather than
“technique” because the mysterious aha! plays a
significant creative role in the discovery of good al-
gorithms.

By "good” we mean an algorithm that solves a
problem in the shortest time. It costs money to run a
computer, just as it costs money to hire laborers for a
job. As a result, there are great practical advantages
in having efficient (good) algorithms. Indeed, a
flourishing branch of mathematics called O.R. (Op-
erations Research) is concerned explicitly with find-
ing the most efficient ways for solving complicated
problems.

Although the procedural problems in this section
have been selected because they are entertaining,
you will find yourself painlessly learning many deep
mathematical concepts. The first puzzle, for exam-
ple, brings out vividly what mathematicians mean
when they say two seemingly unrelated problems
are “isomorphic.” A carnival betting game involving
numbers turns out to have a strategy with a structure
that is identical with the strategy of playing tick-
tack-toe! This, in turn, is shown to be isomorphic
with a clever word game invented by the Canadian
mathematician Leo Moser, as well as a game played
on a network. And all these games have strategies
based on the 3-by-3 magic square, one of the most
ancient of all combinatorial curiosities.

Other tie-ins with significant concepts include:
Archimedes’ law of floating bodies that solves a
hippopotamus-weighing task; an unsolved general
problem in decision theory that follows from a sim-
ple task of dividing household chores; some classic
combinatorial problems suggested by the thief and
bell rope: and important graph theory problems

e

suggested by the problem of “The Lazy Lover.”

Graph theory is the study of sets of points that are
joined by lines. Many practical problems in opera-
tions research can be modeled by graphs. Some
have elegant solutions, such as the minimal span-
ning tree that we learn how to construct by “Kruskal's
algorithm.” We consider another closely-related
problem, known as “Steiner’s tree problem,” that is
still unsolved in general. Since Steiner trees have so
many practical applications, a great deal of work is
now going on in the search for efficient computer al-
gorithms that find such trees.

Steiner’s problem belongs to a tascinating class of
problems known as NP-complete. These are prob-
lems that are unsolved in the sense that no good al-
gorithms for them are known, nor is it known if such
algorithms exist. The best known algorithm for find-
ing a Steiner tree for n points is such that, as n in-
creases, the time required for finding the tree grows
exponentially. Indeed. it grows so fast that even for a
relatively small number of points (say a few
hundred) a computer might take millions of years to
produce the best answer!

NP-complete problems are related to one another
in a curious way. If an efficient computer algorithm is
found for one of them it can immediately be applied
to all the others. And if any one of the algorithms is
shown to be such that there is no efficient algorithm,
this also settles the matter at once for all the others.
Mathematicians suspect that the latter is true. A
great amount of work is now going on in searching
for efficient algorithms that will find. not the best
Steiner tree, but one reasonably close to the best.

This section, more than any other in the book,
opens vistas on current research that is being done
by some of the top minds in modern mathematics.
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Fifteen Finesse

When a country fair opens,
everybody gets excited. That is
everybody except the cows.

This year, there's a new game
Y called “Fifteen” on the carnival
) midway.
@]
7AME:
| Re

Mr. Carny: Step right up folks.
The rules are simple. We just
take turns putting down coins
on these numbers from 1to 9. It
doesn’t matter who goes first.

Mr. Carny: You put down
nickels, I put down silver
dollars. Whoever is first to cover
three different numbers that
add to 15 gets all the money on
the table.

Let's watch a typical game. This
lady goes first by putting a nickel
on 7. Because 7 is covered, it
can't be covered again by either
player. And it's the same for the
other numbers.

|
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The carnival man puts a dollar '
on 8.

The lady’s next move is to put a
nickel on 2 so that one more

nickel on 6 will make 15 and win |
the game for her.

But the man blocks her with a
dollar on 6. Now he can win by
playing a 1 on his next turn.

The lady sees the threat and ‘
blocks his win with a nickel on 1.

The carnival operator is

chuckling as he places his next =
dollar on 4. The lady, seeing

that he can win by playing on 5
next, has to block him again.







Tick-tack-toe!

The insight that solves the 15 game is the recogni-
tion that it is mathematically equivalent to tick-tack-
toe! Surprisingly, the equivalence is established by
way of lo-shu, the well known 3-by-3 magic square
that was first discovered in ancient China.

To appreciate the elegance of this magic square,
first list all combinations of three digits (no two alike
and excluding zero) that add to 15. There are just
eight such triplets:

1+5+9=15
1+6+8=15
2+4+9=15
2+5+8=15
2+6+7=15
3+4+8=15
3+5+7=15
4+5+6=15

Now look closely at the unique 3-by-3 magic
square:

2 9 4
7 5 3
6 1 8

Note that there are eight sets of cells that each lie
on a straight line: the three rows, the three columns,
and the two main diagonals. Each of these straight
lines identifies one of the eight triplets that add up to
15. Therefore, each winning set of three digits in the
carnival game is represented on the magic square by
arow, a column, or a diagonal.

It is now easy to see that every carnival game is
equivalent to a game of tick-tack-toe played on the
magic square. The carnival operator has the lo-shu
drawn on a card that he can see (but no one else
can) by looking below the playing table. There is
only one lo-shu pattern, but, of course, it can be ro-
tated to four different positions, each of which can
be mirror-reflected to make four other forms. Any
one of these eight forms is as good as any other to
use as the secret key for playing the game.

18

As the 15 game proceeds, the carnival operator
mentally plays a corresponding game of tick-tack-
toe on his secret card. if one plays tick-tack-toe cor-
rectly, it is impossible to lose. If both players play
correctly, the game is a draw. However, players of
the carnival game are at an enormous disadvantage
because they do not realize they are playing tick-
tack-toe. This makes it easy for the operator to set
up traps that are winning positions.

