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CHAPTER 1: Installing and starting working with R

It is sometimes said that R is an open source analogue of statistics software. Often you will hear that R is a programming language, but many programmers complain a lot about R, bewildered with its “quirks”.  A more correct definition was given by John Cook during his talk on R. “R is not a language; it is an environment with a language” that contains all the tools for doing statistics coupled with R language. R language itself is a dialect of S language, as many constructs in R came from S while some were added later. In this chapter, we will install R and get a first whiff of it. This chapter includes the following paragraphs:


	
Does version matter?



	
Installing R



	
R user interface



	
R console



	
R primer






Does version matter?

R language does not change much over the years. Although releases are frequent, they tend to contain bug fixes rather than major changes in R language. The language is changing as well, but this process goes slowly and in a way that will not inconvenience most users of R. In other words, you can use the latest version of R with little worry about what version was used to write this course.

You should also keep in mind that R language is not fully standardized as some other programming languages are. Therefore, sometimes R may behave in an incomprehensible manner. In this case, you should consult the official documentation of R and if you cannot find the answer, try asking more experienced R users.

Installing R

R is available for all primary desktop computing platforms. Any developer can port R to a new platform since R’s implementation is open source. In addition, R is free software. You can use the binary that comes with this course or, alternatively, get the fresh version from the Internet:

1. Go to the official R website. A link to “Download” is visible on the site.

2. The download link leads you to a list of mirror sites. The list is arranged by country. You will probably require choosing a site that is geographically located near you, since it is likely to be also close on the Internet and, therefore, providing quicker download.

3. Look for the proper binary for your platform and launch the installer.  A few things should be kept in mind depending on the type of system you are utilizing.

Windows

Installing R on Windows is similar to installing other types of software on Windows. This means that it is a very simple process if 
 you have the necessary rights, and it would be difficult if you do not. If R is being installed on your personal computer, this is not a great trouble. Nevertheless, if you are dealing with a corporate environment, you might have some problems. If you are “Power User” on Windows or an “Administrator”, installation is plain: the installer should be double-clicked and the on-screen instructions should be followed.

Mac OS X


Both PowerPC and Intel based Mac systems running Mac OS X 10.4.4 (Tiger) and higher use the current version of R. If you are employing an older computer or operating system, older versions can be found on the website and they will show better performance dealing with your system. Three different R installers for Mac OS X are available: a three-way universal binary for Mac OS X 10.5 (Leopard) and higher, a legacy universal binary for Mac OS X 10.4.4 and higher
 with
 supplemental tools, and a legacy universal binary for Mac OS X 10.4.4 and higher
 without
 supplemental tools
 .
 The universal binary of R exists as an installer package; the file is quickly downloaded, and the package is double-clicked for installing the application. A disk image file (similar to most Mac OS X applications) contains the legacy R installers. If the disk image is downloaded, it should be double-clicked to open it in the finder (if there is no automatic opening). The volume should be opened, and the R.mpkg icon should be double-clicked for starting the installer. Sticking to the directions in the installer will allow you to have a working copy of R on your computer.


Linux and UNIX

Before the process is launched, make sure that the system’s root password is known to you or make sure that you have sudo privileges on the system. If you do not, you will need help from the system administrator to install R. The simplest method of installing R on a Linux system is via a package management system. These systems automate the installation procedure: they download the R binaries or sources, receive any other software that is required for launching R, and even upgrade quickly to the latest version. For instance, Yum (which stands for “Yellow Dog Updater, Modified”) can be used to automate the installation on Red Hat or Fedora. Open 
 a terminal window and input the following on an x86 Linux platform:

sudo yum install R

You will enter your password, and if your user has sudo privileges, R has to be installed on your system. Then R can be updated by entering:

sudo yum update R

If a new version is available, yum will now upgrade your R installation to the latest version.

If you are using another UNIX system, you will be able to install R as well: view the documentation for your system to obtain more details about how software should be installed.

R can also be manually downloaded in order to be installed later. There are a lot of precompiled R packages for different flavors of Linux. For example, there are rpm packages for Red Hat Package Manager to be used on Red Hat systems.

Refer to your user documentation for obtaining more information on using package management systems.

R user interface

Let’s begin with launching R and looking at R’s graphical user interface on multiple platforms. When R application is installed on Windows or Mac OS X, a command window and some menu bars will become visible. On most Linux systems, R application will simply start working by means of the command line.

Windows

By default, installation of R is located in %ProgramFiles%R
 (which is commonly equal to C:\Program Files\R
 ) and R can be accessed via the Start menu. When you launch R in Windows, something like the user interface illustrated in Figure 1-1 will be shown. The R GUI window demonstrates a menu bar, a toolbar, and the R console.

[image: ]


Figure 1-1

Mac OS X

An application named R will be added by the default R installer to your Applications folder and can be launched like any other application on your Mac. When R application is started on Mac OS X systems, something like the screen illustrated in Figure 1-2 will be visible. Similar to the Windows system, a menu bar, a toolbar with common functions, and an R console window are visible.

[image: ]


Figure 1-2

On a Mac OS system, R can be launched from the terminal without utilizing GUI. Doing this requires opening the terminal window that is contained in the Utilities folder inside the Applications folder. Once in the terminal window, just type the command “R” to start the R environment.

Linux and UNIX

On Linux systems, R can be launched from the command line by entering:

R

Pay attention that it is a capital “R”: filenames on Linux are considered to be case sensitive. An interactive R session will be started by the command line itself, unlike the default applications for Mac OS and Windows. It is possible to start R in an application window which resembles the user interface on other platforms. Doing this requires applying the following command:

R -g Tk &

This way, R will be started in the background running in its own window as illustrated in Figure 1-3. Similar to other platforms, the menu bar with some typical functionality is available, but there is no 
 toolbar unlike R on other platforms. The main window functions as the R console.

[image: ]


Figure 1-3

R console

The most significant tool for using R is the R console. The R console is a tool which permits you to enter commands into R and observe how the R system is responding to them. The commands you enter into the R console are called expressions
 . A part of the R system called interpreter
 will recognize the expressions and respond with the outcome or an error message. In some cases, an expression can be entered into R by means of the menus. If you have ever used a command line (on Linux, terminal on Mac OS, or cmd.exe on Windows) or language with an interactive interpreter such as LISP or Python, R console should look familiar. Command-line interfaces are not as terrifying as they seem to be. A few tools are offered by R to speed up your input, to assist you in finding the tools you are looking for, and to notice typical mistakes. A command-line interface provides an easy way to keep record of everything you execute and then reproduce it later if necessary.

When R is launched, a window with the R console becomes visible. It is possible to view a message like this inside the console:

R version 3.1.1 (2014-07-10) -- "Sock it to Me"

Copyright (C) 2014 The R Foundation for Statistical Computing

Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[Workspace restored from /Users/user/.RData]

Some basic information about R is shown in the window: the version of R you are launching, some license data, fast reminders about how to receive help, and the command
 prompt
 .

By default, a greater-than sign “>” shown by R in the console at the beginning of a line, when nothing else is illustrated, means that R is expecting you to enter a command into the console. R is showing you that something should be typed, so this is called a prompt
 .

For instance, if I enter an arithmetic expression and press enter key, R will compute the result and return it to me by printing it to the console:

Listing 1-1







	
1

2


	
> 3 * 24

[1] 72







The prompt is returned once again showing that R interpreter awaits my next commands.

In some cases, the R command occupies more than one line. If an 
 incomplete command is entered, the R prompt will change to a plus sign “+”. A simple example is given below:

Listing 1-2







	
1

2

3


	
> 3 *

+ 24

[1] 72







When you deal with long expressions which consist of sums and inequalities, this may confuse you. On various platforms, different colors show command prompts, user-entered text, and R responses for assisting in clarifying the differences.






	
Platform


	
Command prompt


	
User input


	
R output





	
Mac OS X


	
Purple


	
Blue


	
Black





	
Microsoft Windows


	
Red


	
Red


	
Blue





	
Linux


	
Black


	
Black


	
Black







Table 1-1

Following comparison of R console with a command line or language interpreters, you can access previously entered commands via up and down keys. The up arrow allows you to view earlier commands, and the down arrow permits you to view later commands. This way you can quickly reiterate previous command with a minor modification or correct a mistake.

Automatic completion for function names and filenames is also available in R.  Press the “tab” key for viewing the list of possible completions for a function or a filename.

R primer

Since we understood how to start R console and interact with its interpreter, let’s dive in the R environment and see what can be done there. First of all, one must keep in mind that everything in R is an object
 . As in languages supporting object-oriented paradigm, 
 everything that is passed into R functions or returned by them is an object. Moreover, as in languages supporting functional paradigm, the functions themselves are objects as well. R does not provide direct access to memory, so objects can be referenced by symbols
 . Symbols are the names for objects in R. R takes the «everything is an object» principle even further: the symbols themselves are also objects and can be treated in the same way.

Expressions

R code itself consists of a set of expressions
 . Expressions in R are, as you have guessed, also objects. Examples of expressions are assignment statements, conditional statements, and arithmetic expressions. Let’s look at some of the expressions by entering the following lines into R interactive console:

Listing 1-3







	
1

2

3

4

5

6


	
> 1 + 8

[1] 9

> if (8 < 1) 8 else 1

[1] 1

> "hello!"

[1] "hello!"







Normally, expressions are separated by new lines. To enter several expressions at once on one line, you can use semicolons:

Listing 1-4







	
1

2

3

4


	
> 1 + 8; if (8 < 1) 8 else 1; "hello!"

[1] 9

[1] 1

[1] "hello







Constants

The basic object in R is a constant
 . Constants can be numerical and character. Here are some examples:

Listing 1-5







	
1

2

3

4

5

6

7

8

9


	
> 1

[1] 1


> 0.245



[1] 0.245

> 1.e-4

[1] 1e-04

> # a complex number:

> -2+4i

[1] -2+4i







Numerical constants are by default interpreted as double-precision floating point numbers. To force a number to be an integer, L suffix should be used. If the value cannot be turned into an integer, there would be a warning and a numeric (double) would be returned. It is also possible to use hexadecimal notation with prefix 0x.

Listing 1-6







	
1

2

3

4

5

6

7

8

9

10

11

12


	
> typeof(1)

[1] "double"

> 1L

[1] 1

> typoef(1L)

[1] "integer"

> 1.e-4L

[1] 1e-04

Warning message:

non-integer value 1.e-4L qualified with L; using numeric value

> 0xA1

[1] 161







Character constants can be enclosed both by double quotes and single quotes. To include a quote symbol inside the character constant, escaping with backslashes should be used.

Listing 1-7







	
1

2

3

4


	
> "hello"

[1] "hello"

> 'hello'

[1] "hello"







Not much can be done with constants alone, therefore, we should 
 learn how to use symbols.

Assignments

How do you make an association between a symbol and an object? You should use an assignment operator.  Here are examples of assignment operator:

Listing 1-8







	
1

2

3

4


	
> x <- 1.5

> y <- "white"

> 3 ^ x -> z

> v <- c(1,2,3,4,5,6,7,8)







An assignment operator is nothing but a binary operator, like arithmetic operators ‘+’ or ‘^’.  In other words, the next expressions are equivalent:

Listing 1-9







	
1

2


	
> x <- 1.5

> `<-`(x, 1.5)







Here the object associated with symbol x is replaced with 1.5. Therefore, there can be expressions on both sides of assignment, for instance, subsetting operation on the left-hand side of assignment. We’ll see usage of this property of assignment later in the course.

Useful functions

One of the main sources of strength of R are R packages, or software with additional functionality that extends R. This software is arranged in a special way to allow easy installation from command line. To view existing packages for R you can browse the Comprehensive R archive network webpage, or CRAN package repository. To install a package you are interested in, use install.packages
 function inside R:

install.packages("name_of_package")

You will be asked to choose the closest mirror, and the whole process of installation is completely automated.

R packages are usually written in a mix of R and C/C++ to achieve better performance and provide functions, data structures, or just 
 data to be reused and not implemented from scratch. In this regard, R packages remind us of software libraries. However, basic functionality of R also comes in the form of packages. To see the whole list of packages available in your R environment, use library
 function:

library()

Upon launching, some R packages are loaded automatically. In order to load the package you installed, enter:

library(name_of_package)

Loading, in this case, means that the namespace of the package was added to the search list, allowing you to use symbols from that package.

Similarly, the require
 function also loads packages; however, if the package does not exist, require
 will return FALSE with a warning, while library
 will end up with an error. Depending on the result you want to achieve with your code, use one or the other.

R comes with some data sets built-in. To access them, use the data
 function. To see the list of all data sets, type:

data()

To load  a specific data set, type:

data(name_of_dataset)

To get help on one of the R functions, use a question mark like this:

?data

To search for R symbol, use two question marks:

??dat

Last but not least, you can access your previously entered commands via call to history
 function.


Lab Exercise 1: Installing R and starting work

[image: ]


AIM

The AIM of the following paragraphs is learning how to install R and make first steps with it.

The steps involved will include:


	
Downloading and Installation



	
Loading packages



	
Dealing with console





Estimated Completion Time:

20 minutes


Instructions for Windows

[image: ]



Step 1
 : Download R

1.1. Refer to http://cran.r-project.org/bin/windows/base/
 .

1.2. If older versions of Windows is installed, read http://cran.r-project.org/bin/windows/base/rw-FAQ.html#Does-R-run-under-Windows-Vista_003f
 .

1.3. “Download R X.XX.X for Windows" (or any other version
 ) should be clicked to download and save the installer. Saving to your desktop is recommended for ease. For your convenience R-3.1.2 for Windows is provided in the ch01 folder.


[image: ]
 [image: ]



Step 2
 : R should be installed

2.1. Launch the installer and choose a language to continue. Once language is chosen the setup wizard should emerge. Click on next and keep on installing.


[image: ]
 [image: ]


2.2. Read the license and then click on next (as long as you accept everything).

2.3. You will be asked to choose where R will be installed. If there is no particular folder where you would like to install it, accept the default of C:\Program Files\R
 by clicking next.

2.4. Choose the components of R that you require to be installed. HTML Files, Basic Manuals, and Message Translations should be selected. If these components are already chosen, click on next.

[image: ]
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2.5. Agree with the default startup options by clicking next.

2.6. You will now be asked to choose where R will be located in your Start Menu. If there is no particular folder where you would like to locate it, agree with the default of R by clicking next.

2.7. Select to produce a desktop or Quick Launch icon but make sure to have both registry entries verified before clicking next.

2.8. In a few minutes, R will be ready for usage on your computer. Click Finish to move out of the installer. Finding R requires looking on your desktop if you selected to produce a desktop icon or look under R in your Start Menu supposing you agreed with the default location.


2.9. R will keep on downloading and installing the Rcmdr package, as well as other packages that Rcmdr demands. Please be patient since this takes some time. When the command prompt is seen again, you will know that R has terminated. [image: ]


Task Completed

Unlike with most software, when R is being installed there is a limited group of capabilities right out of the box. The basic installation should carry out most of the plain analyses needed for us. Fortunately, R can be quickly expanded, and there are many applicable add-ons which can also be downloaded. These add-ons are known as “packages." Many packages permit you to carry out more complex analyses. Depending on your needs you may have to install additional packages. How to install the Rcmdr package will now be demonstrated. Keep in mind that the same process is applicable to other packages as well.


Step 3
 : Install Packages

3.1. Installing a package requires first opening R.


3.2. Once R is opened, enter install.packages("Rcmdr",dependencies=TRUE)
 in the command prompt (next to the >).[image: ]


[image: ]


3.3. At this point, you will be asked by R to select a CRAN mirror. The actual choice is not essential although it is preferable that you choose a mirror that is geographically located near you.


Step 4
 : Loading Packages

Every time R is started, there will be a need to load the packages before you can use them. Loading an installed package requires entering simple library(package name)
 in R's command prompt. For instance, enter library(Rcmdr)
 to load Rcmdr. R is case sensitive so 
 the L in library must be lowercase, and the R in Rcmdr must be uppercase.

[image: ]
 [image: ]


Task Completed


[image: ]



Step 5
 : First steps

Enter something at the prompt and R will evaluate your input and print out the result. Some simple math can be tried. Enter the command given below:







	
1

2


	
> 1 + 1

[1] 2







There is your outcome, 2. It is printed on the console right after your input.

Enter the string "Arr, matey!" (do not ignore the quotes!):







	
1

2


	
> "Arr, matey!"

[1] "Arr, matey!"







Now multiplying 6 times 7 (* is the multiplication operator):







	
1

2


	
> 6 * 7

[1] 42







[image: ]
 ​
 [image: ]



Step 6
 : Exiting R

When R is exited, R will ask you if there is a need in saving your workspace image. If you agree, all of the objects that you have produced and that are currently kept in memory will be saved to a file. You can easily click on “Don't Save" in case you have been dealing with an R file that contains all of the commands you have been executing.

Task Completed


Lab Exercise 2: Managing R work

[image: ]


AIM

The AIM of the following paragraphs is learning general management when working with R.

The steps involved will include:


	
changing working directory



	
managing workspaces



	
using batch scripts





Estimated Completion Time:

20 minutes



Step 1.
 
 Find out what is your current working directory and change it to the beforehand prepared directory.[image: ]


Working directory is the place in your file system where you started R session. It plays an important role, since in order to load data and code to R you need to know the location of the data and code. You can always specify absolute paths, but knowing your working directory it is far more convenient to use relative paths.

To learn about your working directory, R provides getwd
 functon, and to change working directory, you can use setwd
 function. Note that directory passed as argument to setwd
 must exist, otherwise, there would be an error. Suppose, we created a folder soft which is to be the new working directory. Here is how it is achieved:







	
1

2

3

4

5

6

7


	
> getwd()

[1] "/home/username"

> setwd("oft")

Error in setwd("oft") : cannot change working directory

> setwd("soft")

> getwd()

[1] "/home/username/soft"







If you are using R GUI application, as by default in Windows and Mac OS, you can also change working directory via File or Misc menu respectively:







	
Windows


	
File -> Change dir…





	
Mac OS


	
Misc -> Change working directory…








Step 2.
 Create a variable x and load it via workspace.[image: ]


It is considered a good practice to use different working directories for different projects. Upon launching R, your workspace is created and, as mentioned before, when you quit R you are asked whether you want save all the objects, variables and functions, to the workspace image file. If you answer positively, the objects will be saved to the .RData file and your command history to the .Rhistory file. Naturally, these files are saved in your working directory and the next time you launch R from this directory, the .RData and .Rhistory will be loaded restoring you previous session.

But you may also want to save your workspace without exiting R: this allows you more control over you work and can serve as a security measure against unexpected developments. Remembering that we are currently in soft directory, let’s create object x, save our workspace with save.image
 function and exit R:







	
1

2

3

4


	
> x <- "secret data"

> save.image()

> q()

Save workspace image? [y/n/c]: n







Checking the soft directory, we can see that there is an .RData file even though we did not start R from that directory previously. Now, if R is launched from the soft directory, there is a warning about previously saved workspace restored and x object is available:

[image: ]








	
1

2

3

4

5

6

7

8


	
R version 3.1.1 (2014-07-10) -- "Sock it to Me"

Copyright (C) 2014 The R Foundation for Statistical Computing

...

[Previously saved workspace restored]



> getwd()

[1] "/home/username/soft"

> x

[1] "secret data"







The file with R objects can also be loaded explicitly via load
 function.


Step 3.
 Run R command in a batch mode.

Although R is designed for interactive data analysis, sometimes you want to use it in a batch mode, without starting R interpreter. It is similar to the usage of bash scripts in UNIX or .bat files in Windows. A single method for launching R in batch mode is through the system command line, not the R console.

Let’s create simple one-liner script test.R:

print(sqrt(8))

To run it in a batch mode, use the following command:

R CMD BATCH test.R

A file test.Rout was created with the following contents:

R version 3.1.1 (2014-07-10) -- "Sock it to Me"

Copyright (C) 2014 The R Foundation for Statistical Computing

...

[Previously saved workspace restored]

> print(sqrt(8))[image: ]


[1] 2.828427

>

> proc.time()

user  system elapsed

0.192   0.023   0.203

In other words, R launched interpreter, executed all the commands in the given file, measured the time, and saved output to the text file. To supress unnecessary output you can use --quiet option:

R CMD BATCH --quiet test.R

Not, the test.Rout is shorter:

> print(sqrt(8))

[1] 2.828427

>

> proc.time()

user  system elapsed

0.186   0.012   0.191

There are other options that allow you to control the name of the output file or whether R loads the workspace when executing script in batch mode.

You can also pass arguments to the script using Rscript command. Change test.R in the following way:

z <- as.numeric(commandArgs(TRUE)[1])

print("you gave: "); print(z)

print("it's sqrt: "); print(sqrt(z))

Now test.R can be called like this:

$ Rscript test.R 8

[1] "you gave: "

[1] 8

[1] "it's sqrt: "

[1] 2.828427

Task Completed

SUMMARY

This chapter provides essential information and teaches you to carry out the following tasks:

●       
 Getting R

●       
 Installing R on different platforms

●       
 First steps of working with R


REFERENCES

●       
 http://www.r-project.org/


●       
 http://cran.r-project.org/bin/windows/base/


●       
 http://cran.r-project.org/bin/windows/base/rw-FAQ.html#Does-R-run-under-Windows-Vista_003f


●      
 The R Language The Good The Bad And The Ugly
 by John Cook, https://www.youtube.com/watch?v=6S9r_YbqHy8


●       
 http://cran.r-project.org/


CHAPTER 2: Foundations of R

Data structures are one of the main foundations of computer science in general and writing programs in particular. In this chapter we will look at two basic and fundamental data structures of R—vectors and lists. Everything else in R can be said to be a superstructure on top of vectors and lists. We will also learn how to group the R code, and check out all kinds of constants that are constantly encountered when working with R.

This chapter includes the following paragraphs:


	
Logical constants



	
Special constants



	
Grouping



	
Vectors



	
Lists






Logical constants

To deal with boolean expressions R provides two constants, TRUE and FALSE, of logical type. By default, there are additional symbols T and F that serve as shortcuts for TRUE and FALSE. However, be careful using them since they can be overwritten to point at something else:

Listing 2-1







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14


	
> T

[1] TRUE

> F

[1] FALSE

> typeof(T)

[1] "logical"

> T <- typeof

> typeof(T)

[1] "closure"

> T

function (x)

.Internal(typeof(x))

<bytecode: 0x2c67368>

<environment: namespace:base>







Special constants

Inf

If the outcome of calculations is a number exceeding limits of R numbers, R will return special constant Inf, which stands for infinity. It is a positive double that can be negated with minus. Common occurrence of Inf value is from division by 0:

Listing 2-2







	
1

2

3

4

5

6

7

8


	
> 2 ^ (10^4)

[1] Inf


> typeof(Inf)



[1] "double"

> -2 ^ (10^4)

[1] -Inf

> 1 / 0

[1] Inf







NA

NA stands for “not available” and represents variables whose value is not known. When R loads data that includes absent, missing values, it sets these values to NA.

NA is not equal to any other value and, by default, it is a logical value. Therefore, we have the following logical expressions:

Listing 2-3







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14


	
> x == NA

[1] NA

> NA == "NA"

[1] NA

> TRUE & NA

[1] NA

> FALSE & NA

[1] FALSE

> TRUE | NA

[1] TRUE

> FALSE | NA

[1] NA

> typeof(NA)

[1] "logical"







However, as there can be NAs in any type of data structure, R has several different constants to represent missing value in different contexts. Among those NAs there are NA_integer_, NA_real_, NA_character_.

To test whether a value is NA, use is.na function:

Listing 2-4







	
1

2


	
> is.na(NA)


[1] TRUE









NaN

For representation of undefined numerical calculations R has a special value NaN, “not a number” in the IEEE floating point calculus. Commonly, it occurs in such cases:

Listing 2-5







	
1

2

3

4


	
> Inf - Inf

[1] NaN

> 0 / 0

[1] NaN







To test whether a value is NaN, use is.na
 or is.nan
 functions. is.na
 returns TRUE for NA and NaN, while is.nan
 returns TRUE only for NaN:

Listing 2-6







	
1

2

3

4

5

6


	
> is.na(NaN)

[1] TRUE

> is.nan(NaN)

[1] TRUE

> is.nan(NA)

[1] FALSE







NaN exists only for double types, and it is turned into NA in expressions with integers and logical values and into string “NaN” in expressions with characters:

Listing 2-7







	
1

2

3

4

5

6

7

8

9

10


	
> 4 + NaN

[1] NaN

> T & NaN

[1] NA

> as.integer(4) + NaN

[1] NaN

> paste("foo", NaN)

[1] "foo NaN"

> typeof(NaN)


[1] "double"









NULL

NULL is a special object in R that has the type NULL. Unlike NA, there is only one NULL object and symbol NULL always points to this object. It has no properties or attributes and is used to indicate that the object is absent. NULL is not equal to any other value, be it NA, NaN, or Inf.

It is convenient to use NULL as an argument in functions to signify that no value was assigned to the argument. Similarly, NULL can be used as a return value by functions.


is.null
 function returns TRUE only for NULL value and can be used for testing in code.

One might ask what is a need in NULL value when there are NA values. There is a difference in purpose. NULL represents an absent object and cannot be used in many expressions and functions: it will either return an error or will be ignored. On the other hand, NA represents a missing or unknown value and is a set of special values that R accounts for. There are a lot of functions in R that can treat NAs differently depending on the arguments you specify. During this course you will encounter a lot of such functions.

Listing 2-8







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15


	
> NULL | T

Error in NULL | T :


operations are possible only for numeric, logical or complex types




> NA | T



[1] TRUE

> NULL + 3

numeric(0)

> NA + 3

[1] NA

> c(4, NA)

[1]  4 NA

> c(4, NULL)

[1] 4

> c()

NULL







Grouping

There are two notations for grouping in R. Parentheses notation is used for grouping within expressions. It is also used to delimit list of arguments in a function definition and for a function call, therefore, parentheses have the same precedence as a function call. It is commonly used to override default order of operations:

Listing 2-9







	
1

2

3

4


	
> 3 * 2 – 1

[1] 5

> 3 * (2 - 1)

[1] 3







Internally `(` is equivalent to identity function that returns its argument.

Curly braces notation is used for grouping several expressions. The expressions should be separated by semicolons or newlines. The value of the last expression in the curly braces is the value of the whole group:

Listing 2-10







	
1

2


	
> {4 - 3; 11 ^ 4; 1}


[1] 1









So curly braces can be used to create blocks of code that are useful for readability. Unlike languages like C or Java, curly braces do not create a new namespace or, in terms of R, a new environment. In other words, any variables defined inside curly braces are available outside of them:

Listing 2-11







	
1

2

3


	
> {x <- 1}

> x

[1] 1







The most common use of curly braces is in the function definition. When a function consists of more than one expression, curly braces are used to delimit body of a function. The visibility of variables inside a function will be discussed later in the course.

Internally curly braces notation is interpreted as a call to the `{` function but the evaluation of the arguments does not take place as in a typical function.

Vectors

Vector is the most fundamental type in R language. It is a data structure that contains a set of values of the same type, similar to arrays in C or Java. There are six basic vector types in R that serve as building blocks for everything else: logical, integer, real, complex, character, and raw.

R contains several various ways for creating a new vector. The c
 function is the simplest one, which combines
 its arguments into a vector:

Listing 2-12







	
1

2

3


	
> v <- c(2, 3, 0, 8, 5)

> v

[1] 2 3 0 8 5







The length of a vector can be checked with the length
 
 function. Vector is the most basic type in R since a single number is also a vector of length 1:

Listing 2-13







	
1

2

3

4

5

6

7

8


	
> typeof(v)

[1] "double"

> typeof(1)

[1] "double"

> length(v)

[1] 5

> length(1)

[1] 1








length
 can also be used to change the length of a vector:

Listing 2-14







	
1

2

3

4

5

6


	
> v <- c(2, 3, 0, 8, 5)

> v

[1] 2 3 0 8 5

> length(v) <- 3

> v

[1] 2 3 0







Keep in mind that if the length of a vector is expanded, uninitialized values are assigned the NA value:

Listing 2-15







	
1

2

3


	
> length(v) <- 5

> v

[1] 2 3 0 NA NA








c
 function coerces all of its arguments into a single type:

Listing 2-16







	
1

2

3


	
> v <- c(2, 3, "hello")

> v

[1] "2" "3" "hello"







The c
 function can be used for recursive assembling of a vector from 
 other data structures with the help of recursive=TRUE option:

Listing 2-17







	
1

2

3


	
> v <- c(2, 3, 0, 8, list(1, 2, 3), recursive=TRUE)

> v

[1] 2 3 0 8 1 2 3







You should be warned that combining a list without recursive option will give back a list:

Listing 2-18







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29


	
> v <- c(2, 3, 5, 8, list(1, 2, 3), recursive=TRUE)

> typeof(v)

[1] "double"

> v

[1] 2 3 5 8 1 2 3

> v <- c(2, 3, 5, 8, list(1, 2, 3))

> typeof(v)

[1] "list"

> v

[[1]]

[1] 2



[[2]]

[1] 3



[[3]]

[1] 5



[[4]]

[1] 8



[[5]]

[1] 1



[[6]]

[1] 2



[[7]]


[1] 3









Binary operator “:” is another tool for assembling a vector. It takes two numbers and returns a sequence of values from the first operand to the second operand:

Listing 2-19







	
1

2


	
> 1:10

[1] 1 2 3 4 5 6 7 8 9 10








seq
 function is a generalization of colon operator:

Listing 2-20







	
1

2


	
> seq(from=1, to=16, by=3)

[1]  1  4  7 10 13 16








If you need to produce a vector of specific length, use the length.out argument:

Listing 2-21







	
1

2


	
> seq(0,1,length.out=11)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0







Sometimes there is a need in a vector of indexes. seq_along
 function is a shorthand for this use case:

Listing 2-22







	
1

2

3

4


	
> seq_along(v)

[1] 1 2 3 4 5 6 7

> length(v)

[1] 7







Note that seq_along
 function can be used not only on vectors but on other data structures as well, like lists or data frames.

Another useful function is rep
 . It repeats an object for a given number of times, returning a new object of the same type. Here are some examples with vectors:

Listing 2-23







	
1

2

3

4

5

6

7


	
> v <- c(2, 3, 0, 8, 5)


> rep(v)



[1] 2 3 0 8 5

> rep(v, 2)

[1] 2 3 0 8 5 2 3 0 8 5

> rep(0:1, 5)

[1] 0 1 0 1 0 1 0 1 0 1







Indexing vectors

To get the most out of R one should master its indexing operators. Vectors can be indexed with positive integers to get the elements of vectors at the given positions, as in many other languages. Vectors can also be indexed with negative integers to omit elements at the given positions. Logical expressions can be used as index to access the elements that satisfy the given condition. Here is an illustration of different ways to index a vector:

Listing 2-24







	
1

2

3

4

5

6

7

8

9

10

11

12

13


	
> v <- 1:7

> v[]

[1] 1 2 3 4 5 6 7

> v[c(2,5)]

[1] 2 5

> v[-c(2,5)]

[1] 1 3 4 6 7

> v[c(T,F)]

[1] 1 3 5 7

> v[c(T,F,NA)]

[1]  1 NA  4 NA  7

> v[v < 5]

[1] 1 2 3 4







Note:

●      
 the recycling of array given as index c(T,F) on the 8 line; when index array is smaller than the vector, it will be repeated until the end of the vector

●       
 when index is NA, then NA value will be returned without any error

Naturally, subsetting operations can be used to change the value of a 
 vector:

Listing 2-25







	
1

2

3

4

5

6

7

8

9


	
> v <- 1:7

> v

[1] 1 2 3 4 5 6 7

> v[c(2,5)] <- 0

> v

[1] 1 0 3 4 0 6 7

> v[c(1,3)] <- c(3,1)

> v

[1] 3 0 1 4 0 6 7







Vector-oriented language

As you may have guessed after learning that single numbers are also vectors in R, vectors can be used as arguments to many functions in R, including arithmetic operations:

Listing 2-26







	
1

2

3

4

5

6


	
> v1 <- 1:5

> v2 <- c(2,3,0,1,1)

> v1 + v2

[1] 3 5 3 5 6

> v1 * v2

[1] 2 6 0 4 5







Forget for loops—R is a vector-oriented language.

Lists

Another fundamental type in R is a list
 , an ordered group of objects. Unlike in vector, objects in list can be of different types. List can be constructed with list
 function. length
 function is also available.

Listing 2-27







	
1

2

3

4

5

6

7

8

9

10

11

12


	
> l <- list(1,2,'hello')

> l


[[1]]



[1] 1

[[2]]

[1] 2

[[3]]

[1] "hello"

> typeof(l)

[1] "list"

> length(l)

[1] 3







Another way to construct a list is to use c
 function as shown previously in this chapter.

Each item in a list may be assigned a name
 and then be called by that name. For example, we need to represent countries in terms of their main characteristics. A country has an area, one or more languages, and national currency. Such features can be represented with different data types in R: numeric vector of length 1, character vector of variable length, character vector of length 1. An instance of such an object can be constructed like this:

Listing 2-28







	
1

2

3

4

5

6

7

8


	
> Ukraine <- list(area=603.5, languages=c("ukrainian"), currency="hryvna")

> Ukraine

$area

[1] 603.5

$languages

[1] "ukrainian"

$currency

[1] "hryvna"







Now, every component of the list has not only the index or position in the list but also the name. Both the index and the name can be used to refer to specific component of the list.

Indexing lists

Lists can be indexed by three different operators: [], [[]], $. [] always returns a list, [[]] and $ return the elements of a list. The same rules that are used with vector indexing are applied to indexing lists as 
 well. Check out the difference between [] operator and [[]] operator:

Listing 2-29







	
1

2

3

4

5

6

7

8

9


	
> Ukraine[[1]]

[1] 603.5

> Ukraine[1]

$area

[1] 603.5

> typeof(Ukraine[[1]])

[1] "double"

> typeof(Ukraine[1])

[1] "list"







$ can be used only with character string, so trying to use a variable with $ will not work. But since $ operator is basically a shortcut for double brackets [[
 ""
 ]], use double brackets operator to index a list with a variable. On the other hand, $ operator allows partial matching of names. The following example illustrate these properties of list indexing:

Listing 2-30







	
1

2

3

4

5

6

7

8


	
> Ukraine$currency

[1] "hryvna"

> Ukraine[["currency"]]

[1] "hryvna"

> Ukraine[["curr"]]

NULL

> Ukraine$curr

[1] "hryvna"







Lists are an essential building blocks in R, since they provide construction of heterogeneous structures. All other data structures in R are built on top of vectors and lists.




Lab Exercise: Practice basics
 [image: ]




AIM

The AIM of the following paragraphs is to practice in applying expressions, vectors.

The steps involved will include:


	
Practicing expressions



	
Practicing vectors





Estimated Completion Time:

20 minutes



Step 1:
 
 Look for a value of expression with and without parentheses:

1 / 2 * (3 - 4) * 5 + (6 & 7 - (8 - 9) / 8)[image: ]


[image: ]


Understanding the second outcome requires looking at the table Operator precedence
 from help(Syntax)
 file.

Calculation of 1/2*3-4*5+6&7-8-9/8 proceeds in the following way. Firstly, the expressions in parentheses are computed: (1/2*3)-(4*5)+6&7-8-(9/8), then all the +/- operations are computed, eventually (1/2*3-4*5+6)&(7-8-9/8) is received as an output.

[image: ]



Step 2:
 Produce vector (4,6,3,4,6,3 …4,6,3,4) with 11 occurrences of 4, 10 occurrences of 6 and occurrences of 3:







	
1

2


	
>temp
 <-
 c(4,6,3)

>rep(temp,
 l=31)







[image: ]


Task completed



Step 1:
 
 Execute the following lines which produce two vectors of unsystematic integers selected with replacement from the integers 0, 1, … 999. Both vectors are of length 250.[image: ]


set.seed(50)

xVec <- sample(0:999, 250, replace=T)

yVec <- sample(0:999, 250, replace=T)

Let x = (x
 1; x2; … xn) denote vector xVec and y = (y1; y2; … yn) denote vector yVec.

(a) Produce vector (y2 – x1; … yn – xn – 1).

(b) Produce vector (sin(y1) / cos(x2); sin(y2) / cos(x3); … sin(yn−1) / cos(xn)).

[image: ]




[image: ]


[image: ]



Step 2:
 This problem uses the vectors xVec and yVec produced in the previous question and the functions sort
 , order
 , mean
 , sqrt
 , sum
 and abs
 .

(a) Selecr values in yVec which are  greater than 600.

(b) What are the index positions in yVec of values which are  greater than 600?

(c) What are the values of xVec in positions where yVec values are greater than 600?

[image: ]
 [image: ]
 [image: ]
 [image: ]
 [image: ]


[image: ]


Task completed


Challenge exercise


	
Produce the vectors:





(a)      
 (1, 2, 3, . . . , 19, 20)

(b)     
 (20, 19, . . . , 2, 1)

(c)     
 (1, 2, 3, . . . , 19, 20, 19, 18, . . . , 2, 1)

(d)    
 (4, 6, 3, 4, 6, 3, . . . , 4, 6, 3) with 10 occurrences of 4.

