
Student Workbook (ROLE)

OCP 4.2 DO180

Introduction to Containers, Kubernetes,

and Red Hat OpenShift
Edition 1

DO180-OCP4.2-en-1-20191105 Copyright ©2019 Red Hat, Inc.

Introduction
to Containers,
Kubernetes, and
Red Hat OpenShift

DO180-OCP4.2-en-1-20191105 Copyright ©2019 Red Hat, Inc.

OCP 4.2 DO180
Introduction to Containers, Kubernetes, and Red Hat
OpenShift
Edition 1 20191105
Publication date 20191105

Authors: Zach Gutterman, Dan Kolepp, Eduardo Ramirez Ronco,
Jordi Sola Alaball, Richard Allred

Editor: Seth Kenlon, Dave Sacco, Connie Petlitzer

Copyright © 2019 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to
audience members, are Copyright © 2019 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in
any way, including, but not limited to, photocopy, photograph, magnetic, electronic or other
record, without the prior written permission of Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Red Hat, Inc. Red Hat, Inc. assumes no liability for damages or legal action
arising from the use or misuse of contents or details contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly
distributed please e-mail training@redhat.com or phone toll-free (USA) +1 (866) 626-2994
or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, Hibernate, Fedora, the
Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and
other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in
the United States and/or other countries.

The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service
marks or trademarks/service marks of the OpenStack Foundation, in the United States
and other countries and are used with the OpenStack Foundation's permission. We are not
affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack
community.

All other trademarks are the property of their respective owners.

Contributors: Michael Jarrett, Forrest Taylor and Manuel Aude Morales

Document Conventions vii

Introduction ix

DO180: Introduction to Containers, Kubernetes, and Red Hat OpenShift . ix

Orientation to the Classroom Environment . x

Internationalization . xiii

1. Introducing Container Technology 1

Overview of Container Technology . 2

Quiz: Overview of Container Technology . 5

Overview of Container Architecture . 9

Quiz: Overview of Container Architecture . 12

Overview of Kubernetes and OpenShift . 14

Quiz: Describing Kubernetes and OpenShift . 17

Guided Exercise: Configuring the Classroom Environment . 19

Summary . 25

2. Creating Containerized Services 27

Provisioning Containerized Services . 28

Guided Exercise: Creating a MySQL Database Instance . 35

Lab: Creating Containerized Services . 38

Summary . 43

3. Managing Containers 45

Managing the Life Cycle of Containers . 46

Guided Exercise: Managing a MySQL Container . 54

Attaching Persistent Storage to Containers . 59

Guided Exercise: Persisting a MySQL Database . 62

Accessing Containers . 65

Guided Exercise: Loading the Database . 69

Lab: Managing Containers . 73

Summary . 82

4. Managing Container Images 83

Accessing Registries . 84

Quiz: Working With Registries . 90

Manipulating Container Images . 94

Guided Exercise: Creating a Custom Apache Container Image . 100

Lab: Managing Images . 105

Summary . 113

5. Creating Custom Container Images 115

Designing Custom Container Images . 116

Quiz: Approaches to Container Image Design . 120

Building Custom Container Images with Dockerfiles . 122

Guided Exercise: Creating a Basic Apache Container Image . 127

Lab: Creating Custom Container Images . 131

Summary . 138

6. Deploying Containerized Applications on OpenShift 139

Describing Kubernetes and OpenShift Architecture . 140

Quiz: Describing Kubernetes and OpenShift . 146

Creating Kubernetes Resources . 150

Guided Exercise: Deploying a Database Server on OpenShift . 160

Creating Routes . 165

Guided Exercise: Exposing a Service as a Route . 169

Creating Applications with Source-to-Image . 174

Guided Exercise: Creating a Containerized Application with Source-to-Image 184

DO180-OCP4.2-en-1-20191105 v

Creating Applications with the OpenShift Web Console . 191

Guided Exercise: Creating an Application with the Web Console . 196

Lab: Deploying Containerized Applications on OpenShift . 208

Summary . 213

7. Deploying Multi-Container Applications 215

Considerations for Multi-Container Applications . 216

Guided Exercise: Deploying the Web Application and MySQL Containers . 221

Deploying a Multi-Container Application on OpenShift . 228

Guided Exercise: Creating an Application with a Template . 238

Lab: Deploying Multi-Container Applications . 244

Summary . 251

8. Troubleshooting Containerized Applications 253

Troubleshooting S2I Builds and Deployments . 254

Guided Exercise: Troubleshooting an OpenShift Build . 259

Troubleshooting Containerized Applications . 267

Guided Exercise: Configuring Apache Container Logs for Debugging . 273

Lab: Troubleshooting Containerized Applications . 276

Summary . 287

9. Comprehensive Review 289

Comprehensive Review . 290

Lab: Containerizing and Deploying a Software Application . 293

A. Implementing Microservices Architecture 303

Implementing Microservices Architectures . 304

Guided Exercise: Refactoring the To Do List Application . 308

Summary . 313

B. Creating a GitHub Account 315

Creating a GitHub Account . 316

C. Creating a Quay Account 319

Creating a Quay Account . 320

Repositories Visibility . 323

D. Useful Git Commands 327

Git Commands . 328

vi DO180-OCP4.2-en-1-20191105

Document Conventions

References

"References" describe where to find external documentation relevant to a subject.

Note

"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

"Important" boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring a box labeled "Important" will not cause data loss, but may cause

irritation and frustration.

Warning

"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

DO180-OCP4.2-en-1-20191105 vii

viii DO180-OCP4.2-en-1-20191105

Introduction

DO180: Introduction to Containers, Kubernetes, and
Red Hat OpenShift
DO180: Introduction to Containers, Kubernetes, and Red Hat OpenShift is a
hands-on course that teaches students how to create, deploy, and manage
containers using Podman, Kubernetes, and the Red Hat OpenShift Container
Platform.

One of the key tenants of the DevOps movement is continuous integration
and continuous deployment. Containers have become a key technology
for the configuration and deployment of applications and microservices.
Red Hat OpenShift Container Platform is an implementation of Kubernetes, a
container orchestration system.

Course

Objectives

• Demonstrate knowledge of the container
ecosystem.

• Manage Linux containers using Podman.

• Deploy containers on a Kubernetes cluster
using the OpenShift Container Platform.

• Demonstrate basic container design and the
ability to build container images.

• Implement a container-based architecture
using knowledge of containers, Kubernetes, and
OpenShift.

Audience • System Administrators

• Developers

• IT Leaders and Infrastructure Architects

Prerequisites Students should meet one or more of the
following prerequisites:

• Be able to use a Linux terminal session and
issue operating system commands. An RHCSA
certification is recommended but not required.

• Have experience with web application
architectures and their corresponding
technologies.

DO180-OCP4.2-en-1-20191105 ix

Introduction

Orientation to the Classroom
Environment

Figure 0.1: Classroom environment

In this course, the main computer system used for hands-on learning activities is workstation.

This is a virtual machine (VM) named workstation.lab.example.com.

All student computer systems have a standard user account, student, which has the password

student. The root password on all student systems is redhat.

Classroom Machines

Machine name IP addresses Role

content.example.com,

materials.example.com,

classroom.example.com

172.25.252.254,

172.25.253.254,

172.25.254.254

Classroom utility server

workstation.lab.example.com 172.25.250.254,

172.25.252.1

Student graphical workstation

Several systems in the classroom provide supporting services. Two servers,

content.example.com and materials.example.com, are sources for software and lab

materials used in hands-on activities. Information on how to use these servers is provided in the

instructions for those activities.

Students use the workstatoin machine to access a shared OpenShift cluster hosted externally

in AWS. Students do not have cluster administrator privileges on the cluster, but that is not

necessary to complete the DO180 content.

Students are provisioned an account on a shared OpenShift 4 cluster when they provision their

environments in the Red Hat Online Learning interface. Cluster information such as the API

endpoint, and cluster-ID, as well as their username and password are presented to them when they

provision their environment.

x DO180-OCP4.2-en-1-20191105

Introduction

Students also have access to a MySQL and a Nexus server hosted by either the OpenShift cluster

or by AWS. Hands-on activities in this course provide instructions to access these servers when

required.

Hands-on activities in DO180 also require that students have personal accounts on a two public,

free internet services: GitHub and Quay.io. Students need to create these accounts if they do not

already have them (see Appendix) and verify their access by signing in to these services before

starting the class.

Controlling Your Systems
Students are assigned remote computers in a Red Hat Online Learning classroom. They are

accessed through a web application hosted at rol.redhat.com [http://rol.redhat.com]. Students

should log in to this site using their Red Hat Customer Portal user credentials.

Controlling the Virtual Machines

The virtual machines in your classroom environment are controlled through a web page. The state

of each virtual machine in the classroom is displayed on the page under the Online Lab tab.

Machine States

Virtual Machine

State

Description

STARTING The virtual machine is in the process of booting.

STARTED The virtual machine is running and available (or, when booting, soon

will be).

STOPPING The virtual machine is in the process of shutting down.

STOPPED The virtual machine is completely shut down. Upon starting, the virtual

machine boots into the same state as when it was shut down (the disk

will have been preserved).

PUBLISHING The initial creation of the virtual machine is being performed.

WAITING_TO_START The virtual machine is waiting for other virtual machines to start.

Depending on the state of a machine, a selection of the following actions is available.

Classroom/Machine Actions

Button or Action Description

PROVISION LAB Create the ROL classroom. Creates all of the virtual machines needed

for the classroom and starts them. This can take several minutes to

complete.

DELETE LAB Delete the ROL classroom. Destroys all virtual machines in the

classroom. Caution: Any work generated on the disks is lost.

START LAB Start all virtual machines in the classroom.

DO180-OCP4.2-en-1-20191105 xi

http://rol.redhat.com
http://rol.redhat.com

Introduction

Button or Action Description

SHUTDOWN LAB Stop all virtual machines in the classroom.

OPEN CONSOLE Open a new tab in the browser and connect to the console of the

virtual machine. Students can log in directly to the virtual machine

and run commands. In most cases, students should log in to the

workstation virtual machine and use ssh to connect to the other

virtual machines.

ACTION → Start Start (power on) the virtual machine.

ACTION →

Shutdown
Gracefully shut down the virtual machine, preserving the contents of

its disk.

ACTION → Power
Off

Forcefully shut down the virtual machine, preserving the contents of its

disk. This is equivalent to removing the power from a physical machine.

ACTION → Reset Forcefully shut down the virtual machine and reset the disk to its initial

state. Caution: Any work generated on the disk is lost.

At the start of an exercise, if instructed to reset a single virtual machine node, click ACTION →

Reset for only the specific virtual machine.

At the start of an exercise, if instructed to reset all virtual machines, click ACTION → Reset

If you want to return the classroom environment to its original state at the start of the course,

you can click DELETE LAB to remove the entire classroom environment. After the lab has been

deleted, click PROVISION LAB to provision a new set of classroom systems.

Warning

The DELETE LAB operation cannot be undone. Any work you have completed in

the classroom environment up to that point will be lost.

The Autostop Timer

The Red Hat Online Learning enrollment entitles students to a certain amount of computer time.

To help conserve allotted computer time, the ROL classroom has an associated countdown timer,

which shuts down the classroom environment when the timer expires.

To adjust the timer, click MODIFY to display the New Autostop Time dialog box. Set the number

of hours and minutes until the classroom should automatically stop. Note that there is a maximum

time of ten hours. Click ADJUST TIME to apply this change to the timer settings.

xii DO180-OCP4.2-en-1-20191105

Introduction

Internationalization

Per-user Language Selection
Your users might prefer to use a different language for their desktop environment than the

system-wide default. They might also want to use a different keyboard layout or input method for

their account.

Language Settings

In the GNOME desktop environment, the user might be prompted to set their preferred language

and input method on first login. If not, then the easiest way for an individual user to adjust their

preferred language and input method settings is to use the Region & Language application.

You can start this application in two ways. You can run the command gnome-control-center
region from a terminal window, or on the top bar, from the system menu in the right corner,

select the settings button (which has a crossed screwdriver and wrench for an icon) from the

bottom left of the menu.

In the window that opens, select Region & Language. Click the Language box and select the

preferred language from the list that appears. This also updates the Formats setting to the

default for that language. The next time you log in, these changes will take full effect.

These settings affect the GNOME desktop environment and any applications such as gnome-
terminal that are started inside it. However, by default they do not apply to that account if

accessed through an ssh login from a remote system or a text-based login on a virtual console

(such as tty5).

Note

You can make your shell environment use the same LANG setting as your graphical

environment, even when you log in through a text-based virtual console or over

ssh. One way to do this is to place code similar to the following in your ~/.bashrc
file. This example code will set the language used on a text login to match the one

currently set for the user's GNOME desktop environment:

i=$(grep 'Language=' /var/lib/AccountsService/users/${USER} \
 | sed 's/Language=//')
if ["$i" != ""]; then
 export LANG=$i
fi

Japanese, Korean, Chinese, and other languages with a non-Latin character set

might not display properly on text-based virtual consoles.

Individual commands can be made to use another language by setting the LANG variable on the

command line:

DO180-OCP4.2-en-1-20191105 xiii

Introduction

[user@host ~]$ LANG=fr_FR.utf8 date
jeu. avril 25 17:55:01 CET 2019

Subsequent commands will revert to using the system's default language for output. The locale
command can be used to determine the current value of LANG and other related environment

variables.

Input Method Settings

GNOME 3 in Red Hat Enterprise Linux 7 or later automatically uses the IBus input method

selection system, which makes it easy to change keyboard layouts and input methods quickly.

The Region & Language application can also be used to enable alternative input methods. In the

Region & Language application window, the Input Sources box shows what input methods are

currently available. By default, English (US) may be the only available method. Highlight English
(US) and click the keyboard icon to see the current keyboard layout.

To add another input method, click the + button at the bottom left of the Input Sources window.

An Add an Input Source window will open. Select your language, and then your preferred input

method or keyboard layout.

When more than one input method is configured, the user can switch between them quickly by

typing Super+Space (sometimes called Windows+Space). A status indicator will also appear in

the GNOME top bar, which has two functions: It indicates which input method is active, and acts

as a menu that can be used to switch between input methods or select advanced features of more

complex input methods.

Some of the methods are marked with gears, which indicate that those methods have advanced

configuration options and capabilities. For example, the Japanese Japanese (Kana Kanji) input

method allows the user to pre-edit text in Latin and use Down Arrow and Up Arrow keys to

select the correct characters to use.

US English speakers may also find this useful. For example, under English (United States) is the

keyboard layout English (international AltGr dead keys), which treats AltGr (or the right Alt)

on a PC 104/105-key keyboard as a "secondary shift" modifier key and dead key activation key for

typing additional characters. There are also Dvorak and other alternative layouts available.

Note

Any Unicode character can be entered in the GNOME desktop environment if you

know the character's Unicode code point. Type Ctrl+Shift+U, followed by the

code point. After Ctrl+Shift+U has been typed, an underlined u will be displayed

to indicate that the system is waiting for Unicode code point entry.

For example, the lowercase Greek letter lambda has the code point U+03BB, and

can be entered by typing Ctrl+Shift+U, then 03BB, then Enter.

System-wide Default Language Settings
The system's default language is set to US English, using the UTF-8 encoding of Unicode as its

character set (en_US.utf8), but this can be changed during or after installation.

From the command line, the root user can change the system-wide locale settings with the

localectl command. If localectl is run with no arguments, it displays the current system-

wide locale settings.

xiv DO180-OCP4.2-en-1-20191105

Introduction

To set the system-wide default language, run the command localectl set-locale
LANG=locale, where locale is the appropriate value for the LANG environment variable from the

"Language Codes Reference" table in this chapter. The change will take effect for users on their

next login, and is stored in /etc/locale.conf.

[root@host ~]# localectl set-locale LANG=fr_FR.utf8

In GNOME, an administrative user can change this setting from Region & Language by clicking

the Login Screen button at the upper-right corner of the window. Changing the Language of

the graphical login screen will also adjust the system-wide default language setting stored in the /
etc/locale.conf configuration file.

Important

Text-based virtual consoles such as tty4 are more limited in the fonts they can

display than terminals in a virtual console running a graphical environment, or

pseudo-terminals for ssh sessions. For example, Japanese, Korean, and Chinese

characters may not display as expected on a text-based virtual console. For

this reason, you should consider using English or another language with a Latin

character set for the system-wide default.

Likewise, text-based virtual consoles are more limited in the input methods they

support, and this is managed separately from the graphical desktop environment.

The available global input settings can be configured through localectl for both

text-based virtual consoles and the graphical environment. See the localectl(1)

and vconsole.conf(5) man pages for more information.

Language Packs
Special RPM packages called langpacks install language packages that add support for specific

languages. These langpacks use dependencies to automatically install additional RPM packages

containing localizations, dictionaries, and translations for other software packages on your system.

To list the langpacks that are installed and that may be installed, use yum list langpacks-*:

[root@host ~]# yum list langpacks-*
Updating Subscription Management repositories.
Updating Subscription Management repositories.
Installed Packages
langpacks-en.noarch 1.0-12.el8 @AppStream
Available Packages
langpacks-af.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-am.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-ar.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-as.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
langpacks-ast.noarch 1.0-12.el8 rhel-8-for-x86_64-appstream-rpms
...output omitted...

To add language support, install the appropriate langpacks package. For example, the following

command adds support for French:

[root@host ~]# yum install langpacks-fr

DO180-OCP4.2-en-1-20191105 xv

Introduction

Use yum repoquery --whatsupplements to determine what RPM packages may be installed

by a langpack:

[root@host ~]# yum repoquery --whatsupplements langpacks-fr
Updating Subscription Management repositories.
Updating Subscription Management repositories.
Last metadata expiration check: 0:01:33 ago on Wed 06 Feb 2019 10:47:24 AM CST.
glibc-langpack-fr-0:2.28-18.el8.x86_64
gnome-getting-started-docs-fr-0:3.28.2-1.el8.noarch
hunspell-fr-0:6.2-1.el8.noarch
hyphen-fr-0:3.0-1.el8.noarch
libreoffice-langpack-fr-1:6.0.6.1-9.el8.x86_64
man-pages-fr-0:3.70-16.el8.noarch
mythes-fr-0:2.3-10.el8.noarch

Important

Langpacks packages use RPM weak dependencies in order to install supplementary

packages only when the core package that needs it is also installed.

For example, when installing langpacks-fr as shown in the preceding examples, the

mythes-fr package will only be installed if the mythes thesaurus is also installed on

the system.

If mythes is subsequently installed on that system, the mythes-fr package will also

automatically be installed due to the weak dependency from the already installed

langpacks-fr package.

References

locale(7), localectl(1), locale.conf(5), vconsole.conf(5), unicode(7),

and utf-8(7) man pages

Conversions between the names of the graphical desktop environment's X11 layouts

and their names in localectl can be found in the file /usr/share/X11/xkb/
rules/base.lst.

Language Codes Reference

Note

This table might not reflect all langpacks available on your system. Use yum info
langpacks-SUFFIX to get more information about any particular langpacks

package.

Language Codes

Language Langpacks Suffix $LANG value

English (US) en en_US.utf8

xvi DO180-OCP4.2-en-1-20191105

Introduction

Language Langpacks Suffix $LANG value

Assamese as as_IN.utf8

Bengali bn bn_IN.utf8

Chinese (Simplified) zh_CN zh_CN.utf8

Chinese (Traditional) zh_TW zh_TW.utf8

French fr fr_FR.utf8

German de de_DE.utf8

Gujarati gu gu_IN.utf8

Hindi hi hi_IN.utf8

Italian it it_IT.utf8

Japanese ja ja_JP.utf8

Kannada kn kn_IN.utf8

Korean ko ko_KR.utf8

Malayalam ml ml_IN.utf8

Marathi mr mr_IN.utf8

Odia or or_IN.utf8

Portuguese (Brazilian) pt_BR pt_BR.utf8

Punjabi pa pa_IN.utf8

Russian ru ru_RU.utf8

Spanish es es_ES.utf8

Tamil ta ta_IN.utf8

Telugu te te_IN.utf8

DO180-OCP4.2-en-1-20191105 xvii

xviii DO180-OCP4.2-en-1-20191105

Chapter 1

Introducing Container
Technology

Goal Describe how applications run in containers
orchestrated by Red Hat OpenShift Container
Platform.

Objectives • Describe the difference between container
applications and traditional deployments.

• Describe the basics of container architecture.

• Describe the benefits of orchestrating
applications and OpenShift Container Platform.

Sections • Overview of Container Technology (and Quiz)

• Overview of Container Architecture (and Quiz)

• Overview of Kubernetes and OpenShift (and
Quiz)

DO180-OCP4.2-en-1-20191105 1

Chapter 1 | Introducing Container Technology

Overview of Container Technology

Objectives
After completing this section, students should be able to describe the difference between

container applications and traditional deployments.

Containerized Applications
Software applications typically depend on other libraries, configuration files, or services that

are provided by the runtime environment. The traditional runtime environment for a software

application is a physical host or virtual machine, and application dependencies are installed as part

of the host.

For example, consider a Python application that requires access to a common shared library that

implements the TLS protocol. Traditionally, a system administrator installs the required package

that provides the shared library before installing the Python application.

The major drawback to traditionally deployed software application is that the application's

dependencies are entangled with the runtime environment. An application may break when any

updates or patches are applied to the base operating system (OS).

For example, an OS update to the TLS shared library removes TLS 1.0 as a supported protocol.

This breaks the deployed Python application because it is written to use the TLS 1.0 protocol for

network requests. This forces the system administrator to roll back the OS update to keep the

application running, preventing other applications from using the benefits of the updated package.

Therefore, a company developing traditional software applications may require a full set of tests to

guarantee that an OS update does not affect applications running on the host.

Furthermore, a traditionally deployed application must be stopped before updating the associated

dependencies. To minimize application downtime, organizations design and implement complex

systems to provide high availability of their applications. Maintaining multiple applications on a

single host often becomes cumbersome, and any deployment or update has the potential to break

one of the organization's applications.

Figure 1.1 describes the difference between applications running as containers and applications

running on the host operating system.

Figure 1.1: Container versus operating system differences

2 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Alternatively, a software application can be deployed using a container. A container is a set of one

or more processes that are isolated from the rest of the system. Containers provide many of the

same benefits as virtual machines, such as security, storage, and network isolation. Containers

require far fewer hardware resources and are quick to start and terminate. They also isolate the

libraries and the runtime resources (such as CPU and storage) for an application to minimize the

impact of any OS update to the host OS, as described in Figure 1.1.

The use of containers not only helps with the efficiency, elasticity, and reusability of the hosted

applications, but also with application portability. The Open Container Initiative provides a

set of industry standards that define a container runtime specification and a container image

specification. The image specification defines the format for the bundle of files and metadata that

form a container image. When you build an application as a container image, which complies with

the OCI standard, you can use any OCI-compliant container engine to execute the application.

There are many container engines available to manage and execute individual containers,

including Rocket, Drawbridge, LXC, Docker, and Podman. Podman is available in Red Hat

Enterprise Linux 7.6 and later, and is used in this course to start, manage, and terminate individual

containers.

The following are other major advantages to using containers:

Low hardware footprint
Containers use OS internal features to create an isolated environment where resources are

managed using OS facilities such as namespaces and cgroups. This approach minimizes the

amount of CPU and memory overhead compared to a virtual machine hypervisor. Running an

application in a VM is a way to create isolation from the running environment, but it requires

a heavy layer of services to support the same low hardware footprint isolation provided by

containers.

Environment isolation
Containers work in a closed environment where changes made to the host OS or other

applications do not affect the container. Because the libraries needed by a container are self-

contained, the application can run without disruption. For example, each application can exist

in its own container with its own set of libraries. An update made to one container does not

affect other containers.

Quick deployment
Containers deploy quickly because there is no need to install the entire underlying operating

system. Normally, to support the isolation, a new OS installation is required on a physical host

or VM, and any simple update might require a full OS restart. A container restart does not

require stopping any services on the host OS.

Multiple environment deployment
In a traditional deployment scenario using a single host, any environment differences

could break the application. Using containers, however, all application dependencies and

environment settings are encapsulated in the container image.

Reusability
The same container can be reused without the need to set up a full OS. For example, the

same database container that provides a production database service can be used by

each developer to create a development database during application development. Using

containers, there is no longer a need to maintain separate production and development

database servers. A single container image is used to create instances of the database service.

Often, a software application with all of its dependent services (databases, messaging, file

systems) are made to run in a single container. This can lead to the same problems associated

DO180-OCP4.2-en-1-20191105 3

Chapter 1 | Introducing Container Technology

with traditional software deployments to virtual machines or physical hosts. In these instances, a

multicontainer deployment may be more suitable.

Furthermore, containers are an ideal approach when using microservices for application

development. Each service is encapsulated in a lightweight and reliable container environment

that can be deployed to a production or development environment. The collection of

containerized services required by an application can be hosted on a single machine, removing the

need to manage a machine for each service.

In contrast, many applications are not well suited for a containerized environment. For example,

applications accessing low-level hardware information, such as memory, file systems, and devices

may be unreliable due to container limitations.

References

Home - Open Containers Initiative

https://www.opencontainers.org/

4 DO180-OCP4.2-en-1-20191105

https://www.opencontainers.org/

Chapter 1 | Introducing Container Technology

Quiz

Overview of Container Technology

Choose the correct answers to the following questions:

 1. Which two options are examples of software applications that might run in a container?

(Choose two.)

a. A database-driven Python application accessing services such as a MySQL database, a

file transfer protocol (FTP) server, and a web server on a single physical host.

b. A Java Enterprise Edition application, with an Oracle database, and a message broker

running on a single VM.

c. An I/O monitoring tool responsible for analyzing the traffic and block data transfer.

d. A memory dump application tool capable of taking snapshots from all the memory CPU

caches for debugging purposes.

 2. Which two of the following use cases are best suited for containers? (Choose two.)

a. A software provider needs to distribute software that can be reused by other companies in

a fast and error-free way.

b. A company is deploying applications on a physical host and would like to improve its

performance by using containers.

c. Developers at a company need a disposable environment that mimics the production

environment so that they can quickly test the code they develop.

d. A financial company is implementing a CPU-intensive risk analysis tool on their own

containers to minimize the number of processors needed.

 3. A company is migrating their PHP and Python applications running on the same host to

a new architecture. Due to internal policies, both are using a set of custom made shared

libraries from the OS, but the latest update applied to them as a result of a Python

development team request broke the PHP application. Which two architectures would

provide the best support for both applications? (Choose two.)

a. Deploy each application to different VMs and apply the custom made shared libraries

individually to each VM host.

b. Deploy each application to different containers and apply the custom made shared

libraries individually to each container.

c. Deploy each application to different VMs and apply the custom made shared libraries to

all VM hosts.

d. Deploy each application to different containers and apply the custom made shared

libraries to all containers.

DO180-OCP4.2-en-1-20191105 5

Chapter 1 | Introducing Container Technology

 4. Which three kinds of applications can be packaged as containers for immediate

consumption? (Choose three.)

a. A virtual machine hypervisor

b. A blog software, such as WordPress

c. A database

d. A local file system recovery tool

e. A web server

6 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Solution

Overview of Container Technology

Choose the correct answers to the following questions:

 1. Which two options are examples of software applications that might run in a container?

(Choose two.)

a. A database-driven Python application accessing services such as a MySQL database, a

file transfer protocol (FTP) server, and a web server on a single physical host.

b. A Java Enterprise Edition application, with an Oracle database, and a message broker

running on a single VM.

c. An I/O monitoring tool responsible for analyzing the traffic and block data transfer.

d. A memory dump application tool capable of taking snapshots from all the memory CPU

caches for debugging purposes.

 2. Which two of the following use cases are best suited for containers? (Choose two.)

a. A software provider needs to distribute software that can be reused by other companies in

a fast and error-free way.

b. A company is deploying applications on a physical host and would like to improve its

performance by using containers.

c. Developers at a company need a disposable environment that mimics the production

environment so that they can quickly test the code they develop.

d. A financial company is implementing a CPU-intensive risk analysis tool on their own

containers to minimize the number of processors needed.

 3. A company is migrating their PHP and Python applications running on the same host to

a new architecture. Due to internal policies, both are using a set of custom made shared

libraries from the OS, but the latest update applied to them as a result of a Python

development team request broke the PHP application. Which two architectures would

provide the best support for both applications? (Choose two.)

a. Deploy each application to different VMs and apply the custom made shared libraries

individually to each VM host.

b. Deploy each application to different containers and apply the custom made shared

libraries individually to each container.

c. Deploy each application to different VMs and apply the custom made shared libraries to

all VM hosts.

d. Deploy each application to different containers and apply the custom made shared

libraries to all containers.

DO180-OCP4.2-en-1-20191105 7

Chapter 1 | Introducing Container Technology

 4. Which three kinds of applications can be packaged as containers for immediate

consumption? (Choose three.)

a. A virtual machine hypervisor

b. A blog software, such as WordPress

c. A database

d. A local file system recovery tool

e. A web server

8 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Overview of Container Architecture

Objectives
After completing this section, students should be able to:

• Describe the architecture of Linux containers.

• Install the podman utility to manage containers.

Introducing Container History
Containers have quickly gained popularity in recent years. However, the technology behind

containers has been around for a relatively long time. In 2001, Linux introduced a project named

VServer. VServer was the first attempt at running complete sets of processes inside a single server

with a high degree of isolation.

From VServer, the idea of isolated processes further evolved and became formalized around the

following features of the Linux kernel:

Namespaces
The kernel can isolate specific system resources, usually visible to all processes, by placing

the resources within a namespace. Inside a namespace, only processes that are members of

that namespace can see those resources. Namespaces can include resources like network

interfaces, the process ID list, mount points, IPC resources, and the system's host name

information.

Control groups (cgroups)
Control groups partition sets of processes and their children into groups to manage and

limit the resources they consume. Control groups place restrictions on the amount of system

resources processes might use. Those restrictions keep one process from using too many

resources on the host.

Seccomp
Developed in 2005 and introduced to containers circa 2014, Seccomp limits how processes

could use system calls. Seccomp defines a security profile for processes, whitelisting the

system calls, parameters and file descriptors they are allowed to use.

SELinux
SELinux (Security-Enhanced Linux) is a mandatory access control system for processes.

Linux kernel uses SELinux to protect processes from each other and to protect the host

system from its running processes. Processes run as a confined SELinux type that has limited

access to host system resources.

All of these innovations and features focus around a basic concept: enabling processes to run

isolated while still accessing system resources. This concept is the foundation of container

technology and the basis for all container implementations. Nowadays, containers are processes

in Linux kernel making use of those security features to create an isolated environment. This

environment forbids isolated processes from misusing system or other container resources.

A common use case of containers is having several replicas of the same service (for example,

a database server) in the same host. Each replica has isolated resources (file system, ports,

DO180-OCP4.2-en-1-20191105 9

Chapter 1 | Introducing Container Technology

memory), so there is no need for the service to handle resource sharing. Isolation guarantees that

a malfunctioning or harmful service does not impact other services or containers in the same host,

nor in the underlying system.

Describing Linux Container Architecture
From the Linux kernel perspective, a container is a process with restrictions. However, instead

of running a single binary file, a container runs an image. An image is a file-system bundle that

contains all dependencies required to execute a process: files in the file system, installed packages,

available resources, running processes, and kernel modules.

Like executable files are the foundation for running processes, images are the foundation for

running containers. Running containers use an immutable view of the image, allowing multiple

containers to reuse the same image simultaneously. As images are files, they can be managed by

versioning systems, improving automation on container and image provisioning.

Container images need to be locally available for the container runtime to execute them, but the

images are usually stored and maintained in an image repository. An image repository is just a

service - public or private - where images can be stored, searched and retrieved. Other features

provided by image repositories are remote access, image metadata, authorization or image version

control.

There are many different image repositories available, each one offering different features:

• Red Hat Container Catalog [https://registry.redhat.io]

• Docker Hub [https://hub.docker.com]

• Red Hat Quay [https://quay.io/]

• Google Container Registry [https://cloud.google.com/container-registry/]

• Amazon Elastic Container Registry [https://aws.amazon.com/ecr/]

This course uses the public image registry Quay, so students can operate with images without

worrying about interfering with each other.

Managing Containers with Podman
Containers, images, and image registries need to be able to interact with each other. For example,

you need to be able to build images and put them into image registries. You also need to be able

to retrieve an image from the image registry and build a container from that image.

Podman is an open source tool for managing containers and container images and interacting with

image registries. It offers the following key features:

• It uses image format specified by the Open Container Initiative [https://

www.opencontainers.org] (OCI). Those specifications define an standard, community-driven,

non-proprietary image format.

• Podman stores local images in local file-system. Doing so avoids unnecessary client/server

architecture or having daemons running on local machine.

• Podman follows the same command patterns as the Docker CLI, so there is no need to learn a

new toolset.

• Podman is compatible with Kubernetes. Kubernetes can use Podman to manage its containers.

10 DO180-OCP4.2-en-1-20191105

https://registry.redhat.io
https://registry.redhat.io
https://hub.docker.com
https://hub.docker.com
https://quay.io/
https://quay.io/
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://www.opencontainers.org
https://www.opencontainers.org
https://www.opencontainers.org

Chapter 1 | Introducing Container Technology

Currently, Podman is only available on Linux systems. To install Podman in Red Hat

Enterprise Linux, Fedora or similar RPM-based systems, run sudo yum install podman or

sudo dnf install podman.

References

Red Hat Quay Container Registry

https://quay.io

Podman site

https://podman.io/

Open Container Initiative

https://www.opencontainers.org

DO180-OCP4.2-en-1-20191105 11

https://quay.io
https://podman.io/
https://www.opencontainers.org

Chapter 1 | Introducing Container Technology

Quiz

Overview of Container Architecture

Choose the correct answers to the following questions:

 1. Which three of the following Linux features are used for running containers? (Choose

three.)

a. Namespaces

b. Integrity Management

c. Security-Enhanced Linux

d. Control Groups

 2. Which of the following best describes a container image?

a. A virtual machine image from which a container will be created.

b. A container blueprint from which a container will be created.

c. A runtime environment where an application will run.

d. The container's index file used by a registry.

 3. Which three of the following components are common across container architecture

implementations? (Choose three.)

a. Container runtime

b. Container permissions

c. Container images

d. Container registries

 4. What is a container in relation to the Linux kernel?

a. A virtual machine.

b. An isolated process with regulated resource access.

c. A set of file-system layers exposed by UnionFS.

d. An external service providing container images.

12 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Solution

Overview of Container Architecture

Choose the correct answers to the following questions:

 1. Which three of the following Linux features are used for running containers? (Choose

three.)

a. Namespaces

b. Integrity Management

c. Security-Enhanced Linux

d. Control Groups

 2. Which of the following best describes a container image?

a. A virtual machine image from which a container will be created.

b. A container blueprint from which a container will be created.

c. A runtime environment where an application will run.

d. The container's index file used by a registry.

 3. Which three of the following components are common across container architecture

implementations? (Choose three.)

a. Container runtime

b. Container permissions

c. Container images

d. Container registries

 4. What is a container in relation to the Linux kernel?

a. A virtual machine.

b. An isolated process with regulated resource access.

c. A set of file-system layers exposed by UnionFS.

d. An external service providing container images.

DO180-OCP4.2-en-1-20191105 13

Chapter 1 | Introducing Container Technology

Overview of Kubernetes and OpenShift

Objectives
After completing this section, students should be able to:

• Identify the limitations of Linux containers and the need for container orchestration.

• Describe the Kubernetes container orchestration tool.

• Describe Red Hat OpenShift Container Platform (RHOCP).

Limitations of Containers
Containers provide an easy way to package and run services. As the number of containers

managed by an organization grows, the work of manually starting them rises exponentially along

with the need to quickly respond to external demands.

When using containers in a production environment, enterprises often require:

• Easy communication between a large number of services.

• Resource limits on applications regardless of the number of containers running them.

• Respond to application usage spikes to increase or decrease running containers.

• React to service deterioration.

• Gradually roll out a new release to a set of users.

Enterprises often require a container orchestration technology because container runtimes (such

as Podman) do not adequately address the above requirements.

Kubernetes Overview
Kubernetes is an orchestration service that simplifies the deployment, management, and scaling of

containerized applications.

The smallest unit manageable in Kubernetes is a pod. A pod consists of one or more containers

with its storage resources and IP address that represent a single application. Kubernetes also uses

pods to orchestrate the containers inside it and to limit its resources as a single unit.

Kubernetes Features
Kubernetes offers the following features on top of a container infrastructure:

Service discovery and load balancing
Kubernetes enables inter-service communication by assigning a single DNS entry to each set

of containers. This way, the requesting service only needs to know the target's DNS name,

allowing the cluster to change the container's location and IP address, leaving the service

unaffected. This permits load-balancing the request across the pool of containers providing

the service. For example, Kubernetes can evenly split incoming requests to a MySQL service

taking into account the availability of the pods.

14 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Horizontal scaling
Applications can scale up and down manually or automatically with configuration set either

with the Kubernetes command-line interface or the web UI.

Self-healing
Kubernetes can use user-defined health checks to monitor containers to restart and

reschedule them in case of failure.

Automated rollout
Kubernetes can gradually roll updates out to your application's containers while checking their

status. If something goes wrong during the rollout, Kubernetes can roll back to the previous

iteration of the deployment.

Secrets and configuration management
You can manage configuration settings and secrets of your applications without rebuilding

containers. Application secrets can be user names, passwords, and service endpoints; any

configuration settings that need to be kept private.

Operators
Operators are packaged Kubernetes applications that also bring the knowledge of the

application's life cycle into the Kubernetes cluster. Applications packaged as Operators use

the Kubernetes API to update the cluster's state reacting to changes in the application state.

OpenShift Overview
Red Hat OpenShift Container Platform (RHOCP) is a set of modular components and services

built on top of a Kubernetes container infrastructure. RHOCP adds the capabilities to provide

a production PaaS platform such as remote management, multitenancy, increased security,

monitoring and auditing, application life-cycle management, and self-service interfaces for

developers.

Beginning with Red Hat OpenShift v4, hosts in an OpenShift cluster all use Red Hat

Enterprise Linux CoreOS as the underlying operating system.

Throughout this course, the terms RHOCP and OpenShift are used to refer to the Red Hat

OpenShift Container Platform.

OpenShift Features
OpenShift adds the following features to a Kubernetes cluster:

Integrated developer workflow
RHOCP integrates a built-in container registry, CI/CD pipelines, and S2I; a tool to build

artifacts from source repositories to container images.

Routes
Easily expose services to the outside world.

Metrics and logging
Include built-in and self-analyzing metrics service and aggregated logging.

Unified UI
OpenShift brings unified tools and a UI to manage all the different capabilities.

DO180-OCP4.2-en-1-20191105 15

Chapter 1 | Introducing Container Technology

References

Production-Grade Container Orchestration - Kubernetes

https://kubernetes.io/

OpenShift: Container Application Platform by Red Hat, Built on Docker and

Kubernetes

https://www.openshift.com/

16 DO180-OCP4.2-en-1-20191105

https://kubernetes.io/
https://www.openshift.com/

Chapter 1 | Introducing Container Technology

Quiz

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

 1. Which three of the following statements are correct regarding container limitations?

(Choose three.)

a. Containers are easily orchestrated in large numbers.

b. Lack of automation increases response time to problems.

c. Containers do not manage application failure inside them.

d. Containers are not load-balanced.

e. Containers are heavily isolated packaged applications.

 2. Which two of the following statements are correct regarding Kubernetes? (Choose

two.)

a. Kubernetes is a container.

b. Kubernetes can only use Docker containers.

c. Kubernetes is a container orchestration system.

d. Kubernetes simplifies management, deployment, and scaling of containerized

applications.

e. Applications managed in a Kubernetes cluster are harder to maintain.

 3. Which three of the following statements are true regarding Red Hat OpenShift v4?

(Choose three.)

a. OpenShift provides additional features to a Kubernetes infrastructure.

b. Kubernetes and OpenShift are mutually exclusive.

c. OpenShift hosts use Red Hat Enterprise Linux as the base operating system.

d. OpenShift simplifies development incorporating a Source-to-Image technology and CI/

CD pipelines.

e. OpenShift simplifies routing and load balancing.

 4. What features does OpenShift offer that extend Kubernetes capabilities? (choose

two.)

a. Operators and the Operator Framework.

b. Routes to expose services to the outside world.

c. An integrated development workflow.

d. Self-healing and health checks.

DO180-OCP4.2-en-1-20191105 17

Chapter 1 | Introducing Container Technology

Solution

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

 1. Which three of the following statements are correct regarding container limitations?

(Choose three.)

a. Containers are easily orchestrated in large numbers.

b. Lack of automation increases response time to problems.

c. Containers do not manage application failure inside them.

d. Containers are not load-balanced.

e. Containers are heavily isolated packaged applications.

 2. Which two of the following statements are correct regarding Kubernetes? (Choose

two.)

a. Kubernetes is a container.

b. Kubernetes can only use Docker containers.

c. Kubernetes is a container orchestration system.

d. Kubernetes simplifies management, deployment, and scaling of containerized

applications.

e. Applications managed in a Kubernetes cluster are harder to maintain.

 3. Which three of the following statements are true regarding Red Hat OpenShift v4?

(Choose three.)

a. OpenShift provides additional features to a Kubernetes infrastructure.

b. Kubernetes and OpenShift are mutually exclusive.

c. OpenShift hosts use Red Hat Enterprise Linux as the base operating system.

d. OpenShift simplifies development incorporating a Source-to-Image technology and CI/

CD pipelines.

e. OpenShift simplifies routing and load balancing.

 4. What features does OpenShift offer that extend Kubernetes capabilities? (choose

two.)

a. Operators and the Operator Framework.

b. Routes to expose services to the outside world.

c. An integrated development workflow.

d. Self-healing and health checks.

18 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Guided Exercise

Configuring the Classroom Environment

In this exercise, you will configure the workstation to access all infrastructure used by this

course.

Outcomes
You should be able to:

• Configure your workstation to access an OpenShift cluster, a container image registry, and

a Git repository used throughout the course.

• Fork this course's sample applications repository to your personal GitHub account.

• Clone this course's sample applications repository from your personal GitHub account to

your workstation VM.

Before You Begin
To perform this exercise, ensure you have:

• Access to the DO180 course in the Red Hat Training's Online Learning Environment.

• The connection parameters and a developer user account to access an OpenShift cluster

managed by Red Hat Training.

• A personal, free GitHub account. If you need to register to GitHub, see the instructions in

Appendix B, Creating a GitHub Account.

• A personal, free Quay.io account. If you need to register to Quay.io, see the instructions in

Appendix C, Creating a Quay Account.

 1. Before starting any exercise, you need to configure your workstation VM.

For the following steps, use the values the Red Hat Training Online Learning environment

provides to you when you provision your online lab environment:

DO180-OCP4.2-en-1-20191105 19

Chapter 1 | Introducing Container Technology

Open a terminal on your workstation VM and execute the following command. Answer

its interactive prompts to configure your workstation before starting any other exercise in

this course.

If you make a mistake, you can interrupt the command at any time using Ctrl+C and start

over.

[student@workstation ~]$ lab-configure

1.1. The lab-configure command starts by displaying a series of interactive prompts,

and will try to find some sensible defaults for some of them.

This script configures the connection parameters to access the OpenShift cluster
 for your lab scripts

 · Enter the Master API URL: https://api.cluster.domain.example.com:6443
 · Enter the Cluster ID: 085193d7-0a3e-428f-9972-ccbcbfd7e76e
 · Enter the Wildcard Domain: apps.cluster.domain.example.com
 · Enter the Nexus Host: nexus-common.apps.cluster.domain.example.com
 · Enter the Developer User name: youruser-example.com
 · Enter the Developer User Password: yourpassword
 · Enter the GitHub Account Name: yourgituser
 · Enter the Quay.io Account Name: yourquayuser

...output omitted...

The URL to your OpenShift cluster's Master API. Type the URL as a single line,

without spaces or line breaks. Red Hat Training provides this information to you

when you provision your lab environment. You need this information to log in to

the cluster and also to deploy containerized applications.

The ID of your OpenShift cluster. Red Hat Training provides this information to

you when you provision your lab environment. There are many OpenShift clusters

managed by Red Hat Training, which serve different sets of students. The lab-
configure command uses this information to make sure that your Master API

URL points to the expected cluster.

The wildcard domain and Nexus host of your OpenShift cluster. These should

match your cluster's Master API URL, so there is usually no need to change them,

unless you were specifically instructed to override their values.

Your OpenShift developer user name and password. Red Hat Training provides

this information to you when you provision your lab environment. You need to use

this user name and password to log in to OpenShift. You will also use your user

name as part of the identifiers, such as route host names and project names, to

avoid collision with identifiers from other students who share the same OpenShift

cluster with you.

Your personal GitHub and Quay.io account names. You need valid, free accounts

on these online services to perform this course's exercises. If you have never used

any of these online services, refer to Appendix B, Creating a GitHub Account and

Appendix C, Creating a Quay Account for instructions about how to register.

20 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Note

If you use two-factor authentication with your GitHub account you may want to

create a personal access token for use from the workstation VM during the

course. Refer to the following documentation on how to setup a personal access

on your account: Creating a personal access token for the command line [https://

help.github.com/en/articles/creating-a-personal-access-token-for-the-command-

line]

1.2. The lab-configure command prints all the information that you entered and tries to

connect to your OpenShift cluster:

...output omitted...

You entered:
 · Master API URL: https://api.cluster.domain.example.com:6443
 · Cluster ID: 085193d7-0a3e-428f-9972-ccbcbfd7e76e
 · Wildcard Domain: apps.cluster.domain.example.com
 · Nexus Server Host: nexus-common.cluster.domain.example.com
 · Developer User Name: youruser-example.com
 · Developer User Password: yourpassword
 · GitHub Account Name: yourgituser
 · Quay.io Account Name: yourquayuser

Verifying your Master API URL...

Verifying your Nexus host...

Verifying your OpenShift developer user credentials...

...output omitted...

1.3. If lab-configure finds any issues, it displays an error message and exits. You will

need to verify your information and run the lab-configure command again. The

following listing shows an example of a verification error:

...output omitted...

Verifying your Master API URL...

ERROR:
Cannot connect to an OpenShift 4.2 API using your URL.
Please verify your network connectivity and that the URL does not point to an
 OpenShift 3.x nor to a non-OpenShift Kubernetes API.
No changes made to your lab configuration.

1.4. If everything is OK so far, the lab-configure tries to access your public GitHub and

Quay.io accounts:

DO180-OCP4.2-en-1-20191105 21

https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line

Chapter 1 | Introducing Container Technology

...output omitted...

Verifying your GitHub account name...

Verifying your Quay.io account name...

...output omitted...

1.5. Again, lab-configure displays an error message and exits if it finds any issues. You

will need to verify your information and run the lab-configure command again. The

following listing shows an example of a verification error:

...output omitted...

Verifying your GitHub account name...

ERROR:
Cannot find a GitHub account named: invalidusername.
No changes made to your lab configuration.

1.6. Finally, the lab-configure command verifies that your OpenShift cluster reports the

expected cluster ID and wildcard domain.

...output omitted...

Verifying your cluster configuration...

...output omitted...

1.7. If all checks pass, the lab-configure command saves your configuration:

...output omitted...

Saving your lab configuration file...

All fine, lab config saved. You can now proceed with your exercises.

1.8. If there were no errors saving your configuration, you are almost ready to start any of

this course's exercises. If there were any errors, do not try to start any exercise until you

can execute the lab-configure command successfully.

 2. Before starting any exercise, you need to fork this course's sample applications into your

personal GitHub account. Perform the following steps:

2.1. Open a web browser and navigate to https://github.com/RedHatTraining/
DO180-apps. If you are not logged in to GitHub, click Sign in in the upper-right

corner.

22 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

2.2. Log in to GitHub using your personal user name and password.

2.3. Return to the RedHatTraining/DO180-apps repository and click Fork in the upper-

right corner.

2.4. In the Fork DO180-apps window, click yourgituser to select your personal GitHub

project.

Important

While it is possible to rename your personal fork of the https://github.com/
RedHatTraining/DO180-apps repository, grading scripts, helper scripts, and the

example output in this course assume that you retain the name DO180-apps when

your fork the repository.

2.5. After a few minutes, the GitHub web interface displays your new repository

yourgituser/DO180-apps.

DO180-OCP4.2-en-1-20191105 23

Chapter 1 | Introducing Container Technology

 3. Before starting any exercise, you also need to clone this course's sample applications from

your personal GitHub account to your workstation VM. Perform the following steps:

3.1. Run the following command to clone this course's sample applications repository.

Replace yourgituser with the name of your personal GitHub account:

[student@workstation ~]$ git clone https://github.com/yourgituser/DO180-apps
Cloning into 'DO180-apps'...
...output omitted...

3.2. Verify that /home/student/DO180-apps is a Git repository:

[student@workstation ~]$ cd DO180-apps
[student@workstation DO180-apps]$ git status
On branch master
nothing to commit, working directory clean

3.3. Verify that /home/student/DO180-apps contains this course's sample applications,

and change back to the student user's home folder.

[student@workstation DO180-apps]$ head README.md
DO180-apps
...output omitted...
[student@workstation DO180-apps]$ cd ~
[student@workstation ~]$

 4. Now that you have a local clone of the DO180-apps repository on your workstation VM,

and you have executed the lab-configure command successfully, you are ready to start

this course's exercises.

During this course, all exercises that build applications from source start from the master
branch of the DO180-apps Git repository. Exercises that make changes to source code

require you to create new branches to host your changes, so that the master branch

always contains a known good starting point. If for some reason you need to pause or

restart an exercise, and need to either save or discard about changes you make into your

Git branches, refer to Appendix D, Useful Git Commands.

This concludes the guided exercise.

24 DO180-OCP4.2-en-1-20191105

Chapter 1 | Introducing Container Technology

Summary

In this chapter, you learned:

• Containers are an isolated application runtime created with very little overhead.

• A container image packages an application with all of its dependencies, making it easier to run

the application in different environments.

• Applications such as Podman create containers using features of the standard Linux kernel.

• Container image registries are the preferred mechanism for distributing container images to

multiple users and hosts.

• OpenShift orchestrates applications composed of multiple containers using Kubernetes.

• Kubernetes manages load balancing, high availability, and persistent storage for containerized

applications.

• OpenShift adds to Kubernetes multitenancy, security, ease of use, and continuous integration

and continuous development features.

• OpenShift routes enable external access to containerized applications in a manageable way.

DO180-OCP4.2-en-1-20191105 25

26 DO180-OCP4.2-en-1-20191105

Chapter 2

Creating Containerized
Services

Goal Provision a service using container technology.

Objectives • Create a database server from a container
image.

Sections • Provisioning a Containerized Database Server
(and Guided Exercise)

Lab • Creating Containerized Services

DO180-OCP4.2-en-1-20191105 27

Chapter 2 | Creating Containerized Services

Provisioning Containerized Services

Objectives
After completing this section, students should be able to:

• Search for and fetch container images with Podman.

• Run and configure containers locally.

• Use the Red Hat Container Catalog.

Fetching Container Images with Podman
Applications can run inside containers as a way to provide them with an isolated and controlled

execution environment. Running a containerized application, that is, running an application

inside a container, requires a container image, a file system bundle providing all application files,

libraries, and dependencies the application needs to run. Container images can be found in image

registries: services that allow users to search and retrieve container images. Podman users can use

the search subcommand to find available images from remote or local registries:

[student@workstation ~]$ sudo podman search rhel
INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
redhat.com registry.access.redhat.com/rhel This plat... 0
...output omitted...

After you have found an image, you can use Podman to download it. When using the pull
subcommand, Podman fetches the image and saves it locally for future use:

[student@workstation ~]$ sudo podman pull rhel
Trying to pull registry.access.redhat.com/rhel...Getting image source signatures
Copying blob sha256: ...output omitted...
 72.25 MB / 72.25 MB [==] 8s
Copying blob sha256: ...output omitted...
 1.20 KB / 1.20 KB [==] 0s
Copying config sha256: ...output omitted...
 6.30 KB / 6.30 KB [==] 0s
Writing manifest to image destination
Storing signatures
699d44bc6ea2b9fb23e7899bd4023d3c83894d3be64b12e65a3fe63e2c70f0ef

Container images are named based on the following syntax:

registry_name/user_name/image_name:tag

• First registry_name, the name of the registry storing the image. It is usually the FQDN of the

registry.

• user_name stands for the user or organization the image belongs to.

• The image_name should be unique in user namespace.

28 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

• The tag identifies the image version. If the image name includes no image tag, latest is

assumed.

Note

This classroom's Podman installation uses a several publicly available registries, like

Quay.io and Red Hat Container Catalog.

After retrieval, Podman stores images locally and you can list them with the images subcommand:

[student@workstation containers]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/rhel latest 699d44bc6ea2 4 days ago 214MB
...output omitted...

Running Containers
The podman run command runs a container locally based on an image. At a minimum, the

command requires the name of the image to execute in the container.

The container image specifies a process that starts inside the container known as the entry

point. The podman run command uses all parameters after the image name as the entry

point command for the container. The following example starts a container from a Red Hat

Enterprise Linux image. It sets the entry point for this container to the echo "Hello world"
command.