To see exactly how this works, let’s play through
the game shown in the pictures of this section. The
moves are shown in Figure 1. Even though the car-
nival man went second. he was able to set a trap on
move 6 that gives him a sure win on move 8 regard-
less of how the lady plays on move 7. Anyone who
learns to play a perfect game of tick-tack-toe can,
with the aid of the magic square, play an unbeatable
game of 15.
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The concept of isomorphism (mathematical
equivalence) is one of the most important ideas in
mathematics. There are many cases in which a dif-
ficult problem can be solved easily by transforming
the problem to an isomorphic one that has already
been solved. As mathematics grows more compli-
cated. it also at the same time grows more unified in
the sense that it is simplified by the discovery of
isomorphisms. For example, when the famous
four-color map theorem was proved true in 1976, it
simultaneously proved true dozens of other impor-
tant conjectures, in other branches of mathematics,
that were known to be isomorphic with the four-
color theorem.

To develop further your understanding of the
fundamental concept of isomorphism, consider the
following word game. It is played with these nine
words:

HOT
TANK
TIED
FORM
HEAR
BRIM
WOES
WASP
SHIP

Two players take turns crossing out a word and
initialing it. The first player who crosses out three
words that have the same letter in common is the
winner. It may take a lot of playing before one
realizes that he is simply playing tick-tack-toe! The
isomorphism is easy to see by writing the words in
the cells of a tick-tack-toe board as shown in Figure
2. A careful inspection shows that every triplet of

words with one letter in common is in a straight
line —horizontally, vertically, or diagonally. Playing
this word game is, therefore, the same as playing
either tick-tack-toe or the 15 game.

2
|

HOT FORM | WOES

TANK | HEAR 1 WASP

See if you can think of other sets of nine words
that can be used for this game. The words need not,
of course, be in English. Also, why not use sets of
symbols, such as the set shown in Figure 3?

3

O + 1+
T+ K |k A
+ A
% 0 % o 95
A | = | ¥
—gl + |-+

The best way to play all of these games is to write
each of the digits, words, or symbols on one of nine
blank cards. The cards are spread face up on a table,
and two players take turns drawing a card until one
player wins.

After you fully understand the isomorphism of all
these games, consider the following network game.
It is played on the road map shown in Figure 4.

Eight towns are connected by roads. One player
has a pencil of one color. the other player has a pen-
cil of another color. They take turns coloring the
complete length of any road. Note that some roads
pass through towns. If this is the case, the entire road
must be colored. The first to color three roads that
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enter the same town is the winner. At first glance this
game seems to have no relation whatever to the 7 12 1 14
games we have analyzed. Actually. it too is isomor-
phic with tick-tack-toe!

4

The isomorphism is established by numbering
the roads as shown in Figure 4. Each row corres-
ponds to a numbered cell on the magic square.
Each town on the map corresponds to a straight line
of three cells on the magic square. As before, the
isomorphism is complete. Anyone who plays a per-
fect game of tick-tack-toe can also play a perfect
map coloring game.

Figure 5 shows one of the 880 different kinds (not
counting rotations and reflections) of 4-by-4 magic
squares. The magic sum is 34. Would such a square
provide a key for playing a perfect game of 34? That
is. a game in which players alternately choose a
number from 1 through 16 (no number can be cho-
sen twice) until a player wins by getting four num-
bers that add to 34. Is this game isomorphic to a
4-by-4 game of tick-tack-toe played on the magic
square shown? The answer is no. Do you see why?

Is it possible to alter the rules of tick-tack-toe, al-
lowing winning four-cell patterns other than straight
lines, so that an isomorphism can be established
between the two games?

—————*



Hippo Hangup

Many years ago the chief of a
wealthy tribe took very good
care of the tnbe’s sacred
hippopotamus

Every year, on the chief's
birthday, he and his tax
collector would take the animal
with them in the royal barge for
a trip up the river to the tax
collection hut.

It was the natives’ custom to
give the chief the number of
gold pieces that were necessary
to match the mass of the sacred
hippo. Beside the hut was a
large balance that could be
loaded with the hippo on one
side and balanced with gold
pieces on the other.

N The chief fed the sacred hippo
C/ N so well, and the hippo grew so
/1 much larger, that one year the
T balance broke. There was no
anc way to repair the beam without
:27 — several days of delay.
A ——
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The chief was livid. He told his
tax collector.

The Chief: | want my gold
today. And it must be the proper
amount. lf you can’t think of 2
way to figure it out before
sunset, I'll have you beheaded.

The poor tax collector was so
frightened that he could hardly
think

After a few hours of
concentration, he suddenly had
a brilliantidea. Can you guess
what it was?

It was really quite simple. The
tax collector put the hippo alone
on the royal barge. He marked
the water level on the outside of
the boat.

He then had the hippo removed
from the barge which was then
loaded with gold pieces until the
water reached the same mark as
before. When that happened,
the barge had to contain an
amount of gold equal to the
hippo's mass.
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Eureka!
According to a principle discovered by Archimedes,
a floating object always displaces a volume of water
equal in mass to the mass of the floating object.
Thus, when the hippo is on the barge, the barge
sinks deeper into the water, displacing an amount of
water with a mass equal to the hippo’s mass.

Here is a related problem. Suppose that the barge
is floating in a tank small enough so that an accurate
measure of the tank’s water level can be made. The
hippo has been replaced by an equivalent mass of
gold coins. The level of water on the side of the tank
is marked.

Now suppose that all the gold coins are tossed
overboard and sink to the bottom of the tank. We
know that the water level on the barge will go down.
But what about the tank’s water level? Will it rise or
fall?

Even physicists have difficulty with this question.
Some will say that the water level in the tank re-
mains the same. Others will say that it goes up be-
cause of the water displaced by the sunken gold.
Both answers are wrong.

To see why, let's go back to Archimedes’ principle.
Every floating object displaces a volume of water
with a mass equal to the mass of the object. Gold is
much heavier than water, therefore the volume of
water it displaces when it is in the barge is much
larger than the volume of the gold itself. But when
the gold is at the bottom of the tank, it displaces only
the amount of water that is equal to its volume.
Since this is much less water than it displaces when
inside the barge, the water level in the tank must go
down.

