

Proxmox High Availability

Introduce, design, and implement high availability
clusters using Proxmox

Simon M.C. Cheng

BIRMINGHAM - MUMBAI

[FM-2]

Proxmox High Availability

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1241014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-088-8

www.packtpub.com

Cover image by Suyog Gharat (yogiee@me.com)

www.packtpub.com

[FM-3]

Credits

Author
Simon M.C. Cheng

Reviewers
Alessio Bravi

David Fischer

Philip Iezzi

Damien PIQUET

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Subho Gupta

Content Development Editor
Ruchita Bhansali

Technical Editor
Aman Preet Singh

Copy Editors
Karuna Narayanan

Alfida Paiva

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Rekha Nair

Graphics
Sheetal Aute

Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Adonia Jones

Nilesh R. Mohite

[FM-4]

About the Author

Simon M.C. Cheng is an experienced engineer and has been working in the field
of system administration on Linux and Windows platforms for around 8 years. He
has a Bachelor's degree in Computing from The Hong Kong Polytechnic University.

He currently lives in Hong Kong and has previously worked in a number of different
roles, including as a technician at a college, IT officer at Geodis Wilson Hong Kong
Limited, senior systems engineer at Questex Media Limited and Ignite Media
Group, and a few more roles. In recent years, he has become interested in server
virtualization and has put his efforts into learning more about it.

If you have anything to share, you can contact him on LinkedIn or e-mail him at
simonc1001@hotmail.com.

I am deeply indebted to my acquisition editors, Ashish Bhanushali
and Subho Gupta, and the project co-ordinator, Kinjal Bari, who gave
me the chance to write my first book. It was a great gamble for them
to choose me because I had no prior experience in book publishing.

I would like to express my deepest gratitude to my responsible
editor, Ruchita Bhansali. She is a very helpful and responsible
editor who put in a lot of effort in this book and led me through
the process of publishing this book.

I am also grateful to all the reviewers from different technical
backgrounds for their comments, opinions, and valuable suggestions
for this book. These suggestions have definitely enriched and
expanded the content of this book. Thanks to them for making
this book interesting and enriching.

Last but not least, I would like to take this opportunity to give
credit to my parents and my girlfriend, Fanny. Without their
understanding and support, I would not have had the courage
to accept this new challenge.

[FM-5]

About the Reviewers

Alessio Bravi has been playing with "bits" since he was 5 years old. He started
programming at the age of 6, and soon, he started focusing his attention on network
administration and IT systems security, in the best period of the Internet age.

When he was 19 years old, he founded IntSec.NET, where he worked as the
Chief Technology Officer (CTO). He has also worked as a network and security
administrator for Italian Internet Services Providers (ISPs/WISPs) and as an IT
security consultant for many companies in Europe.

He works only with Unix-like OSes and specializes in IT security analysis, network
engineering and administration, autonomous systems BGP routing, IPv4 and IPv6
routing and switching, OS virtualization, and data center management.

He writes some technical articles to share IT hints with the digital world on his
personal blog at http://blog.bravi.org/. More on Alessio's technical skills
and personal details can be found on his LinkedIn profile page at http://www.
linkedin.com/in/alessiobravi.

David Fischer spent 5 years as a research assistant at Hepia, University of Applied
Sciences Geneva, Telecommunications Laboratory, where he focused on building
distributed media-oriented platforms, automating the deployment and maintenance
of open-source-based network services, and operating cloud-based infrastructures.
In the meantime, he got his Master's degree in Information and Communication
Technologies. His thesis project, Open Source Cloud Infrastructure for Encoding and
Distribution (OSCIED), made in collaboration with the European Broadcasting Union
(EBU), was aimed at providing a scalable media open source platform to the members
of the EBU. With his colleagues at Sigala Media, based in BC, Canada, Mr. Fischer is
now building an advanced cloud transcoding solution called CloudNcode. He lives in
Geneva, Switzerland, with his wife, Claire, and child, Eliott.

http://blog.bravi.org/
http://www.linkedin.com/in/alessiobravi
http://www.linkedin.com/in/alessiobravi

[FM-6]

Philip Iezzi is a Swiss system engineer and web application programmer.
He primarily works with Linux server technologies and network security, and has
been doing web development since 1999. He devoted a lot of time to open source
projects, and he is the author of PowerPhlogger (2000-2006), Pigalle, YaBook, and
the Sourdough Application Framework for PHP. In 2003, he founded his own
web-hosting company, Onlime Webhosting (https://www.onlime.ch). In 2005,
he got his Master's degree in Computer Science and Business Informatics from the
University of Zurich, Switzerland.

Currently, he is working at Datenpark as a systems engineer, and spends a lot of time
on various web projects, specifically Airpane Controlpanel, a user administration
backend and CRM. Airpane Controlpanel, a central software component, is used by
the web-hosting companies Onlime Webhosting and Datenpark. After gaining some
experience with Java, C#, and .NET at Credit-Suisse, he is now strongly focusing
again on PHP development with Zend Framework and Symfony2.

As a systems engineer, he is currently maintaining a large number of Debian Linux
servers. For him, Virtualization technology plays an important role, and in a 100
percent Linux environment, Proxmox VE with OpenVZ seems like the perfect solution.
He reviewed this book after gaining 2 years of experience in Proxmox VE and more
than 4 years in OpenVZ.

Besides being such a technical guy, Philip is also father of his beloved girl Luisa.

Damien PIQUET is a French system administrator with experience in virtualized
environments. He started working with Proxmox VE in 2011 and deployed his
first cluster infrastructure in 2012. He contributes to Proxmox VE by helping in
translating it into French. He is also the creator and maintainer of pve-monitor,
a Nagios/Shinken plugin for monitoring Proxmox VE in a cluster; this plugin is
available at http://exchange.nagios.org/.

https://www.onlime.ch
http://exchange.nagios.org/

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Basic Concepts of a Proxmox Virtual Environment	 5

Introduction to Proxmox Virtual Environment	 5
Introduction to server virtualization	 6
Server virtualization basics – guest versus host	 10
Comparing types of server virtualization software	 10

Comparison table of hypervisors	 12
Basic administration on Proxmox VE	 12

Uploading the OS template or the ISO file to Proxmox	 14
Creating an OpenVZ-based virtual machine	 16
Creating a kernel-based virtual machine	 18
Accessing the new virtual machine	 21

Virtualization options in Proxmox VE	 23
Virtual disk options under Proxmox VE	 24
Introducing the OpenVZ template	 25
Summary	 27

Chapter 2: Getting Started with a High Availability (HA)
Environment	 29

What is a high availability (HA) environment?	 29
What is availability?	 30

Negative effects of system downtime	 31
Strategies to achieve High Availability (HA)	 32

Introducing a Proxmox VE cluster	 35
Introduction to DRBD	 35
Explaining live migration	 36

Introducing the post-copy memory migration	 36
Introducing the pre-copy memory migration	 37

Table of Contents

[ii]

System requirements for the Proxmox cluster	 39
Describing the requirements for RAID	 40

The RAID 0 operation	 40
The RAID 1 operation	 41
The RAID 10 operation	 41

HA capability for Proxmox with a two-node cluster	 43
The Proxmox Cluster file system (pmxcfs)	 45

Summary	 46
Chapter 3: Key Components for Building a Proxmox VE Cluster	 47

Key component 1 – shared storage	 47
Characteristics of SAN and NAS	 48
Available storage options in Proxmox	 48

Storage option 1 – storage over iSCSI	 49
Storage option 2 – a distributed replicated block device (DRBD)	 52
Storage option 3 – the Gluster filesystem	 52
Storage option 4 – the Ceph filesystem	 54

Comparing the types of file storage supported by Proxmox	 57
Key component 2 – reliable network	 60
Key component 3 – a fencing device	 61

What is a fencing device?	 61
Available fencing device options	 63
Intelligent Platform Management Interface (IPMI)	 64
Simple network management protocol (SNMP)	 65

Key component 4 – quorum disk	 66
Summary	 67

Chapter 4: Configuring a Proxmox VE Cluster	 69
Configuring a network for a Proxmox VE cluster	 69

Building a network with redundancy	 69
Building a separate network for the Proxmox VE cluster	 70

Introducing Proxmox's network options	 70
Introducing the VLAN structure	 71

Creating an infrastructure for a Proxmox cluster testing environment	 74
The concept of a quorum device	 75
The concept of a bonding device	 76
The concept of DRBD	 77
Preparing a network for a Proxmox cluster	 80

Preparing storage for a Proxmox cluster	 82
Preparing iSCSI shared storage with NAS4free for the quorum device	 82

Basic concepts of an iSCSI device	 83

Table of Contents

[iii]

Configuring a Proxmox VE cluster	 87
Forming a two-node cluster with DRBD	 87
Installing and configuring DRBD	 92

Creating an LVM volume based on the DRBD shared storage	 98
Network fencing with a Cisco switch via SNMP	 101
Building a Gluster filesystem for a Proxmox cluster	 108
Building a Ceph filesystem for a Proxmox cluster	 115

Mounting a Ceph device as shared storage	 119
Summary	 122

Chapter 5: Testing on a Proxmox Cluster	 123
Storage preparation for an LVM shared storage	 123
Demonstration of live migration	 124

Using an OpenVZ container for live migration	 125
Live migration with a KVM	 128

Building an HA-protected VM	 130
Testing with the cluster environment	 134

Testing an HA service relocation	 134
Testing the OpenVZ container relocation	 134
Testing a KVM relocation	 135

Testing a single network interface failure	 136
Testing a single network switch failure	 137
Testing a single cluster node failure	 138

Setting up a failover domain	 139
Summary	 142

Chapter 6: System Migration of an Existing System to
a Proxmox VE Cluster	 143

System migration of an existing Linux platform	 144
Preparing for container migration on a Proxmox server	 144
Migrating data to a container using the rsync command	 146

Live migration of a physical machine to a KVM	 149
Preparing for migration on the source machine	 149

Creating an LVM snapshot volume for data copying	 150
Preparing for migration on a Proxmox server	 152

