Proxmox VE Administration Guide
Proxmox Server Solutions Gmbh
Chapter 1. Introduction
Proxmox VE is a platform to run virtual machines and containers. It is based on Debian Linux, and completely open source. For maximum flexibility, we implemented two virtualization technologies - Kernel-based Virtual Machine (KVM) and container-based virtualization (LXC).
One main design goal was to make administration as easy as possible. You can use Proxmox VE on a single node, or assemble a cluster of many nodes. All management tasks can be done using our web-based management interface, and even a novice user can setup and install Proxmox VE within minutes.
1.1. Central Management
While many people start with a single node, Proxmox VE can scale out to a large set of clustered nodes. The cluster stack is fully integrated and ships with the default installation.
Unique Multi-Master Design
The integrated web-based management interface gives you a clean overview of all your KVM guests and Linux containers and even of your whole cluster. You can easily manage your VMs and containers, storage or cluster from the GUI. There is no need to install a separate, complex, and pricey management server.
Proxmox Cluster File System (pmxcfs)
Proxmox VE uses the unique Proxmox Cluster file system (pmxcfs), a database-driven file system for storing configuration files. This enables you to store the configuration of thousands of virtual machines. By using corosync, these files are replicated in real time on all cluster nodes. The file system stores all data inside a persistent database on disk, nonetheless, a copy of the data resides in RAM which provides a maximum storage size of 30MB - more than enough for thousands of VMs.
Proxmox VE is the only virtualization platform using this unique cluster file system.
Web-based Management Interface
Proxmox VE is simple to use. Management tasks can be done via the included web based management interface - there is no need to install a separate management tool or any additional management node with huge databases. The multi-master tool allows you to manage your whole cluster from any node of your cluster. The central web-based management - based on the JavaScript Framework (ExtJS) - empowers you to control all functionalities from the GUI and overview history and syslogs of each single node. This includes running backup or restore jobs, live-migration or HA triggered activities.
Command Line
For advanced users who are used to the comfort of the Unix shell or Windows Powershell, Proxmox VE provides a command line interface to manage all the components of your virtual environment. This command line interface has intelligent tab completion and full documentation in the form of UNIX man pages.
REST API
Proxmox VE uses a RESTful API. We choose JSON as primary data format, and the whole API is formally defined using JSON Schema. This enables fast and easy integration for third party management tools like custom hosting environments.
Role-based Administration
You can define granular access for all objects (like VMs, storages, nodes, etc.) by using the role based user- and permission management. This allows you to define privileges and helps you to control access to objects. This concept is also known as access control lists: Each permission specifies a subject (a user or group) and a role (set of privileges) on a specific path.
Authentication Realms
Proxmox VE supports multiple authentication sources like Microsoft Active Directory, LDAP, Linux PAM standard authentication or the built-in Proxmox VE authentication server.
1.2. Flexible Storage
The Proxmox VE storage model is very flexible. Virtual machine images can either be stored on one or several local storages or on shared storage like NFS and on SAN. There are no limits, you may configure as many storage definitions as you like. You can use all storage technologies available for Debian Linux.
One major benefit of storing VMs on shared storage is the ability to live-migrate running machines without any downtime, as all nodes in the cluster have direct access to VM disk images.
We currently support the following Network storage types:
Local storage types supported are:
1.3. Integrated Backup and Restore
The integrated backup tool (vzdump) creates consistent snapshots of running Containers and KVM guests. It basically creates an archive of the VM or CT data which includes the VM/CT configuration files.
KVM live backup works for all storage types including VM images on NFS, CIFS, iSCSI LUN, Ceph RBD. The new backup format is optimized for storing VM backups fast and effective (sparse files, out of order data, minimized I/O).
1.4. High Availability Cluster
A multi-node Proxmox VE HA Cluster enables the definition of highly available virtual servers. The Proxmox VE HA Cluster is based on proven Linux HA technologies, providing stable and reliable HA services.
1.5. Flexible Networking
Proxmox VE uses a bridged networking model. All VMs can share one bridge as if virtual network cables from each guest were all plugged into the same switch. For connecting VMs to the outside world, bridges are attached to physical network cards and assigned a TCP/IP configuration.
For further flexibility, VLANs (IEEE 802.1q) and network bonding/aggregation are possible. In this way it is possible to build complex, flexible virtual networks for the Proxmox VE hosts, leveraging the full power of the Linux network stack.
1.6. Integrated Firewall
The integrated firewall allows you to filter network packets on any VM or Container interface. Common sets of firewall rules can be grouped into “security groups”.
1.7. Why Open Source
Proxmox VE uses a Linux kernel and is based on the Debian GNU/Linux Distribution. The source code of Proxmox VE is released under the GNU Affero General Public License, version 3. This means that you are free to inspect the source code at any time or contribute to the project yourself.
At Proxmox we are committed to use open source software whenever possible. Using open source software guarantees full access to all functionalities - as well as high security and reliability. We think that everybody should have the right to access the source code of a software to run it, build on it, or submit changes back to the project. Everybody is encouraged to contribute while Proxmox ensures the product always meets professional quality criteria.
Open source software also helps to keep your costs low and makes your core infrastructure independent from a single vendor.
1.8. Your benefits with Proxmox VE
1.9. Getting Help
1.9.1. Proxmox VE Wiki
The primary source of information is the Proxmox VE Wiki. It combines the reference documentation with user contributed content.
1.9.2. Community Support Forum
Proxmox VE itself is fully open source, so we always encourage our users to discuss and share their knowledge using the Proxmox VE Community Forum. The forum is fully moderated by the Proxmox support team, and has a quite large user base around the whole world. Needless to say that such a large forum is a great place to get information.
1.9.3. Mailing Lists
This is a fast way to communicate via email with the Proxmox VE community
The primary communication channel for developers is:
1.9.4. Commercial Support
Proxmox Server Solutions Gmbh also offers commercial Proxmox VE Subscription Service Plans. System Administrators with a standard subscription plan can access a dedicated support portal with guaranteed response time, where Proxmox VE developers help them should an issue appear. Please contact the Proxmox sales team for more information or volume discounts.
1.9.5. Bug Tracker
We also run a public bug tracker at https://bugzilla.proxmox.com. If you ever detect an issue, you can file a bug report there. This makes it easy to track its status, and you will get notified as soon as the problem is fixed.
1.10. Project History
The project started in 2007, followed by a first stable version in 2008. At the time we used OpenVZ for containers, and KVM for virtual machines. The clustering features were limited, and the user interface was simple (server generated web page).
But we quickly developed new features using the Corosync cluster stack, and the introduction of the new Proxmox cluster file system (pmxcfs) was a big step forward, because it completely hides the cluster complexity from the user. Managing a cluster of 16 nodes is as simple as managing a single node.
We also introduced a new REST API, with a complete declarative specification written in JSON-Schema. This enabled other people to integrate Proxmox VE into their infrastructure, and made it easy to provide additional services.
Also, the new REST API made it possible to replace the original user interface with a modern HTML5 application using JavaScript. We also replaced the old Java based VNC console code with noVNC. So you only need a web browser to manage your VMs.
The support for various storage types is another big task. Notably, Proxmox VE was the first distribution to ship ZFS on Linux by default in 2014. Another milestone was the ability to run and manage Ceph storage on the hypervisor nodes. Such setups are extremely cost effective.
When we started we were among the first companies providing commercial support for KVM. The KVM project itself continuously evolved, and is now a widely used hypervisor. New features arrive with each release. We developed the KVM live backup feature, which makes it possible to create snapshot backups on any storage type.
The most notable change with version 4.0 was the move from OpenVZ to LXC. Containers are now deeply integrated, and they can use the same storage and network features as virtual machines.
1.11. Improving the Proxmox VE Documentation
Depending on which issue you want to improve, you can use a variety of communication mediums to reach the developers.
If you notice an error in the current documentation, use the Proxmox bug tracker and propose an alternate text/wording.
If you want to propose new content, it depends on what you want to document:
Improving the documentation is just as easy as editing a Wikipedia article and is an interesting foray in the development of a large opensource project.
Note
If you are interested in working on the Proxmox VE codebase, the Developer Documentation wiki article will show you where to start.
1.12. Translating Proxmox VE
A lot of users speak a language other than English and we depend on contributions to make Proxmox VE available to users all over the world. We are always happy to welcome new localizers and invite you to help shape Proxmox VE.
Our language files are available as git repository. If you are familiar with git we would be glad to see your contribution according to our Developer Documentation.
Nonetheless, translating does not require special technical skills. You can get the language files without setting up a development environment here. Right click on the "raw" link of your language and choose "Save Link As…". Do not hesitate to send your translation directly to office(at)proxmox.com with your signed contributor license agreement.
We use gettext to translate Proxmox VE. As a result, the actual translation task is to write a translation of the msgid into the msgstr below it. Tools like Poedit make this process more convenient, especially for contributors who are not programmers.
Chapter 2. Installing Proxmox VE
Proxmox VE is based on Debian, therefore the disk image (ISO file) provided by us includes a complete Debian system ("stretch" for version 5.x) as well as all necessary Proxmox VE packages.
Using the installer will guide you through the setup, allowing you to partition the local disk(s), apply basic system configurations (e.g. timezone, language, network) and install all required packages. Using the provided ISO will get you started in just a few minutes, that’s why we recommend this method for new and existing users.
Alternatively, Proxmox VE can be installed on top of an existing Debian system. This option is only recommended for advanced users since detailed knowledge about Proxmox VE is necessary.
2.1. System Requirements
For production servers, high quality server equipment is needed. Keep in mind, if you run 10 Virtual Servers on one machine and you then experience a hardware failure, 10 services are lost. Proxmox VE supports clustering, this means that multiple Proxmox VE installations can be centrally managed thanks to the included cluster functionality.
Proxmox VE can use local storage (DAS), SAN, NAS and also distributed storage (Ceph RBD). For details see chapter storage Chapter 8, Proxmox VE Storage.
2.1.1. Minimum Requirements, for Evaluation
2.1.2. Recommended System Requirements
2.1.3. Simple Performance Overview
On an installed Proxmox VE system, you can run the included pveperf script to obtain an overview of the CPU and hard disk performance.
Note
this is just a very quick and general benchmark. More detailed tests are recommended, especially regarding the I/O performance of your system.
2.1.4. Supported web browsers for accessing the web interface
To use the web interface you need a modern browser, this includes:
If Proxmox VE detects you’re connecting from a mobile device, you will be redirected to a lightweight touch-based UI.
2.2. Using the Proxmox VE Installer
You can download the ISO from https://www.proxmox.com/en/downloads. It includes the following:
Note
During the installation process, the complete server is used by default and all existing data is removed.
Please insert the installation media (e.g. USB stick, CD-ROM) and boot from it.
After choosing the correct entry (e.g. Boot from USB) the Proxmox VE menu will be displayed, you can now select one of the following options:
Install Proxmox VE
Start normal installation.
Tip
It is possible to only use the keyboard to progress through the installation wizard. Buttons can be pressed by pressing down the ALT key, combined with the underlined character from the respective Button. For example, ALT + N to press a Next button.
Install Proxmox VE (Debug mode)
Start installation in debug mode. It opens a shell console at several installation steps, so that you can debug things if something goes wrong. Please press CTRL-D to exit those debug consoles and continue installation. This option is mostly for developers and not meant for general use.
Rescue Boot
This option allows you to boot an existing installation. It searches all attached hard disks and, if it finds an existing installation, boots directly into that disk using the existing Linux kernel. This can be useful if there are problems with the boot block (grub), or the BIOS is unable to read the boot block from the disk.
Test Memory
Runs memtest86+. This is useful to check if your memory is functional and error free.
You normally select Install Proxmox VE to start the installation. After that you get prompted to select the target hard disk(s). The Options button lets you select the target file system, which defaults to ext4. The installer uses LVM if you select ext3, ext4 or xfs as file system, and offers additional option to restrict LVM space (see below)
You can also use ZFS as file system. ZFS supports several software RAID levels, so this is specially useful if you do not have a hardware RAID controller. The Options button lets you select the ZFS RAID level, and you can choose disks there. Additionally you can set additional options (see below).
The next page just asks for basic configuration options like your location, the time zone and keyboard layout. The location is used to select a download server near you to speed up updates. The installer is usually able to auto detect those settings, so you only need to change them in rare situations when auto detection fails, or when you want to use some special keyboard layout not commonly used in your country.
You then need to specify an email address and the superuser (root) password. The password must have at least 5 characters, but we highly recommend to use stronger passwords - here are some guidelines:
It is sometimes necessary to send notifications to the system administrator, for example:
All those notification mails will be sent to the specified email address.
The last step is the network configuration. Please note that you can use either IPv4 or IPv6 here, but not both. If you want to configure a dual stack node, you can easily do that after installation.
If you press Next now, installation starts to format disks, and copies packages to the target. Please wait until that is finished, then remove the installation media and restart your system.
Further configuration is done via the Proxmox web interface. Just point your browser to the IP address given during installation (https://youripaddress:8006).
Note
Default login is "root" (realm PAM) and the root password is defined during the installation process.
2.2.1. Advanced LVM Configuration Options
The installer creates a Volume Group (VG) called pve, and additional Logical Volumes (LVs) called root, data and swap. The size of those volumes can be controlled with:
hdsize
Defines the total HD size to be used. This way you can save free space on the HD for further partitioning (i.e. for an additional PV and VG on the same hard disk that can be used for LVM storage).
swapsize
Defines the size of the swap volume. The default is the size of the installed memory, minimum 4 GB and maximum 8 GB. The resulting value cannot be greater than hdsize/8.
Note
If set to 0, no swap volume will be created.
maxroot
Defines the maximum size of the root volume, which stores the operation system. The maximum limit of the root volume size is hdsize/4.
maxvz
Defines the maximum size of the data volume. The actual size of the data volume is:
datasize = hdsize - rootsize - swapsize - minfree
Where datasize cannot be bigger than maxvz.
Note
In case of LVM thin, the data pool will only be created if datasize is bigger than 4GB.
Note
If set to 0, no data volume will be created and the storage configuration will be adapted accordingly.
minfree
Defines the amount of free space left in LVM volume group pve. With more than 128GB storage available the default is 16GB, else hdsize/8 will be used.
Note
LVM requires free space in the VG for snapshot creation (not required for lvmthin snapshots).
2.2.2. Advanced ZFS Configuration Options
The installer creates a ZFS pool rpool. When selecting ZFS, no swap space is created by default. You can leave some unpartitioned space for swap or create a swap zvol after installation, though the latter can lead to problems (see ZFS swap notes).
ashift
Defines the ashift value for the created pool. The ashift needs to be set at least to the sector-size of the underlying disks (2 to the power of ashift is the sector-size), or any disk, which might be put in the pool (e.g. during replacing a defective disk).
compress
Defines whether compression is enabled for rpool.
checksum
Defines which checksumming algorithm should be used for rpool.
copies
Defines the copies parameter for rpool. Check the zfs(8) manpage for the semantics, and why this does not replace redundancy on disk-level.
hdsize
Defines the total HD size to be used. This way you can save free space on the HD(s) for further partitioning (e.g. for creating a swap-partition). hdsize is only honored for bootable disks, i.e., only the first disk or mirror for RAID0, RAID1 or RAID10, and all disks in RAID-Z[123].
2.2.3. ZFS Performance Tips
ZFS uses a lot of memory, so it is best to add additional RAM if you want to use ZFS. A good calculation is 4GB plus 1GB RAM for each TB RAW disk space.
ZFS also provides the feature to use a fast SSD drive as write cache. The write cache is called the ZFS Intent Log (ZIL). You can add that after installation using the following command:
zpool add <pool-name> log </dev/path_to_fast_ssd>
2.3. Install from USB Stick
The Proxmox VE installation media is a hybrid ISO image, working in two ways:
Using USB sticks is faster and more environmental friendly and therefore the recommended way to install Proxmox VE.
2.3.1. Prepare a USB flash drive as install medium
In order to boot the installation media, copy the ISO image to a USB media.
First download the ISO image from https://www.proxmox.com/en/downloads/category/iso-images-pve
You need at least a 1 GB USB media.
Note
Using UNetbootin or Rufus does not work.
Important
Make sure that the USB media is not mounted and does not contain any important data.
2.3.2. Instructions for GNU/Linux
You can simply use dd on UNIX like systems. First download the ISO image, then plug in the USB stick. You need to find out what device name gets assigned to the USB stick (see below). Then run:
dd if=proxmox-ve_*.iso of=/dev/XYZ bs=1M
Note
Be sure to replace /dev/XYZ with the correct device name.
Caution
Be very careful, and do not overwrite the hard disk!
Find Correct USB Device Name
You can compare the last lines of dmesg command before and after the insertion, or use the lsblk command. Open a terminal and run:
lsblk
Then plug in your USB media and run the command again:
lsblk
A new device will appear, and this is the USB device you want to use.
2.3.3. Instructions for OSX
Open the terminal (query Terminal in Spotlight).
Convert the .iso file to .img using the convert option of hdiutil for example.
hdiutil convert -format UDRW -o proxmox-ve_*.dmg proxmox-ve_*.iso
Tip
OS X tends to put the .dmg ending on the output file automatically.
To get the current list of devices run the command again:
diskutil list
Now insert your USB flash media and run this command again to determine the device node assigned to your flash media (e.g. /dev/diskX).
diskutil list
diskutil unmountDisk /dev/diskX
Note
replace X with the disk number from the last command.
sudo dd if=proxmox-ve_*.dmg of=/dev/rdiskX bs=1m
Note
rdiskX, instead of diskX, in the last command is intended, this will increase write speed
2.3.4. Instructions for Windows
Download Etcher from https://etcher.io , select the ISO and your USB Drive.
If this doesn’t work, alternatively use the OSForensics USB installer from http://www.osforensics.com/portability.html
2.3.5. Boot your server from USB media
Connect your USB media to your server and make sure that the server boots from USB (see server BIOS). Then follow the installation wizard.
2.4. Install Proxmox VE on Debian
Proxmox VE ships as a set of Debian packages, so you can install it on top of a standard Debian installation. After configuring the repositories Section 3.1, “Package Repositories”, you need to run:
apt-get update
apt-get install proxmox-ve
Installing on top of an existing Debian installation looks easy, but it presumes that you have correctly installed the base system, and you know how you want to configure and use the local storage. Network configuration is also completely up to you.
In general, this is not trivial, especially when you use LVM or ZFS.
You can find a detailed step by step how-to guide on the wiki.
Chapter 3. Host System Administration
Proxmox VE is based on the famous Debian Linux distribution. That means that you have access to the whole world of Debian packages, and the base system is well documented. The Debian Administrator's Handbook is available online, and provides a comprehensive introduction to the Debian operating system (see [Hertzog13]).
A standard Proxmox VE installation uses the default repositories from Debian, so you get bug fixes and security updates through that channel. In addition, we provide our own package repository to roll out all Proxmox VE related packages. This includes updates to some Debian packages when necessary.
We also deliver a specially optimized Linux kernel, where we enable all required virtualization and container features. That kernel includes drivers for ZFS, and several hardware drivers. For example, we ship Intel network card drivers to support their newest hardware.
The following sections will concentrate on virtualization related topics. They either explain things which are different on Proxmox VE, or tasks which are commonly used on Proxmox VE. For other topics, please refer to the standard Debian documentation.
3.1. Package Repositories
All Debian based systems use APT as package management tool. The list of repositories is defined in /etc/apt/sources.list and .list files found inside /etc/apt/sources.d/. Updates can be installed directly using apt-get, or via the GUI.
Apt sources.list files list one package repository per line, with the most preferred source listed first. Empty lines are ignored, and a # character anywhere on a line marks the remainder of that line as a comment. The information available from the configured sources is acquired by apt-get update.
File /etc/apt/sources.list.
deb http://ftp.debian.org/debian buster main contrib
deb http://ftp.debian.org/debian buster-updates main contrib
security updates
deb http://security.debian.org buster/updates main contrib
In addition, Proxmox VE provides three different package repositories.
3.1.1. Proxmox VE Enterprise Repository
This is the default, stable and recommended repository, available for all Proxmox VE subscription users. It contains the most stable packages, and is suitable for production use. The pve-enterprise repository is enabled by default:
File /etc/apt/sources.list.d/pve-enterprise.list.
deb https://enterprise.proxmox.com/debian/pve buster pve-enterprise
As soon as updates are available, the root@pam user is notified via email about the available new packages. On the GUI, the change-log of each package can be viewed (if available), showing all details of the update. So you will never miss important security fixes.
Please note that you need a valid subscription key to access this repository. We offer different support levels, and you can find further details at https://www.proxmox.com/en/proxmox-ve/pricing.
Note
You can disable this repository by commenting out the above line using a # (at the start of the line). This prevents error messages if you do not have a subscription key. Please configure the pve-no-subscription repository in that case.
3.1.2. Proxmox VE No-Subscription Repository
As the name suggests, you do not need a subscription key to access this repository. It can be used for testing and non-production use. Its not recommended to run on production servers, as these packages are not always heavily tested and validated.
We recommend to configure this repository in /etc/apt/sources.list.
File /etc/apt/sources.list.
deb http://ftp.debian.org/debian buster main contrib
deb http://ftp.debian.org/debian buster-updates main contrib
PVE pve-no-subscription repository provided by proxmox.com,
NOT recommended for production use
deb http://download.proxmox.com/debian/pve buster pve-no-subscription
security updates
deb http://security.debian.org buster/updates main contrib
3.1.3. Proxmox VE Test Repository
Finally, there is a repository called pvetest. This one contains the latest packages and is heavily used by developers to test new features. As usual, you can configure this using /etc/apt/sources.list by adding the following line:
sources.list entry for pvetest.
deb http://download.proxmox.com/debian/pve buster pvetest
Warning
the pvetest repository should (as the name implies) only be used for testing new features or bug fixes.
3.1.4. Proxmox VE Ceph Repository
This is Proxmox VE’s main Ceph repository and holds the Ceph packages for production use. You can also use this repository to update only the Ceph client.
File /etc/apt/sources.list.d/ceph.list.
deb http://download.proxmox.com/debian/ceph-nautilus buster main
3.1.5. Proxmox VE Ceph Testing Repository
This Ceph repository contains the Ceph packages before they are moved into the main repository and is used to test new Ceph release on Proxmox VE.
File /etc/apt/sources.list.d/ceph.list.
deb http://download.proxmox.com/debian/ceph-nautilus buster test
3.1.6. Proxmox VE Ceph Luminous Repository For Upgrade
This is a build of tje Ceph Luminous release for Proxmox VE 6.0, this can be used to upgrade a Proxmox VE cluster with Ceph Luminous deployed first to our 6.0 release, based on Debian Buster, and only afterwards upgrade the Ceph on it’s own.
File /etc/apt/sources.list.d/ceph.list.
deb http://download.proxmox.com/debian/ceph-luminous buster main
3.1.7. SecureApt
We use GnuPG to sign the Release files inside those repositories, and APT uses that signatures to verify that all packages are from a trusted source.
The key used for verification is already installed if you install from our installation CD. If you install by other means, you can manually download the key with:
wget http://download.proxmox.com/debian/proxmox-ve-release-6.x.gpg -O /etc/apt/trusted.gpg.d/proxmox-ve-release-6.x.gpg
Please verify the checksum afterwards:
sha512sum /etc/apt/trusted.gpg.d/proxmox-ve-release-6.x.gpg
acca6f416917e8e11490a08a1e2842d500b3a5d9f322c6319db0927b2901c3eae23cfb5cd5df6facf2b57399d3cfa52ad7769ebdd75d9b204549ca147da52626 /etc/apt/trusted.gpg.d/proxmox-ve-release-6.x.gpg
or
md5sum /etc/apt/trusted.gpg.d/proxmox-ve-release-6.x.gpg
f3f6c5a3a67baf38ad178e5ff1ee270c /etc/apt/trusted.gpg.d/proxmox-ve-release-6.x.gpg
3.2. System Software Updates
We provide regular package updates on all repositories. You can install those update using the GUI, or you can directly run the CLI command apt-get:
apt-get update
apt-get dist-upgrade
Note
The apt package management system is extremely flexible and provides countless of feature - see man apt-get or [Hertzog13] for additional information.
You should do such updates at regular intervals, or when we release versions with security related fixes. Major system upgrades are announced at the Proxmox VE Community Forum. Those announcement also contain detailed upgrade instructions.
Tip
We recommend to run regular upgrades, because it is important to get the latest security updates.
3.3. Network Configuration
Network configuration can be done either via the GUI, or by manually editing the file /etc/network/interfaces, which contains the whole network configuration. The interfaces(5) manual page contains the complete format description. All Proxmox VE tools try hard to keep direct user modifications, but using the GUI is still preferable, because it protects you from errors.
Once the network is configured, you can use the Debian traditional tools ifup and ifdown commands to bring interfaces up and down.
Note
Proxmox VE does not write changes directly to /etc/network/interfaces. Instead, we write into a temporary file called /etc/network/interfaces.new, and commit those changes when you reboot the node.
3.3.1. Naming Conventions
We currently use the following naming conventions for device names:
This makes it easier to debug networks problems, because the device name implies the device type.
Systemd Network Interface Names
Systemd uses the two character prefix en for Ethernet network devices. The next characters depends on the device driver and the fact which schema matches first.
The most common patterns are:
For more information see Predictable Network Interface Names.
3.3.2. Choosing a network configuration
Depending on your current network organization and your resources you can choose either a bridged, routed, or masquerading networking setup.
Proxmox VE server in a private LAN, using an external gateway to reach the internet
The Bridged model makes the most sense in this case, and this is also the default mode on new Proxmox VE installations. Each of your Guest system will have a virtual interface attached to the Proxmox VE bridge. This is similar in effect to having the Guest network card directly connected to a new switch on your LAN, the Proxmox VE host playing the role of the switch.
Proxmox VE server at hosting provider, with public IP ranges for Guests
For this setup, you can use either a Bridged or Routed model, depending on what your provider allows.
Proxmox VE server at hosting provider, with a single public IP address
In that case the only way to get outgoing network accesses for your guest systems is to use Masquerading. For incoming network access to your guests, you will need to configure Port Forwarding.
For further flexibility, you can configure VLANs (IEEE 802.1q) and network bonding, also known as "link aggregation". That way it is possible to build complex and flexible virtual networks.
3.3.3. Default Configuration using a Bridge
Bridges are like physical network switches implemented in software. All VMs can share a single bridge, or you can create multiple bridges to separate network domains. Each host can have up to 4094 bridges.
The installation program creates a single bridge named vmbr0, which is connected to the first Ethernet card. The corresponding configuration in /etc/network/interfaces might look like this:
auto lo
iface lo inet loopback
iface eno1 inet manual
auto vmbr0
iface vmbr0 inet static
address 192.168.10.2
netmask 255.255.255.0
gateway 192.168.10.1
bridge_ports eno1
bridge_stp off
bridge_fd 0
Virtual machines behave as if they were directly connected to the physical network. The network, in turn, sees each virtual machine as having its own MAC, even though there is only one network cable connecting all of these VMs to the network.
3.3.4. Routed Configuration
Most hosting providers do not support the above setup. For security reasons, they disable networking as soon as they detect multiple MAC addresses on a single interface.
Tip
Some providers allows you to register additional MACs on their management interface. This avoids the problem, but is clumsy to configure because you need to register a MAC for each of your VMs.
You can avoid the problem by “routing” all traffic via a single interface. This makes sure that all network packets use the same MAC address.
A common scenario is that you have a public IP (assume 198.51.100.5 for this example), and an additional IP block for your VMs (203.0.113.16/29). We recommend the following setup for such situations:
auto lo
iface lo inet loopback
auto eno1
iface eno1 inet static
address 198.51.100.5
netmask 255.255.255.0
gateway 198.51.100.1
post-up echo 1 > /proc/sys/net/ipv4/ip_forward
post-up echo 1 > /proc/sys/net/ipv4/conf/eno1/proxy_arp
auto vmbr0
iface vmbr0 inet static
address 203.0.113.17
netmask 255.255.255.248
bridge_ports none
bridge_stp off
bridge_fd 0
3.3.5. Masquerading (NAT) with iptables
Masquerading allows guests having only a private IP address to access the network by using the host IP address for outgoing traffic. Each outgoing packet is rewritten by iptables to appear as originating from the host, and responses are rewritten accordingly to be routed to the original sender.
auto lo
iface lo inet loopback
auto eno1
#real IP address
iface eno1 inet static
address 198.51.100.5
netmask 255.255.255.0
gateway 198.51.100.1
auto vmbr0
#private sub network
iface vmbr0 inet static
address 10.10.10.1
netmask 255.255.255.0
bridge_ports none
bridge_stp off
bridge_fd 0
post-up echo 1 > /proc/sys/net/ipv4/ip_forward
post-up iptables -t nat -A POSTROUTING -s '10.10.10.0/24' -o eno1 -j MASQUERADE
post-down iptables -t nat -D POSTROUTING -s '10.10.10.0/24' -o eno1 -j MASQUERADE
3.3.6. Linux Bond
Bonding (also called NIC teaming or Link Aggregation) is a technique for binding multiple NIC’s to a single network device. It is possible to achieve different goals, like make the network fault-tolerant, increase the performance or both together.
High-speed hardware like Fibre Channel and the associated switching hardware can be quite expensive. By doing link aggregation, two NICs can appear as one logical interface, resulting in double speed. This is a native Linux kernel feature that is supported by most switches. If your nodes have multiple Ethernet ports, you can distribute your points of failure by running network cables to different switches and the bonded connection will failover to one cable or the other in case of network trouble.
Aggregated links can improve live-migration delays and improve the speed of replication of data between Proxmox VE Cluster nodes.
There are 7 modes for bonding:
If your switch support the LACP (IEEE 802.3ad) protocol then we recommend using the corresponding bonding mode (802.3ad). Otherwise you should generally use the active-backup mode. If you intend to run your cluster network on the bonding interfaces, then you have to use active-passive mode on the bonding interfaces, other modes are unsupported.
The following bond configuration can be used as distributed/shared storage network. The benefit would be that you get more speed and the network will be fault-tolerant.
Example: Use bond with fixed IP address.
auto lo
iface lo inet loopback
iface eno1 inet manual
iface eno2 inet manual
auto bond0
iface bond0 inet static
slaves eno1 eno2
address 192.168.1.2
netmask 255.255.255.0
bond_miimon 100
bond_mode 802.3ad
bond_xmit_hash_policy layer2+3
auto vmbr0
iface vmbr0 inet static
address 10.10.10.2
netmask 255.255.255.0
gateway 10.10.10.1
bridge_ports eno1
bridge_stp off
bridge_fd 0
Another possibility it to use the bond directly as bridge port. This can be used to make the guest network fault-tolerant.
Example: Use a bond as bridge port.
auto lo
iface lo inet loopback
iface eno1 inet manual
iface eno2 inet manual
auto bond0
iface bond0 inet manual
slaves eno1 eno2
bond_miimon 100
bond_mode 802.3ad
bond_xmit_hash_policy layer2+3
auto vmbr0
iface vmbr0 inet static
address 10.10.10.2
netmask 255.255.255.0
gateway 10.10.10.1
bridge_ports bond0
bridge_stp off
bridge_fd 0
3.3.7. VLAN 802.1Q
A virtual LAN (VLAN) is a broadcast domain that is partitioned and isolated in the network at layer two. So it is possible to have multiple networks (4096) in a physical network, each independent of the other ones.
Each VLAN network is identified by a number often called tag. Network packages are then tagged to identify which virtual network they belong to.
VLAN for Guest Networks
Proxmox VE supports this setup out of the box. You can specify the VLAN tag when you create a VM. The VLAN tag is part of the guest network configuration. The networking layer supports different modes to implement VLANs, depending on the bridge configuration:
VLAN on the Host
To allow host communication with an isolated network. It is possible to apply VLAN tags to any network device (NIC, Bond, Bridge). In general, you should configure the VLAN on the interface with the least abstraction layers between itself and the physical NIC.
For example, in a default configuration where you want to place the host management address on a separate VLAN.
Example: Use VLAN 5 for the Proxmox VE management IP with traditional Linux bridge.
auto lo
iface lo inet loopback
iface eno1 inet manual
iface eno1.5 inet manual
auto vmbr0v5
iface vmbr0v5 inet static
address 10.10.10.2
netmask 255.255.255.0
gateway 10.10.10.1
bridge_ports eno1.5
bridge_stp off
bridge_fd 0
auto vmbr0
iface vmbr0 inet manual
bridge_ports eno1
bridge_stp off
bridge_fd 0
Example: Use VLAN 5 for the Proxmox VE management IP with VLAN aware Linux bridge.
auto lo
iface lo inet loopback
iface eno1 inet manual
auto vmbr0.5
iface vmbr0.5 inet static
address 10.10.10.2
netmask 255.255.255.0
gateway 10.10.10.1
auto vmbr0
iface vmbr0 inet manual
bridge_ports eno1
bridge_stp off
bridge_fd 0
bridge_vlan_aware yes
The next example is the same setup but a bond is used to make this network fail-safe.
Example: Use VLAN 5 with bond0 for the Proxmox VE management IP with traditional Linux bridge.
auto lo
iface lo inet loopback
iface eno1 inet manual
iface eno2 inet manual
auto bond0
iface bond0 inet manual
slaves eno1 eno2
bond_miimon 100
bond_mode 802.3ad
bond_xmit_hash_policy layer2+3
iface bond0.5 inet manual
auto vmbr0v5
iface vmbr0v5 inet static
address 10.10.10.2
netmask 255.255.255.0
gateway 10.10.10.1
bridge_ports bond0.5
bridge_stp off
bridge_fd 0
auto vmbr0
iface vmbr0 inet manual
bridge_ports bond0
bridge_stp off
bridge_fd 0
3.4. Time Synchronization
The Proxmox VE cluster stack itself relies heavily on the fact that all the nodes have precisely synchronized time. Some other components, like Ceph, also refuse to work properly if the local time on nodes is not in sync.
Time synchronization between nodes can be achieved with the “Network Time Protocol” (NTP). Proxmox VE uses systemd-timesyncd as NTP client by default, preconfigured to use a set of public servers. This setup works out of the box in most cases.
3.4.1. Using Custom NTP Servers
In some cases, it might be desired to not use the default NTP servers. For example, if your Proxmox VE nodes do not have access to the public internet (e.g., because of restrictive firewall rules), you need to setup local NTP servers and tell systemd-timesyncd to use them:
File /etc/systemd/timesyncd.conf.
[Time]
NTP=ntp1.example.com ntp2.example.com ntp3.example.com ntp4.example.com
After restarting the synchronization service (systemctl restart systemd-timesyncd) you should verify that your newly configured NTP servers are used by checking the journal (journalctl --since -1h -u systemd-timesyncd):
...
Oct 07 14:58:36 node1 systemd[1]: Stopping Network Time Synchronization...
Oct 07 14:58:36 node1 systemd[1]: Starting Network Time Synchronization...
Oct 07 14:58:36 node1 systemd[1]: Started Network Time Synchronization.
Oct 07 14:58:36 node1 systemd-timesyncd[13514]: Using NTP server 10.0.0.1:123 (ntp1.example.com).
Oct 07 14:58:36 nora systemd-timesyncd[13514]: interval/delta/delay/jitter/drift 64s/-0.002s/0.020s/0.000s/-31ppm
...
3.5. External Metric Server
Starting with Proxmox VE 4.0, you can define external metric servers, which will be sent various stats about your hosts, virtual machines and storages.
Currently supported are:
The server definitions are saved in /etc/pve/status.cfg
3.5.1. Graphite server configuration
The definition of a server is:
graphite: your-id
server your-server
port your-port
path your-path
where your-port defaults to 2003 and your-path defaults to proxmox
Proxmox VE sends the data over UDP, so the graphite server has to be configured for this.
3.5.2. Influxdb plugin configuration
The definition is:
influxdb: your-id
server your-server
port your-port
Proxmox VE sends the data over UDP, so the influxdb server has to be configured for this.
Here is an example configuration for influxdb (on your influxdb server):
[[udp]]
enabled = true
bind-address = "0.0.0.0:8089"
database = "proxmox"
batch-size = 1000
batch-timeout = "1s"
With this configuration, your server listens on all IP addresses on port 8089, and writes the data in the proxmox database
3.5.3. Multiple Definitions and Example
The id is optional, but if you want to have multiple definitions of a single type, then the ids must be defined and different from each other.
Here is an example of a finished status.cfg
graphite:
server 10.0.0.5
influxdb: influx1
server 10.0.0.6
port 8089
influxdb: influx2
server 10.0.0.7
port 8090
3.6. Disk Health Monitoring
Although a robust and redundant storage is recommended, it can be very helpful to monitor the health of your local disks.
Starting with Proxmox VE 4.3, the package smartmontools [1] is installed and required. This is a set of tools to monitor and control the S.M.A.R.T. system for local hard disks.
You can get the status of a disk by issuing the following command:
smartctl -a /dev/sdX
where /dev/sdX is the path to one of your local disks.
If the output says:
SMART support is: Disabled
you can enable it with the command:
smartctl -s on /dev/sdX
For more information on how to use smartctl, please see man smartctl.
By default, smartmontools daemon smartd is active and enabled, and scans the disks under /dev/sdX and /dev/hdX every 30 minutes for errors and warnings, and sends an e-mail to root if it detects a problem.
For more information about how to configure smartd, please see man smartd and man smartd.conf.
If you use your hard disks with a hardware raid controller, there are most likely tools to monitor the disks in the raid array and the array itself. For more information about this, please refer to the vendor of your raid controller.
[1] smartmontools homepage https://www.smartmontools.org
3.7. Logical Volume Manager (LVM)
Most people install Proxmox VE directly on a local disk. The Proxmox VE installation CD offers several options for local disk management, and the current default setup uses LVM. The installer let you select a single disk for such setup, and uses that disk as physical volume for the Volume Group (VG) pve. The following output is from a test installation using a small 8GB disk:
pvs
PV VG Fmt Attr PSize PFree
/dev/sda3 pve lvm2 a-- 7.87g 876.00m
vgs
VG #PV #LV #SN Attr VSize VFree
pve 1 3 0 wz--n- 7.87g 876.00m
The installer allocates three Logical Volumes (LV) inside this VG:
lvs
LV VG Attr LSize Pool Origin Data% Meta%
data pve twi-a-tz-- 4.38g 0.00 0.63
root pve -wi-ao---- 1.75g
swap pve -wi-ao---- 896.00m
root
Formatted as ext4, and contains the operation system.
swap
Swap partition
data
This volume uses LVM-thin, and is used to store VM images. LVM-thin is preferable for this task, because it offers efficient support for snapshots and clones.
For Proxmox VE versions up to 4.1, the installer creates a standard logical volume called “data”, which is mounted at /var/lib/vz.
Starting from version 4.2, the logical volume “data” is a LVM-thin pool, used to store block based guest images, and /var/lib/vz is simply a directory on the root file system.
3.7.1. Hardware
We highly recommend to use a hardware RAID controller (with BBU) for such setups. This increases performance, provides redundancy, and make disk replacements easier (hot-pluggable).
LVM itself does not need any special hardware, and memory requirements are very low.
3.7.2. Bootloader
We install two boot loaders by default. The first partition contains the standard GRUB boot loader. The second partition is an EFI System Partition (ESP), which makes it possible to boot on EFI systems.
3.7.3. Creating a Volume Group
Let’s assume we have an empty disk /dev/sdb, onto which we want to create a volume group named “vmdata”.
Caution
Please note that the following commands will destroy all existing data on /dev/sdb.
First create a partition.
sgdisk -N 1 /dev/sdb
Create a Physical Volume (PV) without confirmation and 250K metadatasize.
pvcreate --metadatasize 250k -y -ff /dev/sdb1
Create a volume group named “vmdata” on /dev/sdb1
vgcreate vmdata /dev/sdb1
3.7.4. Creating an extra LV for /var/lib/vz
This can be easily done by creating a new thin LV.
lvcreate -n <Name> -V <Size[M,G,T]> <VG>/<LVThin_pool>
A real world example:
lvcreate -n vz -V 10G pve/data
Now a filesystem must be created on the LV.
mkfs.ext4 /dev/pve/vz
At last this has to be mounted.
Warning
be sure that /var/lib/vz is empty. On a default installation it’s not.
To make it always accessible add the following line in /etc/fstab.
echo '/dev/pve/vz /var/lib/vz ext4 defaults 0 2' >> /etc/fstab
3.7.5. Resizing the thin pool
Resize the LV and the metadata pool can be achieved with the following command.
lvresize --size +<size[\M,G,T]> --poolmetadatasize +<size[\M,G]> <VG>/<LVThin_pool>
Note
When extending the data pool, the metadata pool must also be extended.
3.7.6. Create a LVM-thin pool
A thin pool has to be created on top of a volume group. How to create a volume group see Section LVM.
lvcreate -L 80G -T -n vmstore vmdata
3.8. ZFS on Linux
ZFS is a combined file system and logical volume manager designed by Sun Microsystems. Starting with Proxmox VE 3.4, the native Linux kernel port of the ZFS file system is introduced as optional file system and also as an additional selection for the root file system. There is no need for manually compile ZFS modules - all packages are included.
By using ZFS, its possible to achieve maximum enterprise features with low budget hardware, but also high performance systems by leveraging SSD caching or even SSD only setups. ZFS can replace cost intense hardware raid cards by moderate CPU and memory load combined with easy management.
General ZFS advantages
3.8.1. Hardware
ZFS depends heavily on memory, so you need at least 8GB to start. In practice, use as much you can get for your hardware/budget. To prevent data corruption, we recommend the use of high quality ECC RAM.
If you use a dedicated cache and/or log disk, you should use an enterprise class SSD (e.g. Intel SSD DC S3700 Series). This can increase the overall performance significantly.
Important
Do not use ZFS on top of hardware controller which has its own cache management. ZFS needs to directly communicate with disks. An HBA adapter is the way to go, or something like LSI controller flashed in “IT” mode.
If you are experimenting with an installation of Proxmox VE inside a VM (Nested Virtualization), don’t use virtio for disks of that VM, since they are not supported by ZFS. Use IDE or SCSI instead (works also with virtio SCSI controller type).
3.8.2. Installation as Root File System
When you install using the Proxmox VE installer, you can choose ZFS for the root file system. You need to select the RAID type at installation time:
RAID0 | Also called “striping”. The capacity of such volume is the sum of the capacities of all disks. But RAID0 does not add any redundancy, so the failure of a single drive makes the volume unusable. |
RAID1 | Also called “mirroring”. Data is written identically to all disks. This mode requires at least 2 disks with the same size. The resulting capacity is that of a single disk. |
RAID10 | A combination of RAID0 and RAID1. Requires at least 4 disks. |
RAIDZ-1 | A variation on RAID-5, single parity. Requires at least 3 disks. |
RAIDZ-2 | A variation on RAID-5, double parity. Requires at least 4 disks. |
RAIDZ-3 | A variation on RAID-5, triple parity. Requires at least 5 disks. |
The installer automatically partitions the disks, creates a ZFS pool called rpool, and installs the root file system on the ZFS subvolume rpool/ROOT/pve-1.
Another subvolume called rpool/data is created to store VM images. In order to use that with the Proxmox VE tools, the installer creates the following configuration entry in /etc/pve/storage.cfg:
zfspool: local-zfs
pool rpool/data
sparse
content images,rootdir
After installation, you can view your ZFS pool status using the zpool command:
zpool status
pool: rpool
state: ONLINE
scan: none requested
config:
NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
sda2 ONLINE 0 0 0
sdb2 ONLINE 0 0 0
mirror-1 ONLINE 0 0 0
sdc ONLINE 0 0 0
sdd ONLINE 0 0 0
errors: No known data errors
The zfs command is used configure and manage your ZFS file systems. The following command lists all file systems after installation:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
rpool 4.94G 7.68T 96K /rpool
rpool/ROOT 702M 7.68T 96K /rpool/ROOT
rpool/ROOT/pve-1 702M 7.68T 702M /
rpool/data 96K 7.68T 96K /rpool/data
rpool/swap 4.25G 7.69T 64K -
3.8.3. Bootloader
Depending on whether the system is booted in EFI or legacy BIOS mode the Proxmox VE installer sets up either grub or systemd-boot as main bootloader. See the chapter on Proxmox VE host bootladers Section 3.10, “Host Bootloader” for details.
3.8.4. ZFS Administration
This section gives you some usage examples for common tasks. ZFS itself is really powerful and provides many options. The main commands to manage ZFS are zfs and zpool. Both commands come with great manual pages, which can be read with:
man zpool
man zfs
Create a new zpool. To create a new pool, at least one disk is needed. The ashift should have the same sector-size (2 power of ashift) or larger as the underlying disk.
zpool create -f -o ashift=12 <pool> <device>
To activate compression
zfs set compression=lz4 <pool>
Create a new pool with RAID-0. Minimum 1 Disk
zpool create -f -o ashift=12 <pool> <device1> <device2>
Create a new pool with RAID-1. Minimum 2 Disks
zpool create -f -o ashift=12 <pool> mirror <device1> <device2>
Create a new pool with RAID-10. Minimum 4 Disks
zpool create -f -o ashift=12 <pool> mirror <device1> <device2> mirror <device3> <device4>
Create a new pool with RAIDZ-1. Minimum 3 Disks
zpool create -f -o ashift=12 <pool> raidz1 <device1> <device2> <device3>
Create a new pool with RAIDZ-2. Minimum 4 Disks
zpool create -f -o ashift=12 <pool> raidz2 <device1> <device2> <device3> <device4>
Create a new pool with cache (L2ARC). It is possible to use a dedicated cache drive partition to increase the performance (use SSD).
As <device> it is possible to use more devices, like it’s shown in "Create a new pool with RAID*".
zpool create -f -o ashift=12 <pool> <device> cache <cache_device>
Create a new pool with log (ZIL). It is possible to use a dedicated cache drive partition to increase the performance(SSD).
As <device> it is possible to use more devices, like it’s shown in "Create a new pool with RAID*".
zpool create -f -o ashift=12 <pool> <device> log <log_device>
Add cache and log to an existing pool. If you have an pool without cache and log. First partition the SSD in 2 partition with parted or gdisk
Important
Always use GPT partition tables.
The maximum size of a log device should be about half the size of physical memory, so this is usually quite small. The rest of the SSD can be used as cache.
zpool add -f <pool> log <device-part1> cache <device-part2>
Changing a failed device.
zpool replace -f <pool> <old device> <new device>
Changing a failed bootable device when using systemd-boot.
sgdisk <healthy bootable device> -R <new device>
sgdisk -G <new device>
zpool replace -f <pool> <old zfs partition> <new zfs partition>
pve-efiboot-tool format <new disk's ESP>
pve-efiboot-tool init <new disk's ESP>
Note
ESP stands for EFI System Partition, which is setup as partition #2 on bootable disks setup by the Proxmox VE installer since version 5.4. For details, see Setting up a new partition for use as synced ESP Setting up a new partition for use as synced ESP.
3.8.5. Activate E-Mail Notification
ZFS comes with an event daemon, which monitors events generated by the ZFS kernel module. The daemon can also send emails on ZFS events like pool errors. Newer ZFS packages ships the daemon in a separate package, and you can install it using apt-get:
apt-get install zfs-zed
To activate the daemon it is necessary to edit /etc/zfs/zed.d/zed.rc with your favourite editor, and uncomment the ZED_EMAIL_ADDR setting:
ZED_EMAIL_ADDR="root"
Please note Proxmox VE forwards mails to root to the email address configured for the root user.
Important
The only setting that is required is ZED_EMAIL_ADDR. All other settings are optional.
3.8.6. Limit ZFS Memory Usage
It is good to use at most 50 percent (which is the default) of the system memory for ZFS ARC to prevent performance shortage of the host. Use your preferred editor to change the configuration in /etc/modprobe.d/zfs.conf and insert:
options zfs zfs_arc_max=8589934592
This example setting limits the usage to 8GB.
Important
If your root file system is ZFS you must update your initramfs every time this value changes:
update-initramfs -u
3.8.7. SWAP on ZFS
Swap-space created on a zvol may generate some troubles, like blocking the server or generating a high IO load, often seen when starting a Backup to an external Storage.
We strongly recommend to use enough memory, so that you normally do not run into low memory situations. Should you need or want to add swap, it is preferred to create a partition on a physical disk and use it as swapdevice. You can leave some space free for this purpose in the advanced options of the installer. Additionally, you can lower the “swappiness” value. A good value for servers is 10:
sysctl -w vm.swappiness=10
To make the swappiness persistent, open /etc/sysctl.conf with an editor of your choice and add the following line:
vm.swappiness = 10
Table 3.1. Linux kernel swappiness parameter values
Value	Strategy
vm.swappiness = 0 | The kernel will swap only to avoid an out of memory condition |
vm.swappiness = 1 | Minimum amount of swapping without disabling it entirely. |
vm.swappiness = 10 | This value is sometimes recommended to improve performance when sufficient memory exists in a system. |
vm.swappiness = 60 | The default value. |
vm.swappiness = 100 | The kernel will swap aggressively. |
3.8.8. Encrypted ZFS Datasets
ZFS on Linux version 0.8.0 introduced support for native encryption of datasets. After an upgrade from previous ZFS on Linux versions, the encryption feature can be enabled per pool:
zpool get feature@encryption tank
NAME PROPERTY VALUE SOURCE
tank feature@encryption disabled local
zpool set feature@encryption=enabled
zpool get feature@encryption tank
NAME PROPERTY VALUE SOURCE
tank feature@encryption enabled local
Warning
There is currently no support for booting from pools with encrypted datasets using Grub, and only limited support for automatically unlocking encrypted datasets on boot. Older versions of ZFS without encryption support will not be able to decrypt stored data.
Note
It is recommended to either unlock storage datasets manually after booting, or to write a custom unit to pass the key material needed for unlocking on boot to zfs load-key.
Warning
Establish and test a backup procedure before enabling encryption of production data.If the associated key material/passphrase/keyfile has been lost, accessing the encrypted data is no longer possible.
Encryption needs to be setup when creating datasets/zvols, and is inherited by default to child datasets. For example, to create an encrypted dataset tank/encrypted_data and configure it as storage in Proxmox VE, run the following commands:
zfs create -o encryption=on -o keyformat=passphrase tank/encrypted_data
Enter passphrase:
Re-enter passphrase:
pvesm add zfspool encrypted_zfs -pool tank/encrypted_data
All guest volumes/disks create on this storage will be encrypted with the shared key material of the parent dataset.
To actually use the storage, the associated key material needs to be loaded with zfs load-key:
zfs load-key tank/encrypted_data
Enter passphrase for 'tank/encrypted_data':
It is also possible to use a (random) keyfile instead of prompting for a passphrase by setting the keylocation and keyformat properties, either at creation time or with zfs change-key on existing datasets:
dd if=/dev/urandom of=/path/to/keyfile bs=32 count=1
zfs change-key -o keyformat=raw -o keylocation=file:///path/to/keyfile tank/encrypted_data
Warning
When using a keyfile, special care needs to be taken to secure the keyfile against unauthorized access or accidental loss. Without the keyfile, it is not possible to access the plaintext data!
A guest volume created underneath an encrypted dataset will have its encryptionroot property set accordingly. The key material only needs to be loaded once per encryptionroot to be available to all encrypted datasets underneath it.
See the encryptionroot, encryption, keylocation, keyformat and keystatus properties, the zfs load-key, zfs unload-key and zfs change-key commands and the Encryption section from man zfs for more details and advanced usage.
3.9. Certificate Management
3.9.1. Certificates for communication within the cluster
Each Proxmox VE cluster creates its own (self-signed) Certificate Authority (CA) and generates a certificate for each node which gets signed by the aforementioned CA. These certificates are used for encrypted communication with the cluster’s pveproxy service and the Shell/Console feature if SPICE is used.
The CA certificate and key are stored in the Proxmox Cluster File System (pmxcfs) Chapter 7, Proxmox Cluster File System (pmxcfs).
3.9.2. Certificates for API and web GUI
The REST API and web GUI are provided by the pveproxy service, which runs on each node.
You have the following options for the certificate used by pveproxy:
For options 2 and 3 the file /etc/pve/local/pveproxy-ssl.pem (and /etc/pve/local/pveproxy-ssl.key, which needs to be without password) is used.
Certificates are managed with the Proxmox VE Node management command (see the pvenode(1) manpage).
Warning
Do not replace or manually modify the automatically generated node certificate files in /etc/pve/local/pve-ssl.pem and /etc/pve/local/pve-ssl.key or the cluster CA files in /etc/pve/pve-root-ca.pem and /etc/pve/priv/pve-root-ca.key.
Getting trusted certificates via ACME
Proxmox VE includes an implementation of the Automatic Certificate Management Environment ACME protocol, allowing Proxmox VE admins to interface with Let’s Encrypt for easy setup of trusted TLS certificates which are accepted out of the box on most modern operating systems and browsers.
Currently the two ACME endpoints implemented are Let’s Encrypt (LE) and its staging environment (see https://letsencrypt.org), both using the standalone HTTP challenge.
Because of rate-limits you should use LE staging for experiments.
There are a few prerequisites to use Let’s Encrypt:
At the moment the GUI uses only the default ACME account.
Example: Sample pvenode invocation for using Let’s Encrypt certificates.
root@proxmox:~# pvenode acme account register default mail@example.invalid
Directory endpoints:
0) Let's Encrypt V2 (https://acme-v02.api.letsencrypt.org/directory)
1) Let's Encrypt V2 Staging (https://acme-staging-v02.api.letsencrypt.org/directory)
2) Custom
Enter selection:
1
Attempting to fetch Terms of Service from 'https://acme-staging-v02.api.letsencrypt.org/directory'..
Terms of Service: https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
Do you agree to the above terms? [y|N]y
Attempting to register account with 'https://acme-staging-v02.api.letsencrypt.org/directory'..
Generating ACME account key..
Registering ACME account..
Registration successful, account URL: 'https://acme-staging-v02.api.letsencrypt.org/acme/acct/xxxxxxx'
Task OK
root@proxmox:~# pvenode acme account list
default
root@proxmox:~# pvenode config set --acme domains=example.invalid
root@proxmox:~# pvenode acme cert order
Loading ACME account details
Placing ACME order
Order URL: https://acme-staging-v02.api.letsencrypt.org/acme/order/xxxxxxxxxxxxxx
Getting authorization details from
'https://acme-staging-v02.api.letsencrypt.org/acme/authz/xxxxxxxxxxxxxxxxxxxxx-xxxxxxxxxxxxx-xxxxxxx'
... pending!
Setting up webserver
Triggering validation
Sleeping for 5 seconds
Status is 'valid'!
All domains validated!
Creating CSR
Finalizing order
Checking order status
valid!
Downloading certificate
Setting pveproxy certificate and key
Restarting pveproxy
Task OK
Switching from the staging to the regular ACME directory
Changing the ACME directory for an account is unsupported. If you want to switch an account from the staging ACME directory to the regular, trusted, one you need to deactivate it and recreate it.
This procedure is also needed to change the default ACME account used in the GUI.