The physicist George Gamow once explained it
in this dramatic way. Some stars are made of matter
that is millions of times as dense as water. A cubic
centimeter of this matter would weigh many metric
tons. If such a cubic centimeter is tossed overboard
and sinks to the bottom, it replaces only one cubic
centimeter of water—a trivial amount —therefore,
the water level of the tank would go way down. The
situation with the gold is exactly the same, except

that the water level would drop by a much smaller
amount.

After the gold has been tossed out of the barge,
suppose that a new water level mark is placed on
the barge’s side. The hippo decides to go for a swim
in the tank. When he enters the water, assume that
the level in the tank rises by 2 centimeters. How
much higher does it rise above the mark on the
barge?

Imagine that you are drinking kinky cola from a
bottle. You wish to leave in the bottle an amount of
cola equal to half the volume of the entire bottle. An
easy way to do this is just to drink until the horizontal
surface of the liquid in the tilted bottle reaches the
spot where the bottle’s bottom and sides meet.

Here is a similar problem that must be solved by a
different procedure. A transparent glass bottle has
an irregular shape. It contains a powerful acid. Only
two marks are on the bottle’s side. The higher mark
indicates 10 liters of acid, the lower mark indicates 5
liters.

Someone has used an unknown small quantity of
the acid, lowering the liquid’s level a trifle below the
10-liter mark. You wish to pour out of the bottle
exactly 5 liters to use in an experiment. The acid
is too dangerous and volatile to pour into other
measuring containers. By what simple procedure
can you make sure that you pour out exactly the
right amount?

The clever solution is to put into the bottle a quan-
tity of small glass marbles until the level rises to the
top mark. Now merely pour out the acid until the
level falls to the lower mark.




Dividing the Chores

Mr. and Mrs Buster Jones have
just been married. Each has a
steady job, so they have agreed
to share the household chores

To divide the chores fairly, the
Joneses made a list of all the
jobs that had to be done in their
apartment every week.
Buster: |'ve checked half the
items, my love. Those are the
chores for you to do.

Janet: Sorry Buster, but]don't
think you divided the list fairly.
You've given me all the dirty
jobs and you've taken all the
easy ones.

/

Then Mrs. Jones went over the
list and marked the jobs she
wanted to do. But Buster
wouldn’t agree.

Janet: If you expect me to do
all these things you're out of
your bird.

While they were still arguing the
doorbell rang. It was Mrs.
Jones’ mother.

Mrs. Smith: What are you two
love birds fighting about? |
could hear you shouting as
soon as | got off the elevator.

Mother listened while Buster
and his wife explained the
trouble Suddenly she smiled
and said

Mrs. Smith: I've just thought
of a marvelous solution. I'll
show you how to divide the
chores so both of you will be
completely satisfied

Mrs. Smith: One of you splits
the list into two parts so that you
would be willing to take either
part. Then the other person gets
to pick the half he or she wants
first. Isn't that simple?

But it wasn't so simple a year
later when Mother moved into
the apartment. She agreed to
take over one third of the chores
but they couldn’t decide how to
divide the list fairly between the
three of them. How do you
suggest they do it?
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Fair Division

The fair-division problem that has been answered is
more usually given in terms of dividing a cake be-
tween two people so that each is satisfied he/she has
at least half. The problem left unanswered is the
same as that of dividing a cake fairly among three
people so that each is satisfied he/she has at least

a third.

The puzzle of fairly dividing a cake into thirds can
be solved as follows. One person moves a large
knife slowly over a cake. The cake may be any
shape, but the knife must move so that the amount
of cake on one side continuously increases from
zero to the maximum amount. As soon as any one
of the three believe that the knife is in a position to
cut a first slice equal to ¥ of the cake, he/she shouts
“Cut!” The cut is made at that instant, and the per-
son who shouted gets the piece. Since he/she is
satisfied that he/she got %, he/she drops out of the
cutting ritual. In case two or all three shout “Cut!”
simultaneously, the piece is given to any one of
them.

The remaining two persons are, of course, satis-
fied that at least %3 of the cake remain. The problem
is thus reduced to the previous case, and the cake
can be fairly divided by having one person cut and
the other choose.

This clearly generalizes to n persons. As the knife
moves across the cake, the first person to shout
“Cut!” gets the first slice (or it is given arbitrarily to
one of the two or more who shout simultaneously).
Then the procedure is repeated with the n—1 persons
who remain. This continues until only two persons
are left. The final portion of cake is divided as be-
fore, or, if you prefer, simply by continuing the pro-
cedure with the moving knife. The general solution
is an excellent example of proving an algorithm
by mathematical induction. It is easy to see how the
algorithm can be applied to a list of household
chores to be divided among n participants so that
each person is satisfied he is getting his fair share.

John H. Conway, a Cambridge University math-
ematician, has investigated the fair-division problem
when the satisfaction demanded by the participants
124

is much stronger. Instead of a procedure that gives
each person what he/she thinks is at least his/her fair
share, is there a procedure which guarantees that
each person is also convinced that no one else has a
share greater than his/her own? If you think about it
you will see that the algorithm given above does not
provide this guarantee if there are three or more
people. Conway and others have found solutions
for this stronger version when there are three par-
ticipants, but so far as we know the problem remains
unsolved for four or more persons.
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The Crooked Acrobat

In the tower of a medieval
church there are two priceless
old bellropes. They pass
through small holes in a high
ceiling. The two holes are 25
centimeters apart and just big
enough to allow the ropes
through.

Tony is an acrobat who became
a thief. He wants to steal as
much of both ropes as he can by
cutting them with a knife

Tony: How shall [ doit? 1 can't
get to the room above because
the door is triple locked.

%

Tony: I'll have to climb the
ropes and cut them as high as |
can. But the ceiling is so high
that if [ cut them off one-third of
the way up I can’t drop to the
floor without breaking my legs.

/
~
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Tony thought about it a long
time before he hit on a way to
get almost all of both ropes
What would you do if you were
he?

Tony's solution was really
clever First of all he ned
together the bottom ends of
both ropes Then he climbed 10
the top of one rope Suppose
it's rope A

When he was at the top he cut
rope B about half a meter below
the ceiling He tied what was left
of B into a loop

Then Tony put one arm through
the loop and hung there while
he cut rope A near the ceiling.
taking extreme care not to let it
fall. Next he passed rope A
through the loop and pulled it
until the knotted ends were at
the top.