Restoring disk information from the source backup	 153
Copying data from the source server to the Proxmox server	 155

System migration of a Windows platform	 158
Post-migration for offline migration with a physical machine	 160

System migration from VMware to Proxmox	 163
System migration from XenServer / Hyper-V Server to Proxmox	 165
Summary	 168

Table of Contents

[iv]

Chapter 7: Disaster Recovery on a Proxmox VE Cluster	 169
Backup process for VMs in Proxmox	 170

Backing up the configuration files of a Proxmox cluster	 170
Backing up the VM data in Proxmox	 171

Backing up using the vzdump command for VMs	 171
Backing up with the web management console	 183

The restore process of VMs in Proxmox	 185
Restoring a VM with vzrestore	 185

Restoring an OpenVZ container with vzrestore	 185
Restoring a KVM machine with vzrestore	 188

Restoring a VM with the web management console	 190
Setting up a scheduled backup for the VMs	 192

Building up our own OS template	 195
Building our own OpenVZ template from an existing container	 195
Building our own VM template from an existing KVM machine	 197

System recovery of a Proxmox cluster failure	 199
Replacing a failed cluster node	 200
Building a redundant cluster from the backup files	 203
Removing a cluster member node	 206

Summary	 208
Chapter 8: Troubleshooting on a Proxmox Cluster	 209

Troubleshooting system access problems	 209
Undefined video mode number	 210
Cannot open the console window in the web management GUI	 211
A KVM machine cannot be turned off using the Shutdown command	 213

Troubleshooting system migration problems	 214
The KVM machine cannot be migrated	 214
An OpenVZ container cannot be migrated	 216

Troubleshooting system storage problems	 216
DRBD volume not in synchronization	 216

Need access to up-to-date data during service initialization	 217
DRBD volume shows the Diskless status	 217
DRBD volume shows the Unknown status	 218

Rebuilding a DRBD volume	 219
Failed to get the extended attribute trusted.glusterfs.volume-id for
brick x on a GlusterFS volume	 220
Replacing a failed Gluster node	 222
CEPH service that shows AA.BB.CC.DD/0 pipe (XXX).fault	 223
CEPH service that shows OSD.X is down	 223

Table of Contents

[v]

Troubleshooting Proxmox cluster problems	 225
Unable to start the HA-enabled VM	 225
The cluster node is being fenced	 227
Nodes unable to rejoin cluster after fence or reboot	 228
Unable to restart the cluster service	 230
Unable to perform any change on the cluster	 231

Summary	 232
Index	 233

Preface
Nowadays, the number of network services is rapidly increasing, due to which
service availability has become a concern. With the help of the easy-to-use tools
provided by Proxmox, users can easily improve their service by building their own
clusters. The support of various storage options provides flexibility with different
forms of network storage.

What this book covers
Chapter 1, Basic Concepts of a Proxmox Virtual Environment, explains the concept of
virtualization and compares Proxmox with other virtualization software.

Chapter 2, Getting Started with a High Availability (HA) Environment, includes
the functions provided by a Proxmox cluster and explains how it achieves
high availability.

Chapter 3, Key Components for Building a Proxmox VE Cluster, explains all the
components required when building a Proxmox cluster environment.

Chapter 4, Configuring a Proxmox VE Cluster, demonstrates the actual installation
and configuration of a Proxmox cluster.

Chapter 5, Testing on a Proxmox Cluster, includes testing on a configured
Proxmox cluster.

Chapter 6, System Migration of an Existing System to a Proxmox VE Cluster, explains
how to migrate existing running systems, including Windows, Linux, and other
virtualization software file formats to a Proxmox cluster.

Chapter 7, Disaster Recovery on a Proxmox VE Cluster, talks about the backup of
a Proxmox cluster. The chapter also introduces the system restore process when
a Proxmox cluster fails.

Preface

[2]

Chapter 8, Troubleshooting on a Proxmox Cluster, introduces all the
troubleshooting content.

What you need for this book
The list of hardware components required is given as follows:

•	 A minimum of two servers are required. Three servers are needed if you
want to test a Gluster filesystem.

•	 A shared storage that is accessible on all the servers as a quorum disk and
as VM storage.

•	 Two network cards on each server.
•	 Two network switches.

The software needed for this book are as follows:

•	 Proxmox Virtual Environment 3.2 or above
•	 NAS4Free 9.2.0.1 or an alternative to build a software-based NAS storage
•	 DRBD 2:8.3.13-2 or above
•	 GlusterFS 3.5.1 or above
•	 CEPH (built with Proxmox)

Who this book is for
This book is intended for those who want to know the secrets of virtualization and
how network services provide high availability. This book is suitable for beginners
and advanced users who are interested in virtualization and cluster technology.
For those who are already using Proxmox, it is a great chance to build a high
availability cluster with a distributed filesystem to further protect your server system
from failure. If you are a beginner, this book also gets you up to speed on what is
happening from conception to implementation. For this book, it will be better if you
have some experience in network and system administration, while experience in
Proxmox is not necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a new file under /etc/init.d/tty.conf with vi or any text editor you like."

A block of code is set as follows:

<fencedevices>
 <fencedevice agent="fence_ifmib" community="Mycluster_community"
 ipaddr="192.168.1.45" name="fence_ifmib_SW1" snmp_version="2c" />
 <fencedevice agent="fence_ifmib" community="Mycluster_community"
 ipaddr="192.168.1.46" name="fence_ifmib_SW2" snmp_version="2c" />
 </fencedevices>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

</rm>
 <failoverdomains>
 <failoverdomain name="myfailover" nofailback="1" ordered="1"
 restricted="1">
 <failoverdomainnode name="vmsrv01" priority="1"/>
 <failoverdomainnode name="vmsrv02" priority="2"/>
 </failoverdomain>
 </failoverdomains>
<pvevm>

Any command-line input or output is written as follows:
sudo apt-get install lshw

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on the Content tab and choose Templates, as shown in the following screenshot:"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

Preface

[4]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Basic Concepts of a Proxmox
Virtual Environment

Have you ever imagined how good it would be if you don't need to stop your
services during a system upgrade operation? Do you have a powerful server but
haven't used all of its resources? Do you want to set up a server platform quickly
using a system template? If the answer to all these questions is yes, then you will be
very happy to work with Proxmox Virtual Environment (also called Proxmox VE).

This chapter will show you some basic concepts of Proxmox VE before actually using
it, including the technology used, basic administration, and some options available
during set up.

The following topics are going to be covered in this chapter:

•	 An explanation of server virtualization used by Proxmox VE
•	 An introduction of basic administrative tools available in Proxmox VE
•	 An explanation of different virtualization modes and storage options

Introduction to Proxmox Virtual
Environment
So what is Proxmox Virtual Environment actually used for? Proxmox VE is an open
source bare metal environment based on the Debian Linux distribution (also called
hypervisor or Virtual Machine Monitor (VMM)) for server virtualization. It allows
a user to install different operating systems (for example, Windows, Linux, Unix,
and others) on a single computer or a cluster built by grouping computers together.
It consists of powerful Kernel-based virtual machines and lightweight OpenVZ
containers as an alternative.

Basic Concepts of a Proxmox Virtual Environment

[6]

The main features for Proxmox VE can be summarized as follows:

•	 Open source: It is fully open source under General Public License, version
3 (GNU AGPL, v3), which means you can freely view, alter, and remove the
source code, and distribute your own version as long as you are compliant
with the license.

•	 Live migration: This allows moving a running virtual machine from one
physical server to another without downtime.

•	 High availability: In Proxmox HA cluster mode, when one node fails, the
remaining virtual machines will be moved to a healthy node to make sure
there is minimal service interruption.

•	 Bridged networking: Proxmox VE allows a user to build a private network
between the virtual machines. VLAN options are also available.

•	 Flexible storage: A wide range of storage options are available, including
both local and network-based storage technologies such as LVM, iSCSI, NFS,
the Gluster filesystem, and the CEPH filesystem.

•	 OS template: Proxmox VE allows users to build their own OS template for
further deployment. Of course, it is also possible for users to download a
template file from the Internet and import that file into their system.

•	 Scheduled backup: A user interface is provided to users so that they can set
up their own backup strategy. The backup files can be stored locally or on
any supported storage option that you have configured.

•	 Command-line (CLI) tool: Proxmox VE provides different CLI management
tools allowing users to access the virtual machine container, manage
resources, and so on.

You can try Proxmox for free at http://pve.proxmox.
com/wiki/Downloads.

Introduction to server virtualization
Have you ever heard about cloud computing? It is a hot topic in the IT industry and
claims that you can allocate nearly unlimited computer resources on a pay-as-you-go
basis. Are you not curious to know how they are able to provide such a service?
The underlying technology that allows them to be able to provide such a service is
hardware virtualization. If you don't understand how virtualization works, it could
be difficult for you to imagine how they can add or remove resources instantly. Let's
talk about how server virtualization works and what it offers us.

http://pve.proxmox.com/wiki/Downloads
http://pve.proxmox.com/wiki/Downloads

Chapter 1

[7]

Why should we use server virtualization? Since the new generation of server class
machines are becoming much more powerful, it becomes quite difficult to use up all
the system resources if we only install one Operating System (OS) on it. Also, renting
multiple server racks in a data center is expensive. Centralizing multiple servers
into a limited set of powerful servers seems to be a more cost-effective solution, thus
virtualization appears. Server virtualization allows users to create multiple system
objects called virtual machines (VMs) that act like normal computers. Virtualization
of physical devices implies that each virtual machine has its own CPU units (called
vCPU), memory, hard disk, and network card, according to a user's allocation. When
the user turns on the virtual machines, different OSes can be installed on them.
Therefore, better system resources utilization can be achieved. The following figure
shows the difference between a physical machine and a virtual machine:

CPU RAM HDD NIC

OS OS

User

Application

User

Application

Virtualization Layer

User application

Operation System

CPU RAM HDD NIC

Normal Server

CPU RAM HDD NIC

CPU RAM HDD NIC

Server with virtual machines

Depending on the kind of processor used, there are three different types
of virtualizations available: full virtualization, para-virtualization, and
hardware-assisted virtualization. In order to state the difference between these
virtualization methods, we need to know how a Control Processing Unit (CPU)
executes code that a user has passed.