[student@workstation containers]$ sudo podman run ubi7/ubi:7.7 echo "Hello!"
Hello world

To start a container image as a background process, pass the -d option to the podman run
command:

[student@workstation ~]$ sudo podman run -d rhscl/httpd-24-rhel7:2.4-36.8
ff4ec6d74e9b2a7b55c49f138e56f8bc46fe2a09c23093664fea7febc3dfa1b2
[student@workstation ~]$ sudo podman inspect -l \
> -f "{{.NetworkSettings.IPAddress}}"
10.88.0.68
[student@workstation ~]$ curl http://10.88.0.68:8080
 ...output omitted...
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 ...output omitted...
<title>
 Test Page for the Apache HTTP Server on Red Hat Enterprise Linux
</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<style type="text/css">
 ...output omitted...

The previous example ran a containerized Apache HTTP server in the background. Then, the

example uses the podman inspect command to retrieve the container's internal IP address

from container metadata. Finally, it uses the IP address to fetch the root page from Apache HTTP

server. This response proves the container is still up and running after the podman run command.

DO180-OCP4.2-en-1-20191105 29

Chapter 2 | Creating Containerized Services

Note

Most Podman subcommands accept the -l flag (l for latest) as a replacement for

the container id. This flag applies the command to the latest used container in any

Podman command.

Note

If the image to be executed is not available locally when using the podman run
command, Podman automatically uses pull to download the image.

When referencing the container, Podman recognizes a container either with the container name or

the generated container id. Use the --name option to set the container name when running the

container with Podman. Container names must be unique. If the podman run command includes

no container name, Podman generates a unique random name.

If the images require interacting with the user with console input, Podman can redirect container

input and output streams to the console. The run subcommand requires the -t and -i flags (or,

in short, -it flag) to enable interactivity.

Note

Many Podman flags also have an alternative long form; some of these are explained

below.

• -t is equivalent to --tty, meaning a pseudo-tty (pseudo-terminal) is to be

allocated for the container.

• -i is the same as --interactive. When used, standard input is kept open into

the container.

• -d, or its long form --detach, means the container runs in the background

(detached). Podman then prints the container id.

See the Podman documentation for the complete list of flags.

The following example starts a Bash terminal inside the container, and interactively runs some

commands in it:

[student@workstation ~]$ sudo podman run -it ubi7/ubi:7.7 /bin/bash
bash-4.2# ls
...output omitted...
bash-4.2# whoami
root
bash-4.2# exit
exit
[student@workstation ~]$

Some containers need or can use external parameters provided at startup. The most common

approach for providing and consuming those parameters is through environment variables.

Podman can inject environment variables into containers at startup by adding the -e flag to the

run subcommand:

30 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

[student@workstation ~]$ sudo podman run -e GREET=Hello -e NAME=RedHat \
> rhel7:7.5 printenv GREET NAME
Hello
RedHat
[student@workstation ~]$

The previous example starts a RHEL image container that prints the two environment variables

provided as parameters. Another use case for environment variables is setting up credentials into a

MySQL database server:

[root@workstation ~]# sudo podman run --name mysql-custom \
> -e MYSQL_USER=redhat -e MYSQL_PASSWORD=r3dh4t \
> -d rhmap47/mysql:5.5

Using the Red Hat Container Catalog
Red Hat maintains its repository of finely tuned container images. Using this repository provides

customers with a layer of protection and reliability against known vulnerabilities, which could

potentially be caused by untested images. The standard podman command is compatible with the

Red Hat Container Catalog. The Red Hat Container Catalog provides a user-friendly interface for

searching and exploring container images from the Red Hat repository.

The Container Catalog also serves as a single interface, providing access to different aspects of all

the available container images in the repository. It is useful in determining the best image among

multiple versions of container images given health index grades. The health index grade indicates

how current an image is, and whether it contains the latest security updates.

The Container Catalog also gives access to the errata documentation of an image. It describes the

latest bug fixes and enhancements in each update. It also suggests the best technique for pulling

an image on each operating system.

The following images highlight some of the features of the Red Hat Container Catalog.

DO180-OCP4.2-en-1-20191105 31

Chapter 2 | Creating Containerized Services

Figure 2.1: Red Hat Container Catalog home page

As displayed above, searching for Apache in the search box of the Container Catalog displays

a suggested list of products and image repositories matching the search pattern. To access the

Apache httpd 2.4 image page, select Apache httpd 2.4-rhscl/httpd-24-rhel7 from

the suggested list.

32 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

Figure 2.2: Apache httpd 2.4 (rhscl/httpd-24-rhel7) overview image page

The Apache httpd 2.4 panel displays image details and several tabs. This page states that Red Hat

maintains the image repository. It also indicates that the image repository relates to Red Hat

Enterprise Linux. Under the Overview tab, there are other details:

• Description: A summary of the image's capabilities.

• Evaluate Image: Using OpenShift Online (a public PaaS cloud), users can try out the image

to validate the functional state of the application in the image.

• Most Recent Tag: When the image received its latest update, the latest tag applied to the image,

the health of the image, and more.

DO180-OCP4.2-en-1-20191105 33

Chapter 2 | Creating Containerized Services

Figure 2.3: Apache httpd 2.4 (rhscl/httpd-24-rhel7) latest image page

The Get Latest Image tab provides the procedure to get the most current version of the image.

Specify the intended platform for the image from the Choose your platform menu, and the page

provides the appropriate command to execute to retrieve the image.

References

Red Hat Container Catalog

https://registry.redhat.io

Quay.io website

https://quay.io

34 DO180-OCP4.2-en-1-20191105

https://registry.redhat.io
https://quay.io

Chapter 2 | Creating Containerized Services

Guided Exercise

Creating a MySQL Database Instance

In this exercise, you will start a MySQL database inside a container, and then create and

populate a database.

Outcomes
You should be able to start a database from a container image and store information inside

the database.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab container-create start

 1. Create a MySQL container instance.

1.1. Start a container from the Red Hat Software Collections Library MySQL image.

[student@workstation ~]$ sudo podman run --name mysql-basic \
> -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
> -d rhscl/mysql-57-rhel7:5.7-3.14
Trying to pull ...output omitted...
Copying blob sha256:e373541...output omitted...
 69.66 MB / 69.66 MB [===] 8s
Copying blob sha256:c5d2e94...output omitted...
 1.20 KB / 1.20 KB [===] 0s
Copying blob sha256:b3949ae...output omitted...
 62.03 MB / 62.03 MB [===] 8s
Writing manifest to image destination
Storing signatures
92eaa6b67da0475745b2beffa7e0895391ab34ab3bf1ded99363bb09279a24a0

This command downloads the MySQL container image with the 5.7-3.14 tag, and

then starts a container-based image. It creates a database named items, owned

by a user named user1 with mypa55 as the password. The database administrator

password is set to r00tpa55 and the container runs in the background.

1.2. Verify that the container started without errors.

[student@workstation ~]$ sudo podman ps --format "{{.ID}} {{.Image}} {{.Names}}"
92eaa6b67da0 registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7-3.14 mysql-basic

 2. Access the container sandbox by running the following command:

DO180-OCP4.2-en-1-20191105 35

Chapter 2 | Creating Containerized Services

[student@workstation ~]$ sudo podman exec -it mysql-basic /bin/bash
bash-4.2$

This command starts a Bash shell, running as the mysql user inside the MySQL container.

 3. Add data to the database.

3.1. Connect to MySQL as the database administrator user (root).

Run the following command from the container terminal to connect to the database:

bash-4.2$ mysql -uroot
Welcome to the MySQL monitor. Commands end with ; or \g.
...output omitted...
mysql>

The mysql command opens the MySQL database interactive prompt. Run the

following command to determine the database availability:

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| items |
| mysql |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.01 sec)

3.2. Create a new table in the items database. Run the following command to access the

database.

mysql> use items;
Database changed

3.3. Create a table called Projects in the items database.

mysql> CREATE TABLE Projects (id int(11) NOT NULL,
 -> name varchar(255) DEFAULT NULL,
 -> code varchar(255) DEFAULT NULL,
 -> PRIMARY KEY (id));
Query OK, 0 rows affected (0.01 sec)

You can optionally use the ~/DO180/solutions/container-create/
create_table.txt file to copy and paste the CREATE TABLE MySQL statement as

given above.

3.4. Use the show tables command to verify that the table was created.

36 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

mysql> show tables;
+---------------------+
| Tables_in_items |
+---------------------+
| Projects |
+---------------------+
1 row in set (0.00 sec)

3.5. Use the insert command to insert a row into the table.

mysql> insert into Projects (id, name, code) values (1,'DevOps','DO180');
Query OK, 1 row affected (0.02 sec)

3.6. Use the select command to verify that the project information was added to the

table.

mysql> select * from Projects;
+----+-----------+-------+
| id | name | code |
+----------------+-------+
| 1 | DevOps | DO180 |
+----------------+-------+
1 row in set (0.00 sec)

3.7. Exit from the MySQL prompt and the MySQL container:

mysql> exit
Bye
bash-4.2$ exit
exit

Finish

On workstation, run the lab container-create finish script to complete this lab.

[student@workstation ~]$ lab container-create finish

This concludes the exercise.

DO180-OCP4.2-en-1-20191105 37

Chapter 2 | Creating Containerized Services

Lab

Creating Containerized Services

Performance Checklist
In this lab, you create an Apache HTTP Server container with a custom welcome page.

Outcomes
You should be able to start and customize a container using a container image.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab container-review start

1. Start a container named httpd-basic in the background, and forward port 8080 to port 80

in the container. Use the redhattraining/httpd-parent container image with the 2.4
tag.

Note

Use the -p 8080:80 option with sudo podman run command to forward the

port.

This command starts the Apache HTTP server in the background and returns to the Bash

prompt.

2. Test the httpd-basic container.

From workstation, attempt to access http://localhost:8080 using any web browser.

An Hello from the httpd-parent container! message is displayed, which is the

index.html page from the Apache HTTP server container running on workstation.

3. Customize the httpd-basic container to display Hello World as the message. The

container's message is stored in the file /var/www/html/index.html.

3.1. Start a Bash session inside the container.

3.2. From the Bash session, verify the index.html file under /var/www/html directory

using the ls -la command.

3.3. Change the index.html file to contain the text Hello World, replacing all of the

existing content.

3.4. Attempt to access http://localhost:8080 again, and verify that the web page has

been updated.

38 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

Evaluation

Grade your work by running the lab container-review grade command on your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab container-review grade

Finish

On workstation, run the lab container-review finish script to complete this lab.

[student@workstation ~]$ lab container-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 39

Chapter 2 | Creating Containerized Services

Solution

Creating Containerized Services

Performance Checklist
In this lab, you create an Apache HTTP Server container with a custom welcome page.

Outcomes
You should be able to start and customize a container using a container image.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab container-review start

1. Start a container named httpd-basic in the background, and forward port 8080 to port 80

in the container. Use the redhattraining/httpd-parent container image with the 2.4
tag.

Note

Use the -p 8080:80 option with sudo podman run command to forward the

port.

Run the following command:

[student@workstation ~]$ sudo podman run -d -p 8080:80 \
> --name httpd-basic redhattraining/httpd-parent:2.4
...output omitted...
Copying blob sha256:743f2d6...output omitted...
 21.45 MB / 21.45 MB [===] 1s
Copying blob sha256:c92eb69...output omitted...
 155 B / 155 B [===] 0s
Copying blob sha256:2211b05...output omitted...
 9.86 MB / 9.86 MB [===] 0s
Copying blob sha256:aed1801...output omitted...
 15.78 MB / 15.78 MB [===] 1s
Copying blob sha256:7c472a4...output omitted...
 300 B / 300 B [===] 0s
Copying config sha256:b7cc370...output omitted...
 7.18 KB / 7.18 KB [===] 0s
Writing manifest to image destination
Storing signatures
b51444e3b1d7aaf94b3a4a54485d76a0a094cbfac89c287d360890a3d2779a5a

40 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

This command starts the Apache HTTP server in the background and returns to the Bash

prompt.

2. Test the httpd-basic container.

From workstation, attempt to access http://localhost:8080 using any web browser.

An Hello from the httpd-parent container! message is displayed, which is the

index.html page from the Apache HTTP server container running on workstation.

[student@workstation ~]$ curl http://localhost:8080
Hello from the httpd-parent container!

3. Customize the httpd-basic container to display Hello World as the message. The

container's message is stored in the file /var/www/html/index.html.

3.1. Start a Bash session inside the container.

Run the following command:

[student@workstation ~]$ sudo podman exec -it httpd-basic /bin/bash
bash-4.4#

3.2. From the Bash session, verify the index.html file under /var/www/html directory

using the ls -la command.

bash-4.4# ls -la /var/www/html
total 4
drwxr-xr-x. 2 root root 24 Jun 12 11:58 .
drwxr-xr-x. 4 root root 33 Jun 12 11:58 ..
-rw-r--r--. 1 root root 39 Jun 12 11:58 index.html

3.3. Change the index.html file to contain the text Hello World, replacing all of the

existing content.

From the Bash session in the container, run the following command:

bash-4.4# echo "Hello World" > /var/www/html/index.html

3.4. Attempt to access http://localhost:8080 again, and verify that the web page has

been updated.

bash-4.4# exit
[student@workstation ~]$ curl http://localhost:8080
Hello World

This concludes the lab.

Evaluation

Grade your work by running the lab container-review grade command on your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab container-review grade

DO180-OCP4.2-en-1-20191105 41

Chapter 2 | Creating Containerized Services

Finish

On workstation, run the lab container-review finish script to complete this lab.

[student@workstation ~]$ lab container-review finish

This concludes the lab.

42 DO180-OCP4.2-en-1-20191105

Chapter 2 | Creating Containerized Services

Summary

In this chapter, you learned:

• Podman allows users to search for and download images from local or remote registries.

• The podman run command creates and starts a container from a container image.

• Containers are executed in the background by using the -d flag, or interactively by using the -
it flag.

• Some container images require environment variables that are set using the -e option from the

podman run command.

• Red Hat Container Catalog assists in searching, exploring, and analyzing container images from

Red Hat's official container image repository.

DO180-OCP4.2-en-1-20191105 43

44 DO180-OCP4.2-en-1-20191105

Chapter 3

Managing Containers

Goal Modify prebuilt container images to create and
manage containerized services.

Objectives • Manage a container's life cycle from creation to
deletion.

• Save container application data with persistent
storage.

• Describe how to use port forwarding to access
a container.

Sections • Managing the Life Cycle of Containers (and
Guided Exercise)

• Attaching Persistent Storage to Containers
(and Guided Exercise)

• Accessing Containers (and Guided Exercise)

Lab • Managing Containers

DO180-OCP4.2-en-1-20191105 45

Chapter 3 | Managing Containers

Managing the Life Cycle of Containers

Objectives
After completing this section, students should be able to manage the life cycle of a container from

creation to deletion.

Container Life Cycle Management with Podman
In previous chapters you learned how to use Podman to create a containerized service. Now you

will dive deeper into commands and strategies that you can use to manage a container's life cycle.

Podman allows you not only to run containers, but also to make them run in the background,

execute new processes inside them, and provide them with resources such as file system volumes

or a network.

Podman, implemented by the podman command, provides a set of subcommands to create

and manage containers. Developers use those subcommands to manage container and

container images life cycle. The following figure shows a summary of the most commonly used

subcommands that change container and image state.

Figure 3.1: Podman managing subcommands

Podman also provides a set of useful subcommands to obtain information about running and

stopped containers. You can use those subcommands to extract information from containers and

images for debugging, updating, or reporting purposes. The following figure shows a summary of

the most commonly used subcommands that query information from containers and images.

46 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

Figure 3.2: Podman query subcommands

Use these two figures as a reference while you learn about Podman subcommands in this course.

Creating Containers
The podman run command creates a new container from an image and starts a process inside

the new container. If the container image is not available locally, this command attempts to

download the image using the configured image repository:

[student@workstation ~]$ sudo podman run rhscl/httpd-24-rhel7
Trying to pull regist...httpd-24-rhel7:latest...Getting image source signatures
Copying blob sha256:23113...b0be82
72.21 MB / 72.21 MB [==] 7s
...output omitted...AH00094: Command line: 'httpd -D FOREGROUND'
^C

In the previous output sample, the container was started with a non interactive process (without

the -it option) and is running in the foreground because it was not started with the -d option.

Stopping the resulting process with Ctrl+C (SIGINT) therefore stops both the container process

as well as the container itself.

Podman identifies containers by a unique container ID or container name. The podman ps
command displays the container ID and names for all actively running containers:

DO180-OCP4.2-en-1-20191105 47

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo podman ps
CONTAINER ID IMAGE COMMAND ... NAMES
47c9aad6049 rhscl/httpd-24-rhel7 "httpd -D FOREGROUND" ... focused_fermat

The container ID is unique and generated automatically.

The container name can be manually specified, otherwise it is generated automatically. This

name must be unique or the run command fails.

The podman run command automatically generates a unique, random ID. It also generates a

random container name. To define the container name explicitly, use the --name option when

running a container:

[student@workstation ~]$ sudo podman run --name my-httpd-container rhscl/httpd-24-
rhel7
...output omitted...AH00094: Command line: 'httpd -D FOREGROUND'

Note

The name must be unique. Podman throws an error if the name is already in use,

including stopped containers.

Another important feature is the ability to run the container as a daemon process in the

background. The -d option is responsible for running in detached mode. When using this option,

Podman returns the container ID on the screen, allowing you to continue to run commands in the

same terminal while the container runs in the background:

[student@workstation ~]$ sudo podman run --name my-httpd-container -d rhscl/
httpd-24-rhel7
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

The container image specifies the command to run to start the containerized process, known

as the entry point. The podman run command can override this entry point by including the

command after the container image:

[student@workstation ~]$ sudo podman run rhscl/httpd-24-rhel7 ls /tmp
anaconda-post.log
ks-script-1j4CXN
yum.log

The specified command must be executable inside the container image.

Note

Because a specified command appears in the previous example, the container skips

the entry point for the httpd image. Hence, the httpd service does not start.

Some containers need to run as an interactive shell or process. This includes containers running

processes that need user input (such as entering commands), and processes that generate output

through standard output. The following example starts an interactive bash shell in a rhscl/
httpd-24-rhel7 container:

48 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo podman run -it rhscl/httpd-24-rhel7 /bin/bash
 bash-4.2#

The -t and -i options enable terminal redirection for interactive text-based programs. The -t
option allocates a pseudo-tty (a terminal) and attaches it to the standard input of the container.

The -i option keeps the container's standard input open, even if it was detached, so the main

process can continue waiting for input.

Running Commands in a Container
When a container starts, it executes the entry point command. However, it may be necessary to

execute other commands to manage the running container. Some typical use case are shown

below:

• Executing an interactive shell in an already running container.

• Running processes that update or display the container's files.

• Starting new background processes inside the container.

The podman exec command starts an additional process inside an already running container:

[student@workstation ~]$ sudo podman exec 7ed6e671a600 cat /etc/hostname
7ed6e671a600

The previous example uses the container ID to execute the command.

Podman remembers the last container used in any command. Developers can skip writing this

container's ID or name in later Podman commands by replacing the container id by the -l option:

[student@workstation ~]$ sudo podman exec my-httpd-container cat /etc/hostname
7ed6e671a600
[student@workstation ~]$ sudo podman exec -l cat /etc/hostname
7ed6e671a600

Managing Containers
Creating and starting a container is just the first step of the container's life cycle. A container's life

cycle also includes stopping, restarting, or finally removing it. Users can also examine the container

status and metadata for debugging, updating, or reporting purposes.

Podman provides the following commands for managing containers:

• podman ps: This command lists running containers:

[student@workstation ~]$ sudo podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
77d4b7b8ed1f rhscl/httpd-24-rhel7 "httpd..." ...ago Up... 80/tcp my-
htt...

Each container, when created, gets a container ID, which is a hexadecimal number. This

ID looks like an image ID but is unrelated.

Container image that was used to start the container.

Command executed when the container started.

DO180-OCP4.2-en-1-20191105 49

Chapter 3 | Managing Containers

Date and time the container was started.

Total container uptime, if still running, or time since terminated.

Ports that were exposed by the container or any port forwarding that might be configured.

The container name.

Podman does not discard stopped containers immediately. Podman preserves their local file

systems and other states for facilitating postmortem analysis. Option -a lists all containers,

including stopped ones:

[student@workstation ~]$ sudo podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4829d82fbbff rhscl/httpd-24-rhel7 "httpd..." ...ago Exited (0)... my-
httpd...

Note

While creating containers, Podman aborts if the container name is already in

use, even if the container is in a “stopped” status. This option can help to avoid

duplicated container names.

• podman inspect: This command lists metadata about a running or stopped container. The

command produces JSON output:

[student@workstation ~]$ sudo podman inspect my-httpd-container
[
{
 "Id": "980e45...76c8be",
...output omitted...
 "NetworkSettings": {
 "Bridge": "",
 "EndpointID": "483fc9...5d801a",
 "Gateway": "172.17.42.1",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "HairpinMode": false,
 "IPAddress": "172.17.0.9",
...output omitted...

This command allows formatting of the output string using the given Go template with the -f
option. For example, to retrieve only the IP address, use the following command:

[student@workstation ~]$ sudo podman inspect \
> -f '{{ .NetworkSettings.IPAddress }}' my-httpd-container
172.17.0.9

• podman stop: This command stops a running container gracefully:

[student@workstation ~]$ sudo podman stop my-httpd-container
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

Using podman stop is easier than finding the container start process on the host OS and killing

it.

50 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

• podman kill: This command sends Unix signals to the main process in the container. If no

signal is specified, it sends the SIGKILL signal, terminating the main process and the container.

[student@workstation ~]$ sudo podman kill my-httpd-container
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

You can specify the signal with the -s option:

[student@workstation ~]$ sudo podman kill -s SIGKILL my-httpd-container
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

Any Unix signal can be sent to the main process. Podman accepts either the signal name and

number. The following table shows several useful signals:

Signal Value Default Action Comment

SIGHUP 1 Term Hangup detected on controlling terminal or

death of controlling process

SIGINT 2 Term Interrupt from keyboard

SIGQUIT 3 Core Quit from keyboard

SIGILL 4 Core Illegal Instruction

SIGABRT 6 Core Abort signal from abort(3)

SIGFPE 8 Core Floating point exception

SIGKILL 9 Term Kill signal

SIGSEGV 11 Core Invalid memory reference

SIGPIPE 13 Term Broken pipe: write to pipe with no readers

SIGALRM 14 Term Timer signal from alarm(2)

SIGTERM 15 Term Termination signal

SIGUSR1 30,10,16 Term User-defined signal 1

SIGUSR2 31,12,17 Term User-defined signal 2

SIGCHLD 20,17,18 Ign Child stopped or terminated

SIGCONT 19,18,25 Cont Continue if stopped

SIGSTOP 17,19,23 Stop Stop process

SIGTSTP 18,20,24 Stop Stop typed at tty

SIGTTIN 21,21,26 Stop tty input for background process

DO180-OCP4.2-en-1-20191105 51

Chapter 3 | Managing Containers

Signal Value Default Action Comment

SIGTTOU 22,22,27 Stop tty output for background process

Note

Term
Terminate the process.

Core
Terminate the process and generate a core dump.

Ign
Signal is ignored.

Stop
Stop the process.

• podman restart: This command restarts a stopped container:

[student@workstation ~]$ sudo podman restart my-httpd-container
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

The podman restart command creates a new container with the same container ID, reusing

the stopped container state and file system.

• podman rm: This command deletes a container and discards its state and file system:

[student@workstation ~]$ sudo podman rm my-httpd-container
77d4b7b8ed1fd57449163bcb0b78d205e70d2314273263ab941c0c371ad56412

The -f option of the rm subcommand instructs Podman to remove the container even if not

stopped. This option terminates the container forcefully and then removes it. Using -f option is

equivalent to podman kill and podman rm commands together.

You can delete all containers at the same time. Many podman subcommands accept the -a
option. This option indicates using the subcommand on all available containers or images. The

following example removes all containers:

[student@workstation ~]$ sudo podman rm -a
5fd8e98ec7eab567eabe84943fe82e99fdfc91d12c65d99ec760d5a55b8470d6
716fd687f65b0957edac73b84b3253760e915166d3bc620c4aec8e5f4eadfe8e
86162c906b44f4cb63ba2e3386554030dcb6abedbcee9e9fcad60aa9f8b2d5d4

Before deleting all containers, all running containers must be in a “stopped” status. You can use

the following command to stop all containers:

[student@workstation ~]$ sudo podman stop -a
5fd8e98ec7eab567eabe84943fe82e99fdfc91d12c65d99ec760d5a55b8470d6
716fd687f65b0957edac73b84b3253760e915166d3bc620c4aec8e5f4eadfe8e
86162c906b44f4cb63ba2e3386554030dcb6abedbcee9e9fcad60aa9f8b2d5d4

52 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

Note

The inspect, stop, kill, restart, and rm subcommands can use the container

ID instead of the container name.

References

Unix Posix Signals man page

http://man7.org/linux/man-pages/man7/signal.7.html

DO180-OCP4.2-en-1-20191105 53

http://man7.org/linux/man-pages/man7/signal.7.html

Chapter 3 | Managing Containers

Guided Exercise

Managing a MySQL Container

In this exercise, you will create and manage a MySQL® database container.

Outcomes
You should be able to create and manage a MySQL database container.

Before You Begin
Make sure that workstation has the podman command available and is correctly set up by

running the following command from a terminal window:

[student@workstation ~]$ lab manage-lifecycle start

 1. Open a terminal window from the workstation VM (Applications → Utilities →

Terminal) and run the following command:

[student@workstation ~]$ sudo podman run --name mysql-db rhscl/mysql-57-rhel7
Trying to pull ...output omitted...
...output omitted...
Writing manifest to image destination
Storing signatures
You must either specify the following environment variables:
 MYSQL_USER (regex: '^[a-zA-Z0-9_]+$')
 MYSQL_PASSWORD (regex: '^[a-zA-Z0-9_~!@#$%^&*()-=<>,.?;:|]+$')
 MYSQL_DATABASE (regex: '^[a-zA-Z0-9_]+$')
Or the following environment variable:
 MYSQL_ROOT_PASSWORD (regex: '^[a-zA-Z0-9_~!@#$%^&*()-=<>,.?;:|]+$')
Or both.
Optional Settings:
...output omitted...

For more information, see https://github.com/sclorg/mysql-container

This command downloads the MySQL database container image and tries to start it, but

it does not start. This is because the image requires several environment variables to be

provided.

Note

If you try to run the container as a daemon (-d), the error message about the

required variables is not displayed. However, this message is included as part of the

container logs, which can be viewed using the following command:

[student@workstation ~]$ sudo podman logs mysql-db

54 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

 2. Start the container again, providing the required variables. Give it a name of mysql. Specify

each variable using the -e parameter.

Note

Make sure you start the new container with the correct name.

[student@workstation ~]$ sudo podman run --name mysql \
> -d -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
> rhscl/mysql-57-rhel7

The output is the container ID for the mysql container. Below is an example of the output.

a49dba9ff17f2b5876001725b581fdd331c9ab8b9eda21cc2a2899c23f078509

 3. Verify that the container was started correctly. Run the following command:

[student@workstation ~]$ sudo podman ps
CONTAINER ID ...output omitted... STATUS PORTS NAMES
a49dba9ff17f ...output omitted... Up About a minute ago mysql

The container ID shown is a shortened from the container ID displayed in the previous

command.

 4. Inspect the container metadata to obtain the IP address from the MySQL database:

[student@workstation ~]$ sudo podman inspect \
> -f '{{ .NetworkSettings.IPAddress }}' mysql
10.88.0.6

The IP address of your container may differ from the one shown above (10.88.0.6).

Note

You can get other important information with the podman inspect command. For

example, if you forget the root password, it is available in the Env section.

DO180-OCP4.2-en-1-20191105 55

Chapter 3 | Managing Containers

 5. Create the Projects table:

You are connected to the items database. Create a new table by using one of the

following:

• Connect to the MySQL database and type the CREATE TABLE command.

1. Connect to the MySQL database from the host. Change the IP address in

the command below to match the IP address of your mysql container:

[student@workstation ~]$ mysql -uuser1 -h 10.88.0.6 -p items
Enter password:

Use mypa55 as the password.

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.7.16 MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [items]>

2. Type or copy the following SQL commands:

MySQL [items]> CREATE TABLE Projects (id int(11) NOT NULL, \
 -> name varchar(255) DEFAULT NULL, code varchar(255) DEFAULT NULL, \
 -> PRIMARY KEY (id));
Query OK, 0 rows affected (0.05 sec)

3. Insert a row into the table:

MySQL [items]> insert into Projects (id, name, code) values (1,'DevOps','DO180');
Query OK, 1 row affected (0.09 sec)

4. Exit from the MySQL prompt:

MySQL [items]> exit

• Alternatively you can create the database and insert the row by using the provided file:

[student@workstation ~]$ mysql -uuser1 -h 10.88.0.6 \
> -pmypa55 items < DO180/labs/manage-lifecycle/db.sql

56 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

 6. Create another container using the same container image as the previous container

executing the /bin/bash shell:

[student@workstation ~]$ sudo podman run --name mysql-2 \
> -it rhscl/mysql-57-rhel7 /bin/bash
bash-4.2$

 7. Try to connect to the MySQL database in the new container:

bash-4.2$ mysql -uroot

The following error is displayed:

ERROR 2002 (HY000): Can't connect to local MySQL ...output omitted...

The reason for this error is that the MySQL database server is not running, because when

we created the new container we changed the entry point responsible for starting the

database to /bin/bash.

 8. Exit from the bash shell:

bash-4.2$ exit

 9. Verify that the container mysql-2 is not running:

[student@workstation ~]$ sudo podman ps -a \
> --format="table {{.ID}} {{.Names}} {{.Status}}"
CONTAINER ID NAMES STATUS
2871e392af02 mysql-2 Exited (1) 19 seconds ago
a49dba9ff17f mysql Up 10 minutes ago
c053c7e09c21 mysql-db Exited (1) 44 minutes ago

 10. Execute commands in the detached container. Use mypa55 for the password:

[student@workstation ~]$ sudo podman exec mysql /bin/bash \
> -c 'mysql -uuser1 -p -e "select * from items.Projects;"'
Enter password: mypa55
id name code
1 DevOps DO180

The previous command runs a bash interpreter in the mysql container. Then, the

command instructs bash to run mysql interpreter, that receives the SQL query to fetch

data from the database.

Finish

On workstation, run the lab manage-lifecycle finish script to complete this exercise.

[student@workstation ~]$ lab manage-lifecycle finish

DO180-OCP4.2-en-1-20191105 57

Chapter 3 | Managing Containers

This concludes the exercise.

58 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

Attaching Persistent Storage to
Containers

Objectives
After completing this section, students should be able to:

• Save application data across container restarts through the use of persistent storage.

• Configure host directories for use as container volumes.

• Mount a volume inside the container.

Preparing Permanent Storage Locations
Container storage is said to be ephemeral, meaning its contents are not preserved after the

container is removed. Containerized applications work on the assumption that they always start

with empty storage, and this makes creating and destroying containers relatively inexpensive

operations.

Previously in this course, container images were characterized as immutable and layered, meaning

that they are never changed, but rather composed of layers that add or override the contents of

layers below.

A running container gets a new layer over its base container image, and this layer is the container

storage. At first, this layer is the only read/write storage available for the container, and it is

used to create working files, temporary files, and log files. Those files are considered volatile. An

application does not stop working if they are lost. The container storage layer is exclusive to the

running container, so if another container is created from the same base image, it gets another

read/write layer. This ensures the each container's resources are isolated from other similar

containers.

Ephemeral container storage is not sufficient for applications that need to keep data over restarts,

such as databases. To support such applications, the administrator must provide a container with

persistent storage.

DO180-OCP4.2-en-1-20191105 59

Chapter 3 | Managing Containers

Figure 3.3: Container layers

Containerized applications should not try to use the container storage to store persistent data,

because they cannot control how long its contents will be preserved. Even if it were possible to

keep container storage indefinitely, the layered file system does not perform well for intensive I/O

workloads and would not be adequate for most applications requiring persistent storage.

Reclaiming Storage

Podman keeps old stopped container storage available to be used by troubleshooting operations,

such as reviewing failed container logs for error messages.

If the administrator needs to reclaim old container storage, the container can then be deleted

using podman rm container_id. This command also deletes the container storage. The

stopped container IDs can be found using podman ps -a command.

Preparing the Host Directory

Podman can mount host directories inside a running container. The containerized application sees

these host directories as part of the container storage, much like regular applications see a remote

network volume as if it were part of the host file system. But these host directories' contents

are not reclaimed after the container is stopped, and they can be mounted to new containers

whenever needed.

For example, a database container can use a host directory to store database files. If this database

container fails, Podman can create a new container using the same host directory, keeping the

database data available to client applications. To the database container, it does not matter where

this host directory is stored from the host point of view; it could be anything from a local hard disk

partition to a remote networked file system.

A container runs as a host operating system process, under a host operating system user

and group ID, so the host directory needs to be configured with ownership and permissions

allowing access to the container. In RHEL, the host directory also needs to be configured

with the appropriate SELinux context, which is container_file_t. Podman uses the

container_file_t SELinux context to restrict which files of the host system the container is

allowed to access. This avoids information leakage between the host system and the applications

running inside containers.

One way to set up the host directory is described below:

60 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

1. Create a directory with owner and group root:

[student@workstation ~]$ sudo mkdir /var/dbfiles

2. The user running processes in the container must be capable of writing files to the directory.

If the host machine does not have exactly the same user defined, the permission should

be defined with the numeric user ID (UID) from the container. In the case of the Red Hat-

provided MySQL service, the UID is 27:

[student@workstation ~]$ sudo chown -R 27:27 /var/dbfiles

3. Apply the container_file_t context to the directory (and all subdirectories) to allow

containers access to all of its contents.

[student@workstation ~]$ sudo semanage fcontext -a -t container_file_t '/var/
dbfiles(/.*)?'

4. Apply the SELinux container policy that you set up in the first step to the newly created

directory:

[student@workstation ~]$ sudo restorecon -Rv /var/dbfiles

The host directory must be configured before starting the container that uses the directory.

Mounting a Volume

After creating and configuring the host directory, the next step is to mount this directory to a

container. To bind mount a host directory to a container, add the -v option to the podman run
command, specifying the host directory path and the container storage path, separated by a colon

(:).

For example, to use the /var/dbfiles host directory for MySQL server database files, which are

expected to be under /var/lib/mysql inside a MySQL container image named mysql, use the

following command:

[student@workstation ~]$ sudo podman run -v /var/dbfiles:/var/lib/mysql rhmap47/
mysql

In the previous command, if the /var/lib/mysql already exists inside the mysql container

image, the /var/dbfiles mount overlays but does not remove the content from the container

image. If the mount is removed, the original content is accessible again.

DO180-OCP4.2-en-1-20191105 61

Chapter 3 | Managing Containers

Guided Exercise

Persisting a MySQL Database

In this exercise, you will create a container that stores the MySQL database data into a host

directory.

Outcomes
You should be able to deploy container with a persistent database.

Before You Begin
The workstation should not have any container images running. Run the following

command on workstation:

[student@workstation ~]$ lab manage-storage start

 1. Open a terminal window on workstation (Applications → System Tools →

Terminal).

 2. Create the /var/local/mysql directory with the correct SELinux context and

permissions.

2.1. Create the /var/local/mysql directory.

[student@workstation ~]$ sudo mkdir -pv /var/local/mysql
mkdir: created directory ‘/var/local/mysql’

2.2. Add the appropriate SELinux context for the /var/local/mysql directory and its

contents.

[student@workstation ~]$ sudo semanage fcontext -a \
> -t container_file_t '/var/local/mysql(/.*)?'

2.3. Apply the SELinux policy to the newly created directory.

[student@workstation ~]$ sudo restorecon -R /var/local/mysql

2.4. Verify that the SELinux context type for the /var/local/mysql directory is

container_file_t.

[student@workstation ~]$ ls -dZ /var/local/mysql
drwxr-xr-x. root root unconfined_u:object_r:container_file_t:s0 /var/local/mysql

2.5. Change the owner of the /var/local/mysql directory to the mysql user and

mysql group:

62 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo chown -Rv 27:27 /var/local/mysql
changed ownership of ‘/var/local/mysql’ from root:root to 27:27

Note

The user running processes in the container must be capable of writing files to the

directory. If the host machine does not have exactly the same user defined, the

permission should be defined with the numeric user ID (UID) from the container. For

the MySQL service provided by Red Hat, the UID is 27.

 3. Create a MySQL container instance with persistent storage.

3.1. Pull the MySQL container image from the internal registry:

[student@workstation ~]$ sudo podman pull rhscl/mysql-57-rhel7
Trying to pull ...output omitted...rhscl/mysql-57-rhel7...output omitted...
...output omitted...
Writing manifest to image destination
Storing signatures
4ae3a3f4f409a8912cab9fbf71d3564d011ed2e68f926d50f88f2a3a72c809c5

3.2. Create a new container specifying the mount point to store the MySQL database data:

[student@workstation ~]$ sudo podman run --name persist-db \
> -d -v /var/local/mysql:/var/lib/mysql/data \
> -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
> rhscl/mysql-57-rhel7

This command mounts the host /var/local/mysql directory in the container /var/
lib/mysql/data directory. The /var/lib/mysql/data is the directory where the

MySQL database stores the data.

3.3. Verify that the container was started correctly. Run the following command:

[student@workstation ~]$ sudo podman ps \
> --format="table {{.ID}} {{.Names}} {{.Status}}"
CONTAINER ID NAMES STATUS
ce637c4da16 persist-db Up 3 minutes ago

 4. Verify that the /var/local/mysql directory contains an items directory:

[student@workstation ~]$ ls -l /var/local/mysql
total 41032
-rw-r-----. 1 27 27 56 Jun 13 07:50 auto.cnf
-rw-------. 1 27 27 1676 Jun 13 07:50 ca-key.pem
-rw-r--r--. 1 27 27 1075 Jun 13 07:50 ca.pem
-rw-r--r--. 1 27 27 1079 Jun 13 07:50 client-cert.pem
-rw-------. 1 27 27 1680 Jun 13 07:50 client-key.pem
-rw-r-----. 1 27 27 2 Jun 13 07:51 e89494e64d5b.pid
-rw-r-----. 1 27 27 349 Jun 13 07:51 ib_buffer_pool

DO180-OCP4.2-en-1-20191105 63

Chapter 3 | Managing Containers

-rw-r-----. 1 27 27 12582912 Jun 13 07:51 ibdata1
-rw-r-----. 1 27 27 8388608 Jun 13 07:51 ib_logfile0
-rw-r-----. 1 27 27 8388608 Jun 13 07:50 ib_logfile1
-rw-r-----. 1 27 27 12582912 Jun 13 07:51 ibtmp1
drwxr-x---. 2 27 27 20 Jun 13 07:50 items
drwxr-x---. 2 27 27 4096 Jun 13 07:50 mysql
drwxr-x---. 2 27 27 8192 Jun 13 07:50 performance_schema
-rw-------. 1 27 27 1680 Jun 13 07:50 private_key.pem
-rw-r--r--. 1 27 27 452 Jun 13 07:50 public_key.pem
-rw-r--r--. 1 27 27 1079 Jun 13 07:50 server-cert.pem
-rw-------. 1 27 27 1676 Jun 13 07:50 server-key.pem
drwxr-x---. 2 27 27 8192 Jun 13 07:50 sys

This directory stores data related to the items database that was created by this container.

If this directory is not available, the mount point was not defined correctly in the container

creation.

Finish

On workstation, run the lab manage-storage finish script to complete this lab.

[student@workstation ~]$ lab manage-storage finish

This concludes the exercise.

64 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

Accessing Containers

Objectives
After completing this section, students should be able to:

• Describe the basics of networking with containers.

• Remotely connect to services within a container.

Introducing Networking with Containers
The Cloud Native Computing Foundation (CNCF) sponsors the Container Networking Interface

(CNI) open source project. The CNI project aims to standardize the network interface for

containers in cloud native environments, such as Kubernetes and Red Hat OpenShift Container

Platform.

Podman uses the CNI project to implement a software-defined network (SDN) for containers

on each host. Podman attaches each container to a virtual bridge and assigns each container a

private IP address. The configuration file that specifies CNI settings for Podman is /etc/cni/
net.d/87-podman-bridge.conflist.

DO180-OCP4.2-en-1-20191105 65

Chapter 3 | Managing Containers

Figure 3.4: Basic Linux container networking

When Podman creates containers on the same host, it assigns each container a unique IP address

and connects them all to the same software-defined network. These containers can communicate

freely with each other by IP address.

Containers created with Podman running on different hosts belong to different software-defined

networks. Each SDN is isolated, which prevents a container in one network from communicating

with a container in a different network. Because of network isolation, a container in one SDN can

have the same IP address as a container in a different SDN.

It is also important to note that, by default, all container networks are hidden from the host

network. That is, containers typically can access the host network, but without explicit

configuration, there is no access back into the container network.

66 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

Mapping Network Ports
Accessing a container from the host network can be a challenge. A container is assigned an

IP address from a pool of available addresses. When a container is destroyed, the container's

address is released back to the pool of available addresses. Another problem is that the container

software-defined network is only accessible from the container host.

To solve these problems, define port forwarding rules to allow external access to a container

service. Use the -p [<IP address>:][<host port>:]<container port> option with

the podman run command to create an externally accessible container. Consider the following

example:

[student@workstation ~]$ sudo podman run -d --name apache1 -p 8080:80 rhscl/
httpd-24-rhel7:2.4

The value 8080:80 specifies that any requests to port 8080 on the host are forwarded to port 80

within the container.

Figure 3.5: Allowing external accesses to Linux containers

You can also use the -p option to only forward requests to a container if those requests originate

from a specified IP address:

DO180-OCP4.2-en-1-20191105 67

Chapter 3 | Managing Containers

[student@workstation ~]$ sudo podman run -d --name apache2 \
> -p 127.0.0.1:8081:80 rhscl/httpd-24-rhel7:2.4

The example above limits external access to the apache2 container to requests from localhost
to host port 8081. These requests are forwarded to port 80 in the apache2 container.

If a port is not specified for the host port, Podman assigns a random available host port for the

container:

[student@workstation ~]$ sudo podman run -d --name apache3 -p 127.0.0.1::80 rhscl/
httpd-24-rhel7:2.4

To see the port assigned by Podman, use the podman port <container name> command:

[student@workstation ~]$ sudo podman port apache3
80/tcp -> 127.0.0.1:35134
[student@workstation ~]$ curl 127.0.0.1:35134
<html><body><h1>It works!</h1></body></html>

If only a container port is specified with the -p option, a random available host port is assigned to

container. Requests to this assigned host port from any IP address are forwarded to the container

port.

[student@workstation ~]$ sudo podman run -d --name apache4 -p 80 rhscl/httpd-24-
rhel7:2.4
[student@workstation ~]$ sudo podman port apache4
80/tcp -> 0.0.0.0:37068

In the above example, any routable request to host port 37068 is forwarded to the port 80 in the

container.

References

Container Network Interface - networking for Linux containers

https://github.com/containernetworking/cni

Cloud Native Computing Foundation

https://www.cncf.io/

68 DO180-OCP4.2-en-1-20191105

https://github.com/containernetworking/cni
https://www.cncf.io/

Chapter 3 | Managing Containers

Guided Exercise

Loading the Database

In this exercise, you will create a MySQL database container. You will forward ports from the

container to the host in order to load the database with a SQL script.

Outcomes
You should be able to deploy a database container and load a SQL script.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab manage-networking start

This ensures the /var/local/mysql directory exists and is configured with the correct

permissions to enable persistent storage for the MySQL container.

 1. Create a MySQL container instance with persistent storage and port forwarding:

[student@workstation ~]$ sudo podman run --name mysqldb-port \
> -d -v /var/local/mysql:/var/lib/mysql/data -p 13306:3306 \
> -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
> rhscl/mysql-57-rhel7
Trying to pull ...output omitted...
Copying blob sha256:e373541...output omitted...
 69.66 MB / 69.66 MB [===] 8s
Copying blob sha256:c5d2e94...output omitted...
 1.20 KB / 1.20 KB [===] 0s
Copying blob sha256:b3949ae...output omitted...
 62.03 MB / 62.03 MB [===] 8s
Writing manifest to image destination
Storing signatures
9941...7d89

The last line of your output will differ from that shown above, as well as the time needed to

download each image layer.

The -p option configures port forwarding. In this case, every connection on the host IP

address to the port 13306 is forwarded to the container port 3306.

Note

The /var/local/mysql directory is created and configured by the start script to

have the permissions required by the containerized database.

DO180-OCP4.2-en-1-20191105 69

Chapter 3 | Managing Containers

 2. Run the following command:

[student@workstation ~]$ sudo podman ps
CONTAINER ID ...output omitted... PORTS NAMES
9941da2936a5 ...output omitted... 0.0.0.0:13306->3306/tcp mysqldb-port

Inspect the PORTS column to see the port forwarding rule.

 3. Load the database:

[student@workstation ~]$ mysql -uuser1 -h 127.0.0.1 -pmypa55 \
> -P13306 items < /home/student/DO180/labs/manage-networking/db.sql

If there are no errors, the above command does not return any output.

70 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

 4. Verify that the database was successfully loaded by one of the three following alternatives:

• Using the port forwarded from the host and the local database client:

[student@workstation ~]$ mysql -uuser1 -h 127.0.0.1 -pmypa55 \
> -P13306 items -e "SELECT * FROM Item"
+----+-------------------+------+
| id | description | done |
+----+-------------------+------+
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
+----+-------------------+------+

• Run an interactive terminal and the database client from inside the container:

1. Open a Bash shell inside the container.

[student@workstation ~]$ sudo podman exec -it mysqldb-port /bin/bash
bash-4.2$

2. Verify that the mysql command is installed in the container:

bash-4.2$ which mysql
/opt/rh/rh-mysql57/root/usr/bin/mysql

3. Verify that the database contains data:

bash-4.2$ mysql -uroot items -e "SELECT * FROM Item"
+----+-------------------+------+
| id | description | done |
+----+-------------------+------+
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
+----+-------------------+------+

4. Exit from the Bash shell inside the container:

bash-4.2$ exit
[student@workstation ~]$

• Inject the mysql process inside the container.

[student@workstation ~]$ sudo podman exec -it mysqldb-port \
> /opt/rh/rh-mysql57/root/usr/bin/mysql -uroot items -e "SELECT * FROM Item"
+----+-------------------+------+
| id | description | done |
+----+-------------------+------+
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
+----+-------------------+------+

DO180-OCP4.2-en-1-20191105 71

Chapter 3 | Managing Containers

Note

The mysql command is not in the PATH variable and, for this reason, you must use

an absolute path.

Finish

On workstation, run the lab manage-networking finish script to complete this lab.

[student@workstation ~]$ lab manage-networking finish

This concludes the exercise.

72 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

Lab

Managing Containers

Performance Checklist
In this lab, you will deploy a container that saves the MySQL database data into a host folder,

loads the database, and manages the container.

Outcomes
You should be able to deploy and manage a persistent database using a shared volume. You

should also be able to start a second database using the same shared volume and observe

that the data is consistent between the two containers because they are using the same

directory on the host to store the MySQL data.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab manage-review start

1. Create the /var/local/mysql directory with the correct SELinux context and permissions.

1.1. Create the /var/local/mysql directory.

1.2. Add the appropriate SELinux context for the /var/local/mysql directory and its

contents. With the correct context, you can mount this directory in a running container.

1.3. Apply the SELinux policy to the newly created directory.

1.4. Change the owner of the /var/local/mysql directory to match the mysql user and

mysql group for the rhscl/mysql-57-rhel7 container image:

2. Deploy a MySQL container instance using the following characteristics:

• Name: mysql-1

• Run as daemon: yes

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container

folder

• Container image: rhscl/mysql-57-rhel7

• Port forward: no

• Environment variables:

• MYSQL_USER: user1

• MYSQL_PASSWORD: mypa55

• MYSQL_DATABASE: items

DO180-OCP4.2-en-1-20191105 73

Chapter 3 | Managing Containers

• MYSQL_ROOT_PASSWORD: r00tpa55

3. Load the items database using the /home/student/DO180/labs/manage-review/
db.sql script.

3.1. Get the container IP address.

3.2. Load the database using the SQL commands in /home/student/DO180/labs/
manage-review/db.sql. Use the IP address you find in the previous step as the

database server's host IP.

Note

You can import all the commands in the above file using the less-than operator

(<) after the mysql command, instead of typing them. Also, you need to add the

-h CONTAINER_IP parameter to the mysql command to connect to the correct

container.

3.3. Use an SQL SELECT statement to output all rows of the Item table to verify that the

Items database is loaded.

Note

You can add the -e SQL parameter to the mysql command to execute an SQL

instruction.

4. Stop the container gracefully.

Important

This step is very important because a new container will be created sharing the

same volume for database data. Having two containers using the same volume can

corrupt the database. Do not restart the mysql-1 container.

5. Create a new container with the following characteristics:

• Name: mysql-2

• Run as a daemon: yes

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container

folder

• Container image: rhscl/mysql-57-rhel7

• Port forward: yes, from host port 13306 to container port 3306

• Environment variables:

• MYSQL_USER: user1

• MYSQL_PASSWORD: mypa55

• MYSQL_DATABASE: items

• MYSQL_ROOT_PASSWORD: r00tpa55

74 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

6. Save the list of all containers (including stopped ones) to the /tmp/my-containers file.

7. Access the Bash shell inside the container and verify that the items database and the Item
table are still available. Confirm also that the table contains data.

7.1. Access the Bash shell inside the container.

7.2. Connect to the MySQL server.

7.3. List all databases and confirm that the items database is available.

7.4. List all tables from the items database and verify that the Item table is available.

7.5. View the data from the table.

7.6. Exit from the MySQL client and from the container shell.

8. Using port forwarding, insert a new row into the Item table. The row should have a

description value of Finished lab, and a done value of 1.

8.1. Connect to the MySQL database.

8.2. Insert the new row.

8.3. Exit from the MySQL client.

9. Because the first container is not required any more, remove it to release resources.

Evaluation

Grade your work by running the lab manage-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-review grade

Finish

On workstation, run the lab manage-review finish command to complete this lab.

[student@workstation ~]$ lab manage-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 75

Chapter 3 | Managing Containers

Solution

Managing Containers

Performance Checklist
In this lab, you will deploy a container that saves the MySQL database data into a host folder,

loads the database, and manages the container.

Outcomes
You should be able to deploy and manage a persistent database using a shared volume. You

should also be able to start a second database using the same shared volume and observe

that the data is consistent between the two containers because they are using the same

directory on the host to store the MySQL data.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab manage-review start

1. Create the /var/local/mysql directory with the correct SELinux context and permissions.

1.1. Create the /var/local/mysql directory.

[student@workstation ~]$ sudo mkdir -pv /var/local/mysql
mkdir: created directory ‘/var/local/mysql’

1.2. Add the appropriate SELinux context for the /var/local/mysql directory and its

contents. With the correct context, you can mount this directory in a running container.

[student@workstation ~]$ sudo semanage fcontext -a \
> -t container_file_t '/var/local/mysql(/.*)?'

1.3. Apply the SELinux policy to the newly created directory.

[student@workstation ~]$ sudo restorecon -R /var/local/mysql

1.4. Change the owner of the /var/local/mysql directory to match the mysql user and

mysql group for the rhscl/mysql-57-rhel7 container image:

[student@workstation ~]$ sudo chown -Rv 27:27 /var/local/mysql
changed ownership of ‘/var/local/mysql’ from root:root to 27:27

2. Deploy a MySQL container instance using the following characteristics:

• Name: mysql-1

76 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

• Run as daemon: yes

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container

folder

• Container image: rhscl/mysql-57-rhel7

• Port forward: no

• Environment variables:

• MYSQL_USER: user1

• MYSQL_PASSWORD: mypa55

• MYSQL_DATABASE: items

• MYSQL_ROOT_PASSWORD: r00tpa55

2.1. Create and start the container.

[student@workstation ~]$ sudo podman run --name mysql-1 \
> -d -v /var/local/mysql:/var/lib/mysql/data \
> -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
> rhscl/mysql-57-rhel7
Trying to pull ...output omitted...
...output omitted...
Writing manifest to image destination
Storing signatures
6l6azfaa55x866e7eb18b1fd0423a5461d8f24c147b1ad8668b76e6167587cdd

2.2. Verify that the container was started correctly.

[student@workstation ~]$ sudo podman ps
CONTAINER ID ...output omitted... NAMES
6l6azfaa55x8 ...output omitted... mysql-1

3. Load the items database using the /home/student/DO180/labs/manage-review/
db.sql script.

3.1. Get the container IP address.

[student@workstation ~]$ sudo podman inspect \
> -f '{{ .NetworkSettings.IPAddress }}' mysql-1
10.88.0.6

3.2. Load the database using the SQL commands in /home/student/DO180/labs/
manage-review/db.sql. Use the IP address you find in the previous step as the

database server's host IP.

DO180-OCP4.2-en-1-20191105 77

Chapter 3 | Managing Containers

Note

You can import all the commands in the above file using the less-than operator

(<) after the mysql command, instead of typing them. Also, you need to add the

-h CONTAINER_IP parameter to the mysql command to connect to the correct

container.

