

Learn R

Chapman & Hall/CRC

The R Series

Series Editors

John M. Chambers, Department of Statistics, Stanford University,

California, USA

Torsten Hothorn, Division of Biostatistics, University of Zurich,

Switzerland

Duncan Temple Lang, Department of Statistics, University of California,

Davis, USA

Hadley Wick ham, RStudio, Boston, Massachusetts, USA

Recently Published Ti tles

Geocomputation with R

Robin Lovelace, Jakub Nowosad, Jannes Muenchow

Advanced R, Second Edition

Hadley Wickham

Dose Response Analysis Using R

Christian Ritz, Signe Marie Jensen, Daniel Gerhard, Jens Carl Streibig

Distributions for Modelling Location, Scale, and Shape

Using GAMLSS in R

Robert A. Rigby , Mikis D. Stasinopoulos, Gillian Z. Heller and Fernanda

De Bastiani

Hands-On Machine Learning with R

Bradley Boehmke and Brandon Greenwell

Statistical Inference via Data Science

A ModernDive into R and the Tidyverse

Chester Ismay and Albert Y. Kim

Reproducible Research with R and RStudio, Third Edition

Christopher Gandrud

Interactive Web-Based Data Visualization with R, plotly, and shiny

Carson Sievert

Learn R

Pedro J. Aphalo

For more information about this series, please visit: https://www.crcpress.com/Chapman-

-HallCRC-The-R-Series/book-series/CRCTHERSER

https://www.crcpress.com
https://www.crcpress.com

Pedro J. Aphalo

Learn R

As a Language

First edition published 2020

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2020 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the

author and publisher cannot assume responsibility for the validity of all materials or the

consequences of their use. The authors and publishers have attempted to trace the

copyright holders of all material reproduced in this publication and apologize to copyright

holders if permission to publish in this form has not been obtained. If any copyright

material has not been acknowledged please write and let us know so we may rectify in any

future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,

reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other

means, now known or hereafter invented, including photocopying, microfilming, and

recording, or in any information storage or retrieval system, without written permission

from the publishers.

For permission to photocopy or use material electronically from this work, access

www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood

Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please

contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered

trademarks, and are used only for identification and explanation without intent to

infringe.

ISBN: 978-0-367-18253-3 (pbk)

ISBN: 978-0-367-18255-7 (hbk)

ISBN: 978-0-429-06034-2 (ebk)

mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com

Contents

Preface xi

1 R: The language and the program 1

1.1 Aims of this chapter . 1

1.2 R . 1

1.2.1 What is R? . 1

1.2.2 R as a language . 3

1.2.3 R as a computer program . 3

1.2.3.1 Using R interactively . 4

1.2.3.2 Using R in a “batch job” 6

1.2.3.3 Editors and IDEs . 7

1.3 Reproducible data analysis . 9

1.4 Finding additional information . 10

1.4.1 R’s built-in help . 11

1.4.2 Obtaining help from online forums 12

1.4.2.1 Netiquette . 12

1.4.2.2 StackOverflow . 13

1.4.2.3 Reporting bugs . 13

1.5 What is needed to run the examples in this book? 14

1.6 Further reading . 15

2 The R language: “Words” and “sentences” 17

2.1 Aims of this chapter . 17

2.2 Natural and computer languages . 18

2.3 Numeric values and arithmetic . 18

2.4 Logical values and Boolean algebra . 29

2.5 Comparison operators and operations 31

2.6 Sets and set operations . 36

2.7 Character values . 39

2.8 The ‘mode’ and ‘class’ of objects . 41

2.9 ‘Type’ conversions . 42

2.10 Vector manipulation . 45

2.11Matrices and multidimensional arrays 51

2.12 Factors . 56

2.13 Lists . 62

2.13.1 Member extraction and subsetting 62

2.13.2 Adding and removing list members 63

2.13.3 Nested lists . 64

2.14 Data frames . 66

v

vi Contents

2.14.1 Operating within data frames . 71

2.14.2 Re-arranging columns and rows 75

2.15 Attributes of R objects . 77

2.16 Saving and loading data . 78

2.16.1 Data sets in R and packages . 78

2.16.2 .rda files . 79

2.16.3 .rds files . 80

2.17 Looking at data . 81

2.18 Plotting . 83

2.19 Further reading . 86

3 The R language: “Paragraphs” and “essays” 87

3.1 Aims of this chapter . 87

3.2 Writing scripts . 87

3.2.1 What is a script? . 88

3.2.2 How do we use a script? . 88

3.2.3 How to write a script . 89

3.2.4 The need to be understandable to people 90

3.2.5 Debugging scripts . 91

3.3 Control of execution flow . 94

3.3.1 Compound statements . 94

3.3.2 Conditional execution . 94

3.3.2.1 Non-vectorized if, else and switch 95

3.3.2.2 Vectorized ifelse() . 98

3.3.3 Iteration . 100

3.3.3.1 for loops . 100

3.3.3.2 while loops . 102

3.3.3.3 repeat loops . 103

3.3.4 Explicit loops can be slow in R . 104

3.3.5 Nesting of loops . 105

3.3.5.1 Clean-up . 107

3.4 Apply functions . 108

3.4.1 Applying functions to vectors and lists 108

3.4.2 Applying functions to matrices and arrays 111

3.5 Object names and character strings . 113

3.6 The multiple faces of loops . 115

3.6.1 Further reading . 117

4 The R language: Statistics 119

4.1 Aims of this chapter . 119

4.2 Statistical summaries . 119

4.3 Distributions . 120

4.3.1 Density from parameters . 121

4.3.2 Probabilities from parameters and quantiles 122

4.3.3 Quantiles from parameters and probabilities 122

4.3.4 “Random” draws from a distribution 123

4.4 “Random” sampling . 124

4.5 Correlation . 125

Contents vii

4.5.1 Pearson’s . 125

4.5.2 Kendall’s 𝜏 and Spearman’s 𝜌 . 127

4.6 Fitting linear models . 127

4.6.1 Regression . 128

4.6.2 Analysis of variance, ANOVA . 135

4.6.3 Analysis of covariance, ANCOVA 138

4.7 Generalized linear models . 138

4.8 Non-linear regression . 140

4.9 Model formulas . 143

4.10 Time series . 151

4.11Multivariate statistics . 153

4.11.1 Multivariate analysis of variance 153

4.11.2 Principal components analysis . 155

4.11.3 Multidimensional scaling . 157

4.11.4 Cluster analysis . 159

4.12 Further reading . 161

5 The R language: Adding new “words” 163

5.1 Aims of this chapter . 163

5.2 Packages . 163

5.2.1 Sharing of R-language extensions 163

5.2.2 How packages work . 164

5.2.3 Download, installation and use . 165

5.2.4 Finding suitable packages . 165

5.3 Defining functions and operators . 166

5.3.1 Ordinary functions . 168

5.3.2 Operators . 171

5.4 Objects, classes, and methods . 172

5.5 Scope of names . 176

5.6 Further reading . 177

6 New grammars of data 179

6.1 Aims of this chapter . 179

6.2 Introduction . 179

6.3 Packages used in this chapter . 181

6.4 Replacements for data.frame . 181

6.4.1 ‘data.table’ . 181

6.4.2 ‘tibble’ . 182

6.5 Data pipes . 187

6.5.1 ‘magrittr’ . 188

6.5.2 ‘wrapr’ . 189

6.6 Reshaping with ‘tidyr’ . 190

6.7 Data manipulation with ‘dplyr’ . 192

6.7.1 Row-wise manipulations . 193

6.7.2 Group-wise manipulations . 195

6.7.3 Joins . 198

6.8 Further reading . 201

𝑟

viii Contents

7 Grammar of graphics 203

7.1 Aims of this chapter . 203

7.2 Packages used in this chapter . 203

7.3 Introduction to the grammar of graphics 204

7.3.1 Data . 205

7.3.2 Mapping . 205

7.3.3 Geometries . 205

7.3.4 Statistics . 205

7.3.5 Scales . 206

7.3.6 Coordinate systems . 206

7.3.7 Themes . 206

7.3.8 Plot construction . 207

7.3.9 Plots as R objects . 214

7.3.10 Data and mappings . 215

7.4 Geometries . 216

7.4.1 Point . 217

7.4.2 Rug . 221

7.4.3 Line and area . 222

7.4.4 Column . 225

7.4.5 Tiles . 226

7.4.6 Simple features (sf) . 228

7.4.7 Text . 228

7.4.8 Plot insets . 233

7.5 Statistics . 238

7.5.1 Functions . 238

7.5.2 Summaries . 239

7.5.3 Smoothers and models . 242

7.5.4 Frequencies and counts . 245

7.5.5 Density functions . 248

7.5.6 Box and whiskers plots . 249

7.5.7 Violin plots . 250

7.6 Facets . 252

7.7 Scales . 255

7.7.1 Axis and key labels . 256

7.7.2 Continuous scales . 258

7.7.2.1 Limits . 258

7.7.2.2 Ticks and their labels . 260

7.7.2.3 Transformed scales . 261

7.7.2.4 Position of 𝑥 and 𝑦 axes 263

7.7.2.5 Secondary axes . 263

7.7.3 Time and date scales for 𝑥 and 𝑦 264

7.7.4 Discrete scales for 𝑥 and 𝑦 . 265

7.7.5 Size . 266

7.7.6 Color and fill . 266

7.7.6.1 Color definitions in R . 267

7.7.7 Continuous color-related scales 268

7.7.8 Discrete color-related scales . 268

ix Contents

7.7.9 Identity scales . 269

7.8 Adding annotations . 269

7.9 Coordinates and circular plots . 272

7.9.1 Wind-rose plots . 272

7.9.2 Pie charts . 274

7.10 Themes . 275

7.10.1 Complete themes . 275

7.10.2 Incomplete themes . 277

7.10.3 Defining a new theme . 279

7.11 Composing plots . 281

7.12 Using plotmath expressions . 282

7.13 Creating complex data displays . 287

7.14 Creating sets of plots . 288

7.14.1 Saving plot layers and scales in variables 288

7.14.2 Saving plot layers and scales in lists 289

7.14.3 Using functions as building blocks 289

7.15 Generating output files . 290

7.16 Further reading . 291

8 Data import and export 293

8.1 Aims of this chapter . 293

8.2 Introduction . 294

8.3 Packages used in this chapter . 294

8.4 File names and operations . 295

8.5 Opening and closing file connections . 298

8.6 Plain-text files . 299

8.6.1 Base R and ‘utils’ . 301

8.6.2 readr . 305

8.7 XML and HTML files . 310

8.7.1 ‘xml2’ . 310

8.8 GPX files . 311

8.9 Worksheets . 312

8.9.1 CSV files as middlemen . 312

8.9.2 ‘readxl’ . 312

8.9.3 ‘xlsx’ . 314

8.9.4 ‘readODS’ . 315

8.10 Statistical software . 316

8.10.1 foreign . 316

8.10.2 haven . 317

8.11 NetCDF files . 318

8.11.1 ncdf4 . 319

8.11.2 tidync . 320

8.12 Remotely located data . 322

8.13 Data acquisition from physical devices 324

8.13.1 jsonlite . 324

8.14 Databases . 325

8.15 Further reading . 326

x Contents

Bibliography 327

General index 331

Index of R names by category 339

Alphabetic index of R names 345

Preface

“Suppose that you want to teach the ‘cat’ concept to a very young child.
Do you explain that a cat is a relatively small, primarily carnivorous
mammal with retractible claws, a distinctive sonic output, etc.? I’ll bet
not. You probably show the kid a lot of different cats, saying ‘kitty’
each time, until it gets the idea. To put it more generally, generaliza-
tions are best made by abstraction from experience.”

R. P. Boas
Can we make mathematics intelligible?, 1981

This book covers different aspects of the use of the R language. Chapters 1 to 5
describe the R language itself. Later chapters describe extensions to the R language
available through contributed packages, the grammar of data and the grammar of
graphics. In this book, explanations are concise but contain pointers to additional
sources of information, so as to encourage the development of a routine of inde-
pendent exploration. This is not an arbitrary decision, this is the normal modus
operandi of most of us who use R regularly for a variety of different problems.
Some have called approaches like the one used here “learning the hard way,” but
I would call it “learning to be independent.”

I do not discuss statistics or data analysis methods in this book; I describe R
as a language for data manipulation and display. The idea is for you to learn the
R language in a way comparable to how children learn a language: they work out
what the rules are, simply by listening to people speak and trying to utter what
they want to tell their parents. Of course, small children receive some guidance,
but they are not taught a prescriptive set of rules like when learning a second
language at school. Instead of listening, you will read code, and instead of speaking,
you will try to execute R code statements on a computer—i.e., you will try your
hand at using R to tell a computer what you want it to compute. I do provide
explanations and guidance, but the idea of this book is for you to use the numerous
examples to find out by yourself the overall patterns and coding philosophy behind
the R language. Instead of parents being the sound board for your first utterances
in R, the computer will play this role. You will play by modifying the examples,
see how the computer responds: does R understand you or not? Using a language
actively is the most efficient way of learning it. By using it, I mean actually reading,
writing, and running scripts or programs (copying and pasting, or typing ready-
made examples from books or the internet, does not qualify as using a language).

xi

xii Preface

I have been using R since around 1998 or 1999, but I am still constantly learning
new things about R itself and R packages. With time, it has replaced in my work
as a researcher and teacher several other pieces of software: SPSS, Systat, Origin,
MS-Excel, and it has become a central piece of the tool set I use for producing
lecture slides, notes, books, and even web pages. This is to say that it is the most
useful piece of software and programming language I have ever learned to use. Of
course, in time it will be replaced by something better, but at the moment it is a
key language to learn for anybody with a need to analyze and display data.

What is a language? A language is a system of communication. R as a language
allows us to communicate with other members of the R community, and with com-
puters. As with all languages in active use, R evolves. New “words” and new “con-
structs” are incorporated into the language, and some earlier frequently used ones
are relegated to the fringes of the corpus. I describe current usage and “modisms”
of the R language in a way accessible to a readership unfamiliar with computer sci-
ence but with some background in data analysis as used in biology, engineering,
or the humanities.

When teaching, I tend to lean toward challenging students, rather than telling
an over-simplified story. There are two reasons for this. First, I prefer as a student,
and I learn best myself, if the going is not too easy. Second, if I would hide the tricky
bits of the R language, it would make the reader’s life much more difficult later on.
You will not remember all the details; nobody could. However, you most likely
will remember or develop a sense of when you need to be careful or should check
the details. So, I will expose you not only to the usual cases, but also to several
exceptions and counterintuitive features of the language, which I have highlighted
with icons. Reading this book will be about exploring a new world; this book aims
to be a travel guide, but neither a traveler’s account, nor a cookbook of R recipes.

Keep in mind that it is impossible to remember everything about R! The R lan-
guage, in a broad sense, is vast because its capabilities can be expanded with in-
dependently developed packages. Learning to use R consists of learning the basics
plus developing the skill of finding your way in R and its documentation. In early
2020, the number of packages available in the Comprehensive R Archive Network
(CRAN) broke the 15,000 barrier. CRAN is the most important, but not only, public
repository for R packages. How good a command of the R language and packages
a user needs depends on the type of activities to be carried out. This book at-
tempts to train you in the use of the R language itself, and of popular R language
extensions for data manipulation and graphical display. Given the availability of
numerous books on statistical analysis with R, in the present book I will cover
only the bare minimum of this subject. The same is true for package development
in R. This book is somewhere in-between, aiming at teaching programming in the
small: the use of R to automate the drudgery of data manipulation, including the
different steps spanning from data input and exploration to the production of
publication-quality illustrations.

As with all “rich” languages, there are many different ways of doing things in
R. In almost all cases there is no one-size-fits-all solution to a problem. There is
always a compromise involved, usually between time spent by the user and pro-
cessing time required in the computer. Many of the packages that are most popular
nowadays did not exist when I started using R, and many of these packages make

Preface xiii

new approaches available. One could write many different R books with a given
aim using substantially different ways of achieving the same results. In this book, I
limit myself to packages that are currently popular and/or that I consider elegantly
designed. I have in particular tried to limit myself to packages with similar design
philosophies, especially in relation to their interfaces. What is elegant design, and
in particular what is a friendly user interface, depends strongly on each user’s
preferences and previous experience. Consequently, the contents of the book are
strongly biased by my own preferences. I have tried to write examples in ways
that execute fast without compromising readability. I encourage readers to take
this book as a starting point for exploring the very many packages, styles, and
approaches which I have not described.

I will appreciate suggestions for further examples, and notification of errors
and unclear sections. Because the examples here have been collected from diverse
sources over many years, not all sources are acknowledged. If you recognize any
example as yours or someone else’s, please let me know so that I can add a proper
acknowledgement. I warmly thank the students who have asked the questions and
posed the problems that have helped me write this text and correct the mistakes
and voids of previous versions. I have also received help on online forums and in
person from numerous people, learned from archived e-mail list messages, blog
posts, books, articles, tutorials, webinars, and by struggling to solve some new
problems on my own. In many ways this text owes much more to people who are
not authors than to myself. However, as I am the one who has written this version
and decided what to include and exclude, as author, I take full responsibility for
any errors and inaccuracies.

Why have I chosen the title “Learn R: As a Language”? This book is based on ex-
ploration and practice that aims at teaching to express various generic operations
on data using the R language. It focuses on the language, rather than on specific
types of data analysis, and exposes the reader to current usage and does not spare
the quirks of the language. When we use our native language in everyday life, we
do not think about grammar rules or sentence structure, except for the trickier or
unfamiliar situations. My aim is for this book to help you grow to use R in this
same way, to become fluent in R. The book is structured around the elements of
languages with chapter titles that highlight the parallels between natural languages
like English and the R language.

I encourage you to approach R like a child approaches his or her mother tongue
when first learning to speak: do not struggle, just play, and fool around with R! If
the going gets difficult and frustrating, take a break! If you get a new insight, take
a break to enjoy the victory!

Acknowledgements

First I thank Jaakko Heinonen for introducing me to the then new R. Along the
way many well known and not so famous experts have answered my questions
in usenet and more recently in Stackoverflow. As time went by, answering other
people’s questions, both in the internet and in person, became the driving force

xiv Preface

for me to delve into the depths of the R language. Of course, I still get stuck from
time to time and ask for help. I wish to warmly thank all the people I have inter-
acted with in relation to R, including members of my own research group, students
participating in the courses I have taught, colleagues I have collaborated with, au-
thors of the books I have read and people I have only met online or at conferences.
All of them have made it possible for me to write this book. This has been a time
consuming endeavour which has kept me too many hours away from my family,
so I specially thank Tarja, Rosa and Tomás for their understanding. I am indebted
to Tarja Lehto, Titta Kotilainen, Tautvydas Zalnierius, Fang Wang, Yan Yan, Neha
Rai, Markus Laurel, other colleagues, students and anonymous reviewers for many
very helpful comments on different versions of the book manuscript, Rob Calver,
as editor, for his encouragement and patience during the whole duration of this
book writing project, Lara Spieker, Vaishali Singh, and Paul Boyd for their help with
different aspects of this project.

Icons used to mark different content
Text boxes are used throughout the book to highlight content that plays specific
roles in the learning process or that require special attention from the reader. Each
box contains one of five different icons that indicate the type of its contents as de-
scribed below.

U Signals playground boxes which contain open-ended exercises—ideas and
pieces of R code to play with at the R console.

U Signals advanced playground boxes which will require more time to play
with before grasping concepts than regular playground boxes.

 Signals important bits of information that must be remembered when using
R—i.e., explain some unusual feature of the language.

 Signals in-depth explanations of specific points that may require you to spend
time thinking, which in general can be skipped on first reading, but to which you
should return at a later peaceful time, preferably with a cup of coffee or tea.

= Signals text boxes providing general information not directly related to the R
language.

1

R: The language and the program

In a world of … relentless pressure for more of everything, one can
lose sight of the basic principles—simplicity, clarity, generality—that
form the bedrock of good software.

Brian W. Kernighan and Rob Pike
The Practice of Programming, 1999

1.1 Aims of this chapter

In this chapter you will learn some facts about the history and design aims behind
the R language, its implementation in the R program, and how it is used in actual
practice when sitting at a computer. You will learn the difference between typing
commands interactively, reading each partial response from R on the screen as
you type versus using R scripts to execute a “job” which saves results for later
inspection by the user.

I will describe the advantages and disadvantages of textual command languages
such as R compared to menu-driven user interfaces as frequently used in other
statistics software and occasionally also with R. I will discuss the role of textual
languages in the very important question of reproducibility of data analyses.

Finally you will learn about the different types and sources of help available to
R users, and how to best make use of them.

1.2 R

1.2.1 What is R?

Most people think of R as a computer program. R is indeed a computer program—
a piece of software— but it is also a computer language, implemented in the R
program. Does this make a difference? Yes. Until recently we had only one main-
stream implementation of R, the program R. Recently another implementation has

1

2 R: The language and the program

gained some popularity, Microsoft R Open (MRO), which is directly based on the
R program from The R Project for Statistical Computing. MRO is described as an
enhanced distribution of R. These two very similar implementations are not the
only ones available, but others are not in widespread use. In other words, the R
language can be used not only in the R program, and it is feasible that other im-
plementations will be developed in the future.

The name “base R ” is used to distinguish R itself, as in the R distribution, from
R in a broader sense, which includes independently developed extensions that can
be loaded from separately distributed extension packages.

Being that R is essentially a command-line application, it can be used on what
nowadays are frugal computing resources, equivalent to a personal computer of
three decades ago. R can run even on the Raspberry Pi, a micro-controller board
with the processing power of a modest smart phone. At the other end of the spec-
trum, on really powerful servers, R can be used for the analysis of big data sets
with millions of observations. How powerful a computer you will need will depend
on the size of the data sets you want to analyze, on how patient you are, and on
your ability to write “good” code.

One could think of R as a dialect of an earlier language, called S. S evolved
into S-Plus (Becker et al. 1988). S and S-Plus are commercial programs, and varia-
tions in the language appeared only between versions. R started as a poor man’s
home-brewed implementation of S, for use in teaching. Initially R, the program, im-
plemented a subset of the S language. The R program evolved until only relatively
few differences between S and R remained, and these differences are intentional—
thought of as significant improvements. As R overtook S-Plus in popularity, some
of the new features in R made their way back into S-Plus. R is free and open-source
and the name Gnu S is sometimes used to refer to R.

What makes R different from SPSS, SAS, etc., is that S was designed from the
start as a computer programming language. This may look unimportant for some-
one not actually needing or willing to write software for data analysis. However, in
reality it makes a huge difference because R is easily extensible. By this we mean
that new functionality can be easily added, and shared, and this new functional-
ity is to the user indistinguishable from that built into R. In other words, instead
of having to switch between different pieces of software to do different types of
analyses or plots, one can usually find an R package that will provide the tools to
do the job within R. For those routinely doing similar analyses the ability to write
a short program, sometimes just a handful of lines of code, allows automation of
routine analyses. For those willing to spend time programming, they have the door
open to building the tools they need when these do not already exist.

However, the most important advantage of using a language like R is that it
makes it easy to do data analyses in a way that ensures that they can be exactly
repeated. In other words, the biggest advantage of using R, as a language, is not
in communicating with the computer, but in communicating to other people what
has been done, in a way that is unambiguous. Of course, other people may want to
run the same commands in another computer, but still it means that a translation
from a set of instructions to the computer into text readable to humans—say the
materials and methods section of a paper—and back is avoided together with the
ambiguities usually creeping in.

R 3

1.2.2 R as a language

R is a computer language designed for data analysis and data visualization, how-
ever, in contrast to some other scripting languages, it is, from the point of view of
computer programming, a complete language—it is not missing any important fea-
ture. In other words, no fundamental operations or data types are lacking (Cham-
bers 2016). I attribute much of its success to the fact that its design achieves a
very good balance between simplicity, clarity and generality. R excels at generality
thanks to its extensibility at the cost of only a moderate loss of simplicity, while
clarity is ensured by enforced documentation of extensions and support for both
object-oriented and functional approaches to programming. The same three prin-
ciples can be also easily respected by user code written in R.

As mentioned above, R started as a free and open-source implementation of the
S language (Becker and Chambers 1984; Becker et al. 1988). We will describe the
features of the R language in later chapters. Here I mention, for those with pro-
gramming experience, that it does have some features that make it different from
other frequently used programming languages. For example, R does not have the
strict type checks of Pascal or C++. It has operators that can take vectors and ma-
trices as operands allowing more concise program statements for such operations
than other languages. Writing programs, specially reliable and fast code, requires
familiarity with some of these idiosyncracies of the R language. For those using R
interactively, or writing short scripts, these idiosyncratic features make life a lot
easier by saving typing.

 Some languages have been standardized, and their grammar has been
formally defined. R, in contrast is not standardized, and there is no formal
grammar definition. So, the R language is defined by the behavior of the R
program.

1.2.3 R as a computer program

The R program itself is open-source, and the source code is available for anybody
to inspect, modify and use. A small fraction of users will directly contribute im-
provements to the R program itself, but it is possible, and those contributions are
important in making R reliable. The executable, the R program we actually use, can
be built for different operating systems and computer hardware. The members
of the R developing team make an important effort to keep the results obtained
from calculations done on all the different builds and computer architectures as
consistent as possible. The aim is to ensure that computations return consistent
results not only across updates to R but also across different operating systems
like Linux, Unix (including OS X), and MS-Windows, and computer hardware.

The R program does not have a graphical user interface (GUI), or menus from
which to start different types of analyses. Instead, the user types the commands
at the R console (Figure 1.1). The same textual commands can also be saved into
a text file, line by line, and such a file, called a “script” can substitute repeated
typing of the same sequence of commands. When we work at the console typing

FIGURE 1.1
The R console where the user can type textual commands one by one. Here the user
has typed print("Hello") and entered it by ending the line of text by pressing the
“enter” key. The result of running the command is displayed below the command.
The character at the head of the input line, a “ ” in this case, is called the command
prompt, signaling where a command can be

>
typed in. Commands entered by the

user are displayed in red, while results returned by R are displayed in blue.

4 R: The language and the program

in commands one by one, we say that we use R interactively. When we run script,
we may say that we run a “batch job.”

The two approaches described above are part of the R program by itself. How-
ever, it is common to use a second program as a front-end or middleman between
the user and the R program. Such a program allows more flexibility and has multi-
ple features that make entering commands or writing scripts easier. Computations
are still done by exactly the same R program. The simplest option is to use a text
editor like Emacs to edit the scripts and then run the scripts in R from within the
editor. With some editors like Emacs, rather good integration is possible. However,
nowadays there are also Integrated Development Environments (IDEs) available for
R. An IDE both gives access to the R console in one window and provides a text
editor for writing scripts in another window. Of the available IDEs for R, RStudio
is currently the most popular by a wide margin.

1.2.3.1 Using R interactively

A physical terminal (keyboard plus text-only screen) decades ago was how users
communicated with computers, and was frequently called a console. Nowadays,
a text-only interface to a computer, in most cases a window or a pane within a
graphical user interface, is still called a console. In our case, the R console (Figure
1.1). This is the native user interface of R.

Typing commands at the R console is useful when one is playing around, rather
aimlessly exploring things, or trying to understand how an R function or operator
we are not familiar with works. Once we want to keep track of what we are doing,
there are better ways of using R, which allow us to keep a record of how an analysis
has been carried out. The different ways of using R are not exclusive of each other,
so most users will use the R console to test individual commands and plot data
during the first stages of exploration. As soon as we decide how we want to plot
or analyze the data, it is best to start using scripts. This is not enforced in any way
by R, but scripts are what really brings to light the most important advantages
of using a programming language for data analysis. In Figure 1.1 we can see how
the R console looks. The text in red has been typed in by the user, except for the
prompt >, and the text in blue is what R has displayed in response. It is essentially a

R 5

FIGURE 1.2
The R console embedded in RStudio. The same commands have been typed in as
in Figure 1.1. Commands entered by the user are displayed in purple, while results
returned by R are displayed in black.

FIGURE 1.3
The R console after several commands have been entered. Commands entered by
the user are displayed in red, while results returned by R are displayed in blue.

dialogue between user and R. The console can look different when displayed within
an IDE like RStudio, but the only difference is in the appearance of the text rather
than in the text itself (cf. Figures 1.1 and 1.2).

The two previous figures showed the result of entering a single command. Fig-
ure 1.3 shows how the console looks after the user has entered several commands,
each as a separate line of text.

The examples in this book require only the console window for user input.
Menu-driven programs are not necessarily bad, they are just unsuitable when there
is a need to set very many options and choose from many different actions. They
are also difficult to maintain when extensibility is desired, and when independently
developed modules of very different characteristics need to be integrated. Textual
languages also have the advantage, to be addressed in later chapters, that com-
mand sequences can be stored in human- and computer-readable text files. Such
files constitute a record of all the steps used, and in most cases, makes it trivial to
reproduce the same steps at a later time. Scripts are a very simple and handy way
of communicating to other users how to do a given data analysis.

 In the console one types commands at the > prompt. When one ends a
line by pressing the return or enter key, if the line can be interpreted as an R
command, the result will be printed at the console, followed by a new > prompt.

6 R: The language and the program

FIGURE 1.4
Screen capture of the R console and editor just after running a script. The upper
pane shows the R console, and the lower pane, the script file in an editor.

If the command is incomplete, a + continuation prompt will be shown, and
you will be able to type in the rest of the command. For example if the whole
calculation that you would like to do is 1 + 2 + 3, if you enter in the console
1 + 2 + in one line, you will get a continuation prompt where you will be able
to type 3. However, if you type 1 + 2, the result will be calculated, and printed.

1.2.3.2 Using R in a “batch job”

To run a script we need first to prepare a script in a text editor. Figure 1.4 shows
the console immediately after running the script file shown in the text editor. As
before, red text, the command source("my-script.R"), was typed by the user, and
the blue text in the console is what was displayed by R as a result of this action.
The title bar of the console, shows “R-console,” while the title bar of the editor
shows the path to the script file that is open and ready to be edited followed by
“R-editor.”

 When working at the command prompt, most results are printed by de-
fault. However, within scripts one needs to use function print() explicitly
when a result is to be displayed.

A true “batch job” is not run at the R console but at the operating system com-
mand prompt, or shell. The shell is the console of the operating system—Linux,
Unix, OS X, or MS-Windows. Figure 1.5 shows how running a script at the Windows

FIGURE 1.5
Screen capture of the MS-Windows command console just after running the same
script. Here we use Rscript to run the script; the exact syntax will depend on the
operating system in use. In this case, R prints the results at the operating system
console or shell, rather than in its own R console.

R 7

command prompt looks. A script can be run at the operating system prompt to
do time-consuming calculations with the output saved to a file. One may use this
approach on a server, say, to leave a large data analysis job running overnight or
even for several days.

1.2.3.3 Editors and IDEs

Integrated Development Environments (IDEs) are used when developing computer
programs. IDEs provide a centralized user interface from within which the differ-
ent tools used to create and test a computer program can be accessed and used in
coordination. Most IDEs include a dedicated editor capable of syntax highlighting,
and even report some mistakes, related to the programming language in use. One
could describe such an editor as the equivalent of a word processor with spelling
and grammar checking, that can alert about spelling and syntax errors for a com-
puter language like R instead of for a natural language like English. In the case
of RStudio, the main, but not only language supported is R. The main window of
IDEs usually displays more than one pane simultaneously. From within the RStudio
IDE, one has access to the R console, a text editor, a file-system browser, a pane
for graphical output, and access to several additional tools such as for installing
and updating extension packages. Although RStudio supports very well the de-
velopment of large scripts and packages, it is currently, in my opinion, also the
best possible way of using R at the console as it has the R help system very well
integrated both in the editor and R console. Figure 1.6 shows the main window dis-
played by RStudio after running the same script as shown above at the R console
(Figure 1.4) and at the operating system command prompt (Figure 1.5). We can see
by comparing these three figures how RStudio is really a layer between the user
and an unmodified R executable. The script was sourced by pressing the “Source”

8 R: The language and the program

FIGURE 1.6
The RStudio interface just after running the same script. Here we used the “Source”
button to run the script. In this case, R prints the results to the R console in the
lower left pane.

button at the top of the editor pane. RStudio, in response to this, generated the
code needed to source the file and “entered” it at the console, the same console,
where we would type any R commands.

When a script is run, if an error is triggered, RStudio automatically finds the
location of the error. RStudio supports the concept of projects allowing saving of
settings per project. Some features are beyond what you need for everyday data
analysis and aimed at package development, such as integration of debugging,
traceback on errors, profiling and bench marking of code so as to analyze and
improve performance. It integrates support for file version control, which is not
only useful for package development, but also for keeping track of the progress
or collaboration in the analysis of data.

The version of RStudio that one uses locally, i.e., installed in a computer used
locally by a single user, runs with an almost identical user interface on most mod-
ern operating systems, such as Linux, Unix, OS X, and MS-Windows. There is also
a server version that runs on Linux, and that can be used remotely through a web
browser. The user interface is still the same.

RStudio is under active development, and constantly improved. Visit http:
//www.rstudio.org/ for an up-to-date description and download and installa-
tion instructions. Two books (Hillebrand and Nierhoff 2015; Loo and Jonge 2012)
describe and teach how to use RStudio without going in depth into data analysis or
statistics, however, as RStudio is under very active development, several recently
added important features are not described in these books. You will find tutorials
and up-to-date cheat sheets at http://www.rstudio.org/.

http://www.rstudio.org
http://www.rstudio.org
http://www.rstudio.org

9 Reproducible data analysis

1.3 Reproducible data analysis

Reproducible data analysis is much more than a fashionable buzzword. Under any
situation where accountability is important, from scientific research to decision
making in commercial enterprises, industrial quality control and safety and envi-
ronmental impact assessments, being able to reproduce a data analysis reaching
the same conclusions from the same data is crucial. Most approaches to repro-
ducible data analysis are based on automating report generation and including,
as part of the report, all the computer commands used to generate the results
presented.

A fundamental requirement for reproducibility is a reliable record of what com-
mands have been run on which data. Such a record is especially difficult to keep
when issuing commands through menus and dialogue boxes in a graphical user
interface or interactively at a console. Even working interactively at the R console
using copy and paste to include commands and results in a report is error prone,
and laborious.

A further requirement is to be able to match the output of the R commands to
the input. If the script saves the output to separate files, then the user will need
to take care that the script saved or shared as a record of the data analysis was
the one actually used for obtaining the reported results and conclusions. This is
another error-prone stage in the reporting of data analysis. To solve this problem
an approach was developed, inspired in what is called literate programming (Knuth
1984). The idea is that running the script will produce a document that includes
the listing of the R code used, the results of running this code and any explanatory
text needed to understand and interpret the analysis.

Although a system capable of producing such reports with R, called ‘Sweave’
(Leisch 2002), has been available for a couple decades, it was rather limited and
not supported by an IDE, making its use rather tedious. A more recently developed
system called ‘knitr’ (Xie 2013) together with its integration into RStudio has made
the use of this type of reports very easy. The most recent development is what
has been called R notebooks produced within RStudio. This new feature, can pro-
duce the readable report of running the script as an HTML file, displaying the code
used interspersed with the results within the viewable file as in earlier approaches.
However, this newer approach goes even further: the actual source script used to
generate the report is embedded in the HTML file of the report and can be extracted
and run very easily and consequently re-used. This means that anyone who gets
access to the output of the analysis in human readable form also gets access to
the code used to generate the report, in computer executable format.

Because of these recent developments, R is an ideal language to use when the
goal of reproducibility is important. During recent years the problem of the lack
of reproducibility in scientific research has been broadly discussed and analysed
(Gandrud 2015). One of the problems faced when attempting to reproduce experi-
mental work, is reproducing the data analysis. R together with these modern tools
can help in avoiding this source of lack of reproducibility.

How powerful are these tools and how flexible? They are powerful and flexible
enough to write whole books, such as this very book you are now reading, produced

10 R: The language and the program

with R, ‘knitr’ and LATEX. All pages in the book are generated directly, all figures are
generated by R and included automatically, except for the figures in this chapter
that have been manually captured from the computer screen. Why am I using this
approach? First because I want to make sure that every bit of code as you will see
printed, runs without error. In addition, I want to make sure that the output that
you will see below every line or chunk of R language code is exactly what R returns.
Furthermore, it saves a lot of work for me as author, as I can just update R and all
the packages used to their latest version, and build the book again, to keep it up
to date and free of errors.

Although the use of these tools is important, they are outside the scope of this
book and well described in other books (Gandrud 2015; Xie 2013). Still when writ-
ing code, using a consistent style for formatting and indentation, carefully choos-
ing variable names, and adding textual explanations in comments when needed,
helps very much with readability for humans. I have tried to be as consistent as
possible throughout the whole book in this respect, with only small personal de-
viations from the usual style.

1.4 Finding additional information

When searching for answers, asking for advice or reading books, you will be con-
fronted with different ways of approaching the same tasks. Do not allow this to
overwhelm you; in most cases it will not matter as many computations can be done
in R, as in any language, in several different ways, still obtaining the same result.
The different approaches may differ mainly in two aspects: 1) how readable to hu-
mans are the instructions given to the computer as part of a script or program, and
2) how fast the code runs. Unless computation time is an important bottleneck in
your work, just concentrate on writing code that is easy to understand to you and
to others, and consequently easy to check and reuse. Of course, do always check
any code you write for mistakes, preferably using actual numerical test cases for
any complex calculation or even relatively simple scripts. Testing and validation
are extremely important steps in data analysis, so get into this habit while reading
this book. Testing how every function works, as I will challenge you to do in this
book, is at the core of any robust data analysis or computing programming.

 Error messages tend to be terse in R, and may require some lateral think-
ing and/or “experimentation” to understand the real cause behind problems.
When you are not sure you understand how some command works, it is useful
in many cases to try simple examples for which you know the correct answer
and see if you can reproduce them with R. Because of this, this book includes
some code examples that trigger errors. Learning to interpret error messages
is part of what is needed to become a proficient user of R. To test your un-
derstanding of how a code statement or function works, it is good to try your

11 Finding additional information

hand at testing its limits, testing which variations of a piece code are valid or
not.

1.4.1 R’s built-in help

To access help pages through the command prompt we use function help() or a
question mark. Every object exported by an R package (functions, methods, classes,
data) is documented. Sometimes a single help page documents several R objects.
Usually at the end of the help pages, some examples are given, which tend to help
very much in learning how to use the functions described. For example, one can
search for a help page at the R console.

help("sum")
?sum

U Look at help for some other functions like mean(), var(), plot() and, why
not, help() itself!

help(help)

When using RStudio there are easier ways of navigating to a help page than
using function help(), for example, with the cursor on the name of a function in
the editor or console, pressing the F1 key opens the corresponding help page in the
help pane. Letting the cursor hover for a few seconds over the name of a function
at the R console will open “bubble help” for it. If the function is defined in a script
or another file that is open in the editor pane, one can directly navigate from the
line where the function is called to where it is defined. In RStudio one can also
search for help through the graphical interface.

In addition to help pages, R’s distribution includes useful manuals as PDF or
HTML files. These can be accessed most easily through the Help menu in RStudio
or RGUI. Extension packages provide help pages for the functions and data they
export. When a package is loaded into an R session, its help pages are added to
the native help of R. In addition to these individual help pages, each package pro-
vides an index of its corresponding help pages for users to browse. Many packages,
contain vignettes such as User Guides or articles describing the algorithms used.

There are some web sites that give access to R documentation through a web
server. These sites can be very convenient when exploring whether a certain pack-
age could be useful for a certain problem, as they allow browsing and searching
the documentation without need of installing the packages. Some package main-
tainers have web sites with additional documentation for their own packages. The
DESCRIPTION or README of packages provide contact information for the main-
tainer, links to web sites, and instructions on how to report bugs. As packages are
contributed by independent authors, they should be cited in addition to citing R

12 R: The language and the program

itself. R function citation() when called with the name of a package as its argu-
ment provides the reference that should be cited for the package, and without an
explicit argument, the reference to cite for the version of R in use.

citation()

##

To cite R in publications use:

##

R Core Team (2020). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.

URL https://www.R-project.org/.

##

A BibTeX entry for LaTeX users is

##

@Manual{,

title = {R: A Language and Environment for Statistical Computing},

author = {{R Core Team}},

organization = {R Foundation for Statistical Computing},

address = {Vienna, Austria},

year = {2020},

url = {https://www.R-project.org/},

}

##

We have invested a lot of time and effort in creating R, please cite it

when using it for data analysis. See also 'citation("pkgname")' for

citing R packages.

U Look at the help page for function citation() for a discussion of why it
is important for users to cite R and packages when using them.

1.4.2 Obtaining help from online forums

When consulting help pages, vignettes, and possibly books at hand fails to provide
the information needed, the next step to follow is to search internet forums for
existing answers to one’s questions. When these steps fail to solve a problem, then
it is time to ask for help, either from local experts or by posting your own question
in a suitable online forum. When posting requests for help, one needs to abide by
what is usually described as “netiquette.”

1.4.2.1 Netiquette

In most internet forums, a certain behavior is expected from those asking and
answering questions. Some types of misbehavior, like use of offensive or inap-
propriate language, will usually result in the user losing writing rights in a forum.
Occasional minor misbehavior, will usually result in the original question not being
answered and instead the problem highlighted in the reply. In general following
the steps listed below will greatly increase your chances of getting a detailed and
useful answer.

• Do your homework: first search for existing answers to your question, both

https://www.R-project.org
https://www.R-project.org

13 Finding additional information

online and in the documentation. (Do mention that you attempted this without
success when you post your question.)

• Provide a clear explanation of the problem, and all the relevant information.
Say if it concerns R, the version, operating system, and any packages loaded
and their versions.

• If at all possible, provide a simplified and short, but self-contained, code exam-
ple that reproduces the problem (sometimes called reprex).

• Be polite.

• Contribute to the forum by answering other users’ questions when you know
the answer.

1.4.2.2 StackOverflow

Nowadays, StackOverflow (http://stackoverflow.com/) is the best question-
and-answer (Q & A) support site for R. In most cases, searching for existing ques-
tions and their answers, will be all that you need to do. If asking a question, make
sure that it is really a new question. If there is some question that looks similar,
make clear how your question is different.

StackOverflow has a user-rights system based on reputation, and questions and
answers can be up- and down-voted. Those with the most up-votes are listed at the
top of searches. If the questions or answers you write are up-voted, after you ac-
cumulate enough reputation, you acquire badges and rights, such as editing other
users’ questions and answers or later on, even deleting wrong answers or off-topic
questions from the system. This sounds complicated, but works extremely well
at ensuring that the base of questions and answers is relevant and correct, with-
out relying on nominated moderators. When using StackOverflow, do contribute by
accepting correct answers, up-voting questions and answers that you find useful,
down-voting those you consider poor, and flagging or correcting errors you may
discover.

1.4.2.3 Reporting bugs

Being careful in the preparation of a reproducible example is especially important
when you intend to report a bug to the maintainer of any piece of software. For the
problem to be fixed, the person revising the code, needs to be able to reproduce
the problem, and after modifying the code, needs to be able to test if the problem
has been solved or not. However, even if you are facing a problem caused by your
misunderstanding of how R works, the simpler the example, the more likely that
someone will quickly realize what your intention was when writing the code that
produces a result different from what you expected.

 How to prepare a reproducible example (“reprex”). A reprex is a self-
contained and as simple as possible piece of computer code that triggers (and
so demonstrates) a problem. If possible, when you need to use data, either use

http://www.stackoverflow.com

14 R: The language and the program

a data set included in base R or generate artificial data within the reprex code.
If you can reproduce the problem only with your own data, then you need to
provide a minimal subset of it that triggers the problem.

While preparing the reprex you will need to simplify the code, and some-
times this step allows you to diagnose the problem. Always, before posting a
reprex online, it is wise to check it with the latest versions of R and any package
being used.

I would say that about two out of three times I prepare a reprex, it allows
me to much better understand the problem and find the root of the problem
and a solution or a work-around on my own.

1.5 What is needed to run the examples in this book?

The book is written with the expectation that you will run most of the code exam-
ples and try as many other variations as needed until you are sure you understand
the basic “rules” of the R language and how each function or command described
works. As mentioned above, you are expected to use this book as a travel guide
for your exploration of the world of R.

R is all that is needed to work through all the examples in this book, but it is not
a convenient way of doing this. I recommend that you use an editor or an IDE, in
particular RStudio . RStudio is user friendly, actively maintained, free, open-source
and available both in desktop and server versions. The desktop version runs on
MS-Windows, Linux, and OS X and other Unix distributions.

Of course when choosing which editor to use, personal preferences and previ-
ous familiarity play an important role. Currently, for the development of packages,
I use RStudio exclusively. For writing this book I have used both RStudio and the
text editor WinEdt which has support for R together with excellent support for
LATEX. When working on a large project or collaborating with other data analysts
or researchers, one big advantage of a system based on plain text files such as R
scripts, is that the same files can be edited with different programs and under dif-
ferent operating systems as needed or wished by the different persons involved in
a project.

When I started using R, nearly two decades ago, I was using other editors, using
the operating system shell a lot more, and struggling with debugging as no IDE
was available. The only reasonably good integration with an editor was for Emacs,
which was widely available only under Unix-like systems. Given my past experience,
I encourage you to use an IDE for R. RStudio is nowadays very popular, but if you
do not like it, need a different set of features, such as integration with ImageJ, or
are already familiar with the Eclipse IDE, you may want to try the Bio7 IDE, available
from http://bio7.org.

The examples in this book make use of several freely available R extension pack-
ages, which can be installed from CRAN. One of them, ‘learnrbook’, also available
through CRAN, contains data sets and files specific to this book. The ‘learnrbook’

http://www.bio7.org

15 Further reading

package contains installation instructions and saved lists of the names of all other
packages used in the book. Instructions on installing R, Git, RStudio, compilers
and other tools are available online. In many cases the IT staff at your employer or
school will know how to install them, or they may even be included in the default
computer setup. In addition, a web site supporting the book will be available at:
http://www.learnr-book.info.

1.6 Further reading

Suggestions for further reading are dependent on how you plan to use R. If you
envision yourself running batch jobs under Linux or Unix, you would profit from
learning to write shell scripts. Because bash is widely used nowadays, Learning
the bash Shell (Newham and Rosenblatt 2005) can be recommended. If you aim at
writing R code that is going to be reused, and have some familiarity with C, C++ or
Java, reading The Practice of Programming (Kernighan and Pike 1999) will provide
a mostly language-independent view of programming as an activity and help you
master the all-important tricks of the trade.

http://www.learnr-book.info

http://taylorandfrancis.com

2

The R language: “Words” and “sentences”

The desire to economize time and mental effort in arithmetical com-
putations, and to eliminate human liability to error, is probably as old
as the science of arithmetic itself.

Howard Aiken
Proposed automatic calculating machine, 1937; reprinted 1964

2.1 Aims of this chapter

In my experience, for those not familiar with computer programming languages,
the best first step in learning the R language is to use it interactively by typing tex-
tual commands at the console or command line. This will teach not only the syntax
and grammar rules, but also give you a glimpse at the advantages and flexibility
of this approach to data analysis.

In the first part of the chapter we will use R to do everyday calculations that
should be so easy and familiar that you will not need to think about the operations
themselves. This easy start will give you a chance to focus on learning how to issue
textual commands at the command prompt.

Later in the chapter, you will gradually need to focus more on the R language
and its grammar and less on how commands are entered. By the end of the chapter
you will be familiar with most of the kinds of “words” used in the R language and
you will be able to write simple “sentences” in R.

Along the chapter, I will occasionally show the equivalent of the R code in math-
ematical notation. If you are not familiar with the mathematical notation, you can
safely ignore it, as long as you understand the R code.

17

sin 𝜋

18 The R language: “Words” and “sentences”

2.2 Natural and computer languages

Computer languages have strict rules and interpreters and compilers are unforgiv-
ing about errors. They will issue error messages, but in contrast to human readers
or listeners, will not guess your intentions and continue. However, computer lan-
guages have a much smaller set of words than natural languages, such as English.
If you are new to computer programming, understanding the parallels between
computer and natural languages may be useful.

One can think of constant values and variables (values stored under a name)
as nouns and of operators and functions as verbs. A complete command, or state-
ment, is the equivalent of a natural language sentence: “a comprehensible utter-
ance.” The simple statement a + 1 has three components: a, a variable, +, an op-
erator and 1 a constant. The statement sqrt(4) has two components, a function
sqrt() and a numerical constant 4. We say that “to compute √4 we call sqrt()

with 4 as its argument.”
In later chapters you will learn how to write compound statements, the equiva-

lent of natural-language paragraphs, and scripts, the equivalent of essays. You will
also learn how to define new verbs, user-defined functions and operators, and new
nouns, user-defined classes.

2.3 Numeric values and arithmetic

When working in R with arithmetic expressions, the normal mathematical prece-
dence rules are respected, but parentheses can be used to alter this order. Paren-
theses can be nested, but in contrast to the usual practice in mathematics, the
same parenthesis symbol is used at all nesting levels.

 Both in mathematics and programming languages operator precedence
rules determine which subexpressions are evaluated first and which later. Con-
trary to primitive electronic calculators, R evaluates numeric expressions con-
taining operators according to the rules of mathematics. In the expression
3 + 2 × 3, the product 2 × 3 has precedence over the addition, and is eval-
uated first, yielding as the result of the whole expression, 9. In programming
languages, similar rules apply to all operators, even those taking as operands
non-numeric values.

It is important to keep in mind that in R trigonometric functions interpret nu-
meric values representing angles as being expressed in radians.

The equivalent of the math expression

3 + 𝑒2

is, in R, written as follows:

19 Numeric values and arithmetic

(3 + exp(2)) / sin(pi)
[1] 8.483588e+16

It can be seen above that mathematical constants and functions are part of the
R language. One thing to remember when translating complex fractions as above
into R code, is that in arithmetic expressions the bar of the fraction generates
a grouping that alters the normal precedence of operations. In contrast, in an R
expression this grouping must be explicitly signaled with additional parentheses.

If you are in doubt about how precedence rules work, you can add parentheses
to make sure the order of computations is the one you intend. Redundant paren-
theses have no effect.

1 + 2 * 3
[1] 7

1 + (2 * 3)
[1] 7

(1 + 2) * 3
[1] 9

The number of opening (left side) and closing (right side) parentheses must be
balanced, and they must be located so that each enclosed term is a valid mathemat-
ical expression. For example, while (1 + 2) * 3 is valid, (1 +) 2 * 3 is a syntax
error as 1 + is incomplete and cannot be calculated.

U Here results are not shown. These are examples for you to type at the
command prompt. In general you should not skip them, as in many cases, as
with the statements highlighted with comments in the code chunk below, they
have something to teach or demonstrate. You are strongly encouraged to play,
in other words, create new variations of the examples and execute them to
explore how R works.

1 + 1

2 * 2

2 + 10 / 5

(2 + 10) / 5

10^2 + 1

sqrt(9)

pi # whole precision not shown when printing

print(pi, digits = 22)

sin(pi) # oops! Read on for explanation.

log(100)

log10(100)

log2(8)

exp(1)

Variables are used to store values. After we assign a value to a variable, we
can use the name of the variable in place of the stored value. The “usual” assign-
ment operator is <-. In R, all names, including variable names, are case sensitive.

20 The R language: “Words” and “sentences”

Variables a and A are two different variables. Variable names can be long in R al-
though it is not a good idea to use very long names. Here I am using very short
names, something that is usually also a very bad idea. However, in the examples
in this chapter where the stored values have no connection to the real world, sim-
ple names emphasize their abstract nature. In the chunk below, a and b are ar-
bitrarily chosen variable names; I could have used names like my.variable.a or
outside.temperature if they had been useful to convey information.

a <- 1
a + 1
[1] 2

a
[1] 1

b <- 10
b <- a + b
b
[1] 11

3e-2 * 2.0
[1] 0.06

Entering the name of a variable at the R console implicitly calls function print()

displaying the stored value on the console. The same applies to any other state-
ment entered at the R console: print() is implicitly called with the result of exe-
cuting the statement as its argument.

a
[1] 1

print(a)
[1] 1

a + 1
[1] 2

print(a + 1)
[1] 2

U There are some syntactically legal statements that are not very frequently
used, but you should be aware that they are valid, as they will not trigger error
messages, and may surprise you. The most important thing is to write code
consistently. The “backwards” assignment operator -> and resulting code like
1 -> a are valid but less frequently used. The use of the equals sign (=) for
assignment in place of <- although valid is discouraged. Chaining assignments
as in the first statement below can be used to signal to the human reader that
a, b and c are being assigned the same value.

21 Numeric values and arithmetic

a <- b <- c <- 0.0
a
b
c
1 -> a
a
a = 3
a

 In R, all numbers belong to mode numeric (we will discuss the concepts
of mode and class in section 2.8 on page 41). We can query if the mode of an
object is numeric with function is.numeric().

mode(1)
[1] "numeric"

a <- 1
is.numeric(a)
[1] TRUE

Because numbers can be stored in different formats, requiring different
amounts of computer memory per value, most computing languages imple-
ment several different types of numbers. In most cases R’s numeric() can be
used everywhere that a number is expected. However, in some cases it has ad-
vantages to explicitly indicate that we will store or operate on whole numbers,
in which case we can use class integer, with integer constants indicated by a
trailing capital “L,” as in 32L.

is.numeric(1L)
[1] TRUE

is.integer(1L)
[1] TRUE

is.double(1L)
[1] FALSE

Real numbers are a mathematical abstraction, and do not have an exact
equivalent in computers. Instead of Real numbers, computers store and oper-
ate on numbers that are restricted to a broad but finite range of values and have
a finite resolution. They are called, floats (or floating-point numbers); in R they
go by the name of double and can be created with the constructor double().

22 The R language: “Words” and “sentences”

is.numeric(1)

[1] TRUE

is.integer(1)

[1] FALSE

is.double(1)

[1] TRUE

The name double originates from the C language, in which there are dif-
ferent types of floats available. With the name double used to mean “double-
precision floating-point numbers.” Similarly, the use of L stems from the long
type in C, meaning “long integer numbers.”

Numeric variables can contain more than one value. Even single numbers are
in R vector s of length one. We will later see why this is important. As you have
seen above, the results of calculations were printed preceded with [1]. This is the
index or position in the vector of the first number (or other value) displayed at the
head of the current line.

One can use c() “concatenate” to create a vector from other vectors, including
vectors of length 1, such as the numeric constants in the statements below.

a <- c(3, 1, 2)
a
[1] 3 1 2

b <- c(4, 5, 0)
b
[1] 4 5 0

c <- c(a, b)
c
[1] 3 1 2 4 5 0

d <- c(b, a)
d
[1] 4 5 0 3 1 2

Method c() accepts as arguments two or more vectors and concatenates them,
one after another. Quite frequently we may need to insert one vector in the middle
of another. For this operation, c() is not useful by itself. One could use indexing
combined with c(), but this is not needed as R provides a function capable of
directly doing this operation. Although it can be used to “insert” values, it is named
append(), and by default, it indeed appends one vector at the end of another.

append(a, b)
[1] 3 1 2 4 5 0

The output above is the same as for c(a, b), however, append() accepts as an
argument an index position after which to “append” its second argument. This
results in an insert operation when the index points at any position different from
the end of the vector.

23 Numeric values and arithmetic

append(a, values = b, after = 2L)
[1] 3 1 4 5 0 2

Both c() and append() can also be used with lists.

U One can create sequences using function seq() or the operator :, or repeat
values using function rep(). In this case, I leave to the reader to work out
the rules by running these and his/her own examples, with the help of the
documentation, available through help(seq) and help(rep).

a <- -1:5
a
b <- 5:-1
b
c <- seq(from = -1, to = 1, by = 0.1)
c
d <- rep(-5, 4)
d

Next, something that makes R different from most other programming lan-
guages: vectorized arithmetic. Operators and functions that are vectorized accept,
as arguments, vectors of arbitrary length, in which case the result returned is equiv-
alent to having applied the same function or operator individually to each element
of the vector.

a + 1 # we add one to vector a defined above
[1] 4 2 3

(a + 1) * 2
[1] 8 4 6

a + b
[1] 7 6 2

a - a
[1] 0 0 0

As it can be seen in the first line above, another peculiarity of R, is what is fre-
quently called “recycling” of arguments: as vector a is of length 6, but the constant
1 is a vector of length 1, this short constant vector is extended, by recycling its
value, into a vector of six ones—i.e., a vector of the same length as the longest
vector in the statement, a.

Make sure you understand what calculations are taking place in the chunk
above, and also the one below.

a <- rep(1, 6)
a
[1] 1 1 1 1 1 1

a + 1:2

24 The R language: “Words” and “sentences”

[1] 2 3 2 3 2 3

a + 1:3
[1] 2 3 4 2 3 4

a + 1:4

Warning in a + 1:4: longer object length is not a multiple of shorter object
length
[1] 2 3 4 5 2 3

 A useful thing to know: a vector can have length zero. Vectors of length
zero may seem at first sight quite useless, but in fact they are very useful. They
allow the handling of “no input” or “nothing to do” cases as normal cases,
which in the absence of vectors of length zero would require to be treated as
special cases. I describe here a useful function, length() which returns the
length of a vector or list.

z <- numeric(0)

z

numeric(0)

length(z)
[1] 0

Vectors and lists of length zero, behave in most cases, as expected—e.g.,
they can be concatenated as shown here.

length(c(a, numeric(0), b))
[1] 9

length(c(a, b))
[1] 9

Many functions, such as R’s maths functions and operators, will accept nu-
meric vectors of length zero as valid input, returning also a vector of length
zero, issuing neither a warning nor an error message. In other words, these are
valid operations in R.

log(numeric(0))
numeric(0)

5 + numeric(0)
numeric(0)

Even when of length zero, vectors do have to belong to a class acceptable
for the operation.

It is possible to remove variables from the workspace with rm(). Function ls()

returns a list of all objects visible in the current environment, or by supplying a

25 Numeric values and arithmetic

pattern argument, only the objects with names matching the pattern. The pattern
is given as a regular expression, with [] enclosing alternative matching characters,
^ and $, indicating the extremes of the name (start and end, respectively). For
example, "^z$" matches only the single character ‘z’ while "^z" matches any name
starting with ‘z’. In contrast "^[zy]$" matches both ‘z’ and ‘y’ but neither ‘zy’ nor
‘yz’, and "^[a-z]" matches any name starting with a lowercase ASCII letter. If you
are using RStudio, all objects are listed in the Environment pane, and the search
box of the panel can be used to find a given object.

ls(pattern="^z$")
[1] "z"

rm(z)
ls(pattern="^z$")
character(0)

There are some special values available for numbers. NA meaning “not available”
is used for missing values. Calculations can also yield the following values NaN “not
a number”, Inf and -Inf for ∞ and −∞. As you will see below, calculations yielding
these values do not trigger errors or warnings, as they are arithmetically valid. Inf

and -Inf are also valid numerical values for input and constants.
a <- NA
a
[1] NA

-1 / 0
[1] -Inf

1 / 0
[1] Inf

Inf / Inf
[1] NaN

Inf + 4
[1] Inf

b <- -Inf
b * -1
[1] Inf

Not available (NA) values are very important in the analysis of experimental data,
as frequently some observations are missing from an otherwise complete data set
due to “accidents” during the course of an experiment. It is important to under-
stand how to interpret NA’s. They are simple placeholders for something that is
unavailable, in other words, unknown.
A <- NA
A
[1] NA

A + 1
[1] NA

A + Inf
[1] NA

26 The R language: “Words” and “sentences”

U When to use vectors of length zero, and when NAs? Make sure you un-
derstand the logic behind the different behavior of functions and operators
with respect to NA and numeric() or its equivalent numeric(0). What do they
represent? Why NA s are not ignored, while vectors of length zero are?

123 + numeric()
123 + NA

Model answer: NA is used to signal a value that “was lost” or “was expected”
but is unavailable because of some accident. A vector of length zero, repre-
sents no values, but within the normal expectations. In particular, if vectors
are expected to have a certain length, or if index positions along a vector are
meaningful, then using NA is a must.

Any operation, even tests of equality, involving one or more NA’s return an NA.
In other words, when one input to a calculation is unknown, the result of the cal-
culation is unknown. This means that a special function is needed for testing for
the presence of NA values.

is.na(c(NA, 1))
[1] TRUE FALSE

In the example above, we can also see that is.na() is vectorized, and that it
applies the test to each of the two elements of the vector individually, returning
the result as a logical vector of length two.

One thing to be aware of are the consequences of the fact that numbers in
computers are almost always stored with finite precision and/or range: the expec-
tations derived from the mathematical definition of Real numbers are not always
fulfilled. See the box on page 33 for an in-depth explanation.

1 - 1e-20
[1] 1

When comparing integer values these problems do not exist, as integer arith-
metic is not affected by loss of precision in calculations restricted to integers.
Because of the way integers are stored in the memory of computers, within the
representable range, they are stored exactly. One can think of computer integers
as a subset of whole numbers restricted to a certain range of values.

1L + 3L
[1] 4

1L * 3L
[1] 3

1L %/% 3L
[1] 0

1L %% 3L
[1] 1

1L / 3L
[1] 0.3333333

The last statement in the example immediately above, using the “usual” division
operator yields a floating-point double result, while the integer division operator
%/% yields an integer result, and %% returns the remainder from the integer divi-
sion. If as a result of an operation the result falls outside the range of representable
values, the returned value is NA.

1000000L * 1000000L

Warning in 1000000L * 1000000L: NAs produced by integer overflow
[1] NA

Both doubles and integers are considered numeric. In most situations, conver-
sion is automatic and we do not need to worry about the differences between these
two types of numeric values. The next chunk shows returned values that are either
TRUE or FALSE. These are logical values that will be discussed in the next section.

is.numeric(1L)
[1] TRUE

is.integer(1L)
[1] TRUE

is.double(1L)
[1] FALSE

is.double(1L / 3L)
[1] TRUE

is.numeric(1L / 3L)
[1] TRUE

 Study the variations of the previous example shown below, and ex-
plain why the two statements return different values. Hint: 1 is a double con-
stant. You can use is.integer() and is.double() in your explorations.

1 * 1000000L * 1000000L
1000000L * 1000000L * 1

Both when displaying numbers or as part of computations, we may want to
decrease the number of significant digits or the number of digits after the decimal
marker. Be aware that in the examples below, even if printing is being done by
default, these functions return numeric values that are different from their input
and can be stored and used in computations. Function round() is used to round
numbers to a certain number of decimal places after or before the decimal marker,
while signif() rounds to the requested number of significant digits.

round(0.0124567, digits = 3)
[1] 0.012

signif(0.0124567, digits = 3)

27 Numeric values and arithmetic

U

28 The R language: “Words” and “sentences”

[1] 0.0125

round(1789.1234, digits = 3)
[1] 1789.123

signif(1789.1234, digits = 3)
[1] 1790

round(1789.1234, digits = -1)
[1] 1790

a <- 0.12345
b <- round(a, digits = 2)
a == b
[1] FALSE

a - b
[1] 0.00345

b
[1] 0.12

 Being digits, the second parameter of these functions, the argument can
also be passed by position. However, code is usually easier to understand for
humans when parameter names are made explicit.

round(0.0124567, digits = 3)
[1] 0.012

round(0.0124567, 3)
[1] 0.012

Functions trunc() and ceiling() return the non-fractional part of a numeric
value as a new numeric value. They differ in how they handle negative values, and
neither of them rounds the returned value to the nearest whole number.

U What does value truncation mean? Function trunc() truncates a numeric
value, but it does not return an integer.

• Explore how trunc() and ceiling() differ. Test them both with positive and
negative values.

•	 Advanced Use function abs() and operators + and - to reproduce the out-
put of trunc() and ceiling() for the different inputs.

• Can trunc() and ceiling() be considered type conversion functions in R?

29 Logical values and Boolean algebra

2.4 Logical values and Boolean algebra

What in Mathematics are usually called Boolean values, are called logical values in
R. They can have only two values TRUE and FALSE, in addition to NA (not available).
They are vectors as all other atomic types in R (by atomic we mean that each value
is not composed of “parts”). There are also logical operators that allow Boolean
algebra. In the chunk below we operate on logical vectors of length one.
a <- TRUE
b <- FALSE
mode(a)
[1] "logical"

a
[1] TRUE

!a # negation
[1] FALSE

a && b # logical AND
[1] FALSE

a || b # logical OR
[1] TRUE

xor(a, b) # exclusive OR
[1] TRUE

As with arithmetic operators, vectorization is available with some logical oper-
ators. The availability of two kinds of logical operators is one of the most trouble-
some aspects of the R language for beginners. Pairs of “equivalent” logical opera-
tors behave differently, use similar syntax and use similar symbols! The vectorized
operators have single-character names & and |, while the non-vectorized ones have
double-character names && and ||. There is only one version of the negation op-
erator ! that is vectorized. In some, but not all cases, a warning will indicate that
there is a possible problem.

a <- c(TRUE,FALSE)

b <- c(TRUE,TRUE)

a

[1] TRUE FALSE

b

[1] TRUE TRUE

a & b # vectorized AND

[1] TRUE FALSE

a | b # vectorized OR

[1] TRUE TRUE

a && b # not vectorized
[1] TRUE

a || b # not vectorized
[1] TRUE

30 The R language: “Words” and “sentences”

Functions any() and all() take zero or more logical vectors as their arguments,
and return a single logical value “summarizing” the logical values in the vectors.
Function all() returns TRUE only if all values in the vectors passed as arguments
are TRUE, and any() returns TRUE unless all values in the vectors are FALSE.

any(a)
[1] TRUE

all(a)
[1] FALSE

any(a & b)
[1] TRUE

all(a & b)
[1] FALSE

Another important thing to know about logical operators is that they “short-
cut” evaluation. If the result is known from the first part of the statement, the rest
of the statement is not evaluated. Try to understand what happens when you enter
the following commands. Short-cut evaluation is useful, as the first condition can
be used as a guard protecting a later condition from being evaluated when it would
trigger an error.

TRUE || NA
[1] TRUE

FALSE || NA
[1] NA

TRUE && NA
[1] NA

FALSE && NA
[1] FALSE

TRUE && FALSE && NA
[1] FALSE

TRUE && TRUE && NA
[1] NA

When using the vectorized operators on vectors of length greater than one,
‘short-cut’ evaluation still applies for the result obtained at each index position.

a & b & NA
[1] NA FALSE

a & b & c(NA, NA)
[1] NA FALSE

a | b | c(NA, NA)
[1] TRUE TRUE

31 Comparison operators and operations

U Based on the description of “recycling” presented on page 23 for numeric

operators, explore how “recycling” works with vectorized logical operators.
Create logical vectors of different lengths (including length one) and play by
writing several code statements with operations on them. To get you started,
one example is given below. Execute this example, and then create and run
your own, making sure that you understand why the values returned are what
they are. Sometimes, you will need to devise several examples or test cases
to tease out of R an understanding of how a certain feature of the language
works, so do not give up early, and make use of your imagination!

x <- c(TRUE, FALSE, TRUE, NA)

x & FALSE

x | c(TRUE, FALSE)

2.5 Comparison operators and operations

Comparison operators return vectors of logical values as results.

1.2 > 1.0
[1] TRUE

1.2 >= 1.0
[1] TRUE

1.2 == 1.0 # be aware that here we use two = symbols
[1] FALSE

1.2 != 1.0
[1] TRUE

1.2 <= 1.0
[1] FALSE

1.2 < 1.0
[1] FALSE

a <- 20
a < 100 && a > 10
[1] TRUE

These operators can be used on vectors of any length, returning as a result
a logical vector as long as the longest operand. In other words, they behave in
the same way as the arithmetic operators described on page 23: their arguments
are recycled when needed. Hint: if you do not know what to expect as a value for
the vector returned by 1:10, execute the statement print(a) after the first code
statement below, or, alternatively, 1:10 without saving the result to a variable.

32 The R language: “Words” and “sentences”

a <- 1:10
a > 5
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

a < 5
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

a == 5
[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

all(a > 5)
[1] FALSE

any(a > 5)
[1] TRUE

b <- a > 5
b
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

any(b)
[1] TRUE

all(b)
[1] FALSE

Precedence rules also apply to comparison operators and they can be overrid-
den by means of parentheses.

a > 2 + 3
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

(a > 2) + 3
[1] 3 3 4 4 4 4 4 4 4 4

U Use the statement below as a starting point in exploring how precedence
works when logical and arithmetic operators are part of the same statement.
Play with the example by adding parentheses at different positions and based
on the returned values, work out the default order of operator precedence used
for the evaluation of the example given below.

a <- 1:10
a > 3 | a + 2 < 3

Again, be aware of “short-cut evaluation”. If the result does not depend on the
missing value, then the result, TRUE or FALSE is returned. If the presence of the NA

makes the end result unknown, then NA is returned.

c <- c(a, NA)
c > 5
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE NA

33 Comparison operators and operations

all(c > 5)

[1] FALSE

any(c > 5)

[1] TRUE

all(c < 20)

[1] NA

any(c > 20)

[1] NA

is.na(a)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

is.na(c)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

any(is.na(c))

[1] TRUE

all(is.na(c))

[1] FALSE

The behavior of many of base-R’s functions when NAs are present in their in-
put arguments can be modified. TRUE passed as an argument to parameter na.rm,
results in NA values being removed from the input before the function is applied.

all(c < 20)
[1] NA

any(c > 20)
[1] NA

all(c < 20, na.rm=TRUE)
[1] TRUE

any(c > 20, na.rm=TRUE)
[1] FALSE

 Here I give some examples for which the finite resolution of com-
puter machine floats, as compared to Real numbers as defined in mathematics,
can cause serious problems. In R, numbers that are not integers are stored as
double-precision floats. In addition to having limits to the largest and small-
est numbers that can be represented, the precision of floats is limited by the
number of significant digits that can be stored. Precision is usually described
by “epsilon” (𝜖), abbreviated eps, defined as the largest value of 𝜖 for which
1 + 𝜖 = 1. The finite resolution of floats can lead to unexpected results when
testing for equality. In the second example below, the result of the subtraction
is still exactly 1 due to insufficient resolution.

34 The R language: “Words” and “sentences”

0 - 1e-20
[1] -1e-20

1 - 1e-20
[1] 1

The finiteness of floats also affects tests of equality, which is more likely to
result in errors with important consequences.

1e20 == 1 + 1e20
[1] TRUE

1 == 1 + 1e-20
[1] TRUE

0 == 1e-20
[1] FALSE

As R can run on different types of computer hardware, the actual machine
limits for storing numbers in memory may vary depending on the type of pro-
cessor and even compiler used to build the R program executable. However, it
is possible to obtain these values at run time from the variable .Machine, which
is part of the R language. Please see the help page for .Machine for a detailed
and up-to-date description of the available constants.

.Machine$double.eps
[1] 2.220446e-16

.Machine$double.neg.eps
[1] 1.110223e-16

.Machine$double.max
[1] 1024

.Machine$double.min
[1] -1022

The last two values refer to the exponents of 10, rather than the maximum
and minimum size of numbers that can be handled as objects of class double.
Values outside these limits are stored as -Inf or Inf and enter arithmetic as
infinite values according the mathematical rules.

1e1026
[1] Inf

1e-1026
[1] 0

Inf + 1
[1] Inf

-Inf + 1
[1] -Inf

35 Comparison operators and operations

As integer values are stored in machine memory without loss of precision,
epsilon is not defined for integer values.

.Machine$integer.max

[1] 2147483647

2147483699L
[1] 2147483699

In those statements in the chunk below where at least one operand is double

the integer operands are promoted to double before computation. A similar
promotion does not take place when operations are among integer values,
resulting in overflow, meaning numbers that are too big to be represented as
integer values.

2147483600L + 99L

Warning in 2147483600L + 99L: NAs produced by integer overflow
[1] NA

2147483600L + 99
[1] 2147483699

2147483600L * 2147483600L

Warning in 2147483600L * 2147483600L: NAs produced by integer overflow
[1] NA

2147483600L * 2147483600
[1] 4.611686e+18

We see next that the exponentiation operator ^ forces the promotion of its
arguments to double, resulting in no overflow. In contrast, as seen above, the
multiplication operator * operates on integers resulting in overflow.

2147483600L * 2147483600L

Warning in 2147483600L * 2147483600L: NAs produced by integer overflow
[1] NA

2147483600L^2L
[1] 4.611686e+18

 In many situations, when writing programs one should avoid testing for
equality of floating point numbers (‘floats’). Here we show how to gracefully
handle rounding errors. As the example shows, rounding errors may accumu-
late, and in practice .Machine$double.eps is not always a good value to safely
use in tests for “zero,” and a larger value may be needed. Whenever possible
according to the logic of the calculations, it is best to test for inequalities, for

36 The R language: “Words” and “sentences”

example using x <= 1.0 instead of x == 1.0. If this is not possible, then the
tests should be done replacing tests like x == 1.0 with abs(x - 1.0) < eps.
Function abs() returns the absolute value, in simpler words, makes all values
positive or zero, by changing the sign of negative values, or in mathematical
notation |𝑥| = | − 𝑥|.

a == 0.0 # may not always work
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

abs(a) < 1e-15 # is safer
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

sin(pi) == 0.0 # angle in radians, not degrees!
[1] FALSE

sin(2 * pi) == 0.0
[1] FALSE

abs(sin(pi)) < 1e-15
[1] TRUE

abs(sin(2 * pi)) < 1e-15
[1] TRUE

sin(pi)
[1] 1.224606e-16

sin(2 * pi)
[1] -2.449213e-16

2.6 Sets and set operations

The R language supports set operations on vectors. They can be useful in many
different contexts when manipulating and comparing vectors of values. In Bioin-
formatics it is usual, for example, to have character vectors of gene tags. We may
have a vector for each of a set of different samples, and need to compare them.
However, we start by using a more mundane example, everyday shopping.

fruits <- c("apple", "pear", "orange", "lemon", "tangerine")

bakery <- c("bread", "buns", "cake", "cookies")

dairy <- c("milk", "butter", "cheese")

shopping <- c("bread", "butter", "apple", "cheese", "orange")

intersect(fruits, shopping)

[1] "apple" "orange"

intersect(bakery, shopping)

[1] "bread"

37 Sets and set operations

intersect(dairy, shopping)
[1] "butter" "cheese"

"lemon" %in% dairy
[1] FALSE

"lemon" %in% fruits
[1] TRUE

setdiff(union(bakery, dairy), shopping)
[1] "buns" "cake" "cookies" "milk"

We continue next with abstract (symbolic) examples.

my.set <- c("a", "b", "c", "b")

To test if a given value belongs to a set, we use operator %in%. In the algebra of
sets notation, this is written 𝑎 ∈ 𝐴, where 𝐴 is a set and 𝑎 a member. The second
statement shows that the %in% operator is vectorized on its left-hand-side (lhs)
operand, returning a logical vector.