(e)     
 (4, 4, . . . , 4, 6, 6, . . . , 6, 3, 3, . . . , 3) with 10 occurrences of 4, 20 occurrences of 6 and 30 occurrences of 3.


	
Produce a vector of the values of e^x cos(x) at x = 3, 3.1, 3.2, . . . , 6.



	
Using step 1 and 2 from Practice vectors do:





(a) Create the vector (x1 + 2x2- x3; x2 + 2x3 -x4; … xn−2 + 2xn−1 - xn).

(b) Compute


[image: ]





	
(a) How many values in yVec are within 200 of the maximum value of the terms in yVec?





(b) How many numbers in xVec are divisible by 2? (Pay attention that the modulo operator is denoted by %%.)

(c) Sort the numbers in the vector xVec in the order of rasing values in yVec.

(d) Select the elements in yVec at index positions 1;
 4;
 7; 10; 13;…


SUMMARY

This chapter provides essential information and teaches you:

●       
 Dealing with expressions

●       
 Grasp special constants

●       
 Using vectors and lists


REFERENCES

●       
 http://www.r-project.org/


●       
 http://cran.r-project.org/doc/manuals/r-release/R-lang.html


CHAPTER 3: Exploring R language

R has all the control structures common to imperative programming languages. These control structures will be described in this chapter. Diving further into R language, we will learn about types of R objects, coercion between types, and properties of R objects.

This chapter includes the following paragraphs:


	
Control structures



	
Properties of objects



	
Types of objects



	
Coercion



	
Recycling rule






Control Structures

Almost each procedure in R can be written as a function, but sometimes this causes inconvenience. Thus, R offers a particular syntax similar to what is used in other programming languages. In this section we’ll look at conditional statements and loops. To access help on these constructs, use ?Control.

Conditional Statements

Conditional statements are formed in the following way:

if (condition
 ) true_expression
 else false_expression


or, alternatively:

if (condition
 ) expression


Note, that depending on condition
 expression
 , true_expression
 , and false_expression
 are not always evaluated. A few examples of conditional statements are given below:

Listing 3-1







	
1

2

3


	
> if (FALSE) "where am I?"

> if (FALSE) "where am I?" else "now I know where"

[1] "now I know where"

> x <- 2; if (x > 0) x else print("x is not positive")

[1] 2









condition
 cannot be used on vectors. In other words, only the first item of vector will be checked in the following code:

Listing 3-2







	
1

2

3

4

5

6


	
> x <-
 2; v <- 1:4

> if (x < v) TRUE else FALSE

[1] FALSE

Warning message:

In if (x < v) TRUE else FALSE :


the condition has length > 1 and only the first element will be used 









If you need an element-by-element comparison of vectors, use the ifelse
 function instead:

Listing 3-3







	
1

2

3

4

5

6


	
> x

[1] 2

> v

[1] 1 2 3 4

> ifelse(x < v, x, v)

[1] 1 2 2 2 







Switch

There is a switch
 function in R similar to those you might have seen in other programming languages. However, here it is a function that does not have a special syntactic construct like if
 or loops, and is used as calling a function:

switch(expression
 , list
 )


expression
 is evaluated and switch
 returns the element in the list
 that can be indexed by result of evaluation. If expression
 returns a number then switch
 takes an element of the list
 in the position of this number. If expression
 returns a character string then switch
 matches it exactly against the elements of the list
 . If there is no such element, switch
 returns NULL. Here are some examples:

Listing 3-4







	
1

2

3

4

5

6

7


	
> switch('en', start='a', middle='b', end='c')

> switch(3, 'a','b','c','d','e')

[1] "c"

> switch('end', start='a', middle='b', end='c')

[1] "c"

> switch('en', start='a', middle='b', end='c')

>








switch
 is often used to indicate what function to use depending on the given argument.

Loops

R provides three different looping constructs. The simplest is repeat
 , 
 which just reiterates the same expression:

repeat expression


To finish repeat loop, keyword break
 must be specified, otherwise, you’ll have an endless loop. Skipping to the next iteration in a loop requires the command next
 . As an example, let’s generate some odd numbers:

Listing 3-5







	
1

2

3

4

5


	
> x <- 1; repeat {print(x); if(x > 6) break else x <- x+2}

[1] 1

[1] 3

[1] 5

[1] 7









while
 loops are another construct that reiterates an expression for as long as a given condition is true:

while (condition
 ) expression


The previous example using while
 loop will look in the following way:

Listing 3-6







	
1

2

3

4

5


	
> x <- 1; while(x < 8) {print(x); x <- x+2}

[1] 1

[1] 3

[1] 5

[1] 7








break
 and next
 can also be used inside while
 loops. The break
 statement is used to stop iterating through a loop. The next loop iteration is skipped by the next
 statement without evaluating the remaining expressions in the loop body.

Finally, R provides for
 loops repeating through each item in a vector or a list:

for (var
 in vector
 ) expression


There can be either a vector or a list in place of vector
 , or, as a 
 consequence, any type built on top of vector or list. The same example with for
 loop:

Listing 3-7







	
1

2

3

4

5


	
> for(x in seq(1, 7, by=2)) print(x)

[1] 1

[1] 3

[1] 5

[1] 7








It is possible to use break
 and next
 inside for
 loops as well.

Two features of looping statements must be remembered. Firstly, outcomes are not printed inside a loop if the print function is not called explicitly. The following code prints nothing:

Listing 3-8







	
1


	
> for(x in seq(1, 7, by=2)) x







Secondly, the variable var
 that is placed in a for
 loop will exist in the calling environment after loop ends and will have the last value it had in the loop:

Listing 3-9







	
1

2

3

4


	
> x <- 1

> for(x in seq(1, 7, by=2)) x

> x

[1] 7








Properties of objects

Attributes

Objects in R are characterized by various properties connected with them, named attributes
 . These properties show what is represented by the object and how it should be interpreted by R. Two similar objects have a single difference when they have various attributes. Different objects in R are used for representing numerical data, particularly, data frames, arrays, and matrices. Thus, many typical 
 attributes relate to features of these objects. There appears to be a standard way for querying object attributes in R. It is possible to refer to the attribute through attr(x, a)
 for an object x and attribute a. In most cases, method for looking up the current value of the attribute and method for setting a new value of the attribute are available via the same function. Modifying attributes with these methods will change the attributes in the existing environment but will not produce negative impact on the attributes in an enclosing environment.

Attributes of an object are essentially a set of name-value pairs. A list of all attributes of an object can be obtained via attributes
 function.

One of the most common attributes is names of variables, and R has a shortcut function names
 to access them. As an example, consider the list we produced in the previous chapter:

Listing 3-10







	
1

2

3

4

5


	
> attributes(Ukraine)

$names

[1] "area"      "languages" "currency"

> names(Ukraine)

[1] "area"      "languages" "currency"







One should be specific when attempting to set names or another attribute that has the type of a vector. Suppose you want to change the name of area variable to A:

Listing 3-11







	
1

2

3


	
> names(Ukraine) <- c("A")

> names(Ukraine)

[1] "A" NA  NA







As you can see, all the other names were set to NA. To avoid this, specify position of a variable you want to change:

Listing 3-12







	
1

2

3


	
> names(Ukraine)[1] <- c("A")

> names(Ukraine)


[1] "A" "languages" "currency"









Attributes in R provide a way to differentiate and define new data structures. For instance, let’s look at numeric vector and its attributes:

Listing 3-13







	
1

2

3

4


	
> v

[1] 1 2 3 4

> attributes(v)

NULL







Pay attention to its class:

Listing 3-14







	
1

2


	
> class(v)

[1] "integer"







Now let’s set the dim attribute for the vector equal to c(2,2):

Listing 3-15







	
1

2

3

4

5

6

7

8

9

10

11


	
> attr(v, "dim") <- c(2,2)

> attributes(v)

$dim

[1] 2 2



> v


[,1] [,2]



[1,]    1    3

[2,]    2    4

> class(v)

[1] "matrix"







As can be seen, v has turned into 2 by 2 matrix, and its class value has changed accordingly. (We’ll look at matrix objects in more details in the next chapter.)

Usually we are interested in complex objects that store a lot of data to analyze. There is a lot of function calling and transformation of objects during analysis. What happens to attributes while the object is accessed and transformed? Let’s look at the following example:

Listing 3-16







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18


	
> v <- 1:4

> attr(v, "foo") <- "bar"

> attributes(v)

$foo

[1] "bar"



> v[c(1,2)]

[1] 1 2

> attributes(v[c(1,2)])

NULL

> v[c(1,2)] <- 0

> v

[1] 0 0 3 4

attr(,"foo")

[1] "bar"

> attributes(v)

$foo

[1] "bar"







Upon checking the vector subsetting operations, we can see that our testing attribute foo is not preserved on lines 7 and 9. However, foo is preserved during subsassignment on line 11, which is confirmed on lines 12 and 16.

In other words, subsetting by itself returns a copy of object that will not have the same attributes as the original. Subassignment preserves attributes since it does not create a copy but changes the given object in place. The only exception for this rule are the following attributes: names, dim, dimnames. These attributes will not be dropped during subsetting but will be changed to match the new object. Here is an example of the automatic change of dim attribute:

Listing 3-17







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19


	
> v <- 1:8

> attr(v, "dim") <- c(4,2)

> v


[,1] [,2]




[1,]    1    5



[2,]    2    6

[3,]    3    7

[4,]    4    8

> v[c(1,2),]


[,1] [,2]



[1,]    1    5

[2,]    2    6

> attributes(v[c(1,2),])

$dim

[1] 2 2



> attributes(v)

$dim

[1] 4 2







Requesting the object that consists only of the two first rows of object v has automatically set the dim attribute to c(2, 2) as can be seen on line 15.

Per contra, to transform v back into a vector it is enough to set dim attribute to NULL:

Listing 3-18







	
1

2

3

4

5


	
> attr(v, "dim") <- NULL

> v

[1] 1 2 3 4 5 6 7 8


> class(v)

[1] "integer"







Class

Special and important attribute is the class attribute that has the form of character string. Although class can be accessed and changed in the same way as any other attribute, it should be treated with special care since value of class is relied on by generic functions. Depending on the class of object these functions treat the object differently.

Class and type are often closely related for simple objects. Nevertheless, the two are usually different for compound objects. In 
 some cases, the class of an object can be set as an attribute. But class is implicit for particular objects, such as matrices and arrays. Determining the class of an object requires applying the class
 function, while the fundamental type of object can be defined by using the typeof
 function. For instance, the type and class for a plain numeric vector is given below:

Listing 3-19







	
1

2

3

4

5


	
> x <- c(1, 2, 3)

> typeof(x)

[1] "double"

> class(x)

[1] "numeric"







More information on typeof
 function will be given later in this chapter.

Modifying the class of an object in R can be done the same way as modifying any other attribute. However, it is not recommended to set class attribute explicitly without proper caution. Generic functions rely on class attribute during their execution; however, there is no way to ensure that the object truly belongs to the specified class or not. Therefore, special coercion functions should be used in cases you want to transform an object of one class to another to ensure that it has all the functionality it is supposed to have as an instance of the desired class.

Types of objects

In most cases you are programming in R, you do not need to be overly concerned about types of objects. R language is dynamically typed, and its objects are frequently automatically converted to different types during the computations. However, sometimes there is a need in stricter control, especially when dealing with other programming languages and external libraries.

The function we have already encountered, typeof
 , takes an object and returns its type in the form of a character string. Table 3-1 shows possible values of typeof
 
 with the brief explanations and examples.






	
logical


	
These are six vector types for vectors and data structures built on top of vectors.





	
integer





	
double





	
complex





	
character





	
raw





	
list


	
For lists and data structures built on top of lists.





	
NULL


	
For NULL value.





	
closure


	
For functions.





	
special, builtin


	

For builtin functions that contain .Primitive or .Internal in their code listings, e.g., arithmetic operators or assignment operator. Such functions can be distinguished with the help of
 is.primitive
 function.






	
environment


	
For environment structures, look at chapter 6.





	
S4


	
For S4 objects, look at chapter 10.





	
symbol, pairlist, promise, language, any, char, …, expression


	
For representation of internal workings of R. Usually these are not encountered by R users.







Table 3-1

There is another function called mode
 to check on the type of an object. This function can be considered a heritage from S language and in most cases, it is sufficient to use typeof
 .

Return value of mode
 function is related to how an object is stored, whether it is atomic or recursive. For instance, objects of types integer and double have "numeric" mode, while all functions have mode "function" regardless of whether their type is closure, special or builtin.

Let’s look at some examples of typeof
 and mode
 functions:

Listing 3-20







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22


	
> typeof(list(1))

[1] "list"

> mode(list(1))

[1] "list"

> typeof(1)

[1] "double"

> mode(1)

[1] "numeric"

> typeof(as.integer(1))

[1] "integer"

> mode(as.integer(1))

[1] "numeric"

> typeof(mean)

[1] "closure"

> typeof(`=`)

[1] "special"


> `=`



.Primitive("=")

> is.primitive(`=`)

[1] TRUE

> is.primitive(mean)

[1] FALSE







Lastly, there is a previously mentioned class
 function that returns the type of object in terms of object-oriented facility of R. The class of an object is key element for generic functions that we will study later.

Some objects require quoting them to prevent evaluation when the class
 or typeof
 function is called. For instance, imagine that you want to specify the type of the symbol x and not the object to which it refers. This is done in the following way:

Listing 3-21







	
1

2

3

4


	
> class(quote(x))

[1] "name"

> typeof(quote(x))

[1] "symbol"







Unfortunately, these functions cannot be used on any type of object. There is no method for isolating any, ..., char, or promise object in R. To verify the type of a promise object it must be evaluated and, consequently, transformed to an ordinary object.

In addition to is.primitive
 function, there is a family of similar functions that test whether an object belongs to a certain type. To look at the list of these functions print "is." and press tab. There are is.list
 , is.function
 , is.null
 , and many others. There is a generalization of these functions, a function is
 that takes an object and class against which we want to check the object.

Coercion

There is the coercion hierarchy in R that describes how basic types are transformed into each other. Here it is:

NULL < raw < logical < integer < double < complex < character < list < expression

It means that if you are trying to transform data structure with values of mixed types (like lists of data frames), all the values will be coerced to the highest possible type in hierarchy.

Consider that you have a mixed list of doubles, integers and logicals:

Listing 3-22







	
1

2

3

4

5

6

7

8

9

10


	
> l <- list(TRUE, c(3.6, -4, 0), 1)

> l

[[1]]

[1] TRUE



[[2]]

[1]  3.6 -4.0  0.0



[[3]]

[1] 1







Since lists are recursive data structures, to turn a list into a vector special function that flattens lists should be used, like this:

Listing 3-23







	
1

2


	
> unlist(l)

[1]  1.0  3.6 -4.0  0.0 1.0







As you can see, unlist
 has flattened a list into linear structure, a vector, and coerced all of its values into doubles—that is, the highest type in hierarchy among the set of types of l: double, integer, and logical.

Although R often performs automatic, implicit coersion of types, it is useful to know explicit functions for coercion. To look at the whole list of coercion functions, print "as." and hit tab. There are as.numeric
 , as.character
 , as.vector
 , as.matrix
 , as.dataframe
 , and other functions. They take an object and transform it into a new object of the type mentioned in the name of the function. Some of these functions take additional arguments that specify how exactly the transformation should be done. For example, as.array
 takes dim argument, while as.matrix
 
 takes rownames argument. As a generalization, there is a function as
 that takes an object and the class to transform it to. Obviously, all these functions are generics that depend on the type of object you provide. Coercion functions should be used to change the class of the object correctly.

Objects can also be coerced to another type through constructor functions, like when vectors are passed to data frame constructor.

It is not always clear what kind of changes coercion implies. If you are transforming an object from one of your S4 classes to another, then there may be a change only in class attribute. However, it is possible to change the mode of an object without changing the class. For example:

Listing 3-24







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19


	
> v <- 1:4

> dim(v) <- c(2,2)

> v


[,1] [,2]



[1,]    1    3

[2,]    2    4

> mode(v)

[1] "numeric"

> class(v)

[1] "matrix"

> v[] <- c('1', '2', '3', '4')

> v


[,1] [,2]



[1,] "1"  "3"

[2,] "2"  "4"

> mode(v)

[1] "character"

> class(v)

[1] "matrix"







Note, that coercion operations drop all attributes so if you need to preserve them, pay special attention to that.

Recycling rule

Let’s consider what happens if you try to add two structures with a different number of elements. It turns out that R has a special recycling rule, according to which the shortest structure is recycled to length of the longest for as many times as necessary:

Listing 3-25







	
1

2

3

4

5

6


	
> v1 <- 1:3

> v2 <- seq(-3.4, 6.7, length.out=9)

> v2

[1] -3.4000 -2.1375 -0.8750  0.3875  1.6500  2.9125  4.1750  5.4375  6.7000

> v1 + v2

[1] -2.4000 -0.1375  2.1250  1.3875  3.6500  5.9125  5.1750  7.4375  9.7000







Note that if the lengths are not multiples of each other, a warning will be issued:

Listing 3-26







	
1

2

3

4

5

6

7

8

9

10


	
> v2 <- seq(-3.4, 6.7, length.out=10)

> v2

[1] -3.40000000 -2.27777778 -1.15555556 -0.03333333  1.08888889  2.21111111

[7]  3.33333333  4.45555556  5.57777778  6.70000000

> v1 + v2

[1] -2.4000000 -0.2777778  1.8444444  0.9666667  3.0888889  5.2111111

[7]  4.3333333  6.4555556  8.5777778  7.7000000

Warning message:

In v1 + v2 :


longer object length is not a multiple of shorter object length










Lab Exercise: Practice control structures

[image: ]


AIM

The AIM of the following paragraphs is to practice in using conditional statements and loops.

The steps involved will include:


	
Practicing conditions



	
Practicing loops





Estimated Completion Time:

20 minutes


[image: ]



Step 1:
 Write a program that compares a number to 1.

The instance could be:







	
1

2

3

4

5

6

7


	
> x <- 1

> if (x == 1) {

+    print("same")}

else if (x > 1) {

+    print("bigger")}

else {

+    print("smaller")}







[image: ]



[image: ]



Step 2:
 Write a program that applies the logarithm of a negative number.







	
1

2

3


	

>
 x
 <-
 -0.5


>
 if (any(x
 <=
 0)) y
 <-
 log(1
 +
 x) else y
 <-
 log(x)


>
 print(y)







[image: ]


Task completed


Step 1:
 Compute the following formula using for
 
 loop:[image: ]


[image: ]








	
1

2


	

>
 for (i in seq(from=10,to=100)){y
 <-
 sum(i^3+4*i^2)}


>
 print(y)







[image: ]



Step 2:
 Compute the following formula using while
 loop:[image: ]


[image: ]








	
1

2

3


	

>
 tmp
 <-
 1


>
 while(tmp<=25){
 y<-sum((2^tmp)/tmp + 3^tmp/(tmp^2));
 tmp<-tmp+1}


>
 print(y)







[image: ]


Task completed


Challenge exercise


	
Make “Practice loops” again applying repeat
 and break
 .






SUMMARY

This chapter provides essential information regarding the following tasks:

●       
 Using control structures like conditionals and loops

●       
 Dealing with attributes of objects

●       
 Defining type of object and conversion of types
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CHAPTER 4: R data structures

Successful and efficient analysis of data depends on the tools that can be used to hold this data. For this purpose, R provides different built-in data structures that can be used for many common data analysis tasks or as building blocks for more complex objects. The most basic data structures, a vector and a list, were covered in the previous chapter; here we will look at data structures built on top of vectors and lists, as well as at some special types of objects.

This chapter includes the following paragraphs:


	
Vector ’s extensions



	
Data frames



	
Factors



	
Tables



	
Date and times



	
Connections



	
Formulas



	
Time series






Vector ’s extensions

R provides two data structures that extend a vector: a matrix and an array.

Matrix

An extension of a vector to two dimensions is called a matrix
 . In other words, a matrix is used to represent two-dimensional data of one type. The easiest way to create a new matrix is with the help of matrix
 function. As an example, let ’s create a matrix object with three rows and three columns. The names  “r1”,  “r2”, and “r3” will be assigned to rows and the names  “c1”,  “c2”, and  “c3” will be assigned to the columns:

Listing 4-1







	
1

2

3

4

5

6


	
> m <- matrix(data=1:9, nrow=3, ncol=3, dimnames=list(c("r1","r2","r3"), c("c1","c2","c3")))

> m


c1 c2 c3



r1  1  4  7

r2  2  5  8

r3  3  6  9








There is also a possibility of transforming another data structure into a matrix via as.matrix
 function.

Arrays

An extension of a vector to more than two dimensions is called an array. Representing multidimensional data of one type requires using arrays. As shown below, an array can be quickly constructed with the array
 function:

Listing 4-2







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15


	
> a <- array(data=1:12, dim=c(3,2,2))

> a

, , 1




[,1] [,2]



[1,]    1    4


[2,]    2    5



[3,]    3    6



, , 2




[,1] [,2]



[1,]    7   10

[2,]    8   11

[3,]    9   12







Like for matrices, a vector is the fundamental storage mechanism for an array. Essentially, matrices and arrays are vectors that have dim attribute. Similarly to matrices and unlike most other complex objects, an explicit class attribute is not available for arrays.

Indexing matrices and arrays

Since arrays are extensions of vectors they can be indexed with the same operator [] and the same methods as vectors. To address the issue of a greater number of dimensions, the index operator can be used with comma separated list of indexes for each dimension of an array. Blank space in place of one of the dimensions means that there are no constraints on elements regarding that dimension. Arrays are vectors internally, so they can be referenced with the single integer as well. Here are some examples of indexing an array:

Listing 4-3







	
1

2

3

4

5

6

7

8

9

10

11

12

13


	
> a <- array(data=1:12, dim=c(3,2,2))

> typeof(a)

[1] "integer"

> class(a)

[1] "array"

> a[3,]

Error in a[3, ] : incorrect number of dimensions

> a[3,2,1]

[1] 6

> a[3,2,]

[1]  6 12

> a[11]

[1] 11







Since matrix is a special case of array, rules for indexing arrays apply to matrices as well.

Note that both a matrix and an array are implemented as a vector, not as a vector of vectors. This implies that array subscripts exist solely for convenience and do not reflect the way the data is kept internally.

Data frames

Data frames are extensions of lists and are among the most important R data structures.

Data frames provide means of representing tabular data. From the viewpoint of scientific contexts, many experiments involve observations, each of which consists of various measurements. The measurements are often characterized by various dimensions, and in some cases they appear to be qualitative rather than quantitative. From the viewpoint of business contexts, database tables often store data. Many rows which are in data tables may include multiple “columns” representing various quantities, which are allowed to be stored in multiple formats. A natural way for representing these data sets in R is a data frame. In short, a data frame is an analogue to tables in relational databases: a table of data is illustrated by a data frame. Each column may have its own type but all columns must have the same length, otherwise an error is generated:

Listing 4-4







	
1

2


	
> data.frame(x=1:3, y=1:5)

Error in data.frame(x = 1:3, y = 1:5) :


arguments imply differing number of rows: 3, 5










Each column receives a name automatically or by the name specified in data.frame
 function. Names can be assigned to the rows as well. Variables is the general term for the columns in a data frame.

Variables for a data frame can be constructed directly in the call to data.frame
 function as shown before or constructed beforehand. Let ’s create a data frame of averate male height in different countries:

Listing 4-5







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19


	
> Country = c("Argentina", "Australia", "Austria",

+   "Azerbaijan", "Bahrain", "Belgium", "Bolivia",

+   "Brazil", "Bulgaria", "Cameroon", "Canada")

> Height = c(173.48, 175.6, 179, 171.8, 165.1,

+   178.7, 160, 174, 175.2, 170.6, 175.1)

> avg.male.height <- data.frame(Country, Height)

> avg.male.height


Country Height



1   Argentina 173.48

2   Australia 175.60

3     Austria 179.00

4  Azerbaijan 171.80

5     Bahrain 165.10

6     Belgium 178.70

7     Bolivia 160.00

8      Brazil 174.00

9    Bulgaria 175.20

10   Cameroon 170.60

11     Canada 175.10







As was mentioned before, data frame is an extension of a list. This implies that data frames are internally implemented as lists with class attribute set to data.frame:

Listing 4-6







	
1

2

3

4


	
> typeof(avg.male.height)

[1] "list"

> class(avg.male.height)

[1] "data.frame"







Consequently, the same methods of accessing items in lists can be used on data frames. Indexing operators [], [[]], and $ all work on data frames. Since data frame is a list of the length equal to the number of variables, to extract height vector from our data frame we can use the expression avg.male.height$Height or avg.male.height[["Height"]]. In comparison, avg.male.height["Height"] will get another data frame with only one variable and with the same numbers of rows as avg.male.height.

There is also a convenient indexing of matrices for data frames. For example, to retrieve only 2-5 rows of a data frame, you can use:

Listing 4-7







	
1

2

3

4

5

6


	
> avg.male.height[2:5,]


Country Height



2  Australia  175.6

3    Austria  179.0

4 Azerbaijan  171.8

5    Bahrain  165.1







Factors

Often, while examining data, one encounters categorical or nominal variables. Imagine that you are analyzaing results of a social survey, and one of the observed variables is the age of respondent. For analysis exact number does not matter and the ages are stored by the scores. Such variable can be represented as a numerical vector:

Listing 4-8







	
1

2


	
> age <- c(37, 44, 23, 26, 56, 19, 33, 46, 30)

> age.var <- c(3, 4, 2, 2, 5, 7, 1, 3, 4, 3)







This appears to be a perfectly useful method for representing information, but it can become inapplicable if you are dealing with a significant number of observations. On the other hand, it is known that there are only several possible values for age.var, making it a nominal or categorical variable. Therefore, R offers a better way for representation of categorical values in the form of factors. An ordered group of items is called a factor
 . Factor elements can have a finite number of values called levels
 .

The age.var should be created as a factor:

Listing 4-9







	
1

2

3

4


	
> age.var <- factor(c(3, 4, 2, 2, 5, 7, 1, 3, 4, 3))

> age.var


[1] 3 4 2 2 5 7 1 3 4 3



Levels: 1 2 3 4 5 7







R automatically extracted distinct values from the given vector and made them into levels of a new factor. Levels can be accessed via levels
 function:

Listing 4-10







	
1

2


	
> levels(age.var)

[1] "1" "2" "3" "4" "5" "7"







Currently, factors are internally represented as integer arrays. Each integer is mapped to a factor level by the levels attribute. A small fixed amount of storage space is needed for integers, so factors are more space preserving in case your categorical data is of different type like character. One can take a factor and turn it into an integer array:

Listing 4-11







	
1

2

3

4

5

6

7

8

9

10

11


	
> class(age.var)

[1] "factor"

> typeof(age.var)

[1] "integer"

> age.var.vector <- unclass(age.var)

> age.var.vector

[1] 3 4 2 2 5 6 1 3 4 3

attr(,"levels")

[1] "1" "2" "3" "4" "5" "7"

> class(age.var.vector)

[1] "integer""








unclass
 function returns the given object with removed class attribute. To modify this back to a factor, set the class attribute again:

Listing 4-12







	
1

2

3

4

5

6


	
> class(age.var.vector) <- "factor"

> age.var.vector

[1] 3 4 2 2 5 7 1 3 4 3


Levels: 1 2 3 4 5 7



> class(age.var.vector)

[1] "factor"







However, according to R language definition, representation of factors as integer arrays is an implementation issue and should not be relied on.

Although in our previous example we created a factor from numerical vector, it is an unordered factor. There also ordered factor whose levels hold a particular ordered relation between them. To create an ordered factor ordered argument should be specified:

Listing 4-13







	
1

2

3

4

5

6

7

8

9

10


	
> age.var <- factor(c(3, 4, 2, 2, 5, 7, 1, 3, 4, 3))

> class(age.var)

[1] "factor"

> age.var <- factor(c(3, 4, 2, 2, 5, 7, 1, 3, 4, 3), ordered=TRUE)

> class(age.var)

[1] "ordered" "factor"

> age.var

[1] 3 4 2 2 5 7 1 3 4 3

Levels: 1 < 2 < 3 < 4 < 5 < 7







Here R automatically arranged levels in order by sorting lexicographically. If there is a need in particular order, it must be specified via levels argument. Let ’s look at the following problem.

Imagine that you had carried out a survey and asked respondents what they thought about statement «government should fund all electoral campaigns». Moreover, assume that respondents could answer with the following responses: Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree. There are various ways for representing this information in R. These can be coded as integers (for instance, on a scale of 1 to 5), although there are some shortcomings in this approach. A particular quantitative relationship between values, which may or may not make sense, is implied by this approach. For instance, is the difference between Strongly Disagree and Disagree similar to the difference between Disagree and Neutral? The fact that you can calculate meaningful 
 statistics based on the responses is implied by the numeric response. Can you be sure that Disagree responses and Agree responses average out to Neutral responses?

Avoiding these problems requires applying an ordered factor to represent the response of this survey. An example is given below:

Listing 4-14







	
1

2

3

4

5

6

7

8

9
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14


	
> survey.results <- factor(

+ c("Disagree", "Neutral", "Strongly Disagree",

+ "Neutral", "Agree", "Strongly Agree",

+ "Disagree", "Strongly Agree", "Neutral",

+ "Strongly Disagree", "Neutral", "Agree"),

+ levels=c("Strongly Disagree", "Disagree",

+ "Neutral", "Agree", "Strongly Agree"),

+ ordered=TRUE)

> survey.results

[1] Disagree Neutral Strongly Disagree

[4] Neutral Agree Strongly Agree

[7] Disagree Strongly Agree Neutral

[10] Strongly Disagree Neutral Agree

5 Levels: Strongly Disagree < Disagree < Neutral <

... < Strongly Agree







Although as an object an ordered factor is not much different from unordered factor, they can be treated differently in statistical modeling functions.

Note, that factor can take only values of levels. Trying to supply a factor another value will result in NA:

Listing 4-15







	
1

2

3


	
> factor(c("a", "e", "d"), levels=c("d","a"))

[1] a    <NA> d   

Levels: d a







Pay attention that data.frame
 function treats all character vectors as factors by default. If you try to create a data frame with a character variable, this variable will be converted to factor. If this behavior is undesirable, use stringsAsFactor argument of data.frame
 
 function.

Tables

To analyze categorical data R provides class and corresponding function table
 . table
 takes object that can transformed into factor and counts the number of times elements of this object belong to different categories (levels). Consider the age example from Factors section:

Listing 4-16







	
1

2

3

4


	
> table(age.var)

age.var

1 2 3 4 5 7

1 2 3 2 1 1








table
 returns an object of class table that shows how many people in age.var factor belong to each of the levels or categories. Table class is built on top of integer one-dimensional array.

Since table
 counts frequencies of each level and returns tabular data, it can be turned into data frame:

Listing 4-17
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2
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5
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> as.data.frame(table(age.var))


age.var Freq



1       1    1

2       2    2

3       3    3

4       4    2

5       5    1

6       7    1    







When a data frame has a factor variable, it can also be used as input for table
 function. To count how many countries had average male height greater than 170 in the height example from Data frames section, one can write the following code:

Listing 4-18







	
1

2

3

4


	
> table(avg.male.height$Height > 170)



FALSE  TRUE


2     9









Combinations of several factors can also be counted via table
 .

Dates and Times

R has a group of classes for representation of dates and times:






	
Date


	
Demonstrates dates but not times.





	
POSIXct


	
Keeps dates and times as seconds since January 1, 1970, 12:00 A.M.





	
POSIXlt


	
Keeps dates and times in individual vectors. The list involves sec (0 –61), min (0 –59), hour (0–23), mday (day of month, 1–31), mon (month, 0–11), year (years since 1900), wday (day of week, 0 –6), yday (day of year, 0–365), and isdst (flag for  “is daylight savings time”).







Table 4-1.

If possible, keeping date and time values not as strings or numbers but as date objects is a good idea. Many good reasons explain this. First, handling dates as strings is a sophisticated process while date and time classes have functions for addition and subtraction. For instance:

Listing 4-19
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2
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4

5

6

7


	

> NewYear <- as.Date("12/31/2015", "%m/%d/%Y")



> NewYear

[1] "2015-12-31"

> NewYear - Sys.Date()

Time difference of 311 days

> Sys.Date()

[1] "2015-02-11"


	







In addition, a number of other functions for handling time and date objects is available in R. Dates and times are required by various plotting functions.

Connections

R involves a particular object type for obtaining data from or transporting data to applications or files outside of the R environment called connection
 . Connections are similar to file handles in Perl or file pointers in C. There are connections to bzip compressed files, Unix pipes, network sockets, files, URLs, zip compressed files, gzip compressed files, and FIFO (first in, first out) objects. Even the system clipboard can be read via connection.

Using connections requires creating the connection, opening the connection, employing the connection, and closing the connection. For instance, imagine that some data objects were saved into a file named consumption.RData
 and you decided to download the data. Files are saved in a compressed format by R, so you would produce a connection with the gzfile
 function. How to download the file using a connection is shown below:

Listing 4-20







	
1

2

3


	
> consumption.connection <-gzfile(description="consumption.RData",open="r")

> load(consumption.connection)

> close(consumption.connection)







Most of the time, explicit opening of the connections is not necessary. The connections will be implicitly opened by various functions for reading or writing files (save
 , download
 , or read.table
 ) when you offer a filename or URL as argument. Connections can be 
 used for reading data from non-typical files such as bz compressed files or network connections. Refer to the help file for connection to receive more details.

Formulas

Sometimes there is a need to express a relationship between variables. In some cases, a chart representing the relationship between two variables must be plotted. In other cases, a mathematical model must be designed. R offers a formula
 class allowing you to give an account of the relationship for both objectives. A formula as an object can be produced in the following way:
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2

3

4

5


	
> sample.formula <- as.formula(y~x1+x2)

> class(sample.formula)

[1] "formula"

> typeof(sample.formula)

[1] "language"







This formula means, y is a linear function of x1 and x2. Some R functions use more complicated formulas.

Tilde symbol represents the relationship between the response variables to the left and the stimulus variables to the right. Plus sign represent a linear relationship between variables. Different relations between variables can be expressed in formulas via other symbols, like zero (0), vertical bar (|), identity function (I()), asterisk (*), caret (^), and others. Several additional elements can have particular meaning in formulas, for instance, s()
 for making splines smooth in formulas used in mgcv package. For more information look at the documentation.

Time Series

Many important problems deal with the issue of how a variable modifies over time, and R involves a group to show this data: time series objects. Time series objects are used by regression functions for time series, like ar
 or arima
 . In addition, particular methods for time series are available for many plotting functions in R. Creating a time series object (of class "ts") can be done with the help of ts
 function. The series of observations are specified by main argument data. Other arguments define when the observations were carried out.

Pretty layouts can be printed by the print method for time series objects when used with units of months or quarters. This is allowed by default and is managed with the calendar argument to print.ts
 ; refer to the help file for obtaining more details. As an example, time series representing six consecutive quarters between Q4 2014 and Q1 2016 would be shown in the following way:
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2

3

4

5


	
> ts(1:6, start=c(2014, 4), frequency=4)


Qtr1 Qtr2 Qtr3 Qtr4



2014                   1

2015    2    3    4    5

2016    6










Lab Exercise: Practice data structures
 [image: ]




AIM

The AIM of the following paragraphs is to practice in dealing with data frames and matrices.

The steps involved will include:


	
Practicing data frames



	
Practicing matrices





Estimated Completion Time:

20      
 minutes



Step 1:
 
 Extend avg.male.height data frame from this chapter with average female height.  Here are the values for female averages for the same countries:[image: ]


160.76, 161.8, 166, 165.4, 154.2, 168.1, 142.2, 161, 163.2, 161.3, 162.3.

There are several ways to solve this task. One of them is to create a second data frame that hold female average heights and merge it with the first data frame:
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17

18


	
> female.avg <- c(160.76, 161.8, 166, 165.4, 154.2, 168.1, 142.2, 161, 163.2, 161.3, 162.3)

> avg.female.height <- data.frame(Country, female.avg)

> avg.female.height


Country female.avg



1   Argentina     160.76

2   Australia     161.80

3     Austria     166.00

4  Azerbaijan     165.40

5     Bahrain     154.20

6     Belgium     168.10

7     Bolivia     142.20

8      Brazil     161.00

9    Bulgaria     163.20

10   Cameroon     161.30

11     Canada     162.30

> avg.height <- merge(avg.male.height, avg.female.height)







Now we have a new data frame with three columns as we wanted:[image: ]
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> avg.height


Country Height female.avg



1   Argentina 173.48     160.76

2   Australia 175.60     161.80

3     Austria 179.00     166.00

4  Azerbaijan 171.80     165.40

5     Bahrain 165.10     154.20

6     Belgium 178.70     168.10

7     Bolivia 160.00     142.20

8      Brazil 174.00     161.00

9    Bulgaria 175.20     163.20

10   Cameroon 170.60     161.30

11     Canada 175.10     162.30







However, it would be good to change the names of the variables. As we know, names of variables are an attribute of data frame object. To change the names, we need to change the appropriate attribute:

[image: ]
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> attr(avg.height, 'names')

[1] "Country"    "Height"     "female.avg"

> attr(avg.height, 'names') <- c('country', 'male avg', 'female avg')

> avg.height


country male avg female avg



1   Argentina   173.48     160.76

2   Australia   175.60     161.80

3     Austria   179.00     166.00

4  Azerbaijan   171.80     165.40

5     Bahrain   165.10     154.20

6     Belgium   178.70     168.10

7     Bolivia   160.00     142.20

8      Brazil   174.00     161.00

9    Bulgaria   175.20     163.20

10   Cameroon   170.60     161.30

11     Canada   175.10     162.30








Step 2:
 Another way to extend a data frame is to add a column.