Example: Changing the default ACME account from the staging to the regular directory.
root@proxmox:~# pvenode acme account info default
Directory URL: https://acme-staging-v02.api.letsencrypt.org/directory
Account URL: https://acme-staging-v02.api.letsencrypt.org/acme/acct/6332194
Terms Of Service: https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
Account information:
ID: xxxxxxx
Contact:
- mailto:example@proxmox.com
Creation date: 2018-07-31T08:41:44.54196435Z
Initial IP: 192.0.2.1
Status: valid
root@proxmox:~# pvenode acme account deactivate default
Renaming account file from '/etc/pve/priv/acme/default' to '/etc/pve/priv/acme/_deactivated_default_4'
Task OK
root@proxmox:~# pvenode acme account register default example@proxmox.com
Directory endpoints:
0) Let's Encrypt V2 (https://acme-v02.api.letsencrypt.org/directory)
1) Let's Encrypt V2 Staging (https://acme-staging-v02.api.letsencrypt.org/directory)
2) Custom
Enter selection:
0
Attempting to fetch Terms of Service from 'https://acme-v02.api.letsencrypt.org/directory'..
Terms of Service: https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf
Do you agree to the above terms? [y|N]y
Attempting to register account with 'https://acme-v02.api.letsencrypt.org/directory'..
Generating ACME account key..
Registering ACME account..
Registration successful, account URL: 'https://acme-v02.api.letsencrypt.org/acme/acct/39335247'
Task OK
Automatic renewal of ACME certificates
If a node has been successfully configured with an ACME-provided certificate (either via pvenode or via the GUI), the certificate will be automatically renewed by the pve-daily-update.service. Currently, renewal will be attempted if the certificate has expired or will expire in the next 30 days.
3.10. Host Bootloader
Proxmox VE currently uses one of two bootloaders depending on the disk setup selected in the installer.
For EFI Systems installed with ZFS as the root filesystem systemd-boot is used. All other deployments use the standard grub bootloader (this usually also applies to systems which are installed on top of Debian).
3.10.1. Partitioning scheme used by the installer
The Proxmox VE installer creates 3 partitions on the bootable disks selected for installation. The bootable disks are:
For ZFS installations all disks belonging to the first vdev:
The created partitions are:
grub in BIOS mode (--target i386-pc) is installed onto the BIOS Boot Partition of all bootable disks for supporting older systems.
3.10.2. Grub
grub has been the de-facto standard for booting Linux systems for many years and is quite well documented [2].
The kernel and initrd images are taken from /boot and its configuration file /boot/grub/grub.cfg gets updated by the kernel installation process.
Configuration
Changes to the grub configuration are done via the defaults file /etc/default/grub or config snippets in /etc/default/grub.d. To regenerate the /boot/grub/grub.cfg after a change to the configuration run:
`update-grub`.
3.10.3. Systemd-boot
systemd-boot is a lightweight EFI bootloader. It reads the kernel and initrd images directly from the EFI Service Partition (ESP) where it is installed. The main advantage of directly loading the kernel from the ESP is that it does not need to reimplement the drivers for accessing the storage. In the context of ZFS as root filesystem this means that you can use all optional features on your root pool instead of the subset which is also present in the ZFS implementation in grub or having to create a separate small boot-pool [3].
In setups with redundancy (RAID1, RAID10, RAIDZ*) all bootable disks (those being part of the first vdev) are partitioned with an ESP. This ensures the system boots even if the first boot device fails. The ESPs are kept in sync by a kernel postinstall hook script /etc/kernel/postinst.d/zz-pve-efiboot. The script copies certain kernel versions and the initrd images to EFI/proxmox/ on the root of each ESP and creates the appropriate config files in loader/entries/proxmox-*.conf. The pve-efiboot-tool script assists in managing both the synced ESPs themselves and their contents.
The following kernel versions are configured by default:
The ESPs are not kept mounted during regular operation, in contrast to grub, which keeps an ESP mounted on /boot/efi. This helps to prevent filesystem corruption to the vfat formatted ESPs in case of a system crash, and removes the need to manually adapt /etc/fstab in case the primary boot device fails.
Configuration
systemd-boot is configured via the file loader/loader.conf in the root directory of an EFI System Partition (ESP). See the loader.conf(5) manpage for details.
Each bootloader entry is placed in a file of its own in the directory loader/entries/
An example entry.conf looks like this (/ refers to the root of the ESP):
title Proxmox
version 5.0.15-1-pve
options root=ZFS=rpool/ROOT/pve-1 boot=zfs
linux /EFI/proxmox/5.0.15-1-pve/vmlinuz-5.0.15-1-pve
initrd /EFI/proxmox/5.0.15-1-pve/initrd.img-5.0.15-1-pve
Manually keeping a kernel bootable. Should you wish to add a certain kernel and initrd image to the list of bootable kernel use pve-efiboot-tool kernel add.
For example run the following to add the kernel with ABI version 5.0.15-1-pve to the list of kernels to keep installed and synced to all ESPs:
pve-efiboot-tool kernel add 5.0.15-1-pve
pve-efiboot-tool kernel list will list all kernel versions currently selected for booting:
pve-efiboot-tool kernel list
Manually selected kernels:
5.0.15-1-pve
Automatically selected kernels:
5.0.12-1-pve
4.15.18-18-pve
Run pve-efiboot-tool remove to remove a kernel from the list of manually selected kernels, for example:
pve-efiboot-tool kernel remove 5.0.15-1-pve
Note
It’s required to run pve-efiboot-tool refresh to update all EFI System Partitions (ESPs) after a manual kernel addition or removal from above.
Setting up a new partition for use as synced ESP. To format and initialize a partition as synced ESP, e.g., after replacing a failed vdev in an rpool, or when converting an existing system that pre-dates the sync mechanism, pve-efiboot-tool from pve-kernel-helpers can be used.
Warning
the format command will format the <partition>, make sure to pass in the right device/partition!
For example, to format an empty partition /dev/sda2 as ESP, run the following:
pve-efiboot-tool format /dev/sda2
To setup an existing, unmounted ESP located on /dev/sda2 for inclusion in Proxmox VE’s kernel update synchronization mechanism, use the following:
pve-efiboot-tool init /dev/sda2
Afterwards /etc/kernel/pve-efiboot-uuids should contain a new line with the UUID of the newly added partition. The init command will also automatically trigger a refresh of all configured ESPs.
Updating the configuration on all ESPs. To copy and configure all bootable kernels and keep all ESPs listed in /etc/kernel/pve-efiboot-uuids in sync you just need to run:
pve-efiboot-tool refresh
(The equivalent to running update-grub on Systems being booted with grub).
This is necessary should you make changes to the kernel commandline, or want to sync all kernels and initrds after regenerating the latter.
3.10.4. Editing the kernel commandline
You can modify the kernel commandline in the following places, depending on the bootloarder used:
Grub. The kernel commandline needs to be placed in the variable GRUB_CMDLINE_LINUX_DEFAULT in the file /etc/default/grub. Running update-grub appends its content to all linux entries in /boot/grub/grub.cfg.
Systemd-boot. The kernel commandline needs to be placed as line in /etc/kernel/cmdline Running /etc/kernel/postinst.d/zz-pve-efiboot sets it as option line for all config files in loader/entries/proxmox-*.conf.
[2] Grub Manual https://www.gnu.org/software/grub/manual/grub/grub.html
[3] Booting ZFS on root with grub https://github.com/zfsonlinux/zfs/wiki/Debian-Stretch-Root-on-ZFS
Chapter 4. Hyper-converged Infrastructure
Proxmox VE is a virtualization platform that tightly integrates compute, storage and networking resources, manages highly available clusters, backup/restore as well as disaster recovery. All components are software-defined and compatible with one another.
Therefore it is possible to administrate them like a single system via the centralized web management interface. These capabilities make Proxmox VE an ideal choice to deploy and manage an open source hyper-converged infrastructure.
4.1. Benefits of a Hyper-Converged Infrastructure (HCI) with Proxmox VE
A hyper-converged infrastructure is especially useful for deployments in which a high infrastructure demand meets a low administration budget, for distributed setups such as remote and branch office environments or for virtual private and public clouds.
HCI provides the following advantages:
4.2. Manage Ceph Services on Proxmox VE Nodes
Proxmox VE unifies your compute and storage systems, i.e. you can use the same physical nodes within a cluster for both computing (processing VMs and containers) and replicated storage. The traditional silos of compute and storage resources can be wrapped up into a single hyper-converged appliance. Separate storage networks (SANs) and connections via network attached storages (NAS) disappear. With the integration of Ceph, an open source software-defined storage platform, Proxmox VE has the ability to run and manage Ceph storage directly on the hypervisor nodes.
Ceph is a distributed object store and file system designed to provide excellent performance, reliability and scalability.
Some advantages of Ceph on Proxmox VE are:
For small to mid sized deployments, it is possible to install a Ceph server for RADOS Block Devices (RBD) directly on your Proxmox VE cluster nodes, see Ceph RADOS Block Devices (RBD) Section 8.14, “Ceph RADOS Block Devices (RBD)”. Recent hardware has plenty of CPU power and RAM, so running storage services and VMs on the same node is possible.
To simplify management, we provide pveceph - a tool to install and manage Ceph services on Proxmox VE nodes.
Ceph consists of a couple of Daemons [4], for use as a RBD storage:
Tip
We highly recommend to get familiar with Ceph’s architecture [5] and vocabulary [6].
4.2.1. Precondition
To build a hyper-converged Proxmox + Ceph Cluster there should be at least three (preferably) identical servers for the setup.
Check also the recommendations from Ceph’s website.
CPU. Higher CPU core frequency reduce latency and should be preferred. As a simple rule of thumb, you should assign a CPU core (or thread) to each Ceph service to provide enough resources for stable and durable Ceph performance.
Memory. Especially in a hyper-converged setup, the memory consumption needs to be carefully monitored. In addition to the intended workload from virtual machines and container, Ceph needs enough memory available to provide good and stable performance. As a rule of thumb, for roughly 1 TiB of data, 1 GiB of memory will be used by an OSD. OSD caching will use additional memory.
Network. We recommend a network bandwidth of at least 10 GbE or more, which is used exclusively for Ceph. A meshed network setup [7] is also an option if there are no 10 GbE switches available.
The volume of traffic, especially during recovery, will interfere with other services on the same network and may even break the Proxmox VE cluster stack.
Further, estimate your bandwidth needs. While one HDD might not saturate a 1 Gb link, multiple HDD OSDs per node can, and modern NVMe SSDs will even saturate 10 Gbps of bandwidth quickly. Deploying a network capable of even more bandwith will ensure that it isn’t your bottleneck and won’t be anytime soon, 25, 40 or even 100 GBps are possible.
Disks. When planning the size of your Ceph cluster, it is important to take the recovery time into consideration. Especially with small clusters, the recovery might take long. It is recommended that you use SSDs instead of HDDs in small setups to reduce recovery time, minimizing the likelihood of a subsequent failure event during recovery.
In general SSDs will provide more IOPs than spinning disks. This fact and the higher cost may make a class based Section 4.2.9, “Ceph CRUSH & device classes” separation of pools appealing. Another possibility to speedup OSDs is to use a faster disk as journal or DB/Write-Ahead-Log device, see creating Ceph OSDs Section 4.2.7, “Creating Ceph OSDs”. If a faster disk is used for multiple OSDs, a proper balance between OSD and WAL / DB (or journal) disk must be selected, otherwise the faster disk becomes the bottleneck for all linked OSDs.
Aside from the disk type, Ceph best performs with an even sized and distributed amount of disks per node. For example, 4 x 500 GB disks with in each node is better than a mixed setup with a single 1 TB and three 250 GB disk.
One also need to balance OSD count and single OSD capacity. More capacity allows to increase storage density, but it also means that a single OSD failure forces ceph to recover more data at once.
Avoid RAID. As Ceph handles data object redundancy and multiple parallel writes to disks (OSDs) on its own, using a RAID controller normally doesn’t improve performance or availability. On the contrary, Ceph is designed to handle whole disks on it’s own, without any abstraction in between. RAID controller are not designed for the Ceph use case and may complicate things and sometimes even reduce performance, as their write and caching algorithms may interfere with the ones from Ceph.
Warning
Avoid RAID controller, use host bus adapter (HBA) instead.
Note
Above recommendations should be seen as a rough guidance for choosing hardware. Therefore, it is still essential to adapt it to your specific needs, test your setup and monitor health and performance continuously.
4.2.2. Initial Ceph installation & configuration
With Proxmox VE you have the benefit of an easy to use installation wizard for Ceph. Click on one of your cluster nodes and navigate to the Ceph section in the menu tree. If Ceph is not already installed you will be offered to do so now.
The wizard is divided into different sections, where each needs to be finished successfully in order to use Ceph. After starting the installation the wizard will download and install all required packages from Proxmox VE’s ceph repository.
After finishing the first step, you will need to create a configuration. This step is only needed once per cluster, as this configuration is distributed automatically to all remaining cluster members through Proxmox VE’s clustered configuration file system (pmxcfs) Chapter 7, Proxmox Cluster File System (pmxcfs).
The configuration step includes the following settings:
You have two more options which are considered advanced and therefore should only changed if you are an expert.
Additionally you need to choose your first monitor node, this is required.
That’s it, you should see a success page as the last step with further instructions on how to go on. You are now prepared to start using Ceph, even though you will need to create additional monitors Section 4.2.5, “Creating Ceph Monitors”, create some OSDs Section 4.2.7, “Creating Ceph OSDs” and at least one pool Section 4.2.8, “Creating Ceph Pools”.
The rest of this chapter will guide you on how to get the most out of your Proxmox VE based Ceph setup, this will include aforementioned and more like CephFS Section 4.2.11, “CephFS” which is a very handy addition to your new Ceph cluster.
4.2.3. Installation of Ceph Packages
Use Proxmox VE Ceph installation wizard (recommended) or run the following command on each node:
pveceph install
This sets up an apt package repository in /etc/apt/sources.list.d/ceph.list and installs the required software.
4.2.4. Creating initial Ceph configuration
Use the Proxmox VE Ceph installation wizard (recommended) or run the following command on one node:
pveceph init --network 10.10.10.0/24
This creates an initial configuration at /etc/pve/ceph.conf with a dedicated network for ceph. That file is automatically distributed to all Proxmox VE nodes by using pmxcfs Chapter 7, Proxmox Cluster File System (pmxcfs). The command also creates a symbolic link from /etc/ceph/ceph.conf pointing to that file. So you can simply run Ceph commands without the need to specify a configuration file.
4.2.5. Creating Ceph Monitors
The Ceph Monitor (MON) [8] maintains a master copy of the cluster map. For high availability you need to have at least 3 monitors. One monitor will already be installed if you used the installation wizard. You wont need more than 3 monitors as long as your cluster is small to midsize, only really large clusters will need more than that.
On each node where you want to place a monitor (three monitors are recommended), create it by using the Ceph → Monitor tab in the GUI or run.
pveceph createmon
This will also install the needed Ceph Manager (ceph-mgr) by default. If you do not want to install a manager, specify the -exclude-manager option.
4.2.6. Creating Ceph Manager
The Manager daemon runs alongside the monitors, providing an interface for monitoring the cluster. Since the Ceph luminous release the ceph-mgr [9] daemon is required. During monitor installation the ceph manager will be installed as well.
Note
It is recommended to install the Ceph Manager on the monitor nodes. For high availability install more then one manager.
pveceph createmgr
4.2.7. Creating Ceph OSDs
via GUI or via CLI as follows:
pveceph createosd /dev/sd[X]
Tip
We recommend a Ceph cluster size, starting with 12 OSDs, distributed evenly among your, at least three nodes (4 OSDs on each node).
If the disk was used before (eg. ZFS/RAID/OSD), to remove partition table, boot sector and any OSD leftover the following command should be sufficient.
ceph-volume lvm zap /dev/sd[X] --destroy
Warning
The above command will destroy data on the disk!
Ceph Bluestore
Starting with the Ceph Kraken release, a new Ceph OSD storage type was introduced, the so called Bluestore [10]. This is the default when creating OSDs since Ceph Luminous.
pveceph createosd /dev/sd[X]
Block.db and block.wal. If you want to use a separate DB/WAL device for your OSDs, you can specify it through the -db_dev and -wal_dev options. The WAL is placed with the DB, if not specified separately.
pveceph createosd /dev/sd[X] -db_dev /dev/sd[Y] -wal_dev /dev/sd[Z]
You can directly choose the size for those with the -db_size and -wal_size paremeters respectively. If they are not given the following values (in order) will be used:
bluestore_block_{db,wal}_size from ceph configuration…
Note
The DB stores BlueStore’s internal metadata and the WAL is BlueStore’s internal journal or write-ahead log. It is recommended to use a fast SSD or NVRAM for better performance.
Ceph Filestore
Before Ceph Luminous, Filestore was used as default storage type for Ceph OSDs. Starting with Ceph Nautilus, Proxmox VE does not support creating such OSDs with pveceph anymore. If you still want to create filestore OSDs, use ceph-volume directly.
ceph-volume lvm create --filestore --data /dev/sd[X] --journal /dev/sd[Y]
4.2.8. Creating Ceph Pools
A pool is a logical group for storing objects. It holds Placement Groups (PG, pg_num), a collection of objects.
When no options are given, we set a default of 128 PGs, a size of 3 replicas and a min_size of 2 replicas for serving objects in a degraded state.
Note
The default number of PGs works for 2-5 disks. Ceph throws a HEALTH_WARNING if you have too few or too many PGs in your cluster.
It is advised to calculate the PG number depending on your setup, you can find the formula and the PG calculator [11] online. While PGs can be increased later on, they can never be decreased.
You can create pools through command line or on the GUI on each PVE host under Ceph → Pools.
pveceph createpool <name>
If you would like to automatically get also a storage definition for your pool, active the checkbox "Add storages" on the GUI or use the command line option --add_storages on pool creation.
Further information on Ceph pool handling can be found in the Ceph pool operation [12] manual.
4.2.9. Ceph CRUSH & device classes
The foundation of Ceph is its algorithm, Controlled Replication Under Scalable Hashing (CRUSH [13]).
CRUSH calculates where to store to and retrieve data from, this has the advantage that no central index service is needed. CRUSH works with a map of OSDs, buckets (device locations) and rulesets (data replication) for pools.
Note
Further information can be found in the Ceph documentation, under the section CRUSH map [14].
This map can be altered to reflect different replication hierarchies. The object replicas can be separated (eg. failure domains), while maintaining the desired distribution.
A common use case is to use different classes of disks for different Ceph pools. For this reason, Ceph introduced the device classes with luminous, to accommodate the need for easy ruleset generation.
The device classes can be seen in the ceph osd tree output. These classes represent their own root bucket, which can be seen with the below command.
ceph osd crush tree --show-shadow
Example output form the above command:
ID CLASS WEIGHT TYPE NAME
-16 nvme 2.18307 root default~nvme
-13 nvme 0.72769 host sumi1~nvme
12 nvme 0.72769 osd.12
-14 nvme 0.72769 host sumi2~nvme
13 nvme 0.72769 osd.13
-15 nvme 0.72769 host sumi3~nvme
14 nvme 0.72769 osd.14
-1 7.70544 root default
-3 2.56848 host sumi1
12 nvme 0.72769 osd.12
-5 2.56848 host sumi2
13 nvme 0.72769 osd.13
-7 2.56848 host sumi3
14 nvme 0.72769 osd.14
To let a pool distribute its objects only on a specific device class, you need to create a ruleset with the specific class first.
ceph osd crush rule create-replicated <rule-name> <root> <failure-domain> <class>
<rule-name> | name of the rule, to connect with a pool (seen in GUI & CLI) |
<root> | which crush root it should belong to (default ceph root "default") |
<failure-domain> | at which failure-domain the objects should be distributed (usually host) |
<class> | what type of OSD backing store to use (eg. nvme, ssd, hdd) |
Once the rule is in the CRUSH map, you can tell a pool to use the ruleset.
ceph osd pool set <pool-name> crush_rule <rule-name>
Tip
If the pool already contains objects, all of these have to be moved accordingly. Depending on your setup this may introduce a big performance hit on your cluster. As an alternative, you can create a new pool and move disks separately.
4.2.10. Ceph Client
You can then configure Proxmox VE to use such pools to store VM or Container images. Simply use the GUI too add a new RBD storage (see section Ceph RADOS Block Devices (RBD) Section 8.14, “Ceph RADOS Block Devices (RBD)”).
You also need to copy the keyring to a predefined location for a external Ceph cluster. If Ceph is installed on the Proxmox nodes itself, then this will be done automatically.
Note
The file name needs to be <storage_id> + `.keyring - <storage_id> is the expression after rbd: in /etc/pve/storage.cfg which is my-ceph-storage in the following example:
mkdir /etc/pve/priv/ceph
cp /etc/ceph/ceph.client.admin.keyring /etc/pve/priv/ceph/my-ceph-storage.keyring
4.2.11. CephFS
Ceph provides also a filesystem running on top of the same object storage as RADOS block devices do. A Metadata Server (MDS) is used to map the RADOS backed objects to files and directories, allowing to provide a POSIX-compliant replicated filesystem. This allows one to have a clustered highly available shared filesystem in an easy way if ceph is already used. Its Metadata Servers guarantee that files get balanced out over the whole Ceph cluster, this way even high load will not overload a single host, which can be an issue with traditional shared filesystem approaches, like NFS, for example.
Proxmox VE supports both, using an existing CephFS as storage Section 8.15, “Ceph Filesystem (CephFS)” to save backups, ISO files or container templates and creating a hyper-converged CephFS itself.
Metadata Server (MDS)
CephFS needs at least one Metadata Server to be configured and running to be able to work. One can simply create one through the Proxmox VE web GUI’s Node -> CephFS panel or on the command line with:
pveceph mds create
Multiple metadata servers can be created in a cluster. But with the default settings only one can be active at any time. If an MDS, or its node, becomes unresponsive (or crashes), another standby MDS will get promoted to active. One can speed up the hand-over between the active and a standby MDS up by using the hotstandby parameter option on create, or if you have already created it you may set/add:
mds standby replay = true
in the ceph.conf respective MDS section. With this enabled, this specific MDS will always poll the active one, so that it can take over faster as it is in a warm state. But naturally, the active polling will cause some additional performance impact on your system and active MDS.
Multiple Active MDS. Since Luminous (12.2.x) you can also have multiple active metadata servers running, but this is normally only useful for a high count on parallel clients, as else the MDS seldom is the bottleneck. If you want to set this up please refer to the ceph documentation. [15]
Create a CephFS
With Proxmox VE’s CephFS integration into you can create a CephFS easily over the Web GUI, the CLI or an external API interface. Some prerequisites are required for this to work:
Prerequisites for a successful CephFS setup:
After this got all checked and done you can simply create a CephFS through either the Web GUI’s Node -> CephFS panel or the command line tool pveceph, for example with:
pveceph fs create --pg_num 128 --add-storage
This creates a CephFS named ‘'cephfs'' using a pool for its data named `'cephfs_data'' with `128` placement groups and a pool for its metadata named 'cephfs_metadata'' with one quarter of the data pools placement groups (`32). Check the Proxmox VE managed Ceph pool chapter Section 4.2.8, “Creating Ceph Pools” or visit the Ceph documentation for more information regarding a fitting placement group number (pg_num) for your setup [16]. Additionally, the `--add-storage’ parameter will add the CephFS to the Proxmox VE storage configuration after it was created successfully.
Destroy CephFS
Warning
Destroying a CephFS will render all its data unusable, this cannot be undone!
If you really want to destroy an existing CephFS you first need to stop, or destroy, all metadata server (M̀DS). You can destroy them either over the Web GUI or the command line interface, with:
pveceph mds destroy NAME
on each Proxmox VE node hosting a MDS daemon.
Then, you can remove (destroy) CephFS by issuing a:
ceph fs rm NAME --yes-i-really-mean-it
on a single node hosting Ceph. After this you may want to remove the created data and metadata pools, this can be done either over the Web GUI or the CLI with:
pveceph pool destroy NAME
4.2.12. Ceph monitoring and troubleshooting
A good start is to continuosly monitor the ceph health from the start of initial deployment. Either through the ceph tools itself, but also by accessing the status through the Proxmox VE API.
The following ceph commands below can be used to see if the cluster is healthy (HEALTH_OK), if there are warnings (HEALTH_WARN), or even errors (HEALTH_ERR). If the cluster is in an unhealthy state the status commands below will also give you an overview on the current events and actions take.
single time output
pve# ceph -s
continuously output status changes (press CTRL+C to stop)
pve# ceph -w
To get a more detailed view, every ceph service has a log file under /var/log/ceph/ and if there is not enough detail, the log level can be adjusted [17].
You can find more information about troubleshooting [18] a Ceph cluster on its website.
[4] Ceph intro http://docs.ceph.com/docs/luminous/start/intro/
[5] Ceph architecture http://docs.ceph.com/docs/luminous/architecture/
[6] Ceph glossary http://docs.ceph.com/docs/luminous/glossary
[7] Full Mesh Network for Ceph https://pve.proxmox.com/wiki/Full_Mesh_Network_for_Ceph_Server
[8] Ceph Monitor http://docs.ceph.com/docs/luminous/start/intro/
[9] Ceph Manager http://docs.ceph.com/docs/luminous/mgr/
[10] Ceph Bluestore http://ceph.com/community/new-luminous-bluestore/
[11] PG calculator http://ceph.com/pgcalc/
[12] Ceph pool operation http://docs.ceph.com/docs/luminous/rados/operations/pools/
[13] CRUSH https://ceph.com/wp-content/uploads/2016/08/weil-crush-sc06.pdf
[14] CRUSH map http://docs.ceph.com/docs/luminous/rados/operations/crush-map/
[15] Configuring multiple active MDS daemons http://docs.ceph.com/docs/luminous/cephfs/multimds/
[16] Ceph Placement Groups http://docs.ceph.com/docs/luminous/rados/operations/placement-groups/
[17] Ceph log and debugging http://docs.ceph.com/docs/luminous/rados/troubleshooting/log-and-debug/
[18] Ceph troubleshooting http://docs.ceph.com/docs/luminous/rados/troubleshooting/
Chapter 5. Graphical User Interface
Proxmox VE is simple. There is no need to install a separate management tool, and everything can be done through your web browser (Latest Firefox or Google Chrome is preferred). A built-in HTML5 console is used to access the guest console. As an alternative, SPICE can be used.
Because we use the Proxmox cluster file system (pmxcfs), you can connect to any node to manage the entire cluster. Each node can manage the entire cluster. There is no need for a dedicated manager node.
You can use the web-based administration interface with any modern browser. When Proxmox VE detects that you are connecting from a mobile device, you are redirected to a simpler, touch-based user interface.
The web interface can be reached via https://youripaddress:8006 (default login is: root, and the password is specified during the installation process).
5.1. Features
5.2. Login
When you connect to the server, you will first see the login window. Proxmox VE supports various authentication backends (Realm), and you can select the language here. The GUI is translated to more than 20 languages.
Note
You can save the user name on the client side by selection the checkbox at the bottom. This saves some typing when you login next time.
5.3. GUI Overview
The Proxmox VE user interface consists of four regions.
Header | On top. Shows status information and contains buttons for most important actions. |
Resource Tree | At the left side. A navigation tree where you can select specific objects. |
Content Panel | Center region. Selected objects displays configuration options and status here. |
Log Panel | At the bottom. Displays log entries for recent tasks. You can double-click on those log entries to get more details, or to abort a running task. |
Note
You can shrink and expand the size of the resource tree and log panel, or completely hide the log panel. This can be helpful when you work on small displays and want more space to view other content.
5.3.1. Header
On the top left side, the first thing you see is the Proxmox logo. Next to it is the current running version of Proxmox VE. In the search bar nearside you can search for specific objects (VMs, containers, nodes, …). This is sometimes faster than selecting an object in the resource tree.
To the right of the search bar we see the identity (login name). The gear symbol is a button opening the My Settings dialog. There you can customize some client side user interface setting (reset the saved login name, reset saved layout).
The rightmost part of the header contains four buttons:
Help | Opens a new browser window showing the reference documentation. |
Create VM | Opens the virtual machine creation wizard. |
Create CT | Open the container creation wizard. |
Logout | Logout, and show the login dialog again. |
5.3.2. My Settings
The My Settings window allows you to set locally stored settings. These include the Dashboard Storages which allow you to enable or disable specific storages to be counted towards the total amount visible in the datacenter summary. If no storage is checked the total is the sum of all storages, same as enabling every single one.
Below the dashboard settings you find the stored user name and a button to clear it as well as a button to reset every layout in the GUI to its default.
On the right side there are xterm.js Settings. These contain the following options:
Font-Family | The font to be used in xterm.js (e.g. Arial). |
Font-Size | The preferred font size to be used. |
Letter Spacing | Increases or decreases spacing between letters in text. |
Line Height | Specify the absolute height of a line. |
5.3.3. Resource Tree
This is the main navigation tree. On top of the tree you can select some predefined views, which changes the structure of the tree below. The default view is Server View, and it shows the following object types:
Datacenter | Contains cluster wide setting (relevant for all nodes). |
Node | Represents the hosts inside a cluster, where the guests runs. |
Guest | VMs, Containers and Templates. |
Storage | Data Storage. |
Pool | It is possible to group guests using a pool to simplify management. |
The following view types are available:
Server View | Shows all kind of objects, grouped by nodes. |
Folder View | Shows all kind of objects, grouped by object type. |
Storage View | Only show storage objects, grouped by nodes. |
Pool View | Show VMs and Containers, grouped by pool. |
5.3.4. Log Panel
The main purpose of the log panel is to show you what is currently going on in your cluster. Actions like creating an new VM are executed in background, and we call such background job a task.
Any output from such task is saved into a separate log file. You can view that log by simply double-click a task log entry. It is also possible to abort a running task there.
Please note that we display most recent tasks from all cluster nodes here. So you can see when somebody else is working on another cluster node in real-time.
Note
We remove older and finished task from the log panel to keep that list short. But you can still find those tasks in the Task History within the node panel.
Some short running actions simply sends logs to all cluster members. You can see those messages in the Cluster log panel.
5.4. Content Panels
When you select something in the resource tree, the corresponding object displays configuration and status information in the content panel. The following sections give a brief overview of the functionality. Please refer to the individual chapters inside the reference documentation to get more detailed information.
5.4.1. Datacenter
On the datacenter level you can access cluster wide settings and information.
If you like to have more information about this see the corresponding chapter.
5.4.2. Nodes
Nodes in your cluster can be managed invidiually at this level.
The top header has useful buttons such as Reboot, Shutdown, Shell, Bulk Actions and Help. Shell has the options noVNC, SPICE and xterm.js. Bulk Actions has the options Bulk Start, Bulk Stop and Bulk Migrate.
5.4.3. Guests
There are two different kinds of guests and both can be converted to a template. One of them is a Kernel-based Virtual Machine (KVM) and the other one a Linux Container (LXC). Generally the navigation is the same, only some options are different.
In the main management center the VM navigation begins if a VM is selected in the left tree.
The top header contains important VM operation commands like Start, Shutdown, Reset, Remove, Migrate, Console and Help. Some of them have hidden buttons like Shutdown has Stop and Console contains the different console types SPICE, noVNC and xterm.js.
On the right side the content switches depending on the selected option.
On the left side. All available options are listed one below the other.
5.4.4. Storage
In this view we have a two partition split-view. On the left side we have the storage options and on the right side the content of the selected option will be shown.
5.4.5. Pools
In this view we have a two partition split view. On the left side we have the logical pool options and on the right side the content of the selected option will be shown.
Chapter 6. Cluster Manager
The Proxmox VE cluster manager pvecm is a tool to create a group of physical servers. Such a group is called a cluster. We use the Corosync Cluster Engine for reliable group communication, and such clusters can consist of up to 32 physical nodes (probably more, dependent on network latency).
pvecm can be used to create a new cluster, join nodes to a cluster, leave the cluster, get status information and do various other cluster related tasks. The Proxmox Cluster File System (“pmxcfs”) is used to transparently distribute the cluster configuration to all cluster nodes.
Grouping nodes into a cluster has the following advantages:
6.1. Requirements
Note
It is not possible to mix Proxmox VE 3.x and earlier with Proxmox VE 4.X cluster nodes.
Note
While it’s possible for Proxmox VE 4.4 and Proxmox VE 5.0 this is not supported as production configuration and should only used temporarily during upgrading the whole cluster from one to another major version.
Note
Running a cluster of Proxmox VE 6.x with earlier versions is not possible. The cluster protocol (corosync) between Proxmox VE 6.x and earlier versions changed fundamentally. The corosync 3 packages for Proxmox VE 5.4 are only intended for the upgrade procedure to Proxmox VE 6.0.
6.2. Preparing Nodes
First, install Proxmox VE on all nodes. Make sure that each node is installed with the final hostname and IP configuration. Changing the hostname and IP is not possible after cluster creation.
Currently the cluster creation can either be done on the console (login via ssh) or the API, which we have a GUI implementation for (Datacenter → Cluster).
While it’s common to reference all nodenames and their IPs in /etc/hosts (or make their names resolvable through other means), this is not necessary for a cluster to work. It may be useful however, as you can then connect from one node to the other with SSH via the easier to remember node name (see also Link Address Types Section 6.7.3, “Corosync addresses”). Note that we always recommend to reference nodes by their IP addresses in the cluster configuration.
6.3. Create the Cluster
Login via ssh to the first Proxmox VE node. Use a unique name for your cluster. This name cannot be changed later. The cluster name follows the same rules as node names.
hp1# pvecm create CLUSTERNAME
Note
It is possible to create multiple clusters in the same physical or logical network. Use unique cluster names if you do so. To avoid human confusion, it is also recommended to choose different names even if clusters do not share the cluster network.
To check the state of your cluster use:
hp1# pvecm status
6.3.1. Multiple Clusters In Same Network
It is possible to create multiple clusters in the same physical or logical network. Each such cluster must have a unique name, this does not only helps admins to distinguish on which cluster they currently operate, it is also required to avoid possible clashes in the cluster communication stack.
While the bandwidth requirement of a corosync cluster is relatively low, the latency of packages and the package per second (PPS) rate is the limiting factor. Different clusters in the same network can compete with each other for these resources, so it may still make sense to use separate physical network infrastructure for bigger clusters.
6.4. Adding Nodes to the Cluster
Login via ssh to the node you want to add.
hp2# pvecm add IP-ADDRESS-CLUSTER
For IP-ADDRESS-CLUSTER use the IP or hostname of an existing cluster node. An IP address is recommended (see Link Address Types Section 6.7.3, “Corosync addresses”).
Caution
A new node cannot hold any VMs, because you would get conflicts about identical VM IDs. Also, all existing configuration in /etc/pve is overwritten when you join a new node to the cluster. To workaround, use vzdump to backup and restore to a different VMID after adding the node to the cluster.
To check the state of the cluster use:
pvecm status
Cluster status after adding 4 nodes.
hp2# pvecm status
Quorum information
~~~~~~~~~~~~~~~~~~
Date: Mon Apr 20 12:30:13 2015
Quorum provider: corosync_votequorum
Nodes: 4
Node ID: 0x00000001
Ring ID: 1/8
Quorate: Yes
Votequorum information
~~~~~~~~~~~~~~~~~~~~~~
Expected votes: 4
Highest expected: 4
Total votes: 4
Quorum: 3
Flags: Quorate
Membership information
~~~~~~~~~~~~~~~~~~~~~~
Nodeid Votes Name
0x00000001 1 192.168.15.91
0x00000002 1 192.168.15.92 (local)
0x00000003 1 192.168.15.93
0x00000004 1 192.168.15.94
If you only want the list of all nodes use:
# pvecm nodes
List nodes in a cluster.
hp2# pvecm nodes
Membership information
~~~~~~~~~~~~~~~~~~~~~~
Nodeid Votes Name
1 1 hp1
2 1 hp2 (local)
3 1 hp3
4 1 hp4
6.4.1. Adding Nodes With Separated Cluster Network
When adding a node to a cluster with a separated cluster network you need to use the link0 parameter to set the nodes address on that network:
pvecm add IP-ADDRESS-CLUSTER -link0 LOCAL-IP-ADDRESS-LINK0
If you want to use the built-in redundancy Section 6.8, “Corosync Redundancy” of the kronosnet transport layer, also use the link1 parameter.
6.5. Remove a Cluster Node
Caution
Read carefully the procedure before proceeding, as it could not be what you want or need.
Move all virtual machines from the node. Make sure you have no local data or backups you want to keep, or save them accordingly. In the following example we will remove the node hp4 from the cluster.
Log in to a different cluster node (not hp4), and issue a pvecm nodes command to identify the node ID to remove:
hp1# pvecm nodes
Membership information
~~~~~~~~~~~~~~~~~~~~~~
Nodeid Votes Name
1 1 hp1 (local)
2 1 hp2
3 1 hp3
4 1 hp4
At this point you must power off hp4 and make sure that it will not power on again (in the network) as it is.
Important
As said above, it is critical to power off the node before removal, and make sure that it will never power on again (in the existing cluster network) as it is. If you power on the node as it is, your cluster will be screwed up and it could be difficult to restore a clean cluster state.
After powering off the node hp4, we can safely remove it from the cluster.
hp1# pvecm delnode hp4
If the operation succeeds no output is returned, just check the node list again with pvecm nodes or pvecm status. You should see something like:
hp1# pvecm status
Quorum information
~~~~~~~~~~~~~~~~~~
Date: Mon Apr 20 12:44:28 2015
Quorum provider: corosync_votequorum
Nodes: 3
Node ID: 0x00000001
Ring ID: 1/8
Quorate: Yes
Votequorum information
~~~~~~~~~~~~~~~~~~~~~~
Expected votes: 3
Highest expected: 3
Total votes: 3
Quorum: 2
Flags: Quorate
Membership information
~~~~~~~~~~~~~~~~~~~~~~
Nodeid Votes Name
0x00000001 1 192.168.15.90 (local)
0x00000002 1 192.168.15.91
0x00000003 1 192.168.15.92
If, for whatever reason, you want this server to join the same cluster again, you have to
Note
After removal of the node, its SSH fingerprint will still reside in the known_hosts of the other nodes. If you receive an SSH error after rejoining a node with the same IP or hostname, run pvecm updatecerts once on the re-added node to update its fingerprint cluster wide.
6.5.1. Separate A Node Without Reinstalling
Caution
This is not the recommended method, proceed with caution. Use the above mentioned method if you’re unsure.
You can also separate a node from a cluster without reinstalling it from scratch. But after removing the node from the cluster it will still have access to the shared storages! This must be resolved before you start removing the node from the cluster. A Proxmox VE cluster cannot share the exact same storage with another cluster, as storage locking doesn’t work over cluster boundary. Further, it may also lead to VMID conflicts.
Its suggested that you create a new storage where only the node which you want to separate has access. This can be a new export on your NFS or a new Ceph pool, to name a few examples. Its just important that the exact same storage does not gets accessed by multiple clusters. After setting this storage up move all data from the node and its VMs to it. Then you are ready to separate the node from the cluster.
Warning
Ensure all shared resources are cleanly separated! Otherwise you will run into conflicts and problems.
First stop the corosync and the pve-cluster services on the node:
systemctl stop pve-cluster
systemctl stop corosync
Start the cluster filesystem again in local mode:
pmxcfs -l
Delete the corosync configuration files:
rm /etc/pve/corosync.conf
rm /etc/corosync/*
You can now start the filesystem again as normal service:
killall pmxcfs
systemctl start pve-cluster
The node is now separated from the cluster. You can deleted it from a remaining node of the cluster with:
pvecm delnode oldnode
If the command failed, because the remaining node in the cluster lost quorum when the now separate node exited, you may set the expected votes to 1 as a workaround:
pvecm expected 1
And then repeat the pvecm delnode command.
Now switch back to the separated node, here delete all remaining files left from the old cluster. This ensures that the node can be added to another cluster again without problems.
rm /var/lib/corosync/*
As the configuration files from the other nodes are still in the cluster filesystem you may want to clean those up too. Remove simply the whole directory recursive from /etc/pve/nodes/NODENAME, but check three times that you used the correct one before deleting it.
Caution
The nodes SSH keys are still in the authorized_key file, this means the nodes can still connect to each other with public key authentication. This should be fixed by removing the respective keys from the /etc/pve/priv/authorized_keys file.
6.6. Quorum
Proxmox VE use a quorum-based technique to provide a consistent state among all cluster nodes.
A quorum is the minimum number of votes that a distributed transaction has to obtain in order to be allowed to perform an operation in a distributed system. | ||
-- from Wikipedia Quorum (distributed computing) |
In case of network partitioning, state changes requires that a majority of nodes are online. The cluster switches to read-only mode if it loses quorum.
Note
Proxmox VE assigns a single vote to each node by default.
6.7. Cluster Network
The cluster network is the core of a cluster. All messages sent over it have to be delivered reliably to all nodes in their respective order. In Proxmox VE this part is done by corosync, an implementation of a high performance, low overhead high availability development toolkit. It serves our decentralized configuration file system (pmxcfs).
6.7.1. Network Requirements
This needs a reliable network with latencies under 2 milliseconds (LAN performance) to work properly. The network should not be used heavily by other members, ideally corosync runs on its own network. Do not use a shared network for corosync and storage (except as a potential low-priority fallback in a redundant Section 6.8, “Corosync Redundancy” configuration).
Before setting up a cluster, it is good practice to check if the network is fit for that purpose. To make sure the nodes can connect to each other on the cluster network, you can test the connectivity between them with the ping tool.
If the Proxmox VE firewall is enabled, ACCEPT rules for corosync will automatically be generated - no manual action is required.
Note
Corosync used Multicast before version 3.0 (introduced in Proxmox VE 6.0). Modern versions rely on Kronosnet for cluster communication, which, for now, only supports regular UDP unicast.
Caution
You can still enable Multicast or legacy unicast by setting your transport to udp or udpu in your corosync.conf Section 6.10.1, “Edit corosync.conf”, but keep in mind that this will disable all cryptography and redundancy support. This is therefore not recommended.
6.7.2. Separate Cluster Network
When creating a cluster without any parameters the corosync cluster network is generally shared with the Web UI and the VMs and their traffic. Depending on your setup, even storage traffic may get sent over the same network. Its recommended to change that, as corosync is a time critical real time application.
Setting Up A New Network
First you have to set up a new network interface. It should be on a physically separate network. Ensure that your network fulfills the cluster network requirements Section 6.7.1, “Network Requirements”.
Separate On Cluster Creation
This is possible via the linkX parameters of the pvecm create command used for creating a new cluster.
If you have set up an additional NIC with a static address on 10.10.10.1/25, and want to send and receive all cluster communication over this interface, you would execute:
pvecm create test --link0 10.10.10.1
To check if everything is working properly execute:
systemctl status corosync
Afterwards, proceed as described above to add nodes with a separated cluster network Section 6.4.1, “Adding Nodes With Separated Cluster Network”.
Separate After Cluster Creation
You can do this if you have already created a cluster and want to switch its communication to another network, without rebuilding the whole cluster. This change may lead to short durations of quorum loss in the cluster, as nodes have to restart corosync and come up one after the other on the new network.
Check how to edit the corosync.conf file Section 6.10.1, “Edit corosync.conf” first. Then, open it and you should see a file similar to:
logging {
debug: off
to_syslog: yes
}
nodelist {
node {
name: due
nodeid: 2
quorum_votes: 1
ring0_addr: due
}
node {
name: tre
nodeid: 3
quorum_votes: 1
ring0_addr: tre
}
node {
name: uno
nodeid: 1
quorum_votes: 1
ring0_addr: uno
}
}
quorum {
provider: corosync_votequorum
}
totem {
cluster_name: testcluster
config_version: 3
ip_version: ipv4-6
secauth: on
version: 2
interface {
linknumber: 0
}
}
Note
ringX_addr actually specifies a corosync link address, the name "ring" is a remnant of older corosync versions that is kept for backwards compatibility.
The first thing you want to do is add the name properties in the node entries if you do not see them already. Those must match the node name.
Then replace all addresses from the ring0_addr properties of all nodes with the new addresses. You may use plain IP addresses or hostnames here. If you use hostnames ensure that they are resolvable from all nodes. (see also Link Address Types Section 6.7.3, “Corosync addresses”)
In this example, we want to switch the cluster communication to the 10.10.10.1/25 network. So we replace all ring0_addr respectively.
Note
The exact same procedure can be used to change other ringX_addr values as well, although we recommend to not change multiple addresses at once, to make it easier to recover if something goes wrong.
After we increase the config_version property, the new configuration file should look like:
logging {
debug: off
to_syslog: yes
}
nodelist {
node {
name: due
nodeid: 2
quorum_votes: 1
ring0_addr: 10.10.10.2
}
node {
name: tre
nodeid: 3
quorum_votes: 1
ring0_addr: 10.10.10.3
}
node {
name: uno
nodeid: 1
quorum_votes: 1
ring0_addr: 10.10.10.1
}
}
quorum {
provider: corosync_votequorum
}
totem {
cluster_name: testcluster
config_version: 4
ip_version: ipv4-6
secauth: on
version: 2
interface {
linknumber: 0
}
}
Then, after a final check if all changed information is correct, we save it and once again follow the edit corosync.conf file Section 6.10.1, “Edit corosync.conf” section to bring it into effect.
The changes will be applied live, so restarting corosync is not strictly necessary. If you changed other settings as well, or notice corosync complaining, you can optionally trigger a restart.
On a single node execute:
systemctl restart corosync
Now check if everything is fine:
systemctl status corosync
If corosync runs again correct restart corosync also on all other nodes. They will then join the cluster membership one by one on the new network.
6.7.3. Corosync addresses
A corosync link address (for backwards compatibility denoted by ringX_addr in corosync.conf) can be specified in two ways:
Caution
Hostnames should be used with care, since the address they resolve to can be changed without touching corosync or the node it runs on - which may lead to a situation where an address is changed without thinking about implications for corosync.
A seperate, static hostname specifically for corosync is recommended, if hostnames are preferred. Also, make sure that every node in the cluster can resolve all hostnames correctly.
Since Proxmox VE 5.1, while supported, hostnames will be resolved at the time of entry. Only the resolved IP is then saved to the configuration.
Nodes that joined the cluster on earlier versions likely still use their unresolved hostname in corosync.conf. It might be a good idea to replace them with IPs or a seperate hostname, as mentioned above.
6.8. Corosync Redundancy
Corosync supports redundant networking via its integrated kronosnet layer by default (it is not supported on the legacy udp/udpu transports). It can be enabled by specifying more than one link address, either via the --linkX parameters of pvecm (while creating a cluster or adding a new node) or by specifying more than one ringX_addr in corosync.conf.
Note
To provide useful failover, every link should be on its own physical network connection.
Links are used according to a priority setting. You can configure this priority by setting knet_link_priority in the corresponding interface section in corosync.conf, or, preferrably, using the priority parameter when creating your cluster with pvecm:
pvecm create CLUSTERNAME --link0 10.10.10.1,priority=20 --link1 10.20.20.1,priority=15
This would cause link1 to be used first, since it has the lower priority.
If no priorities are configured manually (or two links have the same priority), links will be used in order of their number, with the lower number having higher priority.
Even if all links are working, only the one with the highest priority will see corosync traffic. Link priorities cannot be mixed, i.e. links with different priorities will not be able to communicate with each other.
Since lower priority links will not see traffic unless all higher priorities have failed, it becomes a useful strategy to specify even networks used for other tasks (VMs, storage, etc…) as low-priority links. If worst comes to worst, a higher-latency or more congested connection might be better than no connection at all.
6.8.1. Adding Redundant Links To An Existing Cluster
To add a new link to a running configuration, first check how to edit the corosync.conf file Section 6.10.1, “Edit corosync.conf”.
Then, add a new ringX_addr to every node in the nodelist section. Make sure that your X is the same for every node you add it to, and that it is unique for each node.
Lastly, add a new interface, as shown below, to your totem section, replacing X with your link number chosen above.
Assuming you added a link with number 1, the new configuration file could look like this:
logging {
debug: off
to_syslog: yes
}
nodelist {
node {
name: due
nodeid: 2
quorum_votes: 1
ring0_addr: 10.10.10.2
ring1_addr: 10.20.20.2
}
node {
name: tre
nodeid: 3
quorum_votes: 1
ring0_addr: 10.10.10.3
ring1_addr: 10.20.20.3
}
node {
name: uno
nodeid: 1
quorum_votes: 1
ring0_addr: 10.10.10.1
ring1_addr: 10.20.20.1
}
}
quorum {
provider: corosync_votequorum
}
totem {
cluster_name: testcluster
config_version: 4
ip_version: ipv4-6
secauth: on
version: 2
interface {
linknumber: 0
}
interface {
linknumber: 1
}
}
The new link will be enabled as soon as you follow the last steps to edit the corosync.conf file Section 6.10.1, “Edit corosync.conf”. A restart should not be necessary. You can check that corosync loaded the new link using:
journalctl -b -u corosync
It might be a good idea to test the new link by temporarily disconnecting the old link on one node and making sure that its status remains online while disconnected:
pvecm status
If you see a healthy cluster state, it means that your new link is being used.
6.9. Corosync External Vote Support
This section describes a way to deploy an external voter in a Proxmox VE cluster. When configured, the cluster can sustain more node failures without violating safety properties of the cluster communication.
For this to work there are two services involved:
As a result you can achieve higher availability even in smaller setups (for example 2+1 nodes).
6.9.1. QDevice Technical Overview
The Corosync Quroum Device (QDevice) is a daemon which runs on each cluster node. It provides a configured number of votes to the clusters quorum subsystem based on an external running third-party arbitrator’s decision. Its primary use is to allow a cluster to sustain more node failures than standard quorum rules allow. This can be done safely as the external device can see all nodes and thus choose only one set of nodes to give its vote. This will only be done if said set of nodes can have quorum (again) when receiving the third-party vote.
Currently only QDevice Net is supported as a third-party arbitrator. It is a daemon which provides a vote to a cluster partition if it can reach the partition members over the network. It will give only votes to one partition of a cluster at any time. It’s designed to support multiple clusters and is almost configuration and state free. New clusters are handled dynamically and no configuration file is needed on the host running a QDevice.
The external host has the only requirement that it needs network access to the cluster and a corosync-qnetd package available. We provide such a package for Debian based hosts, other Linux distributions should also have a package available through their respective package manager.
Note
In contrast to corosync itself, a QDevice connects to the cluster over TCP/IP. The daemon may even run outside of the clusters LAN and can have longer latencies than 2 ms.
6.9.2. Supported Setups
We support QDevices for clusters with an even number of nodes and recommend it for 2 node clusters, if they should provide higher availability. For clusters with an odd node count we discourage the use of QDevices currently. The reason for this, is the difference of the votes the QDevice provides for each cluster type. Even numbered clusters get single additional vote, with this we can only increase availability, i.e. if the QDevice itself fails we are in the same situation as with no QDevice at all.
Now, with an odd numbered cluster size the QDevice provides (N-1) votes — where N corresponds to the cluster node count. This difference makes sense, if we had only one additional vote the cluster can get into a split brain situation. This algorithm would allow that all nodes but one (and naturally the QDevice itself) could fail. There are two drawbacks with this:
If you understand the drawbacks and implications you can decide yourself if you should use this technology in an odd numbered cluster setup.
6.9.3. QDevice-Net Setup
We recommend to run any daemon which provides votes to corosync-qdevice as an unprivileged user. Proxmox VE and Debian provides a package which is already configured to do so. The traffic between the daemon and the cluster must be encrypted to ensure a safe and secure QDevice integration in Proxmox VE.
First install the corosync-qnetd package on your external server and the corosync-qdevice package on all cluster nodes.
After that, ensure that all your nodes on the cluster are online.
You can now easily set up your QDevice by running the following command on one of the Proxmox VE nodes:
pve# pvecm qdevice setup <QDEVICE-IP>
The SSH key from the cluster will be automatically copied to the QDevice. You might need to enter an SSH password during this step.
After you enter the password and all the steps are successfully completed, you will see "Done". You can check the status now:
pve# pvecm status
...
Votequorum information
~~~~~~~~~~~~~~~~~~~~~
Expected votes: 3
Highest expected: 3
Total votes: 3
Quorum: 2
Flags: Quorate Qdevice
Membership information
~~~~~~~~~~~~~~~~~~~~~~
Nodeid Votes Qdevice Name
0x00000001 1 A,V,NMW 192.168.22.180 (local)
0x00000002 1 A,V,NMW 192.168.22.181
0x00000000 1 Qdevice
which means the QDevice is set up.
6.9.4. Frequently Asked Questions
Tie Breaking
In case of a tie, where two same-sized cluster partitions cannot see each other but the QDevice, the QDevice chooses randomly one of those partitions and provides a vote to it.
Possible Negative Implications
For clusters with an even node count there are no negative implications when setting up a QDevice. If it fails to work, you are as good as without QDevice at all.
Adding/Deleting Nodes After QDevice Setup
If you want to add a new node or remove an existing one from a cluster with a QDevice setup, you need to remove the QDevice first. After that, you can add or remove nodes normally. Once you have a cluster with an even node count again, you can set up the QDevice again as described above.
Removing the QDevice
If you used the official pvecm tool to add the QDevice, you can remove it trivially by running:
pve# pvecm qdevice remove
6.10. Corosync Configuration
The /etc/pve/corosync.conf file plays a central role in a Proxmox VE cluster. It controls the cluster membership and its network. For further information about it, check the corosync.conf man page:
man corosync.conf
For node membership you should always use the pvecm tool provided by Proxmox VE. You may have to edit the configuration file manually for other changes. Here are a few best practice tips for doing this.
6.10.1. Edit corosync.conf
Editing the corosync.conf file is not always very straightforward. There are two on each cluster node, one in /etc/pve/corosync.conf and the other in /etc/corosync/corosync.conf. Editing the one in our cluster file system will propagate the changes to the local one, but not vice versa.
The configuration will get updated automatically as soon as the file changes. This means changes which can be integrated in a running corosync will take effect immediately. So you should always make a copy and edit that instead, to avoid triggering some unwanted changes by an in-between safe.
cp /etc/pve/corosync.conf /etc/pve/corosync.conf.new
Then open the config file with your favorite editor, nano and vim.tiny are preinstalled on any Proxmox VE node for example.
Note
Always increment the config_version number on configuration changes, omitting this can lead to problems.
After making the necessary changes create another copy of the current working configuration file. This serves as a backup if the new configuration fails to apply or makes problems in other ways.
cp /etc/pve/corosync.conf /etc/pve/corosync.conf.bak
Then move the new configuration file over the old one:
mv /etc/pve/corosync.conf.new /etc/pve/corosync.conf
You may check with the commands
systemctl status corosync
journalctl -b -u corosync
If the change could be applied automatically. If not you may have to restart the corosync service via:
systemctl restart corosync
On errors check the troubleshooting section below.
6.10.2. Troubleshooting
Issue: quorum.expected_votes must be configured
When corosync starts to fail and you get the following message in the system log:
[...]
corosync[1647]: [QUORUM] Quorum provider: corosync_votequorum failed to initialize.
corosync[1647]: [SERV] Service engine 'corosync_quorum' failed to load for reason
'configuration error: nodelist or quorum.expected_votes must be configured!'
[...]
It means that the hostname you set for corosync ringX_addr in the configuration could not be resolved.
Write Configuration When Not Quorate
If you need to change /etc/pve/corosync.conf on an node with no quorum, and you know what you do, use:
pvecm expected 1
This sets the expected vote count to 1 and makes the cluster quorate. You can now fix your configuration, or revert it back to the last working backup.