"a" %in% my.set
[1] TRUE

c("a", "a", "z") %in% my.set
[1] TRUE TRUE FALSE

The negation of inclusion is 𝑎 ∉ 𝐴, and coded in R by applying the negation
operator ! to the result of the test done with %in%.

!"a" %in% my.set
[1] FALSE

!c("a", "a", "z") %in% my.set
[1] FALSE FALSE TRUE

Although inclusion is a set operation, it is also very useful for the simplification
of if()…else statements by replacing multiple tests for alternative constant values
of the same mode chained by multiple | operators.

U Use operator %in% to simplify the following comparison.

x <- c("a", "a", "z")

x == "a" | x == "b" | x == "c" | x == "d"

With unique() we convert a vector of possibly repeated values into a set of
unique values. In the algebra of sets, a certain object belongs or not to a set. Con-
sequently, in a set, multiple copies of the same object or value are meaningless.

38 The R language: “Words” and “sentences”

unique(my.set)
[1] "a" "b" "c"

c("a", "a", "z") %in% unique(my.set)
[1] TRUE TRUE FALSE

In the notation used in algebra of sets, the set union operator is ∪ while the
intersection operator is ∩. If we have sets 𝐴 and 𝐵, their union is given by 𝐴∪𝐵—in
the next three examples, c("a", "a", "z") is a constant, while my.set is a variable.

union(c("a", "a", "z"), my.set)
[1] "a" "z" "b" "c"

If we have sets 𝐴 and 𝐵, their intersection is given by 𝐴 ∩ 𝐵.

intersect(c("a", "a", "z"), my.set)
[1] "a"

UWhat do you expect to be the difference between the values returned by the
three statements in the code chunk below? Before running them, write down
your expectations about the value each one will return. Only then run the code.
Independently of whether your predictions were correct or not, write down an
explanation of what each statement’s operation is.

union(c("a", "a", "z"), my.set)
c(c("a", "a", "z"), my.set)
c("a", "a", "z", my.set)

In the algebra of sets notation 𝐴 ⊆ 𝐵, where 𝐴 and 𝐵 are sets, indicates that
𝐴 is a subset or equal to 𝐵. For a true subset, the notation is 𝐴 ⊂ 𝐵. The opera-
tors with the reverse direction are ⊇ and ⊃. Implement these four operations
in four R statements, and test them on sets (represented by R vectors) with
different “overlap” among set members.

 All set algebra examples above use character vectors and character con-
stants. This is just the most frequent use case. Sets operations are valid on
vectors of any atomic class, including integer, and computed values can be
part of statements. In the second and third statements in the next chunk, we
need to use additional parentheses to alter the default order of precedence
between arithmetic and set operators.

39 Character values

9L %in% 2L:4L
[1] FALSE

9L %in% ((2L:4L) * (2L:4L))
[1] TRUE

c(1L, 16L) %in% ((2L:4L) * (2L:4L))
[1] FALSE TRUE

Empty sets are an important component of the algebra of sets, in R they are
represented as vectors of zero length. Vectors and lists of zero length, which
the R language fully supports, can be used to “encode” emptiness also in other
contexts. These vectors do belong to a class such as numeric or character and
must be compatible with other operands in an expression. By default, construc-
tors for vectors, construct empty vectors.

length(integer())
[1] 0

1L %in% integer()
[1] FALSE

setdiff(1L:4L, union(1L:4L, integer()))
integer(0)

Although set operators are defined for numeric vectors, rounding errors in
‘floats’ can result in unexpected results (see section 2.5 on page 33). The next
two examples do, however, return the correct answers.

9 %in% (2:4)^2
[1] TRUE

c(1, 5) %in% (1:10)^2
[1] TRUE FALSE

2.7 Character values

Character variables can be used to store any character. Character constants are
written by enclosing characters in quotes. There are three types of quotes in the
ASCII character set, double quotes ", single quotes ', and back ticks `. The first
two types of quotes can be used as delimiters of character constants.

a <- "A"

a

[1] "A"

40 The R language: “Words” and “sentences”

b <- 'A'

b

[1] "A"

a == b

[1] TRUE

 In many computer languages, vectors of characters are distinct from vec-
tors of character strings. In these languages, character vectors store at each
index position a single character, while vectors of character strings store at
each index position strings of characters of various lengths, such as words or
sentences. If you are familiar with C or C++, you need to keep in mind that
C’s char and R’s character are not equivalent and that in R, character vec-
tors are vectors of character strings. In contrast to these other languages, in R
there is no predefined class for vectors of individual characters and character
constants enclosed in double or single quotes are not different.

Concatenating character vectors of length one does not yield a longer character
string, it yields instead a longer vector.

a <- 'A'
b <- "bcdefg"
c <- "123"
d <- c(a, b, c)
d
[1] "A" "bcdefg" "123"

Having two different delimiters available makes it possible to choose the type
of quotes used as delimiters so that other quotes can be included in a string.

a <- "He said 'hello' when he came in"

a

[1] "He said 'hello' when he came in"

b <- 'He said "hello" when he came in'

b

[1] "He said \"hello\" when he came in"

The outer quotes are not part of the string, they are “delimiters” used to mark
the boundaries. As you can see when b is printed special characters can be rep-
resented using “escape sequences”. There are several of them, and here we will
show just four, new line (\n) and tab (\t), \" the escape code for a quotation mark
within a string and \\ the escape code for a single backslash \. We also show here
the different behavior of print() and cat(), with cat() interpreting the escape
sequences and print() displaying them as entered.

c <- "abc\ndef\tx\"yz\"\\\tm"
print(c)
[1] "abc\ndef\tx\"yz\"\\\tm"

cat(c)
abc
def x"yz"\ m

41 The ‘mode’ and ‘class’ of objects

The escape codes work only in some contexts, as when using cat() to generate
the output. For example, the new-line escape (\n) can be embedded in strings used
for axis-label, title or label in a plot to split them over two or more lines.

2.8 The ‘mode’ and ‘class’ of objects

Variables have a mode that depends on what is stored in them. But different from
other languages, assignment to a variable of a different mode is allowed and in
most cases its mode changes together with its contents. However, there is a re-
striction that all elements in a vector, array or matrix, must be of the same mode.
While this is not required for lists, which can be heterogenous. In practice this
means that we can assign an object, such as a vector, with a different mode to a
name already in use, but we cannot use indexing to assign an object of a different
mode to individual members of a vector, matrix or array. Functions with names
starting with is. are tests returning a logical value, TRUE, FALSE or NA. Function
mode() returns the mode of an object, as a character string and typeof() returns
R’s internal type or storage mode.

my_var <- 1:5
mode(my_var) # no distinction of integer or double
[1] "numeric"

typeof(my_var)
[1] "integer"

is.numeric(my_var) # no distinction of integer or double
[1] TRUE

is.double(my_var)
[1] FALSE

is.integer(my_var)
[1] TRUE

is.logical(my_var)
[1] FALSE

is.character(my_var)
[1] FALSE

my_var <- "abc"
mode(my_var)
[1] "character"

While mode is a fundamental property, and limited to those modes defined as
part of the R language, the concept of class, is different in that new classes can
be defined in user code. In particular, different R objects of a given mode, such
as numeric, can belong to different classes. The use of classes for dispatching
functions is discussed in section 5.4 on page 172, in relation to object-oriented
programming in R. Method class() is used to query the class of an object, and

42 The R language: “Words” and “sentences”

method inherits() is used to test if an object belongs to a specific class or not
(including “parent” classes, to be later described).

class(my_var)
[1] "character"

inherits(my_var, "character")
[1] TRUE

inherits(my_var, "numeric")
[1] FALSE

2.9 ‘Type’ conversions

The least-intuitive type conversions are those related to logical values. All others
are as one would expect. By convention, functions used to convert objects from
one mode to a different one have names starting with as. 1.

as.character(1)
[1] "1"

as.numeric("1")
[1] 1

as.logical("TRUE")
[1] TRUE

as.logical("NA")
[1] NA

Conversion takes place automatically in arithmetic and logical expressions.

TRUE + 10
[1] 11

1 || 0
[1] TRUE

FALSE | -2:2
[1] TRUE TRUE FALSE TRUE TRUE

U There is some flexibility in the conversion from character strings into
numeric and logical values. Use the examples below plus your own variations
to get an idea of what strings are acceptable and correctly converted and which
are not. Do also pay attention at the conversion between numeric and logical

values.

1Except for some packages in the ‘tidyverse’ that use names starting with as_ instead of as..

43 ‘Type’ conversions

as.character(3.0e10)
as.numeric("5E+5")
as.numeric("A")
as.numeric(TRUE)
as.numeric(FALSE)
as.logical("T")
as.logical("t")
as.logical("true")
as.logical(100)
as.logical(0)
as.logical(-1)

U Compare the values returned by trunc() and as.integer() when applied
to a floating point number, such as 12.34. Check for the equality of values, and
for the class of the returned objects.

 Using conversions, the difference between the length of a character vec-
tor and the number of characters composing each member “string” within a
vector is obvious.

f <- c("1", "2", "3")

length(f)

[1] 3

g <- "123"

length(g)

[1] 1

as.numeric(f)

[1] 1 2 3

as.numeric(g)

[1] 123

Other functions relevant to the “conversion” of numbers and other values are
format(), and sprintf(). These two functions return character strings, instead of
numeric or other values, and are useful for printing output. One could think of
these functions as advanced conversion functions returning formatted, and pos-
sibly combined and annotated, character strings. However, they are usually not
considered normal conversion functions, as they are very rarely used in a way
that preserves the original precision of the input values. We show here the use of
format() and sprintf() with numeric values, but they can also be used with values
of other modes.

When using format(), the format used to display numbers is set by passing ar-
guments to several different parameters. As print() calls format() to make num-
bers pretty it accepts the same options.

44 The R language: “Words” and “sentences”

x = c(123.4567890, 1.0)
format(x) # using defaults
[1] "123.4568" " 1.0000"

format(x[1]) # using defaults
[1] "123.4568"

format(x[2]) # using defaults
[1] "1"

format(x, digits = 3, nsmall = 1)
[1] "123.5" " 1.0"

format(x[1], digits = 3, nsmall = 1)
[1] "123.5"

format(x[2], digits = 3, nsmall = 1)
[1] "1.0"

format(x, digits = 3, scientific = TRUE)
[1] "1.23e+02" "1.00e+00"

Function sprintf() is similar to C’s function of the same name. The user in-
terface is rather unusual, but very powerful, once one learns the syntax. All the
formatting is specified using a character string as template. In this template, place-
holders for data and the formatting instructions are embedded using special codes.
These codes start with a percent character. We show in the example below the use
of some of these: f is used for numeric values to be formatted according to a “fixed
point,” while g is used when we set the number of significant digits and e for ex-
ponential or scientific notation.

x = c(123.4567890, 1.0)

sprintf("The numbers are: %4.2f and %.0f", x[1], x[2])

[1] "The numbers are: 123.46 and 1"

sprintf("The numbers are: %.4g and %.2g", x[1], x[2])
[1] "The numbers are: 123.5 and 1"

sprintf("The numbers are: %4.2e and %.0e", x[1], x[2])
[1] "The numbers are: 1.23e+02 and 1e+00"

In the template "The numbers are: %4.2f and %.0f", there are two placehold-
ers for numeric values, %4.2f and %.0f, so in addition to the template, we pass two
values extracted from the first two positions of vector x. These could have been
two different vectors of length one, or even numeric constants. The template itself
does not need to be a character constant as in these examples, as a variable can
be also passed as argument.

U Function format() may be easier to use, in some cases, but sprintf() is
more flexible and powerful. Those with experience in the use of the C language
will already know about sprintf() and its use of templates for formatting out-
put. Even if you are familiar with C, look up the help pages for both functions,

45 Vector manipulation

and practice, by trying to create the same formatted output by means of the
two functions. Do also play with these functions with other types of data like
integer and character.

 We have above described NA as a single value ignoring modes, but in real-
ity NA s come in various flavors. NA_real_, NA_character_, etc. and NA defaults
to an NA of class logical. NA is normally converted on the fly to other modes
when needed, so in general NA is all we need to use.

a <- c(1, NA)
is.numeric(a[2])
[1] TRUE

is.numeric(NA)
[1] FALSE

b <- c("abc", NA)
is.character(b[2])
[1] TRUE

is.character(NA)
[1] FALSE

class(NA)
[1] "logical"

Even the statement below works transparently.

a[3] <- b[2]

2.10 Vector manipulation

If you have read earlier sections of this chapter, you already know how to create
a vector. R’s vectors are equivalent to what would be written in mathematical no-
tation as 𝑥1…𝑛 = 𝑎1, 𝑎2, … , 𝑎𝑖, … , 𝑎𝑛, they are not the equivalent to the vectors,
common in Physics, which are symbolized with an arrow as an “accent,” such as ⃖⃗F.

In this section we are going to see how to extract or retrieve, replace, and move
elements such as 𝑎2 from a vector. Elements are extracted using an index enclosed
in single square brackets. The index indicates the position in the vector, starting
from one, following the usual mathematical tradition. What in maths would be 𝑎𝑖
for a vector 𝑎1…𝑛, in R is represented as a[i] and the whole vector as earlier seen
as a.

46 The R language: “Words” and “sentences”

a <- letters[1:10]

a

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

a[2]

[1] "b"

 Four constant vectors are available in R: letters, LETTERS, month.name and
month.abb, of which we used letters in the example above. These vectors are
always for English, irrespective of the locale.

 In R, indexes always start from one, while in some other programming
languages such as C and C++, indexes start from zero. It is important to be
aware of this difference, as many computation algorithms are valid only under
a given indexing convention.

It is possible to extract a subset of the elements of a vector in a single operation,
using a vector of indexes. The positions of the extracted elements in the result
(“returned value”) are determined by the ordering of the members of the vector of
indexes—easier to demonstrate than to explain.

a[c(3,2)]

[1] "c" "b"

a[10:1]

[1] "j" "i" "h" "g" "f" "e" "d" "c" "b" "a"

U The length of the indexing vector is not restricted by the length of the
indexed vector. However, only numerical indexes that match positions present
in the indexed vector can extract values. Those values in the indexing vector
pointing to positions that are not present in the indexed vector, result in NAs.
This is easier to learn by playing with R, than from explanations. Play with R,
using the following examples as a starting point.

length(a)
a[c(3,3,3,3)]
a[c(10:1, 1:10)]
a[c(1,11)]
a[11]

Have you tried some of your own examples? If not yet, do play with addi-
tional variations of your own before continuing.

Negative indexes have a special meaning; they indicate the positions at which

47 Vector manipulation

values should be excluded. Be aware that it is illegal to mix positive and negative
values in the same indexing operation.

a[-2]

[1] "a" "c" "d" "e" "f" "g" "h" "i" "j"

a[-c(3,2)]

[1] "a" "d" "e" "f" "g" "h" "i" "j"

a[-3:-2]

[1] "a" "d" "e" "f" "g" "h" "i" "j"

U Results from indexing with special values and zero may be surprising.
Try to build a rule from the examples below, a rule that will help you remember
what to expect next time you are confronted with similar statements using
“subscripts” which are special values instead of integers larger or equal to
one—this is likely to happen sooner or later as these special values can be
returned by different R expressions depending on the value of operands or
function arguments, some of them described earlier in this chapter.

a[]

a[0]

a[numeric(0)]

a[NA]

a[c(1, NA)]

a[NULL]

a[c(1, NULL)]

Another way of indexing, which is very handy, but not available in most other
programming languages, is indexing with a vector of logical values. The logical

vector used for indexing is usually of the same length as the vector from which
elements are going to be selected. However, this is not a requirement, because if
the logical vector of indexes is shorter than the indexed vector, it is “recycled” as
discussed above in relation to other operators.

a[TRUE]

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

a[FALSE]

character(0)

a[c(TRUE, FALSE)]

[1] "a" "c" "e" "g" "i"

a[c(FALSE, TRUE)]

[1] "b" "d" "f" "h" "j"

a > "c"

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

a[a > "c"]

[1] "d" "e" "f" "g" "h" "i" "j"

48 The R language: “Words” and “sentences”

Indexing with logical vectors is very frequently used in R because comparison
operators are vectorized. Comparison operators, when applied to a vector, return
a logical vector, a vector that can be used to extract the elements for which the
result of the comparison test was TRUE.

U The examples in this text box demonstrate additional uses of logical vec-
tors: 1) the logical vector returned by a vectorized comparison can be stored
in a variable, and the variable used as a “selector” for extracting a subset of
values from the same vector, or from a different vector.

a <- letters[1:10]

b <- 1:10

selector <- a > "c"

selector

a[selector]

b[selector]

Numerical indexes can be obtained from a logical vector by means of func-
tion which().

indexes <- which(a > "c")

indexes

a[indexes]

b[indexes]

Make sure to understand the examples above. These constructs are very
widely used in R because they allow for concise code that is easy to understand
once you are familiar with the indexing rules. However, if you do not command
these rules, many of these terse statements will be unintelligible to you.

Indexing can be used on either side of an assignment expression. In the chunk
below, we use the extraction operator on the left-hand side of the assignments
to replace values only at selected positions in the vector. This may look rather
esoteric at first sight, but it is just a simple extension of the logic of indexing
described above. It works, because the low precedence of the <- operator results
in both the left-hand side and the right-hand side being fully evaluated before the
assignment takes place. To make the changes to the vectors easier to follow, we
use identical vectors with different names for each of these examples.

a <- 1:10
a
[1] 1 2 3 4 5 6 7 8 9 10

a[1] <- 99
a
[1] 99 2 3 4 5 6 7 8 9 10

b <- 1:10
b[c(2,4)] <- -99 # recycling
b
[1] 1 -99 3 -99 5 6 7 8 9 10

49 Vector manipulation

c <- 1:10
c[c(2,4)] <- c(-99, 99)
c
[1] 1 -99 3 99 5 6 7 8 9 10

d <- 1:10
d[TRUE] <- 1 # recycling
d
[1] 1 1 1 1 1 1 1 1 1 1

e <- 1:10
e <- 1 # no recycling
e
[1] 1

We can also use subscripting on both sides of the assignment operator, for
example, to swap two elements.

a <- letters[1:10]

a[1:2] <- a[2:1]

a

[1] "b" "a" "c" "d" "e" "f" "g" "h" "i" "j"

U Do play with subscripts to your heart’s content, really grasping how they
work and how they can be used, will be very useful in anything you do in the
future with R. Even the contrived example below follows the same simple rules,
just study it bit by bit. Hint: the second statement in the chunk below, modifies
a, so, when studying variations of this example you will need to recreate a

by executing the first statement, each time you run a variation of the second
statement.

a <- letters[1:10]
a[5:1] <- a[c(TRUE,FALSE)]
a
[1] "i" "g" "e" "c" "a" "f" "g" "h" "i" "j"

 In R, indexing with positional indexes can be done with integer or numeric

values. Numeric values can be floats, but for indexing, only integer values are
meaningful. Consequently, double values are converted into integer values
when used as indexes. The conversion is done invisibly, but it does slow down
computations slightly. When working on big data sets, explicitly using integer

values can improve performance.

50 The R language: “Words” and “sentences”

b <- LETTERS[1:10]

b[1]

[1] "A"

b[1.1]

[1] "A"

b[1.9999] # surprise!!

[1] "A"

b[2]

[1] "B"

From this experiment, we can learn that if positive indexes are not whole
numbers, they are truncated to the next smaller integer.

b <- LETTERS[1:10]

b[-1]

[1] "B" "C" "D" "E" "F" "G" "H" "I" "J"

b[-1.1]

[1] "B" "C" "D" "E" "F" "G" "H" "I" "J"

b[-1.9999]

[1] "B" "C" "D" "E" "F" "G" "H" "I" "J"

b[-2]

[1] "A" "C" "D" "E" "F" "G" "H" "I" "J"

From this experiment, we can learn that if negative indexes are not whole
numbers, they are truncated to the next larger (less negative) integer. In con-
clusion, double index values behave as if they where sanitized using function
trunc().

This example also shows how one can tease out of R its rules through ex-
perimentation.

A frequent operation on vectors is sorting them into an increasing or decreasing
order. The most direct approach is to use sort().

my.vector <- c(10, 4, 22, 1, 4)

sort(my.vector)

[1] 1 4 4 10 22

sort(my.vector, decreasing = TRUE)

[1] 22 10 4 4 1

An indirect way of sorting a vector, possibly based on a different vector, is to
generate with order() a vector of numerical indexes that can be used to achieve
the ordering.

order(my.vector)
[1] 4 2 5 1 3

51 Matrices and multidimensional arrays

my.vector[order(my.vector)]

[1] 1 4 4 10 22

another.vector <- c("ab", "aa", "c", "zy", "e")

another.vector[order(my.vector)]

[1] "zy" "aa" "e" "ab" "c"

 A problem linked to sorting that we may face is counting how many copies
of each value are present in a vector. We need to use two functions sort()

and rle() . The second of these functions computes run length as used in run
length encoding for which rle is an abbreviation. A run is a series of consecutive
identical values. As the objective is to count the number of copies of each value
present, we need first to sort the vector.

my.letters <- letters[c(1,5,10,3,1,4,21,1,10)]

my.letters

[1] "a" "e" "j" "c" "a" "d" "u" "a" "j"

sort(my.letters)

[1] "a" "a" "a" "c" "d" "e" "j" "j" "u"

rle(sort(my.letters))

Run Length Encoding

lengths: int [1:6] 3 1 1 1 2 1

values : chr [1:6] "a" "c" "d" "e" "j" "u"

The second and third statements are only to demonstrate the effect of each
step. The last statement uses nested function calls to compute the number of
copies of each value in the vector.

2.11 Matrices and multidimensional arrays

Vectors have a single dimension, and, as we saw above, we can query their length
with method length(). Matrices have two dimensions, which can be queried with
dim(), ncol() and nrow(). R arrays can have any number of dimensions, even a sin-
gle dimension, which can be queried with method dim(). As expected is.vector(),
is.matrix() and is.array() can be used to query the class.

We can create a new matrix using the matrix() or as.matrix() constructors.
The first argument of matrix() is a vector. In the same way as vectors, matrices
are homogeneous, all elements are of the same type.

matrix(1:15, ncol = 3)
[,1] [,2] [,3]
[1,] 1 6 11
[2,] 2 7 12

52 The R language: “Words” and “sentences”

[3,] 3 8 13
[4,] 4 9 14
[5,] 5 10 15

matrix(1:15, nrow = 3)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

When a vector is converted to a matrix, R’s default is to allocate the values in
the vector to the matrix starting from the leftmost column, and within the column,
down from the top. Once the first column is filled, the process continues from the
top of the next column, as can be seen above. This order can be changed as you
will discover in the playground below.

U Check in the help page for the matrix constructor how to use the byrow

parameter to alter the default order in which the elements of the vector are
allocated to columns and rows of the new matrix.

help(matrix)

While you are looking at the help page, also consider the default number of
columns and rows.

matrix(1:15)

And to start getting a sense of how to interpret error and warning mes-
sages, run the code below and make sure you understand which problem is
being reported. Before executing the statement, analyze it and predict what
the returned value will be. Afterwards, compare your prediction, to the value
actually returned.

matrix(1:15, ncol = 2)

Subscripting of matrices and arrays is consistent with that used for vectors; we
only need to supply an indexing vector, or leave a blank space, for each dimension.
A matrix has two dimensions, so to access any element or group of elements, we
use two indices. The only complication is that there are two possible orders in
which, in principle, indexes could be supplied. In R, indexes for matrices are written
“row first.” In simpler words, the first index value selects rows, and the second one,
columns.

A <- matrix(1:20, ncol = 4)

A

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18

53 Matrices and multidimensional arrays

[4,] 4 9 14 19

[5,] 5 10 15 20

A[1, 1]

[1] 1

Remind yourself of how indexing of vectors works in R (see section 2.10 on
page 45). We will now apply the same rules in two dimensions.

A[1,]

[1] 1 6 11 16

A[, 1]

[1] 1 2 3 4 5

A[2:3, c(1,3)]

[,1] [,2]

[1,] 2 12

[2,] 3 13

A[3, 4] <- 99

A

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 99

[4,] 4 9 14 19

[5,] 5 10 15 20

A[4:3, 2:1] <- A[3:4, 1:2]

A

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 9 4 13 99

[4,] 8 3 14 19

[5,] 5 10 15 20

 In R, a matrix can have a single row, a single column, a single element or
no elements. However, in all cases, a matrix will have dimensions of length two
defined and stored as an attribute.

my.vector <- 1:6
dim(my.vector)
NULL

54 The R language: “Words” and “sentences”

one.col.matrix <- matrix(1:6, ncol = 1)

dim(one.col.matrix)

[1] 6 1

two.col.matrix <- matrix(1:6, ncol = 2)

dim(two.col.matrix)

[1] 3 2

one.elem.matrix <- matrix(1, ncol = 1)

dim(one.elem.matrix)

[1] 1 1

no.elem.matrix <- matrix(numeric(), ncol = 0)

dim(no.elem.matrix)

[1] 0 0

Arrays are similar to matrices, but can have more than two dimensions, which
are specified with the dim argument to the array() constructor.

B <- array(1:27, dim = c(3, 3, 3))

B

, , 1

##

[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

, , 2

[,1] [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18

, , 3

[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

B[2, 2, 2]
[1] 14

In the chunk
27 =

 above,
3 × 3

×
the length of the supplied vector is the product of the

dimensions, 3.

U How do you use indexes to extract the second element of the original
vector, in each of the following matrices and arrays?

55 Matrices and multidimensional arrays

v <- 1:10

m2c <- matrix(v, ncol = 2)

m2cr <- matrix(v, ncol = 2, byrow = TRUE)

m2r <- matrix(v, nrow = 2)

m2rc <- matrix(v, nrow = 2, byrow = TRUE)

v <- 1:10

a2c <- array(v, dim = c(5, 2))

a2c <- array(v, dim = c(5, 2), dimnames = list(NULL, c("c1", "c2")))

a2r <- array(v, dim = c(2, 5))

Be aware that vectors and one-dimensional arrays are not the same thing,
while two-dimensional arrays are matrices.

1.	 Use the different constructors and query methods to explore this, and
its consequences.

2.	 Convert a matrix into a vector using unlist() and as.vector() and
compare the returned values.

Operators for matrices are available in R, as matrices are used in many statistical
algorithms. We will not describe them all here, only t() and some specializations
of arithmetic operators. Function t() transposes a matrix, by swapping columns
and rows.

A <- matrix(1:20, ncol = 4)

A

[,1] [,2] [,3] [,4]

[1,] 1 6 11 16

[2,] 2 7 12 17

[3,] 3 8 13 18

[4,] 4 9 14 19

[5,] 5 10 15 20

t(A)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20

As with vectors, recycling applies to arithmetic operators when applied to ma-
trices.

A + 2
[,1] [,2] [,3] [,4]
[1,] 3 8 13 18
[2,] 4 9 14 19
[3,] 5 10 15 20
[4,] 6 11 16 21
[5,] 7 12 17 22

A * 0:1

56 The R language: “Words” and “sentences”

[,1] [,2] [,3] [,4]
[1,] 0 6 0 16
[2,] 2 0 12 0
[3,] 0 8 0 18
[4,] 4 0 14 0
[5,] 0 10 0 20

A * 1:0
[,1] [,2] [,3] [,4]
[1,] 1 0 11 0
[2,] 0 7 0 17
[3,] 3 0 13 0
[4,] 0 9 0 19
[5,] 5 0 15 0

In the examples above with the usual multiplication operator *, the operation
described is not a matrix product, but instead, the products between individual
elements of the matrix and vectors. Matrix multiplication is indicated by operator
%*%.

B <- matrix(1:16, ncol = 4)
B * B
[,1] [,2] [,3] [,4]
[1,] 1 25 81 169
[2,] 4 36 100 196
[3,] 9 49 121 225
[4,] 16 64 144 256

B %*% B
[,1] [,2] [,3] [,4]
[1,] 90 202 314 426
[2,] 100 228 356 484
[3,] 110 254 398 542
[4,] 120 280 440 600

Other operators and functions for matrix algebra like cross-product
(crossprod()), extracting or replacing the diagonal (diag()) are available in base
R. Packages, including ‘matrixStats’, provide additional functions and operators
for matrices.

2.12 Factors

Factors are used to indicate categories, most frequently the factors describing the
treatments in an experiment, or categories in a survey. They can be created either
from numerical or character vectors. The different possible values are called levels.
Normal factors created with factor() are unordered or categorical. R also supports
ordered factors that can be created with function ordered().

my.vector <- c("treated", "treated", "control", "control", "control", "treated")

my.factor <- factor(my.vector)

my.factor

Factors 57

[1] treated treated control control control treated
Levels: control treated

my.factor <- factor(x = my.vector, levels = c("treated", "control"))
my.factor
[1] treated treated control control control treated
Levels: treated control

The labels (“names”) of the levels can be set when the factor is created. In this
case, when calling factor(), parameters levels and labels should both be passed
a vector as argument, with levels and matching labels in the same position in the
two vectors. The argument passed to levels determines the order of the levels
based on their old names or values, and the argument passed to labels gives new
names to the levels.

my.vector <- c(1, 1, 0, 0, 0, 1)

my.factor <- factor(x = my.vector, levels = c(1, 0), labels = c("treated", "control"))

my.factor

[1] treated treated control control control treated

Levels: treated control

It is always preferable to use meaningful labels for levels, although it is also
possible to use numbers.

In the examples above we passed a numeric vector or a character vector as an
argument for parameter x of function factor(). It is also possible to pass a factor

as an argument for parameter x. We use indexing with a test returning a logical
vector to extract all “controls.” We use function levels() to look at the levels of
the factors.

levels(my.factor)
[1] "treated" "control"

control.factor <- my.factor[my.factor == "control"]
control.factor
[1] control control control
Levels: treated control

control.factor <- factor(control.factor)
control.factor
[1] control control control
Levels: control

It can be seen above that subsetting does not drop unused factor levels, and
that factor() can be used to explicitly drop the unused factor levels.

 When the pattern of levels is regular, it is possible to use function gl() to
generate levels in a factor. Nowadays, it is more usual to read data into R from
files in which the treatment codes are already available as character strings or
numeric values, however, when we need to create a factor within R, gl() can
save some typing.

58 The R language: “Words” and “sentences”

gl(2, 5, labels = c("A", "B"))
[1] A A A A A B B B B B
Levels: A B

Converting factors into numbers is not intuitive, even in the case where a factor
was created from a numeric vector.

my.vector2 <- rep(3:5, 4)
my.vector2
[1] 3 4 5 3 4 5 3 4 5 3 4 5

my.factor2 <- factor(my.vector2)
my.factor2
[1] 3 4 5 3 4 5 3 4 5 3 4 5
Levels: 3 4 5

as.numeric(my.factor2)
[1] 1 2 3 1 2 3 1 2 3 1 2 3

as.numeric(as.character(my.factor2))
[1] 3 4 5 3 4 5 3 4 5 3 4 5

 Why is a double conversion needed? Internally, factor levels are stored
as running integers starting from one, and those are the numbers returned
by as.numeric() when applied to a factor. The labels of the factor levels are
always stored as character strings, even when these characters are digits. In
contrast to as.numeric(), as.character() returns the character labels of the
levels. If these character strings represent numbers, they can be converted, in
a second step, using as.numeric() into the original numeric values.

class(my.factor2)
[1] "factor"

mode(my.factor2)
[1] "numeric"

U Create a factor with levels labeled with words. Create another factor with
the levels labeled with the same words, but ordered differently. After this con-
vert both factors to numeric vectors using as.numeric(). Explain why the two
numeric vectors differ or not from each other.

Factors are very important in R. In contrast to other statistical software in which
the role of a variable is set when defining a model to be fitted or when setting up
a test, in R, models are specified exactly in the same way for ANOVA and regres-
sion analysis, both as linear models. The type of model that is fitted is decided by

Factors 59

whether the explanatory variable is a factor (giving ANOVA) or a numerical variable
(giving regression). This makes a lot of sense, because in most cases, considering
an explanatory variable as categorical or not, depends on the design of the exper-
iment or survey, and in other words, is a property of the data and the experiment
or survey that gave origin to them, rather than of the data analysis.

The order of the levels in a factor does not affect simple calculations or the
values plotted, but it does affect how the output is printed, the order of the lev-
els in the scales of plots, and in some cases the contrasts in significance tests.
The default ordering is alphabetical, and is established at the time a factor is cre-
ated. Consequently, rather frequently the default ordering of levels is not the one
needed. As shown above, parameter levels in the constructor makes it possible to
set the order of the levels. It is also possible to change the ordering of an existing
factor.

 Renaming factor levels. The most direct way is using levels()<- as
shown below, but it is also possible to use factor(). The difference is that
factor() drops the unused levels and levels() only renames existing levels,
all of them by position. (Although we here use character strings that are only
one character long, longer strings can be set as labels in exactly the same way.

my.factor1 <- gl(4, 3, labels = c("A", "F", "B", "Z"))
my.factor1
[1] A A A F F F B B B Z Z Z
Levels: A F B Z

levels(my.factor1) <- c("a", "b", "c", "d")
my.factor1
[1] a a a b b b c c c d d d
Levels: a b c d

Or more safely by matching names—i.e., order in the list of replacement
values is irrelevant.

my.factor1 <- gl(4, 3, labels = c("A", "F", "B", "Z"))
my.factor1
[1] A A A F F F B B B Z Z Z
Levels: A F B Z

levels(my.factor1) <- list("a" = "A", "d" = "Z", "c" = "B", "b" = "F")
my.factor1
[1] a a a b b b c c c d d d
Levels: a d c b

Or alternatively by position and replacing the labels of only some levels—
i.e., rather unsafe.

my.factor1 <- gl(4, 3, labels = c("A", "F", "B", "Z"))
my.factor1
[1] A A A F F F B B B Z Z Z
Levels: A F B Z

60 The R language: “Words” and “sentences”

levels(my.factor1)[c(1, 4)] <- c("a", "d")
my.factor1

[1] a a a F F F B B B d d d

Levels: a F B d

 Merging factor levels. We use factor() as shown below, setting the same
label for the levels we want to merge.

my.factor1 <- gl(4, 3, labels = c("A", "F", "B", "Z"))
my.factor1
[1] A A A F F F B B B Z Z Z
Levels: A F B Z

factor(my.factor1,
levels = c("A", "B", "F", "Z"),
labels = c("A", "B", "C", "C"))

[1] A A A C C C B B B C C C
Levels: A B C

 Reordering factor levels. The simplest approach is to use factor() and
its levels parameter. The only complication is that the names of the existing
levels and those passed as an argument need to match, and typing mistakes
can cause bugs. To avoid the error-prone step, in all examples except the first,
we use levels() to retrieve the names of the levels from the factor itself.

levels(my.factor2)

[1] "3" "4" "5"

my.factor2 <- factor(my.factor2, levels = c("5", "3", "4"))

levels(my.factor2)

[1] "5" "3" "4"

my.factor2 <- factor(my.factor2, levels = rev(levels(my.factor2)))

levels(my.factor2)

[1] "4" "3" "5"

my.factor2 <- factor(my.factor2,
levels = sort(levels(my.factor2), decreasing = TRUE))

levels(my.factor2)
[1] "5" "4" "3"

my.factor2 <- factor(my.factor2, levels = levels(my.factor2)[c(2, 1, 3)])

levels(my.factor2)

[1] "4" "5" "3"

Reordering the levels of a factor based on summary quantities from data is

Factors 61

very useful, especially when plotting. Function reorder() can be used in this
case. It defaults to using mean() for summaries, but other suitable functions
can be supplied in its place.

my.factor3 <- gl(2, 5, labels = c("A", "B"))

my.vector3 <- c(5.6, 7.3, 3.1, 8.7, 6.9, 2.4, 4.5, 2.1, 1.4, 2.0)

levels(my.factor3)

[1] "A" "B"

my.factor3ord <- reorder(my.factor3, my.vector3)

levels(my.factor3ord)

[1] "B" "A"

my.factor3rev <- reorder(my.factor3, -my.vector3) # a simple trick

levels(my.factor3rev)

[1] "A" "B"

In the last statement, using the unary negation operator, which is vector-
ized, allows us to easily reverse the ordering of the levels, while still using the
default function, mean(), to summarize the data.

U Reordering factor values. It is possible to arrange the values stored in
a factor either alphabetically according to the labels of the levels or according
to the order of the levels.

gl() keeps order of levels
my.factor4 <- gl(4, 3, labels = c("A", "F", "B", "Z"))

my.factor4

as.integer(my.factor4)

factor() orders levels alphabetically
my.factor5 <- factor(rep(c("A", "F", "B", "Z"), rep(3,4)))

my.factor5

as.integer(my.factor5)

levels(my.factor5)[as.integer(my.factor5)]

We see above that the integer values by which levels in a factor are stored,
are equivalent to indices or “subscripts” referencing the vector of labels. Func-
tion sort() operates on the values’ underlying integers and sorts according to
the order of the levels while order() operates on the values’ labels and returns
a vector of indices that arrange the values alphabetically.

sort(my.factor4)
my.factor4[order(my.factor4)]
my.factor4[order(as.integer(my.factor4))]

Run the examples in the chunk above and work out why the results differ.

62 The R language: “Words” and “sentences”

2.13 Lists

Lists’ main difference to other collections is, in R, that they can be heterogeneous. In
R, the members of a list can be considered as following a sequence, and accessible
through numerical indexes, the same as vectors. However, frequently members
of a list are given names, and retrieved (indexed) through these names. Lists are
created using function list().

a.list <- list(x = 1:6, y = "a", z = c(TRUE, FALSE))
a.list
$x
[1] 1 2 3 4 5 6

$y
[1] "a"

$z
[1] TRUE FALSE

2.13.1 Member extraction and subsetting

Using double square brackets for indexing a list extracts the element stored in the
list, in its original mode. In the example above, a.list[["x"]] returns a numeric
vector, while a.list[1] returns a list containing the numeric vector x. a.list$x

returns the same value as a.list[["x"]], a numeric vector. a.list[c(1,3)] returns
a list of length two, while a.list[[c(1,3)]] is an error.

a.list$x
[1] 1 2 3 4 5 6

a.list[["x"]]
[1] 1 2 3 4 5 6

a.list[[1]]
[1] 1 2 3 4 5 6

a.list["x"]
$x
[1] 1 2 3 4 5 6

a.list[1]
$x
[1] 1 2 3 4 5 6

a.list[c(1,3)]
$x
[1] 1 2 3 4 5 6

$z
[1] TRUE FALSE

try(a.list[[c(1,3)]])
[1] 3

Lists 63

 Lists, as usually defined in languages like C, are based on pointers stored
at each node, and these pointers chain or link the different member nodes. In
such implementations, indexing by position is not possible, or at least requires
“walking” down the list, node by node. In R, list members can be accessed
through positional indexes. Of course, insertions and deletions in the middle
of a list, whatever their implementation, alter (or invalidate) any position-based
indexes.

To investigate the returned values, function str() (structure) is of help, espe-
cially when the lists have many members, as it formats lists more compactly than
function print().

str(a.list)

List of 3

$ x: int [1:6] 1 2 3 4 5 6

$ y: chr "a"

$ z: logi [1:2] TRUE FALSE

2.13.2 Adding and removing list members

In other languages the two most common operations on lists are insertions and
deletions. In R, function append() can be used both to append elements at the end
of a list and insert elements into the head or any position in the middle of a list.

another.list <- append(a.list, list(yy = 1:10, zz = letters[5:1]), 2L)
another.list
$x
[1] 1 2 3 4 5 6

$y
[1] "a"

$yy
[1] 1 2 3 4 5 6 7 8 9 10

$zz
[1] "e" "d" "c" "b" "a"

$z
[1] TRUE FALSE

To delete a member from a list we assign NULL to it.

a.list$y <- NULL
a.list
$x
[1] 1 2 3 4 5 6

$z
[1] TRUE FALSE

Lists can be nested, i.e., lists of lists.

64 The R language: “Words” and “sentences”

a.list <- list("a", "aa", "aaa")

b.list <- list("b", "bb")

nested.list <- list(A = a.list, B = b.list)

str(nested.list)

List of 2

$ A:List of 3

..$: chr "a"

..$: chr "aa"

..$: chr "aaa"

$ B:List of 2

..$: chr "b"

..$: chr "bb"

 When dealing with deep lists, it is sometimes useful to limit the number
of levels of nesting returned by str() by means of a numeric argument passed
to parameter max.levels.

str(nested.list, max.level = 1)
List of 2
$ A:List of 3
$ B:List of 2

2.13.3 Nested lists

A nested list can be constructed within a single statement in which several member
lists are created. Here we combine the first three statements in the earlier chunk
into a single one.

nested.list <- list(A = list("a", "aa", "aaa"), B = list("b", "bb"))
str(nested.list)
List of 2
$ A:List of 3
..$: chr "a"
..$: chr "aa"
..$: chr "aaa"
$ B:List of 2
..$: chr "b"
..$: chr "bb"

 The logic behind extraction of members of nested lists using indexing is
the same as for simple lists, but applied recursively—e.g., nested.list[[2]]

extracts the second member of the outermost list, which is another list. As,
this is a list, its members can be extracted using again the extraction operator:
nested.list[[2]][[1]]. It is important to remember that these concatenated
extraction operations are written so that the leftmost operator is applied to
the outermost list. The example given here uses the [[]] operator, but the
same logic applies to [].

Lists 65

UWhat do you expect each of the statements below to return? Before running
the code, predict what value and of which mode each statement will return. You
may use implicit or explicit calls to print(), or calls to str() to visualize the
structure of the different objects.

nested.list <- list(A = list("a", "aa", "aaa"), B = list("b", "bb"))

str(nested.list)

nested.list[2:1]

nested.list[1]

nested.list[[1]][2]

nested.list[[1]][[2]]

nested.list[2]

nested.list[2][[1]]

Sometimes we need to flatten a list, or a nested structure of lists within lists.
Function unlist() is what should be normally used in such cases.

The list nested.list is a nested system of lists, but all the “terminal” members
are character strings. In other words, terminal nodes are all of the same mode,
allowing the list to be “flattened” into a character vector.

c.vec <- unlist(nested.list)
c.vec
A1 A2 A3 B1 B2
"a" "aa" "aaa" "b" "bb"

is.list(nested.list)

[1] TRUE

is.list(c.vec)

[1] FALSE

mode(nested.list)

[1] "list"

mode(c.vec)

[1] "character"

names(nested.list)

[1] "A" "B"

names(c.vec)

[1] "A1" "A2" "A3" "B1" "B2"

The returned value is a vector with named member elements. We use function
str() to figure out how this vector relates to the original list. The names are based
on the names of list elements when available, while numbers are used for anony-
mous nodes. We can access the members of the vector either through numeric
indexes or names.

str(c.vec)

Named chr [1:5] "a" "aa" "aaa" "b" "bb"

- attr(*, "names")= chr [1:5] "A1" "A2" "A3" "B1" ...

66 The R language: “Words” and “sentences”

c.vec[2]
A2
"aa"

c.vec["A2"]
A2
"aa"

Function unname() can be used to remove names safely—i.e., without risk of
altering the mode or class of the object.

unname(c.vec)

[1] "a" "aa" "aaa" "b" "bb"

U Function unlist() has two additional parameters, with default argument
values, which we did not modify in the example above. These parameters are
recursive and use.names, both of them expecting a logical value as an argu-
ment. Modify the statement c.vec <- unlist(c.list), by passing FALSE as an
argument to these two parameters, in turn, and in each case, study the value
returned and how it differs with respect to the one obtained above.

2.14 Data frames

Data frames are a special type of list, in which each element is a vector or a factor of
the same length. They are created with function data.frame() with a syntax similar
to that used for lists—in object-oriented programming we say that data frames are
derived from class list. As the expectation is equal length, if vectors of different
lengths are supplied as arguments, the shorter vector(s) is/are recycled, possibly
several times, until the required full length is reached.

a.df <- data.frame(x = 1:6, y = "a", z = c(TRUE, FALSE))

a.df

x y z

1 1 a TRUE

2 2 a FALSE

3 3 a TRUE

4 4 a FALSE

5 5 a TRUE

6 6 a FALSE

str(a.df)

'data.frame': 6 obs. of 3 variables:

$ x: int 1 2 3 4 5 6

$ y: chr "a" "a" "a" "a" ...

$ z: logi TRUE FALSE TRUE FALSE TRUE FALSE

class(a.df)

http:class(a.df
http:str(a.df

67 Data frames

[1] "data.frame"

mode(a.df)
[1] "list"

is.data.frame(a.df)
[1] TRUE

is.list(a.df)
[1] TRUE

Indexing of data frames is similar to that of the underlying list, but not exactly
equivalent. We can index with operator [[]] to extract individual variables, thought
of being the columns in a matrix-like list or “worksheet.”

a.df$x

[1] 1 2 3 4 5 6

a.df[["x"]]

[1] 1 2 3 4 5 6

a.df[[1]]

[1] 1 2 3 4 5 6

class(a.df)

[1] "data.frame"

With function class() we can query the class of an R object (see section 2.8
on page 41). As we saw in the two previous chunks, list and data.frame objects
belong to two different classes. However, their relationship is based on a hierarchy
of classes. We say that class data.frame is derived from class list. Consequently,
data frames inherit the methods and characteristics of lists, as long as they have
not been hidden by new ones defined for data frames.

In the same way as with vectors, we can add members to lists and data frames.

a.df$x2 <- 6:1

a.df$x3 <- "b"

str(a.df)

'data.frame': 6 obs. of 5 variables:

$ x : int 1 2 3 4 5 6

$ y : chr "a" "a" "a" "a" ...

$ z : logi TRUE FALSE TRUE FALSE TRUE FALSE

$ x2: int 6 5 4 3 2 1

$ x3: chr "b" "b" "b" "b" ...

We have added two columns to the data frame, and in the case of column x3

recycling took place. This is where lists and data frames differ substantially in their
behavior. In a data frame, although class and mode can be different for different
variables (columns), they are required to be vectors or factors of the same length.
In the case of lists, there is no such requirement, and recycling never takes place
when adding a node. Compare the values returned below for a.ls, to those in the
example above for a.df.

http:str(a.df
http:class(a.df
http:is.list(a.df
http:is.data.frame(a.df
http:mode(a.df

68 The R language: “Words” and “sentences”

a.ls <- list(x = 1:6, y = "a", z = c(TRUE, FALSE))

str(a.ls)

List of 3

$ x: int [1:6] 1 2 3 4 5 6

$ y: chr "a"

$ z: logi [1:2] TRUE FALSE

a.ls$x2 <- 6:1

a.ls$x3 <- "b"

str(a.ls)

List of 5

$ x : int [1:6] 1 2 3 4 5 6

$ y : chr "a"

$ z : logi [1:2] TRUE FALSE

$ x2: int [1:6] 6 5 4 3 2 1

$ x3: chr "b"

Data frames are extremely important to anyone analyzing or plotting data using
R. One can think of data frames as tightly structured work-sheets, or as lists. As
you may have guessed from the examples earlier in this section, there are several
different ways of accessing columns, rows, and individual observations stored in a
data frame. The columns can be treated as members in a list, and can be accessed
both by name or index (position). When accessed by name, using $ or double square
brackets, a single column is returned as a vector or factor. In contrast to lists,
data frames are always “rectangular” and for this reason the values stored can
also be accessed in a way similar to how elements in a matrix are accessed, using
two indexes. As we saw for vectors, indexes can be vectors of integer numbers or
vectors of logical values. For columns they can, in addition, be vectors of character
strings matching the names of the columns. When using indexes it is extremely
important to remember that the indexes are always given row first.

 Indexing of data frames can in all cases be done as if they were lists, which
is preferable, as it ensures compatibility with regular R lists and with newer
implementations of data-frame-like structures like those defined in package
‘tibble’. Using this approach, extracting two values from the second and third
positions in the first column of a.df is done as follows, using numerical in-
dexes.

a.df[[1]][2:3]
[1] 2 3

Or using the column name.

a.df[["x"]][2:3]
[1] 2 3

The less portable, matrix-like indexing is done as follows, with the first in-
dex indicating rows and the second one indicating columns. This notation al-
lows simultaneous extraction from multiple columns, which is not possible
with lists. The value returned is a “smaller” data frame.

http:str(a.ls
http:str(a.ls

69 Data frames

a.df[2:3, 1:2]
x y
2 2 a
3 3 a

If the length of the column indexing vector is one, the returned value is a
vector, which is not consistent with the previous example which returned a
data frame. This is not only surprising in everyday use, but can be the source
of bugs when coding algorithms in which the length of the second index vector
cannot be guaranteed to be always more than one.

a.df[2:3, 1]
[1] 2 3

In contrast, indexing of tibbles—defined in package ‘tibble’—is always con-
sistent, never returning a vector, even when the vector used to extract columns
is of length one (see section 6.4.2 on page 182 for details on the differences
between data frames and tibbles).

first column, a.df[[1]] preferred
a.df[, 1]
[1] 1 2 3 4 5 6

first column, a.df[["x"]] or a.df$x preferred
a.df[, "x"]
[1] 1 2 3 4 5 6

first row
a.df[1,]
x y z x2 x3
1 1 a TRUE 6 b

first two rows of the third and fourth columns
a.df[1:2, c(FALSE, FALSE, TRUE, TRUE, FALSE)]
z x2
1 TRUE 6
2 FALSE 5

the rows for which z is true
a.df[a.df$z ,]
x y z x2 x3
1 1 a TRUE 6 b
3 3 a TRUE 4 b
5 5 a TRUE 2 b

the rows for which x > 3 keeping all columns except the third one
a.df[a.df$x > 3, -3]
x y x2 x3
4 4 a 3 b
5 5 a 2 b
6 6 a 1 b

As explained earlier for vectors (see section 2.10 on page 45), indexing can be

70 The R language: “Words” and “sentences”

present both on the right-hand side and left-hand side of an assignment. The next
few examples do assignments to “cells” of a.df, either to one whole column, or
individual values. The last statement in the chunk below copies a number from
one location to another by using indexing of the same data frame both on the
right side and left side of the assignment.

a.df[1, 1] <- 99
a.df
x y z x2 x3
1 99 a TRUE 6 b
2 2 a FALSE 5 b
3 3 a TRUE 4 b
4 4 a FALSE 3 b
5 5 a TRUE 2 b
6 6 a FALSE 1 b

a.df[, 1] <- -99
a.df
x y z x2 x3
1 -99 a TRUE 6 b
2 -99 a FALSE 5 b
3 -99 a TRUE 4 b
4 -99 a FALSE 3 b
5 -99 a TRUE 2 b
6 -99 a FALSE 1 b

a.df[["x"]] <- 123
a.df
x y z x2 x3
1 123 a TRUE 6 b
2 123 a FALSE 5 b
3 123 a TRUE 4 b
4 123 a FALSE 3 b
5 123 a TRUE 2 b
6 123 a FALSE 1 b

a.df[1, 1] <- a.df[6, 4]
a.df
x y z x2 x3
1 1 a TRUE 6 b
2 123 a FALSE 5 b
3 123 a TRUE 4 b
4 123 a FALSE 3 b
5 123 a TRUE 2 b
6 123 a FALSE 1 b

 We mentioned above that indexing by name can be done either with dou-
ble square brackets, [[]], or with $. In the first case the name of the variable
or column is given as a character string, enclosed in quotation marks, or as a
variable with mode character. When using $, the name is entered as a constant,
without quotation marks, and cannot be a variable.

71 Data frames

x.list <- list(abcd = 123, xyzw = 789)

x.list[["abcd"]]

[1] 123

a.var <- "abcd"

x.list[[a.var]]

[1] 123

x.list$abcd

[1] 123

x.list$ab

[1] 123

x.list$a

[1] 123

Both in the case of lists and data frames, when using double square brack-
ets, an exact match is required between the name in the object and the name
used for indexing. In contrast, with $, any unambiguous partial match will be
accepted. For interactive use, partial matching is helpful in reducing typing.
However, in scripts, and especially R code in packages, it is best to avoid the
use of $ as partial matching to a wrong variable present at a later time, e.g.,
when someone else revises the script, can lead to very difficult-to-diagnose er-
rors. In addition, as $ is implemented by first attempting a match to the name
and then calling [[]], using $ for indexing can result in slightly slower perfor-
mance compared to using [[]]. It is possible to set an R option so that partial
matching triggers a warning, which can be very useful when debugging.

2.14.1 Operating within data frames

When the names of data frames are long, complex conditions become awkward
to write using indexing—i.e., subscripts. In such cases subset() is handy because
evaluation is done in the “environment” of the data frame, i.e., the names of the
columns are recognized if entered directly when writing the condition. Function
subset() “filters” rows, usually corresponding to observations or experimental
units. The condition is computed for each row, and if it returns TRUE, the row is
included in the returned data frame, and excluded if FALSE.

a.df <- data.frame(x = 1:6, y = "a", z = c(TRUE, FALSE))
subset(a.df, x > 3)
x y z
4 4 a FALSE
5 5 a TRUE
6 6 a FALSE

UWhat is the behavior of subset() when the condition is NA? Find the answer

http:subset(a.df

72 The R language: “Words” and “sentences”

by writing code to test this, for a case where tests for different rows return NA,
TRUE and FALSE.

When calling functions that return a vector, data frame, or other structure, the
square brackets can be appended to the rightmost parenthesis of the function call,
in the same way as to the name of a variable holding the same data.

subset(a.df, x > 3)[, -3]
x y
4 4 a
5 5 a
6 6 a

subset(a.df, x > 3)$x
[1] 4 5 6

None of the examples in the last three code chunks alter the original data frame
a.df. We can store the returned value using a new name if we want to preserve
a.df unchanged, or we can assign the result to a.df, deleting in the process, the
previously stored value.

 In the example above, the names in the expression passed as the second
argument to subset() are first searched within ad.df but if not found, searched
in the environment. There being no variable A in the data frame a.df, vector A

from the environment is silently used in the expression resulting in a returned
data frame with no rows.

A <- 1

subset(a.df, A > 3)

[1] x y z

<0 rows> (or 0-length row.names)

The use of subset() is convenient, but more prone to result in bugs com-
pared to directly using the extraction operator []. This same “cost” to achiev-
ing convenience applies to functions like attach() and with() described below.
The longer time that a script is expected to be used, adapted and reused, the
more careful we should be when using any of these functions. An alternative
way of avoiding excessive verbosity is to keep the names of data frames short.

A frequently used way of deleting a column by name from a data frame is to
assign NULL to it—i.e., in the same way as members are deleted from lists. This
approach modifies a.df in place.

aa.df <- a.df
colnames(aa.df)
[1] "x" "y" "z"

aa.df[["y"]] <- NULL
colnames(aa.df)
[1] "x" "z"

http:colnames(aa.df
http:colnames(aa.df
http:subset(a.df
http:subset(a.df
http:subset(a.df

73 Data frames

 Alternatively, we can use negative indexing to remove columns from a
copy of a data frame. In this example we remove a single column. As base R
does not support negative indexing by name, we need to find the numerical
index of the column to delete.

a.df[, -which(colnames(a.df) == "y")]
x z
1 1 TRUE
2 2 FALSE
3 3 TRUE
4 4 FALSE
5 5 TRUE
6 6 FALSE

Instead of using the equality test, we can use the operator %in% or function
grepl() to delete multiple columns in a single statement.

U In the previous code chunk we deleted the last column of the data frame
a.df. Here is an esoteric trick for you to first untangle how it changes the
positions of columns and row, and then for you to think how and why it can
be useful to use indexing with the extraction operator [] on both sides of the
assignment operator <-.

a.df[1:6, c(1,3)] <- a.df[6:1, c(3,1)]
a.df

 Although in this last example we used numeric indexes to make it more
interesting, in practice, especially in scripts or other code that will be reused,
do use column or member names instead of positional indexes whenever pos-
sible. This makes code much more reliable, as changes elsewhere in the script
could alter the order of columns and invalidate numerical indexes. In addition,
using meaningful names makes programmers’ intentions easier to understand.

 It is sometimes inconvenient to have to pre-pend the name of a container
such as a list or data frame to the name of each member variable being ac-
cessed. There are functions in R that allow us to change where R looks for the
names of objects we include in a code statement. Here I describe the use of
attach() and its matching detach(), and with() and within() to access mem-
bers of a data frame. They can be used as well with lists and classes derived
from list.

As we can see below, when using a rather long name for a data frame, enter-

http:which(colnames(a.df

74 The R language: “Words” and “sentences”

ing a simple calculation can easily result in a long and difficult to read state-
ment. (Method head() is used here to limit the displayed value to the first two
rows—head() is described in section 2.17 on page 81.)

my_data_frame.df <- data.frame(A = 1:10, B = 3)
my_data_frame.df$C <-
(my_data_frame.df$A + my_data_frame.df$B) / my_data_frame.df$A

head(my_data_frame.df, 2)
A B C
1 1 3 4.0
2 2 3 2.5

Using attach() we can alter how R looks up names and consequently sim-
plify the statement. With detach() we can restore the original state. It is im-
portant to remember that here we can only simplify the right-hand side of the
assignment, while the “destination” of the result of the computation still needs
to be fully specified on the left-hand side of the assignment operator. We in-
clude below only one statement between attach() and detach() but multiple
statements are allowed. Furthermore, if variables with the same name as the
columns exist in the search path, these will take precedence, something that
can result in bugs or crashes, or as seen below, a message warns that variable
A from the global environment will be used instead of column A of the attached
my_data_frame.df. The returned value is, of course, not the desired one.

my_data_frame.df$C <- NULL
attach(my_data_frame.df)

The following object is masked _by_ .GlobalEnv:

##

A

my_data_frame.df$C <- (A + B) / A
detach(my_data_frame.df)
head(my_data_frame.df, 2)
A B C
1 1 3 4
2 2 3 4

In the case of with() only one, possibly compound code statement is af-
fected and this statement is passed as an argument. As before, we need to
fully specify the left-hand side of the assignment. The value returned is the
one returned by the statement passed as an argument, in the case of compound
statements, the value returned by the last contained simple code statement to
be executed. Consequently, if the intent is to modify the container, assignment
to an individual member variable (column in this case) is required. In contrast
to the behavior of attach(), In this case, column A of my_data_frame.df takes
precedence, and the returned value is the expected one.

http:my_data_frame.df
http:head(my_data_frame.df
http:detach(my_data_frame.df
http:attach(my_data_frame.df
http:my_data_frame.df
http:head(my_data_frame.df
http:my_data_frame.df

75 Data frames

my_data_frame.df$C <- NULL

my_data_frame.df$C <- with(my_data_frame.df, (A + B) / A)

head(my_data_frame.df, 2)

A B C

1 1 3 4.0

2 2 3 2.5

In the case of within(), assignments in the argument to its second param-
eter affect the object returned, which is a copy of the container (In this case, a
whole data frame), which still needs to be saved through assignment. Here the
intention is to modify it, so we assign it back to the same name, but it could
have been assigned to a different name so as not to overwrite the original data
frame.

my_data_frame.df$C <- NULL

my_data_frame.df <- within(my_data_frame.df, C <- (A + B) / A)

head(my_data_frame.df, 2)

A B C

1 1 3 4.0

2 2 3 2.5

In the example above, within() makes little difference compared to using
with() with respect to the amount of typing or clarity, but with multiple mem-
ber variables being operated upon, as shown below, within() has an advantage
resulting in more concise and easier to understand code.

my_data_frame.df$C <- NULL

my_data_frame.df <- within(my_data_frame.df,

{C <- (A + B) / A
D <- A * B
E <- A / B + 1}

)
head(my_data_frame.df, 2)
A B E D C
1 1 3 1.333333 3 4.0
2 2 3 1.666667 6 2.5

Use of attach() and detach(), which function as a pair of ON and OFF
switches, can result in an undesired after-effect on name lookup if the script
terminates after attach() is executed but before detach() is called, as cleanup
is not automatic. In contrast, with() and within(), being self-contained, guar-
antee that cleanup takes place. Consequently, the usual recommendation is to
give preference to the use of with() and within() over attach() and detach().
Use of these functions not only saves typing but also makes code more read-
able.

2.14.2 Re-arranging columns and rows

The most direct way of changing the order of columns and/or rows in data frames
(and matrices and arrays) is to use subscripting as described above. Once we know

http:head(my_data_frame.df
http:within(my_data_frame.df
http:my_data_frame.df
http:head(my_data_frame.df
http:within(my_data_frame.df
http:my_data_frame.df
http:head(my_data_frame.df
http:with(my_data_frame.df

76 The R language: “Words” and “sentences”

the original position and target position we can use numerical indexes on both
right-hand side and left-hand side of an assignment.

 When using the extraction operator [] on both the left-hand-side and
right-hand-side to swap columns, the vectors or factors are swapped, while the
names of the columns are not! The same applies to row names, which makes
storing important information in them inconvenient and error prone.

To retain the correct naming after the column swap, we need to separately swap
the names of the columns.

my_data_frame.df <- data.frame(A = 1:10, B = 3)
head(my_data_frame.df, 2)
A B
1 1 3
2 2 3

my_data_frame.df[, 1:2] <- my_data_frame.df[, 2:1]
head(my_data_frame.df, 2)
A B
1 3 1
2 3 2

colnames(my_data_frame.df)[1:2] <- colnames(my_data_frame.df)[2:1]
head(my_data_frame.df, 2)
B A
1 3 1
2 3 2

Taking into account that order() returns the indexes needed to sort a vector
(see page 49), we can use order() to generate the indexes needed to sort either
columns or rows of a data frame. When we want to sort rows, the argument to
order() is usually a column of the data frame being arranged. However, any vec-
tor of suitable length, including the result of applying a function to one or more
columns, can be passed as an argument to order().

U The first task to be completed is to sort a data frame based on the values
in one column, using indexing and order(). Create a new data frame and with
three numeric columns with three different haphazard sequences of values.
Call these columns A, B and C. 1) Sort the rows of the data frame so that the
values in A are in decreasing order. 2) Sort the rows of the data frame according
to increasing values of the sum of A and B without adding a new column to the
data frame or storing the vector of sums in a variable. In other words, do the
sorting based on sums calculated on the fly.

U Repeat the tasks in the playground immediately above but using fac-

http:head(my_data_frame.df
http:head(my_data_frame.df
http:my_data_frame.df
http:my_data_frame.df
http:head(my_data_frame.df
http:my_data_frame.df

77 Attributes of R objects

tors instead of numeric vectors as columns in the data frame. Hint: revisit the
exercise on page 61 were the use of order() on factors is described.

2.15 Attributes of R objects

R objects can have attributes. Attributes are normally used to store ancillary data.
They are used by R itself to store things like column names in data frames and
labels of factor levels. All these attributes are visible to user code, and user code
can read and write objects’ attributes. Attribute "comment" is meant to be set by
users—e.g., to store metadata together with data.

a.df <- data.frame(x = 1:6, y = "a", z = c(TRUE, FALSE))

comment(a.df)

NULL

comment(a.df) <- "this is stored as a comment"

comment(a.df)

[1] "this is stored as a comment"

Methods like names(), dim() or levels() return values retrieved from attributes
stored in R objects, and methods like names()<-, dim()<- or levels()<- set (or un-
set with NULL) the value of the respective attributes. Specific query and set methods
do not exist for all attributes. Methods attr(), attr()<- and attributes() can be
used with any attribute. In addition, method str() displays all components of R
objects including their attributes.

names(a.df)

[1] "x" "y" "z"

names(a.df) <- toupper(names(a.df))

names(a.df)

[1] "X" "Y" "Z"

attr(a.df, "names") # same as previous line

[1] "X" "Y" "Z"

attr(a.df, "my.attribute") <- "this is stored in my attribute"

attributes(a.df)

$names

[1] "X" "Y" "Z"

##

$class

[1] "data.frame"

##

$row.names

[1] 1 2 3 4 5 6

##

$comment

[1] "this is stored as a comment"

##

$my.attribute

[1] "this is stored in my attribute"

http:attributes(a.df
http:attr(a.df
http:attr(a.df
http:names(a.df
http:toupper(names(a.df
http:names(a.df
http:names(a.df
http:comment(a.df
http:comment(a.df
http:comment(a.df

78 The R language: “Words” and “sentences”

 There is no restriction to the creation, setting, resetting and reading of at-
tributes, but not all methods and operators that can be used to modify objects
will preserve non-standard attributes. So, using private attributes is a double-
edged sword that usually is worthwhile considering only when designing a new
class together with the corresponding methods for it. A good example of ex-
tensive use of class-specific attributes are the values returned by model fitting
functions like lm() (see section 4.6 on page 127).

Even the class of S3 objects is stored as an attribute that is accessible as any
other attribute—this is in contrast to the mode and atomic class of an object.
Object-oriented programming in R in explained in section 5.4 on page 172.

numbers <- 1:10
class(numbers)
[1] "integer"

attributes(numbers)
NULL

a.factor <- factor(numbers)
class(a.factor)
[1] "factor"

attributes(a.factor)
$levels
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

$class
[1] "factor"

2.16 Saving and loading data

2.16.1 Data sets in R and packages

To be able to present more meaningful examples, we need some real data. Here we
use cars, one of the many data sets included in base R. Function data() is used to
load data objects that are included in R or contained in packages. It is also possi-
ble to import data saved in files with foreign formats, defined by other software
or commonly used for data exchange. Package ‘foreign’, included in the R distribu-
tion, as well as contributed packages make available functions capable of reading
and decoding various foreign formats. How to read or import “foreign” data is dis-
cussed in R documentation in R Data Import/Export, and in this book, in chapter
8 starting on page 293. It is also good to keep in mind that in R, URLs (Uniform
Resource Locators) are accepted as arguments to the file or path parameter of
many functions (see section 8.12 starting on page 322).

79 Saving and loading data

In the next example we load data included in R as R objects by calling function
data(). The loaded R object cars is a data frame.

data(cars)

Once we have a data set available, the first step is usually to explore it, and we
will do this with cars in section 2.17 on page 81.

2.16.2 .rda files

By default, at the end of a session, the current workspace containing the results
of your work is saved into a file called .RData. In addition to saving the whole
workspace, it is possible to save one or more R objects present in the workspace
to disk using the same file format (with file name tag .rda or .Rda). One or more ob-
jects, belonging to any mode or class can be saved into a single file using function
save(). Reading the file restores all the saved objects into the current workspace
with their original names. These files are portable across most R versions—i.e.,
old formats can be read and written by newer versions of R, although the newer,
default format may be not readable with earlier R versions. Whether compression
is used, and whether the “binary” data is encoded into ASCII characters, allowing
maximum portability at the expense of increased size can be controlled by passing
suitable arguments to save().

We create a data frame object and then save it to a file.

my.df <- data.frame(x = 1:5, y = 5:1)
my.df
x y
1 1 5
2 2 4
3 3 3
4 4 2
5 5 1

save(my.df, file = "my-df.rda")

We delete the data frame object and confirm that it is no longer present in the
workspace.

rm(my.df)

ls(pattern = "my.df")

character(0)

We read the file we earlier saved to restore the object.

load(file = "my-df.rda")
ls(pattern = "my.df")
[1] "my.df"

my.df
x y
1 1 5
2 2 4
3 3 3
4 4 2
5 5 1

http:rm(my.df
http:save(my.df

80 The R language: “Words” and “sentences”

The default format used is binary and compressed, which results in smaller
files.

U In the example above, only one object was saved, but one can simply give
the names of additional objects as arguments. Just try saving more than one
data frame to the same file. Then the data frames plus a few vectors. After
creating each file, clear the workspace and then restore from the file the objects
you saved.

Sometimes it is easier to supply the names of the objects to be saved as a vector
of character strings passed as an argument to parameter list. One case is when
wanting to save a group of objects based on their names. We can use ls() to list
the names of objects matching a simple pattern or a complex regular expression.
The example below does this in two steps, first saving a character vector with the
names of the objects matching a pattern, and then using this saved vector as an
argument to save’s list parameter.

objcts <- ls(pattern = "*.df")

save(list = objcts, file = "my-df1.rda")

The two statements above can be combined into a single statement by nesting
the function calls.

save(list = ls(pattern = "*.df"), file = "my-df1.rda")

U Practice using different patterns with ls(). You do not need to save the
objects to a file. Just have a look at the list of object names returned.

As a coda, we show how to clean up by deleting the two files we created. Func-
tion unlink() can be used to delete any files for which the user has enough rights.

unlink(c("my-df.rda", "my-df1.rda"))

2.16.3 .rds files

The RDS format can be used to save individual objects instead of multiple ob-
jects (usually using file name tag .rds). They are read and saved with functions
readRDS() and saveRDS(), respectively. When RDS files are read, different from
when RDA files are loaded, we need to assign the object read to a possibly differ-
ent name for it to added to the search pass. Of course, it is also possible to use the
returned object as an argument to a function or in an expression without saving it
to a variable.

81 Looking at data

saveRDS(my.df, "my-df.rds")

If we read the file, by default the read R object will be printed at the console.

readRDS("my-df.rds")
x y
1 1 5
2 2 4
3 3 3
4 4 2
5 5 1

In the next example we assign the read object to a different name, and check
that the object read is identical to the one saved.

my_read.df <- readRDS("my-df.rds")
identical(my.df, my_read.df)
[1] TRUE

As above, we clean up by deleting the file.

unlink("my-df.rds")

2.17 Looking at data

There are several functions in R that let us obtain different views into objects.
Function print() is useful for small data sets, or objects. Especially in the case
of large data frames, we need to explore them step by step. In the case of named
components, we can obtain their names with colnames(), rownames(), and names().
If a data frame contains many rows of observations, head() and tail() allow us
to easily restrict the number of rows printed. Functions nrow() and ncol() return
the number of rows and columns in the data frame (also applicable to matrices
but not to lists or vectors where we use length()). As mentioned earlier, function
str() concisely displays the structure of R objects.

class(cars)
[1] "data.frame"

nrow(cars)
[1] 50

ncol(cars)
[1] 2

names(cars)
[1] "speed" "dist"

head(cars)

http:my_read.df
http:identical(my.df
http:my_read.df
http:saveRDS(my.df

82 The R language: “Words” and “sentences”

speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

tail(cars)
speed dist
45 23 54
46 24 70
47 24 92
48 24 93
49 24 120
50 25 85

str(cars)
'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

U Look up the help pages for head() and tail(), and edit the code above to
print only the first two lines, or only the last three lines of cars, respectively.

The different columns of a data frame can be factors or vectors of various
modes (e.g., numeric, logical, character, etc.) (see section 2.14 on page 66). To ex-
plore the mode of the columns of cars, we can use an apply function. In the present
case, we want to apply function class() to each column of the data frame cars.
(Apply functions are described in section 3.4 on page 108.)

sapply(X = cars, FUN = class)
speed dist
"numeric" "numeric"

The statement above returns a vector of character strings, with the mode of
each column. Each element of the vector is named according to the name of the
corresponding “column” in the data frame. For this same statement to be used with
any other data frame or list, we need only to substitute the name of the object, the
argument to the first parameter called X, to the one of current interest.

U Data set airquality contains data from air quality measurements in
New York, and, being included in the R distribution, can be loaded with
data(airquality). Load it, and repeat the steps above, to learn what variables
(columns) it contains, their classes, the number of rows, etc.

Function summary() can be used to obtain a summary from objects of most R
classes, including data frames. We can also use sapply(), lapply() or vapply() to
apply any suitable function to individual columns.

83 Plotting

summary(cars)
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

sapply(cars, range)
speed dist
[1,] 4 2
[2,] 25 120

U Obtain the summary of airquality with function summary(), but in ad-
dition, write code with an apply function to count the number of non-missing
values in each column. Hint: using sum() on a logical vector returns the count
of TRUE values as TRUE, and FALSE are transparently converted into numeric 1
and 0, respectively, when logical values are used in arithmetic expressions.

2.18 Plotting

The base-R generic method plot() can be used to plot different data. It is a generic
method that has specializations suitable for different kinds of objects (see sec-
tion 5.4 on page 172 for a brief introduction to objects, classes and methods). In
this section we only very briefly demonstrate the use of the most common base-R
graphics functions. They are well described in the book R Graphics (Murrell 2019).
We will not describe the Lattice (based on S’s Trellis) approach to plotting (Sarkar
2008). Instead we describe in detail the use of the grammar of graphics and plot-
ting with package ‘ggplot2’ in chapter 7 starting on page 203.

It is possible to pass two variables (here columns from a data frame) directly as
arguments to the x and y parameters of plot().

plot(x = cars$speed, y = cars$dist)

84 The R language: “Words” and “sentences”

5 10 15 20 25

0
20

40
60

80
12
0

cars$speed

ca
rs
$d
is
t

It is also possible, and usually more convenient, to use a formula to specify the
variables to be plotted on the 𝑥 and 𝑦 axes, passing additionally as an argument to
parameter data the name of the data frame containing these variables. The formula
dist ~ speed, is read as dist explained by speed—i.e., dist is mapped to the 𝑦-axis
as the dependent variable and speed to the 𝑥-axis as the independent variable.

plot(dist ~ speed, data = cars)

5 10 15 20 25

0
20

40
60

80
12
0

speed

di
st

Within R there exist different specializations, or “flavors,” of method plot()

that become active depending on the class of the variables passed as arguments:
passing two numerical variables results in a scatter plot as seen above. In con-
trast passing one factor and one numeric variable to plot() results in a box-and-
whiskers plot being produced. To exemplify this we need to use a different data
set, here chickwts as cars does not contain any factors. Use help("chickwts") to
learn more about this data set, also included in R.