Let ’s first rename the second column of avg.male.height data frame. In the previous attempt we changed all of the names at once, but it is also possible to change only one of the names. After all, names attribute is nothing but a character vector so one of its values can be accessed with indexing operator. Also, let ’s use a convenient function names
 instead of attr
 :

[image: ]
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> names(avg.male.height)

[1] "Country" "Height"

> names(avg.male.height)[2] <- "Male average"

> names(avg.male.height)

[1] "Country"      "Male average"







Since a data frame is a list, to add a new column to it is as simple as adding a new element to the list:
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> avg.height <- avg.male.height

> avg.height["Female average"] <- female.avg

> avg.height


Country Male average Female average



1   Argentina       173.48         160.76

2   Australia       175.60         161.80

3     Austria       179.00         166.00

4  Azerbaijan       171.80         165.40

5     Bahrain       165.10         154.20

6     Belgium       178.70         168.10

7     Bolivia       160.00         142.20

8      Brazil       174.00         161.00

9    Bulgaria       175.20         163.20

10   Cameroon       170.60         161.30

11     Canada       175.10         162.30







Task completed

[image: ]



Step 1:
 Let

[image: ]


(a) Veify that A^3 = 0 where 0 is a 3x
 3 matrix filled with 0.

(b) Replace the third column of A by the sum of the second and third columns.

[image: ]




Step 2:
 
 Generate the following matrix B with 15 rows:[image: ]


[image: ]


Compute the 3x3 matrix [image: ]
 (Look at the help for crossprod
 ).

[image: ]


Task Completed

Challenge exercise


	
Look at warpbreaks data set included with R distribution. Split it into separate data frames depending on the type of wool. How many ways is there to achieve this?



	
Produce the following patterned matrices. In each case, your solution must make usage of particular form of the matrix —this means that the solution should quickly generalize for producing a bigger matrix with the identical structure and should not include inputting in all the entries of the matrix.





[image: ]



SUMMARY

This chapter provides essential information regarding the following tasks:

●       
 R data structures

●       
 Practicing data frames

●       
 Practicing matrices
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CHAPTER 5: Functions

Although R is very convenient for interactive usage, a need to organize, store, and reuse R code comes up sooner or later. Main tool for that in R is a function. Functions are R objects which take a group of input arguments and return an output value. In this chapter we will discuss creating functions, their properties and application.

This chapter includes the following paragraphs:


	
Function structure



	
Lexical scoping



	
Binary operators



	
on.exit



	
Functional programming






Function structure

To define a function R provides the following syntax:

function (arguments
 ) body



arguments
 are a set of symbol names and, optionally, default values that will be used in the body of the function and a body
 is an R expression. An R function is also an object; therefore, it can be assigned to a symbol like any other object with the help of assignment operator.

Any R function consists of three components: body, arguments, and environment.

The body is any valid R expression. It can be either a single expression or a complex expression produced by curly braces. The following two definitions are identical:

Listing 5-1







	
1

2


	
> f <- function(x) x

> f <- function(x) {
 x
 }







An argument list is a comma separated list of formal arguments. There are three acceptable ways to specify formal arguments:

●       
 a symbol

●       
 a symbol with default value in the form "symbol = expression"

●       
 a special formal argument "…" to specify an arbitrary number of arguments

Anything else will result in an error.

Apart from formal arguments there are also actual or calling arguments, the ones supplied by caller of a function. When a function is called, the formal arguments are matched to the actual arguments and the body is evaluated. The matching of arguments is done sequentially in the following way. Firstly, the arguments are matched by their exact names. For instance, if a function has an actual argument named "foo" it is matched with a formal argument of 
 the same name. Obviously, matching can be only on one-to-one basis, otherwise an error will be generated. After the exact matching is done, remaining arguments will be partially matched. Partial matching compares the names of actual arguments to the beginnings (prefix) in the names of formal arguments. If the name of an actual argument coincides with the beginning (prefix) of the name of a formal argument, then these two arguments are matched. Note, that just as with the exact matching there must not be any ambiguity:

Listing 5-2
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> f <- function(amount, amplitude) amount

> f

function(amount, amplitude) amount

> f(amo = 1, amp = 2)

[1] 1

> f(am = 1, amp = 2)

Error in f(am = 1, amp = 2) :


argument 1 matches multiple formal arguments



> f(amo = 1, am = 2)

Error in f(amo = 1, am = 2) :


formal argument "amount" matched by multiple actual arguments



> f(am = 1, amo = 2)

Error in f(am = 1, amo = 2) :


formal argument "amount" matched by multiple actual arguments



> f(am = 1, amount = 2)

[1] 2







In case there is no ambiguity, arguments will be partially matched without error as on line 4. Otherwise, matching process fails and errors are generated as on lines 6, 9, 12. Note, that on line 15 there is no error due to ambiguity of partial matching of argument "am" because "amount" argument was already matched during exact matching stage.

The rest of arguments, which was not mapped with exact matching and partial matching, is matched positionally.

Many R users call functions in such a way that the first, main 
 arguments are matched positionally but additional arguments that are used less are matched by name. For instance, here two main arguments are matched positionally while the third argument is matched by name:

Listing 5-3







	
1


	
> difftime(t1, t2, units = "secs")







If there is a special formal argument "…", all the actual arguments remaining after matching by name and position are associated with it. This special argument is often used to passed an arbitrary number of arguments to another function, as do plot
 , format
 and other generic functions. This can be done in the following way:

Listing 5-4







	
1


	
> f <- function(...) some.other.function(...)







"…" argument can also be directly accessed as a list in the body of a function in the following way:

Listing 5-5
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> f <- function(...) {args <- list(...); length(args)}

> f()

[1] 0

> f(4)

[1] 1

> f(4,6,7,"hello world")

[1] 4







R has also reserved symbols to access arguments in "…" list in the form: ..1, ..2, and so on.

An unmatched actual argument produces an error.

Arguments can be omitted. In this case they are called missing arguments. By itself missing argument does not produce an error due to lazy evaluation of R. To check whether the argument is missing, use missing
 function:

Listing 5-6
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> f <- function(x) { missing(x) }


> f()



[1] TRUE

> f(4)

[1] FALSE







Printing the symbol of type closure in R environment prints out all the function components. Here are formal arguments, body, and environment of difftime
 function:

Listing 5-7
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> difftime

function (time1, time2, tz, units = c("auto", "secs", "mins", "hours", "days", "weeks"))

{


if (missing(tz)) {




time1 <- as.POSIXct(time1)




time2 <- as.POSIXct(time2)




}




else {




time1 <- as.POSIXct(time1, tz = tz)




time2 <- as.POSIXct(time2, tz = tz)




}




z <- unclass(time1) - unclass(time2)




attr(z, "tzone") <- NULL




units <- match.arg(units)




if (units == "auto") {




if (all(is.na(z)))




units <- "secs"




else {




zz <- min(abs(z), na.rm = TRUE)




if (is.na(zz) || zz < 60)




units <- "secs"




else if (zz < 3600)




units <- "mins"




else if (zz < 86400)




units <- "hours"




else units <- "days"




}




}




switch(units, secs = .difftime(z, units = "secs"), mins = .difftime(z/60,




units = "mins"), hours = .difftime(z/3600, units = "hours"),




days = .difftime(z/86400, units = "days"), weeks = .difftime(z/(7 *




86400), units = "weeks"))



}

<bytecode: 0x1d40f00>

<environment: namespace:base>







Function components can also be accessed via special functions body
 , formals
 , and environment
 :

Listing 5-8
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> f <- function(x) x

> formals(f)

$x

> body(f)

x

> environment(f)

<environment: R_GlobalEnv>








formals
 functions returns the list of formal arguments with values equal to default values when they are specified. body
 function returns the expression. environment
 function, obviously, returns object of type environment.

Needless to say, all three of these functions can be used to modify the function.

As a special class, primitive functions, such as c
 or missing
 , do not consist of these three components: they are implemented on low-level for efficiency reasons.

Return value

By default, R function return value is the last evaluated expression in its body. This makes R code easier to write and read. All the functions defined in this chapter previously have the last expression as their return value.

Sometimes, however, there is a need to specify what value to return in the middle of function’s body, for example, when writing conditions or loops. For that purpose, R provides a keyword return
 . Therefore, the following definitions are equivalent:

Listing 5-9
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> f <- function(x) x

> f <- function(x) return(x)







invisible function

Default behaviour of R environment prints out the return values of functions. To avoid it, use invisible
 function:

Listing 5-10
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> f <- function(x) x

> f(1)

[1] 1

> f <- function(x) invisible(x)

> f(1)







Lexical scoping

It is important to understand how R maps symbols to their values during the evaluation of a function’s body. Firstly, when function is called a new environment is created, evaluation environment. Environment in R is essentially a set of symbols and objects. Environments are nested, the enclosing environment is often called parent environment. (R environments will be studied in more detail in the next chapter.) Secondly, R implements a lazy evaluation of function arguments which means any symbol in the body is evaluated only when it is needed, during the evaluation of body’s expression. In other words, encountering a symbol, R looks for a respective object in the environment that was newly created or its parent environments.

All the symbols, be it objects or functions, in the function’s body belong to one of the three groups: local, bounded, and unbounded 
 symbols. Local symbols are the ones declared in the body and, therefore, added to evaluation environment. They are local to the function in the sense of local variables in C or Java:

Listing 5-11
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> f <- function(y) { x <- 2^5; y }

> f(3)

[1] 3

> x

Error: object 'x' not found








Bounded symbols are those that were matched during matching of arguments, as described previously. Note, that arguments matching does not imply their evaluation: arguments are evaluated when they are needed.

Obviously, local and bounded symbols do not need looking up to find corresponding value. Any other symbol in the function’s body is unbounded and requires finding its value. R looks for a value of unbounded symbols in the following way. First the environment of a function is searched for the symbol. If symbol is not founded, R looks at the enclosing environment. This continues all the way to the global environment. If the symbol is not founded in any of parent environments, there is an error. Let’s look at the following examples:

Listing 5-12
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> f <- function() {

+   x <- 3

+   f2 <- function() 2^x

+   f2()

+ }

> f()

[1] 8







Here f2 function is defined as nested function in f. When it is called on line 4, R evaluates its body and searches symbol x. Since x is absent in an environment of f2, the lookup continues in enclosing environment, which is the environment of f. There x is found and f2 and, consequently, f is successfully evaluated. If we move definition of f2, the following happens:
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> f <- function() {

+   x <- 3

+   f2()

+ }

> f2 <- function() 2^x

> f()

Error in f2() : object 'x' not found







Parent environment of f2 is no longer the environment of f and symbol x is not found during lookup. However, this is also can an intended behavior in case we wanted a specific object x that is stored globally (in the global environment) while x in f and x in f2 are only coincidence of names:
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> f <- function() {

+   x <- 3

+   f2()

+ }

> f2 <- function() 2^x

> x <- 42

> f()

[1] 4.398047e+12







Of course, such coincidence of names is not recommended for readability of your code.

The described rules of looking up values for symbols during the execution of a function is called lexical scoping. To sum up, values are searched when function is run or evaluated but lexical scoping defines where to look for values. The important consequence is that the result of a function evaluation is greatly dependent on its enclosing environments, in other words, on where the function was defined and what objects are accessible there. With the change of environment, the result of function evaluation also changes.

Binary operators

Various functions available in R can be written as operators. A function that takes one or two arguments and can be written without parentheses is called an operator
 . Binary arithmetic operators form a group of such operators. Arithmetic procedures are an example:
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> 4 + 2

[1] 6

> 7 / 3

[1] 2.333333








Notation for other mathematical procedures, including modulus, exponents, and integer division is the following:
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> # modulus

> 41 %% 21

[1] 20

> # exponents

> 20 ^ 1

[1] 20

> # integer division

> 21 %/% 2

[1] 10







Binary operators also include some language constructs like assignment, indexing, and function calls.

Binary operators are also functions and can be defined as any normal function with the use of special notation. To define a binary operator a function of two variables must be created and assigned to a proper symbol. A proper symbol for binary operator includes a range of characters between two “%” characters. For instance, let’s specify an operator %myop% by means of which each operand is doubled and then added together:
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> `%myop%` <- function(a, b) {2*a + 2*b}

> 1 %myop% 1

[1] 4


> 1 %myop% 2



[1] 6







Binary operators are only syntactic sugar and are no different from a normal R function.

on.exit

Sometimes there is a need to perform certain actions after the function is evaluated. A cleanup operation to reset graphical parameters is a common example of such actions. To trigger such operations R provides special function on.exit
 that takes an expression and evaluates it when the function returns or exit with error:

Listing 5-18







	
1

2

3

4

5

6

7


	
> f <- function() {

+   on.exit(print("f called"))

+   pi - 4*(4*atan(1/5) - atan(1/239))

+ }

> f()

[1] "f called"

[1] -4.440892e-16







There can be only one on.exit
 triger registered so the second call of on.exit
 in the same function replaces the first call. Note, that on.exit
 is evaluated in the function environment:

Listing 5-19







	
1

2

3

4

5

6

7


	
> f <- function() {

+   on.exit(vargenerated <- TRUE)

+   x <- runif(1, 1, 8)

+ }

> f()

> vargenerated

Error: object 'vargenerated' not found







Symbol vargenerated was defined in environment of f function and 
 does not exist outside.

Functional programming

Functions in R are first-class objects. As such, they can be passed as arguments to other functions or returned as values from functions.

Among the most common functions that take a function as an argument is the family of apply functions: apply
 , sapply
 , lapply
 , vapply, mapply
 . Each of them is intended for slightly different usage, look at documentation for more information. But each of these functions take a function for processing input data as argument. As an example, let’s create a vector of doubles and round off them with sapply
 function:

Listing 5-20







	
1

2

3

4

5


	
> v <- runif(5, 1, 8)

> v

[1] 3.839826 7.213672 1.705984 5.234808 1.369218

> sapply(v, floor)

[1] 3 7 1 5 1







Since an object of type function in R is a symbol bound to closure there is no need in special syntax to pass functions as argument or return them as output from other functions: they are passed and returned as any other symbol.

R also has other properties of functional languages such as already mentioned lazy evaluation and absence of side effects. Let’s look at them more closely.

Lazy evaluation

Since arguments in R are evaluated only when needed, there are a few interesting applications of lazy evaluation.

Default values can be defined in terms of other arguments:

Listing 5-21







	
1

2

3


	
> f <- function(x, y = x+1) y


> f(3)



[1] 4







Only when the body of f was evaluated R started looking for y value. In turn x was evaluated as 3 and y argument was calculated and returned.

As a consequence, default values do not have to be independent of the function’s body:

Listing 5-22







	
1

2

3

4

5

6


	
> f <- function(y = local) {

+   local <- 3

+   y^2

+ }

> f()

[1] 9







Here y value is searched only on line 3. By that time local object is already defined so R proceeds with evaluation without an error.

If there is a need to ensure that an argument was evaluated, you can use force
 function:

Listing 5-23







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14


	
> f <- function(y = local) {

+   local <- 3

+   force(y)

+   y^2

+ }

> f()

[1] 9

> f <- function(y = local) {

+   force(y)

+   local <- 3

+   y^2

+ }

> f()

Error in y^2 : non-numeric argument to binary operator







Here symbol y is evaluated on line 3 and 9 respectively. force
 
 is sometimes needed in the loops or apply
 calls. Note, although force improves readability it is only a syntactic sugar, since argument can be evaluated without additional function calls. For instance, the following two functions are identical:

Listing 5-24







	
1

2

3

4

5

6

7

8

9

10


	
> f <- function(y = local) {

+   local <- 3

+   force(y)

+   y^2

+ }

> f <- function(y = local) {

+   local <- 3

+   y

+   y^2

+ }







Side effects

Just as a functional language, R does not have side effects during a function execution. If the result of computation is required, it must be returned explicitly and reassigned if needed. If a function uses an object from a parent environment, an attempt to modify it will change only its local copy. Let’s look at an example:

Listing 5-25







	
1

2

3

4

5

6

7

8

9


	
> g <- 42

> f <- function() {

+   g <- g / 2

+   g %% 2

+ }

> f()

[1] 1

> g

[1] 42







Manipulations with g during evaluation of function f did not affect the global object g. f has read the global object g but during assignment on line 3 a new object with name g was created.

There is a way to sidestep this behavior which we will look at in the next chapter.




Lab Exercise: Practice Functions
 [image: ]




AIM

The AIM of the following paragraphs is to practice in dealing with functions.

The steps involved will include:


	
Practicing simple functions



	
Practicing harder functions





Estimated Completion Time:

20 minutes



Step 1:
 
 (a) Write functions tmpFn1 and tmpFn2 such that if xVec is the vector (x1, x2, . . . , xn), then tmpFn1(xVec) returns vector ( x1, x2^2 , . . . , xn^n ) and tmpFn2(xVec) returns vector ( x1, x2^2/2 , . . . , xn^n/n)[image: ]


(b) Write a function tmpFn3 that takes 2 arguments x and n where x is a single number and n is a strictly positive integer. The function should return the value of

1 + x/1 + x^2/2 + x^3/3 + · · · + x^n/n .

[image: ]
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> tmpFn1 <- function(xVec)





+ {



+ xVec^(1:length(xVec))



+ }



> tmpFn2 <- function(xVec)



+ {



+ n <- length(xVec)



+ (xVec^(1:n))/(1:n)



+ }



> tmpFn3 <- function(x, n)



+ {



+ 1 + sum((x^(1:n))/(1:n))



+ }



> tmpFn1(1:3)



[1]  1  4 27



> tmpFn2(1:3)



[1] 1 2 9



> tmpFn3(2,10)



[1] 238.3079








[image: ]


[image: ]



Step 2
 :  Let xVec = (x1, . . . , xn) and yVec = (y1, . . . , ym). There is zVec = (z1, . . . , zn) where:

[image: ]


I is the indicator function.

(a) By applying the function outer
 , write a function which takes the arguments xVec and yVec and gives back the vector zVec.

(b) Reiterate part (a) but use sapply
 instead of outer
 .

(c) Now reiterate part (a) but use vapply
 instead of outer
 or sapply
 .




[image: ]
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> fun4q1a <- function(xVec, yVec){

+ colSums( outer(yVec, xVec, "<") )

+ }

> fun4q1b <- function(xVec, yVec){

+ rowSums( sapply(yVec, FUN=function(y){y < xVec}) )

+ }

> fun4q1c <- function(xVec, yVec){

+ rowSums( vapply(yVec, FUN=function(y){y<xVec}, FUN.VALUE=seq(along=xVec)) )

+ }

> r1<-rnorm(10)

> r2<-rnorm(12)

> fun4q1a(r1,r2)

[1]  1  4  1 12  4  1  5  6  5  2

> fun4q1b(r1,r2)

[1]  1  4  1 12  4  1  5  6  5  2

> fun4q1c(r1,r2)

[1]  1  4  1 12  4  1  5  6  5  2

>







[image: ]



Challenge exercise

1. Write a function tmpFn(xVec) such that if xVec is the vector x = (x1, . . . , xn) then tmpFn(xVec) gives back the vector of moving averages:

(x1 + x2 + x3)/3 , (x2 + x3 + x4)/3 , . . . , (xn−2 + xn−1 + xn)/3

Your function should be tested; for instance, try tmpFn( c(1:5,6:1) ).

2. Imagine an angle α is given as a positive real number of degrees.

If 0 ≤ α < 90 then it is quadrant 1. If 90 ≤ α < 180 then it is quadrant 2.

If 180 ≤ α < 270 then it is quadrant 3. If 270 ≤ α < 360 then it is quadrant 4.

If 360 ≤ α < 450 then it is quadrant 1. And so on. Write a function quadrant(alpha) which returns the quadrant of the angle α.

3. Zeller’s congruence is the formula:

f = ( [2.6m − 0.2] + k + y + [y/4] + [c/4] − 2c ) mod 7

where [x] marks the integer part of x; for example [7.5] = 7.

Zeller’s congruence gives back the day of the week f given: k – the day of the month, y – the year in the century, c – the first 2 digits of the year (the century number), m – the month number (where January is month 11 of the preceding year, February is month 12 of the preceding year, March is month 1, etc.)

For instance, the date 21/07/1963 has m = 5, k = 21, c = 19, y = 63; whilst the date 21/2/1963 has m = 12, k = 21, c = 19 and y = 62

Write a function which takes numerical values of day, month and year and returns the day of the week.

SUMMARY

This chapter provides essential information regarding the following issues:

●       
 Creating functions

●       
 Dealing with builtin functions
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CHAPTER 7: Input and output of data

It is often said that R is a great tool for statistical analysis and research, since R language comes with a lot of statistical functionality by default. However, that mathematical muscle would be useless if not for the ability to import and manipulate data easily and efficiently. Let's focus on ways to import and export data when programming in R.

This chapter includes the following paragraphs:


	
Entering data within



	
Saving and loading R objects



	
Importing data from external files



	
Importing data from databases



	
Exporting data






Entering data within

The simplest way to enter data into R is manual entry using assignment to create objects holding the data. Creation of symbols of different types described in Chapter 2 and Chapter 3 can also be considered the data entry:

Listing 7-1







	
1


	
> equilibriums <- c('sink', 'node', 'source', 'source', 'sink')







Since a data frame in R is a list of vectors, it can be arranged by putting together several vectors of the same length:

Listing 7-2







	
1

2

3

4

5

6


	
> fruit <- c('banana', 'orange', 'apple')

> carbohydrate <- c(24, 11.3, 15)

> protein <- c(1.3, 0.9, 0.3)

> fat <- c(0.4, 0.2, 0.4)

> chemicals <- data.frame(fruit, carbohydrate, protein, fat)

> chemicals


fruit carbohydrate protein fat



1 banana         24.0     1.3 0.4

2 orange         11.3     0.9 0.2

3  apple         15.0     0.3 0.4







Although the types of vectors in such a construction can be arbitrary, their length must be the same. It is the responsibility of user to ensure the equality of length.

Note that character vectors are converted to factors by default during the execution of data.frame
 function call. In order to prevent this conversion the stringsAsFactors argument must be specified.

Another way of manual entry is to use edit
 or fix
 function on an object (data frame or matrix):

Listing 7-3







	
1

2


	
> x <- data.frame(character(4), numeric(4))

> x <- edit(x)








edit
 function opens a text editor where the entries can be altered or entered. This function works with a copy of provided object so it's return value must be assigned somewhere to be preserved. Note that after copying and editing object can be slightly altered.


edit
 function can also be used to enter new data to empty data frame:

Listing 7-4







	
1


	
> edit(data.frame())







Since statistical data can always be represented in the form of a table, one of the most important functions for reading data in R is read.table
 function. read.table
 can be used to read from standard input stream in the following way:

Listing 7-5







	
1


	
> data <- read.table(stdin())

0:







Zero followed by colon prompts user to enter first row of data separated by spaces. All the next rows are entered similarly until user terminates with EOF signal. The resulting data object would be of class data.frame.


read.table
 with stdin() is convenient for copy-and-paste data entry.

Manual way of entering data is cumbersome and, therefore, limited. In the following sections methods to import data from external sources are described.

Saving and loading R objects

The commands used to create R objects can be put into R script and then loaded with source
 function:

Listing 7-6







	
1


	
> source('objects.R')







If objects.R contains an assignment of a data frame to symbol chemicals (which in other languages is often called global variable), then after execution of source function the workspace will contain object chemicals of class data frame.


dput
 function allows preserving object's type by writing down the ASCII representation of an object:

Listing 7-7







	
1


	
> dput(chemicals)

structure(list(fruit = structure(c(2L, 3L, 1L), .Label = c("apple",

"banana", "orange"), class = "factor"), carbohydrate = c(24,

11.3, 15), protein = c(1.3, 0.9, 0.3), fat = c(0.4, 0.2, 0.4)), .Names = c("fruit",

"carbohydrate", "protein", "fat"), row.names = c(NA, -3L), class = "data.frame")







Such an ASCII output can be copied into R script or saved to external file with dput(chemicals, 'file.dat') command. Function dget
 allows reading such a definition in file.dat:

Listing 7-8







	
1


	
> chemicals <- dget('file.dat')







Another way to achieve this is to use dump
 function:

Listing 7-9







	
1


	
> dump('chemicals', 'chemicals.Rdmp')







The chemicals.Rdmp is a text file that contains the following assignment:

chemicals <-

structure(list(fruit = structure(c(2L, 3L, 1L), .Label = c("apple",  "banana", "orange"), class = "factor"), carbohydrate = c(24, 11.3, 15), 
 protein = c(1.3, 0.9, 0.3), fat = c(0.4, 0.2, 0.4)), .Names = c("fruit", "carbohydrate", "protein", "fat"), row.names = c(NA, -3L), class = "data.frame")

Thus, it can be loaded into R with source('chemicals.Rdmp').

For larger objects R binary format can be used to reduce size:

Listing 7-10







	
1

2


	
> save('chemicals', file='chemicals.Rdata')

> load('chemicals.Rdata')







Importing data from external files

Function read.table
 mentioned in previous section can also be used to read data from external sources:

Listing 7-11







	
1


	
> test <- read.table('test.dat')







By default read.table
 looks at first five lines of the file to determine number of columns. Empty fields are treated as missing values. This behavior can be changed via read.table
 arguments. To handle different conditions the data can be stored in, read.table
 has many arguments like indicating the field separator symbol or reading the header line. If the data file contains characters outside of ASCII character set, the fileEncoding argument of read.table
 should be specified.

When you have data files of particular format, it is more convenient to use one of the wrapper functions:

●       
 read.csv, read.csv2

●       
 read.delim, read.delim2

●       
 read.DIF

●       
 read.fwf

●       
 read.fortran

●       
 
 read.ftable

The functionality provided by these functions can be defined with read.table
 . For an example, here is the definition of read.delim
 function:

Listing 7-11







	
1


	
> read.delim

function (file, header = TRUE, sep = "\t", quote = "\"", dec = ".",


fill = TRUE, comment.char = "", ...)



read.table(file = file, header = header, sep = sep, quote = quote,


dec = dec, fill = fill, comment.char = comment.char, ...)









To import data from xml use CRAN package XML. There are also packages that can be used to import data from files created by software like SPSS, SAS or Excel, but generally it is better to export data to more common formats like csv and then import them via standard function read.csv.

While read.table
 , read.csv
 and similar functions are sufficient for reading tables and to store them in data frames, they should not be used for large numerical matrices. Instead, scan
 function can be used.


scan
 's arguments are similar to those of read.table
 . But it is a lower level function and read.table
 is built on top of scan
 .

Unlike the read.table
 function which returns a data frame, the scan
 function returns a list or a vector. To receive a list what argument must be specified:

Listing 7-12







	
1

2

3

4


	
> test <- scan('test.dat')

> class(test)

[1] "numeric"

> test <- scan('test.dat', what=list(double(0), character(0)))

> class(test)

[1] "list"







For even larger amount of data it might be better to import it from a database.

Importing data from databases

R is not well suited for manipulations of a large amount of data since it stores all of its objects in memory while creating a lot of copies of objects during execution. Moreover, R currently does not support concurrent access or persistence of data as database management systems (DBMS) do.

When data is stored in a database, packages available on CRAN can be used in order to import data from DBMS into R. Here is a list of such packages depending on the database type:

●       
 RMySQL

●       
 ROracle

●       
 RPostgreSQL

●       
 RSQLite

●       
 RJDBC

●       
 RODBC

●       
 Rmongo, rmongodb

●       
 RCassandra

There are also packages that provide an abstract access to several types of databases, like RODBC and DBI.

Database packages allow to connect to databases, to select data via SQL queries, and to retrieve the result as a whole as a data frame or in pieces. For a whole list of functionality consult documentation of specific package.

Exporting data

R provides means to export data via analogues of read function: standard functions write
 , write.table
 , write.csv
 , write.ftable
 . For example, to save the data frame to csv file without row names and blanks in place of NAs:

Listing 7-13







	
1


	
> write.csv(chemicals, "chemicals.csv", row.names=FALSE, na="")







While writing export functions, pay special attention to the precision of numbers and encoding when needed. If there is a need to save R-specific information of objects use methods described previously in this chapter.

Just as it is possible to read data from standard input with read.table
 , it is also possible to write data to standard output for copy-and-paste:

Listing 7-14







	
1


	
> write.table(data, stdout())







In Windows it is also possible to write directly to the clipboard:

Listing 7-15







	
1


	
> write.table(data, 'clipboard')







In order to export data into formats of statistical software like SPSS, SAS or Excel, consult the appropriate CRAN packages.

The sink
 function is provided in order to save the output generated by R code. It redirects output to the file given as an argument. To stop redirection sink
 must be called again without arguments:

Listing 7-16







	
1

2

3

4


	
> sink('output.txt')

# run your code here, output is redirected to output.txt

> sink()

# output is visible again








Lab Exercise 1: 
 Different ways to read external data

[image: ]


AIM

The aim of the following exercise is to practice reading external data and compare read.table and scan functions.

The steps involved will include:


	
.xls → .csv



	
read with read.csv



	
read with scan





Estimated Completion Time: 10 minutes.


[image: ]



Step 1:
 Open ch07-ex01.xls file. This data is taken from the World Health Organization site without changes and contains information about air pollution in cities and countries. Open ch07-ex01.xls file in a spreadsheet software (MS Excel or analogue), switch to “countries” sheet and choose “Save as...” to save it in .csv format. Pay attention to encoding: let it be UTF-8. You may be warned about not being able to save data from other sheets (that is “Notes” and “cities”). At this point you should have file like ch07-ex01.csv that contains the same information as “countries” sheet of ch07-ex01.xls file.


Step 2:
 Read data with read.csv function:


[image: ]








	
1

2


	
> air <- read.csv('ch08-ex01.csv')

> str(air)

'data.frame':​
 102 obs. of  8 variables:

$ X                   : Factor w/ 21 levels "","Afr","Amr HI",..: 16 2 2 2 2 2 3 3 3 3 ...

$ X.1                 : Factor w/ 93 levels "","Afghanistan",..: 22 32 54 75 80 90 17 18 89 91 ...

$ Annual.mean..ug.m3  : Factor w/ 61 levels "","10","11","114",..: 61 60 54 17 48 35 3 51 19 27 ...

$ Year                : Factor w/ 13 levels "","2008","2008-2010",..: 13 2 7 11 10 9 8 9 1 11 ...

$ Annual.mean..ug.m3.1: Factor w/ 48 levels "","10","101",..: 48 32 26 29 19 15 44 20 4 10 ...

$ Year.1              : Factor w/ 12 levels "","2008","2008-2012",..: 12 2 1 10 9 8 7 3 10 10 ...

$ Number.and.type     : Factor w/ 79 levels "","11 stations in 8 cities",..: 51 39 17 26 22 8

6 28 40 16 ...









[image: ]







	
	
$ Reference           : Factor w/ 6 levels "","2012 State of Air Report and National Air Quality Indicator Session 1.4 - SAAQIS, from the 7th Lekgota on Air Quality Governanc"| __truncated__,..: 4 6 6 6 2 6 6 6 6 6 ...







As can be seen all variables were read as factors. If this behavior is undesirable, you should use stringsAsFactors argument:







	
1

2


	
> air <- read.csv('ch08-ex01.csv', stringsAsFactors=FALSE)

> str(air)

'data.frame':​
 102 obs. of  8 variables:

$ X                   : chr  "Region" "Afr" "Afr" "Afr" ...

$ X.1                 : chr  "Country" "Ghana" "Mauritius" "Senegal" ...

$ Annual.mean..ug.m3  : chr  "PM10" "98" "72" "179" ...

$ Year                : chr  "PM10" "2008" "2010" "2012" ...

$ Annual.mean..ug.m3.1: chr  "PM 2.5" "49" "37" "40" ...

$ Year.1              : chr  "PM2.5" "2008" "" "2012" ...

$ Number.and.type     : chr  "of monitoring stations" "5 stations in Accra (capital city)" "2







[image: ]







	
	
stations in 2 cities" "3 stations in capital city: 2 traffic, 1 urban for PM10;  1 station traffic for PM2.5" ...

$ Reference           : chr  "for air quality" "#N/A" "#N/A" "#N/A" ...








Step 3:
 Read data with scan function:







	
1


	
>  air <- scan('ch08-ex01.csv', what=rep(list("character"),8), sep=',', skip=1)

Read 102 records







If read.csv returned a data frame then scan returns a list (as specified in what argument):







	
1


	
>  str(air)

List of 8

$ : chr [1:102] "Region" "Afr" "Afr" "Afr" ...

$ : chr [1:102] "Country" "Ghana" "Mauritius" "Senegal" ...

$ : chr [1:102] "PM10" "98" "72" "179" ...

$ : chr [1:102] "PM10" "2008" "2010" "2012" ...

$ : chr [1:102] "PM 2.5" "49" "37" "40" ...



$ : chr [1:102] "PM2.5" "2008" "" "2012" ...







[image: ]







	
	
$ : chr [1:102] "of monitoring stations" "5 stations in Accra (capital city)" "2 stations in 2 cities" "3 stations in capital city: 2 traffic, 1 urban for PM10;  1 station traffic for PM2.5" ...

$ : chr [1:102] "for air quality" "#N/A" "#N/A" "#N/A" ...

Read 102 records







Task completed

Lab Exercise 2:  Reading custom formatted data

[image: ]


AIM

The aim of the following exercise is to practice reading data in custom formats.

The steps involved will include:


	
decide on the output of read function



	
write custom read function



	
preserve metadata provided by the format





Estimated Completion Time: 20 minutes.



Step 1:
 
 Look at the format of the custom formatted video data in file ch07-ex02.mydat :[image: ]
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x 10

y 5

start 1

end 4



26,25,26,25,25,27,29,29,28,29,28,27,27,29,29,27,26,24,24,24,23,23,23,23,23,22,22,22,22,22,22,21,22,22,22,22,22,22,21,20,19,19,20,20,21,21,21,21,21,21



24,25,19,18,19,18,18,19,17,17,17,17,20,24,20,20,21,21,22,20,24,23,18,33,43,42,47,50,52,60,61,61,61,61,63,63,56,52,50,47,45,49,38,31,25,19,22,24,24,24



39,23,22,20,20,19,21,19,19,19,19,19,20,20,20,21,19,18,18,16,19,23,21,21,22,21,20,21,22,23,24,24,26,24,23,23,23,23,22,21,21,20,19,22,23,24,23,24,26,25



36,23,22,20,20,19,21,19,19,19,19,19,20,20,22,22,18,17,17,16,19,23,23,23,22,21,20,21,22,23,24,24,26,24,23,23,23,23,22,21,21,20,19,22,23,24,23,24,26,25







The video data consists of sequence of frames preceded by metadata. Each frame is a vector of values—indices of palette. Metadata can have an arbitrary order and consists of size of frames (x and y) and number of frames from start to end.

As the main information in this format is frame data, let's write a 
 function that will return an array of frames. In R it can be achieved by 3-dimensional array.


Step 2:
 Since the format of data is custom, we will have to use low-level functions like scan. Then read function for mydat format may look in the following way:
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read.mydat <- function(file) {


curLine <- 0




for (i in 1:4) {




line <- scan(file, what=character(0),




nlines=1, skip=curLine)




if (line[1] == "x")




x <- as.numeric(line[2])




else if (line[1] == "y")




y <- as.numeric(line[2])




else if (line[1] == "start")




start <- as.numeric(line[2])




else if (line[1] == "end")




end <- as.numeric(line[2])




curLine <- curLine + 1




}




curLine <- curLine + 1




frames <- array(0, dim=c(x, y, end - start + 1))




for (frameIndex in start:end) {




f <- scan(file, sep=",", what=integer(0),




nlines=1, skip=curLine)




frames[, , frameIndex - start + 1] <- f




curLine <- curLine + 2




}




frames



}







As mydat format provides the dimensions of data we can create object of necessary size to contain the whole video, as done on line 17. However, if there is a great number of frames and (or) their size 
 is large we may have to adjust read.mydat function to handle it. As of now, read.mydat reads input file into an array of size 10 x 5 x 4:
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> data <- read.mydat('ch08-ex02.mydat')

Read 2 items

Read 2 items

Read 2 items

Read 2 items

Read 50 items

Read 50 items

Read 50 items

Read 50 items

> str(data)

num [1:10, 1:5, 1:4] 26 25 26 25 25 27 29 29 28 29 ...