This is not enough if corosync cannot start anymore. Here its best to edit the local copy of the corosync configuration in /etc/corosync/corosync.conf so that corosync can start again. Ensure that on all nodes this configuration has the same content to avoid split brains. If you are not sure what went wrong it’s best to ask the Proxmox Community to help you.
6.10.3. Corosync Configuration Glossary
ringX_addr
This names the different link addresses for the kronosnet connections between nodes.
6.11. Cluster Cold Start
It is obvious that a cluster is not quorate when all nodes are offline. This is a common case after a power failure.
Note
It is always a good idea to use an uninterruptible power supply (“UPS”, also called “battery backup”) to avoid this state, especially if you want HA.
On node startup, the pve-guests service is started and waits for quorum. Once quorate, it starts all guests which have the onboot flag set.
When you turn on nodes, or when power comes back after power failure, it is likely that some nodes boots faster than others. Please keep in mind that guest startup is delayed until you reach quorum.
6.12. Guest Migration
Migrating virtual guests to other nodes is a useful feature in a cluster. There are settings to control the behavior of such migrations. This can be done via the configuration file datacenter.cfg or for a specific migration via API or command line parameters.
It makes a difference if a Guest is online or offline, or if it has local resources (like a local disk).
For Details about Virtual Machine Migration see the QEMU/KVM Migration Chapter Section 10.3, “Migration”.
For Details about Container Migration see the Container Migration Chapter Section 11.9, “Migration”.
6.12.1. Migration Type
The migration type defines if the migration data should be sent over an encrypted (secure) channel or an unencrypted (insecure) one. Setting the migration type to insecure means that the RAM content of a virtual guest gets also transferred unencrypted, which can lead to information disclosure of critical data from inside the guest (for example passwords or encryption keys).
Therefore, we strongly recommend using the secure channel if you do not have full control over the network and can not guarantee that no one is eavesdropping to it.
Note
Storage migration does not follow this setting. Currently, it always sends the storage content over a secure channel.
Encryption requires a lot of computing power, so this setting is often changed to "unsafe" to achieve better performance. The impact on modern systems is lower because they implement AES encryption in hardware. The performance impact is particularly evident in fast networks where you can transfer 10 Gbps or more.
6.12.2. Migration Network
By default, Proxmox VE uses the network in which cluster communication takes place to send the migration traffic. This is not optimal because sensitive cluster traffic can be disrupted and this network may not have the best bandwidth available on the node.
Setting the migration network parameter allows the use of a dedicated network for the entire migration traffic. In addition to the memory, this also affects the storage traffic for offline migrations.
The migration network is set as a network in the CIDR notation. This has the advantage that you do not have to set individual IP addresses for each node. Proxmox VE can determine the real address on the destination node from the network specified in the CIDR form. To enable this, the network must be specified so that each node has one, but only one IP in the respective network.
Example
We assume that we have a three-node setup with three separate networks. One for public communication with the Internet, one for cluster communication and a very fast one, which we want to use as a dedicated network for migration.
A network configuration for such a setup might look as follows:
iface eno1 inet manual
public network
auto vmbr0
iface vmbr0 inet static
address 192.X.Y.57
netmask 255.255.250.0
gateway 192.X.Y.1
bridge_ports eno1
bridge_stp off
bridge_fd 0
cluster network
auto eno2
iface eno2 inet static
address 10.1.1.1
netmask 255.255.255.0
fast network
auto eno3
iface eno3 inet static
address 10.1.2.1
netmask 255.255.255.0
Here, we will use the network 10.1.2.0/24 as a migration network. For a single migration, you can do this using the migration_network parameter of the command line tool:
qm migrate 106 tre --online --migration_network 10.1.2.0/24
To configure this as the default network for all migrations in the cluster, set the migration property of the /etc/pve/datacenter.cfg file:
use dedicated migration network
migration: secure,network=10.1.2.0/24
Note
The migration type must always be set when the migration network gets set in /etc/pve/datacenter.cfg.
Chapter 7. Proxmox Cluster File System (pmxcfs)
The Proxmox Cluster file system (“pmxcfs”) is a database-driven file system for storing configuration files, replicated in real time to all cluster nodes using corosync. We use this to store all PVE related configuration files.
Although the file system stores all data inside a persistent database on disk, a copy of the data resides in RAM. That imposes restriction on the maximum size, which is currently 30MB. This is still enough to store the configuration of several thousand virtual machines.
This system provides the following advantages:
7.1. POSIX Compatibility
The file system is based on FUSE, so the behavior is POSIX like. But some feature are simply not implemented, because we do not need them:
7.2. File Access Rights
All files and directories are owned by user root and have group www-data. Only root has write permissions, but group www-data can read most files. Files below the following paths:
/etc/pve/priv/
/etc/pve/nodes/${NAME}/priv/
are only accessible by root.
7.3. Technology
We use the Corosync Cluster Engine for cluster communication, and SQlite for the database file. The file system is implemented in user space using FUSE.
7.4. File System Layout
The file system is mounted at:
/etc/pve
7.4.1. Files
corosync.conf | Corosync cluster configuration file (previous to Proxmox VE 4.x this file was called cluster.conf) |
storage.cfg | Proxmox VE storage configuration |
datacenter.cfg | Proxmox VE datacenter wide configuration (keyboard layout, proxy, …) |
user.cfg | Proxmox VE access control configuration (users/groups/…) |
domains.cfg | Proxmox VE authentication domains |
status.cfg | Proxmox VE external metrics server configuration |
authkey.pub | Public key used by ticket system |
pve-root-ca.pem | Public certificate of cluster CA |
priv/shadow.cfg | Shadow password file |
priv/authkey.key | Private key used by ticket system |
priv/pve-root-ca.key | Private key of cluster CA |
nodes/<NAME>/pve-ssl.pem | Public SSL certificate for web server (signed by cluster CA) |
nodes/<NAME>/pve-ssl.key | Private SSL key for pve-ssl.pem |
nodes/<NAME>/pveproxy-ssl.pem | Public SSL certificate (chain) for web server (optional override for pve-ssl.pem) |
nodes/<NAME>/pveproxy-ssl.key | Private SSL key for pveproxy-ssl.pem (optional) |
nodes/<NAME>/qemu-server/<VMID>.conf | VM configuration data for KVM VMs |
nodes/<NAME>/lxc/<VMID>.conf | VM configuration data for LXC containers |
firewall/cluster.fw | Firewall configuration applied to all nodes |
firewall/<NAME>.fw | Firewall configuration for individual nodes |
firewall/<VMID>.fw | Firewall configuration for VMs and Containers |
7.4.2. Symbolic links
local | nodes/<LOCAL_HOST_NAME> |
qemu-server | nodes/<LOCAL_HOST_NAME>/qemu-server/ |
lxc | nodes/<LOCAL_HOST_NAME>/lxc/ |
7.4.3. Special status files for debugging (JSON)
.version | File versions (to detect file modifications) |
.members | Info about cluster members |
.vmlist | List of all VMs |
.clusterlog | Cluster log (last 50 entries) |
.rrd | RRD data (most recent entries) |
7.4.4. Enable/Disable debugging
You can enable verbose syslog messages with:
echo "1" >/etc/pve/.debug
And disable verbose syslog messages with:
echo "0" >/etc/pve/.debug
7.5. Recovery
If you have major problems with your Proxmox VE host, e.g. hardware issues, it could be helpful to just copy the pmxcfs database file /var/lib/pve-cluster/config.db and move it to a new Proxmox VE host. On the new host (with nothing running), you need to stop the pve-cluster service and replace the config.db file (needed permissions 0600). Second, adapt /etc/hostname and /etc/hosts according to the lost Proxmox VE host, then reboot and check. (And don’t forget your VM/CT data)
7.5.1. Remove Cluster configuration
The recommended way is to reinstall the node after you removed it from your cluster. This makes sure that all secret cluster/ssh keys and any shared configuration data is destroyed.
In some cases, you might prefer to put a node back to local mode without reinstall, which is described in Separate A Node Without Reinstalling
7.5.2. Recovering/Moving Guests from Failed Nodes
For the guest configuration files in nodes/<NAME>/qemu-server/ (VMs) and nodes/<NAME>/lxc/ (containers), Proxmox VE sees the containing node <NAME> as owner of the respective guest. This concept enables the usage of local locks instead of expensive cluster-wide locks for preventing concurrent guest configuration changes.
As a consequence, if the owning node of a guest fails (e.g., because of a power outage, fencing event, ..), a regular migration is not possible (even if all the disks are located on shared storage) because such a local lock on the (dead) owning node is unobtainable. This is not a problem for HA-managed guests, as Proxmox VE’s High Availability stack includes the necessary (cluster-wide) locking and watchdog functionality to ensure correct and automatic recovery of guests from fenced nodes.
If a non-HA-managed guest has only shared disks (and no other local resources which are only available on the failed node are configured), a manual recovery is possible by simply moving the guest configuration file from the failed node’s directory in /etc/pve/ to an alive node’s directory (which changes the logical owner or location of the guest).
For example, recovering the VM with ID 100 from a dead node1 to another node node2 works with the following command executed when logged in as root on any member node of the cluster:
mv /etc/pve/nodes/node1/qemu-server/100.conf /etc/pve/nodes/node2/
Warning
Before manually recovering a guest like this, make absolutely sure that the failed source node is really powered off/fenced. Otherwise Proxmox VE’s locking principles are violated by the mv command, which can have unexpected consequences.
Warning
Guest with local disks (or other local resources which are only available on the dead node) are not recoverable like this. Either wait for the failed node to rejoin the cluster or restore such guests from backups.
Chapter 8. Proxmox VE Storage
The Proxmox VE storage model is very flexible. Virtual machine images can either be stored on one or several local storages, or on shared storage like NFS or iSCSI (NAS, SAN). There are no limits, and you may configure as many storage pools as you like. You can use all storage technologies available for Debian Linux.
One major benefit of storing VMs on shared storage is the ability to live-migrate running machines without any downtime, as all nodes in the cluster have direct access to VM disk images. There is no need to copy VM image data, so live migration is very fast in that case.
The storage library (package libpve-storage-perl) uses a flexible plugin system to provide a common interface to all storage types. This can be easily adopted to include further storage types in future.
8.1. Storage Types
There are basically two different classes of storage types:
File level storage
File level based storage technologies allow access to a full featured (POSIX) file system. They are in general more flexible than any Block level storage (see below), and allow you to store content of any type. ZFS is probably the most advanced system, and it has full support for snapshots and clones.
Block level storage
Allows to store large raw images. It is usually not possible to store other files (ISO, backups, ..) on such storage types. Most modern block level storage implementations support snapshots and clones. RADOS and GlusterFS are distributed systems, replicating storage data to different nodes.
Table 8.1. Available storage types
Description	PVE type	Level	Shared	Snapshots	Stable
ZFS (local) | zfspool | file | no | yes | yes |
Directory | dir | file | no | no1 | yes |
NFS | nfs | file | yes | no1 | yes |
CIFS | cifs | file | yes | no1 | yes |
GlusterFS | glusterfs | file | yes | no1 | yes |
CephFS | cephfs | file | yes | yes | yes |
LVM | lvm | block | no2 | no | yes |
LVM-thin | lvmthin | block | no | yes | yes |
iSCSI/kernel | iscsi | block | yes | no | yes |
iSCSI/libiscsi | iscsidirect | block | yes | no | yes |
Ceph/RBD | rbd | block | yes | yes | yes |
ZFS over iSCSI | zfs | block | yes | yes | yes |
1: On file based storages, snapshots are possible with the qcow2 format.
2: It is possible to use LVM on top of an iSCSI storage. That way you get a shared LVM storage.
8.1.1. Thin Provisioning
A number of storages, and the Qemu image format qcow2, support thin provisioning. With thin provisioning activated, only the blocks that the guest system actually use will be written to the storage.
Say for instance you create a VM with a 32GB hard disk, and after installing the guest system OS, the root file system of the VM contains 3 GB of data. In that case only 3GB are written to the storage, even if the guest VM sees a 32GB hard drive. In this way thin provisioning allows you to create disk images which are larger than the currently available storage blocks. You can create large disk images for your VMs, and when the need arises, add more disks to your storage without resizing the VMs' file systems.
All storage types which have the “Snapshots” feature also support thin provisioning.
Caution
If a storage runs full, all guests using volumes on that storage receive IO errors. This can cause file system inconsistencies and may corrupt your data. So it is advisable to avoid over-provisioning of your storage resources, or carefully observe free space to avoid such conditions.
8.2. Storage Configuration
All Proxmox VE related storage configuration is stored within a single text file at /etc/pve/storage.cfg. As this file is within /etc/pve/, it gets automatically distributed to all cluster nodes. So all nodes share the same storage configuration.
Sharing storage configuration make perfect sense for shared storage, because the same “shared” storage is accessible from all nodes. But is also useful for local storage types. In this case such local storage is available on all nodes, but it is physically different and can have totally different content.
8.2.1. Storage Pools
Each storage pool has a <type>, and is uniquely identified by its <STORAGE_ID>. A pool configuration looks like this:
<type>: <STORAGE_ID>
<property> <value>
<property> <value>
...
The <type>: <STORAGE_ID> line starts the pool definition, which is then followed by a list of properties. Most properties have values, but some of them come with reasonable default. In that case you can omit the value.
To be more specific, take a look at the default storage configuration after installation. It contains one special local storage pool named local, which refers to the directory /var/lib/vz and is always available. The Proxmox VE installer creates additional storage entries depending on the storage type chosen at installation time.
Default storage configuration (/etc/pve/storage.cfg).
dir: local
path /var/lib/vz
content iso,vztmpl,backup
default image store on LVM based installation
lvmthin: local-lvm
thinpool data
vgname pve
content rootdir,images
default image store on ZFS based installation
zfspool: local-zfs
pool rpool/data
sparse
content images,rootdir
8.2.2. Common Storage Properties
A few storage properties are common among different storage types.
nodes
List of cluster node names where this storage is usable/accessible. One can use this property to restrict storage access to a limited set of nodes.
content
A storage can support several content types, for example virtual disk images, cdrom iso images, container templates or container root directories. Not all storage types support all content types. One can set this property to select for what this storage is used for.
images
KVM-Qemu VM images.
rootdir
Allow to store container data.
vztmpl
Container templates.
backup
Backup files (vzdump).
iso
ISO images
snippets
Snippet files, for example guest hook scripts
shared
Mark storage as shared.
disable
You can use this flag to disable the storage completely.
maxfiles
Maximum number of backup files per VM. Use 0 for unlimited.
format
Default image format (raw|qcow2|vmdk)
Warning
It is not advisable to use the same storage pool on different Proxmox VE clusters. Some storage operation need exclusive access to the storage, so proper locking is required. While this is implemented within a cluster, it does not work between different clusters.
8.3. Volumes
We use a special notation to address storage data. When you allocate data from a storage pool, it returns such a volume identifier. A volume is identified by the <STORAGE_ID>, followed by a storage type dependent volume name, separated by colon. A valid <VOLUME_ID> looks like:
local:230/example-image.raw
local:iso/debian-501-amd64-netinst.iso
local:vztmpl/debian-5.0-joomla_1.5.9-1_i386.tar.gz
iscsi-storage:0.0.2.scsi-14f504e46494c4500494b5042546d2d646744372d31616d61
To get the file system path for a <VOLUME_ID> use:
pvesm path <VOLUME_ID>
8.3.1. Volume Ownership
There exists an ownership relation for image type volumes. Each such volume is owned by a VM or Container. For example volume local:230/example-image.raw is owned by VM 230. Most storage backends encodes this ownership information into the volume name.
When you remove a VM or Container, the system also removes all associated volumes which are owned by that VM or Container.
8.4. Using the Command Line Interface
It is recommended to familiarize yourself with the concept behind storage pools and volume identifiers, but in real life, you are not forced to do any of those low level operations on the command line. Normally, allocation and removal of volumes is done by the VM and Container management tools.
Nevertheless, there is a command line tool called pvesm (“Proxmox VE Storage Manager”), which is able to perform common storage management tasks.
8.4.1. Examples
Add storage pools
pvesm add <TYPE> <STORAGE_ID> <OPTIONS>
pvesm add dir <STORAGE_ID> --path <PATH>
pvesm add nfs <STORAGE_ID> --path <PATH> --server <SERVER> --export <EXPORT>
pvesm add lvm <STORAGE_ID> --vgname <VGNAME>
pvesm add iscsi <STORAGE_ID> --portal <HOST[:PORT]> --target <TARGET>
Disable storage pools
pvesm set <STORAGE_ID> --disable 1
Enable storage pools
pvesm set <STORAGE_ID> --disable 0
Change/set storage options
pvesm set <STORAGE_ID> <OPTIONS>
pvesm set <STORAGE_ID> --shared 1
pvesm set local --format qcow2
pvesm set <STORAGE_ID> --content iso
Remove storage pools. This does not delete any data, and does not disconnect or unmount anything. It just removes the storage configuration.
pvesm remove <STORAGE_ID>
Allocate volumes
pvesm alloc <STORAGE_ID> <VMID> <name> <size> [--format <raw|qcow2>]
Allocate a 4G volume in local storage. The name is auto-generated if you pass an empty string as <name>
pvesm alloc local <VMID> '' 4G
Free volumes
pvesm free <VOLUME_ID>
Warning
This really destroys all volume data.
List storage status
pvesm status
List storage contents
pvesm list <STORAGE_ID> [--vmid <VMID>]
List volumes allocated by VMID
pvesm list <STORAGE_ID> --vmid <VMID>
List iso images
pvesm list <STORAGE_ID> --iso
List container templates
pvesm list <STORAGE_ID> --vztmpl
Show file system path for a volume
pvesm path <VOLUME_ID>
8.5. Directory Backend
Storage pool type: dir
Proxmox VE can use local directories or locally mounted shares for storage. A directory is a file level storage, so you can store any content type like virtual disk images, containers, templates, ISO images or backup files.
Note
You can mount additional storages via standard linux /etc/fstab, and then define a directory storage for that mount point. This way you can use any file system supported by Linux.
This backend assumes that the underlying directory is POSIX compatible, but nothing else. This implies that you cannot create snapshots at the storage level. But there exists a workaround for VM images using the qcow2 file format, because that format supports snapshots internally.
Tip
Some storage types do not support O_DIRECT, so you can’t use cache mode none with such storages. Simply use cache mode writeback instead.
We use a predefined directory layout to store different content types into different sub-directories. This layout is used by all file level storage backends.
Table 8.2. Directory layout
Content type	Subdir
VM images | images/<VMID>/ |
ISO images | template/iso/ |
Container templates | template/cache/ |
Backup files | dump/ |
Snippets | snippets/ |
8.5.1. Configuration
This backend supports all common storage properties, and adds an additional property called path to specify the directory. This needs to be an absolute file system path.
Configuration Example (/etc/pve/storage.cfg).
dir: backup
path /mnt/backup
content backup
maxfiles 7
Above configuration defines a storage pool called backup. That pool can be used to store up to 7 backups (maxfiles 7) per VM. The real path for the backup files is /mnt/backup/dump/....
8.5.2. File naming conventions
This backend uses a well defined naming scheme for VM images:
vm-<VMID>-<NAME>.<FORMAT>
<VMID>
This specifies the owner VM.
<NAME>
This can be an arbitrary name (ascii) without white space. The backend uses disk-[N] as default, where [N] is replaced by an integer to make the name unique.
<FORMAT>
Specifies the image format (raw|qcow2|vmdk).
When you create a VM template, all VM images are renamed to indicate that they are now read-only, and can be used as a base image for clones:
base-<VMID>-<NAME>.<FORMAT>
Note
Such base images are used to generate cloned images. So it is important that those files are read-only, and never get modified. The backend changes the access mode to 0444, and sets the immutable flag (chattr +i) if the storage supports that.
8.5.3. Storage Features
As mentioned above, most file systems do not support snapshots out of the box. To workaround that problem, this backend is able to use qcow2 internal snapshot capabilities.
Same applies to clones. The backend uses the qcow2 base image feature to create clones.
Table 8.3. Storage features for backend dir
Content types | Image formats | Shared | Snapshots | Clones |
---|---|---|---|---|
images rootdir vztmpl iso backup snippets | raw qcow2 vmdk subvol | no | qcow2 | qcow2 |
8.5.4. Examples
Please use the following command to allocate a 4GB image on storage local:
pvesm alloc local 100 vm-100-disk10.raw 4G
Formatting '/var/lib/vz/images/100/vm-100-disk10.raw', fmt=raw size=4294967296
successfully created 'local:100/vm-100-disk10.raw'
Note
The image name must conform to above naming conventions.
The real file system path is shown with:
pvesm path local:100/vm-100-disk10.raw
/var/lib/vz/images/100/vm-100-disk10.raw
And you can remove the image with:
pvesm free local:100/vm-100-disk10.raw
8.6. NFS Backend
Storage pool type: nfs
The NFS backend is based on the directory backend, so it shares most properties. The directory layout and the file naming conventions are the same. The main advantage is that you can directly configure the NFS server properties, so the backend can mount the share automatically. There is no need to modify /etc/fstab. The backend can also test if the server is online, and provides a method to query the server for exported shares.
8.6.1. Configuration
The backend supports all common storage properties, except the shared flag, which is always set. Additionally, the following properties are used to configure the NFS server:
server
Server IP or DNS name. To avoid DNS lookup delays, it is usually preferable to use an IP address instead of a DNS name - unless you have a very reliable DNS server, or list the server in the local /etc/hosts file.
export
NFS export path (as listed by pvesm nfsscan).
You can also set NFS mount options:
path
The local mount point (defaults to /mnt/pve/<STORAGE_ID>/).
options
NFS mount options (see man nfs).
Configuration Example (/etc/pve/storage.cfg).
nfs: iso-templates
path /mnt/pve/iso-templates
server 10.0.0.10
export /space/iso-templates
options vers=3,soft
content iso,vztmpl
Tip
After an NFS request times out, NFS request are retried indefinitely by default. This can lead to unexpected hangs on the client side. For read-only content, it is worth to consider the NFS soft option, which limits the number of retries to three.
8.6.2. Storage Features
NFS does not support snapshots, but the backend uses qcow2 features to implement snapshots and cloning.
Table 8.4. Storage features for backend nfs
Content types	Image formats	Shared	Snapshots	Clones
images rootdir vztmpl iso backup snippets | raw qcow2 vmdk | yes | qcow2 | qcow2 |
8.6.3. Examples
You can get a list of exported NFS shares with:
pvesm nfsscan <server>
8.7. CIFS Backend
Storage pool type: cifs
The CIFS backend extends the directory backend, so that no manual setup of a CIFS mount is needed. Such a storage can be added directly through the Proxmox VE API or the WebUI, with all our backend advantages, like server heartbeat check or comfortable selection of exported shares.
8.7.1. Configuration
The backend supports all common storage properties, except the shared flag, which is always set. Additionally, the following CIFS special properties are available:
server
Server IP or DNS name. Required.
Tip
To avoid DNS lookup delays, it is usually preferable to use an IP address instead of a DNS name - unless you have a very reliable DNS server, or list the server in the local /etc/hosts file.
share
CIFS share to use (get available ones with pvesm cifsscan or the WebUI). Required.
username
The username for the CIFS storage. Optional, defaults to ‘guest’.
password
The user password. Optional. It will be saved in a file only readable by root (/etc/pve/priv/<STORAGE_ID>.cred).
domain
Sets the user domain (workgroup) for this storage. Optional.
smbversion
SMB protocol Version. Optional, default is 3. SMB1 is not supported due to security issues.
path
The local mount point. Optional, defaults to /mnt/pve/<STORAGE_ID>/.
Configuration Example (/etc/pve/storage.cfg).
cifs: backup
path /mnt/pve/backup
server 10.0.0.11
share VMData
content backup
username anna
smbversion 3
8.7.2. Storage Features
CIFS does not support snapshots on a storage level. But you may use qcow2 backing files if you still want to have snapshots and cloning features available.
Table 8.5. Storage features for backend cifs
Content types	Image formats	Shared	Snapshots	Clones
images rootdir vztmpl iso backup snippets | raw qcow2 vmdk | yes | qcow2 | qcow2 |
8.7.3. Examples
You can get a list of exported CIFS shares with:
pvesm cifsscan <server> [--username <username>] [--password]
Then you could add this share as a storage to the whole Proxmox VE cluster with:
pvesm add cifs <storagename> --server <server> --share <share> [--username <username>] [--password]
8.8. GlusterFS Backend
Storage pool type: glusterfs
GlusterFS is a scalable network file system. The system uses a modular design, runs on commodity hardware, and can provide a highly available enterprise storage at low costs. Such system is capable of scaling to several petabytes, and can handle thousands of clients.
Note
After a node/brick crash, GlusterFS does a full rsync to make sure data is consistent. This can take a very long time with large files, so this backend is not suitable to store large VM images.
8.8.1. Configuration
The backend supports all common storage properties, and adds the following GlusterFS specific options:
server
GlusterFS volfile server IP or DNS name.
server2
Backup volfile server IP or DNS name.
volume
GlusterFS Volume.
transport
GlusterFS transport: tcp, unix or rdma
Configuration Example (/etc/pve/storage.cfg).
glusterfs: Gluster
server 10.2.3.4
server2 10.2.3.5
volume glustervol
content images,iso
8.8.2. File naming conventions
The directory layout and the file naming conventions are inherited from the dir backend.
8.8.3. Storage Features
The storage provides a file level interface, but no native snapshot/clone implementation.
Table 8.6. Storage features for backend glusterfs
Content types	Image formats	Shared	Snapshots	Clones
images vztmpl iso backup snippets | raw qcow2 vmdk | yes | qcow2 | qcow2 |
8.9. Local ZFS Pool Backend
Storage pool type: zfspool
This backend allows you to access local ZFS pools (or ZFS file systems inside such pools).
8.9.1. Configuration
The backend supports the common storage properties content, nodes, disable, and the following ZFS specific properties:
pool
Select the ZFS pool/filesystem. All allocations are done within that pool.
blocksize
Set ZFS blocksize parameter.
sparse
Use ZFS thin-provisioning. A sparse volume is a volume whose reservation is not equal to the volume size.
Configuration Example (/etc/pve/storage.cfg).
zfspool: vmdata
pool tank/vmdata
content rootdir,images
sparse
8.9.2. File naming conventions
The backend uses the following naming scheme for VM images:
vm-<VMID>-<NAME> // normal VM images
base-<VMID>-<NAME> // template VM image (read-only)
subvol-<VMID>-<NAME> // subvolumes (ZFS filesystem for containers)
<VMID>
This specifies the owner VM.
<NAME>
This can be an arbitrary name (ascii) without white space. The backend uses disk[N] as default, where [N] is replaced by an integer to make the name unique.
8.9.3. Storage Features
ZFS is probably the most advanced storage type regarding snapshot and cloning. The backend uses ZFS datasets for both VM images (format raw) and container data (format subvol). ZFS properties are inherited from the parent dataset, so you can simply set defaults on the parent dataset.
Table 8.7. Storage features for backend zfs
Content types | Image formats | Shared | Snapshots | Clones |
---|---|---|---|---|
images rootdir | raw subvol | no | yes | yes |
8.9.4. Examples
It is recommended to create an extra ZFS file system to store your VM images:
zfs create tank/vmdata
To enable compression on that newly allocated file system:
zfs set compression=on tank/vmdata
You can get a list of available ZFS filesystems with:
pvesm zfsscan
8.10. LVM Backend
Storage pool type: lvm
LVM is a light software layer on top of hard disks and partitions. It can be used to split available disk space into smaller logical volumes. LVM is widely used on Linux and makes managing hard drives easier.
Another use case is to put LVM on top of a big iSCSI LUN. That way you can easily manage space on that iSCSI LUN, which would not be possible otherwise, because the iSCSI specification does not define a management interface for space allocation.
8.10.1. Configuration
The LVM backend supports the common storage properties content, nodes, disable, and the following LVM specific properties:
vgname
LVM volume group name. This must point to an existing volume group.
base
Base volume. This volume is automatically activated before accessing the storage. This is mostly useful when the LVM volume group resides on a remote iSCSI server.
saferemove
Zero-out data when removing LVs. When removing a volume, this makes sure that all data gets erased.
saferemove_throughput
Wipe throughput (cstream -t parameter value).
Configuration Example (/etc/pve/storage.cfg).
lvm: myspace
vgname myspace
content rootdir,images
8.10.2. File naming conventions
The backend use basically the same naming conventions as the ZFS pool backend.
vm-<VMID>-<NAME> // normal VM images
8.10.3. Storage Features
LVM is a typical block storage, but this backend does not support snapshot and clones. Unfortunately, normal LVM snapshots are quite inefficient, because they interfere all writes on the whole volume group during snapshot time.
One big advantage is that you can use it on top of a shared storage, for example an iSCSI LUN. The backend itself implement proper cluster wide locking.
Tip
The newer LVM-thin backend allows snapshot and clones, but does not support shared storage.
Table 8.8. Storage features for backend lvm
Content types	Image formats	Shared	Snapshots	Clones
images rootdir | raw | possible | no | no |
8.10.4. Examples
List available volume groups:
pvesm lvmscan
8.11. LVM thin Backend
Storage pool type: lvmthin
LVM normally allocates blocks when you create a volume. LVM thin pools instead allocates blocks when they are written. This behaviour is called thin-provisioning, because volumes can be much larger than physically available space.
You can use the normal LVM command line tools to manage and create LVM thin pools (see man lvmthin for details). Assuming you already have a LVM volume group called pve, the following commands create a new LVM thin pool (size 100G) called data:
lvcreate -L 100G -n data pve
lvconvert --type thin-pool pve/data
8.11.1. Configuration
The LVM thin backend supports the common storage properties content, nodes, disable, and the following LVM specific properties:
vgname
LVM volume group name. This must point to an existing volume group.
thinpool
The name of the LVM thin pool.
Configuration Example (/etc/pve/storage.cfg).
lvmthin: local-lvm
thinpool data
vgname pve
content rootdir,images
8.11.2. File naming conventions
The backend use basically the same naming conventions as the ZFS pool backend.
vm-<VMID>-<NAME> // normal VM images
8.11.3. Storage Features
LVM thin is a block storage, but fully supports snapshots and clones efficiently. New volumes are automatically initialized with zero.
It must be mentioned that LVM thin pools cannot be shared across multiple nodes, so you can only use them as local storage.
Table 8.9. Storage features for backend lvmthin
Content types	Image formats	Shared	Snapshots	Clones
images rootdir | raw | no | yes | yes |
8.11.4. Examples
List available LVM thin pools on volume group pve:
pvesm lvmthinscan pve
8.12. Open-iSCSI initiator
Storage pool type: iscsi
iSCSI is a widely employed technology used to connect to storage servers. Almost all storage vendors support iSCSI. There are also open source iSCSI target solutions available, e.g. OpenMediaVault, which is based on Debian.
To use this backend, you need to install the Open-iSCSI (open-iscsi) package. This is a standard Debian package, but it is not installed by default to save resources.
apt-get install open-iscsi
Low-level iscsi management task can be done using the iscsiadm tool.
8.12.1. Configuration
The backend supports the common storage properties content, nodes, disable, and the following iSCSI specific properties:
portal
iSCSI portal (IP or DNS name with optional port).
target
iSCSI target.
Configuration Example (/etc/pve/storage.cfg).
iscsi: mynas
portal 10.10.10.1
target iqn.2006-01.openfiler.com:tsn.dcb5aaaddd
content none
Tip
If you want to use LVM on top of iSCSI, it make sense to set content none. That way it is not possible to create VMs using iSCSI LUNs directly.
8.12.2. File naming conventions
The iSCSI protocol does not define an interface to allocate or delete data. Instead, that needs to be done on the target side and is vendor specific. The target simply exports them as numbered LUNs. So Proxmox VE iSCSI volume names just encodes some information about the LUN as seen by the linux kernel.
8.12.3. Storage Features
iSCSI is a block level type storage, and provides no management interface. So it is usually best to export one big LUN, and setup LVM on top of that LUN. You can then use the LVM plugin to manage the storage on that iSCSI LUN.
Table 8.10. Storage features for backend iscsi
Content types	Image formats	Shared	Snapshots	Clones
images none | raw | yes | no | no |
8.12.4. Examples
Scan a remote iSCSI portal, and returns a list of possible targets:
pvesm scan iscsi <HOST[:PORT]>
8.13. User Mode iSCSI Backend
Storage pool type: iscsidirect
This backend provides basically the same functionality as the Open-iSCSI backed, but uses a user-level library (package libiscsi2) to implement it.
It should be noted that there are no kernel drivers involved, so this can be viewed as performance optimization. But this comes with the drawback that you cannot use LVM on top of such iSCSI LUN. So you need to manage all space allocations at the storage server side.
8.13.1. Configuration
The user mode iSCSI backend uses the same configuration options as the Open-iSCSI backed.
Configuration Example (/etc/pve/storage.cfg).
iscsidirect: faststore
portal 10.10.10.1
target iqn.2006-01.openfiler.com:tsn.dcb5aaaddd
8.13.2. Storage Features
Note
This backend works with VMs only. Containers cannot use this driver.
Table 8.11. Storage features for backend iscsidirect
Content types | Image formats | Shared | Snapshots | Clones |
---|---|---|---|---|
images | raw | yes | no | no |
8.14. Ceph RADOS Block Devices (RBD)
Storage pool type: rbd
Ceph is a distributed object store and file system designed to provide excellent performance, reliability and scalability. RADOS block devices implement a feature rich block level storage, and you get the following advantages:
Note
For smaller deployments, it is also possible to run Ceph services directly on your Proxmox VE nodes. Recent hardware has plenty of CPU power and RAM, so running storage services and VMs on same node is possible.
8.14.1. Configuration
This backend supports the common storage properties nodes, disable, content, and the following rbd specific properties:
monhost
List of monitor daemon IPs. Optional, only needed if Ceph is not running on the PVE cluster.
pool
Ceph pool name.
username
RBD user Id. Optional, only needed if Ceph is not running on the PVE cluster.
krbd
Enforce access to rados block devices through the krbd kernel module. Optional.
Note
Containers will use krbd independent of the option value.
Configuration Example for a external Ceph cluster (/etc/pve/storage.cfg).
rbd: ceph-external
monhost 10.1.1.20 10.1.1.21 10.1.1.22
pool ceph-external
content images
username admin
Tip
You can use the rbd utility to do low-level management tasks.
8.14.2. Authentication
If you use cephx authentication, you need to copy the keyfile from your external Ceph cluster to a Proxmox VE host.
Create the directory /etc/pve/priv/ceph with
mkdir /etc/pve/priv/ceph
Then copy the keyring
scp <cephserver>:/etc/ceph/ceph.client.admin.keyring /etc/pve/priv/ceph/<STORAGE_ID>.keyring
The keyring must be named to match your <STORAGE_ID>. Copying the keyring generally requires root privileges.
If Ceph is installed locally on the PVE cluster, this is done automatically by pveceph or in the GUI.
8.14.3. Storage Features
The rbd backend is a block level storage, and implements full snapshot and clone functionality.
Table 8.12. Storage features for backend rbd
Content types | Image formats | Shared | Snapshots | Clones |
---|---|---|---|---|
images rootdir | raw | yes | yes | yes |
8.15. Ceph Filesystem (CephFS)
Storage pool type: cephfs
CephFS implements a POSIX-compliant filesystem using a Ceph storage cluster to store its data. As CephFS builds on Ceph it shares most of its properties, this includes redundancy, scalability, self healing and high availability.
Tip
Proxmox VE can manage ceph setups Section 4.2, “Manage Ceph Services on Proxmox VE Nodes”, which makes configuring a CephFS storage easier. As recent hardware has plenty of CPU power and RAM, running storage services and VMs on same node is possible without a big performance impact.
To use the CephFS storage plugin you need update the debian stock Ceph client. Add our Ceph repository Ceph repository Section 3.1.4, “Proxmox VE Ceph Repository”. Once added, run an apt update and apt dist-upgrade cycle to get the newest packages.
You need to make sure that there is no other Ceph repository configured, otherwise the installation will fail or there will be mixed package versions on the node, leading to unexpected behavior.
8.15.1. Configuration
This backend supports the common storage properties nodes, disable, content, and the following cephfs specific properties:
monhost
List of monitor daemon addresses. Optional, only needed if Ceph is not running on the PVE cluster.
path
The local mount point. Optional, defaults to /mnt/pve/<STORAGE_ID>/.
username
Ceph user id. Optional, only needed if Ceph is not running on the PVE cluster where it defaults to admin.
subdir
CephFS subdirectory to mount. Optional, defaults to /.
fuse
Access CephFS through FUSE, instead of the kernel client. Optional, defaults to 0.
Configuration Example for a external Ceph cluster (/etc/pve/storage.cfg).
cephfs: cephfs-external
monhost 10.1.1.20 10.1.1.21 10.1.1.22
path /mnt/pve/cephfs-external
content backup
username admin
Note
Don’t forget to setup the client secret key file if cephx was not turned off.
8.15.2. Authentication
If you use the, by-default enabled, cephx authentication, you need to copy the secret from your external Ceph cluster to a Proxmox VE host.
Create the directory /etc/pve/priv/ceph with
mkdir /etc/pve/priv/ceph
Then copy the secret
scp cephfs.secret <proxmox>:/etc/pve/priv/ceph/<STORAGE_ID>.secret
The secret must be named to match your <STORAGE_ID>. Copying the secret generally requires root privileges. The file must only contain the secret key itself, opposed to the rbd backend which also contains a [client.userid] section.
A secret can be received from the ceph cluster (as ceph admin) by issuing the following command. Replace the userid with the actual client ID configured to access the cluster. For further ceph user management see the Ceph docs [19].
ceph auth get-key client.userid > cephfs.secret
If Ceph is installed locally on the PVE cluster, i.e., setup with pveceph, this is done automatically.
8.15.3. Storage Features
The cephfs backend is a POSIX-compliant filesystem on top of a Ceph cluster.
Table 8.13. Storage features for backend cephfs
Content types | Image formats | Shared | Snapshots | Clones |
---|---|---|---|---|
vztmpl iso backup snippets | none | yes | yes[1] | no |
[1] Snapshots, while no known bugs, cannot be guaranteed to be stable yet, as they lack testing.
[19] Ceph user management http://docs.ceph.com/docs/luminous/rados/operations/user-management/
Chapter 9. Storage Replication
The pvesr command line tool manages the Proxmox VE storage replication framework. Storage replication brings redundancy for guests using local storage and reduces migration time.
It replicates guest volumes to another node so that all data is available without using shared storage. Replication uses snapshots to minimize traffic sent over the network. Therefore, new data is sent only incrementally after an initial full sync. In the case of a node failure, your guest data is still available on the replicated node.
The replication will be done automatically in configurable intervals. The minimum replication interval is one minute and the maximal interval is once a week. The format used to specify those intervals is a subset of systemd calendar events, see Schedule Format Section 9.2, “Schedule Format” section:
Every guest can be replicated to multiple target nodes, but a guest cannot get replicated twice to the same target node.
Each replications bandwidth can be limited, to avoid overloading a storage or server.
Virtual guest with active replication cannot currently use online migration. Offline migration is supported in general. If you migrate to a node where the guests data is already replicated only the changes since the last synchronisation (so called delta) must be sent, this reduces the required time significantly. In this case the replication direction will also switch nodes automatically after the migration finished.
For example: VM100 is currently on nodeA and gets replicated to nodeB. You migrate it to nodeB, so now it gets automatically replicated back from nodeB to nodeA.
If you migrate to a node where the guest is not replicated, the whole disk data must send over. After the migration the replication job continues to replicate this guest to the configured nodes.
Important
High-Availability is allowed in combination with storage replication, but it has the following implications:
9.1. Supported Storage Types
Table 9.1. Storage Types
Description | PVE type | Snapshots | Stable |
---|---|---|---|
ZFS (local) | zfspool | yes | yes |
9.2. Schedule Format
Proxmox VE has a very flexible replication scheduler. It is based on the systemd time calendar event format.[20] Calendar events may be used to refer to one or more points in time in a single expression.
Such a calendar event uses the following format:
[day(s)] [[start-time(s)][/repetition-time(s)]]
This allows you to configure a set of days on which the job should run. You can also set one or more start times, it tells the replication scheduler the moments in time when a job should start. With this information we could create a job which runs every workday at 10 PM: 'mon,tue,wed,thu,fri 22' which could be abbreviated to: 'mon..fri 22', most reasonable schedules can be written quite intuitive this way.
Note
Hours are set in 24h format.
To allow easier and shorter configuration one or more repetition times can be set. They indicate that on the start-time(s) itself and the start-time(s) plus all multiples of the repetition value replications will be done. If you want to start replication at 8 AM and repeat it every 15 minutes until 9 AM you would use: '8:00/15'
Here you see also that if no hour separation (:) is used the value gets interpreted as minute. If such a separation is used the value on the left denotes the hour(s) and the value on the right denotes the minute(s). Further, you can use * to match all possible values.
To get additional ideas look at more Examples below Section 9.2.2, “Examples:”.
9.2.1. Detailed Specification
days
Days are specified with an abbreviated English version: sun, mon, tue, wed, thu, fri and sat. You may use multiple days as a comma-separated list. A range of days can also be set by specifying the start and end day separated by “..”, for example mon..fri. Those formats can be also mixed. If omitted '*' is assumed.
time-format
A time format consists of hours and minutes interval lists. Hours and minutes are separated by ':'. Both, hour and minute, can be list and ranges of values, using the same format as days. First come hours then minutes, hours can be omitted if not needed, in this case '*' is assumed for the value of hours. The valid range for values is 0-23 for hours and 0-59 for minutes.
9.2.2. Examples:
Table 9.2. Schedule Examples
Schedule String | Alternative | Meaning |
---|---|---|
mon,tue,wed,thu,fri | mon..fri | Every working day at 0:00 |
sat,sun | sat..sun | Only on weekends at 0:00 |
mon,wed,fri | — | Only on Monday, Wednesday and Friday at 0:00 |
12:05 | 12:05 | Every day at 12:05 PM |
*/5 | 0/5 | Every five minutes |
mon..wed 30/10 | mon,tue,wed 30/10 | Monday, Tuesday, Wednesday 30, 40 and 50 minutes after every full hour |
mon..fri 8..17,22:0/15 | — | Every working day every 15 minutes between 8 AM and 6 PM and between 10 PM and 11 PM |
fri 12..13:5/20 | fri 12,13:5/20 | Friday at 12:05, 12:25, 12:45, 13:05, 13:25 and 13:45 |
12,14,16,18,20,22:5 | 12/2:5 | Every day starting at 12:05 until 22:05, every 2 hours |
* | */1 | Every minute (minimum interval) |
[20] see man 7 systemd.time for more information
9.3. Error Handling
If a replication job encounters problems it will be placed in error state. In this state the configured replication intervals get suspended temporarily. Then we retry the failed replication in a 30 minute interval, once this succeeds the original schedule gets activated again.
9.3.1. Possible issues
This represents only the most common issues possible, depending on your setup there may be also another cause.
Note
You can always use the replication log to get hints about a problems cause.
9.3.2. Migrating a guest in case of Error
In the case of a grave error a virtual guest may get stuck on a failed node. You then need to move it manually to a working node again.
9.3.3. Example
Lets assume that you have two guests (VM 100 and CT 200) running on node A and replicate to node B. Node A failed and can not get back online. Now you have to migrate the guest to Node B manually.
check if that the cluster is quorate
pvecm status
If you have no quorum we strongly advise to fix this first and make the node operable again. Only if this is not possible at the moment you may use the following command to enforce quorum on the current node:
pvecm expected 1
Warning
If expected votes are set avoid changes which affect the cluster (for example adding/removing nodes, storages, virtual guests) at all costs. Only use it to get vital guests up and running again or to resolve to quorum issue itself.
move both guest configuration files form the origin node A to node B:
mv /etc/pve/nodes/A/qemu-server/100.conf /etc/pve/nodes/B/qemu-server/100.conf
mv /etc/pve/nodes/A/lxc/200.conf /etc/pve/nodes/B/lxc/200.conf
Now you can start the guests again:
qm start 100
pct start 200
Remember to replace the VMIDs and node names with your respective values.
9.4. Managing Jobs
You can use the web GUI to create, modify and remove replication jobs easily. Additionally the command line interface (CLI) tool pvesr can be used to do this.
You can find the replication panel on all levels (datacenter, node, virtual guest) in the web GUI. They differ in what jobs get shown: all, only node specific or only guest specific jobs.
Once adding a new job you need to specify the virtual guest (if not already selected) and the target node. The replication schedule Section 9.2, “Schedule Format” can be set if the default of all 15 minutes is not desired. You may also impose rate limiting on a replication job, this can help to keep the storage load acceptable.
A replication job is identified by an cluster-wide unique ID. This ID is composed of the VMID in addition to an job number. This ID must only be specified manually if the CLI tool is used.
9.5. Command Line Interface Examples
Create a replication job which will run every 5 minutes with limited bandwidth of 10 mbps (megabytes per second) for the guest with guest ID 100.
pvesr create-local-job 100-0 pve1 --schedule "*/5" --rate 10
Disable an active job with ID 100-0
pvesr disable 100-0
Enable a deactivated job with ID 100-0
pvesr enable 100-0
Change the schedule interval of the job with ID 100-0 to once a hour
pvesr update 100-0 --schedule '*/00'
Chapter 10. Qemu/KVM Virtual Machines
Qemu (short form for Quick Emulator) is an open source hypervisor that emulates a physical computer. From the perspective of the host system where Qemu is running, Qemu is a user program which has access to a number of local resources like partitions, files, network cards which are then passed to an emulated computer which sees them as if they were real devices.
A guest operating system running in the emulated computer accesses these devices, and runs as it were running on real hardware. For instance you can pass an iso image as a parameter to Qemu, and the OS running in the emulated computer will see a real CDROM inserted in a CD drive.
Qemu can emulate a great variety of hardware from ARM to Sparc, but Proxmox VE is only concerned with 32 and 64 bits PC clone emulation, since it represents the overwhelming majority of server hardware. The emulation of PC clones is also one of the fastest due to the availability of processor extensions which greatly speed up Qemu when the emulated architecture is the same as the host architecture.
Note
You may sometimes encounter the term KVM (Kernel-based Virtual Machine). It means that Qemu is running with the support of the virtualization processor extensions, via the Linux kvm module. In the context of Proxmox VE Qemu and KVM can be used interchangeably as Qemu in Proxmox VE will always try to load the kvm module.
Qemu inside Proxmox VE runs as a root process, since this is required to access block and PCI devices.
10.1. Emulated devices and paravirtualized devices
The PC hardware emulated by Qemu includes a mainboard, network controllers, scsi, ide and sata controllers, serial ports (the complete list can be seen in the kvm(1) man page) all of them emulated in software. All these devices are the exact software equivalent of existing hardware devices, and if the OS running in the guest has the proper drivers it will use the devices as if it were running on real hardware. This allows Qemu to runs unmodified operating systems.
This however has a performance cost, as running in software what was meant to run in hardware involves a lot of extra work for the host CPU. To mitigate this, Qemu can present to the guest operating system paravirtualized devices, where the guest OS recognizes it is running inside Qemu and cooperates with the hypervisor.
Qemu relies on the virtio virtualization standard, and is thus able to present paravirtualized virtio devices, which includes a paravirtualized generic disk controller, a paravirtualized network card, a paravirtualized serial port, a paravirtualized SCSI controller, etc …
It is highly recommended to use the virtio devices whenever you can, as they provide a big performance improvement. Using the virtio generic disk controller versus an emulated IDE controller will double the sequential write throughput, as measured with bonnie++(8). Using the virtio network interface can deliver up to three times the throughput of an emulated Intel E1000 network card, as measured with iperf(1). [21]
[21] See this benchmark on the KVM wiki http://www.linux-kvm.org/page/Using_VirtIO_NIC
10.2. Virtual Machines Settings
Generally speaking Proxmox VE tries to choose sane defaults for virtual machines (VM). Make sure you understand the meaning of the settings you change, as it could incur a performance slowdown, or putting your data at risk.
10.2.1. General Settings
General settings of a VM include
10.2.2. OS Settings
When creating a virtual machine (VM), setting the proper Operating System(OS) allows Proxmox VE to optimize some low level parameters. For instance Windows OS expect the BIOS clock to use the local time, while Unix based OS expect the BIOS clock to have the UTC time.
10.2.3. System Settings
On VM creation you can change some basic system components of the new VM. You can specify which display type Section 10.2.8, “Display” you want to use.
Additionally, the SCSI controller Section 10.2.4, “Hard Disk” can be changed. If you plan to install the QEMU Guest Agent, or if your selected ISO image already ships and installs it automatically, you may want to tick the Qemu Agent box, which lets Proxmox VE know that it can use its features to show some more information, and complete some actions (for example, shutdown or snapshots) more intelligently.
Proxmox VE allows to boot VMs with different firmware and machine types, namely SeaBIOS and OVMF Section 10.2.10, “BIOS and UEFI”. In most cases you want to switch from the default SeabBIOS to OVMF only if you plan to use PCIe pass through Section 10.9, “PCI(e) Passthrough”. A VMs Machine Type defines the hardware layout of the VM’s virtual motherboard. You can choose between the default Intel 440FX or the Q35 chipset, which also provides a virtual PCIe bus, and thus may be desired if one want’s to pass through PCIe hardware.
10.2.4. Hard Disk
Qemu can emulate a number of storage controllers:
the SCSI controller, designed in 1985, is commonly found on server grade hardware, and can connect up to 14 storage devices. Proxmox VE emulates by default a LSI 53C895A controller.
A SCSI controller of type VirtIO SCSI is the recommended setting if you aim for performance and is automatically selected for newly created Linux VMs since Proxmox VE 4.3. Linux distributions have support for this controller since 2012, and FreeBSD since 2014. For Windows OSes, you need to provide an extra iso containing the drivers during the installation. If you aim at maximum performance, you can select a SCSI controller of type VirtIO SCSI single which will allow you to select the IO Thread option. When selecting VirtIO SCSI single Qemu will create a new controller for each disk, instead of adding all disks to the same controller.
On each controller you attach a number of emulated hard disks, which are backed by a file or a block device residing in the configured storage. The choice of a storage type will determine the format of the hard disk image. Storages which present block devices (LVM, ZFS, Ceph) will require the raw disk image format, whereas files based storages (Ext4, NFS, CIFS, GlusterFS) will let you to choose either the raw disk image format or the QEMU image format.
Setting the Cache mode of the hard drive will impact how the host system will notify the guest systems of block write completions. The No cache default means that the guest system will be notified that a write is complete when each block reaches the physical storage write queue, ignoring the host page cache. This provides a good balance between safety and speed.
If you want the Proxmox VE backup manager to skip a disk when doing a backup of a VM, you can set the No backup option on that disk.
If you want the Proxmox VE storage replication mechanism to skip a disk when starting a replication job, you can set the Skip replication option on that disk. As of Proxmox VE 5.0, replication requires the disk images to be on a storage of type zfspool, so adding a disk image to other storages when the VM has replication configured requires to skip replication for this disk image.
If your storage supports thin provisioning (see the storage chapter in the Proxmox VE guide), you can activate the Discard option on a drive. With Discard set and a TRIM-enabled guest OS [23], when the VM’s filesystem marks blocks as unused after deleting files, the controller will relay this information to the storage, which will then shrink the disk image accordingly. For the guest to be able to issue TRIM commands, you must either use a VirtIO SCSI (or VirtIO SCSI Single) controller or set the SSD emulation option on the drive. Note that Discard is not supported on VirtIO Block drives.
If you would like a drive to be presented to the guest as a solid-state drive rather than a rotational hard disk, you can set the SSD emulation option on that drive. There is no requirement that the underlying storage actually be backed by SSDs; this feature can be used with physical media of any type. Note that SSD emulation is not supported on VirtIO Block drives.
IO Thread. The option IO Thread can only be used when using a disk with the VirtIO controller, or with the SCSI controller, when the emulated controller type is VirtIO SCSI single. With this enabled, Qemu creates one I/O thread per storage controller, instead of a single thread for all I/O, so it increases performance when multiple disks are used and each disk has its own storage controller. Note that backups do not currently work with IO Thread enabled.
10.2.5. CPU
A CPU socket is a physical slot on a PC motherboard where you can plug a CPU. This CPU can then contain one or many cores, which are independent processing units. Whether you have a single CPU socket with 4 cores, or two CPU sockets with two cores is mostly irrelevant from a performance point of view. However some software licenses depend on the number of sockets a machine has, in that case it makes sense to set the number of sockets to what the license allows you.
Increasing the number of virtual cpus (cores and sockets) will usually provide a performance improvement though that is heavily dependent on the use of the VM. Multithreaded applications will of course benefit from a large number of virtual cpus, as for each virtual cpu you add, Qemu will create a new thread of execution on the host system. If you’re not sure about the workload of your VM, it is usually a safe bet to set the number of Total cores to 2.
Note
It is perfectly safe if the overall number of cores of all your VMs is greater than the number of cores on the server (e.g., 4 VMs with each 4 cores on a machine with only 8 cores). In that case the host system will balance the Qemu execution threads between your server cores, just like if you were running a standard multithreaded application. However, Proxmox VE will prevent you from assigning more virtual CPU cores than physically available, as this will only bring the performance down due to the cost of context switches.
Resource Limits
In addition to the number of virtual cores, you can configure how much resources a VM can get in relation to the host CPU time and also in relation to other VMs. With the cpulimit (“Host CPU Time”) option you can limit how much CPU time the whole VM can use on the host. It is a floating point value representing CPU time in percent, so 1.0 is equal to 100%, 2.5 to 250% and so on. If a single process would fully use one single core it would have 100% CPU Time usage. If a VM with four cores utilizes all its cores fully it would theoretically use 400%. In reality the usage may be even a bit higher as Qemu can have additional threads for VM peripherals besides the vCPU core ones. This setting can be useful if a VM should have multiple vCPUs, as it runs a few processes in parallel, but the VM as a whole should not be able to run all vCPUs at 100% at the same time. Using a specific example: lets say we have a VM which would profit from having 8 vCPUs, but at no time all of those 8 cores should run at full load - as this would make the server so overloaded that other VMs and CTs would get to less CPU. So, we set the cpulimit limit to 4.0 (=400%). If all cores do the same heavy work they would all get 50% of a real host cores CPU time. But, if only 4 would do work they could still get almost 100% of a real core each.
Note
VMs can, depending on their configuration, use additional threads e.g., for networking or IO operations but also live migration. Thus a VM can show up to use more CPU time than just its virtual CPUs could use. To ensure that a VM never uses more CPU time than virtual CPUs assigned set the cpulimit setting to the same value as the total core count.
The second CPU resource limiting setting, cpuunits (nowadays often called CPU shares or CPU weight), controls how much CPU time a VM gets in regards to other VMs running. It is a relative weight which defaults to 1024, if you increase this for a VM it will be prioritized by the scheduler in comparison to other VMs with lower weight. E.g., if VM 100 has set the default 1024 and VM 200 was changed to 2048, the latter VM 200 would receive twice the CPU bandwidth than the first VM 100.
For more information see man systemd.resource-control, here CPUQuota corresponds to cpulimit and CPUShares corresponds to our cpuunits setting, visit its Notes section for references and implementation details.