Plotting 85

plot(weight ~ feed, data = chickwts)

casein linseed soybean

10
0

20
0

30
0

40
0

feed

w
ei
gh
t

Method plot() and variants defined in R, when used for plotting return their
graphical output to a graphical output device. In R, graphical devices are very fre-
quently not real physical devices like a printer, but virtual devices implemented
fully in software that translate the plotting commands into a specific graphical file
format. Several different graphical devices are available in R and they differ in the
kind of output they produce: raster files (e.g., TIFF, PNG and JPEG formats), vector
graphics files (e.g., SVG, EPS and PDF) or output to a physical device like a window
in the screen of a computer. Additional devices are available through contributed
R packages.

Devices follow the paradigm of ON and OFF switches. Some devices producing
a file as output, save this output only when the device is closed. When opening a
device the user supplies additional information. For the PDF device that produces
output in a vector-graphics format, width and height of the output are specified in
inches. A default file name is used unless we pass a character string as an argument
to parameter file.

pdf(file = "output/my-file.pdf", width = 6, height = 5, onefile = TRUE)

plot(dist ~ speed, data = cars)

plot(weight ~ feed, data = chickwts)

dev.off()

cairo_pdf

2

Raster devices return bitmaps and width and height are specified in pixels.

png(file = "output/my-file.png", width = 600, height = 500)

plot(weight ~ feed, data = chickwts)

dev.off()

cairo_pdf

2

86 The R language: “Words” and “sentences”

When R is used interactively, a device to output the graphical output to a dis-
play device is opened automatically. The name of the device may depend on the
operating system used (e.g., MS-Windows or Linux) or an IDE—e.g., RStudio defines
its own graphic device for output to the Plots pane of its user interface.

 This approach of direct output to a device, and addition of plot com-
ponents as shown below directly on the output device itself, is not the only
approach available. As we will see in chapter 7 starting on page 203, an alter-
native approach is to build a plot object as a list of member components that
is later rendered as a whole on a graphical device by calling print() once.

png(file = "output/my-file.png", width = 600, height = 500)

plot(dist ~ speed, data = cars)

text(x = 10, y = 110, labels = "some texts to be added")

dev.off()

cairo_pdf

2

2.19 Further reading

For further reading on the aspects of R discussed in the current chapter, I suggest
the books R Programming for Data Science (Peng) and The Art of R Programming:
A Tour of Statistical Software Design (Matloff).

3

The R language: “Paragraphs” and “essays”

An R script is simply a text file containing (almost) the same com-
mands that you would enter on the command line of R.

Jim Lemon
Kickstarting R

3.1 Aims of this chapter

For those who have mainly used graphical user interfaces, understanding why and
when scripts can help in communicating a certain data analysis protocol can be
revelatory. As soon as a data analysis stops being trivial, describing the steps fol-
lowed through a system of menus and dialogue boxes becomes extremely tedious.

Moreover, graphical user interfaces tend to be difficult to extend or improve
in a way that keeps step-by-step instructions valid across program versions and
operating systems.

Many times, exactly the same sequence of commands needs to be applied to
different data sets, and scripts make both implementation and validation of such
a requirement easy.

In this chapter, I will walk you through the use of R scripts, starting from an
extremely simple script.

3.2 Writing scripts

In R language, the closest match to a natural language essay is a script. A script
is built from multiple interconnected code statements needed to complete a given
task. Simple statements can be combined into compound statements, which are
the equivalent of natural language paragraphs. Scripts can vary from simple scripts
containing only a few code statements, to complex scripts containing hundreds of

87

88 The R language: “Paragraphs” and “essays”

code statements. In the rest of the present section I discuss how to write readable
and reliable scripts and how to use them.

3.2.1 What is a script?

A script is a text file that contains (almost) the same commands that you would
type at the console prompt. A true script is not, for example, an MS-Word file
where you have pasted or typed some R commands. A script file has the following
characteristics.

• The script is a text file.

• The file contains valid R statements (including comments) and nothing else.

• Comments start at a # and end at the end of the line.

• The R statements are in the file in the order that they must be executed.

• R scripts have file names ending in .r or .R.

It is good practice to write scripts so that they are self-contained. To make a
script self-contained, one must include calls to library() to load the packages
used, load or import data from files, perform the data analysis and display and/or
save the results of the analysis. Such scripts can be used to apply the same analysis
algorithm to other data and/or to reproduce the same analysis at a later time. Such
scripts document all steps used for the analysis.

3.2.2 How do we use a script?

A script can be “sourced” using function source(). If we have a text file called
my.first.script.r containing the following text:

this is my first R script

print(3 + 4)

and then source this file:

source("my.first.script.r")

[1] 7

The results of executing the statements contained in the file will appear in the
console. The commands themselves are not shown (by default the sourced file is
not echoed to the console) and the results will not be printed unless you include
explicit print() commands in the script. This applies in many cases also to plots—
e.g., a figure created with ggplot() needs to be printed if we want it to be included
in the output when the script is run. Adding a redundant print() is harmless.

From within RStudio, if you have an R script open in the editor, there will be a
“source” icon visible with an attached drop-down menu from which you can choose
“Source” as described above, or “Source with echo,” or “Source as local job” for the
script in the currently active editor tab.

When a script is sourced, the output can be saved to a text file instead of being

89 Writing scripts

shown in the console. It is also easy to call R with the R script file as an argument
directly at the operating system shell or command-interpreter prompt—and obvi-
ously also from shell scripts. The next two chunks show commands entered at the
OS shell command prompt rather than at the R command prompt.

> RScript my.first.script.r

You can open an operating system’s shell from the Tools menu in RStudio, to
run this command. The output will be printed to the shell console. If you would like
to save the output to a file, use redirection using the operating system’s syntax.

> RScript my.first.script.r > my.output.txt

Sourcing is very useful when the script is ready, however, while developing a
script, or sometimes when testing things, one usually wants to run (or execute)
one or a few statements at a time. This can be done using the “run” button1 after
either positioning the cursor in the line to be executed, or selecting the text that
one would like to run (the selected text can be part of a line, a whole line, or a
group of lines, as long as it is syntactically valid). The key-shortcut Ctrl-Enter is
equivalent to pressing the “run” button in RStudio.

3.2.3 How to write a script

As with any type of writing, different approaches may be preferred by different
R users. In general, the approach used, or mix of approaches, will also depend
on how confident you are that the statements will work as expected—you already
know the best approach vs. you are exploring different alternatives.

If one is very familiar with similar problems One would just create a new text
file and write the whole thing in the editor, and then test it. This is rather unusual.

If one is moderately familiar with the problem One would write the script as
above, but testing it, step by step, as one is writing it. This is usually what I
do.

If one is mostly playing around Then if one is using RStudio, one can type state-
ments at the console prompt. As you should know by now, everything you run
at the console is saved to the “History.” In RStudio, the History is displayed in
its own pane, and in this pane one can select any previous statement(s) and by
clicking on a single icon, copy and paste them to either the R console prompt, or
the cursor position in the editor pane. In this way one can build a script by copy-
ing and pasting from the history to your script file, the bits that have worked as
you wanted.

1If you use a different IDE or editor with an R mode, the details will vary, but a run command will be
usually available.

90 The R language: “Paragraphs” and “essays”

U By now you should be familiar enough with R to be able to write your own
script.

1.	 Create a new R script (in RStudio, from the File menu, “+” icon, or by
typing “Ctrl + Shift + N”).

2.	 Save the file as my.second.script.r.
3.	 Use the editor pane in RStudio to type some R commands and com-

ments.
4.	 Run individual commands.
5.	 Source the whole file.

3.2.4 The need to be understandable to people

When you write a script, it is either because you want to document what you have
done or you want re-use the script at a later time. In either case, the script itself
although still meaningful for the computer, could become very obscure to you,
and even more to someone seeing it for the first time. This must be avoided by
spending time and effort on the writing style.

How does one achieve an understandable script or program?

• Avoid the unusual. People using a certain programming language tend to use
some implicit or explicit rules of style—style includes indentation of statements,
capitalization of variable and function names. As a minimum try to be consistent
with yourself.

• Use meaningful names for variables, and any other object. What is meaningful
depends on the context. Depending on common use, a single letter may be more
meaningful than a long word. However self-explanatory names are usually better:
e.g., using n.rows and n.cols is much clearer than using n1 and n2 when dealing
with a matrix of data. Probably number.of.rows and number.of.columns would
make the script verbose, and take longer to type without gaining anything in
return.

• How to make the words visible in names: traditionally in R one would use dots
to separate the words and use only lower case. Some years ago, it became pos-
sible to use underscores. The use of underscores is quite common nowadays
because in some contexts it is “safer”, as in some situations a dot may have a
special meaning. What we call “camel case” is only infrequently used in R pro-
gramming but is common in other languages like Pascal. An example of camel
case is NumCols.

U Here is an example of bad style in a script. Read Google’s R Style Guide
(https://google.github.io/styleguide/Rguide.xml), and edit the code
in the chunk below so that it becomes easier to read.

https://www.google.github.io

91 Writing scripts

a <- 2 # height
b <- 4 # length
C <-

a *
b
C -> variable

print(
"area: ", variable
)

The points discussed above already help a lot. However, one can go further in
achieving the goal of human readability by interspersing explanations and code
“chunks” and using all the facilities of typesetting, even of formatted maths for-
mulas and equations, within the listing of the script. Furthermore, by including
the results of the calculations and the code itself in a typeset report built auto-
matically, we can ensure that the results are indeed the result of running the code
shown. This greatly contributes to data analysis reproducibility, which is becoming
a widespread requirement for any data analysis both in academia and in industry.
It is possible not only to typeset whole books like this one, but also whole data-
based web sites with these tools.

In the realm of programming, this approach is called literate programming and
was first proposed by Donald Knuth (Knuth 1984) through his WEB system. In the
case of R programming, the first support of literate programming was through
‘Sweave’, which has been mostly superseded by ‘knitr’ (Xie 2013). This package
supports the use of Markdown or LATEX (Lamport 1994) as the markup language
for the textual contents and also formats and adds syntax highlighting to code
chunks. Rmarkdown is an extension to Markdown that makes it easier to include
R code in documents (see http://rmarkdown.rstudio.com/). It is the basis of
R packages that support typesetting large and complex documents (‘bookdown’),
web sites (‘blogdown’), package vignettes (‘pkgdown’) and slides for presentations
(Xie 2016; Xie et al. 2018). The use of ‘knitr’ is very well integrated into the RStudio
IDE.

This is not strictly an R programming subject, as it concerns programming in
any language. On the other hand, this is an incredibly important skill to learn, but
well described in other books and web sites cited in the previous paragraph. This
whole book, including figures, has been generated using ‘knitr’ and the source code
for the book is available through Bitbucket at https://bitbucket.org/aphalo/
learnr-book.

3.2.5 Debugging scripts

The use of the word bug to describe a problem in computer hardware and software
started in 1946 when a real bug, more precisely a moth, got between the contacts
of a relay in an electromechanical computer causing it to malfunction and Grace
Hooper described the first computer bug. The use of the term bug in engineer-
ing predates the use in computer science, and consequently, the first use of bug

https://www.bitbucket.org
http://www.rmarkdown.rstudio.com
https://www.bitbucket.org

92 The R language: “Paragraphs” and “essays”

in computing caught on easily because it represented an earlier-used metaphor
becoming real.

A suitable quotation from a letter written by Thomas Alva Edison 1878 (as given
by Hughes 2004):

It has been just so in all of my inventions. The first step is an intuition, and
comes with a burst, then difficulties arise–this thing gives out and [it is] then
that “Bugs”–as such little faults and difficulties are called–show themselves and
months of intense watching, study and labor are requisite before commercial
success or failure is certainly reached.

The quoted paragraph above makes clear that only very exceptionally does any
new design fully succeed. The same applies to R scripts as well as any other non-
trivial piece of computer code. From this it logically follows that testing and de-
bugging are fundamental steps in the development of R scripts and packages.
Debugging, as an activity, is outside the scope of this book. However, clear pro-
gramming style and good documentation are indispensable for efficient testing
and reuse.

Even for scripts used for analyzing a single data set, we need to be confident
that the algorithms and their implementation are valid, and able to return correct
results. This is true both for scientific reports, expert data-based reports and any
data analysis related to assessment of compliance with legislation or regulations.
Of course, even in cases when we are not required to demonstrate validity, say
for decision making purely internal to a private organization, we will still want to
avoid costly mistakes.

The first step in producing reliable computer code is to accept that any code
that we write needs to be tested and, if possible, validated. Another important
step is to make sure that input is validated within the script and a suitable error
produced for bad input (including valid input values falling outside the range that
can be reliably handled by the script).

If during testing, or during normal use, a wrong value is returned by a cal-
culation, or no value (e.g., the script crashes or triggers a fatal error), debugging
consists in finding the cause of the problem. The cause can be either a mistake in
the implementation of an algorithm, as well as in the algorithm itself. However,
many apparent bugs are caused by bad or missing handling of special cases like
invalid input values, rounding errors, division by zero, etc., in which a program
crashes instead of elegantly issuing a helpful error message.

Diagnosing the source of bugs is, in most cases, like detective work. One uses
hunches based on common sense and experience to try to locate the lines of code
causing the problem. One follows different leads until the case is solved. In most
cases, at the very bottom we rely on some sort of divide-and-conquer strategy. For
example, we may check the value returned by intermediate calculations until we
locate the earliest code statement producing a wrong value. Another common case
is when some input values trigger a bug. In such cases it is frequently best to start
by testing if different “cases” of input lead to errors/crashes or not. Boundary input
values are usually the telltale ones: e.g., for numbers, zero, negative and positive
values, very large values, very small values, missing values (NA), vectors of length
zero (numeric()), etc.

93 Writing scripts

 Error messages When debugging, keep in mind that in some cases a single
bug can lead to a whole cascade of error messages. Do also keep in mind that
typing mistakes, originating when code is entered through the keyboard, can
wreak havock in a script: usually there is little correspondence between the
number of error messages and the seriousness of the bug triggering them.
When several errors are triggered, start by reading the error message printed
first, as later errors can be an indirect consequence of earlier ones.

There are special tools, called debuggers, available, and they help enormously.
Debuggers allow one to step through the code, executing one statement at a time,
and at each pause, allowing the user to inspect the objects present in the R en-
vironment and their values. It is even possible to execute additional statements,
say, to modify the value of a variable, while execution is paused. An R debugger is
available within RStudio and also through the R console.

When writing your first scripts, you will manage perfectly well, and learn more
by running the script one line at a time and when needed temporarily inserting
print() statements to “look” at how the value of variables changes at each step. A
debugger allows a lot more control, as one can “step in” and “step out” of function
definitions, and set and unset break points where execution will stop, which is
especially useful when developing R packages.

When reproducing the examples in this chapter, do keep this section in mind.
In addition, if you get stuck trying to find the cause of a bug, do extend your search
both to the most trivial of possible causes, and to the least likely ones (such as a
bug in a package installed from CRAN or R itself). Of course, when suspecting a bug
in code you have not written, it is wise to very carefully read the documentation,
as the “bug” may be just in your understanding of what a certain piece of code
is expected to do. Also keep in mind that as discussed on page 12, you will be
able to find online already-answered questions to many of your likely problems
and doubts. For example, Googling for the text of an error message is usually well
rewarded.

 When installing packages from other sources than CRAN (e.g., develop-
ment versions from GitHub, Bitbucket or R-Forge, or in-house packages) there
is no warranty that conflicts will not happen. Packages (and their versions) re-
leased through CRAN are regularly checked for inter-compatibility, while pack-
ages released through other channels are usually checked against only a few
packages.

Conflicts among packages can easily arise, for example, when they use the
same names for objects or functions. In addition, many packages use functions
defined in packages in the R distribution itself or other independently devel-
oped packages by importing them. Updates to depended-upon packages can
“break” (make non-functional) the dependent packages or parts of them. The
rigorous testing by CRAN detects such problems in most cases when package
revisions are submitted, forcing package maintainers to fix problems before

94 The R language: “Paragraphs” and “essays”

distribution through CRAN is possible. However, if you use other repositories,
I recommend that you make sure that revised (especially if under develop-
ment) versions do work with your own script, before their use in “production”
(important) data analyses.

3.3 Control of execution flow

We give the name control of execution statements to those statements that allow
the execution of sections of code when a certain dynamically computed condition
is TRUE. Some of the control of execution flow statements, function like ON-OFF
switches for program statements. Others allow statements to be executed repeat-
edly while or until a condition is met, or until all members of a list or a vector are
processed.

These control of execution statements can be also used at the R console, but
it is usually awkward to do so as they can extend over several lines of text. In
simple scripts, the flow of execution can be fixed and linear from the first to the
last statement in the script. Control of execution statements allow flexibility, as they
allow conditional execution and/or repeated execution of statements. The part of
the script conditionally executed can be a simple or a compound code statement
providing a lot of flexibility. As we will see next, a compound statement can include
multiple simple or nested compound statements.

3.3.1 Compound statements

First of all, we need to consider compound statements. Individual statements can
be grouped into compound statements by enclosed them in curly braces.

print("A")
[1] "A"

{
print("B")
print("C")

}
[1] "B"
[1] "C"

The grouping of the last two statements above is of no consequence by itself,
but grouping becomes useful when used together with control-of-execution con-
structs.

3.3.2 Conditional execution

Conditional execution allows handling different values, such as negative and non-
negative values, differently within a script. This is achieved by evaluating or not

95 Control of execution flow

(i.e., switching ON and OFF) parts of a script based on the result returned by a
logical expression. This expression can also be a flag—i.e., a logical variable set
manually, preferable near the top of the script. Use of flags is most useful when
switching between two script behaviors depends on multiple sections of code. A
frequent use case for flags is jointly enabling and disabling printing of output from
multiple statements scattered in over a long script.

R has two types of if statements, non-vectorized and vectorized. We will start
with the non-vectorized one, which is similar to what is available in most other
computer programming languages. We start with toy examples demonstrating how
if and if-else statements work. Later we will see examples closer to real use cases.

3.3.2.1 Non-vectorized if, else and switch

The if construct “decides,” depending on a logical value, whether the next code
statement is executed (if TRUE) or skipped (if FALSE).

flag <- TRUE

if (flag) print("Hello!")

[1] "Hello!"

U Play with the code above by changing the value assigned to variable flag,
FALSE, NA, and logical(0).

In the example above we use variable flag as the condition.
Nothing in the R language prevents this condition from being a logical

constant. Explain why if (TRUE) in the syntactically-correct statement below
is of no practical use.

if (TRUE) print("Hello!")
[1] "Hello!"

Conditional execution is much more useful than what could be expected from
the previous example, because the statement whose execution is being controlled
can be a compound statement of almost any length or complexity. A very simple
example follows.

printing <- TRUE
if (printing) {
print("A")
print("B")

}
[1] "A"
[1] "B"

The condition passed as an argument to if, enclosed in parentheses, can be
anything yielding a logical vector, however, as this condition is not vectorized,
only the first element will be used and a warning issued if longer than one.

96 The R language: “Paragraphs” and “essays”

a <- 10.0

if (a < 0.0) print("'a' is negative") else print("'a' is not negative")

[1] "'a' is not negative"

print("This is always printed")

[1] "This is always printed"

As can be seen above, the statement immediately following if is executed if
the condition returns TRUE and that following else is executed if the condition
returns FALSE. Statements after the conditionally executed if and else statements
are always executed, independently of the value returned by the condition.

U Play with the code in the chunk above by assigning different numeric vec-
tors to a.

 Do you still remember the rules about continuation lines?

1
a <- 1

if (a < 0.0) print("'a' is negative") else print("'a' is not negative")

[1] "'a' is not negative"

Why does the statement below (not evaluated here) trigger an error while
the one above does not?

2 (not evaluated here)
if (a < 0.0) print("'a' is negative")
else print("'a' is not negative")

How do the continuation line rules apply when we add curly braces as
shown below.

1
a <- 1
if (a < 0.0) {

print("'a' is negative")
} else {
print("'a' is not negative")

}
[1] "'a' is not negative"

In the example above, we enclosed a single statement between each pair of
curly braces, but as these braces create compound statements, multiple state-
ments could have been enclosed between each pair.

U Play with the use of conditional execution, with both simple and compound

97 Control of execution flow

statements, and also think how to combine if and else to select among more
than two options.

In R, the value returned by any compound statement is the value returned by
the last simple statement executed within the compound one. This means that we
can assign the value returned by an if and else statement to a variable. This style
is less frequently used, but occasionally can result in easier-to-understand scripts.

a <- 1
my.message <-
if (a < 0.0) "'a' is negative" else "'a' is not negative"

print(my.message)
[1] "'a' is not negative"

U Study the conversion rules between numeric and logical values, run each
of the statements below, and explain the output based on how type conversions
are interpreted, remembering the difference between floating-point numbers as
implemented in computers and real numbers (ℝ) as defined in mathematics.

if (0) print("hello")

if (-1) print("hello")

if (0.01) print("hello")

if (1e-300) print("hello")

if (1e-323) print("hello")

if (1e-324) print("hello")

if (1e-500) print("hello")

if (as.logical("true")) print("hello")

if (as.logical(as.numeric("1"))) print("hello")

if (as.logical("1")) print("hello")

if ("1") print("hello")

Hint: if you need to refresh your understanding of the type conversion rules,
see section 2.9 on page 42.

In addition to if(), there is in R a switch() statement, which we describe next.
It can be used to select among cases, or several alternative statements, based on
an expression evaluating to a numeric or a character value of length equal to one.
The switch statement returns a value, the value returned by the statement corre-
sponding to the matching switch value, or the default if there is no match and a
default return value has been defined in the code.

my.object <- "two"
b <- switch(my.object,

one = 1,
two = 1 / 2,
three = 1 / 4,
0

)
b
[1] 0.5

98 The R language: “Paragraphs” and “essays”

U Do play with the use of the switch statement. Look at the documentation
for switch() using help(switch) and study the examples at the end of the help
page.

The switch() statement can substitute for chained if else statements when
all the conditions are comparisons against different constant values, resulting in
more concise and clear code.

3.3.2.2 Vectorized ifelse()

Vectorized ifelse is a peculiarity of the R language, but very useful for writing con-
cise code that may execute faster than logically equivalent but not vectorized code.
Vectorized conditional execution is coded by means of function ifelse() (written
as a single word). This function takes three arguments: a logical vector usually
the result of a test (parameter test), a result vector for TRUE cases (parameter yes),
and a result vector for FALSE cases (parameter no). At each index position along the
vectors, the value included in the returned vector is taken from yes if test is TRUE

and from no if test is FALSE. All three arguments can be any R statement returning
the required vector. In the case of vectors passed as arguments to parameters yes

and no, recycling will take place if they are shorter than the logical vector passed
as argument to test. No recycling ever applies to test, even if yes and/or no are
longer than test. It is customary to pass arguments to ifelse by position. We give
a first example with named arguments to clarify the use of the function.

my.test <- c(TRUE, FALSE, TRUE, TRUE)
ifelse(test = my.test, yes = 1, no = -1)
[1] 1 -1 1 1

In practice, the most common idiom is to have as an argument passed to test,
the result of a comparison calculated on the fly. In the first example we compute
the absolute values for a vector, equivalent to that returned by R function abs().

nums <- -3:+3
ifelse(nums < 0, -nums, nums)
[1] 3 2 1 0 1 2 3

U Some additional examples to play with, with a few surprises. Study the
examples below until you understand why returned values are what they are.
In addition, create your own examples to test other possible cases. In other
words, play with the code until you fully understand how ifelse works.

a <- 1:10
ifelse(a > 5, 1, -1)
ifelse(a > 5, a + 1, a - 1)
ifelse(any(a > 5), a + 1, a - 1) # tricky
ifelse(logical(0), a + 1, a - 1) # even more tricky
ifelse(NA, a + 1, a - 1) # as expected

99 Control of execution flow

Hint: if you need to refresh your understanding of logical values and
Boolean algebra see section 2.4 on page 29.

 In the case of ifelse(), the length of the returned value is determined
by the length of the logical vector passed as an argument to its first formal
parameter (named test)! A frequent mistake is to use a condition that returns
a logical vector of length one, expecting that it will be recycled because argu-
ments passed to the other formal parameters (named yes and no) are longer.
However, no recycling will take place, resulting in a returned value of length
one, with the remaining elements of the vectors passed to yes and no being
discarded. Do try this by yourself, using logical vectors of different lengths.
You can start with the examples below, making sure you understand why the
returned values are what they are.

ifelse(TRUE, 1:5, -5:-1)
[1] 1

ifelse(FALSE, 1:5, -5:-1)
[1] -5

ifelse(c(TRUE, FALSE), 1:5, -5:-1)
[1] 1 -4

ifelse(c(FALSE, TRUE), 1:5, -5:-1)
[1] -5 2

ifelse(c(FALSE, TRUE), 1:5, 0)
[1] 0 2

U Write, using ifelse(), a single statement to combine numbers from the
two vectors a and b into a result vector d, based on whether the corresponding
value in vector c is the character "a" or "b". Then print vector d to make the
result visible.

a <- -10:-1
b <- +1:10
c <- c(rep("a", 5), rep("b", 5))
your code

If you do not understand how the three vectors are built, or you cannot
guess the values they contain by reading the code, print them, and play with the
arguments, until you understnd what each parameter does. Also use help(rep)

and/or help(ifelse) to access the documentation.

100 The R language: “Paragraphs” and “essays”

3.3.3 Iteration

We give the name iteration to the process of repetitive execution of a program state-
ment (simple or compound)—e.g., computed by iteration. We use the same word,
iteration, to name each one of these repetitions of the execution of a statement—
e.g., the second iteration.

The section of computer code being executed multiple times, forms a loop (a
closed path). Most loops contain a condition that determines when the flow of ex-
ecution will exit the loop and continue at the next statement following the loop.
In R three types of iteration loops are available: those using for, while and repeat

constructs. They differ in how much flexibility they provide with respect to the val-
ues they iterate over, and how the condition that terminates the iteration is tested.
When the same algorithm can be implemented with more than one of these con-
structs, using the least flexible of them usually results in the easiest to understand
R scripts. In R, rather frequently, explicit loops as described in this section can be
replaced advantageously by calls to the apply functions described in section 3.4
on page 108.

3.3.3.1 for loops

The most frequently used type of loop is a for loop. These loops work in R on lists
or vectors of values to act upon.

b <- 0
for (a in 1:5) b <- b + a
b
[1] 15

b <- sum(1:5) # built-in function (faster)
b
[1] 15

Here the statement b <- b + a is executed five times, with variable a sequen-
tially taking each of the values in 1:5. Instead of a simple statement used here, a
compound statement could also have been used for the body of the for loop.

 It is important to note that a list or vector of length zero is a valid ar-
gument to for(), that triggers no error, but skips the statements in the loop
body.

Some examples of use of for loops—and of how to avoid their use.

a <- c(1, 4, 3, 6, 8)
for(x in a) {print(x*2)} # print is needed!
[1] 2
[1] 8
[1] 6
[1] 12
[1] 16

A call to for does not return a value. We need to assign values to an object

101 Control of execution flow

so that they are not lost. If we print at each iteration the value of this object, we
can follow how the stored value changes. Printing allows us to see, how the vector
grows in length, unless we create a long-enough vector before the start of the loop.

b <- for(x in a) {x*2}
b
NULL

b <- numeric()
for(i in seq(along.with = a)) {
b[i] <- a[i]^2
print(b)

}
[1] 1
[1] 1 16
[1] 1 16 9
[1] 1 16 9 36
[1] 1 16 9 36 64

b
[1] 1 16 9 36 64

runs faster if we first allocate a long enough vector
b <- numeric(length(a))
for(i in seq(along.with = a)) {
b[i] <- a[i]^2
print(b)

}
[1] 1 0 0 0 0
[1] 1 16 0 0 0
[1] 1 16 9 0 0
[1] 1 16 9 36 0
[1] 1 16 9 36 64

b
[1] 1 16 9 36 64

a vectorized expression is simplest and fastest
b <- a^2
b
[1] 1 16 9 36 64

In the previous chunk we used seq(along.with = a) to build a new numeric
vector with a sequence of the same length as vector a. Using this idiom is best as it
ensures that even the case when a is an empty vector of length zero will be handled
correctly, with numeric(0) assigned to b.

U Look at the results from the above examples, and try to understand where
the returned value comes from in each case. In the code chunk above, print()

is used within the loop to make intermediate values visible. You can add addi-
tional print() statements to visualize other variables, such as i, or run parts
of the code, such as seq(along.with = a), by themselves.

In this case, the code examples trigger no errors or warnings, but the same

102 The R language: “Paragraphs” and “essays”

approach can be used for debugging syntactically correct code that does not
return the expected results.

U In the examples above we show the use of seq() passing a vector as
an argument to its parameter along.with. Run the examples below and explain
why the two approaches are equivalent only when the length of a is one or
more. Find the answer by assigning to a, vectors of different lengths, including
zero (using a <- numeric(0)).

b <- numeric(length(a))
for(i in seq(along.with = a)) {
b[i] <- a[i]^2

}
print(b)

c <- numeric(length(a))
for(i in 1:length(a)) {
c[i] <- a[i]^2

}
print(c)

 for loops as described above, in the absence of errors, have statically pre-
dictable behavior. The compound statement in the loop will be executed once
for each member of the vector or list. Special cases may require the alteration
of the normal flow of execution in the loop. Two cases are easy to deal with,
one is stopping iteration early, which we can do with break(), and another is
jumping ahead to the start of the next iteration, which we can do with next().

3.3.3.2 while loops

while loops are frequently useful, even if not as frequently used as for loops.
Instead of a list or vector, they take a logical argument, which is usually an expres-
sion, but which can also be a variable.

a <- 2
while (a < 50) {
print(a)
a <- a^2

}
[1] 2
[1] 4
[1] 16

print(a)
[1] 256

103 Control of execution flow

U Make sure that you understand why the final value of a is larger than 50.

U The statements above can be simplified to:

a <- 2

print(a)

while (a < 50) {

print(a <- a^2)

}

Explain why this works, and how it relates to the support in R of chained
assignments to several variables within a single statement like the one below.

a <- b <- c <- 1:5
a

Explain why a second print(a) has been added before while(). Hint: exper-
iment if necessary.

 while loops as described above will terminate when the condition tested
is FALSE. In those cases that require stopping iteration based on an additional
test condition within the compound statement, we can call break() in the body
of an if or else statement.

3.3.3.3 repeat loops

The repeat construct is less frequently used, but adds flexibility as termination
will always depend on a call to break(), which can be located anywhere within the
compound statement that forms the body of the loop. To achieve conditional end
of iteration, function break() must be called, as otherwise, iteration in a repeat

loop will not stop.

a <- 2
repeat{
print(a)
if (a > 50) break()
a <- a^2

}
[1] 2
[1] 4
[1] 16
[1] 256

104 The R language: “Paragraphs” and “essays”

U Please explain why the example above returns the values it does. Use the
approach of adding print() statements, as described on page 101.

 Although repeat loop constructs are easier to read if they have a single
condition resulting in termination of iteration, it is allowed by the R language
for the compound statement in the body of a loop to contain more than one
call to break(), each within a different if or else statement.

3.3.4 Explicit loops can be slow in R

If you have written programs in other languages, it will feel natural to you to use
loops (for, while, repeat) for many of the things for which in R one would normally
use vectorization. In R, using vectorization whenever possible keeps scripts shorter
and easier to understand (at least for those with experience in R). More importantly,
as R is an interpreted language, vectorized arithmetic tends to be much faster than
the use of explicit iteration. In recent versions of R, byte-compilation is used by
default and loops may be compiled on the fly, which relieves part of the burden of
repeated interpretation. However, even byte-compiled loops are usually slower to
execute than efficiently coded vectorized functions and operators.

Execution speed needs to be balanced against the effort invested in writing
faster code. However, using vectorization and specific R functions requires little
effort once we are familiar with them. The simplest way of measuring the execution
time of an R expression is to use function system.time(). However, the returned
time is in seconds and consequently the expression must take long enough to exe-
cute for the returned time to have useful resolution. See package ‘microbenchmark’
for tools for benchmarking code with better time resolution.

system.time({a <- numeric()
for (i in 1:1000000) {
a[i] <- i / 1000
}

})
user system elapsed
0.44 0.03 0.48

 Whenever working with large data sets, or many similar data sets, we will
need to take performance into account. As vectorization usually also makes
code simpler, it is good style to use vectorization whenever possible. For op-
erations that are frequently used, R includes specific functions. It is thus im-
portant to consider not only vectorization of arithmetic but also check for the
availability of performance-optimized functions for specific cases. The results
from running the code examples in this box are not included, because they are

105 Control of execution flow

the same for all chunks. Here we are interested in the execution time, and we
leave this as an exercise.

a <- rnorm(10^7) # 10 000 0000 pseudo-random numbers

b <- numeric()
b <- numeric(length(a)-1) # pre-allocate memory
i <- 1
while (i < length(a)) {
b[i] <- a[i+1] - a[i]

print(b)

i <- i + 1

}
b

b <- numeric()
b <- numeric(length(a)-1) # pre-allocate memory
for(i in seq(along.with = b)) {
b[i] <- a[i+1] - a[i]
print(b)

}
b

although in this case there were alternatives, there
are other cases when we need to use indexes explicitly
b <- a[2:length(a)] - a[1:length(a)-1]
b

or even better
b <- diff(a)
b

Execution time can be obtained with system.time(). For a vector of ten mil-
lion numbers, the for loop above takes 1.1 s and the equivalent while loop
2.0 s, the vectorized statement using indexing takes 0.2 s and function diff()

takes 0.1 s. The for loop without pre-allocation of memory to b takes 3.6 s, and
the equivalent while loop 4.7 s—i.e., the fastest execution time was more than
40 times faster than the slowest one. (Times for R 3.5.1 on my laptop under
Windows 10 x64.)

3.3.5 Nesting of loops

All the execution-flow control statements seen above can be nested. We will show
an example with two for loops. We first create a matrix of data to work with:

A <- matrix(1:50, 10)

A

[,1] [,2] [,3] [,4] [,5]

106 The R language: “Paragraphs” and “essays”

[1,] 1 11 21 31 41
[2,] 2 12 22 32 42
[3,] 3 13 23 33 43
[4,] 4 14 24 34 44
[5,] 5 15 25 35 45
[6,] 6 16 26 36 46
[7,] 7 17 27 37 47
[8,] 8 18 28 38 48
[9,] 9 19 29 39 49
[10,] 10 20 30 40 50

row.sum <- numeric()
for (i in 1:nrow(A)) {
row.sum[i] <- 0
for (j in 1:ncol(A))
row.sum[i] <- row.sum[i] + A[i, j]

}
print(row.sum)
[1] 105 110 115 120 125 130 135 140 145 150

The code above is very general, it will work with any two-dimensional matrix
with at least one column and one row. However, sometimes we need more specific
calculations. A[1, 2] selects one cell in the matrix, the one on the first row of the
second column. A[1,] selects row one, and A[, 2] selects column two. In the
example above, the value of i changes for each iteration of the outer loop. The
value of j changes for each iteration of the inner loop, and the inner loop is run in
full for each iteration of the outer loop. The inner loop index j changes fastest.

U 1) Modify the code in the example in the last chunk above so that
it sums the values only in the first three columns of A, 2) modify the same
example so that it sums the values only in the last three rows of A, 3) modify
the code so that matrices with dimensions equal to zero (as reported by ncol()

and nrow()).
Will the code you wrote continue working as expected if the number of rows

in A changed? What if the number of columns in A changed, and the required
results still needed to be calculated for relative positions? What would happen
if A had fewer than three columns? Try to think first what to expect based
on the code you wrote. Then create matrices of different sizes and test your
code. After that, think how to improve the code, so that wrong results are not
produced.

 If the total number of iterations is large and the code executed at each
iteration runs fast, the overhead added by the loop code can make a big con-
tribution to the total running time of a script. When dealing with nested loops,
as the inner loop is executed most frequently, this is the best place to look for
ways of reducing execution time. In this example, vectorization can be achieved

107 Control of execution flow

easily for the inner loop, as R has a function sum() which returns the sum of a
vector passed as its argument. Replacing the inner loop by an efficient function
can be expected to improve performance significantly.

row.sum <- numeric(nrow(A)) # faster
for (i in 1:nrow(A)) {
row.sum[i] <- sum(A[i,])

}
print(row.sum)
[1] 105 110 115 120 125 130 135 140 145 150

A[i,] selects row i and all columns. Reminder: in R the row index comes
first.

Both explicit loops can be eliminated if we use an apply function, such as
apply(), lapply() or sapply(), in place of the outer for loop. See section 3.4
below for details on the use of the different apply functions.

row.sum <- apply(A, MARGIN = 1, sum) # MARGIN=1 indicates rows
print(row.sum)
[1] 105 110 115 120 125 130 135 140 145 150

Calculating row sums is a frequent operation, so R has a built-in function
for this. As earlier with diff(), it is always worthwhile to check if there is an
existing R function, optimized for performance, capable of doing the compu-
tations we need. In this case, using rowSums() simplifies the nested loops into
a single function call, both improving performance and readability.

rowSums(A)

[1] 105 110 115 120 125 130 135 140 145 150

U 1) How would you change this last example, so that only the last three
columns are added up? (Think about use of subscripts to select a part of the
matrix.) 2) To obtain column sums, one could modify the nested loops (think
how), transpose the matrix and use rowSums() (think how), or look up if there
is in R a function for this operation. A good place to start is with help(rowSums)

as similar functions may share the same help page, or at least be listed in the
“See also” section. Do try this, and explore other help pages in search for some
function you may find useful in the analysis of your own data.

3.3.5.1 Clean-up

Sometimes we need to make sure that clean-up code is executed even if the ex-
ecution of a script or function is aborted by the user or as a result of an error
condition. A typical example is a script that temporarily sets a disk folder as the
working directory or uses a file as temporary storage. Function on.exit() can be
used to record that a user supplied expression needs to be executed when the cur-

108 The R language: “Paragraphs” and “essays”

rent function, or a script, exits. Function on.exit() can also make code easier to
read as it keeps creation and clean-up next to each other in the body of a function
or in the listing of a script.

file.create("temp.file")
[1] TRUE

on.exit(file.remove("temp.file"))
code that makes use of the file goes here

3.4 Apply functions

Apply functions apply a function passed as an argument to parameter FUN or
equivalent, to elements in a collection of R objects passed as an argument to pa-
rameter X or equivalent. Collections to which FUN is to be applied can be vectors,
lists, data frames, matrices or arrays. As long as the operations to be applied are
independent—i.e., the results from one iteration are not used in another iteration—
apply functions can replace for, while or repeat loops.

The different apply functions in base R differ in the class of the values they
accept for their X parameter, the class of the object they return and/or the class of
the value returned by the applied function. lapply() and sapply() expect a vector

or list as an argument passed through X. lapply() returns a list or an array; and
vapply() always simplifies its returned value into a vector, while sapply() does
the simplification according to the argument passed to its simplify parameter. All
these apply functions can be used to apply an R function that returns a value of the
same or a different class as its argument. In the case of apply() and lapply() not
even the length of the values returned for each member of the collection passed
as an argument, needs to be consistent. In summary, apply() is used to apply a
function to the elements along a dimension of an object that has two or more di-
mensions, and lapply() and sapply() are used to apply a function to the members
of a vector or list. apply() returns an array or a list or a vector depending on the
size, and consistency in length and class among the values returned by the applied
function.

3.4.1 Applying functions to vectors and lists

We first exemplify the use of lapply(), sapply() and vapply(). In the chunks below
we apply a user-defined function to a vector.

 A constraint on the function to be applied is that the member object will
be always passed as an argument to the first parameter of the applied function.

109 Apply functions

set.seed(123456) # so that a.vector does not change
a.vector <- runif(6) # A short vector as input to keep output short
str(a.vector)
num [1:6] 0.798 0.754 0.391 0.342 0.361 ...

my.fun <- function(x, k) {log(x) + k}

z <- lapply(X = a.vector, FUN = my.fun, k = 5)

str(z)

List of 6

$: num 4.77

$: num 4.72

$: num 4.06

$: num 3.93

$: num 3.98

$: num 3.38

z <- sapply(X = a.vector, FUN = my.fun, k = 5)

str(z)

num [1:6] 4.77 4.72 4.06 3.93 3.98 ...

z <- sapply(X = a.vector, FUN = my.fun, k = 5, simplify = FALSE)

str(z)

List of 6

$: num 4.77

$: num 4.72

$: num 4.06

$: num 3.93

$: num 3.98

$: num 3.38

We can see above that the computed results are the same in the three cases,
but the class and structure of the objects returned differ.

Anonymous functions can be defined on the fly and passed to FUN, allowing us
to re-write the examples above more concisely (only the second one shown).

z <- sapply(X = a.vector, FUN = function(x, k) {log(x) + k}, k = 5)

str(z)

num [1:6] 4.77 4.72 4.06 3.93 3.98 ...

Of course, as discussed in section 3.3.4 on page 104, when suitable vectorized
functions are available, their use should be preferred. On the other hand, even if
apply functions are usually not as fast as vectorized functions, they are faster than
the equivalent for() loops.

z <- log(a.vector) + 5

str(z)

num [1:6] 4.77 4.72 4.06 3.93 3.98 ...

110 The R language: “Paragraphs” and “essays”

 Function vapply() can be safer to use as the mode of returned values is
enforced. Here is a possible way of obtaining means and variances across mem-
ber vectors at each vector index position from a list of vectors. These could be
called parallel means and variances. The argument passed to FUN.VALUE pro-
vides a template for the type of the return value and its organization into rows
and columns. Notice that the rows in the output are now named according to
the names in FUN.VALUE.

We first use lapply() to create the object a.list containing artificial data.
One or more additional named arguments can be passed to the function to be
applied.

set.seed(123456)

a.list <- lapply(rep(4, 5), rnorm, mean = 10, sd = 1)

str(a.list)

List of 5

$: num [1:4] 10.83 9.72 9.64 10.09

$: num [1:4] 12.3 10.8 11.3 12.5

$: num [1:4] 11.17 9.57 9 8.89

$: num [1:4] 9.94 11.17 11.05 10.06

$: num [1:4] 9.26 10.93 11.67 10.56

We define the function that we will apply, a function that returns a numeric
vector of length 2.

mean_and_sd <- function(x, na.rm = FALSE) {
c(mean(x, na.rm = na.rm), sd(x, na.rm = na.rm))

}

We next use vapply() to apply our function to each member vector of the
list.

values <- vapply(X = a.list,
FUN = mean_and_sd,
FUN.VALUE = c(mean = 0, sd = 0),
na.rm = TRUE)

class(values)
[1] "matrix" "array"

values
[,1] [,2] [,3] [,4] [,5]
mean 10.0725427 11.7254442 9.657997 10.5573814 10.605846
sd 0.5428149 0.7844356 1.050663 0.6460881 1.005676

U As explained in section 2.14 on page 66, class data.frame is derived from
class list. Apply function mean_and_sd() defined above to the data frame cars

included as example data in R. The aim is to obtain the mean and standard
deviation for each column.

111 Apply functions

3.4.2 Applying functions to matrices and arrays

In the next example we use apply() and mean() to compute the mean for each
column of matrix a.matrix. In R the dimensions of a matrix, rows and columns,
over which a function is applied are called margins. The argument passed to pa-
rameter MARGIN determines over which margin the function will be applied. If the
function is applied to individual rows, we say that we operate on the first margin,
and if the function is applied to individual columns, over the second margin. Ar-
rays can have many dimensions, and consequently more margins. In the case of
arrays with more than two dimensions, it is possible and useful to apply functions
over multiple margins at once.

 A constraint on the function to be applied is that the vector or “slice” will
always be passed as a positional argument to the first formal parameter of the
applied function.

a.matrix <- matrix(runif(100), ncol = 10)
z <- apply(a.matrix, MARGIN = 1, FUN = mean)
str(z)
num [1:10] 0.247 0.404 0.537 0.5 0.504 ...

U Modify the example above so that it computes row means instead of col-
umn means.

U Look up the help pages for apply() and mean() and study them until you
understand how additional arguments can be passed to the applied function.
Can you guess why apply() was designed to have parameter names fully in
uppercase, something very unusual for R code style?

If we apply a function that returns a value of the same length as its input,
then the dimensions of the value returned by apply() are the same as those of its
input. We use, in the next examples, a “no-op” function that returns its argument
unchanged, so that input and output can be easily compared.

a.small.matrix <- matrix(rnorm(6, mean = 10, sd = 1), ncol = 2)
a.small.matrix <- round(a.small.matrix, digits = 1)
a.small.matrix
[,1] [,2]
[1,] 11.3 10.4
[2,] 10.6 8.6
[3,] 8.2 11.0

112 The R language: “Paragraphs” and “essays”

no_op.fun <- function(x) {x}

z <- apply(X = a.small.matrix, MARGIN = 2, FUN = no_op.fun)

class(z)

[1] "matrix" "array"

z

[,1] [,2]

[1,] 11.3 10.4

[2,] 10.6 8.6

[3,] 8.2 11.0

In the chunk above, we passed MARGIN = 2, but if we pass MARGIN = 1, we get a
return value that is transposed! To restore the original layout of the matrix we can
transpose the result with function t().

z <- apply(X = a.small.matrix, MARGIN = 1, FUN = no_op.fun)
z
[,1] [,2] [,3]
[1,] 11.3 10.6 8.2
[2,] 10.4 8.6 11.0

t(z)
[,1] [,2]
[1,] 11.3 10.4
[2,] 10.6 8.6
[3,] 8.2 11.0

A more realistic example, but difficult to grasp without seeing the toy exam-
ples shown above, is when we apply a function that returns a value of a different
length than its input, but longer than one. When we compute column summaries
(MARGIN = 2), a matrix is returned, with each column containing the summaries
for the corresponding column in the original matrix (a.small.matrix). In contrast,
when we compute row summaries (MARGIN = 1), each column in the returned ma-
trix contains the summaries for one row in the original array. What happens is
that by using apply() the dimension of the original matrix or array over which we
compute summaries “disappears.” Consequently, given how matrices are stored in
R, when columns collapse into a single value, the rows become columns. After this,
the vectors returned by the applied function, are stored as rows.

mean_and_sd <- function(x, na.rm = FALSE) {
c(mean(x, na.rm = na.rm), sd(x, na.rm = na.rm))

}

z <- apply(X = a.small.matrix, MARGIN = 2, FUN = mean_and_sd, na.rm = TRUE)
z
[,1] [,2]
[1,] 10.033333 10.000
[2,] 1.625833 1.249

113 Object names and character strings

z <- apply(X = a.small.matrix, MARGIN = 1, FUN = mean_and_sd, na.rm = TRUE)
z
[,1] [,2] [,3]
[1,] 10.8500000 9.600000 9.600000
[2,] 0.6363961 1.414214 1.979899

In all examples above, we have used ordinary functions. Operators in R are
functions with two formal parameters which can be called using infix notation in
expressions—i.e., a + b. By back-quoting their names they can be called using the
same syntax as for ordinary functions, and consequently also passed to the FUN

parameter of apply functions. A toy example, equivalent to the vectorized oper-
ation a.vector + 5 follows. We enclosed operator + in back ticks (`) and pass by
name a constant to its second formal parameter (e2 = 5).

set.seed(123456) # so that a.vector does not change

a.vector <- runif(10)

z <- sapply(X = a.vector, FUN = `+`, e2 = 5)

str(z)

num [1:10] 5.8 5.75 5.39 5.34 5.36 ...

 Apply functions vs. loop constructs Apply functions cannot always re-
place explicit loops as they are less flexible. A simple example is the accu-
mulation pattern, where we “walk” through a collection that stores a partial
result between iterations. A similar case is a pattern where calculations are
done over a “window” that moves at each iteration. The simplest and probably
most frequent calculation of this kind is the calculation of differences between
successive members. Other examples are moving window summaries such as
a moving median (see page 104 for other alternatives to the use of explicit
iteration loops).

3.5 Object names and character strings

In all assignment examples before this section, we have used object names in-
cluded as literal character strings in the code expressions. In other words, the
names are “decided” as part of the code, rather than at run time. In scripts or
packages, the object name to be assigned may need to be decided at run time
and, consequently, be available only as a character string stored in a variable. In
this case, function assign() must be used instead of the operators <- or ->. The
statements below demonstrate its use.

First using a character constant.

assign("a", 9.99)
a
[1] 9.99

114 The R language: “Paragraphs” and “essays”

Next using a character value stored in a variable.

name.of.var <- "b"
assign(name.of.var, 9.99)
b
[1] 9.99

The two toy examples above do not demonstrate why one may want to use
assign(). Common situations where we may want to use character strings to store
(future or existing) object names are 1) when we allow users to provide names for
objects either interactively or as character data, 2) when in a loop we transverse
a vector or list of object names, or 3) we construct at runtime object names from
multiple character strings based on data or settings. A common case is when we
import data from a text file and we want to name the object according to the name
of the file on disk, or a character string read from the header at the top of the file.

Another case is when character values are the result of a computation.

for (i in 1:5) {
assign(paste("zz_", i, sep = ""), i^2)

}
ls(pattern = "zz_*")
[1] "zz_1" "zz_2" "zz_3" "zz_4" "zz_5"

The complementary operation of assigning a name to an object is to get an
object when we have available its name as a character string. The corresponding
function is get().

get("a")
[1] 9.99

get("b")
[1] 9.99

If we have available a character vector containing object names and we want to
create a list containing these objects we can use function mget(). In the example
below we use function ls() to obtain a character vector of object names matching
a specific pattern and then collect all these objects into a list.

obj_names <- ls(pattern = "zz_*")
obj_lst <- mget(obj_names)
str(obj_lst)
List of 5
$ zz_1: num 1
$ zz_2: num 4
$ zz_3: num 9
$ zz_4: num 16
$ zz_5: num 25

U Think of possible uses of functions assign(), get() and mget() in
scripts you use or could use to analyze your own data (or from other sources).
Write a script to implement this, and iteratively test and revise this script until
the result produced by the script matches your expectations.

115 The multiple faces of loops

3.6 The multiple faces of loops

 To close this chapter, I will mention some advanced aspects of the R language
that are useful when writing complex scrips—if you are going through the book
sequentially, you will want to return to this section after reading chapters 4 and 5.
In the same way as we can assign names to numeric, character and other types of
objects, we can assign names to functions and expressions. We can also create lists
of functions and/or expressions. The R language has a very consistent grammar,
with all lists and vectors behaving in the same way. The implication of this is that
we can assign different functions or expressions to a given name, and consequently
it is possible to write loops over lists of functions or expressions.

In this first example we use a character vector of function names, and use func-
tion do.call() as it accepts either character strings or function names as its first
argument. We obtain a numeric vector with named members with names matching
the function names.

x <- rnorm(10)

results <- numeric()

fun.names <- c("mean", "max", "min")

for (f.name in fun.names) {

results[[f.name]] <- do.call(f.name, list(x))

}

results
mean max min
0.5453427 2.5026454 -1.1139499

When traversing a list of functions in a loop, we face the problem that we cannot
access the original names of the functions as what is stored in the list are the
definitions of the functions. In this case, we can hold the function definitions in
the loop variable (f in the chunk below) and call the functions by use of the function
call notation (f()). We obtain a numeric vector with anonymous members.

results <- numeric()
funs <- list(mean, max, min)
for (f in funs) {

results <- c(results, f(x))
}

results
[1] 0.5453427 2.5026454 -1.1139499

We can use a named list of functions to gain full control of the naming of the
results. We obtain a numeric vector with named members with names matching
the names given to the list members.

results <- numeric()

funs <- list(average = mean, maximum = max, minimum = min)

for (f in names(funs)) {

results[[f]] <- funs[[f]](x)

}

results
average maximum minimum
0.5453427 2.5026454 -1.1139499

116 The R language: “Paragraphs” and “essays”

Next is an example using model formulas. We use a loop to fit three models, ob-
taining a list of fitted models. We cannot pass to anova() this list of fitted models,
as it expects each fitted model as a separate nameless argument to its … param-
eter. We can get around this problem using function do.call() to call anova().
Function do.call() passes the members of the list passed as its second argument
as individual arguments to the function being called, using their names if present.
anova() expects nameless arguments so we need to remove the names present in
results.

my.data <- data.frame(x = 1:10, y = 1:10 + rnorm(10, 1, 0.1))

results <- list()

models <- list(linear = y ~ x, linear.orig = y ~ x - 1, quadratic = y ~ x + I(x^2))

for (m in names(models)) {

results[[m]] <- lm(models[[m]], data = my.data)

}

str(results, max.level = 1)

List of 3

$ linear :List of 12

..- attr(*, "class")= chr "lm"

$ linear.orig:List of 12

..- attr(*, "class")= chr "lm"

$ quadratic :List of 12

..- attr(*, "class")= chr "lm"

do.call(anova, unname(results))

Analysis of Variance Table

##

Model 1: y ~ x

Model 2: y ~ x - 1

Model 3: y ~ x + I(x^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 8 0.05525

2 9 2.31266 -1 -2.2574 306.19 4.901e-07 ***

3 7 0.05161 2 2.2611 153.34 1.660e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If we had no further use for results we could simply build a list with nameless
members by using positional indexing.

results <- list()

models <- list(y ~ x, y ~ x - 1, y ~ x + I(x^2))

for (i in seq(along.with = models)) {

results[[i]] <- lm(models[[i]], data = my.data)

}

str(results, max.level = 1)

List of 3

$:List of 12

..- attr(*, "class")= chr "lm"

$:List of 12

..- attr(*, "class")= chr "lm"

$:List of 12

..- attr(*, "class")= chr "lm"

do.call(anova, results)

Analysis of Variance Table

##

117 The multiple faces of loops

Model 1: y ~ x
Model 2: y ~ x - 1
Model 3: y ~ x + I(x^2)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 8 0.05525
2 9 2.31266 -1 -2.2574 306.19 4.901e-07 ***
3 7 0.05161 2 2.2611 153.34 1.660e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.6.1 Further reading

For further readings on the aspects of R discussed in the current chapter, I suggest
the books The Art of R Programming: A Tour of Statistical Software Design (Matloff)
and Advanced R (Wickham).

http://taylorandfrancis.com

4

The R language: Statistics

The purpose of computing is insight, not numbers.

Richard W. Hamming
Numerical Methods for Scientists and Engineers, 1987

4.1 Aims of this chapter

This chapter aims to give the reader only a quick introduction to statistics in base
R, as there are many good texts on the use of R for different kinds of statistical
analyses (see further reading on page 161). Although many of base R’s functions
are specific to given statistical procedures, they use a particular approach to model
specification and for returning the computed values that can be considered a part
of the R language. Here you will learn the approaches used in R for calculating sta-
tistical summaries, generating (pseudo-)random numbers, sampling, fitting models
and carrying out tests of significance. We will use linear correlation, t-test, linear
models, generalized linear models, non-linear models and some simple multivari-
ate methods as examples. My aim is teaching how to specify models, contrasts and
data used, and how to access different components of the objects returned by the
corresponding fit and summary functions.

4.2 Statistical summaries

Being the main focus of the R language in data analysis and statistics, R pro-
vides functions for both simple and complex calculations, going from means and
variances to fitting very complex models. Below are examples of functions imple-
menting the calculation of the frequently used data summaries mean or average
(mean()), variance (var()), standard deviation (sd()), median (median()), mean ab-
solute deviation (mad()), mode (mode()), maximum (max()), minimum (min()), range
(range()), quantiles (quantile()), length (length()), and all-encompassing sum-

119

120 The R language: Statistics

maries (summary()). All these methods accept numeric vectors and matrices as an
argument. Some of them also have definitions for other classes such as data frames
in the case of summary(). (The R language does not define a function for calculation
of the standard error of the mean. Please, see section 5.3.1 on page 168 for how
to define your own.)

x <- 1:20
mean(x)
var(x)
sd(x)
median(x)
mad(x)
mode(x)
max(x)
min(x)
range(x)
quantile(x)
length(x)
summary(x)

U In contrast to many other examples in this book, the summaries computed
with the code in the previous chunk are not shown. You should run them, using
vector x as defined above, and then play with other real or artificial data that
you may find interesting.

By default, if the argument contains NAs these functions return NA. The logic
behind this is that if one value exists but is unknown, the true result of the com-
putation is unknown (see page 25 for details on the role of NA in R). However, an
additional parameter called na.omit allows us to override this default behavior by
requesting any NA in the input to be omitted (or discarded) before calculation,

x <- c(1:20, NA)
mean(x)
[1] NA

mean(x, na.omit = TRUE)
[1] NA

4.3 Distributions

Density, distribution functions, quantile functions and generation of pseudo-
random values for several different distributions are part of the R language. Enter-
ing help(Distributions) at the R prompt will open a help page describing all the
distributions available in base R. In what follows we use the Normal distribution
for the examples, but with slight differences in their parameters the functions for

Distributions 121

other theoretical distributions follow a consistent naming pattern. For each distri-
bution the different functions contain the same “root” in their names: norm for the
normal distribution, unif for the uniform distribution, and so on. The “head” of
the name indicates the type of values returned: “d” for density, “q” for quantile,
“r” (pseudo-)random numbers, and “p” for probabilities.

4.3.1 Density from parameters

Theoretical distributions are defined by mathematical functions that accept pa-
rameters that control the exact shape and location. In the case of the Normal dis-
tribution, these parameters are the mean controlling location and (standard devi-
ation) (or its square, the variance) controlling the spread around the center of the
distribution.

To obtain a single point from the distribution curve we pass a vector of length
one as an argument for x.

dnorm(x = 1.5, mean = 1, sd = 0.5)
[1] 0.4839414

To obtain multiple values we can pass a longer vector as an argument. As pe-
rusing a long vector of numbers is difficult, we plot the result of the computation
as a line (type = "l") that shows that the 50 generated data points give the illusion
of a continuous curve.

my.x <- seq(from = -1, to = 3, length.out = 50)

my.data <- data.frame(x = my.x,
y = dnorm(x = my.x, mean = 1, sd = 0.5))

plot(y~x, data = my.data, type = "l")

-1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

x

y

122 The R language: Statistics

4.3.2 Probabilities from parameters and quantiles

If we have a calculated quantile we can look up the corresponding 𝑝-value from
the Normal distribution. The mean and standard deviation would, in such a case,
also be computed from the same observations under the null hypothesis. In the
example below, we use invented values for all parameters q, the quantile, mean, and
sd, the standard deviation. Use

pnorm(q = 4, mean = 0, sd = 1)
[1] 0.9999683

pnorm(q = 4, mean = 0, sd = 1, lower.tail = FALSE)
[1] 3.167124e-05

pnorm(q = 4, mean = 0, sd = 4, lower.tail = FALSE)
[1] 0.1586553

pnorm(q = c(2, 4), mean = 0, sd = 1, lower.tail = FALSE)
[1] 2.275013e-02 3.167124e-05

pnorm(q = 4, mean = 0, sd = c(1, 4), lower.tail = FALSE)
[1] 3.167124e-05 1.586553e-01

 In tests of significance, empirical 𝑧-values and 𝑡-values are computed by
subtracting from the observed mean for one group or raw quantile, the “ex-
pected” mean (possibly a hypothesized theoretical value, the mean of a con-
trol condition used as reference, or the mean computed over all treatments
under the assumption of no effect of treatments) and then dividing by the
standard deviation. Consequently, the 𝑝-values corresponding to these empir-
ical 𝑧-values and 𝑡-values need to be looked up using mean = 0 and sd = 1

when calling pnorm() or pt() respectively. These frequently used values are
the defaults.

4.3.3 Quantiles from parameters and probabilities

The reverse computation from that in the previous section is to obtain the quantile
corresponding to a known 𝑝-value. These quantiles are equivalent to the values in
the tables used earlier to assess significance.

qnorm(p = 0.01, mean = 0, sd = 1)
[1] -2.326348

qnorm(p = 0.05, mean = 0, sd = 1)
[1] -1.644854

qnorm(p = 0.05, mean = 0, sd = 1, lower.tail = FALSE)
[1] 1.644854

Distributions 123

 Quantile functions like qnorm() and probability functions like pnorm()

always do computations based on a single tail of the distribution, even though
it is possible to specify which tail we are interested in. If we are interested in
obtaining simultaneous quantiles for both tails, we need to do this manually.
If we are aiming at quantiles for 𝑃 = 0.05, we need to find the quantile for each
tail based on 𝑃/2 = 0.025.

qnorm(p = 0.025, mean = 0, sd = 1)
[1] -1.959964

qnorm(p = 0.025, mean = 0, sd = 1, lower.tail = FALSE)
[1] 1.959964

We see above that in the case of a symmetric distribution like the Normal,
the quantiles in the two tails differ only in sign. This is not the case for asym-
metric distributions.

When calculating a 𝑝-value from a quantile in a test of significance, we need
to first decide whether a two-sided or single-sided test is relevant, and in the
case of a single sided test, which tail is of interest. For a two-sided test we need
to multiply the returned value by 2.

pnorm(q = 4, mean = 0, sd = 1) * 2
[1] 1.999937

4.3.4 “Random” draws from a distribution

True random sequences can only be generated by physical processes. All so-called
“random” sequences of numbers generated by computation are really determinis-
tic although they share some properties with true random sequences (e.g., in rela-
tion to autocorrelation). It is possible to compute not only pseudo-random draws
from a uniform distribution but also from the Normal, 𝑡, 𝐹 and other distribu-
tions. Parameter n indicates the number of values to be drawn, or its equivalent,
the length of the vector returned.

rnorm(5)

[1] -0.8248801 0.1201213 -0.4787266 -0.7134216 1.1264443

rnorm(n = 10, mean = 10, sd = 2)

[1] 12.394190 9.697729 9.212345 11.624844 12.194317 10.257707 10.082981

[8] 10.268540 10.792963 7.772915

U Edit the examples in sections 4.3.2, 4.3.3 and 4.3.4 to do computations
based on different distributions, such as Student’s t, F or uniform.

124 The R language: Statistics

 It is impossible to generate truly random sequences of numbers by
means of a deterministic process such as a mathematical computation. “Ran-
dom numbers” as generated by R and other computer programs are pseudo
random numbers, long deterministic series of numbers that resemble random
draws. Random number generation uses a seed value that determines where
in the series we start. The usual way of automatically setting the value of the
seed is to take the milliseconds or similar rapidly changing set of digits from
the real time clock of the computer. However, in cases when we wish to re-
peat a calculation using the same series of pseudo-random values, we can use
set.seed() with an arbitrary integer as an argument to reset the generator to
the same point in the underlying (deterministic) sequence.

U Execute the statement rnorm(3) by itself several times, paying at-
tention to the values obtained. Repeat the exercise, but now executing
set.seed(98765) immediately before each call to rnorm(3), again paying
attention to the values obtained. Next execute set.seed(98765), followed
by c(rnorm(3), rnorm(3)), and then execute set.seed(98765), followed by
rnorm(6) and compare the output. Repeat the exercise using a different argu-
ment in the call to set.seed(). analyze the results and explain how setseed()

affects the generation of pseudo-random numbers in R.

4.4 “Random” sampling

In addition to drawing values from a theoretical distribution, we can draw values
from an existing set or collection of values. We call this operation (pseudo-)random
sampling. The draws can be done either with replacement or without replacement.
In the second case, all draws are taken from the whole set of values, making it
possible for a given value to be drawn more than once. In the default case of not
using replacement, subsequent draws are taken from the values remaining after
removing the values chosen in earlier draws.
sample(x = LETTERS)

[1] "Z" "N" "Y" "R" "M" "E" "W" "J" "H" "G" "U" "O" "S" "T" "L" "F" "X" "P" "K"

[20] "V" "D" "A" "B" "C" "I" "Q"

sample(x = LETTERS, size = 12)

[1] "M" "S" "L" "R" "B" "D" "Q" "W" "V" "N" "J" "P"

sample(x = LETTERS, size = 12, replace = TRUE)

[1] "K" "E" "V" "N" "A" "Q" "L" "C" "T" "L" "H" "U"

In practice, pseudo-random sampling is useful when we need to select sub-
sets of observations. One such case is assigning treatments to experimental units

Correlation 125

in an experiment or selecting persons to interview in a survey. Another use is in
bootstrapping to estimate variation in parameter estimates using empirical distri-
butions.

4.5 Correlation

Both parametric (Pearson’s) and non-parametric robust (Spearman’s and Kendall’s)
methods for the estimation of the (linear) correlation between pairs of variables
are available in base R. The different methods are selected by passing arguments
to a single function. While Pearson’s method is based on the actual values of the
observations, non-parametric methods are based on the ordering or rank of the
observations, and consequently less affected by observations with extreme values.

We first load and explore the data set cars from R which we will use in the
example. These data consist of stopping distances for cars moving at different
speeds as described in the documentation available by entering help(cars)).

data(cars)
plot(cars)

5 10 15 20 25

0
20

40
60

80
12
0

speed

di
st

4.5.1 Pearson’s 𝑟
Function cor() can be called with two vectors of the same length as arguments.
In the case of the parametric Pearson method, we do not need to provide further
arguments as this method is the default one.

cor(x = cars$speed, y = cars$dist)
[1] 0.8068949

It is also possible to pass a data frame (or a matrix) as the only argument.

126 The R language: Statistics

When the data frame (or matrix) contains only two columns, the returned value is
equivalent to that of passing the two columns individually as vectors.

cor(cars)
speed dist
speed 1.0000000 0.8068949
dist 0.8068949 1.0000000

When the data frame or matrix contains more than two numeric vectors, the
returned value is a matrix of estimates of pairwise correlations between columns.
We here use rnorm() described above to create a long vector of pseudo-random
values drawn from the Normal distribution and matrix() to convert it into a matrix
with three columns (see page 51 for details about R matrices).

my.mat <- matrix(rnorm(54), ncol = 3,
dimnames = list(rows = 1:18, cols = c("A", "B", "C")))

cor(my.mat)
A B C
A 1.00000000 0.2126595 0.05623007
B 0.21265951 1.0000000 0.31065243
C 0.05623007 0.3106524 1.00000000

U Modify the code in the chunk immediately above constructing a matrix
with six columns and then computing the correlations.

While cor() returns and estimate for 𝑟 the correlation coefficient, cor.test()

also computes the 𝑡-value, 𝑝-value, and confidence interval for the estimate.

cor.test(x = cars$speed, y = cars$dist)

##

Pearson's product-moment correlation

##

data: cars$speed and cars$dist

t = 9.464, df = 48, p-value = 1.49e-12

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6816422 0.8862036

sample estimates:

cor

0.8068949

As described below for model fitting and 𝑡-test, cor.test() also accepts a
formula plus data as arguments.

U Functions cor() and cor.test() return R objects, that when using R inter-
actively get automatically “printed” on the screen. One should be aware that
print() methods do not necessarily display all the information contained in an
R object. This is almost always the case for complex objects like those returned
by R functions implementing statistical tests. As with any R object we can save

127 Fitting linear models

the result of an analysis into a variable. As described in section 2.13 on page
62 for lists, we can peek into the structure of an object with method str().
We can use class() and attributes() to extract further information. Run the
code in the chunk below to discover what is actually returned by cor().

a <- cor(cars)
class(a)
attributes(a)
str(a)

Methods class(), attributes() and str() are very powerful tools that can
be used when we are in doubt about the data contained in an object and/or how
it is structured. Knowing the structure allows us to retrieve the data members
directly from the object when predefined extractor methods are not available.

4.5.2 Kendall’s and Spearman’s 𝜏 𝜌
We use the same functions as for Pearson’s 𝑟 but explicitly request the use of one
of these methods by passing and argument.

cor(x = cars$speed, y = cars$dist, method = "kendall")
[1] 0.6689901

cor(x = cars$speed, y = cars$dist, method = "spearman")
[1] 0.8303568

Function cor.test(), described above, also allows the choice of method with
the same syntax as shown for cor().

U Repeat the exercise in the playground immediately above, but now using
non-parametric methods. How does the information stored in the returned
matrix differ depending on the method, and how can we extract information
about the method used for calculation of the correlation from the returned
object.

4.6 Fitting linear models

In R, the models to be fitted are described by “model formulas” such as y ~ x which
we read as 𝑦 is explained by 𝑥. Model formulas are used in different contexts:
fitting of models, plotting, and tests like 𝑡-test. The syntax of model formulas is
consistent throughout base R and numerous independently developed packages.
However, their use is not universal, and several packages extend the basic syntax
to allow the description of specific types of models.

128 The R language: Statistics

As most things in R, model formulas can be stored in variables. In addition,
contrary to the usual behavior of other statistical software, the result of a model
fit is returned as an object, containing the different components of the fit. Once the
model has been fitted, different methods allow us to extract parts and/or further
manipulate the results obtained by fitting a model. Most of these methods have
implementations for model fit objects for different types of statistical models.
Consequently, what is described in this chapter using linear models as examples,
also applies in many respects to the fit of models not described here.

The R function lm() is used to fit linear models. If the explanatory variable
is continuous, the fit is a regression. If the explanatory variable is a factor, the
fit is an analysis of variance (ANOVA) in broad terms. However, there is another
meaning of ANOVA, referring only to the tests of significance rather to an approach
to model fitting. Consequently, rather confusingly, results for tests of significance
for fitted parameter estimates can both in the case of regression and ANOVA, be
presented in an ANOVA table. In this second, stricter meaning, ANOVA means a
test of significance based on the ratios between pairs of variances.

 If you do not clearly remember the difference between numeric vectors
and factors, or how they can be created, please, revisit chapter 2 on page 17.

4.6.1 Regression

In the example immediately below, speed is a continuous numeric variable. In the
ANOVA table calculated for the model fit, in this case a linear regression, we can
see that the term for speed has only one degree of freedom (df).

In the next example we continue using the stopping distance for cars data set
included in R. Please see the plot on page 125.

data(cars)
is.factor(cars$speed)
[1] FALSE

is.numeric(cars$speed)
[1] TRUE

We then fit the simple linear model 𝑦 = 𝛼 ⋅ 1 + 𝛽 ⋅ 𝑥 where 𝑦 corresponds to
stopping distance (dist) and 𝑥 to initial speed (speed). Such a model is formulated
in R as dist ~ 1 + speed. We save the fitted model as fm1 (a mnemonic for
fitted-model one).

fm1 <- lm(dist ~ 1 + speed, data=cars)

class(fm1)

[1] "lm"

The next step is diagnosis of the fit. Are assumptions of the linear model pro-
cedure used reasonably close to being fulfilled? In R it is most common to use
plots to this end. We show here only one of the four plots normally produced. This
quantile vs. quantile plot allows us to assess how much the residuals deviate from
being normally distributed.

129 Fitting linear models

plot(fm1, which = 2)

-2 -1 0 1 2

-2
-1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(dist ~ 1 + speed)

Normal Q-Q

4923

35

In the case of a regression, calling summary() with the fitted model object as
argument is most useful as it provides a table of coefficient estimates and their
errors. Remember that as is the case for most R functions, the value returned by
summary() is printed when we call this method at the R prompt.

summary(fm1)

##

Call:

lm(formula = dist ~ 1 + speed, data = cars)

##

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511,Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Let’s look at the printout of the summary, section by section. Under “Call:” we
find, dist ~ 1 + speed or the specification of the model fitted, plus the data used.
Under “Residuals:” we find the extremes, quartiles and median of the residuals, or
deviations between observations and the fitted line. Under “Coefficients:” we find
the estimates of the model parameters and their variation plus corresponding 𝑡-
tests. At the end of the summary there is information on degrees of freedom and
overall coefficient of determination (𝑅2).

If we return to the model formulation, we can now replace 𝛼 and 𝛽 by the

130 The R language: Statistics

estimates obtaining 𝑦 = −17.6+3.93𝑥. Given the nature of the problem, we know
based on first principles that stopping distance must be zero when speed is zero.
This suggests that we should not estimate the value of 𝛼 but instead set 𝛼 = 0, or
in other words, fit the model 𝑦 = 𝛽 ⋅ 𝑥.

However, in R models, the intercept is always implicitly included, so the model
fitted above can be formulated as dist ~ speed—i.e., a missing + 1 does not
change the model. To exclude the intercept from the previous model, we need to
specify it as dist ~ speed - 1, resulting in the fitting of a straight line passing
through the origin (𝑥 = 0, 𝑦 = 0).

fm2 <- lm(dist ~ speed - 1, data = cars)

summary(fm2)

##

Call:

lm(formula = dist ~ speed - 1, data = cars)

##

Residuals:

Min 1Q Median 3Q Max

-26.183 -12.637 -5.455 4.590 50.181

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

speed 2.9091 0.1414 20.58 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 16.26 on 49 degrees of freedom

Multiple R-squared: 0.8963,Adjusted R-squared: 0.8942

F-statistic: 423.5 on 1 and 49 DF, p-value: < 2.2e-16

Now there is no estimate for the intercept in the summary, only an estimate for
the slope.

plot(fm2, which = 1)

10 20 30 40 50 60 70

-2
0

0
20

40

Fitted values

R
es

id
ua

ls

lm(dist ~ speed - 1)

Residuals vs Fitted

49

23
35

The equation of the second fitted model is 𝑦 = 2.91𝑥, and from the residuals, it

131 Fitting linear models

can be seen that it is inadequate, as the straight line does not follow the curvature
of the relationship between dist and speed.