He was now able to climb down
the double rope, pull it free of
the loop. and make off with all
of rope A and almost all of B
Could you have done that?
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Rope and Other Tricks
Because this story problem is not sharply defined, it
has more than one solution. The one just given is
probably the most practical, but you may be able to
think of many other procedures that the thief could
have used. Some may be even better than the solu-
tion given here.

For example, the thief could tie a sheepshank knot
at the top of rope B, as shown in Figure 6. Hanging

6
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on B, he cuts A at the top and lets the end fall. Then
he cuts the middle strand of the sheepshank at spot
X. As all mountain climbers know, the knot will hold
until he slides to the ground on rope B. Shaking
rope B will release the knot, giving the thief all of B
except a small portion at the top.

Another possibility: The thief climbs to the top of
rope A. With one hand he grabs B, keeping his
weight on A, then with his knife he weakens A at the
top until he feels the rope is about to break. He then
brings A and B together and hangs by both ropes
while he frays B at the top in the same manner that
he cut A. The two damaged ropes support his
weight while he goes down both of them. At the bot-
tom. a hard yank on each rope snaps them off at
the top.

A third method assumes that the holes in the ceil-
ing are fairly large. First the thief ties A and B to-
gether at the bottom. He climbs A, cuts B at the very
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top. then pushes its end up through its hole. By
reaching up into the hole for A, he grasps the end of
B and pulls it down through the hole until the cut
end is near the floor and the knot is near the top of
the hole for B. He now can grasp and hold together
the top of rope B and what was formerly the bottom
of rope A but now is near the ceiling under the hole
for B. While he hangs on this double rope he cuts
rope A off at the top, directly beneath its hole, then
slides down the double rope, and finally pulls the
rope down.

Here isa clever variation on the previous method.
The ropes remain untied at the bottom. The thief
climbs rope A, cuts B, pushes the end up through
the hole and down through the other hole. The end
is then looped around itself and firmly knotted as
shown in Figure 7. The thief transfers to rope B, cuts

7

A, and ties the end of A to the knot. He goes down
B. Now he has only to pull on A. Rope B slides
through its own loop, and both ropes are pulled free
of the ceiling.

Still another variant. The thief climbs A, ties a
loop at the top of B. He hangs on this loop, cuts A,
brings its end up through the hole and down
through the hole for B. He ties the end to the loop.
Hanging on both ropes, he cuts B at the top, above
the loop, goes down both ropes, then pulls on
rope B to obtain all of both ropes.

Some of these methods undoubtedly would
cause the bells to ring and the thief to be caught.
One of the virtues of the original solution is that the
thief, by pulling gently on rope B before he hangs in
its loop, can avoid ringing bell B. Of course, when
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he first climbs A he also pulls on it slowly before he
starts his climb.

A number of classic procedural puzzles, similar to
river crossing problems, involve the use of a long
rope that goes over a pulley and has a basket at each
end. Here is one version of such a problem that was
a favorite of Lewis Carroll.

A queen and her son and daughter are being held
captive in the top room of a high tower. Outside
their window is a pulley with a rope over it, and a
basket at each end of the rope. The baskets are of
equal weight. The one outside the window is empty.
and the one on the ground contains a stone with
a mass of 30 kilograms. The stone serves as a
counterweight.

There is enough friction in the pulley so that it is
safe for anyone to be lowered in one basket pro-
vided his or her mass is not greater than the mass in
the other basket by more than 6 kilograms. If the dif-
ference is greater than 6 kilograms, they come down
with such speed that the bump at the bottom might
injure them. Of course, when one basket goes
down, the other basket goes up to the window.

The queen’s mass is 78 kilograms, the daughter’s
is 42 kilograms, and the son’s is 36 kilograms. What
is the simplest algorithm —simple in the sense of
the fewest number of steps—by which they all can
get safely to the ground? The basket is large enough
to hold any two people, or one person and the
stone. No one assists the prisoners in escaping, nor
can they help themselves by pulling on the rope. In
other words, the pulley operates only when the
mass in one basket exceeds the mass in the other.

The simplest solution is most easily found by
simulating the problem. Write the masses on sepa-
rate cards, and move the cards up and down.

You will not be able to get all three persons down in
fewer than nine steps. Here's how it's done:

Son down, stone up.

Daughter down, son up.

Stone down.

Queen down, stone and daughter up.

Stone down.

Son down, stone up.

Ok W

7. Stone down.

8. Daughter down, son up.

9. Son down, stone up.

Problems of this sort are sometimes made more
difficult by including animals that cannot climb in
and out of the baskets without the help of persons.
Lewis Carroli proposed the following version of the
preceding problem. In addition to the Queen, son,
daughter and stone there are at the top of thetower a
pet pig of mass 24 kilograms, a dog of 18 kilograms,
and a cat of 12 kilograms. The restrictions on differ-
ences in mass between the two baskets remain the
same, but now there must always be someone at
each end to put the pets in and out of the baskets.

See if you can find a solution in as few as 12 steps.
Note that in both problems the last person to step
out of the basket must move aside quickly, other-
wise the basket with the stone may drop on his/her
head!
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Thinking Instead of Swimming

Orville retrieves his model plane by the following in-
genious procedure. He ties one end of the long rope
to the front bumper of his car, which is parked close
to the edge of the lake. Holding the free end of the
rope he walks completely around the tree at the is-
land’s center. He tightens the rope and ties the free
end to the bumper. This creates a firm double rope
stretched between car and tree. Although Orville
can't swim, he can pull himself through the water,
hand over hand along the double rope, and easily
get over to the island and back. 3

Another splendid old puzzle also deals with the
task of using material on hand for getting from a
shore to a small island. In this case the “island” is in
the center of a square lake as shown in Figure 8. A
man wishes to get from the shore to the island. As
before, he cannot swim. Two identical planks are on
the shore, but each plank’s length is a trifle too short
to extend from the side of the lake to the island.