CPU Type
Qemu can emulate a number different of CPU types from 486 to the latest Xeon processors. Each new processor generation adds new features, like hardware assisted 3d rendering, random number generation, memory protection, etc … Usually you should select for your VM a processor type which closely matches the CPU of the host system, as it means that the host CPU features (also called CPU flags) will be available in your VMs. If you want an exact match, you can set the CPU type to host in which case the VM will have exactly the same CPU flags as your host system.
This has a downside though. If you want to do a live migration of VMs between different hosts, your VM might end up on a new system with a different CPU type. If the CPU flags passed to the guest are missing, the qemu process will stop. To remedy this Qemu has also its own CPU type kvm64, that Proxmox VE uses by defaults. kvm64 is a Pentium 4 look a like CPU type, which has a reduced CPU flags set, but is guaranteed to work everywhere.
In short, if you care about live migration and moving VMs between nodes, leave the kvm64 default. If you don’t care about live migration or have a homogeneous cluster where all nodes have the same CPU, set the CPU type to host, as in theory this will give your guests maximum performance.
Meltdown / Spectre related CPU flags
There are several CPU flags related to the Meltdown and Spectre vulnerabilities [24] which need to be set manually unless the selected CPU type of your VM already enables them by default.
There are two requirements that need to be fulfilled in order to use these CPU flags:
Otherwise you need to set the desired CPU flag of the virtual CPU, either by editing the CPU options in the WebUI, or by setting the flags property of the cpu option in the VM configuration file.
For Spectre v1,v2,v4 fixes, your CPU or system vendor also needs to provide a so-called “microcode update” [25] for your CPU.
To check if the Proxmox VE host is vulnerable, execute the following command as root:
for f in /sys/devices/system/cpu/vulnerabilities/*; do echo "${f##*/} -" $(cat "$f"); done
A community script is also available to detect is the host is still vulnerable. [26]
Intel processors
pcid
This reduces the performance impact of the Meltdown (CVE-2017-5754) mitigation called Kernel Page-Table Isolation (KPTI), which effectively hides the Kernel memory from the user space. Without PCID, KPTI is quite an expensive mechanism [27].
To check if the Proxmox VE host supports PCID, execute the following command as root:
grep ' pcid ' /proc/cpuinfo
If this does not return empty your host’s CPU has support for pcid.
spec-ctrl
Required to enable the Spectre v1 (CVE-2017-5753) and Spectre v2 (CVE-2017-5715) fix, in cases where retpolines are not sufficient. Included by default in Intel CPU models with -IBRS suffix. Must be explicitly turned on for Intel CPU models without -IBRS suffix. Requires an updated host CPU microcode (intel-microcode >= 20180425).
ssbd
Required to enable the Spectre V4 (CVE-2018-3639) fix. Not included by default in any Intel CPU model. Must be explicitly turned on for all Intel CPU models. Requires an updated host CPU microcode(intel-microcode >= 20180703).
AMD processors
ibpb
Required to enable the Spectre v1 (CVE-2017-5753) and Spectre v2 (CVE-2017-5715) fix, in cases where retpolines are not sufficient. Included by default in AMD CPU models with -IBPB suffix. Must be explicitly turned on for AMD CPU models without -IBPB suffix. Requires the host CPU microcode to support this feature before it can be used for guest CPUs.
virt-ssbd
Required to enable the Spectre v4 (CVE-2018-3639) fix. Not included by default in any AMD CPU model. Must be explicitly turned on for all AMD CPU models. This should be provided to guests, even if amd-ssbd is also provided, for maximum guest compatibility. Note that this must be explicitly enabled when when using the "host" cpu model, because this is a virtual feature which does not exist in the physical CPUs.
amd-ssbd
Required to enable the Spectre v4 (CVE-2018-3639) fix. Not included by default in any AMD CPU model. Must be explicitly turned on for all AMD CPU models. This provides higher performance than virt-ssbd, therefore a host supporting this should always expose this to guests if possible. virt-ssbd should none the less also be exposed for maximum guest compatibility as some kernels only know about virt-ssbd.
amd-no-ssb
Recommended to indicate the host is not vulnerable to Spectre V4 (CVE-2018-3639). Not included by default in any AMD CPU model. Future hardware generations of CPU will not be vulnerable to CVE-2018-3639, and thus the guest should be told not to enable its mitigations, by exposing amd-no-ssb. This is mutually exclusive with virt-ssbd and amd-ssbd.
NUMA
You can also optionally emulate a NUMA [28] architecture in your VMs. The basics of the NUMA architecture mean that instead of having a global memory pool available to all your cores, the memory is spread into local banks close to each socket. This can bring speed improvements as the memory bus is not a bottleneck anymore. If your system has a NUMA architecture [29] we recommend to activate the option, as this will allow proper distribution of the VM resources on the host system. This option is also required to hot-plug cores or RAM in a VM.
If the NUMA option is used, it is recommended to set the number of sockets to the number of nodes of the host system.
vCPU hot-plug
Modern operating systems introduced the capability to hot-plug and, to a certain extent, hot-unplug CPUs in a running systems. Virtualisation allows us to avoid a lot of the (physical) problems real hardware can cause in such scenarios. Still, this is a rather new and complicated feature, so its use should be restricted to cases where its absolutely needed. Most of the functionality can be replicated with other, well tested and less complicated, features, see Resource Limits the section called “Resource Limits”.
In Proxmox VE the maximal number of plugged CPUs is always cores * sockets. To start a VM with less than this total core count of CPUs you may use the vpus setting, it denotes how many vCPUs should be plugged in at VM start.
Currently only this feature is only supported on Linux, a kernel newer than 3.10 is needed, a kernel newer than 4.7 is recommended.
You can use a udev rule as follow to automatically set new CPUs as online in the guest:
SUBSYSTEM=="cpu", ACTION=="add", TEST=="online", ATTR{online}=="0", ATTR{online}="1"
Save this under /etc/udev/rules.d/ as a file ending in .rules.
Note: CPU hot-remove is machine dependent and requires guest cooperation. The deletion command does not guarantee CPU removal to actually happen, typically it’s a request forwarded to guest using target dependent mechanism, e.g., ACPI on x86/amd64.
10.2.6. Memory
For each VM you have the option to set a fixed size memory or asking Proxmox VE to dynamically allocate memory based on the current RAM usage of the host.
Fixed Memory Allocation.
ghen setting memory and minimum memory to the same amount Proxmox VE will simply allocate what you specify to your VM.
Even when using a fixed memory size, the ballooning device gets added to the VM, because it delivers useful information such as how much memory the guest really uses. In general, you should leave ballooning enabled, but if you want to disable it (e.g. for debugging purposes), simply uncheck Ballooning Device or set
balloon: 0
in the configuration.
Automatic Memory Allocation. When setting the minimum memory lower than memory, Proxmox VE will make sure that the minimum amount you specified is always available to the VM, and if RAM usage on the host is below 80%, will dynamically add memory to the guest up to the maximum memory specified.
When the host is running low on RAM, the VM will then release some memory back to the host, swapping running processes if needed and starting the oom killer in last resort. The passing around of memory between host and guest is done via a special balloon kernel driver running inside the guest, which will grab or release memory pages from the host. [30]
When multiple VMs use the autoallocate facility, it is possible to set a Shares coefficient which indicates the relative amount of the free host memory that each VM should take. Suppose for instance you have four VMs, three of them running an HTTP server and the last one is a database server. To cache more database blocks in the database server RAM, you would like to prioritize the database VM when spare RAM is available. For this you assign a Shares property of 3000 to the database VM, leaving the other VMs to the Shares default setting of 1000. The host server has 32GB of RAM, and is currently using 16GB, leaving 32 * 80/100 - 16 = 9GB RAM to be allocated to the VMs. The database VM will get 9 * 3000 / (3000 + 1000 + 1000 + 1000) = 4.5 GB extra RAM and each HTTP server will get 1.5 GB.
All Linux distributions released after 2010 have the balloon kernel driver included. For Windows OSes, the balloon driver needs to be added manually and can incur a slowdown of the guest, so we don’t recommend using it on critical systems.
When allocating RAM to your VMs, a good rule of thumb is always to leave 1GB of RAM available to the host.
10.2.7. Network Device
Each VM can have many Network interface controllers (NIC), of four different types:
Proxmox VE will generate for each NIC a random MAC address, so that your VM is addressable on Ethernet networks.
The NIC you added to the VM can follow one of two different models:
You can also skip adding a network device when creating a VM by selecting No network device.
Multiqueue. If you are using the VirtIO driver, you can optionally activate the Multiqueue option. This option allows the guest OS to process networking packets using multiple virtual CPUs, providing an increase in the total number of packets transferred.
When using the VirtIO driver with Proxmox VE, each NIC network queue is passed to the host kernel, where the queue will be processed by a kernel thread spawned by the vhost driver. With this option activated, it is possible to pass multiple network queues to the host kernel for each NIC.
When using Multiqueue, it is recommended to set it to a value equal to the number of Total Cores of your guest. You also need to set in the VM the number of multi-purpose channels on each VirtIO NIC with the ethtool command:
ethtool -L ens1 combined X
where X is the number of the number of vcpus of the VM.
You should note that setting the Multiqueue parameter to a value greater than one will increase the CPU load on the host and guest systems as the traffic increases. We recommend to set this option only when the VM has to process a great number of incoming connections, such as when the VM is running as a router, reverse proxy or a busy HTTP server doing long polling.
10.2.8. Display
QEMU can virtualize a few types of VGA hardware. Some examples are:
You can edit the amount of memory given to the virtual GPU, by setting the memory option. This can enable higher resolutions inside the VM, especially with SPICE/QXL.
As the memory is reserved by display device, selecting Multi-Monitor mode for SPICE (e.g., qxl2 for dual monitors) has some implications:
Selecting serialX as display type disables the VGA output, and redirects the Web Console to the selected serial port. A configured display memory setting will be ignored in that case.
10.2.9. USB Passthrough
There are two different types of USB passthrough devices:
Host USB passthrough works by giving a VM a USB device of the host. This can either be done via the vendor- and product-id, or via the host bus and port.
The vendor/product-id looks like this: 0123:abcd, where 0123 is the id of the vendor, and abcd is the id of the product, meaning two pieces of the same usb device have the same id.
The bus/port looks like this: 1-2.3.4, where 1 is the bus and 2.3.4 is the port path. This represents the physical ports of your host (depending of the internal order of the usb controllers).
If a device is present in a VM configuration when the VM starts up, but the device is not present in the host, the VM can boot without problems. As soon as the device/port is available in the host, it gets passed through.
Warning
Using this kind of USB passthrough means that you cannot move a VM online to another host, since the hardware is only available on the host the VM is currently residing.
The second type of passthrough is SPICE USB passthrough. This is useful if you use a SPICE client which supports it. If you add a SPICE USB port to your VM, you can passthrough a USB device from where your SPICE client is, directly to the VM (for example an input device or hardware dongle).
10.2.10. BIOS and UEFI
In order to properly emulate a computer, QEMU needs to use a firmware. Which, on common PCs often known as BIOS or (U)EFI, is executed as one of the first steps when booting a VM. It is responsible for doing basic hardware initialization and for providing an interface to the firmware and hardware for the operating system. By default QEMU uses SeaBIOS for this, which is an open-source, x86 BIOS implementation. SeaBIOS is a good choice for most standard setups.
There are, however, some scenarios in which a BIOS is not a good firmware to boot from, e.g. if you want to do VGA passthrough. [32] In such cases, you should rather use OVMF, which is an open-source UEFI implementation. [33]
If you want to use OVMF, there are several things to consider:
In order to save things like the boot order, there needs to be an EFI Disk. This disk will be included in backups and snapshots, and there can only be one.
You can create such a disk with the following command:
qm set <vmid> -efidisk0 <storage>:1,format=<format>
Where <storage> is the storage where you want to have the disk, and <format> is a format which the storage supports. Alternatively, you can create such a disk through the web interface with Add → EFI Disk in the hardware section of a VM.
When using OVMF with a virtual display (without VGA passthrough), you need to set the client resolution in the OVMF menu(which you can reach with a press of the ESC button during boot), or you have to choose SPICE as the display type.
10.2.11. Inter-VM shared memory
You can add an Inter-VM shared memory device (ivshmem), which allows one to share memory between the host and a guest, or also between multiple guests.
To add such a device, you can use qm:
qm set <vmid> -ivshmem size=32,name=foo
Where the size is in MiB. The file will be located under /dev/shm/pve-shm-$name (the default name is the vmid).
Note
Currently the device will get deleted as soon as any VM using it got shutdown or stopped. Open connections will still persist, but new connections to the exact same device cannot be made anymore.
A use case for such a device is the Looking Glass [34] project, which enables high performance, low-latency display mirroring between host and guest.
10.2.12. Automatic Start and Shutdown of Virtual Machines
After creating your VMs, you probably want them to start automatically when the host system boots. For this you need to select the option Start at boot from the Options Tab of your VM in the web interface, or set it with the following command:
qm set <vmid> -onboot 1
Start and Shutdown Order.
In some case you want to be able to fine tune the boot order of your VMs, for instance if one of your VM is providing firewalling or DHCP to other guest systems. For this you can use the following parameters:
Note
VMs managed by the HA stack do not follow the start on boot and boot order options currently. Those VMs will be skipped by the startup and shutdown algorithm as the HA manager itself ensures that VMs get started and stopped.
Please note that machines without a Start/Shutdown order parameter will always start after those where the parameter is set. Further, this parameter can only be enforced between virtual machines running on the same host, not cluster-wide.
[22] See this benchmark for details http://events.linuxfoundation.org/sites/events/files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf
[23] TRIM, UNMAP, and discard https://en.wikipedia.org/wiki/Trim_%28computing%29
[24] Meltdown Attack https://meltdownattack.com/
[25] You can use ‘intel-microcode’ / ‘amd-microcode’ from Debian non-free if your vendor does not provide such an update. Note that not all affected CPUs can be updated to support spec-ctrl.
[26] spectre-meltdown-checker https://meltdown.ovh/
[27] PCID is now a critical performance/security feature on x86 https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU
[28] https://en.wikipedia.org/wiki/Non-uniform_memory_access
[29] if the command numactl --hardware | grep available returns more than one node, then your host system has a NUMA architecture
[30] A good explanation of the inner workings of the balloon driver can be found here https://rwmj.wordpress.com/2010/07/17/virtio-balloon/
[31] https://www.kraxel.org/blog/2014/10/qemu-using-cirrus-considered-harmful/ qemu: using cirrus considered harmful
[32] Alex Williamson has a very good blog entry about this. http://vfio.blogspot.co.at/2014/08/primary-graphics-assignment-without-vga.html
[33] See the OVMF Project http://www.tianocore.org/ovmf/
[34] Looking Glass: https://looking-glass.hostfission.com/
10.3. Migration
If you have a cluster, you can migrate your VM to another host with
qm migrate <vmid> <target>
There are generally two mechanisms for this
10.3.1. Online Migration
When your VM is running and it has no local resources defined (such as disks on local storage, passed through devices, etc.) you can initiate a live migration with the -online flag.
How it works
This starts a Qemu Process on the target host with the incoming flag, which means that the process starts and waits for the memory data and device states from the source Virtual Machine (since all other resources, e.g. disks, are shared, the memory content and device state are the only things left to transmit).
Once this connection is established, the source begins to send the memory content asynchronously to the target. If the memory on the source changes, those sections are marked dirty and there will be another pass of sending data. This happens until the amount of data to send is so small that it can pause the VM on the source, send the remaining data to the target and start the VM on the target in under a second.
Requirements
For Live Migration to work, there are some things required:
10.3.2. Offline Migration
If you have local resources, you can still offline migrate your VMs, as long as all disk are on storages, which are defined on both hosts. Then the migration will copy the disk over the network to the target host.
10.4. Copies and Clones
VM installation is usually done using an installation media (CD-ROM) from the operation system vendor. Depending on the OS, this can be a time consuming task one might want to avoid.
An easy way to deploy many VMs of the same type is to copy an existing VM. We use the term clone for such copies, and distinguish between linked and full clones.
Full Clone
The result of such copy is an independent VM. The new VM does not share any storage resources with the original.
It is possible to select a Target Storage, so one can use this to migrate a VM to a totally different storage. You can also change the disk image Format if the storage driver supports several formats.
Note
A full clone needs to read and copy all VM image data. This is usually much slower than creating a linked clone.
Some storage types allows to copy a specific Snapshot, which defaults to the current VM data. This also means that the final copy never includes any additional snapshots from the original VM.
Linked Clone
Modern storage drivers support a way to generate fast linked clones. Such a clone is a writable copy whose initial contents are the same as the original data. Creating a linked clone is nearly instantaneous, and initially consumes no additional space.
They are called linked because the new image still refers to the original. Unmodified data blocks are read from the original image, but modification are written (and afterwards read) from a new location. This technique is called Copy-on-write.
This requires that the original volume is read-only. With Proxmox VE one can convert any VM into a read-only Template). Such templates can later be used to create linked clones efficiently.
Note
You cannot delete an original template while linked clones exist.
It is not possible to change the Target storage for linked clones, because this is a storage internal feature.
The Target node option allows you to create the new VM on a different node. The only restriction is that the VM is on shared storage, and that storage is also available on the target node.
To avoid resource conflicts, all network interface MAC addresses get randomized, and we generate a new UUID for the VM BIOS (smbios1) setting.
10.5. Virtual Machine Templates
One can convert a VM into a Template. Such templates are read-only, and you can use them to create linked clones.
Note
It is not possible to start templates, because this would modify the disk images. If you want to change the template, create a linked clone and modify that.
10.6. VM Generation ID
Proxmox VE supports Virtual Machine Generation ID (vmgenid) [35] for virtual machines. This can be used by the guest operating system to detect any event resulting in a time shift event, for example, restoring a backup or a snapshot rollback.
When creating new VMs, a vmgenid will be automatically generated and saved in its configuration file.
To create and add a vmgenid to an already existing VM one can pass the special value ‘1’ to let Proxmox VE autogenerate one or manually set the UUID [36] by using it as value, e.g.:
qm set VMID -vmgenid 1
qm set VMID -vmgenid 00000000-0000-0000-0000-000000000000
Note
The initial addition of a vmgenid device to an existing VM, may result in the same effects as a change on snapshot rollback, backup restore, etc., has as the VM can interpret this as generation change.
In the rare case the vmgenid mechanism is not wanted one can pass ‘0’ for its value on VM creation, or retroactively delete the property in the configuration with:
qm set VMID -delete vmgenid
The most prominent use case for vmgenid are newer Microsoft Windows operating systems, which use it to avoid problems in time sensitive or replicate services (e.g., databases, domain controller [37]) on snapshot rollback, backup restore or a whole VM clone operation.
[35] Official vmgenid Specification https://docs.microsoft.com/en-us/windows/desktop/hyperv_v2/virtual-machine-generation-identifier
[36] Online GUID generator http://guid.one/
[37] https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/virtualized-domain-controller-architecture
10.7. Importing Virtual Machines and disk images
A VM export from a foreign hypervisor takes usually the form of one or more disk images, with a configuration file describing the settings of the VM (RAM, number of cores). The disk images can be in the vmdk format, if the disks come from VMware or VirtualBox, or qcow2 if the disks come from a KVM hypervisor. The most popular configuration format for VM exports is the OVF standard, but in practice interoperation is limited because many settings are not implemented in the standard itself, and hypervisors export the supplementary information in non-standard extensions.
Besides the problem of format, importing disk images from other hypervisors may fail if the emulated hardware changes too much from one hypervisor to another. Windows VMs are particularly concerned by this, as the OS is very picky about any changes of hardware. This problem may be solved by installing the MergeIDE.zip utility available from the Internet before exporting and choosing a hard disk type of IDE before booting the imported Windows VM.
Finally there is the question of paravirtualized drivers, which improve the speed of the emulated system and are specific to the hypervisor. GNU/Linux and other free Unix OSes have all the necessary drivers installed by default and you can switch to the paravirtualized drivers right after importing the VM. For Windows VMs, you need to install the Windows paravirtualized drivers by yourself.
GNU/Linux and other free Unix can usually be imported without hassle. Note that we cannot guarantee a successful import/export of Windows VMs in all cases due to the problems above.
10.7.1. Step-by-step example of a Windows OVF import
Microsoft provides Virtual Machines downloads to get started with Windows development.We are going to use one of these to demonstrate the OVF import feature.
Download the Virtual Machine zip
After getting informed about the user agreement, choose the Windows 10 Enterprise (Evaluation - Build) for the VMware platform, and download the zip.
Extract the disk image from the zip
Using the unzip utility or any archiver of your choice, unpack the zip, and copy via ssh/scp the ovf and vmdk files to your Proxmox VE host.
Import the Virtual Machine
This will create a new virtual machine, using cores, memory and VM name as read from the OVF manifest, and import the disks to the local-lvm storage. You have to configure the network manually.
qm importovf 999 WinDev1709Eval.ovf local-lvm
The VM is ready to be started.
10.7.2. Adding an external disk image to a Virtual Machine
You can also add an existing disk image to a VM, either coming from a foreign hypervisor, or one that you created yourself.
Suppose you created a Debian/Ubuntu disk image with the vmdebootstrap tool:
vmdebootstrap --verbose \
--size 10GiB --serial-console \
--grub --no-extlinux \
--package openssh-server \
--package avahi-daemon \
--package qemu-guest-agent \
--hostname vm600 --enable-dhcp \
--customize=./copy_pub_ssh.sh \
--sparse --image vm600.raw
You can now create a new target VM for this image.
qm create 600 --net0 virtio,bridge=vmbr0 --name vm600 --serial0 socket \
--bootdisk scsi0 --scsihw virtio-scsi-pci --ostype l26
Add the disk image as unused0 to the VM, using the storage pvedir:
qm importdisk 600 vm600.raw pvedir
Finally attach the unused disk to the SCSI controller of the VM:
qm set 600 --scsi0 pvedir:600/vm-600-disk-1.raw
The VM is ready to be started.
10.8. Cloud-Init Support
Cloud-Init is the defacto multi-distribution package that handles early initialization of a virtual machine instance. Using Cloud-Init, configuration of network devices and ssh keys on the hypervisor side is possible. When the VM starts for the first time, the Cloud-Init software inside the VM will apply those settings.
Many Linux distributions provide ready-to-use Cloud-Init images, mostly designed for OpenStack. These images will also work with Proxmox VE. While it may seem convenient to get such ready-to-use images, we usually recommended to prepare the images by yourself. The advantage is that you will know exactly what you have installed, and this helps you later to easily customize the image for your needs.
Once you have created such a Cloud-Init image we recommend to convert it into a VM template. From a VM template you can quickly create linked clones, so this is a fast method to roll out new VM instances. You just need to configure the network (and maybe the ssh keys) before you start the new VM.
We recommend using SSH key-based authentication to login to the VMs provisioned by Cloud-Init. It is also possible to set a password, but this is not as safe as using SSH key-based authentication because Proxmox VE needs to store an encrypted version of that password inside the Cloud-Init data.
Proxmox VE generates an ISO image to pass the Cloud-Init data to the VM. For that purpose all Cloud-Init VMs need to have an assigned CDROM drive. Also many Cloud-Init images assume to have a serial console, so it is recommended to add a serial console and use it as display for those VMs.
10.8.1. Preparing Cloud-Init Templates
The first step is to prepare your VM. Basically you can use any VM. Simply install the Cloud-Init packages inside the VM that you want to prepare. On Debian/Ubuntu based systems this is as simple as:
apt-get install cloud-init
Already many distributions provide ready-to-use Cloud-Init images (provided as .qcow2 files), so alternatively you can simply download and import such images. For the following example, we will use the cloud image provided by Ubuntu at https://cloud-images.ubuntu.com.
download the image
wget https://cloud-images.ubuntu.com/bionic/current/bionic-server-cloudimg-amd64.img
create a new VM
qm create 9000 --memory 2048 --net0 virtio,bridge=vmbr0
import the downloaded disk to local-lvm storage
qm importdisk 9000 bionic-server-cloudimg-amd64.img local-lvm
finally attach the new disk to the VM as scsi drive
qm set 9000 --scsihw virtio-scsi-pci --scsi0 local-lvm:vm-9000-disk-1
Note
Ubuntu Cloud-Init images require the virtio-scsi-pci controller type for SCSI drives.
Add Cloud-Init CDROM drive.
The next step is to configure a CDROM drive which will be used to pass the Cloud-Init data to the VM.
qm set 9000 --ide2 local-lvm:cloudinit
To be able to boot directly from the Cloud-Init image, set the bootdisk parameter to scsi0, and restrict BIOS to boot from disk only. This will speed up booting, because VM BIOS skips the testing for a bootable CDROM.
qm set 9000 --boot c --bootdisk scsi0
Also configure a serial console and use it as a display. Many Cloud-Init images rely on this, as it is an requirement for OpenStack images.
qm set 9000 --serial0 socket --vga serial0
In a last step, it is helpful to convert the VM into a template. From this template you can then quickly create linked clones. The deployment from VM templates is much faster than creating a full clone (copy).
qm template 9000
10.8.2. Deploying Cloud-Init Templates
You can easily deploy such a template by cloning:
qm clone 9000 123 --name ubuntu2
Then configure the SSH public key used for authentication, and configure the IP setup:
qm set 123 --sshkey ~/.ssh/id_rsa.pub
qm set 123 --ipconfig0 ip=10.0.10.123/24,gw=10.0.10.1
You can also configure all the Cloud-Init options using a single command only. We have simply splitted the above example to separate the commands for reducing the line length. Also make sure to adopt the IP setup for your specific environment.
10.8.3. Custom Cloud-Init Configuration
The Cloud-Init integration also allows custom config files to be used instead of the automatically generated configs. This is done via the cicustom option on the command line:
qm set 9000 --cicustom "user=<volume>,network=<volume>,meta=<volume>"
The custom config files have to be on a storage that supports snippets and have to be available on all nodes the VM is going to be migrated to. Otherwise the VM won’t be able to start. For example:
qm set 9000 --cicustom "user=local:snippets/userconfig.yaml"
There are three kinds of configs for Cloud-Init. The first one is the user config as seen in the example above. The second is the network config and the third the meta config. They can all be specified together or mixed and matched however needed. The automatically generated config will be used for any that don’t have a custom config file specified.
The generated config can be dumped to serve as a base for custom configs:
qm cloudinit dump 9000 user
The same command exists for network and meta.
10.8.4. Cloud-Init specific Options
cicustom: [meta=<volume>] [,network=<volume>] [,user=<volume>]
Specify custom files to replace the automatically generated ones at start.
meta=<volume>
Specify a custom file containing all meta data passed to the VM via cloud-init. This is provider specific meaning configdrive2 and nocloud differ.
network=<volume>
Specify a custom file containing all network data passed to the VM via cloud-init.
user=<volume>
Specify a custom file containing all user data passed to the VM via cloud-init.
cipassword: <string>
Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.
citype: <configdrive2 | nocloud>
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.
ciuser: <string>
User name to change ssh keys and password for instead of the image’s configured default user.
ipconfig[n]: [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]
Specify IP addresses and gateways for the corresponding interface.
IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit gateway should be provided. For IPv6 the special string auto can be used to use stateless autoconfiguration.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using dhcp on IPv4.
gw=<GatewayIPv4>
Default gateway for IPv4 traffic.
Note
Requires option(s): ip
gw6=<GatewayIPv6>
Default gateway for IPv6 traffic.
Note
Requires option(s): ip6
ip=<IPv4Format/CIDR> (default = dhcp)
IPv4 address in CIDR format.
ip6=<IPv6Format/CIDR> (default = dhcp)
IPv6 address in CIDR format.
nameserver: <string>
Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
searchdomain: <string>
Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
sshkeys: <string>
Setup public SSH keys (one key per line, OpenSSH format).
10.9. PCI(e) Passthrough
PCI(e) passthrough is a mechanism to give a virtual machine control over a PCI device from the host. This can have some advantages over using virtualized hardware, for example lower latency, higher performance, or more features (e.g., offloading).
But, if you pass through a device to a virtual machine, you cannot use that device anymore on the host or in any other VM.
10.9.1. General Requirements
Since passthrough is a feature which also needs hardware support, there are some requirements to check and preparations to be done to make it work.
Hardware
Your hardware needs to support IOMMU (I/O Memory Management Unit) interrupt remapping, this includes the CPU and the mainboard.
Generally, Intel systems with VT-d, and AMD systems with AMD-Vi support this. But it is not guaranteed that everything will work out of the box, due to bad hardware implementation and missing or low quality drivers.
Further, server grade hardware has often better support than consumer grade hardware, but even then, many modern system can support this.
Please refer to your hardware vendor to check if they support this feature under Linux for your specific setup.
Configuration
Once you ensured that your hardware supports passthrough, you will need to do some configuration to enable PCI(e) passthrough.
IOMMU. The IOMMU has to be activated on the kernel commandline Section 3.10.4, “Editing the kernel commandline”.
The command line parameters are:
for Intel CPUs:
intel_iommu=on
for AMD CPUs:
amd_iommu=on
Kernel Modules. You have to make sure the following modules are loaded. This can be achieved by adding them to ‘/etc/modules’
vfio
vfio_iommu_type1
vfio_pci
vfio_virqfd
After changing anything modules related, you need to refresh your initramfs. On Proxmox VE this can be done by executing:
update-initramfs -u -k all
If you are using systemd-boot make sure to sync the new initramfs to the bootable partitions Updating the configuration on all ESPs.
Finish Configuration. Finally reboot to bring the changes into effect and check that it is indeed enabled.
dmesg | grep -e DMAR -e IOMMU -e AMD-Vi
should display that IOMMU, Directed I/O or Interrupt Remapping is enabled, depending on hardware and kernel the exact message can vary.
It is also important that the device(s) you want to pass through are in a separate IOMMU group. This can be checked with:
find /sys/kernel/iommu_groups/ -type l
It is okay if the device is in an IOMMU group together with its functions (e.g. a GPU with the HDMI Audio device) or with its root port or PCI(e) bridge.
PCI(e) slots
Some platforms handle their physical PCI(e) slots differently. So, sometimes it can help to put the card in a another PCI(e) slot, if you do not get the desired IOMMU group separation.
Unsafe interrupts
For some platforms, it may be necessary to allow unsafe interrupts. For this add the following line in a file ending with ‘.conf’ file in /etc/modprobe.d/:
options vfio_iommu_type1 allow_unsafe_interrupts=1
Please be aware that this option can make your system unstable.
GPU Passthrough Notes
It is not possible to display the frame buffer of the GPU via NoVNC or SPICE on the Proxmox VE web interface.
When passing through a whole GPU or a vGPU and graphic output is wanted, one has to either physically connect a monitor to the card, or configure a remote desktop software (for example, VNC or RDP) inside the guest.
If you want to use the GPU as a hardware accelerator, for example, for programs using OpenCL or CUDA, this is not required.
10.9.2. Host Device Passthrough
The most used variant of PCI(e) passthrough is to pass through a whole PCI(e) card, for example a GPU or a network card.
Host Configuration
In this case, the host cannot use the card. There are two methods to achieve this:
pass the device IDs to the options of the vfio-pci modules by adding
options vfio-pci ids=1234:5678,4321:8765
to a .conf file in /etc/modprobe.d/ where 1234:5678 and 4321:8765 are the vendor and device IDs obtained by:
lcpci -nn
blacklist the driver completely on the host, ensuring that it is free to bind for passthrough, with
blacklist DRIVERNAME
in a .conf file in /etc/modprobe.d/.
For both methods you need to update the initramfs the section called “Configuration” again and reboot after that.
VM Configuration
To pass through the device you need to set the hostpciX option in the VM configuration, for example by executing:
qm set VMID -hostpci0 00:02.0
If your device has multiple functions (e.g., ‘00:02.0’ and ‘00:02.1’), you can pass them through all together with the shortened syntax ‘00:02’
There are some options to which may be necessary, depending on the device and guest OS:
Example. An example of PCIe passthrough with a GPU set to primary:
qm set VMID -hostpci0 02:00,pcie=on,x-vga=on
Other considerations
When passing through a GPU, the best compatibility is reached when using q35 as machine type, OVMF (EFI for VMs) instead of SeaBIOS and PCIe instead of PCI. Note that if you want to use OVMF for GPU passthrough, the GPU needs to have an EFI capable ROM, otherwise use SeaBIOS instead.
10.9.3. SR-IOV
Another variant for passing through PCI(e) devices, is to use the hardware virtualization features of your devices, if available.
SR-IOV (Single-Root Input/Output Virtualization) enables a single device to provide multiple VF (Virtual Functions) to the system. Each of those VF can be used in a different VM, with full hardware features and also better performance and lower latency than software virtualized devices.
Currently, the most common use case for this are NICs (Network Interface Card) with SR-IOV support, which can provide multiple VFs per physical port. This allows using features such as checksum offloading, etc. to be used inside a VM, reducing the (host) CPU overhead.
Host Configuration
Generally, there are two methods for enabling virtual functions on a device.
sometimes there is an option for the driver module e.g. for some Intel drivers
max_vfs=4
which could be put file with .conf ending under /etc/modprobe.d/. (Do not forget to update your initramfs after that)
Please refer to your driver module documentation for the exact parameters and options.
The second, more generic, approach is using the sysfs. If a device and driver supports this you can change the number of VFs on the fly. For example, to setup 4 VFs on device 0000:01:00.0 execute:
echo 4 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs
To make this change persistent you can use the ‘sysfsutils` Debian package. After installation configure it via /etc/sysfs.conf or a `FILE.conf’ in /etc/sysfs.d/.
VM Configuration
After creating VFs, you should see them as separate PCI(e) devices when outputting them with lspci. Get their ID and pass them through like a normal PCI(e) device the section called “VM Configuration”.
Other considerations
For this feature, platform support is especially important. It may be necessary to enable this feature in the BIOS/EFI first, or to use a specific PCI(e) port for it to work. In doubt, consult the manual of the platform or contact its vendor.
10.9.4. Mediated Devices (vGPU, GVT-g)
Mediated devices are another method to reuse features and performance from physical hardware for virtualized hardware. These are found most common in virtualized GPU setups such as Intels GVT-g and Nvidias vGPUs used in their GRID technology.
With this, a physical Card is able to create virtual cards, similar to SR-IOV. The difference is that mediated devices do not appear as PCI(e) devices in the host, and are such only suited for using in virtual machines.
Host Configuration
In general your card’s driver must support that feature, otherwise it will not work. So please refer to your vendor for compatible drivers and how to configure them.
Intels drivers for GVT-g are integrated in the Kernel and should work with 5th, 6th and 7th generation Intel Core Processors, as well as E3 v4, E3 v5 and E3 v6 Xeon Processors.
To enable it for Intel Graphics, you have to make sure to load the module kvmgt (for example via /etc/modules) and to enable it on the Kernel commandline Section 3.10.4, “Editing the kernel commandline” and add the following parameter:
i915.enable_gvt=1
After that remember to update the initramfs the section called “Configuration”, and reboot your host.
VM Configuration
To use a mediated device, simply specify the mdev property on a hostpciX VM configuration option.
You can get the supported devices via the sysfs. For example, to list the supported types for the device 0000:00:02.0 you would simply execute:
ls /sys/bus/pci/devices/0000:00:02.0/mdev_supported_types
Each entry is a directory which contains the following important files:
Example configuration with an Intel GVT-g vGPU (Intel Skylake 6700k):
qm set VMID -hostpci0 00:02.0,mdev=i915-GVTg_V5_4
With this set, Proxmox VE automatically creates such a device on VM start, and cleans it up again when the VM stops.
10.10. Hookscripts
You can add a hook script to VMs with the config property hookscript.
qm set 100 -hookscript local:snippets/hookscript.pl
It will be called during various phases of the guests lifetime. For an example and documentation see the example script under /usr/share/pve-docs/examples/guest-example-hookscript.pl.
10.11. Managing Virtual Machines with qm
qm is the tool to manage Qemu/Kvm virtual machines on Proxmox VE. You can create and destroy virtual machines, and control execution (start/stop/suspend/resume). Besides that, you can use qm to set parameters in the associated config file. It is also possible to create and delete virtual disks.
10.11.1. CLI Usage Examples
Using an iso file uploaded on the local storage, create a VM with a 4 GB IDE disk on the local-lvm storage
qm create 300 -ide0 local-lvm:4 -net0 e1000 -cdrom local:iso/proxmox-mailgateway_2.1.iso
Start the new VM
qm start 300
Send a shutdown request, then wait until the VM is stopped.
qm shutdown 300 && qm wait 300
Same as above, but only wait for 40 seconds.
qm shutdown 300 && qm wait 300 -timeout 40
10.12. Configuration
VM configuration files are stored inside the Proxmox cluster file system, and can be accessed at /etc/pve/qemu-server/<VMID>.conf. Like other files stored inside /etc/pve/, they get automatically replicated to all other cluster nodes.
Note
VMIDs < 100 are reserved for internal purposes, and VMIDs need to be unique cluster wide.
Example VM Configuration.
cores: 1
sockets: 1
memory: 512
name: webmail
ostype: l26
bootdisk: virtio0
net0: e1000=EE:D2:28:5F:B6:3E,bridge=vmbr0
virtio0: local:vm-100-disk-1,size=32G
Those configuration files are simple text files, and you can edit them using a normal text editor (vi, nano, …). This is sometimes useful to do small corrections, but keep in mind that you need to restart the VM to apply such changes.
For that reason, it is usually better to use the qm command to generate and modify those files, or do the whole thing using the GUI. Our toolkit is smart enough to instantaneously apply most changes to running VM. This feature is called "hot plug", and there is no need to restart the VM in that case.
10.12.1. File Format
VM configuration files use a simple colon separated key/value format. Each line has the following format:
this is a comment
OPTION: value
Blank lines in those files are ignored, and lines starting with a # character are treated as comments and are also ignored.
10.12.2. Snapshots
When you create a snapshot, qm stores the configuration at snapshot time into a separate snapshot section within the same configuration file. For example, after creating a snapshot called “testsnapshot”, your configuration file will look like this:
VM configuration with snapshot.
memory: 512
swap: 512
parent: testsnaphot
...
[testsnaphot]
memory: 512
swap: 512
snaptime: 1457170803
...
There are a few snapshot related properties like parent and snaptime. The parent property is used to store the parent/child relationship between snapshots. snaptime is the snapshot creation time stamp (Unix epoch).
10.12.3. Options
acpi: <boolean> (default = 1)
Enable/disable ACPI.
agent: [enabled=]<1|0> [,fstrim_cloned_disks=<1|0>]
Enable/disable Qemu GuestAgent and its properties.
enabled=<boolean> (default = 0)
Enable/disable Qemu GuestAgent.
fstrim_cloned_disks=<boolean> (default = 0)
Run fstrim after cloning/moving a disk.
arch: <aarch64 | x86_64>
Virtual processor architecture. Defaults to the host.
args: <string>
Arbitrary arguments passed to kvm, for example:
args: -no-reboot -no-hpet
Note
this option is for experts only.
autostart: <boolean> (default = 0)
Automatic restart after crash (currently ignored).
balloon: <integer> (0 - N)
Amount of target RAM for the VM in MB. Using zero disables the ballon driver.
bios: <ovmf | seabios> (default = seabios)
Select BIOS implementation.
boot: [acdn]{1,4} (default = cdn)
Boot on floppy (a), hard disk (c), CD-ROM (d), or network (n).
bootdisk: (ide|sata|scsi|virtio)\d+
Enable booting from specified disk.
cdrom: <volume>
This is an alias for option -ide2
cicustom: [meta=<volume>] [,network=<volume>] [,user=<volume>]
cloud-init: Specify custom files to replace the automatically generated ones at start.
meta=<volume>
Specify a custom file containing all meta data passed to the VM via cloud-init. This is provider specific meaning configdrive2 and nocloud differ.
network=<volume>
Specify a custom file containing all network data passed to the VM via cloud-init.
user=<volume>
Specify a custom file containing all user data passed to the VM via cloud-init.
cipassword: <string>
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.
citype: <configdrive2 | nocloud>
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.
ciuser: <string>
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.
cores: <integer> (1 - N) (default = 1)
The number of cores per socket.
cpu: [cputype=]<enum> [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>]
Emulated CPU type.
cputype=<486 | Broadwell | Broadwell-IBRS | Broadwell-noTSX | Broadwell-noTSX-IBRS | Conroe | EPYC | EPYC-IBPB | Haswell | Haswell-IBRS | Haswell-noTSX | Haswell-noTSX-IBRS | IvyBridge | IvyBridge-IBRS | Nehalem | Nehalem-IBRS | Opteron_G1 | Opteron_G2 | Opteron_G3 | Opteron_G4 | Opteron_G5 | Penryn | SandyBridge | SandyBridge-IBRS | Skylake-Client | Skylake-Client-IBRS | Skylake-Server | Skylake-Server-IBRS | Westmere | Westmere-IBRS | athlon | core2duo | coreduo | host | kvm32 | kvm64 | max | pentium | pentium2 | pentium3 | phenom | qemu32 | qemu64> (default = kvm64)
Emulated CPU type.
flags=<+FLAG[;-FLAG...]>
List of additional CPU flags separated by ;. Use +FLAG to enable, -FLAG to disable a flag. Currently supported flags: pcid, spec-ctrl, ibpb, ssbd, virt-ssbd, amd-ssbd, amd-no-ssb, pdpe1gb, md-clear.
hidden=<boolean> (default = 0)
Do not identify as a KVM virtual machine.
hv-vendor-id=<vendor-id>
The Hyper-V vendor ID. Some drivers or programs inside Windows guests need a specific ID.
cpulimit: <number> (0 - 128) (default = 0)
Limit of CPU usage.
Note
If the computer has 2 CPUs, it has total of 2 CPU time. Value 0 indicates no CPU limit.
cpuunits: <integer> (2 - 262144) (default = 1024)
CPU weight for a VM. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this VM gets. Number is relative to weights of all the other running VMs.
description: <string>
Description for the VM. Only used on the configuration web interface. This is saved as comment inside the configuration file.
efidisk0: [file=]<volume> [,format=<enum>] [,size=<DiskSize>]
Configure a Disk for storing EFI vars
file=<volume>
The drive’s backing volume.
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>
The drive’s backing file’s data format.
size=<DiskSize>
Disk size. This is purely informational and has no effect.
freeze: <boolean>
Freeze CPU at startup (use c monitor command to start execution).
hookscript: <string>
Script that will be executed during various steps in the vms lifetime.
hostpci[n]: [host=]<HOSTPCIID[;HOSTPCIID2...]> [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,x-vga=<1|0>]
Map host PCI devices into guest.
Note
This option allows direct access to host hardware. So it is no longer possible to migrate such machines - use with special care.
Caution
Experimental! User reported problems with this option.
host=<HOSTPCIID[;HOSTPCIID2...]>
Host PCI device pass through. The PCI ID of a host’s PCI device or a list of PCI virtual functions of the host. HOSTPCIID syntax is:
bus:dev.func (hexadecimal numbers)
You can us the lspci command to list existing PCI devices.
mdev=<string>
The type of mediated device to use. An instance of this type will be created on startup of the VM and will be cleaned up when the VM stops.
pcie=<boolean> (default = 0)
Choose the PCI-express bus (needs the q35 machine model).
rombar=<boolean> (default = 1)
Specify whether or not the device’s ROM will be visible in the guest’s memory map.
romfile=<string>
Custom pci device rom filename (must be located in /usr/share/kvm/).
x-vga=<boolean> (default = 0)
Enable vfio-vga device support.
hotplug: <string> (default = network,disk,usb)
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory and usb. Use 0 to disable hotplug completely. Value 1 is an alias for the default network,disk,usb.
hugepages: <1024 | 2 | any>
Enable/disable hugepages memory.
ide[n]: [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as IDE hard disk or CD-ROM (n is 0 to 3).
aio=<native | threads>
AIO type to use.
backup=<boolean>
Whether the drive should be included when making backups.
bps=<bps>
Maximum r/w speed in bytes per second.
bps_max_length=<seconds>
Maximum length of I/O bursts in seconds.
bps_rd=<bps>
Maximum read speed in bytes per second.
bps_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
bps_wr=<bps>
Maximum write speed in bytes per second.
bps_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
cache=<directsync | none | unsafe | writeback | writethrough>
The drive’s cache mode
cyls=<integer>
Force the drive’s physical geometry to have a specific cylinder count.
detect_zeroes=<boolean>
Controls whether to detect and try to optimize writes of zeroes.
discard=<ignore | on>
Controls whether to pass discard/trim requests to the underlying storage.
file=<volume>
The drive’s backing volume.
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>
The drive’s backing file’s data format.
heads=<integer>
Force the drive’s physical geometry to have a specific head count.
iops=<iops>
Maximum r/w I/O in operations per second.
iops_max=<iops>
Maximum unthrottled r/w I/O pool in operations per second.
iops_max_length=<seconds>
Maximum length of I/O bursts in seconds.
iops_rd=<iops>
Maximum read I/O in operations per second.
iops_rd_max=<iops>
Maximum unthrottled read I/O pool in operations per second.
iops_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
iops_wr=<iops>
Maximum write I/O in operations per second.
iops_wr_max=<iops>
Maximum unthrottled write I/O pool in operations per second.
iops_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
mbps=<mbps>
Maximum r/w speed in megabytes per second.
mbps_max=<mbps>
Maximum unthrottled r/w pool in megabytes per second.
mbps_rd=<mbps>
Maximum read speed in megabytes per second.
mbps_rd_max=<mbps>
Maximum unthrottled read pool in megabytes per second.
mbps_wr=<mbps>
Maximum write speed in megabytes per second.
mbps_wr_max=<mbps>
Maximum unthrottled write pool in megabytes per second.
media=<cdrom | disk> (default = disk)
The drive’s media type.
model=<model>
The drive’s reported model name, url-encoded, up to 40 bytes long.
replicate=<boolean> (default = 1)
Whether the drive should considered for replication jobs.
rerror=<ignore | report | stop>
Read error action.
secs=<integer>
Force the drive’s physical geometry to have a specific sector count.
serial=<serial>
The drive’s reported serial number, url-encoded, up to 20 bytes long.
shared=<boolean> (default = 0)
Mark this locally-managed volume as available on all nodes.
Warning
This option does not share the volume automatically, it assumes it is shared already!
size=<DiskSize>
Disk size. This is purely informational and has no effect.
snapshot=<boolean>
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.
ssd=<boolean>
Whether to expose this drive as an SSD, rather than a rotational hard disk.
trans=<auto | lba | none>
Force disk geometry bios translation mode.
werror=<enospc | ignore | report | stop>
Write error action.
wwn=<wwn>
The drive’s worldwide name, encoded as 16 bytes hex string, prefixed by 0x.
ipconfig[n]: [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]
cloud-init: Specify IP addresses and gateways for the corresponding interface.
IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit gateway should be provided. For IPv6 the special string auto can be used to use stateless autoconfiguration.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using dhcp on IPv4.
gw=<GatewayIPv4>
Default gateway for IPv4 traffic.
Note
Requires option(s): ip
gw6=<GatewayIPv6>
Default gateway for IPv6 traffic.
Note
Requires option(s): ip6
ip=<IPv4Format/CIDR> (default = dhcp)
IPv4 address in CIDR format.
ip6=<IPv6Format/CIDR> (default = dhcp)
IPv6 address in CIDR format.
ivshmem: size=<integer> [,name=<string>]
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.
name=<string>
The name of the file. Will be prefixed with pve-shm-. Default is the VMID. Will be deleted when the VM is stopped.
size=<integer> (1 - N)
The size of the file in MB.
keyboard: <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>
Keybord layout for vnc server. Default is read from the /etc/pve/datacenter.cfg configuration file.It should not be necessary to set it.
kvm: <boolean> (default = 1)
Enable/disable KVM hardware virtualization.
localtime: <boolean>
Set the real time clock to local time. This is enabled by default if ostype indicates a Microsoft OS.
lock: <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>
Lock/unlock the VM.
machine: (pc|pc(-i440fx)?-\d+\.\d+(\.pxe)?|q35|pc-q35-\d+\.\d+(\.pxe)?|virt(?:-\d+\.\d+)?)
Specifies the Qemu machine type.
memory: <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB. This is the maximum available memory when you use the balloon device.
migrate_downtime: <number> (0 - N) (default = 0.1)
Set maximum tolerated downtime (in seconds) for migrations.
migrate_speed: <integer> (0 - N) (default = 0)
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.
name: <string>
Set a name for the VM. Only used on the configuration web interface.
nameserver: <string>
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
net[n]: [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]
Specify network devices.
bridge=<bridge>
Bridge to attach the network device to. The Proxmox VE standard bridge is called vmbr0.
If you do not specify a bridge, we create a kvm user (NATed) network device, which provides DHCP and DNS services. The following addresses are used:
10.0.2.2 Gateway
10.0.2.3 DNS Server
10.0.2.4 SMB Server
The DHCP server assign addresses to the guest starting from 10.0.2.15.
firewall=<boolean>
Whether this interface should be protected by the firewall.
link_down=<boolean>
Whether this interface should be disconnected (like pulling the plug).
macaddr=<XX:XX:XX:XX:XX:XX>
A common MAC address with the I/G (Individual/Group) bit not set.
model=<e1000 | e1000-82540em | e1000-82544gc | e1000-82545em | i82551 | i82557b | i82559er | ne2k_isa | ne2k_pci | pcnet | rtl8139 | virtio | vmxnet3>
Network Card Model. The virtio model provides the best performance with very low CPU overhead. If your guest does not support this driver, it is usually best to use e1000.
queues=<integer> (0 - 16)
Number of packet queues to be used on the device.
rate=<number> (0 - N)
Rate limit in mbps (megabytes per second) as floating point number.
tag=<integer> (1 - 4094)
VLAN tag to apply to packets on this interface.
trunks=<vlanid[;vlanid...]>
VLAN trunks to pass through this interface.
numa: <boolean> (default = 0)
Enable/disable NUMA.
numa[n]: cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]
NUMA topology.
cpus=<id[-id];...>
CPUs accessing this NUMA node.
hostnodes=<id[-id];...>
Host NUMA nodes to use.
memory=<number>
Amount of memory this NUMA node provides.
policy=<bind | interleave | preferred>
NUMA allocation policy.
onboot: <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
ostype: <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win7 | win8 | wvista | wxp>
Specify guest operating system. This is used to enable special optimization/features for specific operating systems:
other | unspecified OS |
wxp | Microsoft Windows XP |
w2k | Microsoft Windows 2000 |
w2k3 | Microsoft Windows 2003 |
w2k8 | Microsoft Windows 2008 |
wvista | Microsoft Windows Vista |
win7 | Microsoft Windows 7 |
win8 | Microsoft Windows 8/2012/2012r2 |
win10 | Microsoft Windows 10/2016 |
l24 | Linux 2.4 Kernel |
l26 | Linux 2.6/3.X Kernel |
solaris | Solaris/OpenSolaris/OpenIndiania kernel |
parallel[n]: /dev/parport\d+|/dev/usb/lp\d+
Map host parallel devices (n is 0 to 2).
Note
This option allows direct access to host hardware. So it is no longer possible to migrate such machines - use with special care.
Caution
Experimental! User reported problems with this option.
protection: <boolean> (default = 0)
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.
reboot: <boolean> (default = 1)
Allow reboot. If set to 0 the VM exit on reboot.
sata[n]: [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as SATA hard disk or CD-ROM (n is 0 to 5).
aio=<native | threads>
AIO type to use.
backup=<boolean>
Whether the drive should be included when making backups.
bps=<bps>
Maximum r/w speed in bytes per second.
bps_max_length=<seconds>
Maximum length of I/O bursts in seconds.
bps_rd=<bps>
Maximum read speed in bytes per second.
bps_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
bps_wr=<bps>
Maximum write speed in bytes per second.
bps_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
cache=<directsync | none | unsafe | writeback | writethrough>
The drive’s cache mode
cyls=<integer>
Force the drive’s physical geometry to have a specific cylinder count.
detect_zeroes=<boolean>
Controls whether to detect and try to optimize writes of zeroes.
discard=<ignore | on>
Controls whether to pass discard/trim requests to the underlying storage.
file=<volume>
The drive’s backing volume.
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>
The drive’s backing file’s data format.
heads=<integer>
Force the drive’s physical geometry to have a specific head count.
iops=<iops>
Maximum r/w I/O in operations per second.
iops_max=<iops>
Maximum unthrottled r/w I/O pool in operations per second.
iops_max_length=<seconds>
Maximum length of I/O bursts in seconds.
iops_rd=<iops>
Maximum read I/O in operations per second.
iops_rd_max=<iops>
Maximum unthrottled read I/O pool in operations per second.
iops_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
iops_wr=<iops>
Maximum write I/O in operations per second.
iops_wr_max=<iops>
Maximum unthrottled write I/O pool in operations per second.
iops_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
mbps=<mbps>
Maximum r/w speed in megabytes per second.
mbps_max=<mbps>
Maximum unthrottled r/w pool in megabytes per second.
mbps_rd=<mbps>
Maximum read speed in megabytes per second.
mbps_rd_max=<mbps>
Maximum unthrottled read pool in megabytes per second.
mbps_wr=<mbps>
Maximum write speed in megabytes per second.
mbps_wr_max=<mbps>
Maximum unthrottled write pool in megabytes per second.
media=<cdrom | disk> (default = disk)
The drive’s media type.
replicate=<boolean> (default = 1)
Whether the drive should considered for replication jobs.
rerror=<ignore | report | stop>
Read error action.
secs=<integer>
Force the drive’s physical geometry to have a specific sector count.
serial=<serial>
The drive’s reported serial number, url-encoded, up to 20 bytes long.
shared=<boolean> (default = 0)
Mark this locally-managed volume as available on all nodes.
Warning
This option does not share the volume automatically, it assumes it is shared already!
size=<DiskSize>
Disk size. This is purely informational and has no effect.
snapshot=<boolean>
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.
ssd=<boolean>
Whether to expose this drive as an SSD, rather than a rotational hard disk.
trans=<auto | lba | none>
Force disk geometry bios translation mode.
werror=<enospc | ignore | report | stop>
Write error action.
wwn=<wwn>
The drive’s worldwide name, encoded as 16 bytes hex string, prefixed by 0x.
scsi[n]: [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as SCSI hard disk or CD-ROM (n is 0 to 13).
aio=<native | threads>
AIO type to use.
backup=<boolean>
Whether the drive should be included when making backups.
bps=<bps>
Maximum r/w speed in bytes per second.
bps_max_length=<seconds>
Maximum length of I/O bursts in seconds.
bps_rd=<bps>
Maximum read speed in bytes per second.
bps_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
bps_wr=<bps>
Maximum write speed in bytes per second.
bps_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
cache=<directsync | none | unsafe | writeback | writethrough>
The drive’s cache mode
cyls=<integer>
Force the drive’s physical geometry to have a specific cylinder count.
detect_zeroes=<boolean>
Controls whether to detect and try to optimize writes of zeroes.
discard=<ignore | on>
Controls whether to pass discard/trim requests to the underlying storage.
file=<volume>
The drive’s backing volume.