U You will now fit a second-degree polynomial, a different linear model: 𝑦 =
𝛼 ⋅ 1+𝛽1 ⋅ 𝑥+𝛽2 ⋅ 𝑥2. The function used is the same as for linear regression,
lm(). We only need to alter the formulation of the model. The identity function
I() is used to protect its argument from being interpreted as part of the model
formula. Instead, its argument is evaluated beforehand and the result is used
as the, in this case second, explanatory variable.

fm3 <- lm(dist ~ speed + I(speed^2), data = cars)

plot(fm3, which = 3)

summary(fm3)

anova(fm3)

The “same” fit using an orthogonal polynomial can be specified using func-
tion poly(). Polynomials of different degrees can be obtained by supplying
as the second argument to poly() the corresponding positive integer value.
In this case, the different terms of the polynomial are bulked together in the
summary.

fm3a <- lm(dist ~ poly(speed, 2), data = cars)

summary(fm3a)

anova(fm3a)

We can also compare two model fits using anova(), to test whether one of
the models describes the data better than the other. It is important in this case
to take into consideration the nature of the difference between the model for-
mulas, most importantly if they can be interpreted as nested—i.e., interpreted
as a base model vs. the same model with additional terms.

anova(fm2, fm1)

Three or more models can also be compared in a single call to anova().
However, be careful, as the order of the arguments matters.

anova(fm2, fm3, fm3a)
anova(fm2, fm3a, fm3)

We can use different criteria to choose the “best” model: significance based
on 𝑝-values or information criteria (AIC, BIC). AIC (Akaike’s “An Informa-
tion Criterion”) and BIC (“Bayesian Information Criterion” = SBC, “Schwarz’s
Bayesian criterion”) that penalize the resulting “goodness” based on the num-
ber of parameters in the fitted model. In the case of AIC and BIC, a smaller
value is better, and values returned can be either positive or negative, in which
case more negative is better. Estimates for both BIC and AIC are returned by
anova(), and on their own by BIC() and AIC()

BIC(fm2, fm1, fm3, fm3a)
AIC(fm2, fm1, fm3, fm3a)

132 The R language: Statistics

Once you have run the code in the chunks above, you will be able see that
these three criteria do not necessarily agree on which is the “best” model. Find
in the output 𝑝-value, BIC and AIC estimates, for the different models and
conclude which model is favored by each of the three criteria. In addition you
will notice that the two different formulations of the quadratic polynomial are
equivalent.

Additional methods give easy access to different components of fitted models:
vcov() returns the variance-covariance matrix, coef() and its alias coefficients()

return the estimates for the fitted model coefficients, fitted() and its alias
fitted.values() extract the fitted values, and resid() and its alias residuals()

the corresponding residuals (or deviations). Less frequently used accessors are
effects(), terms(), model.frame() and model.matrix().

U Familiarize yourself with these extraction and summary methods by read-
ing their documentation and use them to explore fm1 fitted above or model fits
to other data of your interest.

 The objects returned by model fitting functions are rather complex and
contain the full information, including the data to which the model was fit to.
The different functions described above, either extract parts of the object or
do additional calculations and formatting based on them. There are different
specializations of these methods which are called depending on the class of
the model-fit object. (See section 5.4 on page 172.)

class(fm1)
[1] "lm"

We rarely need to manually explore the structure of these model-fit objects
when using R interactively. In contrast, when including model fitting in scripts
or package code, the need to efficiently extract specific members from them
happens more frequently. As with any other R object we can use str() to ex-
plore them.

str(fm1, max.level = 1) # not evaluated

We frequently only look at the output of anova() as implicitly displayed
by print(). However, both anova() and summary() return complex objects con-
taining members with data not displayed by the matching print() methods.
Understanding this is frequently useful, when we want to either display the re-
sults in a different format, or extract parts of them for use in additional tests
or computations. Once again we use str() to look at the structure.

133 Fitting linear models

str(anova(fm1))
Classes 'anova' and 'data.frame': 2 obs. of 5 variables:
$ Df : int 1 48
$ Sum Sq : num 21185 11354
$ Mean Sq: num 21185 237
$ F value: num 89.6 NA

$ Pr(>F) : num 1.49e-12 NA

- attr(*, "heading")= chr [1:2] "Analysis of Variance Table\n" "Response: dist"

str(summary(fm1))

List of 11

$ call : language lm(formula = dist ~ 1 + speed, data = cars)

$ terms :Classes 'terms', 'formula' language dist ~ 1 + speed

.. ..- attr(*, "variables")= language list(dist, speed)

.. ..- attr(*, "factors")= int [1:2, 1] 0 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "dist" "speed"

..$: chr "speed"

.. ..- attr(*, "term.labels")= chr "speed"

.. ..- attr(*, "order")= int 1

.. ..- attr(*, "intercept")= int 1

.. ..- attr(*, "response")= int 1

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

.. ..- attr(*, "predvars")= language list(dist, speed)

.. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"

..- attr(*, "names")= chr [1:2] "dist" "speed"

$ residuals : Named num [1:50] 3.85 11.85 -5.95 12.05 2.12 ...

..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...

$ coefficients : num [1:2, 1:4] -17.579 3.932 6.758 0.416 -2.601 ...

..- attr(*, "dimnames")=List of 2

.. ..$: chr [1:2] "(Intercept)" "speed"

.. ..$: chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"

$ aliased : Named logi [1:2] FALSE FALSE

..- attr(*, "names")= chr [1:2] "(Intercept)" "speed"

$ sigma : num 15.4
$ df : int [1:3] 2 48 2
$ r.squared : num 0.651
$ adj.r.squared: num 0.644
$ fstatistic : Named num [1:3] 89.6 1 48
..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"

$ cov.unscaled : num [1:2, 1:2] 0.19311 -0.01124 -0.01124 0.00073

..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:2] "(Intercept)" "speed"
.. ..$: chr [1:2] "(Intercept)" "speed"
- attr(*, "class")= chr "summary.lm"

Once we know the structure of the object and the names of members, we
can simply extract them using the usual R rules for member extraction.

summary(fm1)$adj.r.squared
[1] 0.6438102

As an example we test if the slope from a linear regression fit deviates
significantly from a constant value different from the usual zero.

The examples above are for a null hypothesis of slope = 0 and next we

134 The R language: Statistics

show how to do the equivalent test with a null hypothesis of slope = 1. The
procedure is applicable to any constant value as a null hypothesis for any of
the fitted parameter estimates for hypotheses set a priori. The examples use
a two-sided test. In some cases, a single-sided test should be used (e.g., if its
known a priori that deviation is because of physical reasons possible only in
one direction away from the null hypothesis, or because only one direction of
response is of interest).

To estimate the t-value we need an estimate for the parameter and an esti-
mate of the standard error for this estimate and its degrees of freedom.

est.slope.value <- summary(fm1)$coef["speed", "Estimate"]
est.slope.se <- summary(fm1)$coef["speed", "Std. Error"]
degrees.of.freedom <- summary(fm1)$df[2]

The t-test is based on the difference between the value of the null hypothesis
and the estimate.

hyp.null <- 1
t.value <- (est.slope.value - hyp.null) / est.slope.se
p.value <- dt(t.value, df = degrees.of.freedom)

U Check that the procedure above agrees with the output of summary()

when we set hyp.null <- 0 instead of hyp.null <- 1.
Modify the example so as to test whether the intercept is significantly larger

than 5 feet, doing a one-sided test.

Method predict() uses the fitted model together with new data for the indepen-
dent variables to compute predictions. As predict() accepts new data as input, it
allows interpolation and extrapolation to values of the independent variables not
present in the original data. In the case of fits of linear- and some other models,
method predict() returns, in addition to the prediction, estimates of the confi-
dence and/or prediction intervals. The new data must be stored in a data frame
with columns using the same names for the explanatory variables as in the data
used for the fit, a response variable is not needed and additional columns are
ignored. (The explanatory variables in the new data can be either continuous or
factors, but they must match in this respect those in the original data.)

U Predict using both fm1 and fm2 the distance required to stop cars
moving at 0, 5, 10, 20, 30, and 40 mph. Study the help page for the predict
method for linear models (using help(predict.lm)). Explore the difference be-
tween "prediction" and "confidence" bands: why are they so different?

http:help(predict.lm
http:est.slope.se
http:est.slope.se

135 Fitting linear models

4.6.2 Analysis of variance, ANOVA

We use here the InsectSprays data set, giving insect counts in plots sprayed with
different insecticides. In these data, spray is a factor with six levels.

The call is exactly the same as the one for linear regression, only the names of
the variables and data frame are different. What determines that this is an ANOVA
is that spray, the explanatory variable, is a factor.

data(InsectSprays)
is.numeric(InsectSprays$spray)
[1] FALSE

is.factor(InsectSprays$spray)
[1] TRUE

levels(InsectSprays$spray)
[1] "A" "B" "C" "D" "E" "F"

We fit the model in exactly the same way as for linear regression; the difference
is that we use a factor as the explanatory variable. By using a factor instead of a
numeric vector, a different model matrix is built from an equivalent formula.

fm4 <- lm(count ~ spray, data = InsectSprays)

Diagnostic plots are obtained in the same way as for linear regression.

plot(fm4, which = 3)

5 10 15

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(count ~ spray)

Scale-Location
6970

8

In ANOVA we are mainly interested in testing hypotheses, and anova() pro-
vides the most interesting output. Function summary() can be used to extract pa-
rameter estimates. The default contrasts and corresponding 𝑝-values returned by
summary() test hypotheses that have little or no direct interest in an analysis of
variance. Function aov() is a wrapper on lm() that returns an object that by de-
fault when printed displays the output of anova().

136 The R language: Statistics

anova(fm4)
Analysis of Variance Table

Response: count
Df Sum Sq Mean Sq F value Pr(>F)
spray 5 2668.8 533.77 34.702 < 2.2e-16 ***
Residuals 66 1015.2 15.38

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 The defaults used for model fits and ANOVA calculations vary among
programs. There exist different so-called “types” of sums of squares, usually
called I, II, and III. In orthogonal designs the choice has no consequences, but
differences can be important for unbalanced designs, even leading to different
conclusions. R’s default, type I, is usually considered to suffer milder problems
than type III, the default used by SPSS and SAS.

The contrasts used affect the estimates returned by coef() and summary()

applied to an ANOVA model fit. The default used in R is different to that used
in some other programs (even different than in S). The most straightforward
way of setting a different default for a whole series of model fits is by setting
R option contrasts, which we here only print.

options("contrasts")

$contrasts

unordered ordered

"contr.treatment" "contr.poly"

It is also possible to select the contrast to be used in the call to aov() or lm().
The default, contr.treatment uses the first level of the factor (assumed to be a
control) as reference for estimation of coefficients and their significance, while
contr.sum uses as reference the mean of all levels, by using as condition that
the sum of the coefficient estimates is equal to zero. Obviously this changes
what the coefficients describe, and consequently also the estimated 𝑝-values.

fm4trea <- lm(count ~ spray, data = InsectSprays,
contrasts = list(spray = contr.treatment))

fm4sum <- lm(count ~ spray, data = InsectSprays,
contrasts = list(spray = contr.sum))

Interpretation of any analysis has to take into account these differences and
users should not be surprised if ANOVA yields different results in base R and
SPSS or SAS given the different types of sums of squares used. The interpreta-
tion of ANOVA on designs that are not orthogonal will depend on which type
is used, so the different results are not necessarily contradictory even when
different.

137 Fitting linear models

summary(fm4trea)

##

Call:

lm(formula = count ~ spray, data = InsectSprays,

contrasts = list(spray = contr.treatment))

##

Residuals:

Min 1Q Median 3Q Max

-8.333 -1.958 -0.500 1.667 9.333

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5000 1.1322 12.807 < 2e-16 ***

spray2 0.8333 1.6011 0.520 0.604

spray3 -12.4167 1.6011 -7.755 7.27e-11 ***

spray4 -9.5833 1.6011 -5.985 9.82e-08 ***

spray5 -11.0000 1.6011 -6.870 2.75e-09 ***

spray6 2.1667 1.6011 1.353 0.181

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 3.922 on 66 degrees of freedom

Multiple R-squared: 0.7244,Adjusted R-squared: 0.7036

F-statistic: 34.7 on 5 and 66 DF, p-value: < 2.2e-16

summary(fm4sum)

##

Call:

lm(formula = count ~ spray, data = InsectSprays,

contrasts = list(spray = contr.sum))

##

Residuals:

Min 1Q Median 3Q Max

-8.333 -1.958 -0.500 1.667 9.333

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.5000 0.4622 20.554 < 2e-16 ***

spray1 5.0000 1.0335 4.838 8.22e-06 ***

spray2 5.8333 1.0335 5.644 3.78e-07 ***

spray3 -7.4167 1.0335 -7.176 7.87e-10 ***

spray4 -4.5833 1.0335 -4.435 3.57e-05 ***

spray5 -6.0000 1.0335 -5.805 2.00e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 3.922 on 66 degrees of freedom

Multiple R-squared: 0.7244,Adjusted R-squared: 0.7036

F-statistic: 34.7 on 5 and 66 DF, p-value: < 2.2e-16

In the case of contrasts, they always affect the parameter estimates inde-
pendently of whether the experiment design is orthogonal or not. A different
set of contrasts simply tests a different set of possible treatment effects. Con-
trasts, on the other hand, do not affect the table returned by anova() as this
table does not deal with the effects of individual factor levels.

138 The R language: Statistics

4.6.3 Analysis of covariance, ANCOVA

When a linear model includes both explanatory factors and continuous explanatory
variables, we may call it analysis of covariance (ANCOVA). The formula syntax is the
same for all linear models and, as mentioned in previous sections, what determines
the type of analysis is the nature of the explanatory variable(s). As the formulation
remains the same, no specific example is given. The main difficulty of ANCOVA is
in the selection of the covariate and the interpretation of the results of the analysis
(e.g. Smith 1957).

4.7 Generalized linear models

Linear models make the assumption of normally distributed residuals. Generalized
linear models, fitted with function glm() are more flexible, and allow the assumed
distribution to be selected as well as the link function. For the analysis of the
InsectSpray data set above (section 4.6.2 on page 135), the Normal distribution is
not a good approximation as count data deviates from it. This was visible in the
quantile–quantile plot above.

For count data, GLMs provide a better alternative. In the example below we
fit the same model as above, but we assume a quasi-Poisson distribution instead
of the Normal. In addition to the model formula we need to pass an argument
through family giving the error distribution to be assumed—the default for family

is gaussian or Normal distribution.

fm10 <- glm(count ~ spray, data = InsectSprays, family = quasipoisson)

anova(fm10)

Analysis of Deviance Table

##

Model: quasipoisson, link: log

##

Response: count

##

Terms added sequentially (first to last)

##

##

Df Deviance Resid. Df Resid. Dev

NULL 71 409.04

spray 5 310.71 66 98.33

The printout from the anova() method for GLM fits has some differences to that
for LM fits. By default, no significance test is computed, as a knowledgeable choice
is required depending on the characteristics of the model and data. We here use
"F" as an argument to request an 𝐹-test.

anova(fm10, test = "F")

Analysis of Deviance Table

##

Model: quasipoisson, link: log

##

Response: count

139 Generalized linear models

##

Terms added sequentially (first to last)

##

##

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 71 409.04

spray 5 310.71 66 98.33 41.216 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Method plot() as for linear-model fits, produces diagnosis plots. We show as
above the q-q-plot of residuals.

plot(fm10, which = 3)

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Predicted values

S
td

. P
ea

rs
on

 r
es

id
.

glm(count ~ spray)

Scale-Location
27 39

69

We can extract different components similarly as described for linear models
(see section 4.6 on page 127).

class(fm10)

[1] "glm" "lm"

summary(fm10)

##

Call:

glm(formula = count ~ spray, family = quasipoisson, data = InsectSprays)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3852 -0.8876 -0.1482 0.6063 2.6922

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.67415 0.09309 28.728 < 2e-16 ***

sprayB 0.05588 0.12984 0.430 0.668

sprayC -1.94018 0.26263 -7.388 3.30e-10 ***

sprayD -1.08152 0.18499 -5.847 1.70e-07 ***

sprayE -1.42139 0.21110 -6.733 4.82e-09 ***

140 The R language: Statistics

sprayF 0.13926 0.12729 1.094 0.278

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 1.507713)

Null deviance: 409.041 on 71 degrees of freedom
Residual deviance: 98.329 on 66 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

head(residuals(fm10))
1 2 3 4 5 6
-1.2524891 -2.1919537 1.3650439 -0.1320721 -0.1320721 -0.6768988

head(fitted(fm10))
1 2 3 4 5 6
14.5 14.5 14.5 14.5 14.5 14.5

 If we use str() or names() we can see that there are some differences
with respect to linear model fits. The returned object is of a different class and
contains some members not present in linear models. Two of these have to do
with the iterative approximation method used, iter contains the number of
iterations used and converged the success or not in finding a solution.

names(fm10)
[1] "coefficients" "residuals" "fitted.values"
[4] "effects" "R" "rank"
[7] "qr" "family" "linear.predictors"
[10] "deviance" "aic" "null.deviance"
[13] "iter" "weights" "prior.weights"
[16] "df.residual" "df.null" "y"
[19] "converged" "boundary" "model"
[22] "call" "formula" "terms"
[25] "data" "offset" "control"
[28] "method" "contrasts" "xlevels"

fm10$converged
[1] TRUE

fm10$iter
[1] 5

4.8 Non-linear regression

Function nls() is R’s workhorse for fitting non-linear models. By non-linear it is
meant non-linear in the parameters whose values are being estimated through

max
d

 (4.1)
d M

141 Non-linear regression

fitting the model to data. This is different from the shape of the function
when plotted—i.e., polynomials of any degree are linear models. In contrast, the
Michaelis-Menten equation used in chemistry and the Gompertz equation used to
describe growth are non-linear models in their parameters.

While analytical algorithms exist for finding estimates for the parameters of
linear models, in the case of non-linear models, the estimates are obtained by ap-
proximation. For analytical solutions, estimates can always be obtained, except in
infrequent pathological cases where reliance on floating point numbers with lim-
ited resolution introduces rounding errors that “break” mathematical algorithms
that are valid for real numbers. For approximations obtained through iteration,
cases when the algorithm fails to converge onto an answer are relatively common.
Iterative algorithms attempt to improve an initial guess for the values of the pa-
rameters to be estimated, a guess frequently supplied by the user. In each iteration
the estimate obtained in the previous iteration is used as the starting value, and
this process is repeated one time after another. The expectation is that after a fi-
nite number of iterations the algorithm will converge into a solution that “cannot”
be improved further. In real life we stop iteration when the improvement in the
fit is smaller than a certain threshold, or when no convergence has been achieved
after a certain maximum number of iterations. In the first case, we usually obtain
good estimates; in the second case, we do not obtain usable estimates and need to
look for different ways of obtaining them. When convergence fails, the first thing
to do is to try different starting values and if this also fails, switch to a different
computational algorithm. These steps usually help, but not always. Good starting
values are in many cases crucial and in some cases “guesses” can be obtained using
either graphical or analytical approximations.

For functions for which computational algorithms exist for “guessing” suit-
able starting values, R provides a mechanism for packaging the function to be
fitted together with the function generating the starting values. These functions
go by the name of self-starting functions and relieve the user from the burden of
guessing and supplying suitable starting values. The self-starting functions avail-
able in R are SSasymp(), SSasympOff(), SSasympOrig(), SSbiexp(), SSfol(), SSfpl(),
SSgompertz(), SSlogis(), SSmicmen(), and SSweibull(). Function selfStart() can
be used to define new ones. All these functions can be used when fitting models
with nls or nlme. Please, check the respective help pages for details.

In the case of nls() the specification of the model to be fitted differs from that
used for linear models. We will use as an example fitting the Michaelis-Menten
equation describing reaction kinetics in biochemistry and chemistry. The mathe-
matical formulation is given by:

𝑉 [𝑆]𝑣 = [𝑃] =𝑡 𝐾 + [𝑆]
The function takes its name from Michaelis and Menten’s paper from 1913

(Johnson and Goody 2011). A self-starting function implementing the Michaelis-
Menten equation is available in R under the name SSmicmen() . We will use the
Puromycin data set.

data(Puromycin)
names(Puromycin)
[1] "conc" "rate" "state"

142 The R language: Statistics

fm21 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,
subset = state == "treated")

We can extract different components similarly as described for linear models
(see section 4.6 on page 127).

class(fm21)
[1] "nls"

summary(fm21)

Formula: rate ~ SSmicmen(conc, Vm, K)

Parameters:
Estimate Std. Error t value Pr(>|t|)
Vm 2.127e+02 6.947e+00 30.615 3.24e-11 ***
K 6.412e-02 8.281e-03 7.743 1.57e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.93 on 10 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.937e-06

residuals(fm21)
[1] 25.4339970 -3.5660030 -5.8109606 4.1890394 -11.3616076 4.6383924
[7] -5.6846886 -12.6846886 0.1670799 10.1670799 6.0311724 -0.9688276
attr(,"label")
[1] "Residuals"

fitted(fm21)

[1] 50.5660 50.5660 102.8110 102.8110 134.3616 134.3616 164.6847 164.6847

[9] 190.8329 190.8329 200.9688 200.9688

attr(,"label")

[1] "Fitted values"

 If we use str() or names() we can see that there are differences with
respect to linear model and generalized model fits. The returned object is of
class nls and contains some new members and lacks others. Two members
are related to the iterative approximation method used, control containing
nested members holding iteration settings, and convInfo (convergence infor-
mation) with nested members with information on the outcome of the iterative
algorithm.

143 Model formulas

str(fm21, max.level = 1)

List of 6

$ m :List of 16

..- attr(*, "class")= chr "nlsModel"

$ convInfo :List of 5

$ data : symbol Puromycin

$ call : language nls(formula = rate ~ SSmicmen(conc, Vm, K),

data = Puromycin, subset = __truncated__ ...

$ dataClasses: Named chr "numeric"

..- attr(*, "names")= chr "conc"

$ control :List of 5

- attr(*, "class")= chr "nls"

fm21$convInfo

$isConv

[1] TRUE

##

$finIter

[1] 0

##

$finTol

[1] 1.937028e-06

##

$stopCode

[1] 0

##

$stopMessage

[1] "converged"

4.9 Model formulas

In the examples above we fitted simple models. More complex ones can be easily
formulated using the same syntax. First of all, one can avoid use of operator * and
explicitly define all individual main effects and interactions using operators + and
:. The syntax implemented in base R allows grouping by means of parentheses,
so it is also possible to exclude some interactions by combining the use of * and
parentheses.

The same symbols as for arithmetic operators are used for model formulas.
Within a formula, symbols are interpreted according to formula syntax. When we
mean an arithmetic operation that could be interpreted as being part of the model
formula we need to “protect” it by means of the identity function I(). The next two
examples define formulas for models with only one explanatory variable. With for-
mulas like these, the explanatory variable will be computed on the fly when fitting
the model to data. In the first case below we need to explicitly protect the addition
of the two variables into their sum, because otherwise they would be interpreted as
two separate explanatory variables in the model. In the second case, log() cannot

144 The R language: Statistics

be interpreted as part of the model formula, and consequently does not require
additional protection, neither does the expression passed as its argument.

y ~ I(x1 + x2)
y ~ log(x1 + x2)

R formula syntax allows alternative ways for specifying interaction terms. They
allow “abbreviated” ways of entering formulas, which for complex experimental
designs saves typing and can improve clarity. As seen above, operator * saves us
from having to explicitly indicate all the interaction terms in a full factorial model.

y ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3

Can be replaced by a concise equivalent.

y ~ x1 * x2 * x3

When the model to be specified does not include all possible interaction terms,
we can combine the concise notation with parentheses.

y ~ x1 + (x2 * x3)
y ~ x1 + x2 + x3 + x2:x3

That the two model formulas above are equivalent, can be seen using terms()

terms(y ~ x1 + (x2 * x3))

y ~ x1 + (x2 * x3)

attr(,"variables")

list(y, x1, x2, x3)

attr(,"factors")

x1 x2 x3 x2:x3

y 0 0 0 0

x1 1 0 0 0

x2 0 1 0 1

x3 0 0 1 1

attr(,"term.labels")

[1] "x1" "x2" "x3" "x2:x3"

attr(,"order")

[1] 1 1 1 2

attr(,"intercept")

[1] 1

attr(,"response")

[1] 1

attr(,".Environment")

<environment: R_GlobalEnv>

y ~ x1 * (x2 + x3)

y ~ x1 + x2 + x3 + x1:x2 + x1:x3

terms(y ~ x1 * (x2 + x3))

y ~ x1 * (x2 + x3)

attr(,"variables")

list(y, x1, x2, x3)

attr(,"factors")

145 Model formulas

x1 x2 x3 x1:x2 x1:x3
y 0 0 0 0 0
x1 1 0 0 1 1
x2 0 1 0 1 0
x3 0 0 1 0 1
attr(,"term.labels")
[1] "x1" "x2" "x3" "x1:x2" "x1:x3"
attr(,"order")
[1] 1 1 1 2 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>

The ^ operator provides a concise notation to limit the order of the interaction
terms included in a formula.

y ~ (x1 + x2 + x3)^2
y ~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3

terms(y ~ (x1 + x2 + x3)^2)
y ~ (x1 + x2 + x3)^2
attr(,"variables")
list(y, x1, x2, x3)
attr(,"factors")
x1 x2 x3 x1:x2 x1:x3 x2:x3
y 0 0 0 0 0 0
x1 1 0 0 1 1 0
x2 0 1 0 1 0 1
x3 0 0 1 0 1 1
attr(,"term.labels")
[1] "x1" "x2" "x3" "x1:x2" "x1:x3" "x2:x3"
attr(,"order")
[1] 1 1 1 2 2 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>

U For operator ^ to behave as expected, its first operand should be a
formula with no interactions! Compare the result of expanding these two for-
mulas with trems().

y ~ (x1 + x2 + x3)^2
y ~ (x1 * x2 * x3)^2

Operator %in% can also be used as a shortcut for including only some of all the
possible interaction terms in a formula.

146 The R language: Statistics

y ~ x1 + x2 + x1 %in% x2

terms(y ~ x1 + x2 + x1 %in% x2)
y ~ x1 + x2 + x1 %in% x2
attr(,"variables")
list(y, x1, x2)
attr(,"factors")
x1 x2 x1:x2
y 0 0 0
x1 1 0 1
x2 0 1 1
attr(,"term.labels")
[1] "x1" "x2" "x1:x2"
attr(,"order")
[1] 1 1 2
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>

U Execute the examples below using the npk data set from R. They demon-
strate the use of different model formulas in ANOVA. Use these examples plus
your own variations on the same theme to build your understanding of the
syntax of model formulas. Based on the terms displayed in the ANOVA tables,
first work out what models are being fitted in each case. In a second step, write
each of the models using a mathematical formulation. Finally, think how model
choice may affect the conclusions from an analysis of variance.

data(npk)

anova(lm(yield ~ N * P * K, data = npk))

anova(lm(yield ~ (N + P + K)^2, data = npk))

anova(lm(yield ~ N + P + K + P %in% N + K %in% N, data = npk))

anova(lm(yield ~ N + P + K + N %in% P + K %in% P, data = npk))

Nesting of factors in experiments using hierarchical designs such as split-plots
or repeated measures, results in the need to compute additional error terms, differ-
ing in their degrees of freedom. In such a design, different effects are tested based
on different error terms. Whether nesting exists or not is a property of an experi-
ment. It is decided as part of the design of the experiment based on the mechanics
of treatment assignment to experimental units. In base-R model-formulas, nesting
needs to be described by explicit definition of error terms by means of Error()

within the formula. Nowadays, linear mixed-effects (LME) models are most fre-
quently used with data from experiments and surveys using hierarchical designs,
as implemented in packages ‘nlme’ and ‘lme4’. These two packages use their own
extensions to the model formula syntax to describe nesting and distinguishing
fixed and random effects. Additive models have required other extensions, most

147 Model formulas

of them specific to individual packages. These extensions fall outside the scope of
this book.

 R will accept any syntactically correct model formula, even when the re-
sults of the fit are not interpretable. It is the responsibility of the user to en-
sure that models are meaningful. The most common, and dangerous, mistake
is specifying for factorial experiments, models that are missing lower-order
interactions.

Fitting models like those below to data from an experiment based on a
three-way factorial design should be avoided. In both cases simpler terms are
missing, while higher-order interaction(s) that include the missing term are in-
cluded in the model. Such models are not interpretable, as the variation from
the missing term(s) ends being “disguised” within the remaining terms, dis-
torting their apparent significance and parameter estimates.

y ~ A + B + A:B + A:C + B:C
y ~ A + B + C + A:B + A:C + A:B:C

In contrast to those above, the models below are interpretable, even if not
“full” models (not including all possible interactions).

y ~ A + B + C + A:B + A:C + B:C
y ~ (A + B + C)^2
y ~ A + B + C + B:C
y ~ A + B * C

As seen in chapter 6, almost everything in the R language is an object that
can be stored and manipulated. Model formulas are also objects, objects of class
"formula".

class(y ~ x)
[1] "formula"

a <- y ~ x
class(a)
[1] "formula"

There is no method is.formula() in base R, but we can easily test the class of
an object with inherits().

inherits(a, "formula")
[1] TRUE

 Manipulation of model formulas. Because this is a book about the R lan-
guage, it is pertinent to describe how formulas can be manipulated. Formulas,

148 The R language: Statistics

as any other R objects, can be saved in variables including lists. Why is this use-
ful? For example, if we want to fit several different models to the same data,
we can write a for loop that walks through a list of model formulas. Or we can
write a function that accepts one or more formulas as arguments.

The use of for loops for iteration over a list of model formulas is described
in section 3.6 on page 115.

my.data <- data.frame(x = 1:10, y = (1:10) / 2 + rnorm(10))

anovas <- list()

formulas <- list(a = y ~ x - 1, b = y ~ x, c = y ~ x + x^2)

for (formula in formulas) {

anovas <- c(anovas, list(lm(formula, data = my.data)))

}

str(anovas, max.level = 1)

List of 3

$:List of 12

..- attr(*, "class")= chr "lm"

$:List of 12

..- attr(*, "class")= chr "lm"

$:List of 12

..- attr(*, "class")= chr "lm"

As could be expected, a conversion constructor is available with name
as.formula(). It is useful when formulas are input interactively by the user
or read from text files. With as.formula() we can convert a character string
into a formula.

my.string <- "y ~ x"
lm(as.formula(my.string), data = my.data)

##

Call:

lm(formula = as.formula(my.string), data = my.data)

##

Coefficients:

(Intercept) x

1.4059 0.2839

As there are many functions for the manipulation of character strings avail-
able in base R and through extension packages, it is straightforward to build
model formulas programmatically as strings. We can use functions like paste()

to assemble a formula as text, and then use as.formula() to convert it to an
object of class formula, usable for fitting a model.

my.string <- paste("y", "x", sep = "~")
lm(as.formula(my.string), data = my.data)

##

Call:

lm(formula = as.formula(my.string), data = my.data)

##

Coefficients:

(Intercept) x

1.4059 0.2839

For the reverse operation of converting a formula into a string, we have

149 Model formulas

available methods as.character() and format(). The first of these methods
returns a character vector containing the components of the formula as indi-
vidual strings, while format() returns a single character string with the formula
formatted for printing.

formatted.string <- format(y ~ x)

formatted.string

[1] "y ~ x"

as.formula(formatted.string)

y ~ x

It is also possible to edit formula objects with method update(). In the re-
placement formula, a dot can replace either the left-hand side (lhs) or the right-
hand side (rhs) of the existing formula in the replacement formula. We can also
remove terms as can be seen below. In some cases the dot corresponding to
the lhs can be omitted, but including it makes the syntax clearer.

my.formula <- y ~ x1 + x2
update(my.formula, . ~ . + x3)
y ~ x1 + x2 + x3

update(my.formula, . ~ . - x1)
y ~ x2

update(my.formula, . ~ x3)
y ~ x3

update(my.formula, z ~ .)
z ~ x1 + x2

update(my.formula, . + z ~ .)
y + z ~ x1 + x2

R provides high-level functions for model selection. Consequently many R
users will rarely need to edit model formulas in their scripts. For example,
step-wise model selection is possible with R method step().

A matrix of dummy coefficients can be derived from a model formula, a
type of contrast, and the data for the explanatory variables.

treats.df <- data.frame(A = rep(c("yes", "no"), c(4, 4)),
B = rep(c("white", "black"), 4))

treats.df
A B
1 yes white
2 yes black
3 yes white
4 yes black
5 no white
6 no black
7 no white
8 no black

The default contrasts types currently in use.

http:treats.df
http:treats.df

150 The R language: Statistics

options("contrasts")

$contrasts

unordered ordered

"contr.treatment" "contr.poly"

A model matrix for a model for a two-way factorial design with no interac-
tion term:

model.matrix(~ A + B, treats.df)
(Intercept) Ayes Bwhite
1 1 1 1
2 1 1 0
3 1 1 1
4 1 1 0
5 1 0 1
6 1 0 0
7 1 0 1
8 1 0 0
attr(,"assign")
[1] 0 1 2
attr(,"contrasts")
attr(,"contrasts")$A
[1] "contr.treatment"

attr(,"contrasts")$B
[1] "contr.treatment"

A model matrix for a model for a two-way factorial design with interaction
term:

model.matrix(~ A * B, treats.df)
(Intercept) Ayes Bwhite Ayes:Bwhite
1 1 1 1 1
2 1 1 0 0
3 1 1 1 1
4 1 1 0 0
5 1 0 1 0
6 1 0 0 0
7 1 0 1 0
8 1 0 0 0
attr(,"assign")
[1] 0 1 2 3
attr(,"contrasts")
attr(,"contrasts")$A
[1] "contr.treatment"

attr(,"contrasts")$B
[1] "contr.treatment"

http:treats.df
http:treats.df

Time series 151

4.10 Time series

Longitudinal data consist of repeated measurements, usually done over time, on
the same experimental units. Longitudinal data, when replicated on several exper-
imental units at each time point, are called repeated measurements, while when
not replicated, they are called time series. Base R provides special support for the
analysis of time series data, while repeated measurements can be analyzed with
nested linear models, mixed-effects models, and additive models.

Time series data are data collected in such a way that there is only one observa-
tion, possibly of multiple variables, available at each point in time. This brief sec-
tion introduces only the most basic aspects of time-series analysis. In most cases
time steps are of uniform duration and occur regularly, which simplifies data han-
dling and storage. R not only provides methods for the analysis and manipulation
of time-series, but also a specialized class for their storage, "ts". Regular time
steps allow more compact storage—e.g., a ts object does not need to store time
values for each observation but instead a combination of two of start time, step
size and end time.

We start by creating a time series from a numeric vector. By now, you surely
guessed that you need to use a constructor called ts() or a conversion constructor
called as.ts() and that you can look up the arguments they accept by reading the
corresponding help pages.

For example for a time series of monthly values we could use:

my.ts <- ts(1:10, start = 2019, deltat = 1/12)

class(my.ts)

[1] "ts"

str(my.ts)

Time-Series [1:10] from 2019 to 2020: 1 2 3 4 5 6 7 8 9 10

We next use the data set austres with data on the number of Australian resi-
dents and included in R.

class(austres)
[1] "ts"

is.ts(austres)
[1] TRUE

Time series austres is dominated by the increasing trend.

plot(austres)

http:str(my.ts
http:class(my.ts

152 The R language: Statistics

Time

au
st
re
s

1975 1980 1985 1990

13
00
0

16
00
0

A different example, using data set nottem containing meteorological data for
Nottingham, shows a clear cyclic component. The annual cycle of mean air tem-
peratures (in degrees Fahrenheit) is clear when data are plotted.

data(nottem)
is.ts(nottem)
[1] TRUE

plot(nottem)

Time

no
tte
m

1920 1925 1930 1935 1940

30
45

60

In the next two code chunks, two different approaches to time series decom-
position are used. In the first one we use a moving average to capture the trend,
while in the second approach we use Loess (a smooth curve fitted by local weighted
regression) for the decomposition, a method for which the acronym STL (Seasonal
and Trend decomposition using Loess) is used. Before decomposing the time-
series we reexpress the temperatures in degrees Celsius.

nottem.celcius <- (nottem - 32) * 5/9

We set the seasonal window to 7 months, the minimum accepted.

nottem.stl <- stl(nottem.celcius, s.window = 7)
plot(nottem.stl)

153 Multivariate statistics

0
5

10
15

da
ta

-5
0

5

se
as
on
al

8.
5

9.
5

tr
en
d

-2
0
1
2

1920 1925 1930 1935 1940

re
m
ai
nd
er

time

U It is interesting to explore the class and structure of the object re-
turned by stl(), as we may want to extract components. Run the statements
below to find out, and then plot individual components from the time series
decomposition.

class(nottem.stl)
str(nottem.stl)

4.11 Multivariate statistics

4.11.1 Multivariate analysis of variance

Multivariate methods take into account several response variables simultaneously,
as part of a single analysis. In practice it is usual to use contributed packages
for multivariate data analysis in R, except for simple cases. We will look first at
multivariate ANOVA or MANOVA. In the same way as aov() is a wrapper that uses
internally lm(), manova() is a wrapper that uses internally aov().

Multivariate model formulas in base R require the use of column binding
(cbind()) on the left-hand side (lhs) of the model formula. For the next examples
we use the well-known iris data set, containing size measurements for flowers of
two species of Iris.

154 The R language: Statistics

data(iris)
mmf1 <- lm(cbind(Petal.Length, Petal.Width) ~ Species, data = iris)
anova(mmf1)

Analysis of Variance Table

##

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.98786 5939.2 2 146 < 2.2e-16 ***

Species 2 1.04645 80.7 4 294 < 2.2e-16 ***

Residuals 147

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(mmf1)

Response Petal.Length :

##

Call:

lm(formula = Petal.Length ~ Species, data = iris)

##

Residuals:

Min 1Q Median 3Q Max

-1.260 -0.258 0.038 0.240 1.348

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.46200 0.06086 24.02 <2e-16 ***

Speciesversicolor 2.79800 0.08607 32.51 <2e-16 ***

Speciesvirginica 4.09000 0.08607 47.52 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.4303 on 147 degrees of freedom

Multiple R-squared: 0.9414,Adjusted R-squared: 0.9406

F-statistic: 1180 on 2 and 147 DF, p-value: < 2.2e-16

##

##

Response Petal.Width :

##

Call:

lm(formula = Petal.Width ~ Species, data = iris)

##

Residuals:

Min 1Q Median 3Q Max

-0.626 -0.126 -0.026 0.154 0.474

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.24600 0.02894 8.50 1.96e-14 ***

Speciesversicolor 1.08000 0.04093 26.39 < 2e-16 ***

Speciesvirginica 1.78000 0.04093 43.49 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.2047 on 147 degrees of freedom

Multiple R-squared: 0.9289,Adjusted R-squared: 0.9279

F-statistic: 960 on 2 and 147 DF, p-value: < 2.2e-16

mmf2 <- manova(cbind(Petal.Length, Petal.Width) ~ Species, data = iris)
anova(mmf2)

155 Multivariate statistics

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.98786 5939.2 2 146 < 2.2e-16 ***
Species 2 1.04645 80.7 4 294 < 2.2e-16 ***
Residuals 147

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(mmf2)
Df Pillai approx F num Df den Df Pr(>F)
Species 2 1.0465 80.661 4 294 < 2.2e-16 ***
Residuals 147

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

U Modify the example above to use aov() instead of manova() and save
the result to a variable named mmf3. Use class(), attributes(), names(), str()

and extraction of members to explore objects mmf1, mmf2 and mmf3. Are they
different?

4.11.2 Principal components analysis

Principal components analysis (PCA) is used to simplify a data set by combining
variables with similar and “mirror” behavior into principal components. At a later
stage, we frequently try to interpret these components in relation to known and/or
assumed independent variables. Base R’s function prcomp() computes the principal
components and accepts additional arguments for centering and scaling.

pc <- prcomp(iris[c("Sepal.Length", "Sepal.Width",
"Petal.Length", "Petal.Width")],

center = TRUE,

scale = TRUE)

By printing the returned object we can see the loadings of each variable in the
principal components P1 to P4.

class(pc)
[1] "prcomp"

pc
Standard deviations (1, .., p=4):
[1] 1.7083611 0.9560494 0.3830886 0.1439265

Rotation (n x k) = (4 x 4):
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971

156 The R language: Statistics

In the summary, the rows “Proportion of Variance” and “Cumulative Propor-
tion” are most informative of the contribution of each principal component (PC)
to explaining the variation among observations.

summary(pc)
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 1.7084 0.9560 0.38309 0.14393
Proportion of Variance 0.7296 0.2285 0.03669 0.00518
Cumulative Proportion 0.7296 0.9581 0.99482 1.00000

Method biplot() produces a plot with one principal component (PC) on each
axis, plus arrows for the loadings.

biplot(pc)

-0.2 -0.1 0.0 0.1 0.2

-0
.2

-0
.1

0.
0

0.
1

0.
2

PC1

P
C
2

1

2

3
4

5

6

7
8

9

10

11

12

13
14

15

16

17

18

19
20

21

22

23

2425

26

27
28
29

30
31

32

33

34

35
36

3738

39

40
41

42

43

44

45

46

47

48

49

50

51
5253

54

55

56

57

58

59

60

61

62

63

64
65

66

67

68

69
70

71

72

73

74

75
76

77

78

79

80

8182

83
84

85

86

87

88

89

90
91

92

93

94

95

96
97
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125126

127

128
129

130
131

132

133134

135

136
137

138

139

140141142

143

144
145

146

147

148

149

150

-10 -5 0 5 10

-1
0

-5
0

5
10

Sepal.Length

Sepal.Width

Petal.Length
Petal.Width

Method plot() generates a bar plot of variances corresponding to the different
components.

plot(pc)

157 Multivariate statistics

pc

V
ar
ia
nc
es

0.
0

1.
0

2.
0

Visually more elaborate plots of the principal components and their loadings
can be obtained using packages ‘ggplot’ described in chapter 7 starting on page
203. Package ‘ggfortify’ and package ‘ggbiplot’ extend ‘ggplot’ so as to make it easy
to plot principal components and their loadings.

U For growth and morphological data, a log-transformation can be suitable
given that variance is frequently proportional to the magnitude of the values
measured. We leave as an exercise to repeat the above analysis using trans-
formed values for the dimensions of petals and sepals. How much does the
use of transformations change the outcome of the analysis?

U As for other fitted models, the object returned by function prcomp()

is a list with multiple components.

str(pc, max.level = 1)

4.11.3 Multidimensional scaling

The aim of multidimensional scaling (MDS) is to visualize in 2D space the similarity
between pairs of observations. The values for the observed variable(s) are used to
compute a measure of distance among pairs of observations. The nature of the data
will influence what distance metric is most informative. For MDS we start with a
matrix of distances among observations. We will use, for the example, distances in
kilometers between geographic locations in Europe from data set eurodist.

loc <- cmdscale(eurodist)

We can see that the returned object loc is a matrix, with names for one of the
dimensions.

158 The R language: Statistics

class(loc)
[1] "matrix" "array"

dim(loc)
[1] 21 2

dimnames(loc)
[[1]]
[1] "Athens" "Barcelona" "Brussels" "Calais"
[5] "Cherbourg" "Cologne" "Copenhagen" "Geneva"
[9] "Gibraltar" "Hamburg" "Hook of Holland" "Lisbon"
[13] "Lyons" "Madrid" "Marseilles" "Milan"
[17] "Munich" "Paris" "Rome" "Stockholm"
[21] "Vienna"

[[2]]
NULL

head(loc)
[,1] [,2]
Athens 2290.27468 1798.8029
Barcelona -825.38279 546.8115
Brussels 59.18334 -367.0814
Calais -82.84597 -429.9147
Cherbourg -352.49943 -290.9084
Cologne 293.68963 -405.3119

To make the code easier to read, two vectors are first extracted from the matrix
and named x and y. We force aspect to equality so that distances on both axes are
comparable.

x <- loc[, 1]

y <- -loc[, 2] # change sign so North is at the top

plot(x, y, type = "n", asp = 1,

main = "cmdscale(eurodist)")
text(x, y, rownames(loc), cex = 0.6)

159 Multivariate statistics

-2000 -1000 0 1000 2000

-2
00

0
-1

00
0

0
10

00
20

00

cmdscale(eurodist)

x

y

Athens

Barcelona

Brussels
Calais

Cherbourg
Cologne

Copenhagen

Geneva

Gibraltar

Hamburg

Hook of Holland

Lisbon
Lyons

Madrid
Marseilles Milan

Munich

Paris

Rome

Stockholm

Vienna

U Find data on the mean annual temperature, mean annual rainfall and
mean number of sunny days at each of the locations in the eurodist data set.
Next, compute suitable distance metrics, for example, using function dist. Fi-
nally, use MDS to visualize how similar the locations are with respect to each
of the three variables. Devise a measure of distance that takes into account the
three climate variables and use MDS to find how distant the different locations
are.

4.11.4 Cluster analysis

In cluster analysis, the aim is to group observations into discrete groups with
maximal internal homogeneity and maximum group-to-group differences. In the
next example we use function hclust() from the base-R package ‘stats’. We use, as
above, the eurodist data which directly provides distances. In other cases a ma-
trix of distances between pairs of observations needs to be first calculated with
function dist which supports several methods.

hc <- hclust(eurodist)

print(hc)

##

Call:

hclust(d = eurodist)

##

Cluster method : complete

160 The R language: Statistics

Number of objects: 21

plot(hc)

A
th

en
s

R
om

e
G

ib
ra

lta
r

Li
sb

on
M

ad
rid

S
to

ck
ho

lm
C

op
en

ha
ge

n
H

am
bu

rg
M

ila
n

G
en

ev
a

Ly
on

s
B

ar
ce

lo
na

M
ar

se
ill

es
M

un
ic

h
V

ie
nn

a
C

ol
og

ne
B

ru
ss

el
s

H
oo

k
of

 H
ol

la
nd

C
he

rb
ou

rg
C

al
ai

s
P

ar
is

0
10

00
20

00
30

00
40

00

Cluster Dendrogram

hclust (*, "complete")
eurodist

H
ei

gh
t

We can use cutree() to limit the number of clusters by directly passing as an
argument the desired number of clusters or the height at which to cut the tree.

cutree(hc, k = 5)
Athens Barcelona Brussels Calais Cherbourg
1 2 3 3 3
Cologne Copenhagen Geneva Gibraltar Hamburg
3 4 2 5 4
Hook of Holland Lisbon Lyons Madrid Marseilles
3 5 2 5 2
Milan Munich Paris Rome Stockholm
2 3 3 1 4
Vienna
3

The object returned by hclust() contains details of the result of the clustering,
which allows further manipulation and plotting.

str(hc)

List of 7

$ merge : int [1:20, 1:2] -8 -3 -6 -4 -16 -17 -5 -7 -2 -12 ...

$ height : num [1:20] 158 172 269 280 328 428 460 460 521 668 ...

$ order : int [1:21] 1 19 9 12 14 20 7 10 16 8 ...

$ labels : chr [1:21] "Athens" "Barcelona" "Brussels" "Calais" ...

$ method : chr "complete"

$ call : language hclust(d = eurodist)

161 Further reading

$ dist.method: NULL
- attr(*, "class")= chr "hclust"

4.12 Further reading

Two recent text books on statistics, following a modern approach, and using R
for examples, are OpenIntro Statistics (Diez et al. 2019) and Modern Statistics for
Modern Biology (Holmes and Huber 2019). Three examples of books introducing
statistical computations in R are Introductory Statistics with R (Dalgaard 2008), A
Handbook of Statistical Analyses Using R (B. S. Everitt and Hothorn 2009) and A
Beginner’s Guide to R (Zuur et al. 2009). More advanced books are available with
detailed descriptions various types of analyses in R, including thorough descrip-
tions of the methods briefly presented in this chapter. Good examples of books
with broad scope are The R Book (Crawley 2012) and the classic reference Modern
Applied Statistics with S (Venables and Ripley 2002). More specific books are also
available from which a few suggestions for further reading are An Introduction to
Applied Multivariate Analysis with R (B. Everitt and Hothorn 2011), Linear Models
with R (Faraway 2004), Extending the linear model with R: generalized linear, mixed
effects and nonparametric regression models (Faraway 2006), Mixed-Effects Models
in S and S-Plus (Pinheiro and Bates 2000) and Generalized Additive Models (Wood
2017).

http://taylorandfrancis.com

5

The R language: Adding new “words”

Computer Science is a science of abstraction—creating the right model
for a problem and devising the appropriate mechanizable techniques
to solve it.

Alfred V. Aho and Jeffrey D. Ullman
Foundations of Computer Science, 1992

5.1 Aims of this chapter

In earlier chapters we have only used base R features. In this chapter you will
learn how to expand the range of features available. In the first part of the chapter
we will focus on using existing packages and how they expand the functionality
of R. In the second part you will learn how to define new functions, operators
and classes. We will not consider the important, but more advanced question of
packaging functions and classes into new R packages.

5.2 Packages

5.2.1 Sharing of R-language extensions

The most elegant way of adding new features or capabilities to R is through pack-
ages. This is without doubt the best mechanism when these extensions to R need
to be shared. However, in most situations it is also the best mechanism for man-
aging code that will be reused even by a single person over time. R packages have
strict rules about their contents, file structure, and documentation, which makes
it possible among other things for the package documentation to be merged into
R’s help system when a package is loaded. With a few exceptions, packages can be
written so that they will work on any computer where R runs.

Packages can be shared as source or binary package files, sent for example
through e-mail. However, for sharing packages widely, it is best to submit them

163

164 The R language: Adding new “words”

to a repository. The largest public repository of R packages is called CRAN, an
acronym for Comprehensive R Archive Network. Packages available through CRAN
are guaranteed to work, in the sense of not failing any tests built into the package
and not crashing or aborting prematurely. They are tested daily, as they may de-
pend on other packages whose code will change when updated. In January 2017,
the number of packages available through CRAN passed the 10,000 mark.

A key repository for bioinformatics with R is Bioconductor, containing packages
that pass strict quality tests. Recently, ROpenScience has established guidelines
and a system for code peer review for packages. These peer-reviewed packages are
available through CRAN or other repositories and listed at the ROpenScience web-
site. In some cases you may need or want to install less stable code from Git repos-
itories such as versions still under development not yet submitted to CRAN. Using
the package ‘devtools’ we can install packages directly from GitHub, Bitbucket and
other code repositories based on Git. Installations from code repositories are al-
ways installations from sources (see below). It is of course also possible to install
packages from local files (e.g., after a manual download).

One good way of learning how the extensions provided by a package work, is by
experimenting with them. When using a function we are not yet familiar with, look-
ing at its help to check all its features will expand your “toolbox.” How much docu-
mentation is included with packages varies, while documentation of exported ob-
jects is enforced, many packages include, in addition, comprehensive user guides
or articles as vignettes. It is not unusual to decide which package to use from a
set of alternatives based on the quality of available documentation. In the case of
packages adding extensive new functionality, they may be documented in depth
in a book. Well-known examples are Mixed-Effects Models in S and S-Plus (Pinheiro
and Bates 2000), Lattice: Multivariate Data Visualization with R (Sarkar 2008) and
ggplot2: Elegant Graphics for Data Analysis (Wickham and Sievert 2016).

5.2.2 How packages work

The development of packages is beyond the scope of the current book, and thor-
oughly explained in the book R Packages (Wickham 2015). However, it is still worth-
while mentioning a few things about the development of R packages. Using RStudio
it is relatively easy to develop your own packages. Packages can be of very differ-
ent sizes and complexity. Packages use a relatively rigid structure of folders for
storing the different types of files, including documentation compatible with R’s
built-in help system. This allows documentation for contributed packages to be
seamlessly linked to R’s help system when packages are loaded. In addition to R
code, packages can call functions and routines written in C, C++, FORTRAN, Java,
Python, etc., but some kind of “glue” is needed, as function call conventions and
name mangling depend on the programming language, and in many cases also on
the compiler used. For C++, the ‘Rcpp’ R package makes the “gluing” relatively easy
(Eddelbuettel 2013). In the case of Python, R package ‘reticulate’ makes calling of
Python methods and exchange of data easy, and it is well supported by RStudio.
In the case of Java we can use package ‘RJava’ instead. For C and FORTRAN, R pro-
vides the functionality needed, but the interface needs some ad hoc coding in most
cases.

Packages 165

Only objects exported by a package that has been attached are visible outside
its own namespace. Loading and attaching a package with library() makes the
exported objects available. Attaching a package adds the objects exported by the
package to the search path so that they can be accessed without prepending the
name of the namespace. Most packages do not export all the functions and objects
defined in their code; some are kept internal, in most cases because they may
change or be removed in future versions. Package namespaces can be detached
and also unloaded with function detach() using a slightly different notation for
the argument from that which we described for data frames in section 2.14.1 on
page 71.

5.2.3 Download, installation and use

In R speak, “library” is the location where packages are installed. Packages are sets
of functions, and data, specific for some particular purpose, that can be loaded
into an R session to make them available so that they can be used in the same
way as built-in R functions and data. Function library() is used to load and at-
tach packages that are already installed in the local R library. In contrast, function
install.packages() is used to install packages. When using RStudio it is easiest
to use RStudio menus (which call install.packages() and update.packages()) to
install or update packages.

U Use help to look up the help pages for install.packages() and library(),
and explain what the code in the next chunk does.

R packages can be installed either from sources, or from already built “bina-
ries”. Installing from sources, depending on the package, may require additional
software to be available. Under MS-Windows, the needed shell, commands and com-
pilers are not available as part of the operating system. Installing them is not dif-
ficult as they are available prepackaged in installers (you will need RTools, and
MiKTEX). It is easier to install packages from binary .zip files under MS-Windows.
Under Linux most tools will be available, or very easy to install, so it is usual to
install packages from sources. For OS X (Apple Mac) the situation is somewhere
in-between. If the tools are available, packages can be very easily installed from
sources from within RStudio. However, binaries are for most packages also readily
available.

5.2.4 Finding suitable packages

Due to the large number of contributed R packages it can sometimes be difficult to
find a suitable package for a task at hand. It is good to first check if the necessary
capability is already built into base R. Base R plus the recommended packages
(installed when R is installed) cover a lot of ground. To analyze data using almost
any of the more common statistical methods does not require the use of special
packages. Sometimes, contributed packages duplicate or extend the functionality
in base R with advantage. When one considers the use of novel or specialized types

166 The R language: Adding new “words”

of data analysis, the use of contributed packages can be unavoidable. Even in such
cases, it is not unusual to have alternatives to choose from within the available
contributed packages. Sometimes groups or suites of packages are designed to
work well together.

The CRAN repository has very broad scope and includes a section called
“views.” R views are web pages providing annotated lists of packages frequently
used within a given field of research, engineering or specific applications. These
views are edited and updated by different editors. They can be found at https:
//cran.r-project.org/web/views/.

The Bioconductor repository specializes in bioinformatics with R. It also has
a section with “views” and within it, descriptions of different data analysis work-
flows. The workflows are especially good as they reveal which sets of packages
work well together. These views can be found at https://www.bioconductor.
org/packages/release/BiocViews.html.

Although ROpenSci does not keep a separate package repository for the peer-
reviewed packages, they do keep an index of them at https://ropensci.org/
packages/.

The CRAN repository keeps an archive of earlier versions of packages, on an
individual package basis. METACRAN (https://www.r-pkg.org/) is an archive of
repositories, that keeps a historical record as snapshots from CRAN. METACRAN
uses a different search engine than CRAN itself, making it easier to search the
whole repository.

5.3 Defining functions and operators

Abstraction can be defined as separating the fundamental properties from the ac-
cidental ones. Say obtaining the mean from a given vector of numbers is an actual
operation. There can be many such operations on different numeric vectors, each
one a specific case. When we describe an algorithm for computing the mean from
any numeric vector we have created the abstraction of mean. In the same way, each
time we separate operations from specific data we create a new abstraction. In this
sense, functions are abstractions of operations or actions; they are like “verbs”
describing actions separately from actors.

The main role of functions is that of providing an abstraction allowing us to
avoid repeating blocks of code (groups of statements) applying the same opera-
tions on different data. The reasons to avoid repetition of similar blocks of code
statements are that 1) if the algorithm or implementation needs to be revised—
e.g., to fix a bug or error—it is best to make edits in a single place; 2) sooner or
later pieces of repeated code can become different leading to inconsistencies and
hard-to-track bugs; 3) abstraction and division of a problem into smaller chunks,
greatly helps with keeping the code understandable to humans; 4) textual repe-
tition makes the script file longer, and this makes debugging, commenting, etc.,
more tedious, and error prone.

How do we, in practice, avoid repeating bits of code? We write a function con-
taining the statements that we would need to repeat, and later we call (“use”) the

https://www.r-pkg.org
https://www.ropensci.org
https://www.bioconductor.org
http://www.cran.r-project.org
http://www.cran.r-project.org
https://www.R-project.org
https://www.ropensci.org

167 Defining functions and operators

function in their place. We have been calling R functions or operators in almost ev-
ery example in this book; what we will next tackle is how to define new functions
of our own.

New functions and operators are defined using function function(), and saved
like any other object in R by assignment to a variable name. In the example below,
x and y are both formal parameters, or names used within the function for objects
that will be supplied as arguments when the function is called. One can think of
parameter names as placeholders for actual values to be supplied as arguments
when calling the function.

my.prod <- function(x, y){x * y}

my.prod(4, 3)

[1] 12

 In base R, arguments to functions are passed by copy. This is some-
thing very important to remember. Whatever you do within a function to mod-
ify an argument, its value outside the function will remain (almost) always
unchanged. (In other languages, arguments can also be passed by reference,
meaning that assignments to a formal parameter within the body of the func-
tion are referenced to the argument and modify it. Such roundabout effects are
frequently called side effects of a call. It is possible to imitate such behavior
in R using some language trickery and consequently, some packages such as
‘data.table’ do define functions that use passing of arguments by reference.)

my.change <- function(x){x <- NA}

a <- 1

my.change(a)

a

[1] 1

In general, any result that needs to be made available outside the function
must be returned by the function—or explicitly assigned to an object in the
enclosing environment (i.e., using <<- or assign()) as a side effect.

A function can only return a single object, so when multiple results are
produced they need to be collected into a single object. In many cases, lists
are used to collect all the values to be returned into one R object. For example,
model fit functions like lm(), discussed in section 4.6 on page 127, return a
complex list with heterogeneous named members.

U When function return() is called within a function, flow of execution
within the function stops and the argument passed to return() is the value
returned by the function call. In contrast, if function return() is not explic-
itly called, the value returned by the function call is that returned by the last
statement executed within the body of the function.

168 The R language: Adding new “words”

print.x.1 <- function(x){print(x)}

print.x.1("test")

[1] "test"

print.x.2 <- function(x){print(x); return(x)}

print.x.2("test")

[1] "test"

[1] "test"

print.x.3 <- function(x){return(x); print(x)}

print.x.3("test")

[1] "test"

print.x.4 <- function(x){return(); print(x)}

print.x.4("test")

NULL

print.x.5 <- function(x){x}

print.x.4("test")

NULL

U Test the behavior of functions print.x.1() and print.x.5(), as de-
fined above, both at the command prompt, and in a script. The behavior of
one of these functions will be different when the script is sourced than at the
command prompt. Explain why.

Functions have their own scope. Any names created by normal assignment
within the body of a function are visible only within the body of the function and
disappear when the function returns from the call. In normal use, functions in R
do not affect their environment through side effects. They receive input through
arguments and return a value as the result of the call. This value can be either
printed or assigned as we have seen when using functions earlier.

5.3.1 Ordinary functions

After the toy examples above, we will define a small but useful function: a function
for calculating the standard error of the mean from a numeric vector. The standard
error is given by 𝑆𝑥̂ = √𝑆2/𝑛. We can translate this into the definition of an R
function called SEM.

SEM <- function(x){sqrt(var(x) / length(x))}

We can test our function.

a <- c(1, 2, 3, -5)
a.na <- c(a, NA)
SEM(x = a)
[1] 1.796988

169 Defining functions and operators

SEM(a)
[1] 1.796988

SEM(a.na)
[1] NA

For example in SEM(a) we are calling function SEM() with a as an argument.
The function we defined above will always give the correct answer because NA

values in the input will always result in an NA being returned. The problem is that
unlike R’s functions like var(), there is no option to omit NA values in the function
we defined.

This could be implemented by adding a second parameter na.omit to the defi-
nition of our function and passing its argument to the call to var() within the body
of SEM(). However, to avoid returning wrong values we need to make sure NA values
are also removed before counting the number of observations with length().

A readable way of implementing this in code is to define the function as follows.

sem <- function(x, na.omit = FALSE) {
if (na.omit) {
x <- na.omit(x)

}

sqrt(var(x)/length(x))

}

sem(x = a)
[1] 1.796988

sem(x = a.na)
[1] NA

sem(x = a.na, na.omit = TRUE)
[1] 1.796988

R does not provide a function for standard error, so the function above is gener-
ally useful. Its user interface is consistent with that of functionally similar existing
functions. We have added a new word to the R vocabulary available to us.

In the definition of sem() we set a default argument for parameter na.omit which
is used unless the user explicitly passes an argument to this parameter.

U Define your own function to calculate the mean in a similar way as SEM()

was defined above. Hint: function sum() could be of help.

Functions can have much more complex and larger compound statements as
their body than those in the examples above. Within an expression, a function
name followed by parentheses is interpreted as a call to the function. The bare
name of a function instead gives access to its definition.

We first print (implicitly) the definition of our function from earlier in this sec-
tion.

http:SEM(a.na

170 The R language: Adding new “words”

sem

function(x, na.omit = FALSE) {

if (na.omit) {

x <- na.omit(x)

}

sqrt(var(x)/length(x))

}

<bytecode: 0x000000001c7dcd30>

Next we print the definition of R’s linear model fitting function lm(). (Use of
lm() is described in section 4.6 on page 127.)

lm

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

{

ret.x <- x

ret.y <- y

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

if (method == "model.frame")

return(mf)

else if (method != "qr")

warning(gettextf("method = '%s' is not supported. Using 'qr'",

method), domain = NA)

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric")

w <- as.vector(model.weights(mf))

if (!is.null(w) && !is.numeric(w))

stop("'weights' must be a numeric

offset <- model.offset(mf)

mlm <- is.matrix(y)

ny <- if (mlm)

nrow(y)

else length(y)

if (!is.null(offset)) {

if (!mlm)

offset <- as.vector(offset)

if (NROW(offset) != ny)

vector")

stop(gettextf("number of offsets is %d, should equal %d (number of observations)",

NROW(offset), ny), domain = NA)

}

if (is.empty.model(mt)) {

x <- NULL

z <- list(coefficients = if (mlm) matrix(NA_real_, 0,

ncol(y)) else numeric(), residuals = y, fitted.values = 0 *

y, weights = w, rank = 0L, df.residual = if (!is.null(w)) sum(w !=

0) else ny)

if (!is.null(offset)) {

z$fitted.values <- offset

z$residuals <- y - offset

}

http:singular.ok

171 Defining functions and operators

}

else {

x <- model.matrix(mt, mf, contrasts)

z <- if (is.null(w))

lm.fit(x, y, offset = offset, singular.ok = singular.ok,

...)

else lm.wfit(x, y, w, offset = offset, singular.ok = singular.ok,

...)

}

class(z) <- c(if (mlm) "mlm", "lm")

z$na.action <- attr(mf, "na.action")

z$offset <- offset

z$contrasts <- attr(x, "contrasts")

z$xlevels <- .getXlevels(mt, mf)

z$call <- cl

z$terms <- mt

if (model)

z$model <- mf

if (ret.x)

z$x <- x

if (ret.y)

z$y <- y

if (!qr)

z$qr <- NULL

z

}

<bytecode: 0x00000000151d2418>

<environment: namespace:stats>

As can be seen at the end of the listing, this function written in the R language
has been byte-compiled so that it executes faster. Functions that are part of the R
language, but that are not coded using the R language, are called primitives and
their full definition cannot be accessed through their name (c.f., sem() defined
above).

list

function (...) .Primitive("list")

5.3.2 Operators

Operators are functions that use a different syntax for being called. If their name
is enclosed in back ticks they can be called as ordinary functions. Binary operators
like + have two formal parameters, and unary operators like unary - have only one
formal parameter. The parameters of many binary R operators are named e1 and
e2.

1 / 2
[1] 0.5

`/`(1 , 2)
[1] 0.5

`/`(e1 = 1 , e2 = 2)
[1] 0.5

http:singular.ok
http:singular.ok
http:singular.ok
http:singular.ok

172 The R language: Adding new “words”

An important consequence of the possibility of calling operators using ordinary
syntax is that operators can be used as arguments to apply functions in the same
way as ordinary functions. When passing operator names as arguments to apply
functions we only need to enclose them in back ticks (see section 3.4 on page 108).

The name by itself and enclosed in back ticks allows us to access the definition
of an operator.

`/`

function (e1, e2) .Primitive("/")

 Defining a new operator. We will define a binary operator (taking two
arguments) that subtracts from the numbers in a vector the mean of another
vector. First we need a suitable name, but we have less freedom as names of
user-defined operators must be enclosed in percent signs. We will use %-mean%

and as with any special name, we need to enclose it in quotation marks for the
assignment.

"%-mean%" <- function(e1, e2) {
e1 - mean(e2)

}

We can then use our new operator in a example.

10:15 %-mean% 1:20
[1] -0.5 0.5 1.5 2.5 3.5 4.5

To print the definition, we enclose the name of our new operator in back
ticks—i.e., we back quote the special name.

`%-mean%`
function(e1, e2) {
e1 - mean(e2)
}

5.4 Objects, classes, and methods

New classes are normally defined within packages rather than in user scripts. To be
really useful implementing a new class involves not only defining a class but also
a set of specialized functions or methods that implement operations on objects
belonging to the new class. Nevertheless, an understanding of how classes work
is important even if only very occasionally a user will define a new method for an
existing class within a script.

Classes are abstractions, but abstractions describing the shared properties of
“types” or groups of similar objects. In this sense, classes are abstractions of “ac-

173 Objects, classes, and methods

tors,” they are like “nouns” in natural language. What we obtain with classes is the
possibility of defining multiple versions of functions (or methods) sharing the same
name but tailored to operate on objects belonging to different classes. We have al-
ready been using methods with multiple specializations throughout the book, for
example plot() and summary().

We start with a quotation from S Poetry (Burns 1998, page 13).

The idea of object-oriented programming is simple, but carries a lot of
weight. Here’s the whole thing: if you told a group of people “dress for work,”
then you would expect each to put on clothes appropriate for that individual’s
job. Likewise it is possible for S[R] objects to get dressed appropriately depend-
ing on what class of object they are.

We say that specific methods are dispatched based on the class of the argument
passed. This, together with the loose type checks of R, allows writing code that
functions as expected on different types of objects, e.g., character and numeric
vectors.

R has good support for the object-oriented programming paradigm, but as a
system that has evolved over the years, currently R supports multiple approaches.
The still most popular approach is called S3, and a more recent and powerful ap-
proach, with slower performance, is called S4. The general idea is that a name like
“plot” can be used as a generic name, and that the specific version of plot() called
depends on the arguments of the call. Using computing terms we could say that
the generic of plot() dispatches the original call to different specific versions of
plot() based on the class of the arguments passed. S3 generic functions dispatch,
by default, based only on the argument passed to a single parameter, the first
one. S4 generic functions can dispatch the call based on the arguments passed
to more than one parameter and the structure of the objects of a given class is
known to the interpreter. In S3 functions, the specializations of a generic are rec-
ognized/identified only by their name. And the class of an object by a character
string stored as an attribute to the object.

We first explore one of the methods already available in R. The definition of
mean shows that it is the generic for a method.

mean

function (x, ...)

UseMethod("mean")

<bytecode: 0x00000000138ddc60>
<environment: namespace:base>

We can find out which specializations of method are available in the current
search path using methods().

methods(mean)
[1] mean.Date mean.default mean.difftime mean.POSIXct mean.POSIXlt
see '?methods' for accessing help and source code

We can also use methods() to query all methods, including operators, defined
for objects of a given class.

174 The R language: Adding new “words”

methods(class = "list")
[1] all.equal as.data.frame coerce Ops relist
[6] type.convert within
see '?methods' for accessing help and source code

S3 class information is stored as a character vector in an attribute named
"class". The most basic approach to creation of an object of a new S3 class, is
to add the new class name to the class attribute of the object. As the implied class
hierarchy is given by the order of the members of the character vector, the name
of the new class must be added at the head of the vector. Even though this step
can be done as shown here, in practice this step would normally take place within
a constructor function and the new class, if defined within a package, would need
to be registered. We show here this bare-bones example to demonstrate how S3
classes are implemented in R.

a <- 123

class(a)

[1] "numeric"

class(a) <- c("myclass", class(a))

class(a)

[1] "myclass" "numeric"

Now we create a print method specific to "myclass" objects. Internally we are
using function sprintf() and for the format template to work we need to pass a
numeric value as an argument—i.e., obviously sprintf() does not “know” how to
handle objects of the class we have just created!

print.myclass <- function(x) {
sprintf("[myclass] %.0f", as.numeric(x))

}

Once a specialized method exists for a class, it will be used for objects of this
class.

print(a)
[1] "[myclass] 123"

print(as.numeric(a))
[1] 123

 The S3 class system is “lightweight” in that it adds very little additional
computation load, but it is rather “fragile” in that most of the responsibility for
consistency and correctness of the design—e.g., not messing up dispatch by
redefining functions or loading a package exporting functions with the same
name, etc., is not checked by the R interpreter.

Defining a new S3 generic is also quite simple. A generic method and a
default method need to be created.

175 Objects, classes, and methods

my_print <- function (x, ...) {

UseMethod("my_print", x)

}

my_print.default <- function(x, ...) {

print(class(x))

print(x, ...)

}

my_print(123)

[1] "numeric"

[1] 123

my_print("abc")

[1] "character"

[1] "abc"

Up to now, my_print(), has no specialization. We now write one for data
frames.

my_print.data.frame <- function(x, rows = 1:5, ...) {

print(x[rows,], ...)

invisible(x)

}

We add the second statement so that the function invisibly returns the
whole data frame, rather than the lines printed. We now do a quick test of
the function.

my_print(cars)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

my_print(cars, 8:10)

speed dist

8 10 26

9 10 34

10 11 17

176 The R language: Adding new “words”

b <- my_print(cars)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

str(b)

'data.frame': 50 obs. of 2 variables:

$ speed: num 4 4 7 7 8 9 10 10 10 11 ...

$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

nrow(b) == nrow(cars) # was the whole data frame returned?
[1] TRUE

5.5 Scope of names

The visibility of names is determined by the scoping rules of a language. The clear-
est, but not the only situation when scoping rules matter, is when objects with the
same name coexist. In such a situation one will be accessible by its unqualified
name and the other hidden but possibly accessible by qualifying the name with its
name space.

As the R language has few reserved words for which no redefinition is allowed,
we should take care not to accidentally reuse names that are part of language. For
example pi is a constant defined in R with the value of the mathematical constant
𝜋. If we use the same name for one of our variables, the original definition becomes
hidden.

pi

[1] 3.141593

pi <- "apple pie"

pi

[1] "apple pie"

rm(pi)

pi

[1] 3.141593

exists("pi")

[1] TRUE

In the example above, the two variables are not defined in the same scope. In the
example below we assign a new value to a variable we have earlier created within
the same scope, and consequently the second assignment overwrites, rather than
hides, the existing definition.

177 Further reading

my.pie <- "raspberry pie"

my.pie

[1] "raspberry pie"

my.pie <- "apple pie"

my.pie

[1] "apple pie"

rm(my.pie)

exists("my.pie")

[1] FALSE

An additional important thing to remember is that R packages define all objects
within a namespace with the same name as the package itself. This means that
when we reuse a name defined in a package, its definition in the package does
not get overwritten, but instead, only hidden and still accessible using the name
qualified by prepending the name of the package followed by two colons.

If two packages define objects with the same name, then which one is visible
depends on the order in which the packages were attached. To avoid confusion in
such cases, in scripts is best to use the qualified names for calling both definitions.

5.6 Further reading

An in-depth discussion of object-oriented programming in R is outside the scope
of this book. For the non-programmer user, a basic understanding of R classes
can be useful, even if he or she does not intend to create new classes. This basic
knowledge is what we covered in this chapter. Several books describe in detail the
different class systems available and how to use them in R packages. For an in-
depth treatment of the subject please consult the books Advanced R (Wickham
2019) and Extending R (Chambers 2016).

The development of packages is thoroughly described in the book R Packages
(Wickham 2015) and an in-depth description of R from the programming perspec-
tive is given in the book Advanced R (Wickham 2019). The book Extending R (Cham-
bers 2016) covers both subjects.

http://taylorandfrancis.com

6

New grammars of data

Essentially everything in S[R], for instance, a call to a function, is an
S[R] object. One viewpoint is that S[R] has self-knowledge. This self-
awareness makes a lot of things possible in S[R] that are not in other
languages.

Patrick J. Burns
S Poetry, 1998

6.1 Aims of this chapter

Base R and the recommended extension packages (installed by default) include
many functions for manipulating data. The R distribution supplies a complete set
of functions and operators that allow all the usual data manipulation operations.
These functions have stable and well-described behavior, so they should be pre-
ferred unless some of their limitations justify the use of alternatives defined in
contributed packages. In the present chapter we aim at describing the new syn-
taxes introduced by the most popular of these contributed R extension packages
aiming at changing (usually improving one aspect at the expense of another) in var-
ious ways how we can manipulate data in R. These independently developed pack-
ages extend the R language not only by adding new “words” to it but by supporting
new ways of meaningfully connecting “words”—i.e., providing new “grammars” for
data manipulation.

6.2 Introduction

By reading previous chapters, you have already become familiar with base R
classes, methods, functions and operators for storing and manipulating data. Most
of these had been originally designed to perform optimally on rather small data
sets (see Matloff 2011). The R implementation has been improved over the years

179

180 New grammars of data

significantly in performance, and random-access memory in computers has be-
come cheaper, making constraints imposed by the original design of R less limiting,
but on the other hand, the size of data sets has also increased. Some contributed
packages have aimed at improving performance by relying on different compro-
mises between usability, speed and reliability than used for base R.