> object.size(data)

1808 bytes








Step 3:
 The x and y in meta data can be looked up in dim attribute of array returned by read.mydata, but start and end frame cannot: the third dimension of array is equal to difference between start and end frame, what if the start frame is not 1? In that case we should preserve the metadata in the object returned by read.mydat. This can be achieved by assigning attributes to the array and the new version of read.mydata looks like this:
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read.mydat <- function(file) {


curLine <- 0




for (i in 1:4) {




line <- scan(file, what=character(0),




nlines=1, skip=curLine)




if (line[1] == "x")




x <- as.numeric(line[2])




else if (line[1] == "y")




y <- as.numeric(line[2])




else if (line[1] == "start")




start <- as.numeric(line[2])




else if (line[1] == "end")




end <- as.numeric(line[2])




curLine <- curLine + 1




}




curLine <- curLine + 1




frames <- array(0, dim=c(x, y, end - start + 1))




attr(frames, "start") <- start




attr(frames, "end") <- end






for (frameIndex in start:end) {




f <- scan(file, sep=",", what=integer(0),




nlines=1, skip=curLine)




frames[, , frameIndex - start + 1] <- f




curLine <- curLine + 2




}




frames



}
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Now, our array object contains meta data as well:
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> data <- read.mydat('ch08-ex02.mydat')

> str(data)

num [1:10, 1:5, 1:4] 26 25 26 25 25 27 29 29 28 29 ...

- attr(*, "start")= num 1

- attr(*, "end")= num 4

- attr(*, "x")= num 10

- attr(*, "y")= num 5







Task completed


Lab Exercise 
 3:  R dataset in the spreadsheet table

[image: ]


AIM

The aim of the following exercise is to practice saving R data frame to the independent format so that it can be opened by spreadsheet software.

The steps involved will include:


	
create the data frame object



	
write data frame to file



	
open table in spreadsheet software





Estimated Completion Time: 10 minutes.



Step 1:
 
 Convert Titanic dataset into data frame.[image: ]


R has a set of datasets installed along with it, you can see and load them with data
 function:







	
1


	
>  data()







Look at the Titanic dataset:
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> data(Titanic)

> Titanic

, , Age = Child, Survived = No




Sex



Class  Male Female


1st     0      0




2nd     0      0




3rd    35     17




Crew    0      0





, , Age = Adult, Survived = No




Sex



Class  Male Female
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1st   118      4




2nd   154     13




3rd   387     89




Crew  670      3





, , Age = Child, Survived = Yes




Sex



Class  Male Female


1st     5      1




2nd    11     13




3rd    13     14




Crew    0      0





, , Age = Adult, Survived = Yes




Sex
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Class  Male Female




1st    57    140




2nd    14     80






3rd    75     76




Crew  192     20









Titanic is of class table. Let's convert it into data frame:
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> titanic_dtfrm <- as.data.frame(Titanic)

> titanic_dtfrm


Class    Sex   Age Survived Freq



1    1st   Male Child       No    0

2    2nd   Male Child       No    0

3    3rd   Male Child       No   35

4   Crew   Male Child       No    0

5    1st Female Child       No    0

6    2nd Female Child       No    0

7    3rd Female Child       No   17

8   Crew Female Child       No    0
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9    1st   Male Adult       No  118



10   2nd   Male Adult       No  154

11   3rd   Male Adult       No  387

12  Crew   Male Adult       No  670



13   1st Female Adult       No    4

14   2nd Female Adult       No   13

15   3rd Female Adult       No   89

16  Crew Female Adult       No    3

17   1st   Male Child      Yes    5

18   2nd   Male Child      Yes   11

19   3rd   Male Child      Yes   13

20  Crew   Male Child      Yes    0

21   1st Female Child      Yes    1

22   2nd Female Child      Yes   13

23   3rd Female Child      Yes   14

24  Crew Female Child      Yes    0

25   1st   Male Adult      Yes   57
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26   2nd   Male Adult      Yes   14

27   3rd   Male Adult      Yes   75

28  Crew   Male Adult      Yes  192

29   1st Female Adult      Yes  140

30   2nd Female Adult      Yes   80

31   3rd Female Adult      Yes   76

32  Crew Female Adult      Yes   20








Step 2:
 Write data frame to file:
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>  write.table(titanic_dtfrm, 'titanic.table')









Now titanic.table is a text file that contains data about Titanic survivors. Take a look at it.


Step 3:
 Open titanic.table in spreadsheet program. Choose correctly field separator so that data looks the same as in R console.

Your spreadsheet program should look like this:

[image: ]
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Task Completed


Challenge exercise


	
Read price of gold set by LBMA (London Bullion Market Association) for the 2014 year via API provided by Quandl:






https://www.quandl.com


Make sure of the types of variables in the dataset.


	
Check out connections to learn about mechanisms underlying input/output in R.



	
Rewrite read.mydat function with readLines
 function. Compare it with initial function in lab exercise 2.





Estimated Completion Time: 20 minutes.


SUMMARY

This chapter provides essential information about import and export of data and teaches you to carry out the following tasks:

●       
 How to load and save data from R to different formats

●       
 Writing read functions to handle custom made formats

●       
 Using CRAN packages to handle non-standard formats


REFERENCES

●       
 http://cran.r-project.org/doc/manuals/r-release/R-data.html



●
        
 http://cran.r-project.org/


●       
 http://www.who.int/


CHAPTER 10: Object-oriented programming

Many R packages are written using mechanisms of object-oriented programming, and R includes several different systems for object-oriented programming. In this chapter we will look at two most commonly used OO systems, S3 and S4.

This chapter includes the following paragraphs:


	
Object-oriented programming in R



	
S3



	
S4



	
Comparison of OO systems






Object-oriented programming in R

Object-oriented programming is not
 the same thing as programming with objects. R is a very object-centric language; everything in R is an object. However, there is more to OOP than just objects. Here’s a short description of what object-oriented programming means.

Central to any object-oriented system are the concepts of class and method. A class defines the behavior of objects by describing their attributes and their relationship to other classes. The class is also used when selecting methods, functions that behave differently depending on the class of their input. Classes are usually organized in a hierarchy: if a method does not exist for a child, then the parent’s method is used instead. It is said then that the child inherits behavior from the parent. Another useful tool is polymorphism that allows the same method name to be used for different objects but its behavior varies according to class of the object.

Depending on how classes and methods are implemented there can be different object-oriented systems. Usually object-oriented languages have a definite approach towards implementation. However, R language was not built with an object-oriented paradigm in mind.

What do we mean that R language was not built with an object-oriented paradigm in mind? As was shown in previous sections, each object in R has a string attribute called class. But it cannot be used as a class declaration in the sense of OO paradigm: firstly, class attribute is easily overwritten just as any other attribute; secondly, there is no way to validate that the object truly belongs to the declared class.

As a consequence, although everything in R is an object, there are several object-oriented systems available in R. In the following sections let’s take a look at two most prominent object-oriented systems in R, S3 and S4.

S3

S3 objects were first introduced in version 3 of the S language and later inherited by R. S3 is the most common object-oriented system. It is simple and minimalistic and often is considered informal and sloppy.

S3 system is different from most object-oriented languages since it relies on generic functions as its main pillar. A generic function is a function that examines the class of its first argument, and thus decides which specific method to dispatch to. Generic functions can be recognized by name convention. Often, they are named in the following form:

generic_name.class_name

Many important R functions were written via S3 classes and generics such as the statistical modeling software. plot
 , mean
 , print
 , etc. are among generic functions in base package. Let’s take a look at plot
 function:
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> plot

function (x, y, ...)

UseMethod("plot")

<bytecode: 0x2b82ed8>

<environment: namespace:graphics>

> methods(plot)

[1] plot.acf*           plot.data.frame*    plot.decomposed.ts*

[4] plot.default        plot.dendrogram*    plot.density*      

[7] plot.ecdf           plot.factor*        plot.formula*      

[10] plot.function       plot.hclust*        plot.histogram*    

[13] plot.HoltWinters*   plot.isoreg*        plot.lm*           

[16] plot.medpolish*     plot.mlm*           plot.ppr*          

[19] plot.prcomp*        plot.princomp*      plot.profile.nls*  

[22] plot.spec*          plot.stepfun        plot.stl*          

[25] plot.table*         plot.ts             plot.tskernel*     

[28] plot.TukeyHSD*     




Non-visible functions are asterisked









All methods that belong to the generic can be seen with methods
 function as shown on line 6. Alternatively, methods
 function can be used to see what generics are available for specific class of objects:
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> methods(class="lm")

[1] add1.lm*           alias.lm*          anova.lm*          case.names.lm*    

[5] confint.lm         cooks.distance.lm* deviance.lm*       dfbeta.lm*        

[9] dfbetas.lm*        drop1.lm*          dummy.coef.lm      effects.lm*       

[13] extractAIC.lm*     family.lm*         formula.lm*        hatvalues.lm*     

[17] influence.lm*      kappa.lm           labels.lm*         logLik.lm*        

[21] model.frame.lm*    model.matrix.lm    nobs.lm*           plot.lm*          

[25] predict.lm         print.lm*          proj.lm*           qr.lm*            

[29] residuals.lm       rstandard.lm*      rstudent.lm*       simulate.lm*      

[33] summary.lm         variable.names.lm* vcov.lm*          




Non-visible functions are asterisked









Classes

So, what are S3 classes? S3 class is simply an object with defined class attribute. To create object of S3 class you must set the class attribute accordingly. Consequently, there is no way to check whether the object belongs to S3 class. As an object you can use any R object, like built-in data structures, objects of base types, functions, or objects of other S3 classes.

It is commonplace to provide constructor function to create an object of a certain type. As a matter of fact, we have already used such constructor functions. For example, let’s look at definition of a factor
 function:
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> factor

function (x = character(), levels, labels = levels, exclude = NA,


ordered = is.ordered(x), nmax = NA)



{


if (is.null(x))




x <- character()




nx <- names(x)




if (missing(levels)) {




y <- unique(x, nmax = nmax)




ind <- sort.list(y)




y <- as.character(y)




levels <- unique(y[ind])




}




force(ordered)




exclude <- as.vector(exclude, typeof(x))




x <- as.character(x)




levels <- levels[is.na(match(levels, exclude))]




f <- match(x, levels)




if (!is.null(nx))




names(f) <- nx




nl <- length(labels)




nL <- length(levels)




if (!any(nl == c(1L, nL)))




stop(gettextf("invalid 'labels'; length %d should be 1 or %d",




nl, nL), domain = NA)




levels(f) <- if (nl == nL)




as.character(labels)




else paste0(labels, seq_along(levels))




class(f) <- c(if (ordered) "ordered", "factor")




f



}








factor
 
 function takes in a vector of data, checks or searches for categories inside this vector and returns transformed object with defined class. Note that class attribute can take multiple values, in other words, an object can belong to several classes at the same time.

Is there a way to guarantee that an object belongs to S3 class? No, there is not, so the safety of your code depends solely on you.

Methods

True power of S3 objects comes from generics. Essentially, generic function methods of classes. To define a new generic one can, use UseMethod
 function that takes only one argument, the name of a generic. So, to create a new generic:
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> my_generic <- function(x) UseMethod("my_generic")







To define methods for specific classes simply define functions with corresponding names. For instance, to specify my_generic for objects of class A and to call it:
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> my_generic.A <- function(x) "calling my_generic for A!"

> x <- c(3,5); class(x) <- "A"

> my_generic(x)

[1] "calling my_generic for A!"

> my_generic(c(3))

Error in UseMethod("my_generic") :


no applicable method for 'my_generic' applied to an object of class "c('double', 'numeric')"









It is also possible not only to define new generics but to extend existing functionality. For example, let’s look at mean
 function. It cannot be used on factor object by default:
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>
 f <- factor(c(3,5,2,2,3,2))

> mean(f)

[1] NA

Warning message:

In mean.default(f) : argument is not numeric or logical: returning NA







Let’s extend mean function so that it will return the most frequent category of a given factor:
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> mean.factor <- function(f) max(table(f))

> mean(f)

[1] 3







As you can guess from these little demonstrations, during dispatch of generic function name of a function in the form generic_name.class_name is constructed and if such a function exists, it will be called. If it does not exist, you can use a fallback mechanism via defining generic_name.default function. If an object belongs to several classes, they all will be checked in order of their definition until one of them has a corresponding method.

It is a simple mechanism that does not provide any validity checks.

Inheritance

Inheritance in S3 is done simply via multiple values of class attribute. You can specify a vector of classes that object belongs to: from the most specific to the most general, from child to parent. Then, during generic dispatch all of these classes will checked for existnce of a corresponding method one by one, as was described in the previous subsection. This process can be bypassed via the NextMethod
 function. If a method implementation contain call to NextMethod function, evaluation will be passed to a less specific method, to the parent.

S4

S4 is a more rigid and formal object-oriented system than S3. An S4 
 object is more similar to the objects in commonly used object-oriented languages, like C++ or Java: it has data elements, fields, that are called slots
 . Slots can be accessed and changed in methods or functions. There are also mechanisms to ensure validity of an S4 object during its creation.

Classes

An S4 class is defined with setClass
 function. It takes a number of options, many of which are optional.

To create a new class the name, character string, must be specified as a first argument to setClass
 . Let’s create class «song» with two slots, name and duration:
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> setClass("song", representation=list(name="character", duration="numeric"))








setClass
 creates no new object, so song is not a new symbol is the environment. To get description of a class use getClass
 function instead:
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> song

Error: object 'song' not found

> getClass("song")

Class "song" [in ".GlobalEnv"]



Slots:



Name:       name  duration

Class: character   numeric







Thus, setClass
 only creates a definition of a class. To get access to slots’ names use getSlots
 and slotNames
 functions:
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> getSlots("song")


name    duration




"character"   "numeric"



> slotNames("song")

[1] "name"     "duration"







A constructor function new
 that can be used to create a new object of the given class:
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> s <- new("song")

> s

An object of class "song"

Slot "name":

character(0)



Slot "duration":

numeric(0)







To check whether an object belongs to an S4 class use isS4 function. Functions described in previous chapters, like typeof
 and class
 , can also be used.
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> isS4(s)

[1] TRUE

> typeof(s)

[1] "S4"

> class(s)

[1] "song"

attr(,"package")

[1] ".GlobalEnv"

> mode(s)

[1] "S4"

> str(s)

Formal class 'song' [package ".GlobalEnv"] with 2 slots


..@ name    : chr(0)




..@ duration: num(0)









As output of str
 function shows, slots can accessed via @ operator:
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> s@name

character(0)

> s@duration

numeric(0)







@ operator can also be used to change the value of a slot. Alternatively, you can use slot
 function to access the field of an object.

There are many useful optional arguments for setClass
 . Use prototype argument to set default values and validity argument to define function that checks the validity of an object of this class. To simplify the creation of new classes, the methods package includes two functions for creating the representation and prototype arguments, called representation
 and prototype
 respectively. These functions are very helpful when defining classes that extend other classes as a data part, have multiple superclasses, or combine extending a class and slots.

Let’s change the definition of song class so that duration of a song cannot be negative:
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>
   setClass("song", representation=list(name="character", duration="numeric"),

+   validity=function(object) {

+     if(object@duration < 0)

+       return("Duration of a song cannot be negative")

+     return(TRUE)

+   })







Alternatively, validity function can be defined later with setValidity
 function.

Now, attempt to create an object of class song with negative duration will result in error:
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>
   new("song", name = "concert", duration = -3)

Error in validObject(.Object) :


invalid class “song” object: Duration of a song cannot be negative









However, validity check is bypassed during an assignment to the slot:
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>
   s <- new("song", name = "concert", duration = 3)

> s@duration

[1] 3

> s@duration <- -3

> s@duration

[1] -3
   







In other words, validity function is called automatically only upon creation of an object. On the other hand, an explicit validity check can be performed via validObject
 function:
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>
   
 validObject(s)

Error in validObject(s) :


invalid class “song” object: Duration of a song cannot be negative



> s@duration <- 3

> validObject(s)

[1] TRUE
   







To enable coercion for your class, register coercion methods with the setAs
 function. Then it is possible to convert an object x to class c
 by calling as(o, x).


Methods

Methods for S4 objects are defined via setGeneric
 and setMethod
 functions. setGeneric
 creates a new generic or converts an existing function into a generic. setMethod
 takes the name of the generic, the classes the method should be associated with, and a function that implements the method. For example, here is a way to extend a union
 function, which usually just works on vectors, and make it 
 work with data frames:
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>
   
 setGeneric("union")

[1] "union"

> setMethod("union",

+   c(x = "data.frame", y = "data.frame"),

+   function(x, y) {

+     unique(rbind(x, y))

+   }

+ )

[1] "union"







If the name of a function has not been defined, the name must first be registered with setGeneric
 function. Then, setMethod
 is used to define which function is called based on the class names of the objects sent to it.

In the previous example we extended already existing generic. When creating new generic use standardGeneric
 function to initiate dispatch of S4 methods:
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>
   setGeneric("new_generic", function(obj) {

+   standardGeneric("new_generic")

+ })

[1] "new_generic"







Essentially, standardGeneric
 does the same for S4 as UseMethod
 for S3 objects.

Following the practices of an object-oriented programming, you can define methods to access slots and ensure that all the validity checks are performed.

Inheritance

Inheritance of S4 classes is specified via contains argument of setClass
 function. contains arguments takes the name of a class that will be contained, or inherited from, by the newly defined class. For example, here is how to define class song tat inherits from class sound:
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> setClass("sound", list(duration="numeric"))

> setClass("song", list(name="character", contains="sound"))

> new("song")

An object of class "song"

Slot "name":

character(0)



Slot "contains":

An object of class "sound"

Slot "duration":

numeric(0)







Multiple inheritance can be specified via multiple values of contains argment. Obviously, multiple inheritance, as well as multiple dispatch, make things far more complicated.

S3 classes in S4 classes

By default, S3 class cannot be specified as a slot in an S4 class definition. To do that an S4 class based on S3 class must first be created. It is done with setOldClass
 function. Once S3 class has been registered as formal S4 class, it can be used both as a slot and a superclass in contains argument.

Comparison of OO systems

S3 and S4 are the most common object-oriented systems in R. However, there are other options. One of them is reference classes which are closer to message-passing mechanisms of Smalltalk-based mainstream object-oriented programming languages. There are also several R packages that provide different approaches to implementation of object-oriented paradigm in R. To sum it up, R language is not yet set in its way and OOP practice is one of the least standartized in R. However, S3 and S4 have been around for long enough to become close to standard.

You might ask which one to use. In many cases S3 is enough. It is 
 minimalistic and allows quick extensions of generic functions for your objects. S3 class is more flexible, while S4 class is a more structured approach. In fact, Google  recommends in their R style guide for developers to only use S3 objects because of their interactivity and flexibility, unless they have a very strong reason not to use S3 objects. Sometimes, there is a need to describe complex relations between objects, which is done with S4. For instance, Bioconductor packages relies on S4.

To get more information check out ?Classes page. Many tools for working with classes are included in the methods package, so you can find additional help on classes with the command library(help="methods").



Lab Exercise: Practice OOP



AIM
 [image: ]




The AIM of the following paragraphs is to practice in class implementation.

The steps involved will include:


	
Class implementation



	
Methods creation





Estimated Completion Time:

40 minutes


[image: ]



Step 1:
 As an example, let’s implement a class representing a time series. We’ll want to define a new object that contains the following information:

• A set of data values, sampled at periodic intervals over time

• A start time

• An end time

• The period of the time series

Clearly, some of this information is redundant; given some of the attributes of a time series, we can calculate the remaining attributes. Let’s start by defining a new class called “TimeSeries”. We’ll represent a time series by a numeric vector containing the data, a start time, and an end time. We can calculate units, frequency, and period from the start time, end time, and the length of the data vector. As a user of the class, it shouldn’t matter how we represent this information, but it does matter to the implementer. In R, the places where information is stored in an object are called slots
 . We’ll name the slots data, start, and end. To create a class, we’ll use the setClass
 function:
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> setClass("TimeSeries",

+ 
   
 representation(


+
   
 data="numeric",

+ 
   
 start="POSIXct",

+ 
   
 end="POSIXct"

+ ))







[image: ]


The representation explains the class of the object contained in each slot. To create a new TimeSeries object, we will use the new
 function. The first argument specifies the class name; other arguments specify values for slots:
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> my.TimeSeries <- new("TimeSeries",


+
   
 data=c(1,2,3,4,5,6),

+ 
   
 start=as.POSIXct("07/01/2009 0:00:00",tz="GMT",

+ 
   
 format="%m/%d/%Y %H:%M:%S"),

+ 
   
 end=as.POSIXct("07/01/2009 0:05:00",tz="GMT",

+ 
   
 format="%m/%d/%Y %H:%M:%S")

+ )







There is a generic print method for new S4 classes in R that displays the slot names and the contents of each slot:
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> my.TimeSeries

An object of class “TimeSeries”

Slot "data":

[1] 1 2 3 4 5 6

Slot "start":

[1] "2009-07-01 GMT"

Slot "end":

[1] "2009-07-01 00:05:00 GMT"







Not all possible slot values are valid. We want to make sure that end occurs after start and that the lengths of start and end are both exactly 1. We can write a function to check the validity of a TimeSeries object. R allows you to specify a function that will be used to validate a specific class. We can specify this with the setValidity
 
 function:[image: ]
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> setValidity("TimeSeries",

+   function(object) {

+   object@start <= object@end &&

+   length(object@start) == 1 &&

+   length(object@end) == 1

+ })

Class “TimeSeries” [in ".GlobalEnv"]

Slots:

Name: data start end

Class: numeric POSIXct POSIXct







You can now check that a TimeSeries object is valid with the validObject
 function:[image: ]
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> validObject(my.TimeSeries)

[1] TRUE







When we try to create a new TimeSeries object, R will check the validity of the new object and reject bad objects:




Step 2
 
 : Now that we have defined the class, let’s create some methods that use this class. One property of a time series is its period. We can create a method for extracting the period from the time series. This method will calculate the duration between observations based on the length of the vector in the data slot, the start time, and the end time:[image: ]
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> period.TimeSeries <- function(object) {

+ 
   
 if (length(object@data) > 1) {

+ 
    
 (object@end-object@start) / (length(object@data)-1)

+ 
   
 } else {

+ 
   
 Inf

+ 
   
 }

+ }







Suppose that you wanted to create a set of functions to derive the data series from other objects (when appropriate), regardless of the type of object (i.e., polymorphism). R provides a mechanism called generic functions for doing this. You can define a generic name for a set of functions (like “series”). When you call “series” on an object, R 
 will find the correct method to execute based on the class of the object. Let’s create a function for extracting the data series from a generic object:[image: ]
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> series <- function(object) {object@data}

> setGeneric("series")

[1] "series"

> series(my.TimeSeries)

[1] 1 2 3 4 5 6







The call to setGeneric
 redefined series as a generic function whose default method is the old body for series:
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> series



standardGeneric for "series" defined from package ".GlobalEnv"

function (object)

standardGeneric("series")

<environment: 0x19ac4f4>







Methods may be defined for arguments: object. Use showMethods("series") for currently available ones:[image: ]
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> showMethods("series")

Function: series (package .GlobalEnv)

object="ANY"

object="TimeSeries"

(inherited from: object="ANY")







As a further example, suppose we wanted to create a new generic function called “period” for extracting a period from an object and wanted to specify that the function period.TimeSeries should be used for TimeSeries objects, but the generic method should be used for other objects. We could do this with the following commands:
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> period <- function(object) {object@period}

> setGeneric("period")

[1] "period"

> setMethod(period, signature=c("TimeSeries"), definition=period.TimeSeries)

[1] "period"

attr(,"package")

[1] ".GlobalEnv"

> showMethods("period")

Function: period (package .GlobalEnv)

object="ANY"

object="TimeSeries"







[image: ]


Now we can calculate the period of a TimeSeries object by just calling the generic function period:
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> period(my.TimeSeries)

Time difference of 1







It is also possible to define your own methods for existing generic functions, such as summary
 . Let’s define a summary method for our new class:







	
1

2

3

4

5

6

7

8

9

10

11


	
> setMethod("summary",

+ 
   
 signature="TimeSeries",


+
   definition=function(object) {

+ 
   
 print(paste(object@start,

+ 
   
 " to ",

+ 
   
 object@end,

+ 
   
 sep="",collapse=""))

+ 
   
 print(paste(object@data,sep="",collapse=","))

+ })

Creating a generic function for ‘summary’ from package ‘base’ in the global environment

in method for ‘summary’ with signature ‘"TimeSeries"’: no definition for class “TimeSeries”

[1] "summary"







A new generic function for "summary" was created in ".GlobalEnv" and can now be used like this:[image: ]
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> summary(my.TimeSeries)

[1] "2009-07-01 to 2009-07-01 00:05:00"

[1] "1,2,3,4,5,6"







You can even define a new method for an existing operator:
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> setMethod("[",

+ 
   
 signature=c("TimeSeries"),

+ 
   
 definition=function(x, i, j, ...,drop) {

+ 
   
 x@data[i]

+ })

[1] "["

> my.TimeSeries[3]

[1] 3








Challenge exercise

Implement a WeightHistory class based on the TimeSeries class. One way to do this is to create a WeightHistory class that inherits from the TimeSeries class but adds extra fields to represent a person’s name and height. We can do this with the setClass
 command by stating that the new class inherits from the TimeSeries class and specifying the extra slots in the WeightHistory class.


SUMMARY

This chapter provides important information for the following tasks:

●       
 Creating new classes

●       
 Understanding OOP
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CHAPTER 13: Statistics primer

R language was first designed as a tool for statisticians. Therefore, R comes with a lot of statistical technology, which is ready for use without additional installations, dependency fighting or writing your own implementations. In this chapter we will start looking at statistical methods provided by R.

This chapter includes the following paragraphs:


	
Theory



	
Descriptive statistics



	
Frequencies and histograms



	
Density



	
Quantile-quantile plot






Theory

When studying a collection of data as a random dataset, the basic assumption being that no law explains any individual
 value of the dataset, we attempt to study the data by means of some global
 measures, known as statistics
 , such as frequencies (of data occurrence in specified intervals), means, standard deviations, etc.

From a dataset to the process that generated it, the statistician considers the dataset as a sample
 from a vast, possibly infinite, collection of data called population
 . Each individual item of a sample is a case
 (or object
 ). The sample itself is a list of values of one or more random variables
 .

The population data is usually not available for study, since most often it is either infinite or finite but very costly to collect. The data sample, obtained from the population, should be randomly drawn
 , i.e., any individual in the population is supposed to have an equal chance of being part of the sample. Only by studying randomly drawn samples can one expect to arrive at legitimate conclusions about the whole population from the data analyses.

A random dataset presents the values of random variables
 . These establish a mapping between an event domain and some conveniently chosen value domain. Usually the value domain of a random variable has a direct correspondence to the outcomes of a random experiment, but this is not compulsory.

The process of statistically analyzing a dataset involves operating with an appropriate measure expressing the randomness exhibited by the dataset. This measure is the probability measure
 .

A statistical data analysis project starts, of course, by the data collection task. The quality with which this task is performed is a major determinant of the quality of the overall project. Issues such as reducing the number of missing data, recording the pertinent documentation on what the problem is and how the data was collected, and inserting the appropriate description of the meaning of the variables involved, must be adequately addressed.

Missing data–failure to obtain for certain objects/cases the values of one or more variables–will always undermine the degree of certainty of the statistical conclusions. Many software products provide means to cope with missing data. These can be simply coding missing data by symbolic numbers or tags, such as “na” (“not available”), which are neglected when performing statistical analysis operations. Another possibility is the substitution of missing data by average values of the respective variables. Yet another solution is to simply remove objects with missing data. Whatever method is used the quality of the project is always impaired.

The collected data should be stored in a tabular form (“data matrix”), usually with the rows corresponding to objects and the columns corresponding to the variables.

Data is usually gathered and arranged in tables. The tabular form of data in R is called data frame
 . A data frame is an aggregate of column vectors, corresponding to the variables related across the same objects (cases). In addition, it has a unique set of row names. One can create an R data frame from a text file.

After having read in a data set, one is often confronted with the need of defining new variables, according to a certain formula. Sometimes one also needs to manage the data in specific ways; for instance, sorting cases according to the values of one or more variables, or transposing the data, i.e., exchanging the roles of columns and rows.

A general overview of the data in terms of the frequencies with which a certain interval of values occurs, both in tabular and in graphical form, is usually advisable as a preliminary step before proceeding to the computation of specific statistics and performing statistical analysis. As a matter of fact, one usually obtains some insight on what to compute and what to do with the data by first looking to frequency tables and graphs. For instance, if from the inspection of such a table and/or graph one gets a clear idea that an asymmetrical distribution is present, one may drop the intent of performing a normal distribution goodness-of-fit test.

Tables of counts and bar graphs are used to present discrete data. Denoting by X the discrete random variable associated to the data, the table of counts–also known as tally sheet–gives us:

–         
 The absolute frequencies (counts), [image: ]
 ;

–         
 The relative frequencies (or simply, frequencies) of occurrence [image: ]
 ,


for each discrete value (category),
 [image: ]
 , of the random variable X (n is the total number of cases)
 .


Descriptive statistics

When analyzing a dataset, one usually starts by determining some indices that give a global picture on where and how the data is concentrated and what is the shape of its distribution, i.e., indices that are useful for the purpose of summarizing the data. These indices are known as descriptive statistics
 .


Where does the data come from in the first place? If you are being asked or are asking yourself genuine questions about real-world problems, you probably already have your data. On the other hand, if you want to learn R you will need some data to play with. Luckily, R comes with a wealth of data sets.


There is the data set longle
 y
 .
 Command
 str
 helps to display and to learn the structure of this data set:
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> str(longley)

'data.frame':​
 16 obs. of  7 variables:

$ GNP.deflator: num  83 88.5 88.2 89.5 96.2 ...

$ GNP         : num  234 259 258 285 329 ...

$ Unemployed  : num  236 232 368 335 210 ...

$ Armed.Forces: num  159 146 162 165 310 ...

$ Population  : num  108 109 110 111 112 ...

$ Year        : int  1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...

$ Employed    : num  60.3 61.1 60.2 61.2 63.2 ...

> longley[1:9, 1:3]


GNP.deflator     GNP Unemployed



1947         83.0 234.289      235.6

1948         88.5 259.426      232.5

1949         88.2 258.054      368.2

1950         89.5 284.599      335.1

1951         96.2 328.975      209.9

1952         98.1 346.999      193.2

1953         99.0 365.385      187.0

1954        100.0 363.112      357.8

1955        101.2 397.469      290.4








Measures of
 location
 are used in order to determine where the data distribution is concentrated. The most usual measures of location are presented next.

One can give a summary of such data with a few numbers: the mean, the minimum, the maximum, the median (to get it, sort the numbers and take the middle one), the quantiles (similar to median, but take the numbers a quarter from the beginning and a quarter from the end). Unsurprisingly, this is what the “summary” function gives us.
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> summary(longley$GNP)


Min. 1st Qu.  Median    Mean 3rd Qu.    Max.




234.3   317.9   381.4   387.7   454.1   554.9










Command
 fivenu
 m
 in R returns Tukey's five number summary (minimum, lower-hinge, median, upper-hinge, maximum) for the input data.
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> fivenum(longley$GNP)

[1] 234.289 306.787 381.427 463.625 554.894







Arithmetic mean

Let   [image: ]
 be the data. The arithmetic mean (or simply mean
 ) is:

[image: ]
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> mean(longley$GNP)

[1] 387.6984







The arithmetic mean is the sample estimate of the mean of the associated random variable. If one has a tally sheet of a discrete type data, one can also compute the mean using the absolute frequencies (counts), [image: ]
 , of each distinct value  [image: ]
 :

[image: ]
 with [image: ]
 [image: ]


If one has a frequency table of a continuous type data (also known in some literature as grouped data), with r
 bins, one can obtain an estimate of [image: ]
 , using the frequencies[image: ]
 of the bins and the mid-bin values,[image: ]
 , as follows:


[image: ]




This mean estimate used to be presented as an expedite way of calculating the arithmetic mean for long tables of data. With the advent of statistical software, the interest of such a method is at least questionable. Sometimes, when in presence of datasets exhibiting outliers and extreme cases that can be suspected to be the result of rough measurement errors, one can use a trimmed mean
 by neglecting a certain percentage of the tail cases (e.g., 5%). The arithmetic mean is a point estimate of the expected value (true mean) of the random variable associated with the data and has the same properties as the true mean. Note that the expected value can be interpreted as the center of gravity of a weightless rod with probability mass-points, in the case of discrete variables, or of a rod whose mass-density corresponds to the probability density function, in the case of continuous variables.

Median

The median of a dataset is the value of the data below which lie 50% of the cases. It is an estimate of the median, med(X
 ), of the random variable, X
 , associated to the data, defined as:

[image: ]
       [image: ]
   med(X),

where [image: ]
 is the distribution function of  X
 .

Note that using the previous rod analogy for the continuous variable case, the median divides the rod into equal mass halves corresponding to equal areas under the density curve:

[image: ]
 .

The median satisfies the same linear property as the mean, but not the other properties (e.g., additivity). Compared to the mean, the median has the advantage of being quite insensitive to outliers and extreme cases. Notice that, if we sort the dataset, the sample median is the central value if the number of the data values is odd; if it is even, it is computed as the average of the two most central values.
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> median(longley$GNP)

[1] 381.427

> quantile(longley$GNP, probs=0.5)


50%



381.427







Quantiles

The quantile of order [image: ]
 of a random variable distribution [image: ]
 is defined as the root of the equation:

[image: ]


We denote the root as: [image: ]
 .

Likewise, we compute the quantile of order [image: ]
 of a dataset as the value below which lies a percentage [image: ]
 of cases of the dataset. The median is therefore the 50% quantile, or [image: ]
 . Often used quantiles are:

– Quartiles
 ,
 corresponding to multiples of 25% of the cases.

– Deciles
 , corresponding to multiples of 10% of the cases.


- Percentiles
 , corresponding to multiples of 1% of the cases. We will often use the percentile p
 = 2.5% and its complement p
 = 97.5%.


In R the generic function
 quantil
 e
 produces sample quantiles corresponding to the given probabilities. The smallest observation 
 corresponds to a probability of 0 and the largest to a probability of 1.
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> quantile(longley$GNP, probs = c(0.05, 0.25, 0.5, 0.75, 0.95))


5%      25%      50%      75%      95%



252.1127 317.8810 381.4270 454.0855 527.3533







Mode

The mode of a dataset is its maximum value. It is an estimate of the probability or density function maximum. For continuous type data one should determine the midpoint of the modal bin of the data grouped into an appropriate number of bins. When a data distribution exhibits several relative maxima of almost equal value, we say that it is a multimodal
 distribution.

Measures of spread

The measures of spread
 (or dispersion
 ) give an indication of how concentrated a data distribution is. The most usual measures of spread are presented next: range, inter-quartile range, variance, standard deviation, median absolute deviation.

The range of a dataset is the difference between its maximum and its minimum, i.e.:

[image: ]
 .

The basic disadvantage of using the range as measure of spread is that it is dependent on the extreme cases of the dataset. It also tends to increase with the sample size, which is an additional disadvantage.

The inter-quartile range is defined as:

[image: ]


The IQR is less influenced than the range by outliers and extreme cases. It tends also to be less influenced by the sample size (and can either increase or decrease).
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> IQR(longley$GNP)

[1] 136.2045







The variance of a dataset [image: ]
 (sample variance) is defined as:

[image: ]
 .

The sample variance is the point estimate of the associated random variable variance. It can be interpreted as the mean square deviation (or mean square error
 , MSE) of the sample values from their mean. Notice also that given x
 , only n - 1 cases can vary independently in order to achieve the same variance. We say that the variance has df = n - 1 degrees of freedom
 . The mean, on the other hand, has n degrees of freedom.
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> var(longley$GNP)

[1] 9879.354







But beware: the notions of mean and variance lose their relevance when the data is asymmetric or when it contains many extreme values (“outliers”, “aberrant values” or “fat tails”).

Always be critical when observing data: in particular, you should check that the extreme values are not aberrant, that they do not come from some mistake. You can also check various dispersion measures such as the Median Absolute Deviation (MAD), the “standard deviation” or the Inter-Quartile Range (IQR).

On the contrary, the median, the Inter-Quartile Range (IQR) or the Median Absolute Deviation (MAD) are “robust” dispersion measures: they give good results, even on a non-gaussian sample, contrary to the mean or the standard deviation.

The standard deviation of a dataset is the root square of its variance. It is, therefore, a root mean square error
 
 (RMSE):

[image: ]
 .

Listing 13-9







	
1

2


	
> sd(longley$GNP)

[1] 99.39494







The standard deviation is preferable to the variance as a measure of spread, since it is expressed in the same units as the original data. Furthermore, many interesting results about the spread of a distribution are expressed in terms of the standard deviation. For instance, for any random variable X
 , the Chebyshev Theorem tells us that:

[image: ]
 .