How does he manage to use the two planks for get-
ting to the island?

Figure 9 shows the solution. 10

Let us generalize by assuming there are more
than two identical planks. Can the planks be shorter
than those used before, and still produce a bridge to
the island?

You may have little difficulty thinking of the
3-plank bridge shown in Figure 10, but not many
persons are likely to discover how five or eight
planks can be still shorter and still span the water.
Figure 11 shows the 8-plank solution.

We can idealize the problem by making the island
a point and the planks line segments, allowing them 1
to “overlap” by just touching one another. Imagine
the procedure extended to an infinite number of
identical planks. The limiting case is shown in Figure 12.
If the side of the square lake is 2 units, then V/2/2 is
the shortest length each plank can be, provided
there is an infinite number of them. This can be
proved by applying the Pythagorean theorem.

You may enjoy investigating similar idealized
plank problems for “lakes” with boundaries other
than squares, such as circles and regular polygons.
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The Lazylover

Jack fancies himself as the
world's greatest lover. He is
planning torent an apartment in
Washington D C.

Jack has three girl friends who
live in the city and he wants to
live in a spot that will be as close
as possible to all three.

Jack marked the corners where
the girls lived on a city map.
Jack: Let's see now. I must pick
a spot to live so that the sum of
the distances to each girl's
house is as small as possible.

Jack tried and tried, and was
about to give up when he
shouted.

Jack: Aha! | see an easy way to
find the spot I'll live in.

Jack's clever procedure was

to ask himself how the girls
would vote if he moved from
one place to another. He started
with a spot that looked
reasonable and then considered
moving a block east.

‘np
ClT)’

Jack: Anita and Bunny would
vote “yes” for this move
because I'd be closer to them
Candy would vote “no " But
the distance | save is more than |
lose, so I'll accept the majority
vote

So whenever a majority vote
was “yes,” Jack made the
move. And whenever it was
“no,” he tried a different move
Eventually he reached a corner
where he couldn’t move
without a “no” vote This was
where he decided to live

Luckily, Jack was able to rent an
apartment at just the right place
Then, a week later, Bunny
moved 7 blocks away.

Jack: Holy cow! Now I'll have
to move to a new location

But when Jack checked the
map he was surprised to find
that he could stay right where he
was. Can you explain how this
could happen?
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Voting Algorithm

If Bunny moves seven blocks due east, her new
residence has no effect on the location of Jack’s

residence. Indeed, she could move any distance
whatever east, and Jack’s present apartment will
continue to be at the optimal spot.

You can better appreciate the efficiency of the
voting algorithm if you try it on larger grids on which
more than three spots are marked. You will find that
the procedure quickly locates the position x that
minimizes the sum of the distances for x to all spots,
but only provided the number of spots is odd. Why
does it not work when the number is even? The
answer is that if the number is even a tie vote is pos-
sible. Whenever a tie vote occurs, the procedure
halts.

You may wish to investigate the following related
questions:

1. Can you invent a procedure that applies when
the number of spots is even?

2. Under what conditions can the displacement
of one or more spots have no influence on the loca-
tion of x?

3. Isthe voting procedure affected if street widths
are taken into account?

4. Is it affected if the spots, including x, are not
confined to street intersections?

5. Will the voting procedure work if the grid is
composed of straight streets that may have any
orientation on the plane?

6. Wil the procedure work if streets are crooked
or curved?

Athough the voting procedure applies to any sort
of network, it fails on the unmarked plane because
travel is no longer confined to certain paths. The
general problem is this. Given n points on the plane,
find a point x such that the sum of the straight-line
distances from x to all the points is as small as possi-
ble. For example, consider three cities, A, B and C.
Where should an airport be located so that the sum
of the distances by plane to the three cities is mini-
mal? This obviously is not the same as asking for a
minimal sum of distances to the cities by car. In other

words, the ideal location for an airport may not be
the same as an ideal location for a bus station.

The answer, which is not easy to prove geometri-
cally, is that the airport should be where the three
lines from it to the three cities make three 120°-angles.
In the case of four cities, if they are the corners of a
convex quadrilateral, the airport should be at the in-
tersection of the two diagonals. This is not hard to
prove. The general problem of locating x for any
number of given points on the plane is more
difficult.

Can you think of a simple mechanical device
(analog computer) that quickly finds the location of
x for any three points on the plane? Let the plane be
represented by the surface of a table. At each of the
three spots we drill a hole through the tabletop. Tie
the ends of three pieces of string together. Pass the
free ends through the holes, one to a hole, and at-
tach weights of equal mass to each end. The equal
forces on the strings correspond to the three equal
“votes” by residents at the three spots. The position
assumed by the knot above the table indicates spot
x. This works, of course, because of an isomor-
phism between the problem’s mathematical struc-
ture and the structure of the physical model.

Let us now complicate our original puzzle. Sup-
pose that instead of a single girl friend at spots A, B,
C, these spots represent buildings in which school
children are living. There are 20 children at A, 30 at
B, and 40 at C. All attend the same school. Where
should the school be located so as to minimize the
sum of the walking distances of all 90 pupils?

If their walking is restricted to the streets of a city,
we can apply the same voting procedure as before,
allowing each child a single vote. This will soon find
the spot where the school should be located. How-
ever, if the three buildings are on a plane, and the
students may walk to school in direct straight lines
(such as children in the country who can cut across
open fields}, can we modify our analog computer so
it works as well as before?

Yes. Instead of equal weights, we use unequal
weights with masses that are proportional to the
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number of pupils in each building. The strings will
assume a position at which the knot locates the
school.

Will our computer work if the number of pupils at
one building is more than the sum of the pupils at
the other two? For example: 20 children at A, 30
at B, and 100 at C? Yes, it works just as well. The
weight corresponding to the 100 students will pull
the strings until the knot catches at the top of hole C.
This indicates (correctly!) that the school should be
at site C.

Will our analog computer work for more than
three spots? Yes. it generalizes to n spots even when
they are not corners of a convex polygon. However,
friction becomes such a factor that with more than
three spots the system does not work efficiently.