Package ‘data.table’ is the best example of an alternative implementation of
data storage that maximizes the speed of processing for large data sets using a
new semantics and requiring a new syntax. We could say that package ‘data.table’
is based on a “grammar of data” that is different from that in the R language.
The compromise in this case has been the use of a less intuitive syntax, and by
defaulting to call by reference of arguments instead of by copy, increasing the
“responsibility” of the author of code defining new functions.

When a computation includes a chain of sequential operations, if using base R,
we can either store at each step in the computation the returned value in a variable,
or nest multiple function calls. The first approach is verbose, but allows readable
scripts, especially if variable names are wisely chosen. The second approach be-
comes very difficult too read as soon as there is more than one nesting level. At-
tempts to find an alternative syntax have borrowed the concept of data pipes from
Unix shells (Kernigham and Plauger 1981). Interestingly, that it has been possible
to write packages that define the operators needed to “add” this new syntax to R is
a testimony to its flexibility and extensibility. Two packages, ‘magrittr’ and ‘wrapr’,
define operators for pipe-based syntax.

A different aspect of the R syntax is extraction of members from lists and data
frames by name. Base R provides two different operators for this, $ and [[]], with
different syntax. These two operators also differ in how incomplete names are han-
dled. Package ‘tibble’ alters this syntax for an alternative to base R’s data frames.
Once again, a new syntax allows new functionality at the expense of partial in-
compatibility with base R syntax. Objects of class "tb" were also an attempt to
improve performance compared to objects of class "data.frame". R performance
has improved in recent releases and currently, even though performance is not
the same, depending on the operations and data, either R’s data frames or tibbles
perform better.

Base R function subset() has an unusual syntax, as it evaluates the expression
passed as the second argument within the namespace of the data frame passed
as its first argument (see 2.14.1 on page 71). This saves typing at the expense
of increasing the risk of bugs, as by reading the call to subset, it is not obvious
which names are resolved in the environment of subset() and which ones within
its first argument—i.e., as column names in the data frame. In addition, changes
elsewhere in a script can change how a call to subset is interpreted. In reality,
subset is a wrapper function built on top of the extraction operator []. It is a
convenience function, mostly intended to be used at the console, rather than in
scripts or package code. To extract rows from a data frame it is always best to use
the [,] operator.

Package ‘dplyr’ provides convenience functions that work in a similar way as
base R subset(), although in latest versions more safely. This package has suf-
fered quite drastic changes during its development with respect to how to handle
the dilemma caused by “guessing” of the environment where names should be

181 Packages used in this chapter

looked up. There is no easy answer; a simplified syntax leads to ambiguity, and
a fully specified syntax is verbose. Recent versions of the package introduced a
terse syntax to achieve a concise way of specifying where to look up names. My
opinion is that for code that needs to be highly reliable and produce reproducible
results in the future, we should for the time being prefer base R. For code that is
to be used once, or for which reproducibility can depend on the use of a specific
(old or soon to be old) version of ‘dplyr’, or which is not a burden to update, the
conciseness and power of the new syntax will be an advantage.

In this chapter you will become familiar with alternative “grammars of data” as
implemented in some of the packages that enable new approaches to manipulating
data in R. As in previous chapters I will focus more on the available tools and how
to use them than on their role in the analysis of data. The books R for Data Science
(Wickham and Grolemund 2017) and R Programming for Data Science (Peng 2016)
partly cover the same subjects from the perspective of data analysis.

6.3 Packages used in this chapter

install.packages(learnrbook::pkgs_ch_data)

To run the examples included in this chapter, you need first to load some pack-
ages from the library (see section 5.2 on page 163 for details on the use of pack-
ages).

library(learnrbook)
library(tibble)
library(magrittr)
library(wrapr)
library(stringr)
library(dplyr)
library(tidyr)
library(lubridate)

6.4 Replacements for data.frame

6.4.1 ‘data.table’

The function call semantics of the R language is that arguments are passed to func-
tions by copy. If the arguments are modified within the code of a function, these
changes are local to the function. If implemented naively, this semantic would im-
pose a huge toll on performance, however, R in most situations only makes a copy
if and when the value changes. Consequently, for modern versions of R which are
very good at avoiding unnecessary copying of objects, the normal R semantics has
only a moderate negative impact on performance. However, this impact can still

182 New grammars of data

be a problem as modification is detected at the object level, and consequently R
may make copies of a whole data frame when only values in a single column or
even just an attribute have changed.

Functions and methods from package ‘data.table’ use arguments by reference,
avoiding making any copies. However, any assignments within these functions and
methods modify the variable passed as an argument. This simplifies the needed
tests for delayed copying and also by avoiding the need to make a copy of argu-
ments, achieves the best possible performance. This is a specialized package but
extremely useful when dealing with very large data sets. Writing user code, such as
scripts, with ‘data.table’ requires a good understanding of the pass-by-reference
semantics. Obviously, package ‘data.table’ makes no attempt at backwards com-
patibility with base-R data.frame.

6.4.2 ‘tibble’

The authors of package ‘tibble’ describe their tbl class as backwards compatible
with data.frame and make it a derived class. This backwards compatibility is only
partial so in some situations data frames and tibbles are not equivalent.

The class and methods that package ‘tibble’ defines lift some of the restric-
tions imposed by the design of base R data frames at the cost of creating some
incompatibilities due to changed (improved) syntax for member extraction and by
adding support for “columns” of class list and removing support for columns of
class matrix. Handling of attributes is also different, with no row names added by
default. There are also differences in default behavior of both constructors and
methods. Although, objects of class tbl can be passed as arguments to functions
that expect data frames as input, these functions are not guaranteed to work cor-
rectly as a result of the differences in syntax.

 It is easy to write code that will work correctly both with data frames and
tibbles. However, code that is syntactically correct according to the R language
may fail if a tibble is used in place of a data frame.

 The print() method for tibbles differs from that for data frames in that it
outputs a header with the text “A tibble:” followed by the dimensions (number
of rows × number of columns), adds under each column name an abbreviation
of its class and instead of printing all rows and columns, a limited number of
them are displayed. In addition, individual values are formatted differently
even adding color highlighting for negative numbers.

183 Replacements for data.frame

tibble(A = LETTERS[1:5], B = -2:2, C = seq(from = 1, to = 0, length.out = 5))
A tibble: 5 x 3
A B C
<chr> <int> <dbl>
1 A -2 1
2 B -1 0.75
3 C 0 0.5
4 D 1 0.25
5 E 2 0

The default number of rows printed can be set with options, that we set
here to only three rows for most of this chapter.

options(tibble.print_max = 3, tibble.print_min = 3)

= In their first incarnation, the name for tibble was data_frame (with a dash
instead of a dot). The old name is still recognized, but its use should be avoided
and tibble() used instead. One should be aware that although the constructor
tibble() and conversion function as_tibble(), as well as the test is_tibble()

use the name tibble, the class attribute is named tbl.

my.tb <- tibble(numbers = 1:3)

is_tibble(my.tb)

[1] TRUE

inherits(my.tb, "tibble")

[1] FALSE

class(my.tb)

[1] "tbl_df" "tbl" "data.frame"

Furthermore, by necessity, to support tibbles based on different underlying
data sources, a further derived class is needed. In our example, as our tibble
has an underlying data.frame class, the most derived class of my.tb is tbl_df.

We start with the constructor and conversion methods. For this we will define
our own diagnosis function (apply functions are described in section 3.4 on page
108).

show_classes <- function(x) {
cat(

paste(paste(class(x)[1],

"containing:"),

paste(names(x),

sapply(x, class), collapse = ", ", sep = ": "),

sep = "\n")

)

}

In the next two chunks we can see some of the differences. The tibble()

http:class(my.tb
http:inherits(my.tb
http:is_tibble(my.tb

184 New grammars of data

constructor does not by default convert character data into factors, while the
data.frame() constructor does.

my.df <- data.frame(codes = c("A", "B", "C"), numbers = 1:3, integers = 1L:3L)

is.data.frame(my.df)

[1] TRUE

is_tibble(my.df)

[1] FALSE

show_classes(my.df)

data.frame containing:

codes: character, numbers: integer, integers: integer

Tibbles are data frames—or more formally class tibble is derived from class
data.frame. However, data frames are not tibbles.

my.tb <- tibble(codes = c("A", "B", "C"), numbers = 1:3, integers = 1L:3L)

is.data.frame(my.tb)

[1] TRUE

is_tibble(my.tb)

[1] TRUE

show_classes(my.tb)

tbl_df containing:

codes: character, numbers: integer, integers: integer

The print() method for tibbles, overrides the one defined for data frames.

print(my.df)
codes numbers integers
1 A 1 1
2 B 2 2
3 C 3 3

print(my.tb)
A tibble: 3 x 3
codes numbers integers
<chr> <int> <int>
1 A 1 1
2 B 2 2
3 C 3 3

U Tibbles and data frames differ in how they are printed when they have
many rows or columns. 1) Construct a data frame and an equivalent tibble with
at least 50 rows and then test how the output looks when they are printed. 2)
Construct a data frame and an equivalent tibble with more columns than will
fit in the width of the Rconsole and then test how the output looks when they
are printed.

Data frames can be converted into tibbles with as_tibble().

http:print(my.tb
http:print(my.df
http:show_classes(my.tb
http:is_tibble(my.tb
http:is.data.frame(my.tb
http:show_classes(my.df
http:is_tibble(my.df
http:is.data.frame(my.df

185 Replacements for data.frame

my_conv.tb <- as_tibble(my.df)

is.data.frame(my_conv.tb)

[1] TRUE

is_tibble(my_conv.tb)

[1] TRUE

show_classes(my_conv.tb)

tbl_df containing:

codes: character, numbers: integer, integers: integer

my_conv.df <- as.data.frame(my.tb)

is.data.frame(my_conv.df)

[1] TRUE

is_tibble(my_conv.df)

[1] FALSE

show_classes(my_conv.df)

data.frame containing:

codes: character, numbers: integer, integers: integer

U Look carefully at the result of the conversions. Why do we now have a data
frame with A as character and a tibble with A as a factor?

 Not all conversion functions work consistently when converting from
a derived class into its parent. The reason for this is disagreement between
authors on what the correct behavior is based on logic and theory. You are not
likely to be hit by this problem frequently, but it can be difficult to diagnose.

We have already seen that calling as.data.frame() on a tibble strips the de-
rived class attributes, returning a data frame. We will look at the whole char-
acter vector stored in the "class" attribute to demonstrate the difference. We
also test the two objects for equality, in two different ways. Using the opera-
tor == tests for equivalent objects. Objects that contain the same data. Using
identical() tests that objects are exactly the same, including attributes such
as "class", which we retrieve using class().

http:show_classes(my_conv.df
http:is_tibble(my_conv.df
http:is.data.frame(my_conv.df
http:as.data.frame(my.tb
http:my_conv.df
http:show_classes(my_conv.tb
http:is_tibble(my_conv.tb
http:is.data.frame(my_conv.tb
http:as_tibble(my.df
http:my_conv.tb

186 New grammars of data

class(my.tb)

[1] "tbl_df" "tbl" "data.frame"

class(my_conv.df)

[1] "data.frame"

my.tb == my_conv.df

codes numbers integers

[1,] TRUE TRUE TRUE

[2,] TRUE TRUE TRUE

[3,] TRUE TRUE TRUE

identical(my.tb, my_conv.df)

[1] FALSE

Now we derive from a tibble, and then attempt a conversion back into a
tibble.

my.xtb <- my.tb

class(my.xtb) <- c("xtb", class(my.xtb))

class(my.xtb)

[1] "xtb" "tbl_df" "tbl" "data.frame"

my_conv_x.tb <- as_tibble(my.xtb)

class(my_conv_x.tb)

[1] "tbl_df" "tbl" "data.frame"

my.xtb == my_conv_x.tb

codes numbers integers

[1,] TRUE TRUE TRUE

[2,] TRUE TRUE TRUE

[3,] TRUE TRUE TRUE

identical(my.xtb, my_conv_x.tb)

[1] FALSE

The two viewpoints on conversion functions are as follows. 1) The conver-
sion function should return an object of its corresponding class, even if the
argument is an object of a derived class, stripping the derived class. 2) If the
object is of the class to be converted to, including objects of derived classes,
then it should remain untouched. Base R follows, as far as I have been able
to work out, approach 1). Packages in the ‘tidyverse’ follow approach 2). If in
doubt about the behavior of some function, then you will need to do a test
similar to the one used in this box.

There are additional important differences between the constructors tibble()

and data.frame(). One of them is that in a call to tibble(), member variables
(“columns”) being defined can be used in the definition of subsequent member
variables.

tibble(a = 1:5, b = 5:1, c = a + b, d = letters[a + 1])
A tibble: 5 x 4
a b c d

http:my_conv_x.tb
http:my_conv_x.tb
http:class(my_conv_x.tb
http:my_conv_x.tb
http:my_conv.df
http:identical(my.tb
http:my_conv.df
http:class(my_conv.df
http:class(my.tb

187 Data pipes

<int> <int> <int> <chr>
1 1 5 6 b
2 2 4 6 c
3 3 3 6 d
... with 2 more rows

U What is the behavior if you replace tibble() by data.frame() in the state-
ment above?

While data frame columns can be factors, vectors or matrices (with the same
number of rows as the data frame), columns of tibbles can be factors, vectors or
lists (with the same number of members as rows the tibble has).

tibble(a = 1:5, b = 5:1, c = list("a", 2, 3, 4, 5))

A tibble: 5 x 3

a b c

<int> <int> <list>

1 1 5 <chr [1]>

2 2 4 <dbl [1]>

3 3 3 <dbl [1]>

... with 2 more rows

Which even allows a list of lists as a variable, or a list of vectors.

tibble(a = 1:5, b = 5:1, c = list("a", 1:2, 0:3, letters[1:3], letters[3:1]))

A tibble: 5 x 3

a b c

<int> <int> <list>

1 1 5 <chr [1]>

2 2 4 <int [2]>

3 3 3 <int [4]>

... with 2 more rows

6.5 Data pipes

The first obvious difference between scripts using some of the new grammars is
the frequent use of pipes. This is, however, mostly a question of preferences, as
pipes can be used equally well with base R functions. Pipes have been at the core
of shell scripting in Unix since early stages of its design (Kernigham and Plauger
1981). Within an OS, pipes are chains of small programs or “tools” that carry out
a single well-defined task (e.g., ed, gsub, grep, more, etc.). Data such as text is de-
scribed as flowing from a source into a sink through a series of steps at which a
specific transformation takes place. In Unix, sinks and sources are files, but files as
an abstraction include all devices and connections for input or output, including
physical ones as terminals and printers. The connection between steps in the pipe
is usually implemented by means of temporary files.

188 New grammars of data

stdin | grep("abc") | more

How can pipes exist within a single R script? When chaining functions into a
pipe, data is passed between them through temporary R objects stored in memory,
which are created and destroyed automatically. Conceptually there is little differ-
ence between Unix shell pipes and pipes in R scripts, but the implementations are
different.

What do pipes achieve in R scripts? They relieve the user from the responsibility
of creating and deleting the temporary objects and of enforcing the sequential
execution of the different steps. Pipes usually improve readability of scripts by
allowing more concise code.

Currently, two main implementations of pipes are available as R extensions, in
packages ‘magrittr’ and ‘wrapr’.

6.5.1 ‘magrittr’

One set of operators needed to build pipes of R functions is implemented in pack-
age ‘magrittr’. This implementation is used in the ‘tidyverse’ and the pipe operator
re-exported by package ‘dplyr’.

We start with a toy example first written using separate steps and normal R
syntax

data.in <- 1:10

data.tmp <- sqrt(data.in)

data.out <- sum(data.tmp)

rm(data.tmp) # clean up!

next using nested function calls still using normal R syntax

data.out <- sum(sqrt(data.in))

written as a pipe using the chaining operator from package ‘magrittr’.

data.in %>% sqrt() %>% sum() -> data.out

 The %>% from package ‘magrittr’ takes two operands. The value returned
by the lhs (left-hand side) operand, which can be any R expression, is passed
as first argument to the rhs operand, which must be a function accepting at
least one argument. Consequently, in this implementation, the function in the
rhs must have a suitable signature for the pipe to work implicitly as usually
used. However, it is possible to pass piped arguments to a function by name
or to other parameters than the first one using a dot (.) as placeholder.

Some base R functions like subset() have a signature that is suitable for
use in ‘magrittr’ pipes using implicit passing of the piped value to the first ar-
gument, while others such as assign() will not. In such cases we can use . as
a placeholder and pass it as an argument, or, alternatively, define a wrapper
function to change the order of the formal parameters in the function signa-
ture.

http:sum(sqrt(data.in
http:sqrt(data.in

Data pipes 189

Package ‘magrittr’ provides additional pipe operators, such as “tee” (%T>%) to
create a branch in the pipe, and %<>% to apply the pipe by reference. These opera-
tors are less frequently used than %>%.

6.5.2 ‘wrapr’

The %.>%, or “dot-pipe” operator from package ‘wrapr’, allows expressions both on
the rhs and lhs, and enforces the use of the dot (.), as placeholder for the piped
object.

Rewritten using the dot-pipe operator, the pipe in the previous chunk becomes

data.in %.>% sqrt(.) %.>% sum(.) -> data1.out

However, the same code can use the pipe operator from ‘magrittr’.

data.in %>% sqrt(.) %>% sum(.) -> data2.out
all.equal(data1.out, data2.out)
[1] TRUE

If needed or desired, named arguments are supported with the dot-pipe opera-
tor resulting in the expected behavior.

data.in %.>% assign(value = ., x = "data3.out")

all.equal(data.in, data3.out)

[1] TRUE

In contrast, the pipe operator silently and unexpectedly fails to create the vari-
able for the same example.

data.in %>% assign(value = ., x = "data4.out")

exists("data4.out")

[1] FALSE

The dot-pipe operator allows us to use . in expressions as shown below, while
%>% fails with an error (not shown).

data.in %.>% (2 + .^2) %.>% assign("data1.out", .)

 In conclusion, R syntax for expressions is preserved when using the dot-
pipe operator, with the only caveat that because of the higher precedence of
the %.>% operator, we need to “protect” bare expressions containing other op-
erators by enclosing them in parentheses.

Under-the-hood, the implementations of %>% and %.>% are very different, with
%.>% usually having better performance.

In the rest of the book we will exclusively use dot pipes in examples to ensure
easier understanding as they avoid implicit (”invisible”) passing of arguments and
impose fewer restrictions on the syntax that can be used.

http:all.equal(data.in

190 New grammars of data

Although pipes can make scripts visually very different from the use of assign-
ments of intermediate results to variables, from the point of view of data analysis
what makes pipes most convenient to use are some of the new classes, functions,
and methods defined in ‘tidyr’, ‘dplyr’, and other packages from the ‘tidyverse’.

6.6 Reshaping with ‘tidyr’
Data stored in table-like formats can be arranged in different ways. In base R most
model fitting functions and the plot() method using (model) formulas and accept-
ing data frames, expect data to be arranged in “long form” so that each row in a
data frame corresponds to a single observation (or measurement) event on a sub-
ject. Each column corresponds to a different measured feature, time of measure-
ment, or a factor describing a classification of subjects according to treatments
or features of the experimental design (e.g., blocks). Covariates measured on the
same subject at an earlier point in time may also be stored in a column. Data ar-
ranged in long form has been nicknamed as “tidy” and this is reflected in the name
given to the ‘tidyverse’ suite of packages. Data in which columns correspond to
measurement events is described as being in a wide form.

Although long-form data is and has been the most commonly used arrangement
of data in R, manipulation of such data has not always been possible with concise R
statements. The packages in the ‘tidyverse’ provide convenience functions to sim-
plify coding of data manipulation, which in some cases, have, in addition, improved
performance compared to base R—i.e., it is possible to code the same operations
using only base R, but may require more and/or more verbose statements.

Real-world data is rather frequently stored in wide format or even ad hoc for-
mats, so in many cases the first task in data analysis is to reshape the data. Package
‘tidyr’ provides functions for reshaping data from wide to long form and vice versa
(replacing the older packages ‘reshape’ and ‘reshape2’).

We use in examples below the iris data set included in base R. Some operations
on R data.frame objects with ‘tidyverse’ packages will return data.frame objects
while others will return tibbles—i.e., "tb" objects. Consequently it is safer to first
convert into tibbles the data frames we will work with.

iris.tb <- as_tibble(iris)

Function gather() converts data from wide form into long form (or ”tidy”). We
use gather to obtain a long-form tibble. By comparing iris.tb with long_iris.tb

we can appreciate how gather() reshaped its input.

head(iris.tb, 2)
A tibble: 2 x 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl> <dbl> <dbl> <dbl> <fct>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3 1.4 0.2 setosa

iris.tb %.>%

http:head(iris.tb
http:long_iris.tb

191 Reshaping with ‘tidyr’

gather(., key = part, value = dimension, -Species) -> long_iris.tb
long_iris.tb
A tibble: 600 x 3
Species part dimension
<fct> <chr> <dbl>
1 setosa Sepal.Length 5.1
2 setosa Sepal.Length 4.9
3 setosa Sepal.Length 4.7
... with 597 more rows

In this statement, we can see the convenience of dispensing with quotation
marks for the new (part and dimension) and existing (Species) column names. Use
of bare names as above triggers errors when package code is tested, requiring the
use of a less convenient but more consistent and reliable syntax instead. As it is
also possible to pass column names as strings but not together with the subtraction
operator, equivalent code becomes more verbose but with the intention explicit
and easier to grasp.

long_iris.tb_1 <- gather(iris.tb, key = "part", value = "dimension", setd-
iff(colnames(iris.tb), "Species"))
long_iris.tb_1
A tibble: 600 x 3
Species part dimension
<fct> <chr> <dbl>
1 setosa Sepal.Length 5.1
2 setosa Sepal.Length 4.9
3 setosa Sepal.Length 4.7
... with 597 more rows

 Altering R’s normal interpretation of the name passed as an argument to
key and value prevents these arguments from being recognized as the name
of a variable in the calling environment. We need to use a new operator !! to
restore the normal R behavior.

part <- "not part"

long_iris.tb_2 <- gather(iris.tb, key = !!part, value = dimension, -Species)

long_iris.tb_2

A tibble: 600 x 3

Species `not part` dimension

<fct> <chr> <dbl>

1 setosa Sepal.Length 5.1

2 setosa Sepal.Length 4.9

3 setosa Sepal.Length 4.7

... with 597 more rows

This syntax has been recently subject to debate and led to John Mount de-
veloping package ‘seplyr’ which provides wrappers on functions and meth-
ods from ‘dplyr’ that respect standard evaluation (SE). At the time of writing,
‘seplyr’ can be considered as experimental.

http:gather(iris.tb
http:iff(colnames(iris.tb
http:gather(iris.tb
http:long_iris.tb
http:long_iris.tb

192 New grammars of data

U To better understand why I added -Species as an argument, edit the code
by removing it, and execute the statement to see how the returned tibble is
different.

For the reverse operation, converting from long form to wide form, we use
spread().

spread(long_iris.tb, key = c(!!part, Species), value = dimension) # does not work!!

 Starting from version 1.0.0 of ‘tidyr’, gather() and spread() are depre-
cated and replaced by pivot_longer() and pivot_wider(). These new functions
use a different syntax but are not yet fully stable.

6.7 Data manipulation with ‘dplyr’

 The first advantage a user of the ‘dplyr’ functions and methods sees is
the completeness of the set of operations supported and the symmetry and
consistency among the different functions. A second advantage is that almost
all the functions are defined not only for objects of class tibble, but also for
objects of class data.table (packages ‘dtplyr’) and for SQL databases (‘dbplyr’),
with consistent syntax (see also section 8.14 on page 325). A further variant
exists in package ‘seplyr’, supporting a different syntax stemming from the
use of “standard evaluation” (SE) instead of non-standard evaluation (NSE). A
downside of ‘dplyr’ and much of the ‘tidyverse’ is that the syntax is not yet fully
stable. Additionally, some function and method names either override those in
base R or clash with names used in other packages. R itself is extremely stable
and expected to remain forward and backward compatible for a long time. For
code intended to remain in use for years, the fewer packages it depends on,
the less maintenance it will need. When using the ‘tidyverse’ we need to be
prepared to revise our own dependent code after any major revision to the
‘tidyverse’ packages we may use.

=A new package, ‘poorman’, implements many of the same words and gram-
mar as ‘dplyr’ using pure R in the implementation instead of compiled C++

http:spread(long_iris.tb

193 Data manipulation with ‘dplyr’

and C code. This light-weight approach could be useful when dealing with rel-
atively small data sets or when the use of R’s data frames instead of tibbles is
preferred.

6.7.1 Row-wise manipulations

Assuming that the data is stored in long form, row-wise operations are opera-
tions combining values from the same observation event—i.e., calculations within
a single row of a data frame or tibble. Using functions mutate() and transmute()

we can obtain derived quantities by combining different variables, or variables
and constants, or applying a mathematical transformation. We add new variables
(columns) retaining existing ones using mutate() or we assemble a new tibble con-
taining only the columns we explicitly specify using transmute().

 Different from usual R syntax, with tibble(), mutate() and transmute()

we can use values passed as arguments, in the statements computing the val-
ues passed as later arguments. In many cases, this allows more concise and
easier to understand code.

tibble(a = 1:5, b = 2 * a)
A tibble: 5 x 2
a b
<int> <dbl>
1 1 2
2 2 4
3 3 6
... with 2 more rows

Continuing with the example from the previous section, we most likely would
like to split the values in variable part into plant_part and part_dim. We use
mutate() from ‘dplyr’ and str_extract() from ‘stringr’. We use regular expres-
sions as arguments passed to pattern. We do not show it here, but mutate() can
be used with variables of any mode, and calculations can involve values from sev-
eral columns. It is even possible to operate on values applying a lag or, in other
words, using rows displaced relative to the current one.

long_iris.tb %.>%
mutate(.,

plant_part = str_extract(part, "^[:alpha:]*"),
part_dim = str_extract(part, "[:alpha:]*$")) -> long_iris.tb

long_iris.tb
A tibble: 600 x 5
Species part dimension plant_part part_dim
<fct> <chr> <dbl> <chr> <chr>
1 setosa Sepal.Length 5.1 Sepal Length
2 setosa Sepal.Length 4.9 Sepal Length
3 setosa Sepal.Length 4.7 Sepal Length
... with 597 more rows

http:long_iris.tb
http:long_iris.tb
http:long_iris.tb

194 New grammars of data

In the next few chunks, we print the returned values rather than saving them
in variables. In normal use, one would combine these functions into a pipe using
operator %.>% (see section 6.5 on page 187).

Function arrange() is used for sorting the rows—makes sorting a data frame
or tibble simpler than by using sort() and order(). Here we sort the tibble
long_iris.tb based on the values in three of its columns.

arrange(long_iris.tb, Species, plant_part, part_dim)
A tibble: 600 x 5
Species part dimension plant_part part_dim
<fct> <chr> <dbl> <chr> <chr>
1 setosa Petal.Length 1.4 Petal Length
2 setosa Petal.Length 1.4 Petal Length
3 setosa Petal.Length 1.3 Petal Length
... with 597 more rows

Function filter() can be used to extract a subset of rows—similar to subset()

but with a syntax consistent with that of other functions in the ‘tidyverse’. In this
case, 300 out of the original 600 rows are retained.

filter(long_iris.tb, plant_part == "Petal")
A tibble: 300 x 5
Species part dimension plant_part part_dim
<fct> <chr> <dbl> <chr> <chr>
1 setosa Petal.Length 1.4 Petal Length
2 setosa Petal.Length 1.4 Petal Length
3 setosa Petal.Length 1.3 Petal Length
... with 297 more rows

Function slice() can be used to extract a subset of rows based on their
positions—an operation that in base R would use positional (numeric) indexes with
the [,] operator: long_iris.tb[1:5,].

slice(long_iris.tb, 1:5)
A tibble: 5 x 5
Species part dimension plant_part part_dim
<fct> <chr> <dbl> <chr> <chr>
1 setosa Sepal.Length 5.1 Sepal Length
2 setosa Sepal.Length 4.9 Sepal Length
3 setosa Sepal.Length 4.7 Sepal Length
... with 2 more rows

Function select() can be used to extract a subset of columns–this would be
done with positional (numeric) indexes with [,] in base R, passing them to the
second argument as numeric indexes or column names in a vector. Negative in-
dexes in base R can only be numeric, while select() accepts bare column names
prepended with a minus for exclusion.

select(long_iris.tb, -part)
A tibble: 600 x 4
Species dimension plant_part part_dim
<fct> <dbl> <chr> <chr>
1 setosa 5.1 Sepal Length
2 setosa 4.9 Sepal Length
3 setosa 4.7 Sepal Length
... with 597 more rows

http:select(long_iris.tb
http:slice(long_iris.tb
http:filter(long_iris.tb
http:arrange(long_iris.tb
http:long_iris.tb

195 Data manipulation with ‘dplyr’

In addition, select() as other functions in ‘dplyr’ accept “selectors” returned
by functions starts_with(), ends_with(), contains(), and matches() to extract or
retain columns. For this example we use the “wide”-shaped iris.tb instead of
long_iris.tb.

select(iris.tb, -starts_with("Sepal"))
A tibble: 150 x 3
Petal.Length Petal.Width Species
<dbl> <dbl> <fct>
1 1.4 0.2 setosa
2 1.4 0.2 setosa
3 1.3 0.2 setosa
... with 147 more rows

select(iris.tb, Species, matches("pal"))
A tibble: 150 x 3
Species Sepal.Length Sepal.Width
<fct> <dbl> <dbl>
1 setosa 5.1 3.5
2 setosa 4.9 3
3 setosa 4.7 3.2
... with 147 more rows

Function rename() can be used to rename columns, whereas base R requires
the use of both names() and names<-() and ad hoc code to match new and old
names. As shown below, the syntax for each column name to be changed is
<new name> = <old name>. The two names can be given either as bare names as
below or as character strings.

rename(long_iris.tb, dim = dimension)
A tibble: 600 x 5
Species part dim plant_part part_dim
<fct> <chr> <dbl> <chr> <chr>
1 setosa Sepal.Length 5.1 Sepal Length
2 setosa Sepal.Length 4.9 Sepal Length
3 setosa Sepal.Length 4.7 Sepal Length
... with 597 more rows

6.7.2 Group-wise manipulations

Another important operation is to summarize quantities by groups of rows. Con-
trary to base R, the grammar of data manipulation, splits this operation in two: the
setting of the grouping, and the calculation of summaries. This simplifies the code,
making it more easily understandable when using pipes compared to the approach
of base R aggregate(), and it also makes it easier to summarize several columns
in a single operation.

 It is important to be aware that grouping is persistent, and may also affect
other operations on the same data frame or tibble if it is saved or piped and
reused. Grouping is invisible to users except for its side effects and because

http:rename(long_iris.tb
http:select(iris.tb
http:select(iris.tb
http:long_iris.tb

196 New grammars of data

of this can lead to erroneous and surprising results from calculations. Do not
save grouped tibbles or data frames, and always make sure that inputs and
outputs, at the head and tail of a pipe, are not grouped, by using ungroup()

when needed.

The first step is to use group_by() to “tag” a tibble with the grouping. We create
a tibble and then convert it into a grouped tibble. Once we have a grouped tibble,
function summarise() will recognize the grouping and use it when the summary
values are calculated.

tibble(numbers = 1:9, letters = rep(letters[1:3], 3)) %.>%
group_by(., letters) %.>%
summarise(.,

mean_numbers = mean(numbers),

median_numbers = median(numbers),

n = n())

A tibble: 3 x 4
letters mean_numbers median_numbers n
* <chr> <dbl> <int> <int>
1 a 4 4 3
2 b 5 5 3
3 c 6 6 3

 How is grouping implemented for data frames and tibbles? In our case as
our tibble belongs to class tibble_df, grouping adds grouped_df as the most
derived class. It also adds several attributes with the grouping information in a
format suitable for fast selection of group members. To demonstrate this, we
need to make an exception to our recommendation above and save a grouped
tibble to a variable.

my.tb <- tibble(numbers = 1:9, letters = rep(letters[1:3], 3))

is.grouped_df(my.tb)

[1] FALSE

class(my.tb)

[1] "tbl_df" "tbl" "data.frame"

names(attributes(my.tb))

[1] "names" "row.names" "class"

my_gr.tb <- group_by(.data = my.tb, letters)

is.grouped_df(my_gr.tb)

[1] TRUE

class(my_gr.tb)

[1] "grouped_df" "tbl_df" "tbl" "data.frame"

http:class(my_gr.tb
http:is.grouped_df(my_gr.tb
http:my_gr.tb
http:names(attributes(my.tb
http:class(my.tb
http:is.grouped_df(my.tb

197 Data manipulation with ‘dplyr’

names(attributes(my_gr.tb))

[1] "names" "row.names" "groups" "class"

setdiff(attributes(my_gr.tb), attributes(my.tb))

[[1]]

A tibble: 3 x 2

letters .rows

* <chr> <list<int>>

1 a [3]

2 b [3]

3 c [3]

##

[[2]]

[1] "grouped_df" "tbl_df" "tbl" "data.frame"

my_ugr.tb <- ungroup(my_gr.tb)

class(my_ugr.tb)

[1] "tbl_df" "tbl" "data.frame"

names(attributes(my_ugr.tb))

[1] "names" "row.names" "class"

all(my.tb == my_gr.tb)

[1] TRUE

all(my.tb == my_ugr.tb)

[1] TRUE

identical(my.tb, my_gr.tb)

[1] FALSE

identical(my.tb, my_ugr.tb)

[1] TRUE

The tests above show that members are in all cases the same as operator
== tests for equality at each position in the tibble but not the attributes, while
attributes, including class differ between normal tibbles and grouped ones
and so they are not identical objects.

If we replace tibble by data.frame in the first statement, and rerun the
chunk, the result of the last statement in the chunk is FALSE instead of TRUE.
At the time of writing starting with a data.frame object, applying grouping
with group_by() followed by ungrouping with ungroup() has the side effect
of converting the data frame into a tibble. This is something to be very much
aware of, as there are differences in how the extraction operator [,] behaves
in the two cases. The safe way to write code making use of functions from
‘dplyr’ and ‘tidyr’ is to always use tibbles instead of data frames.

http:my_ugr.tb
http:identical(my.tb
http:my_gr.tb
http:identical(my.tb
http:my_ugr.tb
http:all(my.tb
http:my_gr.tb
http:all(my.tb
http:names(attributes(my_ugr.tb
http:class(my_ugr.tb
http:ungroup(my_gr.tb
http:my_ugr.tb
http:attributes(my.tb
http:setdiff(attributes(my_gr.tb
http:names(attributes(my_gr.tb

198 New grammars of data

6.7.3 Joins

Joins allow us to combine two data sources which share some variables. Vari-
ables in common are used to match the corresponding rows before “joining” vari-
ables (i.e., columns) from both sources together. There are several join functions
in ‘dplyr’. They differ mainly in how they handle rows that do not have a match
between data sources.

We create here some artificial data to demonstrate the use of these functions.
We will create two small tibbles, with one column in common and one mismatched
row in each.

first.tb <- tibble(idx = c(1:4, 5), values1 = "a")
second.tb <- tibble(idx = c(1:4, 6), values2 = "b")

Below we apply the functions exported by ‘dplyr’: full_join(), left_join(),
right_join() and inner_join(). These functions always retain all columns, and
in case of multiple matches, keep a row for each matching combination of rows.
We repeat each example with the arguments passed to x and y swapped to more
clearly show their different behavior.

A full join retains all unmatched rows filling missing values with NA. By default
the match is done on columns with the same name in x and y, but this can be
changed by passing an argument to parameter by. Using by one can base the match
on columns that have different names in x and y, or prevent matching of columns
with the same name in x and y (example at end of the section).

full_join(x = first.tb, y = second.tb)

Joining, by = "idx"
A tibble: 6 x 3
idx values1 values2
* <dbl> <chr> <chr>
1 1 a b
2 2 a b
3 3 a b
4 4 a b
5 5 a <NA>
6 6 <NA> b

full_join(x = second.tb, y = first.tb)

Joining, by = "idx"
A tibble: 6 x 3
idx values2 values1
* <dbl> <chr> <chr>
1 1 b a
2 2 b a
3 3 b a
4 4 b a
5 6 b <NA>
6 5 <NA> a

Left and right joins retain rows not matched from only one of the two data
sources, x and y, respectively.

http:first.tb
http:second.tb
http:second.tb
http:first.tb
http:second.tb
http:first.tb

199 Data manipulation with ‘dplyr’

left_join(x = first.tb, y = second.tb)

Joining, by = "idx"
A tibble: 5 x 3
idx values1 values2
* <dbl> <chr> <chr>
1 1 a b
2 2 a b
3 3 a b
4 4 a b
5 5 a <NA>

left_join(x = second.tb, y = first.tb)

Joining, by = "idx"
A tibble: 5 x 3
idx values2 values1
* <dbl> <chr> <chr>
1 1 b a
2 2 b a
3 3 b a
4 4 b a
5 6 b <NA>

right_join(x = first.tb, y = second.tb)

Joining, by = "idx"
A tibble: 5 x 3
idx values1 values2
* <dbl> <chr> <chr>
1 1 a b
2 2 a b
3 3 a b
4 4 a b
5 6 <NA> b

right_join(x = second.tb, y = first.tb)

Joining, by = "idx"
A tibble: 5 x 3
idx values2 values1
* <dbl> <chr> <chr>
1 1 b a
2 2 b a
3 3 b a
4 4 b a
5 5 <NA> a

An inner join discards all rows in x that do not have a matching row in y and
vice versa.

inner_join(x = first.tb, y = second.tb)

Joining, by = "idx"

http:second.tb
http:first.tb
http:first.tb
http:second.tb
http:second.tb
http:first.tb
http:first.tb
http:second.tb
http:second.tb
http:first.tb

200 New grammars of data

A tibble: 4 x 3
idx values1 values2
* <dbl> <chr> <chr>
1 1 a b
2 2 a b
3 3 a b
4 4 a b

inner_join(x = second.tb, y = first.tb)

Joining, by = "idx"
A tibble: 4 x 3
idx values2 values1
* <dbl> <chr> <chr>
1 1 b a
2 2 b a
3 3 b a
4 4 b a

Next we apply the filtering join functions exported by ‘dplyr’: semi_join() and
anti_join(). These functions only return a tibble that always contains only the
columns from x, but retains rows based on their match to rows in y.

A semi join retains rows from x that have a match in y.

semi_join(x = first.tb, y = second.tb)

Joining, by = "idx"
A tibble: 4 x 2
idx values1
<dbl> <chr>
1 1 a
2 2 a
3 3 a
4 4 a

semi_join(x = second.tb, y = first.tb)

Joining, by = "idx"
A tibble: 4 x 2
idx values2
<dbl> <chr>
1 1 b
2 2 b
3 3 b
4 4 b

A anti-join retains rows from x that do not have a match in y.

anti_join(x = first.tb, y = second.tb)

Joining, by = "idx"
A tibble: 1 x 2
idx values1
<dbl> <chr>
1 5 a

http:second.tb
http:first.tb
http:first.tb
http:second.tb
http:second.tb
http:first.tb
http:first.tb
http:second.tb

201 Further reading

anti_join(x = second.tb, y = first.tb)

Joining, by = "idx"
A tibble: 1 x 2
idx values2
<dbl> <chr>
1 6 b

We here rename column idx in first.tb to demonstrate the use of by to specify
which columns should be searched for matches.

first2.tb <- rename(first.tb, idx2 = idx)
full_join(x = first2.tb, y = second.tb, by = c("idx2" = "idx"))
A tibble: 6 x 3
idx2 values1 values2
* <dbl> <chr> <chr>
1 1 a b
2 2 a b
3 3 a b
4 4 a b
5 5 a <NA>
6 6 <NA> b

6.8 Further reading

An in-depth discussion of the ‘tidyverse’ is outside the scope of this book. Several
books describe in detail the use of these packages. As several of them are under
active development, recent editions of books such as R for Data Science (Wickham
and Grolemund 2017) are the most useful.

http:second.tb
http:first2.tb
http:rename(first.tb
http:first2.tb
http:first.tb
http:first.tb
http:second.tb

http://taylorandfrancis.com

7

Grammar of graphics

The commonality between science and art is in trying to see
profoundly—to develop strategies of seeing and showing.

Edward Tufte’s answer to Charlotte Thralls
An Interview with Edward R. Tufte, 2004

7.1 Aims of this chapter

Three main data plotting systems are available to R users: base R, package ‘lattice’
(Sarkar 2008) and package ‘ggplot2’ (Wickham and Sievert 2016), the last one be-
ing the most recent and currently most popular system available in R for plotting
data. Even two different sets of graphics primitives (i.e., those used to produce the
simplest graphical elements such as lines and symbols) are available in R, those in
base R and a newer one in the ‘grid’ package (Murrell 2011).

In this chapter you will learn the concepts of the grammar of graphics, on which
package ‘ggplot2’ is based. You will also learn how to build several types of data
plots with package ‘ggplot2’. As a consequence of the popularity and flexibility of
‘ggplot2’, many contributed packages extending its functionality have been devel-
oped and deposited in public repositories. However, I will focus mainly on package
‘ggplot2’ only briefly describing a few of these extensions.

7.2 Packages used in this chapter

If the packages used in this chapter are not yet installed in your computer, you can
install them as shown below, as long as package ‘learnrbook’ is already installed.

install.packages(learnrbook::pkgs_ch_ggplot)

203

204 Grammar of graphics

To run the examples included in this chapter, you need first to load some pack-
ages from the library (see section 5.2 on page 163 for details on the use of pack-
ages).

library(learnrbook)
library(wrapr)
library(scales)
library(ggplot2)
library(ggrepel)
library(gginnards)
library(ggpmisc)
library(ggbeeswarm)
library(ggforce)
library(tikzDevice)
library(lubridate)
library(tidyverse)
library(patchwork)

7.3 Introduction to the grammar of graphics

What separates ‘ggplot2’ from base R and trellis/lattice plotting functions is the
use of a grammar of graphics (the reason behind ‘gg’ in the name of package
‘ggplot2’). What is meant by grammar in this case is that plots are assembled piece
by piece using different “nouns” and “verbs” (Cleveland 1985). Instead of using a
single function with many arguments, plots are assembled by combining differ-
ent elements with operators + and %+%. Furthermore, the construction is mostly
semantics-based and to a large extent, how plots look when printed, displayed, or
exported to a bitmap or vector-graphics file is controlled by themes.

We can think of plotting as representing the observations or data in a graphical
language. We use the properties of graphical objects to represent different aspects
of our data. An observation can consist of multiple recorded values. Say an obser-
vation of air temperature may be defined by a position in 3-dimensional space and
a point in time, in addition to the temperature itself. An observation for the size
and shape of a plant can consist of height, stem diameter, number of leaves, size
of individual leaves, length of roots, fresh mass, dry mass, etc. If we are interested
in the relationship between height and stem diameter, we may want to use carte-
sian coordinates, mapping stem diameter to the 𝑥 dimension of the plot and the
height to the 𝑦 dimension. The observations could be represented on the plot by
points and/or joined by lines.

The grammar of graphics allows us to design plots by combining various el-
ements in ways that are nearly orthogonal. In other words, the majority of the
possible combinations of “words” yield valid plots as long as we assemble them
respecting the rules of the grammar. This flexibility makes ‘ggplot2’ extremely
powerful as we can build plots and even types of plots which were not even con-
sidered while designing the ‘ggplot2’ package.

When a plot is built, the whole plot and its components are created as R objects
that can be saved in the workspace or written to a file as objects. The graphical

205 Introduction to the grammar of graphics

representation is generated when the object is printed, explicitly or automatically.
The same ggplot object can be rendered into different bitmap and vector graphic
formats for display or printing.

Even if we do not explicitly add them all, default elements may be used. The
production of a rendered graphic with package ‘ggplot2’ can be represented as a
flow of information: data → scale → statistic → aesthetic → geometry → coordinate
→ ggplot → theme → rendered graphic.

7.3.1 Data

The data to be plotted must be available as a data.frame or tibble, with data stored
so that each row represents a single observation event, and the columns are dif-
ferent values observed in that single event. In other words, in long form (so-called
“tidy data”) as described in chapter 6. The variables to be plotted can be numeric,
factor, character, and time or date stored as POSIXct.

7.3.2 Mapping

When we design a plot, we need to map data variables to aesthetics (or graphic
properties). Most plots will have an 𝑥 dimension, which is considered an aesthetic,
and a variable containing numbers mapped to it. The position on a 2D plot of, say, a
point, will be determined by 𝑥 and 𝑦 aesthetics, while in a 3D plot, three aesthetics
need to be mapped 𝑥, 𝑦 and 𝑧. Many aesthetics are not related to coordinates,
they are properties, like color, size, shape, line type, or even rotation angle, which
add an additional dimension on which to represent the values of variables and/or
constants.

7.3.3 Geometries

Geometries are “words” that describe the graphics representation of the data:
for example, geom_point(), plots a point or symbol for each observation, while
geom_line(), draws line segments between observations. Some geometries rely by
default on statistics, but most “geoms” default to the identity statistics. Each time
a geometry is used to add a graphical representation of data to a plot, we say that
a new layer has been added. The name layer reflects the fact that each new layer
added is plotted on top of the layers already present in the plot, or rather when a
plot is printed the layers will be generated in the order they were added to the gg-
plot object. For example, one layer in a plot can display the observations, another
layer a regression line fitted to them, and a third one may contain annotations such
an equation or a text label.

7.3.4 Statistics

Statistics are “words” that represent calculation of summaries or some other oper-
ation on the values from the data. When statistics are used for a computation, the
returned value is passed directly to a geometry, and consequently adding an statis-
tics also adds a layer to the plot. For example, stat_smooth() fits a smoother, and
stat_summary() applies a summary function. Statistics are applied automatically

206 Grammar of graphics

by group when data have been grouped by mapping additional aesthetics such as
color to a factor.

7.3.5 Scales

Scales give the “translation” or mapping between data values and the aesthetic
values to be actually plotted. Mapping a variable to the “color” aesthetic (also
recognized when spelled as “colour”) only tells that different values stored in
the mapped variable will be represented by different colors. A scale, such as
scale_color_continuous(), will determine which color in the plot corresponds to
which value in the variable. Scales can also define transformations on the data,
which are used when mapping data values to aesthetic values. All continuous scales
support transformations—e.g., in the case of 𝑥 and 𝑦 aesthetics, positions on the
plotting region or viewport will be affected by the transformation, while the origi-
nal values will be used for tick labels along the axes. Scales are used for all aesthet-
ics, including continuous variables, such as numbers, and categorical ones such as
factors. The grammar of graphics allows only one scale per aesthetic and plot. This
restriction is imposed by design to avoid ambiguity (e.g., it ensures that the red
color will have the same “meaning” in all plot layers where the color aesthetic is
mapped to data). Scales have limits with observations falling outside these limits
being ignored (replaced by NA) rather than passed to statistics or geometries—it
is easy to unintentionally drop observations when setting scale limits manually as
warning messages report that NA values have been omitted.

7.3.6 Coordinate systems

The most frequently used coordinate system when plotting data, the cartesian sys-
tem, is the default for most geometries. In the cartesian system, 𝑥 and 𝑦 are rep-
resented as distances on two orthogonal (at 90∘) axes. Additional coordinate sys-
tems are available in ‘ggplot2’ and through extensions. For example, in the polar
system of coordinates, the 𝑥 values are mapped to angles around a central point
and 𝑦 values to the radius. Another example is the ternary system of coordinates,
an extension of the grammar implemented in package ‘ggtern’, that allows the
construction of ternary plots. Setting limits to a coordinate system changes the
region of the plotting space visible in the plot, but does not discard observations.
In other words, when using statistics, observations located outside the coordinate
limits, i.e., not visible in the rendered plot, will still be included in computations.

7.3.7 Themes

How the plots look when displayed or printed can be altered by means of themes.
A plot can be saved without adding a theme and then printed or displayed using
different themes. Also, individual theme elements can be changed, and whole new
themes defined. This adds a lot of flexibility and helps in the separation of the data
representation aspects from those related to the graphical design.

207 Introduction to the grammar of graphics

7.3.8 Plot construction

We have described above the components of the grammar of graphics: aesthet-
ics (aes), for example color, geometric elements geom_… such as lines and points,
statistics stat_…, scales scale_…, coordinate systems coord_…, and themes theme_….
In this section we will see how plots are assembled from these elements.

As the workings and use of the grammar are easier to show by example than
to explain with words, will show how to build plots of increasing complexity. All
elements of a plot have defaults, although in some cases these defaults result in
empty plots. Defaults make it possible to create a plot very succinctly. We use
function ggplot() to create the skeleton for a plot, which can be enhanced, but
also printed as is.

ggplot()

The plot above is of little use without any data, so we next pass a data frame
object, in this case mtcars—mtcars is a data set included in R; to learn more about
this data set, type help("mtcars") at the R command prompt.

ggplot(data = mtcars)

Once the data are available, we need to map the quantities in the data onto
graphical features in the plot, or aesthetics. When plotting in two dimensions, we
need to map variables in the data to at least the 𝑥 and 𝑦 aesthetics. This map-
ping can be seen in the chunk below by its effect on the plotting area ranges that
now match the ranges of the mapped variables, extended by a small margin. The
axis labels also reflect the names of the mapped variables, however, there is no
graphical element yet displayed for the individual observations.

ggplot(data = mtcars,
aes(x = disp, y = mpg))

208 Grammar of graphics

10

15

20

25

30

35

100 200 300 400

disp

m
pg

To make observations visible in the plot we need to add a suitable geometry or
geom to the plot. Here we display the observations as points using geom_point()

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point()

10

15

20

25

30

35

100 200 300 400

disp

m
pg

 In the examples above, the plots were printed automatically, which is
the default at the R console. However, as with other R objects, ggplots can be
assigned to a variable,

p <- ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point()

and printed at a later time.

print(p)

U Above we have seen how to build a plot, layer by layer, using the
grammar of graphics. We have also seen how to save a ggplot. We can peep
into the innards of this object using summary().

209 Introduction to the grammar of graphics

summary(p)

We can view the structure of the ggplot object with str().
Package ‘gginnards’ provides methods str(), num_layers(), top_layer()

and mapped_vars(). Use these methods to explore ggplot objects with different
numbers of layers or mappings. You will see that the plot elements that were
added to the plot are stored as members of a list with nested lists forming a
tree-like structure.

Although aesthetics can be mapped to variables in the data, they can also be set
to constant values, but only within layers, not as whole-plot defaults.
ggplot(data = mtcars,

aes(x = disp, y = mpg)) +
geom_point(color = "red", shape = "square")

10

15

20

25

30

35

100 200 300 400

disp

m
pg

While a geometry directly constructs a graphical representation of the observa-
tions in the data, a statistics or stat “sits” in-between the data and a geom, applying
some computation, usually but not always, to produce a statistical summary of the
data. Here we add a fitted line using stat_smooth() with its output added to the
plot using geom_line() passed by name with "line" as an argument to stat_smooth.
We fit a linear regression, using lm() as the method.
ggplot(data = mtcars,

aes(x = disp, y = mpg)) +
geom_point() +
stat_smooth(geom = "line", method = "lm", formula = y ~ x)

10

15

20

25

30

35

100 200 300 400

disp

m
pg

210 Grammar of graphics

We haven’t yet added some of the elements of the grammar described above:
scales, coordinates and themes. The plots were rendered anyway because these
elements have defaults which are used when we do not set them explicitly. We
next will see examples in which they are explicitly set. We start with a scale using
a logarithmic transformation. This works like plotting by hand using graph paper
with rulings spaced according to a logarithmic scale. Tick marks continue to be
expressed in the original units, but statistics are applied to the transformed data.
In other words, a transformed scale affects the values before they are passed to
statistics, and the linear regression will be fitted to log10() transformed 𝑦 values
and the original 𝑥 values.

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point() +
stat_smooth(geom = "line", method = "lm", formula = y ~ x) +
scale_y_log10()

10

20

30

100 200 300 400

disp

m
pg

The range limits of a scale can be set manually, instead of automatically by
default. These limits create a virtual window into the data: observations outside
the scale limits remain hidden and are not mapped to aesthetics—i.e., these obser-
vations are not included in the graphical representation or used in calculations.
Crucially, when using statistics the computations are only applied to observations
that fall within the limits of all scales in use. These limits indirectly affect the
plotting area when the plotting area is automatically set based on the range of
the (within limits) data—even the mapping to values of a different aesthetics may
change when a subset of the data are selected by manually setting the limits of a
scale.

In contrast to scale limits, coordinates function as a zoomed view into the plot-
ting area, and do not affect which observations are visible to statistics. The coor-
dinate system, as expected, is also determined by this grammar element—here we
use cartesian coordinates which are the default, but we manually set 𝑦 limits.

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point() +
stat_smooth(geom = "line", method = "lm", formula = y ~ x) +
coord_cartesian(ylim = c(15, 25))

211 Introduction to the grammar of graphics

15.0

17.5

20.0

22.5

25.0

100 200 300 400

disp

m
pg

The next example uses a coordinate system transformation. When the trans-
formation is applied to the coordinate system, it affects only the plotting—it sits
between the geom and the rendering of the plot. The transformation is applied to
the values returned by any statistics. The straight line fitted is plotted on the trans-
formed coordinates as a curve, because the model was fitted to the untransformed
data and this fitted model is automatically used to obtain the predicted values,
which are then plotted after the transformation is applied to them. We have here
described only cartesian coordinate systems while other coordinate systems are
described in sections 7.4.6 and 7.9 on pages 228 and 272, respectively.

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point() +
stat_smooth(geom = "line", method = "lm", formula = y ~ x) +
coord_trans(y = "log10")

10

20

30

100 200 300 400

disp

m
pg

Themes affect the rendering of plots at the time of printing—they can be
thought of as style sheets defining the graphic design. A complete theme can over-
ride the default gray theme. The plot is the same, the observations are represented
in the same way, the limits of the axes are the same and all text is the same. On
the other, hand how these elements are rendered by different themes can be dras-
tically different.

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point() +

theme_classic()

212 Grammar of graphics

10

15

20

25

30

35

100 200 300 400

disp

m
pg

We can also override the base font size and font family. This affects the size of
all text elements, as their size is defined relative to the base size. Here we add the
same theme as used in the previous example, but with a different base point size
for text.

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point() +
theme_classic(base_size = 20, base_family = "serif")

10

15

20

25

30

35

100 200 300 400
disp

m
pg

The details of how to set axis labels, tick positions and tick labels will be dis-
cussed in depth in section 7.7. Meanwhile, we will use function labs() which is a
convenience function allowing us to easily set the title and subtitle of a plot and to
replace the default name of scales used for axis labels—by default name is set to the
name of the mapped variable. When setting the name of scales with labs(), we use
as parameter names the names of aesthetics and pass as an argument a character
string, or an R expression. Here we use x and y, the names of the two aesthetics to
which we have mapped two variables in data, disp and mpg.

ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point() +
labs(x = "Engine displacement (cubic inches)",

y = "Fuel use efficiency\n(miles per gallon)",
title = "Motor Trend Car Road Tests",
subtitle = "Source: 1974 Motor Trend US magazine")

213 Introduction to the grammar of graphics

10

15

20

25

30

35

100 200 300 400

Engine displacement (cubic inches)

F
ue

l u
se

 e
ffi

ci
en

cy
(m

ile
s

pe
r

ga
llo

n)

Source: 1974 Motor Trend US magazine

Motor Trend Car Road Tests

= As elsewhere in R, when a value is expected, either a value stored in a
variable or statement returning a suitable value can be passed as an argument
to be mapped to an aesthetic. In other words, the values to be plotted do not
need to be stored as variables (or columns) in the data frame passed as an
argument to parameter data, they can also be computed from these variables.
Here we plot miles-per-gallon, mpg on the engine displacement per cylinder by
dividing disp by cyl within the call to aes().

ggplot(data = mtcars, aes(x = disp / cyl, y = mpg)) +
geom_point()

10

15

20

25

30

35

20 30 40 50 60

disp/cyl

m
pg

Each of the elements of the grammar exemplified above has several different
members, and many of the individual geometries and statistics accept arguments
that can be used to modify their behavior. There are also more aesthetics than
those shown above. Multiple data objects as well as multiple mappings can coexist
within a single ggplot object. Packages and user code can define new geometries,
statistics, coordinates and even implement new aesthetics. Individual elements in a
theme can also be modified and new complete themes created, re-used and shared.
We will describe in the remaining sections of this chapter how to use the grammar
of graphics to construct other types of graphical presentations including more
complex plots than those in the examples above.

214 Grammar of graphics

7.3.9 Plots as R objects

We can manipulate ggplot objects and their components in the same way as other
R objects. We can operate on them using the operators and methods defined for
the "gg" class they belong to. We start by saving a ggplot into a variable.

p <- ggplot(data = mtcars,
aes(x = disp, y = mpg)) +

geom_point()

 The separation of plot construction and rendering is possible, because
"gg" objects are self-contained. Most importantly, a copy of the data object
passed as argument is saved within the plot object. In the example above, p

by itself could be saved to a file on disk and loaded into a clean R session,
even on another computer, and rendered as long as package ‘ggplot2’ and its
dependencies are available. Another consequence of a copy of the data being
stored in the plot object, is that editing the data used to create a "gg" object
after its creation does not affect rendered plots unless we recreate the ”gg”
object.

With str() we can explore the structure of any R object, including those of
class "gg". We use max.level = 1 to reduce the length of output, but to see
deeper into the nested list you can increase the value passed as an argument
to max.level or simply accept its default.

str(p, max.level = 1)

When we used in the previous section operator + to assemble the plots, we were
operating on “anonymous” R objects. In the same way, we can operate on saved or
“named” objects.

p +
stat_smooth(geom = "line", method = "lm", formula = y ~ x)

10

15

20

25

30

35

100 200 300 400

disp

m
pg

215 Introduction to the grammar of graphics

U Reproduce the examples in the previous section, using p defined above as
a basis instead of building each plot from scratch.

= In the examples above we have been adding elements one by one, using
the + operator. It is also possible to add multiple components in a single op-
eration using a list. This is useful, when we want to save sets of components
in a variable so as to reuse them in multiple plots. This saves typing, ensures
consistency and can make alterations to a set of similar plots much easier.

my.layers <- list(
stat_smooth(geom = "line", method = "lm", formula = y ~ x),
scale_x_log10())

p + my.layers

10

15

20

25

30

35

100 300 500

disp

m
pg

7.3.10 Data and mappings

In the case of simple plots, based on data contained in a single data frame, the usual
style is to code a plot as described above, passing an argument, mtcars in these
examples, to the data parameter of ggplot(). Data passed in this way becomes
the default for all layers in the plot. The same applies to the argument passed to
mapping.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +

geom_point()

However, the grammar of graphics contemplates the possibility of data and
mappings restricted to individual layers. In this case, those passed as arguments
to ggplot(), if present, are overridden by arguments passed to individual layers,
making it possible to code the same plot as follows.

216 Grammar of graphics

ggplot() +
geom_point(data = mtcars,

mapping = aes(x = disp, y = mpg))

The default mapping can also be added directly with the + operator, instead of
being passed as an argument to ggplot().

ggplot(data = mtcars) +
aes(x = disp, y = mpg) +
geom_point()

It is even possible to have a default mapping for the whole plot, but no default
data.

ggplot() +
aes(x = disp, y = mpg) +
geom_point(data = mtcars)

In these examples, the plot remains unchanged, but this flexibility in the gram-
mar allows, in plots containing multiple layers, for each layer to use different data
or a different mapping.

 The argument passed to parameter data of a layer function, can be a func-
tion instead of a data frame, if the plot contains default data. In this case, the
function is applied to the default data and must return a data frame containing
data to be used in the layer.

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +

geom_point(size = 4) +
geom_point(data = function(x){subset(x, cyl == 4)}, color = "yellow",

size = 1.5)

The plot default data can also be operated upon using the ‘magritrr’ pipe
operator, but not the dot-pipe operator from ‘wrapr’ (see section 6.5 on page
187).

ggplot(data = mtcars,
mapping = aes(x = disp, y = mpg)) +

geom_point(size = 4) +
geom_point(data = . %.>% subset(x = ., cyl == 4), color = "yellow",

size = 1.5)

7.4 Geometries

Different geometries support different aesthetics. While geom_point() supports
shape, and geom_line() supports linetype, both support x, y, color and size. In

Geometries 217

this section we will describe the different geometries available in package ‘ggplot2’
and some examples from packages that extend ‘ggplot2’. The graphic output from
most code examples will not be shown, with the expectation that readers will run
them to see the plots.

Mainly for historical reasons, geometries accept a statistic as an argument, in the
same way as statistics accept a geometry as an argument. In this section we will only
describe geometries which have as a default statistic stat_identity which passes
values directly as mapped. The geometries that have other statistics as default are
described in section 7.5.2 together with the corresponding statistics.

7.4.1 Point

As shown earlier in this chapter, geom_point(), can be used to add a layer with ob-
servations represented by “points” or symbols. Variable cyl describes the numbers
of cylinders in the engines of the cars. It is a numeric variable, and when mapped
to color, a continuous color scale is used to represent this variable.

The first examples build scatter plots, because numeric variables are mapped to
both x and y. Some scales, like those for color, exist in two “flavors,” one suitable
for numeric variables (continuous) and another for factors (discrete).

ggplot(data = mtcars,
aes(x = disp, y = mpg, color = cyl)) +

geom_point()

10

15

20

25

30

35

100 200 300 400

disp

m
pg

4

5

6

7

8
cyl

If we convert cyl into a factor, a discrete color scale is used instead of a con-
tinuous one.

ggplot(data = mtcars,
aes(x = disp, y = mpg, color = factor(cyl))) +

geom_point()

If we convert cyl into an ordered factor, a different discrete color scale is used
by default.

ggplot(data = mtcars,
aes(x = disp, y = mpg, color = ordered(cyl))) +

geom_point()

218 Grammar of graphics

U Try a different mapping: disp → color, cyl → x. Continue by using
help(mtcars) and/or names(mtcars) to see what variables are available, and
then try the combinations that trigger your curiosity—i.e., explore the data.

The mapping between data values and aesthetic values is controlled by scales.
Different color scales, and even palettes within a given scale, provide different
mappings between data values and rendered colours.

ggplot(data = mtcars,
aes(x = disp, y = mpg, color = factor(cyl))) +

geom_point() +
scale_color_brewer(type = "qual", palette = 2)

The data, aesthetics mappings, and geometries are the same as in earlier code;
to alter how the plot looks, we have changed only the scale and palette used for
the color aesthetic. Conceptually it is still exactly the same plot we created earlier,
except for the colours used. This is a very important point to understand, because
it allows us to separate two different concerns: the semantic structure and the
graphic design.

U Try the different palettes available through the brewer scale. You can play
directly with the palettes using function brewer_pal() from package ‘scales’
together with show_col()).

show_col(brewer_pal()(3))

show_col(brewer_pal(type = "qual", palette = 2, direction = 1)(3))

Once you have found a suitable palette for these data, redo the plot above
with the chosen palette.

When not relying on colors, the most common way of distinguishing groups
of observations in scatter plots is to use the shape of the points as an aesthetic.
We need to change a single “word” in the code statement to achieve this different
mapping.

ggplot(data = mtcars, aes(x = disp, y = mpg, shape = factor(cyl))) +
geom_point()

We can use scale_shape_manual to choose each shape to be used. We set three
“open” shapes that we will see later are very useful as they obey both color and
fill aesthetics.

ggplot(data = mtcars, aes(x = disp, y = mpg, shape = factor(cyl))) +
geom_point() +
scale_shape_manual(values = c(21, 22, 23))

It is also possible to use characters as shapes. The character is centered on the

Geometries 219

position of the observation. As the numbers used as symbols are self-explanatory,
we suppress the default guide or key.

ggplot(data = mtcars, aes(x = disp, y = mpg, shape = factor(cyl))) +
geom_point(size = 2.5) +
scale_shape_manual(values = c("4", "6", "8"), guide = FALSE)

m
pg

35

30

25

20

15

10

66
4

6

86

8

4
4

6
6

8
8
8

88

8

4
4

4

4

88
8

8

4
4

4

8

6

8

4

100 200 300 400
disp

= One variable in the data can be mapped to more than one aesthetic, allow-
ing redundant aesthetics. This may seem wasteful, but it is extremely useful
as it allows one to produce figures that, even when produced in color, can still
be read if reproduced as black-and-white images.

ggplot(data = mtcars, aes(x = disp, y = mpg,
shape = factor(cyl),
color = factor(cyl))) +

geom_point()

Dot plots are similar to scatter plots but a factor is mapped to either the x or
y aesthetic. Dot plots are prone to have overlapping observations, and one way
of making these points visible is to make them partly transparent by setting a
constant value smaller than one for the alpha aesthetic.

ggplot(data = mtcars, aes(x = factor(cyl), y = mpg)) +
geom_point(alpha = 1/3)

35

30

25

4 6 8
factor(cyl)

m
pg

20

15

10

220 Grammar of graphics

Instead of making the points semitransparent, we can randomly displace them
to avoid overlaps. This is called jitter, and can be added using position_jitter()

and the amount of jitter set with width as a fraction of the distance between adja-
cent factor levels in the plot.

ggplot(data = mtcars, aes(x = factor(cyl), y = mpg)) +
geom_point(position = position_jitter(width = 0.05))

We can create a “bubble” plot by mapping the size aesthetic to a continuous
variable. In this case, one has to think what is visually more meaningful. Although
the radius of the shape is frequently mapped, due to how human perception works,
mapping a variable to the area of the shape is more useful by being perceptually
closer to a linear mapping. For this example we add a new variable to the plot. The
weight of the car in tons and map it to the area of the points.

ggplot(data = mtcars, aes(x = disp, y = mpg,
color = factor(cyl),
size = wt)) +

scale_size_area() +
geom_point()

10

15

20

25

30

35

100 200 300 400

disp

m
pg

wt

2

3

4

5

factor(cyl)

4

6

8

U If we use a radius-based scale the “impression” is different.

ggplot(data = mtcars, aes(x = disp, y = mpg,
color = factor(cyl),
size = wt)) +

scale_size() +

geom_point()

Make the plot, look at it carefully. Check the numerical values of some of
the weights, and assess if your perception of the plot matches the numbers
behind it.

As a final example summarizing the use of geom_point(), we combine different
aesthetics and scales in the same scatter plot.

100 200 300 400
disp

10

15

20

25

30

35

m
pg

wt
2
3
4
5

factor(cyl)
4
6
8

Geometries 221

ggplot(data = mtcars, aes(x = disp, y = mpg,
shape = factor(cyl),
fill = factor(cyl),
size = wt)) +

geom_point(alpha = 0.33, color = "black") +
scale_size_area() +
scale_shape_manual(values = c(21, 22, 23))

U Play with the code in the chunk above. Remove or change each of the map-
pings and the scale, display the new plot, and compare it to the one above.
Continue playing with the code until you are sure you understand what graph-
ical element in the plot is added or modified by each individual argument or
“word” in the code statement.

It is common to draw error bars together with points representing means or
medians of observations and geom_pointrange() achieves this task based on the
values mapped to the x, y, ymin and ymax, using y for the position of the point
and ymin and ymax for the positions of the ends of the line segment representing a
range. Two other geometries, geom_range() and geom_errorbar draw only a segment
or a segment with capped ends. They are frequently used together with statistics
when summaries are calculated on the fly, but can also be used directly when the
data summaries are stored in a data frame passed as an argument to data.

7.4.2 Rug

Rarely, rug plots are used by themselves. Instead they are usually an addition to
scatter plots. An example of the use of geom_rug() follows. They make it easier to
see the distribution of observations along the 𝑥- and 𝑦-axes.

ggplot(data = mtcars,
aes(x = disp, y = mpg, color = factor(cyl))) +

geom_point() +
geom_rug()

222 Grammar of graphics

10

15

20

25

30

35

100 200 300 400

disp

m
pg

factor(cyl)

4

6

8

 Rug plots are most useful when the local density of observations is not too
high, otherwise rugs become too cluttered and the “rug threads” may overlap.
When overlap is moderate, making the segments semitransparent by setting
the alpha aesthetic to a constant value smaller than one, can make the varia-
tion in density easier to appreciate. When the number of observations is large,
marginal density plots should be preferred.

7.4.3 Line and area

For line plots we use geom_line(). The size of a line is its thickness, and as we
had shape for points, we have linetype for lines. In a line plot, observations in
successive rows of the data frame, or the subset corresponding to a group, are
joined by straight lines. We use a different data set included in R, Orange, with data
on the growth of five orange trees. See the help page for Orange for details.

ggplot(data = Orange,
aes(x = age, y = circumference, linetype = Tree)) +

geom_line()

50

100

150

200

400 800 1200 1600

age

ci
rc
um
fe
re
nc
e Tree

3

1

5

2

4

Instead of drawing a line joining the successive observations, we may want to
draw a disconnected straight-line segment for each observation or row in the data.
In this case, we use geom_segment() which accepts x, xend, y and yend as mapped
aesthetics. geom_curve() draws curved lines, and the curvature, control points, and

Geometries 223

angles can be controlled through additional aesthetics. These two geometries sup-
port arrow heads at their ends. Other geometries useful for drawing lines or seg-
ments are geom_path(), which is similar to geom_line(), but instead of joining ob-
servations according to the values mapped to x, it joins them according to their
row-order in data, and geom_spoke(), which is similar to geom_segment() but using
a polar parametrization, based on x, y for origin, and angle and radius for the
segment. Finally, geom_step() plots only vertical and horizontal lines to join the
observations, creating a stepped line.

ggplot(data = Orange,
aes(x = age, y = circumference, linetype = Tree)) +

geom_step()

50

100

150

200

400 800 1200 1600

age

ci
rc
um
fe
re
nc
e Tree

3

1

5

2

4

U Using the following toy data, make three plots using geom_line(),
geom_path(), and geom_step to add a layer.

toy.df <- data.frame(x = c(1,3,2,4), y = c(0,1,0,1))

While geom_line() draws a line joining observations, geom_area() supports fill-
ing the area below the line according to the fill aesthetic. In contrast geom_ribbon

draws two lines based on the x, ymin and ymax aesthetics, with the space between
the lines filled according to the fill aesthetic. Finally, geom_polygom is similar to
geom_path() but connects the extreme observations forming a closed polygon that
supports fill.

Much of what was described above for geom_point can be adapted to geom_line,
geom_ribbon, geom_area and other geometries described in this section. In some
cases, it is useful to stack the areas—e.g., when the values represent parts of a
bigger whole. In the next, contrived, example, we stack the growth of the different
trees by using position = "stack" instead of the default position = "identity".
(Compare the 𝑦 axis of the figure below to that drawn using geom_line on page
222.)

ggplot(data = Orange,
aes(x = age, y = circumference, fill = Tree)) +

geom_area(position = "stack")

224 Grammar of graphics

0

250

500

750

400 800 1200 1600

age

ci
rc
um
fe
re
nc
e Tree

3

1

5

2

4

Finally, three geometries for drawing lines across the whole plotting area:
geom_hline, geom_vline and geom_abline. The first two draw horizontal and ver-
tical lines, respectively, while the third one draws straight lines according to the
aesthetics slope and intercept determining the position. The lines drawn with
these three geoms extend to the edge of the plotting area.

geom_hline and geom_vline require a single aesthetic, yintercept and
xintercept, respectively. Different from other geoms, the data for these aesthetics
can also be passed as constant numeric vectors. The reason for this is that these ge-
oms are most frequently used to annotate plots rather than plotting observations.
Let’s assume that we want to highlight an event at the age of 1000 days.

ggplot(data = Orange,
aes(x = age, y = circumference, fill = Tree)) +

geom_area(position = "stack") +
geom_vline(xintercept = 1000, color = "gray75") +
geom_vline(xintercept = 1000, linetype = "dotted")

0

250

500

750

400 800 1200 1600

age

ci
rc
um
fe
re
nc
e Tree

3

1

5

2

4

U Change the order of the three layers in the example above. How did the
figure change? What order is best? Would the same order be the best for a
scatter plot? And would it be necessary to add two geom_vline() layers?

Geometries 225

7.4.4 Column

The geometry geom_col() can be used to create column plots where each bar rep-
resents an observation or case in the data.

 R users not familiar yet with ‘ggplot2’ are frequently surprised by the
default behavior of geom_bar() as it uses stat_count() to produce a histogram,
rather than plotting values as is (see section 7.5.4 on page 245). geom_col() is
identical to geom_bar() but with "identity" as the default statistic.

We create artificial data that we will reuse in multiple variations of the next
figure.

set.seed(654321)
my.col.data <- data.frame(treatment = factor(rep(c("A", "B", "C"), 2)),

group = factor(rep(c("male", "female"), c(3, 3))),
measurement = rnorm(6) + c(5.5, 5, 7))

First we plot data for females only, using defaults for all aesthetics except 𝑥
and 𝑦 which we explicitly map to variables.

ggplot(subset(my.col.data, group == "female"),
aes(x = treatment, y = measurement)) +

geom_col()

0.0

2.5

5.0

7.5

A B C

treatment

m
ea
su
re
m
en
t

We play with aesthetics to produce a plot with a semi-formal style—e.g., suitable
for a science popularization article or book. See section 7.7 and section 7.10 for
information on scales and themes, respectively. We set width = 0.5 to make the
bars narrower. Setting color = "white" overrides the default color of the lines
bordering the bars.

ggplot(my.col.data, aes(x = treatment, y = measurement, fill = group)) +
geom_col(color = "white", width = 0.5) +
scale_fill_grey() + theme_dark()

226 Grammar of graphics

0

5

10

15

A B C

treatment

m
ea
su
re
m
en
t

group

female

male

We next use a formal style, and in addition, put the bars side by side by
setting position = "dodge" to override the default position = "stack". Setting
color = NA removes the lines bordering the bars.

ggplot(my.col.data, aes(x = treatment, y = measurement, fill = group)) +
geom_col(color = NA, position = "dodge") +
scale_fill_grey() + theme_classic()

0.0

2.5

5.0

7.5

A B C

treatment

m
ea
su
re
m
en
t

group

female

male

U Change the argument to position, or let the default be active, until you
understand its effect on the figure. What is the difference between positions
"identity", "dodge" and "stack"?