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>
The drive’s backing file’s data format.
heads=<integer>
Force the drive’s physical geometry to have a specific head count.
iops=<iops>
Maximum r/w I/O in operations per second.
iops_max=<iops>
Maximum unthrottled r/w I/O pool in operations per second.
iops_max_length=<seconds>
Maximum length of I/O bursts in seconds.
iops_rd=<iops>
Maximum read I/O in operations per second.
iops_rd_max=<iops>
Maximum unthrottled read I/O pool in operations per second.
iops_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
iops_wr=<iops>
Maximum write I/O in operations per second.
iops_wr_max=<iops>
Maximum unthrottled write I/O pool in operations per second.
iops_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
iothread=<boolean>
Whether to use iothreads for this drive
mbps=<mbps>
Maximum r/w speed in megabytes per second.
mbps_max=<mbps>
Maximum unthrottled r/w pool in megabytes per second.
mbps_rd=<mbps>
Maximum read speed in megabytes per second.
mbps_rd_max=<mbps>
Maximum unthrottled read pool in megabytes per second.
mbps_wr=<mbps>
Maximum write speed in megabytes per second.
mbps_wr_max=<mbps>
Maximum unthrottled write pool in megabytes per second.
media=<cdrom | disk> (default = disk)
The drive’s media type.
queues=<integer> (2 - N)
Number of queues.
replicate=<boolean> (default = 1)
Whether the drive should considered for replication jobs.
rerror=<ignore | report | stop>
Read error action.
scsiblock=<boolean> (default = 0)
whether to use scsi-block for full passthrough of host block device
Warning
can lead to I/O errors in combination with low memory or high memory fragmentation on host
secs=<integer>
Force the drive’s physical geometry to have a specific sector count.
serial=<serial>
The drive’s reported serial number, url-encoded, up to 20 bytes long.
shared=<boolean> (default = 0)
Mark this locally-managed volume as available on all nodes.
Warning
This option does not share the volume automatically, it assumes it is shared already!
size=<DiskSize>
Disk size. This is purely informational and has no effect.
snapshot=<boolean>
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.
ssd=<boolean>
Whether to expose this drive as an SSD, rather than a rotational hard disk.
trans=<auto | lba | none>
Force disk geometry bios translation mode.
werror=<enospc | ignore | report | stop>
Write error action.
wwn=<wwn>
The drive’s worldwide name, encoded as 16 bytes hex string, prefixed by 0x.
scsihw: <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)
SCSI controller model
searchdomain: <string>
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
serial[n]: (/dev/.+|socket)
Create a serial device inside the VM (n is 0 to 3), and pass through a host serial device (i.e. /dev/ttyS0), or create a unix socket on the host side (use qm terminal to open a terminal connection).
Note
If you pass through a host serial device, it is no longer possible to migrate such machines - use with special care.
Caution
Experimental! User reported problems with this option.
shares: <integer> (0 - 50000) (default = 1000)
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.
smbios1: [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]
Specify SMBIOS type 1 fields.
base64=<boolean>
Flag to indicate that the SMBIOS values are base64 encoded
family=<Base64 encoded string>
Set SMBIOS1 family string.
manufacturer=<Base64 encoded string>
Set SMBIOS1 manufacturer.
product=<Base64 encoded string>
Set SMBIOS1 product ID.
serial=<Base64 encoded string>
Set SMBIOS1 serial number.
sku=<Base64 encoded string>
Set SMBIOS1 SKU string.
uuid=<UUID>
Set SMBIOS1 UUID.
version=<Base64 encoded string>
Set SMBIOS1 version.
smp: <integer> (1 - N) (default = 1)
The number of CPUs. Please use option -sockets instead.
sockets: <integer> (1 - N) (default = 1)
The number of CPU sockets.
sshkeys: <string>
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).
startdate: (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)
Set the initial date of the real time clock. Valid format for date are: now or 2006-06-17T16:01:21 or 2006-06-17.
startup: `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
tablet: <boolean> (default = 1)
Enable/disable the USB tablet device. This device is usually needed to allow absolute mouse positioning with VNC. Else the mouse runs out of sync with normal VNC clients. If you’re running lots of console-only guests on one host, you may consider disabling this to save some context switches. This is turned off by default if you use spice (-vga=qxl).
tdf: <boolean> (default = 0)
Enable/disable time drift fix.
template: <boolean> (default = 0)
Enable/disable Template.
unused[n]: <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
usb[n]: [host=]<HOSTUSBDEVICE|spice> [,usb3=<1|0>]
Configure an USB device (n is 0 to 4).
host=<HOSTUSBDEVICE|spice>
The Host USB device or port or the value spice. HOSTUSBDEVICE syntax is:
'bus-port(.port)*' (decimal numbers) or
'vendor_id:product_id' (hexadeciaml numbers) or
'spice'
You can use the lsusb -t command to list existing usb devices.
Note
This option allows direct access to host hardware. So it is no longer possible to migrate such machines - use with special care.
The value spice can be used to add a usb redirection devices for spice.
usb3=<boolean> (default = 0)
Specifies whether if given host option is a USB3 device or port (this does currently not work reliably with spice redirection and is then ignored).
vcpus: <integer> (1 - N) (default = 0)
Number of hotplugged vcpus.
vga: [[type=]<enum>] [,memory=<integer>]
Configure the VGA Hardware. If you want to use high resolution modes (>= 1280x1024x16) you may need to increase the vga memory option. Since QEMU 2.9 the default VGA display type is std for all OS types besides some Windows versions (XP and older) which use cirrus. The qxl option enables the SPICE display server. For win* OS you can select how many independent displays you want, Linux guests can add displays them self. You can also run without any graphic card, using a serial device as terminal.
memory=<integer> (4 - 512)
Sets the VGA memory (in MiB). Has no effect with serial display.
type=<cirrus | none | qxl | qxl2 | qxl3 | qxl4 | serial0 | serial1 | serial2 | serial3 | std | virtio | vmware> (default = std)
Select the VGA type.
virtio[n]: [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]
Use volume as VIRTIO hard disk (n is 0 to 15).
aio=<native | threads>
AIO type to use.
backup=<boolean>
Whether the drive should be included when making backups.
bps=<bps>
Maximum r/w speed in bytes per second.
bps_max_length=<seconds>
Maximum length of I/O bursts in seconds.
bps_rd=<bps>
Maximum read speed in bytes per second.
bps_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
bps_wr=<bps>
Maximum write speed in bytes per second.
bps_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
cache=<directsync | none | unsafe | writeback | writethrough>
The drive’s cache mode
cyls=<integer>
Force the drive’s physical geometry to have a specific cylinder count.
detect_zeroes=<boolean>
Controls whether to detect and try to optimize writes of zeroes.
discard=<ignore | on>
Controls whether to pass discard/trim requests to the underlying storage.
file=<volume>
The drive’s backing volume.
format=<cloop | cow | qcow | qcow2 | qed | raw | vmdk>
The drive’s backing file’s data format.
heads=<integer>
Force the drive’s physical geometry to have a specific head count.
iops=<iops>
Maximum r/w I/O in operations per second.
iops_max=<iops>
Maximum unthrottled r/w I/O pool in operations per second.
iops_max_length=<seconds>
Maximum length of I/O bursts in seconds.
iops_rd=<iops>
Maximum read I/O in operations per second.
iops_rd_max=<iops>
Maximum unthrottled read I/O pool in operations per second.
iops_rd_max_length=<seconds>
Maximum length of read I/O bursts in seconds.
iops_wr=<iops>
Maximum write I/O in operations per second.
iops_wr_max=<iops>
Maximum unthrottled write I/O pool in operations per second.
iops_wr_max_length=<seconds>
Maximum length of write I/O bursts in seconds.
iothread=<boolean>
Whether to use iothreads for this drive
mbps=<mbps>
Maximum r/w speed in megabytes per second.
mbps_max=<mbps>
Maximum unthrottled r/w pool in megabytes per second.
mbps_rd=<mbps>
Maximum read speed in megabytes per second.
mbps_rd_max=<mbps>
Maximum unthrottled read pool in megabytes per second.
mbps_wr=<mbps>
Maximum write speed in megabytes per second.
mbps_wr_max=<mbps>
Maximum unthrottled write pool in megabytes per second.
media=<cdrom | disk> (default = disk)
The drive’s media type.
replicate=<boolean> (default = 1)
Whether the drive should considered for replication jobs.
rerror=<ignore | report | stop>
Read error action.
secs=<integer>
Force the drive’s physical geometry to have a specific sector count.
serial=<serial>
The drive’s reported serial number, url-encoded, up to 20 bytes long.
shared=<boolean> (default = 0)
Mark this locally-managed volume as available on all nodes.
Warning
This option does not share the volume automatically, it assumes it is shared already!
size=<DiskSize>
Disk size. This is purely informational and has no effect.
snapshot=<boolean>
Controls qemu’s snapshot mode feature. If activated, changes made to the disk are temporary and will be discarded when the VM is shutdown.
trans=<auto | lba | none>
Force disk geometry bios translation mode.
werror=<enospc | ignore | report | stop>
Write error action.
vmgenid: <UUID> (default = 1 (autogenerated))
The VM generation ID (vmgenid) device exposes a 128-bit integer value identifier to the guest OS. This allows to notify the guest operating system when the virtual machine is executed with a different configuration (e.g. snapshot execution or creation from a template). The guest operating system notices the change, and is then able to react as appropriate by marking its copies of distributed databases as dirty, re-initializing its random number generator, etc. Note that auto-creation only works when done throug API/CLI create or update methods, but not when manually editing the config file.
vmstatestorage: <string>
Default storage for VM state volumes/files.
watchdog: [[model=]<i6300esb|ib700>] [,action=<enum>]
Create a virtual hardware watchdog device. Once enabled (by a guest action), the watchdog must be periodically polled by an agent inside the guest or else the watchdog will reset the guest (or execute the respective action specified)
action=<debug | none | pause | poweroff | reset | shutdown>
The action to perform if after activation the guest fails to poll the watchdog in time.
model=<i6300esb | ib700> (default = i6300esb)
Watchdog type to emulate.
10.13. Locks
Online migrations, snapshots and backups (vzdump) set a lock to prevent incompatible concurrent actions on the affected VMs. Sometimes you need to remove such a lock manually (e.g., after a power failure).
qm unlock <vmid>
Caution
Only do that if you are sure the action which set the lock is no longer running.
Chapter 11. Proxmox Container Toolkit
Containers are a lightweight alternative to fully virtualized VMs. Instead of emulating a complete Operating System (OS), containers simply use the OS of the host they run on. This implies that all containers use the same kernel, and that they can access resources from the host directly.
This is great because containers do not waste CPU power nor memory due to kernel emulation. Container run-time costs are close to zero and usually negligible. But there are also some drawbacks you need to consider:
Proxmox VE uses LXC as underlying container technology. We consider LXC as low-level library, which provides countless options. It would be too difficult to use those tools directly. Instead, we provide a small wrapper called pct, the "Proxmox Container Toolkit".
The toolkit is tightly coupled with Proxmox VE. That means that it is aware of the cluster setup, and it can use the same network and storage resources as fully virtualized VMs. You can even use the Proxmox VE firewall, or manage containers using the HA framework.
Our primary goal is to offer an environment as one would get from a VM, but without the additional overhead. We call this "System Containers".
Note
If you want to run micro-containers (with docker, rkt, …), it is best to run them inside a VM.
11.1. Technology Overview
11.2. Security Considerations
Containers use the same kernel as the host, so there is a big attack surface for malicious users. You should consider this fact if you provide containers to totally untrusted people. In general, fully virtualized VMs provide better isolation.
The good news is that LXC uses many kernel security features like AppArmor, CGroups and PID and user namespaces, which makes containers usage quite secure.
11.3. Guest Operating System Configuration
We normally try to detect the operating system type inside the container, and then modify some files inside the container to make them work as expected. Here is a short list of things we do at container startup:
set /etc/hostname
to set the container name
modify /etc/hosts
to allow lookup of the local hostname
network setup
pass the complete network setup to the container
configure DNS
pass information about DNS servers
adapt the init system
for example, fix the number of spawned getty processes
set the root password
when creating a new container
rewrite ssh_host_keys
so that each container has unique keys
randomize crontab
so that cron does not start at the same time on all containers
Changes made by Proxmox VE are enclosed by comment markers:
--- BEGIN PVE ---
<data>
--- END PVE ---
Those markers will be inserted at a reasonable location in the file. If such a section already exists, it will be updated in place and will not be moved.
Modification of a file can be prevented by adding a .pve-ignore. file for it. For instance, if the file /etc/.pve-ignore.hosts exists then the /etc/hosts file will not be touched. This can be a simple empty file created via:
touch /etc/.pve-ignore.hosts
Most modifications are OS dependent, so they differ between different distributions and versions. You can completely disable modifications by manually setting the ostype to unmanaged.
OS type detection is done by testing for certain files inside the container:
Ubuntu
inspect /etc/lsb-release (DISTRIB_ID=Ubuntu)
Debian
test /etc/debian_version
Fedora
test /etc/fedora-release
RedHat or CentOS
test /etc/redhat-release
ArchLinux
test /etc/arch-release
Alpine
test /etc/alpine-release
Gentoo
test /etc/gentoo-release
Note
Container start fails if the configured ostype differs from the auto detected type.
11.4. Container Images
Container images, sometimes also referred to as “templates” or “appliances”, are tar archives which contain everything to run a container. You can think of it as a tidy container backup. Like most modern container toolkits, pct uses those images when you create a new container, for example:
pct create 999 local:vztmpl/debian-8.0-standard_8.0-1_amd64.tar.gz
Proxmox VE itself ships a set of basic templates for most common operating systems, and you can download them using the pveam (short for Proxmox VE Appliance Manager) command line utility. You can also download TurnKey Linux containers using that tool (or the graphical user interface).
Our image repositories contain a list of available images, and there is a cron job run each day to download that list. You can trigger that update manually with:
pveam update
After that you can view the list of available images using:
pveam available
You can restrict this large list by specifying the section you are interested in, for example basic system images:
List available system images.
pveam available --section system
system archlinux-base_2015-24-29-1_x86_64.tar.gz
system centos-7-default_20160205_amd64.tar.xz
system debian-6.0-standard_6.0-7_amd64.tar.gz
system debian-7.0-standard_7.0-3_amd64.tar.gz
system debian-8.0-standard_8.0-1_amd64.tar.gz
system ubuntu-12.04-standard_12.04-1_amd64.tar.gz
system ubuntu-14.04-standard_14.04-1_amd64.tar.gz
system ubuntu-15.04-standard_15.04-1_amd64.tar.gz
system ubuntu-15.10-standard_15.10-1_amd64.tar.gz
Before you can use such a template, you need to download them into one of your storages. You can simply use storage local for that purpose. For clustered installations, it is preferred to use a shared storage so that all nodes can access those images.
pveam download local debian-8.0-standard_8.0-1_amd64.tar.gz
You are now ready to create containers using that image, and you can list all downloaded images on storage local with:
pveam list local
local:vztmpl/debian-8.0-standard_8.0-1_amd64.tar.gz 190.20MB
The above command shows you the full Proxmox VE volume identifiers. They include the storage name, and most other Proxmox VE commands can use them. For example you can delete that image later with:
pveam remove local:vztmpl/debian-8.0-standard_8.0-1_amd64.tar.gz
11.5. Container Storage
Traditional containers use a very simple storage model, only allowing a single mount point, the root file system. This was further restricted to specific file system types like ext4 and nfs. Additional mounts are often done by user provided scripts. This turned out to be complex and error prone, so we try to avoid that now.
Our new LXC based container model is more flexible regarding storage. First, you can have more than a single mount point. This allows you to choose a suitable storage for each application. For example, you can use a relatively slow (and thus cheap) storage for the container root file system. Then you can use a second mount point to mount a very fast, distributed storage for your database application. See section Mount Points for further details.
The second big improvement is that you can use any storage type supported by the Proxmox VE storage library. That means that you can store your containers on local lvmthin or zfs, shared iSCSI storage, or even on distributed storage systems like ceph. It also enables us to use advanced storage features like snapshots and clones. vzdump can also use the snapshot feature to provide consistent container backups.
Last but not least, you can also mount local devices directly, or mount local directories using bind mounts. That way you can access local storage inside containers with zero overhead. Such bind mounts also provide an easy way to share data between different containers.
11.5.1. FUSE Mounts
Warning
Because of existing issues in the Linux kernel’s freezer subsystem the usage of FUSE mounts inside a container is strongly advised against, as containers need to be frozen for suspend or snapshot mode backups.
If FUSE mounts cannot be replaced by other mounting mechanisms or storage technologies, it is possible to establish the FUSE mount on the Proxmox host and use a bind mount point to make it accessible inside the container.
11.5.2. Using Quotas Inside Containers
Quotas allow to set limits inside a container for the amount of disk space that each user can use. This only works on ext4 image based storage types and currently does not work with unprivileged containers.
Activating the quota option causes the following mount options to be used for a mount point: usrjquota=aquota.user,grpjquota=aquota.group,jqfmt=vfsv0
This allows quotas to be used like you would on any other system. You can initialize the /aquota.user and /aquota.group files by running
quotacheck -cmug /
quotaon /
and edit the quotas via the edquota command. Refer to the documentation of the distribution running inside the container for details.
Note
You need to run the above commands for every mount point by passing the mount point’s path instead of just /.
11.5.3. Using ACLs Inside Containers
The standard Posix Access Control Lists are also available inside containers. ACLs allow you to set more detailed file ownership than the traditional user/ group/others model.
11.5.4. Backup of Containers mount points
By default additional mount points besides the Root Disk mount point are not included in backups. You can reverse this default behavior by setting the Backup option on a mount point.
11.5.5. Replication of Containers mount points
By default additional mount points are replicated when the Root Disk is replicated. If you want the Proxmox VE storage replication mechanism to skip a mount point when starting a replication job, you can set the Skip replication option on that mount point. As of Proxmox VE 5.0, replication requires a storage of type zfspool, so adding a mount point to a different type of storage when the container has replication configured requires to Skip replication for that mount point.
11.6. Container Settings
11.6.1. General Settings
General settings of a container include
Privileged Containers
Security is done by dropping capabilities, using mandatory access control (AppArmor), SecComp filters and namespaces. The LXC team considers this kind of container as unsafe, and they will not consider new container escape exploits to be security issues worthy of a CVE and quick fix. So you should use this kind of containers only inside a trusted environment, or when no untrusted task is running as root in the container.
Unprivileged Containers
This kind of containers use a new kernel feature called user namespaces. The root UID 0 inside the container is mapped to an unprivileged user outside the container. This means that most security issues (container escape, resource abuse, …) in those containers will affect a random unprivileged user, and so would be a generic kernel security bug rather than an LXC issue. The LXC team thinks unprivileged containers are safe by design.
Note
If the container uses systemd as an init system, please be aware the systemd version running inside the container should be equal or greater than 220.
11.6.2. CPU
You can restrict the number of visible CPUs inside the container using the cores option. This is implemented using the Linux cpuset cgroup (control group). A special task inside pvestatd tries to distribute running containers among available CPUs. You can view the assigned CPUs using the following command:
pct cpusets

102: 6 7
105: 2 3 4 5
108: 0 1

Containers use the host kernel directly, so all task inside a container are handled by the host CPU scheduler. Proxmox VE uses the Linux CFS (Completely Fair Scheduler) scheduler by default, which has additional bandwidth control options.
cpulimit: | You can use this option to further limit assigned CPU time. Please note that this is a floating point number, so it is perfectly valid to assign two cores to a container, but restrict overall CPU consumption to half a core. cores: 2 |
cpuunits: | This is a relative weight passed to the kernel scheduler. The larger the number is, the more CPU time this container gets. Number is relative to the weights of all the other running containers. The default is 1024. You can use this setting to prioritize some containers. |
11.6.3. Memory
Container memory is controlled using the cgroup memory controller.
memory: | Limit overall memory usage. This corresponds to the memory.limit_in_bytes cgroup setting. |
swap: | Allows the container to use additional swap memory from the host swap space. This corresponds to the memory.memsw.limit_in_bytes cgroup setting, which is set to the sum of both value (memory + swap). |
11.6.4. Mount Points
The root mount point is configured with the rootfs property, and you can configure up to 10 additional mount points. The corresponding options are called mp0 to mp9, and they can contain the following setting:
rootfs: [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container root. See below for a detailed description of all options.
mp[n]: [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container mount point.
acl=<boolean>
Explicitly enable or disable ACL support.
backup=<boolean>
Whether to include the mount point in backups (only used for volume mount points).
mountoptions=<opt[;opt...]>
Extra mount options for rootfs/mps.
mp=<Path>
Path to the mount point as seen from inside the container.
Note
Must not contain any symlinks for security reasons.
quota=<boolean>
Enable user quotas inside the container (not supported with zfs subvolumes)
replicate=<boolean> (default = 1)
Will include this volume to a storage replica job.
ro=<boolean>
Read-only mount point
shared=<boolean> (default = 0)
Mark this non-volume mount point as available on all nodes.
Warning
This option does not share the mount point automatically, it assumes it is shared already!
size=<DiskSize>
Volume size (read only value).
volume=<volume>
Volume, device or directory to mount into the container.
Currently there are basically three types of mount points: storage backed mount points, bind mounts and device mounts.
Typical container rootfs configuration.
rootfs: thin1:base-100-disk-1,size=8G
Storage Backed Mount Points
Storage backed mount points are managed by the Proxmox VE storage subsystem and come in three different flavors:
Note
The special option syntax STORAGE_ID:SIZE_IN_GB for storage backed mount point volumes will automatically allocate a volume of the specified size on the specified storage. E.g., calling pct set 100 -mp0 thin1:10,mp=/path/in/container will allocate a 10GB volume on the storage thin1 and replace the volume ID place holder 10 with the allocated volume ID.
Bind Mount Points
Bind mounts allow you to access arbitrary directories from your Proxmox VE host inside a container. Some potential use cases are:
Bind mounts are considered to not be managed by the storage subsystem, so you cannot make snapshots or deal with quotas from inside the container. With unprivileged containers you might run into permission problems caused by the user mapping and cannot use ACLs.
Note
The contents of bind mount points are not backed up when using vzdump.
Warning
For security reasons, bind mounts should only be established using source directories especially reserved for this purpose, e.g., a directory hierarchy under /mnt/bindmounts. Never bind mount system directories like /, /var or /etc into a container - this poses a great security risk.
Note
The bind mount source path must not contain any symlinks.
For example, to make the directory /mnt/bindmounts/shared accessible in the container with ID 100 under the path /shared, use a configuration line like mp0: /mnt/bindmounts/shared,mp=/shared in /etc/pve/lxc/100.conf. Alternatively, use pct set 100 -mp0 /mnt/bindmounts/shared,mp=/shared to achieve the same result.
Device Mount Points
Device mount points allow to mount block devices of the host directly into the container. Similar to bind mounts, device mounts are not managed by Proxmox VE’s storage subsystem, but the quota and acl options will be honored.
Note
Device mount points should only be used under special circumstances. In most cases a storage backed mount point offers the same performance and a lot more features.
Note
The contents of device mount points are not backed up when using vzdump.
11.6.5. Network
You can configure up to 10 network interfaces for a single container. The corresponding options are called net0 to net9, and they can contain the following setting:
net[n]: name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]
Specifies network interfaces for the container.
bridge=<bridge>
Bridge to attach the network device to.
firewall=<boolean>
Controls whether this interface’s firewall rules should be used.
gw=<GatewayIPv4>
Default gateway for IPv4 traffic.
gw6=<GatewayIPv6>
Default gateway for IPv6 traffic.
hwaddr=<XX:XX:XX:XX:XX:XX>
A common MAC address with the I/G (Individual/Group) bit not set.
ip=<(IPv4/CIDR|dhcp|manual)>
IPv4 address in CIDR format.
ip6=<(IPv6/CIDR|auto|dhcp|manual)>
IPv6 address in CIDR format.
mtu=<integer> (64 - N)
Maximum transfer unit of the interface. (lxc.network.mtu)
name=<string>
Name of the network device as seen from inside the container. (lxc.network.name)
rate=<mbps>
Apply rate limiting to the interface
tag=<integer> (1 - 4094)
VLAN tag for this interface.
trunks=<vlanid[;vlanid...]>
VLAN ids to pass through the interface
type=<veth>
Network interface type.
11.6.6. Automatic Start and Shutdown of Containers
After creating your containers, you probably want them to start automatically when the host system boots. For this you need to select the option Start at boot from the Options Tab of your container in the web interface, or set it with the following command:
pct set <ctid> -onboot 1
Start and Shutdown Order.
If you want to fine tune the boot order of your containers, you can use the following parameters :
Please note that containers without a Start/Shutdown order parameter will always start after those where the parameter is set, and this parameter only makes sense between the machines running locally on a host, and not cluster-wide.
11.6.7. Hookscripts
You can add a hook script to CTs with the config property hookscript.
pct set 100 -hookscript local:snippets/hookscript.pl
It will be called during various phases of the guests lifetime. For an example and documentation see the example script under /usr/share/pve-docs/examples/guest-example-hookscript.pl.
11.7. Backup and Restore
11.7.1. Container Backup
It is possible to use the vzdump tool for container backup. Please refer to the vzdump manual page for details.
11.7.2. Restoring Container Backups
Restoring container backups made with vzdump is possible using the pct restore command. By default, pct restore will attempt to restore as much of the backed up container configuration as possible. It is possible to override the backed up configuration by manually setting container options on the command line (see the pct manual page for details).
Note
pvesm extractconfig can be used to view the backed up configuration contained in a vzdump archive.
There are two basic restore modes, only differing by their handling of mount points:
“Simple” Restore Mode
If neither the rootfs parameter nor any of the optional mpX parameters are explicitly set, the mount point configuration from the backed up configuration file is restored using the following steps:
Note
Since bind and device mount points are never backed up, no files are restored in the last step, but only the configuration options. The assumption is that such mount points are either backed up with another mechanism (e.g., NFS space that is bind mounted into many containers), or not intended to be backed up at all.
This simple mode is also used by the container restore operations in the web interface.
“Advanced” Restore Mode
By setting the rootfs parameter (and optionally, any combination of mpX parameters), the pct restore command is automatically switched into an advanced mode. This advanced mode completely ignores the rootfs and mpX configuration options contained in the backup archive, and instead only uses the options explicitly provided as parameters.
This mode allows flexible configuration of mount point settings at restore time, for example:
11.8. Managing Containers with pct
pct is the tool to manage Linux Containers on Proxmox VE. You can create and destroy containers, and control execution (start, stop, migrate, …). You can use pct to set parameters in the associated config file, like network configuration or memory limits.
11.8.1. CLI Usage Examples
Create a container based on a Debian template (provided you have already downloaded the template via the web interface)
pct create 100 /var/lib/vz/template/cache/debian-8.0-standard_8.0-1_amd64.tar.gz
Start container 100
pct start 100
Start a login session via getty
pct console 100
Enter the LXC namespace and run a shell as root user
pct enter 100
Display the configuration
pct config 100
Add a network interface called eth0, bridged to the host bridge vmbr0, set the address and gateway, while it’s running
pct set 100 -net0 name=eth0,bridge=vmbr0,ip=192.168.15.147/24,gw=192.168.15.1
Reduce the memory of the container to 512MB
pct set 100 -memory 512
11.8.2. Obtaining Debugging Logs
In case pct start is unable to start a specific container, it might be helpful to collect debugging output by running lxc-start (replace ID with the container’s ID):
lxc-start -n ID -F -l DEBUG -o /tmp/lxc-ID.log
This command will attempt to start the container in foreground mode, to stop the container run pct shutdown ID or pct stop ID in a second terminal.
The collected debug log is written to /tmp/lxc-ID.log.
Note
If you have changed the container’s configuration since the last start attempt with pct start, you need to run pct start at least once to also update the configuration used by lxc-start.
11.9. Migration
If you have a cluster, you can migrate your Containers with
pct migrate <vmid> <target>
This works as long as your Container is offline. If it has local volumes or mountpoints defined, the migration will copy the content over the network to the target host if there is the same storage defined.
If you want to migrate online Containers, the only way is to use restart migration. This can be initiated with the -restart flag and the optional -timeout parameter.
A restart migration will shut down the Container and kill it after the specified timeout (the default is 180 seconds). Then it will migrate the Container like an offline migration and when finished, it starts the Container on the target node.
11.10. Configuration
The /etc/pve/lxc/<CTID>.conf file stores container configuration, where <CTID> is the numeric ID of the given container. Like all other files stored inside /etc/pve/, they get automatically replicated to all other cluster nodes.
Note
CTIDs < 100 are reserved for internal purposes, and CTIDs need to be unique cluster wide.
Example Container Configuration.
ostype: debian
arch: amd64
hostname: www
memory: 512
swap: 512
net0: bridge=vmbr0,hwaddr=66:64:66:64:64:36,ip=dhcp,name=eth0,type=veth
rootfs: local:107/vm-107-disk-1.raw,size=7G
Those configuration files are simple text files, and you can edit them using a normal text editor (vi, nano, …). This is sometimes useful to do small corrections, but keep in mind that you need to restart the container to apply such changes.
For that reason, it is usually better to use the pct command to generate and modify those files, or do the whole thing using the GUI. Our toolkit is smart enough to instantaneously apply most changes to running containers. This feature is called "hot plug", and there is no need to restart the container in that case.
11.10.1. File Format
Container configuration files use a simple colon separated key/value format. Each line has the following format:
this is a comment
OPTION: value
Blank lines in those files are ignored, and lines starting with a # character are treated as comments and are also ignored.
It is possible to add low-level, LXC style configuration directly, for example:
lxc.init_cmd: /sbin/my_own_init
or
lxc.init_cmd = /sbin/my_own_init
Those settings are directly passed to the LXC low-level tools.
11.10.2. Snapshots
When you create a snapshot, pct stores the configuration at snapshot time into a separate snapshot section within the same configuration file. For example, after creating a snapshot called “testsnapshot”, your configuration file will look like this:
Container configuration with snapshot.
memory: 512
swap: 512
parent: testsnaphot
...
[testsnaphot]
memory: 512
swap: 512
snaptime: 1457170803
...
There are a few snapshot related properties like parent and snaptime. The parent property is used to store the parent/child relationship between snapshots. snaptime is the snapshot creation time stamp (Unix epoch).
11.10.3. Options
arch: <amd64 | arm64 | armhf | i386> (default = amd64)
OS architecture type.
cmode: <console | shell | tty> (default = tty)
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).
console: <boolean> (default = 1)
Attach a console device (/dev/console) to the container.
cores: <integer> (1 - 128)
The number of cores assigned to the container. A container can use all available cores by default.
cpulimit: <number> (0 - 128) (default = 0)
Limit of CPU usage.
Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.
cpuunits: <integer> (0 - 500000) (default = 1024)
CPU weight for a VM. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this VM gets. Number is relative to the weights of all the other running VMs.
Note
You can disable fair-scheduler configuration by setting this to 0.
description: <string>
Container description. Only used on the configuration web interface.
features: [fuse=<1|0>] [,keyctl=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]
Allow containers access to advanced features.
fuse=<boolean> (default = 0)
Allow using fuse file systems in a container. Note that interactions between fuse and the freezer cgroup can potentially cause I/O deadlocks.
keyctl=<boolean> (default = 0)
For unprivileged containers only: Allow the use of the keyctl() system call. This is required to use docker inside a container. By default unprivileged containers will see this system call as non-existent. This is mostly a workaround for systemd-networkd, as it will treat it as a fatal error when some keyctl() operations are denied by the kernel due to lacking permissions. Essentially, you can choose between running systemd-networkd or docker.
mount=<fstype;fstype;...>
Allow mounting file systems of specific types. This should be a list of file system types as used with the mount command. Note that this can have negative effects on the container’s security. With access to a loop device, mounting a file can circumvent the mknod permission of the devices cgroup, mounting an NFS file system can block the host’s I/O completely and prevent it from rebooting, etc.
nesting=<boolean> (default = 0)
Allow nesting. Best used with unprivileged containers with additional id mapping. Note that this will expose procfs and sysfs contents of the host to the guest.
hookscript: <string>
Script that will be exectued during various steps in the containers lifetime.
hostname: <string>
Set a host name for the container.
lock: <backup | create | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>
Lock/unlock the VM.
memory: <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB.
mp[n]: [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container mount point.
acl=<boolean>
Explicitly enable or disable ACL support.
backup=<boolean>
Whether to include the mount point in backups (only used for volume mount points).
mountoptions=<opt[;opt...]>
Extra mount options for rootfs/mps.
mp=<Path>
Path to the mount point as seen from inside the container.
Note
Must not contain any symlinks for security reasons.
quota=<boolean>
Enable user quotas inside the container (not supported with zfs subvolumes)
replicate=<boolean> (default = 1)
Will include this volume to a storage replica job.
ro=<boolean>
Read-only mount point
shared=<boolean> (default = 0)
Mark this non-volume mount point as available on all nodes.
Warning
This option does not share the mount point automatically, it assumes it is shared already!
size=<DiskSize>
Volume size (read only value).
volume=<volume>
Volume, device or directory to mount into the container.
nameserver: <string>
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
net[n]: name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]
Specifies network interfaces for the container.
bridge=<bridge>
Bridge to attach the network device to.
firewall=<boolean>
Controls whether this interface’s firewall rules should be used.
gw=<GatewayIPv4>
Default gateway for IPv4 traffic.
gw6=<GatewayIPv6>
Default gateway for IPv6 traffic.
hwaddr=<XX:XX:XX:XX:XX:XX>
A common MAC address with the I/G (Individual/Group) bit not set.
ip=<(IPv4/CIDR|dhcp|manual)>
IPv4 address in CIDR format.
ip6=<(IPv6/CIDR|auto|dhcp|manual)>
IPv6 address in CIDR format.
mtu=<integer> (64 - N)
Maximum transfer unit of the interface. (lxc.network.mtu)
name=<string>
Name of the network device as seen from inside the container. (lxc.network.name)
rate=<mbps>
Apply rate limiting to the interface
tag=<integer> (1 - 4094)
VLAN tag for this interface.
trunks=<vlanid[;vlanid...]>
VLAN ids to pass through the interface
type=<veth>
Network interface type.
onboot: <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
ostype: <alpine | archlinux | centos | debian | fedora | gentoo | opensuse | ubuntu | unmanaged>
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.
protection: <boolean> (default = 0)
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.
rootfs: [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container root.
acl=<boolean>
Explicitly enable or disable ACL support.
mountoptions=<opt[;opt...]>
Extra mount options for rootfs/mps.
quota=<boolean>
Enable user quotas inside the container (not supported with zfs subvolumes)
replicate=<boolean> (default = 1)
Will include this volume to a storage replica job.
ro=<boolean>
Read-only mount point
shared=<boolean> (default = 0)
Mark this non-volume mount point as available on all nodes.
Warning
This option does not share the mount point automatically, it assumes it is shared already!
size=<DiskSize>
Volume size (read only value).
volume=<volume>
Volume, device or directory to mount into the container.
searchdomain: <string>
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
startup: `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
swap: <integer> (0 - N) (default = 512)
Amount of SWAP for the VM in MB.
template: <boolean> (default = 0)
Enable/disable Template.
tty: <integer> (0 - 6) (default = 2)
Specify the number of tty available to the container
unprivileged: <boolean> (default = 0)
Makes the container run as unprivileged user. (Should not be modified manually.)
unused[n]: <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
11.11. Locks
Container migrations, snapshots and backups (vzdump) set a lock to prevent incompatible concurrent actions on the affected container. Sometimes you need to remove such a lock manually (e.g., after a power failure).
pct unlock <CTID>
Caution
Only do that if you are sure the action which set the lock is no longer running.
Chapter 12. Proxmox VE Firewall
Proxmox VE Firewall provides an easy way to protect your IT infrastructure. You can setup firewall rules for all hosts inside a cluster, or define rules for virtual machines and containers. Features like firewall macros, security groups, IP sets and aliases help to make that task easier.
While all configuration is stored on the cluster file system, the iptables-based firewall service runs on each cluster node, and thus provides full isolation between virtual machines. The distributed nature of this system also provides much higher bandwidth than a central firewall solution.
The firewall has full support for IPv4 and IPv6. IPv6 support is fully transparent, and we filter traffic for both protocols by default. So there is no need to maintain a different set of rules for IPv6.
12.1. Zones
The Proxmox VE firewall groups the network into the following logical zones:
Host
Traffic from/to a cluster node
VM
Traffic from/to a specific VM
For each zone, you can define firewall rules for incoming and/or outgoing traffic.
12.2. Configuration Files
All firewall related configuration is stored on the proxmox cluster file system. So those files are automatically distributed to all cluster nodes, and the pve-firewall service updates the underlying iptables rules automatically on changes.
You can configure anything using the GUI (i.e. Datacenter → Firewall, or on a Node → Firewall), or you can edit the configuration files directly using your preferred editor.
Firewall configuration files contain sections of key-value pairs. Lines beginning with a # and blank lines are considered comments. Sections start with a header line containing the section name enclosed in [and].
12.2.1. Cluster Wide Setup
The cluster wide firewall configuration is stored at:
/etc/pve/firewall/cluster.fw
The configuration can contain the following sections:
[OPTIONS]
This is used to set cluster wide firewall options.
ebtables: <boolean> (default = 1)
Enable ebtables rules cluster wide.
enable: <integer> (0 - N)
Enable or disable the firewall cluster wide.
log_ratelimit: [enable=]<1|0> [,burst=<integer>] [,rate=<rate>]
Log ratelimiting settings
burst=<integer> (0 - N) (default = 5)
Inital burst of packages which will get logged
enable=<boolean> (default = 1)
Enable or disable log rate limiting
rate=<rate> (default = 1/second)
Frequency with which the burst bucket gets refilled
policy_in: <ACCEPT | DROP | REJECT>
Input policy.
policy_out: <ACCEPT | DROP | REJECT>
Output policy.
[RULES]
This sections contains cluster wide firewall rules for all nodes.
[IPSET <name>]
Cluster wide IP set definitions.
[GROUP <name>]
Cluster wide security group definitions.
[ALIASES]
Cluster wide Alias definitions.
Enabling the Firewall
The firewall is completely disabled by default, so you need to set the enable option here:
[OPTIONS]
enable firewall (cluster wide setting, default is disabled)
enable: 1
Important
If you enable the firewall, traffic to all hosts is blocked by default. Only exceptions is WebGUI(8006) and ssh(22) from your local network.
If you want to administrate your Proxmox VE hosts from remote, you need to create rules to allow traffic from those remote IPs to the web GUI (port 8006). You may also want to allow ssh (port 22), and maybe SPICE (port 3128).
Tip
Please open a SSH connection to one of your Proxmox VE hosts before enabling the firewall. That way you still have access to the host if something goes wrong .
To simplify that task, you can instead create an IPSet called “management”, and add all remote IPs there. This creates all required firewall rules to access the GUI from remote.
12.2.2. Host Specific Configuration
Host related configuration is read from:
/etc/pve/nodes/<nodename>/host.fw
This is useful if you want to overwrite rules from cluster.fw config. You can also increase log verbosity, and set netfilter related options. The configuration can contain the following sections:
[OPTIONS]
This is used to set host related firewall options.
enable: <boolean>
Enable host firewall rules.
log_level_in: <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for incoming traffic.
log_level_out: <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for outgoing traffic.
log_nf_conntrack: <boolean> (default = 0)
Enable logging of conntrack information.
ndp: <boolean>
Enable NDP.
nf_conntrack_allow_invalid: <boolean> (default = 0)
Allow invalid packets on connection tracking.
nf_conntrack_max: <integer> (32768 - N)
Maximum number of tracked connections.
nf_conntrack_tcp_timeout_established: <integer> (7875 - N)
Conntrack established timeout.
nosmurfs: <boolean>
Enable SMURFS filter.
smurf_log_level: <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for SMURFS filter.
tcp_flags_log_level: <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for illegal tcp flags filter.
tcpflags: <boolean>
Filter illegal combinations of TCP flags.
[RULES]
This sections contains host specific firewall rules.
12.2.3. VM/Container Configuration
VM firewall configuration is read from:
/etc/pve/firewall/<VMID>.fw
and contains the following data:
[OPTIONS]
This is used to set VM/Container related firewall options.
dhcp: <boolean>
Enable DHCP.
enable: <boolean>
Enable/disable firewall rules.
ipfilter: <boolean>
Enable default IP filters. This is equivalent to adding an empty ipfilter-net<id> ipset for every interface. Such ipsets implicitly contain sane default restrictions such as restricting IPv6 link local addresses to the one derived from the interface’s MAC address. For containers the configured IP addresses will be implicitly added.
log_level_in: <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for incoming traffic.
log_level_out: <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for outgoing traffic.
macfilter: <boolean>
Enable/disable MAC address filter.
ndp: <boolean>
Enable NDP.
policy_in: <ACCEPT | DROP | REJECT>
Input policy.
policy_out: <ACCEPT | DROP | REJECT>
Output policy.
radv: <boolean>
Allow sending Router Advertisement.
[RULES]
This sections contains VM/Container firewall rules.
[IPSET <name>]
IP set definitions.
[ALIASES]
IP Alias definitions.
Enabling the Firewall for VMs and Containers
Each virtual network device has its own firewall enable flag. So you can selectively enable the firewall for each interface. This is required in addition to the general firewall enable option.
12.3. Firewall Rules
Firewall rules consists of a direction (IN or OUT) and an action (ACCEPT, DENY, REJECT). You can also specify a macro name. Macros contain predefined sets of rules and options. Rules can be disabled by prefixing them with |.
Firewall rules syntax.
[RULES]
DIRECTION ACTION [OPTIONS]
|DIRECTION ACTION [OPTIONS] # disabled rule
DIRECTION MACRO(ACTION) [OPTIONS] # use predefined macro
The following options can be used to refine rule matches.
--dest <string>
Restrict packet destination address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.
--dport <string>
Restrict TCP/UDP destination port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.
--iface <string>
Network interface name. You have to use network configuration key names for VMs and containers (net\d+). Host related rules can use arbitrary strings.
--log <alert | crit | debug | emerg | err | info | nolog | notice | warning>
Log level for firewall rule.
--proto <string>
IP protocol. You can use protocol names (tcp/udp) or simple numbers, as defined in /etc/protocols.
--source <string>
Restrict packet source address. This can refer to a single IP address, an IP set (+ipsetname) or an IP alias definition. You can also specify an address range like 20.34.101.207-201.3.9.99, or a list of IP addresses and networks (entries are separated by comma). Please do not mix IPv4 and IPv6 addresses inside such lists.
--sport <string>
Restrict TCP/UDP source port. You can use service names or simple numbers (0-65535), as defined in /etc/services. Port ranges can be specified with \d+:\d+, for example 80:85, and you can use comma separated list to match several ports or ranges.
Here are some examples:
[RULES]
IN SSH(ACCEPT) -i net0
IN SSH(ACCEPT) -i net0 # a comment
IN SSH(ACCEPT) -i net0 -source 192.168.2.192 # only allow SSH from 192.168.2.192
IN SSH(ACCEPT) -i net0 -source 10.0.0.1-10.0.0.10 # accept SSH for IP range
IN SSH(ACCEPT) -i net0 -source 10.0.0.1,10.0.0.2,10.0.0.3 #accept ssh for IP list
IN SSH(ACCEPT) -i net0 -source +mynetgroup # accept ssh for ipset mynetgroup
IN SSH(ACCEPT) -i net0 -source myserveralias #accept ssh for alias myserveralias
|IN SSH(ACCEPT) -i net0 # disabled rule
IN DROP # drop all incoming packages
OUT ACCEPT # accept all outgoing packages
12.4. Security Groups
A security group is a collection of rules, defined at cluster level, which can be used in all VMs' rules. For example you can define a group named “webserver” with rules to open the http and https ports.
/etc/pve/firewall/cluster.fw
[group webserver]
IN ACCEPT -p tcp -dport 80
IN ACCEPT -p tcp -dport 443
Then, you can add this group to a VM’s firewall
/etc/pve/firewall/<VMID>.fw
[RULES]
GROUP webserver
12.5. IP Aliases
IP Aliases allow you to associate IP addresses of networks with a name. You can then refer to those names:
12.5.1. Standard IP Alias local_network
This alias is automatically defined. Please use the following command to see assigned values:
pve-firewall localnet
local hostname: example
local IP address: 192.168.2.100
network auto detect: 192.168.0.0/20
using detected local_network: 192.168.0.0/20
The firewall automatically sets up rules to allow everything needed for cluster communication (corosync, API, SSH) using this alias.
The user can overwrite these values in the cluster.fw alias section. If you use a single host on a public network, it is better to explicitly assign the local IP address
/etc/pve/firewall/cluster.fw
[ALIASES]
local_network 1.2.3.4 # use the single IP address
12.6. IP Sets
IP sets can be used to define groups of networks and hosts. You can refer to them with ‘+name` in the firewall rules’ source and dest properties.
The following example allows HTTP traffic from the management IP set.
IN HTTP(ACCEPT) -source +management
12.6.1. Standard IP set management
This IP set applies only to host firewalls (not VM firewalls). Those IPs are allowed to do normal management tasks (PVE GUI, VNC, SPICE, SSH).
The local cluster network is automatically added to this IP set (alias cluster_network), to enable inter-host cluster communication. (multicast,ssh,…)
/etc/pve/firewall/cluster.fw
[IPSET management]
192.168.2.10
192.168.2.10/24
12.6.2. Standard IP set blacklist
Traffic from these IPs is dropped by every host’s and VM’s firewall.
/etc/pve/firewall/cluster.fw
[IPSET blacklist]
77.240.159.182
213.87.123.0/24
12.6.3. Standard IP set ipfilter-net*
These filters belong to a VM’s network interface and are mainly used to prevent IP spoofing. If such a set exists for an interface then any outgoing traffic with a source IP not matching its interface’s corresponding ipfilter set will be dropped.
For containers with configured IP addresses these sets, if they exist (or are activated via the general IP Filter option in the VM’s firewall’s options tab), implicitly contain the associated IP addresses.
For both virtual machines and containers they also implicitly contain the standard MAC-derived IPv6 link-local address in order to allow the neighbor discovery protocol to work.
/etc/pve/firewall/<VMID>.fw
[IPSET ipfilter-net0] # only allow specified IPs on net0
192.168.2.10
12.7. Services and Commands
The firewall runs two service daemons on each node:
There is also a CLI command named pve-firewall, which can be used to start and stop the firewall service:
pve-firewall start
pve-firewall stop
To get the status use:
pve-firewall status
The above command reads and compiles all firewall rules, so you will see warnings if your firewall configuration contains any errors.
If you want to see the generated iptables rules you can use:
iptables-save
12.8. Default firewall rules
The following traffic is filtered by the default firewall configuration:
12.8.1. Datacenter incoming/outgoing DROP/REJECT
If the input or output policy for the firewall is set to DROP or REJECT, the following traffic is still allowed for all Proxmox VE hosts in the cluster:
The following traffic is dropped, but not logged even with logging enabled:
The rest of the traffic is dropped or rejected, respectively, and also logged. This may vary depending on the additional options enabled in Firewall → Options, such as NDP, SMURFS and TCP flag filtering.
Please inspect the output of the
iptables-save
system command to see the firewall chains and rules active on your system. This output is also included in a System Report, accessible over a node’s subscription tab in the web GUI, or through the pvereport command line tool.
12.8.2. VM/CT incoming/outgoing DROP/REJECT
This drops or rejects all the traffic to the VMs, with some exceptions for DHCP, NDP, Router Advertisement, MAC and IP filtering depending on the set configuration. The same rules for dropping/rejecting packets are inherited from the datacenter, while the exceptions for accepted incomming/outgoing traffic of the host do not apply.
Again, you can use iptables-save (see above) Section 12.8.1, “Datacenter incoming/outgoing DROP/REJECT” to inspect all rules and chains applied.
12.9. Logging of firewall rules
By default, all logging of traffic filtered by the firewall rules is disabled. To enable logging, the loglevel for incommig and/or outgoing traffic has to be set in Firewall → Options. This can be done for the host as well as for the VM/CT firewall individually. By this, logging of Proxmox VE’s standard firewall rules is enabled and the output can be observed in Firewall → Log. Further, only some dropped or rejected packets are logged for the standard rules (see default firewall rules Section 12.8, “Default firewall rules”).
loglevel does not affect how much of the filtered traffic is logged. It changes a LOGID appended as prefix to the log output for easier filtering and post-processing.
loglevel is one of the following flags:
loglevel | LOGID |
---|---|
nolog | — |
emerg | 0 |
alert | 1 |
crit | 2 |
err | 3 |
warning | 4 |
notice | 5 |
info | 6 |
debug | 7 |
A typical firewall log output looks like this:
VMID LOGID CHAIN TIMESTAMP POLICY: PACKET_DETAILS
In case of the host firewall, VMID is equal to 0.
12.9.1. Logging of user defined firewall rules
In order to log packets filtered by user-defined firewall rules, it is possible to set a log-level parameter for each rule individually. This allows to log in a fine grained manner and independent of the log-level defined for the standard rules in Firewall → Options.
While the loglevel for each individual rule can be defined or changed easily in the WebUI during creation or modification of the rule, it is possible to set this also via the corresponding pvesh API calls.
Further, the log-level can also be set via the firewall configuration file by appending a -log <loglevel> to the selected rule (see possible log-levels ???).
For example, the following two are ident:
IN REJECT -p icmp -log nolog
IN REJECT -p icmp
whereas
IN REJECT -p icmp -log debug
produces a log output flagged with the debug level.
12.10. Tips and Tricks
12.10.1. How to allow FTP
FTP is an old style protocol which uses port 21 and several other dynamic ports. So you need a rule to accept port 21. In addition, you need to load the ip_conntrack_ftp module. So please run:
modprobe ip_conntrack_ftp
and add ip_conntrack_ftp to /etc/modules (so that it works after a reboot).
12.10.2. Suricata IPS integration
If you want to use the Suricata IPS (Intrusion Prevention System), it’s possible.
Packets will be forwarded to the IPS only after the firewall ACCEPTed them.
Rejected/Dropped firewall packets don’t go to the IPS.
Install suricata on proxmox host:
apt-get install suricata
modprobe nfnetlink_queue
Don’t forget to add nfnetlink_queue to /etc/modules for next reboot.
Then, enable IPS for a specific VM with:
/etc/pve/firewall/<VMID>.fw
[OPTIONS]
ips: 1
ips_queues: 0
ips_queues will bind a specific cpu queue for this VM.
Available queues are defined in
/etc/default/suricata
NFQUEUE=0
12.11. Notes on IPv6
The firewall contains a few IPv6 specific options. One thing to note is that IPv6 does not use the ARP protocol anymore, and instead uses NDP (Neighbor Discovery Protocol) which works on IP level and thus needs IP addresses to succeed. For this purpose link-local addresses derived from the interface’s MAC address are used. By default the NDP option is enabled on both host and VM level to allow neighbor discovery (NDP) packets to be sent and received.
Beside neighbor discovery NDP is also used for a couple of other things, like auto-configuration and advertising routers.
By default VMs are allowed to send out router solicitation messages (to query for a router), and to receive router advertisement packets. This allows them to use stateless auto configuration. On the other hand VMs cannot advertise themselves as routers unless the “Allow Router Advertisement” (radv: 1) option is set.
As for the link local addresses required for NDP, there’s also an “IP Filter” (ipfilter: 1) option which can be enabled which has the same effect as adding an ipfilter-net* ipset for each of the VM’s network interfaces containing the corresponding link local addresses. (See the Standard IP set ipfilter-net* section for details.)
12.12. Ports used by Proxmox VE
Chapter 13. User Management
Proxmox VE supports multiple authentication sources, e.g. Linux PAM, an integrated Proxmox VE authentication server, LDAP, Microsoft Active Directory.
By using the role based user- and permission management for all objects (VMs, storages, nodes, etc.) granular access can be defined.
13.1. Users
Proxmox VE stores user attributes in /etc/pve/user.cfg. Passwords are not stored here, users are instead associated with authentication realms described below. Therefore a user is internally often identified by its name and realm in the form <userid>@<realm>.
Each user entry in this file contains the following information:
13.1.1. System administrator
The system’s root user can always log in via the Linux PAM realm and is an unconfined administrator. This user cannot be deleted, but attributes can still be changed and system mails will be sent to the email address assigned to this user.
13.1.2. Groups
Each user can be member of several groups. Groups are the preferred way to organize access permissions. You should always grant permission to groups instead of using individual users. That way you will get a much shorter access control list which is easier to handle.
13.2. Authentication Realms
As Proxmox VE users are just counterparts for users existing on some external realm, the realms have to be configured in /etc/pve/domains.cfg. The following realms (authentication methods) are available:
Linux PAM standard authentication
In this case a system user has to exist (e.g. created via the adduser command) on all nodes the user is allowed to login, and the user authenticates with their usual system password.
useradd heinz
passwd heinz
groupadd watchman
usermod -a -G watchman heinz
Proxmox VE authentication server
This is a unix like password store (/etc/pve/priv/shadow.cfg). Password are encrypted using the SHA-256 hash method. This is the most convenient method for small (or even medium) installations where users do not need access to anything outside of Proxmox VE. In this case users are fully managed by Proxmox VE and are able to change their own passwords via the GUI.
LDAP
It is possible to authenticate users via an LDAP server (e.g. openldap). The server and an optional fallback server can be configured and the connection can be encrypted via SSL.
Users are searched under a Base Domain Name (base_dn), with the user name found in the attribute specified in the User Attribute Name (user_attr) field.
For instance, if a user is represented via the following ldif dataset:
user1 of People at ldap-test.com
dn: uid=user1,ou=People,dc=ldap-test,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: user1
cn: Test User 1
sn: Testers
description: This is the first test user.
The Base Domain Name would be ou=People,dc=ldap-test,dc=com and the user attribute would be uid.
If Proxmox VE needs to authenticate (bind) to the ldap server before being able to query and authenticate users, a bind domain name can be configured via the bind_dn property in /etc/pve/domains.cfg. Its password then has to be stored in /etc/pve/priv/ldap/<realmname>.pw (e.g. /etc/pve/priv/ldap/my-ldap.pw). This file should contain a single line containing the raw password.
Microsoft Active Directory
A server and authentication domain need to be specified. Like with ldap an optional fallback server, optional port, and SSL encryption can be configured.
13.3. Two factor authentication
There are two ways to use two factor authentication:
It can be required by the authentication realm, either via TOTP or YubiKey OTP. In this case a newly created user needs their keys added immediately as there is no way to log in without the second factor. In the case of TOTP a user can also change the TOTP later on provided they can log in first.
Alternatively a user can choose to opt into two factor authentication via TOTP later on even if the realm does not enforce it. As another option, if the server has an AppId configured, a user can opt into U2F authentication, provided the realm does not enforce any other second factor.
13.3.1. Realm enforced two factor authentication
This can be done by selecting one of the available methods via the TFA dropdown box when adding or editing an Authentication Realm. When a realm has TFA enabled it becomes a requirement and only users with configured TFA will be able to login.
Currently there are two methods available:
Time based OATH (TOTP)
This uses the standard HMAC-SHA1 algorithm where the current time is hashed with the user’s configured key. The time step and password length parameters are configured.
A user can have multiple keys configured (separated by spaces), and the keys can be specified in Base32 (RFC3548) or hexadecimal notation.
Proxmox VE provides a key generation tool (oathkeygen) which prints out a random key in Base32 notation which can be used directly with various OTP tools, such as the oathtool command line tool, the Google authenticator or FreeOTP Android apps.