Using s
 as point estimate of [image: ]
 , we can then expect that for any dataset distribution at least 75 % of the cases lie within 2 standard deviations of the mean.

Function mad
 computes the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations from the median, and (by default) adjusted by a factor for asymptotically normal consistency.
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> mad(longley$GNP)

[1] 118.5687







Measures of shape

The most popular measures of shape of a distribution are skewness and kurtosis.

A useful asymmetry measure around the mean is the coefficient of skewness
 , defined as:

[image: ]


This measure uses the fact that any central moment of odd order is zero for symmetrical distributions around the mean. For asymmetrical distributions [image: ]
 reflects the unbalance of the density or probability values around the mean. The formula uses a standardization factor, ensuring that the same value is obtained for the same unbalance, independently of the spread. Distributions that are skewed to the right (positively skewed distributions
 ) tend to produce a positive value of [image: ]
 , since the longer rightward tail will positively dominate the third order central moment; distributions skewed to the left (negatively skewed distributions
 ) tend to produce a negative value of [image: ]
 , since the longer leftward tail will negatively dominate the third order central moment. The coefficient[image: ]
 , however, has to be interpreted with caution, since it may produce a false impression of symmetry (or asymmetry) for some distributions.

The degree of flatness of a probability or density function near its center, can be characterized by the so-called kurtosis
 , defined as:

[image: ]
 .

The factor 3 is introduced so that [image: ]
 for the normal distribution. As a matter of fact, the [image: ]
 measure as it stands in formula, is often called coefficient of excess
 (excess compared to the normal distribution). Distributions flatter than the normal distribution has [image: ]
 ; distributions more peaked than the normal distribution have [image: ]
 .

There are no functions in the R stats package to compute the skewness and kurtosis.

Box plot

The box plot
 is a graphical display that simultaneously describes 
 several important features of a data set, such as center, spread, departure from symmetry, and identification of unusual observations or outliers. Box plot uses a distinct rectangular box, which corresponds to the central 50% of the cases, the so-called inter-quartile range
 (IQR). A central mark or line inside the box indicates the median
 , i.e., the value below which 50% of the cases are included. The boxes are prolonged with lines (whiskers) covering the range of the non-outlier cases, i.e., cases that do not exceed, by a certain factor of the IQR, the above or below box limits. Usual IQR factor for outliers is 1.5. Sometimes box plots also indicate, with an appropriate mark, the extreme cases defined similarly to the outliers but using a larger IQR factor, usually 3. As an alternative to using the central 50% range of the cases around the median, one can also use the mean ± standard deviation. Here are examples how to produce box-and-whisker plot(s) of the given (grouped) values:
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> boxplot(longley$GNP)








[image: ]


Figure 13-1
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> dax <- EuStockMarkets[,1]

> boxplot(dax,horizontal=TRUE)







[image: ]


Figure 13-2

[image: ]


Figure 13-3

A box plot displays the three quartiles, the minimum, and the maximum of the data on a rectangular box, aligned either horizontally or vertically. The box encloses the interquartile range with the left (or lower) edge at the first quartile,[image: ]
 , and the right (or upper) edge at the third quartile, [image: ]
 . A line is drawn through the box at the second quartile (which is the 50th percentile or the median). A line, or whisker,
 extends from each end of the box. The lower whisker is a line from the first quartile to the smallest data point within 1.5 interquartile ranges from the first quartile. The upper whisker is a line from the third quartile to the largest data point within 1.5 interquartile ranges from the third quartile. Data farther from the box than the whiskers are plotted as individual points. A point beyond a whisker, but less than 3 interquartile ranges from the box edge, is called an outlier.
 A point more than 3 interquartile ranges from the box edge is called an extreme outlier.
 Occasionally, different symbols, such as open and filled circles, are used to identify the two types of outliers. Sometimes box plots are called box-and-whisker plots
 .

Frequencies and histograms

Although numerical summary statistics are very useful, graphical displays of sample data are a very powerful and extremely useful way to visually examine the data. We now present a few of the techniques that are most relevant to engineering applications of probability and statistics.

A stem-and-leaf diagram

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data set where each number  [image: ]
    consists of at least two digits. To construct a stem-and-leaf diagram, use the following steps:

1)      
 Divide each number [image: ]
 into two parts: a stem, consisting of one or more of the leading digits, and a leaf, consisting of the remaining digit.

2)       
 
 List the stem values in a vertical column.

3)       
 Record the leaf for each observation beside its stem.

4)       
 Write the units for stems and leaves on the display.
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> stem(Nile)




The decimal point is 2 digit(s) to the right of the |






4 | 6




5 |




6 | 5899




7 | 000123444455667778




8 | 000011222233344555556667779




9 | 0011222244466678899




10 | 0122234455




11 | 00012244566678




12 | 112356




13 | 7









Histogram

The histogram is presumably the most pervasive of all the graphical data representations. Statistically speaking, a histogram can be viewed as a graphical summary intended to help in the visualization of properties of a distribution of numbers, but it can also be viewed as a (nonparametric) estimator of a density function.

A frequency distribution is a more compact summary of data than a stem-and-leaf diagram. To construct a frequency distribution, we must divide the range of the data into intervals, which are usually called class intervals, cells, or bins.
 If possible, the bins should be of equal width in order to enhance the visual information in the frequency distribution. Some judgment must be used in selecting the number of bins so that a reasonable display can be developed. The number of bins depends on the number of observations and the amount of scatter or dispersion in the data. A frequency distribution that uses either too few or too many bins will not be informative. We 
 usually find that value between 5 and 20 bins is satisfactory in most cases and that the number of bins should increase with n. Choosing the number of bins approximately equal to the square root of the number of observations often works well in practice.

The histogram is a visual display of the frequency distribution. The stages for constructing a histogram are as following:

1)       
 Label the bin (class interval) boundaries on a horizontal scale.

2)       
 Mark and label the vertical scale with the frequencies or the relative frequencies.

3)      
 Above each bin, draw a rectangle where height is equal to the frequency (or relative frequency) corresponding to that bin.

The histogram, like the stem-and-leaf diagram,
 provides a visual impression of the shape of the distribution of the measurements and information about the central tendency and scatter or dispersion in the data. This display often gives insight about possible choices of probability distribution to use as a model for the population.

Sometimes a histogram with unequal bin widths will be employed. For example, if the data have several extreme observations or outliers, using a few equal-width bins will result in nearly all observations falling in just a few of the bins. Using many equal-width bins will result in many bins with zero frequency. A better choice is to use shorter intervals in the region where most of the data falls and a few wide intervals near the extreme observations. When the bins are of unequal width, the rectangle’s area (not its height) should be proportional to the bin frequency. This implies that the rectangle height should be

[image: ]
 Rectangle height = (bin frequency)/(bin width).

Consider now a continuous variable. Instead of a tally sheet/bar graph, representing an estimate of a discrete probability function, we now want a tabular and graphical representation of an estimate of 
 a probability density function. For this purpose, we establish a certain number of equal (unequal length intervals are seldom used) length intervals of the random variable and compute the frequency of occurrence in each of these intervals (also known as bins). In practice, one determines the lowest, 

[image: ]
 , and the highest,[image: ]
 , sample values and divides the range, [image: ]
 , into r
 equal length bins, [image: ]
 , k
 = 1, 2,…,r
 . The computed frequencies are now:

[image: ]
 ,

where [image: ]
 is the number of sample values (observations) in bin [image: ]
 hk. The tabular form of the[image: ]
 is called a frequency table; the graphical form is known as a histogram. They are representations of estimates of the probability density function of the associated random variable. Usually the histogram range is chosen somewhat larger than[image: ]
 and adjusted so that convenient limits for the bins are obtained.

Let [image: ]
 denote the bin length. Then the probability density estimate for each of the intervals [image: ]
 is:

[image: ]
 [image: ]
 [image: ]


The areas of the [image: ]
 intervals are there and they sum up to 1 as they should.

In R one can use the hist
 function either for obtaining a histogram or for obtaining a frequency list. The frequency list is obtained by 
 assigning the outcome of the function to a symbol which then becomes a “histogram” object.

Listing 13-14







	
1

2


	
> dax <- EuStockMarkets[,1]

> hist(dax, col="pink")







[image: ]


Figure 13-4

By listing the contents of histogram, one receives among other things the information of the break points of the histogram bins, the counts and the densities. The densities of the function to a variable identifier represent the probability density estimate for a given bin. We can list densities of dax as follows:

Listing 13-15







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20


	
> str(hist(dax, col="pink"))

List of 6

$ breaks  : num [1:12] 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 ...

$ counts  : int [1:11] 34 599 627 193 72 82 114 33 49 44 ...

$ density : num [1:11] 3.66e-05 6.44e-04 6.74e-04 2.08e-04 7.74e-05 ...

$ mids    : num [1:11] 1250 1750 2250 2750 3250 3750 4250 4750 5250 5750 ...

$ xname   : chr "dax"

$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

> h_dax <- hist(dax, col="pink")

> h_dax$density

[1] 3.655914e-05 6.440860e-04 6.741935e-04 2.075269e-04 7.741935e-05

[6] 8.817204e-05 1.225806e-04 3.548387e-05 5.268817e-05 4.731183e-05

[11] 1.397849e-05







Density

The concept of smoothing is a central idea in statistics. Its role is to extract structural elements of variable complexity from patterns of random variation. The nonparametric smoothing concept is designed to
 simultaneously estimate and model the underlying structure. This involves high dimensional objects, like density functions, regression surfaces or conditional quantiles.

Densities can be used to compute smoothed representations of the observed data. The function density produces kernel density estimates for a given kernel and bandwidth. By default, the Gaussian kernel is used but there is an array of other kernels available in R. Look up the R help on density and see what options are available. The bandwidth controls the level of smoothing. By default, this represents the standard deviation of the smoothing kernel but this 
 too, can be changed depending on your requirements.

Consider a continuous random variable and its probability density function
 (pdf). The pdf tells you how the random variable is distributed. From the pdf you can calculate not only the statistical characteristics like mean and variance, but also the probability that this variable will take on values in a certain interval. The pdf is, thus, very useful as it characterizes completely the “behavior” of a random variable. This fact might provide enough motivation to study nonparametric density estimation. Moreover, nonparametric density estimates can serve as a building block in nonparametric regression estimation, as regression functions are fully characterized through the distribution of two (or more) variables.

Kernel density estimate

If we have data which are observations of a density f(.) and if K(.) is any probability density function then the kernel density estimates of f(x), with kernel K(.) and bandwidth b is given by:

[image: ]


The smoothing parameter or bandwidth b can vary and is similar to the bin width in histograms. If b is small then the kernel estimate is very rough, if it is large then the estimate is smooth. Reasoning similar to arguments for choosing the bin width for histograms can be used to show that the best bandwidth is proportional to [image: ]
 with the constant of proportionality dependent both on the kernel used and on the underlying distribution, which you are trying to estimate.

A common choice of kernel function is the standard Normal or Gaussian, but other choices are available (e.g., rectangular, triangular, and Epanechnikov) and there are various theoretical results available for choosing them.

Listing 13-16







	
1

2

3


	

>
   
 hist(Nile,probability=TRUE,col="light blue")

> # bandwidth (bw) is default

> lines(density(Nile),lwd=3,lty=5,col="red")







[image: ]


Figure 13-5

Listing 13-17







	
1

2


	

>
   # bandwidth (bw) is default

> plot(density(Nile),lwd=3,col="blue")







[image: ]


Figure 13-6

Listing 13-18







	
1

2


	

>
   # Now we change the bandwidth (bw)

> plot(density(Nile,bw=100),lwd=3,col="blue")







[image: ]


Figure 13-7

Kernel density estimates are an easy and attractive alternative or additional tool to histograms. Although you have to choose the bandwidth, as you do in histograms, kernel density estimates do not depend upon choices of starting values of class intervals nor upon whether you regard the classes as open or closed on the left/right.

A more important reason for considering them is that they can be used in more sophisticated methods, e.g. in problems of testing for mixtures of distributions. The minimum value of the bandwidth ([image: ]
 say) for which the data is unimodal can be used as a test statistic for bimodality.

Quantile-Quantile Plot

In some cases, it is obvious that the distribution is not Gaussian. First method of checking this is to compare the estimated density with a gaussian density. You can also see, graphically, whether a variable is gaussian: just plot the gaussian quantiles and compare them with the sample quantiles.


Quantile-quantile plots are useful graphical displays when the aim is to check the distributional assumptions of your data. These plots produce a plot of the quantiles of one sample versus the quantiles of another sample and overlays the points with a line that corresponds to the theoretical quantiles from the distribution of interest. If the distributions are of the same shape then the points will fall roughly
 on a straight line. Extreme points tend to be more variable than points in the center. Therefore, you can expect to see slight divergency towards the lower and upper ends of the plot. There is already a function to do that. The function qqnorm compares the quantiles of the observed data against the quantiles from a Normal distribution. The function qqlin
 e
 will overlay the plot of quantiles with a line based on quantiles from a theoretical Normal distribution. qqline function plots a line through the first and third quartiles.


Listing 13-19







	
1

2


	

>
   
 qqnorm(Nile)

> qqline(Nile,lty=4,lwd=3,col="red")








[image: ]




Figure 13-8


Lab Exercise: Descriptive statistics

[image: ]


AIM

The AIM of the following paragraphs is to practice in applying descriptive statistics.

The steps involved will include:


	
Study EuStockMarkets data set using descriptive statistics



	
Study EuStockMarkets data set via plots



	
Check for normality EuStockMarkets data set





Estimated Completion Time: (60 min)

20 minutes


[image: ]



Step 1
 . For starters, let’s display the data set “EuStockMarkets”:







	
1

2

3

4

5

6

7


	
> str(EuStockMarkets)

mts [1:1860, 1:4] 1629 1614 1607 1621 1618 ...

- attr(*, "dimnames")=List of 2


..$ : NULL




..$ : chr [1:4] "DAX" "SMI" "CAC" "FTSE"



- attr(*, "tsp")= num [1:3] 1991 1999 260

- attr(*, "class")= chr [1:3] "mts" "ts" "matrix"







EuStockMarkets has several variables, in this exercise we’ll look at the third stock index. For that purpose, define the data set eu_cac:








	
1


	
> eu_cac <- EuStockMarkets[,3]


	



	
1

2

3


	
> str(eu_cac)

Time-Series [1:1860] from 1991 to 1999: 1773 1750 1718 1708 1723 ...




	
	
	





Plot the time series eu_cac:







	
1


	
> plot(eu_cac,col="blue")








[image: ]
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Display summary information about the time series:







	
1

2

3

4

5


	
> summary(eu_cac)


Min. 1st Qu.  Median    Mean 3rd Qu.    Max.




1611    1875    1992    2228    2274    4388



> fivenum(eu_cac)

[1] 1611.0 1875.1 1992.3 2274.4 4388.5







Calculate measures of spread for the time series. The mean:

[image: ]








	
1

2


	
> mean(eu_cac)

[1] 2227.828







The median:







	
1

2


	
> median(eu_cac)

[1] 1992.3








The main quantiles:







	
1

2

3


	
> quantile(eu_cac)


0%     25%     50%     75%    100%



1611.00 1875.15 1992.30 2274.35 4388.50







The IQR:







	
1

2


	
> IQR(eu_cac)

[1] 399.2







The variance:







	
1

2


	
> var(eu_cac)

[1] 336764.6







The standard deviation:







	
1

2


	
> sd(eu_cac)


[1] 580.3142









The median absolute deviation:

[image: ]








	
1

2


	
> mad(eu_cac)

[1] 225.3552








Step 2:
 Let’s draw plots described in this chapter. First, the boxplot:







	
1


	
> boxplot(eu_cac,horizontal=TRUE,col="light blue")








[image: ]


The  histogram:







	
1


	
> hist(eu_cac,col="pink")








[image: ]
 [image: ]


Density plot with default  bandwidth:







	
1


	
> plot(density(eu_cac),lwd=3, col="blue")








[image: ]
 [image: ]


Density plot with changed  bandwidth:







	
1


	
> plot(density(eu_cac, bw=95),lwd=3, col="brown")




	
	





[image: ]
 [image: ]



Step 3:
 Do our time series have normal distribution? Let’s check:







	
1

2


	
> qqnorm(eu_cac)

> qqline(eu_cac,lty=4,lwd=3,col="red")







[image: ]
 [image: ]


Task Completed


SUMMARY

This chapter provides important information for the following tasks:

●       
 Basic statistical tools provided by R, including descriptive statistics, histograms and density plots

●       
 Comparing data against normal distribution with quantile-quantile plots


REFERENCES

●       
 http://www.r-project.org/



CHAPTER 14: Probability distributions

In this chapter, we present the most important probability distributions (Gaussian, Exponential, Uniform, Bernoulli, Binomial, Poisson); we explain how to  “fit” a distribution, i.e., how to find the distribution that most closely matches a given data set, i.e., how to find the most probable parameters.

A comprehensive set of statistical tables is one of convenient features of R. Functions are provided for evaluation of the cumulative distribution function,  P(X < x), the probability density function and the quantile function (given q, the smallest x such that P(X < x) > q), and to simulate from the distribution. Prefix the name given here by  ‘d’ for the density,  ‘p’ for the CDF, ‘q’ for the quantile function and  ‘r’ for simulation (random deviates). Note that the  ‘p’ and ‘q’ functions are inverses of each other. The first argument is x for density function pxxx, q for CDF pxxx, p for quantile function qxxx and n for random deviates rxxx (except for rhyper and rwilcox, for which it is nn).

The pxxx and qxxx functions all have logical arguments lower.tail and log.p and the dxxx ones have log. This allows, e.g., to get the cumulative or integrated hazard function, H(t) = −log(1 − F(t)), by pxxx(t, ..., lower.tail = FALSE, log.p = TRUE).

This chapter includes the following paragraphs:


	Discrete probability distributions

	Continuous probability distributions




Discrete probability distributions

The most important discrete probability distributions are the Bernoulli, Binomial and Poisson distributions. In this section we will discuss these and some other discrete probability distributions.

Bernoulli distribution

Tossing a coin is equivalent to examining a random variable following a Bernoulli distribution of parameter 0.5. If the coin has been tampered with and  “heads” appears with probability p, it is a Bernoulli distribution of parameter p.

P( X=1 ) = p, P( X=0 ) = 1-p

In case of equiprobability, you can simulate such an experiment with sample
 function that performs such draws, with or without replacement, from a given set.

Listing 14-1







	
1

2

3

4


	
> n <- 200

> x1 <- sample(c(-1,1), n, replace=T)

> plot(x1, type="h", main="Bernoulli variables")

> abline(h=0,lty=6,lwd=3,col="brown")








[image: ]
 Figure 14-1



If the probabilities of both events are different, we can still use the sample
 function with one more argument:

Listing 14-2







	
1

2

3

4


	
> n1 <- 200

> n_s <- 300

> x_s <- sample(c(-1,1), n, replace=T, prob=c(.15,.85))

> plot(x_s, type="h", main="Bernoulli variables, different probabilities")







[image: ]
 Figure 14-2

But you can also do than by hand, with the runif
 function:

Listing 14-3







	
1

2

3

4


	

>
   n3 <- 400

> x  <- runif(n3)

> x3 <- x > .45

> plot(x3, type="h", col="blue", main="Bernoulli variables")







[image: ]
 Figure 14-3

Uniform discrete distribution

This is a generalization of the Bernoulli distribution: we draw a number at random from 1, 2, ..., n. We can simulate this distribution with the sample
 function:

Listing 14-4







	
1

2

3


	

>
   sample(1:50, 30, replace=F)

[1] 42 29 36  8 39 17 19 46 12 22  1 44  5 20 40 41 47 48 38 10  6  3 35 37 13

[26] 21 16 11 50 31







Binomial distribution

We toss a coin n times and we count the number of “heads”. In more formal terms: a Binomial variable of parameters (n,p) is a sum of n Bernoulli variables of parameter p. We can simulate it as follows:


Listing 14-5







	
1

2

3

4

5

6

7

8

9


	
> N <- 10000

> n <- 50

> p <- .5

> x <- rep(0,N)

> for (i in 1:N) {


+   x[i] <- sum(runif(n)<p)



+ }

> hist(x, freq=T, col="light green",

+     main="Simulating a binomial law")







[image: ]
 Figure 14-4

We can also use the rbinom
 command:

Listing 14-6







	
1

2

3

4

5

6

7

8


	

>
   N <- 20000

> n <- 50

> p <- .5

> x <- rbinom(N,n,p)

> hist(x, freq=F, xlim = c(min(x), max(x)),

+ nclass = max(x) - min(x) + 1, col = "yellow",


+ main = "Binomial distribution, n=50, p=.5")



> lines(density(x, bw=1), col = "blue", lwd = 3)







[image: ]
 Figure 14-5

Listing 14-7







	
1

2

3

4

5

6

7


	
> N <- 100000

> n <- 10

> p <- .5

> x <- rbinom(N,n,p)

> hist(x, freq=FALSE,col="light green",

+ main = "Binomial distribution, n=10, p=.5")

> lines(density(x, bw=1), col= "brown", lwd =3)
  







[image: ]
 Figure 14-6

It is also the distribution of the number of red balls sampled with replacement from an urn containing red and black balls: we can simulate it with the sample
 function:

Listing 14-8







	
1

2

3

4

5

6

7

8

9

10

11

12


	
> N <- 10000

> n <- 100

> p <- .5

> x <- NULL

>


> for (i in 1:N) {



+   x <- append(x, sum(sample(c(1,0),n,replace=TRUE,

+                     prob = c(p, 1-p))))

+ }

> hist(x, freq=FALSE,col="light green",

+       main = "Binomial distribution, n=100, p=.5")

> lines(density(x, bw=1), lty=5, col= "blue", lwd =3)







[image: ]
 Figure 14-7

You will also meet this distribution in ecology, when you try to estimate the number of animals of a given species (say, fish in a lake). You catch the animal, you mark them (with a ring – the word to 
 google for is “ringing”), and after some time, a part of the population is ringed (we know how many, because we have counted the rings), the rest is not. When we catch new animals, we have a certain number of ringed animals and a certain number of non-ringed animals: we can use those numbers to estimate the population size.

Hypergeometric distribution

This is the distribution of the number of red balls samples without replacement from an urn containing red and white balls. Let us simulate it on an example: we sample without replacement 5 balls from an urn containing 15 white and 5 red balls and we count the number of white balls:

Listing 14-9







	
1

2

3

4

5

6

7

8

9

10

11

12


	
> N <- 10000

> n <- 5

> urn <- c(rep(1,15),rep(0,5))

> x <- NULL

> for (i in 1:N) {

+   x <- append(x, sum(sample(urn, n, replace=F)))

+ }

> hist(x, xlim=c(min(x),max(x)), freq=F,

+      nclass=max(x)-min(x)+1, col=" magenta",

+      main = "Hypergeometric distribution, n=20,

+      p=.75; k=5")

> lines(density(x, bw=1), lty=7, col= "blue", lwd =3)







[image: ]
 Figure 14-8

Alternatively, you can directly use the rhyper
 function and it is faster:

Listing 14-10







	
1

2

3

4

5

6

7

8


	
> N <- 10000

> n <- 5

> x <- rhyper(N, 15, 5, 5)

> hist(x,xlim=c(min(x),max(x)), freq=FALSE,

+      nclass=max(x)-min(x)+1, col="yellow",

+      main = "Hypergeometric distribution,n=20,


+      p=.75; k=5")



> lines(density(x, bw=1), lty=3, col= "blue", lwd=3)








[image: ]
 Figure 4-9



Listing 14-11







	
1

2

3

4

5

6

7

8


	
> N <- 10000

> n <- 5

> x <- rhyper(N, 300, 100, 100)

> hist(x,xlim=c(min(x),max(x)), freq=FALSE,

+      nclass=max(x)-min(x)+1, col="light green",

+      main = "Hypergeometric distribution,


+      n=400, p=.75, k=100")



> lines(density(x, bw=1), lty=7, col= "brown", lwd =3)







[image: ]
 Figure 14-10

Poisson distribution

It is the distribution of the number of customers queueing (in a shop, a bank, a public service) in a unit of time, or the number of typos in a text, or the number or radioactive disintegration per second. Or any kind of “rare” event. Indeed, the Poisson distribution is a limiting case of a binomial distribution. More formally, it is a probability distribution such that:

(1)    
 
 the probability of observing an event (here,  “event” can be: “a new customer arrives”, “there is a new radioactive disintegration ”, there is a typo”, etc.) in a “small” interval is proportional to the size of this interval (in particular, it does not depend on the position of this interval on the time-axis);

(2)    
 the probability that an event occurs in a given interval is independent from the probability that an event occurs in any other disjoint interval;

(3)     
 the events are never simultaneous.

This setup is called a  “Poisson process”. One can show that this uniquely defines a probability distribution, with:

[image: ]


where λ is the average number of events per unit of time. One can simulate this distribution with the rpois
 function:

Listing 14-12







	
1

2

3

4

5

6


	
> N <- 10000

> x <- rpois(N, 1)

> hist(x, xlim=c(min(x),max(x)), freq=FALSE,

+      nclass=max(x)-min(x)+1, col="yellow",

+      main="Poisson distribution, lambda=1")

> lines(density(x,bw=1), lty=7,col="brown", lwd=3)







[image: ]
 Figure 14-11

Listing 14-13







	
1

2

3

4

5

6


	
> N <- 10000

> x <- rpois(N, 3)

> hist(x, xlim=c(min(x),max(x)), freq=FALSE,

+      nclass=max(x)-min(x)+1, col="yellow",

+      main="Poisson distribution, lambda=3")

> lines(density(x,bw=1), lty=7, col="brown", lwd=3)







[image: ]
 Figure 14-12

Geometric distribution

It is the number of trials before a success in a series of Bernoulli events. For instance, if we are interested in the occurrences of 1s and if we get the sequence:

0 0 0 1 0 1 0 0 1 0 0 1 0

then we have three trials (0 0 0, at the begining) before a success (the fourth element is 1). We could simulate it by hand:

Listing 14-14







	
1

2

3

4

5

6

7


	
> s_rgeom <- function (N, p) {

+   bernoulli <- sample(c(0,1), N,

+             replace=T, prob=c(1-p, p))

+   diff(c(0, which(bernoulli == 1))) - 1


+ }



> hist(s_rgeom(10000, .5), col="green",

+      main="Geometric distribution")







[image: ]
 Figure 14-13


But it is easier to use the rgeom
 function:



Listing 14-15







	
1

2

3

4

5

6


	
> N <- 10000

> x <- rgeom(N, .5)

> hist(x, xlim=c(min(x),max(x)), freq=F,

+      nclass=max(x)-min(x)+1, col="green",

+      main="Geometric distribution, p=.5")

> lines(density(x,bw=1), lty=7, col="blue", lwd=3)








[image: ]
 Figure 14-14



Listing 14-16







	
1

2

3

4

5

6


	
> N <- 10000

> x <- rgeom(N, .1)

> hist(x,xlim=c(min(x),max(x)), freq=F,

+      nclass=max(x)-min(x)+1, col="yellow",

+      main="Geometric distribution, p=.1")

> lines(density(x,bw=1), lty=6, col="brown", lwd=4)







[image: ]
 Figure 14-15

Listing 14-17







	
1

2

3

4

5

6


	
> N <- 10000

> x <- rgeom(N, .01)

> hist(x, xlim=c(min(x),max(x)),

+      freq=F,  nclass=20, col="yellow",

+      main="Geometric distribution, p=.01")

> lines(density(x,bw=1), lty=7, col="blue", lwd=3)







[image: ]
 Figure 14-16

Negative binomial distribution

It is the distribution of the number of failures before k successes in a series of Bernoulli events. We could simulate it by hand but it is easier to resort to the rnbinom
 function
 .


Listing 14-18







	
1

2

3

4

5

6

7


	
> N <- 100000

> x <- rnbinom(N, 10, .25)

> hist(x, xlim=c(min(x),max(x)), freq=F,

+      nclass=max(x)-min(x)+1, col="orange",

+      main="Negative binomial distribution,

+      n=10, p=.25")

> lines(density(x), lty=7, col="magenta", lwd=4)







[image: ]
 Figure 14-17


C
 ontinuous probabilit
 y
 distributions


The most important continuous probability distributions are the gaussian, exponential and uniform distributions. In this section we will discuss these and some other continuous probability distributions.

Uniform continuous distribution

Here, “uniform” means “evenly distributed in a given interval”. This is the distribution we expect when we want to  “take a number at random in the interval [0,1] ”. We can simulate this distribution with the runif
 function:

Listing 14-19







	
1

2

3

4

5

6


	
> round(runif(30), digits=3)

[1] 0.354 0.322 0.729 0.430 0.667 0.848 0.981 0.357 0.690 0.256 0.099 0.696

[13] 0.976 0.221 0.309 0.157 0.212 0.378 0.570 0.712 0.631 0.908 0.534 0.636

[25] 0.417 0.225 0.368 0.390 0.478 0.603







Exponential distribution

We can see it as an analogue of the Poisson distribution. Actually, the time between two events in a Poisson process (intuitively: the time between two rare events) follows an exponential distribution. For instance, the time between two radioactive disintegrations.

Listing 14-20







	
1

2

3

4

5

6


	
> N <- 100000

> x <- rnbinom(N, 10, .25)

> curve(dexp(x), xlim=c(0,10), lty=7,

+       col="blue", lwd=3,

+       main="Exponential Probability Distribution Function")







[image: ]
 Figure 14-18

Gaussian distribution

This is the famous “bell-shaped” distribution. More precisely, the central limit theorem states that if X1, X2, ... X3 are independent identically distributed random variables with expectation m and variance [image: ]
 then

[image: ]


converges in law to a gaussian distribution when n tends to infinity.

In other words, the empirical means[image: ]
 is  “close 
 to” a gaussian distribution of expectation m and standard deviation [image: ]
 . This explains the omnipresence of the gaussian law: when you repeat an experiment a large number of times, the average result almost follows a gaussian distribution.
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> n <- 1000

> x <- rnorm(n)

> curve(dnorm(x), xlim=c(-3,3), lty=7, col="blue", lwd=3)

> title(main="Gaussian Probability Distribution Function")







[image: ]
 Figure 14-19

Let ’s calculate the cumulative density, i.e., the integral of the density:
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> n <- 1000

> x <- rnorm(n)

> curve(pnorm(x), xlim=c(-3,3), lty=7, col="blue", lwd=3)

> title(main="Cumulative gaussian distribution function")







[image: ]
 Figure 14-20

The quantiles, i.e., the inverse of the cumulative density:
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> n <- 1000

> x <- rnorm(n)

> curve(qnorm(x), xlim=c(0,1), lty=7, col="blue", lwd=3)

> title(main="Gaussian quantiles function")







[image: ]
 Figure 14-21

Chi2 distribution with one degree of freedom


This is the distribution of [image: ]
 , if the random variable X follows a standard gaussian distribution.
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> n <- 1000

> x <- rnorm(n)

> curve(dchisq(x,1), xlim=c(0,5), lty=7, col="brown", lwd=3)

> abline(h=0,lty=5, col="blue")

> abline(v=0,lty=5, col="blue")

> title(main="Chi2, one degree of freedom")







[image: ]
 Figure 14-22

Chi2 distribution with n degrees of freedom

This is the probability distribution of [image: ]
 , where the random variables X1, X2,..., Xn are independent standard gaussian. We meet this distribution in statistics for computations that require the population variance but this variance itself is unknown: we replace it by the variance of the sample.
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> n <- 1000

> x <- rnorm(n)

> curve(dchisq(x,1), xlim=c(0,10), ylim=c(0,.6),

+       col="red", lwd=3)

> curve(dchisq(x,2), add=T, col="green", lwd=3)

> curve(dchisq(x,3), add=T, col="blue", lwd=3)

> curve(dchisq(x,5), add=T, col="orange", lwd=3)

> abline(h=0,lty=3)

> abline(v=0,lty=3)

> legend(par("usr")[2], par("usr")[4], xjust=1,

+        c("df=1", "df=2", "df=3","df=5"),lwd=3,lty=1,

+        col=c("red", "green", "blue", "orange"))

> title(main="Chi^2 Distributions")
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 Figure 14-23



Student ’s t-distribution

If X1, X2, X3, ..., Xn are independent identically distributed gaussian random variables of expectation µ and standard deviation σ, then

[image: ]


follows gaussian law. But if we replace the standard deviation by the sample standard deviation (i.e., an estimator of the population standard deviation), this quantity no longer follows a gaussian distribution but a Student t-distribution with (n-1) degrees of freedom.
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> n <- 1000

> x <- rnorm(n)

> curve(dt(x,1), xlim=c(-3,3), ylim=c(0,.4),

+       col="red", lwd=2)

> curve( dt(x,2), add=T, col="blue", lwd=2 )

> curve( dt(x,5), add=T, col="green", lwd=2 )

> curve( dt(x,10), add=T, col="orange", lwd=2 )

> curve( dnorm(x), add=T, lwd=3, lty=3 )

> title(main="Student T distributions")

> legend(par("usr")[2], par("usr")[4], xjust=1,

+            c("df=1", "df=2", "df=5", "df=10",

+                     "Gaussian distribution"),

+            lwd=c(2,2,2,2,2),

+            lty=c(1,1,1,1,3),

+            col=c("red", "blue", "green", "orange",

+            par("fg")))








[image: ]




Figure 14-24

Log-normal distribution

Quite often, the variables we meet in the real world have positive values: with a truly gaussian variable, this is not possible  – we know that our variable is not gaussian. Instead, we can look if its logarithm is gaussian  – in other words, if our variable is the exponential of a gaussian variable.

Listing 14-27







	
1

2

3

4


	
> n <- 1000

> x <- rnorm(n)

> curve(dlnorm(x), xlim=c(-.2,5), lwd=3, col="blue",

+       main="Log-normal distribution")







[image: ]
 Figure 14-25

Cauchy distribution

This is an example of a pathologically dispersed distribution: its variance is infinite. It is sometimes called the bowman ’s distribution: a blindfolded bowman, in front of an infinite wall shoots arrows in random directions. The distribution of the arrow impacts on the wall is a Cauchy distribution.
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> N <- 100

> alpha <- runif(N, -pi/2, pi/2)

> x <- tan(alpha)

> plot.new()

> plot.window(xlim=c(-5, 5), ylim=c(-1.1, 2))

> segments( 0, -1,x, 0 )


> d <- density(x)



> lines(d$x, 5*d$y, lty=7, col="brown", lwd=3 )

> box()

> abline(h=0, lty=6,lwd=2, col="blue")

> title(main="The bowman ’s distribution (Cauchy)"







[image: ]
 Figure 14-26


Lab Exercise: Plot density function

[image: ]


AIM

The AIM of the following paragraphs is to practice in plotting density function.

The density for a continuous distribution is a measure of the relative probability of  “getting a value close to x”. The probability of getting a value in a particular interval is the area under the corresponding part of the curve.

The steps involved will include:


	
Data simulation



	
Plot density function (density)



	
Alternative way to plot density function





Estimated Completion Time:

20 minutes


[image: ]



Step 1.
 We simulate a vector x of 50000 elements from normal distribution:
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> N <- 50000

> x <- rnorm(N)








Step 2.
 Now we plot the density with function density
 :
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> plot(density(x),lwd=3, col="blue")







[image: ]


[image: ]



Step 3.
 There is an alternative way to plot density.

The density function is likely one of the four function types that is least used in practice, but if, for instance, it is desired to draw the well-known bell curve of the normal distribution, then it can be done in the following way.  We set up vector x by the command seq
 .
 The function seq
 is used to generate equidistant values. Let ’s generate 
 values from −4 to 4 in steps of 0.1; that is, (−4.0,−3.9,−3.8, . . . , 3.9, 4.0):
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> x <- seq(-4,4,0.1)







Then we plot probability density:
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> plot(x, dnorm(x), lwd=3, col="blue",type="l")







The use of type="l" as an argument to plot
 causes the function to draw lines between the points rather than plotting the points themselves.

[image: ]
 [image: ]


Task Completed


Lab Exercise 2: Is data normally distributed?

[image: ]


AIM

The AIM of the following paragraphs is to learn to check distribution for normalcy.

The steps involved will include:


	
Data simulation (rnorm)



	
QQ-plot





Estimated Completion Time:

20 minutes



[image: ]





Step 1.
 Let ’s simulate some normally distributed data:
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> N <- 10000

> x <- rnorm(N)








Step 2.
 The normal probability plot is a graphical technique for assessing whether or not a data set is approximately normally distributed.

The data is plotted against a theoretical normal distribution in such a way that the points should form an approximate straight line. Departures from this straight line indicate departures from normality.

Moreover, as the title of the Q-Q plot indicates, this is a plot of quantile versus quantile. It can be plotted with the following functions:
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> qqnorm(x)

> qqline(x,lty=5,lwd=3,col="red")







[image: ]
 [image: ]


The points on this plot form a nearly linear pattern, which indicates that the normal distribution is a good model for this data set. Although we were checking randomly generated data in this exercise, you can check for normality real-life data in the same way.