UUse constants as arguments for aesthetics or map variable treatment to one
or more of the aesthetics used by geom_col(), such as color, fill, linetype,
size, alpha and width.

7.4.5 Tiles

We can draw square or rectangular tiles with geom_tile() producing tile plots or
simple heat maps.

We here generate 100 random draws from the 𝐹 distribution with degrees of
freedom 𝜈1 = 5,𝜈2 = 20.

Geometries 227

set.seed(1234)
randomf.df <- data.frame(F.value = rf(100, df1 = 5, df2 = 20),

x = rep(letters[1:10], 10),
y = LETTERS[rep(1:10, rep(10, 10))])

geom_tile() requires aesthetics 𝑥 and 𝑦, with no defaults, and width and height

with defaults that make all tiles of equal size filling the plotting area.

ggplot(randomf.df, aes(x, y, fill = F.value)) +
geom_tile()

A

B

C

D

E

F

G

H

I

J

a b c d e f g h i j

x

y

1

2

3

4

F.value

We can set color = "gray75" and size = 1 to make the tile borders more visible
as in the example below, or use a contrasting color, to better delineate the borders
of the tiles. What to use will depend on whether the individual tiles add meaningful
information. In cases like when rows of tiles correspond to individual genes and
columns to discrete treatments, the use of contrasting tile borders is preferable. In
contrast, in the case when the tiles are an approximation to a continuous surface
such as measurements on a regular spatial grid, it is best to suppress the tile
borders.

ggplot(randomf.df, aes(x, y, fill = F.value)) +
geom_tile(color = "gray75", size = 1.33)

A

B

C

D

E

F

G

H

I

J

a b c d e f g h i j

x

y

1

2

3

4

F.value

U Play with the arguments passed to parameters color and size in the ex-
ample above, considering what features of the data are most clearly perceived
in each of the plots you create.

http:ggplot(randomf.df
http:ggplot(randomf.df
http:randomf.df

228 Grammar of graphics

Any continuous fill scale can be used to control the appearance. Here we show
a tile plot using a gray gradient, with missing values in red.

ggplot(randomf.df, aes(x, y, fill = F.value) +
geom_tile(color = "white") +
scale_fill_gradient(low = "gray15", high = "gray85", na.value = "red")

In contrast to geom_tile(), geom_rect() draws rectangular tiles based on the
position of the corners, mapped to aesthetics xmin, xmax, ymin and ymax.

7.4.6 Simple features (sf)

‘ggplot2’ version 3.0.0 or later supports the plotting of shape data similar to the
plotting in geographic information systems (GIS) through geom_sf() and its com-
panions, geom_sf_text(), geom_sf_label(), and stat_sf(). This makes it possible
to display data on maps, for example, using different fill values for different re-
gions. Special coordinate coord_sf() can be used to select different projections for
maps. The aesthetic used is called geometry and contrary to all the other aesthetics
we have seen until now, the values to be mapped are of class sfc containing simple
features data with multiple components. Manipulation of simple features data is
supported by package ‘sf’. This subject exceeds the scope of this book, so a single
and very simple example follows.

nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
ggplot(nc) +
geom_sf(aes(fill = AREA), color = "gray90")

34°N

34.5°N

35°N

35.5°N

36°N

36.5°N

84°W 82°W 80°W 78°W 76°W

0.05

0.10

0.15

0.20

AREA

7.4.7 Text

We can use geom_text() or geom_label() to add text labels to observations. For
geom_text() and geom_label(), the aesthetic label provides the text to be plotted
and the usual aesthetics x and y, the location of the labels. As one would expect,
the color and size aesthetics can also be used for the text.

ggplot(data = mtcars, aes(x = disp, y = mpg,
color = factor(cyl),
size = wt,
label = cyl)) +

scale_size() +

http:ggplot(randomf.df

Geometries 229

geom_point() +

geom_text(color = "darkblue", size = 3)

66
4

6

86

8

4
4

6
6

8
8

8

88

8

4

4

4

4

88

8

8

4
4

4

8

6

8

4

10

15

20

25

30

35

100 200 300 400

disp

m
pg

wt

2

3

4

5

factor(cyl)

4

6

8

In addition, angle and vjust and hjust can be used to rotate the text and adjust
its position. The default value of 0.5 for both hjust and vjust sets the center of the
text at the supplied x and y coordinates. “Vertical” and “horizontal” for justifica-
tion refer to the text, not the plot. This is important when angle is different from
zero. Values larger than 0.5 shift the label left or down, and values smaller than
0.5, right or up with respect to its x and y coordinates. A value of 1 or 0 sets the text
so that its edge is at the supplied coordinate. Values outside the range 0…1 shift
the text even farther away, however, still using units based on the length or height
of the text label. Recent versions of ‘ggplot2’ make possible justification using
character constants for alignment: "left", "middle", "right", "bottom", "center"

and "top", and two special alignments, "inward" and "outward", that automatically
vary based on the position in the plotting area.

In the case of geom_label() the text is enclosed in a box, which obeys the fill

aesthetic and takes additional parameters (described starting at page 231) allowing
control of the shape and size of the box. However, geom_label() does not support
rotation with the angle aesthetic.

 You should be aware that R and ‘ggplot2’ support the use of UNICODE,
such as UTF8 character encodings in strings. If your editor or IDE supports
their use, then you can type Greek letters and simple maths symbols directly,
and they may show correctly in labels if a suitable font is loaded and an ex-
tended encoding like UTF8 is in use by the operating system. Even if UTF8 is
in use, text is not fully portable unless the same font is available, as even if
the character positions are standardized for many languages, most UNICODE
fonts support at most a small number of languages. In principle one can use
this mechanism to have labels both using other alphabets and languages like
Chinese with their numerous symbols mixed in the same figure. Furthermore,
the support for fonts and consequently character sets in R is output-device de-
pendent. The font encoding used by R by default depends on the default locale
settings of the operating system, which can also lead to garbage printed to the
console or wrong characters being plotted running the same code on a differ-
ent computer from the one where a script was created. Not all is lost, though, as

230 Grammar of graphics

R can be coerced to use system fonts and Google fonts with functions provided
by packages ‘showtext’ and ‘extrafont’. Encoding-related problems, especially
in MS-Windows, are common.

In the remaining examples, with output not shown, we use geom_text or
geom_label together with geom_point as this is how they may be used to label ob-
servations.

my.data <-
data.frame(x = 1:5,

y = rep(2, 5),

label = c("a", "b", "c", "d", "e"))

ggplot(my.data, aes(x, y, label = label)) +
geom_text(angle = 45, hjust = 1.5, size = 8) +
geom_point()

U Modify the example above to use geom_label() instead of geom_text()

using, in addition, the fill aesthetic.

In the next example we select a different font family, using the same characters
in the Roman alphabet. The names "sans" (the default), "serif" and "mono" are
recognized by all graphics devices on all operating systems. Additional fonts are
available for specific graphic devices, such as the 35 “PDF” fonts by the pdf()

device. In this case, their names can be queried with names(pdfFonts()).

ggplot(my.data, aes(x, y, label = label)) +
geom_text(angle = 45, hjust = 1.5, size = 8, family = "serif") +
geom_point()

U In the examples above the character strings were all of the same length,
containing a single character. Redo the plots above with longer character
strings of various lengths mapped to the label aesthetic. Do also play with
justification of these labels.

Plotting (mathematical) expressions involves mapping to the label aesthetic
character strings that can be parsed as expressions, and setting parse = TRUE (see
section 7.12 on page 282). Here, we build the character strings using paste() but, of
course, they could also have been entered one by one. This use of paste() provides
an example of recycling of shorter vectors (see section 2.10 on page 45).

my.data <-
data.frame(x = 1:5, y = rep(2, 5), label = paste("alpha[", 1:5, "]", sep = ""))

my.data$label
[1] "alpha[1]" "alpha[2]" "alpha[3]" "alpha[4]" "alpha[5]"

Geometries 231

Text and labels do not automatically expand the plotting area past their anchor-
ing coordinates. In the example above, we need to use expand_limits() to ensure
that the text is not clipped at the edge of the plotting area.

ggplot(my.data, aes(x, y, label = label)) +
geom_text(hjust = -0.2, parse = TRUE, size = 6) +
geom_point() +
expand_limits(x = 5.2)

a1 a2 a3 a4 a5

1.950

1.975

2.000

2.025

1 2 3 4 5

x

y

In the example above, we mapped to label the text to be parsed. It is also pos-
sible, and usually preferable, to build suitable labels on the fly within aes() when
setting the mapping for label. Here we use geom_text() with strings to be parsed
into expressions created on the fly within the call to aes(). The same approach can
be used for regular character strings not requiring parsing.

ggplot(my.data, aes(x, y, label = paste("alpha[", x, "]", sep = ""))) +
geom_text(hjust = -0.2, parse = TRUE, size = 6) +
geom_point()

As geom_label() obeys the same parameters as geom_text() except for angle,
we briefly describe below only the additional parameters compared to geom_text().
We may want to alter the default width of the border line or the color used to fill

the rectangle, or to change the “roundness” of the corners. To suppress the border
line, use label.size = 0. Corner roundness is controlled by parameter label.r

and the size of the margin around the text by label.padding.

my.data <-
data.frame(x = 1:5, y = rep(2, 5),

label = c("one", "two", "three", "four", "five"))

ggplot(my.data, aes(x, y, label = label)) +
geom_label(hjust = -0.2, size = 6,

label.size = 0L,
label.r = unit(0, "lines"),
label.padding = unit(0.15, "lines"),
fill = "yellow", alpha = 0.5) +

geom_point() +
expand_limits(x = 5.6)

http:unit(0.15

wt35

6
6

4

6

86

8

4

4

6

6 8
8

8

8
8

8

4
4

4

4

8
8

8

8

4 4

4

8
6

8

4

100 200 300 400
disp

2
30

25

3
4
5

m
pg

20
factor(cyl)

415

10
6
8

232 Grammar of graphics

2.025

y 2.000

1.975

1.950

one two three four five

1 2 3 4 5
x

U Play with the arguments to the different parameters and with the aesthet-
ics to get an idea of what can be done with them. For example, use thicker
border lines and increase the padding so that a visually well-balanced margin
is retained. You may also try mapping the fill and color aesthetics to factors
in the data.

If the parameter check_overlap of geom_text() is set to TRUE, text overlap
will be avoided by suppressing the text that would otherwise overlap other
text. Repulsive versions of geom_text() and geom_label(), geom_text_repel() and
geom_label_repel(), are available in package ‘ggrepel’. These geometries avoid
overlaps by automatically repositioning the text or labels. Please read the package
documentation for details of how to control the repulsion strength and direction,
and the properties of the segments linking the labels to the position of their data
coordinates. Nearly all aesthetics supported by geom_text() and geom_label() are
supported by the repulsive versions. However, given that a segment connects the
label or text to its anchor point, several properties of these segments can also be
controlled with aesthetics or arguments.

ggplot(data = mtcars,
aes(x = disp, y = mpg, color = factor(cyl), size = wt, label = cyl)) +

scale_size() +
geom_point(alpha = 1/3) +
geom_text_repel(color = "black", size = 3,

min.segment.length = 0.2, point.padding = 0.1)

Geometries 233

7.4.8 Plot insets

The support for insets in ‘ggplot2’ is confined to annotation_custom() which was
designed to be used for static annotations expected to be the same in each panel
of a plot (the use of annotations is described in section 7.8). Package ‘ggpmisc’
provides geoms that mimic geom_text() in relation to the aesthetics used, but that
similarly to geom_sf(), expect that the column in data mapped to the label aes-
thetics are lists of objects containing multiple pieces of information, rather than
atomic vectors. Similar to geom_sf() these geoms do not inherit the plot’s default
mappings to aesthetics. Three geometries are currently available: geom_table(),
geom_plot() and geom_grob().

 Given that geom_table(), geom_plot() and geom_grob() will rarely use a
mapping inherited from the whole plot, by default they do not inherit it. Either
the mapping should be supplied as an argument to these functions or their
parameter inherit.aes explicitly set to TRUE.

The plotting of tables by mapping a list of data frames to the label aesthetic is
done with geom_table. Positioning, justification, and angle work as for geom_text

and are applied to the whole table. Only tibble objects (see documentation of
package ‘tibble’) can contain, as variables, lists of data frames, so this geometry
requires the use of tibble objects to store the data. The table(s) are created as
’grid’ grob objects, collected in a tree and added to the ggplot object as a new
layer.

We first generate a tibble containing summaries from the data, formatted as
character strings, wrap this tibble in a list, and store this list as a column in an-
other tibble. To accomplish this, we use functions from the ‘tidyverse’ described
in chapter 6.

mtcars %.>%
group_by(., cyl) %.>%
summarize(.,

"mean wt" = format(mean(wt), digits = 2),
"mean disp" = format(mean(disp), digits = 0),
"mean mpg" = format(mean(mpg), digits = 0)) -> my.table

table.tb <- tibble(x = 500, y = 35, table.inset = list(my.table))

ggplot(data = mtcars, aes(x = disp, y = mpg,
color = factor(cyl),
size = wt,
label = cyl)) +

scale_size() +
geom_point() +
geom_table(data = table.tb,

aes(x = x, y = y, label = table.inset),
color = "black", size = 3)

http:table.tb
http:table.tb

234 Grammar of graphics

cyl

4

mean wt

6

mean disp

8

mean mpg

2.3

3.1

4

105

183

353

27

20

15

10

15

20

25

30

35

100 200 300 400 500

disp

m
pg

wt

2

3

4

5

factor(cyl)

4

6

8

The color and size aesthetics control the text in the table(s) as a whole. It is
also possible to rotate the table(s) using angle. As with text labels, justification is
interpreted in relation to table-text orientation. We set the y = 0 in data.tb and
then use vjust = 1 to position the top of the table at this coordinate value.

ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
geom_point() +
geom_table(data = table.tb,

aes(x = x, y = y, label = table.inset),

color = "blue", size = 3,

hjust = 1, vjust = 0, angle = 90)

Parsed text, using R’s plotmath syntax is supported in the table, with fallback to
plain text in case of parsing errors, on a cell-by-cell basis. We end this section with
a simple example, which even if not very useful, demonstrates that geom_table()

behaves like a “normal” ggplot geometry and that a table can be the only layer in a
ggplot if desired. The addition of multiple tables with a single call to geom_table()

by passing a tibble with multiple rows as an argument for data is also possible.

tb.pm <- tibble('x^0' = 1,
'x^1' = 1:5,
'x^2' = (1:5)^2,
'x^3' = (1:5)^3)

data.tb <- tibble(x = 1, y = 1, table.inset = list(tb.pm))
ggplot(data.tb, mapping = aes(x, y, label = table.inset)) +
geom_table(inherit.aes = TRUE, size = 7, parse = TRUE) +
theme_void()

 The geometry geom_table() uses functions from package ‘gridExtra’ to
build a graphical object for the table. The use of table themes was not yet
supported by this geometry at the time of writing.

Geometry geom_plot() works much like geom_table(), but instead of expecting
a list of data frames or tibbles to be mapped to the label aesthetics, it expects a list
of ggplots (objects of class gg). This allows adding as an inset to a ggplot, another
ggplot. In the times when plots were hand drafted with India ink on paper, the use
of inset plots was more frequent than nowadays. Inset plots can be very useful

http:ggplot(data.tb
http:list(tb.pm
http:table.tb

Geometries 235

for zooming-in on parts of a main plot where observations are crowded and for
displaying summaries based on the observations shown in the main plot. The inset
plots are nested in viewports which control the dimensions of the inset plot, and
aesthetics vp.height and vp.width control their sizes—with defaults of 1/3 of the
height and width of the plotting area of the main plot. Themes can be applied
separately to the main and inset plots.

In the first example of inset plots, we include one of the summaries shown
above as an inset table. We first create a tibble containing the plot to be inset.

mtcars %.>%
group_by(., cyl) %.>%
summarize(., mean.mpg = mean(mpg)) %.>%
ggplot(data = .,

aes(factor(cyl), mean.mpg, fill = factor(cyl))) +

scale_fill_discrete(guide = FALSE) +

scale_y_continuous(name = NULL) +

geom_col() +
theme_bw(8) -> my.plot

plot.tb <- tibble(x = 500, y = 35, plot.inset = list(my.plot))

ggplot(data = mtcars, aes(x = disp, y = mpg,
color = factor(cyl))) +

geom_point() +

geom_plot(data = plot.tb,

aes(x = x, y = y, label = plot.inset),

vp.width = 1/2,

hjust = "inward", vjust = "inward")

0

10

20

4 6 8

factor(cyl)

10

15

20

25

30

35

100 200 300 400 500

disp

m
pg

factor(cyl)

4

6

8

In the second example we add the zoomed version of the same plot as an inset.
1) Manually set limits to the coordinates to zoom into a region of the main plot,
2) set the theme of the inset, 3) remove axis labels as they are the same as in
the main plot, 4) and 5) highlight the zoomed-in region in the main plot. This
fairly complex example shows how a new extension to ‘ggplot2’ can integrate well
into the grammar of graphics paradigm. In this example, to show an alternative
approach, instead of collecting all the data into a data frame, we map constant
values directly to the various aesthetics within annotate() (see section 7.8 on page
269).

p.main <- ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
geom_point()

236 Grammar of graphics

p.inset <- p.main +
coord_cartesian(xlim = c(270, 330), ylim = c(14, 19)) +
labs(x = NULL, y = NULL) +
scale_color_discrete(guide = FALSE) +
theme_bw(8) + theme(aspect.ratio = 1)

p.main +
geom_plot(x = 480, y = 34, label = list(p.inset), vp.height = 1/2,

hjust = "inward", vjust = "inward") +
annotate(geom = "rect", fill = NA, color = "black",

xmin = 270, xmax = 330, ymin = 14, ymax = 19,

linetype = "dotted")

14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320
14

15

16

17

18

19

280 300 320

10

15

20

25

30

35

100 200 300 400

disp

m
pg

factor(cyl)

4

6

8

Geometry geom_grob() works much like geom_table() and geom_plot() but
expects a list of ‘grid’ graphical objects, called grob for short. This adds gen-
erality at the expense of having to separately create the grobs either using
‘grid’ or by converting other objects into grobs. This geometry is as flexible as
annotation_custom() with respect to the grobs, but behaves as a geometry. We
show an example that adds two bitmaps to the plot. The bitmaps are read from
PNG files, converted into grobs, and added to the plot as a new layer. The PNG
bitmaps used have a transparent background.

file1.name <-
system.file("extdata", "Isoquercitin.png", package = "ggpmisc", mustWork = TRUE)

Isoquercitin <- magick::image_read(file1.name)
file2.name <-
system.file("extdata", "Robinin.png", package = "ggpmisc", mustWork = TRUE)

Robinin <- magick::image_read(file2.name)
grob.tb <- tibble(x = c(0, 100), y = c(10, 20), height = 1/3, width = c(1/2),

grobs = list(grid::rasterGrob(image = Isoquercitin),
grid::rasterGrob(image = Robinin)))

ggplot() +
geom_grob(data = grob.tb,

aes(x = x, y = y, label = grobs, vp.height = height, vp.width = width),
hjust = "inward", vjust = "inward")

Geometries 237

10.0

12.5

15.0

17.5

20.0

0 25 50 75 100
x

y

 Grid graphics provide the low-level functions that both ‘ggplot2’ and
‘lattice’ use under the hood. Grid supports different types of units for express-
ing the coordinates of positions within the plotting area. All examples outside
this text box use "native" data coordinates, however, coordinates can be also
given in physical units like "mm". More useful when working with scalable plots
is to use ”npc” normalized parent coordinates, which are expressed as num-
bers in the range 0 to 1, relative to the dimensions of the sides of the current
viewport, with origin at the lower left corner.

Package ‘ggplot2’ interprets 𝑥 and 𝑦 coordinates in "native" data coor-
dinates, and trickery seems to be needed to get around this limitation. A
rather general solution is provided by package ‘ggpmisc’ through aesthet-
ics npcx and npcy and geometries that support them. At the time of writing,
geom_text_npc(), geom_label_npc(), geom_table_npc(), geom_plot_npc() and
geom_grob_npc(). These geometries are useful for annotating plots and adding
insets at positions relative to the plotting area that remain always consistent
across different plots, or across panels when using facets with free axis lim-
its. Being geometries they provide freedom in the elements added to different
panels and their positions.

ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +

geom_point() +

geom_label_npc(npcx = 0.5, npcy = 0.9, label = "a label", color = "black")

a label

10

15

20

25

30

35

100 200 300 400
disp

m
pg

factor(cyl)
4
6
8

238 Grammar of graphics

7.5 Statistics

Before learning about ‘ggplot2’ statistics, it is important to have clear how the map-
ping of factors to aesthetics works. When a factor, for example, is mapped to color,
it creates a new grouping, with the observations matching a given level of the fac-
tor, corresponding to a group. Most statistics operate on the data for each of these
groups separately, returning a summary for each group, for example, the mean of
the observations in a group.

7.5.1 Functions

In addition to plotting data from a data frame with variables to map to 𝑥 and 𝑦 aes-
thetics, it is possible to have only a variable mapped to 𝑥 and use stat_function()

to compute the values to be mapped to 𝑦 using an R function. This avoids the need
to generate data beforehand as even the number of data points to be generated can
be set in geom_function(). Any R function, user defined or not, can be used as long
as it is vectorized, with the length of the returned vector equal to the length of
the vector passed as first argument to it. The variable mapped to x determines the
range, and the argument to parameter n of geom_function() the length of the gen-
erated vector that is passed as first argument to fun when it is called to generate
the values to napped to y. These are the 𝑥 and 𝑦 values passed to the geometry.

We start with the Normal distribution function. We rely on the defaults n = 101

and geom = "path".

ggplot(data.frame(x = -3:3), aes(x = x)) +
stat_function(fun = dnorm)

0.0

0.1

0.2

0.3

0.4

-2 0 2

x

y

Using a list we can even pass by name additional arguments to use when the
function is called.

ggplot(data.frame(x = -3:3), aes(x = x)) +
stat_function(fun = dnorm, args = list(mean = 1, sd = .5))

U Edit the code above so as to plot in the same figure three curves, either for
three different values for mean or for three different values for sd.

Statistics 239

Named user-defined functions (not shown), and anonymous functions (below)
can also be used.

ggplot(data.frame(x = 0:1), aes(x = x)) +
stat_function(fun = function(x, a, b){a + b * x^2},

args = list(a = 1, b = 1.4))

U Edit the code above to use a different function, such as 𝑒𝑥+𝑘, adjusting the
argument(s) passed through args accordingly. Do this by means of an anony-
mous function, and by means of an equivalent named function defined by your
code.

7.5.2 Summaries

The summaries discussed in this section can be superimposed on raw data plots,
or plotted on their own. Beware, that if scale limits are manually set, the summaries
will be calculated from the subset of observations within these limits. Scale limits
can be altered when explicitly defining a scale or by means of functions xlim() and
ylim(). See section 7.9 on page 272 for an explanation of how coordinate limits
can be used to zoom into a plot without excluding of 𝑥 and 𝑦 values from the
data.

It is possible to summarize data on the fly when plotting. We describe in the
same section the calculation of measures of central tendency and of variation, as
stat_summary() allows them to be calculated simultaneously and added together
with a single layer.

For use in the examples, we generate some normally distributed artificial data.

fake.data <- data.frame(
y = c(rnorm(10, mean = 2, sd = 0.5),

rnorm(10, mean = 4, sd = 0.7)),
group = factor(c(rep("A", 10), rep("B", 10)))
)

We will reuse a “base” scatter plot in a series of examples, so that the differ-
ences are easier to appreciate. We first add just the mean. In this case, we need
to pass as an argument to stat_summary(), the geom to use, as the default one,
geom_pointrange(), expects data for plotting error bars in addition to the mean.
This example uses a hyphen character as the constant value of shape (see the exam-
ple for geom_point() on page 219 on the use of digits as shape). Instead of pass-
ing "mean" as an argument to parameter fun (earlier called fun.y), we can pass,
if desired, other summary functions like "median". In the case of these functions
that return a single computed value, we pass them, or character strings with their
names, as an argument to parameter fun.

ggplot(data = fake.data, aes(y = y, x = group)) +
geom_point(shape = 21) +
stat_summary(fun = "mean", geom = "point",

color = "red", shape = "-", size = 10)

240 Grammar of graphics

-

-

1

2

3

4

A B

group

y

To pass as an argument a function that returns a central value like the mean
plus confidence or other limits, we use parameter fun.data instead of fun. In the
next example we add means and confidence intervals for 𝑝 = 0.95 (the default)
assuming normality.

stat_summary(fun.data = "mean_cl_normal", color = "red", size = 1, alpha = 0.7)

We can override the default of 𝑝 = 0.95 for confidence intervals by setting, for
example, conf.int = 0.90 in the list of arguments passed to the function. The in-
tervals can also be computed without assuming normality, using the empirical dis-
tribution estimated from the data by bootstrap. To achieve this we pass to fun.data

the argument "mean_cl_boot" instead of "mean_cl_normal".

stat_summary(fun.data = "mean_cl_boot",

fun.args = list(conf.int = 0.90),

color = "red", size = 1, alpha = 0.7)

For ̄ ̄𝑥 ± s.e. we should pass "mean_se" and for 𝑥 ± s.d. "mean_sdl".

stat_summary(fun.data = "mean_se",

color = "red", size = 1, alpha = 0.7)

We do not give an example here, but it is possible to use user-defined func-
tions instead of the functions exported by package ‘ggplot2’ (based on those in
package ‘Hmisc’). Because arguments to the function used, except for the first one
containing the variable in data mapped to the 𝑦 aesthetic, are supplied as a named
list through parameter fun.args, the names used for parameters in the function
definition need only match the names in this list.

Finally, we plot the means in a scatter plot, with the observations superimposed
on the error bars as a result of the order in which the layers are added to the plot.
In this case, we set fill, color and alpha (transparency) to constants, but in more
complex data sets, mapping them to factors in data can be used for grouping of
observations. Here, adding two plot layers with stat_summary() allows us to plot
the mean and the error bars using different colors.

ggplot(data = fake.data, aes(y = y, x = group)) +
stat_summary(fun = "mean", geom = "point",

fill = "white", color = "black") +
stat_summary(fun.data = "mean_cl_boot",

Statistics 241

geom = "errorbar",

width = 0.1, size = 1, color = "red") +

geom_point(size = 3, alpha = 0.3)

We can plot means, or other summaries, by group mapped to x (class in this
example) as columns by passing "col" as an argument to geom. In this way we avoid
the need to compute the summaries in advance.

ggplot(mpg, aes(class, hwy)) +
stat_summary(geom = "col", fun = mean)

0

10

20

2seater compact midsize minivan pickup subcompact suv

class

hw
y

We can easily add error bars to the column plot. We use size to make
the lines of the error bars thicker. The default geometry in stat_summary() is
geom_pointrange(), so we can pass "linerange" as an argument for geom to elimi-
nate the point.

stat_summary(geom = "linerange", fun.data = "mean_se",

size = 1, color = "red")

Passing "errorbar" instead of "linerange" to geom results in traditional
“capped” error bars. However, this type of error bar has been criticized as adding
unnecessary clutter to plots (Tufte 1983). We can use width to reduce the width of
the caps at the ends of the error bars.

If we have already calculated values for the summaries, we can still obtain the
same plots by mapping variables to the aesthetics required by geom_errorbar()

and geom_linerange(): x, y, ymax and ymin.

 The “reverse” syntax is also valid, as we can add the geometry to the plot
object and pass the statistics as an argument to it. In general in this book we
avoid this alternative syntax for the sake of consistency.

ggplot(mpg, aes(class, hwy)) +
geom_col(stat = "summary", fun = mean)

242 Grammar of graphics

7.5.3 Smoothers and models

The statistic stat_smooth() fits a smooth curve to observations in the case when
the scales for 𝑥 and 𝑦 are continuous—the corresponding geometry geom_smooth()

uses this statistic, and differs only in how arguments are passed to formal param-
eters. For the first example, we use stat_smooth() with the default smoother, a
spline. The type of spline is automatically chosen based on the number of obser-
vations and informed by a message. The formula must be stated using the names
of the 𝑥 and 𝑦 aesthetics, rather the names of the mapped variables in mtcars.

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
stat_smooth(formula = y ~ x)

In most cases we will want to plot the observations as points together with the
smoother. We can plot the observation on top of the smoother, as done here, or
the smoother on top of the observations.

ggplot(data = mtcars, aes(x = disp, y = mpg)) +
stat_smooth(formula = y ~ x) +
geom_point()

`geom_smooth()` using method = 'loess'

10

15

20

25

30

35

m
pg

100 200 300 400
disp

Instead of using the default spline, we can fit a different model. In this example
we use a linear model as smoother, fitted by lm().

stat_smooth(method = "lm", formula = y ~ x) +

These data are really grouped, so we map variable cyl to the color aesthetic.
Now we get three groups of points with different colours but also three separate
smooth lines.

ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
stat_smooth(method = "lm", formula = y ~ x) +
geom_point()

35

30

factor(cyl)
25

100 200 300 400
disp

m
pg 4

620
8

15

10

Statistics 243

35

30

factor(cyl)
25

100 200 300 400
disp

m
pg 4

620
8

15

10

To obtain a single smoother for the three groups, we need to set the mapping
of the color aesthetic to a constant within stat_smooth. This local value overrides
the default color mapping set in ggplot() just for this plot layer. We use "black"

but this could be replaced by any other color definition known to R.

ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
stat_smooth(method = "lm", formula = y ~ x, color = "black") +
geom_point()

Instead of using the formula for a linear regression as smoother, we pass a
different formula as an argument. In this example we use a polynomial of order 2.

ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
stat_smooth(method = "lm", formula = y ~ poly(x, 2), color = "black") +
geom_point()

It is possible to use other types of models, including GAM and GLM, as
smoothers, but we will give only two simple examples of the use of nls() to fit
a model non-linear in its parameters (see section 4.8 on page 140 for details about
fitting this same model with nls()). In the first one we fit a Michaelis-Menten equa-
tion to reaction rate (rate) versus reactant concentration (conc). Puromycin is a
data set included in the R distribution. Function SSmicmen() is also from R, and is
a self-starting implementation of the Michaelis-Menten equation. Thanks to this,
even though the fit is done with an iterative algorithm, we do not need to explicitly
provide starting values for the parameters to be fitted. We need to set se = FALSE

because standard errors are not supported by the predict() method for nls fitted
models.

35

30

factor(cyl)
25

4
620
8

15

10

m
pg

y = 20.1 - 28.4 x + 9.15 x2

100 200 300 400
disp

244 Grammar of graphics

ggplot(Puromycin, aes(conc, rate, color = state)) +
geom_point() +
geom_smooth(method = "nls",

formula = y ~ SSmicmen(x, Vm, K),

se = FALSE)

In the second example we define the same model directly in the model formula,
and provide the starting values explicitly. The names used for the parameters to
be fitted can be chosen at will, within the restrictions of the R language, but of
course the names used in formula and start must match each other.

ggplot(Puromycin, aes(conc, rate, color = state)) +
geom_point() +
geom_smooth(method = "nls",

method.args = list(formula = y ~ (Vmax * x) / (k + x),
start = list(Vmax = 200, k = 0.05)),

se = FALSE)

In some cases it is desirable to annotate plots with fitted model equations or
fitted parameters. One way of achieving this is by fitting the model and then ex-
tracting the parameters to manually construct text strings to use for text or label
annotations. However, package ‘ggpmisc’ makes it possible to automate such an-
notations in many cases.

my.formula <- y ~ poly(x, 2)
ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
stat_smooth(method = "lm", formula = my.formula, color = "black") +
stat_poly_eq(formula = my.formula, aes(label = ..eq.label..),

color = "black", parse = TRUE, label.x.npc = 0.3) +

geom_point()

This same package makes it possible to annotate plots with summary tables
from a model fit.

my.formula <- y ~ poly(x, 2)
ggplot(data = mtcars, aes(x = disp, y = mpg, color = factor(cyl))) +
stat_smooth(method = "lm", formula = my.formula, color = "black") +
stat_fit_tb(method = "lm",

method.args = list(formula = my.formula),

color = "black",

tb.vars = c(Parameter = "term",

Estimate = "estimate",

35

30

25
4
620
8

15

10

m
pg

Parameter

(Intercept)

Estimate

poly(x, 2)1

s.e.

poly(x, 2)2

t

20.1

P

- 28.4

9.15

0.501

2.84

2.84

40.1

- 10

3.23

6.08e-27

6.23e-11

0.0031

100 200 300 400
disp

factor(cyl)

Statistics 245

"s.e." = "std.error",
"italic(t)" = "statistic",
"italic(P)" = "p.value"),

label.y.npc = "top", label.x.npc = "right",
parse = TRUE) +

geom_point()

Package ‘ggpmisc’ provides additional statistics for the annotation of plots
based on fitted models. Please see the package documentation for details.

7.5.4 Frequencies and counts

When the number of observations is rather small, we can rely on the density of
graphical elements to convey the density of the observations. For example, scat-
ter plots using well-chosen values for alpha can give a satisfactory impression of
the density. Rug plots, described in section 7.4.2 on page 221, can also satisfacto-
rily convey the density of observations along 𝑥 and/or 𝑦 axes. Such approaches
do not involve computations, while the statistics described in this section do. Fre-
quencies by value-range (or bins) and empirical density functions are summaries
especially useful when the number of observations is large. These summaries can
be computed in one or more dimensions.

Histograms are defined by how the plotted values are calculated. Although his-
tograms are most frequently plotted as bar plots, many bar or “column” plots
are not histograms. Although rarely done in practice, a histogram could be plot-
ted using a different geometry using stat_bin(), the statistic used by default by
geom_histogram(). This statistic does binning of observations before computing
frequencies, and is suitable for continuous 𝑥 scales. When a factor is mapped to x,
stat_count() should be used, which is the default stat for geom_bar(). These two
geometries are described in this section about statistics, because they default to
using statistics different from stat_identity() and consequently summarize the
data.

As before, we generate suitable artificial data.

set.seed(12345)
my.data <-
data.frame(x = rnorm(200),

y = c(rnorm(100, -1, 1), rnorm(100, 1, 1)),
group = factor(rep(c("A", "B"), c(100, 100))))

246 Grammar of graphics

We could have relied on the default number of bins automatically computed
by the stat_bin() statistic, however, we here set it to 15 with bins = 15. It is im-
portant to remember that in this case no variable in data is mapped onto the y

aesthetic.

ggplot(my.data, aes(x)) +
geom_histogram(bins = 15)

0

10

20

30

-2 -1 0 1 2

x

co
un
t

If we create a grouping by mapping a factor to an additional aesthetic how the
bars created are positioned with respect to each other becomes relevant. We can
then plot side by side with position = "dodge", stacked one above the other with
position = "stack" and overlapping with position = "identity" in which case
we need to make them semi-transparent with alpha = 0.5 so that they all remain
visible.

ggplot(my.data, aes(y, fill = group)) +
geom_histogram(bins = 15, position = "dodge")

The computed values are contained in the data that the geometry “receives”
from the statistic. Many statistics compute additional values that are not mapped
by default. These can be mapped with aes() by enclosing them in a call to stat().
From the help page we can learn that in addition to counts in variable count, den-
sity is returned in variable density by this statistic. Consequently, we can create
a histogram with the counts per bin expressed as densities whose integral is one
(rather than their sum, as the width of the bins is in this case different from one),
as follows.

ggplot(my.data, aes(y, fill = group)) +
geom_histogram(mapping = aes(y = stat(density)), bins = 15, position = "dodge")

Statistics 247

0.0

0.2

0.4

0.6

-2 0 2

y

de
ns
ity group

A

B

If it were not for the easier to remember name of geom_histogram(), adding the
layers with stat_bin() or stat_count() would be preferable as it makes clear that
computations on the data are involved.

ggplot(my.data, aes(y, fill = group)) +

stat_bin(bins = 15, position = "dodge")

The statistic stat_bin2d, and its matching geometry geom_bin2d(), by default
compute a frequency histogram in two dimensions, along the x and y aesthet-
ics. The frequency for each rectangular tile is mapped onto a fill scale. As for
stat_bin(), density is also computed and available to be mapped as shown above
for geom_histogram. In this example, to compare dispersion in two dimensions,
equal 𝑥 and𝑦 scales are most suitable, which we achieve by adding coord_fixed(),
which is a variation of the default coord_cartesian() (see section 7.9 on page 272
for details on other systems of coordinates).

ggplot(my.data, aes(x, y)) +

stat_bin2d(bins = 8) +

coord_fixed(ratio = 1)

-4

-2

0

2

-2 -1 0 1 2 3

x

y

3

6

9

12
count

The statistic stat_bin_hex(), and its matching geometry geom_hex(), differ
from stat_bin2d() in their use of hexagonal instead of square tiles. By de-
fault the frequency or count for each hexagon is mapped to the fill aesthetic,
but counts expressed as density are also computed and can be mapped with
aes(fill = stat(density)).

248 Grammar of graphics

ggplot(my.data, aes(x, y)) +

stat_bin_hex(bins = 8) +

coord_fixed(ratio = 1)

-2

0

2

4

-2 -1 0 1 2

x

y
3

6

9

12
count

7.5.5 Density functions

Empirical density functions are the equivalent of a histogram, but are continuous
and not calculated using bins. They can be estimated in 1 or 2 dimensions (1D
or 2D), for 𝑥 or 𝑥 and 𝑦, respectively. As with histograms it is possible to use
different geometries to visualize them. Examples of the use of geom_density() to
create 1D density plots follow.

ggplot(my.data, aes(y, color = group)) +

geom_density()

0.0

0.1

0.2

0.3

0.4

0.5

-2 0 2

y

de
ns
ity group

A

B

A semitransparent fill can be used instead of coloured lines.

ggplot(my.data, aes(y, fill = group)) +

geom_density(alpha = 0.5)

Examples of 2D density plots follow. In the first example we use two geome-
tries which were earlier described, geom_point() and geom_rug(), to plot the ob-
servations in the background. With stat_density_2d() we add a two-dimensional
density “map” represented using isolines. We map group to the color aesthetic.

ggplot(my.data, aes(x, y, color = group)) +

geom_point() +

Statistics 249

geom_rug() +

stat_density_2d()

-2

0

2

-2 -1 0 1 2

x

y
group

A

B

In this case, geom_density_2d() is equivalent, and we can replace it in the last
line in the chunk above.

geom_density_2d()

In the next example we plot the groups in separate panels, and use a geometry
supporting the fill aesthetic and we map to it the variable level, computed by
stat_density_2d()

ggplot(my.data, aes(x, y)) +

stat_density_2d(aes(fill = stat(level)), geom = "polygon") +

facet_wrap(~group)

A B

-2 -1 0 1 2 -2 -1 0 1 2

-2

0

2

x

y

0.05

0.10

0.15

level

7.5.6 Box and whiskers plots

Box and whiskers plots, also very frequently called just box plots, are also sum-
maries that convey some of the properties of a distribution. They are calculated
and plotted by means of stat_boxplot() or its matching geom_boxplot(). Although
they can be calculated and plotted based on just a few observations, they are not
useful unless each box plot is based on more than 10 to 15 observations.

ggplot(my.data, aes(group, y)) +

stat_boxplot()

250 Grammar of graphics

-2

0

2

A B

group

y

As with other statistics, their appearance obeys both the usual aesthetics
such as color, and parameters specific to this type of visual representation:
outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.stroke and
outlier.alpha, which affect the outliers in a way similar to the equivalent
aethetics in geom_point(). The shape and width of the “box” can be adjusted with
notch, notchwidth and varwidth. Notches in a boxplot serve a similar role for com-
paring medians as confidence limits serve when comparing means.

ggplot(my.data, aes(group, y)) +

stat_boxplot(notch = TRUE, width = 0.4,

outlier.color = "red", outlier.shape = "*", outlier.size = 5)

*

*

*
*
*

**

-2

0

2

A B

group

y

7.5.7 Violin plots

Violin plots are a more recent development than box plots, and usable with rel-
atively large numbers of observations. They could be thought of as being a sort
of hybrid between an empirical density function (see section 7.5.5 on page 248)
and a box plot (see section 7.5.6 on page 249). As is the case with box plots, they
are particularly useful when comparing distributions of related data, side by side.
They can be created with geom_violin() as shown in the examples below.

Statistics 251

ggplot(my.data, aes(group, y)) +

geom_violin()

ggplot(my.data, aes(group, y, fill = group)) +

geom_violin(alpha = 0.16) +

geom_point(alpha = 0.33, size = 1.5,

color = "black", shape = 21)

-2

0

2

A B

group

y

group

A

B

As with other geometries, their appearance obeys both the usual aesthetics such
as color, and others specific to these types of visual representation.

Other types of displays related to violin plots are beeswarm plots and sina
plots, and can be produced with geometries defined in packages ‘ggbeeswarm’ and
‘ggforce’, respectively. A minimal example of a beeswarm plot is shown below. See
the documentation of the packages for details about the many options in their use.

ggplot(my.data, aes(group, y)) +

geom_quasirandom()

-2

0

2

A B

group

y

252 Grammar of graphics

7.6 Facets
Facets are used in a special kind of plots containing multiple panels in which the
panels share some properties. These sets of coordinated panels are a useful tool
for visualizing complex data. These plots became popular through the trellis

graphs in S, and the ‘lattice’ package in R. The basic idea is to have rows and/or
columns of plots with common scales, all plots showing values for the same re-
sponse variable. This is useful when there are multiple classification factors in
a data set. Similar-looking plots, but with free scales or with the same scale but
a ‘floating’ intercept, are sometimes also useful. In ‘ggplot2’ there are two pos-
sible types of facets: facets organized in a grid, and facets along a single ‘axis’
of variation but, possibly, wrapped into two or more rows. These are produced
by adding facet_grid() or facet_wrap(), respectively. In the examples below we
use geom_point() but faceting can be used with ggplot objects containing diverse
kinds of layers, displaying either observations or summaries from data.

We start by creating and saving a single-panel plot that we will use through this
section to demonstrate how the same plot changes when we add facets.

p <- ggplot(data = mtcars, aes(wt, mpg)) +

geom_point()
p

10

15

20

25

30

35

2 3 4 5

wt

m
pg

A grid of panels has two dimensions, rows and cols. These dimensions in the
grid of plot panels can be “mapped” to factors. Until recently a formula syntax was
the only available one. Although this notation has been retained, the preferred syn-
tax is currently to use the parameters rows and cols. We use cols in this example.
Note that we need to use vars() to enclose the names of the variables in the data.
The “headings” of the panels or strip labels are by default the levels of the factors.

p + facet_grid(cols = vars(cyl))

Facets 253

4 6 8

2 3 4 5 2 3 4 5 2 3 4 5
10

15

20

25

30

35

wt

m
pg

In the “historical notation” the same plot would have been coded as follows.

p + facet_grid(. ~ cyl)

By default, all panels share the same scale limits and share the plotting space
evenly, but these defaults can be overridden.

p + facet_grid(cols = vars(cyl), scales = "free")

p + facet_grid(cols = vars(cyl), scales = "free", space = "free")

To obtain a 2D grid we need to specify both rows and cols.

p + facet_grid(rows = vars(vs), cols = vars(am))

Margins display an additional column or row of panels with the combined data.

p + facet_grid(cols = vars(cyl), margins = TRUE)

4 6 8 (all)

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
10

15

20

25

30

35

wt

m
pg

We can represent more than one variable per dimension of the grid of plot
panels. For this example, we also override the default labeller used for the panels
with one that includes the name of the variable in addition to factor levels in the
strip labels.

p + facet_grid(cols = vars(vs, am), labeller = label_both)

254 Grammar of graphics

vs: 0

am: 0

vs: 0

am: 1

vs: 1

am: 0

vs: 1

am: 1

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
10

15

20

25

30

35

wt

m
pg

 Sometimes we may want to have mathematical expressions or Greek let-
ters in the panel headings. The next example shows a way of achieving this.
The key is to use as labeller a function that parses character strings into R
expressions.

mtcars$cyl12 <- factor(mtcars$cyl,
labels = c("alpha", "beta", "sqrt(x, y)"))

p1 <- ggplot(data = mtcars, aes(mpg, wt)) +

geom_point() +

facet_grid(cols = vars(cyl12), labeller = label_parsed)

More frequently we may need to include the levels of the factor used in the
faceting as part of the labels. Here we use as labeller, function label_bquote()

with a special syntax that allows us to use an expression where replacement
based on the facet (panel) data takes place. See section 7.12 for an example of
the use of bquote(), the R function on which label_bquote(), is built.

p +

facet_grid(cols = vars(cyl),
labeller = label_bquote(cols = .(cyl)~"cylinders"))

In the next example we create a plot with wrapped facets. In this case the num-
ber of levels is small, and no wrapping takes place by default. In cases when more
panels are present, wrapping into two or more continuation rows is the default.
Here, we force wrapping with nrow = 2. When using facet_wrap() there is only one
dimension, and the parameter is called facets, instead of rows or cols.

p + facet_wrap(facets = vars(cyl), nrow = 2)

Scales 255

8

4 6

2 3 4 5

2 3 4 5
10

15

20

25

30

35

10

15

20

25

30

35

wt

m
pg

The example below (plot not shown), is similar to the earlier one for facet_grid,
but faceting according to two factors with facet_wrap() along a single wrapped
row of panels.

p + facet_wrap(facets = vars(vs, am), nrow = 2, labeller = label_both)

7.7 Scales
In earlier sections of this chapter, examples have used the default scales or we
have set them with convenience functions. In the present section we describe in
more detail the use of scales. There are scales available for different aesthetics
(≈ attributes) of the plotted geometrical objects, such as position (x, y, z), size,
shape, linetype, color, fill, alpha or transparency, angle. Scales determine how
values in data are mapped to values of an aesthetics, and how these values are
labeled.

Depending on the characteristics of the data being mapped, scales can be
continuous or discrete, for numeric or factor variables in data, respectively. On
the other hand, some aesthetics, like size, can vary continuously but others like
linetype are inherently discrete. In addition to discrete scales for inherently dis-
crete aesthetics, discrete scales are available for those aesthetics that are inherently
continuous, like x, y, size, color, etc.

The scales used by default set themapping automatically (e.g., which color value
corresponds to 𝑥 = 0 and which one to 𝑥 = 1). However, for each aesthetic such
as color, there are multiple scales to choose from when creating a plot, both con-
tinuous and discrete (e.g., 20 different color scales in ‘ggplot2’ 3.2.0).

256 Grammar of graphics

 Aesthetics in a plot layer, in addition to being determined by mappings,
can also be set to constant values (e.g., plotting all points in a layer in red
instead of the default black). Aesthetics set to constant values, are not mapped
to data, and are consequently independent of scales. In other words, properties
of plot elements can be either set to a single constant value of an aesthetic
affecting all observations present in the layer data, or mapped to a variable in
data in which case the value of the aesthetic, such as color, will depend on the
values of the mapped variable.

The most direct mapping to data is identity, which means that the data is
taken at its face value. In a color scale, say scale_color_identity(), the vari-
able in the data would be encoded with values such as "red", "blue"—i.e., valid
R colours. In a simple mapping using scale_color_discrete() levels of a factor,
such as "treatment" and "control" would be represented as distinct colours with
the correspondence of individual factor levels to individual colours selected au-
tomatically by default. In contrast with scale_color_manual() the user needs to
explicitly provide the mapping between factor levels and colours by passing argu-
ments to the scale functions’ parameters breaks and values.

A continuous data variable needs to bemapped to an aesthetic through a contin-
uous scale such as scale_color_continuous() or one its various variants. Values in
a numeric variable will be mapped into a continuous range of colours, determined
either automatically through a palette or manually by giving the colours at the
extremes, and optionally at multiple intermediate values, within the range of vari-
ation of the mapped variable (e.g., scale settings so that the color varies gradually
between "red" and "gray50"). Handling of missing values is such that mapping a
value in a variable to an NA value for an aesthetic such as color makes the mapped
values invisible. The reverse, mapping NA values in the data to a specific value of
an aesthetic is also possible (e.g., displaying NA values in the mapped variable in
red, while other values are mapped to shades of blue).

7.7.1 Axis and key labels

First we describe a feature common to all scales, their name. The default name of all
scales is the name of the variable or the expression mapped to it. In the case of the
x, y and z aesthetics the name given to the scale is used for the axis labels. For other
aesthetics the name of the scale becomes the “heading” or key title of the guide or
key. All scales have a name parameter to which a character string or R expression
(see section 7.12) can be passed as an argument to override the default.

Whole-plot title, subtitle and caption are not connected to scales or data. A title
(label) and subtitle can be added least confusingly with function ggtitle() by
passing either character strings or R expressions as arguments.

ggplot(data = Orange,

aes(x = age, y = circumference, color = Tree)) +

geom_line() +

geom_point() +

expand_limits(y = 0) +

Scales 257

scale_x_continuous(name = "Time (d)") +

scale_y_continuous(name = "Circumference (mm)") +

ggtitle(label = "Growth of orange trees",

subtitle = "Starting from 1968-12-31")

0

50

100

150

200

400 800 1200 1600

Time (d)

C
irc

um
fe

re
nc

e
(m

m
)

Tree

3

1

5

2

4

Starting from 1968-12-31

Growth of orange trees

Convenience functions xlab() and ylab() can be used to set the axis labels to
match those in the previous chunk.

xlab("Time (d)") +

ylab("Circumference (mm)") +

Convenience function labs() is useful when we use default scales for all the
aesthetics in a plot but want to manually set axis labels and/or key titles—i.e., the
name of these scales. labs() accepts arguments for these names using, as parameter
names, the names of the aesthetics. It also allows us to set title, subtitle, caption
and tag, of which the first two can also be set with ggtitle().

ggplot(data = Orange,

aes(x = age, y = circumference, color = Tree)) +

geom_line() +

geom_point() +

expand_limits(y = 0) +

labs(title = "Growth of orange trees",

subtitle = "Starting from 1968-12-31",

caption = "see Draper, N. R. and Smith, H. (1998)",

tag = "A",

x = "Time (d)",

y = "Circumference (mm)",

color = "Tree\nnumber")

0

50

100

150

200

400 800 1200 1600

Time (d)

C
irc

um
fe

re
nc

e
(m

m
)

Tree
number

3

1

5

2

4

Starting from 1968-12-31

Growth of orange trees

see Draper, N. R. and Smith, H. (1998)

A

258 Grammar of graphics

U Make an empty plot (ggplot()) and add to it as title an R expression pro-
ducing 𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2. (Hint: have a look at the examples for the use
of expressions in the plotmath demo in R by typing demo(plotmath) at the R
console.

7.7.2 Continuous scales

We start by listing the most frequently used arguments to the continuous scale
functions: name, breaks, minor_breaks, labels, limits, expand, na.value, trans,
guide, and position. The value of name is used for axis labels or the key title (see
previous section). The arguments to breaks and minor_breaks override the default
locations of major and minor ticks and grid lines. Setting them to NULL suppresses
the ticks. By default the tick labels are generated from the value of breaks but an
argument to labels of the same length as breaks will replace these defaults. The
values of limits determine both the range of values in the data included and the
plotting area as described above—by default the out-of-bounds (oob) observations
are replaced by NA but it is possible to instead “squish” these observations towards
the edge of the plotting area. The argument to expand determines the size of the
margins or padding added to the area delimited by lims when setting the “visual”
plotting area. The value passed to na.value is used as a replacement for NA val-
ued observations—most useful for color and fill aesthetics. The transformation
object passed as an argument to trans determines the transformation used—the
transformation affects the rendering, but breaks and tick labels remain expressed
in the original data units. The argument to guide determines the type of key or re-
moves the default key. Depending on the scale in question not all these parameters
are available.

We generate new fake data.

fake2.data <-

data.frame(y = c(rnorm(20, mean = 20, sd = 5),

rnorm(20, mean = 40, sd = 10)),

group = factor(c(rep("A", 20), rep("B", 20))),

z = rnorm(40, mean = 12, sd = 6))

7.7.2.1 Limits

Limits are relevant to all kinds of scales. Limits are set through parameter limits
of the different scale functions. They can also be set with convenience functions
xlim() and ylim() in the case of the x and y aesthetics, and more generally with
function lims() which like labs(), takes arguments named according to the name
of the aesthetics. The limits argument of scales accepts vectors, factors or a func-
tion computing them from data. In contrast, the convenience functions do not
accept functions as their arguments.

In the next example we set “hard” limits, which will exclude some observations
from the plot and from any computation of summaries or fitting of smoothers.

Scales 259

More exactly, the off-limits observations are converted to NA values before they are
passed as data to geometries.

ggplot(fake2.data, aes(z, y)) + geom_point() +

scale_y_continuous(limits = c(0, 100))

To set only one limit leaving the other free, we can use NA as a boundary.

scale_y_continuous(limits = c(50, NA))

Convenience functions ylim() and xlim() can be used to set the limits to the
default 𝑥 and 𝑦 scales in use. We here use ylim(), but xlim() is identical except
for the scale it affects.

ylim(50, NA)

In general, setting hard limits should be avoided, even though a warning is
issued about NA values being omitted, as it is easy to unwillingly subset the data
being plotted. It is preferable to use function expand_limits() as it safely expands
the dynamically computed default limits of a scale—the scale limits will grow past
the requested expanded limits when needed to accommodate all observations. The
arguments to x and y are numeric vectors of length one or two each, matching how
the limits of the 𝑥 and 𝑦 continuous scales are defined. Here we expand the limits
to include the origin.

ggplot(fake2.data, aes(z, y)) +

geom_point() +

expand_limits(y = 0, x = 0)

0

20

40

60

0 5 10 15 20

z

y

The expand parameter of the scales plays a different role than expand_limits().
It controls how much larger the “visual” plotting area is compared to the limits of
the actual plotting area. In other words, it adds a “margin” or padding to the plot-
ting area outside the limits set either dynamically or manually. Very rarely plots
are drawn so that observations are plotted on top of the axes, avoiding this is a key
role of expand. Rug plots and marginal annotations will also require the plotting
area to be expanded. In ‘ggplot2’ the default is to always apply some expansion.

We here set the upper limit of the plotting area to be expanded by adding
padding to the top and remove the default padding from the bottom of the plotting
area.

260 Grammar of graphics

ggplot(fake2.data,
aes(fill = group, color = group, x = y)) +

stat_density(alpha = 0.3) +

scale_y_continuous(expand = expand_scale(add = c(0, 0.02)))

Here we instead use a multiplier to a similar effect as above; we add 10% com-
pared to the range of the limits.

scale_y_continuous(expand = expand_scale(mult = c(0, 0.1)))

In the case of scales, we cannot reverse their direction through the setting of
limits. We need instead to use a transformation as described in section 7.7.2.3 on
page 261. But, inconsistently, xlim() and ylim() do implicitly allow this transfor-
mation through the numeric values passed as limits.

U Test what the result is when the first limit is larger than the second one.
Is it the same as when setting these same values as limits with ylim()?

ggplot(fake2.data, aes(z, y)) + geom_point() +

scale_y_continuous(limits = c(100, 0))

7.7.2.2 Ticks and their labels

Parameter breaks is used to set the location of ticks along the axis. Parameter
labels is used to set the tick labels. Both parameters can be passed either a vector
or a function as an argument. The default is to compute “good” breaks based on
the limits and format the numbers as strings.

When manually setting breaks, we can keep the default computed labels for the
breaks.

ggplot(fake2.data, aes(z, y)) +

geom_point() +

scale_y_continuous(breaks = c(20, pi * 10, 40, 60))

The default breaks are computed by function pretty_breaks() from ‘scales’.
The argument passed to its parameter n determines the target number ticks to be
generated automatically, but the actual number of ticks computed may be slightly
different depending on the range of the data.

scale_y_continuous(breaks = scales::pretty_breaks(n = 7))

We can set tick labels manually, in parallel to the setting of breaks by passing as
arguments two vectors of equal length. In the next example we use an expression
to obtain a Greek letter.

ggplot(fake2.data, aes(z, y)) +

geom_point() +

scale_y_continuous(breaks = c(20, pi * 10, 40, 60),

labels = c("20", expression(10*pi), "40", "60"))

Scales 261

20

10p

40

60

0 5 10 15 20

z

y

Package ‘scales’ provides several functions for the automatic generation of la-
bels. For example, to display tick labels as percentages for data available as decimal
fractions, we can use function scales::percent().

ggplot(fake2.data, aes(z, y / max(y))) +

geom_point() +

scale_y_continuous(labels = scales::percent)

20%

40%

60%

80%

100%

0 5 10 15 20

z

y/
m
ax
(y
)

For currency, we can use scales::dollar(), to include commas separating thou-
sands, millions, so on, we can use scales::comma(), and for numbers formatted
using exponents of 10—useful for logarithmic-transformed scales—we can use
scales::scientific_format(). It is also possible to use user-defined functions
both for breaks and labels.

7.7.2.3 Transformed scales

The default scales used by the x and y aesthetics, scale_x_continuous() and
scale_y_continuous(), accept a user-supplied transformation function as an argu-
ment to trans with default codetrans = ”identity” (no transformation). In addition,
there are predefined convenience scale functions for log10, sqrt and reverse.

 Similar to the maths functions of R, the name of the scales are

262 Grammar of graphics

scale_x_log10() and scale_y_log10() rather than scale_y_log() because in
R, the function log returns the natural logarithm.

We can use scale_x_reverse() to reverse the direction of a continuous scale,

ggplot(fake2.data, aes(z, y)) +

geom_point() +

scale_x_reverse()

20

30

40

50

60

05101520

z

y

Axis tick-labels display the original values before applying the transformation.
The "breaks" need to be given in the original scale as well. We use scale_y_log10()
to apply a log10 transformation to the 𝑦 values.

scale_y_log10(breaks=c(10,20,50,100))

Using a transformation in a scale is not equivalent to applying the same trans-
formation on the fly when mapping a variable to the 𝑥 (or 𝑦) aesthetic as this
results in tick-labels expressed in transformed values.

ggplot(fake2.data, aes(z, log10(y))) +

geom_point()

We show next how to specify a transformation to a continuous scale, using a
predefined “transformation” object.

scale_y_continuous(trans = "reciprocal")

Natural logarithms are important in growth analysis as the slope against time
gives the relative growth rate. We show this with the Orange data set.

ggplot(data = Orange,

aes(x = age, y = circumference, color = Tree)) +

geom_line() +

geom_point() +

scale_y_continuous(trans = "log", breaks = c(20, 50, 100, 200))

Scales 263

7.7.2.4 Position of 𝑥 and 𝑦 axes

The default position of axes can be changed through parameter position, using
character constants "bottom", "top", "left" and "right".

ggplot(data = mtcars, aes(wt, mpg)) +

geom_point() +

scale_x_continuous(position = "top") +

scale_y_continuous(position = "right")

2 3 4 5

10

15

20

25

30

35

wt
m
pg

7.7.2.5 Secondary axes

It is also possible to add secondary axes with ticks displayed in a transformed
scale.

ggplot(data = mtcars, aes(wt, mpg)) +

geom_point() +

scale_y_continuous(sec.axis = sec_axis(~ . ^-1, name = "1/y"))

10

15

20

25

30

35
0.03

0.05

0.07

0.09

2 3 4 5

wt

m
pg

1/y

It is also possible to use different breaks and labels than for the main axes,
and to provide a different name to be used as a secondary axis label.

scale_y_continuous(sec.axis = sec_axis(~ . / 2.3521458, name = expression(km / l),

breaks = c(5, 7.5, 10, 12.5)))

264 Grammar of graphics

7.7.3 Time and date scales for 𝑥 and 𝑦
In R and many other computing languages, time values are stored as integer or
numeric values subject to special interpretation. Times stored as objects of class
POSIXct can be mapped to continuous aesthetics such as 𝑥 and 𝑦. Special scales
are available for these quantities.

We can set limits and breaks using constants as time or dates. These are most
easily input with the functions in packages ‘lubridate’ or ‘anytime’.

 Warnings are issued in the next two chunks as we are using scale limits
to subset a part of the observations present in data.

ggplot(data = weather_wk_25_2019.tb,

aes(with_tz(time, tzone = "EET"), air_temp_C)) +

geom_line() +

scale_x_datetime(name = NULL,
breaks = ymd_hm("2019-06-11 12:00", tz = "EET") + days(0:1),

limits = ymd_hm("2019-06-11 00:00", tz = "EET") + days(c(0, 2))) +

scale_y_continuous(name = "Air temperature (C)") +

expand_limits(y = 0)

Warning: Removed 7199 row(s) containing missing values (geom_path).

0

10

20

2019-06-11 12:00:00 2019-06-12 12:00:00

A
ir

te
m

pe
ra

tu
re

 (
C

)

By default the tick labels produced and their formatting are automatically se-
lected based on the extent of the time data. For example, if we have all data col-
lected within a single day, then the tick labels will show hours and minutes. If we
plot data for several years, the labels will show the date portion of the time instant.
The default is frequently good enough, but it is possible, as for numbers, to use
different formatter functions to generate the tick labels.

ggplot(data = weather_wk_25_2019.tb,

aes(with_tz(time, tzone = "EET"), air_temp_C)) +

geom_line() +

scale_x_datetime(name = NULL,
date_breaks = "1 hour",

limits = ymd_hm("2019-06-16 00:00", tz = "EET") + hours(c(6, 18)),

date_labels = "%H:%M") +

scale_y_continuous(name = "Air temperature (C)") +

expand_limits(y = 0)

Warning: Removed 9359 row(s) containing missing values (geom_path).

Scales 265

0

10

20

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

A
ir

te
m

pe
ra

tu
re

 (
C

)

U The formatting strings used are those supported by strptime() and
help(strptime) lists them. Change, in the two examples above, the 𝑦-axis la-
bels used and the limits—e.g., include a single hour or a whole week of data,
check which tick labels are produced by default and then pass as an argument
to date_labels different format strings, taking into account that in addition to
the conversion specification codes, format strings can include additional text.

7.7.4 Discrete scales for 𝑥 and 𝑦
In the case of ordered or unordered factors, the tick labels are by default the names
of the factor levels. Consequently, one roundabout way of obtaining the desired
tick labels is to set them as factor levels. This approach is not recommended as
in many cases the text of the desired tick labels may not be recognized as a valid
name making the code using them more difficult to type in scripts or at the com-
mand prompt. It is best to use simple mnemonic short names for factor levels and
variables, and to set suitable labels through scales when plotting, as we will show
here.

We can use scale_x_discrete() to reorder and select the columns without al-
tering the data. If we use this approach to subset the data, then to avoid warnings
we need to add na.rm = TRUE. We additionally use scale_x_discrete to convert
level names to uppercase.

ggplot(mpg, aes(class, hwy)) +

stat_summary(geom = "col", fun = mean, na.rm = TRUE) +

scale_x_discrete(limits = c("compact", "subcompact", "midsize"),

labels = c("COMPACT", "SUBCOMPACT", "MIDSIZE"))

266 Grammar of graphics

0

10

20

COMPACT SUBCOMPACT MIDSIZE

class

hw
y

If, as in the previous example, only the case of character strings needs to be
changed, passing function toupper() or tolower() allows a more general and less
error-prone approach. In fact any function, user defined or not, which converts the
values of limits into the desired values can be passed as an argument to labels.

scale_x_discrete(limits = c("compact", "subcompact", "midsize"),

labels = toupper)

Alternatively, we can change the order of the columns in the plot by reordering
the levels of factor mpg$class. This approach makes sense if the ordering needs
to be done programmatically based on values in data. See section 2.12 on page 56
for details. The example below shows how to reorder the columns, corresponding
to the levels of class based on the mean() of hwy.

ggplot(mpg, aes(reorder(x = factor(class), X = hwy, FUN = mean), hwy)) +

stat_summary(geom = "col", fun = mean)

7.7.5 Size

For the size aesthetic, several scales are available, both discrete and con-
tinuous. They do not differ much from those already described above. Ge-
ometries geom_point(), geom_line(), geom_hline(), geom_vline(), geom_text(),
geom_label() obey size as expected. In the case of geom_bar(), geom_col(),
geom_area() and all other geometric elements bordered by lines, size is obeyed
by these border lines. In fact, other aesthetics natural for lines such as linetype

also apply to these borders.
When using size scales, breaks and labels affect the key or guide. In scales that

produce a key passing guide = FALSE removes the key corresponding to the scale.

7.7.6 Color and fill

color and fill scales are similar, but they affect different elements of the plot. All
visual elements in a plot obey the color aesthetic, but only elements that have
an inner region and a boundary, obey both color and fill aesthetics. There are

Scales 267

separate but equivalent sets of scales available for these two aesthetics. We will
describe in more detail the color aesthetic and give only some examples for fill.
We will, however, start by reviewing how colors are defined and used in R.

7.7.6.1 Color definitions in R

Colors can be specified in R not only through character strings with the names
of previously defined colors, but also directly as strings describing the RGB (red,
green and blue) components as hexadecimal numbers (on base 16 expressed using
0, 1, 2, 3, 4, 6, 7, 8, 9, A, B, C, D, E, and F as “digits”) such as "#FFFFFF" for white
or "#000000" for black, or "#FF0000" for the brightest available pure red.

The list of color names known to R can be obtained be typing colors() at the R
console. Given the number of colors available, we may want to subset them based
on their names. Function colors() returns a character vector. We can use grep()

to find the names containing a given character substring, in this example "dark".

length(colors())

[1] 657

grep("dark",colors(), value = TRUE)

[1] "darkblue" "darkcyan" "darkgoldenrod" "darkgoldenrod1"

[5] "darkgoldenrod2" "darkgoldenrod3" "darkgoldenrod4" "darkgray"

[9] "darkgreen" "darkgrey" "darkkhaki" "darkmagenta"

[13] "darkolivegreen" "darkolivegreen1" "darkolivegreen2" "darkolivegreen3"

[17] "darkolivegreen4" "darkorange" "darkorange1" "darkorange2"

[21] "darkorange3" "darkorange4" "darkorchid" "darkorchid1"

[25] "darkorchid2" "darkorchid3" "darkorchid4" "darkred"

[29] "darksalmon" "darkseagreen" "darkseagreen1" "darkseagreen2"

[33] "darkseagreen3" "darkseagreen4" "darkslateblue" "darkslategray"

[37] "darkslategray1" "darkslategray2" "darkslategray3" "darkslategray4"

[41] "darkslategrey" "darkturquoise" "darkviolet"

To retrieve the RGB values for a color definition we use:

col2rgb("purple")

[,1]

red 160

green 32

blue 240

col2rgb("#FF0000")

[,1]

red 255

green 0

blue 0

Color definitions in R can contain a transparency described by an alpha value,
which by default is not returned.

col2rgb("purple", alpha = TRUE)

[,1]

red 160

green 32

blue 240

alpha 255

268 Grammar of graphics

With function rgb() we can define new colors. Enter help(rgb) for more details.
rgb(1, 1, 0)

[1] "#FFFF00"

rgb(1, 1, 0, names = "my.color")

my.color

"#FFFF00"

rgb(255, 255, 0, names = "my.color", maxColorValue = 255)

my.color

"#FFFF00"

As described above, colors can be defined in the RGB color space, however,
other color models such as HSV (hue, saturation, value) can be also used to define
colours.
hsv(c(0,0.25,0.5,0.75,1), 0.5, 0.5)

[1] "#804040" "#608040" "#408080" "#604080" "#804040"

Probably a more useful flavor of HSV colors for use in scales are those returned
by function hcl() for hue, chroma and luminance. While the “value” and “satura-
tion” in HSV are based on physical values, the “chroma” and “luminance” values in
HCL are based on human visual perception. Colours with equal luminance will be
seen as equally bright by an “average” human. In a scale based on different hues
but equal chroma and luminance values, as used by package ‘ggplot2’, all colours
are perceived as equally bright. The hues need to be expressed as angles in degrees,
with values between zero and 360.
hcl(c(0,0.25,0.5,0.75,1) * 360)

[1] "#FFC5D0" "#D4D8A7" "#99E2D8" "#D5D0FC" "#FFC5D0"

It is also important to remember that humans can only distinguish a limited
set of colours, and even smaller color gamuts can be reproduced by screens and
printers. Furthermore, variation from individual to individual exists in color per-
ception, including different types of color blindness. It is important to take this
into account when choosing the colors used in illustrations.

7.7.7 Continuous color-related scales

Continuous color scales scale_color_continuous(), scale_color_gradient(),
scale_color_gradient2(), scale_color_gradientn(), scale_color_date() and
scale_color_datetime(), give a smooth continuous gradient between two or more
colours. They are used with numeric, date and datetime data. A corresponding
set of fill scales is also available. Other scales like scale_color_viridis_c() and
scale_color_distiller() are based on the use of ready-made palettes of sets of
color gradients chosen to work well together under multiple conditions or for hu-
man vision including different types of color blindness.

7.7.8 Discrete color-related scales

Color scales scale_color_discrete(), scale_color_hue(), scale_color_gray()

are used with categorical data stored as factors. Other scales like

Adding annotations 269

scale_color_viridis_d() and scale_color_brewer() provide discrete sets of
colours based on palettes.

7.7.9 Identity scales

In the case of identity scales, the mapping is one to-one to the data. For example,
if we map the color or fill aesthetic to a variable using scale_color_identity()

or scale_fill_identity(), the mapped variable must already contain valid color
definitions. In the case of mapping alpha, the variable must contain numeric values
in the range 0 to 1.

We create a data frame containing a variable colors containing character strings
interpretable as the names of color definitions known to R. We then use them
directly in the plot.

df99 <- data.frame(x = 1:10, y = dnorm(10), colors = rep(c("red", "blue"), 5))

ggplot(df99, aes(x, y, color = colors)) +

geom_point() +

scale_color_identity()

-0.050

-0.025

0.000

0.025

0.050

2.5 5.0 7.5 10.0

x

y

U How does the plot look, if the identity scale is deleted from the example
above? Edit and re-run the example code.

While using the identity scale, how would you need to change the code ex-
ample above, to produce a plot with green and purple points?

7.8 Adding annotations
The idea of annotations is that they add plot elements that are not directly con-
nected with data, which we could call “decorations” such as arrows used to high-
light some feature of the data, specific points along an axis, etc. They are referenced
to the “natural” coordinates used to plot the observations, but are elements that do

270 Grammar of graphics

not represent observations or summaries computed from the observations. Anno-
tations are added to a ggplot with annotate() as plot layers (each call to annotate()

creates a new layer). To achieve the behavior expected of annotations, annotate()
does not inherit the default data or mapping of variables to aesthetics. Annotations
frequently make use of "text" or "label" geometries with character strings as
data, possibly to be parsed as expressions. However, for example, the "segment"

geometry can be used to add arrows.

 While layers added to a plot directly using geometries and statistics re-
spect faceting, annotation layers added with annotate() are replicated un-
changed in every panel of a faceted plot. The reason is that annotation layers
accept aesthetics only as constant values which are the same for every panel
as no grouping is possible without a mapping to data.

We show a simple example using "text" as geometry.

ggplot(fake2.data, aes(z, y)) +

geom_point() +

annotate(geom = "text",

label = "origin",

x = 0, y = 0,

color = "blue",

size=4)

origin0

20

40

60

0 5 10 15 20

z

y

U Play with the values of the arguments to annotate() to vary the position,
size, color, font family, font face, rotation angle and justification of the anno-
tation.

It is relatively common to use inset tables, plots, bitmaps or vector plots as an-
notations. With annotation_custom(), grobs (‘grid’ graphical object) can be added
to a ggplot. To add another or the same plot as an inset, we first need to convert
it into a grob. In the case of a ggplot we use ggplotGrob(). In this example the
inset is a zoomed-in window into the main plot. In addition to the grob, we need
to provide the coordinates expressed in “natural” data units of the main plot for
the location of the grob.

Adding annotations 271

p <- ggplot(fake2.data, aes(z, y)) +

geom_point()
p + expand_limits(x = 40) +

annotation_custom(ggplotGrob(p + coord_cartesian(xlim = c(5, 10), ylim = c(20, 40)) +

theme_bw(10)),
xmin = 21, xmax = 40, ymin = 30, ymax = 60)

20

25

30

35

40

5 6 7 8 9 10

z

y

20

30

40

50

60

0 10 20 30 40

z

y

This approach has the limitation that if used together with faceting, the inset
will be the same for each plot panel. See section 7.4.8 on page 233 for geometries
that can be used to add insets.

In the next example, in addition to adding expressions as annotations, we
also pass expressions as tick labels through the scale. Do notice that we use
recycling for setting the breaks, as c(0, 0.5, 1, 1.5, 2) * pi is equivalent to
c(0, 0.5 * pi, pi, 1.5 * pi, 2 * pi. Annotations are plotted at their own posi-
tion, unrelated to any observation in the data, but using the same coordinates and
units as for plotting the data.

ggplot(data.frame(x = c(0, 2 * pi)), aes(x = x)) +

stat_function(fun = sin) +

scale_x_continuous(
breaks = c(0, 0.5, 1, 1.5, 2) * pi,

labels = c("0", expression(0.5~pi), expression(pi),
expression(1.5~pi), expression(2~pi))) +

labs(y = "sin(x)") +

annotate(geom = "text",

label = c("+", "-"),

x = c(0.5, 1.5) * pi, y = c(0.5, -0.5),

size = 20) +

annotate(geom = "point",

color = "red",

shape = 21,

fill = "white",

x = c(0, 1, 2) * pi, y = 0,

size = 6)

272 Grammar of graphics

+
-

-1.0

-0.5

0.0

0.5

1.0

0 0.5 p p 1.5 p 2 p
x

si
n(
x)

U Modify the plot above to show the cosine instead of the sine function, re-
placing sin with cos. This is easy, but the catch is that you will need to relocate
the annotations.