[student@workstation ~]$ mysql -uuser1 -h CONTAINER_IP \
> -pmypa55 items < /home/student/DO180/labs/manage-review/db.sql

3.3. Use an SQL SELECT statement to output all rows of the Item table to verify that the

Items database is loaded.

Note

You can add the -e SQL parameter to the mysql command to execute an SQL

instruction.

[student@workstation ~]$ mysql -uuser1 -h CONTAINER_IP -pmypa55 items \
> -e "SELECT * FROM Item"
+----+-------------------+------+
| id | description | done |
+----+-------------------+------+
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
+----+-------------------+------+

4. Stop the container gracefully.

Important

This step is very important because a new container will be created sharing the

same volume for database data. Having two containers using the same volume can

corrupt the database. Do not restart the mysql-1 container.

Use the following command to stop the container:

[student@workstation ~]$ sudo podman stop mysql-1
6l6azfaa55x866e7eb18b1fd0423a5461d8f24c147b1ad8668b76e6167587cdd

5. Create a new container with the following characteristics:

• Name: mysql-2

• Run as a daemon: yes

• Volume: from /var/local/mysql host folder to /var/lib/mysql/data container

folder

• Container image: rhscl/mysql-57-rhel7

78 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

• Port forward: yes, from host port 13306 to container port 3306

• Environment variables:

• MYSQL_USER: user1

• MYSQL_PASSWORD: mypa55

• MYSQL_DATABASE: items

• MYSQL_ROOT_PASSWORD: r00tpa55

5.1. Create and start the container.

[student@workstation ~]$ sudo podman run --name mysql-2 \
> -d -v /var/local/mysql:/var/lib/mysql/data \
> -p 13306:3306 \
> -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \
> -e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \
> rhscl/mysql-57-rhel7
281c0e2790e54cd5a0b8e2a8cb6e3969981b85cde8ac611bf7ea98ff78bdffbb

5.2. Verify that the container was started correctly.

[student@workstation ~]$ sudo podman ps
CONTAINER ID ...output omitted... NAMES
281c0e2790e5 ...output omitted... mysql-2

6. Save the list of all containers (including stopped ones) to the /tmp/my-containers file.

Save the information with the following command:

[student@workstation ~]$ sudo podman ps -a > /tmp/my-containers

7. Access the Bash shell inside the container and verify that the items database and the Item
table are still available. Confirm also that the table contains data.

7.1. Access the Bash shell inside the container.

[student@workstation ~]$ sudo podman exec -it mysql-2 /bin/bash

7.2. Connect to the MySQL server.

bash-4.2$ mysql -uroot

7.3. List all databases and confirm that the items database is available.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| items |

DO180-OCP4.2-en-1-20191105 79

Chapter 3 | Managing Containers

| mysql |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.03 sec)

7.4. List all tables from the items database and verify that the Item table is available.

mysql> use items;
Database changed
mysql> show tables;
+-----------------+
| Tables_in_items |
+-----------------+
| Item |
+-----------------+
1 row in set (0.01 sec)

7.5. View the data from the table.

mysql> SELECT * FROM Item;
+----+-------------------+------+
| id | description | done |
+----+-------------------+------+
| 1 | Pick up newspaper | 0 |
| 2 | Buy groceries | 1 |
+----+-------------------+------+

7.6. Exit from the MySQL client and from the container shell.

mysql> exit
Bye
bash-4.2$ exit

8. Using port forwarding, insert a new row into the Item table. The row should have a

description value of Finished lab, and a done value of 1.

8.1. Connect to the MySQL database.

[student@workstation ~]$ mysql -uuser1 -h workstation.lab.example.com \
> -pmypa55 -P13306 items
...output omitted...

Welcome to the MariaDB monitor. Commands end with ; or \g.
...output omitted...

MySQL [items]>

8.2. Insert the new row.

MySQL[items]> insert into Item (description, done) values ('Finished lab', 1);
Query OK, 1 row affected (0.00 sec)

80 DO180-OCP4.2-en-1-20191105

Chapter 3 | Managing Containers

8.3. Exit from the MySQL client.

MySQL[items]> exit
Bye

9. Because the first container is not required any more, remove it to release resources.

Use the following command to remove the container:

[student@workstation ~]$ sudo podman rm mysql-1
6l6azfaa55x866e7eb18b1fd0423a5461d8f24c147b1ad8668b76e6167587cdd

This concludes the lab.

Evaluation

Grade your work by running the lab manage-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab manage-review grade

Finish

On workstation, run the lab manage-review finish command to complete this lab.

[student@workstation ~]$ lab manage-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 81

Chapter 3 | Managing Containers

Summary

In this chapter, you learned:

• Podman has subcommands to: create a new container (run), delete a container (rm), list

containers (ps), stop a container (stop), and start a process in a container (exec).

• Default container storage is ephemeral, meaning its contents are not present after the container

restarts or is removed.

• Containers can use a folder from the host file system to work with persistent data.

• Podman mounts volumes in a container with the -v option in the podman run command.

• The podman exec command starts an additional process inside a running container.

• Podman maps local ports to container ports by using the -p option in the run subcommand.

82 DO180-OCP4.2-en-1-20191105

Chapter 4

Managing Container Images

Goal Manage the life cycle of a container image from
creation to deletion.

Objectives • Search for and pull images from remote
registries.

• Export, import, and manage container images
locally and in a registry.

Sections • Accessing Registries (and Quiz)

• Manipulating Container Images (and Guided
Exercise)

Lab • Managing Container Images

DO180-OCP4.2-en-1-20191105 83

Chapter 4 | Managing Container Images

Accessing Registries

Objectives
After completing this section, students should be able to:

• Search for and pull images from remote registries using Podman commands and the registry

REST API.

• List the advantages of using a certified public registry to download secure images.

• Customize the configuration of Podman to access alternative container image registries.

• List images downloaded from a registry to the local file system.

• Manage tags to pull tagged images.

Public Registries
Image registries are services offering container images to download. They allow image creators

and maintainers to store and distribute container images to public or private audiences.

Podman searches for and downloads container images from public and private registries. Red Hat

Container Catalog is the public image registry managed by Red Hat. It hosts a large set of

container images, including those provided by major open source projects, such as Apache,

MySQL, and Jenkins. All images in the Container Catalog are vetted by the Red Hat internal

security team, meaning they are trustworthy and secured against security flaws.

Red Hat container images provide the following benefits:

• Trusted source: All container images comprise sources known and trusted by Red Hat.

• Original dependencies: None of the container packages have been tampered with, and only

include known libraries.

• Vulnerability-free: Container images are free of known vulnerabilities in the platform

components or layers.

• Runtime protection: All applications in container images run as non-root users, minimizing the

exposure surface to malicious or faulty applications.

• Red Hat Enterprise Linux (RHEL) compatible: Container images are compatible with all RHEL

platforms, from bare metal to cloud.

• Red Hat support: Red Hat commercially supports the complete stack.

Quay.io is another public image repository sponsored by Red Hat. Quay.io introduces several

exciting features, such as server-side image building, fine-grained access controls, and automatic

scanning of images for known vulnerabilities.

While Red Hat Container Catalog images are trusted and verified, Quay.io offers live images

regularly updated by creators. Quay.io users can create their namespaces, with fine-grained access

control, and publish the images they create to that namespace. Container Catalog users rarely or

never push new images, but consume trusted images generated by the Red Hat team.

84 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

Private Registries
Some image creators or maintainers want to make their images public available. Other image

creators, however, prefer to keep their images private due to:

• Company privacy and secret protection.

• Legal restrictions and laws.

• Avoidance of publishing images in development.

Private registries give image creators the control about their images placement, distribution and

usage.

Configuring Registries in Podman
To configure registries for the podman command, you need to update the /etc/containers/
registries.conf file. Edit the registries entry in the [registries.search] section,

adding an entry to the values list.

[registries.search]
registries = ["registry.access.redhat.com", "quay.io"]

Note

Use an FQDN and port number to identify a registry. A registry that does not include

a port number has a default port number of 5000. If the registry uses a different

port, it must be specified. Indicate port numbers by appending a colon (:) and the

port number after the FQDN.

Secure connections to a registry require a trusted certificate. To support insecure connections,

add the registry name to the registries entry in [registries.insecure] section of /etc/
containers/registries.conf file:

[registries.insecure]
registries = ['localhost:5000']

Accessing Registries

Searching for Images in Registries

The podman search command finds images by image name, user name, or description from all

the registries listed in the /etc/containers/registries.conf configuration file. The syntax

for the podman search command is shown below:

[student@workstation ~]$ sudo podman search [OPTIONS] <term>

The following table shows some useful options available for the search subcommand:

Option Description

--limit <number> Limits the number of listed images per

registry.

DO180-OCP4.2-en-1-20191105 85

Chapter 4 | Managing Container Images

Option Description

--filter <filter=value> Filter output based on conditions provided.

Supported filters are:

• stars=<number>: Show only images with

at least this number of stars.

• is-automated=<true|false>: Show

only images automatically built.

• is-official=<true|false>: Show only

images flagged as official.

--tls-verify <true|false> Enables or disables HTTPS certificate

validation for all used registries. true

Registry HTTP API

A remote registry exposes web services that provide an application programming interface (API)

to the registry. Podman uses these interfaces to access and interact with remote repositories.

Many registries conform to the Docker Registry HTTP API v2 specification, which exposes

a standardized REST interface for registry interaction. You can use this REST interface to directly

interact with a registry, instead of using Podman.

Some samples using this API with curl commands are shown below:

To list all repositories available in a registry, use the /v2/_catalog endpoint. The n parameter is

used to limit the number of repositories to return.

[student@workstation ~]$ curl -Ls https://myserver/v2/_catalog?n=3
{"repositories":["centos/httpd","do180/custom-httpd","hello-openshift"]}

Note

If Python is available, use it to format the JSON response:

[student@workstation ~]$ curl -Ls https://myserver/v2/_catalog?n=3 \
> | python -m json.tool
 {
 "repositories": [
 "centos/httpd",
 "do180/custom-httpd",
 "hello-openshift"
]
 }

The /v2/<name>/tags/list endpoint provides the list of tags available for a single image:

[student@workstation ~]$ curl -Ls \
> https://quay.io/v2/redhattraining/httpd-parent/tags/list \
> | python -m json.tool
{

86 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

 "name": "redhattraining/httpd-parent",
 "tags": [
 "latest",
 "2.4"
]
}

Note

Quay.io offers a dedicated API to interact with repositories beyond what is specified

in Docker Repository API. See https://docs.quay.io/api/ for details.

Registry Authentication

Some container image registries require access authorization. The podman login command

allows username and password authentication to a registry:

[student@workstation ~]$ sudo podman login -u username \
> -p password registry.access.redhat.com
Login Succeeded!

The registry HTTP API requires authentication credentials. First, use the Red Hat Single Sign On

(SSO) service to obtain an access token:

[student@workstation ~]$ curl -u username:password -Ls \
> "https://sso.redhat.com/auth/realms/rhcc/protocol/redhat-docker-v2/auth?
service=docker-registry"
{"token":"eyJh...o5G8",
"access_token":"eyJh...mgL4",
"expires_in":...output omitted...}[student@workstation ~]$

Then, include this token in a Bearer authorization header in subsequent requests:

[student@workstation ~]$ curl -H "Authorization: Bearer eyJh...mgL4" \
> -Ls https://registry.redhat.io/v2/rhscl/mysql-57-rhel7/tags/list \
> | python -mjson.tool
{
 "name": "rhscl/mysql-57-rhel7",
 "tags": [
 "5.7-3.9",
 "5.7-3.8",
 "5.7-3.4",
 "5.7-3.7",
...output omitted...

Note

Other registries may require different steps to provide credentials. If a registry

adheres to the Docker Registry HTTP v2 API, authentication conforms to the

RFC7235 scheme.

DO180-OCP4.2-en-1-20191105 87

Chapter 4 | Managing Container Images

Pulling Images

To pull container images from a registry, use the podman pull command:

[student@workstation ~]$ sudo podman pull [OPTIONS] [REGISTRY[:PORT]/]NAME[:TAG]

The podman pull command uses the image name obtained from the search subcommand

to pull an image from a registry. The pull subcommand allows adding the registry name to the

image. This variant supports having the same image in multiple registries.

For example, to pull an NGINX container from the quay.io registry, use the following command:

[student@workstation ~]$ sudo podman pull quay.io/bitnami/nginx

Note

If the image name does not include a registry name, Podman searches for a

matching container image using the registries listed in the /etc/containers/
registries.conf configuration file. Podman search for images in registries in the

same order they appear in the configuration file.

Listing Local Copies of Images

Any container image downloaded from a registry is stored locally on the same host where the

podman command is executed. This behavior avoids repeating image downloads and minimizes

the deployment time for a container. Podman also stores any custom container images you build in

the same local storage.

Note

By default, Podman stores container images in the /var/lib/containers/
storage/overlay-images directory.

Podman provides an images subcommand to list all the container images stored locally.

[student@workstation ~]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhscl/mysql-57-rhel7 latest c07bf25398f4 13 days ago 444MB

Image Tags

An image tag is a mechanism to support multiple releases of the same image. This feature is useful

when multiple versions of the same software are provided, such as a production-ready container

or the latest updates of the same software developed for community evaluation. Any Podman

subcommand that requires a container image name accepts a tag parameter to differentiate

between multiple tags. If an image name does not contain a tag, then the tag value defaults to

latest. For example, to pull an image with the tag 5.7 from rhscl/mysql-57-rhel7, use the

following command:

[student@workstation ~]$ sudo podman pull rhscl/mysql-57-rhel7:5.7

88 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

To start a new container based on the rhscl/mysql-57-rhel7:5.7 image, use the following

command:

[student@workstation ~]$ sudo podman run rhscl/mysql-57-rhel7:5.7

References

Red Hat Container Catalog

https://registry.redhat.io

Quay.io

https://quay.io

Docker Registry HTTP API V2

https://github.com/docker/distribution/blob/master/docs/spec/api.md

RFC7235 - HTTP/1.1: Authentication

https://tools.ietf.org/html/rfc7235

DO180-OCP4.2-en-1-20191105 89

https://registry.redhat.io
https://quay.io
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://tools.ietf.org/html/rfc7235

Chapter 4 | Managing Container Images

Quiz

Working With Registries

Choose the correct answers to the following questions, based on the following information:

Podman is available on a RHEL host with the following entry in /etc/containers/
registries.conf file:

[registries.search]
registries = ["registry.redhat.io","quay.io"]

The registry.redhat.io and quay.io hosts have a registry running, both have valid

certificates, and use the version 1 registry. The following images are available for each host:

Image names/tags per registry

Regisitry Image

registry.redhat.io • nginx/1.0

• mysql/5.6

• httpd/2.2

quay.io • mysql/5.5

• httpd/2.4

No images are locally available.

 1. Which two commands display mysql images available for download from

registry.redhat.io? (Choose two.)

a. podman search registry.redhat.io/mysql
b. podman images
c. podman pull mysql
d. podman search mysql

 2. Which command is used to list all available image tags for the httpd container image?

a. podman search httpd
b. podman images httpd
c. podman pull --all-tags=true httpd
d. There is no podman command available to search for tags.

90 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

 3. Which two commands pull the httpd image with the 2.2 tag? (Choose two.)

a. podman pull httpd:2.2
b. podman pull httpd:latest
c. podman pull quay.io/httpd
d. podman pull registry.redhat.io/httpd:2.2

 4. When running the following commands, what container images will be downloaded?

podman pull registry.redhat.io/httpd:2.2

podman pull quay.io/mysql:5.6

a. quay.io/httpd:2.2

registry.redhat.io/mysql:5.6

b. registry.redhat.io/httpd:2.2

registry.redhat.io/mysql:5.6

c. registry.redhat.io/httpd:2.2

No image will be downloaded for mysql.

d. quay.io/httpd:2.2

No image will be downloaded for mysql.

DO180-OCP4.2-en-1-20191105 91

Chapter 4 | Managing Container Images

Solution

Working With Registries

Choose the correct answers to the following questions, based on the following information:

Podman is available on a RHEL host with the following entry in /etc/containers/
registries.conf file:

[registries.search]
registries = ["registry.redhat.io","quay.io"]

The registry.redhat.io and quay.io hosts have a registry running, both have valid

certificates, and use the version 1 registry. The following images are available for each host:

Image names/tags per registry

Regisitry Image

registry.redhat.io • nginx/1.0

• mysql/5.6

• httpd/2.2

quay.io • mysql/5.5

• httpd/2.4

No images are locally available.

 1. Which two commands display mysql images available for download from

registry.redhat.io? (Choose two.)

a. podman search registry.redhat.io/mysql
b. podman images
c. podman pull mysql
d. podman search mysql

 2. Which command is used to list all available image tags for the httpd container image?

a. podman search httpd
b. podman images httpd
c. podman pull --all-tags=true httpd
d. There is no podman command available to search for tags.

92 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

 3. Which two commands pull the httpd image with the 2.2 tag? (Choose two.)

a. podman pull httpd:2.2
b. podman pull httpd:latest
c. podman pull quay.io/httpd
d. podman pull registry.redhat.io/httpd:2.2

 4. When running the following commands, what container images will be downloaded?

podman pull registry.redhat.io/httpd:2.2

podman pull quay.io/mysql:5.6

a. quay.io/httpd:2.2

registry.redhat.io/mysql:5.6

b. registry.redhat.io/httpd:2.2

registry.redhat.io/mysql:5.6

c. registry.redhat.io/httpd:2.2

No image will be downloaded for mysql.

d. quay.io/httpd:2.2

No image will be downloaded for mysql.

DO180-OCP4.2-en-1-20191105 93

Chapter 4 | Managing Container Images

Manipulating Container Images

Objectives
After completing this section, students should be able to:

• Save and load container images to local files.

• Delete images from the local storage.

• Create new container images from containers and update image metadata.

• Manage image tags for distribution purposes.

Introduction
There are various ways to manage image containers while adhering to DevOps principles. For

example, a developer finishes testing a custom container in a machine and needs to transfer this

container image to another host for another developer, or to a production server. There are two

ways to do this:

1. Save the container image to a .tar file.

2. Publish (push) the container image to an image registry.

Note

One of the ways a developer could have created this custom container is discussed

later in this chapter (podman commit). However, in the following chapters we

discuss the recommended way to do so using Dockerfiles.

Saving and Loading Images
Existing images from the Podman local storage can be saved to a .tar file using the podman
save command. The generated file is not a regular TAR archive; it contains image metadata and

preserves the original image layers. Using this file, Podman can recreate the original image exactly

as it was.

The general syntax of the save subcommand is as follows:

[student@workstation ~]$ sudo podman save [-o FILE_NAME] IMAGE_NAME[:TAG]

Podman sends the generated image to the standard output as binary data. To avoid that, use the -
o option.

The following example saves the previously downloaded MySQL container image from the

Red Hat Container Catalog to the mysql.tar file:

[student@workstation ~]$ sudo podman save \
> -o mysql.tar registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7

94 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

Use the .tar files generated by the save subcommand for backup purposes. To restore the

container image, use the podman load command. The general syntax of the command is as

follows:

[student@workstation ~]$ sudo podman load [-i FILE_NAME]

For example, this command would load an image saved in a file named mysql.tar.

[student@workstation ~]$ sudo podman load -i mysql.tar

If the .tar file given as an argument is not a container image with metadata, the podman load
command fails.

Note

To save disk space, compress the file generated by the save subcommand with

Gzip using the --compress parameter. The load subcommand uses the gunzip
command before importing the file to the local storage.

Deleting Images
Podman keeps any image downloaded in its local storage, even the ones currently unused by any

container. However, images can become outdated, and should be subsequently replaced.

Note

Any updates to images in a registry are not automatically updated. The image must

be removed and then pulled again to guarantee that the local storage has the latest

version of an image.

To delete an image from the local storage, run the podman rmi command. The syntax for this

command is as follows:

[student@workstation ~]$ sudo podman rmi [OPTIONS] IMAGE [IMAGE...]

An image can be referenced using its name or its ID for removal purposes. Podman cannot delete

images while containers are using that image. You must stop and remove all containers using that

image before deleting it.

To avoid this, the rmi subcommand has the --force option. This option forces the removal of

an image even if that the image is used by several containers or these containers are running.

Podman stops and removes all containers using the forcefully removed image before removing it.

Deleting all Images
To delete all images that are not used by any container, use the following command:

[student@workstation ~]$ sudo podman rmi -a

DO180-OCP4.2-en-1-20191105 95

Chapter 4 | Managing Container Images

The command returns all the image IDs available in the local storage and passes them as

parameters to the podman rmi command for removal. Images that are in use are not deleted.

However, this does not prevent any unused images from being removed.

Modifying Images
Ideally, all container images should be built using a Dockerfile, in order to create a clean,

lightweight set of image layers without log files, temporary files, or other artifacts created by the

container customization. However, some users may provide container images as they are, without

a Dockerfile. As an alternative approach to creating new images, change a running container

in place and save its layers to create a new container image. The podman commit command

provides this feature.

Warning

Even though the podman commit command is the most straightforward approach

to creating new images, it is not recommended because of the image size (commit
keeps logs and process ID files in the captured layers), and the lack of change

traceability. A Dockerfile provides a robust mechanism to customize and

implement changes to a container using a human-readable set of commands,

without the set of files that are generated by the operating system.

The syntax for the podman commit command is as follows:

[student@workstation ~]$ sudo podman commit [OPTIONS] CONTAINER \
> [REPOSITORY[:PORT]/]IMAGE_NAME[:TAG]

The following table shows the most important options available for the podman commit
command:

Option Description

--author "" Identifies who created the container image.

--message "" Includes a commit message to the registry.

--format Selects the format of the image. Valid options

are oci and docker.

Note

The --message option is not available in the default OCI container format.

To find the ID of a running container in Podman, run the podman ps command:

[student@workstation ~]$ sudo podman ps
CONTAINER ID IMAGE ... NAMES
87bdfcc7c656 mysql ...output omitted... mysql-basic

Eventually, administrators might customize the image and set the container to the desired state.

To identify which files were changed, created, or deleted since the container was started, use the

diff subcommand. This subcommand only requires the container name or container ID:

96 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman diff mysql-basic
C /run
C /run/mysqld
A /run/mysqld/mysqld.pid
A /run/mysqld/mysqld.sock
A /run/mysqld/mysqld.sock.lock
A /run/secrets

The diff subcommand tags any added file with an A, any changed ones with a C, and any deleted

file with a D.

Note

The diff command only reports added, changed, or deleted files to the container

file system. Files that are mounted to a running container are not considered part of

the container file system.

To retrieve the list of mounted files and directories for a running container, use the

podman inspect command:

[student@workstation ~]$ sudo podman inspect \
> -f "{{range .Mounts}}{{println .Destination}}{{end}}" CONTAINER_NAME/ID

Any file in this list, or file under a directory in this list, is not shown in the output of

the podman diff command.

To commit the changes to another image, run the following command:

[student@workstation ~]$ sudo podman commit mysql-basic mysql-custom

Tagging Images
A project with multiple images based on the same software could be distributed, creating

individual projects for each image, but this approach requires more maintenance for managing and

deploying the images to the correct locations.

Container image registries support tags to distinguish multiple releases of the same project. For

example, a customer might use a container image to run with a MySQL or PostgreSQL database,

using a tag as a way to differentiate which database is to be used by a container image.

Note

Usually, the tags are used by container developers to distinguish between multiple

versions of the same software. Multiple tags are provided to identify a release easily.

The official MySQL container image website uses the version as the tag's name

(5.5.16). Also, the same image has a second tag with the minor version, such as

5.5, to minimize the need to get the latest release for a specific version.

To tag an image, use the podman tag command:

DO180-OCP4.2-en-1-20191105 97

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman tag [OPTIONS] IMAGE[:TAG] \
> [REGISTRYHOST/][USERNAME/]NAME[:TAG]

The IMAGE argument is the image name with an optional tag, which is managed by Podman. The

following argument refers to the new alternative name for the image. Podman assumes the latest

version, as indicated by the latest tag, if the tag value is absent. For example, to tag an image,

use the following command:

[student@workstation ~]$ sudo podman tag mysql-custom devops/mysql

The mysql-custom option corresponds to the image name in the container registry.

To use a different tag name, use the following command instead:

[student@workstation ~]$ sudo podman tag mysql-custom devops/mysql:snapshot

Removing Tags from Images

A single image can have multiple tags assigned using the podman tag command. To remove

them, use the podman rmi command, as mentioned earlier:

[student@workstation ~]$ sudo podman rmi devops/mysql:snapshot

Note

Because multiple tags can point to the same image, to remove an image referred to

by multiple tags, first remove each tag individually.

Best Practices for Tagging Images
Podman automatically adds the latest tag if you do not specify any tag, because Podman

considers the image to be the latest build. However, this may not be true depending on how each

project uses tags. For example, many open source projects consider the latest tag to match the

most recent release, but not the latest build.

Moreover, multiple tags are provided to minimize the need to remember the latest release of a

particular version of a project. Thus, if there is a project version release, for example, 2.1.10,

another tag called 2.1 can be created pointing to the same image from the 2.1.10 release. This

simplifies pulling images from the registry.

Publishing Images to a Registry
To publish an image to a registry, it must reside in the Podman's local storage and be tagged for

identification purposes. To push the image to the registry the syntax of the push subcommand is:

[student@workstation ~]$ sudo podman push [OPTIONS] IMAGE [DESTINATION]

For example, to push the bitnami/nginx image to its repository, use the following command:

[student@workstation ~]$ sudo podman push quay.io/bitnami/nginx

98 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

References

Podman site

https://podman.io/

DO180-OCP4.2-en-1-20191105 99

https://podman.io/

Chapter 4 | Managing Container Images

Guided Exercise

Creating a Custom Apache Container
Image

In this guided exercise, you will create a custom Apache container image using the podman
commit command.

Outcomes
You should be able to create a custom container image.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab image-operations start

 1. Open a terminal on workstation (Applications → System Tools → Terminal). Log

into your Quay.io account and start a container by using the image available at quay.io/
redhattraining/httpd-parent. The -p option allows you to specify a redirect port. In

this case, Podman forwards incoming requests on TCP port 8180 of the host to TCP port

80 of the container.

[student@workstation ~]$ sudo podman login quay.io
Username: your_quay_username
Password: your_quay_password
Login Succeeded!
[student@workstation ~]$ sudo podman run -d --name official-httpd \
> -p 8180:80 redhattraining/httpd-parent
...output omitted...
Writing manifest to image destination
Storing signatures
3a6baecaff2b4e8c53b026e04847dda5976b773ade1a3a712b1431d60ac5915d

Your last line of output is different from the last line shown above. Note the first twelve

characters.

 2. Create an HTML page on the official-httpd container.

2.1. Access the shell of the container by using the exec subcommand and create an HTML

page.

[student@workstation ~]$ sudo podman exec -it official-httpd /bin/bash
bash-4.4# echo "DO180 Page" > /var/www/html/do180.html

2.2. Exit the container.

100 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

bash-4.4# exit

2.3. Ensure that the HTML file is reachable from the workstation VM by using the curl
command.

[student@workstation ~]$ curl 127.0.0.1:8180/do180.html
DO180 Page

You should see the following output:

DO180 Page

 3. Use the diff subcommand to examine the differences in the container between the image

and the new layer created by the container.

3.1. Retrieve the list of external files and directories that Podman mounts to the running

container:

[student@workstation ~]$ sudo podman inspect -f \
> "{{range .Mounts}}{{println .Destination}}{{end}}" official-httpd
/proc
/dev
/dev/pts
/dev/shm
/dev/mqueue
/sys
/sys/fs/cgroup

3.2. Execute the podman diff command to see a list of modified files in the container file

system:

[student@workstation ~]$ sudo podman diff official-httpd
C /etc
C /root
A /root/.bash_history
...output omitted...
C /tmp
C /var
C /var/log
C /var/log/httpd
A /var/log/httpd/access_log
A /var/log/httpd/error_log
C /var/www
C /var/www/html
A /var/www/html/do180.html

Notice that none of the files or directories in the output are in the list of externally

mounted files in the previous step.

DO180-OCP4.2-en-1-20191105 101

Chapter 4 | Managing Container Images

Note

Often, web server container images label the /var/www/html directory as a

volume. In these cases, any files added to this directory are not considered part

of the container file system, and would not show in the output of the git diff
command.

The redhattraining/httpd-parent container image does not label the /var/
www/html directory as a volume. As a result, the change to the /var/www/html/
do180.html file is considered a change to the underlying container file system.

 4. Create a new image with the changes created by the running container.

4.1. Stop the official-httpd container.

[student@workstation ~]$ sudo podman stop official-httpd
3a6baecaff2b4e8c53b026e04847dda5976b773ade1a3a712b1431d60ac5915d

4.2. Commit the changes to a new container image with a new name. Use your name as the

author of the changes.

[student@workstation ~]$ sudo podman commit \
> -a 'Your Name' official-httpd do180-custom-httpd
Getting image source signatures
Skipping fetch of repeat blob sha256:071d8bd765171080d01682844524be57ac9883e...
...output omitted...
Copying blob sha256:1e19be875ce6f5b9dece378755eb9df96ee205abfb4f165c797f59a9...
 15.00 KB / 15.00 KB [===] 0s
Copying config sha256:8049dc2e7d0a0b1a70fc0268ad236399d9f5fb686ad4e31c7482cc...
 2.99 KB / 2.99 KB [===] 0s
Writing manifest to image destination
Storing signatures
31c3ac78e9d4137c928da23762e7d32b00c428eb1036cab1caeeb399befe2a23

4.3. List the available container images.

[student@workstation ~]$ sudo podman images

The expected output is similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180-custom-httpd latest 31c3ac78e9d4
quay.io/redhattraining/httpd-parent latest 2cc07fbb5000

The image ID matches the first 12 characters of the hash. The most recent images are

listed at the top.

 5. Publish the saved container image to the container registry.

5.1. To tag the image with the registry host name and tag, run the following command.

102 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman tag do180-custom-httpd \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0

5.2. Run the podman images command to ensure that the new name has been added to

the cache.

[student@workstation ~]$ sudo podman images

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180-custom-httpd latest 31c3ac78e9d4
quay.io/your_quay_username/do180-custom-httpd v1.0 31c3ac78e9d4
quay.io/redhattraining/httpd-parent latest 2cc07fbb5000

5.3. Publish the image to your Quay.io registry.

[student@workstation ~]$ sudo podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0
Getting image source signatures
Copying blob sha256:071d8bd765171080d01682844524be57ac9883e53079b6ac66707e19...
 200.44 MB / 200.44 MB [==] 1m38s
...output omitted...
Copying config sha256:31c3ac78e9d4137c928da23762e7d32b00c428eb1036cab1caeeb3...
 2.99 KB / 2.99 KB [==] 0s
Writing manifest to image destination
Copying config sha256:31c3ac78e9d4137c928da23762e7d32b00c428eb1036cab1caeeb3...
 0 B / 2.99 KB [--] 0s
Writing manifest to image destination
Storing signatures

Note

Pushing the do180-custom-httpd image creates an homonymous private

repository in your Quay.io account. Currently, private repositories are disallowed

by Quay.io free plans. You can either create the public repository prior pushing the

image, or change the repository to public afterwards.

5.4. Verify that the image is available from Quay.io. The podman search command

requires the image to be indexed by Quay.io. That may take some hours to occur, so

use the podman pull command to fetch the image. This proves the availability for the

image.

[student@workstation ~]$ sudo podman pull \
> -q quay.io/${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0
31c3ac78e9d4137c928da23762e7d32b00c428eb1036cab1caeeb3

 6. Create a container from the newly published image.

Use the podman run command to start a new container. Use your_quay_username/
do180-custom-httpd:v1.0 as the base image.

DO180-OCP4.2-en-1-20191105 103

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman run -d --name test-httpd -p 8280:80 \
> ${RHT_OCP4_QUAY_USER}/do180-custom-httpd:v1.0
c0f04e906bb12bd0e514cbd0e581d2746e04e44a468dfbc85bc29ffcc5acd16c

 7. Use the curl command to access the HTML page. Make sure you use port 8280.

This should display the HTML page created in the previous step.

[student@workstation ~]$ curl http://localhost:8280/do180.html
DO180 Page

Finish

On workstation, run the lab image-operations finish script to complete this lab.

[student@workstation ~]$ lab image-operations finish

This concludes the guided exercise.

104 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

Lab

Managing Images

Performance Checklist
In this lab, you will create and manage container images.

Outcomes
You should be able to create a custom container image and manage container images.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab image-review start

1. Use the podman search command to locate the docker.io/nginx official image and pull

it into your local file system.

Ensure that the image has been successfully retrieved.

2. Start a new container using the Nginx image, according to the specifications listed in the

following list.

• Name: official-nginx

• Run as daemon: yes

• Container image: nginx

• Port forward: from host port 8080 to container port 80.

3. Log in to the container using the exec subcommand. Replace the contents of the

index.html file with DO180. The web server directory is located at /usr/share/nginx/
html.

After the file has been updated, exit the container and use the curl command to access the

web page.

4. Stop the running container and commit your changes to create a new container image. Give

the new image a name of do180/mynginx and a tag of v1.0-SNAPSHOT. Use the following

specifications:

• Image name: do180/mynginx

• Image tag: v1.0-SNAPSHOT

• Author name: your name

5. Start a new container using the updated Nginx image, according to the specifications listed in

the following list.

• Name: official-nginx-dev

DO180-OCP4.2-en-1-20191105 105

Chapter 4 | Managing Container Images

• Run as daemon: yes

• Container image: do180/mynginx:v1.0-SNAPSHOT

• Port forward: from host port 8080 to container port 80.

6. Log in to the container using the exec subcommand to introduce a final change. Replace the

contents of the file /usr/share/nginx/html/index.html file with DO180 Page.

After the file has been updated, exit the container and use the curl command to verify the

changes.

7. Stop the running container and commit your changes to create the final container image.

Give the new image a name of do180/mynginx and a tag of v1.0. Use the following

specifications:

• Image name: do180/mynginx

• Image tag: v1.0

• Author name: your name

8. Remove the development image do180/mynginx:v1.0-SNAPSHOT from local image

storage.

9. Use the image tagged do180/mynginx:v1.0 to create a new container with the following

specifications:

• Container name: my-nginx

• Run as daemon: yes

• Container image: do180/mynginx:v1.0

• Port forward: from host port 8280 to container port 80

On workstation, use the curl command to access the web server, accessible from the

port 8280.

Evaluation

Grade your work by running the lab image-review grade command on your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab image-review grade

Finish

On workstation, run the lab image-review finish command to complete this lab.

[student@workstation ~]$ lab image-review finish

This concludes the lab.

106 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

Solution

Managing Images

Performance Checklist
In this lab, you will create and manage container images.

Outcomes
You should be able to create a custom container image and manage container images.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab image-review start

1. Use the podman search command to locate the docker.io/nginx official image and pull

it into your local file system.

Ensure that the image has been successfully retrieved.

1.1. Use the podman search command to search for the official Nginx container image

docker.io/nginx.

[student@workstation ~]$ sudo podman search docker.io/nginx
> -f is-official=true
INDEX NAME DESCRIPTION STARS OFFICIAL...
docker.io docker.io/library/nginx Official build of Nginx. 12022 [OK] ...

1.2. Use the podman pull command to pull the Nginx container image.

[student@workstation ~]$ sudo podman pull docker.io/nginx:1.17
Trying to pull Trying to pull docker.io/nginx:1.17...
...output omitted...
Storing signatures
42b4762643dcc9bf492b08064b55fef64942f055f0da91289a8abf93c6d6b43c

1.3. Ensure that the container image is available locally by running the podman images
command.

[student@workstation ~]$ sudo podman images

This command produces output similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE
docker.io/library/nginx 1.17 42b4762643dc 8 days ago 130MB

DO180-OCP4.2-en-1-20191105 107

Chapter 4 | Managing Container Images

2. Start a new container using the Nginx image, according to the specifications listed in the

following list.

• Name: official-nginx

• Run as daemon: yes

• Container image: nginx

• Port forward: from host port 8080 to container port 80.

2.1. On workstation, use the podman run command to create a container named

official-nginx.

[student@workstation ~]$ sudo podman run --name official-nginx \
> -d -p 8080:80 docker.io/nginx:1.17
02dbc348c7dcf8560604a44b11926712f018b0ac44063d34b05704fb8447316f

3. Log in to the container using the exec subcommand. Replace the contents of the

index.html file with DO180. The web server directory is located at /usr/share/nginx/
html.

After the file has been updated, exit the container and use the curl command to access the

web page.

3.1. Log in to the container by using the podman exec command.

[student@workstation ~]$ sudo podman exec -it official-nginx /bin/bash
root@02dbc348c7dc:/#

3.2. Update the index.html file located at /usr/share/nginx/html. The file should

read DO180.

root@02dbc348c7dc:/# echo 'DO180' > /usr/share/nginx/html/index.html

3.3. Exit the container.

root@02dbc348c7dc:/# exit

3.4. Use the curl command to ensure that the index.html file is updated.

[student@workstation ~]$ curl 127.0.0.1:8080
DO180

4. Stop the running container and commit your changes to create a new container image. Give

the new image a name of do180/mynginx and a tag of v1.0-SNAPSHOT. Use the following

specifications:

• Image name: do180/mynginx

• Image tag: v1.0-SNAPSHOT

• Author name: your name

4.1. Use the sudo podman stop command to stop the official-nginx container.

108 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman stop official-nginx
2dbc348c7dcf8560604a44b11926712f018b0ac44063d34b05704fb8447316f

4.2. Commit your changes to a new container image. Use your name as the author of the

changes.

[student@workstation ~]$ sudo podman commit -a 'Your Name' \
> official-nginx do180/mynginx:v1.0-SNAPSHOT
Getting image source signatures
...output omitted...
Storing signatures
4a13dd08d175a6095e6462e52431be1577ca931fcd1aea139b71346bfc7f9c76

4.3. List the available container images to locate your newly created image.

[student@workstation ~]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/mynginx v1.0-SNAPSHOT 4a13dd08d175 5 minutes ago 130MB
docker.io/nginx 1.17 42b4762643dc 8 days ago 113MB

5. Start a new container using the updated Nginx image, according to the specifications listed in

the following list.

• Name: official-nginx-dev

• Run as daemon: yes

• Container image: do180/mynginx:v1.0-SNAPSHOT

• Port forward: from host port 8080 to container port 80.

5.1. On workstation, use the podman run command to create a container named

official-nginx-dev.

[student@workstation ~]$ sudo podman run --name official-nginx-dev \
> -d -p 8080:80 do180/mynginx:v1.0-SNAPSHOT
02dbc348c7dcf8560604a44b11926712f018b0ac44063d34b05704fb8447316f

6. Log in to the container using the exec subcommand to introduce a final change. Replace the

contents of the file /usr/share/nginx/html/index.html file with DO180 Page.

After the file has been updated, exit the container and use the curl command to verify the

changes.

6.1. Log in to the container by using the podman exec command.

[student@workstation ~]$ sudo podman exec -it official-nginx-dev /bin/bash
root@02dbc348c7dc:/#

6.2. Update the index.html file located at /usr/share/nginx/html. The file should

read DO180 Page.

DO180-OCP4.2-en-1-20191105 109

Chapter 4 | Managing Container Images

root@02dbc348c7dc:/# echo 'DO180 Page' > /usr/share/nginx/html/index.html

6.3. Exit the container.

root@02dbc348c7dc:/# exit

6.4. Use the curl command to ensure that the index.html file is updated.

[student@workstation ~]$ curl 127.0.0.1:8080
DO180 Page

7. Stop the running container and commit your changes to create the final container image.

Give the new image a name of do180/mynginx and a tag of v1.0. Use the following

specifications:

• Image name: do180/mynginx

• Image tag: v1.0

• Author name: your name

7.1. Use the sudo podman stop command to stop the official-nginx-dev container.

[student@workstation ~]$ sudo podman stop official-nginx-dev
2dbc348c7dcf8560604a44b11926712f018b0ac44063d34b05704fb8447316f

7.2. Commit your changes to a new container image. Use your name as the author of the

changes.

[student@workstation ~]$ sudo podman commit -a 'Your Name' \
> official-nginx-dev do180/mynginx:v1.0
Getting image source signatures
...output omitted...
Storing signatures
4a13dd08d175a6095e6462e52431be1577ca931fcd1aea139b71346bfc7f9c76

7.3. List the available container images in order to locate your newly created image.

[student@workstation ~]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/mynginx v1.0 892569a87e3f 7 seconds ago 130MB
localhost/do180/mynginx v1.0-SNAPSHOT 0857d81f5a4b 4 minutes ago 130MB
docker.io/nginx 1.17 42b4762643dc 8 days ago 130MB

8. Remove the development image do180/mynginx:v1.0-SNAPSHOT from local image

storage.

8.1. Despite being stopped, the official-nginx-dev is still present. Display the container

with the podman ps command with the -a flag.

110 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

[student@workstation ~]$ sudo podman ps -a \
> --format="{{.ID}} {{.Names}} {{.Status}}"
e169c5fc8c3e official-nginx-dev Exited (0) 9 minutes ago
ccf046c2f87d official-nginx Exited (0) 12 minutes ago

8.2. Remove the container with the podman rm command.

[student@workstation ~]$ sudo podman rm official-nginx-dev
e169c5fc8c3ed5c024af94aec752fa565650f9d07b95bb009329874801d859a1o

8.3. Verify that the container is deleted by resubmitting the same podman ps command.

[student@workstation ~]$ sudo podman ps -a \
> --format="{{.ID}} {{.Names}} {{.Status}}"
ccf046c2f87d official-nginx Exited (0) 12 minutes ago

8.4. Use the sudo podman rmi command to remove the do180/mynginx:v1.0-
SNAPSHOT image.

[student@workstation ~]$ sudo podman rmi do180/mynginx:v1.0-SNAPSHOT
Untagged: localhost/do180/mynginx:v1.0-SNAPSHOT

8.5. Verify that the image is no longer present by listing all images using the podman
images command.

[student@workstation ~]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/mynginx v1.0 892569a87e3f 13 minutes ago 113MB
docker.io/library/nginx 1.17 42b4762643dc 8 days ago 130MB

9. Use the image tagged do180/mynginx:v1.0 to create a new container with the following

specifications:

• Container name: my-nginx

• Run as daemon: yes

• Container image: do180/mynginx:v1.0

• Port forward: from host port 8280 to container port 80

On workstation, use the curl command to access the web server, accessible from the

port 8280.

9.1. Use the sudo podman run command to create the my-nginx container, according to

the specifications.

[student@workstation ~]$ sudo podman run -d --name my-nginx \
> -p 8280:80 do180/mynginx:v1.0
c1cba44fa67bf532d6e661fc5e1918314b35a8d46424e502c151c48fb5fe6923

DO180-OCP4.2-en-1-20191105 111

Chapter 4 | Managing Container Images

9.2. Use the curl command to ensure that the index.html page is available and returns

the custom content.

[student@workstation ~]$ curl 127.0.0.1:8280
DO108 Page

This concludes the lab.

Evaluation

Grade your work by running the lab image-review grade command on your workstation
machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab image-review grade

Finish

On workstation, run the lab image-review finish command to complete this lab.

[student@workstation ~]$ lab image-review finish

This concludes the lab.

112 DO180-OCP4.2-en-1-20191105

Chapter 4 | Managing Container Images

Summary

In this chapter, you learned:

• The Red Hat Container Catalog provides tested and certified images at

registry.redhat.io.

• Podman can interact with remote container registries to search, pull, and push container images.

• Image tags are a mechanism to support multiple releases of a container image.

• Podman provides commands to manage container images both in local storage and as

compressed files.

• Use the podman commit to create an image from a container.

DO180-OCP4.2-en-1-20191105 113

114 DO180-OCP4.2-en-1-20191105

Chapter 5

Creating Custom Container
Images

Goal Design and code a Dockerfile to build a custom
container image.

Objectives • Describe the approaches for creating custom
container images.

• Create a container image using common
Dockerfile commands.

Sections • Designing Custom Container Images (and
Quiz)

• Building Custom Container Images with
Dockerfiles (and Guided Exercise)

Lab • Creating Custom Container Images

DO180-OCP4.2-en-1-20191105 115

Chapter 5 | Creating Custom Container Images

Designing Custom Container Images

Objectives
After completing this section, students should be able to:

• Describe the approaches for creating custom container images.

• Find existing Dockerfiles to use as a starting point for creating a custom container image.

• Define the role played by the Red Hat Software Collections Library (RHSCL) in designing

container images from the Red Hat registry.

• Describe the Source-to-Image (S2I) alternative to Dockerfiles.

Reusing Existing Dockerfiles
One method of creating container images has been covered so far: create a container, modify

it to meet the requirements of the application to run in it, and then commit the changes to an

image. This option, although straightforward, is only suitable for using or testing very specific

changes. It does not follow best software practices, like maintainability, automation of building, and

repeatability.

Dockerfiles are another option for creating container images, addressing these limitations.

Dockerfiles are easy to share, version control, reuse, and extend.

Dockerfiles also make it easy to extend one image, called a child image, from another image, called

a parent image. A child image incorporates everything in the parent image and all changes and

additions made to create it.

To share and reuse images, many popular applications, languages, and frameworks are already

available in public image registries such as Quay.io. It is not trivial to customize an application

configuration to follow recommended practices for containers, and so starting from a proven

parent image usually saves a lot of work.

Using a high-quality parent image enhances maintainability, especially if the parent image is kept

updated by its author to account for bug fixes and security issues.

Typical scenarios in creating a Dockerfile for building a child image from an existing container

image include:

• Add new runtime libraries, such as database connectors.

• Include organization-wide customization such as SSL certificates and authentication providers.

• Add internal libraries to be shared as a single image layer by multiple container images for

different applications.

Changing an existing Dockerfile to create a new image can also be a sensible approach in other

scenarios. For example:

• Trim the container image by removing unused material (such as man pages, or documentation

found in /usr/share/doc).

116 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

• Lock either the parent image or some included software package to a specific release to lower

risk related to future software updates.

Two sources of container images to use either as parent images or for changing their Dockerfiles

are Docker Hub and the Red Hat Software Collections Library (RHSCL).

Working with the Red Hat Software Collections Library
Red Hat Software Collections Library (RHSCL), or simply Software Collections, is Red Hat's

solution for developers who need to use the latest development tools that usually do not fit the

standard RHEL release schedule.

Red Hat Enterprise Linux (RHEL) provides a stable environment for enterprise applications. This

requires RHEL to keep the major releases of upstream packages at the same level to prevent API

and configuration file format changes. Security and performance fixes are backported from later

upstream releases, but new features that would break backward-compatibility are not backported.

RHSCL allows software developers to use the latest version without impacting RHEL, because

RHSCL packages do not replace or conflict with default RHEL packages. Default RHEL packages

and RHSCL packages are installed side-by-side.

Note

All RHEL subscribers have access to the RHSCL. To enable a particular software

collection for a specific user or application environment (for example, MySQL 5.7,

which is named rh-mysql57), enable the RHSCL software Yum repositories and

follow a few simple steps.

Finding Dockerfiles from the Red Hat Software
Collections Library
RHSCL is the source of most container images provided by the Red Hat image registry for use by

RHEL Atomic Host and OpenShift Container Platform customers.

Red Hat provides RHSCL Dockerfiles and related sources in the rhscl-dockerfiles package

available from the RHSCL repository. Community users can get Dockerfiles for CentOS-based

equivalent container images from https://github.com/sclorg?q=-container.

Note

Many RHSCL container images include support for Source-to-Image (S2I), best

known as an OpenShift Container Platform feature. Having support for S2I does not

affect the use of these container images with Docker.

Container Images in Red Hat Container Catalog
(RHCC)
Mission-critical applications require trusted containers. The Red Hat Container Catalog is a

repository of reliable, tested, certified, and curated collection of container images built on versions

of Red Hat Enterprise Linux (RHEL) and related systems. Container images available through

RHCC have undergone a quality-assurance process. All components have been rebuilt by Red Hat

to avoid known security vulnerabilities. They are upgraded on a regular basis so that they contain

the required version of software even when a new image is not yet available. Using RHCC, you

DO180-OCP4.2-en-1-20191105 117

Chapter 5 | Creating Custom Container Images

can browse and search for images, and you can access information about each image, such as its

version, contents, and usage.

Searching for Images Using Quay.io
Quay.io is an advanced container repository from CoreOS optimized for team collaboration. You

can search for container images using https://quay.io/search.

Clicking on an image's name provides access to the image information page, including access to all

existing tags for the image, and the command to pull the image.

Finding Dockerfiles on Docker Hub
Anyone can create a Docker Hub account and publish container images there. There are no

general assurances about quality and security; images on Docker Hub range from professionally

supported to one-time experiments. Each image has to be evaluated individually.

After searching for an image, the documentation page might provide a link to its Dockerfile. For

example, the first result when searching for mysql is the documentation page for the MySQL
official image at https://hub.docker.com/_/mysql.

On that page, the link for the 5.6/Dockerfile image points to the docker-library GitHub

project, which hosts Dockerfiles for images built by the Docker community automatic build

system.

The direct URL for the Docker Hub MySQL 5.6 Dockerfile tree is https://github.com/docker-

library/mysql/blob/master/5.6.

Describing How to use the OpenShift Source-to-
Image Tool
Source-to-Image (S2I) provides an alternative to using Dockerfiles to create new container

images and can be used either as a feature from OpenShift or as the standalone s2i utility. S2I

allows developers to work using their usual tools, instead of learning Dockerfile syntax and using

operating system commands such as yum, and usually creates slimmer images, with fewer layers.

S2I uses the following process to build a custom container image for an application:

1. Start a container from a base container image called the builder image, which includes a

programming language runtime and essential development tools such as compilers and

package managers.

2. Fetch the application source code, usually from a Git server, and send it to the container.

3. Build the application binary files inside the container.

4. Save the container, after some clean up, as a new container image, which includes the

programming language runtime and the application binaries.

The builder image is a regular container image following a standard directory structure and

providing scripts that are called during the S2I process. Most of these builder images can also be

used as base images for Dockerfiles, outside the S2I process.

The s2i command is used to run the S2I process outside of OpenShift, in a Docker-only

environment. It can be installed on a RHEL system from the source-to-image RPM package, and

on other platforms, including Windows and Mac OS, from the installers available in the S2I project

on GitHub.

118 DO180-OCP4.2-en-1-20191105

https://quay.io/search
https://hub.docker.com/_/mysql
https://github.com/docker-library/mysql/blob/master/5.6
https://github.com/docker-library/mysql/blob/master/5.6

Chapter 5 | Creating Custom Container Images

References

Red Hat Software Collections Library (RHSCL)

https://access.redhat.com/documentation/en/red-hat-software-collections/

Red Hat Container Catalog (RHCC)

https://access.redhat.com/containers/

RHSCL Dockerfiles on GitHub

https://github.com/sclorg?q=-container

Using Red Hat Software Collections Container Images

https://access.redhat.com/articles/1752723

Quay.io

https://quay.io/search

Docker Hub

https://hub.docker.com/

Docker Library GitHub project

https://github.com/docker-library

The S2I GitHub project

https://github.com/openshift/source-to-image

DO180-OCP4.2-en-1-20191105 119

https://access.redhat.com/documentation/en/red-hat-software-collections/
https://access.redhat.com/containers/
https://github.com/sclorg?q=-container
https://access.redhat.com/articles/1752723
https://quay.io/search
https://hub.docker.com/
https://github.com/docker-library
https://github.com/openshift/source-to-image

Chapter 5 | Creating Custom Container Images

Quiz

Approaches to Container Image Design

Choose the correct answers to the following questions:

 1. Which method for creating container images is recommended by the containers

community? (Choose one.)

a. Run commands inside a basic OS container, commit the container, and save or export it as

a new container image.

b. Run commands from a Dockerfile and push the generated container image to an image

registry.

c. Create the container image layers manually from tar files.

d. Run the podman build command to process a container image description in YAML

format.

 2. What are two advantages of using the standalone S2I process as an alternative to

Dockerfiles? (Choose two.)

a. Requires no additional tools apart from a basic Podman setup.

b. Creates smaller container images, having fewer layers.

c. Reuses high-quality builder images.

d. Automatically updates the child image as the parent image changes (for example, with

security fixes).

e. Creates images compatible with OpenShift, unlike container images created from Docker

tools.

 3. What are two typical scenarios for creating a Dockerfile to build a child image from an

existing image? (Choose two.)

a. Adding new runtime libraries.

b. Setting constraints to a container's access to the host machine's CPU.

c. Adding internal libraries to be shared as a single image layer by multiple container images

for different applications.

120 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

Solution

Approaches to Container Image Design

Choose the correct answers to the following questions:

 1. Which method for creating container images is recommended by the containers

community? (Choose one.)

a. Run commands inside a basic OS container, commit the container, and save or export it as

a new container image.

b. Run commands from a Dockerfile and push the generated container image to an image

registry.

c. Create the container image layers manually from tar files.

d. Run the podman build command to process a container image description in YAML

format.

 2. What are two advantages of using the standalone S2I process as an alternative to

Dockerfiles? (Choose two.)

a. Requires no additional tools apart from a basic Podman setup.

b. Creates smaller container images, having fewer layers.

c. Reuses high-quality builder images.

d. Automatically updates the child image as the parent image changes (for example, with

security fixes).

e. Creates images compatible with OpenShift, unlike container images created from Docker

tools.