Graph theory is a rapidly growing branch of
mathematics concerned with vertices (points) con-
nected by lines. There are dozens of important
graph theory applications to the finding of minimal
paths. Some have been solved, some remain un-
solved. An example of a famous solved problem is
the following.

Given n points on a plane, join them to one
another by straight lines so that the total length of
the network is as short as possible. We are not al-
lowed to add new vertices to the plane. Such a net-
work is called a “minimal spanning tree.” Can you
invent an algorithm for finding such a network?

Kruskal's algorithm (named after Joseph B. Krus-
kal who was the first to give it) finds the minimum
network as follows:

Determine the distances between every pair of
points. and label these distances in increasing order
of lengths. The shortest is 1, the next shorter is 2,
and so on. If two distances are equal it does not mat-
ter which is numbered first. Draw a straight line
between the two points separated by distance 1. Fol-
low with straight lines for distances 2, 3, 4, 5, and so
on. Never add a line that completes a circuit. If draw-
inga line produces a circuit, ignore that pair of points
and go on to the next higher distance. The final re-
sult is a minimal spanning tree connecting all points.

Such spanning trees have interesting properties.
For example. the lines will intersect only at the
spots, and no more than five lines will meet at any
point.

Minimal spanning trees are not necessarily the
shortest networks joining n points. Remember: we
are restricting the network to one that does not have
additional vertices. If new vertices are allowed, the
network may be shorter. A simple example is pro-
vided by four corners of a unit square. The minimal
spanning tree consists of any three sides of the
square (Figure 13 left). Suppose we are allowed to
add new vertices. Is there a network joining the four
corners that is shorter than 37

13

120,
1207120

1201120
' 120°

Most people assume that the minimal network
consists of the square’s two diagonals (Figure 13
center), but this is not the case. Figure 13 right shows
the solution. The two diagonals of the square have a
total length of 2\/2 = 2.82~ The network in Figure
13 has a shorther total length of 1 + V3 =273

The general problem of finding a minimal length
network connecting n points on the plane, when
new vertices are permitted, is known as Steiner’s
problem. It is solved in special cases, but there is no
known efficient algorithm that locates the “Steiner
points” (new vertices) of a minimal Steiner tree that
connects n points on the plane. The problem has
many engineering applications, from the design of
microprocessor chips used in electronic calculators
to the finding of minimal networks for railroads,
airplane routes, telephone lines and other forms of
travel and communication.
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Sanitary Surgeons

Deepin a tropical jungle there is
a hospital where three surgeons
——Jones, Smith, and Robison—
are on staff.

Dr. Jones: Only two pairs? If

I operate first both sides of my
gloves could be contaminated.
If Smith operates next both
sides of his gloves could be con-
taminated. Then no sterile
gloves will be left for Robison.

The local tribal chief is sus-
pected of having a rare disease
that is highly infectious. The
three surgeons must operate on
him, one at a time. To compli-
cate matters any one of the
three doctors could have caught
the disease while examining the
chief.

Suddenly Dr. Smith made a
suggestion.

Dr. Smith: Suppose | wear
both pairs of gloves, the blue on
top of the white. One side of
each pair might get infected, but
each pair would still have one
side that was sterile.

Each surgeon must wear rub-
ber gloves when he operates. If
he has the disease, its germs will
infect the side of any glove that
touches his hand. And if the
chief has the disease, it will con-
taminate the outside of any
glove worn.

Jones caught on quickly.

Dr. Jones: I see. | can wear the
blue pair, sterile side in. Then
Robison can reverse the white
pair and wear them sterile side
in as well. None of us will run
the risk of catching the disease
from the chief or from each
other.

The operation was about to

start when Miss Kleene, the

nurse, rushed into the room.
Nurse Kleene: | have bad

news for you, Doctors.

Nurse Kleene: That's fine for
you doctors, but how about the
chief? If any of you is infected,
and the chief isn't, he could
catch the disease from one of
you.

Nurse Kleene: We have only
two pairs of sterile gloves left
One pair is blue, and the other
pair is white.

The surgeons were floored by
this remark. What should they
do? A momentlater Miss Kleene
exclaimed.

Nurse Kleene: | know how

all three of you can operate
without you or the chief running
any risk of catching the disease.




None of the doctors could figure

out what Miss Kleene had in
mind But when she explained.
they all agreed that it would
work. Can you figure it out?

Oolue
| I
green

Inside and Out

Before explaining Miss Kleene's brilliant procedure,
let's make sure we understand the first procedure
that protects only the surgeons.

Let WI stand for the insides of the white pair of
gloves, and W2 for the outsides. Let Bl stand for
the insides of the blue pair, B2 for the outsides.

Dr. Smith puts on both pairs of gloves, first the
white, then the blue. Sides W1 can become con-
taminated by him, and sides B2 may become con-
taminated by the tribal chief. After Smith operates
he removes both pairs of gloves. Dr. Jones puts
on the blue pair with sterile sides B1 touching his
hands. Dr. Robison then turns the white pair inside
out and wears them with sterile sides W2 touching
his hands.

Now for Miss Kleene's procedure.

Dr. Smith wears both pairs of gloves as before.
Sides W1 and B2 may become contaminated,
while W2 and BI remain sterile.

Dr. Jones wears the blue pair with sides Bl
against his hands.

Dr. Robison turns the white pair inside out and
puts them on with sides W2 against his hands. Then
he puts the blue pair on, over the white, with sides
B2 on the outside.

In all three cases only sides B2 touch the chief,
therefore he runs no risk of catching the disease
from any of the surgeons.

So far as we know, this problem has not yet been
fully generalized. Given n surgeons who have to
operate on k patients, what is the minimum number
of pairs of gloves that will guarantee that neither
they nor the patients run a risk of catching the dis-
ease from one of the others?
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Mathematicians tend to be addicted to word play.
For example, there is a famous footnote in a sober
textbook Graphical Enumeration (by Frank Harary
and Edgar M. Palmer) pointing out that “Read

and Wright are both wrong:” the reference is to a
claim by mathematicians Ronald C. Read and E.M.
Wright. We could fill a book with other examples.