YubiKey OTP
For authenticating via a YubiKey a Yubico API ID, API KEY and validation server URL must be configured, and users must have a YubiKey available. In order to get the key ID from a YubiKey, you can trigger the YubiKey once after connecting it to USB and copy the first 12 characters of the typed password into the user’s Key IDs field.
Please refer to the YubiKey OTP documentation for how to use the YubiCloud or host your own verification server.
13.3.2. User configured TOTP authentication
A user can choose to use TOTP as a second factor on login via the TFA button in the user list, unless the realm enforces YubiKey OTP.
After opening the TFA window, the user is presented with a dialog to setup TOTP authentication. The Secret field contains the key, which can simply be generated randomly via the Randomize button. An optional Issuer Name can be added to provide information to the TOTP app what the key belongs to. Most TOTP apps will show the issuer name together with the corresponding OTP values. The user name is also included in the QR code for the TOTP app.
After generating a key, a QR code will be displayed which can be used with most OTP apps such as FreeOTP. Now the user needs to verify both the current user password (unless logged in as root), as well as the ability to correctly use the TOTP key by typing the current OTP value into the Verification Code field before pressing the Apply button.
13.3.3. Server side U2F configuration
To allow users to use U2F authentication, the server needs to have a valid domain with a valid https certificate. Initially an AppId [38] needs to be configured.
Note
Changing the AppId will render all existing U2F registrations unusable!
This is done via /etc/pve/datacenter.cfg, for instance:
u2f: appid=https://mypve.example.com:8006
For a single node, the AppId can simply be the web UI address exactly as it is used in the browser, including the https:// and the port as shown above. Please note that some browsers may be more strict than others when matching AppIds.
When using multiple nodes, it is best to have a separate https server providing an appid.json [39] file, as it seems to be compatible with most browsers. If all nodes use subdomains of the same top level domain, it may be enough to use the TLD as AppId, but note that some browsers may not accept this.
Note
A bad AppId will usually produce an error, but we have encountered situation where this does not happen, particularly when using a top level domain AppId for a node accessed via a subdomain in Chromium. For this reason it is recommended to test the configuration with multiple browsers, as changing the AppId later will render existing U2F registrations unusable.
13.3.4. Activating U2F as a user
To enable U2F authentication, open the TFA window’s U2F tab, type in the current password (unless logged in as root), and press the Register button. If the server is setup correctly and the browser accepted the server’s provided AppId, a message will appear prompting the user to press the button on the U2F device (if it is a YubiKey the button light should be toggling off and on steadily around twice per second).
Firefox users may need to enable security.webauth.u2f via about:config before they can use a U2F token.
[38] AppId https://developers.yubico.com/U2F/App_ID.html
[39] Multi-facet apps: https://developers.yubico.com/U2F/App_ID.html
13.4. Permission Management
In order for a user to perform an action (such as listing, modifying or deleting a parts of a VM configuration), the user needs to have the appropriate permissions.
Proxmox VE uses a role and path based permission management system. An entry in the permissions table allows a user or group to take on a specific role when accessing an object or path. This means an such an access rule can be represented as a triple of (path, user, role) or (path, group, role), with the role containing a set of allowed actions, and the path representing the target of these actions.
13.4.1. Roles
A role is simply a list of privileges. Proxmox VE comes with a number of predefined roles which satisfies most needs.
You can see the whole set of predefined roles on the GUI.
Adding new roles can be done via both GUI and the command line.
For the GUI just navigate to Permissions → User Tab from Datacenter and click on the Create button, there you can set a name and select all desired roles from the Privileges dropdown box.
To add a role through the command line you can use the pveum CLI tool, like this:
pveum roleadd PVE_Power-only -privs "VM.PowerMgmt VM.Console"
pveum roleadd Sys_Power-only -privs "Sys.PowerMgmt Sys.Console"
13.4.2. Privileges
A privilege is the right to perform a specific action. To simplify management, lists of privileges are grouped into roles, which can then be used in the permission table. Note that privileges cannot directly be assigned to users and paths without being part of a role.
We currently use the following privileges:
Node / System related privileges
Virtual machine related privileges
Storage related privileges
13.4.3. Objects and Paths
Access permissions are assigned to objects, such as a virtual machines, storages or pools of resources. We use file system like paths to address these objects. These paths form a natural tree, and permissions of higher levels (shorter path) can optionally be propagated down within this hierarchy.
Paths can be templated. When an API call requires permissions on a templated path, the path may contain references to parameters of the API call. These references are specified in curly braces. Some parameters are implicitly taken from the API call’s URI. For instance the permission path /nodes/{node} when calling /nodes/mynode/status requires permissions on /nodes/mynode, while the path {path} in a PUT request to /access/acl refers to the method’s path parameter.
Some examples are:
Inheritance
As mentioned earlier, object paths form a file system like tree, and permissions can be inherited down that tree (the propagate flag is set by default). We use the following inheritance rules:
13.4.4. Pools
Pools can be used to group a set of virtual machines and data stores. You can then simply set permissions on pools (/pool/{poolid}), which are inherited to all pool members. This is a great way simplify access control.
13.4.5. What permission do I need?
The required API permissions are documented for each individual method, and can be found at http://pve.proxmox.com/pve-docs/api-viewer/
The permissions are specified as a list which can be interpreted as a tree of logic and access-check functions:
["and", <subtests>...] and ["or", <subtests>...]
Each(and) or any(or) further element in the current list has to be true.
["perm", <path>, [<privileges>...], <options>...]
The path is a templated parameter (see Objects and Paths). All (or , if the any option is used, any) of the listed privileges must be allowed on the specified path. If a require-param option is specified, then its specified parameter is required even if the API call’s schema otherwise lists it as being optional.
["userid-group", [<privileges>...], <options>...]
The caller must have any of the listed privileges on /access/groups. In addition there are two possible checks depending on whether the groups_param option is set:
["userid-param", "self"]
The value provided for the API call’s userid parameter must refer to the user performing the action. (Usually in conjunction with or, to allow users to perform an action on themselves even if they don’t have elevated privileges.)
["userid-param", "Realm.AllocateUser"]
The user needs Realm.AllocateUser access to /access/realm/<realm>, with <realm> referring to the realm of the user passed via the userid parameter. Note that the user does not need to exist in order to be associated with a realm, since user IDs are passed in the form of <username>@<realm>.
["perm-modify", <path>]
The path is a templated parameter (see Objects and Paths). The user needs either the Permissions.Modify privilege, or, depending on the path, the following privileges as a possible substitute:
/pool/...: additionally requires 'Pool.Allocate`
If the path is empty, Permission.Modify on /access is required.
13.5. Command Line Tool
Most users will simply use the GUI to manage users. But there is also a full featured command line tool called pveum (short for “Proxmox VE User Manager”). Please note that all Proxmox VE command line tools are wrappers around the API, so you can also access those function through the REST API.
Here are some simple usage examples. To show help type:
pveum
or (to show detailed help about a specific command)
pveum help useradd
Create a new user:
pveum useradd testuser@pve -comment "Just a test"
Set or Change the password (not all realms support that):
pveum passwd testuser@pve
Disable a user:
pveum usermod testuser@pve -enable 0
Create a new group:
pveum groupadd testgroup
Create a new role:
pveum roleadd PVE_Power-only -privs "VM.PowerMgmt VM.Console"
13.6. Real World Examples
13.6.1. Administrator Group
One of the most wanted features was the ability to define a group of users with full administrator rights (without using the root account).
Define the group:
pveum groupadd admin -comment "System Administrators"
Then add the permission:
pveum aclmod / -group admin -role Administrator
You can finally add users to the new admin group:
pveum usermod testuser@pve -group admin
13.6.2. Auditors
You can give read only access to users by assigning the PVEAuditor role to users or groups.
Example1: Allow user joe@pve to see everything
pveum aclmod / -user joe@pve -role PVEAuditor
Example1: Allow user joe@pve to see all virtual machines
pveum aclmod /vms -user joe@pve -role PVEAuditor
13.6.3. Delegate User Management
If you want to delegate user management to user joe@pve you can do that with:
pveum aclmod /access -user joe@pve -role PVEUserAdmin
User joe@pve can now add and remove users, change passwords and other user attributes. This is a very powerful role, and you most likely want to limit that to selected realms and groups. The following example allows joe@pve to modify users within realm pve if they are members of group customers:
pveum aclmod /access/realm/pve -user joe@pve -role PVEUserAdmin
pveum aclmod /access/groups/customers -user joe@pve -role PVEUserAdmin
Note
The user is able to add other users, but only if they are members of group customers and within realm pve.
13.6.4. Pools
An enterprise is usually structured into several smaller departments, and it is common that you want to assign resources to them and delegate management tasks. A pool is simply a set of virtual machines and data stores. You can create pools on the GUI. After that you can add resources to the pool (VMs, Storage).
You can also assign permissions to the pool. Those permissions are inherited to all pool members.
Lets assume you have a software development department, so we first create a group
pveum groupadd developers -comment "Our software developers"
Now we create a new user which is a member of that group
pveum useradd developer1@pve -group developers -password
Note
The -password parameter will prompt you for a password
I assume we already created a pool called “dev-pool” on the GUI. So we can now assign permission to that pool:
pveum aclmod /pool/dev-pool/ -group developers -role PVEAdmin
Our software developers can now administrate the resources assigned to that pool.
Chapter 14. High Availability
Our modern society depends heavily on information provided by computers over the network. Mobile devices amplified that dependency, because people can access the network any time from anywhere. If you provide such services, it is very important that they are available most of the time.
We can mathematically define the availability as the ratio of (A) the total time a service is capable of being used during a given interval to (B) the length of the interval. It is normally expressed as a percentage of uptime in a given year.
Table 14.1. Availability - Downtime per Year
Availability % | Downtime per year |
---|---|
99 | 3.65 days |
99.9 | 8.76 hours |
99.99 | 52.56 minutes |
99.999 | 5.26 minutes |
99.9999 | 31.5 seconds |
99.99999 | 3.15 seconds |
There are several ways to increase availability. The most elegant solution is to rewrite your software, so that you can run it on several host at the same time. The software itself need to have a way to detect errors and do failover. This is relatively easy if you just want to serve read-only web pages. But in general this is complex, and sometimes impossible because you cannot modify the software yourself. The following solutions works without modifying the software:
Use reliable “server” components
Note
Computer components with same functionality can have varying reliability numbers, depending on the component quality. Most vendors sell components with higher reliability as “server” components - usually at higher price.
Eliminate single point of failure (redundant components)
Reduce downtime
Virtualization environments like Proxmox VE make it much easier to reach high availability because they remove the “hardware” dependency. They also support to setup and use redundant storage and network devices. So if one host fail, you can simply start those services on another host within your cluster.
Even better, Proxmox VE provides a software stack called ha-manager, which can do that automatically for you. It is able to automatically detect errors and do automatic failover.
Proxmox VE ha-manager works like an “automated” administrator. First, you configure what resources (VMs, containers, …) it should manage. ha-manager then observes correct functionality, and handles service failover to another node in case of errors. ha-manager can also handle normal user requests which may start, stop, relocate and migrate a service.
But high availability comes at a price. High quality components are more expensive, and making them redundant duplicates the costs at least. Additional spare parts increase costs further. So you should carefully calculate the benefits, and compare with those additional costs.
Tip
Increasing availability from 99% to 99.9% is relatively simply. But increasing availability from 99.9999% to 99.99999% is very hard and costly. ha-manager has typical error detection and failover times of about 2 minutes, so you can get no more than 99.999% availability.
14.1. Requirements
You must meet the following requirements before you start with HA:
14.2. Resources
We call the primary management unit handled by ha-manager a resource. A resource (also called “service”) is uniquely identified by a service ID (SID), which consists of the resource type and an type specific ID, e.g.: vm:100. That example would be a resource of type vm (virtual machine) with the ID 100.
For now we have two important resources types - virtual machines and containers. One basic idea here is that we can bundle related software into such a VM or container, so there is no need to compose one big service from other services, like it was done with rgmanager. In general, a HA managed resource should not depend on other resources.
14.3. Management Tasks
This section provides a short overview of common management tasks. The first step is to enable HA for a resource. This is done by adding the resource to the HA resource configuration. You can do this using the GUI, or simply use the command line tool, for example:
ha-manager add vm:100
The HA stack now tries to start the resources and keeps it running. Please note that you can configure the “requested” resources state. For example you may want the HA stack to stop the resource:
ha-manager set vm:100 --state stopped
and start it again later:
ha-manager set vm:100 --state started
You can also use the normal VM and container management commands. They automatically forward the commands to the HA stack, so
qm start 100
simply sets the requested state to started. Same applied to qm stop, which sets the requested state to stopped.
Note
The HA stack works fully asynchronous and needs to communicate with other cluster members. So it takes some seconds until you see the result of such actions.
To view the current HA resource configuration use:
ha-manager config
vm:100
state stopped
And you can view the actual HA manager and resource state with:
ha-manager status
quorum OK
master node1 (active, Wed Nov 23 11:07:23 2016)
lrm elsa (active, Wed Nov 23 11:07:19 2016)
service vm:100 (node1, started)
You can also initiate resource migration to other nodes:
ha-manager migrate vm:100 node2
This uses online migration and tries to keep the VM running. Online migration needs to transfer all used memory over the network, so it is sometimes faster to stop VM, then restart it on the new node. This can be done using the relocate command:
ha-manager relocate vm:100 node2
Finally, you can remove the resource from the HA configuration using the following command:
ha-manager remove vm:100
Note
This does not start or stop the resource.
But all HA related tasks can be done in the GUI, so there is no need to use the command line at all.
14.4. How It Works
This section provides a detailed description of the Proxmox VE HA manager internals. It describes all involved daemons and how they work together. To provide HA, two daemons run on each node:
pve-ha-lrm
The local resource manager (LRM), which controls the services running on the local node. It reads the requested states for its services from the current manager status file and executes the respective commands.
pve-ha-crm
The cluster resource manager (CRM), which makes the cluster wide decisions. It sends commands to the LRM, processes the results, and moves resources to other nodes if something fails. The CRM also handles node fencing.
Note
Locks are provided by our distributed configuration file system (pmxcfs). They are used to guarantee that each LRM is active once and working. As an LRM only executes actions when it holds its lock, we can mark a failed node as fenced if we can acquire its lock. This lets us then recover any failed HA services securely without any interference from the now unknown failed node. This all gets supervised by the CRM which holds currently the manager master lock.
14.4.1. Service States
The CRM use a service state enumeration to record the current service state. We display this state on the GUI and you can query it using the ha-manager command line tool:
ha-manager status
quorum OK
master elsa (active, Mon Nov 21 07:23:29 2016)
lrm elsa (active, Mon Nov 21 07:23:22 2016)
service ct:100 (elsa, stopped)
service ct:102 (elsa, started)
service vm:501 (elsa, started)
Here is the list of possible states:
stopped
Service is stopped (confirmed by LRM). If the LRM detects a stopped service is still running, it will stop it again.
request_stop
Service should be stopped. The CRM waits for confirmation from the LRM.
stopping
Pending stop request. But the CRM did not get the request so far.
started
Service is active an LRM should start it ASAP if not already running. If the Service fails and is detected to be not running the LRM restarts it (see Start Failure Policy Section 14.8, “Start Failure Policy”).
starting
Pending start request. But the CRM has not got any confirmation from the LRM that the service is running.
fence
Wait for node fencing (service node is not inside quorate cluster partition). As soon as node gets fenced successfully the service will be recovered to another node, if possible (see Fencing Section 14.7, “Fencing”).
freeze
Do not touch the service state. We use this state while we reboot a node, or when we restart the LRM daemon (see Package Updates Section 14.10, “Package Updates”).
ignored
Act as if the service were not managed by HA at all. Useful, when full control over the service is desired temporarily, without removing it from the HA configuration.
migrate
Migrate service (live) to other node.
error
Service is disabled because of LRM errors. Needs manual intervention (see Error Recovery Section 14.9, “Error Recovery”).
queued
Service is newly added, and the CRM has not seen it so far.
disabled
Service is stopped and marked as disabled
14.4.2. Local Resource Manager
The local resource manager (pve-ha-lrm) is started as a daemon on boot and waits until the HA cluster is quorate and thus cluster wide locks are working.
It can be in three states:
wait for agent lock
The LRM waits for our exclusive lock. This is also used as idle state if no service is configured.
active
The LRM holds its exclusive lock and has services configured.
lost agent lock
The LRM lost its lock, this means a failure happened and quorum was lost.
After the LRM gets in the active state it reads the manager status file in /etc/pve/ha/manager_status and determines the commands it has to execute for the services it owns. For each command a worker gets started, these workers are running in parallel and are limited to at most 4 by default. This default setting may be changed through the datacenter configuration key max_worker. When finished the worker process gets collected and its result saved for the CRM.
Note
The default value of at most 4 concurrent workers may be unsuited for a specific setup. For example may 4 live migrations happen at the same time, which can lead to network congestions with slower networks and/or big (memory wise) services. Ensure that also in the worst case no congestion happens and lower the max_worker value if needed. On the contrary, if you have a particularly powerful high end setup you may also want to increase it.
Each command requested by the CRM is uniquely identifiable by a UID, when the worker finishes its result will be processed and written in the LRM status file /etc/pve/nodes/<nodename>/lrm_status. There the CRM may collect it and let its state machine - respective the commands output - act on it.
The actions on each service between CRM and LRM are normally always synced. This means that the CRM requests a state uniquely marked by a UID, the LRM then executes this action one time and writes back the result, also identifiable by the same UID. This is needed so that the LRM does not execute an outdated command. With the exception of the stop and the error command, those two do not depend on the result produced and are executed always in the case of the stopped state and once in the case of the error state.
Note
The HA Stack logs every action it makes. This helps to understand what and also why something happens in the cluster. Here its important to see what both daemons, the LRM and the CRM, did. You may use journalctl -u pve-ha-lrm on the node(s) where the service is and the same command for the pve-ha-crm on the node which is the current master.
14.4.3. Cluster Resource Manager
The cluster resource manager (pve-ha-crm) starts on each node and waits there for the manager lock, which can only be held by one node at a time. The node which successfully acquires the manager lock gets promoted to the CRM master.
It can be in three states:
wait for agent lock
The CRM waits for our exclusive lock. This is also used as idle state if no service is configured
active
The CRM holds its exclusive lock and has services configured
lost agent lock
The CRM lost its lock, this means a failure happened and quorum was lost.
Its main task is to manage the services which are configured to be highly available and try to always enforce the requested state. For example, a service with the requested state started will be started if its not already running. If it crashes it will be automatically started again. Thus the CRM dictates the actions the LRM needs to execute.
When an node leaves the cluster quorum, its state changes to unknown. If the current CRM then can secure the failed nodes lock, the services will be stolen and restarted on another node.
When a cluster member determines that it is no longer in the cluster quorum, the LRM waits for a new quorum to form. As long as there is no quorum the node cannot reset the watchdog. This will trigger a reboot after the watchdog then times out, this happens after 60 seconds.
14.5. HA Simulator
By using the HA simulator you can test and learn all functionalities of the Proxmox VE HA solutions.
By default, the simulator allows you to watch and test the behaviour of a real-world 3 node cluster with 6 VMs. You can also add or remove additional VMs or Container.
You do not have to setup or configure a real cluster, the HA simulator runs out of the box.
Install with apt:
apt install pve-ha-simulator
You can even install the package on any Debian based system without any other Proxmox VE packages. For that you will need to download the package and copy it to the system you want to run it on for installation. When you install the package with apt from the local file system it will also resolve the required dependencies for you.
To start the simulator on a remote machine you must have a X11 redirection to your current system.
If you are on a Linux machine you can use:
ssh root@<IPofPVE> -Y
On Windows it is working with mobaxterm.
After either connecting to a existing Proxmox VE with the simulator installed, or installing it on your local Debian based system manually you can try it out as follows.
First you need to create a working directory where the simulator saves it’s current state and writes its the default config:
mkdir working
Then, simply pass the created directory as parameter to pve-ha-simulator:
pve-ha-simulator working/
You can then start, stop, migrate the simulated HA services, or even check out what happens on a node failure.
14.6. Configuration
The HA stack is well integrated into the Proxmox VE API. So, for example, HA can be configured via the ha-manager command line interface, or the Proxmox VE web interface - both interfaces provide an easy way to manage HA. Automation tools can use the API directly.
All HA configuration files are within /etc/pve/ha/, so they get automatically distributed to the cluster nodes, and all nodes share the same HA configuration.
14.6.1. Resources
The resource configuration file /etc/pve/ha/resources.cfg stores the list of resources managed by ha-manager. A resource configuration inside that list looks like this:
<type>: <name>
<property> <value>
...
It starts with a resource type followed by a resource specific name, separated with colon. Together this forms the HA resource ID, which is used by all ha-manager commands to uniquely identify a resource (example: vm:100 or ct:101). The next lines contain additional properties:
comment: <string>
Description.
group: <string>
The HA group identifier.
max_relocate: <integer> (0 - N) (default = 1)
Maximal number of service relocate tries when a service failes to start.
max_restart: <integer> (0 - N) (default = 1)
Maximal number of tries to restart the service on a node after its start failed.
state: <disabled | enabled | ignored | started | stopped> (default = started)
Requested resource state. The CRM reads this state and acts accordingly. Please note that enabled is just an alias for started.
started
The CRM tries to start the resource. Service state is set to started after successful start. On node failures, or when start fails, it tries to recover the resource. If everything fails, service state it set to error.
stopped
The CRM tries to keep the resource in stopped state, but it still tries to relocate the resources on node failures.
disabled
The CRM tries to put the resource in stopped state, but does not try to relocate the resources on node failures. The main purpose of this state is error recovery, because it is the only way to move a resource out of the error state.
ignored
The resource gets removed from the manager status and so the CRM and the LRM do not touch the resource anymore. All Proxmox VE API calls affecting this resource will be executed, directly bypassing the HA stack. CRM commands will be thrown away while there source is in this state. The resource will not get relocated on node failures.
Here is a real world example with one VM and one container. As you see, the syntax of those files is really simple, so it is even possible to read or edit those files using your favorite editor:
Configuration Example (/etc/pve/ha/resources.cfg).
vm: 501
state started
max_relocate 2
ct: 102
Note: use default settings for everything
Above config was generated using the ha-manager command line tool:
ha-manager add vm:501 --state started --max_relocate 2
ha-manager add ct:102
14.6.2. Groups
The HA group configuration file /etc/pve/ha/groups.cfg is used to define groups of cluster nodes. A resource can be restricted to run only on the members of such group. A group configuration look like this:
group: <group>
nodes <node_list>
<property> <value>
...
comment: <string>
Description.
nodes: <node>[:<pri>]{,<node>[:<pri>]}*
List of cluster node members, where a priority can be given to each node. A resource bound to a group will run on the available nodes with the highest priority. If there are more nodes in the highest priority class, the services will get distributed to those nodes. The priorities have a relative meaning only.
nofailback: <boolean> (default = 0)
The CRM tries to run services on the node with the highest priority. If a node with higher priority comes online, the CRM migrates the service to that node. Enabling nofailback prevents that behavior.
restricted: <boolean> (default = 0)
Resources bound to restricted groups may only run on nodes defined by the group. The resource will be placed in the stopped state if no group node member is online. Resources on unrestricted groups may run on any cluster node if all group members are offline, but they will migrate back as soon as a group member comes online. One can implement a preferred node behavior using an unrestricted group with only one member.
A common requirement is that a resource should run on a specific node. Usually the resource is able to run on other nodes, so you can define an unrestricted group with a single member:
ha-manager groupadd prefer_node1 --nodes node1
For bigger clusters, it makes sense to define a more detailed failover behavior. For example, you may want to run a set of services on node1 if possible. If node1 is not available, you want to run them equally split on node2 and node3. If those nodes also fail the services should run on node4. To achieve this you could set the node list to:
ha-manager groupadd mygroup1 -nodes "node1:2,node2:1,node3:1,node4"
Another use case is if a resource uses other resources only available on specific nodes, lets say node1 and node2. We need to make sure that HA manager does not use other nodes, so we need to create a restricted group with said nodes:
ha-manager groupadd mygroup2 -nodes "node1,node2" -restricted
Above commands created the following group configuration fils:
Configuration Example (/etc/pve/ha/groups.cfg).
group: prefer_node1
nodes node1
group: mygroup1
nodes node2:1,node4,node1:2,node3:1
group: mygroup2
nodes node2,node1
restricted 1
The nofailback options is mostly useful to avoid unwanted resource movements during administration tasks. For example, if you need to migrate a service to a node which hasn’t the highest priority in the group, you need to tell the HA manager to not move this service instantly back by setting the nofailback option.
Another scenario is when a service was fenced and it got recovered to another node. The admin tries to repair the fenced node and brings it up online again to investigate the failure cause and check if it runs stable again. Setting the nofailback flag prevents that the recovered services move straight back to the fenced node.
14.7. Fencing
On node failures, fencing ensures that the erroneous node is guaranteed to be offline. This is required to make sure that no resource runs twice when it gets recovered on another node. This is a really important task, because without, it would not be possible to recover a resource on another node.
If a node did not get fenced, it would be in an unknown state where it may have still access to shared resources. This is really dangerous! Imagine that every network but the storage one broke. Now, while not reachable from the public network, the VM still runs and writes to the shared storage.
If we then simply start up this VM on another node, we would get a dangerous race conditions because we write from both nodes. Such condition can destroy all VM data and the whole VM could be rendered unusable. The recovery could also fail if the storage protects from multiple mounts.
14.7.1. How Proxmox VE Fences
There are different methods to fence a node, for example, fence devices which cut off the power from the node or disable their communication completely. Those are often quite expensive and bring additional critical components into a system, because if they fail you cannot recover any service.
We thus wanted to integrate a simpler fencing method, which does not require additional external hardware. This can be done using watchdog timers.
Possible Fencing Methods
Watchdog timers are widely used in critical and dependable systems since the beginning of micro controllers. They are often independent and simple integrated circuits which are used to detect and recover from computer malfunctions.
During normal operation, ha-manager regularly resets the watchdog timer to prevent it from elapsing. If, due to a hardware fault or program error, the computer fails to reset the watchdog, the timer will elapse and triggers a reset of the whole server (reboot).
Recent server motherboards often include such hardware watchdogs, but these need to be configured. If no watchdog is available or configured, we fall back to the Linux Kernel softdog. While still reliable, it is not independent of the servers hardware, and thus has a lower reliability than a hardware watchdog.
14.7.2. Configure Hardware Watchdog
By default, all hardware watchdog modules are blocked for security reasons. They are like a loaded gun if not correctly initialized. To enable a hardware watchdog, you need to specify the module to load in /etc/default/pve-ha-manager, for example:
select watchdog module (default is softdog)
WATCHDOG_MODULE=iTCO_wdt
This configuration is read by the watchdog-mux service, which load the specified module at startup.
14.7.3. Recover Fenced Services
After a node failed and its fencing was successful, the CRM tries to move services from the failed node to nodes which are still online.
The selection of nodes, on which those services gets recovered, is influenced by the resource group settings, the list of currently active nodes, and their respective active service count.
The CRM first builds a set out of the intersection between user selected nodes (from group setting) and available nodes. It then choose the subset of nodes with the highest priority, and finally select the node with the lowest active service count. This minimizes the possibility of an overloaded node.
Caution
On node failure, the CRM distributes services to the remaining nodes. This increase the service count on those nodes, and can lead to high load, especially on small clusters. Please design your cluster so that it can handle such worst case scenarios.
14.8. Start Failure Policy
The start failure policy comes in effect if a service failed to start on a node one or more times. It can be used to configure how often a restart should be triggered on the same node and how often a service should be relocated so that it gets a try to be started on another node. The aim of this policy is to circumvent temporary unavailability of shared resources on a specific node. For example, if a shared storage isn’t available on a quorate node anymore, e.g. network problems, but still on other nodes, the relocate policy allows then that the service gets started nonetheless.
There are two service start recover policy settings which can be configured specific for each resource.
max_restart
Maximum number of tries to restart an failed service on the actual node. The default is set to one.
max_relocate
Maximum number of tries to relocate the service to a different node. A relocate only happens after the max_restart value is exceeded on the actual node. The default is set to one.
Note
The relocate count state will only reset to zero when the service had at least one successful start. That means if a service is re-started without fixing the error only the restart policy gets repeated.
14.9. Error Recovery
If after all tries the service state could not be recovered it gets placed in an error state. In this state the service won’t get touched by the HA stack anymore. The only way out is disabling a service:
ha-manager set vm:100 --state disabled
This can also be done in the web interface.
To recover from the error state you should do the following:
14.10. Package Updates
When updating the ha-manager you should do one node after the other, never all at once for various reasons. First, while we test our software thoughtfully, a bug affecting your specific setup cannot totally be ruled out. Upgrading one node after the other and checking the functionality of each node after finishing the update helps to recover from an eventual problems, while updating all could render you in a broken cluster state and is generally not good practice.
Also, the Proxmox VE HA stack uses a request acknowledge protocol to perform actions between the cluster and the local resource manager. For restarting, the LRM makes a request to the CRM to freeze all its services. This prevents that they get touched by the Cluster during the short time the LRM is restarting. After that the LRM may safely close the watchdog during a restart. Such a restart happens normally during a package update and, as already stated, an active master CRM is needed to acknowledge the requests from the LRM. If this is not the case the update process can take too long which, in the worst case, may result in a reset triggered by the watchdog.
14.11. Node Maintenance
It is sometimes possible to shutdown or reboot a node to do maintenance tasks. Either to replace hardware, or simply to install a new kernel image.
14.11.1. Shutdown
A shutdown (poweroff) is usually done if the node is planned to stay down for some time. The LRM stops all managed services in that case. This means that other nodes will take over those service afterwards.
Note
Recent hardware has large amounts of RAM. So we stop all resources, then restart them to avoid online migration of all that RAM. If you want to use online migration, you need to invoke that manually before you shutdown the node.
14.11.2. Reboot
Node reboots are initiated with the reboot command. This is usually done after installing a new kernel. Please note that this is different from “shutdown”, because the node immediately starts again.
The LRM tells the CRM that it wants to restart, and waits until the CRM puts all resources into the freeze state (same mechanism is used for Package Updates Section 14.10, “Package Updates”). This prevents that those resources are moved to other nodes. Instead, the CRM start the resources after the reboot on the same node.
14.11.3. Manual Resource Movement
Last but not least, you can also move resources manually to other nodes before you shutdown or restart a node. The advantage is that you have full control, and you can decide if you want to use online migration or not.
Note
Please do not kill services like pve-ha-crm, pve-ha-lrm or watchdog-mux. They manage and use the watchdog, so this can result in a node reboot.
Chapter 15. Backup and Restore
Backups are a requirement for any sensible IT deployment, and Proxmox VE provides a fully integrated solution, using the capabilities of each storage and each guest system type. This allows the system administrator to fine tune via the mode option between consistency of the backups and downtime of the guest system.
Proxmox VE backups are always full backups - containing the VM/CT configuration and all data. Backups can be started via the GUI or via the vzdump command line tool.
Backup Storage. Before a backup can run, a backup storage must be defined. Refer to the Storage documentation on how to add a storage. A backup storage must be a file level storage, as backups are stored as regular files. In most situations, using a NFS server is a good way to store backups. You can save those backups later to a tape drive, for off-site archiving.
Scheduled Backup. Backup jobs can be scheduled so that they are executed automatically on specific days and times, for selectable nodes and guest systems. Configuration of scheduled backups is done at the Datacenter level in the GUI, which will generate a cron entry in /etc/cron.d/vzdump.
15.1. Backup modes
There are several ways to provide consistency (option mode), depending on the guest type.
Backup modes for VMs:
stop mode
This mode provides the highest consistency of the backup, at the cost of a short downtime in the VM operation. It works by executing an orderly shutdown of the VM, and then runs a background Qemu process to backup the VM data. After the backup is started, the VM goes to full operation mode if it was previously running. Consistency is guaranteed by using the live backup feature.
suspend mode
This mode is provided for compatibility reason, and suspends the VM before calling the snapshot mode. Since suspending the VM results in a longer downtime and does not necessarily improve the data consistency, the use of the snapshot mode is recommended instead.
snapshot mode
This mode provides the lowest operation downtime, at the cost of a small inconstancy risk. It works by performing a Proxmox VE live backup, in which data blocks are copied while the VM is running. If the guest agent is enabled (agent: 1) and running, it calls guest-fsfreeze-freeze and guest-fsfreeze-thaw to improve consistency.
A technical overview of the Proxmox VE live backup for QemuServer can be found online here.
Note
Proxmox VE live backup provides snapshot-like semantics on any storage type. It does not require that the underlying storage supports snapshots. Also please note that since the backups are done via a background Qemu process, a stopped VM will appear as running for a short amount of time while the VM disks are being read by Qemu. However the VM itself is not booted, only its disk(s) are read.
Backup modes for Containers:
stop mode
Stop the container for the duration of the backup. This potentially results in a very long downtime.
suspend mode
This mode uses rsync to copy the container data to a temporary location (see option --tmpdir). Then the container is suspended and a second rsync copies changed files. After that, the container is started (resumed) again. This results in minimal downtime, but needs additional space to hold the container copy.
When the container is on a local file system and the target storage of the backup is an NFS/CIFS server, you should set --tmpdir to reside on a local file system too, as this will result in a many fold performance improvement. Use of a local tmpdir is also required if you want to backup a local container using ACLs in suspend mode if the backup storage is an NFS server.
snapshot mode
This mode uses the snapshotting facilities of the underlying storage. First, the container will be suspended to ensure data consistency. A temporary snapshot of the container’s volumes will be made and the snapshot content will be archived in a tar file. Finally, the temporary snapshot is deleted again.
Note
snapshot mode requires that all backed up volumes are on a storage that supports snapshots. Using the backup=no mount point option individual volumes can be excluded from the backup (and thus this requirement).
Note
By default additional mount points besides the Root Disk mount point are not included in backups. For volume mount points you can set the Backup option to include the mount point in the backup. Device and bind mounts are never backed up as their content is managed outside the Proxmox VE storage library.
15.2. Backup File Names
Newer versions of vzdump encode the guest type and the backup time into the filename, for example
vzdump-lxc-105-2009_10_09-11_04_43.tar
That way it is possible to store several backup in the same directory. The parameter maxfiles can be used to specify the maximum number of backups to keep.
15.3. Restore
A backup archive can be restored through the Proxmox VE web GUI or through the following CLI tools:
pct restore
Container restore utility
qmrestore
Virtual Machine restore utility
For details see the corresponding manual pages.
15.3.1. Bandwidth Limit
Restoring one or more big backups may need a lot of resources, especially storage bandwidth for both reading from the backup storage and writing to the target storage. This can negatively effect other virtual guest as access to storage can get congested.
To avoid this you can set bandwidth limits for a backup job. Proxmox VE implements two kinds of limits for restoring and archive:
The read limit indirectly affects the write limit, as we cannot write more than we read. A smaller per-job limit will overwrite a bigger per-storage limit. A bigger per-job limit will only overwrite the per-storage limit if you have ‘Data.Allocate’ permissions on the affected storage.
You can use the ‘--bwlimit <integer>` option from the restore CLI commands to set up a restore job specific bandwidth limit. Kibit/s is used as unit for the limit, this means passing `10240’ will limit the read speed of the backup to 10 MiB/s, ensuring that the rest of the possible storage bandwidth is available for the already running virtual guests, and thus the backup does not impact their operations.
Note
You can use ‘0` for the bwlimit parameter to disable all limits for a specific restore job. This can be helpful if you need to restore a very important virtual guest as fast as possible. (Needs `Data.Allocate’ permissions on storage)
Most times your storage’s generally available bandwidth stays the same over time, thus we implemented the possibility to set a default bandwidth limit per configured storage, this can be done with:
pvesm set STORAGEID --bwlimit KIBs
15.4. Configuration
Global configuration is stored in /etc/vzdump.conf. The file uses a simple colon separated key/value format. Each line has the following format:
OPTION: value
Blank lines in the file are ignored, and lines starting with a # character are treated as comments and are also ignored. Values from this file are used as default, and can be overwritten on the command line.
We currently support the following options:
bwlimit: <integer> (0 - N) (default = 0)
Limit I/O bandwidth (KBytes per second).
compress: <0 | 1 | gzip | lzo> (default = 0)
Compress dump file.
dumpdir: <string>
Store resulting files to specified directory.
exclude-path: <string>
Exclude certain files/directories (shell globs).
ionice: <integer> (0 - 8) (default = 7)
Set CFQ ionice priority.
lockwait: <integer> (0 - N) (default = 180)
Maximal time to wait for the global lock (minutes).
mailnotification: <always | failure> (default = always)
Specify when to send an email
mailto: <string>
Comma-separated list of email addresses that should receive email notifications.
maxfiles: <integer> (1 - N) (default = 1)
Maximal number of backup files per guest system.
mode: <snapshot | stop | suspend> (default = snapshot)
Backup mode.
pigz: <integer> (default = 0)
Use pigz instead of gzip when N>0. N=1 uses half of cores, N>1 uses N as thread count.
pool: <string>
Backup all known guest systems included in the specified pool.
remove: <boolean> (default = 1)
Remove old backup files if there are more than maxfiles backup files.
script: <string>
Use specified hook script.
stdexcludes: <boolean> (default = 1)
Exclude temporary files and logs.
stopwait: <integer> (0 - N) (default = 10)
Maximal time to wait until a guest system is stopped (minutes).
storage: <string>
Store resulting file to this storage.
tmpdir: <string>
Store temporary files to specified directory.
Example vzdump.conf Configuration.
tmpdir: /mnt/fast_local_disk
storage: my_backup_storage
mode: snapshot
bwlimit: 10000
15.5. Hook Scripts
You can specify a hook script with option --script. This script is called at various phases of the backup process, with parameters accordingly set. You can find an example in the documentation directory (vzdump-hook-script.pl).
15.6. File Exclusions
Note
this option is only available for container backups.
vzdump skips the following files by default (disable with the option --stdexcludes 0)
/tmp/?*
/var/tmp/?*
/var/run/?*pid
You can also manually specify (additional) exclude paths, for example:
vzdump 777 --exclude-path /tmp/ --exclude-path '/var/foo*'
(only excludes tmp directories)
Configuration files are also stored inside the backup archive (in ./etc/vzdump/) and will be correctly restored.
15.7. Examples
Simply dump guest 777 - no snapshot, just archive the guest private area and configuration files to the default dump directory (usually /var/lib/vz/dump/).
vzdump 777
Use rsync and suspend/resume to create a snapshot (minimal downtime).
vzdump 777 --mode suspend
Backup all guest systems and send notification mails to root and admin.
vzdump --all --mode suspend --mailto root --mailto admin
Use snapshot mode (no downtime) and non-default dump directory.
vzdump 777 --dumpdir /mnt/backup --mode snapshot
Backup more than one guest (selectively)
vzdump 101 102 103 --mailto root
Backup all guests excluding 101 and 102
vzdump --mode suspend --exclude 101,102
Restore a container to a new CT 600
pct restore 600 /mnt/backup/vzdump-lxc-777.tar
Restore a QemuServer VM to VM 601
qmrestore /mnt/backup/vzdump-qemu-888.vma 601
Clone an existing container 101 to a new container 300 with a 4GB root file system, using pipes
vzdump 101 --stdout | pct restore --rootfs 4 300 -
Chapter 16. Important Service Daemons
16.1. pvedaemon - Proxmox VE API Daemon
This daemon exposes the whole Proxmox VE API on 127.0.0.1:85. It runs as root and has permission to do all privileged operations.
Note
The daemon listens to a local address only, so you cannot access it from outside. The pveproxy daemon exposes the API to the outside world.
16.2. pveproxy - Proxmox VE API Proxy Daemon
This daemon exposes the whole Proxmox VE API on TCP port 8006 using HTTPS. It runs as user www-data and has very limited permissions. Operation requiring more permissions are forwarded to the local pvedaemon.
Requests targeted for other nodes are automatically forwarded to those nodes. This means that you can manage your whole cluster by connecting to a single Proxmox VE node.
16.2.1. Host based Access Control
It is possible to configure “apache2”-like access control lists. Values are read from file /etc/default/pveproxy. For example:
ALLOW_FROM="10.0.0.1-10.0.0.5,192.168.0.0/22"
DENY_FROM="all"
POLICY="allow"
IP addresses can be specified using any syntax understood by Net::IP. The name all is an alias for 0/0.
The default policy is allow.
Match | POLICY=deny | POLICY=allow |
---|---|---|
Match Allow only | allow | allow |
Match Deny only | deny | deny |
No match | deny | allow |
Match Both Allow & Deny | deny | allow |
16.2.2. SSL Cipher Suite
You can define the cipher list in /etc/default/pveproxy, for example
CIPHERS="ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256"
Above is the default. See the ciphers(1) man page from the openssl package for a list of all available options.
Additionally you can define that the client choses the used cipher in /etc/default/pveproxy (default is the first cipher in the list available to both client and pveproxy):
HONOR_CIPHER_ORDER=0
16.2.3. Diffie-Hellman Parameters
You can define the used Diffie-Hellman parameters in /etc/default/pveproxy by setting DHPARAMS to the path of a file containing DH parameters in PEM format, for example
DHPARAMS="/path/to/dhparams.pem"
If this option is not set, the built-in skip2048 parameters will be used.
Note
DH parameters are only used if a cipher suite utilizing the DH key exchange algorithm is negotiated.
16.2.4. Alternative HTTPS certificate
You can change the certificate used to an external one or to one obtained via ACME.
pveproxy uses /etc/pve/local/pveproxy-ssl.pem and /etc/pve/local/pveproxy-ssl.key, if present, and falls back to /etc/pve/local/pve-ssl.pem and /etc/pve/local/pve-ssl.key. The private key may not use a passphrase.
See the Host System Administration chapter of the documentation for details.
16.2.5. COMPRESSION
By default pveproxy uses gzip HTTP-level compression for compressible content, if the client supports it. This can disabled in /etc/default/pveproxy
COMPRESSION=0
16.3. pvestatd - Proxmox VE Status Daemon
This daemon queries the status of VMs, storages and containers at regular intervals. The result is sent to all nodes in the cluster.
16.4. spiceproxy - SPICE Proxy Service
SPICE (the Simple Protocol for Independent Computing Environments) is an open remote computing solution, providing client access to remote displays and devices (e.g. keyboard, mouse, audio). The main use case is to get remote access to virtual machines and container.
This daemon listens on TCP port 3128, and implements an HTTP proxy to forward CONNECT request from the SPICE client to the correct Proxmox VE VM. It runs as user www-data and has very limited permissions.
16.4.1. Host based Access Control
It is possible to configure "apache2" like access control lists. Values are read from file /etc/default/pveproxy. See pveproxy documentation for details.
Chapter 17. Useful Command Line Tools
17.1. pvesubscription - Subscription Management
This tool is used to handle Proxmox VE subscriptions.
17.2. pveperf - Proxmox VE Benchmark Script
Tries to gather some CPU/hard disk performance data on the hard disk mounted at PATH (/ is used as default):
CPU BOGOMIPS
bogomips sum of all CPUs
REGEX/SECOND
regular expressions per second (perl performance test), should be above 300000
HD SIZE
hard disk size
BUFFERED READS
simple HD read test. Modern HDs should reach at least 40 MB/sec
AVERAGE SEEK TIME
tests average seek time. Fast SCSI HDs reach values < 8 milliseconds. Common IDE/SATA disks get values from 15 to 20 ms.
FSYNCS/SECOND
value should be greater than 200 (you should enable write back cache mode on you RAID controller - needs a battery backed cache (BBWC)).
DNS EXT
average time to resolve an external DNS name
DNS INT
average time to resolve a local DNS name
17.3. Shell interface for the Proxmox VE API
The Proxmox VE management tool (pvesh) allows to directly invoke API function, without using the REST/HTTPS server.
Note
Only root is allowed to do that.
17.3.1. EXAMPLES
Get the list of nodes in my cluster
pvesh get /nodes
Get a list of available options for the data center
pvesh usage cluster/options -v
Set the HTMl5 NoVNC console as the default console for the data center
pvesh set cluster/options -console html5
17.4. Proxmox Node Management
The Proxmox VE node management tool (pvenode) allows to control node specific settings and resources.
Currently pvenode allows to set a node’s description and to manage the node’s SSL certificates used for the API and the web GUI through pveproxy.
17.4.1. EXAMPLES
pvenode cert set certificate.crt certificate.key -force
Install an externally provided certificate. Both files need to be PEM encoded. certificate.key contains the private key and certificate.crt contains the whole certificate chain.
pvenode acme account register default mail@example.invalid
pvenode config set --acme domains=example.invalid
pvenode acme cert order
systemctl restart pveproxy
Setup ACME account and order a certificate for local node.
17.4.2. Wake-on-LAN
Wake-on-LAN (WoL) allows to switch on a sleeping computer in the network by sending a magic packet. At least one NIC must support this feature and the respective option needs to be enabled in the computers firmware (BIOS/UEFI) configuration. The option name can vary from Enable Wake-on-Lan to Power On By PCIE Device, check your motherboards vendor manual, if unsure. ethtool can be used to check the WoL configuration of <interface> by running:
ethtool <interface> | grep Wake-on
pvenode allows to wake sleeping members of a cluster via WoL using the command:
pvenode wakeonlan <node>
This broadcasts the WoL magic packet on UDP port 9, containing the MAC address of <node> obtained from the wakeonlan property. The node specific wakeonlan property can be set by the following command:
pvenode config set -wakeonlan XX:XX:XX:XX:XX:XX
Chapter 18. Frequently Asked Questions
Note
New FAQs are appended to the bottom of this section.
18.1. | What distribution is Proxmox VE based on? | |||||||||||||||||||||||||||||||||||
Proxmox VE is based on Debian GNU/Linux | ||||||||||||||||||||||||||||||||||||
18.2. | What license does the Proxmox VE project use? | |||||||||||||||||||||||||||||||||||
Proxmox VE code is licensed under the GNU Affero General Public License, version 3. | ||||||||||||||||||||||||||||||||||||
18.3. | Will Proxmox VE run on a 32bit processor? | |||||||||||||||||||||||||||||||||||
Proxmox VE works only on 64-bit CPUs (AMD or Intel). There is no plan for 32-bit for the platform. Note VMs and Containers can be both 32-bit and/or 64-bit. | ||||||||||||||||||||||||||||||||||||
18.4. | Does my CPU support virtualization? | |||||||||||||||||||||||||||||||||||
To check if your CPU is virtualization compatible, check for the vmx or svm tag in this command output: egrep '(vmx|svm)' /proc/cpuinfo | ||||||||||||||||||||||||||||||||||||
18.5. | Supported Intel CPUs | |||||||||||||||||||||||||||||||||||
64-bit processors with Intel Virtualization Technology (Intel VT-x) support. (List of processors with Intel VT and 64-bit) | ||||||||||||||||||||||||||||||||||||
18.6. | Supported AMD CPUs | |||||||||||||||||||||||||||||||||||
64-bit processors with AMD Virtualization Technology (AMD-V) support. | ||||||||||||||||||||||||||||||||||||
18.7. | What is a container, CT, VE, Virtual Private Server, VPS? | |||||||||||||||||||||||||||||||||||
Operating-system-level virtualization is a server-virtualization method where the kernel of an operating system allows for multiple isolated user-space instances, instead of just one. We call such instances containers. As containers use the host’s kernel they are limited to Linux guests. | ||||||||||||||||||||||||||||||||||||
18.8. | What is a QEMU/KVM guest (or VM)? | |||||||||||||||||||||||||||||||||||
A QEMU/KVM guest (or VM) is a guest system running virtualized under Proxmox VE using QEMU and the Linux KVM kernel module. | ||||||||||||||||||||||||||||||||||||
18.9. | What is QEMU? | |||||||||||||||||||||||||||||||||||
QEMU is a generic and open source machine emulator and virtualizer. QEMU uses the Linux KVM kernel module to achieve near native performance by executing the guest code directly on the host CPU. It is not limited to Linux guests but allows arbitrary operating systems to run. | ||||||||||||||||||||||||||||||||||||
18.10. | How long will my Proxmox VE version be supported? | |||||||||||||||||||||||||||||||||||
Proxmox VE versions are supported at least as long as the corresponding Debian Version is oldstable. Proxmox VE uses a rolling release model and using the latest stable version is always recommended.
| ||||||||||||||||||||||||||||||||||||
18.11. | How can I upgrade Proxmox VE to the next release? | |||||||||||||||||||||||||||||||||||
Minor version upgrades, for example upgrading from Proxmox VE in version 5.1 to 5.2, can be done just like any normal update, either through the Web GUI Node → Updates panel or through the CLI with: apt update Note Always ensure you correctly setup the package repositories Section 3.1, “Package Repositories” and only continue with the actual upgrade if apt update did not hit any error. Major version upgrades, for example going from Proxmox VE 4.4 to 5.0, are also supported. They must be carefully planned and tested and should never be started without having a current backup ready. Although the specific upgrade steps depend on your respective setup, we provide general instructions and advice of how a upgrade should be performed: | ||||||||||||||||||||||||||||||||||||
18.12. | LXC vs LXD vs Proxmox Containers vs Docker | |||||||||||||||||||||||||||||||||||
LXC is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage system containers. LXC, as well as the former OpenVZ, aims at system virtualization, i.e. allows you to run a complete OS inside a container, where you log in as ssh, add users, run apache, etc… LXD is building on top of LXC to provide a new, better user experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and manage the containers. It’s basically an alternative to LXC’s tools and distribution template system with the added features that come from being controllable over the network. Proxmox Containers also aims at system virtualization, and thus uses LXC as the basis of its own container offer. The Proxmox Container Toolkit is called pct, and is tightly coupled with Proxmox VE. That means that it is aware of the cluster setup, and it can use the same network and storage resources as fully virtualized VMs. You can even use the Proxmox VE firewall, create and restore backups, or manage containers using the HA framework. Everything can be controlled over the network using the Proxmox VE API. Docker aims at running a single application running in a contained environment. Hence you’re managing a docker instance from the host with the docker toolkit. It is not recommended to run docker directly on your Proxmox VE host. Note You can however perfectly install and use docker inside a Proxmox Qemu VM, and thus getting the benefit of software containerization with the very strong isolation that VMs provide. |
Bibliography
Books about Proxmox VE
[Ahmed16] Wasim Ahmed. Mastering Proxmox - Third Edition. Packt Publishing, 2017. ISBN 978-1788397605
[Ahmed15] Wasim Ahmed. Proxmox Cookbook. Packt Publishing, 2015. ISBN 978-1783980901
[Cheng14] Simon M.C. Cheng. Proxmox High Availability. Packt Publishing, 2014. ISBN 978-1783980888
[Goldman16] Rik Goldman. Learning Proxmox VE. Packt Publishing, 2016. ISBN 978-1783981786
[Surber16]] Lee R. Surber. Virtualization Complete: Business Basic Edition. Linux Solutions (LRS-TEK), 2016. ASIN B01BBVQZT6
Books about related technology
[Hertzog13] Raphaël Hertzog & Roland Mas. The Debian Administrator's Handbook: Debian Jessie from Discovery to Mastery, Freexian, 2013. ISBN 979-1091414050
[Bir96] Kenneth P. Birman. Building Secure and Reliable Network Applications. Manning Publications Co, 1996. ISBN 978-1884777295
[Walsh10] Norman Walsh. DocBook 5: The Definitive Guide. O’Reilly & Associates, 2010. ISBN 978-0596805029
[Richardson07] Leonard Richardson & Sam Ruby. RESTful Web Services. O’Reilly Media, 2007. ISBN 978-0596529260
[Singh15] Karan Singh. Learning Ceph. Packt Publishing, 2015. ISBN 978-1783985623
[Singh16] Karan Signh. Ceph Cookbook Packt Publishing, 2016. ISBN 978-1784393502
[Mauerer08] Wolfgang Mauerer. Professional Linux Kernel Architecture. John Wiley & Sons, 2008. ISBN 978-0470343432
[Loshin03] Pete Loshin, IPv6: Theory, Protocol, and Practice, 2nd Edition. Morgan Kaufmann, 2003. ISBN 978-1558608108
[Loeliger12] Jon Loeliger & Matthew McCullough. Version Control with Git: Powerful tools and techniques for collaborative software development. O’Reilly and Associates, 2012. ISBN 978-1449316389
[Kreibich10] Jay A. Kreibich. Using SQLite, O’Reilly and Associates, 2010. ISBN 978-0596521189
Books about related topics
[Bessen09] James Bessen & Michael J. Meurer, Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk. Princeton Univ Press, 2009. ISBN 978-0691143217
Appendix A. Command Line Interface
A.1. Output format options [FORMAT_OPTIONS]
It is possible to specify the output format using the --outout-format parameter. The default format text uses ASCII-art to draw nice borders around tables. It additionally transforms some values into human-readable text, for example:
You can also completely suppress output using option --quiet.
--human-readable <boolean> (default = 1)
Call output rendering functions to produce human readable text.
--noborder <boolean> (default = 0)
Do not draw borders (for text format).
--noheader <boolean> (default = 0)
Do not show column headers (for text format).
--output-format <json | json-pretty | text | yaml> (default = text)
Output format.
--quiet <boolean>
Suppress printing results.
A.2. pvesm - Proxmox VE Storage Manager
pvesm <COMMAND> [ARGS] [OPTIONS]
pvesm add <type> <storage> [OPTIONS]
Create a new storage.
<type>: <cephfs | cifs | dir | drbd | glusterfs | iscsi | iscsidirect | lvm | lvmthin | nfs | rbd | zfs | zfspool>
Storage type.
<storage>: <string>
The storage identifier.
--authsupported <string>
Authsupported.
--base <string>
Base volume. This volume is automatically activated.
--blocksize <string>
block size
--bwlimit [clone=<LIMIT>] [,default=<LIMIT>] [,migration=<LIMIT>] [,move=<LIMIT>] [,restore=<LIMIT>]
Set bandwidth/io limits various operations.
--comstar_hg <string>
host group for comstar views
--comstar_tg <string>
target group for comstar views
--content <string>
Allowed content types.
Note
the value rootdir is used for Containers, and value images for VMs.
--disable <boolean>
Flag to disable the storage.
--domain <string>
CIFS domain.
--export <string>
NFS export path.
--format <string>
Default image format.
--fuse <boolean>
Mount CephFS through FUSE.
--is_mountpoint <string> (default = no)
Assume the given path is an externally managed mountpoint and consider the storage offline if it is not mounted. Using a boolean (yes/no) value serves as a shortcut to using the target path in this field.
--iscsiprovider <string>
iscsi provider
--krbd <boolean>
Always access rbd through krbd kernel module.
--lio_tpg <string>
target portal group for Linux LIO targets
--maxfiles <integer> (0 - N)
Maximal number of backup files per VM. Use 0 for unlimted.
--mkdir <boolean> (default = yes)
Create the directory if it doesn’t exist.
--monhost <string>
IP addresses of monitors (for external clusters).
--nodes <string>
List of cluster node names.
--nowritecache <boolean>
disable write caching on the target
--options <string>
NFS mount options (see man nfs)
--password <password>
Password for CIFS share.
--path <string>
File system path.
--pool <string>
Pool.
--portal <string>
iSCSI portal (IP or DNS name with optional port).