 3. What are two typical scenarios for creating a Dockerfile to build a child image from an

existing image? (Choose two.)

a. Adding new runtime libraries.

b. Setting constraints to a container's access to the host machine's CPU.

c. Adding internal libraries to be shared as a single image layer by multiple container images

for different applications.

DO180-OCP4.2-en-1-20191105 121

Chapter 5 | Creating Custom Container Images

Building Custom Container Images with
Dockerfiles

Objectives
After completing this section, students should be able to create a container image using common

Dockerfile commands.

Building Base Containers
A Dockerfile is a mechanism to automate the building of container images. Building an image

from a Dockerfile is a three-step process:

1. Create a working directory

2. Write the Dockerfile

3. Build the image with Podman

Create a Working Directory

The working directory is the directory containing all files needed to build the image. Creating an

empty working directory is good practice to avoid incorporating unnecessary files into the image.

For security reasons, the root directory, /, should never be used as a working directory for image

builds.

Write the Dockerfile Specification

A Dockerfile is a text file that must exist in the working directory. This file contains the

instructions needed to build the image. The basic syntax of a Dockerfile follows:

Comment
INSTRUCTION arguments

Lines that begin with a hash, or pound, symbol (#) are comments. INSTRUCTION states for any

Dockerfile instruction keyword. Instructions are not case-sensitive, but the convention is to make

instructions all uppercase to improve visibility.

The first non-comment instruction must be a FROM instruction to specify the base image.

Dockerfile instructions are executed into a new container using this image and then committed to

a new image. The next instruction (if any) executes into that new image. The execution order of

instructions is the order of their appearance in the Dockerfile.

Note

The ARG instruction can appear before the FROM instruction, but ARG instructions

are outside the objectives for this section.

Each Dockerfile instruction runs in an independent container using an intermediate image built

from every previous command. This means each instruction is independent from other instructions

in the Dockerfile.

122 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

The following is an example Dockerfile for building a simple Apache web server container:

This is a comment line
FROM ubi7/ubi:7.7
LABEL description="This is a custom httpd container image"
MAINTAINER John Doe <jdoe@xyz.com>
RUN yum install -y httpd
EXPOSE 80
ENV LogLevel "info"
ADD http://someserver.com/filename.pdf /var/www/html
COPY ./src/ /var/www/html/
USER apache
ENTRYPOINT ["/usr/sbin/httpd"]
CMD ["-D", "FOREGROUND"]

Lines that begin with a hash, or pound, sign (#) are comments.

The FROM instruction declares that the new container image extends ubi7/ubi:7.7
container base image. Dockerfiles can use any other container image as a base image, not

only images from operating system distributions. Red Hat provides a set of container images

that are certified and tested and highly recommends using these container images as a base.

The LABEL is responsible for adding generic metadata to an image. A LABEL is a simple key-

value pair.

MAINTAINER indicates the Author field of the generated container image's metadata. You

can use the podman inspect command to view image metadata.

RUN executes commands in a new layer on top of the current image. The shell that is used to

execute commands is /bin/sh.

EXPOSE indicates that the container listens on the specified network port at runtime. The

EXPOSE instruction defines metadata only; it does not make ports accessible from the host.

The -p option in the podman run command exposes container ports from the host.

ENV is responsible for defining environment variables that are available in the container. You

can declare multiple ENV instructions within the Dockerfile. You can use the env command

inside the container to view each of the environment variables.

ADD instruction copies files or folders from a local or remote source and adds them to the

container's file system. If used to copy local files, those must be in the working directory. ADD
instruction unpacks local .tar files to the destination image directory.

COPY copies files from the working directory and adds them to the container's file system. It

is not possible to copy a remote file using its URL with this Dockerfile instruction.

USER specifies the username or the UID to use when running the container image for the

RUN, CMD, and ENTRYPOINT instructions. It is a good practice to define a different user other

than root for security reasons.

ENTRYPOINT specifies the default command to execute when the image runs in a container.

If omitted, the default ENTRYPOINT is /bin/sh -c.

CMD provides the default arguments for the ENTRYPOINT instruction. If the default

ENTRYPOINT applies (/bin/sh -c), then CMD forms an executable command and

parameters that run at container start.

CMD and ENTRYPOINT
ENTRYPOINT and CMD instructions have two formats:

• Exec form (using a JSON array):

ENTRYPOINT ["command", "param1", "param2"]
CMD ["param1","param2"]

DO180-OCP4.2-en-1-20191105 123

Chapter 5 | Creating Custom Container Images

• Shell form:

ENTRYPOINT command param1 param2
CMD param1 param2

Exec form is the preferred form. Shell form wraps the commands in a /bin/sh -c shell, creating

a sometimes unnecessary shell process. Also, some combinations are not allowed, or may not

work as expected. For example, if ENTRYPOINT is ["ping"] (exec form) and CMD is localhost
(shell form), then the expected executed command is ping localhost, but the container tries

ping /bin/sh -c localhost, which is a malformed command.

The Dockerfile should contain at most one ENTRYPOINT and one CMD instruction. If more than

one of each is present, then only the last instruction takes effect. CMD can be present without

specifying an ENTRYPOINT. In this case, the base image's ENTRYPOINT applies, or the default

ENTRYPOINT if none is defined.

Podman can override the CMD instruction when starting a container. If present, all parameters for

the podman run command after the image name form the CMD instruction. For example, the

following instruction causes the running container to display the current time:

ENTRYPOINT ["/bin/date", "+%H:%M"]

The ENTRYPOINT defines both the command to be executed and the parameters. So the CMD
instruction cannot be used. The following example provides the same functionality, with the added

benefit of the CMD instruction being overwritable when a container starts:

ENTRYPOINT ["/bin/date"]
CMD ["+%H:%M"]

In both cases, when a container starts without providing a parameter, the current time is displayed:

[student@workstation ~]$ sudo podman run -it do180/rhel
11:41

In the second case, if a parameter appears after the image name in the podman run command,

it overwrites the CMD instruction. The following command displays the current day of the week

instead of the time:

[student@workstation demo-basic]$ sudo podman run -it do180/rhel +%A
Tuesday

Another approach is using the default ENTRYPOINT and the CMD instruction to define the initial

command. The following instruction displays the current time, with the added benefit of being able

to be overridden at run time.

CMD ["date", "+%H:%M"]

ADD and COPY
The ADD and COPY instructions have two forms:

• The Shell form:

124 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

ADD <source>... <destination>
COPY <source>... <destination>

• The Exec form:

ADD ["<source>",... "<destination>"]
COPY ["<source>",... "<destination>"]

If the source is a file system path, it must be inside the working directory.

The ADD instruction also allows you to specify a resource using a URL:

ADD http://someserver.com/filename.pdf /var/www/html

If the source is a compressed file, then the ADD instruction decompresses the file to the

destination folder. The COPY instruction does not have this functionality.

Warning

Both the ADD and COPY instructions copy the files, retaining permissions, with root
as the owner, even if the USER instruction is specified. Red Hat recommends using a

RUN instruction after the copy to change the owner and avoid “permission denied”

errors.

Layering Image
Each instruction in a Dockerfile creates a new image layer. Having too many instructions in

a Dockerfile causes too many layers, resulting in large images. For example, consider the

following RUN instructions in a Dockerfile:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms"
RUN yum update -y
RUN yum install -y httpd

The previous example is not a good practice when creating container images. It creates three

layers (one for each RUN instruction) while only the last is meaningful. Red Hat recommends

minimizing the number of layers. You can achieve the same objective while creating a single layer

by using the && conjunction:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && yum update -y && yum
 install -y httpd

The problem with this approach is that the readability of the Dockerfile decays. Use the \
escape code to insert line breaks and improve readability. You can also indent lines to align the

commands:

RUN yum --disablerepo=* --enablerepo="rhel-7-server-rpms" && \
 yum update -y && \
 yum install -y httpd

DO180-OCP4.2-en-1-20191105 125

Chapter 5 | Creating Custom Container Images

This example creates only one layer, and the readability improves. RUN, COPY, and ADD instructions

create new image layers, but RUN can be improved this way.

Red Hat recommends applying similar formatting rules to other instructions accepting multiple

parameters, such as LABEL and ENV:

LABEL version="2.0" \
 description="This is an example container image" \
 creationDate="01-09-2017"

ENV MYSQL_ROOT_PASSWORD="my_password" \
 MYSQL_DATABASE "my_database"

Building Images with Podman
The podman build command processes the Dockerfile and builds a new image based on the

instructions it contains. The syntax for this command is as follows:

$ podman build -t NAME:TAG DIR

DIR is the path to the working directory, which must include the Dockerfile. It can be the current

directory as designated by a dot (.) if the working directory is the current directory. NAME:TAG is

a name with a tag given to the new image. If TAG is not specified, then the image is automatically

tagged as latest.

References

Dockerfile Reference Guide

https://docs.docker.com/engine/reference/builder/

Creating base images

https://docs.docker.com/engine/userguide/eng-image/baseimages/

126 DO180-OCP4.2-en-1-20191105

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/baseimages/

Chapter 5 | Creating Custom Container Images

Guided Exercise

Creating a Basic Apache Container Image

In this exercise, you will create a basic Apache container image.

Outcomes
You should be able to create a custom Apache container image built on a Red Hat

Enterprise Linux 7.5 image.

Before You Begin
Run the following command to download the relevant lab files and to verify that Docker is

running:

[student@workstation ~]$ lab dockerfile-create start

 1. Create the Apache Dockerfile

1.1. Open a terminal on workstation. Use your preferred editor and create a new

Dockerfile:

[student@workstation ~]$ vim /home/student/DO180/labs/dockerfile-create/Dockerfile

1.2. Use UBI 7.7 as a base image by adding the following FROM instruction at the top of the

new Dockerfile:

FROM ubi7/ubi:7.7

1.3. Below the FROM instruction, include the MAINTAINER instruction to set the Author
field in the new image. Replace the values to include your name and email address:

MAINTAINER Your Name <youremail>

1.4. Below the MAINTAINER instruction, add the following LABEL instruction to add

description metadata to the new image:

LABEL description="A custom Apache container based on UBI 7"

1.5. Add a RUN instruction with a yum install command to install Apache on the new

container:

RUN yum install -y httpd && \
 yum clean all

1.6. Add a RUN instruction to replace contents of the default HTTPD home page:

DO180-OCP4.2-en-1-20191105 127

Chapter 5 | Creating Custom Container Images

RUN echo "Hello from Dockerfile" > /usr/share/httpd/noindex/index.html

1.7. Use the EXPOSE instruction below the RUN instruction to document the port that the

container listens to at runtime. In this instance, set the port to 80, because it is the

default for an Apache server:

EXPOSE 80

Note

The EXPOSE instruction does not actually make the specified port available to the

host; rather, the instruction serves as metadata about which ports the container is

listening on.

1.8. At the end of the file, use the following ENTRYPOINT instruction to set httpd as the

default entry point:

ENTRYPOINT ["httpd", "-D", "FOREGROUND"]

1.9. Verify that your Dockerfile matches the following before saving and proceeding with

the next steps:

FROM ubi7/ubi:7.7

MAINTAINER Your Name <youremail>

LABEL description="A basic Apache container on RHEL 7 UBI"

RUN yum install -y httpd && \
 yum clean all

RUN echo "Hello from Dockerfile" > /usr/share/httpd/noindex/index.html

EXPOSE 80

ENTRYPOINT ["httpd", "-D", "FOREGROUND"]

 2. Build and verify the Apache container image.

2.1. Use the following commands to create a basic Apache container image using the newly

created Dockerfile:

[student@workstation ~]$ cd /home/student/DO180/labs/dockerfile-create
[student@workstation dockerfile-create]$ sudo podman build --layers=false \
> -t do180/apache .
STEP 1: FROM ubi7/ubi:7.7
Getting image source signatures
Copying blob sha256:...output omitted...
71.46 MB / 71.46 MB [===] 18s
...output omitted...

128 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

Storing signatures
STEP 2: MAINTAINER username <username@example.com>
STEP 3: LABEL description="A basic Apache container on RHEL 7"
STEP 4: RUN yum install -y httpd && yum clean all
Loaded plugins: ovl, product-id, search-disabled-repos, subscription-manager
...output omitted...
Complete!
STEP 5: RUN echo "Hello from Dockerfile" > /usr/share/httpd/noindex/index.html
STEP 6: EXPOSE 80
STEP 7: ENTRYPOINT ["httpd", "-D", "FOREGROUND"]
ERRO[0109] HOSTNAME is not supported for OCI image format...output omitted...
STEP 8: COMMIT ...output omitted... localhost/do180/apache:latest
Getting image source signatures
...output omitted...
Storing signatures
--> 190a...95c5

The container image listed in the FROM instruction is only downloaded if not

already present in local storage.

This error is benign, and can be ignored. It is a known issue of Podman (see Bug

1634806 [https://bugzilla.redhat.com/show_bug.cgi?id=1634806]) and will

disappear in later versions.

2.2. After the build process has finished, run podman images to see the new image in the

image repository:

[student@workstation dockerfile-create]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/apache latest c69affe9d93b 33 seconds ago 247MB
registry.access.redhat.com/ubi7/ubi latest 6fecccc91c83 4 weeks ago 215MB

Note

Podman creates many anonymous intermediate images during the build process.

They are not be listed unless -a is used. Use the --layers=false option of

build subcommand to instruct Podman to delete intermediate images.

 3. Run the Apache Container

3.1. Use the following command to run a container using the Apache image:

[student@workstation dockerfile-create]$ sudo podman run --name lab-apache \
> -d -p 10080:80 do180/apache
fa1d1c450e8892ae085dd8bbf763edac92c41e6ffaa7ad6ec6388466809bb391

3.2. Run the podman ps command to see the running container:

[student@workstation dockerfile-create]$ sudo podman ps
CONTAINER ID IMAGE COMMAND ...output omitted...
fa1d1c450e88 localhost/do180/apache:latest httpd -D FOREGROU...output omitted...

3.3. Use the curl command to verify that the server is running:

DO180-OCP4.2-en-1-20191105 129

https://bugzilla.redhat.com/show_bug.cgi?id=1634806
https://bugzilla.redhat.com/show_bug.cgi?id=1634806
https://bugzilla.redhat.com/show_bug.cgi?id=1634806

Chapter 5 | Creating Custom Container Images

[student@workstation dockerfile-create]$ curl 127.0.0.1:10080
Hello from Dockerfile

Finish

On workstation, run the lab dockerfile-create finish script to complete this lab.

[student@workstation ~]$ lab dockerfile-create finish

This concludes the guided exercise.

130 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

Lab

Creating Custom Container Images

Performance Checklist
In this lab, you will create a Dockerfile to build a custom Apache Web Server container image.

The custom image will be based on a RHEL 7.7 UBI image and serve a custom index.html
page.

Outcomes
You should be able to create a custom Apache Web Server container that hosts static HTML

files.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab dockerfile-review start

1. Review the provided Dockerfile stub in the /home/student/DO180/labs/dockerfile-
review/ folder. Edit the Dockerfile and ensure that it meets the following specifications:

• The base image is ubi7/ubi:7.7

• Sets the desired author name and email ID with the MAINTAINER instruction

• Sets the environment variable PORT to 8080

• Install Apache (httpd package).

• Change the Apache configuration file /etc/httpd/conf/httpd.conf to listen to port

8080 instead of the default port 80.

• Change ownership of the /etc/httpd/logs and /run/httpd folders to user and group

apache (UID and GID are 48).

• So that container users know how to access the Apache Web Server, expose the value set

in the PORT environment variable.

• Copy the contents of the src/ folder in the lab directory to the Apache DocumentRoot
file (/var/www/html/) inside the container.

The src folder contains a single index.html file that prints a Hello World! message.

• Start the Apache httpd daemon in the foreground using the following command:

httpd -D FOREGROUND

2. Build the custom Apache image with the name do180/custom-apache.

3. Create a new container in detached mode with the following characteristics:

DO180-OCP4.2-en-1-20191105 131

Chapter 5 | Creating Custom Container Images

• Name: dockerfile

• Container image: do180/custom-apache

• Port forward: from host port 20080 to container port 8080

• Run as a daemon: yes

Verify that the container is ready and running.

4. Verify that the server is serving the HTML file.

Evaluation

Grade your work by running the lab dockerfile-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab dockerfile-review grade

Finish

From workstation, run the lab dockerfile-review finish command to complete this

lab.

[student@workstation ~]$ lab dockerfile-review finish

This concludes the lab.

132 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

Solution

Creating Custom Container Images

Performance Checklist
In this lab, you will create a Dockerfile to build a custom Apache Web Server container image.

The custom image will be based on a RHEL 7.7 UBI image and serve a custom index.html
page.

Outcomes
You should be able to create a custom Apache Web Server container that hosts static HTML

files.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab dockerfile-review start

1. Review the provided Dockerfile stub in the /home/student/DO180/labs/dockerfile-
review/ folder. Edit the Dockerfile and ensure that it meets the following specifications:

• The base image is ubi7/ubi:7.7

• Sets the desired author name and email ID with the MAINTAINER instruction

• Sets the environment variable PORT to 8080

• Install Apache (httpd package).

• Change the Apache configuration file /etc/httpd/conf/httpd.conf to listen to port

8080 instead of the default port 80.

• Change ownership of the /etc/httpd/logs and /run/httpd folders to user and group

apache (UID and GID are 48).

• So that container users know how to access the Apache Web Server, expose the value set

in the PORT environment variable.

• Copy the contents of the src/ folder in the lab directory to the Apache DocumentRoot
file (/var/www/html/) inside the container.

The src folder contains a single index.html file that prints a Hello World! message.

• Start the Apache httpd daemon in the foreground using the following command:

httpd -D FOREGROUND

DO180-OCP4.2-en-1-20191105 133

Chapter 5 | Creating Custom Container Images

1.1. Open a terminal (Applications → System Tools → Terminal) and use your preferred

editor to modify the Dockerfile located in the /home/student/DO180/labs/
dockerfile-review/ folder.

[student@workstation ~]$ cd /home/student/DO180/labs/dockerfile-review/
[student@workstation dockerfile-review]$ vim Dockerfile

1.2. Set the base image for the Dockerfile to ubi7/ubi:7.7.

FROM ubi7/ubi:7.7

1.3. Set your name and email with a MAINTAINER instruction.

MAINTAINER Your Name <youremail>

1.4. Create an environment variable called PORT and set it to 8080.

ENV PORT 8080

1.5. Install Apache server.

RUN yum install -y httpd && \
 yum clean all

1.6. Change the Apache HTTP Server configuration file to listen to port 8080 and change

ownership of the server working folders with a single RUN instruction.

RUN sed -ri -e "/^Listen 80/c\Listen ${PORT}" /etc/httpd/conf/httpd.conf && \
 chown -R apache:apache /etc/httpd/logs/ && \
 chown -R apache:apache /run/httpd/

1.7. Use the USER instruction to run the container as the apache user. Use the EXPOSE
instruction to document the port that the container listens to at runtime. In this instance,

set the port to the PORT environment variable, which is the default for an Apache server.

USER apache

Expose the custom port that you provided in the ENV var
EXPOSE ${PORT}

1.8. Copy all the files from the src folder to the Apache DocumentRoot path at /var/
www/html.

Copy all files under src/ folder to Apache DocumentRoot (/var/www/html)
COPY ./src/ /var/www/html/

1.9. Finally, insert a CMD instruction to run httpd in the foreground, and then save the

Dockerfile.

134 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

Start Apache in the foreground
CMD ["httpd", "-D", "FOREGROUND"]

2. Build the custom Apache image with the name do180/custom-apache.

2.1. Verify the Dockerfile for the custom Apache image.

The Dockerfile for the custom Apache image should look like the following:

FROM ubi7/ubi:7.7

MAINTAINER Your Name <youremail>

ENV PORT 8080

RUN yum install -y httpd && \
 yum clean all

RUN sed -ri -e "/^Listen 80/c\Listen ${PORT}" /etc/httpd/conf/httpd.conf && \
 chown -R apache:apache /etc/httpd/logs/ && \
 chown -R apache:apache /run/httpd/

USER apache

Expose the custom port that you provided in the ENV var
EXPOSE ${PORT}

Copy all files under src/ folder to Apache DocumentRoot (/var/www/html)
COPY ./src/ /var/www/html/

Start Apache in the foreground
CMD ["httpd", "-D", "FOREGROUND"]

2.2. Run a sudo podman build command to build the custom Apache image and name it

do180/custom-apache.

[student@workstation dockerfile-review]$ sudo podman build \
> -t do180/custom-apache .
STEP 1: FROM ubi7/ubi:7.7
...output omitted...
STEP 2: MAINTAINER username <username@example.com>
...output omitted...
--> 6755...ffc7
STEP 3: FROM 6755...ffc7

STEP 4: ENV PORT 8080
--> 0ff7...e4f0
STEP 5: FROM 0ff7...e4f0
STEP 6: RUN yum install -y httpd && yum clean all
...output omitted...

Installed:
 httpd.x86_64 0:2.4.6-88.el7

DO180-OCP4.2-en-1-20191105 135

Chapter 5 | Creating Custom Container Images

...output omitted...
--> d398...e874
STEP 13: FROM d398...e874
STEP 14: COPY ./src/ /var/www/html/
--> 7de1...0432
STEP 15: FROM 7de1...0432
STEP 16: CMD ["httpd", "-D", "FOREGROUND"]
--> da92...b3bd
STEP 17: COMMIT do180/custom-apache

2.3. Run the podman images command to verify that the custom image is built successfully.

[student@workstation dockerfile-review]$ sudo podman images
REPOSITORY TAG IMAGE ID ...
locahost/do180/custom-apache latest da92b9426325 ...
registry.access.redhat.com/ubi7/ubi 7.7 6fecccc91c83 ...

3. Create a new container in detached mode with the following characteristics:

• Name: dockerfile

• Container image: do180/custom-apache

• Port forward: from host port 20080 to container port 8080

• Run as a daemon: yes

Verify that the container is ready and running.

3.1. Create and run the container.

[student@workstation dockerfile-review]$ sudo podman run -d \
> --name dockerfile -p 20080:8080 do180/custom-apache
367823e35c4a...

3.2. Verify that the container is ready and running.

[student@workstation dockerfile-review]$ sudo podman ps
... IMAGE COMMAND ... PORTS NAMES
... do180/custom... "httpd -D ..." ... 0.0.0.0:20080->8080/tcp dockerfile

4. Verify that the server is serving the HTML file.

Run a curl command on 127.0.0.1:20080

[student@workstation dockerfile-review]$ curl 127.0.0.1:20080

The output should be as follows:

136 DO180-OCP4.2-en-1-20191105

Chapter 5 | Creating Custom Container Images

<html>
 <header><title>DO180 Hello!</title></header>
 <body>
 Hello World! The dockerfile-review lab works!
 </body>
</html>

This concludes the lab.

Evaluation

Grade your work by running the lab dockerfile-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab dockerfile-review grade

Finish

From workstation, run the lab dockerfile-review finish command to complete this

lab.

[student@workstation ~]$ lab dockerfile-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 137

Chapter 5 | Creating Custom Container Images

Summary

In this chapter, you learned:

• A Dockerfile contains instructions that specify how to construct a container image.

• Container images provided by Red Hat Container Catalog or Quay.io are a good starting point

for creating custom images for a specific language or technology.

• Building an image from a Dockerfile is a three-step process:

1. Create a working directory.

2. Specify the build instructions in a Dockerfile file.

3. Build the image with the podman build command.

• The Source-to-Image (S2I) process provides an alternative to Dockerfiles. S2I implements

a standardized container image build process for common technologies from application

source code. This allows developers to focus on application development and not Dockerfile

development.

138 DO180-OCP4.2-en-1-20191105

Chapter 6

Deploying Containerized
Applications on OpenShift

Goal Deploy single container applications on OpenShift
Container Platform.

Objectives • Describe the architecture of Kubernetes and
Red Hat OpenShift Container Platform.

• Create standard Kubernetes resources.

• Create a route to a service.

• Build an application using the Source-to-Image
facility of OpenShift Container Platform.

• Create an application using the OpenShift web
console.

Sections • Describing Kubernetes and OpenShift
Architecture (and Quiz)

• Creating Kubernetes Resources (and Guided
Exercise)

• Creating Routes (and Guided Exercise)

• Creating Applications with the Source-to-
Image Facility (and Guided Exercise)

• Creating Applications with the OpenShift Web
Console (and Guided Exercise)

Lab • Deploying Containerized Applications on
OpenShift

DO180-OCP4.2-en-1-20191105 139

Chapter 6 | Deploying Containerized Applications on OpenShift

Describing Kubernetes and OpenShift
Architecture

Objectives
After completing this section, students should be able to:

• Describe the architecture of a Kubernetes cluster running on the Red Hat OpenShift Container

Platform (RHOCP).

• List the main resource types provided by Kubernetes and RHOCP.

• Identify the network characteristics of containers, Kubernetes, and RHOCP.

• List mechanisms to make a pod externally available.

Kubernetes and OpenShift
In previous chapters we saw that Kubernetes is an orchestration service that simplifies the

deployment, management, and scaling of containerized applications. One of the main advantages

of using Kubernetes is that it uses several nodes to ensure the resiliency and scalability of its

managed applications. Kubernetes forms a cluster of node servers that run containers and are

centrally managed by a set of master servers. A server can act as both a server and a node, but

those roles are usually segregated for increased stability.

Kubernetes Terminology

Term Definition

Node A server that hosts applications in a Kubernetes cluster.

Master Node A node server that manages the control plane in a Kubernetes cluster.

Master nodes provide basic cluster services such as APIs or controllers.

Worker Node Also named Compute Node, worker nodes execute workloads for the cluster.

Application pods are scheduled onto worker nodes.

Resource Resources are any kind of component definition managed by Kubernetes.

Resources contain the configuration of the managed component (for

example, the role assigned to a node), and the current state of the

component (for example, if the node is available).

Controller A controller is a Kubernetes process that watches resources and makes

changes attempting to move the current state towards the desired state.

Label A key-value pair that can be assigned to any Kubernetes resource. Selectors

use labels to filter eligible resources for scheduling and other operations.

Namespace A scope for Kubernetes resources and processes, so that resources with the

same name can be used in different boundaries.

140 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Note

The latest Kubernetes versions implement many controllers as Operators. Operators

are Kubernetes plug-in components that can react to cluster events and control

the state of resources. Operators and CoreOS Operator Framework are outside the

scope of this document.

Red Hat OpenShift Container Platform is a set of modular components and services built on top

of Red Hat CoreOS and Kubernetes. RHOCP adds PaaS capabilities such as remote management,

increased security, monitoring and auditing, application life-cycle management, and self-service

interfaces for developers.

An OpenShift cluster is a Kubernetes cluster that can be managed the same way, but using

the management tools provided by OpenShift, such as the command-line interface or the web

console. This allows for more productive workflows and makes common tasks much easier.

OpenShift Terminology

Term Definition

Infra Node A node server containing infrastructure services like monitoring, logging, or

external routing.

Console A web UI provided by the RHOCP cluster that allows developers and

administrators to interact with cluster resources.

Project OpenShift's extension of Kubernetes' namespaces. Allows the definition of

user access control (UAC) to resources.

The following schema illustrates the OpenShift Container Platform stack.

Figure 6.1: OpenShift component stack

DO180-OCP4.2-en-1-20191105 141

Chapter 6 | Deploying Containerized Applications on OpenShift

From bottom to top, and from left to right, this shows the basic container infrastructure, integrated

and enhanced by Red Hat:

• The base OS is Red Hat CoreOS. Red Hat CoreOS is a Linux distribution focused on providing

an immutable operating system for container execution.

• CRI-O is an implementation of the Kubernetes CRI (Container Runtime Interface) to enable

using OCI (Open Container Initiative) compatible runtimes. CRI-O can use any container

runtime that satisfies CRI: runc (used by the Docker service), libpod (used by Podman) or

rkt (from CoreOS).

• Kubernetes manages a cluster of hosts, physical or virtual, that run containers. It uses resources

that describe multicontainer applications composed of multiple resources, and how they

interconnect.

• Etcd is a distributed key-value store, used by Kubernetes to store configuration and state

information about the containers and other resources inside the Kubernetes cluster.

• Custom Resource Definitions (CRDs) are resource types stored in Etcd and managed by

Kubernetes. These resource types form the state and configuration of all resources managed by

OpenShift.

• Containerized services fulfill many PaaS infrastructure functions, such as networking and

authorization. RHOCP uses the basic container infrastructure from Kubernetes and the

underlying container runtime for most internal functions. That is, most RHOCP internal services

run as containers orchestrated by Kubernetes.

• Runtimes and xPaaS are base container images ready for use by developers, each preconfigured

with a particular runtime language or database. The xPaaS offering is a set of base images for

Red Hat middleware products such as JBoss EAP and ActiveMQ. Red Hat OpenShift Application

Runtimes (RHOAR) are a set runtimes optimized for cloud native applications in OpenShift.

The application runtimes available are Red Hat JBoss EAP, OpenJDK, Thorntail, Eclipse Vert.x,

Spring Boot, and Node.js.

• DevOps tools and user experience: RHOCP provides web UI and CLI management tools for

managing user applications and RHOCP services. The OpenShift web UI and CLI tools are built

from REST APIs which can be used by external tools such as IDEs and CI platforms.

142 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.2: OpenShift and Kubernetes architecture

New Features in RHOCP 4
RHOCP 4 is a massive change from previous versions. As well as keeping backwards compatibility

with previous releases, it includes new features, such as:

• CoreOS as the mandatory operating system for all nodes, offering an immutable infrastructure

optimized for containers.

• A brand new cluster installer which guides the process of installation and update.

• A self-managing platform, able to automatically apply cluster updates and recoveries without

disruption.

• A redesigned application life-cycle management.

• An Operator SDK to build, test, and package Operators.

Describing Kubernetes Resource Types
Kubernetes has six main resource types that can be created and configured using a YAML or a

JSON file, or using OpenShift management tools:

Pods (po)
Represent a collection of containers that share resources, such as IP addresses and persistent

storage volumes. It is the basic unit of work for Kubernetes.

Services (svc)
Define a single IP/port combination that provides access to a pool of pods. By default,

services connect clients to pods in a round-robin fashion.

DO180-OCP4.2-en-1-20191105 143

Chapter 6 | Deploying Containerized Applications on OpenShift

Replication Controllers (rc)
A Kubernetes resource that defines how pods are replicated (horizontally scaled) into

different nodes. Replication controllers are a basic Kubernetes service to provide high

availability for pods and containers.

Persistent Volumes (pv)
Define storage areas to be used by Kubernetes pods.

Persistent Volume Claims (pvc)
Represent a request for storage by a pod. PVCs links a PV to a pod so its containers can make

use of it, usually by mounting the storage into the container's file system.

ConfigMaps (cm) and Secrets
Contains a set of keys and values that can be used by other resources. ConfigMaps and

Secrets are usually used to centralize configuration values used by several resources. Secrets

differ from ConfigMaps maps in that Secrets' values are always encoded (not encrypted) and

their access is restricted to fewer authorized users.

Although Kubernetes pods can be created standalone, they are usually created by high-level

resources such as replication controllers.

OpenShift Resource Types
The main resource types added by OpenShift Container Platform to Kubernetes are as follows:

Deployment config (dc)
Represents the set of containers included in a pod, and the deployment strategies to be used.

A dc also provides a basic but extensible continuous delivery workflow.

Build config (bc)
Defines a process to be executed in the OpenShift project. Used by the OpenShift Source-

to-Image (S2I) feature to build a container image from application source code stored in a

Git repository. A bc works together with a dc to provide a basic but extensible continuous

integration and continuous delivery workflows.

Routes
Represent a DNS host name recognized by the OpenShift router as an ingress point for

applications and microservices.

Note

To obtain a list of all the resources available in a RHOCP cluster and their

abbreviations, use the oc api-resources or kubectl api-resources
commands.

Although Kubernetes replication controllers can be created standalone in OpenShift, they are

usually created by higher-level resources such as deployment controllers.

Networking
Each container deployed in a Kubernetes cluster has an IP address assigned from an internal

network that is accessible only from the node running the container. Because of the container's

ephemeral nature, IP addresses are constantly assigned and released.

Kubernetes provides a software-defined network (SDN) that spawns the internal container

networks from multiple nodes and allows containers from any pod, inside any host, to access pods

from other hosts. Access to the SDN only works from inside the same Kubernetes cluster.

144 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Containers inside Kubernetes pods should not connect to each other's dynamic IP address directly.

Services resolves this problem by linking more stable IP addresses from the SDN to the pods. If

pods are restarted, replicated, or rescheduled to different nodes, services are updated, providing

scalability and fault tolerance.

External access to containers is more complicated. Kubernetes services can specify a NodePort
attribute, which is a network port redirected by all the cluster nodes to the SDN. Then, the

containers in the node can redirect a port to the node's port. Unfortunately, none of these

approaches scale well.

OpenShift makes external access to containers both scalable and simpler by defining route

resources. A route defines external-facing DNS names and ports for a service. A router (ingress

controller) forwards HTTP and TLS requests to the service addresses inside the Kubernetes

SDN. The only requirement is that the desired DNS names are mapped to the IP addresses of the

RHOCP router nodes.

References

Kubernetes documentation website

https://kubernetes.io/docs/

OpenShift documentation website

https://docs.openshift.com/

Understanding Operators

https://docs.openshift.com/container-platform/4.2/operators/olm-what-

operators-are.html

DO180-OCP4.2-en-1-20191105 145

https://kubernetes.io/docs/
https://docs.openshift.com/
https://docs.openshift.com/container-platform/4.2/operators/olm-what-operators-are.html
https://docs.openshift.com/container-platform/4.2/operators/olm-what-operators-are.html

Chapter 6 | Deploying Containerized Applications on OpenShift

Quiz

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

 1. Which two sentences are correct regarding Kubernetes architecture? (Choose two.)

a. Kubernetes nodes can be managed without a master.

b. Kubernetes masters manage pod scaling.

c. Kubernetes masters schedule pods to specific nodes.

d. Kubernetes tools cannot be used to manage resources in an OpenShift cluster.

e. Containers created from Kubernetes pods cannot be managed using standalone tools

such as Podman.

 2. Which two sentences are correct regarding Kubernetes and OpenShift resource types?

(Choose two.)

a. A pod is responsible for provisioning its own persistent storage.

b. All pods generated from the same replication controller have to run in the same node.

c. A route is responsible for providing IP addresses for external access to pods.

d. A replication controller is responsible for monitoring and maintaining the number of pods

for a particular application.

 3. Which two statements are true regarding Kubernetes and OpenShift networking?

(Choose two.)

a. A Kubernetes service can provide an IP address to access a set of pods.

b. Kubernetes is responsible for providing a fully qualified domain name for a pod.

c. A replication controller is responsible for routing external requests to the pods.

d. A route is responsible for providing DNS names for external access.

 4. Which statement is correct regarding persistent storage in OpenShift and Kubernetes?

a. A PVC represents a storage area that a pod can use to store data and is provisioned by

the application developer.

b. A PVC represents a storage area that can be requested by a pod to store data but is

provisioned by the cluster administrator.

c. A PVC represents the amount of memory that can be allocated to a node, so that a

developer can state how much memory he requires for his application to run.

d. A PVC represents the number of CPU processing units that can be allocated to an

application pod, subject to a limit managed by the cluster administrator.

146 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

 5. Which statement is correct regarding OpenShift additions to Kubernetes?

a. OpenShift adds features to simplify Kubernetes configuration of many real-world use

cases.

b. Container images created for OpenShift cannot be used with plain Kubernetes.

c. Red Hat maintains forked versions of Kubernetes internal to the RHOCP product.

d. Doing continuous integration and continuous deployment with RHOCP requires external

tools.

DO180-OCP4.2-en-1-20191105 147

Chapter 6 | Deploying Containerized Applications on OpenShift

Solution

Describing Kubernetes and OpenShift

Choose the correct answers to the following questions:

 1. Which two sentences are correct regarding Kubernetes architecture? (Choose two.)

a. Kubernetes nodes can be managed without a master.

b. Kubernetes masters manage pod scaling.

c. Kubernetes masters schedule pods to specific nodes.

d. Kubernetes tools cannot be used to manage resources in an OpenShift cluster.

e. Containers created from Kubernetes pods cannot be managed using standalone tools

such as Podman.

 2. Which two sentences are correct regarding Kubernetes and OpenShift resource types?

(Choose two.)

a. A pod is responsible for provisioning its own persistent storage.

b. All pods generated from the same replication controller have to run in the same node.

c. A route is responsible for providing IP addresses for external access to pods.

d. A replication controller is responsible for monitoring and maintaining the number of pods

for a particular application.

 3. Which two statements are true regarding Kubernetes and OpenShift networking?

(Choose two.)

a. A Kubernetes service can provide an IP address to access a set of pods.

b. Kubernetes is responsible for providing a fully qualified domain name for a pod.

c. A replication controller is responsible for routing external requests to the pods.

d. A route is responsible for providing DNS names for external access.

 4. Which statement is correct regarding persistent storage in OpenShift and Kubernetes?

a. A PVC represents a storage area that a pod can use to store data and is provisioned by

the application developer.

b. A PVC represents a storage area that can be requested by a pod to store data but is

provisioned by the cluster administrator.

c. A PVC represents the amount of memory that can be allocated to a node, so that a

developer can state how much memory he requires for his application to run.

d. A PVC represents the number of CPU processing units that can be allocated to an

application pod, subject to a limit managed by the cluster administrator.

148 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

 5. Which statement is correct regarding OpenShift additions to Kubernetes?

a. OpenShift adds features to simplify Kubernetes configuration of many real-world use

cases.

b. Container images created for OpenShift cannot be used with plain Kubernetes.

c. Red Hat maintains forked versions of Kubernetes internal to the RHOCP product.

d. Doing continuous integration and continuous deployment with RHOCP requires external

tools.

DO180-OCP4.2-en-1-20191105 149

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Kubernetes Resources

Objectives
After completing this section, students should be able to create standard Kubernetes resources.

The Red Hat OpenShift Container Platform (RHOCP)
Command-line Tool
The main method of interacting with an RHOCP cluster is using the oc command. The basic usage

of the command is through its subcommands in the following syntax:

$> oc <command>

Before interacting with a cluster, most operations require a logged-in user. The syntax to log in is

shown below:

$> oc login <clusterUrl>

Describing Pod Resource Definition Syntax
RHOCP runs containers inside Kubernetes pods, and to create a pod from a container image,

OpenShift needs a pod resource definition. This can be provided either as a JSON or YAML text

file, or can be generated from defaults by the oc new-app command or the OpenShift web

console.

A pod is a collection of containers and other resources. An example of a WildFly application server

pod definition in YAML format is shown below:

apiVersion: v1
kind: Pod
metadata:
 name: wildfly
 labels:
 name: wildfly
spec:
 containers:
 - resources:
 limits :
 cpu: 0.5
 image: do276/todojee
 name: wildfly
 ports:
 - containerPort: 8080
 name: wildfly
 env:
 - name: MYSQL_ENV_MYSQL_DATABASE
 value: items

150 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

 - name: MYSQL_ENV_MYSQL_USER
 value: user1
 - name: MYSQL_ENV_MYSQL_PASSWORD
 value: mypa55

Declares a Kubernetes pod resource type.

A unique name for a pod in Kubernetes that allows administrators to run commands on it.

Creates a label with a key named name that other resources in Kubernetes, usually as service,

can use to find it.

A container-dependent attribute identifying which port on the container is exposed.

Defines a collection of environment variables.

Some pods may require environment variables that can be read by a container. Kubernetes

transforms all the name and value pairs to environment variables. For instance, the

MYSQL_ENV_MYSQL_USER variable is declared internally by the Kubernetes runtime with a value

of user1, and is forwarded to the container image definition. Because the container uses the

same variable name to get the user's login, the value is used by the WildFly container instance to

set the username that accesses a MySQL database instance.

Describing Service Resource Definition Syntax
Kubernetes provides a virtual network that allows pods from different workers to connect. But,

Kubernetes provides no easy way for a pod to discover the IP addresses of other pods.

Figure 6.3: Basic Kubernetes networking

Services are essential resources to any OpenShift application. They allow containers in one pod to

open network connections to containers in another pod. A pod can be restarted for many reasons,

and it gets a different internal IP address each time. Instead of a pod having to discover the IP

address of another pod after each restart, a service provides a stable IP address for other pods to

use, no matter what worker node runs the pod after each restart.

DO180-OCP4.2-en-1-20191105 151

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.4: Kubernetes services networking

Most real-world applications do not run as a single pod. They need to scale horizontally, so many

pods run the same containers from the same pod resource definition to meet growing user

demand. A service is tied to a set of pods, providing a single IP address for the whole set, and a

load-balancing client request among member pods.

The set of pods running behind a service is managed by a DeploymentConfig resource. A

DeploymentConfig resource embeds a ReplicationController that manages how many pod copies

(replicas) have to be created, and creates new ones if any of them fail. DeploymentConfig and

ReplicationController resources are explained later in this chapter.

The following example shows a minimal service definition in JSON syntax:

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "quotedb"
 },
 "spec": {
 "ports": [
 {
 "port": 3306,
 "targetPort": 3306
 }
],
 "selector": {
 "name": "mysqldb"
 }
 }
}

The kind of Kubernetes resource. In this case, a Service.

152 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

A unique name for the service.

ports is an array of objects that describes network ports exposed by the service. The

targetPort attribute has to match a containerPort from a pod container definition, and

the port attribute is the port that is exposed by the service. Clients connect to the service

port and the service forwards packets to the pod targetPort.

selector is how the service finds pods to forward packets to. The target pods need to have

matching labels in their metadata attributes. If the service finds multiple pods with matching

labels, it load balances network connections between them.

Each service is assigned a unique IP address for clients to connect to. This IP address comes from

another internal OpenShift SDN, distinct from the pods' internal network, but visible only to pods.

Each pod matching the selector is added to the service resource as an endpoint.

Discovering Services
An application typically finds a service IP address and port by using environment variables. For

each service inside an OpenShift project, the following environment variables are automatically

defined and injected into containers for all pods inside the same project:

• SVC_NAME_SERVICE_HOST is the service IP address.

• SVC_NAME_SERVICE_PORT is the service TCP port.

Note

The SVC_NAME part of the variable is changed to comply with DNS naming

restrictions: letters are capitalized and underscores (_) are replaced by dashes (-).

Another way to discover a service from a pod is by using the OpenShift internal DNS server, which

is visible only to pods. Each service is dynamically assigned an SRV record with an FQDN of the

form:

SVC_NAME.PROJECT_NAME.svc.cluster.local

When discovering services using environment variables, a pod has to be created and started only

after the service is created. If the application was written to discover services using DNS queries,

however, it can find services created after the pod was started.

There are two ways for an application to access the service from outside an OpenShift cluster:

1. NodePort type: This is an older Kubernetes-based approach, where the service is exposed

to external clients by binding to available ports on the worker node host, which then proxies

connections to the service IP address. Use the oc edit svc command to edit service

attributes and specify NodePort as the value for type, and provide a port value for the

nodePort attribute. OpenShift then proxies connections to the service via the public IP

address of the worker node host and the port value set in nodePort.

2. OpenShift Routes: This is the preferred approach in OpenShift to expose services using a

unique URL. Use the oc expose command to expose a service for external access or expose

a service from the OpenShift web console.

Figure 6.5 illustrates how NodePort services allow external access to Kubernetes services.

OpenShift routes are covered in more detail later in this course.

DO180-OCP4.2-en-1-20191105 153

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.5: Alternative method for external access to a Kubernetes service

OpenShift provides the oc port-forward command for forwarding a local port to a pod port.

This is different from having access to a pod through a service resource:

• The port-forwarding mapping exists only on the workstation where the oc client runs, while a

service maps a port for all network users.

• A service load-balances connections to potentially multiple pods, whereas a port-forwarding

mapping forwards connections to a single pod.

Note

Red Hat discourages the use of the NodePort approach to avoid exposing

the service to direct connections. Mapping via port-forwarding in OpenShift is

considered a more secure alternative.

The following example demonstrates the use of the oc port-forward command:

[student@workstation ~]$ oc port-forward mysql-openshift-1-glqrp 3306:3306

The previous command forwards port 3306 from the developer machine to port 3306 on the db
pod, where a MySQL server (inside a container) accepts network connections.

Note

When running this command, make sure you leave the terminal window running.

Closing the window or canceling the process stops the port mapping.

Creating New Applications
Simple applications, complex multitier applications, and microservice applications can be

described by a single resource definition file. This single file would contain many pod definitions,

service definitions to connect the pods, replication controllers or DeploymentConfigs to

horizontally scale the application pods, PersistentVolumeClaims to persist application data, and

anything else needed that can be managed by OpenShift.

154 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

The oc new-app command can be used with the -o json or -o yaml option to create a

skeleton resource definition file in JSON or YAML format, respectively. This file can be customized

and used to create an application using the oc create -f <filename> command, or merged

with other resource definition files to create a composite application.

The oc new-app command can create application pods to run on OpenShift in many different

ways. It can create pods from existing docker images, from Dockerfiles, and from raw source code

using the Source-to-Image (S2I) process.

Run the oc new-app -h command to understand all the different options available for creating

new applications on OpenShift.

The following command creates an application based on an image, mysql, from Docker Hub, with

the label set to db=mysql:

[student@workstation ~]$ oc new-app mysql \
> MYSQL_USER=user MYSQL_PASSWORD=pass MYSQL_DATABASE=testdb -l db=mysql

The following figure shows the Kubernetes and OpenShift resources created by the oc new-app
command when the argument is a container image:

Figure 6.6: Resources created for a new application

The following command creates an application based on an image from a private Docker image

registry:

oc new-app --docker-image=myregistry.com/mycompany/myapp --name=myapp

The following command creates an application based on source code stored in a Git repository:

oc new-app https://github.com/openshift/ruby-hello-world --name=ruby-hello

DO180-OCP4.2-en-1-20191105 155

Chapter 6 | Deploying Containerized Applications on OpenShift

You will learn more about the Source-to-Image (S2I) process, its associated concepts, and more

advanced ways to use oc new-app to build applications for OpenShift in the next section.

Managing OpenShift Resources at the Command Line
There are several essential commands used to manage OpenShift resources as described below.

Use the oc get command to retrieve information about resources in the cluster. Generally, this

command outputs only the most important characteristics of the resources and omits more

detailed information.

The oc get RESOURCE_TYPE command displays a summary of all resources of the specified

type. The following illustrates example output of the oc get pods command.

NAME READY STATUS RESTARTS AGE
nginx-1-5r583 1/1 Running 0 1h
myapp-1-l44m7 1/1 Running 0 1h

oc get all

Use the oc get all command to retrieve a summary of the most important components of a

cluster. This command iterates through the major resource types for the current project and prints

out a summary of their information.

NAME DOCKER REPO TAGS UPDATED
is/nginx 172.30.1.1:5000/basic-kubernetes/nginx latest About an hour ago

NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/nginx 1 1 1 config,image(nginx:latest)

NAME DESIRED CURRENT READY AGE
rc/nginx-1 1 1 1 1h

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
svc/nginx 172.30.72.75 <none> 80/TCP,443/TCP 1h

NAME READY STATUS RESTARTS AGE
po/nginx-1-ypp8t 1/1 Running 0 1h

oc describe RESOURCE_TYPE RESOURCE_NAME

If the summaries provided by oc get are insufficient, use the oc describe command to retrieve

additional information. Unlike the oc get command, there is no way to iterate through all the

different resources by type. Although most major resources can be described, this functionality

is not available across all resources. The following is an example output from describing a pod

resource:

Name: mysql-openshift-1-glqrp
Namespace: mysql-openshift
Priority: 0
PriorityClassName: none
Node: cluster-worker-1/172.25.250.52
Start Time: Fri, 15 Feb 2019 02:14:34 +0000

156 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Labels: app=mysql-openshift
 deployment=mysql-openshift-1
 deploymentconfig=mysql-openshift
Annotations: openshift.io/deployment-config.latest-version: 1
 openshift.io/deployment-config.name: mysql-openshift
 openshift.io/deployment.name: mysql-openshift-1
 openshift.io/generated-by: OpenShiftNewApp
 openshift.io/scc: restricted
Status: Running
IP: 10.129.0.85

oc export

This command can be used to export a resource definition. Typical use cases include creating a

backup, or to aid in the modification of a definition. By default, the export command prints out

the object representation in YAML format, but this can be changed by providing a -o option.

oc create

This command creates resources from a resource definition. Typically, this is paired with the oc
export command for editing definitions.

oc edit

This command allows the user to edit resources of a resource definition. By default, this command

opens a vi buffer for editing the resource definition.

oc delete RESOURCE_TYPE name

The oc delete command removes a resource from an OpenShift cluster. Note that a

fundamental understanding of the OpenShift architecture is needed here, because deleting

managed resources such as pods results in new instances of those resources being automatically

created. When a project is deleted, it deletes all of the resources and applications contained within

it.

oc exec CONTAINER_ID options command

The oc exec command executes commands inside a container. You can use this command to run

interactive and noninteractive batch commands as part of a script.

Labelling resources
When working with many resources in the same project, it is often useful to group those resources

by application, environment, or some other criteria. To establish these groups, you define labels

for the resources in your project. Labels are part of the metadata section of a resource, and are

defined as key/value pairs, as shown in the following example:

apiVersion: v1
kind: Service
metadata:
...contents omitted...
 labels:
 app: nexus
 template: nexus-persistent-template

DO180-OCP4.2-en-1-20191105 157

Chapter 6 | Deploying Containerized Applications on OpenShift

 name: nexus
...contents omitted...

Many oc subcommands support a -l option to process resources from a label specification.

For the oc get command, the -l option acts as a selector to only retrieve objects that have a

matching label:

$ oc get svc,dc -l app=nexus
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/nexus ClusterIP 172.30.29.218 <none> 8081/TCP 4h

NAME REVISION DESIRED CURRENT ...
deploymentconfig.apps.openshift.io/nexus 1 1 1 ...

Note

Although any label can appear in resources, both the app and template keys are

common for labels. By convention, the app key indicates the application related

to this resource. The template key labels all resources generated by the same

template with the template's name.

When using templates to generate resources, labels are especially useful. A template resource has

a labels section separated from the metadata.labels section. Labels defined in the labels
section do not apply to the template itself, but are added to every resource generated by the

template.

apiVersion: template.openshift.io/v1
kind: Template
labels:
 app: nexus
 template: nexus-persistent-template
metadata:
...contents omitted...
 labels:
 maintainer: redhat
 name: nexus-persistent
...contents omitted...
objects:
- apiVersion: v1
 kind: Service
 metadata:
 name: nexus
 labels:
 version: 1
...contents omitted...

The previous example defines a template resource with a single label: maintainer: redhat.

The template generates a service resource with three labels: app: nexus, template: nexus-
persistent-template, and version: 1.

158 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

References

Additional information about pods and services is available in the Pods and Services

section of the OpenShift Container Platform documentation:

Architecture

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html-single/architecture/index

Additional information about creating images is available in the OpenShift

Container Platform documentation:

Creating Images

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html/images/index

Labels and label selectors details are available in Working with Kubernetes Objects

section for the Kubernetes documentation:

Labels and Selectors

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

DO180-OCP4.2-en-1-20191105 159

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/images/index
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

Chapter 6 | Deploying Containerized Applications on OpenShift

Guided Exercise

Deploying a Database Server on
OpenShift

In this exercise, you will create and deploy a MySQL database pod on OpenShift using the oc
new-app command.

Outcomes
You should be able to create and deploy a MySQL database pod on OpenShift.

Before You Begin
On workstation, run the following command to set up the environment:

[student@workstation ~]$ lab openshift-resources start

 1. Prepare the lab environment.

1.1. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to the OpenShift cluster.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful
...output omitted...

1.3. Create a new project that contains your RHOCP developer username for the resources

you create during this exercise:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-mysql-openshift
Now using project ...output omitted...

 2. Create a new application from the rhscl/mysql-57-rhel7 container image using the oc
new-app command.

This image requires that you use the -e option to set the MYSQL_USER, MYSQL_PASSWORD,

MYSQL_DATABASE, and MYSQL_ROOT_PASSWORD environment variables.

Use the --docker-image option with the oc new-app command to specify the

classroom private registry URI so that OpenShift does not try and pull the image from the

internet:

160 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation ~]$ oc new-app \
> --docker-image=registry.access.redhat.com/rhscl/mysql-57-rhel7:latest \
> --name=mysql-openshift \
> -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 -e MYSQL_DATABASE=testdb \
> -e MYSQL_ROOT_PASSWORD=r00tpa55
--> Found Docker image b48e700 (5 weeks old) from registry.access.redhat.com for
 "registry.access.redhat.com/rhscl/mysql-57-rhel7:latest"
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "mysql-openshift" created
 deploymentconfig.apps.openshift.io "mysql-openshift" created
 service "mysql-openshift" created
--> Success
 Application is not exposed. You can expose services to the outside world by
 executing one or more of the commands below:
 'oc expose svc/mysql-openshift'
 Run 'oc status' to view your app.

 3. Verify that the MySQL pod was created successfully and view the details about the pod and

its service.