Task Completed


SUMMARY

This chapter provides important information for the following tasks:

●       
 Working with discrete probability distributions in R

●       
 Working with continuous probability distributions in R


REFERENCES

●       
 http://www.r-project.org/


●       
 http://zoonek2.free.fr/UNIX/48_R/07.html


CHAPTER 15: Statistical tests

This chapter includes the following paragraphs:


	
Introduction to statistical tests



	
H0 (null hypothesis) and H1 (alternative hypothesis)



	
Statistical tests under R






Introduction to statistical tests

Different results may occur after gauging the same object. When one measures the same thing with an interval, it leads to different outcomes due to the flow of time. Estimating different individuals also shows differences caused by the factors of genetic and environmental origin (nature and nurture). Heterogeneity is a universal notion: spatial heterogeneity supposes that places are never the same and temporal heterogeneity states that time varies constantly.

Variation is axiomatic and, therefore, arouses no interest in simple stating of it. One needs to realize clearly the difference between variations which have some scientific value and those which only display the principles of heterogeneity. In this case, we apply statistics.

The dominant principle here is the scale of variation happened accidentally while scientifically interesting events were not taking place. If the scale of those differences exceeds our expectations, the outcome is considered to be statistically significant. In case the amount of measured differences falls behind our anticipations, such result is admitted as not statistically significant. Note that this does not imply it is unimportant. For example, a non-significant difference between two types of treatment can influence greatly a person’s lifespan. Non-significance has nothing to do with the absence of difference. Inadequate significance can be influenced by people’s low replication.

As opposed, it is natural to strive to assure that everything is flowing steadily. When X and Y do not correlate, life seems to be easier. There is a very common misconception that a significant result is the only appropriate one. Students often tend to be frustrated if the result of a research indicates that A does not influence B significantly. Such approach cannot be assumed as scientific. This is a particular feature of all people. It lies beneath the desire to find out the fact somehow. One should abstract away from the way things seem to be. This kind of approach is the most scientific and is not immoral or so. But, of course, it is not the absolute principle of 
 scientific behavior. Scientists are people and hope to achieve best, statistically significant experiment results and get some benefits too, though this is not the proper way.

Significance

What is the definition of this notion? The average dictionary says it is something “having or conveying a meaning” or “expressive; suggesting or implying deeper or unstated meaning”, unlike statistics that supposes it is actually something very specific. That is when “a result was unlikely to have occurred by chance” or, more specifically, – “unlikely to have occurred by chance if the null hypothesis was true”. As follows, we have to determine the concepts of “unlikely” and “null hypothesis” more precisely. There is a common agreement what to consider “unlikely” in statistics. If an event happens below 5% within a given period of time it is unlikely. Primarily, the “null hypothesis” states that nothing is happening, while its opposite – that something is taking place.

Null Hypotheses

The null hypothesis states that nothing is happening. For example, two sample means are under comparison. If to presume that they are the same, this is the null hypothesis. Or let's study Y against X in a regression. The null hypothesis here is to say that the slope of the relationship equals zero (Y is autonomous from X), Keep in mind that the null hypothesis is a falsifiable one. It is denied if the data indicates its high improbability.

p-Values

A p-value is an assessment of the probability of a result which could have taken place accidentally, on condition the null hypothesis was true. In other words, a p-value estimates the reliability of the null hypothesis. In case the probability of something to happen by chance is low, one can state that it is statistically significant, e.g. p<0.001. Like when comparing two sample means with the unlikely null hypothesis and statistically significant difference. A large p-value (like p=0.23) supposes that we cannot reject the null hypothesis. Naturally, “the null hypothesis is true” and “the null hypothesis is not accepted” are different statements. For example, it is easy to fail when rejecting a false null hypothesis due to the sample 
 size being not enough, or the measurement error is too great. In this way, we can say that p-values have scientific interest, though are not of the major importance; the range of effects possess the same value for making conclusions.

Interpretation

There are two particular types of mistakes often committed in the interpretation of our statistical models:

●       
 rejecting the true null hypothesis and

●       
 accepting the false null hypothesis

The former is called Type I and the latter is Type II.

Supposing we have to analyze the following data: “Is the risk of cancer increased by tobacco smoking?”, “Does the risk of leukemia rise because a nuclear waste reprocessing plant is near?”, “Can we expect the sample mean 0.02 if the mean of the population is zero?” First, we have to specify whether those two samples have the same mean (are those samples from the same population?).

We receive a sample from the first population, then we analyze the second population with the same population mean. Next, we consider the statistical variable sample mean in both populations and get its distribution. If measuring a certain value of the difference we can get around the same difference, then the means can be the same. If P( difference > observed difference ) < alpha, (e.g. alpha = 0.05), the hypothesis "the two means are the same" has the risk equal to alpha. Though, this is not a precise result. Here we can have two probable errors: inappropriate statement that they differ (probability alpha) or the two means are the same. Note that the tests are accurate only in particular conditions (e.g. gaussian variables, the same variance). To be more exact, two hypotheses need to be considered instead of one, like "the means are equal" against "the means are different" or "the means are equal" versus "the first mean is larger than the second one". To use the second formulation, we need to be able to reject that the first mean does not exceed the second. For this purpose, we need some independent information. Remember that statistical tests never state that the hypothesis is true. They only reject (successfully or not) the hypothesis "there is nothing significant". Science has developed in 
 the same way. As it was defined by K. Popper: we never prove that something is true, we only try to prove it is wrong and always fail to do so.

Confidence interval

Imagine we have a random variable with a distribution not known completely. For instance, it is clear it is a gaussian distribution of variance 1, but we do not know the mean. If to give this mean a value of a single number, it will be wrong, as the actual mean is not exactly our proposal, it can only be close to it up the to the nth decimal. We alternatively apply a confidence interval. There are many intervals of this kind, they can be easily shifted in both directions which changes their width as well. Here are two definitions of a confidence interval:

●      
 it is an interval which contains a probability of 95% that we can find the same mean;

●       
 it is an interval with 95% probability of the population (actual) mean.

Both of these interpretations are of equal value.

Parametric versus non-parametric

Statistical tests can be divided into two types: parametric tests and non-parametric tests. Parametric statistical tests imply that studied random variables conform to some probability distribution (most of the time, gaussian distribution) and tries to infer other, non-assumed parameters of the distribution. Non-parametric statistical tests, as opposed, do not assume anything about probability distribution and learn parameters as new data is presented.

If the results of a test remain valid after its assumptions are not satisfied anymore, such a test is considered robust.

Resistance

A statistic is defined as resistant if it is rather independent of extreme values. For example, the mean can be not resistant, but the median is resistant. In this case, a single extreme value can change the mean largely not influencing the median.
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> r7 <- rnorm(100)



> mean(r7)

[1] -0.0706602

> # We add an extreme value

> r8 <- rnorm(100)

> mean(c(r8,10^10))

[1] 99009901

> r9 <- rnorm(100)

> median(r9)

[1] -0.08171225

> # We add an extreme value

[1] -0.1959102

> r10 <- rnorm(100)

> median(c(r10,10^10))

[1] 0.01257464







H0 (null hypothesis) and H1 (alternative hypothesis)

We have two hypotheses to study: the null hypothesis H0, “there is no noticeable effect” (“tobacco smoking does not increase the risk of cancer” and “the risk of leukemia does not rise because of a nuclear waste reprocessing plant”) and the alternative hypothesis H1 which says: “there is a noticeable effect” (“tobacco smoking increases increase the risk of cancer development”). Alternative hypothesis is either symmetric or asymmetric (“tobacco increases or decreases the risk of cancer” and “tobacco increases the risk of cancer” respectively). By choosing the asymmetric one we automatically reject the half of the hypothesis. That is why one must consider very carefully when choosing it. Another name of H0 is a “conservative hypothesis”, as we keep it if the test results are not ultimate.

Type I error

It is wrong to reject the null hypothesis (to state: “there is some effect” or “there is a noticeable difference”). For example, the variable X follows a gaussian distribution and the extreme values are not expected, they should simply be somewhere in the middle of the 
 bell-shaped curve. In case we get them, we reject the null hypothesis, often incorrectly. You can see the type I error marked red on the following figure 15-1.
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> col_01 <- function (x, y1, y2, ...) {

+   polygon(c(x, x[length(x):1]),

+        c(y1, y2[length(y2):1]), ...)

+ }

> x1 <- seq(-6,6, length=100)

> y1 <- dnorm(x1)

> plot(y1~x1, type="l")

> i = x1 < qnorm(.025)

> col_01(x1[i],y1[i],rep(0,sum(i)) ,col="brown")

> i = x1 > qnorm(.975)

> col_01(x1[i],y1[i],rep(0,sum(i)) ,col="brown")

> lines(y1~x1)

> title(main="Type I error")







[image: ]
 Figure 15-1

Type II error

If the null hypothesis is true, there is a probability to get at least the same large result. This is the probability to make a type I error accepting the null hypothesis erroneously ("there is no statistically significant effect" or "there is no difference"). Though, it cannot be considered as an error since we never say "H0 is true". It is proper to state "we do not reject H0 (yet)". This is called a missed opportunity (not an error).

You can see the type II error marked red on the following figure 15-2. The middle bell-shaped curve indicates the distribution forecasted by the null hypothesis while another one is a distribution of the population as it is.

Listing 15-3







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18


	

> col_01 <- function (x, y1, y2, ...) {



+   polygon(c(x, x[length(x):1]),

+        c(y1, y2[length(y2):1]), ...)

+ }

> x1 <- seq(-6,6, length=1000)

> y1 <- dnorm(x1)

> plot(y1~x1, type="l")

> y2 <- dnorm(x1-.5)

> lines(y2~x1)

> i <- x1 > qnorm(.025) & x1<qnorm(.975)

> col_01(x1[i],y2[i],rep(0,sum(i)), col="brown")

> segments(qnorm(.025),0,qnorm(.025),

dnorm(qnorm(.025)),col="brown")

> segments(qnorm(.975),0,qnorm(.975),

dnorm(qnorm(.975)), col="brown")

> lines(y1~x1)

> lines(y2~x1)

> title(main="High risk of type II error")







[image: ]
 Figure 15-2

If both curves are quite far from each other (the difference of means is greater), then the risk is a lot lower.
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> col_01 <- function (x, y1, y2, ...) {

+   polygon( c(x, x[length(x):1]),

+       c(y1, y2[length(y2):1]), ... )

+ }

> x <- seq(-6,6, length=1000)

> y <- dnorm(x)

> plot(y~x, type="l")

> y2 <- dnorm(x-3.5)

> lines(y2~x)

> i <- x > qnorm(.025) & x<qnorm(.975)


> col_01(x[i],y2[i],rep(0,sum(i)), col="brown")



> segments(qnorm(.025),0,qnorm(.025),

dnorm(qnorm(.025)), col="brown")

> segments(qnorm(.975),0,qnorm(.975),

dnorm(qnorm(.975)), col="brown")

> lines(y~x)

> lines(y2~x)

> title(main="Lower risk of type II error")







[image: ]
 Figure 15-3

Statistical power

The power of any test of statistical significance is defined as the probability that it will reject a false null hypothesis. Statistical power is inversely related to the probability of making a Type II error. In short, statistical power is equal to 1 – probability of Type II error.

As a rule, the power acts rather as a function than a number. The null hypothesis is usually “mu equals mu0” (H0) and the alternative hypothesis is “mu differs from mu0” (H1). The actual value of mu 
 defines the power: if mu is approximate to mu0, the power is lower and the probability of type II error is higher; as well as, when mu differs from mu0, the type II error probability decreases but the power rises.
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> delta <- seq(0, 1.5, length=100)

> p <- NULL

> for (d in delta) {

+   p <- append(p,
 power.t.test(delta=d,
 sd=1,
 sig.level=0.05,
 n=20,
 type="one.sample")$power)

+ }

> plot(p~delta, lty=7, lwd=3, col="blue", type="l",

+    ylab="power",

+    main="Power of a one-sample t-test")







[image: ]
 Figure 15-4

The power is indispensable for an experiment. For instance, we need 
 to find out whether mu of a certain variable on a particular population is the same as mu0. We have to indicate a contrast in at least 80% of cases when an error of type I is lower that 5%. What will the sample size be in this case? More precisely, we need the test power H0: << mu = mu0 >> against H1: << abs(mu - mu0) > epsilon >>  which possesses a confidence level alpha=0.05 to be not less than 0.8 (it is commonly supposed a power to be 0.8 and a confidence level 0.05). All these calculations are carried out by the power.t.test
 function (as in Student’s t-test).
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> power.t.test(delta=.1, sd=1, sig.level=.05, power=.80, type="one.sample")




One-sample t test power calculation






n = 786.8109




delta = 0.1




sd = 1




sig.level = 0.05




power = 0.8




alternative = two.sided









Questions can be asked in all directions. For example, the experiment is conducted and the sample size is n. What is the basic difference in mean estimated to be observed in case the test power is 0.08?

Listing 15-7







	
1

2

3

4

5

6

7

8

9

10


	
> power.t.test(n=100, sd=1, sig.level=.05, power=.80, type="one.sample")




One-sample t test power calculation






n = 100




delta = 0.2829125




sd = 1




sig.level = 0.05




power = 0.8




alternative = two.sided









Simple hypothesis

If a hypothesis spells the awareness of the random variable’s distribution, it is considered to be simple. For example, the hypothesis H0: “the mean is zero” is simple when one examines the mean of a gaussian variable of variance 1, on condition that the variance is already known. Unlike when one is looking for the mean of a gaussian variable when its variance is not important, the only one thing needed is to know that the given variable is gaussian. Such kind of a hypothesis is not simple. One more instance of this is as follows: a sample comes from either a population 1 (a random variable of mean 3 and variance 2) or a population 2 (with a random variable of mean 1 and variance 1). Both hypotheses H0 and H1, “the sample comes from population 1” and “the sample comes from population 2” correspondingly, are simple.

Composite hypothesis

Alternative hypotheses (H1) are often composite (non-simple): if H1 is true, the distribution then has a certain form including a parameter without a certain value, which is unknown.

Statistical tests under R

Most functions or R language that perform classical tests are situated in the “stats” package (loaded already).

Library(help=”stats”)


Let’s look at functions with the “test” string:
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> apropos('.test')

[1] "ansari.test"          "bartlett.test"        "binom.test"          

[4] "Box.test"             "chisq.test"           "cor.test"            

[7] "file_test"            "fisher.test"          "fligner.test"        

[10] "friedman.test"        "kruskal.test"         "ks.test"             

[13] "mantelhaen.test"      "mauchly.test"         "mcnemar.test"        

[16] "mood.test"            "oneway.test"          "pairwise.prop.test"  

[19] "pairwise.t.test"      "pairwise.wilcox.test" "poisson.test"        

[22] "power.anova.test"     "power.prop.test"      "power.t.test"        

[25] "PP.test"              "prop.test"            "prop.trend.test"     

[28] "quade.test"           "shapiro.test"         "t.test"              

[31] ".valueClassTest"      "var.test"             "wilcox.test"







It is unreasonable to expect these functions to state a result as “Null hypothesis rejected” or “Null hypothesis not rejected”. One must be able to interpret the results, which are mostly a p-value, i.e. a number. We have a probability to acquire at least the same result. If it is around one, the hypothesis is not rejected (the result is not statistically significant); if it is close to zero, the null hypothesis can be rejected. Before applying the test one needs to select a confidence level alpha (mainly 0.05, but for human health it is better to choose more conservative 0.01 or less; in case the results do not have to be necessarily robust, it is acceptable to choose 0.10): if p<
 alpha, the null hypothesis is rejected; in case p>
 alpha, it is accepted. Remember to choose the confidence level alpha before the test is applied in order not to produce the result you want. For example:
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> s_x <- rnorm(200)


> t.test(s_x)






​
 One Sample t-test



data:  s_x

t = 0.3532, df = 199, p-value = 0.7243

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.1186710  0.1704597

sample estimates:

mean of x

0.02589436







If the null hypothesis is rejected (“the mean is zero”), there will be a mistake with a probability 0.7243 (72 cases out of 100). Use simulations to check it: if H0 is true, then p>
 0.05 in 95% of cases. In other words, the p-value is evenly distributed in [0,1].
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> p_v <- c()

> for (i in 1:1000) {

+   x1 <- rnorm(200)

+   p_v <- append(p_v, t.test(x1)$p.value)

+ }

> hist(p_v, freq=T, col="green")







[image: ]
 Figure 15-5
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> p_v <- c()

> for (i in 1:1000) {

+   x1 <- rnorm(200)

+   p_v <- append(p_v, t.test(x1)$p.value)

+ }

> p_s <- sort(p_v)

> x2 <- 1:1000

> plot(p_s ~ x2, col="brown", main="p-value of a Student T test when H0 is true")







[image: ]
 Figure 15-6

When the null hypothesis is rejected wrongly, it is the risk of a type I error. Now let’s examine the type II error risk. The mean of a population is non-zero. Its actual value influences the risk though it remains unknown. If it is close to zero, then the probability of risk is high and a lot of data is required to notice differences. But if it is far then the probability of risk deteriorates.

Now let’s look at examples of performing some well-known statistical tests in R.

Student’s t-test

Consider the task of finding the mean of a random variable and comparing it with a predefined value. Let’s assume that the given variable is gaussian. Then we can use Student’s t-test, otherwise, use Wilcoxon’s U-test. R function for Student’s t-test is t.test
 .

The null hypothesis H0 is “the mean is m”, the alternative one, H1 is “the mean is not m”. Compute:

[image: ]


where [image: ]
 and [image: ]
 are mean and standard deviation of sample correspondingly. H0 is rejected if

[image: ]


where [image: ]
 is the Student’s t-distribution with n-1 degrees of freedom. T follows the distribution if variables are distributed identically and independent from gaussian. Here you can see a few Student t-distribution functions. N approaches a gaussian distribution closer as it gets larger.       
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> x <- rnorm(500)

> curve(dnorm(x), from=-5, to=5, add=F, col="orange",

+   lwd=5, lty=4)

> curve(dt(x,100), from=-5, to=5, add=T,

+   col=par("fg"))

> curve(dt(x,5), from=-5, to=5, add=T, col="red")

> curve(dt(x,2), from=-5, to=5, add=T, col="green")

> curve(dt(x,1), from=-5, to=5, add=T, col="blue")

> legend(par("usr")[2], par("usr")[4], xjust=1,

+   c("gaussian", "df=100", "df=5", "df=2", "df=1"),

+   col=c("orange", par("fg"), "red", "green",

+   "blue"),

+   lwd=c(3,1,1,1,1),

+   lty=c(2,1,1,1,1))

> title(main="Student’s T probability distribution function")







[image: ]
 Figure 15-7

Binomial test

Suppose, that we have a sample of 100 butterflies. 45 of them are male species and 55 are female. The number of female butterflies here undergoes a binomial distribution B(100, p). We need to compare the null hypothesis H0: “p=0.5” to the alternative one H1: “p different from 0.5”.
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> binom.test(55, 100, .5)




​
 Exact binomial test



data:  55 and 100

number of successes = 55, number of trials = 100, p-value = 0.3682


alternative hypothesis: true probability of success is not equal to 0.5



95 percent confidence interval:

0.4472802 0.6496798

sample estimates:

probability of success


0.55









The difference is not statistically significant in this example.

Kolmogorov-Smirnov test

To check if two quantitative random variables follow the same distribution, you can use two-sample Kolmogorov-Smirnov test:

Listing 15-14







	
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23


	
> ks.test(rnorm(100), 1+rnorm(100))




​
 Two-sample Kolmogorov-Smirnov test



data:  rnorm(100) and 1 + rnorm(100)

D = 0.42, p-value = 4.366e-08

alternative hypothesis: two-sided



> ks.test(rnorm(100), rnorm(100))




​
 Two-sample Kolmogorov-Smirnov test



data:  rnorm(100) and rnorm(100)

D = 0.17, p-value = 0.1111

alternative hypothesis: two-sided



> ks.test(rnorm(100), 2*rnorm(100))




​
 Two-sample Kolmogorov-Smirnov test



data:  rnorm(100) and 2 * rnorm(100)

D = 0.3, p-value = 0.0002468

alternative hypothesis: two-sided







Shapiro-Wilk test

The Shapiro-Wilk test enables us to verify whether a random variable is gaussian. It compares it to the family of gaussian distributions. It is very similar to the Kolmogorov–Smirnov test, but, unlike it, does not specify the mean and variance.
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> shapiro.test(rnorm(10))$p.value

[1] 0.9943092

> shapiro.test(runif(10))$p.value

[1] 0.53721







It is advisable to take a look at a Q-Q plot since the data can be somewhat non-gaussian. This happens due to its being dispersed less by the gaussian data or when the gaussian deviation is significant statistically but insignificant in practice, if the sample is very large.


Lab Exercise: Testing H0 and H1

[image: ]


AIM

The AIM of the following exercise is to solve the statistics task with the given data. Consider the following question. You evaluate performance of 10 sprinters by measuring the time they spent to run the 100 meters. The averages of their performance are given, as well as the averages of their results after receiving two different types of training. Have they improved or have their performance deteriorated?

The steps involved will include:


	
Testing null hypothesis for the first type of training



	
Testing null hypothesis for the second type of training



	
Testing alternative hypothesis





Estimated Completion Time:

20 minutes


Step 1
 : Here is the data of averages. Before training sprinters were running in 12.9, 13.5, 12.8, 15.6, 17.2, 19.2, 12.6, 15.3, 14.4, 11.3 seconds, after the first type of training in 12.7, 13.6, 12.0, 15.2, 16.8, 
 20.0, 12.0, 15.9, 16.0, 11.1 seconds, and after the second type of training in 12.0, 12.2, 11.2, 13.0, 15.0, 15.8, 12.2, 13.4, 12.9, 11.0 seconds. Let’s save the data as vectors:[image: ]
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> before <- c(12.9, 13.5, 12.8, 15.6, 17.2, 19.2, 12.6, 15.3, 14.4, 11.3)

> after <- c(12.7, 13.6, 12.0, 15.2, 16.8, 20.0, 12.0, 15.9, 16.0, 11.1)

> after2 <- c(12.0, 12.2, 11.2, 13.0, 15.0, 15.8, 12.2, 13.4, 12.9, 11.0)







First let’s check the quality of the first training. We have two sets of samples. We also know that averages were made on the same people. Such samples are called paired. We are interested in the mean of the difference of the two measures: whether the means are the same (null hypothesis) or different (alternative hypothesis). This can be done with a t-test for paired samples. Check the null hypothesis for the first training with the following:
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> t.test(before, after, paired=TRUE)




​
 Paired t-test



data:  before and after

t = -0.2133, df = 9, p-value = 0.8358

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.5802549  0.4802549

sample estimates:

mean of the differences


-0.05









              p-value is equal to 0.8358 which is greater than 0.05, therefore we can accept the hypothesis H0 of equality of the means. In other words, the first training made no difference on the performance of sprinters.[image: ]



Step 2:
 In the same way let’s check the effectiveness of the second training, by testing the null hypothesis for before and after2 samples:
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> t.test(before, after2, paired=TRUE)




​
 Paired t-test



data:  before and after2

t = 5.2671, df = 9, p-value = 0.0005158

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.9185294 2.3014706

sample estimates:

mean of the differences


1.61









Here p-values is significantly smaller than 0.05, therefore we reject the null hypothesis. In other words, the performance of sprinters after the second training has changed.


Step 3:
 Has the performance of sprinters improved after the second training? To answer this question, let’s test the alternative hypothesis: mean of before is less than mean of after2.

[image: ]
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> t.test(before, after2, paired=TRUE, alt="less")




​
 Paired t-test



data:  before and after2

t = 5.2671, df = 9, p-value = 0.9997

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:


-Inf 2.170325



sample estimates:

mean of the differences


1.61









As you can see, we get high p-value and can accept the alternative hypothesis. In other words, sprinters have improved after the second training. Alternatively, this H1 can be checked with the following command:







	
1

2

3

4

5

6

7

8

9

10

11

12


	
> t.test(after2, before, paired=TRUE, alt="greater")




​
 Paired t-test



data:  before and after2

t = 5.2671, df = 9, p-value = 0.9997

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:


-Inf 2.170325



sample estimates:

mean of the differences


1.61









Task Completed

SUMMARY

This chapter provides essential information about the following topics:

●       
 Basics of statistical tests

●       
 How statistical tests are represented in R

●       
 How to answer some common questions with statistical 
 tests
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CHAPTER 16: Regression analysis

This chapter includes the following paragraphs:


	
Theory



	
Regression model



	
Identifying statistical models in R



	
Linear models in R






Theory

This chapter introduces the use of the regression model, which is used to make inferences on means of populations identified by specified values of one of more quantitative factor variables.

Regression analysis is a statistical method for analyzing a relationship between two or more variables in such a manner that one variable can be predicted or explained by using information on the others.

The purpose of a regression analysis is to observe sample measurements taken on different variables, called factors or independent variables, and to examine the relationship between these variables and a response or dependent variable. This relationship is then expressed as a statistical model called the regression model.

A regression analysis starts with an estimate of the population mean(s) using a mathematical formula, called a function, which explains the relationship between the factor variable(s) and the response variable. This function is called the regression model or regression function. This function can be described geometrically by a line if there is only one factor variable or a multidimensional plane if there are several. As in all statistical models, the regression model describes a statistical relationship, which is not a perfect one. Some examples of analyses using regression include:

●       
 estimating weight gain by the addition to children’s diets of different

●       
 amounts of a dietary supplement,

●      
 predicting scholastic success (grade point ratio) based on students’ scores on an aptitude or entrance test

●       
 estimating changes in sales associated with increased expenditures on advertising

●       
 estimating fuel consumption for home heating based on daily temperatures

●       
 estimating changes in interest rates associated with the amount of deficit spending

In simple linear regression, which is the topic of this chapter, the relationship is specified to have only one factor variable and the relationship is described by a straight line. This is, as the name implies, the simplest of all regression models. While most relationships between variables are not exactly linear, a straight line often approximates the relationship, especially in a limited or restricted range of values of the variables.

Symbolically we represent values of the variables involved in regression as follows: x
 represents observed values of the factor variable, such as pounds of fertilizer, aptitude test score, or daily temperature. In the context of a regression analysis this variable is called the independent variable. y
 represents observed values of the response variable, such as yield of corn, grade point averages, or fuel consumption. This variable is called the dependent variable.

In a simple linear regression analysis, we use a sample of observations on pairs of variables, x
 and y
 , to make inferences on the “model.” Actually, the inferences are made on the parameters that describe the model.

Regression model

We have two random variables X and Y, and we try to predict the values of Y from those of X (you should remark that the situation is asymmetric: X and Y do not play the same role). To this end, we assume that Y is obtained from X in the following way:

Y = a + b * X + noise

where a and b are real numbers (to be determined) and the noise follows a gaussian distribution of zero mean. More precisely, if we note [image: ]
 and [image: ]
 the values corresponding to the i-th observation, we have the following:

[image: ]


where the [image: ]
 are independent, identically distributed Gaussian random variables of zero mean.

The parameters a and b are called regression coefficients. Specifically, b is the slope of the regression line, that is, the change in Y corresponding to a unit change in X. a,  the intercept, is the value of the line when X is equal to zero. This parameter has no practical meaning if the condition x
 = 0 cannot occur, but is needed to specify the model.

Equivalently, the regression model can be written

[image: ]


where [image: ]
 represents a mean of y
 corresponding to a specific value of x
 . This parameter is known as the conditional mean of y
 and is defined by the relationship:

[image: ]


Interpretation

There are two interpretations to this model: either the pairs (X,Y) are drawn at random, or the values of X are fixed, we choose them (it corresponds to the experiments we design and carry out) and get the values of Y as experimental results. But this does not change the computations and the interpretation of the results. To be precise, if X is also a random variable, it has to be independent from the noise.

Assumptions and limitations

The validity of the results of the statistical analysis requires fulfillment of certain assumptions about the data. Specifically we assume the following:


	
The linear model is appropriate.



	
The error terms are independent.



	The error terms are (approximately) normally distributed.

	
The error terms have a common variance, σ
 2





Even if all assumptions are fulfilled, regression analysis has some limitations.

The fact that a regression relationship has been found to exist does not, by itself, imply that x causes y. For example, many regression analyses have shown that there is a clear relationship between smoking and lung cancer, but because there are multiple factors affecting the incidence of lung cancer, the results of these regression analyses cannot be used as the sole evidence to prove that smoking causes lung cancer. Basically, to prove cause and effect, it must also be demonstrated that no other factor could cause that result.

It is not advisable to use an estimated regression relationship for extrapolation. That is, the estimated model should not be used to make inferences on values of the dependent variable beyond the range of observed x
 values. Such extrapolation is dangerous, because although the model may fit the data quite well, there is no evidence that the model is appropriate outside the range of the existing data.

Least squares estimation

The purpose of the estimation step is to find estimates of a and b that produce a set of [image: ]
 values that in some sense “best” fit the data. One way to do this would be to lay a ruler on the scatterplot and draw a line that visually appears to provide the best fit. This is certainly not a very objective or scientific method since different individuals would likely define different best fitting lines. Instead a more rigorous method is used.

How well the estimate fits the actual observed values of y
 can be measured by the magnitudes of the differences between the observed y
 and the corresponding  [image: ]
 These differences are called residuals. Since smaller residuals indicate a good fit, the estimated line of best fit should be the line that produces a set of residuals having the smallest magnitudes. There is, however, no universal definition of “smallest” for a collection of values; hence some arbitrary but hopefully useful criterion for this property must first be defined. Some criteria that have been employed are as follows:

●       
 Minimize the largest absolute residual

●       
 Minimize the sum of absolute values of the residuals

Although both of these (and other) criteria have merit and are 
 occasionally used, the most popular criterion is to:

●       
 Minimize the sum of squared residuals

This criterion is called least squares and results in an estimated line that minimizes the variance of the residuals.

Identifying statistical models in R

Almost all statistical models from ANOVA to regression to random coefficient models are specified in a common format:

DV ~ IV1+IV2+IV3

In a regression model this dictates that the dependent variable (DV) will be regressed on three independent variables. By using + symbol between the IV's, the model is requesting only main effects. If the IVs were separated by the * symbol, it would designate both main effects and interactions (all two and three-way interactions in this case).

A few examples may be useful in illustrating some other aspects of model specification. Suppose y, x, x0, x1 and x2 are numeric variables. The operator ~ is used to define a model formula in R. Therefore the form, for an ordinary linear model, is:

response ~ op_1 term_1 op_2 term_2 op_3 term_3 ...

where response is a vector or matrix, (or expression evaluating to a vector or matrix) defining the response variable(s), op_i is an operator, either + or -, implying the inclusion or exclusion of a term in the model, (the first is optional), term_i is either a vector or matrix expression, or 1, or a factor, or a formula expression consisting of factors, vectors, or matrices connected by formula operators. In all cases each term defines a collection of columns either to be added to or removed from the model matrix. A 1 stands for an intercept column and is by default included in the model matrix unless explicitly removed.

The following formulae on the left side below specify statistical models as described on the right:






	
y ~ x


	
a simple linear regression (SLR) model with implicit intercept term





	
y ~ 1 + x


	
SLR with explicit intercept term





	
y ~ 0 + x


	
SLR without zero intercept





	
y ~ -1 + x


	
SLR without zero intercept





	
y ~ x - 1


	
SLR without zero intercept





	
y ~ x1 + x2


	
a regression plane





	
log(y) ~ x1 + x2


	
Multiple regression of the transformed variable, log(y), on x1 and x2 (with an implicit intercept term





	
y ~ x + I(x^2)


	
quadratic regression model





	
y ~ x+ I(x^2) + I(x^3)


	
cubic model





	
y ~ poly(x, 2)


	
polynomial regression of y on x of degree 2. This form uses orthogonal polynomials





	
y ~ 1 + x + I(x^2)


	
polynomial regression of y on x of degree 2. This form uses  explicit powers, as basis





	
y ~ x + poly(x, 2)


	
multiple regression y with model matrix consisting of the matrix X as well as polynomial terms in x to degree 2







Table 16-1

In the first example, the model is specified by the formula y ~ x which implies the linear relationship between y (dependent/response variable) and x (independent/predictor variable). For the polynomial regression model examples, the function I() is used to tell R to treat the variable “as is” (and not to actually compute the quantity).

We see that the arithmetic operators of R have a different meaning in 
 a formula than they have in expressions. For example, the formula

y ~ x1 + x2

defines the model y=b1*x1+b2*x2+a, and not y=b(x1+x2)+a (if the operator + would have its usual meaning). To include arithmetic operations in a formula, we can use the function I as mentioned before. The formula

y ~ I(x1 + x2)

defines the model y=b(x1+x2)+a. Similarly, to define the model y=b1*x+ b2*x^2 + a, we will use the formula y ~ poly(x, 2) (and not y~x+x^2). However, it is possible to include a function in a formula in order to transform a variable.

See formula
 for more details of allowed formulae.

Linear models in R

Linear modeling using the lm
 function is based on the least squares method. The concept is to minimize the sum of squares of residuals.

lm(formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,    singular.ok = TRUE, contrasts = NULL, offset, ...)

formula argument is an object of class formula or one that can be coerced to that class: a symbolic description of the model to be fitted. data argument is an optional data frame or an object coercible by as.data.frame
 containing the variables in the model. If not found in data, the variables are taken from environment (by names used in formula), typically from the environment where lm
 is called. subset argument is an optional vector specifying a subset of observations to be used in the fitting process. weights argument is an optional vector of weights to be used in the fitting process; it should be NULL or a numeric vector. If non-NULL, weighted least squares is used with weights (that is, minimizing sum(w*e^2)); otherwise ordinary least squares is used.

Models for lm
 are specified symbolically as described above. lm
 calls the lower level functions lm.fit
 
 , etc, for the actual numerical computations.

An example call looks like this:
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1


	
>  rm1 <- lm(y ~ x1 + x2, data = data_set)







It would fit a multiple regression model of y on x1 and x2 with implicit intercept term. The important but technically optional parameter data = data_set  specifies that any variables needed to construct the model should come first from the data_set dataframe. This is the case regardless of whether the dataframe data_set has or has not been attached on the search.

Non-NULL weights can be used to indicate that different observations have different variances (with the values in weights being inversely proportional to the variances), or equivalently, when the elements of weights are positive integers [image: ]
 , that each response [image: ]
 is the mean of [image: ]
 unit-weight observations, including the case that there are [image: ]
 observations equal to [image: ]
   and the data have been summarized.


lm
 returns an object of class lm or for multiple responses of class c(‘mlm’, ‘lm’).

The functions summary
 and anova
 are used to obtain and print a summary and analysis of variance table of the results. The generic accessor functions coefficients
 , effects
 , fitted.values
 and residuals
 extract various useful features of the ln object. Essentially, an object of class lm is a list containing at least the following components:

●       
 coefficients: a named vector of coefficients

●       
 residuals: the residuals, that is response minus fitted values

●       
 fitted.values: the fitted mean values

●       
 rank: the numeric rank of the fitted linear model

●       
 weights: the specified weights (only for weighted fits)

●       
 df.residual: the residual degrees of freedom

●       
 call: the matched call

●       
 
 terms: the terms object used

●       
 contrasts: the contrasts used (only where relevant)

●      
 xlevels: a record of the levels of the factors used in fitting (only where relevant)

●       
 offset: the offset used (missing if none were used)

●       
 y: if requested, the response used

●       
 x: if requested, the model matrix used

●       
 model: if requested (the default), the model frame used

●      
 na.action: information returned by model.frame
 on the special handling of NAs (only where relevant)

In addition, non-null fits will have components assign, effects and (unless not requested) qr relating to the linear fit, for use by extractor functions such as summary
 and effects
 .

Note on using time series

Considerable care is needed when using lm
 with time series.

Unless na.action = NULL, the time series attributes are stripped from the variables before the regression is done. This is necessary as omitting NAs would invalidate the time series attributes, and if NAs are omitted in the middle of the series the result would no longer be a regular time series.

Even if the time series attributes are retained, they are not used to line up series, so that the time shift of a lagged or differenced regressor would be ignored. It is good practice to prepare a data argument by ts.intersect
 , then apply a suitable na.action to that data frame and call lm
 with na.action = NULL so that residuals and fitted values are time series.

Generic functions for extracting model information

The object created by lm
 is a fitted model object. Information about the fitted model can then be displayed, extracted, plotted and so on by using generic functions that orient themselves to objects of class lm. These include: add1
 , coef
 , effects
 , kappa
 , predict
 , residuals
 , alias
 , deviance
 , family
 , labels
 , print
 , step
 , anova
 , drop1
 , formula
 , plot
 , proj
 , summary
 .

Let’s mention briefly the most commonly used ones.

coefficients(object) extracts the regression coefficients and has a 
 short form coef(object).

plot(object) produces four plots, showing residuals, fitted values and some diagnostics.

predict(object, newdata=data.frame) returns the value of predicted values corresponding to the determining variable values in data.frame. The dataframe supplied must have variables specified with the same labels as the original.

print(object) prints a concise version of the object. Most often used implicitly.

residuals(object) extracts the matrix of residuals, weighted as appropriate. It’s short form is resid(object).

summary(object) prints a comprehensive summary of the results of the regression analysis. The summary
 function is widely used to extract more information from objects whether the objects are dataframes or products of statistical functions.