Basic Concepts of a Proxmox Virtual Environment

[8]

During any process execution, a CPU is the computing unit that executes predefined
instruction sets to generate the results that the program had defined. But, it is
dangerous if we give full access to all applications on our devices. For example, if
there is no restriction on hardware access, a web page will be able to inject suspicious
code into local memory and it may further damage the data stored in our computers.
Therefore, a term called protection ring ranking, which ranges from 0 to 3 under the
x86 architecture is used to protect our hardware. Normally, Ring 0 (also called
supervisor mode) is used in the OS to monitor and control system resources. Ring 3
(also called user mode) is used for a user application, and if we would like to have
access to hardware, a system call provided from the supervisor mode must be made.
The following figure shows the system ring structure for the x86 platform:

Device drivers

Device drivers

Applications

Ring 0

Kernel

Ring 1

Ring 2

Ring 3

Least privileged

Most privileged

Based on the levels of virtualization, we have the following different types of
virtualization types: full virtualization, para-virtualization, and hardware-assisted
virtualization:

•	 Full virtualization: In this the VMM is placed under Ring 0 while the
virtualized guest OS is installed under Ring 1. However, some system
calls can only be executed under Ring 0. Therefore, a process called binary
translation is used to translate such system calls, and thus, the performance
is degraded. In this mode, the guest OS does not know it is being virtualized,
so it does not require kernel modification. Here is a simple structure for this
type of virtualization:

Chapter 1

[9]

VMM

VMM

Hardware
Hardware

Ring 3

Ring 0

Ring 1

Ring 3

Ring 0

Binary

Translation

User mode

Supervisor modeTraditional system Full Virtualization

User APP

Guest OS

User APP

•	 Para-virtualization: This is very similar to full virtualization, but custom
drivers are installed on the guest OS in order to access CPU resources
without downgrading to Ring 1. So, the performance of the guest OS
is near to that of the physical machine because the translation process is
not needed, but the guest OS requires a modified kernel. Thus, the guest
cannot run a different operating system from the host operation system.
The following diagram shows the structure of this virtualization:

VMM

Hardware

Ring 1

Ring 3

Ring 0

User mode

Supervisor modePara-virtualization

User APP

Guest OS

+ custom drivers

•	 Hardware-assisted virtualization: CPU manufacturers introduce a new
functionality for a virtualized platform, Intel VT-x and AMD-V. The ring
level 0 to 3 is categorized into non-root modes, and a new level, -1, is
introduced as the root mode. The guest OS is now installed to Ring 0, which
means it can access hardware directly. Because it does not need a custom API
to make system calls under Ring 0, no kernel modification is needed. The
following diagram shows you the structure of the virtualization mode:

VMM

Hardware

Ring 1

Ring 3

Ring -1 non-root

User mode

Supervisor modeHardware assisted virtualization

User APP

Guest OS

root mode

Basic Concepts of a Proxmox Virtual Environment

[10]

Server virtualization basics – guest
versus host
So, when both physical and virtualized platforms are running operating systems,
how can we distinguish them from each other? Here come the terms: host and guest,
explained in the following points:

•	 Host OS: It is an operating system that provides virtualization capabilities
for creation, modification, and removal of virtual machines. A virtualization
package contains a component called Virtual Machine Monitor, which
provides an isolated environment to run multiple platforms.

•	 Guest OS: This refers to the operating system installed inside the virtual
environment. The supported guest OS depends on the virtualization software,
and the performance of the guest OS depends on how many resources have
been allocated to it. The following diagram shows a simple diagram on how
we assign different system resources to our virtual machines:

Host OS
Quad-core CPU

8GB RAM
1 TB hard drive

Guest OS 1
vCPU1
1GB RAM
100 GB hard drive

Guest OS 2
CPU1, vCPU2v

2GB RAM
200 GB hard drive

Comparing types of server virtualization
software
We have discussed why we need to learn server virtualization and how virtualization
works, so are you curious about how many types of major virtualization software are
on the market? What are the differences between them? Let's take a deep look at it:

•	 Proxmox VE: As mentioned before, Proxmox VE is an open source
hypervisor based on GNU/Linux (Debian-based) with a RHEL-based
kernel and published under GNU AGPL v3. It differs from the alternative
virtualization software as Proxmox provides a central web-based
management without further installation. The underlying technologies used
are Open Virtuozzo (OpenVZ) and Kernel-based Virtual Machine (KVM),
which will be described in Version 1.6. Subscription plans are available for
accessing enterprise repository, software updates, and user support.

Chapter 1

[11]

•	 XenServer: This is a native hypervisor based on GNU/Linux developed
by the Xen Project and published under GNU AGPL v2 as open source.
For XenServer, a concept of domain is used for all virtual machines,
and the most privileged domain (for example, a domain that allows direct
access to hardware)—dom0, is used by the hypervisor to manage other
domU virtual machines. It supports para-virtualization, which allows a user
to run virtualized guests on a CPU without support for virtualization; for
example, no Intel VT-x or AMD-V is needed. Amazon Web Service (AWS)
is a production example of using XenServer.

•	 VMware ESX/ESXi: This is a bare-metal hypervisor developed by VMware
based on a customized kernel called vmkernel, which is a microkernel
developed by VMware.
The difference between ESX and ESXi is that ESXi is a free version of ESX
with some resource limitations. ESX has a hardware compatibility list that
includes many drivers for network cards and SCSI cards. An extra hardware
driver can be added to the base installation if needed. On top of the
para-virtualization and hardware-assisted virtualization, ESX provides
full virtualization as another option.
There are two management tools available: vSphere client and vCenter
server. VSphere client is enough for normal administration operation on
one ESX while vCenter server allows the user to manage multiple ESXs,
including the configuration of advanced features such as high availability
and live migration.

•	 Hyper-V server: This is a proprietary virtualization platform produced by
Microsoft Corporation running under the Windows platform starting from
Windows Server 2008. If you are mainly using a Windows platform as your
virtualized guest, it is recommended that you use Hyper-V, especially if you
have enabled an Active Directory domain services.

Hyper-V provides better migration options to users; it not only provides
live migration, but also provides unlimited guest movements between hosts. The
benefit of the features of an Active Directory domain is that Hyper-V provides
replica on virtual machines, which allows a user to copy a specific VM from the
source's site to the target site asynchronously via a WAN or a secure VPN.

Basic Concepts of a Proxmox Virtual Environment

[12]

Comparison table of hypervisors
We have learned that there are many virtualization platforms on the market, so what
are the differences between them? Let's take a look at the following table:

Virtualization
platform

Proxmox XenServer VMware
ESX/ESXi

Hyper-V server

Latest version 3.2 6.1 5.5 Server 2012 R2
License GNU GPL v3 GNU GPL v2 Proprietary Free
Open Source Yes Yes No No
Base OS Linux Linux Vmkernel Windows
Console OS No Yes Yes No
Management
tools

Web GUI XenCenter vSphere Client
vCenter

Hyper-V
Manager

Host HA Yes Yes Yes (vCenter) Yes
Guest HA Yes Yes,

(XenMotion)
Yes, (vMotion) Yes (Live

Migration)
Supported
storage

LVM
groupNFS,
iSCSI, RBD,
NAS, and SAS

NFS, iSCSI,
fiber channel,
NAS, SAS, and
CIFS

Fibre Channel,
iSCSI, NAS,
and SAS

SMB, iSCSI,
Fibre channel,
NAS, and SAS

Supported
virtualization
technology*

•	 FV
(KVM)

•	 OpenVZ

•	 PV
•	 HV

•	 FV
•	 PV
•	 HV

•	 PV
•	 HV

License model Per CPU Per CPU Per CPU Per VM and host

In the previous table, FV stands for full virtualization, PV stands for
para-virtualization, and HV stands for hardware-assisted virtualization.

Basic administration on Proxmox VE
After we have talked about so many concepts, let's learn how to configure Proxmox!
I assume you have downloaded and installed your own Proxmox. If you face any
difficulty during the installation, you can refer to the following link:

https://pve.proxmox.com/wiki/Quick_installation

https://pve.proxmox.com/wiki/Quick_installation

Chapter 1

[13]

The following steps will help you perform basic administration in Proxmox VE:

1.	 After the installation, you should be able to see the following screen:

2.	 In this step, access the Proxmox VE using a web browser, and make sure
you have network access and you are connected in the same subnet as
Proxmox. Then, type in a URL in the following format in your browser:
https://<Proxmox_IP>:8006. When you first visit the page, your browser
will warn you that the SSL certificate is not a trusted one. It is normal if you
have experience in building your self-signed SSL certificate on your web
server. If you have a domain name for your Proxmox server and would like
to have a SSL certificate signed by an authorized CA, please take a look at the
following sites:

°° Apache CSR creation using OpenSSL http://www.digicert.com/
csr-creation-apache.htm

°° HTTPS certificate configuration http://pve.proxmox.com/wiki/
HTTPSCertificateConfiguration

3.	 Next, simply choosing Continue to this website in Internet Explorer adds to the
exception. Similarly, choose I understand the risk in Firefox and Chrome. Next,
just log in to the system with the root account since we haven't created our own
user account. Being logged in, the following warning message indicates that
you do not have a valid subscription plan. You can ignore this warning message
if you currently don't need to have technical support.

http://www.digicert.com/csr-creation-apache.htm
http://www.digicert.com/csr-creation-apache.htm
http://pve.proxmox.com/wiki/HTTPSCertificateConfiguration
http://pve.proxmox.com/wiki/HTTPSCertificateConfiguration

Basic Concepts of a Proxmox Virtual Environment

[14]

4.	 Within the web GUI, you will be able to manage most features of the
Proxmox platform. For example, you can create new virtual machines
by using the buttons located in the upper-right corner, as shown in the
following screenshot:

There are two ways to create new virtual machines: Create VM and Create CT.