3.1. Run the oc status command to view the status of the new application and verify that

the deployment of the MySQL image was successful:

[student@workstation ~]$ oc status
In project youruser-mysql-openshift on server https://
api.cluster.lab.example.com:6443

svc/mysql-openshift - 172.30.114.39:3306
 dc/mysql-openshift deploys istag/mysql-openshift:latest
 deployment #1 running for 11 seconds - 0/1 pods
...output omitted...

3.2. List the pods in this project to verify that the MySQL pod is ready and running:

[student@workstation ~]$ oc get pods -o=wide
NAME READY STATUS ... NODE
mysql-openshift-1-glqrp 1/1 Running ... ip-10-0-148-115.ec2.internal

Note

Notice the worker on which the pod is running. You need this information to be able

to log in to the MySQL database server later.

3.3. Use the oc describe command to view more details about the pod:

[student@workstation ~]$ oc describe pod mysql-openshift-1-glqrp
Name: mysql-openshift-1-glqrp
Namespace: youruser-mysql-openshift
Priority: 0
PriorityClassName: <none>

DO180-OCP4.2-en-1-20191105 161

Chapter 6 | Deploying Containerized Applications on OpenShift

Node: ip-10-0-148-115.ec2.internal/10.0.148.115
Start Time: Fri, 15 Feb 2019 02:14:34 +0000
Labels: app=mysql-openshift
 deployment=mysql-openshift-1
 deploymentconfig=mysql-openshift
Annotations: openshift.io/deployment-config.latest-version: 1
 openshift.io/deployment-config.name: mysql-openshift
 openshift.io/deployment.name: mysql-openshift-1
 openshift.io/generated-by: OpenShiftNewApp
 openshift.io/scc: restricted
Status: Running
IP: 10.129.0.85
...output omitted...

3.4. List the services in this project and verify that the service to access the MySQL pod

was created:

[student@workstation ~]$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-openshift ClusterIP 172.30.114.39 <none> 3306/TCP 6m

3.5. Retrieve the details of the mysql-openshift service using the oc describe
command and note that the Service type is ClusterIP by default:

[student@workstation ~]$ oc describe service mysql-openshift
Name: mysql-openshift
Namespace: youruser-mysql-openshift
Labels: app=mysql-openshift
Annotations: openshift.io/generated-by: OpenShiftNewApp
Selector: app=mysql-openshift,deploymentconfig=mysql-openshift
Type: ClusterIP
IP: 172.30.114.39
Port: 3306-tcp 3306/TCP
TargetPort: 3306/TCP
Endpoints: 10.129.0.85:3306
Session Affinity: None
Events: <none>

3.6. View details about the deployment configuration (dc) for this application:

[student@workstation ~]$ oc describe dc mysql-openshift
Name: mysql-openshift
Namespace: youruser-mysql-openshift
Created: 15 minutes ago
Labels: app=mysql-openshift
...output omitted...
Deployment #1 (latest):
 Name: mysql-openshift-1
 Created: 15 minutes ago
 Status: Complete
 Replicas: 1 current / 1 desired
 Selector: app=mysql-openshift,deployment=mysql-
openshift-1,deploymentconfig=mysql-openshift

162 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

 Labels: app=mysql-openshift,openshift.io/deployment-config.name=mysql-openshift
 Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
...output omitted...

3.7. Expose the service creating a route with a default name and a fully qualified domain

name (FQDN):

[student@workstation ~]$ oc expose service mysql-openshift
route.route.openshift.io/mysql-openshift exposed
[student@workstation ~]$ oc get routes
NAME HOST/PORT ... PORT
mysql-openshift mysql-openshift-youruser-mysql-openshift... ... 3306-tcp

 4. Connect to the MySQL database server and verify that the database was created

successfully.

4.1. From the workstation machine, configure port forwarding between workstation
and the database pod running on OpenShift using port 3306. The terminal will hang

after executing the command.

[student@workstation ~]$ oc port-forward mysql-openshift-1-glqrp 3306:3306
Forwarding from 127.0.0.1:3306 -> 3306
Forwarding from [::1]:3306 -> 3306

4.2. From the workstation machine open another terminal and connect to the MySQL

server using the MySQL client.

[student@workstation ~]$ mysql -uuser1 -pmypa55 --protocol tcp -h localhost
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.6.34 MySQL Community Server (GPL)

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

4.3. Verify the creation of the testdb database.

MySQL [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| testdb |
+--------------------+
2 rows in set (0.00 sec)

4.4. Exit from the MySQL prompt:

DO180-OCP4.2-en-1-20191105 163

Chapter 6 | Deploying Containerized Applications on OpenShift

MySQL [(none)]> exit
Bye

Close the terminal and return to the previous one. Finish the port forwarding process

by pressing Ctrl+C.

[student@workstation ~]$ oc port-forward mysql-openshift-1-5qhg8 3306:3306
Forwarding from 127.0.0.1:3306 -> 3306
Forwarding from [::1]:3306 -> 3306
Handling connection for 3306
^C[student@workstation ~]$

 5. Delete the project to remove all the resources within the project:

[student@workstation ~]$ oc delete project ${RHT_OCP4_DEV_USER}-mysql-openshift

Finish

On workstation, run the lab openshift-resources finish script to complete this lab.

[student@workstation ~]$ lab openshift-resources finish

This concludes the exercise.

164 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Routes

Objectives
After completing this section, students should be able to expose services using OpenShift routes.

Working with Routes
Services allow for network access between pods inside an OpenShift instance, and routes allow for

network access to pods from users and applications outside the OpenShift instance.

Figure 6.7: OpenShift routes and Kubernetes services

A route connects a public-facing IP address and DNS host name to an internal-facing service IP. It

uses the service resource to find the endpoints; that is, the ports exposed by the service.

OpenShift routes are implemented by a cluster-wide router service, which runs as a containerized

application in the OpenShift cluster. OpenShift scales and replicates router pods like any other

OpenShift application.

Note

In practice, to improve performance and reduce latency, the OpenShift router

connects directly to the pods using the internal pod software-defined network

(SDN).

DO180-OCP4.2-en-1-20191105 165

Chapter 6 | Deploying Containerized Applications on OpenShift

The router service uses HAProxy as the default implementation.

An important consideration for OpenShift administrators is that the public DNS host names

configured for routes need to point to the public-facing IP addresses of the nodes running the

router. Router pods, unlike regular application pods, bind to their nodes' public IP addresses

instead of to the internal pod SDN.

The following example shows a minimal route defined using JSON syntax:

{
 "apiVersion": "v1",
 "kind": "Route",
 "metadata": {
 "name": "quoteapp"
 },
 "spec": {
 "host": "quoteapp.apps.example.com",
 "to": {
 "kind": "Service",
 "name": "quoteapp"
 }
 }
}

The apiVersion, kind, and metadata attributes follow standard Kubernetes resource definition

rules. The Route value for kind shows that this is a route resource, and the metadata.name
attribute gives this particular route the identifier quoteapp.

As with pods and services, the main part is the spec attribute, which is an object containing the

following attributes:

• host is a string containing the FQDN associated with the route. DNS must resolve this FQDN to

the IP address of the OpenShift router. The details to modify DNS configuration are outside the

scope of this course.

• to is an object stating the resource this route points to. In this case, the route points to an

OpenShift Service with the name set to quoteapp.

Note

Names of different resource types do not collide. It is perfectly legal to have a route

named quoteapp that points to a service also named quoteapp.

Important

Unlike services, which use selectors to link to pod resources containing specific

labels, a route links directly to the service resource name.

Creating Routes
Use the oc create command to create route resources, just like any other OpenShift resource.

You must provide a JSON or YAML resource definition file, which defines the route, to the oc
create command.

166 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

The oc new-app command does not create a route resource when building a pod from container

images, Dockerfiles, or application source code. After all, oc new-app does not know if the pod is

intended to be accessible from outside the OpenShift instance or not.

Another way to create a route is to use the oc expose service command, passing a service

resource name as the input. The --name option can be used to control the name of the route

resource. For example:

$ oc expose service quotedb --name quote

By default, routes created by oc expose generate DNS names of the form:

route-name-project-name.default-domain

Where:

• route-name is the name assigned to the route. If no explicit name is set, OpenShift assigns the

route the same name as the originating resource (for example, the service name).

• project-name is the name of the project containing the resource.

• default-domain is configured on the OpenShift master and corresponds to the wildcard DNS

domain listed as a prerequisite for installing OpenShift.

For example, creating a route named quote in project named test from an OpenShift instance

where the wildcard domain is cloudapps.example.com results in the FQDN quote-
test.cloudapps.example.com.

Note

The DNS server that hosts the wildcard domain knows nothing about route host

names. It merely resolves any name to the configured IP addresses. Only the

OpenShift router knows about route host names, treating each one as an HTTP

virtual host. The OpenShift router blocks invalid wildcard domain host names that

do not correspond to any route and returns an HTTP 404 error.

Leveraging the Default Routing Service

The default routing service is implemented as an HAProxy pod. Router pods, containers, and their

configuration can be inspected just like any other resource in an OpenShift cluster:

$ oc get pod --all-namespaces -l app=router
NAMESPACE NAME READY STATUS RESTARTS AGE
openshift-ingress router-default-746b5cfb65-f6sdm 1/1 Running 1 4d

By default, router is deployed in openshift-ingress project. Use oc describe pod
command to get the routing configuration details:

$ oc describe pod router-default-746b5cfb65-f6sdm
Name: router-default-746b5cfb65-f6sdm
Namespace: openshift-ingress
...output omitted...
Containers:
 router:

DO180-OCP4.2-en-1-20191105 167

Chapter 6 | Deploying Containerized Applications on OpenShift

...output omitted...
 Environment:
 STATS_PORT: 1936
 ROUTER_SERVICE_NAMESPACE: openshift-ingress
 DEFAULT_CERTIFICATE_DIR: /etc/pki/tls/private
 ROUTER_SERVICE_NAME: default
 ROUTER_CANONICAL_HOSTNAME: apps.cluster.lab.example.com
...output omitted...

The subdomain, or default domain to be used in all default routes, takes its value from the

ROUTER_CANONICAL_HOSTNAME entry. It is also defined with the keyword subdomain in the

routingConfig section of the OpenShift configuration file master-config.yaml. For

example:

routingConfig:
 subdomain: 172.25.250.254.xip.io

References

Additional information about the architecture of routes in OpenShift is available in

the Architecture and Developer Guide sections of the

OpenShift Container Platform documentation.

https://access.redhat.com/documentation/en-us/openshift_container_platform/

168 DO180-OCP4.2-en-1-20191105

https://access.redhat.com/documentation/en-us/openshift_container_platform/

Chapter 6 | Deploying Containerized Applications on OpenShift

Guided Exercise

Exposing a Service as a Route

In this exercise, you will create, build, and deploy an application on an OpenShift cluster and

expose its service as a route.

Outcomes
You should be able to expose a service as a route for a deployed OpenShift application.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab openshift-routes start

 1. Prepare the lab environment.

1.1. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to the OpenShift cluster.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful
...output omitted...

1.3. Create a new project that contains your RHOCP developer username for the resources

you create during this exercise:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-route

 2. Create a new PHP application using Source-to-Image from the php-helloworld
directory in the Git repository at http://github.com/yourgituser/DO180-apps/

2.1. Use the oc new-app command to create the PHP application.

Important

The following example uses a backslash (\) to indicate that the second line is a

continuation of the first line. If you wish to ignore the backslash, you can type the

entire command in one line.

DO180-OCP4.2-en-1-20191105 169

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation ~]$ oc new-app \
> php:7.1~https://github.com/${RHT_OCP4_GITHUB_USER}/DO180-apps \
> --context-dir php-helloworld --name php-helloworld
--> Found image 9530387 (4 weeks old) in image stream "openshift/php" under tag
 "7.0" for "php:7.0"
...output omitted...
--> Creating resources ...
...output omitted...
--> Success
 Build scheduled, use 'oc logs -f bc/php-helloworld' to track its progress.
 Application is not exposed. You can expose services to the outside world by
 executing one or more of the commands below:
 'oc expose svc/php-helloworld'
 Run 'oc status' to view your app.

2.2. Wait until the application finishes building and deploying by monitoring the progress

with the oc get pods -w command:

[student@workstation ~]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
php-helloworld-1-build 0/1 Init:0/2 0 2s
php-helloworld-1-build 0/1 Init:0/2 0 4s
php-helloworld-1-build 0/1 Init:1/2 0 5s
php-helloworld-1-build 0/1 PodInitializing 0 6s
php-helloworld-1-build 1/1 Running 0 7s
php-helloworld-1-deploy 0/1 Pending 0 0s
php-helloworld-1-deploy 0/1 Pending 0 0s
php-helloworld-1-deploy 0/1 ContainerCreating 0 0s
php-helloworld-1-build 0/1 Completed 0 5m8s
php-helloworld-1-cnphm 0/1 Pending 0 0s
php-helloworld-1-cnphm 0/1 Pending 0 1s
php-helloworld-1-deploy 1/1 Running 0 4s
php-helloworld-1-cnphm 0/1 ContainerCreating 0 1s
php-helloworld-1-cnphm 1/1 Running 0 62s
php-helloworld-1-deploy 0/1 Completed 0 65s
php-helloworld-1-deploy 0/1 Terminating 0 66s
php-helloworld-1-deploy 0/1 Terminating 0 66s
^C

Your exact output may differ in names, status, timing, and order. Look for the

Completed container with the deploy suffix: That means the application is deployed

successfully. The container in Running status with a random suffix (cnphm in the

example) contains the application and shows it is up and running.

Alternatively, monitor the build and deployment logs with the oc logs -f bc/php-
helloworld and oc logs -f dc/php-helloworld commands, respectively.

[student@workstation ~]$ oc logs -f bc/php-helloworld
 Cloning "https://github.com/yourgituser/DO180-apps" ...
 Commit: f7cd8963ef353d9173c3a21dcccf402f3616840b (Initial commit, including all
 apps previously in course)
...output omitted...

170 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

STEP 7: USER 1001
STEP 8: RUN /usr/libexec/s2i/assemble
---> Installing application source...
...output omitted...
Push successful
[student@workstation ~]$ oc logs -f dc/php-helloworld
=> sourcing 50-mpm-tuning.conf ...
=> sourcing 40-ssl-certs.sh ...
...output omitted...
[core:notice] [pid 1] AH00094: Command line: 'httpd -D FOREGROUND'

Your exact output may differ.

2.3. Review the service for this application using the oc describe command:

[student@workstation ~]$ oc describe svc/php-helloworld
Name: php-helloworld
Namespace: youruser-route
Labels: app=php-helloworld
Annotations: openshift.io/generated-by=OpenShiftNewApp
Selector: app=php-helloworld,deploymentconfig=php-helloworld
Type: ClusterIP
IP: 172.30.200.65
Port: 8080-tcp 8080/TCP
TargetPort: 8080/TCP
Endpoints: 10.129.0.31:8080
Port: 8443-tcp 8443/TCP
TargetPort: 8443/TCP
Endpoints: 10.129.0.31:8443
Session Affinity: None
Events: <none>

The IP address displayed in the output of the command may differ.

 3. Expose the service, which creates a route. Use the default name and fully qualified domain

name (FQDN) for the route:

[student@workstation ~]$ oc expose svc/php-helloworld
route.route.openshift.io/php-helloworld exposed
[student@workstation ~]$ oc describe route
Name: php-helloworld
Namespace: youruser-route
Created: 4 minutes ago
Labels: app=php-helloworld
Annotations: openshift.io/host.generated=true
Requested Host: php-helloworld-youruser-routes.your_wildcard_domain
 exposed on router default (host your_wildcard_domain) 4 minutes ago
Path: <none>
TLS Termination: <none>
Insecure Policy: <none>
Endpoint Port: 8080-tcp

DO180-OCP4.2-en-1-20191105 171

Chapter 6 | Deploying Containerized Applications on OpenShift

Service: php-helloworld
Weight: 100 (100%)
Endpoints: 10.130.0.48:8443, 10.130.0.48:8080

 4. Access the service from a host external to the cluster to verify that the service and route

are working.

[student@workstation ~]$ curl php-helloworld-${RHT_OCP4_DEV_USER}-route.
${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.1.30

Note

The output of the PHP application depends on the actual code in the Git repository.

It may be different if you updated the code in previous sections.

Notice the FQDN is comprised of the application name and project name by default. The

remainder of the FQDN, the subdomain, is defined when OpenShift is installed.

 5. Replace this route with a route named xyz.

5.1. Delete the current route:

[student@workstation ~]$ oc delete route/php-helloworld
route.route.openshift.io "php-helloworld" deleted

Note

Deleting the route is optional. You can have multiple routes for the same service,

provided they have different names.

5.2. Create a route for the service with a name of youruser-xyz.

[student@workstation ~]$ oc expose svc/php-helloworld \
> --name=${RHT_OCP4_DEV_USER}-xyz
route.route.openshift.io/youruser-xyz exposed
[student@workstation ~]$ oc describe route
Name: youruser-xyz
Namespace: youruser-route
Created: About a minute ago
Labels: app=php-helloworld
Annotations: openshift.io/host.generated=true
Requested Host: youruser-xyz-youruser-route.your_wildcard_domain
 exposed on router default (host your_wildcard_domain) 2 minutes ago
Path: <none>
TLS Termination: <none>
Insecure Policy: <none>
Endpoint Port: 8080-tcp

Service: php-helloworld

172 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Weight: 100 (100%)
Endpoints: 10.130.0.48:8443, 10.130.0.48:8080

Note the new FQDN that was generated based on the new route name. Both the route

name and the project name contain your user name, hence it appears twice in the route

FQDN.

5.3. Make an HTTP request using the FQDN on port 80:

[student@workstation ~]$ curl \
> ${RHT_OCP4_DEV_USER}-xyz-${RHT_OCP4_DEV_USER}-route.${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.1.30

Finish

On workstation, run the lab openshift-routes finish script to complete this exercise.

[student@workstation ~]$ lab openshift-routes finish

This concludes the guided exercise.

DO180-OCP4.2-en-1-20191105 173

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Applications with Source-to-
Image

Objectives
After completing this section, students should be able to deploy an application using the Source-

to-Image (S2I) facility of OpenShift Container Platform.

The Source-to-Image (S2I) Process
Source-to-Image (S2I) is a tool that makes it easy to build container images from application

source code. This tool takes an application's source code from a Git repository, injects the source

code into a base container based on the language and framework desired, and produces a new

container image that runs the assembled application.

Figure 6.8 shows the resources created by the oc new-app command when the argument is an

application source code repository. Notice that S2I also creates a Deployment Configuration and

all its dependent resources.

Figure 6.8: Deployment Configuration and dependent resources

S2I is the primary strategy used for building applications in OpenShift Container Platform. The

main reasons for using source builds are:

• User efficiency: Developers do not need to understand Dockerfiles and operating system

commands such as yum install. They work using their standard programming language tools.

174 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

• Patching: S2I allows for rebuilding all the applications consistently if a base image needs a

patch due to a security issue. For example, if a security issue is found in a PHP base image, then

updating this image with security patches updates all applications that use this image as a base.

• Speed: With S2I, the assembly process can perform a large number of complex operations

without creating a new layer at each step, resulting in faster builds.

• Ecosystem: S2I encourages a shared ecosystem of images where base images and scripts can

be customized and reused across multiple types of applications.

Describing Image Streams
OpenShift deploys new versions of user applications into pods quickly. To create a new application,

in addition to the application source code, a base image (the S2I builder image) is required. If

either of these two components gets updated, OpenShift creates a new container image. Pods

created using the older container image are replaced by pods using the new image.

Even though it is evident that the container image needs to be updated when application code

changes, it may not be evident that the deployed pods also need to be updated should the builder

image change.

The image stream resource is a configuration that names specific container images associated

with image stream tags, an alias for these container images. OpenShift builds applications against

an image stream. The OpenShift installer populates several image streams by default during

installation. To determine available image streams, use the oc get command, as follows:

$ oc get is -n openshift
NAME IMAGE REPOSITORY TAGS
cli ...svc:5000/openshift/cli latest
dotnet ...svc:5000/openshift/dotnet 2.0,2.1,latest
dotnet-runtime ...svc:5000/openshift/dotnet-runtime 2.0,2.1,latest
httpd ...svc:5000/openshift/httpd 2.4,latest
jenkins ...svc:5000/openshift/jenkins 1,2
mariadb ...svc:5000/openshift/mariadb 10.1,10.2,latest
mongodb ...svc:5000/openshift/mongodb 2.4,2.6,3.2,3.4,3.6,latest
mysql ...svc:5000/openshift/mysql 5.5,5.6,5.7,latest
nginx ...svc:5000/openshift/nginx 1.10,1.12,1.8,latest
nodejs ...svc:5000/openshift/nodejs 0.10,10,11,4,6,8,latest
perl ...svc:5000/openshift/perl 5.16,5.20,5.24,5.26,latest
php ...svc:5000/openshift/php 5.5,5.6,7.0,7.1,latest
postgresql ...svc:5000/openshift/postgresql 10,9.2,9.4,9.5,9.6,latest
python ...svc:5000/openshift/python 2.7,3.3,3.4,3.5,3.6,latest
redis ...svc:5000/openshift/redis 3.2,latest
ruby ...svc:5000/openshift/ruby 2.0,2.2,2.3,2.4,2.5,latest
wildfly ...svc:5000/openshift/wildfly 10.0,10.1,11.0,12.0,...

Note

Your OpenShift instance may have more or fewer image streams depending on local

additions and OpenShift point releases.

OpenShift detects when an image stream changes and takes action based on that change. If a

security issue arises in the nodejs-010-rhel7 image, it can be updated in the image repository,

and OpenShift can automatically trigger a new build of the application code.

DO180-OCP4.2-en-1-20191105 175

Chapter 6 | Deploying Containerized Applications on OpenShift

It is likely that an organization chooses several supported base S2I images from Red Hat, but may

also create their own base images.

Building an Application with S2I and the CLI
Building an application with S2I can be accomplished using the OpenShift CLI.

An application can be created using the S2I process with the oc new-app command from the

CLI.

$ oc new-app php~http://my.git.server.com/my-app --name=myapp

The image stream used in the process appears to the left of the tilde (~).

The URL after the tilde indicates the location of the source code's Git repository.

Sets the application name.

Note

Instead of using the tilde, you can set the image stream by using the -i option.

$ oc new-app -i php http://services.lab.example.com/app --name=myapp

The oc new-app command allows creating applications using source code from a local or remote

Git repository. If only a source repository is specified, oc new-app tries to identify the correct

image stream to use for building the application. In addition to application code, S2I can also

identify and process Dockerfiles to create a new image.

The following example creates an application using the Git repository in the current directory.

$ oc new-app .

Important

When using a local Git repository, the repository must have a remote origin that

points to a URL accessible by the OpenShift instance.

It is also possible to create an application using a remote Git repository and a context

subdirectory:

$ oc new-app https://github.com/openshift/sti-ruby.git \
 --context-dir=2.0/test/puma-test-app

Finally, it is possible to create an application using a remote Git repository with a specific branch

reference:

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

If an image stream is not specified in the command, new-app attempts to determine which

language builder to use based on the presence of certain files in the root of the repository:

176 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Language Files

Ruby Rakefile Gemfile, config.ru

Java EE pom.xml

Node.js app.json package.json

PHP index.php composer.json

Python requirements.txt config.py

Perl index.pl cpanfile

After a language is detected, the new-app command searches for image stream tags that have

support for the detected language, or an image stream that matches the name of the detected

language.

Create a JSON resource definition file by using the -o json parameter and output redirection:

$ oc -o json new-app php~http://services.lab.example.com/app \
> --name=myapp > s2i.json

This JSON definition file creates a list of resources. The first resource is the image stream:

...output omitted...
{
 "kind": "ImageStream",
 "apiVersion": "image.openshift.io/v1",
 "metadata": {
 "name": "myapp",
 "creationTimestamp": null
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "lookupPolicy": {
 "local": false
 }
 },
 "status": {
 "dockerImageRepository": ""
 }
},
...output omitted...

Define a resource type of image stream.

Name the image stream myapp.

DO180-OCP4.2-en-1-20191105 177

Chapter 6 | Deploying Containerized Applications on OpenShift

The build configuration (bc) is responsible for defining input parameters and triggers that are

executed to transform the source code into a runnable image. The BuildConfig (BC) is the

second resource, and the following example provides an overview of the parameters used by

OpenShift to create a runnable image.

...output omitted...
{
 "kind": "BuildConfig",
 "apiVersion": "build.openshift.io/v1",
 "metadata": {
 "name": "myapp",
 "creationTimestamp": null,
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "triggers": [
 {
 "type": "GitHub",
 "github": {
 "secret": "S5_4BZpPabM6KrIuPBvI"
 }
 },
 {
 "type": "Generic",
 "generic": {
 "secret": "3q8K8JNDoRzhjoz1KgMz"
 }
 },
 {
 "type": "ConfigChange"
 },
 {
 "type": "ImageChange",
 "imageChange": {}
 }
],
 "source": {
 "type": "Git",
 "git": {
 "uri": "http://services.lab.example.com/app"
 }
 },
 "strategy": {
 "type": "Source",
 "sourceStrategy": {
 "from": {
 "kind": "ImageStreamTag",
 "namespace": "openshift",
 "name": "php:7.1"

178 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

 }
 }
 },
 "output": {
 "to": {
 "kind": "ImageStreamTag",
 "name": "myapp:latest"
 }
 },
 "resources": {},
 "postCommit": {},
 "nodeSelector": null
 },
 "status": {
 "lastVersion": 0
 }
},
...output omitted...

Define a resource type of BuildConfig.

Name the BuildConfig myapp.

Define the address to the source code Git repository.

Define the strategy to use S2I.

Define the builder image as the php:7.1 image stream.

Name the output image stream myapp:latest.

The third resource is the deployment configuration that is responsible for customizing the

deployment process in OpenShift. It may include parameters and triggers that are necessary to

create new container instances, and are translated into a replication controller from Kubernetes.

Some of the features provided by DeploymentConfig objects are:

• User customizable strategies to transition from the existing deployments to new deployments.

• Rollbacks to a previous deployment.

• Manual replication scaling.

...output omitted...
{
 "kind": "DeploymentConfig",
 "apiVersion": "apps.openshift.io/v1",
 "metadata": {
 "name": "myapp",
 "creationTimestamp": null,
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "strategy": {
 "resources": {}
 },

DO180-OCP4.2-en-1-20191105 179

Chapter 6 | Deploying Containerized Applications on OpenShift

 "triggers": [
 {
 "type": "ConfigChange"
 },
 {
 "type": "ImageChange",
 "imageChangeParams": {
 "automatic": true,
 "containerNames": [
 "myapp"
],
 "from": {
 "kind": "ImageStreamTag",
 "name": "myapp:latest"
 }
 }
 }
],
 "replicas": 1,
 "test": false,
 "selector": {
 "app": "myapp",
 "deploymentconfig": "myapp"
 },
 "template": {
 "metadata": {
 "creationTimestamp": null,
 "labels": {
 "app": "myapp",
 "deploymentconfig": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "myapp",
 "image": "myapp:latest",
 "ports": [
 {
 "containerPort": 8080,
 "protocol": "TCP"
 },
 {
 "containerPort": 8443,
 "protocol": "TCP"
 }
],
 "resources": {}
 }
]
 }
 }

180 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

 },
 "status": {
 "latestVersion": 0,
 "observedGeneration": 0,
 "replicas": 0,
 "updatedReplicas": 0,
 "availableReplicas": 0,
 "unavailableReplicas": 0
 }
},
...output omitted...

Define a resource type of DeploymentConfig.

Name the DeploymentConfig myapp.

A configuration change trigger causes a new deployment to be created any time the

replication controller template changes.

An image change trigger causes the creation of a new deployment each time a new version of

the myapp:latest image is available in the repository.

Defines the container image to deploy: myapp:latest.

Specifies the container ports.

The last item is the service, already covered in previous chapters:

...output omitted...
{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "myapp",
 "creationTimestamp": null,
 "labels": {
 "app": "myapp"
 },
 "annotations": {
 "openshift.io/generated-by": "OpenShiftNewApp"
 }
 },
 "spec": {
 "ports": [
 {
 "name": "8080-tcp",
 "protocol": "TCP",
 "port": 8080,
 "targetPort": 8080
 },
 {
 "name": "8443-tcp",
 "protocol": "TCP",
 "port": 8443,
 "targetPort": 8443
 }
],
 "selector": {
 "app": "myapp",

DO180-OCP4.2-en-1-20191105 181

Chapter 6 | Deploying Containerized Applications on OpenShift

 "deploymentconfig": "myapp"
 }
 },
 "status": {
 "loadBalancer": {}
 }
}

Note

By default, the oc new-app command does not create a route. You can create a

route after creating the application. However, a route is automatically created when

using the web console because it uses a template.

After creating a new application, the build process starts. Use the oc get builds command to

see a list of application builds:

$ oc get builds
NAME TYPE FROM STATUS STARTED DURATION
php-helloworld-1 Source Git@9e17db8 Running 13 seconds ago

OpenShift allows viewing the build logs. The following command shows the last few lines of the

build log:

$ oc logs build/myapp-1

Important

If the build is not Running yet, or OpenShift has not deployed the s2i-build pod

yet, the above command throws an error. Just wait a few moments and retry it.

Trigger a new build with the oc start-build build_config_name command:

$ oc get buildconfig
NAME TYPE FROM LATEST
myapp Source Git 1

$ oc start-build myapp
build "myapp-2" started

Relationship Between Build and Deployment
Configurations
The BuildConfig pod is responsible for creating the images in OpenShift and pushing them to

the internal container registry. Any source code or content update typically requires a new build to

guarantee the image is updated.

The DeploymentConfig pod is responsible for deploying pods to OpenShift. The outcome of

a DeploymentConfig pod execution is the creation of pods with the images deployed in the

182 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

internal container registry. Any existing running pod may be destroyed, depending on how the

DeploymentConfig resource is set.

The BuildConfig and DeploymentConfig resources do not interact directly. The

BuildConfig resource creates or updates a container image. The DeploymentConfig reacts to

this new image or updated image event and creates pods from the container image.

References

Source-to-Image (S2I) Build

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-

s2i_build-strategies

S2I GitHub repository

https://github.com/openshift/source-to-image

DO180-OCP4.2-en-1-20191105 183

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-s2i_build-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-s2i_build-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/build-strategies#build-strategy-s2i_build-strategies
https://github.com/openshift/source-to-image

Chapter 6 | Deploying Containerized Applications on OpenShift

Guided Exercise

Creating a Containerized Application with
Source-to-Image

In this exercise, you will explore a Source-to-Image container, build an application from

source code, and deploy the application to an OpenShift cluster.

Outcomes
You should be able to:

• Describe the layout of a Source-to-Image container and the scripts used to build and run

an application within the container.

• Build an application from source code using the OpenShift command-line interface.

• Verify the successful deployment of the application using the OpenShift command-line

interface.

Before You Begin
Run the following command to download the relevant lab files and configure the

environment:

[student@workstation ~]$ lab openshift-s2i start

 1. Examine the source code for the PHP version 5.6 Source-to-Image container.

1.1. Go to the lab directory.

[student@workstation ~]$ cd ~/DO180/labs/openshift-s2i

1.2. Use the tree command to review the files that make up the container image.

[student@workstation openshift-s2i]$ tree s2i-php-container
s2i-php-container/
├── 5.6
│ ├── cccp.yml
│ ├── contrib
│ │ └── etc
│ │ ├── conf.d
│ │ │ ├── 00-documentroot.conf.template
│ │ │ └── 50-mpm-tuning.conf.template
│ │ ├── httpdconf.sed
│ │ ├── php.d
│ │ │ └── 10-opcache.ini.template
│ │ ├── php.ini.template
│ │ └── scl_enable

184 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

│ ├── Dockerfile
│ ├── Dockerfile.rhel7
│ ├── README.md
│ ├── s2i
│ │ └── bin
│ │ ├── assemble
│ │ ├── run
│ │ └── usage
│ └── test
│ ├── run
│ └── test-app
│ ├── composer.json
│ └── index.php
├── hack
│ ├── build.sh
│ └── common.mk
├── LICENSE
├── Makefile
└── README.md

1.3. Review the s2i-php-container/5.6/s2i/bin/assemble script. Note how it

moves the PHP source code from the /tmp/src/ directory to the container working

directory near the top of the script. The OpenShift Source-to-Image process executes

the git clone command on the Git repository provided at creation using the

oc new-app command or the web console. The remainder of the script supports

retrieving PHP packages that your application declares as requirements, if any.

1.4. Review the s2i-php-container/5.6/s2i/bin/run script. The PHP container

built by the Source-to-Image process uses this script as the container's default

command (The equivalent of the CMD instruction in a Dockerfile). This script is

responsible for setting up and running the Apache HTTP service, which executes the

PHP code in response to HTTP requests.

1.5. Review the s2i-php-container/5.6/Dockerfile.rhel7 file. This Dockerfile

builds the base PHP Source-to-Image container. It installs PHP and Apache HTTP

Server from the Red Hat Software Collections Library, copies the Source-to-Image

scripts you examined in earlier steps to their expected location, and modifies files and

file permissions as needed to run on an OpenShift cluster.

 2. Inspect the PHP source code for the sample application and create and push a new branch

named s2i to use during this exercise.

2.1. Enter your local clone of the DO180-apps Git repository and checkout the master
branch of the course's repository to ensure you start this exercise from a known good

state:

[student@workstation openshift-s2i]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git checkout master
...output omitted...

2.2. Create a new branch to save any changes you make during this exercise:

DO180-OCP4.2-en-1-20191105 185

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation DO180-apps]$ git checkout -b s2i
Switched to a new branch 's2i'
[student@workstation DO180-apps]$ git push -u origin s2i
...output omitted...
 * [new branch] s2i -> s2i
Branch s2i set up to track remote branch s2i from origin.

2.3. Review the PHP source code of the application, inside the the php-helloworld
folder.

Open the index.php file in the /home/student/DO180-apps/php-helloworld
folder:

<?php
print "Hello, World! php version is " . PHP_VERSION . "\n";
?>

The application implements a simple response which returns the PHP version it is

running.

 3. Prepare the lab environment.

3.1. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation DO180-apps]$ source /usr/local/etc/ocp4.config

3.2. Log in to the OpenShift cluster.

[student@workstation DO180-apps]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful
...output omitted...

3.3. Create a new project that contains your RHOCP developer username for the resources

you create during this exercise:

[student@workstation DO180-apps]$ oc new-project ${RHT_OCP4_DEV_USER}-s2i

 4. Create a new PHP application using Source-to-Image from the php-helloworld
directory using the s2i branch you created in the previous step in your fork of the DO180-

apps Git repository.

4.1. Use the oc new-app command to create the PHP application.

Important

The following example uses the number sign (#) to select a speicific branch from

the git repository, in this case the s2i branch created in the previous step.

186 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation DO180-apps]$ oc new-app -i php:7.1 --name=php-helloworld \
> https://github.com/${RHT_OCP4_GITHUB_USER}/DO180-apps#s2i \
> --context-dir php-helloworld

4.2. Wait for the build to complete and the application to deploy. Verify that the build

process starts with the oc get pods command.

[student@workstation openshift-s2i]$ oc get pods
NAME READY STATUS RESTARTS AGE
php-helloworld-1-build 1/1 Running 0 5s

4.3. Examine the logs for this build. Use the build pod name for this build, php-
helloworld-1-build.

[student@workstation DO180-apps]$ oc logs --all-containers \
> -f php-helloworld-1-build
Cloning "https://github.com/yourgituser/DO180-apps" ...
 Commit: f7cd8963ef353d9173c3a21dcccf402f3616840b (Initial commit, including all
 apps previously in course)

...output omitted...

Writing manifest to image destination
Storing signatures
Generating dockerfile with builder image image-registry.openshift-image-...
php@sha256:f3c9...7546
STEP 1: FROM image-registry.openshift-image-registry.svc:5000/...

...output omitted...

Pushing image ...openshift-image-registry.svc:5000/s2i/php-helloworld:latest...
Getting image source signatures
...output omitted...
STEP 8: RUN /usr/libexec/s2i/assemble
---> Installing application source...
...output omitted...
Copying config sha256:6ce5730f48d9c746e7cbd7ea7b8ed0f15b83932444d1d2bd7711d7...
 21.45 KiB / 21.45 KiB 0s
Writing manifest to image destination
Storing signatures
Successfully pushed .../php-helloworld:latest@sha256:63e757a4c0edaeda497dab7...
Push successful

Notice the clone of the Git repository as the first step of the build. Next, the Source-

to-Image process built a new container called s2i/php-helloworld:latest. The

last step in the build process is to push this container to the OpenShift private registry.

4.4. Review the DeploymentConfig for this application:

DO180-OCP4.2-en-1-20191105 187

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation DO180-apps]$ oc describe dc/php-helloworld
Name: php-helloworld
Namespace: youruser-s2i
Created: 12 minutes ago
Labels: app=php-helloworld
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 1
Selector: app=php-helloworld,deploymentconfig=php-helloworld
Replicas: 1
Triggers: Config, Image(php-helloworld@latest, auto=true)
Strategy: Rolling
Template:
 Labels: app=php-helloworld
 deploymentconfig=php-helloworld
...output omitted...
 Containers:
 php-helloworld:
 Image: image-registry.openshift-image-registry.svc:5000/s2i/php-
helloworld@sha256:6d27...b983
 Ports: 8080/TCP, 8443/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>

Deployment #1 (latest):
 Name: php-helloworld-1
 Created: 5 minutes ago
 Status: Complete
 Replicas: 1 current / 1 desired
 Selector: app=php-helloworld,deployment=php-helloworld-1,deploymentconfig=php-
helloworld
 Labels: app=php-helloworld,openshift.io/deployment-config.name=php-helloworld
 Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
...output omitted...

4.5. Add a route to test the application:

[student@workstation DO180-apps]$ oc expose service php-helloworld \
> --name ${RHT_OCP4_DEV_USER}-helloworld
route.route.openshift.io/youruser-helloworld exposed

4.6. Find the URL associated with the new route:

[student@workstation DO180-apps]$ oc get route -o jsonpath='{..spec.host}{"\n"}'
youruser-helloworld-youruser-s2i.wildcard_domain

4.7. Test the application by sending an HTTP GET request to the URL you obtained in the

previous step:

188 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation DO180-apps]$ curl -s \
> ${RHT_OCP4_DEV_USER}-helloworld-${RHT_OCP4_DEV_USER}-s2i.\
> ${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.1.30

 5. Explore starting application builds by changing the application in its Git repository and

executing the proper commands to start a new Source-to-Image build.

5.1. Enter the source code directory.

[student@workstation DO180-apps]$ cd ~/DO180-apps/php-helloworld

5.2. Edit the index.php file as shown below:

<?php
print "Hello, World! php version is " . PHP_VERSION . "\n";
print "A change is a coming!\n";
?>

Save the file.

5.3. Commit the changes and push the code back to the remote Git repository:

[student@workstation php-helloworld]$ git add .
[student@workstation php-helloworld]$ git commit -m \
> 'Changed index page contents.'
[s2i b1324aa] changed index page contents
 1 file changed, 1 insertion(+)
[student@workstation php-helloworld]$ git push origin s2i
...output omitted...
Counting objects: 7, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 417 bytes | 0 bytes/s, done.
Total 4 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/youruser/DO180-apps
 f7cd896..b1324aa s2i -> s2i
[student@workstation php-helloworld]$ cd ..

5.4. Start a new Source-to-Image build process and wait for it to build and deploy:

[student@workstation php-helloworld]$ oc start-build php-helloworld
build.build.openshift.io/php-helloworld-2 started
[student@workstation php-helloworld]$ oc logs php-helloworld-2-build -f
...output omitted...

Successfully pushed .../php-helloworld:latest@sha256:74e757a4c0edaeda497dab7...
Push successful

DO180-OCP4.2-en-1-20191105 189

Chapter 6 | Deploying Containerized Applications on OpenShift

Note

Logs may take some seconds to be available after the build starts. If the previous

command fails, wait a bit and try again.

After the second build has completed use the oc get pods command to verify that

the new version of the application is running.

[student@workstation php-helloworld]$ oc get pods -w
...output omitted...
NAME READY STATUS RESTARTS AGE
php-helloworld-1-build 0/1 Completed 0 33m
php-helloworld-2-2n70q 1/1 Running 0 1m
php-helloworld-2-build 0/1 Completed 0 1m

Press Ctrl+C to exit the oc get pods -w command.

5.5. Test that the application serves the new content:

[student@workstation php-helloworld]$ curl -s \
> ${RHT_OCP4_DEV_USER}-helloworld-${RHT_OCP4_DEV_USER}-s2i.\
> ${RHT_OCP4_WILDCARD_DOMAIN}
Hello, World! php version is 7.1.30
A change is a coming!

Finish

On workstation, run the lab openshift-s2i finish script to complete this lab.

[student@workstation php-helloworld]$ lab openshift-s2i finish

This concludes the guided exercise.

190 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Creating Applications with the OpenShift
Web Console

Objectives
After completing this section, students should be able to:

• Create an application with the OpenShift web console.

• Manage and monitor the build cycle of an application.

• Examine resources for an application.

Accessing the OpenShift Web Console
The OpenShift web console allows users to execute many of the same tasks as the OpenShift

command-line client. You can create projects, add applications to projects, view application

resources, and manipulate application configurations as needed. The OpenShift web console runs

as one or more pods, each pod running on a master node.

The web console runs in a web browser. The default URL is of the format https://console-
openshift-console.{wildcard DNS domain for the RHOCP cluster}/ By default,

OpenShift generates a self-signed certificate for the web console. You must trust this certificate

in order to gain access.

The web console uses a REST API to communicate with the OpenShift cluster. By default, the

REST API endpoint is accessed with a different DNS name and self-signed certificate. You must

also trust this certificate for the REST API endpoint.

After you have trusted the two OpenShift certificates, the console requires authentication to

proceed.

Managing Projects

Upon successful login, the Home page displays a list of projects you can access. From this page

you can create, edit, or delete a project.

DO180-OCP4.2-en-1-20191105 191

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.9: OpenShift web console home page

The ellipsis icon at the end of each row provides a menu with project actions. Select the

appropriate entry to edit or delete the project.

If you click a project link in this view, you are redirected to the Project Status page which shows

all of the applications created within that project space.

Navigating the Web Console

A navigation menu is located on the left side of the web console. Each item in the menu expands

to provide access to a set of related management functions:

Catalog
The Developer Catalog option displays a page for adding common applications to a project.

Each application template uses parameters that you specify to create customized OpenShift

resources. Other options allow you to manage Kubernetes Operators, or add items from the

OpenShift marketplace. Operators and the OpenShift marketplace are beyond the scope of

this course.

Workloads
These options enable management of several types of Kubernetes and OpenShift resources,

such as pods and deployment configurations. Other advanced deployment options that are

accessible from this menu, such as configuration maps, secrets, and cron jobs, are beyond the

scope of the course.

Networking
This menu contains options to manage OpenShift resources that affect application access,

such as services and routes, for a project. Other options for configuring an OpenShift Network

Policy or Ingress are available, but these topics are outside the scope of this course.

Storage
This menu contains options to configure persistent storage for project applications. In

particular, persistent volumes and persistent volume claims for a project are managed from

the Storage menu.

192 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Builds
The Build Configs option displays a list of project build configurations. Click a build

configuration link in this view to access an overview page for the specified build configuration.

From this page, you can view and edit the application's build configuration.

The Builds option provides a list of recent build processes for application container images in

the project. Click the link for a particular build to access the build logs for that particular build

process.

The Image Streams option provides a list of image streams defined in the project. Click an

image stream entry in this list to access an overview page to view and manage that image

stream.

Monitoring
Provides options to access and manage alerts for the OpenShift cluster. Functions in the

Monitoring section are outside the scope of this course.

Administration
Provides options to manage cluster and project settings, such as resource quotas and role-

based access controls. Functions in the Administration section are outside the scope of this

course.

Creating New Applications
Use the Developer Catalog option in the Catalog menu to add a new application to an

OpenShift project. A selection of Source-to-Image (S2I) templates are available to create a

technology-specific application image from the application's source code. Select a desired

template, and provide the necessary information to deploy the new application.

You are not limited to deploying an application from only its source code. You can also deploy an

application using:

• A container image hosted on a remote container registry.

• A YAML file that specifies the Kubernetes and OpenShift resources to create.

To create an application with either of these two methods, use the Add menu in the upper right of

the Developer Catalog Page. Use the Deploy Image option to deploy an existing container image.

Use the Import YAML option to create the resources specified in a YAML file, such as the type of

file generated using the oc export command.

DO180-OCP4.2-en-1-20191105 193

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.10: OpenShift Developer Catalog page

Managing Application Builds

Click the Build Configs option of the Builds menu after you add a Source-to-Image application

to a project. The new build configuration is accessible from this view:

Figure 6.11: OpenShift build configurations page

Click a build configuration in the list to view an overview page for the selected build configuration.

From the overview page, you can:

• View the build configuration parameters, such as the URL for the source code's Git repository.

• View and edit the environment variables that are set in the builder container, during an

application build process.

• View a list of recent application builds, and click a selected build to access logs from the build

process.

Managing Deployed Applications
The Workloads menu provides access to deployment configurations in the project.

194 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.12: OpenShift Workloads menu

Click a deployment configuration entry in the list to view an overview page for the selection. From

the overview page, you can:

• View the deployment configuration parameters, such as the specifications of an application

container image.

• Change the desired number of application pods to manually scale the application.

• View and edit the environment variables that are set in the deployed application container.

• View a list of application pods, and click a selected pod to access logs for that pod.

Other Web Console Features
The web console allows you to:

• Manage resources, such as project quotas, user membership, secrets, and other advanced

resources.

• Create persistent volume claims.

• Monitor builds, deployments, pods, and system events.

• Create continuous integration and deployment pipelines with Jenkins.

Detailed usage for the above features is outside the scope of this course.

DO180-OCP4.2-en-1-20191105 195

Chapter 6 | Deploying Containerized Applications on OpenShift

Guided Exercise

Creating an Application with the Web
Console

In this exercise, you will create, build, and deploy an application to an OpenShift cluster using

the OpenShift web console.

Outcomes
You should be able to create, build, and deploy an application to an OpenShift cluster using

the web console.

Before You Begin
Get the lab files by executing the lab script:

[student@workstation ~]$ lab openshift-webconsole start

The lab script verifies that the OpenShift cluster is running.

 1. Inspect the PHP source code for the sample application and create and push a new branch

named console to use during this exercise.

1.1. Enter your local clone of the DO180-apps Git repository and checkout the master
branch of the course's repository to ensure you start this exercise from a known good

state:

[student@workstation ~]$ cd ~/DO180-apps
 [student@workstation DO180-apps]$ git checkout master
 ...output omitted...

1.2. Create a new branch to save any changes you make during this exercise:

[student@workstation DO180-apps]$ git checkout -b console
 Switched to a new branch 'console'
 [student@workstation DO180-apps]$ git push -u origin console
 ...output omitted...
 * [new branch] console -> console
 Branch console set up to track remote branch console from origin.

1.3. Review the PHP source code of the application, inside the the php-helloworld
folder.

Open the index.php file in the /home/student/DO180-apps/php-helloworld
folder:

196 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

<?php
 print "Hello, World! php version is " . PHP_VERSION . "\n";
 ?>

The application implements a simple response which returns the PHP version it is

running.

 2. Open a web browser and navigate to https://console-openshift-console.
${RHT_OCP4_WILDCARD_DOMAIN} to access the OpenShift web console. Log in and

create a new project named youruser-console.

2.1. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first

guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

2.2. Retrieve the value of the wildcard domain specific to your cluster, using the

$RHT_OCP4_WILDCARD_DOMAIN

[student@workstation ~]$ echo $RHT_OCP4_WILDCARD_DOMAIN
apps.cluster.lab.example.com

2.3. Open the Firefox browser and navigate to https://console-openshift-
console.${RHT_OCP4_WILDCARD_DOMAIN} to access the OpenShift web console.

Log in to the OpenShift console using your credentials.

2.4. Create a new project named youruser-console. You can type any values you prefer

in the other fields.

Figure 6.13: Create a new project - step 1

DO180-OCP4.2-en-1-20191105 197

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.14: Create a new project - step 2

2.5. After you have completed the required fields, click Create in the Create Project
dialog box to go to the Project Status page for the youruser-console project:

Figure 6.15: Project Status page

 3. Create the new php-helloworld application with a PHP template.

3.1. Switch to the Developer perspective using the drop-down at the top of the left-hand

menu:

198 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.16: Developer perspective drop-down

3.2. Click From Catalog to display a list of technology templates.

Figure 6.17: Developer Catalog page

3.3. Enter php in the Filter by keyword field.

DO180-OCP4.2-en-1-20191105 199

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.18: Finding PHP-related templates

3.4. After filtering, click the PHP template to display the PHP dialog box. Click Create
Application to display the Create Source-to-Image Application page.

Figure 6.19: Configuring Source-to-Image for a PHP application

3.5. Change the Version to PHP version 7.1.

Specify the location of the source code git repository: https://
github.com/yourgituser/DO180-apps.

Use the Advanced Git Options to set the context directory to php-hellworld and

branch console for this exercise

200 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.20: Setting Advanced Git Options for the application

Enter php-helloworld for both the application name and the name used for

associated resources.

Scroll to the bottom of the page, and select Create route. Click Create to create the

required OpenShift and Kubernetes resources for the application.

You are redirected to the Topology page:

Figure 6.21: Topology page

This page indicates that the php-helloworld application is created. The DC annotation

to the left of the php-helloworld link is an acronym for Deployment Config. This

link redirects to a page containing information about the application's deployment

configuration.

3.6. Switch back to the Administrator perspective for the remainder of the exercise:

DO180-OCP4.2-en-1-20191105 201

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.22: Administrator perspective drop-down

 4. Use the navigation bar on the left side of the OpenShift web console to locate information

for the application's OpenShift and Kubernetes resources:

• DeploymentConfig

• BuildConfig

• Build Logs

• Service

• Route

4.1. Examine the deployment configuration. In the navigation bar, click Workloads to

reveal more menu choices. Click Deployment Configs to display a list of deployment

configurations for the youruser-console project. Click the php-helloworld link

to display deployment configuration information.

Figure 6.23: Application deployment configuration overview page

202 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Explore the available information from the Overview tab. The build may still be

running when you reach this page, so the DC might not have a value of 1 pod, yet.

If you click the up and down arrow icons next to the doughnut chart that indicates the

number of pods, you can scale the application up and down horizontally.

4.2. Examine the build configuration. In the navigation bar, click Builds to reveal more

menu choices. Click Build Configs to display a list of build configurations for the

youruser-console project. Click the php-helloworld link to display the build

configuration for the application.

Figure 6.24: Application build configuration overview page

Explore the available information from the Overview tab. The YAML tab allows

you to view and edit the build configuration as a YAML file. The Builds tab provides

an historical list of builds, along with a link to more information for each build.

The Environment tab allows you to view and edit environment variables for the

application's build environment. The Events tab displays a list of build related events

and metadata.

4.3. Examine the logs for the Source-to-Image build of the application. In the Builds menu,

click Builds to display a list of recent builds for the youruser-console project.

Click the php-helloworld-1 link to access information for the first build of the php-
helloworld application:

Figure 6.25: An application build overview page

DO180-OCP4.2-en-1-20191105 203

Chapter 6 | Deploying Containerized Applications on OpenShift

Explore the available information from the Overview tab. Next, click the Logs tab. A

scrollable text box contains output from the build process:

Figure 6.26: Logs for an application build

When Podman builds a container image, similar output is observed compared with the

output shown in the browser.

4.4. Locate information for the php-helloworld application's service. In the navigation

bar, click Networking to reveal more menu choices. Click Services to display a list

of services for the youruser-console project. Click the php-helloworld link to

display the information associated with the application's service:

Figure 6.27: Service overview page

Explore the available information from the Overview tab. The YAML tab allows you

to view and edit the service configuration, as a YAML file. The Pods tab displays the

current list of pods that provide the application service.

4.5. Locate external route information for the application. On the navigation bar, click

Networking → Routes to display a list of configured routes for the youruser-
console project. Click the php-helloworld link to display information associated

with the application's route:

204 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.28: Route overview page

Explore the available information from the Overview tab. The LOCATION field

provides a link to the external route for the application; http://php-helloworld-
${RHT_OCP4_DEV_USER}-console.${RHT_OCP4_WILDCARD_DOMAIN}. Click the

link to access the application in a new tab:

Figure 6.29: Initial PHP application results

 5. Modify the application code, commit the change, push the code to the remote Git

repository, and trigger a new application build.

5.1. Enter the source code directory:

[student@workstation DO180-apps]$ cd ~/DO180-apps/php-helloworld

5.2. Add the second print line statement in the index.php page to read "A change is in the

air!" and save the file. Add the change to the Git index, commit the change, and push

the changes to the remote Git repository.

[student@workstation php-helloworld]$ vim index.php
[student@workstation php-helloworld]$ cat index.php
<?php
print "Hello, World! php version is " . PHP_VERSION . "\n";
print "A change is in the air!\n";
?>
[student@workstation php-helloworld]$ git add index.php
[student@workstation php-helloworld]$ git commit -m 'updated app'
[console d198fb5] updated app
...output omitted...