Scatter plots

Linear regression involves modeling a continuous outcome variable with one or more explanatory variables. With any data analysis the first step is always to explore the data. In this case, scatter plots are very useful in determining whether or not the relationships between the variables are linear.

The lm
 method will usually compute a fit, i.e. give us the mathematical answer to the question “What is the best linear model to explain the observations?”. To visualize the result of regression it is useful to draw scatter plots.

For example, let’s fit built-in Longley’s economic regression data and plot the scatter plot:
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>  year <- longley$Year

> GNP <- longley$GNP

> lm_GNP <- lm(GNP ~ year)

> lm_GNP



Call:


lm(formula = GNP ~ year)





Coefficients:

(Intercept)         year  


-40223.76        20.78



> plot(year,GNP)

> abline(lm_GNP,lty=4,lwd=3,col="red"))







[image: ]
 Figure 16-1

In this example the GNP is to be explained as a linear function of  year;  this is just a first-order linear regression, with the best-fit least-squares line:

y = −40223.76 + 20.78x

The abline
 command is a little tricky. It prints lines on the current 
 graph window and is generally a useful function. The line it prints is coming from the lm
 functions.

You can also access the coeffcients directly with the function coef
 . The above ones would be found with:
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>  coef(lm_GNP)

(Intercept)         year

-40223.75622     20.77844







Another worthwhile plot is that of the residuals. It can be viewed with the plot
 function. Continuing the above example:

Listing 16-4







	
1

2


	
>  par(mfrow=c(2,2))

>  plot(lm_GNP)







[image: ]
 Figure 16-2

The upper left plot is a plot of residuals versus the fitted values. If the standard statistical model is applied, then the residuals should be scattered about the line y = 0 with normally distributed values. For this data, we see a possible outlier that deserves attention. This data set has a few typos in it. To access residuals directly, you can use the command residuals
 on your lm result. This will make a plot of the residuals

Listing 16-5
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> residuals(lm_GNP)


1           2           3           4           5           6




2.4288382   6.7874015 -15.3630353  -9.5964721  14.0010912  11.2466544




7           8           9          10          11          12




8.8542176 -14.1972191  -0.6186559   0.3139074   3.1244706 -15.8769662




13          14          15          16




1.5025971   0.6211603  -4.5852765  11.3572868



> plot(residuals(lm_GNP), lwd=4)







[image: ]
 Figure 16-3

If the data frame has been attached, lm model can be fitted more 
 simply:

Listing 16-6
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> attach(longley)

> lm_g <- lm(GNP ~ Year)







But even if not, the variable names can be referred to a data frame with data argument:

Listing 16-7







	
1


	
> lm_g <- lm(GNP ~ Year, data=longley)







Examples of model fitting

More complicated models include additive effects, using the + formula operator:

Listing 16-8
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> lm_g1 <- lm(GNP ~ Year + Employed, data=longley)

> lm_g1



Call:

lm(formula = GNP ~ Year + Employed, data = longley)



Coefficients:

(Intercept)         Year     Employed  

-28983.316       14.746        8.419







The formula operator is used to indicate interactions; usually these are used in addition to additive terms:

Listing 16-9







	
1

2

3

4

5

6

7

8

9


	
> lm_g2 <- lm(GNP ~ Year + Employed + Year:Employed, data=longley)

> lm_g2



Call:

lm(formula = GNP ~ Year + Employed + Year:Employed, data = longley)




Coefficients:




(Intercept)           Year       Employed  Year:Employed  




-1.166e+04      5.873e+00     -2.499e+02      1.323e-01









Here the GNP is explained by both Year and Employed, as well as their interaction.

The * formula operator is shorthand for all linear terms and interactions of the named independent variables, so that the previous example could have been more simply written as:

Listing 16-10
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> lm_g3 <- lm(GNP ~ Year * Employed, data=longley)

> lm_g3



Call:

lm(formula = GNP ~ Year * Employed, data = longley)



Coefficients:


(Intercept)           Year       Employed  Year:Employed  




-1.166e+04      5.873e+00     -2.499e+02      1.323e-01









The ^ formula operator is used to indicate predictor crossing to the specified degree:

Listing 16-11
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> lm_g4 <- lm(GNP ~ (Year + Employed)^2, data=longley)

> lm_g4



Call:

lm(formula = GNP ~ (Year + Employed)^2, data = longley)



Coefficients:


(Intercept)           Year       Employed  Year:Employed  




-1.166e+04      5.873e+00     -2.499e+02      1.323e-01









Here the ^2 expands to all interactions between the named predictors, since there are only two; this is equivalent to Year + Employed + Year:Employed, which in this case is also the same as Year*Employed.

The / operator is used to specify that the second-named predictor is nested within the first-named predictor, i.e. levels of the nested predictor are not independent factors. Nested models are often used in designed experiments such as split-plot designs or replicated measurements within an experimental unit.

Since the characters +, *, ^, and / have special meaning in formulas, they must be “quoted” with the I operator if they are to be interpreted as arithmetic operators. For example, to model tree volume from the Year-to-Employed ratio:

Listing 16-12







	
1

2

3

4

5

6

7

8

9


	
> lm_g9 <- lm(GNP ~ I(Year/Employed), data=longley)

> lm_g9



Call:

lm(formula = GNP ~ I(Year/Employed), data = longley)



Coefficients:


(Intercept)  I(Year/Employed)  




2266.72            -62.63









To model GNP as the square of Employed:

Listing 16-13
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> lm_g10 <- lm(GNP ~ I(Employed^2), data=longley)

> lm_g10



Call:

lm(formula = GNP ~ I(Employed^2), data = longley)



Coefficients:


(Intercept)  I(Employed^2)  




-526.3720         0.2137









This is only needed if there is a danger of misinterpretation. Most methods can be used directly in formulas, e.g. the log method to compute natural logarithms. For example, to fit a log-log regression of GNP by Employed:

Listing 16-14
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> lm_g11 <- lm(log(GNP) ~ log(Employed), data=longley)

> lm_g11



Call:

lm(formula = log(GNP) ~ log(Employed), data = longley)



Coefficients:


(Intercept)  log(Employed)  




-14.457          4.879









Removing terms

Sometimes it is convenient to specify a model and then remove a term from it with the - formula operator. As a somewhat artificial example, to model GNP by only Employed and its interaction with Year use the following:

Listing 16-15
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> lm_g5 <- lm(GNP ~ Employed * Employed - Year, data=longley)

> lm_g5



Call:

lm(formula = GNP ~ Employed * Employed - Year, data = longley)



Coefficients:

(Intercept)     Employed  


-1430.48        27.84









This is equivalent to:

Listing 16-16







	
1

2


	
> lm_g6 <- lm(GNP ~ Employed + Employed:Year, data=longley)







The - formula operator is often used to remove the intercept.

The intercept term (e.g. the mean) is implicit in model formulas. For regression through the origin, it must be explicitly removed with the - formula operator, in this case the implied intercept, with the expression -1. Or, alternatively, the origin can be named explicitly with the + formula operator, with the expression +0:

Listing 16-17
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> lm_g7 <- lm(GNP ~ Year - 1, data=longley)

> lm_g7



Call:

lm(formula = GNP ~ Year - 1, data = longley)



Coefficients:


Year  



0.1985  



> lm_g8 <- lm(GNP ~ 0 + Year, data=longley)

> lm_g8



Call:

lm(formula = GNP ~ 0 + Year, data = longley)



Coefficients:


Year  



0.1985








Lab Exercise: Simple linear regression

[image: ]


AIM

The AIM of the following exercise is to practice studying data sets with the help of linear regression. The steps involved will include:


	
Studying the data set



	
Fitting linear model



	
Studying the residuals





Estimated Completion Time:

40 minutes


[image: ]



Step 1
 : For this exercise we will use women data set from the library datasets:







	
1

2

3

4


	
> str(women)

'data.frame':​
 15 obs. of  2 variables:

$ height: num  58 59 60 61 62 63 64 65 66 67 ...

$ weight: num  115 117 120 123 126 129 132 135 139 142 ...







There is a data frame with two variables (height and weight) and 15 observations (records). This data set concerns the relationship between height and weight of US women:
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> summary(women)


height         weight     



Min.   :58.0   Min.   :115.0  

1st Qu.:61.5   1st Qu.:124.5  

Median :65.0   Median :135.0  

Mean   :65.0   Mean   :136.7  

3rd Qu.:68.5   3rd Qu.:148.0  

Max.   :72.0   Max.   :164.0







With this small sample size it is somewhat straightforward to verify that there is no repetition of 'id' and no missing values. Let’s visualize the data:







	
1


	
> plot(women)







[image: ]
 The names of the variables are used for the axis labels, and there is no title by default.[image: ]



Step 2:
 First let’s set up a linear model using the above two variables, i.e. the two variables height and weight:
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> y <- women$weight

> x <- women$height

> lm_w <- lm(y ~ x)

> lm_w


Call:



lm(formula = y ~ x)

Coefficients:

(Intercept)            x  


-87.52         3.45









The model lm_w is created. Displaying the model by typing lm_w gives limited information. To get more information, one can look at the attributes of this model, its summary and attributes of its summary:[image: ]
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> attr(lm_w, 'names')

[1] "coefficients"  "residuals"     "effects"       "rank"         

[5] "fitted.values" "assign"        "qr"            "df.residual"  

[9] "xlevels"       "call"          "terms"         "model"







There are 12 attributes. Most of them can be displayed with the summary
 function:
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> summary(lm_w)

Call:

lm(formula = y ~ x)



Residuals:


Min      1Q  Median      3Q     Max



-1.7333 -1.1333 -0.3833  0.7417  3.1167



Coefficients:


Estimate Std. Error t value Pr(>|t|)    



(Intercept) -87.51667    5.93694  -14.74 1.71e-09 ***

x             3.45000    0.09114   37.85 1.09e-14 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Residual standard error: 1.525 on 13 degrees of freedom

Multiple R-squared:  0.991,​
 Adjusted R-squared:  0.9903

F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14







The first section of summary shows the formula that was 'called'. The second section gives the distribution of residuals. The pattern is clearly not symmetric. The maximum is too far on the right (3.1167) compared to the minimum (-1.7333) and the first quartile is further left (-1.1333) of the median (-0.3833) than the third quartile (0.7417) is. Otherwise, the median is close to zero.[image: ]


The third section gives coefficients of the intercept and the effect of x (height) on y (weight).

The multiple R-squared value of 0.991 indicates that 99.1% of the variation in the data is explained by the model.

The last section describes more details of the residuals and hypothesis testing on the effect of x (height) using F-statistics. The p-value from this section (1.091e-14) is equal to that tested by the t-distribution in the coefficient section.

A regression line can now be added to the scatter plot with the following command:







	
1

2


	
> plot(women)

> abline(lm_w,lty=4, lwd=3,col="red")







[image: ]
 The regression line has an intercept of -57.17 and a slope of 3.45. The expected value is the value y (weight) estimated from the regression line with a specific value of x (height).[image: ]
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> plot(women,lwd=3)

> points(x, fitted(lm_w),pch=18,col="magenta")







[image: ]
 [image: ]



Step 3:
 A residual is the difference between the observed and expected value. The residuals can be drawn by the following commands
 :








	
1
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> plot(women,lwd=3)

> segments(x,y, x,fitted(lm_w), lwd=3,col="blue")







[image: ]
 [image: ]


The actual values of the residuals can be checked from the specific attribute of the defined linear model:
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> residuals(lm_w)


1           2           3           4           5           6



2.41666667  0.96666667  0.51666667  0.06666667 -0.38333333 -0.83333333


7           8           9          10          11          12



-1.28333333 -1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.53333333


13          14          15



0.01666667  1.56666667  3.11666667







Note that some residuals are positive and some are negative. The sum of the residuals and the sum of their squares can be checked like this:

[image: ]
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> sum(residuals(lm_w))



[1] 7.21645e-16

> sum(residuals(lm_w)^2)

[1] 30.23333







The sum of residuals is close to zero whereas the sum of their squares is not equal to zero. If the model fits well the distribution of residuals should be normal. A common sense approach is to look at the histogram or density:
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> hist(residuals(lm_w),freq=F,col="light blue")







[image: ]








	
1


	
> plot(density(residuals(lm_w)),lwd=3,col="brown")







[image: ]
 [image: ]


Plots from the above two commands, hist
 and plot(density()),
 do not suggest that residuals are normally distributed. However, with such a small sample size, it is difficult to draw any conclusion. A better way to check normality is to plot the residuals against the expected normal score or (residual-mean) / standard deviation. A reasonably straight line would indicate normality:
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> qqnorm(residuals(lm_w))



> qqline(residuals(lm_w),lwd=3,lty=4,col="red")







[image: ]
 [image: ]


Numerically, Shapiro-Wilk test can also be applied:
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> shapiro.test(residuals(lm_w))






​
 Shapiro-Wilk normality test



data:  residuals(lm_w)

W = 0.9191, p-value = 0.1866







With this test (p-value=0.1866) and the above findings from the qqnorm
 function we may conclude that the residuals are randomly and normally distributed[image: ]


Task Completed


SUMMARY

This chapter provides essential information about the following topics:

●       
 Introduction to regression analysis

●       
 Linear regression models

●       
 How R builds linear regression models


REFERENCES

●       
 http://www.r-project.org/



CHAPTER 18: Time series analysis

In probability theory, a time series is a sequence of random variables. You will also hear term “stochastic process”: in a time series, time is discrete, in a stochastic process, it is continuous. In statistics, it is a variable that depends on time: for instance, the price of a stock, that changes every day; the air temperature, measured every month; the heart rate of a patient, minute after minute, etc.

If a random variable X is indexed with time, usually denoted by t, series of observations [image: ]
 is called a time series, where T is a time index set (for example, T = Z, the integer set).

Time series are ubiquitous in everyday manipulations of financial data. They are especially well suited to the nature of financial markets, and models and methods have been developed to capture time dependencies and produce forecasts. This is the main reason for their popularity. This chapter is devoted to a general introduction to the linear theory of time series, restricted to the univariate case. It includes the following sections:

This chapter includes the following paragraphs:


	
Introduction to time series analysis



	
Autocorrelation function



	
White noise



	
Spectral analysis



	
Time series models






Introduction to time series analysis

The goal of time series analysis is to analyze data containing finite sequences of measurements, each coming with a time stamp, these time stamps being ordered in a natural fashion. The purpose of the analysis is to quantify the dependencies across time, and to take advantage of these correlations to explain the observations at hand, and to infer properties of the unobserved values of the series.

Many examples of time series analysis application come from financial time series analysis. Financial time series analysis is concerned with theory and practice of asset valuation over time. It is a highly empirical discipline, but like other scientific field theory forms the foundation for making inference. There is, however, a key feature that distinguishes financial time series analysis from other time series analysis. Both financial theory and its empirical time series contain an element of uncertainty. For example, there are various definitions of asset volatility, and for a stock return series, the volatility is not directly observable. As a result of the added uncertainty, statistical theory and methods play an important role in financial time series analysis.

The foundation of time series analysis is stationarity. A time series [image: ]
 is said to be strictly stationary
 if the joint distribution of  [image: ]
 is identical to that of [image: ]
  
 for all t
 , where k
 is an arbitrary positive integer and (t
 1, . . . , tk )
 is a collection of k
 positive integers. In other words, strict stationarity requires that the joint distribution of [image: ]
  
 is invariant under time shift. This is a very strong condition that is hard to verify empirically. A weaker version of stationarity is often assumed. A time series [image: ]
 is weakly stationary
 if both the mean of [image: ]
 and the covariance between [image: ]
 and [image: ]
 are time-invariant, where m is an arbitrary integer.

More specifically, [image: ]
 is weakly stationary if

●       
 [image: ]
 , which is a constant, and

●       
 [image: ]
 which only depends on m.

In practice, suppose that we have observed T
 data points [image: ]
 . The weak stationarity implies that the time plot of the data would show that the T
 values fluctuate with constant variation around a constant level. Implicitly in the condition of weak stationarity, we assume that the first two moments of [image: ]
 are finite. From the definitions, if [image: ]
 is strictly stationary and its first two moments are finite, then [image: ]
 is also weakly stationary. The converse is not true in general. However, if the time series [image: ]
 is normally distributed, then weak stationarity is equivalent to strict stationarity. In this chapter mainly concerned with weakly stationary series. The covariance [image: ]
 is called the lag—m autocovariance of  [image: ]
 .

In statistics, we like independent data – the problem is that time series contain dependent data. The aim of a time series analysis will thus be to extract this structure and transform the initial time series into a series of independent values often called “innovations”, usually by going in the other direction: by providing a recipe (a “model”) to build a series similar to the one we have with noise as only ingredient. We can present this problem from another point of view: when you study a statistical phenomenon, you usually have several realizations of it. With time series, you have a single one. Therefore, we replace the study of several realizations at a given point in time by the study of a single realization at several points in time. Depending on the statistical phenomenon, these two points of view may be equivalent or not – this problem is called ergodicity.

Regular time series are sets of measurements taken at regular time intervals. In other words, the time stamps of the sequence [image: ]
 are of the form [image: ]
 for j = 0, 1, . . . , n. Such a sequence of times is determined by its start [image: ]
 , its length n + 1, and the time interval Δt between two successive times. Note that instead of giving the sampling interval Δt, one can equivalently give the sampling frequency, or the time of the final measurement. Once the time sequence has been defined, one can then give the sequence of corresponding measurements separately. Most of the financial time series do not have the good taste to be regular. Most financial studies involve returns, instead of prices, of assets. There are two main reasons for using returns. First, for average investors, return of an asset is a complete and scale-free summary of the investment opportunity. Second, return series are easier to handle than price series because the former have more attractive statistical properties. There are, however, several definitions of an asset return.

In this chapter we will be looking at the time series that represent measurements of the annual flow of the river Nile at Ashwan 1871-1970 from datasets package:

Listing 18-1







	
1


	
> plot(Nile, ylab="", main="Flow of the River Nile")







[image: ]
 Figure 18-1

In R function ts
 is used to create time-series objects. These are vectors or matrices with class of "ts" (and additional attributes) which represent data which has been sampled at equispaced points in time. In the matrix case, each column of the matrix data is assumed to contain a single univariate time series. Time series must have at least one observation, and although they need not be numeric there is very limited support for non-numeric series.

Lag a time series

The function window
 extracts a sub-series of a single or multiple time series, by specifying start and / or end. The function lag
 shifts the time axis of a series back by k
 positions, default one. Thus lag
 (Nile, k = 3) is the series of Nile shifted one quarter into the past. This can cause confusion, as most people think of lags as shifting time and not the series; that is, the current value of a series lagged by one year is last year’s, not next year’s.

Here is how to compute a lagged version of a time series. shifting the time base back by a given number of observations:

Listing 18-2
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> par(mfrow=c(2,1))



> Nile_lag <- lag(Nile,k=10)

> plot(Nile_lag, main="Nile, lag=10")

> abline(v=1870, lty=4, col="red")

> plot(Nile)

> abline(v=1870, lty=4, col="red")







[image: ]
 Figure 19-2


It is convenient at this point to introduce the concept of
 differencing.
 The function diff
 takes the difference between a series and its lagged values and returns a series of length n − k
 with values lost from the beginning (if k >
 0) or end. The argument lag specifies k
 and defaults to one. Note that the lag is used in the usual sense here, so diff(Nile, lag =3) is equal to Nile - lag(Nile, k = -3). The function diff
 has an argument differences which causes the operation to be iterated.

Autocorrelation function


Another property of time series data, not usually present in cross-sectional data, is the existence of correlation
 across observations. The stock price index today, for example, is highly correlated with its value last month.



The correlations discussed above are simple examples of autocorrelations
 (i.e. correlations involving a variable and a lag of itself). The autocorrelation function
 is a common tool used by researchers to understand the properties of a time series.


As the observations in a time series are generally not independent, we can first have a look at their correlation. The autocorrelation function or ACF (strictly speaking, one can consider the Sample ACF, if it is computed from a sample, or the theoretical autocorrelation function, if it is not computed from actual data but from a model) at lag k is the correlation between observation number n and observation number n - k. In order to compute it from a sample, you have to assume that it does not depend on n but only on the lag k.

The main difference between time series and the series of independent and identically distributed random variables is the lack of independence. Correlation is one means of measuring that lack of independence. If the variables are gaussian, it is even an accurate means. The autocorrelation function or ACF is the correlation between a term and the i-th preceding term:

ACF(i) = Cor(X(t), X(t-i))

The ACF plot is called an “autocorrelogram”.

The function acf
 computes (and plots, by default) sequences, known as the autocovariance or autocorrelation functions. Function pacf
 is the function used for the partial autocorrelations. Function ccf
 computes the cross-correlation or cross-covariance of two univariate series.

By default, no missing values are allowed. If the function specified in na.action argument passes through missing values (as na.pass does), the covariances are computed from the complete cases. This means 
 that the estimate computed may well not be a valid autocorrelation sequence, and may contain missing values. Missing values are not allowed when computing the PACF of a multivariate time series.


The partial correlation coefficient is estimated by fitting autoregressive models of successively higher orders up t
 o
 lag.max argument.



The lag is returned and plotted in units of time, and not numbers of observation
 s
 .
 The generic function
 plot
 has a method for objects of class "acf". There are also
 print
 and subsetting methods for objects of class "acf".


Listing 18-3
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> par(mfrow=c(2,2))

> acf(Nile, type="covariance")

> acf(Nile)

> pacf(Nile)

> pacf(Nile,lag=10)







[image: ]
 Figure 18-3

When the ACF is almost zero, the data are not correlated; when the ACF is sometimes positive sometimes negative, the data might be periodic; in the other cases, the data are correlated but the speed at which the autocorrelation decreases can vary.

White noise

A white noise is a series of uncorrelated random variables, whose expectation is zero, whose variance is constant. In other words, these are iid (independent, identically distributed) random variables, to the second order. (They may be dependent, but in non-linear ways, that cannot be seen from the correlation; they may have different distributions, as long as the mean and variance remain the same; their distribution need not be symmetric.) Quite often, we shall try to decompose our time series into a “trend” (or anything 
 interpretable) plus a noise term, that should be white noise. For instance, a series of iid random variables is a white noise.

Listing 18-4
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> par(mfrow=c(1,2))

> x <- rnorm(500)

> ts_x <- ts(x)

> plot(ts_x, main="Gaussian iid noise")

> abline(h=0,lty=5,lwd=3,col="red")

> hist(ts_x,col="pink")







[image: ]
 Figure 18-4

A series of iid random variables of mean zero is also a white noise.

Now here are examples of a non gaussian iid noise:

Listing 18-5
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> par(mfrow=c(1,2))

> N <- 100

> x <- ts(runif(N,-1,1))

> plot(x,main="Non gaussian iid noise")

> abline(h=0,lty=4,lwd=2,col="blue")

> hist(x,col="light blue")







[image: ]
 Figure 18-5
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> par(mfrow=c(1,2))

> N <- 100

> x <- ts(rnorm(N)^3)

> plot(x,main="Non gaussian iid noise")

> hist(x,col="pink")







[image: ]
 Figure 18-6

But you can also have a series of uncorrelated random variables that are not independent: the definition just asks that they be 
 “independent to the second order”. Some deterministic sequences look like white noise. We have a few tests to check if a given time series is actually white noise.

The analysis of a time series mainly lies in finding out a recipe to build it (or to build a similar-looking series) from white noise. But to find this recipe, we proceed in the other direction: we start with our time series and we try to transform it into something that looks like white noise. To check if our analysis is correct, we have to check that the residuals are indeed white noise (exactly as we did with regression). To this end, we can start to have a look at the ACF (on average, 5% of the values should be beyond the dashed lines – if there are much more, there might be a problem).

There are several powerful tests for the white noise hypothesis. The most common ones come under the name of portmanteau
 tests. They are based on the fact that, under the null hypothesis of a Gaussian white noise, appropriately weighted sums of the squares of the estimates of the auto-correlation function should follow a  [image: ]
 distribution.
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> par(mfrow=c(1,2))

> n <- 300

> x <- rnorm(n)

> x_ts <- ts(x)

> plot(x_ts)

> abline(h=0,lty=5,lwd=2,col="red")

> acf(x_ts,main="")







[image: ]
 Figure 18-7

To have a numerical result (a p-value), we can perform a Box–Pierce or Ljung–Box test (these are also called “portmanteau statistics”): the idea is to consider the weighted sum of the first autocorrelation coefficients. Those sums asymptotically follow a [image: ]
 distribution. The Ljung-Box is a variant of the Box-Pierce one that gives a better [image: ]
 approximation for small samples.
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> n <- 300

> x <- rnorm(n)

> Box.test(x_ts)




​
 Box-Pierce test



data:  x_ts

X-squared = 0.111, df = 1, p-value = 0.739



> n <- 300

> x <- rnorm(n)

> Box.test(x_ts,type="Ljung-Box")




​
 Box-Ljung test



data:  x_ts

X-squared = 0.1121, df = 1, p-value = 0.7377







Spectral analysis

A key concept in traditional time series analysis is the decomposition of a given time series [image: ]
 into a trend [image: ]
 , a seasonal component [image: ]
 and the remainder or residual.

A common method for obtaining the trend is to use linear filters on given time series: a simple class of linear filters are moving averages with equal weights. In this case, the filtered value of a time series at a given period is represented by the average of the values.

Another possibility for evaluating the trend of a time series is to use a nonparametric regression technique (which is also a special type of linear filter).

One can also find the trend of a time series by performing a Fourier transform and removing the high frequencies. Indeed, the moving averages we considered earlier are low-pass filters. If a time series has a trend and this trend is a polynomial of degree n, then you can transform this series into a trend-less one by differentiating it n times using the discrete derivative. To go back to the initial time series, you just have to integrate n times (“discrete integration” is just a complicated word for “cumulated sums” but, of course, you have to worry about the integration constants).

The spectral approach to second-order properties is better able to separate short term and seasonal effects, and also has a sampling theory that is easier to use for non-independent series.

Some time series have a seasonal component difficult to spot, especially if you do not know the period in advance: a periodogram, also known as “sample spectrum” (simply a discrete Fourier transform) can help you find the period.

The workhorse function for spectral analysis is spectrum
 
 , which with its default options computes and plots the periodogram on log scale. The function spectrum
 calls spec.pgram
 to do most of the work. Note: spectrum
 by default removes a linear trend from the series before estimating the spectral density.. For our examples we can use:
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> spectrum(Nile, spans=2)







[image: ]
 Figure 18-8

The function spectrum
 also produces smoothed plots, using repeated smoothing with modified Daniell smoothers, which are moving averages giving half weight to the end values of the span. Trial-and-error is needed to choose the spans.

Listing 18-10







	
1

2

3

4

5


	
> par(mfrow=c(2,2))

> spectrum(Nile, spans=2)

> spectrum(Nile, spans=4)

> spectrum(Nile, spans=6)

> spectrum(Nile, spans=8)







[image: ]
 Figure 18-9

The spans should be odd integers, and it helps to produce a smooth plot if they are different and at least two are used. The width of the center mark on the 95% confidence interval indicator indicates the bandwidth.

The periodogram has other uses. If there are periodic components in the series the distribution theory given previously does not apply, but there will be peaks in the plotted periodogram. Smoothing will reduce those peaks, but they can be seen quite clearly by plotting 
 the cumulative periodogram against bandwidth ω.

The cumulative periodogram is also very useful as a test of whether a particular spectral density is appropriate. Function cpgram
 can be used to plot the cumulative periodogram:
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> cpgram(Nile)







[image: ]
 Figure 18-10

The proportion α
 is controlled by the parameter taper of spec.pgram
 , and defaults to 10%. It should rarely need to be altered. (The taper function spec.taper
 can be called directly if needed.) Tapering increases the variance of the periodogram and, hence, the spectral density estimate, by about 12% for the default taper, but it will decrease the bias near peaks very markedly, if those peaks are not at Fourier frequencies.

Time series models

There are many different models for time series analysis. In this section we will learn how to use the most well-known models in R.

Random walk model

Financial prices are determined by many political, corporate, and individual decisions. A model for prices is a detailed description of how successive prices are determined. A good model is capable of providing simulated prices that behave like real prices. Thus, it should describe the most important of the known properties of recorded prices.

A mentioned before, typically one tries to decompose a time series into a sum of three terms: a trend (often, an affine function), a seasonal component (a periodic function) and white noise. It happens quite often that the log-returns of market indexes have a small positive mean over significantly long periods of time. This remark is consistent with the Samuelson’s model for stock prices and stock indexes and it justifies the introduction of the random walk model:

[image: ]



In finance, the random walk model is commonly used for equities, and it is usually assumed that the geometric returns of the time series follow this model. The variance
 ¾
 might be dependent of the time
 t
 . The assumption of serially independent increments of the series can be motivated as follows. If there were correlation between different epochs, smart investors could bet on it and beat the market. However
 ,
 in the process they would then destroy the basis for their own investment strategy, and drive the correlations they utilized back to zero. Hence, the (geometric) random walk model assumes that at a given moment it is impossible to estimate where in the business cycle the economy is and utilize such knowledge for investment purposes.


At the level of the models, we say that [image: ]
 is a random walk if there exists a white noise [image: ]
 such that:

[image: ]


In other words, if the whole sequence  [image: ]
 is determined by [image: ]
 and the induction formula [image: ]


Usually,  [image: ]
 is assumed to be independent of the entire white noise sequence [image: ]
 . Notice that [image: ]
 for all n
 . However, even though the mean function is constant, the random walk is not stationary. Indeed:

[image: ]



So variance is obviously changing with
 n
 . Notice that the independence of the terms guarantees the fact that the variance of the sum is equal to the sum of the  variances. Keep in mind that this is not true in general. Even though the rando
 m
 walk is not stationary, its first difference is. Indee
 d
 [image: ]
 is a white nois
 e
 (and hence is stationary)
 .
 So [image: ]
 . These processes are also called root one processes.
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> N <- 300

> x <- cumsum(rnorm(N)) +rnorm(N)

> x_ts <- ts(x)

> plot(x_ts, main="Noisy random walk",ylab="")







[image: ]


Figure 18-11

A random walk is simply “integrated noise”. As this is a discrete integration, we use the cumsum
 function. One can add some noise to a random walk: this is called a local level model.

Autoregressive (AR) models

Random walk models cannot be used for all financial time series. Interest rates, for instance, are influenced by complicated political factors that make them difficult to describe mathematically. However, if a description is called for, the class of autoregressive models is a useful candidate.

The random walk model satisfies the induction equation [image: ]
 giving the value of the series at time t
 in terms of the preceding value at time t−
 1 and a noise term. This shows that [image: ]
 s a good candidate for the least squares regression on its past value [image: ]
 . We now define a large class of time series with this property.

A mean-zero time series [image: ]
 is said to be auto-regressive of order p (with respect to a white noise [image: ]
 if

[image: ]


for some set of real numbers [image: ]


More generally, we say that [image: ]
 is auto-regressive of order p
 if there exists a number [image: ]
 (which will necessarily be the common mean of the random variables  [image: ]
 ) such that the series [image: ]
 }t
 is auto-regressive of order p
 in the sense given above. In any case, we use the notation  [image: ]
 .

AR models are very important because of their simplicity, and because of the efficient fitting algorithms which have been developed. Let’s look at the simplest first order case, the AR(1)-model:
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> par(mfrow=c(1,1),mar=c(2,4,2,2+.1))

> x_ts <- arima.sim(list(order = c(1,0,0),ar=0.7), n = 200)

> plot(x_ts, xlab="", ylab="AR(1)")

> abline(h=0,lty=4,lwd=3,col="red")







[image: ]


Figure 18-12

The red dotted line represents the stationary level of the process. More generally, an AR(q) process is a process in which each term is a linear combination of the q preceding terms and a white noise (with fixed coefficients).

Moving average (MA) model

A time series [image: ]
 is said to be a moving average time series of order q with respect to white noise [image: ]
 if:

[image: ]


for some real numbers [image: ]
 . In such a case we use the notation  [image: ]
 .

Actually, one should distinguish between “smoothing” with a moving average (to find the value at a point, one uses the whole 
 sample, including what happened after that point) and “filtering” with a moving average (to find the smoothed value at a point, one only uses the information up to that point). When we perform a usual regression, we are interested in the shape of our data in the whole interval. On the contrary, quite often, when we study time series, we are interested in what happens at the end of the interval – and try to forecast beyond. In the first case, we use smoothing: to compute the moving average at time t, we average over an interval centered on t. The drawback is that we cannot do that at the two ends of the interval: there will be missing values at the beginning and the end. In the second case, as we do want values at the end of the interval, we do not average on an interval centered on t, but on the values up to time t. The drawback is that this introduces a lag: we have the same values as before but t/2 units later. The side argument of the filter
 function lets you choose between smoothing and filtering.

Filters are especially used in real-time systems: we want the best estimation of some quantity using all the data collected so far, and we want to update this estimate when new data comes in.
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> N <- 300

> x <- rnorm(N)

> x2 <- x[2:N]

> x1 <- x[2:N-1]

> y <- (x2 + x1)/2

> x_ts <- ts(x)

> y_ts <- ts(y)

> par(mfrow=c(2,1), mar=c(2,4,2,2)+.1)

> plot(x_ts, xlab="", ylab="White noise")

> plot(y_ts , xlab="", ylab="MA(1)")







[image: ]


Figure 18-13

The moving average has a slight problem: it uses a window with sharp edges; an observation is either in the window or not. As a result, when large observations enter or leave the window, there is large jump in the moving average. This is another moving average: instead of taking the N latest values, equally-weighted, we take all the preceding values and give a higher weight to the latest values (exponential moving average).

Autoregressive–moving-average (ARMA) models


A time serie
 s
  
 [image: ]
 is said to be an auto-regressive moving average tim
 e
 series of order p and q if there exists a white nois
 e
 [image: ]
 such that


[image: ]



for some real number
 s
 [image: ]
 , and [image: ]
 . In such a case we use the notation
 X
 ~
 ARMA(p, q)
 .

ARMA processes give a good approximation to most stationary processes. As a result, you can use the estimated ARMA coefficients as a statistical summary of a stationary process, exactly as the mean and the quantiles for univariate statistical series. They might be useful to forecast future values, but they provide little information as the underlying mechanisms that produced the time series.

To model a time series as an ARMA model, it has to be stationary. To get a stationary series (in short, to get rid of the trend), you can try to differentiate it. The fact that the series is not stationary is usually obvious on the plot. You can also see it on the ACF: if the series is stationary, the ACF should rapidly (usually exponentially) decay to zero.
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> n <- 1500

> x <- arima.sim(model = list(ar= c(.5), ma = c(.7,.9)), n)

> x_ts <- ts(x)

> plot(x_ts, main= "ARMA(1,2)")

> abline(h=0,lty=4,lwd=3,col="red")







[image: ]
 Figure 18-14

Autoregressive integrated moving average (ARIMA) model


A time serie
 s
 [image: ]
  
 is said to be an ARIMA process if, when differentiated finitely many times, it becomes an ARMA time series. More precisely, one says tha
 t
 [image: ]
  
 is an ARIMA(p,d,q) if its becomes an ARMA(p,q) after
 d
 differences. ARIMA processes are not stationary processes.
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> n <- 2500

> x <- arima.sim(model = list(ar = c(.4,.5), ma = c(.8,-.5,.2), order = c(2,1,3)),n)

> x_ts <- ts(x)

> plot(x_ts,main="ARIMA(2,1,3)")







[image: ]
 Figure 18-15

Other time series models are available in R, especially via packages, like ARCH and GARCH models.

Lab Exercise: Researching time series

[image: ]


AIM

The AIM of the following exercise is to practice in time series analysis. The steps involved will include:


	
Prepare data for time series



	
Analyze the time series



	
Analyze the lagged time series





Estimated Completion Time:

30 minutes


Step 1
 : For this exercise we will be using the built-in data set timeSeries. Let’s load timeSeries and have a look at it:[image: ]
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> library(timeSeries)

Loading required package: timeDate



Attaching package: ‘timeSeries’



The following object is masked _by_ ‘.GlobalEnv’:




series





> ?TimeSeriesData

TimeSeriesData           package:timeSeries            R Documentation



Time Series Data Sets



Description:




Three data sets used in example files.






The data sets are:






‘LPP2005REC’  Swiss pension fund assets returns benchmark,     




‘MSFT’        Daily Microsoft OHLC prices and volume,          




‘USDCHF’      USD CHF intraday foreign exchange xchange rates.









As you can see there are three data sets. We will work with USDCHF data set.[image: ]
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> str(USDCHF)

Time Series:          

Name:               object

Data Matrix:        

Dimension:          62496 1

Column Names:       USDCHF

Row Names:          8295-03-14 14:20:00  ...  8311-01-09 10:38:50

Positions:          

Start:              8295-03-14 14:20:00

End:                8311-01-09 10:38:50

With:               

Format:             %Y-%m-%d

FinCenter:          GMT

Units:              USDCHF

Title:              Time Series Object

Documentation:      Thu Aug 27 17:20:22 2009







This data set is too large for practice purposes so we take 1500 first elements for analysis:







	
1


	
> x <- USDCHF[1:1501]








Step 2
 : Let’s plot our time series:







	
1


	
> plot(x, type="l")







[image: ]
 [image: ]


Checking autocorrelation:







	
1


	
> acf(x)







[image: ]






	
	







[image: ]
 We observe the serial correlation. Therefore, we should differentiate the time series.
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> ret <- diff(log(x))



> length(ret)

[1] 1500







Now we have timeseries ret of length 1500.