5.	 By clicking on the Create CT button, you can create a virtualized Linux
platform under the OpenVZ container. It is recommended for GNU/Linux
guests because the Linux kernel is shared with the host server, which means
that the used memory on the host server will be reduced. When you go
through the wizard after clicking on the Create CT button, a virtualized OS is
created based on the OS template you used. An OS template is an operation
system (for example, CentOS, Debian, and others) with customized packages
installed and predefined system parameters. The templates are available
in the form of a brand new system or installed with a web server or an
application like Drupal. Typically, no graphical user interface (GUI) is
preinstalled in the virtualized guests if you use this type of installation.

Uploading the OS template or the ISO file
to Proxmox
Before we can start trying to build our own virtual machines with OpenVZ, we have
to first upload either an OS template or an ISO file that contains the operating system
installation files to Proxmox. The following steps will help us understand how to
do this:

1.	 Double-click on the icon that is named as the hostname of Proxmox, then
choose local, click on Content, and choose Upload from the panel on the
right-hand side, as shown in the following screenshot:

Chapter 1

[15]

2.	 After we have clicked on the Upload button, three options are available,
as shown in the following screenshot:

The three options available are as follows:
°° ISO image: This is used as the installation source file for

Kernel-based virtualization
°° VZDump backup file: This is used to upload backup files created

by Proxmox for restoration
°° OpenVZ template: This is used for the installation source for

OpenVZ virtualization

3.	 Then, we can simply browse the file that we would like to upload. Pay
attention when uploading the OpenVZ template file; you need to use
the following naming format:
{OSName}-{OSVersion}-{OSName}_{OSType}_{amd64/i386}.tar.gz

This format is shown in the following example:
centos-6-CentOS_standard_amd64.tar.gz

The output can be seen in the following screenshot:

We are now ready to create our own virtual machines; let's see how we can create an
OpenVZ-based virtual machine first. For example, the OpenVZ template file will be
stored inside /var/lib/vz/template/cache/; you can also manually upload it to
that directory if you don't wish to use the web interface.

Basic Concepts of a Proxmox Virtual Environment

[16]

Creating an OpenVZ-based virtual machine
To create an OpenVZ-based virtual machine, please follow these steps:

1.	 Click on the Create CT button, and the following window pops up; a system
hostname and a password for the root account can be defined, as shown in the
following screenshot:

2.	 Next, the system will ask you for the template you want to use; for example,
you can choose centOS-6-CentOS_devel_amd64.tar.gz:

3.	 Then, you will be asked to assign resources to the VM; we can accept the
default setting for testing purposes:

Chapter 1

[17]

4.	 After we have allocated system resources to the new virtual machine,
we reach an important part: networking. Here, you have the following
two options:

°° Routed mode: This uses the default network interface used by
Proxmox, and simply specifies an IP address. Only select routed
mode if you create a guest system that lies in the same IP subnet
as the host system. It would be slightly easier during the system
configuration than in the Bridged mode.

°° Bridged mode: This allows you to choose a network adapter other
than the default one (including a VLAN-enabled interface). It requires
a DHCP server for IP assignment or is manually configured under VM.
A demonstration on how to configure the Bridged mode will be shown
in Chapter 4, Configuring a Proxmox VE Cluster.

In the following screenshot, we choose the Routed mode and specify an IP
address for demonstration:

5.	 The following settings regarding the DNS parameters are saved to
the /etc/resolv.conf file in the virtualized guest:

6.	 A summary for the configuration is displayed before the VM is created.

Basic Concepts of a Proxmox Virtual Environment

[18]

7.	 After the VM creation is completed, you can view its status in the Summary
tab, as shown in the following screenshot:

Creating a kernel-based virtual machine
We have seen how to create OpenVZ-based virtual machines; now, let's learn how
we can create a kernel-based virtual machine:

1.	 Click on the Create VM button in the top-right corner, as shown in the
following screenshot:

2.	 Specify a name for identification, but please note that the name is not directly
applied to the VM's hostname, as shown in the following screenshot:

Chapter 1

[19]

3.	 Then, we need to choose the type of platform we are going to create, shown
as follows:

4.	 Next, the OS installation source is specified, shown as follows:

5.	 After that, we have to allocate the hard disk for the virtual machine. Pay
attention to the hard disk's Format you have chosen; the raw format will
instantly allocate the space you have defined (that is, if you defined a 20 GB
hard disk, a disk image with 20 GB will be created under the host server) while
the QEMU format will only allocate the space based on the current usage of
the guest OS. If the guest OS takes up 8 GB, then a disk image with 8 GB in size
will be created. For more details, refer to the Virtual disk options under Proxmox
VE section. The hard disk window is shown in the following screenshot:

Basic Concepts of a Proxmox Virtual Environment

[20]

6.	 The number of cores/sockets and the CPU types have to be specified for the
guest, as shown in the following screenshot:

7.	 Of course, we need to allocate the amount of memory for the guest platform,
shown as follows:

8.	 For the network part, similar to the OpenVZ creation, we have bridged
mode and NAT mode. Here, we can specify Model for the virtualized
VM; generally, choosing Intel E1000 and Realtek RTL8139 should be fine.
The VirtIO option provides better performance, but the driver must be
installed on the guest OS before it can be used. This is shown in the
following screenshot:

9.	 A summary of the configurations is displayed for confirmation.

Chapter 1

[21]

10.	 Just as it appears for OpenVZ, we can find our created VM under the menu,
as follows:

Isn't it easy to create a virtual machine with a web interface? By the way, you can
identify whether a virtual machine is an OpenVZ container or KVM by its associated
icons, as shown in the following screenshot:

Accessing the new virtual machine
Congratulations! You have just created your own virtual machine! Wait, how can
we access the system? That's a good question; here, we have two options to achieve
our goal. One option is to access it from the web browser. What? Access an operating
system with a web browser? Yes, let's see how it works:

1.	 Right-click on the virtual machine you would like to access from the panel on
the left-hand side, and then choose console.
Prior to Proxmox 3.2, a new console mode, SPICE, was introduced, which
provides a better usage performance especially in a KVM machine. You can
refer to https://pve.proxmox.com/wiki/SPICE for more details.
Make sure you have the latest JAVA runtime (JRE), preferably with JAVA 7
on your browser, and allow it to run if there is any prompt message. You can
download it from http://www.oracle.com/technetwork/java/javase/
downloads/index.html. If you cannot run the applet, refer to Chapter 8,
Troubleshooting on a Proxmox Cluster, for troubleshooting.

https://pve.proxmox.com/wiki/SPICE
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Basic Concepts of a Proxmox Virtual Environment

[22]

Pay attention to OpenVZ-based VM; you will see that it cannot be accessed from the
console because you have to configure a getty service inside the VM. So, we need to
use another method for this purpose, for example, the OpenVZ management CLI:

1.	 Access your Proxmox console with the root account, as shown in the
following screenshot:

2.	 You can check the existing running OpenVZ containers with the
vzlist command as shown in the following screenshot:

3.	 Then, access it with vzctl enter <CTID>, for example, vzctl enter 102.
4.	 Create a new file under /etc/init.d/tty.conf with vi or any text editor

you like.
5.	 Paste the following code in the tty.conf file:

This service maintains agetty on tty1 from the point the
system is started until it is shut down again.
start on stopped rc RUNLEVEL=[2345]
stop on runlevel [!2345]
respawn
exec /sbin/agetty -8 tty1 38400

6.	 Reboot the guest VM or type start tty to reboot.

Chapter 1

[23]

Virtualization options in Proxmox VE
There are two types of virtualizations available in Proxmox: OpenVZ and KVM.
What are the differences between them?

OpenVZ is an operating-system-level virtualization based on the GNU/Linux kernel
and the host operation system. Theoretically, OpenVZ is not a type of virtualization
but more like the jail concept in Linux. Since a patched Linux kernel is needed, only
Linux guests can be created. All guests are called containers that share the same
kernel and architecture as long as the host OS, while each container reserves
a separate user space.

There is no overhead for OpenVZ as containers can call hardware resources directly.
However, since all containers share the system kernel of the host OS, a system-related
problem might appear during the host OS kernel upgrade. Besides, OpenVZ stores
container files as normal files in the host OS, so it is not recommended to use OpenVZ
if there are confidential files stored in the virtual machine. Kernel-based Virtual
Machine (KVM) is basically a hardware-assisted virtualization with the modified Linux
kernel built with the KVM module. KVM itself does not perform any emulation or
virtualization. Instead, it simply exposes the /dev/kvm interface. QEMU is chosen
as a software-based emulator to simulate hardware for the virtualized environment.
The structure of KVM is shown as follows:

QEMU

VM

(guest system)

KVM kernel module

1) ioctl() 4) Return

2) VM Entry 3) VM Exit

Linux kernel (hypervisor)

0) /dev/kvm

User space

Basic Concepts of a Proxmox Virtual Environment

[24]

As we can see, overheads on frequent requests appear in QEMU-emulated devices.
Thus, an improved version for KVM is published with VirtIO drivers. VirtIO creates
a buffer for both the guest system and QEMU, which speeds up the I/O performance
and reduces the overhead. To enjoy the performance burst, a VirtIO driver must be
installed separately on each emulated hardware device. In the following diagram,
we have demonstrated the new structure of the KVM machines with the VirtIO
drivers installed:

User space

virt-manager

libvirt

QEMU

VM
(guest system)

KVM kernel module

Linux kernel (hypervisor)

/dev/kvm Intel VT-x

The following table shows the supported operating systems provided by OpenVZ
and KVM:

Virtualization method Supported operating system
OpenVZ CentOS, Debian, Fedora, Scientific Linux, SUSE, and Ubuntu
KVM FreeBSD, Windows Server 2000/XP/2003/2008, Windows

7/8, and all OS supported by OpenVZ

Virtual disk options under Proxmox VE
During the virtual machine creation, the following virtual disk options are available:

•	 RAW: This is a raw file format. The disk space is allocated during the
creation and will use up the specified size. When compared with QCOW2,
it gives a better overall performance.