It is not hard to understand why mathematicians
enjoy such jokes. Words are nothing more than
combinations of letters, in an accepted order, just
as sentences are strings of words that are linked to-
gether according to the formation rules of syntax.
Language, therefore, has about it a strong flavor of
combinatorial mathematics, with many striking re-
semblances to combinatorial number theory. Word
squares are similar to magic number squares. The
use of punctuation marks in a sentence corresponds
to the use of mathematical symbols (parentheses,
plus and minus signs, and so on) to “punctuate” a
sentence of algebra.

All of the above pleasant analogies are examined
in this section, as well as many others. The palin-
drome —a sentence that reads the same backward
as forward —is similar to a palindromic number. As
we shall see, there is a notorious “palindrome con-
jecture” in number theory that s still not settled. And
there are interesting theorems about palindromic
primes and palindromic numbers that are squares
and cubes. Other puzzles in this section involve the
dividing of words into parts in much the same way
that sums are divided into parts in partition theory, a
branch of number theory.

If we view letters as geometric figures, a host of
unusual puzzles arise. We will see how some prob-
lems of this type concern two important kinds of
symmetry: 180-degree rotation symmetry (some-
times called “two-fold symmetry™), and mirror re-
flection symmetry. We will discover that certain
words, even entire sentences, can be turned upside
down without altering their pattern. The fact that
each digit resembles a letter when rotated 180 de-
grees is the basis for a type of amusement that has
become very popular since pocket calculators be-
came common.

Let us view the letters not as rigid patterns that
keep their shapes when rotated and reflected, but
as topological figures that can be twisted and de-
formed like elastic strings. This, too, leads to recre-
ational problems that you will find explored here,
and which give basic insights into topological
structure.

Finally, we will encounter word problems that in-
troduce some important conceptions of mathemati-
cal logic. A trivial riddle about the opposite of “not
in” ties in with rules about negation in logic, and the
handling of negative signs in algebra. Many of our
ridiculous riddles become clear only when you rec-
ognize that you cannot talk about the words and
sentences of a language without expressing your-
self in a higher-level language that logicians call a
“metalanguage”

We intended this final section of the book to be
the lightest and the funniest. Have you wondered
why a section on word play appears at all in a book
about mathematical recreations? We have already
given the answer. [t is not just that mathematicians
love word play, or that it has a combinatorial aspect,
but the fact that even word puzzles can lead into un-
expected and significant aspects of serious mathe-
matics.
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Dr. W.O. Wordle

Meet Dr. Wally O. Wordle, a
famous mathematician.

Dr. Wordle is the host of
‘Winning Wordles', a popular
TV game show that he
invented. Guests on the show
win fabulous prizes when they
solve Dr. Wordle's clever word
puzzles.
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Dr. Wordle: Word play is just
like mathematics. The symbols
are letters and words. And the
rules of spellingand grammar
tell us what particular combi-
nations are allowed.

Dr. Wordle: Let me give you a
couple of examples. First, what
is the opposite of “Not in"?
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Dr. Wordle: And what 11-letter
word do all Yale graduates spell

Dr. Wordle: Did you get those
two quickies? The opposite of
“Notin" is “in”. And the word
all Yale graduates spell incor-
rectly is “incorrectly”. There's
much more of the same on
today’s exciting show. So let's
bring on our first guest.




Not Not

There is a strong tendency to think that the opposite
of “notin” is “out,” but, of course, the opposite is
“not not-in” which is the same as “in.” Two nega-
tives make a positive in grammatically correct En-
glish as well as in multiplication and formal logic. In
fact. you sometimes encounter a chain of three or
more negatives. The rule is that any even number of
negatives make a positive, and any odd number of
negatives make a negative. Here are some exam-
ples of statements that illustrate the rule:

Lx=(7-3) - [(-4+]) .

2. Headline in New York Times (May 6, 1965):
“Albany Kills Bill to Repeal Law Against Birth Con-
trol.”

3. The philosopher Alfred North Whitehead once
thanked a speaker for having “left the darkness of
his subject unobscured.”

4. A young man received the following letter from
his girl: “I must explain that [ was only joking when [
wrote that [ didn't mean what [ said about reconsid-
ering my decision not to change my mind. I really
mean this.”

5. Mathematics teacher: “I can't seem to make
you understand the meaning of negation, so I'm not
going to try any more.”

Student: “Ah, [ see what you mean, and I'm
pleased that you are willing to continue.”

6. In the colloquial dialect of certain ethnic
groups. double negatives are often used, in viola-
tion of the rule, to reinforce a negative. Here are a
few examples:

“Don't give me no back talk.”

“We ain’t never going to stand for nobody
using no double negatives around here.”

“I got spurs that jingle-jangle jingle,
As [ go riding merrily along,
And they sing. ‘Oh ain’t you glad you're single,’
And that song ain’t so very far from wrong.”
7. A professor of logic tells his class that he knows
of no natural language in which two positives. in vio-
lation of the standard rule, are used to mean a nega-

tive. Sarcastic voice from rear of room: “Yeah, yeah.”

The riddle about the word “incorrectly”™ catches
people off guard because they take the word to
mean an adverb modifying the verb “spell” rather
than the word itself. In modern semantics, any ques-
tion about a word or sentence is in what is called a
“metalanguage,” while the word or sentence be-
longs to what is called an “object language.” The
two languages are frequently distinguished by put-
ting quotation marks around statements in an object
language. For example. quotation marks around
“incorrectly,” in the original wording of the ques-
tion, would have made the question less ambigu-
ous. Confusion often results by failing to recognize
the two levels of language. Here are some puzzling
statements that illustrate this:

What-do-you-think was the horse’s name.
How Long is a Chinese mathematician.

Can you explain the meaning of this sentence?
That that that that that signifies is not the that to
which [ refer.