Step 3:
 Let’s study the differentiated time series:

[image: ]
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> plot(ret,type="l")







[image: ]
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> acf(ret)







[image: ]
 [image: ]


There is no serial correlation. Let’s look at summary information and periodogram:
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> summary(ret)


Min.    1st Qu.     Median       Mean    3rd Qu.       Max.



-4.259e-03 -3.349e-04  0.000e+00  3.127e-05  4.190e-04  3.704e-03

> spectrum(ret)







[image: ]
 [image: ]


Task Completed


SUMMARY

This chapter provides essential information about the following topics:

●       
 Basics of time series analysis

●       
 Computing autocorrelation functions and performing spectral analysis

●       
 Using time series models in R


REFERENCES

●       
 http://www.r-project.org/


OEBPS/Image00011.jpg
Downloading Loading Working with

and packages console
installation






OEBPS/Image00132.jpg
00[] 0 0% /0D

!





OEBPS/Image00253.jpg
|:|y|x |:| a DbX





OEBPS/Image00010.jpg
Downloading Loading Working with

and packages console
installation






OEBPS/Image00131.jpg
x1:x29|:| ,xn





OEBPS/Image00252.jpg
|:lylx





OEBPS/Image00013.jpg
Downloading Loading Working with

and packages console
installation






OEBPS/Image00134.jpg
P(XOO)OM O





OEBPS/Image00255.jpg





OEBPS/Image00012.jpg
=13l =18l

R-2.10.1-win32.exe 12:08 AM
310 MB —r-project.org

Select Components
which compenents should be installed?

Select the components you want to install; clear the components you do not wart to
install Click Hest when you are ready ta cortinue

HTHL Fies 27MB =

Suppot Files for Package toltk 82MB

[ Tel/Tk Help (Campiled HTML) 1.7 M8

Online FOF Manuals 0.9MB

Basic Manuals 0.9M8

Ifyou want to double-c [ Technical Manuals 20MB d by R, you can
commpare the mdSsum ¢ L FOF help pages reference manusl) B4MB th graphical and
Sorimadid liad versihe T Docs for Packages arid and Malic 14MB
= 1 Messaae Translations 47ne

Frequently ask

* How do Lmstall
* How do Lupdate

Curient selection requites at least 45.5 MB of disk space.

< Back Cancel

Pleage see the R FAQ for general mformation about R. and the R Windows FAQ for Windows-specific mformation.

Other builds

Done

Bstart| @ G @ A7 8 2 Binu |G | @22 win] Tioe | Yr. [[[Fse. [«2O






OEBPS/Image00133.jpg
n /2
sOM0 O] Drc)/(nul)ﬁl

!





OEBPS/Image00254.jpg





OEBPS/Image00015.jpg
Recu . =1=] x|

Edit View Misc Packages Windows Help

R version 2.10.1 {2009-12-14)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISEN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language Support but running in an English locale
R is a collaborative project with wany contributors.
Type 'contributors()' for more information and
'citation({)' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.starti)' for an HTML browser interface to help.

Type 'g(j' to guit R.

> install.packages |"Rendr”, dependencies=TRUE)|

Bstart| @O @ 2.2 6 2 B |G | @ | o# wi| Tioe. | W [Rrcu [« 2 @@ 1218am





OEBPS/Image00136.jpg
OO0E&KOm|p®





OEBPS/Image00014.jpg
Downloading Loading Working

ELL packages with console

installation






OEBPS/Image00135.jpg





OEBPS/Image00256.jpg
T T T T T T T
056 00§ 0S8k 00F 0G€ 00€ 0ST

dN9

1960

1955

1950

year





OEBPS/Image00016.jpg
LN =gl

Packages Windows  Help

R version 2.10.1 [2009-12-14)
Copyright (€] 2008 The R Foundation for Statistical Computing
ISEN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcoms to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribucion details.

Natural language support but rumning in an English locale
F is a collaborative project with many contributors.

Type 'contriburors()' for more information and

‘witation{)' on how to cite R or R packages in publications.
Type 'demof{)’ for some demos, 'help{)' for on-line help, or
| 'help.start{)' for an HTHL browser interface to help.

Type 'gil' to guit R.

> library(Remdr)|

+ 8 AW B @ | @wi. | 2 wi] Fioe.





OEBPS/Image00247.jpg





OEBPS/Image00007.jpg
=&

Eile  Edt ¥ew History EBookmarks Tools  Help

- @ 0 4 | @ | hepdicranr-project orglbinfwindows base) 2 B

(5] Most visted 88 EBCHEWS [ Chicom | | Al Jazeera 9 Gmail-Inbax | | &0, U, 5. - OnlineP... &7 Emary Library

Ty

% UbxEmory - Keyward v| &) SearchworldCat = Clear x Scholar

R-2.10.1 for Windows I

J (@ Download R-2.10.1 for Windows. The ...

Download R 2.10.1 for Windows (32 megabytes)

Installstion and gther instructions

Mew features in this version: Windows specific, all platforms,

If you want to double-check that the package you have dewnloaded exactly matches the package distributed by B, you can

compare the mdJsum ofthe .exe to the true fingerprint. You will need a wersion of mdSsum for windows: both sraphical and
command line versions are available Opening R n3Z.exe x|

. ou have chosen to open
Frequently asked questions

7] R-2.10.1-win3Z.exe
o How do [ install R when usng Windows Vista? :"hi‘h Is & Appiication
® How do I update packages in my previcus wersion of R? S R et

Would you like to save this file?

Please see the B FAQ for general information about R and the R Canicel

Other builds

Done [

Hisart| @ & @ A .2 6 2 1A iTunes | €3 mbo... || @ pow... =+ win... [ Fioem.. | Y wiil.| |« B @

12:05 AM





OEBPS/Image00128.jpg





OEBPS/Image00249.jpg
Y, Oalb*X; e





OEBPS/Image00127.jpg





OEBPS/Image00248.jpg





OEBPS/Image00009.jpg
=lofx] : =18]x
R-2.10.1-win32.exe
31.0MB — r-project.org

12:08 AM

Welcome to the R for Windows
2.10.1 Setup Wizard

This willinstall R for Windows 2.10.1 an your computer.

Itis recarmmendsd that you closs all ather applications before
continLing

Click Newt to continue, or Cancel to exit Setup.

Clear List

If you want to double-c
compare the mdSsum ¢
command line versions

d by R, you can
th graphical and

Frequently ask|

* How do Linstall
* How do Lupdatt

Please see the R FAQ for general mformation about K. and the B Windows FAQ for Windews-specific information,
Other builds

Done |é
Bisant| @ S 3 2.2 6 2 Hiw. |G | @2r-| 2 wi | Tioe. | Yo |[{Hse. |« 12:09 4M






OEBPS/Image00130.jpg
IQR[ X750 X025





OEBPS/Image00251.jpg
Y 00,,0e





OEBPS/Image00008.jpg
Downloading Loading Working with

and packages console
installation






OEBPS/Image00129.jpg
R |:| Xmaxl:l Xmin





OEBPS/Image00250.jpg





OEBPS/Image00022.jpg
Changing Managing Using batch

working workspaces scripts

directory






OEBPS/Image00143.jpg
k(o





OEBPS/Image00264.jpg
Study data Fit linear Study
set model residuals






OEBPS/Image00021.jpg
Changing Managing Using batch

working workspaces scripts

directory






OEBPS/Image00142.jpg





OEBPS/Image00263.jpg
Study data Fit linear Study
set model residuals






OEBPS/Image00024.jpg
Changing Managing Using batch

working workspaces scripts

directory






OEBPS/Image00145.jpg
T T T T T T T
056 00§ 0S8k 00F 0G€ 00€ 0ST






OEBPS/Image00266.jpg
Study data Fit linear Study
set model residuals






OEBPS/Image00023.jpg
Changing Managing Using batch

working workspaces scripts

directory






OEBPS/Image00144.jpg
k(o





OEBPS/Image00265.jpg
T
031

T
051

T
orl

Wbiam

O£l

4%

72

70

68

66

64

62

60

58

height





OEBPS/Image00026.jpg
Practice Practice

expressions vectors






OEBPS/Image00025.jpg
Changing Managing Using batch

working workspaces scripts
directory






OEBPS/Image00146.jpg
T T T T T
2000 3000 4000 5000 6000






OEBPS/Image00137.jpg





OEBPS/Image00258.jpg
15

10

Index





OEBPS/Image00257.jpg
Residuals

IStandardized residuals|

05 10 15

5

15

12

08

04

00

Residuals vs Fitted

Normal Q-Q

q B B S
4 ) 5 4
10> ¢ n° 24
7 Jon o
T T T T T T T
250 30 30 40 450 EWO D 2 4 0 1 2
Fitted values Theoretical Quantiles
Scale-Location Residuals vs Leverage
B 5 ~|os
4 s o °
o o o
R E AN~
i o | T Cooks distaritg % ofos
T T T T B T T T =
250 30 30 40 450 EWO D 0 005 0i0 015 020

Fitted values

Leverage





OEBPS/Image00018.jpg
Downloading Loading Working

ELL packages with console

installation






OEBPS/Image00139.jpg





OEBPS/Image00260.jpg
Study data Fit linear Study

set model residuals






OEBPS/Image00017.jpg
Downloading Loading Working

ELL packages with console

installation






OEBPS/Image00138.jpg





OEBPS/Image00259.jpg
Study data Fit linear Study
set model residuals






OEBPS/Image00020.jpg
Downloading Loading Working

ELL packages with console

installation






OEBPS/Image00141.jpg
k(o





OEBPS/Image00262.jpg
Study data Fit linear Study

set model residuals






OEBPS/Image00019.jpg
> 141
m 2
> "Arr,matey!"

[1] "Arr,matey!"
> %7






OEBPS/Image00140.jpg
kOEIXOD*)/0*03





OEBPS/Image00261.jpg
T T T T T
091 051 Okl 0eL ozl

Wbram

72

70

68

66

64

62

60

58

height





OEBPS/Image00110.jpg





OEBPS/Image00231.jpg
y1

04

03

02

01

00

Type | error






OEBPS/Image00353.jpg
ACF

10

08

08

04

02

00

Series ret

0 5 10 15 20 25 30





OEBPS/Image00109.jpg





OEBPS/Image00230.jpg
Data

simulation






OEBPS/Image00354.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00112.jpg
nfl

Ko

[]





OEBPS/Image00233.jpg
04

03

02

01

00

Lower risk of type Il error






OEBPS/Image00351.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00111.jpg
k

>_<|:|1|:| T X

n n1





OEBPS/Image00232.jpg
y1

04

03

02

01

00

High risk of type Il error






OEBPS/Image00352.jpg
7000

T
000

T
0000

101

T
0007

#00°0-

1500

1000

500

Index





OEBPS/Image00114.jpg
Xl





OEBPS/Image00235.jpg
Frequency

40 60 80 100 120

20

Histogram of p_v

00

02

04 08

08





OEBPS/Image00113.jpg





OEBPS/Image00234.jpg
power

08

00 02 04 08

Power of a one-sample t-test

00

05 10

delta





OEBPS/Image00116.jpg





OEBPS/Image00355.jpg
spectrum

1e-08 5e-07

5e-10

Series: x
Raw Periodogram

00

01

T T T
02 03 04

frequency
bandwidth = 0.000192

05






OEBPS/Image00115.jpg





OEBPS/Image00236.jpg
p_s

02 04 086 08 10

00

p-value of a Student T test when HO is true

200 400 600 800

x2

1000





OEBPS/Image00356.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00227.jpg
Data

simulation






OEBPS/Image00349.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00350.jpg
ACF

10

08

08

04

02

00

Series x






OEBPS/Image00108.jpg





OEBPS/Image00229.jpg
Sample Quantiles

Normal @-Q Plot

Theoretical Quantiles






OEBPS/Image00347.jpg
1200 121 122 123 124 125

119

500

Index

1000

1500






OEBPS/Image00107.jpg
X, X[ 5 X,





OEBPS/Image00228.jpg
Data QQ - plot
simulation






OEBPS/Image00348.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00121.jpg
medX)

|:| [0 |:| f(X)IZI—

medX)





OEBPS/Image00242.jpg
dnormix)

04

03

02

01

00

Student’s T probability distribution function

— = gaussian
df=100






OEBPS/Image00120.jpg
E (x)

X





OEBPS/Image00241.jpg
n[]

1





OEBPS/Image00123.jpg





OEBPS/Image00244.jpg
HO for first HO for second H1 for second
training training training






OEBPS/Image00122.jpg
gogooy





OEBPS/Image00243.jpg
HO for first HO for H1 for

training second second

training training






OEBPS/Image00125.jpg





OEBPS/Image00246.jpg
HO for first HO for H1 for

training second second

training training






OEBPS/Image00124.jpg
F.(o00





OEBPS/Image00245.jpg
HO for first HO for second H1 for second
training training training






OEBPS/Image00126.jpg





OEBPS/Image00117.jpg
x>

N =
1=

—
j
=





OEBPS/Image00238.jpg





OEBPS/Image00237.jpg
m, 0m

SCVqrt(n





OEBPS/Image00119.jpg





OEBPS/Image00240.jpg
abs(T) [t (10 72"





OEBPS/Image00118.jpg
Fx(x)D%





OEBPS/Image00239.jpg





OEBPS/Image00216.jpg
dchisqix, 1)

01 02 03 04 05 08

00

Chi”2 Distributions






OEBPS/Image00209.jpg
S





OEBPS/Image00331.jpg





OEBPS/Image00208.jpg
X1[0X20K OXn

n





OEBPS/Image00332.jpg
(X, 00xL[





OEBPS/Image00211.jpg
pnormix)

02 04 08 08 10

00

Cumulative gaussian distribution function






OEBPS/Image00329.jpg
x0o[xl





OEBPS/Image00210.jpg
dnormix)

04

03

02

01

00

Gaussian Probability Distribution Function






OEBPS/Image00330.jpg
Ux





OEBPS/Image00213.jpg





OEBPS/Image00335.jpg
Xt DWDDl%l DDZWDZ DD DDqWDq





OEBPS/Image00212.jpg
gnormix)

Gaussian quantiles function






OEBPS/Image00336.jpg
0w.0e.0 .0,





OEBPS/Image00215.jpg
X1%[]
X 2
2° K OXn?





OEBPS/Image00333.jpg
X ~ARp)





OEBPS/Image00214.jpg
Chi2, one degree of freedom

(1 "bsiyop






OEBPS/Image00334.jpg
0 50 100 150 200





OEBPS/Image00327.jpg
X, U0 X U0 X0 00 00 , X, OW,





OEBPS/Image00328.jpg
0,020 .0,





OEBPS/Image00207.jpg
(X1O0X20K OXn)Onm

Jns





OEBPS/Image00220.jpg





OEBPS/Image00342.jpg
6 4 2 0 2 4 6
L L

ARMA(1,2)

H\‘l HM IH | \\H\M \‘l

i W Uik e

T T T
0 500 1000 1500





OEBPS/Image00219.jpg
Log-normal distribution

T T T T T
90 S0 ¥0 €0 TO0

(Juoup

T T
1o 00






OEBPS/Image00343.jpg
x_ts

-200 0 200

-400

ARIMA(2,1,3)

500

1000

Time

T
1500

T
2000

2500






OEBPS/Image00222.jpg
Data Plot density Alternative

simulation function way to plot
density






OEBPS/Image00340.jpg
a.d.o,





OEBPS/Image00221.jpg
DEYF] Plot density Alternative

simulation function way to plot

density






OEBPS/Image00341.jpg
0.0 .0,





OEBPS/Image00224.jpg
Data Plot density Alternative

simulation function way to plot
density






OEBPS/Image00346.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00223.jpg
Density

04

03

02

01

00

density.default(x = x)

N=50000 Bandwidth=0.103






OEBPS/Image00226.jpg
Data Plot density Alternative

simulation function way to plot
density






OEBPS/Image00344.jpg
Study time Study lagged

Prepare data . . .
series time series






OEBPS/Image00225.jpg
70

€0

70

(Juoup





OEBPS/Image00345.jpg
Prepare data Study time Study lagged

series time series






OEBPS/Image00338.jpg
White noise

MA(1)

50

100

150

200

250

300

50

100

150

200

250

300






OEBPS/Image00339.jpg
X, 00X 00 00X, OW 00W 00 00,Wg,





OEBPS/Image00218.jpg
dtix, 1)

04

03

02

01

00

Student T distributions

=10
Gaussian distribution






OEBPS/Image00217.jpg
X10X20K OXn ;o

n
il
n





OEBPS/Image00337.jpg
X ~MAq)





OEBPS/Image00315.jpg
Xn[ll |:| Xn DWﬂ]l'





OEBPS/Image00316.jpg





OEBPS/Image00309.jpg
Xn[|1 o |:|Xn DW@





OEBPS/Image00310.jpg





OEBPS/Image00307.jpg
spectrum

spectrum

26404 Te+ls

o403

o404

144

Series: x
Smoothed Periodogram

Series: x
Smoothed Periodogram

4 g
-
4 iz
|
T T T T R e e
00 01 02 03 04 05 00 01 02 03 04 05
frequency frequency
bandwidth = 000764 bandwidth = 0.0126
Series: x Series: x
Smoothed Periodogram Smoothed Periodogram
4 g
e &
g

frequency
bandwidth = 0.018

00 01 02 03 04 05
frequency
bandwidth = 0.0236






OEBPS/Image00308.jpg
Series: Nile

frequency





OEBPS/Image00313.jpg





OEBPS/Image00314.jpg





OEBPS/Image00311.jpg





OEBPS/Image00312.jpg
X, 0 X, OW OW, 000 OW,,





OEBPS/Image00326.jpg
wo]





OEBPS/Image00320.jpg
X[ ~I1Q





OEBPS/Image00321.jpg
10

-10

-20

Noisy random walk

50

100 150 200

Time

250

300






OEBPS/Image00318.jpg
vatX, [ [1vatX [DvatW[ 0 Ovaf[i2cotk, W0 O
0covX,, W[ [lcod, W0 O0cotW, W,[110
Ovatk,[[1n]?





OEBPS/Image00319.jpg
X, 0Xm OW,





OEBPS/Image00324.jpg
Xt|:|1





OEBPS/Image00325.jpg
x0o[xl





OEBPS/Image00322.jpg
X, 0Xm OW,





OEBPS/Image00323.jpg





OEBPS/Image00317.jpg
0.(m O ELX, [ ELX,[





OEBPS/Image00091.jpg
create write to file open in
dataframe spreadsheet






OEBPS/Image00090.jpg
create write to file open in
dataframe spreadsheet






OEBPS/Image00093.jpg
&

=B

Gl &E =

[cass
Fl o

2nd
e
Crew
b
2nd
e
Crew
b
2nd
e
Crew
b
2nd
e
Crew
b
2nd
e
Crew
b
2nd
e
Crew
b
2nd
e
Crew
b
2nd
e
Crew

Age
Miale
Male
Male
Male
Female
Female
Female
Female
Male
Male
Male
Male
Female
Female
Female
Female
Male
Male
Male
Male
Female
Female
Female
Female
Male
Male
Male
Male
Female
Female
Female
Female

E
Sunnearea
Child - No
Chits o
Chits o
Chits o
Chits o
Chits o
Chits o
Chits o
dutt o
Jdutt o
dutt o
Jdutt o
dutt o
Jdutt o
dutt o
dutt o
Chitaves
Chitaves
Chitaves
Chitaves
Chitaves
Chitaves
Chitaves
Chitaves
Adult e
gt ves
duttves
gt ves
duttves
gt ves
duttves
It ves





OEBPS/Image00092.jpg
create write to file open in
dataframe spreadsheet






OEBPS/Image00095.jpg
Implement Method

class creation






OEBPS/Image00094.jpg
Implement Method

class creation






OEBPS/Image00096.jpg
Implement Method

class creation






OEBPS/Image00087.jpg
create write to file open in
dataframe spreadsheet






OEBPS/Image00089.jpg
create write to file open in
dataframe spreadsheet






OEBPS/Image00088.jpg
create write to file open in
dataframe spreadsheet






OEBPS/Image00102.jpg
Implement Method

class creation






OEBPS/Image00101.jpg
Implement Method

class creation






OEBPS/Image00006.jpg
Downloading Loading Working with

and packages console
installation






OEBPS/Image00104.jpg





OEBPS/Image00103.jpg
Implement Method

class creation






OEBPS/Image00004.jpg
/s tree software and comes witn ABSOLUTELY NO WARRANTY.
You ara wicom o redistibute t under certain conditons.
7ype cense() or cencel) for isribution detals

Naturallanguage support but runing inan Enalsh locale
.5 2 cotaborative project win many contributors.

7/pe contributors() for more information and
<tation® on how to cite R or R packages in publicatons.

f7/p0 domor for some aemos, helpy tor on-ine haip or
[ relp star) Tor an HTML browser interface t nelp

[Type a0 to qui






OEBPS/Image00106.jpg





OEBPS/Image00005.jpg
Downloading Loading Working

e packages with console

installation






OEBPS/Image00105.jpg
fidn/n





OEBPS/Image00002.jpg
o e






OEBPS/Image00003.jpg
R_File Edit Format Workspace Packages & Data Misc Window Help _ Sun3:33PM Q

& version 2.1 o122
o (5 B Y i ot ot

i R L S
N Yo st bt e e n Etioh Toale

& o cottomrotins prooc it sy cotrtutars

e s pitication.

i3 o e s, s o -t el 1
i A
T 20 6 e






OEBPS/Image00098.jpg
Implement Method

class creation






OEBPS/Image00097.jpg
Implement Method

class creation






OEBPS/Image00100.jpg
Implement Method

class creation






OEBPS/Image00099.jpg
Implement Methods

class creation






OEBPS/Image00001.jpg
-
FProgramming
L anguage
Tranng
Courseware

Ernesto.Net

R R Programn
i





OEBPS/Image00076.jpg
Read with Read with
read.csv scan






OEBPS/Image00069.jpg
Vet dVeddbdvVetdty

tmpFnl <— function (xVec)
:‘:Vec“ (L:1length (xVec) )
;mpFn.Z <— function (xVec)
x(x <— length (xVec)
(xVec™(1L:n) )/ (1:n)
;mpr13 <— function(x, n)
::. + sum((x"(1:n))/(1:n))
;mpfh1(1:3)

11 1 a 27

>

tmpFn2 (1:3)

(11 1 2 o

>

tmpFn3 (2, 10)

[1] 238.3079





OEBPS/Image00190.jpg
Simulating a binomial law

| S ——]
000z 006l  000L 00§ 0

fouenbaiq

35

30

25

20

15





OEBPS/Image00068.jpg
Practice Practice

simple harder

functions functions






OEBPS/Image00189.jpg
llllllllllllllllll

o
S
«
ol ¥
S
o
=

I

l

\

W

W

W

i

W

W

l

ﬂ

N

ﬂ

|

|

|

\\\\\






OEBPS/Image00071.jpg
m
2=y Iy <a)  fork=1,2 ..., n

J=1





OEBPS/Image00192.jpg
Density

01 02 03 04 05

00

Binomial distribution, n=10, p=.5






OEBPS/Image00070.jpg
Practice Practice

simple harder

functions functions






OEBPS/Image00191.jpg
Density

000 002 004 006 008 010

Binomial distribution, n=50, p=.5






OEBPS/Image00073.jpg
fun4qla <- function(xVec, yVec)({
colSums( outer(yVec, xVec, "<") )
}
fun4qglb <- function(xVec, yVec)({
rowSums ( sapply(yVec, FUN=function(y){y < xVec}) )
}
fun4qlc <- function(xVec, yVec)({
rowSums ( vapply(yVec, FUN=function(y){y<xVec}, FUN.VALUE=seq(along=xVec)) )
}
ri<-rnorm(10)
r2<-rnorm(12)
fun4qla(rl, r2)
1] 1 4 112 4 1 5 6 5 2
> fun4qlb(rl,r2)
[1] 1 4 112 4 1 5 6 5 2
> fun4qlc(rl,r2)
[}]14112415652

VYV A+ +V++ v+ +v





OEBPS/Image00194.jpg
Density

Hypergeometric distribution, n=5, p=.75; k=5






OEBPS/Image00072.jpg
Practice Practice

simple harder

functions functions






OEBPS/Image00193.jpg
Density

002 004 006

000

Binomial distribution, n=100, p=.5






OEBPS/Image00075.jpg
Read with Read with
read.csv scan






OEBPS/Image00196.jpg
Density

Hypergeometric distribution, n=400, p=.75, k=100

000 002 004 006 008 010

60 65 70 75 80 85





OEBPS/Image00074.jpg
Read with Read with
read.csv scan






OEBPS/Image00195.jpg
Density

Hypergeometric distribution, n=20, p=.75; k=5






OEBPS/Image00067.jpg
Practice Practice

simple harder

functions functions






OEBPS/Image00188.jpg
llllllllllllllllllllllllllllllllllllllll

1

o
w |
=
o o
< o
w
B
o
0

m

WM

wwwwww

\\\\\






OEBPS/Image00187.jpg
,,,,,,,






OEBPS/Image00080.jpg
decide on write read preserve
output function metadata






OEBPS/Image00201.jpg
Density

08

04

02

00

Geometric distribution, p=.5






OEBPS/Image00079.jpg
Read with Read with
read.csv scan






OEBPS/Image00200.jpg
Frequency

1000 2000 3000

0

Geometric distribution

5_rgeom(10000, 0.5)






OEBPS/Image00082.jpg
decide on write read preserve
output function metadata






OEBPS/Image00203.jpg
Geometric distribution, p=.01

| e — —]
8000 9000  FOO0  ZOOO 0000

fusueq

800

600

400

200





OEBPS/Image00081.jpg
decide on write read preserve
output function metadata






OEBPS/Image00202.jpg
Density

005 010 015 020

000

jy——

Geometric distribution, p=.1

20 40 60 80

100





OEBPS/Image00084.jpg
decide on write read preserve
output function metadata






OEBPS/Image00205.jpg
02 04 08 08 10

00

Exponential Probability Distribution Function






OEBPS/Image00083.jpg
decide on write read preserve
output function metadata






OEBPS/Image00204.jpg
Density

001 002 003

000

Negative binomial distribution, n=10, p=.25

20 40 60 80






OEBPS/Image00086.jpg
create

open in
spreadsheet

write to file

dataframe






OEBPS/Image00085.jpg
decide on write read preserve
output function metadata






OEBPS/Image00206.jpg





OEBPS/Image00197.jpg
P
(X
0k)
- eld *IZF
k!





OEBPS/Image00078.jpg
Read with Read with
read.csv scan






OEBPS/Image00199.jpg
Density

Poisson distribution, lambda=3






OEBPS/Image00077.jpg
Read with Read with
read.csv scan






OEBPS/Image00198.jpg
Density

086

04

02

00

Poisson distribution, lambda=1






OEBPS/Image00055.jpg
Practice data Practice

frames matrices






OEBPS/Image00176.jpg
Descriptive Check for

statistics normalcy






OEBPS/Image00054.jpg
Practice data Practice

frames matrices






OEBPS/Image00175.jpg
Descriptive Check for

statistics normalcy






OEBPS/Image00296.jpg
ACF (cov)

Partial ACF

20000

5000

Series Nile

Series Nile

ACF

04 08

02

0 5 10 15 Eil

Lag

Series Nile

Partial ACF






OEBPS/Image00056.jpg
Practice data Practice

frames matrices






OEBPS/Image00047.jpg
Practice Practice

conditions loops






OEBPS/Image00168.jpg
Density

00010 0.0020

0.0000

density.default(x = Nile)

T
400

T T T T
600 800 1000 1200

N=100 Bandwidth = 6063

T
1400

1
1600





OEBPS/Image00289.jpg
3





OEBPS/Image00167.jpg
Density

00010 0.0020

0.0000

Histogram of Nile

T T
800 1000

Nile

T
1200





OEBPS/Image00288.jpg
3





OEBPS/Image00049.jpg
> for (i in seq(from=10,to=100)) {y<-sum(i*3+4%1i°2)}
> print(y)

[1] 1040000

>






OEBPS/Image00170.jpg
cri





OEBPS/Image00291.jpg
/10,10 ,n





OEBPS/Image00048.jpg
Yo (P+4?).

=





OEBPS/Image00169.jpg
Density

00010 00015 00020

00000 00005

density.default(x = Nile, bw = 100)

T T T
500 1000 1500

N=100 Bandwidth =100





OEBPS/Image00290.jpg





OEBPS/Image00051.jpg





OEBPS/Image00172.jpg
Check for

Descriptive
normalcy

statistics






OEBPS/Image00293.jpg





OEBPS/Image00050.jpg
Practice Practice

conditions loops






OEBPS/Image00171.jpg
Normal @-Q Plot

1400

1200

1000

Sample Quanti
800
L

600
I

Theoretical Quantiles





OEBPS/Image00292.jpg
t; 0t 0J0t





OEBPS/Image00053.jpg
Practice data Practice

frames matrices






OEBPS/Image00174.jpg
eu_cac

1500 2000 2500 3000 3500 4000

T
1992

T
1993

T
1994

T
1995

Time

T
1996

T
1997

T
1998






OEBPS/Image00295.jpg
_lag

®
o
z

1200

600

1200

600

Nile, lag=10

T T T T T T
1880 1900 1920 1940 1960

Time

Nile

T T T T T
1880 1900 1920 1940 1960

Time






OEBPS/Image00052.jpg
R
> while (tmp<=25) {y<-sum((2"tmp)/tmp + 3~tmp/ (tmp~2));tmp=tmp+1l}
> print (y)

[1] 1357003952

S






OEBPS/Image00173.jpg
Descriptive Check for

statistics normalcy






OEBPS/Image00294.jpg
1200

600 800

Flow of the River Nile

1880

T T T
1900 1920 1940

Time

1960






OEBPS/Image00287.jpg
[t/t01n 10





OEBPS/Image00066.jpg
Practice Practice

simple harder

functions fuctions






OEBPS/Image00065.jpg
|

23 4567289
1 23 4567
23 45678

234567890

1

1

8 9 0
0

0
1

) -

087 6 5 432

4
0

- N

3
(¢) [

3
4

S -

2

ol et ©

1

- N <

0

S =

4

(a)

|

1

~

0

0 O

S -

0 8 7 6

-

0 8 7 65

1

oo

08 7 6 5 4

087 65 43
1
1

1
2
4 3 2

08 7 6 5 4 3 2
4
5

5432
5 3
6 4
8 7 6 5 4 3 2

1
2
3
6
7





OEBPS/Image00186.jpg
Descriptive Check for

statistics normalcy






OEBPS/Image00058.jpg
Practice data Practice

frames matrices






OEBPS/Image00179.jpg
Frequency

400 600

200

Histogram of eu_cac

r T T T T T 1
1500 2000 2500 3000 3500 4000 4500

eu_cac





OEBPS/Image00300.jpg





OEBPS/Image00057.jpg
Practice data Practice

frames matrices






OEBPS/Image00178.jpg
meomm

T T T T T
1500 2000 2500 3000 3500 4000





OEBPS/Image00299.jpg
15

-15

Non gaussian iid noise

T T T T T T
0 20 40 60 80 100

Time

Frequency

50

30

10

Histogram of x

=20

-10 0 5 10





OEBPS/Image00060.jpg
> ( tmp <- matrix( c(1,5,-2,1,2,-1,3,6,-3),nr=3) )
(1] 2] [,3)
] 1 1 3
2,0 5 2 &
(30 -2 -1 -3
> tmp*itmpitstmp
[1] 2] 1,3]
7,1 0 0 0
21 0 0 0
31 0 0 0
> tmp[, 3] <- tmp[,2]+tmp[,3]
> tmp
[1] 2] [,3]
] 1 1 4
2,0 5 2 8
(30 -2 -1 -4
Y





OEBPS/Image00181.jpg
Density

00005 00010 00015 00020

0.0000

density.default(x = eu_cac)

T
1500

T
2000

T T T
2500 3000 3500

N=1860 Bandwidth = 59 49

T
4000

T
4500





OEBPS/Image00302.jpg





OEBPS/Image00059.jpg





OEBPS/Image00180.jpg
Check for

Descriptive
normalcy

statistics






OEBPS/Image00301.jpg
x_ts

0 50

150

Time

250

ACF

04 08

00






OEBPS/Image00062.jpg
10
10

10

-10
-10

—10

10
10





OEBPS/Image00183.jpg
Density

0.0005 00010 00015

0.0000

density.default(x = eu_cac, bw = 95)

T
1500

T T T T T
2000 2500 3000 3500 4000

N=1860 Bandwidth =95

T
4500





OEBPS/Image00304.jpg





OEBPS/Image00061.jpg
Practice data Practice

frames matrices






OEBPS/Image00182.jpg
Check for

Descriptive
normalcy

statistics






OEBPS/Image00303.jpg





OEBPS/Image00064.jpg
> tmp <- matrix(c(10,-10,10), b=T,
> t(tmp)$*3tmp
.11 .21 I[,3]
[1,] 1500 -1500 1500
[2,] -1500 1500 -1500

[3,] 1500 -1500 1500
> |

nc=3, nr=1S5)
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> set.seed(50)
> xVec<-sample (0:999,250, replace=T)
> yVec<-sample (0:999,250, replace=T)
> yVec[-1]-xVec[-length (xVec)]

[1]
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> set.seed(50)
> xVec<-sample (0:999,250, replace=T)
> yVec<-sample (0:999,250, replace=T)
> 8in(yVec[-length(yVec)]) / cos(xVec[-1])

[1]
[10]
[19]
[28]
[37]
[46]
[55]
[64]
[73]
[82]
[91]

[100]
[109]
[118]
[127]
[136)
[145)
[154]
[163]
[172]
[181]
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> temp<-c(4,6,3)

> rep(temp,1=31)
[114634634634634634634634634634631
>






OEBPS/Image00151.jpg





OEBPS/Image00272.jpg
Density

010 020 030

000

Histogram of residuals(im_w)

residuals(im_w)





OEBPS/Image00044.jpg
x <1
i (x =1

print (*same’)
}oelse if (x> 1)¢

print (*bigger’)
}oelse ¢

print (*smaller’)

3
[1] "seme"
>






OEBPS/Image00165.jpg
x[x; %
n K%ﬁ
fX0 b|J:u|1





OEBPS/Image00286.jpg
CO\(’ZI ri;[lm) |:| Dm





OEBPS/Image00043.jpg
Practice Practice

conditions loops






OEBPS/Image00164.jpg
Frequency

200 300 400 500 600

100

Histogram of dax

1000

T
2000

T T
3000 4000

dax

T
5000

1
6000





OEBPS/Image00285.jpg
E@) 00





OEBPS/Image00046.jpg
> if( any(x <= 0) ) ¥ <~ log(1+x) else y <~ log(x)
> print(y)

[1] -0.6931472

>
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> yVec[yVec>600]
[1] 709 871 621 930 948 783 878 671 860 768 698 974 855 813 776 721 917 985 705 884 840 687 957 955 786 938 930 641 615
[30] 988 881 881 997 823 791 643 779 693 845 815 752 766 635 993 919 686 635 613 660 800 743 965 743 615 615 803 948 760
[59] 604 800 772 863 902 689 881 941 924 693 835 632 872 876 850 961 681 791 947 915 712 665 921 798 866 828 942 841 645
[88] 681 827 884 890 970 632 717 846 952 609 824 695 675 777 813 792 783 611 853 738 668 791

> which (yVec>600)
1] 1 2 5 6 8 10 11 13 16 18 27 28 32 33 34 36 42 43 45 48 50 55 58 59 60 61 63 66 67
[30] 68 72 79 80 86 88 94 95 96 97 101 102 105 107 109 111 114 118 119 120 123 125 127 131 132 134 136 137 138
[59] 139 142 143 150 151 154 157 158 159 161 163 164 167 168 172 173 174 175 176 178 180 181 162 183 187 189 190 203 204
[88] 205 206 211 213 214 219 220 224 226 227 230 232 237 238 239 241 243 245 246 247 249 250

> xVec[yVec>600]
[1] 708 437 513 44 646 107 390 640 676 364 577 257 408 437 618 627 836 278 55 458 803 358 525 511 266 578 197 38 724
[30] 61 995 652 956 19 680 760 48 294 69 505 964 24 10 840 878 113 789 444 986 537 515 263 359 189 457 274 543 324
[59] 176 160 260 407 216 977 148 293 660 137 852 743 353 371 768 339 203 478 49 880 996 894 357 900 972 467 324 517 446
[leel 533 190 501 124 14 5 863 399 256 678 188 256 110 957 285 34 631 179 545 123 238 178

3
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