DO180-OCP4.2-en-1-20191105 205

Chapter 6 | Deploying Containerized Applications on OpenShift

 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation php-helloworld]$ git push origin console
Counting objects: 7, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 409 bytes | 0 bytes/s, done.
Total 4 (delta 1), reused 0 (delta 0)
...output omitted...

5.3. Trigger an application build manually from the web console.

On the navigation bar, click Builds → Build Configs and then click the php-
helloworld link to access the Build Config Overview page. From the Actions menu

in the upper right of the screen, click Start Build:

Figure 6.30: Start an application build

You are redirected to a Build Overview page for the new build. Click the Logs tab

to monitor progress of the build. The last line of a successful build contains Push
successful.

When the build completes, the deploy starts. Go to the Workloads → Pods section,

and wait for the new pod is deployed and running.

5.4. Reload the http://php-helloworld-${RHT_OCP4_DEV_USER}-console.
${RHT_OCP4_WILDCARD_DOMAIN} URL in the browser. The application response

corresponds to the updated source code:

Figure 6.31: Updated web application output

 6. Delete the project. On the navigation bar, click Home → Projects. Click the icon at the

right side of the row containing an entry for the youruser-console project. Click Delete
Project from the menu that appears.

206 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Figure 6.32: Delete a project

Enter youruser-console in the confirmation dialog box, and click Delete.

Finish

On workstation, run the lab openshift-webconsole finish script to complete this lab.

[student@workstation php-helloworld]$ lab openshift-webconsole finish

This concludes the guided exercise.

DO180-OCP4.2-en-1-20191105 207

Chapter 6 | Deploying Containerized Applications on OpenShift

Lab

Deploying Containerized Applications on
OpenShift

Performance Checklist
In this lab, you will create an application using the OpenShift Source-to-Image facility.

Outcomes
You should be able to create an OpenShift application and access it through a web browser.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab openshift-review start

1. Prepare the lab environment.

1.1. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first guided

exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to the OpenShift cluster.

1.3. Create a new project named "youruser-ocp" for the resources you create during this

exercise:

2. Create a temperature converter application written in PHP using the php:7.1 image stream

tag. The source code is in the Git repository at https://github.com/RedHatTraining/
DO180-apps/ in the temps directory. You may use the OpenShift command-line interface

or the web console to create the application.

Expose the application's service to make the application accessible from a web browser.

3. Verify that you can access the application in a web browser at http://temps-youruser-
ocp.apps.cluster.lab.example.com.

Evaluation

On workstation, run the lab openshift-review grade command to grade your work.

Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab openshift-review grade

208 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Finish

On workstation, run the lab openshift-review finish command to complete this lab.

[student@workstation ~]$ lab openshift-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 209

Chapter 6 | Deploying Containerized Applications on OpenShift

Solution

Deploying Containerized Applications on
OpenShift

Performance Checklist
In this lab, you will create an application using the OpenShift Source-to-Image facility.

Outcomes
You should be able to create an OpenShift application and access it through a web browser.

Before You Begin
Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab openshift-review start

1. Prepare the lab environment.

1.1. Load your classroom environment configuration.

Run the following command to load the environment variables created in the first guided

exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

1.2. Log in to the OpenShift cluster.

[student@workstation ~]$ oc login -u ${RHT_OCP4_DEV_USER} -p \
> ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful
...output omitted...

1.3. Create a new project named "youruser-ocp" for the resources you create during this

exercise:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-ocp

2. Create a temperature converter application written in PHP using the php:7.1 image stream

tag. The source code is in the Git repository at https://github.com/RedHatTraining/
DO180-apps/ in the temps directory. You may use the OpenShift command-line interface

or the web console to create the application.

Expose the application's service to make the application accessible from a web browser.

2.1. If using the command-line interface, run the following commands:

210 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

[student@workstation ~]$ oc new-app \
> php:7.1~https://github.com/RedHatTraining/DO180-apps \
> --context-dir temps --name temps
--> Found image 6e29dfe (8 days old) in image stream "openshift/php" under tag
 "7.1" for "php:7.1"

 Apache 2.4 with PHP 7.1

 PHP 7.1 available as container is a base platform ...output omitted...

...output omitted...

--> Creating resources ...
 imagestream.image.openshift.io "temps" created
 buildconfig.build.openshift.io "temps" created
 deploymentconfig.apps.openshift.io "temps" created
 service "temps" created
--> Success
 Build scheduled, use 'oc logs -f bc/temps' to track its progress.
 Application is not exposed. You can expose services to the outside world by
 executing one or more of the commands below:
 'oc expose svc/temps'
 Run 'oc status' to view your app.

2.2. Monitor progress of the build.

[student@workstation ~]$ oc logs -f bc/temps
Cloning "http://services.lab.example.com/temps" ...
 Commit: 350b6ca43ff05d1c395a658083f74a92c53fc7e9 (Establish remote repository)
 Author: your_user <your@email.com>
 Date: Tue Jun 26 21:59:41 2018 +0000
...output omitted...
Successfully pushed image-registry.openshift-image-registry.svc:5000/youruser-ocp/
temps@sha256:2c0c...ef8f
Push successful

2.3. Verify that the application is deployed.

[student@workstation ~]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
temps-1-build 0/1 Completed 0 5m
temps-1-h76lt 1/1 Running 0 5m

Press Ctrl+C to exit the oc get pods -w command.

2.4. Expose the temps service to create an external route for the application.

[student@workstation ~]$ oc expose svc/temps
route.route.openshift.io/temps exposed

3. Verify that you can access the application in a web browser at http://temps-youruser-
ocp.apps.cluster.lab.example.com.

DO180-OCP4.2-en-1-20191105 211

Chapter 6 | Deploying Containerized Applications on OpenShift

3.1. Determine the URL for the route.

[student@workstation ~]$ oc get route/temps
NAME HOST/PORT ...
temps youruser-ocp.wildcard_comain ...

3.2. Open Firefox and navigate to http://temps-youruser-ocp.wildcard_comain to

verify that the temperature converter application works.

This concludes the lab.

Evaluation

On workstation, run the lab openshift-review grade command to grade your work.

Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab openshift-review grade

Finish

On workstation, run the lab openshift-review finish command to complete this lab.

[student@workstation ~]$ lab openshift-review finish

This concludes the lab.

212 DO180-OCP4.2-en-1-20191105

Chapter 6 | Deploying Containerized Applications on OpenShift

Summary

In this chapter, you learned:

• OpenShift Container Platform stores definitions of each OpenShift or Kubernetes resource

instance as an object in the cluster's distributed database service, etcd. Common resource

types are: Pod, Persistent Volume (PV), Persistent Volume Claim (PVC), Service
(SVC), Route, Deployment Configuration (DC), and Build Configuration (BC).

• Use the OpenShift command-line client oc to:

• Create, change, and delete projects.

• Create application resources inside a project.

• Delete, inspect, edit, and export resources inside a project.

• Check logs from application pods, deployments, and build operations.

• The oc new-app command can create application pods in many different ways: from an

existing container image hosted on an image registry, from Dockerfiles, and from source code

using the Source-to-Image (S2I) process.

• Source-to-Image (S2I) is a tool that makes it easy to build a container image from application

source code. This tool retrieves source code from a Git repository, injects the source code into

a selected container image based on a desired language or technology, and produces a new

container image that runs the assembled application.

• A Route connects a public-facing IP address and DNS host name to an internal-facing service

IP. While services allow for network access between pods inside an OpenShift instance, routes

allow for network access to pods from users and applications outside the OpenShift instance.

• You can create, build, deploy and monitor applications using the OpenShift web console.

DO180-OCP4.2-en-1-20191105 213

214 DO180-OCP4.2-en-1-20191105

Chapter 7

Deploying Multi-Container
Applications

Goal Deploy applications that are containerized using
multiple container images.

Objectives • Describe considerations for containerizing
applications with multiple container images.

• Deploy a multi-container application on
OpenShift using a template.

Sections • Considerations for Multi-Container
Applications (and Guided Exercise)

• Deploying a Multi-Container Application on
OpenShift (and Guided Exercise)

Lab • Deploying Multi-Container Applications

DO180-OCP4.2-en-1-20191105 215

Chapter 7 | Deploying Multi-Container Applications

Considerations for Multi-Container
Applications

Objectives
After completing this section, students should be able to:

• Describe considerations for containerizing applications with multiple container images.

• Leverage networking concepts in containers.

• Create a multi-container application with Podman.

• Describe the architecture of the To Do List application.

Leveraging Multi-Container Applications
The examples shown so far throughout this course have worked fine with a single container. A

more complex application, however, can get the benefits of deploying different components

into different containers. Consider an application composed of a front-end web application, a

REST back end, and a database server. Those components may have different dependencies,

requirements and life cycles.

Although it is possible to orchestrate multi-container applications' containers manually,

Kubernetes and OpenShift provide tools to facilitate orchestration. Attempting to manually

manage dozens or hundreds of containers quickly becomes complicated. In this section, we are

going to return to using Podman to create a simple multi-container application to demonstrate the

underlying manual steps for container orchestration. In later sections, you will use Kubernetes and

OpenShift to orchestrate these same application containers.

Discovering Services in a Multi-Container Application
Podman uses Container Network Interface (CNI) to create a software-defined network (SDN)

between all containers in the host. Unless stated otherwise, CNI assigns a new IP address to a

container when it starts.

Each container exposes all ports to other containers in the same SDN. As such, services are readily

accessible within the same network. The containers expose ports to external networks only by

explicit configuration.

Due to the dynamic nature of container IP addresses, applications cannot rely on either fixed

IP addresses or fixed DNS host names to communicate with middleware services and other

application services. Containers with dynamic IP addresses can become a problem when working

with multi-container applications because each container must be able to communicate with

others to use services upon which it depends.

For example, consider an application composed of a front-end container, a back-end container,

and a database. The front-end container needs to retrieve the IP address of the back-end

container. Similarly, the back-end container needs to retrieve the IP address of the database

container. Additionally, the IP address could change if a container restarts, so a process is needed

to ensure any change in IP triggers an update to existing containers.

216 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

Figure 7.1: A restart breaks three-tiered application links

Both Kubernetes and OpenShift provide potential solutions to the issue of service discoverability

and the dynamic nature of container networking. Some of these solutions are covered later in the

chapter.

Comparing Podman and Kubernetes
Using environment variables allows you to share information between containers with Podman.

However, there are still some limitations and some manual work involved in ensuring that all

environment variables stay in sync, especially when working with many containers. Kubernetes

provides an approach to solve this problem by creating services for your containers, as covered in

previous chapters.

Pods are attached to a Kubernetes namespace, which OpenShift calls a project. When a pod starts,

Kubernetes automatically adds a set of environment variables for each service defined on the

same namespace.

Any service defined on Kubernetes generates environment variables for the IP address and

port number where the service is available. Kubernetes automatically injects these environment

variables into the containers from pods in the same namespace. These environment variables

usually follow a convention:

• Uppercase: All environment variables are set using uppercase names.

• Snakecase: Any environment variable created by a service is usually composed of multiple words

separated with an underscore (_).

• Service name first: The first word for an environment variable created by a service is the service

name.

• Protocol type: Most network environment variables include the protocol type (TCP or UDP).

These are the environment variables generated by Kubernetes for a service:

• <SERVICE_NAME>_SERVICE_HOST: Represents the IP address enabled by a service to access

a pod.

DO180-OCP4.2-en-1-20191105 217

Chapter 7 | Deploying Multi-Container Applications

• <SERVICE_NAME>_SERVICE_PORT: Represents the port where the server port is listed.

• <SERVICE_NAME>_PORT: Represents the address, port, and protocol provided by the service

for external access.

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>: Defines an alias for the

<SERVICE_NAME>_PORT.

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_PROTO: Identifies the protocol type

(TCP or UDP).

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_PORT: Defines an alias for

<SERVICE_NAME>_SERVICE_PORT.

• <SERVICE_NAME>_PORT_<PORT_NUMBER>_<PROTOCOL>_ADDR: Defines an alias for

<SERVICE_NAME>_SERVICE_HOST.

For instance, given the following service:

apiVersion: v1
kind: Service
metadata:
 labels:
 name: mysql
 name: mysql
spec:
 ports:
 - protocol: TCP
 - port: 3306
 selector:
 name: mysql

The following environment variables are available for each pod created after the service, on the

same namespace:

MYSQL_SERVICE_HOST=10.0.0.11
MYSQL_SERVICE_PORT=3306
MYSQL_PORT=tcp://10.0.0.11:3306
MYSQL_PORT_3306_TCP=tcp://10.0.0.11:3306
MYSQL_PORT_3306_TCP_PROTO=tcp
MYSQL_PORT_3306_TCP_PORT=3306
MYSQL_PORT_3306_TCP_ADDR=10.0.0.11

Note

Other relevant <SERVICE_NAME>_PORT_* environment variable names

are set on the basis of the protocol. IP address and port number are

set in the <SERVICE_NAME>_PORT environment variable. For example,

MYSQL_PORT=tcp://10.0.0.11:3306 entry leads to the creation

of environment variables with names such as MYSQL_PORT_3306_TCP,

MYSQL_PORT_3306_TCP_PROTO, MYSQL_PORT_3306_TCP_PORT, and

MYSQL_PORT_3306_TCP_ADDR. If the protocol component of an environment

variable is undefined, Kubernetes uses the TCP protocol and assigns the variable

names accordingly.

218 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

Describing the To Do List Application
Many labs from this course make use of a To Do List application. This application is divided into

three tiers, as illustrated by the following figure:

Figure 7.2: To Do List application logical architecture

• The presentation tier is built as a single-page HTML5 front-end using AngularJS.

• The business tier is composed by an HTTP API back-end, with Node.js.

• The persistence tier based on a MySQL database server.

The following figure is a screen capture of the application web interface:

DO180-OCP4.2-en-1-20191105 219

Chapter 7 | Deploying Multi-Container Applications

Figure 7.3: The To Do List application

On the left is a table with items to complete, and on the right is a form to add a new item.

The classroom private registry server, services.lab.example.com, provides the application in

two versions:

nodejs
Represents the way a typical developer would create the application as a single unit, without

caring to break it into tiers or services.

nodejs_api
Shows the changes needed to break the application into presentation and business tiers. Each

tier corresponds to an isolated container image.

The sources of both of these application versions are available from the todoapp/nodejs folder

in the Git repository at: https://github.com/RedHatTraining/DO180-apps.git.

220 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

Guided Exercise

Deploying the Web Application and
MySQL Containers

In this lab, you will create a script that runs and networks a Node.js application container and

the MySQL container.

Outcomes
You should be able to network containers to create a multi-tiered application.

Before You Begin
You must have the To Do List application source code and lab files on workstation. To set

up the environment for the exercise, run the following command:

[student@workstation ~]$ lab multicontainer-design start

 1. Build the MySQL image.

A custom MySQL 5.7 image is used for this exercise. It is configured to automatically run

any scripts in the /var/lib/mysql/init directory. The scripts load the schema and

some sample data into the database for the To Do List application when a container starts.

1.1. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located at

/home/student/DO180/labs/multicontainer-design/images/mysql/
Dockerfile.

1.2. Build the MySQL database image.

To build the base image, run the following podman build script.

[student@workstation ~]$ cd ~/DO180/labs/multicontainer-design/images/mysql
[student@workstation mysql]$ sudo podman build -t do180/mysql-57-rhel7 \
> --layers=false .
STEP 1: FROM rhscl/mysql-57-rhel7
Getting image source signatures
...output omitted...
Storing signatures
STEP 2: ADD root /
ERRO[0017] HOSTNAME is not supported for OCI image format, hostname d4f8f8506f2b
 will be ignored. Must use `docker` format
--> 41a6...cc7e
STEP 3: COMMIT do180/mysql-57-rhel7
...output omitted...
Writing manifest to image destination
Storing signatures
--> 8dc1...6933

DO180-OCP4.2-en-1-20191105 221

Chapter 7 | Deploying Multi-Container Applications

The error shown is benign, and can be ignored. It will disappear in later versions of

Podman.

1.3. This command builds a dedicated MySQL container image based on the /home/
student/DO180/labs/multicontainer-design/images/mysql context

folder and the Dockerfile file in it. Wait for the build to complete, and then run the

following command to verify that the image is built successfully:

[student@workstation mysql]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/mysql-57-rhel7 latest 8dc111531fce 21 seconds ago 444MB
registry.[...]/rhscl/mysql-57-rhel7 latest c07bf25398f4 4 weeks ago 444MB

 2. Build the Node.js parent image using the provided Dockerfile.

2.1. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located at

/home/student/DO180/labs/multicontainer-design/images/nodejs/
Dockerfile.

Notice the following instructions defined in the Dockerfile:

• Two environment variables, NODEJS_VERSION and HOME, are defined using the ENV
command.

• Packages necessary for Node.js are installed with yum using the RUN command.

• A new user and group are created to run the Node.js application along with the app-
root directory using the RUN command.

• The enable-rh-nodejs8.sh script, to run automatically at login, is added to /
etc/profile.d/ with the ADD command.

• The USER command is used to switch to the newly created appuser account.

• The WORKDIR command is used to switch to the $HOME directory for application

execution.

2.2. Build the parent image.

To build the base image, run the podman build command.

[student@workstation ~]$ cd ~/DO180/labs/multicontainer-design/images/nodejs
[student@workstation nodejs]$ sudo podman build -t do180/nodejs \
> --layers=false .
STEP 1: FROM ubi7/ubi:7.7
Getting image source signatures
...output omitted...
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:

222 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

 rh-nodejs8 x86_64 3.0-5.el7 ubi-server-rhscl-7-rpms 7.3 k
...output omitted...
Writing manifest to image destination
Storing signatures
--> 5e61...30de

2.3. Wait for the build to complete, and then run the following command to verify that the

image has been built successfully. Several columns of the podman images column are

not relevant, so you can use the --format option to format the output.

[student@workstation nodejs]$ sudo podman images \
> --format "table {{.ID}} {{.Repository}} {{.Tag}}"
IMAGE ID REPOSITORY TAG
78c2e6304f23 localhost/do180/mysql-57-rhel7 latest
5e610ea8d94a localhost/do180/nodejs latest
c07bf25398f4 registry.access.redhat.com/rhscl/mysql-57-rhel7 latest
22ba71124135 registry.access.redhat.com/ubi7/ubi 7.7

 3. Build the To Do List application child image using the provided Dockerfile.

3.1. Review the Dockerfile.

Using your preferred editor, open and examine the completed Dockerfile located at

/home/student/DO180/labs/multicontainer-design/deploy/nodejs/
Dockerfile.

3.2. Explore the Environment Variables.

Inspect the environment variables that allow the Node.js REST API container to

communicate with the MySQL container.

1. View the file /home/student/DO180/labs/multicontainer-design/
deploy/nodejs/nodejs-source/models/db.js, containing the database

configuration provided below:

module.exports.params = {
 dbname: process.env.MYSQL_DATABASE,
 username: process.env.MYSQL_USER,
 password: process.env.MYSQL_PASSWORD,
 params: {
 host: "10.88.100.101",
 port: "3306",
 dialect: 'mysql'
 }
};

2. Notice the environment variables used by the REST API. These variables are

exposed to the container using -e options with the podman run command in this

guided exercise. Those environment variables are described below.

MYSQL_DATABASE
The name of the MySQL database in the mysql container.

MYSQL_USER
The name of the database user used by the todoapi container to run MySQL

commands.

DO180-OCP4.2-en-1-20191105 223

Chapter 7 | Deploying Multi-Container Applications

MYSQL_PASSWORD
The password of the database user that the todoapi container uses to

authenticate to the mysql container.

Note

The host and port details of the MySQL container are embedded with the REST

API application. The host, as shown above in the db.js file, is the IP address of the

mysql container.

3.3. Build the child image.

Examine the /home/student/DO180/labs/multicontainer-design/deploy/
nodejs/build.sh script to see how the image is built. Run the following commands

to build the child image.

[student@workstation nodejs]$ cd ~/DO180/labs/multicontainer-design/deploy/nodejs
[student@workstation nodejs]$./build.sh
STEP 1: FROM do180/nodejs
STEP 2: MAINTAINER username <username@example.com>
STEP 3: COPY run.sh build ${HOME}/
...output omitted...
Writing manifest to image destination
Storing signatures
--> 2b12...6463

Note

The build.sh script lowers restrictions for write access to the build directory,

allowing non-root users to install dependencies.

3.4. Wait for the build to complete and then run the following command to verify that the

image has been built successfully:

[student@workstation nodejs]$ sudo podman images \
> --format "table {{.ID}} {{.Repository}} {{.Tag}}"
IMAGE ID REPOSITORY TAG
2b127523c28e localhost/do180/todonodejs latest
6bf46c84a3c5 localhost/do180/nodejs latest
fa0084527d05 localhost/do180/mysql-57-rhel7 latest
c07bf25398f4 registry.access.redhat.com/rhscl/mysql-57-rhel7 latest
22ba71124135 registry.access.redhat.com/ubi7/ubi 7.7

 4. Modify the existing script to create containers with the appropriate IP, as defined in

the previous step. In this script, the order of commands is given such that it starts the

mysql container and then starts the todoapi container before connecting it to the

mysql container. After invoking every container, there is a wait time of 9 seconds, so each

container has time to start.

4.1. Edit the run.sh file located at /home/student/DO180/labs/multicontainer-
design/deploy/nodejs/networked to insert the podman run command at the

appropriate line for invoking mysql container. The following screen shows the exact

podman command to insert into the file.

224 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

sudo podman run -d --name mysql -e MYSQL_DATABASE=items -e MYSQL_USER=user1 \
-e MYSQL_PASSWORD=mypa55 -e MYSQL_ROOT_PASSWORD=r00tpa55 \
-v $PWD/work/data:/var/lib/mysql/data \
-v $PWD/work/init:/var/lib/mysql/init -p 30306:3306 \
--ip 10.88.100.101 do180/mysql-57-rhel7

In the previous command, the MYSQL_DATABASE, MYSQL_USER, and

MYSQL_PASSWORD are populated with the credentials to access the MySQL database.

These environment variables are required for the mysql container to run. Also, the

$PWD/work/data and $PWD/work/init local folders as mounted as volumes into

the container's file system.

Note the IP assigned to the container. This IP should be the same as the one provided

in the /home/student/DO180/labs/multicontainer-design/deploy/
nodejs/nodejs-source/models/db.js file.

4.2. In the same run.sh file, insert another podman run command at the appropriate line

to run the todoapi container. The following screen shows the docker command to

insert into the file.

sudo podman run -d --name todoapi -e MYSQL_DATABASE=items -e MYSQL_USER=user1 \
-e MYSQL_PASSWORD=mypa55 -p 30080:30080 \
do180/todonodejs

Note

After each podman run command inserted into the run.sh script, ensure that

there is also a sleep 9 command. If you need to repeat this step, the work
directory and its contents must be deleted before re-running the run.sh script.

4.3. Verify that your run.sh script matches the solution script located at /home/
student/DO180/solutions/multicontainer-design/deploy/nodejs/
networked/run.sh.

4.4. Save the file and exit the editor.

 5. Run the containers.

5.1. Use the following command to execute the script that you updated to run the mysql
and todoapi containers.

[student@workstation nodejs]$ cd \
/home/student/DO180/labs/multicontainer-design/deploy/nodejs/networked
[student@workstation networked]$./run.sh

DO180-OCP4.2-en-1-20191105 225

Chapter 7 | Deploying Multi-Container Applications

Note

It is possible that the IP selected for the container (10.88.100.101) is already reserved

for another container, even if that container was already deleted. In this case,

delete the todonodejs image and container before creating an updated one with

the sudo podman rmi -f todonodejs command. Then delete the MySQL

container with the sudo podman rm -f mysql command. Afterwards, return to

step 3, and update both db.js and run.sh with another available IP.

5.2. Verify that the containers started successfully.

[student@workstation networked]$ sudo podman ps \
> --format="table {{.ID}} {{.Names}} {{.Image}} {{.Status}}"
CONTAINER ID NAMES IMAGE STATUS
c74b4709e3ae todoapi localhost/do180/todonodejs:latest Up 3 minutes ago
3bc19f74254c mysql localhost/do180/mysql-57-rhel7:latest Up 3 minutes ago

 6. Examine the environment variables of the API container.

Run the following command to explore the environment variables exposed in the API

container.

[student@workstation networked]$ sudo podman exec -it todoapi env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=2c61a089105d
TERM=xterm
MYSQL_DATABASE=items
MYSQL_USER=user1
MYSQL_PASSWORD=mypa55
container=oci
NODEJS_VERSION=8.0
HOME=/opt/app-root/src

 7. Test the application.

7.1. Run a curl command to test the REST API for the To Do List application.

[student@workstation networked]$ curl -w "\n" \
> http://127.0.0.1:30080/todo/api/items/1
{"description": "Pick up newspaper", "done": false, "id":1}

The -w "\n" option with curl command lets the shell prompt appear at the next line

rather than merging with the output in the same line.

7.2. Open Firefox on workstation and point your browser to

http://127.0.0.1:30080/todo/. You should see the To Do List application.

Note

Make sure to append the trailing slash (/).

226 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

Finish

On workstation, run the lab multicontainer-design finish script to complete this

exercise.

[student@workstation ~]$ lab multicontainer-design finish

This concludes the guided exercise.

DO180-OCP4.2-en-1-20191105 227

Chapter 7 | Deploying Multi-Container Applications

Deploying a Multi-Container Application
on OpenShift

Objectives
After completing this section, students should be able to deploy a multicontainer application on

OpenShift using a template.

Examining the Skeleton of a Template
Deploying an application on OpenShift Container Platform often requires creating several

related resources within a Project. For example, a web application may require a BuildConfig,

DeploymentConfig, Service, and Route resource to run in an OpenShift project. Often the

attributes of these resources have the same value, such as a resource's name attribute.

OpenShift templates provide a way to simplify the creation of resources that an application

requires. A template defines a set of related resources to be created together, as well as a set of

application parameters. The attributes of template resources are typically defined in terms of the

template parameters, such as a resource's name attribute.

For example, an application might consist of a front-end web application and a database server.

Each consists of a service resource and a deployment configuration resource. They share a set

of credentials (parameters) for the front end to authenticate to the back end. The template

can be processed by specifying parameters or by allowing them to be automatically generated

(for example, for a unique database password) in order to instantiate the list of resources in the

template as a cohesive application.

The OpenShift installer creates several templates by default in the openshift namespace. Run

the oc get templates command with the -n openshift option to list these preinstalled

templates:

[student@workstation ~]$ oc get templates -n openshift
NAME DESCRIPTION
cakephp-mysql-example An example CakePHP application ...
cakephp-mysql-persistent An example CakePHP application ...
dancer-mysql-example An example Dancer application with a MySQL ...
dancer-mysql-persistent An example Dancer application with a MySQL ...
django-psql-example An example Django application with a PostgreSQL ...
...output omitted...
rails-pgsql-persistent An example Rails application with a PostgreSQL ...
rails-postgresql-example An example Rails application with a PostgreSQL ...
redis-ephemeral Redis in-memory data structure store, ...
redis-persistent Redis in-memory data structure store, ...

The following shows a YAML template definition:

[student@workstation ~]$ oc get template mysql-persistent -n openshift -o yaml
apiVersion: template.openshift.io/v1
kind: Template
labels: ...value omitted...
message: ...message omitted ...

228 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

metadata:
 annotations:
 description: ...description omitted...
 iconClass: icon-mysql-database
 openshift.io/display-name: MySQL
 openshift.io/documentation-url: ...value omitted...
 openshift.io/long-description: ...value omitted...
 openshift.io/provider-display-name: Red Hat, Inc.
 openshift.io/support-url: https://access.redhat.com
 tags: database,mysql
 labels: ...value omitted...
 name: mysql-persistent
objects:
- apiVersion: v1
 kind: Secret
 metadata:
 annotations: ...annotations omitted...
 name: ${DATABASE_SERVICE_NAME}
 stringData: ...stringData omitted...
- apiVersion: v1
 kind: Service
 metadata:
 annotations: ...annotations omitted...
 name: ${DATABASE_SERVICE_NAME}
 spec: ...spec omitted...
- apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: ${DATABASE_SERVICE_NAME}
 spec: ...spec omitted...
- apiVersion: v1
 kind: DeploymentConfig
 metadata:
 annotations: ...annotations omitted...
 name: ${DATABASE_SERVICE_NAME}
 spec: ...spec omitted...
parameters:
- ...MEMORY_LIMIT parameter omitted...
- ...NAMESPACE parameter omitted...
- description: The name of the OpenShift Service exposed for the database.
 displayName: Database Service Name
 name: DATABASE_SERVICE_NAME
 required: true
 value: mysql
- ...MYSQL_USER parameter omitted...
- description: Password for the MySQL connection user.
 displayName: MySQL Connection Password
 from: '[a-zA-Z0-9]{16}'
 generate: expression
 name: MYSQL_PASSWORD
 required: true
- ...MYSQL_ROOT_PASSWORD parameter omitted...

DO180-OCP4.2-en-1-20191105 229

Chapter 7 | Deploying Multi-Container Applications

- ...MYSQL_DATABASE parameter omitted...
- ...VOLUME_CAPACITY parameter omitted...
- ...MYSQL_VERSION parameter omitted...

Defines a list of arbitrary tags to associate with this template. Enter any of these tags in the

UI to find this template.

Defines the template name.

The objects section defines the list of OpenShift resources for this template. This

template creates four resources: a Secret, a Service, a PersistentVolumeClaim, and a

DeploymentConfig.

All four resource objects have their names set to the value of the

DATABASE_SERVICE_NAME parameter.

The parameters section contains a list of nine parameters. Template resources often

define their attributes using the values of these parameters, as demonstrated with the

DATABASE_SERVICE_NAME parameter.

If you do not specify a value for the MYSQL_PASSWORD parameter when you create an

application with this template, OpenShift generates a password that matches this regular

expression.

You can publish a new template to the OpenShift cluster so that other developers can build an

application from the template.

Assume you have an task list application named todo that requires an OpenShift

DeploymentConfig, Service, and Route object for deployment. You create a YAML template

definition file that defines attributes for these OpenShift resources, along with definitions for any

required parameters. Assuming the template is defined in the todo-template.yaml file, use the

oc create command to publish the application template:

[student@workstation deploy-multicontainer]$ oc create -f todo-template.yaml
template.template.openshift.io/todonodejs-persistent created

By default, the template is created under the current project unless you specify a different one

using the -n option, as shown in the following example:

[student@workstation deploy-multicontainer]$ oc create -f todo-template.yaml \
> -n openshift

Important

Any template created under the openshift namespace (OpenShift project) is

available in the web console under the dialog box accessible in the Catalog →

Developer Catalog menu item. Moreover, any template created under the current

project is accessible from that project.

Parameters

Templates define a set of parameters, which are assigned values. OpenShift resources defined in

the template can get their configuration values by referencing named parameters. Parameters in

a template can have default values, but they are optional. Any default value can be replaced when

processing the template.

Each parameter value can be set either explicitly by using the oc process command, or

generated by OpenShift according to the parameter configuration.

230 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

There are two ways to list available parameters from a template. The first one is using the oc
describe command:

$ oc describe template mysql-persistent -n openshift
Name: mysql-persistent
Namespace: openshift
Created: 12 days ago
Labels: samplesoperator.config.openshift.io/managed=true
Description: MySQL database service, with ...description omitted...
Annotations: iconClass=icon-mysql-database
 openshift.io/display-name=MySQL
 ...output omitted...
 tags=database,mysql

Parameters:
 Name: MEMORY_LIMIT
 Display Name: Memory Limit
 Description: Maximum amount of memory the container can use.
 Required: true
 Value: 512Mi

 Name: NAMESPACE
 Display Name: Namespace
 Description: The OpenShift Namespace where the ImageStream resides.
 Required: false
 Value: openshift

 ...output omitted...

 Name: MYSQL_VERSION
 Display Name: Version of MySQL Image
 Description: Version of MySQL image to be used (5.7, or latest).
 Required: true
 Value: 5.7

Object Labels: template=mysql-persistent-template

Message: ...output omitted... in your project: ${DATABASE_SERVICE_NAME}.

 Username: ${MYSQL_USER}
 Password: ${MYSQL_PASSWORD}
 Database Name: ${MYSQL_DATABASE}
 Connection URL: mysql://${DATABASE_SERVICE_NAME}:3306/

 For more information about using this template, ...output omitted...

Objects:
 Secret ${DATABASE_SERVICE_NAME}
 Service ${DATABASE_SERVICE_NAME}
 PersistentVolumeClaim ${DATABASE_SERVICE_NAME}
 DeploymentConfig ${DATABASE_SERVICE_NAME}

The second way is by using the oc process with the --parameters option:

DO180-OCP4.2-en-1-20191105 231

Chapter 7 | Deploying Multi-Container Applications

$ oc process --parameters mysql-persistent -n openshift
NAME DESCRIPTION GENERATOR VALUE
MEMORY_LIMIT Maximum a... 512Mi
NAMESPACE The OpenS... openshift
DATABASE_SERVICE_NAME The name ... mysql
MYSQL_USER Username ... expression user[A-Z0-9]{3}
MYSQL_PASSWORD Password ... expression [a-zA-Z0-9]{16}
MYSQL_ROOT_PASSWORD Password ... expression [a-zA-Z0-9]{16}
MYSQL_DATABASE Name of t... sampledb
VOLUME_CAPACITY Volume sp... 1Gi
MYSQL_VERSION Version o... 5.7

Processing a Template Using the CLI
When you process a template, you generate a list of resources to create a new application. To

process a template, use the oc process command:

$ oc process -f <filename>

The previous command processes a template file, in either JSON or YAML format, and returns the

list of resources to standard output. The format of the output resource list is JSON. To output the

resource list in YAML format, use the -o yaml with the oc process command:

$ oc process -o yaml -f <filename>

Another option is to process a template from the current project or the openshift project:

$ oc process <uploaded-template-name>

Note

The oc process command returns a list of resources to standard output. This

output can be redirected to a file:

$ oc process -o yaml -f filename > myapp.yaml

Templates often generate resources with configurable attributes that are based on the template

parameters. To override a parameter, use the -p option followed by a <name>=<value> pair.

$ oc process -o yaml -f mysql.yaml \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi > mysqlProcessed.yaml

To create the application, use the generated YAML resource definition file:

$ oc create -f mysqlProcessed.yaml

Alternatively, it is possible to process the template and create the application without saving a

resource definition file by using a UNIX pipe:

232 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

$ oc process -f mysql.yaml -p MYSQL_USER=dev \
> -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi | oc create -f -

To use a template in the openshift project to create an application in your project, first export

the template:

$ oc get template mysql-persistent -o yaml \
> -n openshift > mysql-persistent-template.yaml

Next, identify appropriate values for the template parameters and process the template:

$ oc process -f mysql-persistent-template.yaml \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi | oc create -f -

You can also use two slashes (//) to provide the namespace as part of the template name:

$ oc process openshift//mysql-persistent \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi | oc create -f -

Alternatively, it is possible to create an application using the oc new-app command passing the

template name as the --template option argument:

$ oc new-app --template=mysql-persistent \
> -p MYSQL_USER=dev -p MYSQL_PASSWORD=$P4SSD -p MYSQL_DATABASE=bank \
> -p VOLUME_CAPACITY=10Gi

Configuring Persistent Storage for OpenShift
Applications
OpenShift Container Platform manages persistent storage as a set of pooled, cluster-wide

resources. To add a storage resource to the cluster, an OpenShift administrator creates a

PersistentVolume object that defines the necessary metadata for the storage resource. The

metadata describes how the cluster accesses the storage, as well as other storage attributes such

as capacity or throughput.

To list the PersistentVolume objects in a cluster, use the oc get pv command:

[admin@host ~]$ oc get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM ...
pv0001 1Mi RWO Retain Available ...
pv0002 10Mi RWX Recycle Available ...
...output omitted...

To see the YAML definition for a given PersistentVolume, use the oc get command with the

-o yaml option:

DO180-OCP4.2-en-1-20191105 233

Chapter 7 | Deploying Multi-Container Applications

[admin@host ~]$ oc get pv pv0001 -o yaml
apiVersion: v1
kind: PersistentVolume
metadata:
 creationTimestamp: ...value omitted...
 finalizers:
 - kubernetes.io/pv-protection
 labels:
 type: local
 name: pv0001
 resourceVersion: ...value omitted...
 selfLink: /api/v1/persistentvolumes/pv0001
 uid: ...value omitted...
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 1Mi
 hostPath:
 path: /data/pv0001
 type: ""
 persistentVolumeReclaimPolicy: Retain
status:
 phase: Available

To add more PersistentVolume objects to a cluster, use the oc create command:

[admin@host ~]$ oc create -f pv1001.yaml

Note

The above pv1001.yaml file must contain a persistent volume definition, similar in

structure to the output of the oc get pv pv-name -o yaml command.

Requesting Persistent Volumes

When an application requires storage, you create a PersistentVolumeClaim (PVC) object

to request a dedicated storage resource from the cluster pool. The following content from a file

named pvc.yaml is an example definition for a PVC:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myapp
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

234 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

The PVC defines storage requirements for the application, such as capacity or throughput. To

create the PVC, use the oc create command:

[admin@host ~]$ oc create -f pvc.yaml

After you create a PVC, OpenShift attempts to find an available PersistentVolume resource

that satisfies the PVC's requirements. If OpenShift finds a match, it binds the PersistentVolume

object to the PersistentVolumeClaim object. To list the PVCs in a project, use the oc get pvc
command:

[admin@host ~]$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
myapp Bound pv0001 1Gi RWO 6s

The output indicates whether a persistent volume is bound to the PVC, along with attributes of the

PVC (such as capacity).

To use the persistent volume in an application pod, define a volume mount for a container

that references the PersistentVolumeClaim object. The application pod definition below

references a PersistentVolumeClaim object to define a volume mount for the application:

apiVersion: "v1"
kind: "Pod"
metadata:
 name: "myapp"
 labels:
 name: "myapp"
spec:
 containers:
 - name: "myapp"
 image: openshift/myapp
 ports:
 - containerPort: 80
 name: "http-server"
 volumeMounts:
 - mountPath: "/var/www/html"
 name: "pvol"
 volumes:
 - name: "pvol"
 persistentVolumeClaim:
 claimName: "myapp"

This section declares that the pvol volume mounts at /var/www/html in the container file

system.

This section defines the pvol volume.

The pvol volume references the myapp PVC. If OpenShift associates an available persistent

volume to the myapp PVC, then the pvol volume refers to this associated volume.

Configuring Persistent Storage with Templates

Templates are often used to simplify the creation of applications requiring persistent storage.

Many of these templates have a suffix of -persistent:

DO180-OCP4.2-en-1-20191105 235

Chapter 7 | Deploying Multi-Container Applications

[student@workstation ~]$ oc get templates -n openshift | grep persistent
cakephp-mysql-persistent An example CakePHP application with a MySQL data...
dancer-mysql-persistent An example Dancer application with a MySQL datab...
django-psql-persistent An example Django application with a PostgreSQL ...
dotnet-pgsql-persistent An example .NET Core application with a PostgreS...
jenkins-persistent Jenkins service, with persistent storage....
mariadb-persistent MariaDB database service, with persistent storag...
mongodb-persistent MongoDB database service, with persistent storag...
mysql-persistent MySQL database service, with persistent storage....
nodejs-mongo-persistent An example Node.js application with a MongoDB da...
postgresql-persistent PostgreSQL database service, with persistent sto...
rails-pgsql-persistent An example Rails application with a PostgreSQL d...
redis-persistent Redis in-memory data structure store, with persi...

The following example template defines a PersistentVolumeClaim object along with a

DeploymentConfig object:

apiVersion: template.openshift.io/v1
kind: Template
labels:
 template: myapp-persistent-template
metadata:
 name: myapp-persistent
 namespace: openshift
objects:
- apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: ${APP_NAME}
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: ${VOLUME_CAPACITY}
- apiVersion: v1
 kind: DeploymentConfig
 metadata:
 name: ${APP_NAME}
 spec:
 replicas: 1
 selector:
 name: ${APP_NAME}
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 name: ${APP_NAME}
 spec:
 containers:
 - image: 'openshift/myapp'
 name: myapp

236 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

 volumeMounts:
 - mountPath: /var/lib/myapp/data
 name: ${APP_NAME}-data
 volumes:
 - name: ${APP_NAME}-data
 persistentVolumeClaim:
 claimName: ${APP_NAME}
parameters:
- description: The name for the myapp application.
 displayName: Application Name
 name: APP_NAME
 required: true
 value: myapp
- description: Volume space available for data, e.g. 512Mi, 2Gi.
 displayName: Volume Capacity
 name: VOLUME_CAPACITY
 required: true
 value: 1Gi

The template defines a PersistentVolumeClaim and DeploymentConfig object. Both

objects have names matching the value of the APP_NAME parameter. The persistent volume

claim defines a capacity corresponding the value of the VOLUME_CAPCITY parameter.

The DeploymentConfig object defines a volume mount referencing the

PersistentVolumeClaim created by the template.

The template defines two parameters: APP_NAME and VOLUME_CAPACITY. The template

uses these parameters to specify the value of attributes for the PersistentVolumeClaim
and DeploymentConfig objects.

With this template, you only need to specify the APP_NAME and VOLUME_CAPACITY parameters

to deploy the myapp application with persistent storage:

[student@workstation ~]$ oc create myapp-template.yaml
template.template.openshift.io/myapp-persistent created
[student@workstation ~]$ oc process myapp-persistent \
> -p APP_NAME=myapp-dev -p VOLUME_CAPACITY=1Gi \
> | oc create -f -
deploymentconfig/myapp created
persistentvolumeclaim/myapp created

References

Developer information about templates can be found in the Using Templates

section of the OpenShift Container Platform documentation:

Developer Guide

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html-single/images/index#using-templates

DO180-OCP4.2-en-1-20191105 237

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/images/index#using-templates

Chapter 7 | Deploying Multi-Container Applications

Guided Exercise

Creating an Application with a Template

In this exercise, you will deploy the To Do List application in OpenShift Container Platform

using a template to define resources your application needs to run.

Outcomes
You should be able to build and deploy an application in OpenShift Container Platform using

a provided JSON template.

Before You Begin
You must have the To Do List application source code and lab files on workstation. To

download the lab files and verify the status of the OpenShift cluster, run the following

command in a new terminal window.

[student@workstation ~]$ lab multicontainer-openshift start

 1. Use the Dockerfile in the images/mysql subdirectory to build the database container.

Publish the container image to quay.io with a tag of do180-mysql-57-rhel7.

1.1. Build the MySQL database image.

[student@workstation ~]$ cd ~/DO180/labs/multicontainer-openshift/images/mysql
[student@workstation mysql]$ sudo podman build -t do180-mysql-57-rhel7 .
STEP 1: FROM rhscl/mysql-57-rhel7
Getting image source signatures
Copying blob sha256:e373541...output omitted...
 69.66 MB / 69.66 MB [==] 6s
Copying blob sha256:c5d2e94...output omitted...
 1.20 KB / 1.20 KB [==] 0s
Copying blob sha256:b3949ae...output omitted...
 62.03 MB / 62.03 MB [==] 5s
Writing manifest to image destination
Storing signatures
STEP 2: ADD root /
ERRO[0001] HOSTNAME is not supported for OCI image format ...output omitted...
--> b628...a079
STEP 3: COMMIT do180-mysql-57-rhel7

Note

The ERRO error message is a known issue with an early version of Podman. You can

ignore this message.

1.2. To make the image available for OpenShift, tag it and push it up to quay.io. To do so,

run the following commands in the terminal window.

238 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

[student@workstation mysql]$ source /usr/local/etc/ocp4.config
[student@workstation mysql]$ sudo podman login quay.io -u ${RHT_OCP4_QUAY_USER}
Password: your_quay_password
Login Succeeded!
[student@workstation mysql]$ sudo podman tag \
> do180-mysql-57-rhel7 quay.io/${RHT_OCP4_QUAY_USER}/do180-mysql-57-rhel7
[student@workstation mysql]$ sudo podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-mysql-57-rhel7
Getting image source signatures
Copying blob ssha256:04dbae...b21619
205.17 MB / 205.17 MB [===] 1m19s
...output omitted...
Writing manifest to image destination
Storing signatures

Note

The config sha256: value in the above output may differ from your output.

 2. Build the base image for the To Do List application using the Node.js Dockerfile, located

in the exercise subdirectory images/nodejs. Tag the image as do180-nodejs. Do not

publish this image to the registry.

[student@workstation mysql]$ cd ~/DO180/labs/multicontainer-openshift
[student@workstation multicontainer-openshift]$ cd images/nodejs
[student@workstation nodejs]$ sudo podman build -t do180-nodejs .
STEP 1: ubi7/ubi:7.7
Getting image source signatures
Copying blob sha256:5d92fc...1ce84e
...output omitted...
Storing signatures
STEP 2: MAINTAINER username <username@example.com>
...output omitted...
STEP 14: CMD ["echo", "You must create your own container from this one."]
--> 97f0eb3...output omitted...
STEP 15: COMMIT do180-nodejs

 3. Use the build.sh script in the deploy/nodejs subdirectory to build the To Do List

application. Publish the application image to quay.io with an image tag of do180-
todonodejs.

3.1. Go to the ~/DO180/labs/multicontainer-openshift/deploy/nodejs
directory and run the build.sh command to build the child image.

[student@workstation nodejs]$ cd ~/DO180/labs/multicontainer-openshift
[student@workstation multicontainer-openshift]$ cd deploy/nodejs
[student@workstation nodejs]$./build.sh
Preparing build folder
STEP 1: FROM do180-nodejs
STEP 2: MAINTAINER username <username@example.com>
..output omitted...

DO180-OCP4.2-en-1-20191105 239

Chapter 7 | Deploying Multi-Container Applications

STEP 7: CMD ["scl","enable","rh-nodejs8","./run.sh"]
--> f627d64...output omitted...
STEP 8: COMMIT containers-storage:...

3.2. Push the image to quay.io.

In order to make the image available for OpenShift to use in the template, tag it and

push it to the private registry. To do so, run the following commands in the terminal

window.

[student@workstation nodejs]$ sudo podman tag do180/todonodejs \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-todonodejs
[student@workstation nodejs]$ sudo podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-todonodejs
Getting image source signatures
Copying blob sha256:24a5c62...output omitted...
...output omitted...
Copying blob sha256:5f70bf1...output omitted...
 1024 B / 1024 B [===] 0s
Copying config sha256:c43306d...output omitted...
 7.26 KB / 7.26 KB [===] 0s
Writing manifest to image destination
Copying config sha256:c43306d...output omitted...
 0 B / 7.26 KB [---] 0s
Writing manifest to image destination
Storing signatures

Warning

Make sure both repositories are public in quay.io so OpenShift can get the images

from it. Refer to the Repositories Visibility section of the Appendix C to

read details about how to change repository visibility.

 4. Create the To Do List application from the provided JSON template.

4.1. Log in to OpenShift Container Platform.

[student@workstation nodejs]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful.

...output omitted...

Using project "default".

If the oc login command prompts about using insecure connections, answer y (yes).

4.2. Create a new project template in OpenShift to use for this exercise. Run the following

command to create the template project.

[student@workstation nodejs]$ oc new-project ${RHT_OCP4_DEV_USER}-template
Now using project ...output omitted...

240 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

4.3. Review the template.

Using your preferred editor, open and examine the template located at /home/
student/DO180/labs/multicontainer-openshift/todo-template.json.

Notice the following resources defined in the template and review their configurations.

• The todoapi pod definition defines the Node.js application.

• The mysql pod definition defines the MySQL database.

• The todoapi service provides connectivity to the Node.js application pod.

• The mysql service provides connectivity to the MySQL database pod.

• The dbinit persistent volume claim definition defines the MySQL /var/lib/
mysql/init volume.

• The db-volume persistent volume claim definition defines the MySQL /var/lib/
mysql/data volume.

4.4. Process the template and create the application resources.

Use the oc process command to process the template file. This template

requires the Quay.io namespace to retrieve the container images, as the

RHT_OCP4_QUAY_USER parameter. Use the pipe command to send the result to the

oc create command.

Run the following command in the terminal window:

[student@workstation nodejs]$ cd /home/student/DO180/labs/multicontainer-openshift
[student@workstation multicontainer-openshift]$ oc process \
> -f todo-template.json -p RHT_OCP4_QUAY_USER=${RHT_OCP4_QUAY_USER} \
> | oc create -f -
pod "mysql" created
pod "todoapi" created
service "todoapi" created
service "mysql" created
persistentvolumeclaim "dbinit" created
persistentvolumeclaim "dbclaim" created

4.5. Review the deployment.

Review the status of the deployment using the oc get pods command with the

-w option to continue to monitor the pod status. Wait until both the containers are

running. It may take some time for both pods to start.

[student@workstation multicontainer-openshift]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
mysql 0/1 ContainerCreating 0 9s
todoapi 1/1 Running 0 9s
mysql 1/1 Running 0 2m

Press Ctrl+C to exit the command.

 5. Expose the Service.

To allow the To Do List application to be accessible through the OpenShift router and to be

available as a public FQDN, use the oc expose command to expose the todoapi service.

DO180-OCP4.2-en-1-20191105 241

Chapter 7 | Deploying Multi-Container Applications

Run the following command in the terminal window.

[student@workstation multicontainer-openshift]$ oc expose service todoapi
route.route.openshift.io/todoapi exposed

 6. Test the application.

6.1. Find the FQDN of the application by running the oc status command and note the

FQDN for the app.

Run the following command in the terminal window.

[student@workstation multicontainer-openshift]$ oc status
In project template on server ...

svc/mysql - 172.30.77.172:3306
 pod/mysql runs quay.io/your_quay_username/do180-mysql-57-rhel7

http://todoapi-your_quay_username-template.your_ocp4_wildcard_domain to pod port
 30080 (svc/todoapi)
 pod/todoapi runs quay.io/your_quay_username/do180-todonodejs

2 infos identified, use 'oc status --suggest' to see details.

6.2. Use curl to test the REST API for the To Do List application.

[student@workstation multicontainer-openshift]$ curl -w "\n" \
http://your_quay_username-todoapi-template.your_ocp4_wildcard_domain/todo/api/
items/1
{"id":1,"description":"Pick up newspaper","done":false}

The -w "\n" option with curl command lets the shell prompt appear at the next line

rather than merging with the output in the same line.

6.3. Open Firefox on workstation and point your browser to http://
todoapi-your_quay_username-template.your_ocp4_wildcard_domain/
todo/ and you should see the To Do List application.

Note

The trailing slash in the URL mentioned above is necessary. If you do not include

that in the URL, you may encounter issues with the application.

242 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

Figure 7.4: To Do List application

Finish

On workstation, run the lab multicontainer-openshift finish script to complete this

lab.

[student@workstation ~]$ lab multicontainer-openshift finish

This concludes the guided exercise.

DO180-OCP4.2-en-1-20191105 243

Chapter 7 | Deploying Multi-Container Applications

Lab

Deploying Multi-Container Applications

Performance Checklist
In this lab, you will deploy a PHP Application with a MySQL database using an OpenShift

template to define the resources needed by the application.

Outcomes
You should be able to create an OpenShift application comprised of multiple containers and

access it through a web browser.

Before You Begin
Open a terminal on workstation as the student user and run the following commands:

[student@workstation ~]$ lab multicontainer-review start
[student@workstation ~]$ cd ~/DO180/labs/multicontainer-review

1. Log in to OpenShift cluster and create a new project for this exercise.

2. Build the Database container image located in the images/mysql directory and publish it to

your Quay.io repository.

3. Build the PHP container image located in the images/quote-php and publish it to your

Quay.io repository.

Warning

Make sure both repositories are public in quay.io so OpenShift can get the images

from it. Refer to the Repositories Visibility section of the Appendix C to

read details about how change repository visibility.

4. Go to the /home/student/DO180/labs/multicontainer-review/ directory and

review the provided template quote-php-template.json file.

Note the definitions and configuration of the pods, services, and persistent volume claims

defined in the template.

5. Upload the PHP application template so that any developer with access to your project can

use it.

6. Process the uploaded template and create the application resources.

7. Expose the service.

8. Test the application and verify that it outputs an inspiring message.

Evaluation

Grade your work by running the lab multicontainer-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

244 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

[student@workstation ~]$ lab multicontainer-review grade

Finish

To complete this lab, run the lab multicontainer-review finish command on

workstation.

[student@workstation ~]$ lab multicontainer-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 245

Chapter 7 | Deploying Multi-Container Applications

Solution

Deploying Multi-Container Applications

Performance Checklist
In this lab, you will deploy a PHP Application with a MySQL database using an OpenShift

template to define the resources needed by the application.

Outcomes
You should be able to create an OpenShift application comprised of multiple containers and

access it through a web browser.

Before You Begin
Open a terminal on workstation as the student user and run the following commands:

[student@workstation ~]$ lab multicontainer-review start
[student@workstation ~]$ cd ~/DO180/labs/multicontainer-review

1. Log in to OpenShift cluster and create a new project for this exercise.

1.1. From workstation, log in as the user provided at the first exercise.

[student@workstation multicontainer-review]$ source /usr/local/etc/ocp4.config
[student@workstation multicontainer-review]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful.

...output omitted...