Chapter 1

[25]

•	 QCOW2: This is an enhanced version of QCOW, which offers a provisioning
ability for disk storage used by QEMU. QCOW2 offers a capability to create
multiple virtual machine snapshots compared to the older version. The
following features are supported:

°° Thin-provisioning: During the disk creation, a file smaller than the
specified size is created, and the specified size will be configured
as the maximum size of the disk image. The file size will grow
according to the usage inside the guest system; this is called
thin-provisioning.

°° Snapshot: QCOW2 allows the user to create snapshots of the current
system. With the use of the copy-on-write technology and a read-only
base image, differential backup can be achieved.

°° VMDK: This file format for a disk image is used by VMware. The
virtual disk file can be imported back to VMware Player, ESX, and
ESXi. It also provides a thin-provisioning function such as QCOW2.

Introducing the OpenVZ template
Since the OpenVZ filesystem is only file-based, it is possible to pack the
configurations and the disk image into a file for further deployment. We can create
our own template file (which will be introduced in Chapter 7, Disaster Recovery on a
Proxmox VE Cluster), or download the template file (also called a virtual appliance)
via a web interface or from http://download.proxmox.com/appliances/.

Use these steps to download an OpenVZ template:

1.	 Log in to the web interface of Proxmox, and find local storage from the panel
on the left-hand side.

2.	 Click on the Content tab and choose Templates, as shown in the
following screenshot:

http://download.proxmox.com/appliances/

Basic Concepts of a Proxmox Virtual Environment

[26]

3.	 Next, we need to find a suitable template to download; for example,
we can download a system with Drupal installed, as shown in the
following screenshot:

4.	 After we click on the Download button, the following progress window is
shown along with the download details:

5.	 When the download completes, the template file is listed on the templates
page, as shown in the following screenshot:

Chapter 1

[27]

Summary
In this chapter, we introduced the different modes of server virtualization, the
reasons for using it, and how it actually works. We also caught a glimpse of the
development on server virtualization by knowing the background technologies.
Besides that, we learned the features and strengths of the different hypervisors on
the market. Moreover, we went through some basic administration techniques of
Proxmox, including the creation of virtual machines, importing OpenVZ templates,
and viewing a guest system via the web console. Most importantly, we learned how
to distinguish KVM and OpenVZ, which affects our decision during VM creation,
for example, security versus performance.

In the next chapter, we are going to learn some concepts on high availability and the
introduction of the Proxmox cluster.

Getting Started with a High
Availability (HA) Environment

After Chapter 1, Basic Concepts of a Proxmox Virtual Environment, you might be excited
to know how much more can we do with the help of Proxmox. Maybe you are
already planning to virtualize your existing server with the help of Proxmox. Wait!
Isn't it dangerous to centralize all servers in one physical machine? If you are an
experienced system administrator, you must've been told to avoid a single point of
failure; you have to minimize the number of services on a physical machine. We are
now violating this rule; how should we solve this problem? In this chapter, we will
cover the following topics:

•	 What is a high availability environment?
•	 Introducing a Proxmox VE cluster
•	 Hardware requirements for a Proxmox cluster
•	 How does Proxmox provide HA capacity?

What is a high availability (HA)
environment?
If there is a single point of failure, can we simply add another identical server to
solve it? The answer to this question is not as simple as a yes or a no. Even if we
install the same software on two identical machines, how can we synchronize the
data between them? It is not ideal to copy new data to the backup server manually.
That's why the HA environment was created.

Getting Started with a High Availability (HA) Environment

[30]

What is availability?
What does availability mean? Let's take a look at the formula to calculate the
availability; we need to divide the subtraction of Downtime duration (DD) from
Expected uptime (EU) with Expected uptime (EU) and then multiply it by 100.
Availability is expressed as a percentage of uptime in a year. The formula is as follows:

The terms used in the formula are explained as follows:

•	 Downtime duration (DD): This refers to the number of hours for which the
system is unavailable

•	 Expected uptime (EU): This refers to the expected system availability;
normally, we expect the system to be available for 365 x 24 x 7 hours

For example, if there are 100, 200, and 300 downtimes a month for a server and each
downtime lasts for 4 hours, we will have following availability numbers:

Duration of downtime Expected uptime (1 year) Availability
100 x 4 = 400 hours 8760 hours 95%
200 x 4 = 800 hours 8760 hours 91%
300 x 4 = 1200 hours 8760 hours 86%

There are two types of downtime: scheduled downtime and unscheduled downtime.
They are explained as follows:

•	 Scheduled downtime: Traditionally, we have to make rooms for server
package updates, hardware upgrades, configuration modifications, and so
on. This type of downtime is inevitable, which should be a harmless, and
it increases the stability and functionality of the server. Such downtime is
under control, and the duration should be relatively short. The downtime
is explained in the following diagram:

Chapter 2

[31]

Server

System upgrade

Hardware upgrade

Configuration modification

•	 Unscheduled downtime: This type of downtime includes hardware failures,
software faults, human errors, and others. The duration of unscheduled
downtime is unknown, but in general, it is much more than a scheduled one.
Each unscheduled downtime should be taken into serious concern and should
be avoided. This downtime is explained more clearly in the following diagram:

Server

Hardware failure

Software fault

Human error

Insufficient
system resources

+
+
+
+

Negative effects of system downtime
We have gone through planned and unplanned downtime, and we all know that
downtime is a bad thing. What are the problems caused because of downtime?
Let's have a look:

•	 Loss of customer trust: This will have a huge impact if your application is an
online buying platform. When a user tries to pay for the products or services
they have selected, the system responds with an error page or, even worse,
a white screen. If you were the customer, would you still trust this platform
as a reliable one? I think the answer is no. Customers tend to share bad
experiences with friends, and thus, a company's reputation will get damaged.

•	 System recovery: At the backend, quite a bit of system recovery and
some troubleshooting tasks are required. Sometimes, we have to wait for
support from the vendor, and they might not have essential service parts
(this happens mostly for older systems). If this is the case, the repairing
time will be longer than normal while you are still paying the rack rental
fee to the data center, thus incurring a loss.

Getting Started with a High Availability (HA) Environment

[32]

•	 Reduction in the productivity of the internal staff: If the affected server
contains an internal system, the daily operation of the staff is affected. For
example, when it is a CRM system, the sales staff cannot load customer
information to process. When it is a financial system, the accountant cannot
send and receive money from banks and the customers.

Strategies to achieve High Availability (HA)
Now, come back to the word, High Availability. HA means that we have to build an
infrastructure to escape from these downtimes. We have the following strategies to
achieve HA:

•	 Load balancing: If the downtime is caused by insufficient system resources,
adding a new server with a load balancer in between could increase the level
of availability. The advantage of load balancing is that it does not require
identical server machines. With the help of this technique, a server with a
90 percent system load can be reduced to a 50 percent system load. Thus, it
helps reduce the chance of a system failure due to insufficient resources.

SRV 1

System load:
90%

SRV 1

System load:
50%

SRV 2

System load:
40%

Load Balancer

There are software-based (SW-based) and hardware-based (HW-based)
load balancers; the main difference between them is that the SW-based
load balancer requires user installation, while the hardware-based load
balancer is ready to use when it is delivered. The differences are given
in the following table:

Type Product Configuration difficulty Price
Reverse proxy Nginx, Squid Medium Low

SW-based load balancer HAProxy, Zen
load balancer

High Low

HW-based load
balancer

F5 Big-IP® Local
Traffic Manager

Low High

Chapter 2

[33]

•	 Failover: This is similar to load balancing but requires an identical server
machine as a standby. Imagine that we have two identical servers; there is a
heartbeat between the two servers to identify whether any one of the systems
have failed or not. The following points explain how it works:

°° Initially there is a heartbeat signal in between SRV1 and SRV2, and
Server2 (SRV2) is in the standby state

°° When Server1 (SRV1) fails, the heartbeat signal from SRV1 is
missing, and it notifies SRV2

°° SRV2 takes over SRV1's responsibility and makes it active

This has been explained in the following diagram:

SRV1 SRV2

Standby

a

Heartbeat

SRV1 SRV1SRV2 SRV1

Standby Active

b c

Heartbeat Heartbeat

Failed Failed

+ +

•	 Heartbeat: This is a key term for a HA environment. It is used to check
the availability of each cluster member node and perform certain actions
according to the system state changes. There are a few types of operations
needed to detect such a problem. For example, we can set up the following
two conditions with heartbeat:

°° The first condition: UDP packets are sent between SRV1 and SRV2 in
order to test the current status of SRV1. If SRV1 becomes unavailable,
the heartbeat will return a failed result and turn on the running
services of SRV1 on SRV2. This test is used to check whether the
connection between SRV1 and SRV2 is working properly.

°° The second condition: A ping operation takes place from both
SRV1 and SRV2 to an external IP address. This will guarantee
that the connection of both the servers to an outside network is
working properly. If one of the conditions shows a false status, the
corresponding server node will be either shut down or disconnected,
and it relocates the virtual machines to the other node.

Getting Started with a High Availability (HA) Environment

[34]

For more details on the configuration we used, refer to Chapter 4, Configuring
a Proxmox VE Cluster.

•	 Redundancy: Have you noticed that there is a problem with the failover
method? What if there is a connection problem between SRV1 and SRV2?
Redundancy is an improved version of the single failover method; failover is
not only applied at the server level but also at the infrastructure level. Here,
we have a simple diagram for your understanding:

SW1

SW2
standby

heartbeat

SRV1
SRV2

Standby

SW1

SW2

heartbeat

SRV1
SRV2

Standby

heartbeat

There is a standby switch (SW2) in between two servers. When the production
switch (SW1) fails, SRV1 and SRV2 will choose SW2 as the new path to send the
heartbeat signals. So, we won't disable a server node by mistake. What will happen
if we disabled a server node in a wrong way?