And how about this one? Wouldn't the sentence
“l want to put a hyphen between the words Fish and
And and And and Chips in my Fish-And-Chips
sign” have been clearer if quotation marks had been
placed before Fish, and between Fish and and. and
and and And, and And and and, and and and And,
and And and and, and and and Chips, as well as
after Chips?
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Every electronic numeral can be interpreted as a
letter when viewed upside down. This is the basis of
scores of stunts with pocket calculators that have
become popular in recent years.

The first of these stunts, which apparently started
the craze, had a story line about the Arab-Israeli
war. The following version was devised by Donald
E. Knuth, a well-known computer scientist: 33 7
Arabs and 3 37 Israelis were fighting over a square
of property that is 8¢ ¥ meters on the side. Who
won? To find out, obtain the square of 337 and
add it to the square of 8,92 ¥ to get the sum
54679345, When this is looked at upside
down it spells “SHELL OIL".

Entire books have been written about numbers
that become words when viewed upside down in a
calculator’s read-out. The following chart shows
how each digit, when inverted, resembles a letter:

N S S
il b g
e Z 7 L
2l 2 8 B
4 h 3 b

With the aid of this chart, you'll find that it is not
hard to make up amusing calculator problems of
your own that end with an answer that can be read
as an appropriate word when the machine is turned
upside-down. If you like. the decimal point can be
used to separate two words.

Here are some good examples:

1. What is the capital of Idaho? 4 times 8,777.

2. What did the astronaut say when he first
stepped out on the moon? 13,527 divided by 3.

3. The more you take awavy. the larger it grows.
What isit? V13719616.

4. If Bourbon whisky is $8 a bottle in Chicago.
what is Scotch in New York? 8 times 4001.

5. Whatdid Dr. Livingstone say after Stanley said,
“Dr. Livingstone, | presume?” 18 times 4, then di-
vided by 3 and the result decreased by 10.

6. Are there similar calculator stunts that use
foreign words? Add 1 to the previous answer.







Arithmetic Puns —_—

The solution to the chopstick puzzle required the | | o=
insight that the word which Professor Wordle “ P

pronounced like the name for the numeral “8”

[ ]
can also be taken as the word “ate”.
Here is a variant of the same puzzle that calls for a
different aha! The chopsticks (or matches) are ar- .=.
ranged the same as before, but this time the task is to -— ——
take away 13 sticks and leave 8. The solution is to “ —
leave the numeral 8 as shown below: g—
——» -—3
— 1+ 1 1=1l
——»
-.ce——
—e -—
If your friends find the two previous puzzles too -
easy. try this more difficult version on them. The
starting pattern again is the same. Take away 7 sticks L o——
and leave 8. The solution this time is to form an

expression that equals “8":
-—— { e—]
—a ——® ™
«c— «—
There are endless other puzzles with sticks such
——»

as chopsticks. matches, toothpicks, coffee stirrers, ¢ = ~
soda straws, pencils, or whatever is most conve-

nient. Here are two more to try on friends.
Arrange 12 sticks like this: Take away four sticks to leave a word that spells

what matches are made of. Most people try to make
“WOOD"; however, the solution comes with recog-

Start with the sticks as shown below:

nizing a play on the word “match™
“ ﬂ
)
o
-— | ———— ] [em—— ]
(—
The task is to move one stick to make a correct

equation. Here are four of many different solutions: =——® S =




World’s Smallest Crossword
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Dr. Wordle: Now Mr. Hoi,
here’s a chance to win $20. This
crossword puzzle is so simple
that it only has six definitions.
You have just three minutes to
figure it out.

After three minutes, Mr. Hoi had
done no more than guess the
first row.

Mr. Hoi: Sorry, Dr. Wordle. |
can’t think of any other words
that make sense.

Dr. Wordle: We're sorry too
Mr. Hoi. You didn’t see that all
three horizontal words were the
same. Remember, the same
word can have different
meanings.

Dr. Wordle: While we're
waiting for our next guest here's
another quickie for you home
viewers. Can you take the
seven letters in the two words
“NEW" and “DOOR" and
rearrange them to make one
word?




Squares and Anagrams

Crossword puzzles are combinatorial problems that
involve intersecting sequences of symbols. Now
that computers can store in their memory all the
words of a natural language, it is possible to write
computer programs that solve crossword puzzles
with great efficiency. Programs also can be written
that will construct crossword puzzles.

Most crossword puzzles have patterns with
“holes™ —black cells that serve to separate words.
An ancient and pure form of crossword, which has
no holes at all (like our joke crossword puzzle), is
known as a “word square.” Here, for example, is a
word square of order 4 (four-letter words):

KON G
I D E A
N E X T
G A T E

four words (“king,” “idea,” “next” and
“gate”) can be read both horizontally and vertically.
If the horizontal and vertical words differ, it is called
a “double word square”:

O R A L
M A R E
E V E N
N E A T

The higher the square’s order, the more difficult
itis to compose word squares of either type. You

might enjoy trying to compose some order-4
squares. If successful, try orders 5 and 6. Order-7
squares are extremely difficult. Although squares
of orders 8, 9 and 10 have been constructed by
word play experts, they almost always require
the use of unusual, obscure words.

Dr. Wordle’s “NEW DOOR” puzzle belongs to a
puzzle category called “anagrams” —the rearrang-
ing of the letter of a word, phrase or sentence to
make a new word, phrase or sentence. (For the
solution, see the back of the book.) There are
thousands of amusing anagrams in which the
second permutation of letters has a meaning that is
related in some appropriate way to the original
permutation:

Lawyers: Sly ware.

Halitosis: Lois has it!

Punishment: Nine thumps

The Mona Lisa; No hat, a smile.

One hug: Enough?

The eyes: They see.

The nudist colony: No untidy clothes.

Maybe you can invent some better ones. It also is
fun to rearrange the letters of your own name, or a
friend’s, or the name of a famous person to make an
appropriate phrase or sentence. Here are two classic
anagrams of William Shakespeare:

| ask me, has Will a peer?

We all make his praise.
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Picture Puzzles

PICTURES|

Dr. Wordle: Welcome to the
Show. Mary. Your first problem
involves pictures. Each repre-
sents a familiar mathematical
term

Mary: | don't know what you
mean, Dr. Wordle.

Dr. Word<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>