= We cannot use annotate() with geom = "vline" or geom = "hline" as
we can use geom = "line" or geom = "segment". Instead, geom_vline() and/or
geom_hline() can be used directly passing constant arguments to them. See
section 7.4.3 on page 224.

7.9 Coordinates and circular plots
Circular plots can be thought of as plots equivalent to those described earlier in
this chapter but drawn using a different system of coordinates. This is a key in-
sight, that the grammar of graphics as implemented in ‘ggplot2’ makes use of. To
obtain circular plots we use the same geometries, statistics and scales we have been
using with the default system of cartesian coordinates. The only thing that we need
to do is to add coord_polar() to override the default. Of course only some observed
quantities can be better perceived in circular plots than in cartesian plots. Here we
add a new “word” to the grammar of graphics, coordinates, such as coord_polar().
When using polar coordinates, the x and y aesthetics correspond to the angle and
radial distance, respectively.

7.9.1 Wind-rose plots

Some types of data are more naturally expressed on polar coordinates than on
cartesian coordinates. The clearest example is wind direction, fromwhich the name
derives. In some cases of time series data with a strong periodic variation, polar
coordinates can be used to highlight any phase shifts or changes in frequency. A

Coordinates and circular plots 273

more mundane application is to plot variation in a response variable through the
day with a clock-face-like representation of time of day.

Wind rose plots are frequently histograms or density plots drawn on a polar
system of coordinates (see sections 7.5.4 and 7.5.5 on pages 245 and 248, respec-
tively for a description of the use of these statistics and geometries). We will use
them for examples where we plot wind speed and direction data, measured once
per minute during 24 h (from package ‘learnrbook’).

Here we plot a circular histogram of wind directions with 30-degree-wide bins.
We use stat_bin(). The counts represent the number of minutes during 24 h when
the wind direction was within each bin.

p <- ggplot(viikki_d29.dat, aes(WindDir_D1_WVT)) +

coord_polar() +

scale_x_continuous(breaks = c(0, 90, 180, 270),

labels = c("N", "E", "S", "W"),

limits = c(0, 360),

expand = c(0, 0),

name = "Wind direction")

p + stat_bin(color = "black", fill = "gray50", geom = "bar",

binwidth = 30, na.rm = TRUE) + labs(y = "Frequency")

N

E

S

W0

100

200

300

Wind direction

F
re

qu
en

cy

For an equivalent plot, using an empirical density, we have to use
stat_density() instead of stat_bin(), geom_polygon() instead of geom_bar() and
change the name of the y scale.

p + stat_density(color = "black", fill = "gray50",

geom = "polygon", size = 1) + labs(y = "Density")

N

E

S

W0.000

0.002

0.004

0.006

Wind direction

D
en

si
ty

As the final wind-rose plot example, we do 2D density plot with facets added

274 Grammar of graphics

with facet_wrap() to have separate panels for AM and PM. This plot uses fill to
describe the density of observations for different combinations wind directions
and speeds, the radius (𝑦 aesthetic) to represent wind speeds and the angle (𝑥
aesthetic) to represent wind direction.

ggplot(viikki_d29.dat, aes(WindDir_D1_WVT, WindSpd_S_WVT)) +

coord_polar() +

stat_density_2d(aes(fill = stat(level)), geom = "polygon") +

scale_x_continuous(breaks = c(0, 90, 180, 270),

labels = c("N", "E", "S", "W"),

limits = c(0, 360),

expand = c(0, 0),

name = "Wind direction") +

scale_y_continuous(name = "Wind speed (m/s)") +

facet_wrap(~factor(ifelse(hour(solar_time) < 12, "AM", "PM")))

N

E

S

W

N

E

S

W

AM PM

1

2

3

Wind direction

W
in

d
sp

ee
d

(m
/s

)

0.0025

0.0050

0.0075

0.0100
level

7.9.2 Pie charts

 Pie charts are more difficult to read than bar charts because our brain
is better at comparing lengths than angles. If used, pie charts should only be
used to show composition, or fractional components that add up to a total. In
this case, used only if the number of “pie slices” is small (rule of thumb: seven
at most), however in general, they are best avoided.

As we use geom_bar() which defaults to use stat_count. We use the brewer scale
for nice colors.

ggplot(data = mpg, aes(x = factor(1), fill = factor(class))) +

geom_bar(width = 1, color = "black") +

coord_polar(theta = "y") +

scale_fill_brewer() +

scale_x_discrete(breaks = NULL) +

labs(x = NULL, fill = "Vehicle class")

Themes 275

0

50

100

150

200

count

Vehicle class

2seater

compact

midsize

minivan

pickup

subcompact

suv

U Edit the code for the pie chart above to obtain a bar chart. Which one of
the two plots is easier to read?

7.10 Themes
In ‘ggplot2’, themes are the equivalent of style sheets. They determine how the
different elements of a plot are rendered when displayed, printed or saved to a
file. Themes do not alter what aesthetics or scales are used to plot the observa-
tions or summaries, but instead how text-labels, titles, axes, grids, plotting-area
background and grid, etc., are formatted and if displayed or not. Package ‘ggplot2’
includes several predefined theme constructors (usually described as themes), and
independently developed extension packages define additional ones. These con-
structors return complete themes, which when added to a plot, replace any theme
already present in whole. In addition to choosing among these already available
complete themes, users can modify the ones already present by adding incomplete
themes to a plot. When used in this way, incomplete themes usually are created on
the fly. It is also possible to create new theme constructors that return complete
themes, similar to theme_gray() from ‘ggplot2’.

7.10.1 Complete themes

The theme used by default is theme_gray() with default arguments. In ‘ggplot2’,
predefined themes are defined as constructor functions, with parameters. These
parameters allow changing some “base” properties. The base_size for text ele-
ments controlled is given in points, and affects all text elements in the returned
theme object as the size of these elements is by default defined relative to the
base size. Another parameter, base_family, allows the font family to be set. These
functions return complete themes.

276 Grammar of graphics

 Themes have no effect on layers produced by geometries as themes have
no effect on mappings, scales or aesthetics. In the name theme_bw() black-and-
white refers to the color of the background of the plotting area and labels. If the
color or fill aesthetics are mapped or set to a constant in the figure, these will
be respected irrespective of the theme. We cannot convert a color figure into a
black-and-white one by adding a theme, we need to change the aesthetics used,
for example, use shape instead of color for a layer added with geom_point().

Even the default theme_gray() can be added to a plot, to modify it, if arguments
different to the defaults are passed when called. In this example we override the
default base size with a larger one and the default sans-serif font with one with
serifs.

ggplot(fake2.data, aes(z, y)) +

geom_point() +

theme_gray(base_size = 15,

base_family = "serif")

20

30

40

50

60

0 5 10 15 20
z

y

U Change the code in the previous chunk to use, one at a time, each
of the predefined themes from ‘ggplot2’: theme_bw(), theme_classic(),
theme_minimal(), theme_linedraw(), theme_light(), theme_dark() and
theme_void().

 Predefined “themes” like theme_gray() are, in reality, not themes
but instead are constructors of theme objects. The themes they return
when called depend on the arguments passed to their parameters. In
other words, theme_gray(base_size = 15), creates a different theme than
theme_gray(base_size = 11). In this case, as sizes of different text elements
are defined relative to the base size, the size of all text elements changes in co-
ordination. Font size changes by themes do not affect the size of text or labels

Themes 277

in plot layers created with geometries, as their size is controlled by the size

aesthetic.

A frequent idiom is to create a plot without specifying a theme, and then adding
the theme when printing or saving it. This can save work, for example, when pro-
ducing different versions of the same plot for a publication and a talk.

p <- ggplot(fake2.data, aes(z, y)) +

geom_point()
print(p + theme_bw())

It is also possible to change the theme used by default in the current R session
with theme_set().

old_theme <- theme_set(theme_bw(15))

Similar to other functions used to change options in R, theme_set() returns the
previous setting. By saving this value to a variable, here old_theme, we are able to
restore the previous default, or undo the change.

theme_set(old_theme)
p

7.10.2 Incomplete themes

If we want to extensively modify a theme, and/or reuse it in multiple plots, it is
best to create a new constructor, or a modified complete theme as described in
the next section. In other cases we may need to tweak some theme settings for a
single figure, in which case we can most effectively do this when creating a plot. We
exemplify this approach by solving the problem of overlapping 𝑥-axis tick labels.
In practice this problem is most frequent when factor levels have long names or
the labels are dates. Rotating the tick labels is the most elegant solution from the
graphics design point of view.

ggplot(fake2.data, aes(z + 1000, y)) +

geom_point() +

scale_x_continuous(breaks = scales::pretty_breaks(n = 8)) +

theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))

278 Grammar of graphics

20

30

40

50

60

10
00

10
05

10
10

10
15

10
20

z + 1000

y

 When tick labels are rotated, one usually needs to set both the horizontal
and vertical justification, hjust and vjust, as the default values stop being
suitable. This is due to the fact that justification settings are referenced to the
text itself rather than to the plot, i.e., vertical justification of 𝑥-axis tick labels
rotated 90 degrees shifts their alignment with respect to tick marks along the
(horizontal) 𝑥 axis.

U Play with the code in the last chunk above, modifying the values used for
angle, hjust and vjust. (Angles are expressed in degrees, and justification with
values between 0 and 1).

A less elegant approach is to use a smaller font size. Within theme(), function
rel() can be used to set size relative to the base size. In this example, we use
axis.text.x so as to change the size of tick labels only for the 𝑥 axis.

theme(axis.text.x = element_text(size = rel(0.6)))

Theme definitions follow a hierarchy, allowing us to modify the formatting of
groups of similar elements, as well as of individual elements. In the chunk above,
had we used axis.text instead of axis.text.x, the change would have affected the
tick labels in both 𝑥 and 𝑦 axes.

U Modify the example above, so that the tick labels on the 𝑥-axis are blue
and those on the 𝑦-axis red, and the font size is the same for both axes, but
changed from the default. Consult the documentation for theme() to find out
the names of the elements that need to be given new values. For examples, see
ggplot2: Elegant Graphics for Data Analysis (Wickham and Sievert 2016) and R
Graphics Cookbook (Chang 2018).

Formatting of other text elements can be adjusted in a similar way, as well as

Themes 279

thickness of axes, length of tick marks, grid lines, etc. However, in most cases these
are graphic design elements that are best kept consistent throughout sets of plots
and best handled by creating a new theme that can be easily reused.

 If you both add a complete theme and want to modify some of its ele-
ments, you should add the whole theme before modifying it with + theme(...).
This may seem obvious once one has a good grasp of the grammar of graphics,
but can be at first disconcerting.

It is also possible to modify the default theme used for rendering all subsequent
plots.

old_theme <- theme_update(text = element_text(color = "darkred"))

7.10.3 Defining a new theme

Themes can be defined both from scratch, or by modifying existing saved themes,
and saving the modified version. As discussed above, it is also possible to define
a new, parameterized theme constructor function.

Unless we plan to widely reuse the new theme, there is usually no need to define
a new function. We can simply save the modified theme to a variable and add it to
different plots as needed. As we will be adding a “ready-build” theme object rather
than a function, we do not use parentheses.

my_theme <- theme_bw() + theme(text = element_text(color = "darkred"))

p + my_theme

N

E

S

W

Wind direction

U It is always good to learn to recognize error messages. One way of doing
this is by generating errors on purpose. So do add parentheses to the statement
in the code chunk above and study the error message.

280 Grammar of graphics

 How to create a new theme constructor similar to those in package
‘ggplot2’ can be fairly simple if the changes are few. As the implementation
details of theme objects may change in future versions of ‘ggplot2’, the safest
approach is to rely only on the public interface of the package. We can “wrap”
the functions exported by package ‘ggplot2’ inside a new function. For this we
need to find out what are the parameters and their order and duplicate these in
our wrapper. Looking at the “usage” section of the help page for theme_gray()
is enough. In this case, we retain compatibility, but add a new base parame-
ter, base_color, and set a different default for base_family. The key detail is
passing complete = TRUE to theme(), as this tags the returned theme as being
usable by itself, resulting in replacement of any theme already in a plot when
it is added.

my_theme_gray <-

function (base_size = 11,

base_family = "serif",

base_line_size = base_size/22,

base_rect_size = base_size/22,

base_color = "darkblue") {

theme_gray(base_size = base_size,

base_family = base_family,

base_line_size = base_line_size,

base_rect_size = base_rect_size) +

theme(line = element_line(color = base_color),

rect = element_rect(color = base_color),

text = element_text(color = base_color),

title = element_text(color = base_color),

axis.text = element_text(color = base_color), complete = TRUE)

}

In the chunk above we have created our own theme constructor, without too
much effort, and using an approach that is very likely to continue working with
future versions of ‘ggplot2’. The saved theme is a function with parameters
and defaults for them. In this example we have kept the function parameters
the same as those used in ‘ggplot2’, only adding an additional parameter after
the existing ones to maximize compatibility and avoid surprising users. To
avoid surprising users, we may want additionally to make my_theme_gray() a
synonym of my_theme_gray() following ‘ggplot2’ practice.

my_theme_gray <- my_theme_gray

Finally, we use the new theme constructor in the same way as those defined
in ‘ggplot2’.

Composing plots 281

p + my_theme_gray(15, base_color = "darkred")

N

E

S

W

Wind direction

7.11 Composing plots
In section 7.6 on page 252, we described how facets can be used to created coor-
dinated sets of panels, based on a single data set. Rather frequently, we need to
assemble a composite plot from individually created plots. If one wishes to have
correctly aligned axis labels and plotting areas, similar to when using facets, then
the task is not easy to achieve without the help of especial tools.

Package ‘patchwork’ defines a simple grammar for composing plots created
with ‘ggplot2’. We briefly describe here the use of operators +, | and /, although
‘patchwork’ provides additional tools for defining complex layouts of panels. While
+ allows different layouts, | composes panels side by side, and / composes pan-
els on top of each other. The plots to be used as panels can be grouped using
parentheses.

We start by creating and saving three plots.

p1 <- ggplot(mpg, aes(displ, cty, color = factor(cyl))) +

geom_point() +

theme(legend.position = "top")

p2 <- ggplot(mpg, aes(displ, cty, color = factor(year))) +

geom_point() +

theme(legend.position = "top")

p3 <- ggplot(mpg, aes(factor(model), cty)) +

geom_point() +

theme(axis.text.x =

element_text(angle = 90, hjust = 1, vjust = 0.5))

Next, we compose a plot using as panels the three plots created above (plot not
shown).

282 Grammar of graphics

(p1 | p2) / p3

We add a title and tag the panels with a letter. In this, and similar cases, paren-
theses may be needed to alter the default precedence of the R operators.

((p1 | p2) / p3) +

plot_annotation(title = "Fuel use in city traffic:", tag_levels = 'a')

10

15

20

25

30

35

2 3 4 5 6 7

displ

ct
y

factor(cyl) 4 5 6 8

a

10

15

20

25

30

35

2 3 4 5 6 7

displ

ct
y

factor(year) 1999 2008

b

10

15

20

25

30

35

4r
un

ne
r

4w
d a4

a4
 q

ua
ttr

o
a6

 q
ua

ttr
o

al
tim

a
c1

50
0

su
bu

rb
an

 2
w

d
ca

m
ry

ca
m

ry
 s

ol
ar

a
ca

ra
va

n
2w

d
ci

vi
c

co
ro

lla
co

rv
et

te
da

ko
ta

 p
ic

ku
p

4w
d

du
ra

ng
o

4w
d

ex
pe

di
tio

n
2w

d
ex

pl
or

er
 4

w
d

f1
50

 p
ic

ku
p

4w
d

fo
re

st
er

 a
w

d
gr

an
d

ch
er

ok
ee

 4
w

d
gr

an
d

pr
ix gt
i

im
pr

ez
a

aw
d

je
tta

k1
50

0
ta

ho
e

4w
d

la
nd

 c
ru

is
er

 w
ag

on
 4

w
d

m
al

ib
u

m
ax

im
a

m
ou

nt
ai

ne
er

 4
w

d
m

us
ta

ng
na

vi
ga

to
r

2w
d

ne
w

 b
ee

tle
pa

ss
at

pa
th

fin
de

r
4w

d
ra

m
 1

50
0

pi
ck

up
 4

w
d

ra
ng

e
ro

ve
r

so
na

ta
tib

ur
on

to
yo

ta
 ta

co
m

a
4w

d

factor(model)

ct
y

c

Fuel use in city traffic:

7.12 Using plotmath expressions
In sections 7.5.1 and 7.4.7 we gave some simple examples of the use of R expres-
sions in plots. The plotmath demo and help in R provide enough information to
start using expressions in plots. However, composing syntactically correct expres-
sions can be challenging because their syntax is rather unusual. Although expres-
sions are shown here in the context of plotting, they are also used in other contexts
in R code.

In general it is possible to create expressions explicitly with function

Using plotmath expressions 283

expression(), or by parsing a character string. In the case of ‘ggplot2’ for some
plot elements, layers created with geom_text and geom_label, and the strip labels
of facets the parsing is delayed and applied to mapped character variables in data.
In contrast, for titles, subtitles, captions, axis-labels, etc. (anything that is defined
within labs()) the expressions have to be entered explicitly, or saved as such into
a variable, and the variable passed as an argument.

When plotting expressions using geom_text(), that character strings are to be
parsed is signaled with parse = TRUE. In the case of facets’ strip labels, parsing or
not depends on the labeller function used. An additional twist is in this case the
possibility of combining static character strings with values taken from data.

The most difficult thing to remember when writing expressions is how to con-
nect the different parts. A tilde (~) adds space in between symbols. Asterisk (*) can
be also used as a connector, and is needed usually when dealing with numbers.
Using space is allowed in some situations, but not in others. To include bits of text
within an expression we need to use quotation marks. For a long list of examples
have a look at the output and code displayed by demo(plotmath) at the R command
prompt.

We will use a couple of complex examples to show how to use expressions
for different elements of a plot. We first create a data frame, using paste() to
assemble a vector of subscripted 𝛼 values as character strings suitable for parsing
into expressions.

set.seed(54321) # make sure we always generate the same data
my.data <-

data.frame(x = 1:5,

y = rnorm(5),
greek.label = paste("alpha[", 1:5, "]", sep = ""))

We use as 𝑥-axis label, a Greek 𝛼 character with 𝑖 as subscript, and in the 𝑦-
axis label, we have a superscript in the units. For the title we use a character string
but for the subtitle a rather complex expression. We create these expressions with
function expression().

We label each observation with a subscripted 𝑎𝑙𝑝ℎ𝑎. We cannot pass expres-
sions to geometries by simply mapping them to the label aesthetic. Instead, we
pass character strings that can be parsed into expressions. In other words, char-
acter strings, that are written using the syntax of expressions. We need to set
parse = TRUE in the call to the geometry so that the strings, instead of being plot-
ted as is, are parsed into expressions before the plot is rendered.

ggplot(my.data, aes(x, y, label = greek.label)) +

geom_point() +

geom_text(angle = 45, hjust = 1.2, parse = TRUE) +

labs(x = expression(alpha[i]),
y = expression(Speed~~(m~s^{-1})),
title = "Using expressions",

subtitle = expression(sqrt(alpha[1] + frac(beta, gamma))))

284 Grammar of graphics

a 1

a 2
a 3

a 4

a 5

-1.6

-1.2

-0.8

-0.4

1 2 3 4 5
ai

S
pe

ed
 (

m
 s

-1
)

a1 +
b

g

Using expressions

We can also use a character string stored in a variable, and use function parse()

to parse it in cases where an expression is required as we do here for subtitle.
In this example we also set tick labels to expressions, taking advantage that
expression() accepts multiple arguments separated by commas returning a vector
of expressions.

my_eq.char <- "alpha[i]"

ggplot(my.data, aes(x, y)) +

geom_point() +

labs(title = parse(text = my_eq.char)) +

scale_x_continuous(name = expression(alpha[i]),
breaks = c(1,3,5),
labels = expression(alpha[1], alpha[3], alpha[5]))

-1.6

-1.2

-0.8

-0.4

a1 a3 a5
ai

y

ai

A different approach (no example shown) would be to use parse() explicitly for
each individual label, something that might be needed if the tick labels need to be
“assembled” programmatically instead of set as constants.

 Differences between parse() and expression(). Function parse() takes
as an argument a character string. This is very useful as the character string
can be created programmatically. When using expression() this is not possible,
except for substitution at execution time of the value of variables into the
expression. See the help pages for both functions.

Function expression() accepts its arguments without any delimiters. Func-
tion parse() takes a single character string as an argument to be parsed, in
which case quotation marks within the string need to be escaped (using \"

Using plotmath expressions 285

where a literal " is desired). We can, also in both cases, embed a character string
by means of one of the functions plain(), italic(), bold() or bolditalic()

which also affect the font used. The argument to these functions needs to be
a character string delimited by quotation marks if it is not to be parsed.

When using expression(), bare quotation marks can be embedded,

ggplot(cars, aes(speed, dist)) +

geom_point() +

xlab(expression(x[1]*" test"))

while in the case of parse() they need to be escaped,

ggplot(cars, aes(speed, dist)) +

geom_point() +

xlab(parse(text = "x[1]*\" test\""))

and in some cases will be enclosed within a format function.

ggplot(cars, aes(speed, dist)) +

geom_point() +

xlab(parse(text = "x[1]*italic(\" test\")"))

Some additional remarks. If expression() is passed multiple arguments, it
returns a vector of expressions. Where ggplot() expects a single value as an
argument, as in the case of axis labels, only the first member of the vector will
be used.

ggplot(cars, aes(speed, dist)) +

geom_point() +

xlab(expression(x[1], " test"))

Depending on the location within a expression, spaces maybe ignored, or
illegal. To juxtapose elements without adding space use *, to explicitly insert
white space, use ~. As shown above, spaces are accepted within quoted text.
Consequently, the following alternatives can also be used.

xlab(parse(text = "x[1]~~~~\"test\""))

xlab(parse(text = "x[1]~~~~plain(test)"))

However, unquoted white space is discarded.

xlab(parse(text = "x[1]*plain(test)"))

Finally, it can be surprising that trailing zeros in numeric values appearing
within an expression or text to be parsed are dropped. To force the trailing
zeros to be retained we need to enclose the number in quotation marks so
that it is interpreted as a character string.

ggplot(cars, aes(speed, dist)) +

geom_point() +

annotate(geom = "text",

x = rep(6, 3), y = c(90, 100, 110),

label = c("'1.00'*x^2", "1.00*x^2", "1.01*x^2"), parse = TRUE)

286 Grammar of graphics

Above we used paste() to insert values stored in a variable; functions format(),
sprintf(), and strftime() allow the conversion into character strings of other val-
ues. These functions can be used when creating plots to generate suitable character
strings for the label aesthetic out of numeric, logical, date, time, and even charac-
ter values. They can be, for example, used to create labels within a call to aes().

sprintf("log(%.3f) = %.3f", 5, log(5))

[1] "log(5.000) = 1.609"

sprintf("log(%.3g) = %.3g", 5, log(5))

[1] "log(5) = 1.61"

U Study the chunck above. If you are familiar with C or C++ function
sprintf() will already be familiar to you, otherwise study its help page.

Play with functions format(), sprintf(), and strftime(), formatting dif-
ferent types of data, into character strings of different widths, with different
numbers of digits, etc.

It is also possible to substitute the value of variables or, in fact, the result of
evaluation, into a new expression, allowing on the fly construction of expressions.
Such expressions are frequently used as labels in plots. This is achieved through
use of quoting and substitution.

We use bquote() to substitute variables or expressions enclosed in .() by their
value. Be aware that the argument to bquote() needs to be written as an expres-
sion; in this example we need to use a tilde, ~, to insert a space between words.
Furthermore, if the expressions include variables, these will be searched for in the
environment rather than in data, except within a call to aes().

ggplot(cars, aes(speed, dist)) +

geom_point() +

labs(title = bquote(Time~zone: .(Sys.timezone())),
subtitle = bquote(Date: .(as.character(today())))
)

0

25

50

75

100

125

5 10 15 20 25

speed

di
st

Date : 2020-04-24

Time zone :Europe/Helsinki

In the case of substitute() we supply what is to be used for substitution
through a named list.

Creating complex data displays 287

ggplot(cars, aes(speed, dist)) +

geom_point() +

labs(title = substitute(Time~zone: tz, list(tz = Sys.timezone())),
subtitle = substitute(Date: date, list(date = as.character(today())))
)

0

25

50

75

100

125

5 10 15 20 25

speed

di
st

Date : 2020-04-24

Time zone :Europe/Helsinki

For example, substitution can be used to assemble an expression within a func-
tion based on the arguments passed. One case of interest is to retrieve the name
of the object passed as an argument, from within a function.

deparse_test <- function(x) {

print(deparse(substitute(x)))
}

a <- "saved in variable"

deparse_test("constant")

[1] "\"constant\""

deparse_test(1 + 2)

[1] "1 + 2"

deparse_test(a)

[1] "a"

= A new package, ‘ggtext’, which is not yet in CRAN, provides rich-text (basic
HTML and Markdown) support for ‘ggplot2’, both for annotations and for data
visualization. This package provides an alternative to the use of R expressions.

7.13 Creating complex data displays
The grammar of graphics allows one to build and test plots incrementally. In daily
use, when creating a completely new plot, it is best to start with a simple design
for a plot, print() this plot, checking that the output is as expected and the code

288 Grammar of graphics

error-free. Afterwards, one can map additional aesthetics and add geometries and
statistics gradually. The final steps are then to add annotations and the text or
expressions used for titles, and axis and key labels. Another approach is to start
with an existing plot and modify it, e.g., by using the same plotting code with
different data or mapping different variables. When reusing code for a different
data set, scale limits and names are likely to need to be edited.

U Build a graphically complex data plot of your interest, step by step. By step
by step, I do not refer to using the grammar in the construction of the plot as
earlier, but of taking advantage of this modularity to test intermediate versions
in an iterative design process, first by building up the complex plot in stages
as a tool in debugging, and later using iteration in the processes of improving
the graphic design of the plot and improving its readability and effectiveness.

7.14 Creating sets of plots
Plots to be presented at a given occasion or published as part of the same work
need to be consistent in various respects: themes, scales and palettes, annotations,
titles and captions. To guarantee this consistency we need to build plots modularly
and avoid repetition by assigning names to the “modules” that need to be used
multiple times.

7.14.1 Saving plot layers and scales in variables

When creating plots with ‘ggplot2’, objects are composed using operator + to as-
semble together the individual components. The functions that create plot layers,
scales, etc. are constructors of objects and the objects they return can be stored
in variables, and once saved, added to multiple plots at a later time.

We create a plot and save it to variable myplot and we separately save the values
returned by a call to function labs().

myplot <- ggplot(data = mtcars,

aes(x = disp, y = mpg,

color = factor(cyl))) +

geom_point()

mylabs <- labs(x = "Engine displacement)",

y = "Gross horsepower",

color = "Number of\ncylinders",

shape = "Number of\ncylinders")

We assemble the final plot from the two parts we saved into variables. This is
useful when we need to create several plots ensuring that scale name arguments are
used consistently. In the example above, we saved these names, but the approach
can be used for other plot components or lists of components.

Creating sets of plots 289

 When composing plots with the + operator, the left-hand-side operand
must be a "gg" object. The left operand is added to the "gg" object and the
result returned.

myplot

myplot + mylabs + theme_bw(16)
myplot + mylabs + theme_bw(16) + ylim(0, NA)

We can also save intermediate results.

mylogplot <- myplot + scale_y_log10(limits=c(8,55))
mylogplot + mylabs + theme_bw(16)

7.14.2 Saving plot layers and scales in lists

If the pieces to be put together do not include a "gg" object, we can group them
into an R list and save it. When we later add the saved list to a "gg" object, the
members of the list are added one by one to the plot respecting their order.

myparts <- list(mylabs, theme_bw(16))
mylogplot + myparts

U Revise the code you wrote for the “playground” exercise in section 7.13,
but this time, pre-building and saving groups of elements that you expect to
be useful unchanged when composing a different plot of the same type, or a
plot of a different type from the same data.

7.14.3 Using functions as building blocks

When the blocks we assemble need to accept arguments when used, we have to
define functions instead of saving plot components to variables. The functions
we define, have to return a "gg" object, a list of plot components, or a single plot
component. The simplest use is to alter some defaults in existing constructor func-
tions returning "gg" objects or layers. The ellipsis (...) allows passing named ar-
guments to a nested function. In this case, every single argument passed by name
to bw_ggplot() will be copied as argument to the nested call to ggplot(). Be aware,
that supplying arguments by position, is possible only for parameters explicitly
included in the definition of the wrapper function,

bw_ggplot <- function(...) {

ggplot(...) +

theme_bw()
}

290 Grammar of graphics

which could be used as follows.

bw_ggplot(data = mtcars,

aes(x = disp, y = mpg,

color = factor(cyl))) +

geom_point()

7.15 Generating output files
It is possible, when using RStudio, to directly export the displayed plot to a file
using a menu. However, if the file will have to be generated again at a later time, or
a series of plots need to be produced with consistent format, it is best to include
the commands to export the plot in the script.

In R, files are created by printing to different devices. Printing is directed to
a currently open device such a window in RStudio. Some devices produce screen
output, others files. Devices depend on drivers. There are both devices that are
part of R and additional ones defined in contributed packages.

Creating a file involves opening a device, printing and closing the device in
sequence. In most cases the file remains locked until the device is close.

For example when rendering a plot to PDF, Encapsulated Postcript, SVG or other
vector graphics formats, arguments passed to width and height are expressed in
inches.

fig1 <- ggplot(data.frame(x = -3:3), aes(x = x)) +

stat_function(fun = dnorm)

pdf(file = "fig1.pdf", width = 8, height = 6)

print(fig1)
dev.off()

For Encapsulated Postscript and SVG output, we only need to substitute pdf()

with postscript() or svg(), respectively.

postscript(file = "fig1.eps", width = 8, height = 6)

print(fig1)
dev.off()

In the case of graphics devices for file output in BMP, JPEG, PNG and TIFF bitmap
formats, arguments passed to width and height are expressed in pixels.

tiff(file = "fig1.tiff", width = 1000, height = 800)

print(fig1)
dev.off()

= Some graphics devices are part of base-R, and others are implemented in
contributed packages. In some cases, there are multiple graphic device avail-
able for rendering graphics in a given file format. These devices usually use

Further reading 291

different libraries, or have been designed with different aims. These alternative
graphic devices can also differ in their function signature, i.e., have differences
in the parameters and their names. In cases when rendering fails inexplicably,
it can be worthwhile to switch to an alternative graphics device to find out if
the problem is in the plot or in the rendering engine.

7.16 Further reading
An in-depth discussion of the many extensions to package ‘ggplot2’ is outside the
scope of this book. Several books describe in detail the use of ‘ggplot2’, being
ggplot2: Elegant Graphics for Data Analysis (Wickham and Sievert 2016) the one
written by the main author of the package. For inspiration or worked out examples,
the book R Graphics Cookbook (Chang 2018) is an excellent reference. In depth
explanations of the technical aspects of R graphics are available in the book R
Graphics (Murrell 2019).

http://taylorandfrancis.com

8
Data import and export

Most programmers have seen them, and most good programmers re-
alize they’ve written at least one. They are huge, messy, ugly programs
that should have been short, clean, beautiful programs.

John Bentley
Programming Pearls, 1986

8.1 Aims of this chapter
Base R and the recommended packages (installed by default) include several func-
tions for importing and exporting data. Contributed packages provide both re-
placements for some of these functions and support for several additional file
formats. In the present chapter, I aim at describing both data input and output
covering in detail only the most common “foreign” data formats (those not native
to R).

Data file formats that are foreign to R are not always well defined, making it
necessary to reverse-engineer the algorithms needed to read them. These formats,
even when clearly defined, may be updated by the developers of the foreign soft-
ware that writes the files. Consequently, developing software to read and write files
using foreign formats can easily result in long, messy, and ugly R scripts. We can
also unwillingly write code that usually works but occasionally fails with specific
files, or even worse, occasionally silently corrupts the imported data. The aim of
this chapter is to provide guidance for finding functions for reading data encoded
using foreign formats, covering both base R, including the ‘foreign’ package, and
independently contributed packages. Such functions are well tested or validated.

In this chapter you will familiarize yourself with how to exchange data between
R and other applications. The functions save() and load(), and saveRDS() and
readRDS(), all of which save and read data in R’s native formats, are described in
sections 2.16.2 and 2.16.3 starting on page 79.

293

294 Data import and export

8.2 Introduction
The first step in any data analysis with R is to input or read-in the data. Available
sources of data are many and data can be stored or transmitted using various
formats, both based on text or binary encodings. It is crucial that data is not altered
(corrupted) when read and that in the eventual case of an error, errors are clearly
reported. Most dangerous are silent non-catastrophic errors.

The very welcome increase of awareness of the need for open availability of
data, makes the output of data from R into well-defined data-exchange formats
another crucial step. Consequently, in many cases an important step in data anal-
ysis is to export the data for submission to a repository, in addition to publication
of the results of the analysis.

Faster internet access to data sources and cheaper random-access memory
(RAM) has made it possible to efficiently work with relatively large data sets in
R. That R keeps all data in memory (RAM), imposes limits to the size of data R
functions can operate on. For data sets large enough not to fit in computer RAM,
one can use selective reading of data from flat files, or from databases outside of
R.

Some R packages have made it faster to import data saved in the same formats
already supported by base R, but in some cases providing weaker guarantees of
not corrupting the data than base R. Other contributed packages make it possible
to import and export data stored in file formats not supported by base R functions.
Some of these formats are subject-area specific while others are in widespread use.

8.3 Packages used in this chapter

install.packages(learnrbook::pkgs_ch_data)

To run the examples included in this chapter, you need first to load some pack-
ages from the library (see section 5.2 on page 163 for details on the use of pack-
ages).

library(learnrbook)
library(tibble)
library(purrr)
library(wrapr)
library(stringr)
library(dplyr)
library(tidyr)
library(readr)
library(readxl)
library(xlsx)
library(readODS)
library(pdftools)
library(foreign)
library(haven)

File names and operations 295

library(xml2)
library(XML)
library(ncdf4)
library(tidync)
library(lubridate)
library(jsonlite)

= Some data sets used in this and other chapters are available in package
‘learnrbook’. In addition to the R data objects, we provide files saved in foreign
formats, which we used in examples on how to import data. The files can be
either read from the R library, or from a copy in a local folder. In this chapter
we assume the user has copied the folder "extdata" from the package to a
working folder.

Copy the files using:

pkg.path <- system.file("extdata", package = "learnrbook")

file.copy(pkg.path, ".", overwrite = TRUE, recursive = TRUE)

[1] TRUE

We also make sure the folder used to save data read from the internet,
exists.

save.path = "./data"

if (!dir.exists(save.path)) {

dir.create(save.path)
}

8.4 File names and operations
We start with the naming of files as it affects data sharing irrespective of the format
used for its encoding. The main difficulty is that different operating systems have
different rules governing the syntax used for file names and file paths. In many
cases, like when depositing data files in a public repository, we need to ensure
that file names are valid in multiple operating systems (OSs). If the script used to
create the files is itself expected to be OS agnostic, we also need to be careful to
query the OS for file names and paths without making assumptions on the naming
rules or available OS commands. This is especially important when developing R
packages.

 For maximum portability, file names should never contain white-space
characters and contain at most one dot. For the widest possible portability,

296 Data import and export

underscores should be avoided using dashes instead. As an example, instead
of my data.2019.csv, use my-data-2019.csv.

R provides functions which help with portability, by hiding the idiosyncrasies of
the different OSs from R code. In scripts these functions should be preferred over
direct call to OS commands (i.e., using shell() or system()) whenever possible.
As the algorithm needed to extract a file name from a file path is OS specific, R
provides functions such as basename(), whose implementation is OS specific but
from the side of R code behave identically—these functions hide the differences
among OSs from the user of R. The chunk below can be expected to work correctly
under any OS for which R is available.

basename("extdata/my-file.txt")

[1] "my-file.txt"

 While in Unix and Linux folder nesting in file paths is marked with a
forward slash character (/), under MS-Windows it is marked with a backslash
character (\). Backslash (\) is an escape character in R and interpreted as the
start of an embedded special sequence of characters (see section 2.7 on page
39), while in R a forward slash (/) can be used for file paths under any OS,
and escaped backslash (\\) is valid only under MS-Windows. Consequently, /
should be always preferred to \\ to ensure portability, and is the approach
used in this book.

basename("extdata/my-file.txt")

[1] "my-file.txt"

basename("extdata\\my-file.txt")

[1] "my-file.txt"

The complementary function to basename() is dirname() and extracts the bare
path to the containing folder, from a full file path.

dirname("extdata/my-file.txt")

[1] "extdata"

Functions getwd() and setwd() can be used to get the path to the current work-
ing directory and to set a directory as current, respectively.

not run
getwd()

Function setwd() returns the path to the current working directory, allowing
us to portably set the working directory to the previous one. Both relative paths
(relative to the current working directory), as in the example, or absolute paths
(given in full) are accepted as an argument. In mainstream OSs “.” indicates the
current directory and “..” the directory above the current one.

File names and operations 297

not run
oldwd <- setwd("..")
getwd()

The returned value is always an absolute full path, so it remains valid even if
the path to the working directory changes more than once before being restored.

not run
oldwd

setwd(oldwd)
getwd()

We can also obtain lists of files and/or directories (= disk folders) portably
across OSs.

head(list.files())

[1] "abbrev.sty" "anscombe.svg" "appendixes.prj"

[4] "appendixes.prj.bak" "bits" "chapters-removed"

head(list.dirs())

[1] "." "./.git" "./.git/hooks" "./.git/info"

[5] "./.git/logs" "./.git/logs/refs"

head(dir())

[1] "abbrev.sty" "anscombe.svg" "appendixes.prj"

[4] "appendixes.prj.bak" "bits" "chapters-removed"

U The default argument for parameter path is the current working directory,
under Windows, Unix, and Linux indicated by ".". Convince yourself that this
is indeed the default by calling the functions with an explicit argument. After
this, play with the functions trying other existing and non-existent paths in
your computer.

U Use parameter full.names with list.files() to obtain either a list of file
paths or bare file names. Similarly, investigate how the returned list of files is
affected by the argument passed to all.names.

U Compare the behavior of functions dir() and list.dirs(), and try by over-
riding the default arguments of list.dirs(), to get the call to return the same
output as dir() does by default.

Base R provides several functions for portably working with files, and they are
listed in the help page for files and in individual help pages. Use help("files")

to access the help for this “family” of functions.

298 Data import and export

if (!file.exists("xxx.txt")) {

file.create("xxx.txt")
}

[1] TRUE

file.size("xxx.txt")

[1] 0

file.info("xxx.txt")

size isdir mode mtime ctime

xxx.txt 0 FALSE 666 2020-04-24 02:52:45 2020-04-24 02:52:45

atime exe

xxx.txt 2020-04-24 02:52:45 no

file.rename("xxx.txt", "zzz.txt")

[1] TRUE

file.exists("xxx.txt")

[1] FALSE

file.exists("zzz.txt")

[1] TRUE

file.remove("zzz.txt")

[1] TRUE

U Function file.path() can be used to construct a file path from its compo-
nents in a way that is portable across OSs. Look at the help page and play with
the function to assemble some paths that exist in the computer you are using.

8.5 Opening and closing file connections
Examples in the rest of this chapter use as an argument for the file formal param-
eter literal paths or URLs, and complete the reading or writing operations within
the call to a function. Sometimes it is necessary to read or write a text file sequen-
tially, one row or record at a time. In such cases it is most efficient to keep the file
open between reads and close the connection only when it is no longer needed.
See help(connections) for details about the various functions available and their
behavior in different OSs. In the next example we open a file connection, read two
lines, first the top one with column headers, then in a separate call to readLines(),
the two lines or records with data, and finally close the connection.

f1 <- file("extdata/not-aligned-ASCII-UK.csv", open = "r") # open for reading
readLines(f1, n = 1L)

[1] "col1,col2,col3,col4"

Plain-text files 299

readLines(f1, n = 2L)

[1] "1.0,24.5,346,ABC" "23.4,45.6,78,Z Y"

close(f1)

When R is used in batch mode, the “files” stdin, stdout and stderror can be
opened, and data read from, or written to. These standard sources and sinks, so
familiar to C programmers, allow the use of R scripts as tools in data pipes coded
as shell scripts under Unix and other OSs.

8.6 Plain-text files
In general, text files are the most portable approach to data storage but usually
also the least efficient with respect to the size of the file. Text files are composed
of encoded characters. This makes them easy to edit with text editors and easy to
read from programs written in most programming languages. On the other hand,
how the data encoded as characters is arranged can be based on two different
approaches: positional or using a specific character as a separator. The positional
approach is more concise but almost unreadable to humans as the values run into
each other. Reading of data stored using a positional approach requires access to
a format definition and was common in FORTRAN and COBOL at the time when
punch cards were used to store data. In the case of separators, different separators
are in common use. Comma-separated values (CSV) encodings use either a comma
or semicolon to separate the fields or columns. Tabulator, or tab-separated values
(TSV) use the tab character as a column separator. Sometimes white space is used
as a separator, most commonly when all values are to be converted to numeric.

 Not all text files are born equal. When reading text files, and foreign bi-
nary files which may contain embedded text strings, there is potential for their
misinterpretation during the import operation. One common source of prob-
lems, is that column headers are to be read as R names. As earlier discussed,
there are strict rules, such as avoiding spaces or special characters if the names
are to be used with the normal syntax. On import, some functions will attempt
to sanitize the names, but others not. Most such names are still accessible in
R statements, but a special syntax is needed to protect them from triggering
syntax errors through their interpretation as something different than variable
or function names—in R jargon we say that they need to be quoted.

Some of the things we need to be on the watch for are: 1) Mismatches be-
tween the character encoding expected by the function used to read the file,
and the encoding used for saving the file—usually because of different lo-
cales. 2) Leading or trailing (invisible) spaces present in the character values
or column names—which are almost invisible when data frames are printed. 3)
Wrongly guessed column classes—a typing mistake affecting a single value in
a column, e.g., the wrong kind of decimal marker, prevents the column from

300 Data import and export

being recognized as numeric. 4) Mismatched decimal marker in CSV files—the
marker depends on the locale (language and sometimes country) settings.

If you encounter problems after import, such as failure of indexing of data
frame columns by name, use function names() to get the names printed to
the console as a character vector. This is useful because character vectors are
always printed with each string delimited by quotation marks making leading
and trailing spaces clearly visible. The same applies to use of levels() with
factors created with data that might have contained mistakes.

To demonstrate some of these problems, I create a data frame with name
sanitation disabled, and in the second statement with sanitation enabled. The
first statement is equivalent to the default behavior of functions in package
‘readr’ and the second is equivalent to the behavior of base R functions. ‘readr’
prioritizes the integrity of the original data while R prioritizes compatibility
with R’s naming rules.

data.frame(a = 1, "a " = 2, " a" = 3, check.names = FALSE)

a a a

1 1 2 3

data.frame(a = 1, "a " = 2, " a" = 3)

a a. X.a

1 1 2 3

An even more subtle case is when characters can be easily confused by
the user reading the output: zero and o (a0 vs. aO) or el and one (al vs. a1)
can be difficult to distinguish in some fonts. When using encodings capable of
storing many character shapes, such as unicode, in some cases two characters
with almost identical visual shape may be encoded as different characters.

data.frame(al = 1, a1 = 2, aO = 3, a0 = 4)

al a1 aO a0

1 1 2 3 4

Reading data from a text file can result in very odd-looking values stored
in R variables because of a mismatch in encoding, e.g., when a CSV file saved
with MS-Excel is silently encoded using 16-bit unicode format, but read as an
8-bit unicode encoded file.

The hardest part of all these problems is to diagnose their origin, as func-
tion arguments and working environment options can in most cases be used
to force the correct decoding of text files with diverse characteristics, origins
and vintages once one knows what is required. One function in the R ‘tools’
package, which is not exported, can at the time of writing be used to test files
for the presence on non-ASCII characters: tools:::showNonASCIIfile(). This
function takes as an argument the path to a file.

Plain-text files 301

8.6.1 Base R and ‘utils’

Text files containing data in columns can be divided into two broad groups. Those
with fixed-width fields and those with delimited fields. Fixed-width fields were es-
pecially common in the early days of FORTRAN and COBOL when data storage
capacity was very limited. These formats are frequently capable of encoding in-
formation using fewer characters than when delimited fields are used. The best
way of understanding the differences is with examples. Although in this section
we exemplify the use of functions by passing a file name as an argument, URLs,
and open file descriptors are also accepted (see section 8.5 on page 298).

In the first example we will read a file with fields solely delimited by “,.” This is
what is called comma-separated-values (CSV) format which can be read and written
with read.csv() and write.csv(), respectively.

Example file not-aligned-ASCII-UK.csv contains:

col1,col2,col3,col4

1.0,24.5,346,ABC

23.4,45.6,78,Z Y

from_csv_a.df <- read.csv("extdata/not-aligned-ASCII-UK.csv")

sapply(from_csv_a.df, class)

col1 col2 col3 col4

"numeric" "numeric" "integer" "character"

from_csv_a.df[["col4"]]

[1] "ABC" "Z Y"

levels(from_csv_a.df[["col4"]])

NULL

U Read the file not-aligned-ASCII-UK.csvwith function read.csv2() instead
of read.csv(). Although this may look like a waste of time, the point of the
exercise is for you to get familiar with R behavior in case of such amistake. This
will help you recognize similar errors when they happen accidentally, which is
quite common when files are shared.

Example file aligned-ASCII-UK.csv contains comma-separated-values with
added white space to align the columns, to make it easier to read by humans.
These aligned fields contain leading and trailing white spaces that are included in
string values when the file is read.

col1, col2, col3, col4

1.0, 24.5, 346, ABC

23.4, 45.6, 78, Z Y

Although space characters are read as part of the fields, they are ignored when
conversion to numeric takes place. The remaining leading and trailing spaces in
character strings are difficult to see when data frames are printed.

302 Data import and export

from_csv_b.df <- read.csv("extdata/aligned-ASCII-UK.csv")

Using levels() we can more clearly see that the labels of the automatically
created factor levels contain leading spaces.

sapply(from_csv_b.df, class)

col1 col2 col3 col4

"numeric" "numeric" "integer" "character"

from_csv_b.df[["col4"]]

[1] " ABC" " Z Y"

levels(from_csv_b.df[["col4"]])

NULL

By default, column names are sanitized but factor levels are not. By consulting
the documentation with help(read.csv) we discover that by passing an additional
argument we can change this default and obtain the data read as desired. Most
likely the default has been chosen so that by default data integrity is maintained.

from_csv_e.df <- read.csv("extdata/aligned-ASCII-UK.csv", strip.white = TRUE)

sapply(from_csv_e.df, class)

col1 col2 col3 col4

"numeric" "numeric" "integer" "character"

from_csv_e.df[["col4"]]

[1] "ABC" "Z Y"

levels(from_csv_e.df[["col4"]])

NULL

The functions from the R ‘utils’ package by default convert columns containing
character strings into factors, as seen above. This default can be changed so that
character strings remain as is.

from_csv_c.df <- read.csv("extdata/not-aligned-ASCII-UK.csv",
stringsAsFactors = FALSE)

sapply(from_csv_c.df, class)

col1 col2 col3 col4

"numeric" "numeric" "integer" "character"

from_csv_c.df[["col4"]]

[1] "ABC" "Z Y"

Decimal points and exponential notation are allowed for floating point values.
In English-speaking locales, the decimalmark is a point, while inmany other locales
it is a comma. If a comma is used as decimal marker, we can no longer use it as
field separator and is usually substituted by a semicolon (;). In such a case we
can use read.csv2() and write.csv2. Furthermore, parameters dec and sep allow
setting them to arbitrary characters. Function read.table() does the actual work
and functions like read.csv() only differ in the default arguments for the different
parameters. By default, read.table() expects fields to be separated by white space

Plain-text files 303

(one or more spaces, tabs, new lines, or carriage return). Strings with embedded
spaces need to be quoted in the file as shown below.

col1 col2 col3 col4

1.0 24.5 346 ABC

23.4 45.6 78 "Z Y"

from_txt_b.df <- read.table("extdata/aligned-ASCII.txt", header = TRUE)

sapply(from_txt_b.df, class)

col1 col2 col3 col4

"numeric" "numeric" "integer" "character"

from_txt_b.df[["col4"]]

[1] "ABC" "Z Y"

levels(from_txt_b.df[["col4"]])

NULL

With a fixed-width format, no delimiters are needed. Decoding is based solely
on the position of the characters in the line or record. A file like this cannot be
interpreted without a description of the format used for saving the data. Files
containing data stored in fixed width format can be read with function read.fwf().
Records for a single observation can be stored in a single or multiple lines. In either
case, each line has fields of different but fixed known widths.

Function read.fortran() is a wrapper on read.fwf() that accepts format defi-
nitions similar to those used in FORTRAN. One particularity of FORTRAN formatted
data transfer is that the decimal marker can be omitted in the saved file and its
position specified as part of the format definition, a trick used to make text files
(or stacks of punch cards!) smaller. Modern versions of FORTRAN support read-
ing from and writing to other formats like those using field delimiters described
above.

10245346ABC

234456 78Z Y

from_fwf_a.df <- read.fortran("extdata/aligned-ASCII.fwf",
format = c("2F3.1", "F3.0", "A3"),

col.names = c("col1", "col2", "col3", "col4"))

sapply(from_fwf_a.df, class)

col1 col2 col3 col4

"numeric" "numeric" "numeric" "character"

from_fwf_a.df[["col4"]]

[1] "ABC" "Z Y"

304 Data import and export

 The file reading functions described above share with read.table() the
same parameters. In addition to those described above, other frequently use-
ful parameters are skip and n, which can be used to skip lines at the top of a
file and limit the number of lines (or records) to read; header, which accepts a
logical argument indicating if the fields in the first text line read should be de-
coded as column names rather than data; na.strings, to which can be passed
a character vector with strings to be interpreted as NA; and colClasses, which
provides control of the conversion of the fields to R classes and possibly skip-
ping some columns altogether. All these parameters are described in the cor-
responding help pages.

U In reality read.csv(), read.csv2() and read.table() are the same func-
tion with different default arguments to several of their parameters. Study the
help page, and by passing suitable arguments, make read.csv() behave like
read.table(), then make read.table() behave like read.csv2().

 We can read a text file as character strings, without attempting to decode
them. This is occasionally useful, such as when we do the decoding as part of
our own script. In this case, the function to use is readLines(). The returned
value is a character vector in which each member string corresponds to one
line or record in the file, with the end-of-line markers stripped (see example in
section 8.5 on page 298).

Next we give one example of the use of a write function matching one of the
read functions described above. The write.csv() function takes as an argument
a data frame, or an object that can be coerced into a data frame, converts it to
character strings, and saves them to a text file. We first create the data frame that
we will write to disk.

my.df <- data.frame(x = 1:5, y = 5:1 / 10, z = letters[1:5])

We write my.df to a CSV file suitable for an English language locale, and then
display its contents.

write.csv(my.df, file = "my-file1.csv", row.names = FALSE)

file.show("my-file1.csv", pager = "console")

"x","y","z"

1,0.5,"a"

2,0.4,"b"

3,0.3,"c"

4,0.2,"d"

5,0.1,"e"

Plain-text files 305

 In most cases setting, as above, row.names = FALSE when writing a CSV
file will help when it is read. Of course, if row names do contain important
information, such as gene tags, you cannot skip writing the row names to the
file unless you first copy these data into a column in the data frame. (Row
names are stored separately as an attribute in data.frame objects, see section
2.15 on page 77 for details.)

UWrite the data frame my.df into text files with functions write.csv2() and
write.table() instead of read.csv() and display the files.

Function cat() takes R objects and writes them after conversion to character
strings to the console or a file, inserting one or more characters as separators, by
default, a space. This separator can be set through parameter sep. In our example
we set sep to a new line (entered as the escape sequence "\n").

my.lines <- c("abcd", "hello world", "123.45")

cat(my.lines, file = "my-file2.txt", sep = "\n")

file.show("my-file2.txt", pager = "console")

abcd

hello world

123.45

8.6.2 ‘readr’

Package ‘readr’ is part of the ‘tidyverse’ suite. It defines functions that allow faster
input and output, and have different default behavior. Contrary to base R func-
tions, they are optimized for speed, butmay sometimes wrongly decode their input
and rarely even silently do this. Base R functions do less guessing, e.g., the delim-
iters must be supplied as arguments. The ‘readr’ functions guess more properties
of the text file format; in most cases they succeed, which is very handy, but occa-
sionally they fail. Automatic guessing can be overridden by passing arguments and
this is recommended for scripts that may be reused to read different files in the
future. Another important advantage is that these functions read character strings
formatted as dates or times directly into columns of class POSIXct. All write func-
tions defined in ‘readr’ have an append parameter, which can be used to change the
default behavior of overwriting an existing file with the same name, to appending
the output at its end.

Although in this section we exemplify the use of these functions by passing a
file name as an argument, as is the case with R native functions, URLs, and open
file descriptors are also accepted (see section 8.5 on page 298). Furthermore, if the
file name ends in a tag recognizable as indicating a compressed file format, the file
will be uncompressed on the fly.

306 Data import and export

 The names of functions “equivalent” to those described in the previ-
ous section have names formed by replacing the dot with an underscore, e.g.,
read_csv() ≈ read.csv(). The similarity refers to the format of the files read,
but not the order, names, or roles of their formal parameters. For example,
function read_table() has a slightly different behavior than read.table(), al-
though they both read fields separated by white space. Other aspects of the
default behavior are also different, for example ‘readr’ functions do not con-
vert columns of character strings into factors and row names are not set in the
returned tibble, which inherits from data.frame, but is not fully compatible
(see section 6.4.2 on page 182).

As we can see in this first example, these functions also report to the console
the specifications of the columns, which is important when these are guessed from
the file contents, or part of it.

read_csv(file = "extdata/aligned-ASCII-UK.csv")

Parsed with column specification:
cols(
col1 = col_double(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
A tibble: 2 x 4

col1 col2 col3 col4

<dbl> <dbl> <dbl> <chr>

1 1 24.5 346 ABC

2 23.4 45.6 78 Z Y

read_csv(file = "extdata/not-aligned-ASCII-UK.csv")

Parsed with column specification:
cols(
col1 = col_double(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
A tibble: 2 x 4

col1 col2 col3 col4

<dbl> <dbl> <dbl> <chr>

1 1 24.5 346 ABC

2 23.4 45.6 78 Z Y

Function read_table(), differently to read.table(), retains quotes as part of
read character strings.

read_table(file = "extdata/aligned-ASCII.txt")

Parsed with column specification:
cols(

Plain-text files 307

col1 = col_double(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
A tibble: 2 x 4

col1 col2 col3 col4

<dbl> <dbl> <dbl> <chr>

1 1 24.5 346 "ABC"

2 23.4 45.6 78 "\"Z Y\""

Because of themisaligned fields in file "not-aligned-ASCII.txt", we need to use
read_table2(), which allows misalignment of fields, like read.table(), instead of
read_table(), which expects vertically aligned fields across rows. However, in this
case the embedded space character in the quoted string is misinterpreted and part
of the string dropped with a warning.

read_table2(file = "extdata/not-aligned-ASCII.txt")

Parsed with column specification:
cols(
col1 = col_double(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
Warning: 1 parsing failure.

row col expected actual file

2 -- 4 columns 5 columns 'extdata/not-aligned-ASCII.txt'

A tibble: 2 x 4

col1 col2 col3 col4

<dbl> <dbl> <dbl> <chr>

1 1 24.5 346 "ABC"

2 23.4 45.6 78 "\"Z"

Function read_delim() with space as the delimiter needs to be used.

read_delim(file = "extdata/not-aligned-ASCII.txt", delim = " ")

Parsed with column specification:
cols(
col1 = col_double(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
A tibble: 2 x 4

col1 col2 col3 col4

<dbl> <dbl> <dbl> <chr>

1 1 24.5 346 ABC

2 23.4 45.6 78 Z Y

Function read_tsv() reads files encoded with the tab character as the delimiter,
and read_fwf() reads files with fixed width fields. There is, however, no equivalent
to read.fortran(), supporting implicit decimal points.

308 Data import and export

U Use the ”wrong” read_ functions to read the example files used above
and/or your own files. As mentioned earlier, forcing errors will help you learn
how to diagnose when such errors are caused by coding mistakes. In this case,
as wrongly read data are not always accompanied by error or warning mes-
sages, carefully check the returned tibbles for misread data values.

 The functions from R’s ‘utils’ read the whole file as text before attempting
to guess the class of the columns or their alignment. This is reliable but slow
for very large text files. The functions from ‘readr’ read only the top 1000 lines
by default for guessing, and then rather blindly read the whole files assuming
that the guessed properties also apply to the remainder of the file. This is more
efficient, but somehow risky. In earlier versions of ‘readr’, a typical failure to
correctly decode fields was when numbers are in increasing order and the field
widths continue increasing in the lines below those used for guessing, but this
case seems to be, at the time of writing correctly, handled. It also means that
in cases when an individual value after guess_max lines cannot be converted to
numeric, instead of returning a column of character strings as base R functions,
this value is encoded as a numeric NA with a warning. To demonstrate this we
will drastically reduce guess_max from its default so that we can use an example
file only a few lines in length.

read_table2(file = "extdata/miss-aligned-ASCII.txt")

Parsed with column specification:
cols(
col1 = col_character(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
A tibble: 4 x 4

col1 col2 col3 col4

<chr> <dbl> <dbl> <chr>

1 1.0 24.5 346 ABC

2 2.4 45.6 78 XYZ

3 20.4 45.6 78 XYZ

4 a 20 2500 abc

Plain-text files 309

read_table2(file = "extdata/miss-aligned-ASCII.txt", guess_max = 3L)

Parsed with column specification:
cols(
col1 = col_double(),
col2 = col_double(),
col3 = col_double(),
col4 = col_character()
)
Warning: 1 parsing failure.

row col expected actual file

4 col1 a double a 'extdata/miss-aligned-ASCII.txt'

A tibble: 4 x 4

col1 col2 col3 col4

<dbl> <dbl> <dbl> <chr>

1 1 24.5 346 ABC

2 2.4 45.6 78 XYZ

3 20.4 45.6 78 XYZ

4 NA 20 2500 abc

The write_ functions from ‘readr’ are the counterpart to write. functions from
‘utils’. In addition to the expected write_csv(), write_csv2(), write_tsv() and
write_delim(), ‘readr’ provides functions that write MS-Excel-friendly CSV files.
We demonstrate here the use of write_excel_csv() to produce a text file with
comma-separated fields suitable for import into MS-Excel.

write_excel_csv(my.df, path = "my-file6.csv")

file.show("my-file6.csv", pager = "console")

That saves a file containing the following text:

x,y,z

1,0.5,a

2,0.4,b

3,0.3,c

4,0.2,d

5,0.1,e

U Compare the output from write_excel_csv() and write_csv(). What is
the difference? Does it matter when you import the written CSV file into Excel
(the version you are using, with the locale settings of your computer)?

The pair of functions read_lines() and write_lines() read and write charac-
ter vectors without conversion, similarly to base R readLines() and writeLines().
Functions read_file() and write_file() read and write the contents of a whole
text file into, and from, a single character string. Functions read_file() and
write_file() can also be used with raw vectors to read and write binary files or
text files of unknown encoding.

The contents of the whole file are returned as a character vector of length one,

310 Data import and export

with the embedded new line markers. We use cat() to print it so these new line
characters force the start of a new print-out line.

one.str <- read_file(file = "extdata/miss-aligned-ASCII.txt")

length(one.str)

[1] 1

cat(one.str)

col1 col2 col3 col4

1.0 24.5 346 ABC

2.4 45.6 78 XYZ

20.4 45.6 78 XYZ

a 20 2500 abc

U Use write_file() to write a file that can be read with read_csv().

8.7 XML and HTML files
XML files contain text with special markup. Several modern data exchange for-
mats are based on the XML standard (see https://www.w3.org/TR/xml/) which
uses schemas for flexibility. Schemas define specific formats, allowing reading of
formats not specifically targeted during development of the read functions. Even
the modern XHTML standard used for web pages is based on such schemas, while
HTML only differs slightly in its syntax.

8.7.1 ‘xml2’

Package ‘xml2’ provides functions for reading and parsing XTML and HTML files.
This is a vast subject, of which I will only give a brief example.

We first read a web page with function read_html(), and explore its structure.

web_page <- read_html("http://r4photobiology.info/R/index.html")
html_structure(web_page)

<html>

<head>

<title>

{text}

<meta [name, content]>

<meta [name, content]>

<meta [name, content]>

<body>

https://www.w3.org
http://www.r4photobiology.info

GPX files 311

{text}

<hr>

<h1>

{text}

{text}

<hr>

<p>

{text}

<a [href]>

{text}

{text}

{text}

<p>

{text}

<a [href]>

{text}

{text}

{text}

<address>

{text}

{text}

Next we extract the text from its title attribute, using functions
xml_find_all() and xml_text().

xml_text(xml_find_all(web_page, ".//title"))

[1] "Suite of R packages for photobiology"

The functions defined in this package can be used to “harvest” data from web
pages, but also to read data from files using formats that are defined through XML
schemas.

8.8 GPX files
GPX (GPS Exchange Format) files use an XML scheme designed for saving and ex-
changing data from geographic positioning systems (GPS). There is some variation
on the variables saved depending on the settings of the GPS receiver. The example
data used here is from a Transmeta BT747 GPS logger. The example below reads
the data into a tibble as character strings. For plotting, the character values repre-
senting numbers and dates would need to be converted to numeric and datetime
(POSIXct) values, respectively. In the case of plotting tracks on a map, it is prefer-
able to use package ‘sf’ to import the tracks directly from the .gpx file into a layer
(use of the dot pipe operator is described in section 6.5 on page 187).

xmlTreeParse(file = "extdata/GPSDATA.gpx", useInternalNodes = TRUE) %.>%

xmlRoot(x = .) %.>%

xmlToList(node = .)[["trk"]] %.>%

unlist(x = .[names(.) == "trkseg"], recursive = FALSE) %.>%

map_df(.x = ., .f = function(x) as_tibble(x = t(x = unlist(x = x))))

A tibble: 199 x 7

time speed name type fix .attrs.lat .attrs.lon

312 Data import and export

* <chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 2018-12-08T23:09~ 0.03~ trkpt-2018-12-08T23~ T 3d -34.912071 138.660595

2 2018-12-08T23:09~ 0.08~ trkpt-2018-12-08T23~ T 3d -34.912067 138.660543

3 2018-12-08T23:09~ 0.01~ trkpt-2018-12-08T23~ T 3d -34.912102 138.660554

... with 196 more rows

I have passed all arguments by name to make explicit how this pipe works. See
section 6.5 on page 187 for details on the use of the pipe and dot-pipe operators.

U To understand what data transformation takes place in each statement of
this pipe, start by executing the first statement by itself, excluding the dot-pipe
operator, and continue adding one statement at a time, and at each step check
the returned value and look out for what has changed from the previous step.

8.9 Worksheets
Microsoft Office, Open Office and Libre Office are the most frequently used suites
containing programs based on the worksheet paradigm. There is available a stan-
dardized file format for exchange of worksheet data, but it does not support all
the features present in native file formats. We will start by considering MS-Excel.
The file format used by MS-Excel has changed significantly over the years, and old
formats tend to be less well supported by available R packages andmay require the
file to be updated to a more modern format with MS-Excel itself before import into
R. The current format is based on XML and relatively simple to decode, whereas
older binary formats are more difficult. Worksheets contain code as equations in
addition to the actual data. In all cases, only values entered as such or those com-
puted by means of the embedded equations can be imported into R rather than
the equations themselves.

8.9.1 CSV files as middlemen

If we have access to the original software used for creating a worksheet or work-
book, then exporting worksheets to text files in CSV format and importing them
into R using the functions described in sections 8.6 and 8.6.2 starting on pages 299
and 305 provides a broadly compatible route for importing data—with the caveat
that we should take care that delimiters and decimal marks match the expectations
of the functions used. This approach is not ideal from the perspective of having to
recreate intermediate files. A better approach is, when feasible, to import the data
directly from the workbook or worksheets into R.

8.9.2 ‘readxl’

Package ‘readxl’ supports reading of MS-Excel workbooks, and selecting work-
sheets and regions within worksheets specified in ways similar to those used by

Worksheets 313

MS-Excel itself. The interface is simple, and the package easy to install. We will
import a file that in MS-Excel looks like the screen capture below.

We first list the sheets contained in the workbook file with excel_sheets().

sheets <- excel_sheets("extdata/Book1.xlsx")
sheets

[1] "my data"

In this case, the argument passed to sheet is redundant, as there is only a sin-
gle worksheet in the file. It is possible to use either the name of the sheet or a
positional index (in this case 1 would be equivalent to "my data"). We use function
read_excel() to import the worksheet. Being part of the ‘tidyverse’ the returned
value is a tibble and character columns are returned as is.

Book1.df <- read_excel("extdata/Book1.xlsx", sheet = "my data")

Book1.df

A tibble: 10 x 3

sample group observation

<dbl> <chr> <dbl>

1 1 a 1

2 2 a 5

3 3 a 7

... with 7 more rows

We can also read a region instead of the whole worksheet.

Book1_region.df <- read_excel("extdata/Book1.xlsx", sheet = "my data", range = "A1:B8")

Book1_region.df

A tibble: 7 x 2

sample group

<dbl> <chr>

1 1 a

314 Data import and export

2 2 a

3 3 a

... with 4 more rows

Of the remaining arguments, the most useful ones have the same names and
play similar roles as in ‘readr’ (see section 8.6.2 on page 305).

8.9.3 ‘xlsx’

Package ‘xlsx’ can be more difficult to install as it uses Java functions to do the
actual work. However, it is more comprehensive, with functions both for reading
and writing MS-Excel worksheets and workbooks, in different formats including
the older binary ones. Similar to ‘readr’ it allows selected regions of a worksheet
to be imported.

Here we use function read.xlsx(), indexing the worksheet by name. The re-
turned value is a data frame, and following the expectations of R package ‘utils’,
character columns are converted into factors by default.

Book1_xlsx.df <- read.xlsx("extdata/Book1.xlsx", sheetName = "my data")

Book1_xlsx.df

sample group observation

1 1 a 1.0

2 2 a 5.0

3 3 a 7.0

4 4 a 2.0

5 5 a 5.0

6 6 b 0.0

7 7 b 2.0

8 8 b 3.0

9 9 b 1.0

10 10 b 1.5

With function write.xlsx() we can write data frames out to Excel worksheets
and even append new worksheets to an existing workbook.

set.seed(456321)
my.data <- data.frame(x = 1:10, y = letters[1:10])

write.xlsx(my.data, file = "extdata/my-data.xlsx", sheetName = "first copy")

write.xlsx(my.data, file = "extdata/my-data.xlsx", sheetName = "second copy", ap-

pend = TRUE)

When opened in Excel, we get a workbook containing two worksheets, named
using the arguments we passed through sheetName in the code chunk above.

Worksheets 315

U If you have some worksheet files available, import them into R to get a feel
for how the way in which data is organized in the worksheets affects how easy
or difficult it is to import them into R.

8.9.4 ‘readODS’

Package ‘readODS’ provides functions for reading data saved in files that follow
the Open Documents Standard. Function read_ods() has a similar but simpler user
interface to that of read_excel() and reads one worksheet at a time, with support
only for skipping top rows. The value returned is a data frame.

ods.df <- read_ods("extdata/Book1.ods", sheet = 1)

Parsed with column specification:
cols(
sample = col_double(),
group = col_character(),
observation = col_double()
)

ods.df

sample group observation

1 1 a 1.0

2 2 a 5.0

3 3 a 7.0

4 4 a 2.0

5 5 a 5.0

6 6 b 0.0

316 Data import and export

7 7 b 2.0

8 8 b 3.0

9 9 b 1.0

10 10 b 1.5

Function write_ods() writes a data frame into an ODS file.

8.10 Statistical software
There are two different comprehensive packages for importing data saved from
other statistical programs such as SAS, Statistica, SPSS, etc. The longtime “stan-
dard” is package ‘foreign’ included in base R, and package ‘haven’ is a newer con-
tributed extension. In the case of files saved with old versions of statistical pro-
grams, functions from ‘foreign’ tend to be more robust than those from ‘haven’.

8.10.1 ‘foreign’

Functions in package ‘foreign’ allow us to import data from files saved by several
statistical analysis programs, including SAS, Stata, SPPS, Systat, Octave among oth-
ers, and a function for writing data into files with formats native to SAS, Stata, and
SPPS. R documents the use of these functions in detail in the R Data Import/Export
manual. As a simple example, we use function read.spss() to read a .sav file,
saved a few years ago with the then current version of SPSS. We display only the
first six rows and seven columns of the data frame, including a column with dates,
which appears as numeric.

my_spss.df <- read.spss(file = "extdata/my-data.sav", to.data.frame = TRUE)

re-encoding from UTF-8

my_spss.df[1:6, c(1:6, 17)]

block treat mycotreat water1 pot harvest harvest_date

1 0 Watered, EM 1 1 14 1 13653705600

2 0 Watered, EM 1 1 52 1 13653705600

3 0 Watered, EM 1 1 111 1 13653705600

4 0 Watered, EM 1 1 127 1 13653705600

5 0 Watered, EM 1 1 230 1 13653705600

6 0 Watered, EM 1 1 258 1 13653705600

A second example, this time with a simple .sav file saved 15 years ago.

thiamin.df <- read.spss(file = "extdata/thiamin.sav", to.data.frame = TRUE)

head(thiamin.df)

THIAMIN CEREAL

1 5.2 wheat

2 4.5 wheat

3 6.0 wheat

4 6.1 wheat

5 6.7 wheat

6 5.8 wheat

Statistical software 317

Another example, for a Systat file saved on an PC more than 20 years ago, and
read with read.systat().

my_systat.df <- read.systat(file = "extdata/BIRCH1.SYS")

head(my_systat.df)

CONT DENS BLOCK SEEDL VITAL BASE ANGLE HEIGHT DIAM

1 1 1 1 2 44 2 0 1 53

2 1 1 1 2 41 2 1 2 70

3 1 1 1 2 21 2 0 1 65

4 1 1 1 2 15 3 0 1 79

5 1 1 1 2 37 3 0 1 71

6 1 1 1 2 29 2 1 1 43

Not all functions in ‘foreign’ return data frames by default, but all of them can
be coerced to do so.

8.10.2 ‘haven’

Package ‘haven’ is less ambitious with respect to the number of formats supported,
or their vintages, providing read and write functions for only three file formats:
SAS, Stata and SPSS. On the other hand, ‘haven’ provides flexible ways to convert
the different labeled values that cannot be directly mapped to R modes. They also
decode dates and times according to the idiosyncrasies of each of these file for-
mats. In cases when the imported file contains labeled values the returned tibble

object needs some additional attention from the user. Labeled numeric columns in
SPSS are not necessarily equivalent to factors, although they sometimes are. Con-
sequently, conversion to factors cannot be automated and must be done manually
in a separate step.

We can use function read_sav() to import a .sav file saved by a recent version
of SPSS. As in the previous section, we display only the first six rows and seven
columns of the data frame, including a column treat containing a labeled numeric
vector and harvest_date with dates encoded as R date values.

my_spss.tb <- read_sav(file = "extdata/my-data.sav")

my_spss.tb[1:6, c(1:6, 17)]

A tibble: 6 x 7

block treat mycotreat water1 pot harvest harvest_date

<dbl> <dbl+lbl> <dbl> <dbl> <dbl> <dbl> <date>

1 0 1 [Watered, EM] 1 1 14 1 2015-06-15

2 0 1 [Watered, EM] 1 1 52 1 2015-06-15

3 0 1 [Watered, EM] 1 1 111 1 2015-06-15

... with 3 more rows

In this case, the dates are correctly decoded.
Next, we import an SPSS’s .sav file saved 15 years ago.

thiamin.tb <- read_sav(file = "extdata/thiamin.sav")

thiamin.tb

A tibble: 24 x 2

THIAMIN CEREAL

<dbl> <dbl+lbl>

1 5.2 1 [wheat]

2 4.5 1 [wheat]

3 6 1 [wheat]

... with 21 more rows

318 Data import and export

thiamin.tb <- as_factor(thiamin.tb)
thiamin.tb

A tibble: 24 x 2

THIAMIN CEREAL

<dbl> <fct>

1 5.2 wheat

2 4.5 wheat

3 6 wheat

... with 21 more rows

U Compare the values returned by different read functions when applied
to the same file on disk. Use names(), str() and class() as tools in your ex-
ploration. If you are brave, also use attributes(), mode(), dim(), dimnames(),
nrow() and ncol().

U If you use or have in the past used other statistical software or a general-
purpose language like Python, look for some old files and import them into
R.

8.11 NetCDF files
In some fields, including geophysics and meteorology, NetCDF is a very common
format for the exchange of data. It is also used in other contexts in which data is
referenced to a grid of locations, like with data read from Affymetrix microarrays
used to study gene expression. NetCDF files are binary but use a format that allows
the storage of metadata describing each variable together with the data itself in a
well-organized and standardized format, which is ideal for exchange of moderately
large data sets measured on a spatial or spatio-temporal grid.

Officially described as follows:

NetCDF is a set of software libraries [from Unidata] and self-describing,
machine-independent data formats that support the creation, access, and shar-
ing of array-oriented scientific data.

As sometimes NetCDF files are large, it is good that it is possible to selec-
tively read the data from individual variables with functions in packages ‘ncdf4’ or
‘RNetCDF’. On the other hand, this implies that contrary to other data file reading
operations, reading a NetCDF file is done in two or more steps—i.e., opening the
file, reading metadata describing the variables and spatial grid, and finally reading
the data of interest.

NetCDF files 319

8.11.1 ‘ncdf4’

Package ‘ncdf4’ supports reading of files using netCDF version 4 or earlier formats.
Functions in ‘ncdf4’ not only allow reading and writing of these files, but also their
modification.