For example, we have a healthy server node, SRV1, but heartbeat service treated it as
failed due to the network delay. Thus, all services that are running under SRV1 will
be activated in SRV2. To avoid data corruption caused by multiple accesses at both
nodes, SRV1 will be disabled. In this case, the network card will be disabled to avoid
access to the shared storage. Therefore, we need to have a network interface for
management use and will not join the cluster operation for manual recovery.

To reach a high level of availability, we have to choose redundancy mode from the
strategies mentioned.

Chapter 2

[35]

Introducing a Proxmox VE cluster
Now, we have some idea about how to measure the availability level for a server;
increasing the availability is very important for us. Is it possible for Proxmox to
deal with this task? Yes, of course, but it is only available in cluster mode. The basic
difference between single instance versus clusters under Proxmox is as follows:

Product Proxmox VE Proxmox VE Cluster
Number of nodes 1 2 (minimum)
Quorum disk No Yes
Storage Local Shared
HA No Yes

Unlike running with a single Proxmox instance, we need to provide shared storage
for the cluster to keep the data of virtual machines. In our configuration, we would
like to use a package called DRBD, which allows us to use local storage from both
servers to form a shared RAID 1 storage. The data synchronization will automatically
be managed by the DRBD package. So, we don't need to purchase additional
network storage for our testing.

Introduction to DRBD
DRBD is a short form for Distributed Replicated Block Device; it is intended to be
used under a HA environment. DRBD provides high availability by mirroring the
existing system to another machine, including the disk storage, network card status,
and services that run under the existing system. So, if the existing system is out of
service, we can instantly switch to the backup system to avoid service interruption.
This has been explained in the following diagram:

Getting Started with a High Availability (HA) Environment

[36]

In our case, we would like to focus on the data synchronization on the local storage.
For more details on the configuration, refer to Chapter 4, Configuring a Proxmox
VE Cluster.

Besides HA, there are a few more functions provided by the Proxmox cluster mode,
but the most important one is live migration. Unlike normal migration, in a Proxmox
cluster, migration can be accomplished without shutting down the virtual machine.
Such an approach is called live migration, which greatly reduces the downtime of
each virtual machine.

Explaining live migration
Live migration can be divided into two techniques: pre-copy memory migration for
the KVM-based VM and post-copy memory migration for the OpenVZ-based VM. The
difference between pre-copy and post-copy is that pre-copy can recover migration error
while post-copy cannot. Let's see how live migration works in the OpenVZ-based
VM first.

Introducing the post-copy memory migration
When post-copy memory migration takes place, the following steps are performed:

1.	 Data in the OpenVZ container is copied to the destination server (SRV2).

Proxmox
SRV1

VM1
running

Proxmox
SRV2

Storage
rsync -aH --delete --numeric-id --sparse<Container_data><destination>

Copying container data

2.	 After that, the original VM (VM1) is suspended, and a minimal set of system
resources, including CPU, registers, and non-paging memory, is delivered to
the destination server (SRV2); this process is called pre-paging.

Proxmox
SRV1

VM1
suspended

Proxmox
SRV2

New
VM1

rsync -aH --delete --numeric-id --sparse<Container_data><destination>

Copying minimal set of execution state

Chapter 2

[37]

3.	 VM1 is resumed at SRV2; meanwhile, VM1 at SRV1 will actively push the
remaining memory pages to SRV2.

Proxmox
SRV1

VM1
suspended

Proxmox
SRV2

VM1
running

Copying remaining memory pages

When the new VM1 accesses the memory pages, a page fault is generated. This will
then be redirected back to VM1 at SRV1 to solve the problem. Such redirection is
defined as a network fault, which degrades system performance.

Post-copy memory migration can be used in OpenVZ-based virtual machines, because
the data content of the VM is stored under files and folders. So, we can simply copy
the data via the SSH tunnel in a local network, which is supposed to be very fast.
Next, let's check out how pre-copy memory migration works.

Introducing the pre-copy memory migration
Under KVM, we have a different type of migration process; this is called pre-copy
memory migration. During the pre-copy memory migration, warm-up phase and
stop-and-copy phase are executed. The following are the steps that occur in the
pre-copy memory migration:

1.	 In the warm-up phase, Proxmox attempts to copy all memory pages from
source to destination while the virtual machine is still running.

Proxmox SRV1

VM1

running

VM2

running
RAM

Proxmox SRV2

VM1

running

VM2

stopped
RAM

512M

0M

Memory map of VM2

Shared storage
HDD (VM2)

Copied

Remaining

Getting Started with a High Availability (HA) Environment

[38]

2.	 If there is any change in the source memory pages, the corresponding memory
pages on the target machine are marked as dirty. After we have copied the
memory pages from the source machine, the memory pages marked as dirty
are recopied to the destination until the rate of the recopied pages is larger than
the rate of dirty pages to make sure only minor changes are there.

Proxmox SRV1

VM1

running

VM2

running
RAM

Proxmox SRV1

VM1

running

VM2

stopped
RAM

512M

0M

Memory map of VM2

Shared storage
HDD (VM2)

Re-copied

Copied

Dirty

Memory map of
New VM2

0M

512M

3.	 When the rate of dirty pages is less than that of recopied pages, the
warm-up phase ends and the stop-and-copy phase starts. The original
VM2 will be stopped, and the remaining dirty pages will be copied to
destination Proxmox. This is actual downtime for VM2; it ranges from
milliseconds to seconds.

Proxmox SRV1

VM1

running

VM2

running
RAM

Proxmox SRV2

VM1

running

VM2

stopped
RAM

512M

0M

Memory map of VM2

Shared storage
HDD (VM2)

Re-copied

Copied

Dirty

Memory map of
New VM2

0M

512M

Chapter 2

[39]

4.	 Having copied all the dirty pages from the original VM2, VM2 will be
resumed at the target Proxmox machine.

Proxmox SRV1

VM1

running

VM2

stopped

Proxmox SRV2

VM1

running

VM2

running

System requirements for the
Proxmox cluster
So, we have talked so much about the Proxmox cluster. To use this mode, we have
to first prepare at least two machines that are installed with Proxmox VE. If we
want to have a basic testing platform, what would be the minimum requirement
for our machines?

The minimum system requirements as listed on the Proxmox website are as follows:

•	 CPU: 64-bit (Intel EMT64 or AMD64)
•	 Intel VT/AMD-V capable CPU/Mainboard (for KVM)
•	 Minimum 1 GB RAM
•	 Hard drive
•	 One NIC

However, I would recommend that you have at least 2 GB memory if you want to
test online migration on the Windows platform.

For a production environment, the following hardware is suggested by Proxmox:

•	 CPU: The CPU must support 64-bit (Intel EMT64 or AMD64), multicore CPU
is recommended, and Intel VT/AMD-V capable CPU/mainboard is required
(for KVM support)

•	 8 GB RAM is good; the more the better
•	 Hardware RAID with battery backup unit (BBU) or flash-based protection

(software RAID is not officially supported by Proxmox, but it is possible)
•	 Fast hard drives, such as SAS drives with a 15k rpm will give the best

results, RAID 10
•	 At least two NIC's per Proxmox server

Getting Started with a High Availability (HA) Environment

[40]

•	 In cluster mode, we need at least two physical servers that meet the
requirements mentioned earlier, a network to connect both of them,
and shared storage to keep virtual disk data

No matter whether you go for the minimum or suggested system requirements,
you also need to prepare the things mentioned in the following points:

•	 At least one multicast capable switch is needed.
•	 Shared storage that is accessible by both Proxmox servers is needed as

a quorum disk if we have only two server nodes. A quorum disk is used to
add an extra vote inside the cluster. More details on this will be introduced
in Chapter 4, Configuring a Proxmox VE Cluster.

•	 Fencing devices are required on all server nodes; it can be a network-based or
power-based server node. More details on this will be introduced in Chapter
3, Key Components for Building a Proxmox VE Cluster.

Personally, I would suggest that you build your own Proxmox cluster with three
or more machines. It would reduce the possibility of getting errors with the
cluster itself, especially the problem caused by not having enough votes for cluster
operation; this will block any cluster-related activity. However, for practice, I will go
through a two-node cluster with you in the upcoming chapters. In the next section,
I would like to show you some concepts on RAID requirement.

Describing the requirements for RAID
As you might know, there is software RAID and hardware RAID. As Proxmox
recommends hardware RAID first, we focus only on it. In a RAID operation, there
are different levels, including RAID 0 and RAID 1, and the one recommended by
Proxmox, RAID 10. Let's see the difference.

The RAID 0 operation
Under RAID level 0, we have to use at least two hard disks to form a group.
After joining them up, the read performance is theoretically increased by n times
(two times in our case), because I/O requests are responded to by all hard disks.
However, if any one of the hard disks (HDD1) fails, the whole disk group (RAID 0)
will fail, as shown in the following diagram:

HDD1

HDD2
RAID 0

Read both

HDD1

HDD2
RAID 0

HDD1

HDD2
RAID 0

Write one Fail

HDD1

HDD2
RAID 0

+

Chapter 2

[41]

The RAID 1 operation
As there is no fault tolerance in RAID level 0, it is not suitable for production use.
Therefore, RAID level 1 is introduced; this could increase the availability. As the
data is written to all hard disks, it can still be read even if there is only one workable hard
disk. The disadvantage of RAID 1 is that the performance of the write operation is
reduced. RAID 1 is explained in the following diagram:

Read one

HDD1

HDD2
RAID 1

HDD1

HDD2
RAID 1

Write both Work even if on fails

HDD1

HDD2
RAID 0

HDD1

HDD2
RAID 1 +

The RAID 10 operation
Actually, both RAID 0 and RAID 1 have their own advantages and disadvantages.
What if we combine them together? This is where RAID 10 appears. In RAID 10, we
need at least four hard disks. We first form a RAID 1 volume from two hard disks and
then we have two RAID 1 volumes. Then, we form a RAID 0 volume by combining
the RAID 1 volumes. So, we can enjoy the performance burst when reading from two
RAID 1 volumes (one hard disk is read from each RAID 1 volume). During the write
operation, only one RAID 1 volume is used. Therefore, the performance of the write
operation will not decrease. RAID 10 is explained in the following diagram:

HDD1

HDD2

RAID 1

HDD3

HDD4

RAID 1

RAID 0

RAID 10 volume

Getting Started with a High Availability (HA) Environment

[42]

Now we will learn about battery backup unit and flash-based protection:

•	 Battery backup unit (BBU): The hardware RAID controller provides integrated
caches to increase the I/O performance. However, it is rather dangerous for
data integrity because cache is a temporary storage and the data can be lost
if case of a power loss occurs. BBU will provide power to the cache memory if
a power loss occurs to keep the integrity of the data intact. After the power is
restored, the data writes back to the permanent storage. Here is how it works:

1.	 First, data is stored in the cache memory of the RAID controller,
and then writes the data to the hard disk as the permanent source
of storage

BBU Cache

RAID Controller

Hard disk

DATAPower

1

2

2.	 When a power loss occurs, the hard disk is not usable, and the data
(data1, data2, and data3) is stored in the cache memory.