Using project "default".

If the oc login command prompts about using insecure connections, answer y (yes).

1.2. Create a new project in OpenShift named deploy and prefixed by your OpenShift

username:

[student@workstation multicontainer-review]$ oc new-project \
> ${RHT_OCP4_DEV_USER}-deploy
Now using project ...output omitted...

2. Build the Database container image located in the images/mysql directory and publish it to

your Quay.io repository.

2.1. Build the MySQL Database image using the provided Dockerfile in the images/mysql
directory.

246 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

[student@workstation multicontainer-review]$ cd images/mysql
[student@workstation mysql]$ sudo podman build -t do180-mysql-57-rhel7 .
STEP 1: FROM rhscl/mysql-57-rhel7
...output omitted...
STEP 5: COMMIT do180-mysql-57-rhel7

2.2. Push the MySQL image to the your Quay.io repository.

In order to make the image available for OpenShift to use in the template, give it the tag

quay.io/${RHT_OCP4_QUAY_USER}/do180-mysql-57-rhel7 and push it to the

quay.io registry. In order to push images to quay.io you first need to log in with your

own credentials.

[student@workstation mysql]$ sudo podman login quay.io -u ${RHT_OCP4_QUAY_USER}
Password: your_quay_password
Login Succeeded!

To tag and push the image run the following commands in the terminal window.

[student@workstation mysql]$ sudo podman tag do180-mysql-57-rhel7 \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-mysql-57-rhel7
[student@workstation mysql]$ sudo podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-mysql-57-rhel7
Getting image source signatures
...output omitted...
Writing manifest to image destination
Storing signatures

Return to the previous directory.

[student@workstation mysql]$ cd ~/DO180/labs/multicontainer-review

3. Build the PHP container image located in the images/quote-php and publish it to your

Quay.io repository.

Warning

Make sure both repositories are public in quay.io so OpenShift can get the images

from it. Refer to the Repositories Visibility section of the Appendix C to

read details about how change repository visibility.

3.1. Build the PHP image using the provided Dockerfile in the images/quote-php
directory.

[student@workstation multicontainer-review]$ cd images/quote-php
[student@workstation quote-php]$ sudo podman build -t do180-quote-php .
STEP 1: FROM ubi7/ubi:7.7
...output omitted...
STEP 15: COMMIT do180-quote-php

3.2. Tag and push the PHP image to your Quay.io registry.

DO180-OCP4.2-en-1-20191105 247

Chapter 7 | Deploying Multi-Container Applications

In order to make the image available for OpenShift to use in the template, give it the tag

of quay.io/${RHT_OCP4_QUAY_USER/do180-quote-php and push it to Quay.io.

[student@workstation quote-php]$ sudo podman tag do180-quote-php \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-quote-php
[student@workstation quote-php]$ sudo podman push \
> quay.io/${RHT_OCP4_QUAY_USER}/do180-quote-php
Getting image source signatures
...output omitted...
Writing manifest to image destination
Storing signatures

4. Go to the /home/student/DO180/labs/multicontainer-review/ directory and

review the provided template quote-php-template.json file.

Note the definitions and configuration of the pods, services, and persistent volume claims

defined in the template.

[student@workstation quote-php]$ cd ~/DO180/labs/multicontainer-review

5. Upload the PHP application template so that any developer with access to your project can

use it.

Use the oc create -f command to upload the template file to the project.

[student@workstation multicontainer-review]$ oc create -f quote-php-template.json
template.template.openshift.io/quote-php-persistent created

6. Process the uploaded template and create the application resources.

6.1. Use the oc process command to process the template file. Make sure providing the

RHT_OCP4_QUAY_USER parameter with the quay.io namespace where images are

located. Use the pipe command to send the result to the oc create command to

create an application from the template.

[student@workstation multicontainer-review]$ oc process quote-php-persistent \
> -p RHT_OCP4_QUAY_USER=${RHT_OCP4_QUAY_USER} \
> | oc create -f -
pod/mysql created
pod/quote-php created
service/quote-php created
service/mysql created
persistentvolumeclaim/dbinit created
persistentvolumeclaim/dbclaim created

6.2. Verify the status of the deployment using the oc get pods command with the -w
option to monitor the deployment status. Wait until both pods are running. It may take

some time for both pods to start up.

248 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

[student@workstation multicontainer-review]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
mysql 0/1 ContainerCreating 0 21s
quote-php 0/1 ContainerCreating 0 20s
quote-php 1/1 Running 0 35s
mysql 1/1 Running 0 49s
^C

Press Ctrl+C to exit the command.

7. Expose the service.

To allow the PHP Quote application to be accessible through the OpenShift router and

reachable from an external network, use the oc expose command to expose the quote-
php service.

Run the following command in the terminal window.

[student@workstation multicontainer-review]$ oc expose svc quote-php
route.route.openshift.io/quote-php exposed

8. Test the application and verify that it outputs an inspiring message.

8.1. Use the oc get route command to find the FQDN where the application is available.

Note the FQDN for the app.

Run the following command in the terminal window.

[student@workstation multicontainer-review]$ oc get route
NAME HOST/PORT PATH SERVICES ...
quote-php quote-php-your_dev_user-deploy.wildcard_domain quote-php ...

8.2. Use the curl command to test the REST API for the PHP Quote application.

[student@workstation ~]$ curl -w "\n" \
> http://quote-php-${RHT_OCP4_DEV_USER}-deploy.${RHT_OCP4_WILDCARD_DOMAIN}
Always remember that you are absolutely unique. Just like everyone else.

Note

The text displayed in the output above may differ, but the curl command should

run successfully.

This concludes the lab.

Evaluation

Grade your work by running the lab multicontainer-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation ~]$ lab multicontainer-review grade

DO180-OCP4.2-en-1-20191105 249

Chapter 7 | Deploying Multi-Container Applications

Finish

To complete this lab, run the lab multicontainer-review finish command on

workstation.

[student@workstation ~]$ lab multicontainer-review finish

This concludes the lab.

250 DO180-OCP4.2-en-1-20191105

Chapter 7 | Deploying Multi-Container Applications

Summary

In this chapter, you learned:

• Software defined networks enable communication between containers. Containers must be

attached to the same software-defined network to communicate.

• Containerized applications cannot rely on fixed IP addresses or host names to find services.

• Podman uses Container Network Interface (CNI) to create a software-defined network and

attaches all containers on the host to that network. Kubernetes and OpenShift create a

software-defined network between all containers in a pod.

• Within the same project, Kubernetes injects a set of variables for each service into all pods.

• Kubernetes templates automate creating applications consisting of multiple resources.

Template parameters allow using the same values when creating multiple resources.

DO180-OCP4.2-en-1-20191105 251

252 DO180-OCP4.2-en-1-20191105

Chapter 8

Troubleshooting Containerized
Applications

Goal Troubleshoot a containerized application deployed
on OpenShift.

Objectives • Troubleshoot an application build and
deployment on OpenShift.

• Implement techniques for troubleshooting and
debugging containerized applications.

Sections • Troubleshooting S2I Builds and Deployments
(and Guided Exercise)

• Troubleshooting Containerized Applications
(and Guided Exercise)

Lab • Troubleshooting Containerized Applications

DO180-OCP4.2-en-1-20191105 253

Chapter 8 | Troubleshooting Containerized Applications

Troubleshooting S2I Builds and
Deployments

Objectives
After completing this section, you should be able to:

• Troubleshoot an application build and deployment steps on OpenShift.

• Analyze OpenShift logs to identify problems during the build and deploy process.

Introduction to the S2I Process
The Source-to-Image (S2I) process is a simple way to automatically create images based on the

programming language of the application source code in OpenShift. While this process is often a

convenient way to quickly deploy applications, problems can arise during the S2I image creation

process, either by the programming language characteristics or the runtime environment that

require both developers and administrators to work together.

It is important to understand the basic workflow for most of the programming languages

supported by OpenShift. The S2I image creation process is composed of two major steps:

• Build step: Responsible for compiling source code, downloading library dependencies, and

packaging the application as a container image. Furthermore, the build step pushes the image to

the OpenShift registry for the deployment step. The BuildConfig (BC) OpenShift resources

drive the build step.

• Deployment step: Responsible for starting a pod and making the application available for

OpenShift. This step executes after the build step, but only if the build step succeeded. The

DeploymentConfig (DC) OpenShift resources drive the deployment step.

For the S2I process, each application uses its own BuildConfig and DeploymentConfig
objects, the name of which matches the application name. The deployment process aborts if the

build fails.

The S2I process starts each step in a separate pod. The build process creates a pod named

<application-name>-build-<number>-<string>. For each build attempt, the entire build

step executes and saves a log. Upon a successful build, the application starts on a separate pod

named as <application-name>-<string>.

The OpenShift web console can be used to access the details for each step. To identify any build

issues, the logs for a build can be evaluated and analyzed by clicking the Builds link from the left

panel, depicted as follows.

254 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

Figure 8.1: Build instances of a project

For each build attempt, a history of the build, tagged with a number, is provided for evaluation.

Clicking on the build name leads to the details page of the build.

Figure 8.2: Detailed view of a build instance

The Logs tab of the build details page shows the output generated by the build execution. Those

logs are handy to identify build issues.

Use the Deployment Configs link under Workloads section from the left panel to identify issues

during the deployment step.

After selecting the appropriate deployment configuration, details show in the Overview section.

The oc command-line interface has several subcommands for managing the logs. Likewise in the

web interface, it has a set of commands which provides information about each step. For example,

to retrieve the logs from a build configuration, run the following command.

$ oc logs bc/<application-name>

If a build fails, after finding and fixing the issues, run the following command to request a new

build:

$ oc start-build <application-name>

By issuing that command, OpenShift automatically spawns a new pod with the build process.

DO180-OCP4.2-en-1-20191105 255

Chapter 8 | Troubleshooting Containerized Applications

Deployment logs can be checked with the oc command:

$ oc logs dc/<application-name>

If the deployment is running or has failed, the command returns the logs of the process

deployment process. Otherwise, the command returns the logs from the application's pod.

Describing Common Problems
Sometimes, the source code requires some customization that may not be available in

containerized environments, such as database credentials, file system access, or message queue

information. Those values usually take the form of internal environment variables. Developers

using the S2I process may need to access this information.

The oc logs command provides important information about the build, deploy, and run

processes of an application during the execution of a pod. The logs may indicate missing values or

options that must be enabled, incorrect parameters or flags, or environment incompatibilities.

Note

Application logs must be clearly labelled to identify problems quickly without the

need to learn the container internals.

Troubleshooting Permission Issues

OpenShift runs S2I containers using Red Hat Enterprise Linux as the base image, and any runtime

difference may cause the S2I process to fail. Sometimes, the developer runs into permission

issues, such as access denied due to the wrong permissions, or incorrect environment permissions

set by administrators. S2I images enforce the use of a different user than the root user to access

file systems and external resources. Also, Red Hat Enterprise Linux 7 enforces SELinux policies

that restrict access to some file system resources, network ports, or process.

Some containers may require a specific user ID, whereas S2I is designed to run containers using a

random user as per the default OpenShift security policy.

The following Dockerfile creates a Nexus container. Note the USER instruction indicating the

nexus user should be used:

FROM ubi7/ubi:7.7
...contents omitted...
RUN chown -R nexus:nexus ${NEXUS_HOME}

USER nexus
WORKDIR ${NEXUS_HOME}

VOLUME ["/opt/nexus/sonatype-work"]
...contents omitted...

Trying to use the image generated by this Dockerfile without addressing volume permissions

drives to errors when the container starts:

256 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

$ oc logs nexus-1-wzjrn
...output omitted...
... org.sonatype.nexus.util.LockFile - Failed to write lock file
...FileNotFoundException: /opt/nexus/sonatype-work/nexus.lock (Permission denied)
...output omitted...
... org.sonatype.nexus.webapp.WebappBootstrap - Failed to initialize
...lStateException: Nexus work directory already in use: /opt/nexus/sonatype-work
...output omitted...

To solve this issue, relax the OpenShift project security with the command oc adm policy.

[student@workstation ~]$ oc adm policy add-scc-to-user anyuid -z default

This oc adm policy command enables OpenShift executing container processes with non-root

users. But the file systems used in the container must also be available for the running user. This is

specially important when the container contains volume mounts.

To avoid file system permission issues, local folders used for container volume mounts must satisfy

the following:

• The user executing the container processes must be the owner of the folder, or have the

necessary rights. Use the chown command to update folder ownership.

• The local folder must satisfy the SELinux requirements to be used as a container volume.

Assign the container_file_t group to the folder by using the semanage fcontext -
a -t container_file_t <folder> command, then refresh the permissions with the

restorecon -R <folder> command.

Troubleshooting Invalid Parameters

Multi-container applications may share parameters, such as login credentials. Ensure that the

same values for parameters reach all containers in the application. For example, for a Python

application that runs in one container, connected with another container running a database, make

sure that the two containers use the same user name and password for the database. Usually, logs

from the application pod provide a clear idea of these problems and how to solve them.

A good practice to centralize shared parameters is to store them in ConfigMaps. Those

ConfigMaps can be injected through the Deployment Config into containers as environment

variables. Injecting the same ConfigMap into different containers ensures that not only the same

environment variables are available, but also the same values. See the following pod resource

definition:

apiVersion: v1
kind: Pod
...output omitted...
spec:
 containers:
 - name: test-container
...output omitted...
 env:
 - name: ENV_1
 valueFrom:
 configMapKeyRef:
 name: configMap_name1

DO180-OCP4.2-en-1-20191105 257

Chapter 8 | Troubleshooting Containerized Applications

 key: configMap_key_1
...output omitted...
 envFrom:
 - configMapRef:
 name: configMap_name_2
...output omitted...

An ENV_1 environment variable is injected into the container. Its value is the value for the

configMap_key_1 entry in the configMap_name1 configMap.

All entries in configMap_name_2 are injected into the container as environment variables

with the same name and values.

Troubleshooting Volume Mount Errors

When redeploying an application that uses a persistent volume on a local file system, a pod might

not be able to allocate a persistent volume claim even though the persistent volume indicates

that the claim is released. To resolve the issue, delete the persistent volume claim and then the

persistent volume. Then recreate the persistent volume.

oc delete pv <pv_name>
oc create -f <pv_resource_file>

Troubleshooting Obsolete Images

OpenShift pulls images from the source indicated in an image stream unless it locates a locally-

cached image on the node where the pod is scheduled to run. If you push a new image to the

registry with the same name and tag, you must remove the image from each node the pod is

scheduled on with the command podman rmi.

Run the oc adm prune command for an automated way to remove obsolete images and other

resources.

References

More information about troubleshooting images is available in the Images section of

the OpenShift Container Platform documentation accessible at:

Creating Images

https://docs.openshift.com/container-platform/4.2/openshift_images/create-

images.html

Documentation about how to consume ConfigMap to create container environment

variables can be found in the Consuming in Environment Variables of the

Configure a Pod to use ConfigMaps

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-

configmap/#define-container-environment-variables-using-configmap-data

258 DO180-OCP4.2-en-1-20191105

https://docs.openshift.com/container-platform/4.2/openshift_images/create-images.html
https://docs.openshift.com/container-platform/4.2/openshift_images/create-images.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#define-container-environment-variables-using-configmap-data
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#define-container-environment-variables-using-configmap-data

Chapter 8 | Troubleshooting Containerized Applications

Guided Exercise

Troubleshooting an OpenShift Build

In this exercise, you will troubleshoot an OpenShift build and deployment process.

Outcomes
You should be able to identify and solve the problems raised during the build and

deployment process of a Node.js application.

Before You Begin
A running OpenShift cluster.

Retrieve the lab files and verify that Docker and the OpenShift cluster are running by running

the following command.

[student@workstation ~]$ lab troubleshoot-s2i start

 1. Load the configuration of your classroom environment. Run the following command to load

the environment variables created in the first guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

 2. Enter your local clone of the DO180-apps Git repository and checkout the master branch

of the course's repository to ensure you start this exercise from a known good state:

[student@workstation ~]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git checkout master
...output omitted...

 3. Create a new branch to save any changes you make during this exercise:

[student@workstation DO180-apps]$ git checkout -b troubleshoot-s2i
Switched to a new branch 'troubleshoot-s2i'
[student@workstation DO180-apps]$ git push -u origin troubleshoot-s2i
...output omitted...
* [new branch] troubleshoot-s2i -> s2i
Branch troubleshoot-s2i set up to track remote branch troubleshoot-s2i from
 origin.

 4. Log in to OpenShift using the configured user, password and Master API URL.

DO180-OCP4.2-en-1-20191105 259

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation DO180-apps]$ oc login -u "${RHT_OCP4_DEV_USER}" \
> -p "${RHT_OCP4_DEV_PASSWORD}"
Login successful.

You have access to the following projects and can switch between them with 'oc
 project <projectname>':
...output omitted...

Create a new project named youruser-nodejs.

[student@workstation DO180-apps]$ oc new-project ${RHT_OCP4_DEV_USER}-nodejs
Now using project "youruser-nodejs" on server "https://
api.cluster.lab.example.com"
...output omitted...

 5. Build a new Node.js application using the Hello World image located at https://
github.com/yourgituser/DO180-apps/ in the nodejs-helloworld directory.

5.1. Run the oc new-app command to create the Node.js application. The command is

provided in the ~/DO180/labs/troubleshoot-s2i/command.txt file.

[student@workstation DO180-apps]$ oc new-app --context-dir=nodejs-helloworld \
> https://github.com/${RHT_OCP4_GITHUB_USER}/DO180-apps#troubleshoot-s2i \
> -i nodejs:8 --name nodejs-hello --build-env \
> npm_config_registry=http://${RHT_OCP4_NEXUS_SERVER}/repository/npm-proxy
--> Found image a2b5ec2 ...output omitted...

 Node.js 8
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "nodejs-hello" created
 buildconfig.build.openshift.io "nodejs-hello" created
 deploymentconfig.apps.openshift.io "nodejs-hello" created
 service "nodejs-hello" created
--> Success
 Build scheduled, use 'oc logs -f bc/nodejs-hello' to track its progress.
 Application is not exposed. You can expose services to the outside world by
 executing one or more of the commands below:
 'oc expose svc/nodejs-hello'
 Run 'oc status' to view your app.

The -i indicates the builder image to use, nodejs:8 in this case.

The --context-dir option defines which folder inside the project contains the

source code of the application to build.

The --build-env option defines an environment variable to the builder pod. In this

case, it provides the npm_config_registry environment variable to the builder pod,

so it can reach the NPM registry.

260 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

Important

In the previous command, there must be no spaces between registry= and the

URL of the Nexus server.

5.2. Wait until the application finishes building by monitoring the progress with the oc get
pods -w command. The pod transitions from a status of running to Error:

[student@workstation DO180-apps]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
nodejs-hello-1-build 1/1 Running 0 15s
nodejs-hello-1-build 0/1 Error 0 73s
^C

The build process fails, and therefore no application is running. Build failures are usually

consequences of syntax errors in the source code or missing dependencies. The next

step investigates the specific causes for this failure.

5.3. Evaluate the errors raised during the build process.

The build is triggered by the build configuration (bc) created by OpenShift when the

S2I process starts. By default, the OpenShift S2I process creates a build configuration

named as the name given: nodejs-hello, which is responsible for triggering the build

process.

Run the oc command with the logs subcommand in a terminal window to review the

output of the build process:

[student@workstation DO180-apps]$ oc logs bc/nodejs-hello
 Cloning "https://github.com/yourgituser/DO180-apps" ...
 Commit: f7cd8963ef353d9173c3a21dcccf402f3616840b (Initial commit...
...output omitted...
STEP 8: RUN /usr/libexec/s2i/assemble
---> Installing application source ...
---> Installing all dependencies
npm ERR! code ETARGET
npm ERR! notarget No matching version found for express@~4.14.2
npm ERR! notarget In most cases you or one of your dependencies are requesting
npm ERR! notarget a package version that doesn't exist.
npm ERR! notarget
npm ERR! notarget It was specified as a dependency of 'nodejs-helloworld'
npm ERR! notarget

npm ERR! A complete log of this run can be found in:
npm ERR! /opt/app-root/src/.npm/_logs/2019-10-25T12_37_56_853Z-debug.log
subprocess exited with status 1
...output omitted...

The log shows an error occurred during the build process. This output indicates that

there is no compatible version for the express dependency. But the reason is that the

format used by the express dependency is not valid.

 6. Update the build process for the project.

DO180-OCP4.2-en-1-20191105 261

Chapter 8 | Troubleshooting Containerized Applications

The developer uses a nonstandard version of the Express framework that is available

locally on each developer's workstation. Due to the company's standards, the version

must be downloaded from the Node.js official registry and, from the developer's input, it is

compatible with the 4.14.x version.

6.1. Fix the package.json file.

Use your preferred editor to open the ~/DO180-apps/nodejs-helloworld/
package.json file. Review the dependencies versions provided by the developers.

It uses an incorrect version of the Express dependency, which is incompatible with

the supported version provided by the company (~4.14.2). Update the dependency

version as follows.

{
 "name": "nodejs-helloworld",
 ...output omitted...
 "dependencies": {
 "express": "4.14.x"
 }
}

Note

Notice the x in the version. It indicates that the highest version should be used, but

the version must begin with 4.14..

6.2. Commit and push the changes made to the project.

From the terminal window, run the following command to commit and push the

changes:

[student@workstation DO180-apps]$ git commit -am "Fixed Express release"
...output omitted...
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation DO180-apps]$ git push
...output omitted...
To https://github.com/yourgituser/DO180-apps
 ef6557d..73a82cd troubleshoot-s2i -> troubleshoot-s2i

 7. Relaunch the S2I process.

7.1. To restart the build step, execute the following command:

[student@workstation DO180-apps]$ oc start-build bc/nodejs-hello
build "nodejs-hello-2" started

The build step is restarted, and a new build pod is created. Check the log by running

the oc logs command.

262 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation DO180-apps]$ oc logs -f bc/nodejs-hello
Cloning "https://github.com/yougituser/DO180-apps" ...
Commit: ea2125c1bf4681dd9b79ddf920d8d8be38cfcf3b (Fixed Express release)
...output omitted...
Pushing image ...image-registry.svc:5000/nodejs/nodejs-hello:latest...
...output omitted...
Push successful

The build is successful, however, this does not indicate that the application is started.

7.2. Evaluate the status of the current build process. Run the oc get pods command to

check the status of the Node.js application.

[student@workstation DO180-apps]$ oc get pods

According to the following output, the second build completed, but the application is in

error state.

NAME READY STATUS RESTARTS AGE
nodejs-hello-1-build 0/1 Error 0 29m
nodejs-hello-1-rpx1d 0/1 CrashLoopBackOff 6 6m
nodejs-hello-2-build 0/1 Completed 0 7m

The name of the application pod (nodejs-hello-1-rpx1d) is generated randomly,

and may differ from yours.

7.3. Review the logs generated by the application pod.

[student@workstation DO180-apps]$ oc logs dc/nodejs-hello
...output omitted...
npm info using npm@6.4.1
npm info using node@v8.16.0
npm ERR! missing script: start
...output omitted...

Note

The oc logs dc/nodejs-hello command dumps the logs from the deployment

pod. In the case of a successful deployment, that command dumps the logs from

the application pod, as previously shown.

The application fails to start because the start script declaration is missing.

 8. Fix the problem by updating the application code.

8.1. Update the package.json file to define a startup command.

The previous output indicates that the ~/DO180-apps/nodejs-helloworld/
package.json file is missing the start attribute in the scripts field. The start
attribute defines a command to run when the application starts. It invokes the node
binary, which runs the app.js application.

DO180-OCP4.2-en-1-20191105 263

Chapter 8 | Troubleshooting Containerized Applications

To fix the problem, add to the package.json file the following attribute. Do not

forget the comma after the bracket.

...
 "description": "Hello World!",
 "main": "app.js",
 "scripts": {
 "start": "node app.js"
 },
 "author": "Red Hat Training",
...

8.2. Commit and push the changes made to the project:

[student@workstation DO180-apps]$ git commit -am "Added start up script"
...output omitted...
1 file changed, 3 insertions(+)
[student@workstation DO180-apps]$ git push
...output omitted...
To https://github.com/yourgituser/DO180-apps
 73a82cd..a5a0411 troubleshoot-s2i -> troubleshoot-s2i

Continue the deploy step from the S2I process.

8.3. Restart the build step.

[student@workstation DO180-apps]$ oc start-build bc/nodejs-hello
build "nodejs-hello-3" started

8.4. Evaluate the status of the current build process. Run the command to retrieve the

status of the Node.js application. Wait for the latest build to finish.

[student@workstation DO180-apps]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
nodejs-hello-1-build 0/1 Error 0 66m
nodejs-hello-1-mtxsh 0/1 CrashLoopBackOff 9 23m
nodejs-hello-2-build 0/1 Completed 0 28m
nodejs-hello-3-build 1/1 Running 0 2m3s
nodejs-hello-2-deploy 0/1 Pending 0 0s
nodejs-hello-2-deploy 0/1 Pending 0 0s
nodejs-hello-2-deploy 0/1 ContainerCreating 0 0s
nodejs-hello-3-build 0/1 Completed 0 3m9s
nodejs-hello-2-deploy 1/1 Running 0 4s
nodejs-hello-2-8tsl4 0/1 Pending 0 0s
nodejs-hello-2-8tsl4 0/1 Pending 0 1s
nodejs-hello-2-8tsl4 0/1 ContainerCreating 0 1s
nodejs-hello-2-8tsl4 1/1 Running 0 50s
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m
nodejs-hello-2-deploy 0/1 Completed 0 61s
nodejs-hello-2-deploy 0/1 Terminating 0 61s

264 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

nodejs-hello-2-deploy 0/1 Terminating 0 61s
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m
nodejs-hello-1-mtxsh 0/1 Terminating 9 25m

According to the output, the build is successful, and the application is able to start with

no errors. The output also provides insight into how the deployment pod (nodejs-
hello-2-deploy) was created, and that it completed successfully and terminated.

As the new application pod is available (nodejs-hello-2-8tsl4), the old one

(nodejs-hello-1-mtxsh) is rolled out.

8.5. Review the logs generated by the nodejs-hello application pod.

[student@workstation DO180-apps]$ oc logs dc/nodejs-hello
Environment:
 DEV_MODE=false
 NODE_ENV=production
 DEBUG_PORT=5858
Launching via npm...
npm info it worked if it ends with ok
npm info using npm@2.15.1
npm info using node@v4.6.2
npm info prestart nodejs-helloworld@1.0.0
npm info start nodejs-helloworld@1.0.0

> nodejs-helloworld@1.0.0 start /opt/app-root/src
> node app.js

Example app listening on port 8080!

The application is now running on port 8080.

 9. Test the application.

9.1. Run the oc command with the expose subcommand to expose the application:

[student@workstation DO180-apps]$ oc expose svc/nodejs-hello
route.route.openshift.io/nodejs-hello exposed

9.2. Retrieve the address associated with the application.

[student@workstation DO180-apps]$ oc get route -o yaml
apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
...output omitted...
 spec:
 host: nodejs-hello-nodejs.apps.cluster.lab.example.com
 port:
 targetPort: 8080-tcp
 to:

DO180-OCP4.2-en-1-20191105 265

Chapter 8 | Troubleshooting Containerized Applications

 kind: Service
 name: do180-apps
...output omitted...

9.3. Access the application from the workstation VM by using the curl command:

[student@workstation DO180-apps]$ curl -w "\n" \
> http://nodejs-hello-nodejs.apps.cluster.lab.example.com
Hello world!

The output demonstrates the application is up and running.

Finish

On workstation, run the lab troubleshoot-s2i finish script to complete this exercise.

[student@workstation DO180-apps]$ lab troubleshoot-s2i finish

This concludes the exercise.

266 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

Troubleshooting Containerized
Applications

Objectives
After completing this section, you should be able to:

• Implement techniques for troubleshooting and debugging containerized applications.

• Use the port-forwarding feature of the OpenShift client tool.

• View container logs.

• View OpenShift cluster events.

Forwarding Ports for Troubleshooting
Occasionally developers and system administrators need special network access to a container

that would not be needed by application users. For example, developers may need to use the

administration console for a database or messaging service, or system administrators may make

use of SSH access to a container to restart a terminated service. Such network access, in the form

of network ports, are usually not exposed by the default container configurations, and tend to

require specialized clients used by developers and system administrators.

Podman provides port forwarding features by using the -p option along with the run
subcommand. In this case, there is no distinction between network access for regular application

access and for troubleshooting. As a refresher, the following is an example of configuring port

forwarding by mapping the port from the host to a database server running inside a container:

$ sudo podman run --name db -p 30306:3306 mysql

The previous command maps the host port 30306 to the port 3306 on the db container. This

container is created from the mysql image, which starts a MySQL server that listens on port

3306.

OpenShift provides the oc port-forward command for forwarding a local port to a pod port.

This is different than having access to a pod through a service resource:

• The port-forwarding mapping exists only in the workstation where the oc client runs, while a

service maps a port for all network users.

• A service load-balances connections to potentially multiple pods, whereas a port-forwarding

mapping forwards connections to a single pod.

Here is an example of the oc port-forward command:

$ oc port-forward db 30306 3306

The previous command forwards port 30306 from the developer machine to port 3306 on the db
pod, where a MySQL server (inside a container) accepts network connections.

DO180-OCP4.2-en-1-20191105 267

Chapter 8 | Troubleshooting Containerized Applications

Note

When running this command, be sure to leave the terminal window running. Closing

the window or canceling the process stops the port mapping.

While the podman run -p method of mapping (port-forwarding) can only be configured when

the container is started, the mapping with the oc port-forward command can be created and

destroyed at any time after a pod was created.

Note

Creating a service of NodePort type for a database pod would be similar to running

podman run -p. However, Red Hat discourages the usage of the NodePort
approach to avoid exposing the service to direct connections. Mapping with port-

forwarding in OpenShift is considered a more secure alternative.

Enabling Remote Debugging with Port Forwarding
Another use for the port forwarding feature is enabling remote debugging. Many integrated

development environments (IDEs) provide the capability to remotely debug an application.

For example, JBoss Developer Studio (JBDS) allows users to utilize the Java Debug Wire Protocol

(JDWP) to communicate between a debugger (JBDS) and the Java Virtual Machine. When

enabled, developers can step through each line of code as it is being executed in real time.

For JDWP to work, the Java Virtual Machine (JVM) where the application runs must be

started with options enabling remote debugging. For example, WildFly and JBoss EAP

users must configure these options on application server startup. The following line in the

standalone.conf file enables remote debugging by opening the JDWP TCP port 8787, for a

WildFly or EAP instance running in standalone mode:

JAVA_OPTS="$JAVA_OPTS \
> -agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n"

When the server starts with the debugger listening on port 8787, a port forwarding mapping needs

to be created to forward connections from a local unused TCP port to port 8787 in the EAP pod.

If the developer workstation has no local JVM running with remote debugging enabled, the local

port can also be 8787.

The following command assumes a WildFly pod named jappserver running a container from an

image previously configured to enable remote debugging:

$ oc port-forward jappserver 8787:8787

Once the debugger is enabled and the port forwarding mapping is created, users can set

breakpoints in their IDE of choice and run the debugger by pointing to the application's host name

and debug port (in this instance, 8787).

268 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

Accessing Container Logs
Podman and OpenShift provide the ability to view logs in running containers and pods to facilitate

troubleshooting. But neither of them is aware of application specific logs. Both expect the

application to be configured to send all logging output to the standard output.

A container is simply a process tree from the host OS perspective. When Podman starts a

container either directly or on the RHOCP cluster, it redirects the container standard output and

standard error, saving them on disk as part of the container's ephemeral storage. This way, the

container logs can be viewed using podman and oc commands, even after the container was

stopped, but not removed.

To retrieve the output of a running container, use the following podman command.

$ podman logs <containerName>

In OpenShift, the following command returns the output for a container within a pod:

$ oc logs <podName> [-c <containerName>]

Note

The container name is optional if there is only one container, as oc defaults to the

only running container and returns the output.

OpenShift Events
Some developers consider Podman and OpenShift logs to be too low-level, making

troubleshooting difficult. Fortunately, OpenShift provides a high-level logging and auditing facility

called events.

OpenShift events signal significant actions like starting a container or destroying a pod.

To read OpenShift events, use the get subcommand with the events resource type for the oc
command, as follows.

$ oc get events

Events listed by the oc command this way are not filtered and span the whole RHOCP cluster.

Using a pipe to standard UNIX filters such as grep can help, but OpenShift offers an alternative in

order to consult cluster events. The approach is provided by the describe subcommand.

For example, to only retrieve the events that relate to a mysql pod, refer Events field from the

output of oc describe pod mysql command.

$ oc describe pod mysql
...output omitted...
Events:
 FirstSeen LastSeen Count From Reason Message
 Wed, 10 ... Wed, 10 ... 1 {scheduler } scheduled Successfully as...
...output omitted...

DO180-OCP4.2-en-1-20191105 269

Chapter 8 | Troubleshooting Containerized Applications

Accessing Running Containers
The podman logs and oc logs commands can be useful for viewing output sent by any

container. However, the output does not necessarily display all of the available information if

the application is configured to send logs to a file. Other troubleshooting scenarios may require

inspecting the container environment as seen by processes inside the container, such as verifying

external connectivity.

As a solution, Podman and OpenShift provide the exec subcommand, allowing the creation of

new processes inside a running container, with the standard output and input of these processes

redirected to the user terminal. The following screen display the usage of the podman exec
command:

$ sudo podman exec [options] container command [arguments]

The general syntax for the oc exec command is:

$ oc exec [options] pod [-c container] -- command [arguments]

To execute a single interactive command or start a shell, add the -it options. The following

example starts a Bash shell for the myhttpdpod pod:

$ oc exec -it myhttpdpod /bin/bash

You can use this command to access application logs saved to disk (as part of the container

ephemeral storage). For example, to display the Apache error log from a container, run the

following command:

$ sudo podman exec apache-container cat /var/log/httpd/error_log

Overriding Container Binaries
Many container images do not contain all of the troubleshooting commands users expect to find in

regular OS installations, such as telnet, netcat, ip, or traceroute. Stripping the image from

basic utilities or binaries allows the image to remain slim, thus, running many containers per host.

One way to temporarily access some of these missing commands is mounting the host binaries

folders, such as /bin, /sbin, and /lib, as volumes inside the container. This is possible because

the -v option from podman run command does not require matching VOLUME instructions to be

present in the Dockerfile of the container image.

Note

To access these commands in OpenShift, you need to change the pod resource

definition in order to define volumeMounts and volumeClaims objects. You also

need to create a hostPath persistent volume.

The following command starts a container, and overrides the image's /bin folder with the one

from the host. It also starts an interactive shell inside the container.

$ sudo podman run -it -v /bin:/bin image /bin/bash

270 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

Note

The directory of binaries to override depends on the base OS image. For example,

some commands require shared libraries from the /lib directory. Some Linux

distributions have different contents in /bin, /usr/bin, /lib, or /usr/lib,

which would require to use the -v option for each directory.

As an alternative, you can include these utilities in the base image. To do so, add instructions in a

Dockerfile build definition. For example, examine the following excerpt from a Dockerfile
definition, which is a child of the rhel7.5 image used throughout this course. The RUN instruction

installs the tools that are commonly used for network troubleshooting.

FROM ubi7/ubi:7.7

RUN yum install -y \
 less \
 dig \
 ping \
 iputils && \
 yum clean all

When the image is built and the container is created, it will be identical to a rhel7.5 container

image, plus the extra available tools.

Transferring Files To and Out of Containers
When troubleshooting or managing an application, you may need to retrieve or transfer files to

and from running containers, such as configuration files or log files. There are several ways to move

files into and out of containers, as described in the following list.

Volume mounts
Another option for copying files from the host to a container is the usage of volume mounts.

You can mount a local directory to copy data into a container. For example, the following

command sets /conf host directory as the volume to use for the Apache configuration

directory in the container. This provides a convenient way to manage the Apache server

without having to rebuild the container image.

$ sudo podman run -v /conf:/etc/httpd/conf -d do180/apache

podman cp
The cp subcommand allows users to copy files both into and out of a running container. To

copy a file into a container named todoapi, run the following command.

$ sudo podman cp standalone.conf todoapi:/opt/jboss/standalone/conf/
standalone.conf

To copy a file from the container to the host, flip the order of the previous command.

$ sudo podman cp todoapi:/opt/jboss/standalone/conf/standalone.conf .

DO180-OCP4.2-en-1-20191105 271

Chapter 8 | Troubleshooting Containerized Applications

The podman cp command has the advantage of working with containers that were already

started, while the following alternative (volume mounts) requires changes to the command

used to start a container.

podman exec
For containers that are already running, the podman exec command can be piped to pass

files both into and out of the running container by appending commands that are executed

in the container. The following example shows how to pass in and execute a SQL file inside a

MySQL container:

$ sudo podman exec -i <container> mysql -uroot -proot < /path/on/host/db.sql <
 db.sql

Using the same concept, it is possible to retrieve data from a running container and place it

in the host machine. A useful example of this is the usage of the mysqldump utility, which

creates a backup of MySQL database from the container and places it on the host.

$ sudo podman exec -it <containerName> sh \
> -c 'exec mysqldump -h"$MYSQL_PORT_3306_TCP_ADDR" \
> -P"$MYSQL_PORT_3306_TCP_PORT" \
> -uroot -p"$MYSQL_ENV_MYSQL_ROOT_PASSWORD" items'
> db_dump.sql

The previous command uses the container environment variables to connect to the MySQL

server to execute the mysqldump command and redirects the output to a file on the host

machine. It assumes that the container image provides the mysqldump utility, so there is no

need to install the MySQL administration tools on the host.

The oc rsync command provides functionality similar to podman cp for containers running

under OpenShift pods.

References

More information about port-forwarding is available in the Port Forwarding section

of the OpenShift Container Platform documentation at

Architecture

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html-single/architecture/index/

More information about the CLI commands for port-forwarding are available in the

Port Forwarding chapter of the OpenShift Container Platform documentation at

Developing Applications

https://access.redhat.com/documentation/en-us/

openshift_container_platform/4.2/html-single/applications/index/

272 DO180-OCP4.2-en-1-20191105

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/architecture/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/applications/index/

Chapter 8 | Troubleshooting Containerized Applications

Guided Exercise

Configuring Apache Container Logs for
Debugging

In this exercise, you will configure an Apache httpd container to send the logs to the stdout,

then review Podman logs and events.

Outcomes
You should be able to configure an Apache httpd container to send debug logs to stdout
and view them using the podman logs command.

Before You Begin
A running OpenShift cluster.

Retrieve the lab files and verify that Docker and the OpenShift cluster are running by running

the following command.

[student@workstation ~]$ lab troubleshoot-container start

 1. Configure a Apache web server to send log messages to the standard output and update

the default log level.

1.1. The default log level for the Apache httpd image is warn. Change the default log level

for the container to debug, and redirect log messages to stdout by overriding the

default httpd.conf configuration file. To do so, create a custom image from the

workstation VM.

Briefly review the custom httpd.conf file located at /home/student/DO180/
labs/troubleshoot-container/conf/httpd.conf.

• Observe the ErrorLog directive in the file:

ErrorLog /dev/stdout

The directive sends the httpd error log messages to the container's standard output.

• Observe the LogLevel directive in the file.

LogLevel debug

The directive changes the default log level to debug.

• Observe the CustomLog directive in the file.

CustomLog /dev/stdout common

DO180-OCP4.2-en-1-20191105 273

Chapter 8 | Troubleshooting Containerized Applications

The directive redirects the httpd access log messages to the container's standard

output.

 2. Build a custom container to save an updated configuration file to the container.

2.1. From the terminal window, run the following commands to build a new image.

[student@workstation ~]$ cd ~/DO180/labs/troubleshoot-container
[student@workstation troubleshoot-container]$ sudo podman build \
> -t troubleshoot-container .
STEP 1: FROM redhattraining/httpd-parent
...output omitted...
--> e23d...c1de
STEP 7: COMMIT troubleshoot-container
[student@workstation troubleshoot-container]$ cd ~

2.2. Verify that the image is created.

[student@workstation ~]$ sudo podman images

The new image must be available in the local storage.

REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/troubleshoot-container latest e23df... 9 seconds ago 137MB
quay.io/redhattraining/httpd-parent latest 0eba3... 4 weeks ago 137MB

 3. Create a new httpd container from the custom image.

[student@workstation ~]$ sudo podman run \
> --name troubleshoot-container -d \
> -p 10080:80 troubleshoot-container
4c8bb12815cc02f4eef0254632b7179bd5ce230d83373b49761b1ac41fc067a9

 4. Review the container's log messages and events.

4.1. View the debug log messages from the container using the podman logs command:

[student@workstation ~]$ sudo podman logs -f troubleshoot-container
... [mpm_event:notice] [pid 1:tid...] AH00489: Apache/2.4.25 (Unix) configur...
... [mpm_event:info] [pid 1:tid...] AH00490: Server built: Mar 21 2017 20:50:17
... [core:notice] [pid 1:tid...] AH00094: Command line: 'httpd -D FOREGROUND'
... [core:debug] [pid 1:tid ...): AH02639: Using SO_REUSEPORT: yes (1)
... [mpm_event:debug] [pid 6:tid ...): AH02471: start_threads: Using epoll
... [mpm_event:debug] [pid 7:tid ...): AH02471: start_threads: Using epoll
... [mpm_event:debug] [pid 8:tid ...): AH02471: start_threads: Using epoll

Notice the debug logs, available in the standard output.

4.2. Open a new terminal and access the home page of the web server by using the curl
command:

274 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation ~]$ curl http://127.0.0.1:10080
Hello from the httpd-parent container!

4.3. Review the new entries in the log. Look in the terminal running the podman logs
command to see the new entries.

[student@workstation ~]$ sudo podman logs troubleshoot-container
...[authz_core:debug] ...: authorization result of Require all granted: granted
...[authz_core:debug] ...: authorization result of <RequireAny>: granted
10.88.0.1 - - [08/Mar/2019:20:30:53 +0000] "GET / HTTP/1.1" 200 45

4.4. Stop the Podman command with Ctrl+C.

Finish

On workstation, run the lab troubleshoot-container finish script to complete this

lab.

[student@workstation ~]$ lab troubleshoot-container finish

This concludes the guided exercise.

DO180-OCP4.2-en-1-20191105 275

Chapter 8 | Troubleshooting Containerized Applications

Lab

Troubleshooting Containerized
Applications

Performance Checklist
In this lab, you will troubleshoot the OpenShift build and deployment process for a Node.js

application.

Outcomes
You should be able to identify and solve the problems raised during the build and

deployment process of a Node.js application.

Before You Begin
A running OpenShift cluster.

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab troubleshoot-review start

1. Load the configuration of your classroom environment. Run the following command to load

the environment variables created in the first guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

2. Enter your local clone of the DO180-apps Git repository and checkout the master branch

of the course's repository to ensure you start this exercise from a known good state:

[student@workstation ~]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git checkout master
...output omitted...

3. Create a new branch to save any changes you make during this exercise:

[student@workstation DO180-apps]$ git checkout -b troubleshoot-review
Switched to a new branch 'troubleshoot-review'
[student@workstation DO180-apps]$ git push -u origin troubleshoot-review
...output omitted...
* [new branch] troubleshoot-review -> troubleshoot-review
Branch troubleshoot-review set up to track remote branch troubleshoot-review from
 origin.

4. Log in to OpenShift using the configured user, password and Master API URL.

5. Create a new project named youruser-nodejs-app:

276 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

6. In the youruser-nodejs-app OpenShift project, create a new application from

the source code located nodejs-app directory in the Git repository at https://
github.com/yourgituser/DO180-apps. Name the application nodejs-dev.

Expect the build process for the application to fail. Monitor the build process and identify the

build failure.

7. Update the version of the express dependency in the package.json file with a value of

4.x. Commit and push the changes to the Git repository.

8. Rebuild the application. Verify that the application builds without errors.

9. Verify that the application is not running because of a runtime error. Review the logs and

identify the problem.

10. Correct the spelling of the dependency in the first line of the server.js file. Commit and

push changes to the application to the Git repository. Rebuild the application. After the

application builds, verify that the application is running.

11. Create a route for the application and test access to the application. Expect an error

message. Review the logs to identify the error.

12. Replace process.environment with process.env in the server.js file to fix the error.

Commit and push the application changes to the Git repository. Rebuild the application.

When the new application deploys, verify that application does not generate errors when you

access the application URL.

Evaluation

Grade your work by running the lab troubleshoot-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation nodejs-app]$ lab troubleshoot-review grade

Finish

From workstation, run the lab troubleshoot-review finish command to complete this

lab.

[student@workstation nodejs-app]$ lab troubleshoot-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 277

Chapter 8 | Troubleshooting Containerized Applications

Solution

Troubleshooting Containerized
Applications

Performance Checklist
In this lab, you will troubleshoot the OpenShift build and deployment process for a Node.js

application.

Outcomes
You should be able to identify and solve the problems raised during the build and

deployment process of a Node.js application.

Before You Begin
A running OpenShift cluster.

Open a terminal on workstation as the student user and run the following command:

[student@workstation ~]$ lab troubleshoot-review start

1. Load the configuration of your classroom environment. Run the following command to load

the environment variables created in the first guided exercise:

[student@workstation ~]$ source /usr/local/etc/ocp4.config

2. Enter your local clone of the DO180-apps Git repository and checkout the master branch

of the course's repository to ensure you start this exercise from a known good state:

[student@workstation ~]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git checkout master
...output omitted...

3. Create a new branch to save any changes you make during this exercise:

[student@workstation DO180-apps]$ git checkout -b troubleshoot-review
Switched to a new branch 'troubleshoot-review'
[student@workstation DO180-apps]$ git push -u origin troubleshoot-review
...output omitted...
* [new branch] troubleshoot-review -> troubleshoot-review
Branch troubleshoot-review set up to track remote branch troubleshoot-review from
 origin.

4. Log in to OpenShift using the configured user, password and Master API URL.

278 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation DO180-apps]$ oc login -u "${RHT_OCP4_DEV_USER}" \
> -p "${RHT_OCP4_DEV_PASSWORD}" "${RHT_OCP4_MASTER_API}"
Login successful.
...output omitted...

5. Create a new project named youruser-nodejs-app:

[student@workstation ~]$ oc new-project ${RHT_OCP4_DEV_USER}-nodejs-app
Now using project "youruser-nodejs-app" on server "https://
api.cluster.lab.example.com"
...output omitted...

6. In the youruser-nodejs-app OpenShift project, create a new application from

the source code located nodejs-app directory in the Git repository at https://
github.com/yourgituser/DO180-apps. Name the application nodejs-dev.

Expect the build process for the application to fail. Monitor the build process and identify the

build failure.

6.1. Run the oc new-app command to create the Node.js application.

[student@workstation ~]$ oc new-app --context-dir=nodejs-app \
> https://github.com/${RHT_OCP4_GITHUB_USER}/DO180-apps#troubleshoot-review
> -i nodejs:8 --name nodejs-dev --build-env \
> npm_config_registry=http://${RHT_OCP4_NEXUS_SERVER}/repository/npm-proxy
--> Found image a2b5ec2 ...output omitted...

 Node.js 8
...output omitted...
--> Creating resources ...
 imagestream.image.openshift.io "nodejs-dev" created
 buildconfig.build.openshift.io "nodejs-dev" created
 deploymentconfig.apps.openshift.io "nodejs-dev" created
 service "nodejs-dev" created
--> Success
 Build scheduled, use 'oc logs -f bc/nodejs-dev' to track its progress.
 Application is not exposed. You can expose services to the outside world by
 executing one or more of the commands below:
 'oc expose svc/nodejs-dev'
 Run 'oc status' to view your app.

6.2. Monitor build progress with the oc logs -f bc/nodejs-dev command:

[student@workstation ~]$ oc logs -f bc/nodejs-dev
Cloning "https://github.com/yourgituser/DO180-apps" ...
...output omitted...
STEP 8: RUN /usr/libexec/s2i/assemble
---> Installing application source ...
---> Installing all dependencies
npm ERR! code ETARGET
npm ERR! notarget No matching version found for express@4.20
npm ERR! notarget In most cases you or one of your dependencies are requesting
npm ERR! notarget a package version that doesn't exist.

DO180-OCP4.2-en-1-20191105 279

Chapter 8 | Troubleshooting Containerized Applications

npm ERR! notarget
npm ERR! notarget It was specified as a dependency of 'nodejs-app'
npm ERR! notarget

npm ERR! A complete log of this run can be found in:
npm ERR! /opt/app-root/src/.npm/_logs/2019-10-28T11_30_27_657Z-debug.log
subprocess exited with status 1
subprocess exited with status 1
error: build error: error building at STEP "RUN /usr/libexec/s2i/assemble": exit
 status 1

The build process fails, and therefore no application is running. The build log indicates

that there is no version of the express package that matches a version specification of

4.20.x.

6.3. Use the oc get pods command to confirm that the application is not deployed:

[student@workstation ~]$ oc get pods
NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0 2m

7. Update the version of the express dependency in the package.json file with a value of

4.x. Commit and push the changes to the Git repository.

7.1. Edit the package.json file in the nodejs-app subdirectory, and change the version of

the express dependency to 4.x. Save the file.

[student@workstation DO180-apps]$ cd nodejs-app

[student@workstation nodejs-app]$ sed -i s/4.20/4.x/ package.json

The file contains the following content:

[student@workstation nodejs-app]$ cat package.json
{
 "name": "nodejs-app",
 "version": "1.0.0",
 "description": "Hello World App",
 "main": "server.js",
 "author": "Red Hat Training",
 "license": "ASL",
 "dependencies": {
 "express": "4.x",
 "html-errors": "latest"
 }
}

7.2. Commit and push the changes made to the project.

From the terminal window, run the following command to commit and push the changes:

280 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation nodejs-app]$ git commit -am "Fixed Express release"
...output omitted...
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-app]$ git push
...output omitted...
To https://github.com/yourgituser/DO180-apps/
 ef6557d..73a82cd troubleshoot-review -> troubleshoot-review

8. Rebuild the application. Verify that the application builds without errors.

8.1. Use the oc start-build command to rebuild the application.

[student@workstation nodejs-app]$ oc start-build bc/nodejs-dev
build.build.openshift.io/nodejs-dev-2 started

8.2. Use the oc logs command to monitor the build process logs:

[student@workstation nodejs-app]$ oc logs -f bc/nodejs-dev
Cloning "https://github.com/yourgituser/DO180-apps" ...
...output omitted...
Pushing image ...image-registry.svc:5000/nodejs-app/nodejs-dev:latest ...
...output omitted...
Push successful

The build succeeds if an image is pushed to the internal OpenShift registry.

9. Verify that the application is not running because of a runtime error. Review the logs and

identify the problem.

9.1. Use the oc get pods command to check the status of the deployment of the

application pod. Eventually, you see that the first application deployment has a status of

CrashLoopBackoff.

[student@workstation nodejs-app]$ oc get pods
NAME READY STATUS RESTARTS AGE
nodejs-dev-1-86gg5 0/1 CrashLoopBackOff 6 7m
nodejs-dev-1-build 0/1 Error 0 26m
nodejs-dev-2-build 0/1 Completed 0 11m

9.2. Use the oc logs -f dc/nodejs-dev command to follow the logs for the application

deployment:

[student@workstation nodejs-app]$ oc logs -f dc/nodejs-dev
Environment:
 DEV_MODE=false
 NODE_ENV=production
 DEBUG_PORT=5858
...output omitted...

Error: Cannot find module 'http-error'

DO180-OCP4.2-en-1-20191105 281

Chapter 8 | Troubleshooting Containerized Applications

...output omitted...

npm info nodejs-app@1.0.0 Failed to exec start script
...output omitted...
npm ERR!
npm ERR! Failed at the nodejs-app@1.0.0 start script 'node server.js'.
npm ERR! This is most likely a problem with the nodejs-app package,
npm ERR! not with npm itself.
...output omitted...

The log indicates that the server.js file attempts to load a module named http-
error. The dependencies variable in the packages file indicates that the module

name is html-errors, not http-error.

10. Correct the spelling of the dependency in the first line of the server.js file. Commit and

push changes to the application to the Git repository. Rebuild the application. After the

application builds, verify that the application is running.

10.1. Correct the spelling of the module in the first line of the server.js from http-error
to html-errors. Save the file.

[student@workstation nodejs-app]$ sed -i s/http-error/html-errors/ server.js

The file contains the following content:

[student@workstation nodejs-app]$ cat server.js
var createError = require('html-errors');

var express = require('express');
app = express();

app.get('/', function (req, res) {
 res.send('Hello World from pod: ' + process.environment.HOSTNAME + '\n')
});

app.listen(8080, function () {
 console.log('Example app listening on port 8080!');
});

10.2.Commit and push the changes made to the project.

[student@workstation nodejs-app]$ git commit -am "Fixed module typo"
...output omitted...
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-app]$ git push
...output omitted...
To https://github.com/yourgituser/DO180-apps/
 ef6557d..73a82cd troubleshoot-review -> troubleshoot-review

10.3.Use the oc start-build command to rebuild the application.