We first read metadata to obtain an index of the file contents, and in additional
steps, read a subset of the data. With print() we can find out the names and
characteristics of the variables and attributes. In this example, we read long-term
averages for potential evapotranspiration (PET).

We first open a connection to the file with function nc_open().

meteo_data.nc <- nc_open("extdata/pevpr.sfc.mon.ltm.nc")
str(meteo_data.nc, max.level = 1)

List of 14

$ filename : chr "extdata/pevpr.sfc.mon.ltm.nc"

$ writable : logi FALSE

$ id : int 65536

$ safemode : logi FALSE

$ format : chr "NC_FORMAT_NETCDF4_CLASSIC"

$ is_GMT : logi FALSE

$ groups :List of 1

$ fqgn2Rindex:List of 1

$ ndims : num 4

$ natts : num 8

$ dim :List of 4

$ unlimdimid : num -1

$ nvars : num 3

$ var :List of 3

- attr(*, "class")= chr "ncdf4"

U Increase max.level in the call to str() above and study the connection
object stores information on the dimensions and for each data variable. You
can also print(meteo_data.nc) for a more complete printout once you have
understood the structure of the object.

The dimensions of the array data are described with metadata, in our examples
mapping indexes to a grid of latitudes and longitudes and into a time vector as
a third dimension. The dates are returned as character strings. We get here the
variables one at a time with function ncvar_get().

time.vec <- ncvar_get(meteo_data.nc, "time")

head(time.vec)

[1] -657073 -657042 -657014 -656983 -656953 -656922

longitude <- ncvar_get(meteo_data.nc, "lon")

head(longitude)

[1] 0.000 1.875 3.750 5.625 7.500 9.375

latitude <- ncvar_get(meteo_data.nc, "lat")

head(latitude)

[1] 88.5420 86.6531 84.7532 82.8508 80.9473 79.0435

320 Data import and export

The time vector is rather odd, as it contains only monthly data as these are
long-term averages, but expressed as days from 1800-01-01 corresponding to the
first day of each month of year 1. We use package ‘lubridate’ for the conversion.

We construct a tibble object with PET values for one grid point, taking advan-
tage of the recycling of short vectors.

pet.tb <-

tibble(time = ncvar_get(meteo_data.nc, "time"),

month = month(ymd("1800-01-01") + days(time)),
lon = longitude[6],

lat = latitude[2],

pet = ncvar_get(meteo_data.nc, "pevpr")[6, 2,]

)

pet.tb

A tibble: 12 x 5

time month lon lat pet

<dbl> <dbl> <dbl> <dbl> <dbl>

1 -657073 12 9.38 86.7 4.28

2 -657042 1 9.38 86.7 5.72

3 -657014 2 9.38 86.7 4.38

... with 9 more rows

If we want to read in several grid points, we can use several different ap-
proaches. However, the order of nesting of dimensions can make adding the di-
mensions as columns error prone. It is much simpler to use package ‘tidync’ de-
scribed next.

8.11.2 ‘tidync’

Package ‘tidync’ provides functions that make it easier to extract subsets of the
data from an NetCDF file. We start by doing the same operations as in the examples
for ‘ncdf4’.

We open the file creating an object and simultaneously activating the first grid.

meteo_data.tnc <- tidync("extdata/pevpr.sfc.mon.ltm.nc")
meteo_data.tnc

##

Data Source (1): pevpr.sfc.mon.ltm.nc ...

##

Grids (5) <dimension family> : <associated variables>

##

[1] D0,D1,D2 : pevpr, valid_yr_count **ACTIVE GRID** (216576 values per variable)

[2] D3,D2 : climatology_bounds

[3] D0 : lon

[4] D1 : lat

[5] D2 : time

##

Dimensions 4 (3 active):

##

dim name length min max start count dmin dmax unlim coord_dim

<chr> <chr> <dbl> <dbl> <dbl> <int> <int> <dbl> <dbl> <lgl> <lgl>

1 D0 lon 192 0. 3.58e2 1 192 0. 3.58e2 FALSE TRUE

2 D1 lat 94 -8.85e1 8.85e1 1 94 -8.85e1 8.85e1 FALSE TRUE

3 D2 time 12 -6.57e5 -6.57e5 1 12 -6.57e5 -6.57e5 FALSE TRUE

##

Inactive dimensions:

NetCDF files 321

##

dim name length min max unlim coord_dim

<chr> <chr> <dbl> <dbl> <dbl> <lgl> <lgl>

1 D3 nbnds 2 1 2 FALSE FALSE

hyper_dims(meteo_data.tnc)

A tibble: 3 x 7

name length start count id unlim coord_dim

* <chr> <dbl> <int> <int> <int> <lgl> <lgl>

1 lon 192 1 192 0 FALSE TRUE

2 lat 94 1 94 1 FALSE TRUE

3 time 12 1 12 2 FALSE TRUE

hyper_vars(meteo_data.tnc)

A tibble: 2 x 6

id name type ndims natts dim_coord

<int> <chr> <chr> <int> <int> <lgl>

1 4 pevpr NC_FLOAT 3 14 FALSE

2 5 valid_yr_count NC_FLOAT 3 4 FALSE

We extract a subset of the data into a tibble in long (or tidy) format, and add
the months using a pipe operator from ‘wrapr’ and methods from ‘dplyr’.

hyper_tibble(meteo_data.tnc,
lon = signif(lon, 1) == 9,

lat = signif(lat, 2) == 87) %.>%

mutate(.data = ., month = month(ymd("1800-01-01") + days(time))) %.>%

select(.data = ., -time)

A tibble: 12 x 5

pevpr valid_yr_count lon lat month

<dbl> <dbl> <dbl> <dbl> <dbl>

1 4.28 1.19e-39 9.38 86.7 12

2 5.72 1.19e-39 9.38 86.7 1

3 4.38 1.29e-39 9.38 86.7 2

... with 9 more rows

In this second example, we extract data for all grid points along latitudes. To
achieve this we need only to omit the test for lat from the chuck above. The tib-
ble is assembled automatically and columns for the active dimensions added. The
decoding of the months remains unchanged.

hyper_tibble(meteo_data.tnc,
lon = signif(lon, 1) == 9) %.>%

mutate(.data = ., month = month(ymd("1800-01-01") + days(time))) %.>%

select(.data = ., -time)

A tibble: 1,128 x 5

pevpr valid_yr_count lon lat month

<dbl> <dbl> <dbl> <dbl> <dbl>

1 1.02 1.19e-39 9.38 88.5 12

2 4.28 1.19e-39 9.38 86.7 12

3 3.03 9.18e-40 9.38 84.8 12

... with 1,125 more rows

322 Data import and export

U Instead of extracting data for one longitude across latitudes, extract data
across longitudes for one latitude near the Equator.

8.12 Remotely located data
Many of the functions described above accept an URL address in place of a file
name. Consequently files can be read remotely without having to first download
and save a copy in the local file system. This can be useful, especially when file
names are generated within a script. However, one should avoid, especially in the
case of servers open to public access, repeatedly downloading the same file as
this unnecessarily increases network traffic and workload on the remote server.
Because of this, our first example reads a small file from my own web site. See
section 8.6 on page 299 for details on the use of these and other functions for
reading text files.

logger.df <-

read.csv2(file = "http://r4photobiology.info/learnr/logger_1.txt",

header = FALSE,

col.names = c("time", "temperature"))

sapply(logger.df, class)

time temperature

"character" "numeric"

sapply(logger.df, mode)

time temperature

"character" "numeric"

logger.tb <-

read_csv2(file = "http://r4photobiology.info/learnr/logger_1.txt",

col_names = c("time", "temperature"))

Using ',' as decimal and '.' as grouping mark. Use read_delim() for more control.
Parsed with column specification:
cols(
time = col_character(),
temperature = col_double()
)

sapply(logger.tb, class)

time temperature

"character" "numeric"

sapply(logger.tb, mode)

time temperature

"character" "numeric"

While functions in package ‘readr’ support the use of URLs, those in packages
‘readxl’ and ‘xlsx’ do not. Consequently, we need to first download the file and save

http://www.r4photobiology.info
http://www.r4photobiology.info

Remotely located data 323

a copy locally, that we can read as described in section 8.9.2 on page 312. Function
download.file() in the R ‘utils’ package can be used to download files using URLs. It
supports different modes such as binary or text, and write or append, and different
methods such as "internal", "wget" and "libcurl" .

 For portability, MS-Excel files should be downloaded in binary mode, set-
ting mode = "wb", which is required under MS-Windows.

download.file("http://r4photobiology.info/learnr/my-data.xlsx",
"data/my-data-dwn.xlsx",

mode = "wb")

Functions in package ‘foreign’, as well as those in package ‘haven’, support
URLs. See section 8.10 on page 316 for more information about importing this
kind of data into R.

remote_thiamin.df <-

read.spss(file = "http://r4photobiology.info/learnr/thiamin.sav",

to.data.frame = TRUE)

head(remote_thiamin.df)

THIAMIN CEREAL

1 5.2 wheat

2 4.5 wheat

3 6.0 wheat

4 6.1 wheat

5 6.7 wheat

6 5.8 wheat

remote_my_spss.tb <-

read_sav(file = "http://r4photobiology.info/learnr/thiamin.sav")

remote_my_spss.tb

A tibble: 24 x 2

THIAMIN CEREAL

<dbl> <dbl+lbl>

1 5.2 1 [wheat]

2 4.5 1 [wheat]

3 6 1 [wheat]

... with 21 more rows

In this example we use a downloaded NetCDF file of long-termmeans for poten-
tial evapotranspiration from NOOA, the same used above in the ‘ncdf4’ example.
This is a moderately large file at 444 KB. In this case, we cannot directly open the
connection to the NetCDF file, and we first download it (commented out code, as
we have a local copy), and then we open the local file.

my.url <- paste("ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/",
"surface_gauss/pevpr.sfc.mon.ltm.nc",

sep = "")

#download.file(my.url,
mode = "wb",
destfile = "extdata/pevpr.sfc.mon.ltm.nc")
pet_ltm.nc <- nc_open("extdata/pevpr.sfc.mon.ltm.nc")

http://www.r4photobiology.info
http://www.r4photobiology.info
http://www.r4photobiology.info

324 Data import and export

 For portability, NetCDF files should be downloaded in binary mode, set-
ting mode = "wb", which is required under MS-Windows. .

8.13 Data acquisition from physical devices
Numerous modern data acquisition devices based on microcontrollers, including
internet-of-things (IoT) devices, have servers (or daemons) that can be queried over
a network connection to retrieve either real-time or logged data. Formats based on
XML schemas or in JSON format are commonly used.

8.13.1 ‘jsonlite’

We give here a simple example using a module from the YoctoPuce (http://www.
yoctopuce.com/) family using a software hub running locally. We retrieve logged
data from a YoctoMeteo module.

= This example needs setting the configuration of the YoctoPuce module
beforehand. Fully reproducible examples, including configuration instructions,
will be provided online.

Here we use function fromJSON() from package ‘jsonlite’ to retrieve logged data
from one sensor.

hub.url <- "http://localhost:4444/"

Meteo01.df <-

fromJSON(paste(hub.url, "byName/METEO01/dataLogger.json",

sep = ""), flatten = TRUE)

str(Meteo01.df, max.level = 2)

The minimum, mean, and maximum values for each logging interval need to be
split from a single vector. We do this by indexing with a logical vector (recycled).
The data returned is in long form, with quantity names and units also returned by
the module, as well as the time.

Meteo01.df[["streams"]][[which(Meteo01.df$id == "temperature")]] %.>%

as_tibble(x = .) %.>%

dplyr::transmute(.data = .,

utc.time = as.POSIXct(utc, origin = "1970-01-01", tz = "UTC"),

t_min = unlist(val)[c(TRUE, FALSE, FALSE)],

t_mean = unlist(val)[c(FALSE, TRUE, FALSE)],

t_max = unlist(val)[c(FALSE, FALSE, TRUE)]) -> temperature.df

Meteo01.df[["streams"]][[which(Meteo01.df$id == "humidity")]] %.>%

as_tibble(x = .) %.>%

http://www.yoctopuce.com
http://www.yoctopuce.com
http://www.localhost:4444

Databases 325

dplyr::transmute(.data = .,

utc.time = as.POSIXct(utc, origin = "1970-01-01", tz = "UTC"),

hr_min = unlist(val)[c(TRUE, FALSE, FALSE)],

hr_mean = unlist(val)[c(FALSE, TRUE, FALSE)],

hr_max = unlist(val)[c(FALSE, FALSE, TRUE)]) -> humidity.df

full_join(temperature.df, humidity.df)

 Most YoctoPuce input modules have a built-in datalogger, and the stored
data can also be downloaded as a CSV file through a physical or virtual hub.
As shown above, it is possible to control them through the HTML server in the
physical or virtual hubs. Alternatively the R package ‘reticulate’ can be used
to control YoctoPuce modules by means of the Python library giving access to
their API.

8.14 Databases
One of the advantages of using databases is that subsets of cases and variables
can be retrieved, even remotely, making it possible to work in R both locally and
remotely with huge data sets. One should remember that R natively keeps whole
objects in RAM, and consequently, available machine memory limits the size of
data sets with which it is possible to work. Package ‘dbplyr’ provides the tools to
work with data in databases using the same verbs as when using ‘dplyr’ with data
stored in memory (RAM) (see chapter 6). This is an important subject, but extensive
enough to be outside the scope of this book. We provide a few simple examples
to show the very basics but interested readers should consult R for Data Science
(Wickham and Grolemund 2017).

The additional steps compared to using ‘dplyr’ start with the need to establish a
connection to a local or remote database. We will use R package ‘RSQLite’ to create
a local temporary SQLite database. ‘dbplyr’ backends supporting other database
systems are also available. We will use meteorological data from ‘learnrbook’ for
this example.

library(dplyr)
con <- DBI::dbConnect(RSQLite::SQLite(), dbname = ":memory:")

copy_to(con, weather_wk_25_2019.tb, "weather",

temporary = FALSE,

indexes = list(
c("month_name", "calendar_year", "solar_time"),

"time",

"sun_elevation",

"was_sunny",

"day_of_year",

"month_of_year"

)

326 Data import and export

)

weather.db <- tbl(con, "weather")

colnames(weather.db)

[1] "time" "PAR_umol" "PAR_diff_fr" "global_watt"

[5] "day_of_year" "month_of_year" "month_name" "calendar_year"

[9] "solar_time" "sun_elevation" "sun_azimuth" "was_sunny"

[13] "wind_speed" "wind_direction" "air_temp_C" "air_RH"

[17] "air_DP" "air_pressure" "red_umol" "far_red_umol"

[21] "red_far_red"

weather.db %.>%

filter(., sun_elevation > 5) %.>%

group_by(., day_of_year) %.>%

summarise(., energy_Wh = sum(global_watt, na.rm = TRUE) * 60 / 3600)

Source: lazy query [?? x 2]

Database: sqlite 3.30.1 [:memory:]

day_of_year energy_Wh

<dbl> <dbl>

1 162 7500.

2 163 6660.

3 164 3958.

... with more rows

 Package ‘dbplyr’ translates data pipes that use ‘dplyr’ syntax into SQL
queries to databases, either local or remote. As long as there are no problems
with the backend, the use of a database is almost transparent to the R user.

= It is always good to clean up, and in the case of the book, the best way to
test that the examples can be run in a “clean” system.

unlink("./data", recursive = TRUE)

unlink("./extdata", recursive = TRUE)

8.15 Further reading
Since this is the end of the book, I recommend as further reading the writings
of Burns as they are full of insight. Having arrived at the end of Learn R: As a
Language you should read S Poetry (Burns 1998) and Tao Te Programming (Burns
2012). If you want to never get caught unaware by R’s idiosyncrasies, read also The
R Inferno (Burns 2011).

Bibliography

Aho, A. V. and J. D. Ullman (1992). Foundations of computer science. Computer
Science Press. isbn: 0716782332.

Aiken, H., A. G. Oettinger, and T. C. Bartee (Aug. 1964). “Proposed automatic calcu-
lating machine”. In: IEEE Spectrum 1.8, pp. 62–69. doi: 10.1109/mspec.1964.
6500770.

Becker, R. A. and J. M. Chambers (1984). S: An Interactive Environment for Data
Analysis and Graphics. Chapman and Hall/CRC. isbn: 0-534-03313-X (cit. on
p. 3).

Becker, R. A., J. M. Chambers, and A. R. Wilks (1988). The New S Language: A Pro-
gramming Environment for Data Analysis and Graphics. Chapman & Hall. isbn:
0-534-09192-X (cit. on pp. 2, 3).

Boas, R. P. (1981). “Can we make mathematics intelligible?” In: The American Math-
ematical Monthly 88.10, pp. 727–731.

Burns, P. (1998). S Poetry (cit. on pp. 173, 326).
— (2011). The R Inferno. url: http://www.burns-stat.com/pages/Tutor/R_

inferno.pdf (visited on 07/27/2017) (cit. on p. 326).
— (2012). Tao Te Programming. Lulu. isbn: 9781291130454 (cit. on p. 326).
Chambers, J. M. (2016). Extending R. The R Series. Chapman and Hall/CRC. isbn:

1498775713 (cit. on pp. 3, 177).
Chang, W. (2018). R Graphics Cookbook. 2nd ed. O’Reilly UK Ltd. isbn: 1491978600

(cit. on pp. 278, 291).
Cleveland, W. S. (1985). The Elements of Graphing Data. Wadsworth, Inc. isbn: 978-

0534037291 (cit. on p. 204).
Crawley, M. J. (2012). The R Book. Wiley, p. 1076. isbn: 0470973927 (cit. on p. 161).
Dalgaard, P. (2008). Introductory Statistics with R. Springer, p. 380. isbn:

0387790543 (cit. on p. 161).
Diez, D., M. Cetinkaya-Rundel, and C. D. Barr (2019). OpenIntro Statistics. 4th ed.

422 pp. url: https : / / www . openintro . org / stat / os4 . php (visited on
10/10/2019) (cit. on p. 161).

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer,
p. 248. isbn: 1461468671 (cit. on p. 164).

Everitt, B. and T. Hothorn (2011). An Introduction to Applied Multivariate Analysis
with R. Springer, p. 288. isbn: 1441996494 (cit. on p. 161).

Everitt, B. S. and T. Hothorn (2009). A Handbook of Statistical Analyses Using R.
2nd ed. Chapman & Hall, p. 376. isbn: 1420079336 (cit. on p. 161).

Faraway, J. J. (2004). Linear Models with R. Boca Raton, FL: Chapman & Hall/CRC,
p. 240 (cit. on p. 161).

327

http://www.burns-stat.com
http://www.burns-stat.com
https ://www.openintro.org

328 Bibliography

Faraway, J. J. (2006). Extending the linear model with R: generalized linear, mixed
effects and nonparametric regression models. Chapman & Hall/CRC Taylor &
Francis Group, p. 345. isbn: 158488424X (cit. on p. 161).

Gandrud, C. (2015). Reproducible Research with R and R Studio. 2nd ed. Chapman
& Hall/CRC The R Series). Chapman and Hall/CRC. 323 pp. isbn: 1498715370
(cit. on pp. 9, 10).

Hamming, R. W. (Mar. 1, 1987). Numerical Methods for Scientists and Engineers.
Dover Publications Inc. 752 pp. isbn: 0486652416.

Hillebrand, J. and M. H. Nierhoff (2015). Mastering RStudio: Develop, Communicate,
and Collaborate with R. Packt Publishing. 348 pp. isbn: 9781783982554 (cit. on
p. 8).

Holmes, S. and W. Huber (Mar. 1, 2019). Modern Statistics for Modern Biology. Cam-
bridge University Press. 382 pp. isbn: 1108705294 (cit. on p. 161).

Hughes, T. P. (2004). American Genesis. The University of Chicago Press. 530 pp.
isbn: 0226359271 (cit. on p. 92).

Johnson, K. A. and R. S. Goody (2011). “The Original Michaelis Constant: Transla-
tion of the 1913 Michaelis–Menten Paper”. In: Biochemistry 50, pp. 8264–8269.
doi: 10.1021/bi201284u (cit. on p. 141).

Kernigham, B. W. and P. J. Plauger (1981). Software Tools in Pascal. Reading, Mas-
sachusetts: Addison-Wesley Publishing Company. 366 pp. (cit. on pp. 180, 187).

Kernighan, B. W. and R. Pike (1999). The Practice of Programming. Addison Wesley.
288 pp. isbn: 020161586X (cit. on p. 15).

Knuth, D. E. (1984). “Literate programming”. In: The Computer Journal 27.2, pp. 97–
111 (cit. on pp. 9, 91).

Lamport, L. (1994). LATEX: a document preparation system. English. 2nd ed. Reading:
Addison-Wesley, p. 272. isbn: 0-201-52983-1 (cit. on p. 91).

Leisch, F. (2002). “Dynamic generation of statistical reports using literate data
analysis”. In: Proceedings in Computational Statistics. Compstat 2002. Ed. by W.
Härdle and B. Rönz. Heidelberg, Germany: Physika Verlag, pp. 575–580. isbn:
3-7908-1517-9 (cit. on p. 9).

Lemon, J. (2020). Kickstarting R. url: https://cran.r- project.org/doc/
contrib/Lemon-kickstart/kr_intro.html (visited on 02/07/2020).

Loo, M. P. van der and E. de Jonge (2012). Learning RStudio for R Statistical Comput-
ing. 1st ed. Birmingham: Packt Publishing, p. 126. isbn: 9781782160601 (cit. on
p. 8).

Matloff, N. (2011). The Art of R Programming: A Tour of Statistical Software Design.
No Starch Press, p. 400. isbn: 1593273843 (cit. on pp. 86, 117, 179).

Murrell, P. (2011). R Graphics. 2nd ed. CRC Press, p. 546. isbn: 1439831769 (cit. on
p. 203).

— (2019). R Graphics. 3rd ed. Portland: CRC Press/Taylor & Francis. 423 pp. isbn:
1498789056 (cit. on pp. 83, 291).

Newham, C. and B. Rosenblatt (June 1, 2005). Learning the bash Shell. O’Reilly UK
Ltd. 352 pp. isbn: 0596009658 (cit. on p. 15).

Peng, R. D. (2016). R Programming for Data Science. Leanpub. 182 pp. url: https:
//leanpub.com/rprogramming (visited on 07/31/2019) (cit. on pp. 86, 181).

Pinheiro, J. C. and D. M. Bates (2000). Mixed-Effects Models in S and S-Plus. New
York: Springer (cit. on pp. 161, 164).

https ://www.cran.r-project.org
https ://www.cran.r-project.org
http://www.leanpub.com
http://www.leanpub.com

Bibliography 329

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. 1st ed. Springer,
p. 268. isbn: 0387759689 (cit. on pp. 83, 164, 203).

Smith, H. F. (1957). “Interpretation of adjusted treatment means and regressions
in analysis of covariance”. In: Biometrics 13, pp. 281–308 (cit. on p. 138).

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT:
Graphics Press. 197 pp. isbn: 0-9613921-0-X (cit. on p. 241).

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S. 4th. New
York: Springer. isbn: 0-387-95457-0 (cit. on p. 161).

Wickham, H. (2015). R Packages. O’Reilly Media. isbn: 9781491910542 (cit. on
pp. 164, 177).

Wickham, H. (2019). Advanced R. 2nd ed. Taylor & Francis Inc. 588 pp. isbn:
0815384572 (cit. on pp. 117, 177).

Wickham, H. and G. Grolemund (2017). R for Data Science. O’Reilly UK Ltd. isbn:
1491910399 (cit. on pp. 181, 201, 325).

Wickham, H. and C. Sievert (2016). ggplot2: Elegant Graphics for Data Analysis.
2nd ed. Springer. XVI + 260. isbn: 978-3-319-24277-4 (cit. on pp. 164, 203, 278,
291).

Wood, S. N. (2017). Generalized Additive Models. Taylor & Francis Inc. 476 pp. isbn:
1498728332 (cit. on p. 161).

Xie, Y. (2013). Dynamic Documents with R and knitr. The R Series. Chapman and
Hall/CRC, p. 216. isbn: 1482203537 (cit. on pp. 9, 10, 91).

— (2016). bookdown: Authoring Books and Technical Documents with R Markdown.
Chapman and Hall/CRC. isbn: 9781138700109 (cit. on p. 91).

Xie, Y., J. J. Allaire, and G. Grolemund (2018). RMarkdown. Chapman and Hall/CRC.
304 pp. isbn: 1138359335 (cit. on p. 91).

Zachry, M. and C. Thralls (Oct. 2004). “An Interview with Edward R. Tufte”.
In: Technical Communication Quarterly 13.4, pp. 447–462. doi: 10 . 1207 /
s15427625tcq1304_5.

Zuur, A. F., E. N. Ieno, and E. Meesters (2009). A Beginner’s Guide to R. 1st ed.
Springer, p. 236. isbn: 0387938362 (cit. on p. 161).

http://taylorandfrancis.com

General index

aesthetics (’ggplot2’), see grammar of
graphics, aesthetics

algebra of sets, 36
analysis of variance

model formula, 146
ANCOVA, see analysis of covariance
annotations (’ggplot2’), see grammar

of graphics, annotations
ANOVA, see analysis of variance
‘anytime’, 264
apply functions, 107, 108
arithmetic overflow, 35

type promotion, 35
arrays, 51–56

dimensions, 54
assignment, 19

chaining, 20
leftwise, 20

attributes, 77–78

base R, 2
bash, 15
batch job, 6
Bio7, 14
Bioconductor, 164
‘blogdown’, 91
‘bookdown’, 91
Boolean arithmetic, 29
box plots, see plots, box and

whiskers plot

C, 15, 22, 40, 44, 46, 63, 164, 193,
286, 299

C++, 3, 15, 40, 46, 164, 192, 286
categorical variables, see factors
chaining statements with pipes,

187–190
character escape codes, 41
character string delimiters, 40

character strings, 39
chemical reaction kinetics, 141
classes, 172

S3 class system, 172
classes and modes

character, 39–41
logical, 29–36
numeric, integer, double, 18–28

cluster analysis, 159–161
COBOL, 301
color

definitions, 267–268
names, 267

comparison of floating point
numbers, 35–36

comparison operators, 31–36
compound code statements, 94
conditional execution, 94
conditional statements, 95
console, 4
control of execution flow, 94
coordinates (’ggplot2’), see grammar

of graphics, coordinates
correlation, 125–127

Kendall, 127
non-parametric, 127
parametric, 125
Pearson, 125
Spearman, 127

CRAN, 164

data
exploration at the R console,

81–86
loading data sets, 78–79

data frame
replacements, 181–187

data frames, 66–77
“filtering rows”, 71

331

332 General index

attaching, 74
operating within, 71
ordering columns, 75
ordering rows, 75, 76
subsetting, 71

data manipulation in the tidyverse,
192–201

‘data.table’, 167, 180–182
‘dbplyr’, 192, 325, 326
deleting objects, see removing

objects
devices

output, see graphic output
devices

‘devtools’, 164
distributions, 120–125

density from parameters, 121
probabilities from quantiles, 122
pseudo-random draws, 123
quantiles from probabilities, 122

dot-pipe operator, 189
‘dplyr’, 180, 181, 188, 191–193, 195,

197, 198, 200, 321, 325, 326
‘dtplyr’, 192

Eclipse, 14
editor for R scripts, 14
Emacs, 4, 14
EPS (𝜖), see machine arithmetic

precision
exporting data

text files, 304–305, 309–310
extensions to R, 163
‘extrafont’, 230

facets (’ggplot2’), see grammar of
graphics, facets

factors, 56–61
arrange values, 61
convert to numeric, 58
drop unused levels, 57
labels, 57
levels, 57
merge levels, 60
ordered, 56
rename levels, 59
reorder levels, 60
reorder values, 61

file names
portable, 295
script portability, 295

file operations, 295–298
file paths

parsing, 296
script portability, 296

floating point numbers
arithmetic, 33–35

floats, see floating point numbers
folders, see file paths
for loop, 100
‘foreign’, 78, 293, 316, 317, 323
formatted character strings from

numbers, 43
FORTRAN, 164, 301, 303
function arguments in the tidyverse,

191
functions

arguments, 167
base R, 119
defining new, 166, 168

further reading
elegant R code, 326
grammar of graphics, 291
idiosyncracies or R, 326
new grammars of data, 201
object oriented programming in

R, 177
package development, 177
plotting, 291
shell scripts in Unix and Linux,

15
statistics in R, 161
the R language, 117
using the R language, 86

generalized linear models, 138–140
generic method

S3 class system, 174
geometries (’ggplot2’), see grammar

of graphics, geometries
‘ggbeeswarm’, 251
‘ggforce’, 251
‘gginnards’, 209
‘ggplot2’, 83, 203–206, 214, 217,

225, 228, 229, 233, 235, 237,
238, 240, 252, 255, 259, 268,

General index 333

272, 275, 276, 280, 281, 283,
287, 288, 291

‘ggpmisc’, 233, 237, 244, 245
‘ggrepel’, 232
‘ggtern’, 206
‘ggtext’, 287
Git, 15, 164
GitHub, 164
GLM, see generalized linear models
Gnu S, 2
grammar of graphics, 204, 287

annotations, 269–272
cartesian coordinates, 204, 210
color and fill scales, 266–269
column geometry, 225–226
complete themes, 275–277
continuous scales, 258–263
coordinates, 206
creating a theme, 279–281
data, 205
discrete scales, 265–266
elements, 204–206
facets, 252–255
function statistic, 238–239
geometries, 205, 216–237
identity color scales, 269
incomplete themes, 277–279
inset-related geometries,

233–237
mapping of data, 205, 215–216
plot construction, 207–213
plots as R objects, 214–215
point geometry, 217–221
polar coordinates, 272–275
scales, 206, 255–269
sf geometries, 228
size scales, 266
statistics, 205, 238–251
structure of plot objects, 214
summary statistic, 239–241
text and label geometries,

228–232
repulsive, 232

themes, 206, 275–281
tile geometry, 226–228
time and date scales, 264–265

various line and path
geometries, 222–224

graphic output devices, 290
‘grid’, 203, 236, 270
grid graphics coordinate systems,

237
‘gridExtra’, 234
group-wise operations on data,

195–197
grouping

implementation in tidyverse, 196

‘haven’, 316, 317, 323
‘Hmisc’, 240
HTML, 287, 310

IDE, see integrated development
environment

IDE for R, 14
ImageJ, 14
importing data

.ods files, 315–316

.xlsx files, 312–315
databases, 325–326
GPX files, 311–312
jsonlite, 324
NeCDF files, 318–322
other statistical software,

316–318
physical devices, 324–325
remote connections, 322–324
text files, 299–309
worksheets and workbooks,

312–316
XML and HTML files, 310–311

inequality and equality tests, 35–36
integrated development

environment, 7
internet-of-things, 324
iteration, 104

for loop, 100
nesting of loops, 105
repeat loop, 103
while loop, 102

Java, 15, 164
joins between data sources, 198–201

filtering, 200

334 General index

mutating, 198
‘jsonlite’, 324

‘knitr’, 9, 10, 91

languages
C, 15, 22, 40, 44, 46, 63, 164,

193, 286, 299
C++, 3, 15, 40, 46, 164, 192, 286
COBOL, 301
FORTRAN, 164, 301, 303
HTML, 287, 310
Java, 15, 164
LATEX, 10
Markdown, 91, 287
natural and computer, 18
Pascal, 3
Python, 164, 318, 325
Rmarkdown, 91
S, 2, 3, 136, 252
S-Plus, 2
XHTML, 310
XML, 310, 311
XTML, 310

LATEX, 14, 91
LATEX, 10
‘lattice’, 203, 237, 252
‘learnrbook’, 14, 203, 273, 295, 325
linear models, 127–138

analysis of covariance, 138
analysis of variance, 135
ANOVA table, 128
linear regression, 128
polynomial regression, 131
summary table, 129

Linux, 3, 6, 8, 14, 15, 86, 296
listing files or directories, 297
lists, 62–66

append to, 63
convert into vector, 66
flattening, 65
insert into, 63
member extraction, 62–63
nested, 63–65
structure, 64

literate programming, 91
LM, see linear models
‘lme4’, 146

logical operators, 29
logical values and their algebra,

29–31
long-form- and wide-form tabular

data, 190
loops, see also iteration

faster alternatives, 104–105, 108
nested, 105

loss of numeric precision, 35
‘lubridate’, 264, 320

machine arithmetic
precision, 33–35
rounding errors, 33

‘magritrr’, 216
‘magrittr’, 180, 188, 189
MANOVA, see multivariate analysis

of variance
Markdown, 91, 287
math functions, 18
math operators, 18
matrices, 51–56
matrix

dimensions, 54
‘matrixStats’, 56
MDS, see multidimensional scaling
merging data from two tibbles,

198–201
methods, 172

S3 class system, 172
Michaelis-Menten equation, 141
‘microbenchmark’, 104
Microsoft R Open, 2
MiKTEX, 165
model formulas, 143–150

manipulation, 147
models

generalized linear, see
generalized linear models

linear, see linear models
non-linear, see non-linear models
selfStart, 141

MS-Excel, 300, 309, 312–314, 323
MS-Windows, 3, 6–8, 14, 86, 165, 296,

323, 324
multidimensional scaling, 157–159
multivariate analysis of variance,

153–155

General index 335

multivariate methods, 153–161

names and scoping, 176
namespaces, 176
‘ncdf4’, 318, 319, 323
nested iteration loops, 105
NetCDF, 318, 320, 324
netCDF, 319
netiquette, 12
network etiquette, 12
‘nlme’, 146
NLS, see non-linear models
non-linear models, 140–143
Normal distribution, 120
numbers

double, 27
floating point, 26
integer, 26, 27
whole, 26

numbers and their arithmetic, 18–28
numeric values, 18
numeric, integer and double values,

21

object names, 113
as character strings, 113

object-oriented programming, 172
objects, 172

mode, 41
Octave, 316
operating systems

Linux, 3, 6, 8, 14, 86
MS-Windows, 3, 6–8, 14, 86, 323,

324
OS X, 3, 6, 8, 14
Unix, 3, 6, 8, 14, 187

operators
comparison, 31–36
defining new, 166, 171
set, 36–39

OS X, 3, 6, 8, 14, 165
overflow, see arithmetic overflow

packages
‘anytime’, 264
‘blogdown’, 91
‘bookdown’, 91
‘data.table’, 167, 180–182

‘dbplyr’, 192, 325, 326
‘devtools’, 164
‘dplyr’, 180, 181, 188, 191–193,

195, 197, 198, 200, 321, 325,
326

‘dtplyr’, 192
‘extrafont’, 230
‘foreign’, 78, 293, 316, 317, 323
‘ggbeeswarm’, 251
‘ggforce’, 251
‘gginnards’, 209
‘ggplot2’, 83, 203–206, 214, 217,

225, 228, 229, 233, 235, 237,
238, 240, 252, 255, 259, 268,
272, 275, 276, 280, 281, 283,
287, 288, 291

‘ggpmisc’, 233, 237, 244, 245
‘ggrepel’, 232
‘ggtern’, 206
‘ggtext’, 287
‘grid’, 203, 236, 270
‘gridExtra’, 234
‘haven’, 316, 317, 323
‘Hmisc’, 240
‘jsonlite’, 324
‘knitr’, 9, 10, 91
‘lattice’, 203, 237, 252
‘learnrbook’, 14, 203, 273, 295,

325
‘lme4’, 146
‘lubridate’, 264, 320
‘magritrr’, 216
‘magrittr’, 180, 188, 189
‘matrixStats’, 56
‘microbenchmark’, 104
‘ncdf4’, 318, 319, 323
‘nlme’, 146
‘patchwork’, 281
‘pkgdown’, 91
‘poorman’, 192
‘Rcpp’, 164
‘readODS’, 315
‘readr’, 300, 305, 306, 308, 309,

314, 322
‘readxl’, 312, 322
‘reshape’, 190
‘reshape2’, 190

336 General index

‘reticulate’, 164, 325
‘RJava’, 164
‘RNetCDF’, 318
‘RSQLite’, 325
‘scales’, 218, 260, 261
‘seplyr’, 191, 192
‘sf’, 228, 311
‘showtext’, 230
‘stats’, 159
‘stringr’, 193
‘Sweave’, 9, 91
‘tibble’, 68, 69, 180, 182, 233
‘tidync’, 320
‘tidyr’, 190, 192, 197
‘tidyverse’, 186, 188, 190, 192,

194, 201, 233, 305, 313
‘tools’, 300
using, 165
‘utils’, 301, 302, 308, 309, 323
‘wrapr’, 180, 189, 216, 321
‘xlsx’, 314, 322
‘xml2’, 310

Pascal, 3
‘patchwork’, 281
PCA, see principal components

analysis
pipe operator, 188
pipes

tidyverse, 188–189
wrapr, 189–190

‘pkgdown’, 91
plotmath, 282
plots

aesthetics, 205
axis position, 263
base R graphics, 83
bitmap output, 290
box and whiskers plot, 249–250
bubble plot, 220
caption, 256–258
circular, 272–275
column plot, 225–226
composing, 281–282
consistent styling, 288
coordinated panels, 252
data summaries, 239–241
density plot

1 dimension, 248
2 dimensions, 248–249

dot plot, 219–220
error bars, 239
filled-area plot, 223–224
fitted curves, 242–245
fonts, 229
histograms, 245–248
inset graphical objects, 236–237
inset plots, 234–236
inset tables, 233–234
insets, 233–237
insets as annotations, 270–271
labels, 256–258
layers, 287
line plot, 222
maps and spatial plots, 228
math expressions, 282–287
maths in, 228–232
means, 239
medians, 239
modular construction, 287–290
output to files, 290
PDF output, 290
pie charts, 274–275
plots of functions, 238–239
Postscript output, 290
printing, 290
programatic construction,

288–290
reference lines, 224
rendering, 290
reusing parts of, 288
rug marging, 221–222
saving, 290
saving to file, see plots,

rendering
scales

axis labels, 264
limits, 265
tick breaks, 260
tick labels, 260
transformations, 261

scatter plot, 217–219
secondary axes, 263
smooth curves, 242–245
statistics

General index 337

density, 248
density 2d, 248
smooth, 242

step plot, 222–223
styling, 275–281
subtitle, 256–258
SVG output, 290
tag, 256–258
text in, 228–232
tile plot, 226–228
title, 256–258
trellis-like, 252
violin plot, 250–251
wind rose, 272–274
with colors, 266–269

polynomial regression, 131
‘poorman’, 192
portability, 229
precision

math operations, 26
principal components analysis,

155–157
programmes

bash, 15
Bio7, 14
Eclipse, 14
Emacs, 4, 14
Git, 15, 164
Gnu S, 2
ImageJ, 14
Linux, 15, 296
Microsoft R Open, 2
MiKTEX, 165
MS-Excel, 300, 309, 312–314, 323
MS-Windows, 165, 296
NetCDF, 318, 320, 324
netCDF, 319
Octave, 316
OS X, 165
RGUI, 11
RStudio, 4, 5, 7–9, 11, 14, 15, 25,

86, 88–91, 93, 164, 165, 290
RTools, 165
SAS, 2, 136, 316, 317
SPPS, 316
SPSS, 2, 136, 316, 317
SQLite, 325

Stata, 316, 317
Systat, 316, 317
Unix, 15, 296
WEB, 91
WinEdt, 14

pseudo-random numbers, 124
pseudo-random sampling, 124
Python, 164, 318, 325

R
help, 11

R as a language, 1, 3
R as a program, 1
R as a program, 3
random numbers, see

pseudo-random numbers
random sampling, see

pseudo-random sampling
Raspberry Pi, 2
‘Rcpp’, 164
‘readODS’, 315
‘readr’, 300, 305, 306, 308, 309, 314,

322
‘readxl’, 312, 322
Real numbers and computers, 33
recycling of arguments, 23, 104
removing objects, 24
reprex, see reproducible example
reproducible data analysis, 9–10
reproducible example, 13
‘reshape’, 190
‘reshape2’, 190
reshaping tibbles, 190–192
‘reticulate’, 164, 325
RGUI, 11
‘RJava’, 164
Rmarkdown, 91
‘RNetCDF’, 318
ROpenScience, 164
row-wise operations on data,

193–195
‘RSQLite’, 325
RStudio, 4, 5, 7–9, 11, 14, 15, 25, 86,

88–91, 93, 164, 165, 290
RTools, 165

S, 2, 3, 136, 252
S-Plus, 2

338 General index

S3 class system, 172
SAS, 2, 136, 316, 317
‘scales’, 218, 260, 261
scales (’ggplot2’), see grammar of

graphics, scales
scoping rules, 176
script, 6
scripts, 87

debugging, 91
definition, 88
readability, 90
sourcing, 88
writing, 89

self-starting functions, 141, 243
‘seplyr’, 191, 192
sequence, 23
sets, 36–39
‘sf’, 228, 311
‘showtext’, 230
simple code statements, 94
special values

NA, 25
NaN, 25

SPPS, 316
SPSS, 2, 136, 316, 317
SQLite, 325
StackOverflow, 13
Stata, 316, 317
statistics (’ggplot2’), see grammar of

graphics, statistics
‘stats’, 159
‘stringr’, 193
summaries

statistical, 119
‘Sweave’, 9, 91
Systat, 316, 317

text files
fixed width fields, 303
with field markers, 301

themes (’ggplot2’), see grammar of
graphics, themes

tibble

differences with data frames,
182–187

‘tibble’, 68, 69, 180, 182, 233
‘tidync’, 320
‘tidyr’, 190, 192, 197
‘tidyverse’, 186, 188, 190, 192, 194,

201, 233, 305, 313
time series, 151–153

decomposition, 152
‘tools’, 300
type conversion, 42–45
type promotion, 35

UNICODE, 229
Unix, 3, 6, 8, 14, 15, 187, 296
UTF8, 229
‘utils’, 301, 302, 308, 309, 323

variables, 19
vector

run length encoding, 51
vectorization, 104
vectorized arithmetic, 23
vectorized ifelse, 98
vectors

indexing, 45–51
member extraction, 45
sorting, 50
zero length, 26

WEB, 91
WinEdt, 14
working directory, 296–297
‘worksheet’, see data frame
‘wrapr’, 180, 189, 216, 321

XHTML, 310
‘xlsx’, 314, 322
XML, 310, 311
‘xml2’, 310
XTML, 310

YoctoPuce modules, 324

zero length objects, 26

Index of R names by category

classes and modes
array, 51
character, 39, 43
data.frame, 66, 67, 182, 306
double, 21, 34, 35, 49
factor, 56
integer, 21, 26, 35, 49
list, 62, 66, 182
logical, 29, 45, 95, 97
matrix, 51, 53, 182
numeric, 18, 21, 39, 49, 97
tbl, 182
tbl_df, 183
tibble, 183, 184, 192, 306, 317,

320
vector, 22

constant and special values
-Inf, 25, 34
.Machine$double.eps, 34
.Machine$double.max, 34
.Machine$double.min, 34
.Machine$double.neg.eps, 34
.Machine$integer.max, 35
FALSE, 27
Inf, 25, 34
LETTERS, 46
letters, 46
month.abb, 46
month.name, 46
NA, 25, 26, 45
NA_character_, 45
NA_real_, 45
NaN, 25
pi, 18
TRUE, 27

control of execution
apply(), 107, 108, 111, 112
break(), 102–104

for, 100, 102, 104
if(), 95, 97
if()…else, 95
ifelse(), 98, 99
lapply(), 82, 107, 108
next(), 102
repeat, 100, 103, 104
return(), 167
sapply, 82
sapply(), 82, 107, 108
switch(), 97, 98
vapply(), 82, 108, 110
while, 100, 102–104

data objects
austres, 151
cars, 125, 128
eurodist, 157, 159
InsectSpray, 138
InsectSprays, 135
iris, 153, 190
mtcars, 207
nottem, 152
npk, 146
Orange, 222
Puromycin, 141, 243

functions and methods
abs(), 28, 36
aes(), 215, 231
aggregate(), 195
AIC(), 131
all(), 30
annotate(), 235, 270, 272
annotation_custom(), 236,

270
anova(), 116, 131, 132, 135,

137, 138
anti_join(), 200

339

340 Index of R names by category

any(), 30
aov(), 135, 153
append(), 22, 63
arrange(), 194
array(), 54
as.character(), 42, 58
as.data.frame(), 185
as.formula(), 148
as.integer(), 43
as.logical(), 42
as.matrix(), 51
as.numeric(), 42, 43, 58
as.ts(), 151
as.vector(), 55
as_tibble(), 183
assign(), 113, 114, 167
attach(), 72
attr(), 77
attr()<-, 77
attributes(), 77, 127, 318
basename(), 296
BIC(), 131
biplot(), 156
bold(), 285
bolditalic(), 285
bquote(), 286
c(), 22
cat(), 40, 41, 305
ceiling(), 28
citation(), 12
class(), 41, 67, 127, 185, 318
coef(), 132, 136
coefficients(), 132
colnames(), 81
comment(), 77
comment()<-, 77
contains(), 195
coord_cartesian(), 247
coord_fixed(), 247
coord_polar(), 272
cor(), 125–127
cor.test(), 126, 127
crossprod(), 56
cutree(), 160
data(), 78, 79
data.frame(), 66, 184, 187
decompose(), 152

diag(), 56
dim(), 51, 77, 318
dim()<-, 77
dimnames(), 318
dir(), 297
dirname(), 296
dist, 159
do.call(), 115, 116
double(), 21
download.file(), 323
effects(), 132
ends_with(), 195
excel_sheets(), 313
exp(), 18, 19
expand_limits(), 259
expression(), 283–285
facet_grid(), 252
facet_wrap(), 252, 254, 274
factor(), 56, 57, 59, 60
file.path(), 298
filter(), 194
fitted(), 132
fitted.values(), 132
format(), 43, 44, 286
fromJSON(), 324
full_join(), 198
function(), 167
gather(), 190, 192
geom_abline, 224
geom_area, 223
geom_area(), 223, 266
geom_bar(), 225, 245, 266, 273,

274
geom_bin2d(), 247
geom_boxplot(), 249
geom_col(), 225, 226, 266
geom_curve(), 222
geom_density(), 248
geom_density_2d(), 249
geom_errorbar, 221
geom_errorbar(), 241
geom_grob(), 233, 236
geom_grob_npc(), 237
geom_hex(), 247
geom_histogram(), 245, 247
geom_hline, 224
geom_hline(), 266, 272

Index of R names by category 341

geom_label, 230, 283
geom_label(), 228–232, 266
geom_label_npc(), 237
geom_label_repel(), 232
geom_line, 223
geom_line(), 205, 209, 216,

222, 223, 266
geom_linerange(), 241
geom_path(), 223
geom_plot(), 233, 234
geom_plot_npc(), 237
geom_point, 223, 230
geom_point(), 205, 208, 216,

217, 220, 252, 266
geom_pointrange(), 221, 239,

241
geom_polygom, 223
geom_polygon(), 273
geom_range(), 221
geom_rect(), 228
geom_ribbon, 223
geom_rug(), 221
geom_segment(), 222, 223
geom_sf(), 228
geom_sf_label(), 228
geom_sf_text(), 228
geom_smooth(), 242
geom_spoke(), 223
geom_step(), 223
geom_table, 233
geom_table(), 233, 234
geom_table_npc(), 237
geom_text, 230, 233, 283
geom_text(), 228, 230–232,

266, 283
geom_text_npc(), 237
geom_text_repel(), 232
geom_tile(), 226–228
geom_violin(), 250
geom_vline, 224
geom_vline(), 266, 272
get(), 114
getwd(), 296
ggplot(), 88, 215, 216, 285
ggplotGrob(), 270
ggtitle(), 256, 257
gl(), 57

glm(), 138
group_by(), 196, 197
hcl(), 268
hclust(), 159, 160
head(), 81, 82
help(), 11
I(), 131, 143
identical(), 185
inherits(), 42, 147
inner_join(), 198
install.packages(), 165
is.array(), 51
is.character(), 41
is.logical(), 41
is.matrix(), 51
is.na(), 26
is.numeric(), 21, 41
is.vector(), 51
is_tibble(), 183
italic(), 285
label_bquote(), 254
labs(), 257, 283
left_join(), 198
length(), 24, 43, 51, 81, 119
levels(), 57, 60, 77
levels()<-, 59, 77
library(), 165
list(), 62
list.dirs(), 297
list.files(), 297
lm(), 78, 128, 131, 135, 153, 242
load(), 79
log(), 143
log(), log10(), log2(), 19
ls(), 24, 80
mad(), 119
manova(), 153
matches(), 195
matrix(), 51, 52, 126
max(), 119
mean(), 111, 119
median(), 119
methods(), 173
mget(), 114
min(), 119
mode(), 41, 119, 318
model.frame(), 132

342 Index of R names by category

model.matrix(), 132
mutate(), 193
my_print(), 175
names(), 77, 81, 195, 318
names()<-, 77
names<-(), 195
nc_open(), 319
ncol(), 51, 81, 318
ncvar_get(), 319
nlme, 141
nls, 141
nls(), 140, 141
nrow(), 51, 81, 318
numeric(), 21
on.exit(), 107, 108
order(), 50, 61, 76, 77, 194
ordered(), 56
parse(), 284, 285
paste(), 230, 283, 286
pivot_longer(), 192
pivot_wider(), 192
plain(), 285
plot(), 83–85, 139, 173, 190
pnorm(), 122, 123
poly(), 131
prcomp(), 155, 157
predict(), 134
pretty_breaks(), 260
print(), 6, 40, 43, 65, 81, 88,

101, 126, 182, 184, 319
pt(), 122
qnorm(), 123
quantile(), 119
range(), 119
read.csv(), 301, 302, 304–306
read.csv2(), 301, 302, 304
read.fortran(), 303, 307
read.fwf(), 303
read.spss(), 316
read.systat(), 317
read.table(), 302, 304, 306,

307
read.xlsx(), 314
read_csv(), 306, 310
read_delim(), 307
read_excel(), 313
read_file(), 309

read_fwf(), 307
read_html(), 310
read_lines(), 309
read_ods(), 315
read_sav(), 317
read_table(), 306, 307
read_table2(), 307
read_tsv(), 307
readLines(), 298
readRDS(), 80
rel(), 278
rename(), 195
reorder(), 61
rep(), 23
resid(), 132
residuals(), 132
rgb(), 268
right_join(), 198
rle(), 51
rm(), 24
rnorm(), 123, 124, 126
round(), 27
rownames(), 81
runif(), 123
save(), 79
saveRDS(), 80
scale_color_brewer(), 269
scale_color_continuous(),

206, 268
scale_color_date(), 268
scale_color_datetime(), 268
scale_color_discrete(), 256,

268
scale_color_distiller(),

268
scale_color_gradient(), 268
scale_color_gradient2(),

268
scale_color_gradientn(),

268
scale_color_gray(), 268
scale_color_hue(), 268
scale_color_identity(), 256,

269
scale_color_viridis_c(),

268

Index of R names by category 343

scale_color_viridis_d(),
269

scale_fill_identity(), 269
scale_x_continuous(), 261
scale_x_discrete(), 265
scale_x_log10(), 262
scale_x_reverse(), 262
scale_y_continuous(), 261
scale_y_log(), 262
scale_y_log10(), 262
sd(), 119
select(), 194, 195
SEM(), 169
semi_join(), 200
seq(), 23
set.seed(), 124
setseed(), 124
setwd(), 296
shell(), 296
signif(), 27
sin(), 18, 19
slice(), 194
sort(), 50, 51, 61, 194
source(), 88
spread(), 192
sprintf(), 43, 44, 174, 286
sqrt(), 19
SSmicmen(), 141, 243
starts_with(), 195
stat_bin(), 245–247, 273
stat_bin2d, 247
stat_bin2d(), 247
stat_bin_hex(), 247
stat_boxplot(), 249
stat_count(), 225, 245, 247
stat_density(), 273
stat_density_2d(), 248
stat_function(), 238
stat_sf(), 228
stat_smooth, 243
stat_smooth(), 205, 242
stat_summary(), 205, 239–241
stl(), 152, 153
str(), 63–65, 77, 81, 127, 132,

318, 319
str_extract(), 193
strftime(), 286

strptime(), 265
subset(), 71, 72, 180, 194
substitute(), 286
sum(), 169
summarise(), 196
summary(), 82, 83, 120, 129,

132, 135, 136
system(), 296
system.time(), 104, 105
t(), 55, 112
tail(), 81, 82
terms(), 132
theme(), 278, 280
theme_bw(), 276
theme_classic(), 276
theme_dark(), 276
theme_gray(), 275, 276, 280
theme_light(), 276
theme_linedraw(), 276
theme_minimal(), 276
theme_set(), 277
theme_void(), 276
tibble(), 183, 186, 187, 193
tolower(), 266
tools:::showNonASCIIfile(),

300
toupper(), 266
transmute(), 193
trems(), 145
trunc(), 28, 43
ts(), 151
typeof(), 41
ungroup(), 196, 197
unique(), 37
unlink(), 80
unlist(), 55, 65, 66
unname(), 66
update(), 149
update.packages(), 165
var(), 119, 169
vcov(), 132
with(), 72
write.csv(), 301, 304
write.csv2, 302
write.csv2(), 305
write.table(), 305
write.xlsx(), 314

344 Index of R names by category

write_csv(), 309
write_csv2(), 309
write_delim(), 309
write_excel_csv(), 309
write_file(), 309, 310
write_lines(), 309
write_ods(), 316
write_tsv(), 309
xlab(), 257
xlim(), 239, 259, 260
xml_find_all(), 311
xml_text(), 311
ylab(), 257
ylim(), 239, 259, 260

names and their scope
attach(), 73–75
detach(), 73–75, 165
exists(), 176
with(), 73–75
within(), 73, 75

operators
*, 18, 35
+, 18, 28, 281
-, 18, 28
->, 20
/, 18, 281

:, 23
<, 31
<-, 19, 20, 48, 73
<<-, 167
<=, 31
=, 20
==, 31, 197
>, 31
>=, 31
[,], 197
[], 64, 73
[[]], 64
[[]], 62, 67, 70, 71
[], 70, 76
$, 68, 70, 71
%*%, 56
%.>%, 189, 194
%/%, 27
%<>%, 189
%>%, 188, 189
%T>%, 189
%%, 27
%in%, 37, 39
&, 29
&&, 29
^, 35
|, 29
||, 29

Alphabetic index of R names

*, 18, 35
+, 18, 28, 281
-, 18, 28
->, 20
-Inf, 25, 34
.Machine$double.eps, 34
.Machine$double.max, 34
.Machine$double.min, 34
.Machine$double.neg.eps, 34
.Machine$integer.max, 35
/, 18, 281
:, 23
<, 31
<-, 19, 20, 48, 73
<<-, 167
<=, 31
=, 20
==, 31, 197
>, 31
>=, 31
[,], 197
[], 64, 73
[[]], 64
[[]], 62, 67, 70, 71
[], 70, 76
$, 68, 70, 71
%*%, 56
%.>%, 189, 194
%/%, 27
%<>%, 189
%>%, 188, 189
%T>%, 189
%%, 27
%in%, 37, 39
&, 29
&&, 29
^, 35
|, 29

||, 29

abs(), 28, 36
aes(), 215, 231
aggregate(), 195
AIC(), 131
all(), 30
annotate(), 235, 270, 272
annotation_custom(), 236, 270
anova(), 116, 131, 132, 135, 137,

138
anti_join(), 200
any(), 30
aov(), 135, 153
append(), 22, 63
apply(), 107, 108, 111, 112
arrange(), 194
array, 51
array(), 54
as.character(), 42, 58
as.data.frame(), 185
as.formula(), 148
as.integer(), 43
as.logical(), 42
as.matrix(), 51
as.numeric(), 42, 43, 58
as.ts(), 151
as.vector(), 55
as_tibble(), 183
assign(), 113, 114, 167
attach(), 72–75
attr(), 77
attr()<-, 77
attributes(), 77, 127, 318
austres, 151

basename(), 296
BIC(), 131
biplot(), 156

345

346 Alphabetic index of R names

bold(), 285
bolditalic(), 285
bquote(), 286
break(), 102–104

c(), 22
cars, 125, 128
cat(), 40, 41, 305
ceiling(), 28
character, 39, 43
citation(), 12
class(), 41, 67, 127, 185, 318
coef(), 132, 136
coefficients(), 132
colnames(), 81
comment(), 77
comment()<-, 77
contains(), 195
coord_cartesian(), 247
coord_fixed(), 247
coord_polar(), 272
cor(), 125–127
cor.test(), 126, 127
crossprod(), 56
cutree(), 160

data(), 78, 79
data.frame, 66, 67, 182, 306
data.frame(), 66, 184, 187
decompose(), 152
detach(), 73–75, 165
diag(), 56
dim(), 51, 77, 318
dim()<-, 77
dimnames(), 318
dir(), 297
dirname(), 296
dist, 159
do.call(), 115, 116
double, 21, 34, 35, 49
double(), 21
download.file(), 323

effects(), 132
ends_with(), 195
eurodist, 157, 159
excel_sheets(), 313
exists(), 176

exp(), 18, 19
expand_limits(), 259
expression(), 283–285

facet_grid(), 252
facet_wrap(), 252, 254, 274
factor, 56
factor(), 56, 57, 59, 60
FALSE, 27
file.path(), 298
filter(), 194
fitted(), 132
fitted.values(), 132
for, 100, 102, 104
format(), 43, 44, 286
fromJSON(), 324
full_join(), 198
function(), 167

gather(), 190, 192
geom_abline, 224
geom_area, 223
geom_area(), 223, 266
geom_bar(), 225, 245, 266, 273, 274
geom_bin2d(), 247
geom_boxplot(), 249
geom_col(), 225, 226, 266
geom_curve(), 222
geom_density(), 248
geom_density_2d(), 249
geom_errorbar, 221
geom_errorbar(), 241
geom_grob(), 233, 236
geom_grob_npc(), 237
geom_hex(), 247
geom_histogram(), 245, 247
geom_hline, 224
geom_hline(), 266, 272
geom_label, 230, 283
geom_label(), 228–232, 266
geom_label_npc(), 237
geom_label_repel(), 232
geom_line, 223
geom_line(), 205, 209, 216, 222,

223, 266
geom_linerange(), 241
geom_path(), 223
geom_plot(), 233, 234

Alphabetic index of R names 347

geom_plot_npc(), 237
geom_point, 223, 230
geom_point(), 205, 208, 216, 217,

220, 252, 266
geom_pointrange(), 221, 239, 241
geom_polygom, 223
geom_polygon(), 273
geom_range(), 221
geom_rect(), 228
geom_ribbon, 223
geom_rug(), 221
geom_segment(), 222, 223
geom_sf(), 228
geom_sf_label(), 228
geom_sf_text(), 228
geom_smooth(), 242
geom_spoke(), 223
geom_step(), 223
geom_table, 233
geom_table(), 233, 234
geom_table_npc(), 237
geom_text, 230, 233, 283
geom_text(), 228, 230–232, 266,

283
geom_text_npc(), 237
geom_text_repel(), 232
geom_tile(), 226–228
geom_violin(), 250
geom_vline, 224
geom_vline(), 266, 272
get(), 114
getwd(), 296
ggplot(), 88, 215, 216, 285
ggplotGrob(), 270
ggtitle(), 256, 257
gl(), 57
glm(), 138
group_by(), 196, 197

hcl(), 268
hclust(), 159, 160
head(), 81, 82
help(), 11

I(), 131, 143
identical(), 185
if(), 95, 97
if()…else, 95

ifelse(), 98, 99
Inf, 25, 34
inherits(), 42, 147
inner_join(), 198
InsectSpray, 138
InsectSprays, 135
install.packages(), 165
integer, 21, 26, 35, 49
iris, 153, 190
is.array(), 51
is.character(), 41
is.logical(), 41
is.matrix(), 51
is.na(), 26
is.numeric(), 21, 41
is.vector(), 51
is_tibble(), 183
italic(), 285

label_bquote(), 254
labs(), 257, 283
lapply(), 82, 107, 108
left_join(), 198
length(), 24, 43, 51, 81, 119
LETTERS, 46
letters, 46
levels(), 57, 60, 77
levels()<-, 59, 77
library(), 165
list, 62, 66, 182
list(), 62
list.dirs(), 297
list.files(), 297
lm(), 78, 128, 131, 135, 153, 242
load(), 79
log(), 143
log(), log10(), log2(), 19
logical, 29, 45, 95, 97
ls(), 24, 80

mad(), 119
manova(), 153
matches(), 195
matrix, 51, 53, 182
matrix(), 51, 52, 126
max(), 119
mean(), 111, 119
median(), 119

348 Alphabetic index of R names

methods(), 173
mget(), 114
min(), 119
mode(), 41, 119, 318
model.frame(), 132
model.matrix(), 132
month.abb, 46
month.name, 46
mtcars, 207
mutate(), 193
my_print(), 175

NA, 25, 26, 45
NA_character_, 45
NA_real_, 45
names(), 77, 81, 195, 318
names()<-, 77
names<-(), 195
NaN, 25
nc_open(), 319
ncol(), 51, 81, 318
ncvar_get(), 319
next(), 102
nlme, 141
nls, 141
nls(), 140, 141
nottem, 152
npk, 146
nrow(), 51, 81, 318
numeric, 18, 21, 39, 49, 97
numeric(), 21

on.exit(), 107, 108
Orange, 222
order(), 50, 61, 76, 77, 194
ordered(), 56

parse(), 284, 285
paste(), 230, 283, 286
pi, 18
pivot_longer(), 192
pivot_wider(), 192
plain(), 285
plot(), 83–85, 139, 173, 190
pnorm(), 122, 123
poly(), 131
prcomp(), 155, 157
predict(), 134

pretty_breaks(), 260
print(), 6, 40, 43, 65, 81, 88, 101,

126, 182, 184, 319
pt(), 122
Puromycin, 141, 243

qnorm(), 123
quantile(), 119

range(), 119
read.csv(), 301, 302, 304–306
read.csv2(), 301, 302, 304
read.fortran(), 303, 307
read.fwf(), 303
read.spss(), 316
read.systat(), 317
read.table(), 302, 304, 306, 307
read.xlsx(), 314
read_csv(), 306, 310
read_delim(), 307
read_excel(), 313
read_file(), 309
read_fwf(), 307
read_html(), 310
read_lines(), 309
read_ods(), 315
read_sav(), 317
read_table(), 306, 307
read_table2(), 307
read_tsv(), 307
readLines(), 298
readRDS(), 80
rel(), 278
rename(), 195
reorder(), 61
rep(), 23
repeat, 100, 103, 104
resid(), 132
residuals(), 132
return(), 167
rgb(), 268
right_join(), 198
rle(), 51
rm(), 24
rnorm(), 123, 124, 126
round(), 27
rownames(), 81
runif(), 123

Alphabetic index of R names 349

sapply, 82
sapply(), 82, 107, 108
save(), 79
saveRDS(), 80
scale_color_brewer(), 269
scale_color_continuous(), 206,

268
scale_color_date(), 268
scale_color_datetime(), 268
scale_color_discrete(), 256, 268
scale_color_distiller(), 268
scale_color_gradient(), 268
scale_color_gradient2(), 268
scale_color_gradientn(), 268
scale_color_gray(), 268
scale_color_hue(), 268
scale_color_identity(), 256, 269
scale_color_viridis_c(), 268
scale_color_viridis_d(), 269
scale_fill_identity(), 269
scale_x_continuous(), 261
scale_x_discrete(), 265
scale_x_log10(), 262
scale_x_reverse(), 262
scale_y_continuous(), 261
scale_y_log(), 262
scale_y_log10(), 262
sd(), 119
select(), 194, 195
SEM(), 169
semi_join(), 200
seq(), 23
set.seed(), 124
setseed(), 124
setwd(), 296
shell(), 296
signif(), 27
sin(), 18, 19
slice(), 194
sort(), 50, 51, 61, 194
source(), 88
spread(), 192
sprintf(), 43, 44, 174, 286
sqrt(), 19
SSmicmen(), 141, 243
starts_with(), 195
stat_bin(), 245–247, 273

stat_bin2d, 247
stat_bin2d(), 247
stat_bin_hex(), 247
stat_boxplot(), 249
stat_count(), 225, 245, 247
stat_density(), 273
stat_density_2d(), 248
stat_function(), 238
stat_sf(), 228
stat_smooth, 243
stat_smooth(), 205, 242
stat_summary(), 205, 239–241
stl(), 152, 153
str(), 63–65, 77, 81, 127, 132, 318,

319
str_extract(), 193
strftime(), 286
strptime(), 265
subset(), 71, 72, 180, 194
substitute(), 286
sum(), 169
summarise(), 196
summary(), 82, 83, 120, 129, 132,

135, 136
switch(), 97, 98
system(), 296
system.time(), 104, 105

t(), 55, 112
tail(), 81, 82
tbl, 182
tbl_df, 183
terms(), 132
theme(), 278, 280
theme_bw(), 276
theme_classic(), 276
theme_dark(), 276
theme_gray(), 275, 276, 280
theme_light(), 276
theme_linedraw(), 276
theme_minimal(), 276
theme_set(), 277
theme_void(), 276
tibble, 183, 184, 192, 306, 317, 320
tibble(), 183, 186, 187, 193
tolower(), 266
tools:::showNonASCIIfile(), 300
toupper(), 266

350 Alphabetic index of R names

transmute(), 193
trems(), 145
TRUE, 27
trunc(), 28, 43
ts(), 151
typeof(), 41

ungroup(), 196, 197
unique(), 37
unlink(), 80
unlist(), 55, 65, 66
unname(), 66
update(), 149
update.packages(), 165

vapply(), 82, 108, 110
var(), 119, 169
vcov(), 132
vector, 22

while, 100, 102–104
with(), 72–75

within(), 73, 75
write.csv(), 301, 304
write.csv2, 302
write.csv2(), 305
write.table(), 305
write.xlsx(), 314
write_csv(), 309
write_csv2(), 309
write_delim(), 309
write_excel_csv(), 309
write_file(), 309, 310
write_lines(), 309
write_ods(), 316
write_tsv(), 309

xlab(), 257
xlim(), 239, 259, 260
xml_find_all(), 311
xml_text(), 311

ylab(), 257
ylim(), 239, 259, 260

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	1 R: The language and the program
	1.1 Aims of this chapter
	1.2 R
	1.2.1 What is R?
	1.2.2 R as a language
	1.2.3 R as a computer program
	1.2.3.1 Using R interactively
	1.2.3.2 Using R in a “batch job”
	1.2.3.3 Editors and IDEs

	1.3 Reproducible data analysis
	1.4 Finding additional information
	1.4.1 R’s built-in help
	1.4.2 Obtaining help from online forums
	1.4.2.1 Netiquette
	1.4.2.2 StackOverflow
	1.4.2.3 Reporting bugs

	1.5 What is needed to run the examples in this book?
	1.6 Further reading

	2 The R language: “Words” and “sentences”
	2.1 Aims of this chapter
	2.2 Natural and computer languages
	2.3 Numeric values and arithmetic
	2.4 Logical values and Boolean algebra
	2.5 Comparison operators and operations
	2.6 Sets and set operations
	2.7 Character values
	2.8 The ‘mode’ and ‘class’ of objects
	2.9 ‘Type’ conversions
	2.10 Vector manipulation
	2.11 Matrices and multidimensional arrays
	2.12 Factors
	2.13 Lists
	2.13.1 Member extraction and subsetting
	2.13.2 Adding and removing list members
	2.13.3 Nested lists

	2.14 Data frames
	2.14.1 Operating within data frames
	2.14.2 Re-arranging columns and rows

	2.15 Attributes of R objects
	2.16 Saving and loading data
	2.16.1 Data sets in R and packages
	2.16.2 .rda files
	2.16.3 .rds files

	2.17 Looking at data
	2.18 Plotting
	2.19 Further reading

	3 The R language: “Paragraphs” and “essays”
	3.1 Aims of this chapter
	3.2 Writing scripts
	3.2.1 What is a script?
	3.2.2 How do we use a script?
	3.2.3 How to write a script
	3.2.4 The need to be understandable to people
	3.2.5 Debugging scripts

	3.3 Control of execution flow
	3.3.1 Compound statements
	3.3.2 Conditional execution
	3.3.2.1 Non-vectorized if, else and switch
	3.3.2.2 Vectorized ifelse()

	3.3.3 Iteration
	3.3.3.1 for loops
	3.3.3.2 while loops
	3.3.3.3 repeat loops

	3.3.4 Explicit loops can be slow in R
	3.3.5 Nesting of loops
	3.3.5.1 Clean-up

	3.4 Apply functions
	3.4.1 Applying functions to vectors and lists
	3.4.2 Applying functions to matrices and arrays

	3.5 Object names and character strings
	3.6 The multiple faces of loops
	3.6.1 Further reading

	4 The R language: Statistics
	4.1 Aims of this chapter
	4.2 Statistical summaries
	4.3 Distributions
	4.3.1 Density from parameters
	4.3.2 Probabilities from parameters and quantiles
	4.3.3 Quantiles from parameters and probabilities
	4.3.4 “Random” draws from a distribution

	4.4 “Random” sampling
	4.5 Correlation
	4.5.1 Pearson’s r
	4.5.2 Kendall’s τ and Spearman’s ρ

	4.6 Fitting linear models
	4.6.1 Regression
	4.6.2 Analysis of variance, ANOVA
	4.6.3 Analysis of covariance, ANCOVA

	4.7 Generalized linear models
	4.8 Non-linear regression
	4.9 Model formulas
	4.10 Time series
	4.11 Multivariate statistics
	4.11.1 Multivariate analysis of variance
	4.11.2 Principal components analysis
	4.11.3 Multidimensional scaling
	4.11.4 Cluster analysis

	4.12 Further reading

	5 The R language: Adding new “words”
	5.1 Aims of this chapter
	5.2 Packages
	5.2.1 Sharing of R-language extensions
	5.2.2 How packages work
	5.2.3 Download, installation and use
	5.2.4 Finding suitable packages

	5.3 Defining functions and operators
	5.3.1 Ordinary functions
	5.3.2 Operators

	5.4 Objects, classes, and methods
	5.5 Scope of names
	5.6 Further reading

	6 New grammars of data
	6.1 Aims of this chapter
	6.2 Introduction
	6.3 Packages used in this chapter
	6.4 Replacements for data.frame
	6.4.1 ‘data.table’
	6.4.2 ‘tibble’

	6.5 Data pipes
	6.5.1 ‘magrittr’
	6.5.2 ‘wrapr’

	6.6 Reshaping with ‘tidyr’
	6.7 Data manipulation with ‘dplyr’
	6.7.1 Row-wise manipulations
	6.7.2 Group-wise manipulations
	6.7.3 Joins

	6.8 Further reading

	7 Grammar of graphics
	7.1 Aims of this chapter
	7.2 Packages used in this chapter
	7.3 Introduction to the grammar of graphics
	7.3.1 Data
	7.3.2 Mapping
	7.3.3 Geometries
	7.3.4 Statistics
	7.3.5 Scales
	7.3.6 Coordinate systems
	7.3.7 Themes
	7.3.8 Plot construction
	7.3.9 Plots as R objects
	7.3.10 Data and mappings

	7.4 Geometries
	7.4.1 Point
	7.4.2 Rug
	7.4.3 Line and area
	7.4.4 Column
	7.4.5 Tiles
	7.4.6 Simple features (sf)
	7.4.7 Text
	7.4.8 Plot insets

	7.5 Statistics
	7.5.1 Functions
	7.5.2 Summaries
	7.5.3 Smoothers and models
	7.5.4 Frequencies and counts
	7.5.5 Density functions
	7.5.6 Box and whiskers plots
	7.5.7 Violin plots

	7.6 Facets
	7.7 Scales
	7.7.1 Axis and key labels
	7.7.2 Continuous scales
	7.7.2.1 Limits
	7.7.2.2 Ticks and their labels
	7.7.2.3 Transformed scales
	7.7.2.4 Position of x and y axes
	7.7.2.5 Secondary axes

	7.7.3 Time and date scales for x and y
	7.7.4 Discrete scales for x and y
	7.7.5 Size
	7.7.6 Color and fill
	7.7.6.1 Color definitions in R

	7.7.7 Continuous color-related scales
	7.7.8 Discrete color-related scales
	7.7.9 Identity scales

	7.8 Adding annotations
	7.9 Coordinates and circular plots
	7.9.1 Wind-rose plots
	7.9.2 Pie charts

	7.10 Themes
	7.10.1 Complete themes
	7.10.2 Incomplete themes
	7.10.3 Defining a new theme

	7.11 Composing plots
	7.12 Using plotmath expressions
	7.13 Creating complex data displays
	7.14 Creating sets of plots
	7.14.1 Saving plot layers and scales in variables
	7.14.2 Saving plot layers and scales in lists
	7.14.3 Using functions as building blocks

	7.15 Generating output files
	7.16 Further reading

	8 Data import and export
	8.1 Aims of this chapter
	8.2 Introduction
	8.3 Packages used in this chapter
	8.4 File names and operations
	8.5 Opening and closing file connections
	8.6 Plain-text files
	8.6.1 Base R and ‘utils’
	8.6.2 readr

	8.7 XML and HTML files
	8.7.1 ‘xml2’

	8.8 GPX files
	8.9 Worksheets
	8.9.1 CSV files as middlemen
	8.9.2 ‘readxl’
	8.9.3 ‘xlsx’
	8.9.4 ‘readODS’

	8.10 Statistical software
	8.10.1 foreign
	8.10.2 haven

	8.11 NetCDF files
	8.11.1 ncdf4
	8.11.2 tidync

	8.12 Remotely located data
	8.13 Data acquisition from physical devices
	8.13.1 jsonlite

	8.14 Databases
	8.15 Further reading

	Bibliography
	General index
	Index of R names by category
	Alphabetic index of R names

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.5

 /CompressObjects /Off

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Perceptual

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails true

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams true

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.40

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d002800630029002000320030003100300020005400610079006c006f0072002000260020004600720061006e0063006900730020>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