BBU Cache

RAID Controller

Hard disk

Power

data1

data2

data3

3.	 When the power is restored, data1, data2, and data3 are written back
to the hard disk.

BBU Cache

RAID Controller

Hard disk

Power

data1

data2

data3

Chapter 2

[43]

•	 Flash-based protection: In this mode, the cache is stored in a solid state,
that is, in NAND flash memory instead of cache memory. NAND flash
memory is a permanent storage memory, which is therefore resistant in
the case of a power loss.

NAND Flash

RAID Controller

Hard disk

DataPower

1

2

In the next section, I will discuss how Proxmox provides HA capability under cluster
mode with two server nodes.

HA capability for Proxmox with
a two-node cluster
In this section, I will show you how a Proxmox cluster helps us in enhancing the
system availability. Assume that we are building a cluster with two active member
nodes, which means virtual machines are running on both the server nodes. Let's
take a look at the following structure:

Power supply 1 Promox SRV1

Network Switch SAN Storage

Power supply 2 Promox SRV2

As we mentioned in the section on system requirements, we need at least two physical
servers connected with a network switch, and we need SAN storage to save virtual
disk images. This is the minimal requirement to build a cluster. With this set of
hardware, we can successfully install Proxmox in cluster mode. However, is it built
with high availability? Unfortunately, it is not; let's see what happens when we
cannot connect our network switch due to misconfiguration or hardware problems:

Power supply 1 Proxmox SRV1

Network Switch SAN Storage

Power supply 2 Proxmox SRV2

Getting Started with a High Availability (HA) Environment

[44]

Right now, both servers think that the other side is out of service, as SRV1 and SRV2
cannot contact each other. What will they do? They will try to migrate the virtual
machines from the SAN storage, but they can't. Therefore, the cluster is down.
How about we add an extra network switch?

Power supply 1 Proxmox SRV1 Network Switch 1 SAN Storage

Power supply 2 Proxmox SRV2 Network Switch 2

We found that even if one network switch is broken down, there is still another
backup path that ensures the communication between devices. This is a setting
for a redundant network that archives HA. However, a similar problem occurs in
the SAN storage, as shown in the following diagram:

Power supply 1 Proxmox SRV1 Network Switch 1 SAN Storage

Power supply 2 Proxmox SRV2 Network Switch 2

Is there any need to purchase a SAN storage for our cluster? Not really, because SAN
storage is quite expensive, and the synchronization between multiple SAN storages
is another problem. To solve this, DRBD is used as a cheaper solution.

Power supply 1 Proxmox SRV1

Network Switch 1

Power supply 1 Proxmox SRV2

Network Switch 2

Storage for VM
HDD1

HDD2

Chapter 2

[45]

In this model, the local storage of SRV1 and SRV2 is used to form a mirrored
network storage with the help of DRDB. As Proxmox does not offer a solution
for us to easily build shared storage between servers, DRDB is being used in our
demonstration so that we don't have to purchase additional storage hardware to
store the virtual machine data. I would suggest that you use the DRBD storage for
testing purposes, but for the production platform, it would be better to have separate
shared storage. DRBD, in our case, is used to synchronize the content of HDD1 and
HDD2 via the network; therefore, the content inside both the hard disks is identical.
As a result, a disk-level redundancy is achieved.

What will happen if there is problem in the Proxmox server? A new term called
fencing is introduced to mark the problematic server as unreachable and to power
it off. We will discuss this in more detail in Chapter 3, Key Components for Building
a Proxmox VE Cluster.

The Proxmox Cluster file system (pmxcfs)
Are you curious to know how to manage multiple configuration files in the Proxmox
cluster mode? Proxmox Cluster file system (pmxcfs) is a built-in function that
is provided with a Proxmox cluster to synchronize configuration files between
cluster member nodes. It is an essential component for a Proxmox cluster; it acts as
version control on configuration files, including cluster configuration, the virtual
machine configuration, and so on. It basically is a database-driven filesystem to store
configuration files for all the host servers and replicate them in real time on all the
host nodes, using corosync. The underlying filesystem is created by FUSE, with
a maximum size of 30 MB. The main concepts of this filesystem are as follows:

•	 FUSE: This is a short form for Filesystem in Userspace (FUSE). It allows
users to define their own device under their own userspace. With the use
of FUSE, we don't have to worry if the system crashes due to filesystem
misconfiguration, because FUSE is not linked to the system kernel.

•	 Corosync: This is a short form for Corosync Cluster Engine, a group
communication system that allows clients to communicate with each other.

The following diagram shows the structure of the Proxmox cluster filesystem:

Proxmox SRV1

FUSE filesystem - /etc/pve

corosync

Proxmox SRV2

FUSE filesystem - /etc/pve

Getting Started with a High Availability (HA) Environment

[46]

Under the filesystem, there are some files we might be interested in:

•	 cluster.conf: This is the cluster configuration file
•	 nodes/${NAME}/qemu-server/${VMID}.conf: This file contains the KVM

configuration data
•	 nodes/${NAME}/openvz/${VEID}.conf: This file contains the OpenVZ

configuration data

Summary
In this chapter, we talked about the types of system downtime and their impact and
how to measure and increase the level of availability. One of the most important
features, live migration, was also explained briefly. Finally, we went through the
cluster filesystem in order to know how Proxmox maintains its configuration files.
In the next chapter, we will talk about the key components that will be used when
we build the cluster, including the DRDB device, reliable network, and a fencing device.

Key Components for Building
a Proxmox VE Cluster

Now, we are going to learn about the components needed to build a reliable cluster
with Proxmox VE. Let's have an overview of the HA environment. We require
a shared storage to save system and user data for the VM, a reliable network with
redundancy, multiple physical servers, and a fencing device to prevent multiple
access to the VM. The topics included in this chapter are:

•	 An introduction to the storage options supported by Proxmox
•	 An introduction to the requirements for a reliable network
•	 An introduction to fencing devices
•	 An introduction to quorum disks

Key component 1 – shared storage
In order to ensure HA, we must not have a single point of failure, which means each
virtual machine should be able to be accessed by multiple Proxmox servers. If there
is one failed Proxmox server, there should be another server to handle the associated
VM. Therefore, we should not store our VMs in local storage; we should store
them on shared storage. In a modern technology environment, network storage is
commonly used as shared storage, which has led to the coining of the terms, storage
area network (SAN) and network-attached storage (NAS).

Key Components for Building a Proxmox VE Cluster

[48]

Characteristics of SAN and NAS
Storage area network (SAN) is mounted as block-level storage. The commonly
used protocols to mount a SAN device are iSCSI and fibre channel. When the storage
is mounted, it appears as a local disk inside the system, allowing the operating
system to manage its filesystem. Based on this characteristic, the storage is expected
to be permanently attached to the operating system. The following is the output of
disk management under the Windows platform, after we have mounted a hard disk
using iSCSI:

Disk /dev/sdf: 160.0 GB, 160040803840 bytes
255 heads, 63 sectors/track, 19457 cylinders, total 312579695 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0003ee9f

Network-attached storage (NAS), on the other hand, is provided as file-level storage.
The storage is shared via the SMB or NFS protocol. As it is file-level storage,
separate permission settings can be applied to different files and directories. Unlike
the mounted hard disk described earlier, the storage via the SMB or NFS protocol
is added as a mount point, and it can be easily removed from system using the
umount command. The following example shows how NAS shares its storage:

Filesystem Size Used Avail Use% Mounted on
//192.168.1.50/myshare 160G 105G 55G 65% /myshare

Basically, the data inside a VM can be stored in both SAN and NAS. However, for
better performance and stability, it is suggested that you store data in something
similar to SAN.

Available storage options in Proxmox
Apart from the types of storage mentioned earlier, Proxmox also supports distributed
filesystem. Hence, we have the following storage options available in Proxmox:

•	 directory
•	 logical volume manager (LVM)
•	 iSCSI target
•	 NFS share
•	 Gluster filesystem
•	 Ceph (marked as RBD in Proxmox)

Chapter 3

[49]

Storage option 1 – storage over iSCSI
To build a HA environment, it is not enough to share the hard disk from network
storage under iSCSI; we have to build a RAID volume as a shared storage under
the iSCSI server. The following is a simple diagram that shows the structure of
our iSCSI disk:

Storage server A

iscsi target information
- base name: iqn.2014-01.nas1.localdomain
- target: LUN0

/dev/sdb

/dev/sdc

RAID
Array

The base name format is predefined in RFC3721, and we cannot simply type
whatever we want. Let's use this sample for explanation. The full target name
for Storage server A is iqn.2014-01.nas1.localdomain:disk0.