--redundancy <integer> (1 - 16) (default = 2)
The redundancy count specifies the number of nodes to which the resource should be deployed. It must be at least 1 and at most the number of nodes in the cluster.
--saferemove <boolean>
Zero-out data when removing LVs.
--saferemove_throughput <string>
Wipe throughput (cstream -t parameter value).
--server <string>
Server IP or DNS name.
--server2 <string>
Backup volfile server IP or DNS name.
Note
Requires option(s): server
--share <string>
CIFS share.
--shared <boolean>
Mark storage as shared.
--smbversion <2.0 | 2.1 | 3.0>
SMB protocol version
--sparse <boolean>
use sparse volumes
--subdir <string>
Subdir to mount.
--tagged_only <boolean>
Only use logical volumes tagged with pve-vm-ID.
--target <string>
iSCSI target.
--thinpool <string>
LVM thin pool LV name.
--transport <rdma | tcp | unix>
Gluster transport: tcp or rdma
--username <string>
RBD Id.
--vgname <string>
Volume group name.
--volume <string>
Glusterfs Volume.
pvesm alloc <storage> <vmid> <filename> <size> [OPTIONS]
Allocate disk images.
<storage>: <string>
The storage identifier.
<vmid>: <integer> (1 - N)
Specify owner VM
<filename>: <string>
The name of the file to create.
<size>: \d+[MG]?
Size in kilobyte (1024 bytes). Optional suffixes M (megabyte, 1024K) and G (gigabyte, 1024M)
--format <qcow2 | raw | subvol>
no description available
Note
Requires option(s): size
pvesm cifsscan
An alias for pvesm scan cifs.
pvesm export <volume> <format> <filename> [OPTIONS]
Export a volume.
<volume>: <string>
Volume identifier
<format>: <qcow2+size | raw+size | tar+size | vmdk+size | zfs>
Export stream format
<filename>: <string>
Destination file name
--base (?^:[a-z0-9_\-]{1,40})
Snapshot to start an incremental stream from
--snapshot (?^:[a-z0-9_\-]{1,40})
Snapshot to export
--with-snapshots <boolean> (default = 0)
Whether to include intermediate snapshots in the stream
pvesm extractconfig <volume>
Extract configuration from vzdump backup archive.
<volume>: <string>
Volume identifier
pvesm free <volume> [OPTIONS]
Delete volume
<volume>: <string>
Volume identifier
--storage <string>
The storage identifier.
pvesm glusterfsscan
An alias for pvesm scan glusterfs.
pvesm help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvesm import <volume> <format> <filename> [OPTIONS]
Import a volume.
<volume>: <string>
Volume identifier
<format>: <qcow2+size | raw+size | tar+size | vmdk+size | zfs>
Import stream format
<filename>: <string>
Source file name. For - stdin is used, the tcp://<IP-or-CIDR> format allows to use a TCP connection as input. Else, the file is treated as common file.
--base (?^:[a-z0-9_\-]{1,40})
Base snapshot of an incremental stream
--delete-snapshot (?^:[a-z0-9_\-]{1,80})
A snapshot to delete on success
--with-snapshots <boolean> (default = 0)
Whether the stream includes intermediate snapshots
pvesm iscsiscan
An alias for pvesm scan iscsi.
pvesm list <storage> [OPTIONS]
List storage content.
<storage>: <string>
The storage identifier.
--content <string>
Only list content of this type.
--vmid <integer> (1 - N)
Only list images for this VM
pvesm lvmscan
An alias for pvesm scan lvm.
pvesm lvmthinscan
An alias for pvesm scan lvmthin.
pvesm nfsscan
An alias for pvesm scan nfs.
pvesm path <volume>
Get filesystem path for specified volume
<volume>: <string>
Volume identifier
pvesm remove <storage>
Delete storage configuration.
<storage>: <string>
The storage identifier.
pvesm scan cifs <server> [OPTIONS]
Scan remote CIFS server.
<server>: <string>
The server address (name or IP).
--domain <string>
SMB domain (Workgroup).
--password <password>
User password.
--username <string>
User name.
pvesm scan glusterfs <server>
Scan remote GlusterFS server.
<server>: <string>
The server address (name or IP).
pvesm scan iscsi <portal>
Scan remote iSCSI server.
<portal>: <string>
The iSCSI portal (IP or DNS name with optional port).
pvesm scan lvm
List local LVM volume groups.
pvesm scan lvmthin <vg>
List local LVM Thin Pools.
<vg>: [a-zA-Z0-9\.\+_][a-zA-Z0-9\.\+_\-]+
no description available
pvesm scan nfs <server>
Scan remote NFS server.
<server>: <string>
The server address (name or IP).
pvesm scan zfs
Scan zfs pool list on local node.
pvesm set <storage> [OPTIONS]
Update storage configuration.
<storage>: <string>
The storage identifier.
--blocksize <string>
block size
--bwlimit [clone=<LIMIT>] [,default=<LIMIT>] [,migration=<LIMIT>] [,move=<LIMIT>] [,restore=<LIMIT>]
Set bandwidth/io limits various operations.
--comstar_hg <string>
host group for comstar views
--comstar_tg <string>
target group for comstar views
--content <string>
Allowed content types.
Note
the value rootdir is used for Containers, and value images for VMs.
--delete <string>
A list of settings you want to delete.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--disable <boolean>
Flag to disable the storage.
--domain <string>
CIFS domain.
--format <string>
Default image format.
--fuse <boolean>
Mount CephFS through FUSE.
--is_mountpoint <string> (default = no)
Assume the given path is an externally managed mountpoint and consider the storage offline if it is not mounted. Using a boolean (yes/no) value serves as a shortcut to using the target path in this field.
--krbd <boolean>
Always access rbd through krbd kernel module.
--lio_tpg <string>
target portal group for Linux LIO targets
--maxfiles <integer> (0 - N)
Maximal number of backup files per VM. Use 0 for unlimted.
--mkdir <boolean> (default = yes)
Create the directory if it doesn’t exist.
--monhost <string>
IP addresses of monitors (for external clusters).
--nodes <string>
List of cluster node names.
--nowritecache <boolean>
disable write caching on the target
--options <string>
NFS mount options (see man nfs)
--password <string>
Password for CIFS share.
--pool <string>
Pool.
--redundancy <integer> (1 - 16) (default = 2)
The redundancy count specifies the number of nodes to which the resource should be deployed. It must be at least 1 and at most the number of nodes in the cluster.
--saferemove <boolean>
Zero-out data when removing LVs.
--saferemove_throughput <string>
Wipe throughput (cstream -t parameter value).
--server <string>
Server IP or DNS name.
--server2 <string>
Backup volfile server IP or DNS name.
Note
Requires option(s): server
--shared <boolean>
Mark storage as shared.
--smbversion <2.0 | 2.1 | 3.0>
SMB protocol version
--sparse <boolean>
use sparse volumes
--subdir <string>
Subdir to mount.
--tagged_only <boolean>
Only use logical volumes tagged with pve-vm-ID.
--transport <rdma | tcp | unix>
Gluster transport: tcp or rdma
--username <string>
RBD Id.
pvesm status [OPTIONS]
Get status for all datastores.
--content <string>
Only list stores which support this content type.
--enabled <boolean> (default = 0)
Only list stores which are enabled (not disabled in config).
--format <boolean> (default = 0)
Include information about formats
--storage <string>
Only list status for specified storage
--target <string>
If target is different to node, we only lists shared storages which content is accessible on this node and the specified target node.
pvesm zfsscan
An alias for pvesm scan zfs.
A.3. pvesubscription - Proxmox VE Subscription Manager
pvesubscription <COMMAND> [ARGS] [OPTIONS]
pvesubscription get
Read subscription info.
pvesubscription help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvesubscription set <key>
Set subscription key.
<key>: pve([1248])([cbsp])-[0-9a-f]{10}
Proxmox VE subscription key
pvesubscription update [OPTIONS]
Update subscription info.
--force <boolean> (default = 0)
Always connect to server, even if we have up to date info inside local cache.
A.4. pveperf - Proxmox VE Benchmark Script
pveperf [PATH]
A.5. pveceph - Manage CEPH Services on Proxmox VE Nodes
pveceph <COMMAND> [ARGS] [OPTIONS]
pveceph createmgr
An alias for pveceph mgr create.
pveceph createmon
An alias for pveceph mon create.
pveceph createosd
An alias for pveceph osd create.
pveceph createpool
An alias for pveceph pool create.
pveceph destroymgr
An alias for pveceph mgr destroy.
pveceph destroymon
An alias for pveceph mon destroy.
pveceph destroyosd
An alias for pveceph osd destroy.
pveceph destroypool
An alias for pveceph pool destroy.
pveceph fs create [OPTIONS]
Create a Ceph filesystem
--add-storage <boolean> (default = 0)
Configure the created CephFS as storage for this cluster.
--name <string> (default = cephfs)
The ceph filesystem name.
--pg_num <integer> (8 - 32768) (default = 128)
Number of placement groups for the backing data pool. The metadata pool will use a quarter of this.
pveceph help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pveceph init [OPTIONS]
Create initial ceph default configuration and setup symlinks.
--cluster-network <string>
Declare a separate cluster network, OSDs will routeheartbeat, object replication and recovery traffic over it
Note
Requires option(s): network
--disable_cephx <boolean> (default = 0)
Disable cephx authentication.
Warning
cephx is a security feature protecting against man-in-the-middle attacks. Only consider disabling cephx if your network is private!
--min_size <integer> (1 - 7) (default = 2)
Minimum number of available replicas per object to allow I/O
--network <string>
Use specific network for all ceph related traffic
--pg_bits <integer> (6 - 14) (default = 6)
Placement group bits, used to specify the default number of placement groups.
Note
osd pool default pg num does not work for default pools.
--size <integer> (1 - 7) (default = 3)
Targeted number of replicas per object
pveceph install [OPTIONS]
Install ceph related packages.
--version <luminous | nautilus> (default = nautilus)
Ceph version to install.
pveceph lspools
An alias for pveceph pool ls.
pveceph mds create [OPTIONS]
Create Ceph Metadata Server (MDS)
--hotstandby <boolean> (default = 0)
Determines whether a ceph-mds daemon should poll and replay the log of an active MDS. Faster switch on MDS failure, but needs more idle resources.
--name [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])? (default = nodename)
The ID for the mds, when omitted the same as the nodename
pveceph mds destroy <name>
Destroy Ceph Metadata Server
<name>: [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?
The name (ID) of the mds
pveceph mgr create [OPTIONS]
Create Ceph Manager
--id [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?
The ID for the manager, when omitted the same as the nodename
pveceph mgr destroy <id>
Destroy Ceph Manager.
<id>: [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?
The ID of the manager
pveceph mon create [OPTIONS]
Create Ceph Monitor and Manager
--mon-address <string>
Overwrites autodetected monitor IP address. Must be in the public network of ceph.
--monid [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?
The ID for the monitor, when omitted the same as the nodename
pveceph mon destroy <monid>
Destroy Ceph Monitor and Manager.
<monid>: [a-zA-Z0-9]([a-zA-Z0-9\-]*[a-zA-Z0-9])?
Monitor ID
pveceph osd create <dev> [OPTIONS]
Create OSD
<dev>: <string>
Block device name.
--db_dev <string>
Block device name for block.db.
--db_size <number> (1 - N) (default = bluestore_block_db_size or 10% of OSD size)
Size in GiB for block.db.
Note
Requires option(s): db_dev
--encrypted <boolean> (default = 0)
Enables encryption of the OSD.
--wal_dev <string>
Block device name for block.wal.
--wal_size <number> (0.5 - N) (default = bluestore_block_wal_size or 1% of OSD size)
Size in GiB for block.wal.
Note
Requires option(s): wal_dev
pveceph osd destroy <osdid> [OPTIONS]
Destroy OSD
<osdid>: <integer>
OSD ID
--cleanup <boolean> (default = 0)
If set, we remove partition table entries.
pveceph pool create <name> [OPTIONS]
Create POOL
<name>: <string>
The name of the pool. It must be unique.
--add_storages <boolean>
Configure VM and CT storage using the new pool.
--application <cephfs | rbd | rgw>
The application of the pool, rbd by default.
--crush_rule <string>
The rule to use for mapping object placement in the cluster.
--min_size <integer> (1 - 7) (default = 2)
Minimum number of replicas per object
--pg_num <integer> (8 - 32768) (default = 128)
Number of placement groups.
--size <integer> (1 - 7) (default = 3)
Number of replicas per object
pveceph pool destroy <name> [OPTIONS]
Destroy pool
<name>: <string>
The name of the pool. It must be unique.
--force <boolean> (default = 0)
If true, destroys pool even if in use
--remove_storages <boolean> (default = 0)
Remove all pveceph-managed storages configured for this pool
pveceph pool ls
List all pools.
pveceph purge
Destroy ceph related data and configuration files.
pveceph start [<service>]
Start ceph services.
<service>: (ceph|mon|mds|osd|mgr)\.[A-Za-z0-9\-]{1,32} (default = ceph.target)
Ceph service name.
pveceph status
Get ceph status.
pveceph stop [<service>]
Stop ceph services.
<service>: (ceph|mon|mds|osd|mgr)\.[A-Za-z0-9\-]{1,32} (default = ceph.target)
Ceph service name.
A.6. pvenode - Proxmox VE Node Management
pvenode <COMMAND> [ARGS] [OPTIONS]
pvenode acme account deactivate [<name>]
Deactivate existing ACME account at CA.
<name>: <name> (default = default)
ACME account config file name.
pvenode acme account info [<name>] [FORMAT_OPTIONS]
Return existing ACME account information.
<name>: <name> (default = default)
ACME account config file name.
pvenode acme account list
ACMEAccount index.
pvenode acme account register [<name>] {<contact>} [OPTIONS]
Register a new ACME account with a compatible CA.
<name>: <name> (default = default)
ACME account config file name.
<contact>: <string>
Contact email addresses.
--directory ^https?://.*
URL of ACME CA directory endpoint.
pvenode acme account update [<name>] [OPTIONS]
Update existing ACME account information with CA. Note: not specifying any new account information triggers a refresh.
<name>: <name> (default = default)
ACME account config file name.
--contact <string>
Contact email addresses.
pvenode acme cert order [OPTIONS]
Order a new certificate from ACME-compatible CA.
--force <boolean> (default = 0)
Overwrite existing custom certificate.
pvenode acme cert renew [OPTIONS]
Renew existing certificate from CA.
--force <boolean> (default = 0)
Force renewal even if expiry is more than 30 days away.
pvenode acme cert revoke
Revoke existing certificate from CA.
pvenode cert delete [<restart>]
DELETE custom certificate chain and key.
<restart>: <boolean> (default = 0)
Restart pveproxy.
pvenode cert info [FORMAT_OPTIONS]
Get information about node’s certificates.
pvenode cert set <certificates> [<key>] [OPTIONS] [FORMAT_OPTIONS]
Upload or update custom certificate chain and key.
<certificates>: <string>
PEM encoded certificate (chain).
<key>: <string>
PEM encoded private key.
--force <boolean> (default = 0)
Overwrite existing custom or ACME certificate files.
--restart <boolean> (default = 0)
Restart pveproxy.
pvenode config get
Get node configuration options.
pvenode config set [OPTIONS]
Set node configuration options.
--acme domains=<domain[;domain;...]> [,account=<name>]
Node specific ACME settings.
--delete <string>
A list of settings you want to delete.
--description <string>
Node description/comment.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--wakeonlan <string>
MAC address for wake on LAN
pvenode help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvenode migrateall <target> [OPTIONS]
Migrate all VMs and Containers.
<target>: <string>
Target node.
--maxworkers <integer> (1 - N)
Maximal number of parallel migration job. If not set use max_workers from datacenter.cfg, one of both must be set!
--vms <string>
Only consider Guests with these IDs.
pvenode startall [OPTIONS]
Start all VMs and containers (when onboot=1).
--force <boolean>
force if onboot=0.
--vms <string>
Only consider Guests with these IDs.
pvenode stopall [OPTIONS]
Stop all VMs and Containers.
--vms <string>
Only consider Guests with these IDs.
pvenode task list [OPTIONS] [FORMAT_OPTIONS]
Read task list for one node (finished tasks).
--errors <boolean> (default = 0)
no description available
--limit <integer> (0 - N) (default = 50)
Only list this amount of tasks.
--source <active | all | archive> (default = archive)
List archived, active or all tasks.
--start <integer> (0 - N) (default = 0)
List tasks beginning from this offset.
--typefilter <string>
Only list tasks of this type (e.g., vzstart, vzdump).
--userfilter <string>
Only list tasks from this user.
--vmid <integer> (1 - N)
Only list tasks for this VM.
pvenode task log <upid> [OPTIONS]
Read task log.
<upid>: <string>
no description available
--start <integer> (0 - N) (default = 0)
no description available
pvenode task status <upid> [FORMAT_OPTIONS]
Read task status.
<upid>: <string>
no description available
pvenode wakeonlan <node>
Try to wake a node via wake on LAN network packet.
<node>: <string>
target node for wake on LAN packet
A.7. pvesh - Shell interface for the Proxmox VE API
pvesh <COMMAND> [ARGS] [OPTIONS]
pvesh create <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API POST on <api_path>.
<api_path>: <string>
API path.
--noproxy <boolean>
Disable automatic proxying.
pvesh delete <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API DELETE on <api_path>.
<api_path>: <string>
API path.
--noproxy <boolean>
Disable automatic proxying.
pvesh get <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API GET on <api_path>.
<api_path>: <string>
API path.
--noproxy <boolean>
Disable automatic proxying.
pvesh help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvesh ls <api_path> [OPTIONS] [FORMAT_OPTIONS]
List child objects on <api_path>.
<api_path>: <string>
API path.
--noproxy <boolean>
Disable automatic proxying.
pvesh set <api_path> [OPTIONS] [FORMAT_OPTIONS]
Call API PUT on <api_path>.
<api_path>: <string>
API path.
--noproxy <boolean>
Disable automatic proxying.
pvesh usage <api_path> [OPTIONS]
print API usage information for <api_path>.
<api_path>: <string>
API path.
--command <create | delete | get | set>
API command.
--returns <boolean>
Including schema for returned data.
--verbose <boolean>
Verbose output format.
A.8. qm - Qemu/KVM Virtual Machine Manager
qm <COMMAND> [ARGS] [OPTIONS]
qm agent
An alias for qm guest cmd.
qm cleanup <vmid> <clean-shutdown> <guest-requested>
Cleans up resources like tap devices, vgpus, etc. Called after a vm shuts down, crashes, etc.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<clean-shutdown>: <boolean>
Indicates if qemu shutdown cleanly.
<guest-requested>: <boolean>
Indicates if the shutdown was requested by the guest or via qmp.
qm clone <vmid> <newid> [OPTIONS]
Create a copy of virtual machine/template.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<newid>: <integer> (1 - N)
VMID for the clone.
--bwlimit <integer> (0 - N) (default = clone limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--description <string>
Description for the new VM.
--format <qcow2 | raw | vmdk>
Target format for file storage. Only valid for full clone.
--full <boolean>
Create a full copy of all disks. This is always done when you clone a normal VM. For VM templates, we try to create a linked clone by default.
--name <string>
Set a name for the new VM.
--pool <string>
Add the new VM to the specified pool.
--snapname <string>
The name of the snapshot.
--storage <string>
Target storage for full clone.
--target <string>
Target node. Only allowed if the original VM is on shared storage.
qm cloudinit dump <vmid> <type>
Get automatically generated cloudinit config.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<type>: <meta | network | user>
Config type.
qm config <vmid> [OPTIONS]
Get current virtual machine configuration. This does not include pending configuration changes (see pending API).
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--current <boolean> (default = 0)
Get current values (instead of pending values).
--snapshot <string>
Fetch config values from given snapshot.
qm create <vmid> [OPTIONS]
Create or restore a virtual machine.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--acpi <boolean> (default = 1)
Enable/disable ACPI.
--agent [enabled=]<1|0> [,fstrim_cloned_disks=<1|0>]
Enable/disable Qemu GuestAgent and its properties.
--arch <aarch64 | x86_64>
Virtual processor architecture. Defaults to the host.
--archive <string>
The backup file.
--args <string>
Arbitrary arguments passed to kvm.
--autostart <boolean> (default = 0)
Automatic restart after crash (currently ignored).
--balloon <integer> (0 - N)
Amount of target RAM for the VM in MB. Using zero disables the ballon driver.
--bios <ovmf | seabios> (default = seabios)
Select BIOS implementation.
--boot [acdn]{1,4} (default = cdn)
Boot on floppy (a), hard disk (c), CD-ROM (d), or network (n).
--bootdisk (ide|sata|scsi|virtio)\d+
Enable booting from specified disk.
--bwlimit <integer> (0 - N) (default = restore limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--cdrom <volume>
This is an alias for option -ide2
--cicustom [meta=<volume>] [,network=<volume>] [,user=<volume>]
cloud-init: Specify custom files to replace the automatically generated ones at start.
--cipassword <password>
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.
--citype <configdrive2 | nocloud>
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.
--ciuser <string>
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.
--cores <integer> (1 - N) (default = 1)
The number of cores per socket.
--cpu [cputype=]<enum> [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>]
Emulated CPU type.
--cpulimit <number> (0 - 128) (default = 0)
Limit of CPU usage.
--cpuunits <integer> (2 - 262144) (default = 1024)
CPU weight for a VM.
--description <string>
Description for the VM. Only used on the configuration web interface. This is saved as comment inside the configuration file.
--efidisk0 [file=]<volume> [,format=<enum>] [,size=<DiskSize>]
Configure a Disk for storing EFI vars
--force <boolean>
Allow to overwrite existing VM.
Note
Requires option(s): archive
--freeze <boolean>
Freeze CPU at startup (use c monitor command to start execution).
--hookscript <string>
Script that will be executed during various steps in the vms lifetime.
--hostpci[n] [host=]<HOSTPCIID[;HOSTPCIID2...]> [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,x-vga=<1|0>]
Map host PCI devices into guest.
--hotplug <string> (default = network,disk,usb)
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory and usb. Use 0 to disable hotplug completely. Value 1 is an alias for the default network,disk,usb.
--hugepages <1024 | 2 | any>
Enable/disable hugepages memory.
--ide[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as IDE hard disk or CD-ROM (n is 0 to 3).
--ipconfig[n] [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]
cloud-init: Specify IP addresses and gateways for the corresponding interface.
IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit gateway should be provided. For IPv6 the special string auto can be used to use stateless autoconfiguration.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using dhcp on IPv4.
--ivshmem size=<integer> [,name=<string>]
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.
--keyboard <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>
Keybord layout for vnc server. Default is read from the /etc/pve/datacenter.cfg configuration file.It should not be necessary to set it.
--kvm <boolean> (default = 1)
Enable/disable KVM hardware virtualization.
--localtime <boolean>
Set the real time clock to local time. This is enabled by default if ostype indicates a Microsoft OS.
--lock <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>
Lock/unlock the VM.
--machine (pc|pc(-i440fx)?-\d+\.\d+(\.pxe)?|q35|pc-q35-\d+\.\d+(\.pxe)?|virt(?:-\d+\.\d+)?)
Specifies the Qemu machine type.
--memory <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB. This is the maximum available memory when you use the balloon device.
--migrate_downtime <number> (0 - N) (default = 0.1)
Set maximum tolerated downtime (in seconds) for migrations.
--migrate_speed <integer> (0 - N) (default = 0)
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.
--name <string>
Set a name for the VM. Only used on the configuration web interface.
--nameserver <string>
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
--net[n] [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]
Specify network devices.
--numa <boolean> (default = 0)
Enable/disable NUMA.
--numa[n] cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]
NUMA topology.
--onboot <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
--ostype <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win7 | win8 | wvista | wxp>
Specify guest operating system.
--parallel[n] /dev/parport\d+|/dev/usb/lp\d+
Map host parallel devices (n is 0 to 2).
--pool <string>
Add the VM to the specified pool.
--protection <boolean> (default = 0)
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.
--reboot <boolean> (default = 1)
Allow reboot. If set to 0 the VM exit on reboot.
--sata[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as SATA hard disk or CD-ROM (n is 0 to 5).
--scsi[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as SCSI hard disk or CD-ROM (n is 0 to 13).
--scsihw <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)
SCSI controller model
--searchdomain <string>
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
--serial[n] (/dev/.+|socket)
Create a serial device inside the VM (n is 0 to 3)
--shares <integer> (0 - 50000) (default = 1000)
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.
--smbios1 [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]
Specify SMBIOS type 1 fields.
--smp <integer> (1 - N) (default = 1)
The number of CPUs. Please use option -sockets instead.
--sockets <integer> (1 - N) (default = 1)
The number of CPU sockets.
--sshkeys <filepath>
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).
--start <boolean> (default = 0)
Start VM after it was created successfully.
--startdate (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)
Set the initial date of the real time clock. Valid format for date are: now or 2006-06-17T16:01:21 or 2006-06-17.
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
--storage <string>
Default storage.
--tablet <boolean> (default = 1)
Enable/disable the USB tablet device.
--tdf <boolean> (default = 0)
Enable/disable time drift fix.
--template <boolean> (default = 0)
Enable/disable Template.
--unique <boolean>
Assign a unique random ethernet address.
Note
Requires option(s): archive
--unused[n] <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
--usb[n] [host=]<HOSTUSBDEVICE|spice> [,usb3=<1|0>]
Configure an USB device (n is 0 to 4).
--vcpus <integer> (1 - N) (default = 0)
Number of hotplugged vcpus.
--vga [[type=]<enum>] [,memory=<integer>]
Configure the VGA hardware.
--virtio[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]
Use volume as VIRTIO hard disk (n is 0 to 15).
--vmgenid <UUID> (default = 1 (autogenerated))
Set VM Generation ID. Use 1 to autogenerate on create or update, pass 0 to disable explicitly.
--vmstatestorage <string>
Default storage for VM state volumes/files.
--watchdog [[model=]<i6300esb|ib700>] [,action=<enum>]
Create a virtual hardware watchdog device.
qm delsnapshot <vmid> <snapname> [OPTIONS]
Delete a VM snapshot.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<snapname>: <string>
The name of the snapshot.
--force <boolean>
For removal from config file, even if removing disk snapshots fails.
qm destroy <vmid> [OPTIONS]
Destroy the vm (also delete all used/owned volumes).
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
qm guest cmd <vmid> <command>
Execute Qemu Guest Agent commands.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<command>: <fsfreeze-freeze | fsfreeze-status | fsfreeze-thaw | fstrim | get-fsinfo | get-host-name | get-memory-block-info | get-memory-blocks | get-osinfo | get-time | get-timezone | get-users | get-vcpus | info | network-get-interfaces | ping | shutdown | suspend-disk | suspend-hybrid | suspend-ram>
The QGA command.
qm guest exec <vmid> [<extra-args>] [OPTIONS]
Executes the given command via the guest agent
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<extra-args>: <array>
Extra arguments as array
--synchronous <boolean> (default = 1)
If set to off, returns the pid immediately instead of waiting for the commmand to finish or the timeout.
--timeout <integer> (0 - N) (default = 30)
The maximum time to wait synchronously for the command to finish. If reached, the pid gets returned. Set to 0 to deactivate
qm guest exec-status <vmid> <pid>
Gets the status of the given pid started by the guest-agent
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<pid>: <integer>
The PID to query
qm guest passwd <vmid> <username> [OPTIONS]
Sets the password for the given user to the given password
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<username>: <string>
The user to set the password for.
--crypted <boolean> (default = 0)
set to 1 if the password has already been passed through crypt()
qm help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
qm importdisk <vmid> <source> <storage> [OPTIONS]
Import an external disk image as an unused disk in a VM. The image format has to be supported by qemu-img(1).
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<source>: <string>
Path to the disk image to import
<storage>: <string>
Target storage ID
--format <qcow2 | raw | vmdk>
Target format
qm importovf <vmid> <manifest> <storage> [OPTIONS]
Create a new VM using parameters read from an OVF manifest
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<manifest>: <string>
path to the ovf file
<storage>: <string>
Target storage ID
--dryrun <boolean>
Print a parsed representation of the extracted OVF parameters, but do not create a VM
--format <qcow2 | raw | vmdk>
Target format
qm list [OPTIONS]
Virtual machine index (per node).
--full <boolean>
Determine the full status of active VMs.
qm listsnapshot <vmid>
List all snapshots.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
qm migrate <vmid> <target> [OPTIONS]
Migrate virtual machine. Creates a new migration task.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<target>: <string>
Target node.
--bwlimit <integer> (0 - N) (default = migrate limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--force <boolean>
Allow to migrate VMs which use local devices. Only root may use this option.
--migration_network <string>
CIDR of the (sub) network that is used for migration.
--migration_type <insecure | secure>
Migration traffic is encrypted using an SSH tunnel by default. On secure, completely private networks this can be disabled to increase performance.
--online <boolean>
Use online/live migration.
--targetstorage <string>
Default target storage.
--with-local-disks <boolean>
Enable live storage migration for local disk
qm monitor <vmid>
Enter Qemu Monitor interface.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
qm move_disk <vmid> <disk> <storage> [OPTIONS]
Move volume to different storage.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<disk>: <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi2 | scsi3 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>
The disk you want to move.
<storage>: <string>
Target storage.
--bwlimit <integer> (0 - N) (default = move limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--delete <boolean> (default = 0)
Delete the original disk after successful copy. By default the original disk is kept as unused disk.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--format <qcow2 | raw | vmdk>
Target Format.
qm mtunnel
Used by qmigrate - do not use manually.
qm nbdstop <vmid>
Stop embedded nbd server.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
qm pending <vmid>
Get virtual machine configuration, including pending changes.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
qm rescan [OPTIONS]
Rescan all storages and update disk sizes and unused disk images.
--dryrun <boolean> (default = 0)
Do not actually write changes out to VM config(s).
--vmid <integer> (1 - N)
The (unique) ID of the VM.
qm reset <vmid> [OPTIONS]
Reset virtual machine.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
qm resize <vmid> <disk> <size> [OPTIONS]
Extend volume size.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<disk>: <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi2 | scsi3 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>
The disk you want to resize.
<size>: \+?\d+(\.\d+)?[KMGT]?
The new size. With the + sign the value is added to the actual size of the volume and without it, the value is taken as an absolute one. Shrinking disk size is not supported.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
qm resume <vmid> [OPTIONS]
Resume virtual machine.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--nocheck <boolean>
no description available
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
qm rollback <vmid> <snapname>
Rollback VM state to specified snapshot.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<snapname>: <string>
The name of the snapshot.
qm sendkey <vmid> <key> [OPTIONS]
Send key event to virtual machine.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<key>: <string>
The key (qemu monitor encoding).
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
qm set <vmid> [OPTIONS]
Set virtual machine options (synchrounous API) - You should consider using the POST method instead for any actions involving hotplug or storage allocation.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--acpi <boolean> (default = 1)
Enable/disable ACPI.
--agent [enabled=]<1|0> [,fstrim_cloned_disks=<1|0>]
Enable/disable Qemu GuestAgent and its properties.
--arch <aarch64 | x86_64>
Virtual processor architecture. Defaults to the host.
--args <string>
Arbitrary arguments passed to kvm.
--autostart <boolean> (default = 0)
Automatic restart after crash (currently ignored).
--balloon <integer> (0 - N)
Amount of target RAM for the VM in MB. Using zero disables the ballon driver.
--bios <ovmf | seabios> (default = seabios)
Select BIOS implementation.
--boot [acdn]{1,4} (default = cdn)
Boot on floppy (a), hard disk (c), CD-ROM (d), or network (n).
--bootdisk (ide|sata|scsi|virtio)\d+
Enable booting from specified disk.
--cdrom <volume>
This is an alias for option -ide2
--cicustom [meta=<volume>] [,network=<volume>] [,user=<volume>]
cloud-init: Specify custom files to replace the automatically generated ones at start.
--cipassword <password>
cloud-init: Password to assign the user. Using this is generally not recommended. Use ssh keys instead. Also note that older cloud-init versions do not support hashed passwords.
--citype <configdrive2 | nocloud>
Specifies the cloud-init configuration format. The default depends on the configured operating system type (ostype. We use the nocloud format for Linux, and configdrive2 for windows.
--ciuser <string>
cloud-init: User name to change ssh keys and password for instead of the image’s configured default user.
--cores <integer> (1 - N) (default = 1)
The number of cores per socket.
--cpu [cputype=]<enum> [,flags=<+FLAG[;-FLAG...]>] [,hidden=<1|0>] [,hv-vendor-id=<vendor-id>]
Emulated CPU type.
--cpulimit <number> (0 - 128) (default = 0)
Limit of CPU usage.
--cpuunits <integer> (2 - 262144) (default = 1024)
CPU weight for a VM.
--delete <string>
A list of settings you want to delete.
--description <string>
Description for the VM. Only used on the configuration web interface. This is saved as comment inside the configuration file.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--efidisk0 [file=]<volume> [,format=<enum>] [,size=<DiskSize>]
Configure a Disk for storing EFI vars
--force <boolean>
Force physical removal. Without this, we simple remove the disk from the config file and create an additional configuration entry called unused[n], which contains the volume ID. Unlink of unused[n] always cause physical removal.
Note
Requires option(s): delete
--freeze <boolean>
Freeze CPU at startup (use c monitor command to start execution).
--hookscript <string>
Script that will be executed during various steps in the vms lifetime.
--hostpci[n] [host=]<HOSTPCIID[;HOSTPCIID2...]> [,mdev=<string>] [,pcie=<1|0>] [,rombar=<1|0>] [,romfile=<string>] [,x-vga=<1|0>]
Map host PCI devices into guest.
--hotplug <string> (default = network,disk,usb)
Selectively enable hotplug features. This is a comma separated list of hotplug features: network, disk, cpu, memory and usb. Use 0 to disable hotplug completely. Value 1 is an alias for the default network,disk,usb.
--hugepages <1024 | 2 | any>
Enable/disable hugepages memory.
--ide[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,model=<model>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as IDE hard disk or CD-ROM (n is 0 to 3).
--ipconfig[n] [gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,ip=<IPv4Format/CIDR>] [,ip6=<IPv6Format/CIDR>]
cloud-init: Specify IP addresses and gateways for the corresponding interface.
IP addresses use CIDR notation, gateways are optional but need an IP of the same type specified.
The special string dhcp can be used for IP addresses to use DHCP, in which case no explicit gateway should be provided. For IPv6 the special string auto can be used to use stateless autoconfiguration.
If cloud-init is enabled and neither an IPv4 nor an IPv6 address is specified, it defaults to using dhcp on IPv4.
--ivshmem size=<integer> [,name=<string>]
Inter-VM shared memory. Useful for direct communication between VMs, or to the host.
--keyboard <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>
Keybord layout for vnc server. Default is read from the /etc/pve/datacenter.cfg configuration file.It should not be necessary to set it.
--kvm <boolean> (default = 1)
Enable/disable KVM hardware virtualization.
--localtime <boolean>
Set the real time clock to local time. This is enabled by default if ostype indicates a Microsoft OS.
--lock <backup | clone | create | migrate | rollback | snapshot | snapshot-delete | suspended | suspending>
Lock/unlock the VM.
--machine (pc|pc(-i440fx)?-\d+\.\d+(\.pxe)?|q35|pc-q35-\d+\.\d+(\.pxe)?|virt(?:-\d+\.\d+)?)
Specifies the Qemu machine type.
--memory <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB. This is the maximum available memory when you use the balloon device.
--migrate_downtime <number> (0 - N) (default = 0.1)
Set maximum tolerated downtime (in seconds) for migrations.
--migrate_speed <integer> (0 - N) (default = 0)
Set maximum speed (in MB/s) for migrations. Value 0 is no limit.
--name <string>
Set a name for the VM. Only used on the configuration web interface.
--nameserver <string>
cloud-init: Sets DNS server IP address for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
--net[n] [model=]<enum> [,bridge=<bridge>] [,firewall=<1|0>] [,link_down=<1|0>] [,macaddr=<XX:XX:XX:XX:XX:XX>] [,queues=<integer>] [,rate=<number>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,<model>=<macaddr>]
Specify network devices.
--numa <boolean> (default = 0)
Enable/disable NUMA.
--numa[n] cpus=<id[-id];...> [,hostnodes=<id[-id];...>] [,memory=<number>] [,policy=<preferred|bind|interleave>]
NUMA topology.
--onboot <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
--ostype <l24 | l26 | other | solaris | w2k | w2k3 | w2k8 | win10 | win7 | win8 | wvista | wxp>
Specify guest operating system.
--parallel[n] /dev/parport\d+|/dev/usb/lp\d+
Map host parallel devices (n is 0 to 2).
--protection <boolean> (default = 0)
Sets the protection flag of the VM. This will disable the remove VM and remove disk operations.
--reboot <boolean> (default = 1)
Allow reboot. If set to 0 the VM exit on reboot.
--revert <string>
Revert a pending change.
--sata[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as SATA hard disk or CD-ROM (n is 0 to 5).
--scsi[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,queues=<integer>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,scsiblock=<1|0>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,ssd=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>] [,wwn=<wwn>]
Use volume as SCSI hard disk or CD-ROM (n is 0 to 13).
--scsihw <lsi | lsi53c810 | megasas | pvscsi | virtio-scsi-pci | virtio-scsi-single> (default = lsi)
SCSI controller model
--searchdomain <string>
cloud-init: Sets DNS search domains for a container. Create will automatically use the setting from the host if neither searchdomain nor nameserver are set.
--serial[n] (/dev/.+|socket)
Create a serial device inside the VM (n is 0 to 3)
--shares <integer> (0 - 50000) (default = 1000)
Amount of memory shares for auto-ballooning. The larger the number is, the more memory this VM gets. Number is relative to weights of all other running VMs. Using zero disables auto-ballooning. Auto-ballooning is done by pvestatd.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
--smbios1 [base64=<1|0>] [,family=<Base64 encoded string>] [,manufacturer=<Base64 encoded string>] [,product=<Base64 encoded string>] [,serial=<Base64 encoded string>] [,sku=<Base64 encoded string>] [,uuid=<UUID>] [,version=<Base64 encoded string>]
Specify SMBIOS type 1 fields.
--smp <integer> (1 - N) (default = 1)
The number of CPUs. Please use option -sockets instead.
--sockets <integer> (1 - N) (default = 1)
The number of CPU sockets.
--sshkeys <filepath>
cloud-init: Setup public SSH keys (one key per line, OpenSSH format).
--startdate (now | YYYY-MM-DD | YYYY-MM-DDTHH:MM:SS) (default = now)
Set the initial date of the real time clock. Valid format for date are: now or 2006-06-17T16:01:21 or 2006-06-17.
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
--tablet <boolean> (default = 1)
Enable/disable the USB tablet device.
--tdf <boolean> (default = 0)
Enable/disable time drift fix.
--template <boolean> (default = 0)
Enable/disable Template.
--unused[n] <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
--usb[n] [host=]<HOSTUSBDEVICE|spice> [,usb3=<1|0>]
Configure an USB device (n is 0 to 4).
--vcpus <integer> (1 - N) (default = 0)
Number of hotplugged vcpus.
--vga [[type=]<enum>] [,memory=<integer>]
Configure the VGA hardware.
--virtio[n] [file=]<volume> [,aio=<native|threads>] [,backup=<1|0>] [,bps=<bps>] [,bps_max_length=<seconds>] [,bps_rd=<bps>] [,bps_rd_max_length=<seconds>] [,bps_wr=<bps>] [,bps_wr_max_length=<seconds>] [,cache=<enum>] [,cyls=<integer>] [,detect_zeroes=<1|0>] [,discard=<ignore|on>] [,format=<enum>] [,heads=<integer>] [,iops=<iops>] [,iops_max=<iops>] [,iops_max_length=<seconds>] [,iops_rd=<iops>] [,iops_rd_max=<iops>] [,iops_rd_max_length=<seconds>] [,iops_wr=<iops>] [,iops_wr_max=<iops>] [,iops_wr_max_length=<seconds>] [,iothread=<1|0>] [,mbps=<mbps>] [,mbps_max=<mbps>] [,mbps_rd=<mbps>] [,mbps_rd_max=<mbps>] [,mbps_wr=<mbps>] [,mbps_wr_max=<mbps>] [,media=<cdrom|disk>] [,replicate=<1|0>] [,rerror=<ignore|report|stop>] [,secs=<integer>] [,serial=<serial>] [,shared=<1|0>] [,size=<DiskSize>] [,snapshot=<1|0>] [,trans=<none|lba|auto>] [,werror=<enum>]
Use volume as VIRTIO hard disk (n is 0 to 15).
--vmgenid <UUID> (default = 1 (autogenerated))
Set VM Generation ID. Use 1 to autogenerate on create or update, pass 0 to disable explicitly.
--vmstatestorage <string>
Default storage for VM state volumes/files.
--watchdog [[model=]<i6300esb|ib700>] [,action=<enum>]
Create a virtual hardware watchdog device.
qm showcmd <vmid> [OPTIONS]
Show command line which is used to start the VM (debug info).
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--pretty <boolean> (default = 0)
Puts each option on a new line to enhance human readability
--snapshot <string>
Fetch config values from given snapshot.
qm shutdown <vmid> [OPTIONS]
Shutdown virtual machine. This is similar to pressing the power button on a physical machine.This will send an ACPI event for the guest OS, which should then proceed to a clean shutdown.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--forceStop <boolean> (default = 0)
Make sure the VM stops.
--keepActive <boolean> (default = 0)
Do not deactivate storage volumes.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
--timeout <integer> (0 - N)
Wait maximal timeout seconds.
qm snapshot <vmid> <snapname> [OPTIONS]
Snapshot a VM.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<snapname>: <string>
The name of the snapshot.
--description <string>
A textual description or comment.
--vmstate <boolean>
Save the vmstate
qm start <vmid> [OPTIONS]
Start virtual machine.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--machine (pc|pc(-i440fx)?-\d+\.\d+(\.pxe)?|q35|pc-q35-\d+\.\d+(\.pxe)?|virt(?:-\d+\.\d+)?)
Specifies the Qemu machine type.
--migratedfrom <string>
The cluster node name.
--migration_network <string>
CIDR of the (sub) network that is used for migration.
--migration_type <insecure | secure>
Migration traffic is encrypted using an SSH tunnel by default. On secure, completely private networks this can be disabled to increase performance.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
--stateuri <string>
Some command save/restore state from this location.
--targetstorage <string>
Target storage for the migration. (Can be 1 to use the same storage id as on the source node.)
qm status <vmid> [OPTIONS]
Show VM status.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--verbose <boolean>
Verbose output format
qm stop <vmid> [OPTIONS]
Stop virtual machine. The qemu process will exit immediately. Thisis akin to pulling the power plug of a running computer and may damage the VM data
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--keepActive <boolean> (default = 0)
Do not deactivate storage volumes.
--migratedfrom <string>
The cluster node name.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
--timeout <integer> (0 - N)
Wait maximal timeout seconds.
qm suspend <vmid> [OPTIONS]
Suspend virtual machine.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
--statestorage <string>
The storage for the VM state
Note
Requires option(s): todisk
--todisk <boolean> (default = 0)
If set, suspends the VM to disk. Will be resumed on next VM start.
qm template <vmid> [OPTIONS]
Create a Template.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--disk <efidisk0 | ide0 | ide1 | ide2 | ide3 | sata0 | sata1 | sata2 | sata3 | sata4 | sata5 | scsi0 | scsi1 | scsi10 | scsi11 | scsi12 | scsi13 | scsi2 | scsi3 | scsi4 | scsi5 | scsi6 | scsi7 | scsi8 | scsi9 | virtio0 | virtio1 | virtio10 | virtio11 | virtio12 | virtio13 | virtio14 | virtio15 | virtio2 | virtio3 | virtio4 | virtio5 | virtio6 | virtio7 | virtio8 | virtio9>
If you want to convert only 1 disk to base image.
qm terminal <vmid> [OPTIONS]
Open a terminal using a serial device (The VM need to have a serial device configured, for example serial0: socket)
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--escape <string> (default = ^O)
Escape character.
--iface <serial0 | serial1 | serial2 | serial3>
Select the serial device. By default we simply use the first suitable device.
qm unlink <vmid> --idlist <string> [OPTIONS]
Unlink/delete disk images.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--force <boolean>
Force physical removal. Without this, we simple remove the disk from the config file and create an additional configuration entry called unused[n], which contains the volume ID. Unlink of unused[n] always cause physical removal.
--idlist <string>
A list of disk IDs you want to delete.
qm unlock <vmid>
Unlock the VM.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
qm vncproxy <vmid>
Proxy VM VNC traffic to stdin/stdout
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
qm wait <vmid> [OPTIONS]
Wait until the VM is stopped.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--timeout <integer> (1 - N)
Timeout in seconds. Default is to wait forever.
A.9. qmrestore - Restore QemuServer vzdump Backups
qmrestore help
qmrestore <archive> <vmid> [OPTIONS]
Restore QemuServer vzdump backups.
<archive>: <string>
The backup file. You can pass - to read from standard input.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--bwlimit <number> (0 - N)
Override i/o bandwidth limit (in KiB/s).
--force <boolean>
Allow to overwrite existing VM.
--pool <string>
Add the VM to the specified pool.
--storage <string>
Default storage.
--unique <boolean>
Assign a unique random ethernet address.
A.10. pct - Proxmox Container Toolkit
pct <COMMAND> [ARGS] [OPTIONS]
pct clone <vmid> <newid> [OPTIONS]
Create a container clone/copy
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<newid>: <integer> (1 - N)
VMID for the clone.
--bwlimit <number> (0 - N) (default = clone limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--description <string>
Description for the new CT.
--full <boolean>
Create a full copy of all disks. This is always done when you clone a normal CT. For CT templates, we try to create a linked clone by default.
--hostname <string>
Set a hostname for the new CT.
--pool <string>
Add the new CT to the specified pool.
--snapname <string>
The name of the snapshot.
--storage <string>
Target storage for full clone.
--target <string>
Target node. Only allowed if the original VM is on shared storage.
pct config <vmid> [OPTIONS]
Get container configuration.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--snapshot <string>
Fetch config values from given snapshot.
pct console <vmid> [OPTIONS]
Launch a console for the specified container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--escape \^?[a-z] (default = ^a)
Escape sequence prefix. For example to use <Ctrl+b q> as the escape sequence pass ^b.
pct cpusets
Print the list of assigned CPU sets.
pct create <vmid> <ostemplate> [OPTIONS]
Create or restore a container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<ostemplate>: <string>
The OS template or backup file.
--arch <amd64 | arm64 | armhf | i386> (default = amd64)
OS architecture type.
--bwlimit <number> (0 - N) (default = restore limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--cmode <console | shell | tty> (default = tty)
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).
--console <boolean> (default = 1)
Attach a console device (/dev/console) to the container.
--cores <integer> (1 - 128)
The number of cores assigned to the container. A container can use all available cores by default.
--cpulimit <number> (0 - 128) (default = 0)
Limit of CPU usage.
Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.
--cpuunits <integer> (0 - 500000) (default = 1024)
CPU weight for a VM. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this VM gets. Number is relative to the weights of all the other running VMs.
Note
You can disable fair-scheduler configuration by setting this to 0.
--description <string>
Container description. Only used on the configuration web interface.
--features [fuse=<1|0>] [,keyctl=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]
Allow containers access to advanced features.
--force <boolean>
Allow to overwrite existing container.
--hookscript <string>
Script that will be exectued during various steps in the containers lifetime.
--hostname <string>
Set a host name for the container.
--ignore-unpack-errors <boolean>
Ignore errors when extracting the template.
--lock <backup | create | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>
Lock/unlock the VM.
--memory <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB.
--mp[n] [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container mount point.
--nameserver <string>
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
--net[n] name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]
Specifies network interfaces for the container.
--onboot <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
--ostype <alpine | archlinux | centos | debian | fedora | gentoo | opensuse | ubuntu | unmanaged>
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.
--password <password>
Sets root password inside container.
--pool <string>
Add the VM to the specified pool.
--protection <boolean> (default = 0)
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.
--restore <boolean>
Mark this as restore task.
--rootfs [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container root.
--searchdomain <string>
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
--ssh-public-keys <filepath>
Setup public SSH keys (one key per line, OpenSSH format).
--start <boolean> (default = 0)
Start the CT after its creation finished successfully.
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
--storage <string> (default = local)
Default Storage.
--swap <integer> (0 - N) (default = 512)
Amount of SWAP for the VM in MB.
--template <boolean> (default = 0)
Enable/disable Template.
--tty <integer> (0 - 6) (default = 2)
Specify the number of tty available to the container
--unique <boolean>
Assign a unique random ethernet address.
Note
Requires option(s): restore
--unprivileged <boolean> (default = 0)
Makes the container run as unprivileged user. (Should not be modified manually.)
--unused[n] <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
pct delsnapshot <vmid> <snapname> [OPTIONS]
Delete a LXC snapshot.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<snapname>: <string>
The name of the snapshot.
--force <boolean>
For removal from config file, even if removing disk snapshots fails.
pct destroy <vmid>
Destroy the container (also delete all uses files).
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct df <vmid>
Get the container’s current disk usage.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct enter <vmid>
Launch a shell for the specified container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct exec <vmid> [<extra-args>]
Launch a command inside the specified container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<extra-args>: <array>
Extra arguments as array
pct fsck <vmid> [OPTIONS]
Run a filesystem check (fsck) on a container volume.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--device <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs>
A volume on which to run the filesystem check
--force <boolean> (default = 0)
Force checking, even if the filesystem seems clean
pct fstrim <vmid>
Run fstrim on a chosen CT and its mountpoints.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pct list
LXC container index (per node).
pct listsnapshot <vmid>
List all snapshots.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct migrate <vmid> <target> [OPTIONS]
Migrate the container to another node. Creates a new migration task.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<target>: <string>
Target node.
--bwlimit <number> (0 - N) (default = migrate limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--force <boolean>
Force migration despite local bind / device mounts. NOTE: deprecated, use shared property of mount point instead.
--online <boolean>
Use online/live migration.
--restart <boolean>
Use restart migration
--timeout <integer> (default = 180)
Timeout in seconds for shutdown for restart migration
pct mount <vmid>
Mount the container’s filesystem on the host. This will hold a lock on the container and is meant for emergency maintenance only as it will prevent further operations on the container other than start and stop.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct move_volume <vmid> <volume> <storage> [OPTIONS]
Move a rootfs-/mp-volume to a different storage
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<volume>: <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs>
Volume which will be moved.
<storage>: <string>
Target Storage.
--bwlimit <number> (0 - N) (default = clone limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--delete <boolean> (default = 0)
Delete the original volume after successful copy. By default the original is kept as an unused volume entry.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
pct pull <vmid> <path> <destination> [OPTIONS]
Copy a file from the container to the local system.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<path>: <string>
Path to a file inside the container to pull.
<destination>: <string>
Destination
--group <string>
Owner group name or id.
--perms <string>
File permissions to use (octal by default, prefix with 0x for hexadecimal).
--user <string>
Owner user name or id.
pct push <vmid> <file> <destination> [OPTIONS]
Copy a local file to the container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<file>: <string>
Path to a local file.
<destination>: <string>
Destination inside the container to write to.
--group <string>
Owner group name or id. When using a name it must exist inside the container.
--perms <string>
File permissions to use (octal by default, prefix with 0x for hexadecimal).
--user <string>
Owner user name or id. When using a name it must exist inside the container.
pct rescan [OPTIONS]
Rescan all storages and update disk sizes and unused disk images.
--dryrun <boolean> (default = 0)
Do not actually write changes out to conifg.
--vmid <integer> (1 - N)
The (unique) ID of the VM.
pct resize <vmid> <disk> <size> [OPTIONS]
Resize a container mount point.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<disk>: <mp0 | mp1 | mp10 | mp100 | mp101 | mp102 | mp103 | mp104 | mp105 | mp106 | mp107 | mp108 | mp109 | mp11 | mp110 | mp111 | mp112 | mp113 | mp114 | mp115 | mp116 | mp117 | mp118 | mp119 | mp12 | mp120 | mp121 | mp122 | mp123 | mp124 | mp125 | mp126 | mp127 | mp128 | mp129 | mp13 | mp130 | mp131 | mp132 | mp133 | mp134 | mp135 | mp136 | mp137 | mp138 | mp139 | mp14 | mp140 | mp141 | mp142 | mp143 | mp144 | mp145 | mp146 | mp147 | mp148 | mp149 | mp15 | mp150 | mp151 | mp152 | mp153 | mp154 | mp155 | mp156 | mp157 | mp158 | mp159 | mp16 | mp160 | mp161 | mp162 | mp163 | mp164 | mp165 | mp166 | mp167 | mp168 | mp169 | mp17 | mp170 | mp171 | mp172 | mp173 | mp174 | mp175 | mp176 | mp177 | mp178 | mp179 | mp18 | mp180 | mp181 | mp182 | mp183 | mp184 | mp185 | mp186 | mp187 | mp188 | mp189 | mp19 | mp190 | mp191 | mp192 | mp193 | mp194 | mp195 | mp196 | mp197 | mp198 | mp199 | mp2 | mp20 | mp200 | mp201 | mp202 | mp203 | mp204 | mp205 | mp206 | mp207 | mp208 | mp209 | mp21 | mp210 | mp211 | mp212 | mp213 | mp214 | mp215 | mp216 | mp217 | mp218 | mp219 | mp22 | mp220 | mp221 | mp222 | mp223 | mp224 | mp225 | mp226 | mp227 | mp228 | mp229 | mp23 | mp230 | mp231 | mp232 | mp233 | mp234 | mp235 | mp236 | mp237 | mp238 | mp239 | mp24 | mp240 | mp241 | mp242 | mp243 | mp244 | mp245 | mp246 | mp247 | mp248 | mp249 | mp25 | mp250 | mp251 | mp252 | mp253 | mp254 | mp255 | mp26 | mp27 | mp28 | mp29 | mp3 | mp30 | mp31 | mp32 | mp33 | mp34 | mp35 | mp36 | mp37 | mp38 | mp39 | mp4 | mp40 | mp41 | mp42 | mp43 | mp44 | mp45 | mp46 | mp47 | mp48 | mp49 | mp5 | mp50 | mp51 | mp52 | mp53 | mp54 | mp55 | mp56 | mp57 | mp58 | mp59 | mp6 | mp60 | mp61 | mp62 | mp63 | mp64 | mp65 | mp66 | mp67 | mp68 | mp69 | mp7 | mp70 | mp71 | mp72 | mp73 | mp74 | mp75 | mp76 | mp77 | mp78 | mp79 | mp8 | mp80 | mp81 | mp82 | mp83 | mp84 | mp85 | mp86 | mp87 | mp88 | mp89 | mp9 | mp90 | mp91 | mp92 | mp93 | mp94 | mp95 | mp96 | mp97 | mp98 | mp99 | rootfs>
The disk you want to resize.
<size>: \+?\d+(\.\d+)?[KMGT]?
The new size. With the + sign the value is added to the actual size of the volume and without it, the value is taken as an absolute one. Shrinking disk size is not supported.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
pct restore <vmid> <ostemplate> [OPTIONS]
Create or restore a container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<ostemplate>: <string>
The OS template or backup file.
--arch <amd64 | arm64 | armhf | i386> (default = amd64)
OS architecture type.
--bwlimit <number> (0 - N) (default = restore limit from datacenter or storage config)
Override I/O bandwidth limit (in KiB/s).