[student@workstation nodejs-app]$ oc start-build bc/nodejs-dev
build "nodejs-dev-3" started

282 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

10.4.Use the oc logs command to monitor the build process logs:

[student@workstation nodejs-app]$ oc logs -f bc/nodejs-dev
Cloning "https://github.com/yourgituser/DO180-apps" ...
...output omitted...
Pushing image ...-image-registry.svc:5000/nodejs-app/nodejs-dev:latest ...
...output omitted...
Push successful

10.5.Use the oc get pods -w command to monitor the deployment of pods for the

nodejs-dev application:

[student@workstation nodejs-app]$ oc get pods -w
NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0 6h9m
nodejs-dev-2-build 0/1 Completed 0 5h55m
nodejs-dev-2-xt8q4 1/1 Running 0 4m
nodejs-dev-3-build 0/1 Completed 0 7m57s

After a third build, the second deployment results in a status of Running.

11. Create a route for the application and test access to the application. Expect an error

message. Review the logs to identify the error.

11.1. Use the oc expose command to create a route for the nodejs-dev application:

[student@workstation nodejs-app]$ oc expose svc nodejs-dev
route.route.openshift.io/nodejs-dev exposed

11.2. Use the oc get route command to retrieve the URL of nodejs-dev route:

[student@workstation nodejs-app]$ oc get route
NAME HOST/PORT ...
nodejs-dev nodejs-dev-your_user-nodejs-app.wildcard_domain ...

11.3. Use the curl to access the route. Expect an error message to display.

[student@workstation nodejs-app]$ curl \
> nodejs-dev-${RHT_OCP4_DEV_USER}-nodejs-app.${RHT_OCP4_WILDCARD_DOMAIN}
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>
<pre>Internal Server Error</pre>
</body>
</html>

11.4. Review the logs for the nodejs-dev deployment configuration:

DO180-OCP4.2-en-1-20191105 283

Chapter 8 | Troubleshooting Containerized Applications

[student@workstation nodejs-app]$ oc logs dc/nodejs-dev
Environment:
 DEV_MODE=false
 NODE_ENV=production
 DEBUG_PORT=5858
Launching via npm...
npm info it worked if it ends with ok
npm info using npm@2.15.1
npm info using node@v4.6.2
npm info prestart nodejs-app@1.0.0
npm info start nodejs-app@1.0.0

> nodejs-app@1.0.0 start /opt/app-root/src
> node server.js

Example app listening on port 8080!
TypeError: Cannot read property 'HOSTNAME' of undefined
...output omitted...

The corresponding section of the server.js file is:

app.get('/', function (req, res) {
 res.send('Hello World from pod: ' + process.environment.HOSTNAME + '\n')
});

A process object in Node.js contains a reference to a env object, not a environment
object.

12. Replace process.environment with process.env in the server.js file to fix the error.

Commit and push the application changes to the Git repository. Rebuild the application.

When the new application deploys, verify that application does not generate errors when you

access the application URL.

12.1. Replace process.environment with process.env in the server.js file to fix the

error.

[student@workstation nodejs-app]$ sed -i \
> s/process.environment/process.env/ server.js

The file contains the following content:

[student@workstation nodejs-app]$ cat server.js
var createError = require('html-errors');

var express = require('express');
app = express();

app.get('/', function (req, res) {
 res.send('Hello World from pod: ' + process.env.HOSTNAME + '\n')
});

284 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

app.listen(8080, function () {
 console.log('Example app listening on port 8080!');
});

12.2. Commit and push the changes made to the project.

[student@workstation nodejs-app]$ git commit -am "Fixed process.env"
...output omitted...
 1 file changed, 1 insertion(+), 1 deletion(-)
[student@workstation nodejs-app]$ git push
...output omitted...
To https://github.com/yourgituser/DO180-apps/
 ef6557d..73a82cd troubleshoot-review -> troubleshoot-review

12.3. Use the oc start-build command to rebuild the application.

[student@workstation nodejs-app]$ oc start-build bc/nodejs-dev
build.build.openshift.io/nodejs-dev-4 started

12.4. Use the oc logs command to monitor the build process logs:

[student@workstation nodejs-app]$ oc logs -f bc/nodejs-dev
Cloning "https://github.com/yourgituser/DO180-apps" ...
...output omitted...
Pushing image ...image-registry.svc:5000/nodejs-app/nodejs-dev:latest ...
...output omitted...
Push successful

12.5. Use the oc get pods command to monitor the deployment of pods for the nodejs-
dev application:

[student@workstation nodejs-app]$ oc get pods
NAME READY STATUS RESTARTS AGE
nodejs-dev-1-build 0/1 Error 0 7h
nodejs-dev-2-build 0/1 Completed 0 6h
nodejs-dev-3-build 0/1 Completed 0 1h
nodejs-dev-3-m7wvj 1/1 Running 0 46s
nodejs-dev-4-build 0/1 Completed 0 3m

After a fourth build, the third deployment has a status of Running.

12.6. Use the curl command to test the application. The application displays a Hello
World message containing the host name of the application pod:

[student@workstation nodejs-app]$ curl \
> nodejs-dev-${RHT_OCP4_DEV_USER}-nodejs-app.${RHT_OCP4_WILDCARD_DOMAIN}
Hello World from pod: nodejs-dev-3-m7wvj

This concludes the lab.

DO180-OCP4.2-en-1-20191105 285

Chapter 8 | Troubleshooting Containerized Applications

Evaluation

Grade your work by running the lab troubleshoot-review grade command from your

workstation machine. Correct any reported failures and rerun the script until successful.

[student@workstation nodejs-app]$ lab troubleshoot-review grade

Finish

From workstation, run the lab troubleshoot-review finish command to complete this

lab.

[student@workstation nodejs-app]$ lab troubleshoot-review finish

This concludes the lab.

286 DO180-OCP4.2-en-1-20191105

Chapter 8 | Troubleshooting Containerized Applications

Summary

In this chapter, you learned:

• Applications typically log activity, such as events, warnings and errors, to aid the analysis of

application behavior.

• Container applications should print log data to standard output, instead of to a file, to enable

easy access to logs.

• To review the logs for a container deployed locally with Podman, use the podman logs
command.

• Use the oc logs command to access logs for BuildConfig and DeploymentConfig
objects, as well as individual pods within an OpenShift project.

• The -f option allows you to monitor the log output in near real-time for both the podman logs
and oc logs commands.

• Use the oc port-forward command to connect directly to a port on an application pod. You

should only leverage this technique on non-production pods, because interactions can alter the

behavior of the pod.

DO180-OCP4.2-en-1-20191105 287

288 DO180-OCP4.2-en-1-20191105

Chapter 9

Comprehensive Review

Goal Review tasks from Introduction to Containers,
Kubernetes, and Red Hat OpenShift

Objectives • Review tasks from Introduction to Containers,
Kubernetes, and Red Hat OpenShift

Sections • Comprehensive Review

Lab • Comprehensive Review of Introduction
to Containers, Kubernetes, and Red Hat
OpenShift

DO180-OCP4.2-en-1-20191105 289

Chapter 9 | Comprehensive Review

Comprehensive Review

Objectives
After completing this section, you should be able to demonstrate knowledge and skills learned in

Introduction to Containers, Kubernetes, and Red Hat OpenShift.

Reviewing Introduction to Containers, Kubernetes, and
Red Hat OpenShift
Before beginning the comprehensive review lab for this course, students should be comfortable

with the topics covered in the following chapters.

Chapter 1, Introducing Container Technology

Describe how applications run in containers orchestrated by Red Hat OpenShift Container

Platform.

• Describe the difference between container applications and traditional deployments.

• Describe the basics of container architecture.

• Describe the benefits of orchestrating applications and OpenShift Container Platform.

Chapter 2, Creating Containerized Services

Provision a service using container technology.

• Create a database server from a container image.

Chapter 3, Managing Containers

Modify prebuilt container images to create and manage containerized services.

• Manage a container's life cycle from creation to deletion.

• Save container application data with persistent storage.

• Describe how to use port forwarding to access a container.

Chapter 4, Managing Container Images

Manage the life cycle of a container image from creation to deletion.

• Search for and pull images from remote registries.

• Export, import, and manage container images locally and in a registry.

Chapter 5, Creating Custom Container Images

Design and code a Dockerfile to build a custom container image.

• Describe the approaches for creating custom container images.

290 DO180-OCP4.2-en-1-20191105

Chapter 9 | Comprehensive Review

• Create a container image using common Dockerfile commands.

Chapter 6, Deploying Containerized Applications on
OpenShift

Deploy single container applications on OpenShift Container Platform.

• Describe the architecture of Kubernetes and Red Hat OpenShift Container Platform.

• Create standard Kubernetes resources.

• Create a route to a service.

• Build an application using the Source-to-Image facility of OpenShift Container Platform.

• Create an application using the OpenShift web console.

Chapter 7, Deploying Multi-Container Applications

Deploy applications that are containerized using multiple container images.

• Describe considerations for containerizing applications with multiple container images.

• Deploy a multi-container application on OpenShift using a template.

Chapter 8, Troubleshooting Containerized Applications

Troubleshoot a containerized application deployed on OpenShift.

• Troubleshoot an application build and deployment on OpenShift.

• Implement techniques for troubleshooting and debugging containerized applications.

General Container, Kubernetes, and OpenShift Hints
These hints may save some time in completing the comprehensive review lab:

• The podman command allows you to build, run, and manage container images. Use the man
podman command to access Podman documentation. Use the man podman subcommand
command to get more information about each subcommand.

• The oc command allows you to create and manage OpenShift resources. Use the man oc or

oc help commands to access OpenShift command-line documentation. OpenShift commands

that are particularly useful include:

oc login -u <username> -p <password> <master_api_url>
Log in to OpenShift as the specified user. Find both credentials and master API URI in the

lab page.

oc new-project
Create a new project (namespace) to contain OpenShift resources.

oc project
Select the current project (namespace) to which all subsequent commands apply.

oc create -f
Create a resource from a file.

DO180-OCP4.2-en-1-20191105 291

Chapter 9 | Comprehensive Review

oc process
Processes a template file applying the parameter values to each included resource. Create

those resources with the oc create command.

oc get
Display the runtime status and attributes of OpenShift resources.

oc describe
Display detailed information about OpenShift resources.

oc delete
Delete OpenShift resources.

• Before mounting any volumes on the Podman and OpenShift host, ensure you apply the correct

SELinux context to the directory. The correct context is container_file_t. Also, make sure

the ownership and permissions of the directory are set according to the USER directive in the

Dockerfile that was used to build the container being deployed. Most of the time you will have

to use the numeric UID and GID rather than the user and group names to adjust ownership and

permissions of the volume directory.

• In this classroom, all RPM repositories are defined locally. You must configure the repository

definitions in a custom container image (Dockerfile) before running yum commands.

• When executing commands in a Dockerfile, combine as many related commands as possible into

one RUN directive. This reduces the number of image layers in the container image.

• A best practice for designing a Dockerfile includes the use of environment variables for

specifying repeated constants throughout the file.

292 DO180-OCP4.2-en-1-20191105

Chapter 9 | Comprehensive Review

Lab

Containerizing and Deploying a Software
Application

In this review, you will containerize a Nexus server, build and test it using Podman, and deploy

it to an OpenShift cluster.

Outcomes
You should be able to:

• Write a Dockerfile that successfully containerizes a Nexus server.

• Build a Nexus server container image and deploy it using Podman.

• Deploy the Nexus server container image to an OpenShift cluster.

Before You Begin
Run the set-up script for this comprehensive review.

[student@workstation ~]$ lab comprehensive-review start

The lab files are located in the /home/student/DO180/labs/comprehensive-review
directory. The solution files are located in the /home/student/DO180/solutions/
comprehensive-review directory.

Instructions
Use the following steps to create and test a containerized Nexus server both locally and in

OpenShift:

1. Create a container image that starts an instance of a Nexus server:

• The /home/student/DO180/labs/comprehensive-review/image directory

contains files for building the container image. Execute the get-nexus-bundle.sh
script to retrieve the Nexus server files.

• Write a Dockerfile that containerizes the Nexus server. The Dockerfile must be located in

the /home/student/DO180/labs/comprehensive-review/image directory. The

Dockerfile must also:

• Use a base image of ubi7/ubi:7.7 and set an arbitrary maintainer.

• Set the environment variable NEXUS_VERSION to 2.14.3-02, and set NEXUS_HOME to

/opt/nexus.

• Install the java-1.8.0-openjdk-devel package

The RPM repositories are configured in the provided training.repo file. Be sure to

add this file to the container in the /etc/yum.repos.d directory.

DO180-OCP4.2-en-1-20191105 293

Chapter 9 | Comprehensive Review

• Run a command to create a nexus user and group. They both have a UID and GID of

1001.

• Unpack the nexus-2.14.3-02-bundle.tar.gz file to the ${NEXUS_HOME}/
directory. Add thenexus-start.sh to the same directory.

Run a command, ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION}
${NEXUS_HOME}/nexus2, to create a symlink in the container. Run a command to

recursively change the ownership of the Nexus home directory to nexus:nexus.

• Make the container run as the nexus user, and set the working directory to /opt/
nexus.

• Define a volume mount point for the /opt/nexus/sonatype-work container

directory. The Nexus server stores data in this directory.

• Set the default container command to nexus-start.sh.

There are two *.snippet files in the /home/student/DO180/labs/comprehensive-
review/images directory that provide the commands needed to create the nexus

account and install Java. Use the files to assist you in writing the Dockerfile.

• Build the container image with the name nexus.

2. Build and test the container image using Podman with a volume mount:

• Use the script /home/student/DO180/labs/comprehensive-review/deploy/
local/run-persistent.sh to start a new container with a volume mount.

• Review the container logs to verify that the server is started and running.

• Test access to the container service using the URL: http://<container IP
address>:8081/nexus.

• Remove the test container.

3. Deploy the Nexus server container image to the OpenShift cluster. You must:

• Tag the Nexus server container image as quay.io/${RHT_OCP4_QUAY_USER}/
nexus:latest, and push it the private registry.

• Create an OpenShift project with a name of ${RHT_OCP4_DEV_USER}-review.

• Process the deploy/openshift/resources/nexus-template.json template and

create the Kubernetes resources.

• Create a route for the Nexus service. Verify that you can access http://nexus-
${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}/nexus/ from

workstation.

Evaluation

After deploying the Nexus server container image to the OpenShift cluster, verify your work by

running the lab grading script:

[student@workstation ~]$ lab comprehensive-review grade

294 DO180-OCP4.2-en-1-20191105

Chapter 9 | Comprehensive Review

Finish

On workstation, run the lab comprehensive-review finish command to complete this

lab.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

DO180-OCP4.2-en-1-20191105 295

Chapter 9 | Comprehensive Review

Solution

Containerizing and Deploying a Software
Application

In this review, you will containerize a Nexus server, build and test it using Podman, and deploy

it to an OpenShift cluster.

Outcomes
You should be able to:

• Write a Dockerfile that successfully containerizes a Nexus server.

• Build a Nexus server container image and deploy it using Podman.

• Deploy the Nexus server container image to an OpenShift cluster.

Before You Begin
Run the set-up script for this comprehensive review.

[student@workstation ~]$ lab comprehensive-review start

The lab files are located in the /home/student/DO180/labs/comprehensive-review
directory. The solution files are located in the /home/student/DO180/solutions/
comprehensive-review directory.

Instructions
Use the following steps to create and test a containerized Nexus server both locally and in

OpenShift:

1. Create a container image that starts an instance of a Nexus server:

• The /home/student/DO180/labs/comprehensive-review/image directory

contains files for building the container image. Execute the get-nexus-bundle.sh
script to retrieve the Nexus server files.

• Write a Dockerfile that containerizes the Nexus server. The Dockerfile must be located in

the /home/student/DO180/labs/comprehensive-review/image directory. The

Dockerfile must also:

• Use a base image of ubi7/ubi:7.7 and set an arbitrary maintainer.

• Set the environment variable NEXUS_VERSION to 2.14.3-02, and set NEXUS_HOME to

/opt/nexus.

• Install the java-1.8.0-openjdk-devel package

The RPM repositories are configured in the provided training.repo file. Be sure to

add this file to the container in the /etc/yum.repos.d directory.

296 DO180-OCP4.2-en-1-20191105

Chapter 9 | Comprehensive Review

• Run a command to create a nexus user and group. They both have a UID and GID of

1001.

• Unpack the nexus-2.14.3-02-bundle.tar.gz file to the ${NEXUS_HOME}/
directory. Add thenexus-start.sh to the same directory.

Run a command, ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION}
${NEXUS_HOME}/nexus2, to create a symlink in the container. Run a command to

recursively change the ownership of the Nexus home directory to nexus:nexus.

• Make the container run as the nexus user, and set the working directory to /opt/
nexus.

• Define a volume mount point for the /opt/nexus/sonatype-work container

directory. The Nexus server stores data in this directory.

• Set the default container command to nexus-start.sh.

There are two *.snippet files in the /home/student/DO180/labs/comprehensive-
review/images directory that provide the commands needed to create the nexus

account and install Java. Use the files to assist you in writing the Dockerfile.

• Build the container image with the name nexus.

1.1. Execute the get-nexus-bundle.sh script to retrieve the Nexus server files.

[student@workstation ~]$ cd /home/student/DO180/labs/comprehensive-review/image
[student@workstation image]$./get-nexus-bundle.sh
100.0%
Nexus bundle download successful

1.2. Write a Dockerfile that containerizes the Nexus server. Go to the /home/student/
DO180/labs/comprehensive-review/image directory and create the Dockerfile.

1. Specify the base image to use:

FROM ubi7/ubi:7.7

2. Enter an arbitrary name and email as the maintainer:

FROM ubi7/ubi:7.7
MAINTAINER username <username@example.com>

3. Set the environment variables for NEXUS_VERSION and NEXUS_HOME:

FROM ubi7/ubi:7.7
MAINTAINER username <username@example.com>

ENV NEXUS_VERSION=2.14.3-02 \
 NEXUS_HOME=/opt/nexus

4. Add the training.repo repository to the /etc/yum.repos.d directory. Install

the Java package using yum command.

DO180-OCP4.2-en-1-20191105 297

Chapter 9 | Comprehensive Review

...
ENV NEXUS_VERSION=2.14.3-02 \
 NEXUS_HOME=/opt/nexus

RUN yum install -y --setopt=tsflags=nodocs java-1.8.0-openjdk-devel && \
 yum clean all -y

5. Create the server home directory and service account and group. Make home

directory owned by the service account.

...
RUN groupadd -r nexus -f -g 1001 && \
 useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} \
 -s /sbin/nologin \
 -c "Nexus User" nexus && \
 chown -R nexus:nexus ${NEXUS_HOME} && \
 chmod -R 755 ${NEXUS_HOME}

6. Make the container run as the nexus user.

...
USER nexus

7. Install the Nexus server software at NEXUS_HOME and add the startup script. Note

that the ADD directive will extract the Nexus files.

Create the nexus2 symbolic link pointing to the Nexus server directory. Recursively

change the ownership of the ${NEXUS_HOME} directory to nexus:nexus.

...
ADD nexus-${NEXUS_VERSION}-bundle.tar.gz ${NEXUS_HOME}
ADD nexus-start.sh ${NEXUS_HOME}/

RUN ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \
 ${NEXUS_HOME}/nexus2 && \
 chown -R nexus:nexus ${NEXUS_HOME}

8. Make /opt/nexus the current working directory:

...
WORKDIR ${NEXUS_HOME}

9. Define a volume mount point to store the Nexus server persistent data:

...
VOLUME ["/opt/nexus/sonatype-work"]

10. Set the CMD instruction to ["sh", "nexus-start.sh"]. The completed

Dockerfile reads as follows:

298 DO180-OCP4.2-en-1-20191105

Chapter 9 | Comprehensive Review

FROM ubi7/ubi:7.7

MAINTAINER username <username@example.com>

ENV NEXUS_VERSION=2.14.3-02 \
 NEXUS_HOME=/opt/nexus

RUN yum install -y --setopt=tsflags=nodocs java-1.8.0-openjdk-devel && \
 yum clean all -y

RUN groupadd -r nexus -f -g 1001 && \
 useradd -u 1001 -r -g nexus -m -d ${NEXUS_HOME} -s /sbin/nologin \
 -c "Nexus User" nexus && \
 chown -R nexus:nexus ${NEXUS_HOME} && \
 chmod -R 755 ${NEXUS_HOME}

USER nexus

ADD nexus-${NEXUS_VERSION}-bundle.tar.gz ${NEXUS_HOME}
ADD nexus-start.sh ${NEXUS_HOME}/

RUN ln -s ${NEXUS_HOME}/nexus-${NEXUS_VERSION} \
 ${NEXUS_HOME}/nexus2

WORKDIR ${NEXUS_HOME}

VOLUME ["/opt/nexus/sonatype-work"]

CMD ["sh", "nexus-start.sh"]

1.3. Build the container image with the name nexus.

[student@workstation image]$ sudo podman build -t nexus .
STEP 1: FROM ubi7/ubi:7.7
Getting image source signatures
...output omitted...
STEP 25: COMMIT nexus

2. Build and test the container image using Podman with a volume mount:

• Use the script /home/student/DO180/labs/comprehensive-review/deploy/
local/run-persistent.sh to start a new container with a volume mount.

• Review the container logs to verify that the server is started and running.

• Test access to the container service using the URL: http://<container IP
address>:8081/nexus.

• Remove the test container.

2.1. Execute the run-persistent.sh script. Replace the container name as shown in the

output of the podman ps command.

DO180-OCP4.2-en-1-20191105 299

Chapter 9 | Comprehensive Review

[student@workstation images]$ cd /home/student/DO180/labs/comprehensive-review
[student@workstation comprehensive-review]$ cd deploy/local
[student@workstation local]$./run-persistent.sh
80970007036bbb313d8eeb7621fada0ed3f0b4115529dc50da4dccef0da34533

2.2. Review the container logs to verify that the server is started and running.

[student@workstation local]$ sudo podman ps \
> --format="table {{.ID}} {{.Names}} {{.Image}}"
CONTAINER ID NAMES IMAGE
 81f480f21d47 inspiring_poincare localhost/nexus:latest
[student@workstation local]$ sudo podman logs -f inspiring_poincare
...output omitted...
... INFO [jetty-main-1] ...jetty.JettyServer - Running
... INFO [main] ...jetty.JettyServer - Started
Ctrl+C

2.3. Inspect the running container to determine its IP address. Provide this IP address to the

curl command to test the container.

[student@workstation local]$ sudo podman inspect \
> -f '{{.NetworkSettings.IPAddress}}' inspiring_poincare
10.88.0.12
[student@workstation local]$ curl -v 10.88.0.12:8081/nexus/
About to connect() to 10.88.0.12 port 8081 (#0)
* Trying 10.88.0.12...
* Connected to 10.88.0.12 (10.88.0.12) port 8081 (#0)
> GET /nexus/ HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 10.88.0.12:8081
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Tue, 05 Mar 2019 16:59:30 GMT
< Server: Nexus/2.14.3-02
...output omitted...
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Nexus Repository Manager</title>
...output omitted...

2.4. Remove the test container.

[student@workstation local]$ sudo podman kill inspiring_poincare
81f480f21d475af683b4b003ca6e002d37e6aaa581393d3f2f95a1a7b7eb768b

3. Deploy the Nexus server container image to the OpenShift cluster. You must:

• Tag the Nexus server container image as quay.io/${RHT_OCP4_QUAY_USER}/
nexus:latest, and push it the private registry.

• Create an OpenShift project with a name of ${RHT_OCP4_DEV_USER}-review.

300 DO180-OCP4.2-en-1-20191105

Chapter 9 | Comprehensive Review

• Process the deploy/openshift/resources/nexus-template.json template and

create the Kubernetes resources.

• Create a route for the Nexus service. Verify that you can access http://nexus-
${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}/nexus/ from

workstation.

3.1. Log in to your Quay.io account.

[student@workstation local]$ sudo podman login -u ${RHT_OCP4_QUAY_USER} quay.io
Password: your_quay_password
Login Succeeded!

3.2. Publish the Nexus server container image to your quay.io registry.

[student@workstation local]$ sudo podman push localhost/nexus:latest \
> quay.io/${RHT_OCP4_QUAY_USER}/nexus:latest
Getting image source signatures
...output omitted...
Writing manifest to image destination
Storing signatures

3.3. Repositories created by pushing images to quay.io are private by default. Refer to

the Repositories Visibilitysection of the Appendix C to read details about how

change repository visibility.

3.4. Create the OpenShift project:

[student@workstation local]$ cd ~/DO180/labs/comprehensive-review/deploy/openshift
[student@workstation openshift]$ oc login -u ${RHT_OCP4_DEV_USER} \
> -p ${RHT_OCP4_DEV_PASSWORD} ${RHT_OCP4_MASTER_API}
Login successful.
...output omitted...
[student@workstation openshift]$ oc new-project ${RHT_OCP4_DEV_USER}-review
Now using project ...output omitted...

3.5. Process the template and create the Kubernetes resources:

[student@workstation openshift]$ oc process -f resources/nexus-template.json \
> -p RHT_OCP4_QUAY_USER=${RHT_OCP4_QUAY_USER} \
> | oc create -f -
service/nexus created
persistentvolumeclaim/nexus created
deploymentconfig.apps.openshift.io/nexus created
[student@workstation openshift]$ oc get pods
NAME READY STATUS RESTARTS AGE
nexus-1-wk8rv 1/1 Running 1 1m
nexus-1-deploy 0/1 Completed 0 2m

3.6. Expose the service by creating a route:

DO180-OCP4.2-en-1-20191105 301

Chapter 9 | Comprehensive Review

[student@workstation openshift]$ oc expose svc/nexus
route.route.openshift.io/nexus exposed.
[student@workstation openshift]$ oc get route -o yaml
apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
kind: Route
...output omitted...
spec:
host: nexus-your_dev_username-review.your_wildcard_domain
...output omitted...

3.7. Use a browser to connect to the Nexus server web application at http://nexus-
${RHT_OCP4_DEV_USER}-review.${RHT_OCP4_WILDCARD_DOMAIN}/nexus/.

This concludes the lab.

Evaluation

After deploying the Nexus server container image to the OpenShift cluster, verify your work by

running the lab grading script:

[student@workstation ~]$ lab comprehensive-review grade

Finish

On workstation, run the lab comprehensive-review finish command to complete this

lab.

[student@workstation ~]$ lab comprehensive-review finish

This concludes the lab.

302 DO180-OCP4.2-en-1-20191105

Appendix A

Implementing Microservices
Architecture

Goal Refactor an application into microservices.

Objectives • Divide an application across multiple
containers to separate distinct layers and
services.

Sections • Implementing Microservices Architectures
(with Guided Exercise)

DO180-OCP4.2-en-1-20191105 303

Appendix A | Implementing Microservices Architecture

Implementing Microservices
Architectures

Objectives
After completing this section, you should be able to:

• Divide an application across multiple containers to separate distinct layers and services.

• Describe typical approaches to breaking up a monolithic application into multiple deployable

units.

• Describe how to break the To Do List application into three containers matching its logical tiers.

Benefits of Breaking Up a Monolithic Application into
Containers
Traditional application development typically has many distinct functions packaged as a single

deployment unit, or a monolithic application. Traditional development may also deploy supporting

services, such as databases and other middleware services, on the same server as the application.

While monolithic applications can still be deployed into a container, many of the advantages of a

container architecture, such as scalability and agility, are not as prevalent. Breaking up monoliths

requires careful consideration and it is recommended that in microservices applications each

microservice runs the minimum functionality that can be executed in isolation on each container.

Having smaller containers and breaking up an application and its supporting services into multiple

containers provides many advantages, such as:

• Higher hardware utilization, because smaller containers are easier to fit into available host

capacity.

• Easier scaling, because parts of the application can be scaled to support an increased workload

without scaling other parts of the application.

• Easier upgrades, because developers can update parts of the application without affecting

other parts of the same application.

Two popular ways of breaking up an application are as follows:

• Tiers: based on architectural layers.

• Services: based on application functionality.

Dividing Based on Layers (Tiers)
A common way developers organize applications is in tiers, based on how close the functions are

to end users and how far from data stores. A good example of the traditional 3-tier architecture is

presentation, business logic, and persistence.

This logical architecture usually corresponds to a physical deployment architecture, where the

presentation layer would be deployed to a web server, the business layer to an application server,

and the persistence layer to a database server.

304 DO180-OCP4.2-en-1-20191105

Appendix A | Implementing Microservices Architecture

Breaking up an application into tiers allows developers to specialize in particular technologies

based on the application's tiers. For example, some developers focus on web applications, while

others prefer database development. Another advantage is the ability to provide alternative tier

implementations based on different technologies; for example, creating a mobile application

as another front end for an existing application. The mobile application would be an alternative

presentation tier, reusing the business and persistence tiers of the original web application.

Smaller applications usually have the presentation and business tiers deployed as a single unit. For

example, to the same web server, but as the load increases, the presentation layer is moved to its

own deployment unit to spread the load. Smaller applications might even embed the database.

Developers often build and deploy more demanding applications in this monolithic fashion.

When developers break up a monolithic application into tiers, they usually apply several changes:

• Connection parameters to a database and other middleware services, such as messaging,

were hard-coded to fixed IP addresses or host names, usually localhost. They need to

be parameterized to point to external servers that might be different from development to

production.

• In the case of web applications, Ajax calls cannot be made using relative URLs. They need to use

an absolute URL pointing to a fixed public DNS host name.

• Modern web browsers refuse Ajax calls to servers different from the one containing the script

that makes the call, as a security measure. The application needs to have permissions for cross-

origin resource sharing (CORS).

After application tiers are divided so that they can run from different servers, there should be no

problem running them from different containers.

Dividing Based on Discrete Services
Most complex applications are composed of many semi-independent services. For example, an

online store would have a product catalog, shopping cart, payment, shipping, and so on.

When a particular service in a monolithic application degrades, scaling the service to improve

performance implies scaling all of the other constituent application services. If however

the degraded service is part of a microservices architecture, the affected service is scaled

independent of the other application services. The following figure illustrates service scaling for

both a monolithic and microservices-based architecture:

DO180-OCP4.2-en-1-20191105 305

Appendix A | Implementing Microservices Architecture

Figure A.1: Comparison of application scaling in a monolithic

architecture versus a microservices architecture

Both traditional service-oriented architectures (SOA) and more recent microservices architectures

package and deploy those function sets as distinct units. This allows each function set to be

developed by its own team, updated, and scaled without disturbing other function sets (or

services). Cross-functional concerns such as authentication can also be packaged and deployed

as services that are consumed by other service implementations.

Splitting each concern into a separated server might result in many applications. They are logically

architected, packaged, and deployed as a small number of units, sometimes even as a single

monolithic unit using a service approach.

Containers enable architectures based on services to be materialized during deployment. That is

the reason microservices and containers usually come together. However, containers alone are not

enough; they need to be complemented by orchestration tools to manage dependencies among

services.

The microservices architecture takes service-based architectures to the extreme. A service

is as small as it can be (without breaking a function set) and is deployed and managed as an

independent unit, instead of part of a bigger application. This allows existing microservices to be

reused to create new applications.

To break an application into services, it needs the same kind of change as when breaking into tiers;

for example, parameterize connection parameters to databases and other middleware services

and deal with web browser security protections.

306 DO180-OCP4.2-en-1-20191105

Appendix A | Implementing Microservices Architecture

Refactoring the To Do List Application
The To Do List application is a simple application with a single function set, so breaking it up into

services is not really meaningful. However, refactoring it into presentation and business tiers, that

is, into a front end and a back end to deploy into distinct containers, illustrates the same kind of

changes that breaking up a typical application into services would need.

The following figure shows the To Do List application deployed into three containers, one for each

tier:

Figure A.2: To Do List application broken into tiers and each deployed as containers

Comparing the source code of the original monolithic application with the refactored one, this is

an overview of the changes:

• The front-end JavaScript in script/items.js uses workstation.lab.example.com as

the host name to reach the back end.

• The back end uses environment variables to get the database connection parameters.

• The back end has to reply to requests using the HTTP OPTIONS verb with headers telling the

web browser to accept requests coming from different DNS domains using CORS .

Other versions of the back end service might have similar changes. Each programming language

and REST framework have their own syntax and features.

References

Monolithic application page in Wikipedia

https://en.wikipedia.org/wiki/Monolithic_application

CORS page in Wikipedia

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

DO180-OCP4.2-en-1-20191105 307

https://en.wikipedia.org/wiki/Monolithic_application
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Appendix A | Implementing Microservices Architecture

Guided Exercise

Refactoring the To Do List Application

In this lab, you will refactor the To Do List application into multiple containers that are linked

together, allowing the front-end HTML 5 application, the Node.js REST API, and the MySQL

server to run in their own containers.

Outcomes
You should be able to refactor a monolithic application into its tiers and deploy each tier as a

microservice.

Before You Begin
Run the following command to set up the working directories for the lab with the To Do List

application files:

[student@workstation ~]$ lab appendix-microservices start

 1. Move the HTML Files

The first step in refactoring the To Do List application is to move the front-end code from

the application into its own running container. This step guides you through moving the

HTML application and its dependent files into their own directory for deployment to an

Apache server running in a container.

1.1. Move the HTML and static files to the src/ directory from the monolithic Node.js To

Do List application:

[student@workstation ~]$ cd ~/DO180/labs/appendix-microservices/apps/html5/
[student@workstation html5]$ mv \
> ~/DO180/labs/appendix-microservices/apps/nodejs/todo/* \
> ~/DO180/labs/appendix-microservices/apps/html5/src/

1.2. The current front-end application interacts with the API service using a relative URL.

Because the API and front-end code will now run in separate containers, the front-end

needs to be adjusted to point to the absolute URL of the To Do List application API.

Open the /home/student/DO180/labs/appendix-microservices/apps/
html5/src/script/item.js file. At the bottom of the file, look for the following

method:

app.factory('itemService', function ($resource) {
 return $resource('api/items/:id');
});

Replace that code with the following content:

308 DO180-OCP4.2-en-1-20191105

Appendix A | Implementing Microservices Architecture

app.factory('itemService', function ($resource) {
 return $resource('http://workstation.lab.example.com:30080/todo/api/
items/:id');
});

Make sure there are no line breaks in the new URL, save the file, and exit the editor.

 2. Build the HTML Image

2.1. Run the build script to build the Apache parent image.

[student@workstation html5]$ cd ~/DO180/labs/appendix-microservices/images/apache
[student@workstation apache]$./build.sh
STEP 1: FROM ubi7/ubi:7.7
...output omitted...
STEP 13: COMMIT do180/httpd

2.2. Verify that the image is built correctly:

[student@workstation apache]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/httpd latest 34376f2a318f 2 minutes ago 282.6 MB
...

2.3. Build the child Apache image:

[student@workstation apache]$ cd ~/DO180/labs/appendix-microservices/deploy/html5
[student@workstation html5]$./build.sh
STEP 1: FROM do180/httpd
STEP 2: COPY ./src/ ${HOME}/
--> cf11...dde1
STEP 3: COMMIT do180/todo_frontend

2.4. Verify that the image is built correctly:

[student@workstation html5]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/todo_frontend latest 30b3fc531bc6 2 minutes ago 286.9 MB
localhost/do180/httpd latest 34376f2a318f 4 minutes ago 282.6 MB
...

 3. Modify the REST API to Connect to External Containers

3.1. The REST API currently uses hard-coded values to connect to the MySQL database.

Edit the /home/student/DO180/labs/appendix-microservices/apps/
nodejs/models/db.js file, which holds the database configuration. Update the

dbname, username, and password values to use environment variables instead. Also,

update the params.host to point to the host name of the host running the MySQL

container and update the params.port to reflect the redirected port to the container.

Both values are available as the MYSQL_SERVICE_HOST and MYSQL_SERVICE_PORT
environment variables, respectively. Replaced contents should look like this:

DO180-OCP4.2-en-1-20191105 309

Appendix A | Implementing Microservices Architecture

module.exports.params = {
 dbname: process.env.MYSQL_DATABASE,
 username: process.env.MYSQL_USER,
 password: process.env.MYSQL_PASSWORD,
 params: {
 host: process.env.MYSQL_SERVICE_HOST,
 port: process.env.MYSQL_SERVICE_PORT,
 dialect: 'mysql'
 }
};

Note

This file can be copied and pasted from /home/student/DO180/solutions/
appendix-microservices/apps/nodejs/models/db.js.

3.2. Configure the back end to handle Cross-origin resource sharing (CORS). This occurs

when a resource request is made from a different domain from the one in which the

request was made. Because the API needs to handle requests from a different DNS

domain (the front-end application), it is necessary to create security exceptions to

allow these requests to succeed. Make the following modifications to the application in

the language of your preference in order to handle CORS.

Add "restify-cors-middleware": "1.1.1" as a new dependency to the

package.json file located at /home/student/DO180/labs/appendix-
microservices/apps/nodejs/package.json. Remember to put a comma at the

end of the previous dependency. Make sure the end of the file looks like this:

 "sequelize": "5.21.1",
 "mysql2": "2.0.0",
 "restify-cors-middleware": "1.1.1"
 }
}

Update the app.js file located at /home/student/DO180/labs/appendix-
microservices/apps/nodejs/app.js to configure CORS usage. Require the

restify-cors-middleware module at the second line, and then update the

contents of the file to match the following:

var restify = require('restify');
var corsMiddleware = require('restify-cors-middleware');
var controller = require('./controllers/items');
...output omitted...
var server = restify.createServer()
 .use(restify.plugins.fullResponse())
 .use(restify.plugins.queryParser())
 .use(restify.plugins.bodyParser());

310 DO180-OCP4.2-en-1-20191105

Appendix A | Implementing Microservices Architecture

const cors = corsMiddleware({
 origins: ['*']
});

server.pre(cors.preflight);
server.use(cors.actual);

controller.context(server, '/todo/api', model);

The origins with value ["*"] instructs the server to allow any domains. In a production

server, this value would usually be an array of domains known to require access to the

API.

 4. Build the REST API Image

4.1. Build the REST API child image using the following command. This image uses the

Node.js image.

[student@workstation html5]$ cd ~/DO180/labs/appendix-microservices/deploy/nodejs
[student@workstation nodejs]$./build.sh
STEP 1: FROM rhscl/nodejs-4-rhel7:latest
...output omitted...
STEP 11: COMMIT do180/todonodejs

4.2. Run the podman images command to verify that all of the required images are built

successfully:

[student@workstation nodejs]$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/do180/httpd latest 2963ca81ac51 5 seconds ago 249 MB
localhost/do180/todonodejs latest 7b64ef105c50 7 minutes ago 533 MB
localhost/do180/todo_frontend latest 53ad57d2306c 9 minutes ago 254 MB
...output omitted...

 5. Run the Containers

5.1. Use the run.sh script to run the containers:

[student@workstation nodejs]$ cd linked/
[student@workstation linked]$./run.sh
• Creating database volume: OK
• Launching database: OK
• Importing database: OK
• Launching To Do application: OK

5.2. Run the podman ps command to confirm that all three containers are running:

[student@workstation linked]$ sudo podman ps
... IMAGE ... PORTS NAMES
... localhost/do180/todo_frontend ... 0.0.0.0:30000->80/tcp todo_frontend
... localhost/do180/todonodejs ... 8080/tcp, 0.0.0.0:30080... todoapi
... localhost/rhscl/mysql-57-rhel7 ... 0.0.0.0:30306->3306/tcp mysql

DO180-OCP4.2-en-1-20191105 311

Appendix A | Implementing Microservices Architecture

 6. Test the Application

6.1. Use the curl command to verify that the REST API for the To Do List application is

working correctly:

[student@workstation linked]$ curl -w "\n" 127.0.0.1:30080/todo/api/items/1
{"description": "Pick up newspaper", "done": false, "id":1}

6.2. Open Firefox on workstation and navigate to http://127.0.0.1:30000, where

you should see the To Do List application.

Finish

On workstation, run the lab appendix-microservices finish script to complete this

lab.

[student@workstation ~]$ lab appendix-microservices finish

This concludes the guided exercise.

312 DO180-OCP4.2-en-1-20191105

Appendix A | Implementing Microservices Architecture

Summary

In this chapter, you learned:

• Breaking a monolithic application into multiple containers allows for greater application

scalability, makes upgrades easier, and allows higher hardware utilization.

• The three common tiers for logical division of an application are the presentation tier, the

business tier, and the persistence tier.

• Cross-Origin Resource Sharing (CORS) can prevent Ajax calls to servers different from the

one where the pages were downloaded. Be sure to make provisions to allow CORS from other

containers in the application.

• Container images are intended to be immutable, but configurations can be passed in either at

image build time or by creating persistent storage for configurations.

DO180-OCP4.2-en-1-20191105 313

314 DO180-OCP4.2-en-1-20191105

Appendix B

Creating a GitHub Account

Goal Describe how to create a GitHub account for labs
in the course.

DO180-OCP4.2-en-1-20191105 315

Appendix B | Creating a GitHub Account

Creating a GitHub Account

Objectives
After completing this section, you should be able to create a GitHub account and create public Git

repositories for the labs in the course.

Creating a GitHub Account

You need a GitHub account to create one or more public Git repositories for the labs in this course.

If you already have a GitHub account, you can skip the steps listed in this appendix.

Important

If you already have a GitHub account, ensure that you only create public Git

repositories for the labs in this course. The lab grading scripts and instructions

require unauthenticated access to clone the repository. The repositories must be

accessible without providing passwords, SSH keys, or GPG keys.

To create a new GitHub account, perform the following steps:

1. Navigate to https://github.com using a web browser.

2. Enter the required details and then click Sign up for GitHub.

Figure B.1: Creating a GitHub account

3. You will receive an email with instructions on how to activate your GitHub account. Verify your

email address and then sign in to the GitHub website using the username and password you

provided during account creation.

4. After you have logged in to GitHub, you can create new Git repositories by clicking New in the

Repositories pane on the left of the GitHub home page.

316 DO180-OCP4.2-en-1-20191105

https://github.com

Appendix B | Creating a GitHub Account

Figure B.2: Creating a new Git repository

Alternatively, click the plus icon (+) in the upper-right corner (to the right of the bell icon) and

then click New repository.

Figure B.3: Creating new Git repository

DO180-OCP4.2-en-1-20191105 317

Appendix B | Creating a GitHub Account

References

Signing up for a new GitHub account

https://help.github.com/en/articles/signing-up-for-a-new-github-account

318 DO180-OCP4.2-en-1-20191105

https://help.github.com/en/articles/signing-up-for-a-new-github-account

Appendix C

Creating a Quay Account

Goal Describe how to create a Quay account for labs in
the course.

DO180-OCP4.2-en-1-20191105 319

Appendix C | Creating a Quay Account

Creating a Quay Account

Objectives
After completing this section, you should be able to create a Quay account and create public

container image repositories for the labs in the course.

Creating a Quay Account

You need a Quay account to create one or more public container image repositories for the labs

in this course. If you already have a Quay account, you can skip the steps to create a new account

listed in this appendix.

Important

If you already have a Quay account, ensure that you only create public container

image repositories for the labs in this course. The lab grading scripts and

instructions require unauthenticated access to pull container images from the

repository.

To create a new Quay account, perform the following steps:

1. Navigate to https://quay.io using a web browser.

2. Click Sign in in the upper-right corner (next to the search bar).

3. On the Sign in page, you can log in using your Google or GitHub credentials (created in

Appendix A).

Figure C.1: Sign in using Google or GitHub credentials.

Alternatively, click Create Account to create a new account.

320 DO180-OCP4.2-en-1-20191105

https://quay.io

Appendix C | Creating a Quay Account

Figure C.2: Creating a new account

4. If you chose to skip the Google or GitHub log-in method and instead opted to create a new

account, you will receive an email with instructions on how to activate your Quay account.

Verify your email address and then sign in to the Quay website with the username and

password you provided during account creation.

5. After you have logged in to Quay you can create new image repositories by clicking Create
New Repository on the Repositories page.

Figure C.3: Creating a new image repository

Alternatively, click the plus icon (+) in the upper-right corner (to the left of the bell icon), and

then click New Repository.

DO180-OCP4.2-en-1-20191105 321

Appendix C | Creating a Quay Account

Figure C.4: Creating a new image repository

References

Getting Started with Quay.io

https://docs.quay.io/solution/getting-started.html

322 DO180-OCP4.2-en-1-20191105

https://docs.quay.io/solution/getting-started.html

Appendix C | Creating a Quay Account

Repositories Visibility

Objectives
After completing this section, you should be able to control repository visibility on Quay.io.

Quay.io Repositories Visibility
Quay.io offers the possibility of creating public and private repositories. Public repositories can be

read by anyone without restrictions, despite write permissions must be explicitly granted. Private

repositories have both read and write permissions restricted. Nevertheless, the number of private

repositories in quay.io is limited depending on the namespace's plan.

Default Repository Visibility

Repositories created by pushing images to quay.io are private by default. In order OpenShift (or

any other tool) to fetch those images you can either configure a private key in both OpenShift and

Quay, or make the repository public, so no authentication is required. Setting up private keys is out

of scope of this document.

DO180-OCP4.2-en-1-20191105 323

Appendix C | Creating a Quay Account

Updating Repository Visibility

In order to set repository visibility to public select the appropriate repository in https://
quay.io/repository/ (log in to your account if needed) and open the Settings page by

clicking on the gear on the left-bottom edge. Scroll down to the Repository Visibility
section and click on the Make Public button.

324 DO180-OCP4.2-en-1-20191105

Appendix C | Creating a Quay Account

Get back the the list of repositories. The lock icon besides the repository name have disappeared,

indicating the repository became public.

DO180-OCP4.2-en-1-20191105 325

326 DO180-OCP4.2-en-1-20191105

Appendix D

Useful Git Commands

Goal Describe useful Git commands that are used for
the labs in this course.

DO180-OCP4.2-en-1-20191105 327

Appendix D | Useful Git Commands

Git Commands

Objectives
After completing this section, you should be able to restart and redo exercises in this course. You

should also be able to switch from one incomplete exercise to perform another, and later continue

the previous exercise where you left off.

Working with Git Branches
This course uses a Git repository hosted on GitHub to store the application course code source

code. At the beginning of the course, you create your own fork of this repository, which is also

hosted on GitHub.

During this course, you work with a local copy of your fork, which you clone to the workstation
VM. The term origin refers to the remote repository from which a local repository is cloned.

As you work through the exercises in the course, you use separate Git branches for each exercise.

All changes you make to the source code happen in a new branch that you create only for that

exercise. Never make any changes on the master branch.

A list of scenarios and the corresponding Git commands that you can use to work with branches,

and to recover to a known good state are listed below.

Redoing an Exercise from Scratch

To redo an exercise from scratch after you have completed it, perform the following steps:

1. You commit and push all the changes in your local branch as part of performing the exercise.

You finished the exercise by running its finish subcommand to clean up all resources:

[student@workstation ~]$ lab your-exercise finish

2. Change to your local clone of the DO180-apps repository and switch to the master branch:

[student@workstation ~]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git checkout master

3. Delete your local branch:

[student@workstation DO180-apps]$ git branch -d your-branch

4. Delete the remote branch on your personal GitHub account:

[student@workstation DO180-apps]$ git push origin --delete your-branch

5. Use the start subcommand to restart the exercise:

328 DO180-OCP4.2-en-1-20191105

Appendix D | Useful Git Commands

[student@workstation DO180-apps]$ cd ~
[student@workstation ~]$ lab your-exercise start

Abandoning a Partially Completed Exercise and Restarting it
from Scratch

You may run into a scenario where you have partially completed a few steps in the exercise, and

you want to abandon the current attempt, and restart it from scratch. Perform the following steps:

1. Run the exercise's finish subcommand to clean up all resources.

[student@workstation ~]$ lab your-exercise finish

2. Enter your local clone of the DO180-apps repository and discard any pending changes on the

current branch using git stash:

[student@workstation ~]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git stash

3. Switch to the master branch of your local repository:

[student@workstation DO180-apps]$ git checkout master

4. Delete your local branch:

[student@workstation DO180-apps]$ git branch -d your-branch

5. Delete the remote branch on your personal GitHub account:

[student@workstation DO180-apps]$ git push origin --delete your-branch

6. You can now restart the exercise by running its start subcommand:

[student@workstation DO180-apps]$ cd ~
[student@workstation ~]$ lab your-exercise start

Switching to a Different Exercise from an Incomplete Exercise

You may run into a scenario where you have partially completed a few steps in an exercise, but you

want to switch to a different exercise, and revisit the current exercise at a later time.

Avoid leaving too many exercises uncompleted to revisit later. These exercises tie up cloud

resources and you may use up your allotted quota on the cloud provider and on the OpenShift

cluster you share with other students. If you think it may be a while until you can go back to the

current exercise, consider abandoning it and later restarting from scratch.

If you prefer to pause the current exercise and work on the next one, perform the following steps:

1. Commit any pending changes in your local repository and push them to your personal GitHub

account. You may want to record the step where you stopped the exercise:

DO180-OCP4.2-en-1-20191105 329

Appendix D | Useful Git Commands

[student@workstation ~]$ cd ~/DO180-apps
[student@workstation DO180-apps]$ git commit -a -m 'Paused at step X.Y'
[student@workstation DO180-apps]$ git push

2. Do not run the finish command of the original exercise. This is important to leave your

existing OpenShift projects unchanged, so you can resume later.

3. Start the next exercise by running its start subcommand:

[student@workstation ~]$ lab your-exercise start

4. The next exercise switches to the master branch and optionally creates a new branch for its

changes. This means the changes made to the original exercise in the original branch are left

untouched.

5. Later, after you have completed the next exercise, and you want to go back to the original

exercise, switch back to its branch:

[student@workstation ~]$ git checkout original-branch

Then you can continue with the original exercise at the step where you left off.

References

Git branch man page

https://git-scm.com/docs/git-branch

What is a Git branch?

https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is

Git Tools - Stashing

https://git-scm.com/book/en/v1/Git-Tools-Stashing

330 DO180-OCP4.2-en-1-20191105

https://git-scm.com/docs/git-branch
https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://git-scm.com/book/en/v1/Git-Tools-Stashing

	Introduction to Containers, Kubernetes, and Red Hat OpenShift
	Table of Contents
	Document Conventions
	Introduction
	DO180: Introduction to Containers, Kubernetes, and Red Hat OpenShift
	Orientation to the Classroom Environment
	Internationalization

	Chapter 1. Introducing Container Technology
	Overview of Container Technology
	Quiz: Overview of Container Technology
	Overview of Container Architecture
	Quiz: Overview of Container Architecture
	Overview of Kubernetes and OpenShift
	Quiz: Describing Kubernetes and OpenShift
	Guided Exercise: Configuring the Classroom Environment
	Summary

	Chapter 2. Creating Containerized Services
	Provisioning Containerized Services
	Guided Exercise: Creating a MySQL Database Instance
	Lab: Creating Containerized Services
	Summary

	Chapter 3. Managing Containers
	Managing the Life Cycle of Containers
	Guided Exercise: Managing a MySQL Container
	Attaching Persistent Storage to Containers
	Guided Exercise: Persisting a MySQL Database
	Accessing Containers
	Guided Exercise: Loading the Database
	Lab: Managing Containers
	Summary

	Chapter 4. Managing Container Images
	Accessing Registries
	Quiz: Working With Registries
	Manipulating Container Images
	Guided Exercise: Creating a Custom Apache Container Image
	Lab: Managing Images
	Summary

	Chapter 5. Creating Custom Container Images
	Designing Custom Container Images
	Quiz: Approaches to Container Image Design
	Building Custom Container Images with Dockerfiles
	Guided Exercise: Creating a Basic Apache Container Image
	Lab: Creating Custom Container Images
	Summary

	Chapter 6. Deploying Containerized Applications on OpenShift
	Describing Kubernetes and OpenShift Architecture
	Quiz: Describing Kubernetes and OpenShift
	Creating Kubernetes Resources
	Guided Exercise: Deploying a Database Server on OpenShift
	Creating Routes
	Guided Exercise: Exposing a Service as a Route
	Creating Applications with Source-to-Image
	Guided Exercise: Creating a Containerized Application with Source-to-Image
	Creating Applications with the OpenShift Web Console
	Guided Exercise: Creating an Application with the Web Console
	Lab: Deploying Containerized Applications on OpenShift
	Summary

	Chapter 7. Deploying Multi-Container Applications
	Considerations for Multi-Container Applications
	Guided Exercise: Deploying the Web Application and MySQL Containers
	Deploying a Multi-Container Application on OpenShift
	Guided Exercise: Creating an Application with a Template
	Lab: Deploying Multi-Container Applications
	Summary

	Chapter 8. Troubleshooting Containerized Applications
	Troubleshooting S2I Builds and Deployments
	Guided Exercise: Troubleshooting an OpenShift Build
	Troubleshooting Containerized Applications
	Guided Exercise: Configuring Apache Container Logs for Debugging
	Lab: Troubleshooting Containerized Applications
	Summary

	Chapter 9. Comprehensive Review
	Comprehensive Review
	Lab: Containerizing and Deploying a Software Application

	Appendix A. Implementing Microservices Architecture
	Implementing Microservices Architectures
	Guided Exercise: Refactoring the To Do List Application
	Summary

	Appendix B. Creating a GitHub Account
	Creating a GitHub Account

	Appendix C. Creating a Quay Account
	Creating a Quay Account
	Repositories Visibility

	Appendix D. Useful Git Commands
	Git Commands