--cmode <console | shell | tty> (default = tty)
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).
--console <boolean> (default = 1)
Attach a console device (/dev/console) to the container.
--cores <integer> (1 - 128)
The number of cores assigned to the container. A container can use all available cores by default.
--cpulimit <number> (0 - 128) (default = 0)
Limit of CPU usage.
Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.
--cpuunits <integer> (0 - 500000) (default = 1024)
CPU weight for a VM. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this VM gets. Number is relative to the weights of all the other running VMs.
Note
You can disable fair-scheduler configuration by setting this to 0.
--description <string>
Container description. Only used on the configuration web interface.
--features [fuse=<1|0>] [,keyctl=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]
Allow containers access to advanced features.
--force <boolean>
Allow to overwrite existing container.
--hookscript <string>
Script that will be exectued during various steps in the containers lifetime.
--hostname <string>
Set a host name for the container.
--ignore-unpack-errors <boolean>
Ignore errors when extracting the template.
--lock <backup | create | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>
Lock/unlock the VM.
--memory <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB.
--mp[n] [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container mount point.
--nameserver <string>
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
--net[n] name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]
Specifies network interfaces for the container.
--onboot <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
--ostype <alpine | archlinux | centos | debian | fedora | gentoo | opensuse | ubuntu | unmanaged>
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.
--password <password>
Sets root password inside container.
--pool <string>
Add the VM to the specified pool.
--protection <boolean> (default = 0)
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.
--rootfs [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container root.
--searchdomain <string>
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
--ssh-public-keys <filepath>
Setup public SSH keys (one key per line, OpenSSH format).
--start <boolean> (default = 0)
Start the CT after its creation finished successfully.
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
--storage <string> (default = local)
Default Storage.
--swap <integer> (0 - N) (default = 512)
Amount of SWAP for the VM in MB.
--template <boolean> (default = 0)
Enable/disable Template.
--tty <integer> (0 - 6) (default = 2)
Specify the number of tty available to the container
--unique <boolean>
Assign a unique random ethernet address.
Note
Requires option(s): restore
--unprivileged <boolean> (default = 0)
Makes the container run as unprivileged user. (Should not be modified manually.)
--unused[n] <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
pct resume <vmid>
Resume the container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct rollback <vmid> <snapname>
Rollback LXC state to specified snapshot.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<snapname>: <string>
The name of the snapshot.
pct set <vmid> [OPTIONS]
Set container options.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--arch <amd64 | arm64 | armhf | i386> (default = amd64)
OS architecture type.
--cmode <console | shell | tty> (default = tty)
Console mode. By default, the console command tries to open a connection to one of the available tty devices. By setting cmode to console it tries to attach to /dev/console instead. If you set cmode to shell, it simply invokes a shell inside the container (no login).
--console <boolean> (default = 1)
Attach a console device (/dev/console) to the container.
--cores <integer> (1 - 128)
The number of cores assigned to the container. A container can use all available cores by default.
--cpulimit <number> (0 - 128) (default = 0)
Limit of CPU usage.
Note
If the computer has 2 CPUs, it has a total of 2 CPU time. Value 0 indicates no CPU limit.
--cpuunits <integer> (0 - 500000) (default = 1024)
CPU weight for a VM. Argument is used in the kernel fair scheduler. The larger the number is, the more CPU time this VM gets. Number is relative to the weights of all the other running VMs.
Note
You can disable fair-scheduler configuration by setting this to 0.
--delete <string>
A list of settings you want to delete.
--description <string>
Container description. Only used on the configuration web interface.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--features [fuse=<1|0>] [,keyctl=<1|0>] [,mount=<fstype;fstype;...>] [,nesting=<1|0>]
Allow containers access to advanced features.
--hookscript <string>
Script that will be exectued during various steps in the containers lifetime.
--hostname <string>
Set a host name for the container.
--lock <backup | create | disk | fstrim | migrate | mounted | rollback | snapshot | snapshot-delete>
Lock/unlock the VM.
--memory <integer> (16 - N) (default = 512)
Amount of RAM for the VM in MB.
--mp[n] [volume=]<volume> ,mp=<Path> [,acl=<1|0>] [,backup=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container mount point.
--nameserver <string>
Sets DNS server IP address for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
--net[n] name=<string> [,bridge=<bridge>] [,firewall=<1|0>] [,gw=<GatewayIPv4>] [,gw6=<GatewayIPv6>] [,hwaddr=<XX:XX:XX:XX:XX:XX>] [,ip=<(IPv4/CIDR|dhcp|manual)>] [,ip6=<(IPv6/CIDR|auto|dhcp|manual)>] [,mtu=<integer>] [,rate=<mbps>] [,tag=<integer>] [,trunks=<vlanid[;vlanid...]>] [,type=<veth>]
Specifies network interfaces for the container.
--onboot <boolean> (default = 0)
Specifies whether a VM will be started during system bootup.
--ostype <alpine | archlinux | centos | debian | fedora | gentoo | opensuse | ubuntu | unmanaged>
OS type. This is used to setup configuration inside the container, and corresponds to lxc setup scripts in /usr/share/lxc/config/<ostype>.common.conf. Value unmanaged can be used to skip and OS specific setup.
--protection <boolean> (default = 0)
Sets the protection flag of the container. This will prevent the CT or CT’s disk remove/update operation.
--rootfs [volume=]<volume> [,acl=<1|0>] [,mountoptions=<opt[;opt...]>] [,quota=<1|0>] [,replicate=<1|0>] [,ro=<1|0>] [,shared=<1|0>] [,size=<DiskSize>]
Use volume as container root.
--searchdomain <string>
Sets DNS search domains for a container. Create will automatically use the setting from the host if you neither set searchdomain nor nameserver.
--startup `[[order=]\d+] [,up=\d+] [,down=\d+] `
Startup and shutdown behavior. Order is a non-negative number defining the general startup order. Shutdown in done with reverse ordering. Additionally you can set the up or down delay in seconds, which specifies a delay to wait before the next VM is started or stopped.
--swap <integer> (0 - N) (default = 512)
Amount of SWAP for the VM in MB.
--template <boolean> (default = 0)
Enable/disable Template.
--tty <integer> (0 - 6) (default = 2)
Specify the number of tty available to the container
--unprivileged <boolean> (default = 0)
Makes the container run as unprivileged user. (Should not be modified manually.)
--unused[n] <string>
Reference to unused volumes. This is used internally, and should not be modified manually.
pct shutdown <vmid> [OPTIONS]
Shutdown the container. This will trigger a clean shutdown of the container, see lxc-stop(1) for details.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--forceStop <boolean> (default = 0)
Make sure the Container stops.
--timeout <integer> (0 - N) (default = 60)
Wait maximal timeout seconds.
pct snapshot <vmid> <snapname> [OPTIONS]
Snapshot a container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<snapname>: <string>
The name of the snapshot.
--description <string>
A textual description or comment.
pct start <vmid> [OPTIONS]
Start the container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
pct status <vmid> [OPTIONS]
Show CT status.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--verbose <boolean>
Verbose output format
pct stop <vmid> [OPTIONS]
Stop the container. This will abruptly stop all processes running in the container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
--skiplock <boolean>
Ignore locks - only root is allowed to use this option.
pct suspend <vmid>
Suspend the container.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct template <vmid>
Create a Template.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct unlock <vmid>
Unlock the VM.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
pct unmount <vmid>
Unmount the container’s filesystem.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
A.11. pveam - Proxmox VE Appliance Manager
pveam <COMMAND> [ARGS] [OPTIONS]
pveam available [OPTIONS]
List available templates.
--section <mail | system | turnkeylinux>
Restrict list to specified section.
pveam download <storage> <template>
Download appliance templates.
<storage>: <string>
The storage where the template will be stored
<template>: <string>
The template which will downloaded
pveam help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pveam list <storage>
Get list of all templates on storage
<storage>: <string>
Only list templates on specified storage
pveam remove <template_path>
Remove a template.
<template_path>: <string>
The template to remove.
pveam update
Update Container Template Database.
A.12. pvecm - Proxmox VE Cluster Manager
pvecm <COMMAND> [ARGS] [OPTIONS]
pvecm add <hostname> [OPTIONS]
Adds the current node to an existing cluster.
<hostname>: <string>
Hostname (or IP) of an existing cluster member.
--fingerprint ([A-Fa-f0-9]{2}:){31}[A-Fa-f0-9]{2}
Certificate SHA 256 fingerprint.
--force <boolean>
Do not throw error if node already exists.
--link[n] [address=]<IP> [,priority=<integer>]
Address and priority information of a single corosync link.
--nodeid <integer> (1 - N)
Node id for this node.
--use_ssh <boolean>
Always use SSH to join, even if peer may do it over API.
--votes <integer> (0 - N)
Number of votes for this node
pvecm addnode <node> [OPTIONS]
Adds a node to the cluster configuration. This call is for internal use.
<node>: <string>
The cluster node name.
--force <boolean>
Do not throw error if node already exists.
--link[n] [address=]<IP> [,priority=<integer>]
Address and priority information of a single corosync link.
--nodeid <integer> (1 - N)
Node id for this node.
--votes <integer> (0 - N)
Number of votes for this node
pvecm create <clustername> [OPTIONS]
Generate new cluster configuration.
<clustername>: <string>
The name of the cluster.
--link[n] [address=]<IP> [,priority=<integer>]
Address and priority information of a single corosync link.
--nodeid <integer> (1 - N)
Node id for this node.
--votes <integer> (1 - N)
Number of votes for this node.
pvecm delnode <node>
Removes a node from the cluster configuration.
<node>: <string>
The cluster node name.
pvecm expected <expected>
Tells corosync a new value of expected votes.
<expected>: <integer> (1 - N)
Expected votes
pvecm help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvecm keygen <filename>
Generate new cryptographic key for corosync.
<filename>: <string>
Output file name
pvecm mtunnel [<extra-args>] [OPTIONS]
Used by VM/CT migration - do not use manually.
<extra-args>: <array>
Extra arguments as array
--get_migration_ip <boolean> (default = 0)
return the migration IP, if configured
--migration_network <string>
the migration network used to detect the local migration IP
--run-command <boolean>
Run a command with a tcp socket as standard input. The IP address and port are printed via this command’s stdandard output first, each on a separate line.
pvecm nodes
Displays the local view of the cluster nodes.
pvecm qdevice remove
Remove a configured QDevice
pvecm qdevice setup <address> [OPTIONS]
Setup the use of a QDevice
<address>: <string>
Specifies the network address of an external corosync QDevice
--force <boolean>
Do not throw error on possible dangerous operations.
--network <string>
The network which should be used to connect to the external qdevice
pvecm status
Displays the local view of the cluster status.
pvecm updatecerts [OPTIONS]
Update node certificates (and generate all needed files/directories).
--force <boolean>
Force generation of new SSL certifate.
--silent <boolean>
Ignore errors (i.e. when cluster has no quorum).
A.13. pvesr - Proxmox VE Storage Replication
pvesr <COMMAND> [ARGS] [OPTIONS]
pvesr create-local-job <id> <target> [OPTIONS]
Create a new replication job
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
<target>: <string>
Target node.
--comment <string>
Description.
--disable <boolean>
Flag to disable/deactivate the entry.
--rate <number> (1 - N)
Rate limit in mbps (megabytes per second) as floating point number.
--remove_job <full | local>
Mark the replication job for removal. The job will remove all local replication snapshots. When set to full, it also tries to remove replicated volumes on the target. The job then removes itself from the configuration file.
--schedule <string> (default = */15)
Storage replication schedule. The format is a subset of systemd calender events.
--source <string>
Source of the replication.
pvesr delete <id> [OPTIONS]
Mark replication job for removal.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
--force <boolean> (default = 0)
Will remove the jobconfig entry, but will not cleanup.
--keep <boolean> (default = 0)
Keep replicated data at target (do not remove).
pvesr disable <id>
Disable a replication job.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
pvesr enable <id>
Enable a replication job.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
pvesr finalize-local-job <id> [<extra-args>] [OPTIONS]
Finalize a replication job. This removes all replications snapshots with timestamps different than <last_sync>.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
<extra-args>: <array>
The list of volume IDs to consider.
--last_sync <integer> (0 - N)
Time (UNIX epoch) of last successful sync. If not specified, all replication snapshots gets removed.
pvesr help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvesr list
List replication jobs.
pvesr prepare-local-job <id> [<extra-args>] [OPTIONS]
Prepare for starting a replication job. This is called on the target node before replication starts. This call is for internal use, and return a JSON object on stdout. The method first test if VM <vmid> reside on the local node. If so, stop immediately. After that the method scans all volume IDs for snapshots, and removes all replications snapshots with timestamps different than <last_sync>. It also removes any unused volumes. Returns a hash with boolean markers for all volumes with existing replication snapshots.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
<extra-args>: <array>
The list of volume IDs to consider.
--force <boolean> (default = 0)
Allow to remove all existion volumes (empty volume list).
--last_sync <integer> (0 - N)
Time (UNIX epoch) of last successful sync. If not specified, all replication snapshots get removed.
--parent_snapname <string>
The name of the snapshot.
--scan <string>
List of storage IDs to scan for stale volumes.
pvesr read <id>
Read replication job configuration.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
pvesr run [OPTIONS]
This method is called by the systemd-timer and executes all (or a specific) sync jobs.
--id [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
--mail <boolean> (default = 0)
Send an email notification in case of a failure.
--verbose <boolean> (default = 0)
Print more verbose logs to stdout.
pvesr schedule-now <id>
Schedule replication job to start as soon as possible.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
pvesr set-state <vmid> <state>
Set the job replication state on migration. This call is for internal use. It will accept the job state as ja JSON obj.
<vmid>: <integer> (1 - N)
The (unique) ID of the VM.
<state>: <string>
Job state as JSON decoded string.
pvesr status [OPTIONS]
List status of all replication jobs on this node.
--guest <integer> (1 - N)
Only list replication jobs for this guest.
pvesr update <id> [OPTIONS]
Update replication job configuration.
<id>: [1-9][0-9]{2,8}-\d{1,9}
Replication Job ID. The ID is composed of a Guest ID and a job number, separated by a hyphen, i.e. <GUEST>-<JOBNUM>.
--comment <string>
Description.
--delete <string>
A list of settings you want to delete.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--disable <boolean>
Flag to disable/deactivate the entry.
--rate <number> (1 - N)
Rate limit in mbps (megabytes per second) as floating point number.
--remove_job <full | local>
Mark the replication job for removal. The job will remove all local replication snapshots. When set to full, it also tries to remove replicated volumes on the target. The job then removes itself from the configuration file.
--schedule <string> (default = */15)
Storage replication schedule. The format is a subset of systemd calender events.
--source <string>
Source of the replication.
A.14. pveum - Proxmox VE User Manager
pveum <COMMAND> [ARGS] [OPTIONS]
pveum acl delete <path> --roles <string> [OPTIONS]
Update Access Control List (add or remove permissions).
<path>: <string>
Access control path
--groups <string>
List of groups.
--propagate <boolean> (default = 1)
Allow to propagate (inherit) permissions.
--roles <string>
List of roles.
--users <string>
List of users.
pveum acl modify <path> --roles <string> [OPTIONS]
Update Access Control List (add or remove permissions).
<path>: <string>
Access control path
--groups <string>
List of groups.
--propagate <boolean> (default = 1)
Allow to propagate (inherit) permissions.
--roles <string>
List of roles.
--users <string>
List of users.
pveum acldel
An alias for pveum acl delete.
pveum aclmod
An alias for pveum acl modify.
pveum group add <groupid> [OPTIONS]
Create new group.
<groupid>: <string>
no description available
--comment <string>
no description available
pveum group delete <groupid>
Delete group.
<groupid>: <string>
no description available
pveum group modify <groupid> [OPTIONS]
Update group data.
<groupid>: <string>
no description available
--comment <string>
no description available
pveum groupadd
An alias for pveum group add.
pveum groupdel
An alias for pveum group delete.
pveum groupmod
An alias for pveum group modify.
pveum help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pveum passwd <userid>
Change user password.
<userid>: <string>
User ID
pveum role add <roleid> [OPTIONS]
Create new role.
<roleid>: <string>
no description available
--privs <string>
no description available
pveum role delete <roleid>
Delete role.
<roleid>: <string>
no description available
pveum role modify <roleid> [OPTIONS]
Update an existing role.
<roleid>: <string>
no description available
--append <boolean>
no description available
Note
Requires option(s): privs
--privs <string>
no description available
pveum roleadd
An alias for pveum role add.
pveum roledel
An alias for pveum role delete.
pveum rolemod
An alias for pveum role modify.
pveum ticket <username> [OPTIONS]
Create or verify authentication ticket.
<username>: <string>
User name
--otp <string>
One-time password for Two-factor authentication.
--path <string>
Verify ticket, and check if user have access privs on path
Note
Requires option(s): privs
--privs <string>
Verify ticket, and check if user have access privs on path
Note
Requires option(s): path
--realm <string>
You can optionally pass the realm using this parameter. Normally the realm is simply added to the username <username>@<relam>.
pveum user add <userid> [OPTIONS]
Create new user.
<userid>: <string>
User ID
--comment <string>
no description available
--email <string>
no description available
--enable <boolean> (default = 1)
Enable the account (default). You can set this to 0 to disable the account
--expire <integer> (0 - N)
Account expiration date (seconds since epoch). 0 means no expiration date.
--firstname <string>
no description available
--groups <string>
no description available
--keys <string>
Keys for two factor auth (yubico).
--lastname <string>
no description available
--password <string>
Initial password.
pveum user delete <userid>
Delete user.
<userid>: <string>
User ID
pveum user modify <userid> [OPTIONS]
Update user configuration.
<userid>: <string>
User ID
--append <boolean>
no description available
Note
Requires option(s): groups
--comment <string>
no description available
--email <string>
no description available
--enable <boolean> (default = 1)
Enable the account (default). You can set this to 0 to disable the account
--expire <integer> (0 - N)
Account expiration date (seconds since epoch). 0 means no expiration date.
--firstname <string>
no description available
--groups <string>
no description available
--keys <string>
Keys for two factor auth (yubico).
--lastname <string>
no description available
pveum useradd
An alias for pveum user add.
pveum userdel
An alias for pveum user delete.
pveum usermod
An alias for pveum user modify.
A.15. vzdump - Backup Utility for VMs and Containers
vzdump help
vzdump {<vmid>} [OPTIONS]
Create backup.
<vmid>: <string>
The ID of the guest system you want to backup.
--all <boolean> (default = 0)
Backup all known guest systems on this host.
--bwlimit <integer> (0 - N) (default = 0)
Limit I/O bandwidth (KBytes per second).
--compress <0 | 1 | gzip | lzo> (default = 0)
Compress dump file.
--dumpdir <string>
Store resulting files to specified directory.
--exclude <string>
Exclude specified guest systems (assumes --all)
--exclude-path <string>
Exclude certain files/directories (shell globs).
--ionice <integer> (0 - 8) (default = 7)
Set CFQ ionice priority.
--lockwait <integer> (0 - N) (default = 180)
Maximal time to wait for the global lock (minutes).
--mailnotification <always | failure> (default = always)
Specify when to send an email
--mailto <string>
Comma-separated list of email addresses that should receive email notifications.
--maxfiles <integer> (1 - N) (default = 1)
Maximal number of backup files per guest system.
--mode <snapshot | stop | suspend> (default = snapshot)
Backup mode.
--node <string>
Only run if executed on this node.
--pigz <integer> (default = 0)
Use pigz instead of gzip when N>0. N=1 uses half of cores, N>1 uses N as thread count.
--pool <string>
Backup all known guest systems included in the specified pool.
--quiet <boolean> (default = 0)
Be quiet.
--remove <boolean> (default = 1)
Remove old backup files if there are more than maxfiles backup files.
--script <string>
Use specified hook script.
--size <integer> (500 - N) (default = 1024)
Unused, will be removed in a future release.
--stdexcludes <boolean> (default = 1)
Exclude temporary files and logs.
--stdout <boolean>
Write tar to stdout, not to a file.
--stop <boolean> (default = 0)
Stop running backup jobs on this host.
--stopwait <integer> (0 - N) (default = 10)
Maximal time to wait until a guest system is stopped (minutes).
--storage <string>
Store resulting file to this storage.
--tmpdir <string>
Store temporary files to specified directory.
A.16. ha-manager - Proxmox VE HA Manager
ha-manager <COMMAND> [ARGS] [OPTIONS]
ha-manager add <sid> [OPTIONS]
Create a new HA resource.
<sid>: <type>:<name>
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).
--comment <string>
Description.
--group <string>
The HA group identifier.
--max_relocate <integer> (0 - N) (default = 1)
Maximal number of service relocate tries when a service failes to start.
--max_restart <integer> (0 - N) (default = 1)
Maximal number of tries to restart the service on a node after its start failed.
--state <disabled | enabled | ignored | started | stopped> (default = started)
Requested resource state.
--type <ct | vm>
Resource type.
ha-manager config [OPTIONS]
List HA resources.
--type <ct | vm>
Only list resources of specific type
ha-manager groupadd <group> --nodes <string> [OPTIONS]
Create a new HA group.
<group>: <string>
The HA group identifier.
--comment <string>
Description.
--nodes <node>[:<pri>]{,<node>[:<pri>]}*
List of cluster node names with optional priority.
--nofailback <boolean> (default = 0)
The CRM tries to run services on the node with the highest priority. If a node with higher priority comes online, the CRM migrates the service to that node. Enabling nofailback prevents that behavior.
--restricted <boolean> (default = 0)
Resources bound to restricted groups may only run on nodes defined by the group.
--type <group>
Group type.
ha-manager groupconfig
Get HA groups.
ha-manager groupremove <group>
Delete ha group configuration.
<group>: <string>
The HA group identifier.
ha-manager groupset <group> [OPTIONS]
Update ha group configuration.
<group>: <string>
The HA group identifier.
--comment <string>
Description.
--delete <string>
A list of settings you want to delete.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--nodes <node>[:<pri>]{,<node>[:<pri>]}*
List of cluster node names with optional priority.
--nofailback <boolean> (default = 0)
The CRM tries to run services on the node with the highest priority. If a node with higher priority comes online, the CRM migrates the service to that node. Enabling nofailback prevents that behavior.
--restricted <boolean> (default = 0)
Resources bound to restricted groups may only run on nodes defined by the group.
ha-manager help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
ha-manager migrate <sid> <node>
Request resource migration (online) to another node.
<sid>: <type>:<name>
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).
<node>: <string>
Target node.
ha-manager relocate <sid> <node>
Request resource relocatzion to another node. This stops the service on the old node, and restarts it on the target node.
<sid>: <type>:<name>
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).
<node>: <string>
Target node.
ha-manager remove <sid>
Delete resource configuration.
<sid>: <type>:<name>
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).
ha-manager set <sid> [OPTIONS]
Update resource configuration.
<sid>: <type>:<name>
HA resource ID. This consists of a resource type followed by a resource specific name, separated with colon (example: vm:100 / ct:100). For virtual machines and containers, you can simply use the VM or CT id as a shortcut (example: 100).
--comment <string>
Description.
--delete <string>
A list of settings you want to delete.
--digest <string>
Prevent changes if current configuration file has different SHA1 digest. This can be used to prevent concurrent modifications.
--group <string>
The HA group identifier.
--max_relocate <integer> (0 - N) (default = 1)
Maximal number of service relocate tries when a service failes to start.
--max_restart <integer> (0 - N) (default = 1)
Maximal number of tries to restart the service on a node after its start failed.
--state <disabled | enabled | ignored | started | stopped> (default = started)
Requested resource state.
ha-manager status [OPTIONS]
Display HA manger status.
--verbose <boolean> (default = 0)
Verbose output. Include complete CRM and LRM status (JSON).
Appendix B. Service Daemons
B.1. pve-firewall - Proxmox VE Firewall Daemon
pve-firewall <COMMAND> [ARGS] [OPTIONS]
pve-firewall compile
Compile and print firewall rules. This is useful for testing.
pve-firewall help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pve-firewall localnet
Print information about local network.
pve-firewall restart
Restart the Proxmox VE firewall service.
pve-firewall simulate [OPTIONS]
Simulate firewall rules. This does not simulate kernel routing table. Instead, this simply assumes that routing from source zone to destination zone is possible.
--dest <string>
Destination IP address.
--dport <integer>
Destination port.
--from (host|outside|vm\d+|ct\d+|vmbr\d+/\S+) (default = outside)
Source zone.
--protocol (tcp|udp) (default = tcp)
Protocol.
--source <string>
Source IP address.
--sport <integer>
Source port.
--to (host|outside|vm\d+|ct\d+|vmbr\d+/\S+) (default = host)
Destination zone.
--verbose <boolean> (default = 0)
Verbose output.
pve-firewall start [OPTIONS]
Start the Proxmox VE firewall service.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
pve-firewall status
Get firewall status.
pve-firewall stop
Stop firewall. This removes all Proxmox VE related iptable rules. The host is unprotected afterwards.
B.2. pvedaemon - Proxmox VE API Daemon
pvedaemon <COMMAND> [ARGS] [OPTIONS]
pvedaemon help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvedaemon restart
Restart the daemon (or start if not running).
pvedaemon start [OPTIONS]
Start the daemon.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
pvedaemon status
Get daemon status.
pvedaemon stop
Stop the daemon.
B.3. pveproxy - Proxmox VE API Proxy Daemon
pveproxy <COMMAND> [ARGS] [OPTIONS]
pveproxy help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pveproxy restart
Restart the daemon (or start if not running).
pveproxy start [OPTIONS]
Start the daemon.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
pveproxy status
Get daemon status.
pveproxy stop
Stop the daemon.
B.4. pvestatd - Proxmox VE Status Daemon
pvestatd <COMMAND> [ARGS] [OPTIONS]
pvestatd help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pvestatd restart
Restart the daemon (or start if not running).
pvestatd start [OPTIONS]
Start the daemon.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
pvestatd status
Get daemon status.
pvestatd stop
Stop the daemon.
B.5. spiceproxy - SPICE Proxy Service
spiceproxy <COMMAND> [ARGS] [OPTIONS]
spiceproxy help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
spiceproxy restart
Restart the daemon (or start if not running).
spiceproxy start [OPTIONS]
Start the daemon.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
spiceproxy status
Get daemon status.
spiceproxy stop
Stop the daemon.
B.6. pmxcfs - Proxmox Cluster File System
pmxcfs [OPTIONS]
Help Options:
-h, --help
Show help options
Application Options:
-d, --debug
Turn on debug messages
-f, --foreground
Do not daemonize server
-l, --local
Force local mode (ignore corosync.conf, force quorum)
This service is usually started and managed using systemd toolset. The service is called pve-cluster.
systemctl start pve-cluster
systemctl stop pve-cluster
systemctl status pve-cluster
B.7. pve-ha-crm - Cluster Resource Manager Daemon
pve-ha-crm <COMMAND> [ARGS] [OPTIONS]
pve-ha-crm help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pve-ha-crm start [OPTIONS]
Start the daemon.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
pve-ha-crm status
Get daemon status.
pve-ha-crm stop
Stop the daemon.
B.8. pve-ha-lrm - Local Resource Manager Daemon
pve-ha-lrm <COMMAND> [ARGS] [OPTIONS]
pve-ha-lrm help [OPTIONS]
Get help about specified command.
--extra-args <array>
Shows help for a specific command
--verbose <boolean>
Verbose output format.
pve-ha-lrm start [OPTIONS]
Start the daemon.
--debug <boolean> (default = 0)
Debug mode - stay in foreground
pve-ha-lrm status
Get daemon status.
pve-ha-lrm stop
Stop the daemon.
Appendix C. Configuration Files
C.1. Datacenter Configuration
The file /etc/pve/datacenter.cfg is a configuration file for Proxmox VE. It contains cluster wide default values used by all nodes.
C.1.1. File Format
The file uses a simple colon separated key/value format. Each line has the following format:
OPTION: value
Blank lines in the file are ignored, and lines starting with a # character are treated as comments and are also ignored.
C.1.2. Options
bwlimit: [clone=<LIMIT>] [,default=<LIMIT>] [,migration=<LIMIT>] [,move=<LIMIT>] [,restore=<LIMIT>]
Set bandwidth/io limits various operations.
clone=<LIMIT>
bandwidth limit in KiB/s for cloning disks
default=<LIMIT>
default bandwidth limit in KiB/s
migration=<LIMIT>
bandwidth limit in KiB/s for migrating guests (including moving local disks)
move=<LIMIT>
bandwidth limit in KiB/s for moving disks
restore=<LIMIT>
bandwidth limit in KiB/s for restoring guests from backups
console: <applet | html5 | vv | xtermjs>
Select the default Console viewer. You can either use the builtin java applet (VNC; deprecated and maps to html5), an external virt-viewer comtatible application (SPICE), an HTML5 based vnc viewer (noVNC), or an HTML5 based console client (xtermjs). If the selected viewer is not available (e.g. SPICE not activated for the VM), the fallback is noVNC.
email_from: <string>
Specify email address to send notification from (default is root@$hostname)
fencing: <both | hardware | watchdog> (default = watchdog)
Set the fencing mode of the HA cluster. Hardware mode needs a valid configuration of fence devices in /etc/pve/ha/fence.cfg. With both all two modes are used.
Warning
hardware and both are EXPERIMENTAL & WIP
ha: shutdown_policy=<freeze|failover|conditional>
Cluster wide HA settings.
shutdown_policy=<conditional | failover | freeze> (default = conditional)
Describes the policy for handling HA services on poweroff or reboot of a node. Freeze will always freeze services which are still located on the node on shutdown, those services won’t be recovered by the HA manager. Failover will not mark the services as frozen and thus the services will get recovered to other nodes, if the shutdown node does not come up again quickly (< 1min). conditional chooses automatically depending on the type of shutdown, i.e., on a reboot the service will be frozen but on a poweroff the service will stay as is, and thus get recovered after about 2 minutes.
http_proxy: http://.*
Specify external http proxy which is used for downloads (example: http://username:password@host:port/)
keyboard: <da | de | de-ch | en-gb | en-us | es | fi | fr | fr-be | fr-ca | fr-ch | hu | is | it | ja | lt | mk | nl | no | pl | pt | pt-br | sl | sv | tr>
Default keybord layout for vnc server.
language: <ca | de | en | es | eu | fa | fr | it | ja | nb | nn | pl | pt_BR | ru | sl | sv | tr | zh_CN | zh_TW>
Default GUI language.
mac_prefix: <string>
Prefix for autogenerated MAC addresses.
max_workers: <integer> (1 - N)
Defines how many workers (per node) are maximal started on actions like stopall VMs or task from the ha-manager.
migration: [type=]<secure|insecure> [,network=<CIDR>]
For cluster wide migration settings.
network=<CIDR>
CIDR of the (sub) network that is used for migration.
type=<insecure | secure> (default = secure)
Migration traffic is encrypted using an SSH tunnel by default. On secure, completely private networks this can be disabled to increase performance.
migration_unsecure: <boolean>
Migration is secure using SSH tunnel by default. For secure private networks you can disable it to speed up migration. Deprecated, use the migration property instead!
u2f: [appid=<APPID>] [,origin=<URL>]
u2f
appid=<APPID>
U2F AppId URL override. Defaults to the origin.
origin=<URL>
U2F Origin override. Mostly useful for single nodes with a single URL.
Appendix D. Firewall Macro Definitions
Amanda | Amanda Backup |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 10080 | |
PARAM | tcp | 10080 |
Auth | Auth (identd) traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 113 |
BGP | Border Gateway Protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 179 |
BitTorrent | BitTorrent traffic for BitTorrent 3.1 and earlier |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 6881:6889 | |
PARAM | udp | 6881 |
BitTorrent32 | BitTorrent traffic for BitTorrent 3.2 and later |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 6881:6999 | |
PARAM | udp | 6881 |
CVS | Concurrent Versions System pserver traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 2401 |
Ceph | Ceph Storage Cluster traffic (Ceph Monitors, OSD & MDS Deamons) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 6789 | |
PARAM | tcp | 6800:7300 |
Citrix | Citrix/ICA traffic (ICA, ICA Browser, CGP) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 1494 | |
PARAM | udp | 1604 | |
PARAM | tcp | 2598 |
DAAP | Digital Audio Access Protocol traffic (iTunes, Rythmbox daemons) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3689 | |
PARAM | udp | 3689 |
DCC | Distributed Checksum Clearinghouse spam filtering mechanism |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 6277 |
DHCPfwd | Forwarded DHCP traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 67:68 | 67:68 |
DHCPv6 | DHCPv6 traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 546:547 | 546:547 |
DNS | Domain Name System traffic (upd and tcp) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 53 | |
PARAM | tcp | 53 |
Distcc | Distributed Compiler service |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3632 |
FTP | File Transfer Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 21 |
Finger | Finger protocol (RFC 742) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 79 |
GNUnet | GNUnet secure peer-to-peer networking traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 2086 | |
PARAM | udp | 2086 | |
PARAM | tcp | 1080 | |
PARAM | udp | 1080 |
GRE | Generic Routing Encapsulation tunneling protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | 47 |
Git | Git distributed revision control traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 9418 |
HKP | OpenPGP HTTP keyserver protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 11371 |
HTTP | Hypertext Transfer Protocol (WWW) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 80 |
HTTPS | Hypertext Transfer Protocol (WWW) over SSL |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 443 |
ICPV2 | Internet Cache Protocol V2 (Squid) traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 3130 |
ICQ | AOL Instant Messenger traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 5190 |
IMAP | Internet Message Access Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 143 |
IMAPS | Internet Message Access Protocol over SSL |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 993 |
IPIP | IPIP capsulation traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | 94 |
IPsec | IPsec traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 500 | 500 |
PARAM | 50 |
IPsecah | IPsec authentication (AH) traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 500 | 500 |
PARAM | 51 |
IPsecnat | IPsec traffic and Nat-Traversal |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 500 | |
PARAM | udp | 4500 | |
PARAM | 50 |
IRC | Internet Relay Chat traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 6667 |
Jetdirect | HP Jetdirect printing |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 9100 |
L2TP | Layer 2 Tunneling Protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 1701 |
LDAP | Lightweight Directory Access Protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 389 |
LDAPS | Secure Lightweight Directory Access Protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 636 |
MDNS | Multicast DNS |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 5353 |
MSNP | Microsoft Notification Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 1863 |
MSSQL | Microsoft SQL Server |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 1433 |
Mail traffic (SMTP, SMTPS, Submission) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 25 | |
PARAM | tcp | 465 | |
PARAM | tcp | 587 |
Munin | Munin networked resource monitoring traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 4949 |
MySQL | MySQL server |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3306 |
NNTP | NNTP traffic (Usenet). |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 119 |
NNTPS | Encrypted NNTP traffic (Usenet) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 563 |
NTP | Network Time Protocol (ntpd) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 123 |
NeighborDiscovery | IPv6 neighbor solicitation, neighbor and router advertisement |
Action | proto | dport | sport |
---|---|---|---|
PARAM | icmpv6 | router-solicitation | |
PARAM | icmpv6 | router-advertisement | |
PARAM | icmpv6 | neighbor-solicitation | |
PARAM | icmpv6 | neighbor-advertisement |
OSPF | OSPF multicast traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | 89 |
OpenVPN | OpenVPN traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 1194 |
PCA | Symantec PCAnywere (tm) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 5632 | |
PARAM | tcp | 5631 |
POP3 | POP3 traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 110 |
POP3S | Encrypted POP3 traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 995 |
PPtP | Point-to-Point Tunneling Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | 47 | ||
PARAM | tcp | 1723 |
Ping | ICMP echo request |
Action | proto | dport | sport |
---|---|---|---|
PARAM | icmp | echo-request |
PostgreSQL | PostgreSQL server |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 5432 |
Printer | Line Printer protocol printing |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 515 |
RDP | Microsoft Remote Desktop Protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3389 |
RIP | Routing Information Protocol (bidirectional) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 520 |
RNDC | BIND remote management protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 953 |
Razor | Razor Antispam System |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 2703 |
Rdate | Remote time retrieval (rdate) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 37 |
Rsync | Rsync server |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 873 |
SANE | SANE network scanning |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 6566 |
SMB | Microsoft SMB traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 135,445 | |
PARAM | udp | 137:139 | |
PARAM | udp | 1024:65535 | 137 |
PARAM | tcp | 135,139,445 |
SMBswat | Samba Web Administration Tool |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 901 |
SMTP | Simple Mail Transfer Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 25 |
SMTPS | Encrypted Simple Mail Transfer Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 465 |
SNMP | Simple Network Management Protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 161:162 | |
PARAM | tcp | 161 |
SPAMD | Spam Assassin SPAMD traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 783 |
SSH | Secure shell traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 22 |
SVN | Subversion server (svnserve) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3690 |
SixXS | SixXS IPv6 Deployment and Tunnel Broker |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3874 | |
PARAM | udp | 3740 | |
PARAM | 41 | ||
PARAM | udp | 5072,8374 |
Squid | Squid web proxy traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 3128 |
Submission | Mail message submission traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 587 |
Syslog | Syslog protocol (RFC 5424) traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 514 | |
PARAM | tcp | 514 |
TFTP | Trivial File Transfer Protocol traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 69 |
Telnet | Telnet traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 23 |
Telnets | Telnet over SSL |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 992 |
Time | RFC 868 Time protocol |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 37 |
Trcrt | Traceroute (for up to 30 hops) traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | udp | 33434:33524 | |
PARAM | icmp | echo-request |
VNC | VNC traffic for VNC display’s 0 - 99 |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 5900:5999 |
VNCL | VNC traffic from Vncservers to Vncviewers in listen mode |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 5500 |
Web | WWW traffic (HTTP and HTTPS) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 80 | |
PARAM | tcp | 443 |
Webcache | Web Cache/Proxy traffic (port 8080) |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 8080 |
Webmin | Webmin traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 10000 |
Whois | Whois (nicname, RFC 3912) traffic |
Action | proto | dport | sport |
---|---|---|---|
PARAM | tcp | 43 |
Appendix E. GNU Free Documentation License
Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE. The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
1. APPLICABILITY AND DEFINITIONS. This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.
The "publisher" means any person or entity that distributes copies of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
2. VERBATIM COPYING. You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY. If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS. You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS. You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".
6. COLLECTIONS OF DOCUMENTS. You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
7. AGGREGATION WITH INDEPENDENT WORKS. A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
8. TRANSLATION. Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
9. TERMINATION. You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE. The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document.
11. RELICENSING. "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
Table of Contents
Proxmox VE Administration Guide
1. Introduction
1.1. Central Management
1.2. Flexible Storage
1.3. Integrated Backup and Restore
1.4. High Availability Cluster
1.5. Flexible Networking
1.6. Integrated Firewall
1.7. Why Open Source
1.8. Your benefits with Proxmox VE
1.9. Getting Help
1.9.1. Proxmox VE Wiki
1.9.2. Community Support Forum
1.9.3. Mailing Lists
1.9.4. Commercial Support
1.9.5. Bug Tracker
1.10. Project History
1.11. Improving the Proxmox VE Documentation
1.12. Translating Proxmox VE
2. Installing Proxmox VE
2.1. System Requirements
2.1.1. Minimum Requirements, for Evaluation
2.1.2. Recommended System Requirements
2.1.3. Simple Performance Overview
2.1.4. Supported web browsers for accessing the web interface
2.2. Using the Proxmox VE Installer
2.2.1. Advanced LVM Configuration Options
2.2.2. Advanced ZFS Configuration Options
2.2.3. ZFS Performance Tips
2.3. Install from USB Stick
2.3.1. Prepare a USB flash drive as install medium
2.3.2. Instructions for GNU/Linux
Find Correct USB Device Name
2.3.3. Instructions for OSX
2.3.4. Instructions for Windows
2.3.5. Boot your server from USB media
2.4. Install Proxmox VE on Debian
3. Host System Administration
3.1. Package Repositories
3.1.1. Proxmox VE Enterprise Repository
3.1.2. Proxmox VE No-Subscription Repository
3.1.3. Proxmox VE Test Repository
3.1.4. Proxmox VE Ceph Repository
3.1.5. Proxmox VE Ceph Testing Repository
3.1.6. Proxmox VE Ceph Luminous Repository For Upgrade
3.1.7. SecureApt
3.2. System Software Updates
3.3. Network Configuration
3.3.1. Naming Conventions
Systemd Network Interface Names
3.3.2. Choosing a network configuration
Proxmox VE server in a private LAN, using an external gateway to reach the internet
Proxmox VE server at hosting provider, with public IP ranges for Guests
Proxmox VE server at hosting provider, with a single public IP address
3.3.3. Default Configuration using a Bridge
3.3.4. Routed Configuration
3.3.5. Masquerading (NAT) with iptables
3.3.6. Linux Bond
3.3.7. VLAN 802.1Q
VLAN for Guest Networks
VLAN on the Host
3.4. Time Synchronization
3.4.1. Using Custom NTP Servers
3.5. External Metric Server
3.5.1. Graphite server configuration
3.5.2. Influxdb plugin configuration
3.5.3. Multiple Definitions and Example
3.6. Disk Health Monitoring
3.7. Logical Volume Manager (LVM)
3.7.1. Hardware
3.7.2. Bootloader
3.7.3. Creating a Volume Group
3.7.4. Creating an extra LV for /var/lib/vz
3.7.5. Resizing the thin pool
3.7.6. Create a LVM-thin pool
3.8. ZFS on Linux
3.8.1. Hardware
3.8.2. Installation as Root File System
3.8.3. Bootloader
3.8.4. ZFS Administration
3.8.5. Activate E-Mail Notification
3.8.6. Limit ZFS Memory Usage
3.8.7. SWAP on ZFS
3.8.8. Encrypted ZFS Datasets
3.9. Certificate Management
3.9.1. Certificates for communication within the cluster
3.9.2. Certificates for API and web GUI
Getting trusted certificates via ACME
Switching from the staging to the regular ACME directory
Automatic renewal of ACME certificates
3.10. Host Bootloader
3.10.1. Partitioning scheme used by the installer
3.10.2. Grub
Configuration
3.10.3. Systemd-boot
Configuration
3.10.4. Editing the kernel commandline
4. Hyper-converged Infrastructure
4.1. Benefits of a Hyper-Converged Infrastructure (HCI) with Proxmox VE
4.2. Manage Ceph Services on Proxmox VE Nodes
4.2.1. Precondition
4.2.2. Initial Ceph installation & configuration
4.2.3. Installation of Ceph Packages
4.2.4. Creating initial Ceph configuration
4.2.5. Creating Ceph Monitors
4.2.6. Creating Ceph Manager
4.2.7. Creating Ceph OSDs
Ceph Bluestore
Ceph Filestore
4.2.8. Creating Ceph Pools
4.2.9. Ceph CRUSH & device classes
4.2.10. Ceph Client
4.2.11. CephFS
Metadata Server (MDS)
Create a CephFS
Destroy CephFS
4.2.12. Ceph monitoring and troubleshooting
5. Graphical User Interface
5.1. Features
5.2. Login
5.3. GUI Overview
5.3.1. Header
5.3.2. My Settings
5.3.3. Resource Tree
5.3.4. Log Panel
5.4. Content Panels
5.4.1. Datacenter
5.4.2. Nodes
5.4.3. Guests
5.4.4. Storage
5.4.5. Pools
6. Cluster Manager
6.1. Requirements
6.2. Preparing Nodes
6.3. Create the Cluster
6.3.1. Multiple Clusters In Same Network
6.4. Adding Nodes to the Cluster
6.4.1. Adding Nodes With Separated Cluster Network
6.5. Remove a Cluster Node
6.5.1. Separate A Node Without Reinstalling
6.6. Quorum
6.7. Cluster Network
6.7.1. Network Requirements
6.7.2. Separate Cluster Network
Setting Up A New Network
Separate On Cluster Creation
Separate After Cluster Creation
6.7.3. Corosync addresses
6.8. Corosync Redundancy
6.8.1. Adding Redundant Links To An Existing Cluster
6.9. Corosync External Vote Support
6.9.1. QDevice Technical Overview
6.9.2. Supported Setups
6.9.3. QDevice-Net Setup
6.9.4. Frequently Asked Questions
Tie Breaking
Possible Negative Implications
Adding/Deleting Nodes After QDevice Setup
Removing the QDevice
6.10. Corosync Configuration
6.10.1. Edit corosync.conf
6.10.2. Troubleshooting
Issue: quorum.expected_votes must be configured
Write Configuration When Not Quorate
6.10.3. Corosync Configuration Glossary
6.11. Cluster Cold Start
6.12. Guest Migration
6.12.1. Migration Type
6.12.2. Migration Network
Example
7. Proxmox Cluster File System (pmxcfs)
7.1. POSIX Compatibility
7.2. File Access Rights
7.3. Technology
7.4. File System Layout
7.4.1. Files
7.4.2. Symbolic links
7.4.3. Special status files for debugging (JSON)
7.4.4. Enable/Disable debugging
7.5. Recovery
7.5.1. Remove Cluster configuration
7.5.2. Recovering/Moving Guests from Failed Nodes
8. Proxmox VE Storage
8.1. Storage Types
8.1.1. Thin Provisioning
8.2. Storage Configuration
8.2.1. Storage Pools
8.2.2. Common Storage Properties
8.3. Volumes
8.3.1. Volume Ownership
8.4. Using the Command Line Interface
8.4.1. Examples
8.5. Directory Backend
8.5.1. Configuration
8.5.2. File naming conventions
8.5.3. Storage Features
8.5.4. Examples
8.6. NFS Backend
8.6.1. Configuration
8.6.2. Storage Features
8.6.3. Examples
8.7. CIFS Backend
8.7.1. Configuration
8.7.2. Storage Features
8.7.3. Examples
8.8. GlusterFS Backend
8.8.1. Configuration
8.8.2. File naming conventions
8.8.3. Storage Features
8.9. Local ZFS Pool Backend
8.9.1. Configuration
8.9.2. File naming conventions
8.9.3. Storage Features
8.9.4. Examples
8.10. LVM Backend
8.10.1. Configuration
8.10.2. File naming conventions
8.10.3. Storage Features
8.10.4. Examples
8.11. LVM thin Backend
8.11.1. Configuration
8.11.2. File naming conventions
8.11.3. Storage Features
8.11.4. Examples
8.12. Open-iSCSI initiator
8.12.1. Configuration
8.12.2. File naming conventions
8.12.3. Storage Features
8.12.4. Examples
8.13. User Mode iSCSI Backend
8.13.1. Configuration
8.13.2. Storage Features
8.14. Ceph RADOS Block Devices (RBD)
8.14.1. Configuration
8.14.2. Authentication
8.14.3. Storage Features
8.15. Ceph Filesystem (CephFS)
8.15.1. Configuration
8.15.2. Authentication
8.15.3. Storage Features
9. Storage Replication
9.1. Supported Storage Types
9.2. Schedule Format
9.2.1. Detailed Specification
9.2.2. Examples:
9.3. Error Handling
9.3.1. Possible issues
9.3.2. Migrating a guest in case of Error
9.3.3. Example
9.4. Managing Jobs
9.5. Command Line Interface Examples
10. Qemu/KVM Virtual Machines
10.1. Emulated devices and paravirtualized devices
10.2. Virtual Machines Settings
10.2.1. General Settings
10.2.2. OS Settings
10.2.3. System Settings
10.2.4. Hard Disk
10.2.5. CPU
Resource Limits
CPU Type
Meltdown / Spectre related CPU flags
Intel processors
AMD processors
NUMA
vCPU hot-plug
10.2.6. Memory
10.2.7. Network Device
10.2.8. Display
10.2.9. USB Passthrough
10.2.10. BIOS and UEFI
10.2.11. Inter-VM shared memory
10.2.12. Automatic Start and Shutdown of Virtual Machines
10.3. Migration
10.3.1. Online Migration
How it works
Requirements
10.3.2. Offline Migration
10.4. Copies and Clones
10.5. Virtual Machine Templates
10.6. VM Generation ID
10.7. Importing Virtual Machines and disk images
10.7.1. Step-by-step example of a Windows OVF import
Download the Virtual Machine zip
Extract the disk image from the zip
Import the Virtual Machine
10.7.2. Adding an external disk image to a Virtual Machine
10.8. Cloud-Init Support
10.8.1. Preparing Cloud-Init Templates
10.8.2. Deploying Cloud-Init Templates
10.8.3. Custom Cloud-Init Configuration
10.8.4. Cloud-Init specific Options
10.9. PCI(e) Passthrough
10.9.1. General Requirements
Hardware
Configuration
GPU Passthrough Notes
10.9.2. Host Device Passthrough
Host Configuration
VM Configuration
Other considerations
10.9.3. SR-IOV
Host Configuration
VM Configuration
Other considerations
10.9.4. Mediated Devices (vGPU, GVT-g)
Host Configuration
VM Configuration
10.10. Hookscripts
10.11. Managing Virtual Machines with qm
10.11.1. CLI Usage Examples
10.12. Configuration
10.12.1. File Format
10.12.2. Snapshots
10.12.3. Options
10.13. Locks
11. Proxmox Container Toolkit
11.1. Technology Overview
11.2. Security Considerations
11.3. Guest Operating System Configuration
11.4. Container Images
11.5. Container Storage
11.5.1. FUSE Mounts
11.5.2. Using Quotas Inside Containers
11.5.3. Using ACLs Inside Containers
11.5.4. Backup of Containers mount points
11.5.5. Replication of Containers mount points
11.6. Container Settings
11.6.1. General Settings
Privileged Containers
Unprivileged Containers
11.6.2. CPU
11.6.3. Memory
11.6.4. Mount Points
Storage Backed Mount Points
Bind Mount Points
Device Mount Points
11.6.5. Network
11.6.6. Automatic Start and Shutdown of Containers
11.6.7. Hookscripts
11.7. Backup and Restore
11.7.1. Container Backup
11.7.2. Restoring Container Backups
“Simple” Restore Mode
“Advanced” Restore Mode
11.8. Managing Containers with pct
11.8.1. CLI Usage Examples
11.8.2. Obtaining Debugging Logs
11.9. Migration
11.10. Configuration
11.10.1. File Format
11.10.2. Snapshots
11.10.3. Options
11.11. Locks
12. Proxmox VE Firewall
12.1. Zones
12.2. Configuration Files
12.2.1. Cluster Wide Setup
Enabling the Firewall
12.2.2. Host Specific Configuration
12.2.3. VM/Container Configuration
Enabling the Firewall for VMs and Containers
12.3. Firewall Rules
12.4. Security Groups
12.5. IP Aliases
12.5.1. Standard IP Alias local_network
12.6. IP Sets
12.6.1. Standard IP set management
12.6.2. Standard IP set blacklist
12.6.3. Standard IP set ipfilter-net*
12.7. Services and Commands
12.8. Default firewall rules
12.8.1. Datacenter incoming/outgoing DROP/REJECT
12.8.2. VM/CT incoming/outgoing DROP/REJECT
12.9. Logging of firewall rules
12.9.1. Logging of user defined firewall rules
12.10. Tips and Tricks
12.10.1. How to allow FTP
12.10.2. Suricata IPS integration
12.11. Notes on IPv6
12.12. Ports used by Proxmox VE
13. User Management
13.1. Users
13.1.1. System administrator
13.1.2. Groups
13.2. Authentication Realms
13.3. Two factor authentication
13.3.1. Realm enforced two factor authentication
13.3.2. User configured TOTP authentication
13.3.3. Server side U2F configuration
13.3.4. Activating U2F as a user
13.4. Permission Management
13.4.1. Roles
13.4.2. Privileges
13.4.3. Objects and Paths
Inheritance
13.4.4. Pools
13.4.5. What permission do I need?
13.5. Command Line Tool
13.6. Real World Examples
13.6.1. Administrator Group
13.6.2. Auditors
13.6.3. Delegate User Management
13.6.4. Pools
14. High Availability
14.1. Requirements
14.2. Resources
14.3. Management Tasks
14.4. How It Works
14.4.1. Service States
14.4.2. Local Resource Manager
14.4.3. Cluster Resource Manager
14.5. HA Simulator
14.6. Configuration
14.6.1. Resources
14.6.2. Groups
14.7. Fencing
14.7.1. How Proxmox VE Fences
14.7.2. Configure Hardware Watchdog
14.7.3. Recover Fenced Services
14.8. Start Failure Policy
14.9. Error Recovery
14.10. Package Updates
14.11. Node Maintenance
14.11.1. Shutdown
14.11.2. Reboot
14.11.3. Manual Resource Movement
15. Backup and Restore
15.1. Backup modes
15.2. Backup File Names
15.3. Restore
15.3.1. Bandwidth Limit
15.4. Configuration
15.5. Hook Scripts
15.6. File Exclusions
15.7. Examples
16. Important Service Daemons
16.1. pvedaemon - Proxmox VE API Daemon
16.2. pveproxy - Proxmox VE API Proxy Daemon
16.2.1. Host based Access Control
16.2.2. SSL Cipher Suite
16.2.3. Diffie-Hellman Parameters
16.2.4. Alternative HTTPS certificate
16.2.5. COMPRESSION
16.3. pvestatd - Proxmox VE Status Daemon
16.4. spiceproxy - SPICE Proxy Service
16.4.1. Host based Access Control
17. Useful Command Line Tools
17.1. pvesubscription - Subscription Management
17.2. pveperf - Proxmox VE Benchmark Script
17.3. Shell interface for the Proxmox VE API
17.3.1. EXAMPLES
17.4. Proxmox Node Management
17.4.1. EXAMPLES
17.4.2. Wake-on-LAN
18. Frequently Asked Questions
Bibliography
Books about Proxmox VE
Books about related technology
Books about related topics
A. Command Line Interface
A.1. Output format options [FORMAT_OPTIONS]
A.2. pvesm - Proxmox VE Storage Manager
A.3. pvesubscription - Proxmox VE Subscription Manager
A.4. pveperf - Proxmox VE Benchmark Script
A.5. pveceph - Manage CEPH Services on Proxmox VE Nodes
A.6. pvenode - Proxmox VE Node Management
A.7. pvesh - Shell interface for the Proxmox VE API
A.8. qm - Qemu/KVM Virtual Machine Manager
A.9. qmrestore - Restore QemuServer vzdump Backups
A.10. pct - Proxmox Container Toolkit
A.11. pveam - Proxmox VE Appliance Manager
A.12. pvecm - Proxmox VE Cluster Manager
A.13. pvesr - Proxmox VE Storage Replication
A.14. pveum - Proxmox VE User Manager
A.15. vzdump - Backup Utility for VMs and Containers
A.16. ha-manager - Proxmox VE HA Manager
B. Service Daemons
B.1. pve-firewall - Proxmox VE Firewall Daemon
B.2. pvedaemon - Proxmox VE API Daemon
B.3. pveproxy - Proxmox VE API Proxy Daemon
B.4. pvestatd - Proxmox VE Status Daemon
B.5. spiceproxy - SPICE Proxy Service
B.6. pmxcfs - Proxmox Cluster File System
B.7. pve-ha-crm - Cluster Resource Manager Daemon
B.8. pve-ha-lrm - Local Resource Manager Daemon
C. Configuration Files
C.1. Datacenter Configuration
C.1.1. File Format
C.1.2. Options
D. Firewall Macro Definitions
E. GNU Free Documentation License