The storage server's naming convention has been explained in the following points:

•	 Iqn: This indicates that it is an iSCSI device
•	 2014-01: This indicates the date when we this iSCSI volume storage

was created
•	 nas1.localdomain: This indicates a reversed DNS name for storage server A
•	 disk0: This is the storage name; we can change it by adding the disk type and

who creates it

In this storage option, we can have shared storage on multiple Proxmox servers, but
we cannot ensure that the storage is limited to single access. To solve this problem,
we have to build a cluster-based filesystem, for example, the LVM volume. The
following diagram shows the possible settings for the clustered-LVM volume formed
with iSCSI devices:

Proxmox Server 1 Proxmox Server 2

LVM RAID volume

NAS1 RAID1 NAS2 RAID1

RAID1 RAID1

NAS 1

/dev/sdb
/dev/sdc

NAS 2

/dev/sdb
/dev/sdc

Key Components for Building a Proxmox VE Cluster

[50]

An explanation of the Logical Volume Manager (LVM)
Unlike building a local RAID 1 device using the mdadm command, we need to form
a volume for the LVM with a dedicated local disk in multiple servers. LVM is
used to simplify the disk management process of large hard disks. By adding an
abstraction layer, users are able to add/replace their hard disks without downtime
in combination with hot swapping. Besides, users are able to add/remove/resize their
LVM volumes or even create a RAID volume easily. The structure of a LVM is shown
in the following diagram:

Logical volume 2
2GB

Logical volume 3
2GB

Logical Volume
(LV)

Volume Group
(VG)

Volume Group A

Physical Volume
(PV)

Partition

Physical device

Physical volume 1 Physical volume 2

Partion 1
4GB

Partion 2
6GB

Hard disk 1

Logical volume 1
4GB

PE:4MB PE:16MB PE:8MB

The following steps will help you create a volume for the LVM with the configuration
shown in the preceding diagram:

1.	 First, let's create partitions of the hard disk (Hard disk 1) using the fdisk
command. The system IDs for the partitions are marked as 8E (LVM) during
the creation process.

2.	 The created partitions, partition 1 and partition 2, will be further converted
to Physical Volume (PV).

3.	 Multiple PVs can be gathered to form Volume Group (VG) A.
4.	 Each Logical Volume (LV) that lies in a logical group (LG) can be formatted

to a filesystem such as EXT3/4, NTFS, and so on. At this point, we can define
the physical extents (PE) (the default size is 4 MB each), which is similar to
the block size that is used when we format a physical disk.

Chapter 3

[51]

What if we want to increase the size of the logical volume? It is not as easy as adding
a new hard drive. The following steps only show you how to increase the size of
a logical group and logical volumes. However, these steps will not cover the steps
to handle any resizing problem with the filesystem that we might face during the
process. We add 10 GB extra space to all the logical volumes, and the new structure
after the volume expansion is shown in the following diagram:

Logical volume 2
12GB

Logical volume 3
14GB

Logical Volume
(LV)

Volume Group
(VG)

Volume Group A

Physical Volume
(PV)

Partition

Physical device

Logical volume 1
14GB

PE:4MB PE:16MB PE:8MB

Hard disk 1 Hard disk 2

Physical volume 2

Partion 2
6GB

Physical volume 1

Partion 1
4GB

Physical volume 3

Partion 1
10GB

Physical volume 4

Partion 2
20GB

To add new volumes to the existing LVM volume group, follow these steps:

1.	 First, we add another hard disk, Hard disk 2, into the system and create
corresponding PVs as we did earlier.

2.	 We then add Physical volume 3 and Physical volume 4 to Volume Group
A using the vgextend command.

3.	 Finally, we make use of the lvresize command to resize the existing LVs.

As you can see, we can dynamically allocate disk space in a LVM, but we cannot add
an LVM partition to an iSCSI Logical Unit Number (LUN) or DRBD once it is created.
In such a configuration, the LVM volume is shared by the DRBD package. Also, if we
have mounted the LVM storage as a local directory in Proxmox, we will not only be
able to store the data inside the VM, but also inside the ISO files, OS templates, and the
OpenVZ containers. A demonstration of how to use an LVM over iSCSI as storage will
be covered in Chapter 4, Configuring a Proxmox VE Cluster.

Key Components for Building a Proxmox VE Cluster

[52]

Storage option 2 – a distributed replicated block
device (DRBD)
In a DRBD structure, the primary and secondary nodes are connected via a network,
and every single update request on the primary node is synchronized with the
secondary node via network interface cards. As the data is being synchronized,
identical server specifications must be reached. With such a structure, we are able
to restart "dead" VMs from another server, as shown in the following diagram:

Normal operation:

primary secondary

VM 1 VM 1

running stopped

primary secondary

VM 1 VM 1

running running

When pr mary node failed:i

vm data

Unfortunately, the service restoration process is not automatic, and manual
operation is needed. It is not good news for us because it is difficult for us to monitor
the system on a 24 x 7 basis. To overcome this, fencing devices are used to finish the
tasks for us. In the upcoming chapters, we will talk more about the structure and
concept of fencing devices and how they help us in the production environment.

Storage option 3 – the Gluster filesystem
GlusterFS is a distributed filesystem that runs on the server-client architecture.
It makes use of the native Gluster protocol, but can also be seen as an NFS share or
even work as an object storage (Amazon S3-like networked key-value storage) with
GlusterFS UFO.

The base components of Gluster volumes are bricks, which are built with directories.
More information will be available in Chapter 4, Configuring a Proxmox VE Cluster.

By exporting the disk drives to Gluster servers, Gluster client is able to create virtual
volumes from multiple remote servers with petabytes (1 PB = 1000 TB = 1000000 GB)
of storage. Similar to LVM over iSCSI, the storage is scalable when new disk drives are
available. GlusterFS can be further configured to store files in replication or strip form.

Chapter 3

[53]

A better approach to Gluster over LVM with iSCSI is its auto healing function. With
auto healing, the Gluster client will still be able to read/write files even if one Gluster
server has failed; this is similar to what RAID 1 offered. Let's read more on how the
Gluster filesystem handles server failure:

1.	 Initially, we require at least two storage servers installed with the Gluster
server package in order to enjoy the functionality of auto healing. On the
client side, we configured it to use Replicate mode and mount the filesystem
to /glusterfs, as shown in the following diagram:

Gluster Server

Storage 1

Gluster Server

Storage 2

mount point: /glusterfs

Gluster client (mode)Replicate

2.	 The file content will be stored in both the storages in this mode, as shown in
the following diagram:

Gluster Server

Storage 1

Gluster Server

Storage 2

cat testing >/glusterfs/test.txt" "

Gluster client (mode)Replicate

3.	 If Storage 1 fails, the Gluster client will redirect the request to Storage 2,
as shown in the following diagram:

Gluster Server

Storage 1

Gluster Server

Storage 2

vi /glusterfs/test.txt

Gluster client (mode)Replicate

original request
redirected request

Key Components for Building a Proxmox VE Cluster

[54]

4.	 When Storage 1 becomes available, the updated content will be synchronized
with Storage 2. Therefore, the client will not notice if there is a server failure.
This is shown in the following diagram:

online synchronization

test.txt

Gluster Server

Storage 1

Gluster Server

Storage 2

Gluster client (mode)Replicate

Thus, the Gluster filesystem can provide HA if we use replication mode.
For performance, we can distribute the file to more servers, as shown in
the following diagram:

file 1

Gluster client (mode)Replicate

Gluster Server

Storage 2

file 1- part 2

Gluster Server

Storage 1

file 1- part 1

Gluster Server

Storage 4

file 1- part 4

Gluster Server

Storage 3

file 1- part 3

In this architecture, each file is divided into different pieces that are stored in
separate storages. Such an approach reduces the chances of reaching the I/O limit on
a single storage during the write operation and boosts up the read performance by
reading from multiple storage sources, but a high-speed network is required to
avoid reaching the I/O limit under the network environment.

Storage option 4 – the Ceph filesystem
Ceph is also a distributed filesystem that provides petabyte-level storage but is more
focused on eliminating a single point of failure. To ensure HA, replicas are created on
other storage nodes. Ceph was developed based on the concepts of RADOS (Reliable
Autonomic Distributed Object Store), with different accessing methods provided:

Accessing method Support platforms Usage
Library packages C, C++, JAVA, Python, Ruby, and PHP Programming
RADOS gateway Amazon S3 and Swift Cloud platform

Chapter 3

[55]

Accessing method Support platforms Usage
RBD KVM Virtualization
CEPH filesystem Linux kernel and FUSE Filesystem

Under Ceph, everything is stored in the form of an object, which is why Ceph is also
called object storage cluster. To make sure that the objects are replicated correctly,
multiple objects will be mapped to the Placement Group (PG). Regarding the server
components, the storage node is called the Ceph object storage devices (OSD)
daemon, and Ceph monitors maintain a master copy of the cluster map. Here is the
explanation of these:

•	 Object: This is the smallest unit in the Ceph storage. As the data is stored in
a flat namespace, each object is stored with an identifier (UUID).

•	 Placement Group: This is a series of objects that are grouped together
and replicated to multiple OSDs based on PG. We prefer using PG over
objects, because tracking on a per-object basis is computationally expensive.
The manipulation of PG effectively reduces the number of processes and the
per-object metadata to be tracked during a data read/write operation. The
following formula is used to calculate the number of PGs we need:

•	 Pool: This is formed by multiple PGs, and it allows the system administrators
to configure settings such as number of replicas per object, number of placement
groups per OSD, defining the CRUSH rule, and creating snapshots and
setting ownership. To store data inside a pool, an authorized user account is
needed. The default pools include data, metadata, and RBD.

•	 Ceph OSD daemon: This daemon must be run to establish a client
connection. After the OSD is mounted, the client can use it as if they are
using their own local hard drives. Each OSD should be associated with hard
drives that enable the RAID arrays or LVM to enhance performance.

•	 Ceph monitor daemon: This daemon is used to provide a recent copy of
a cluster map, including information for the Ceph monitor, OSD, PG, the
CRUSH map, and MD5 map.

Key Components for Building a Proxmox VE Cluster

[56]

The following screenshot is an example of how an OSD daemon stores a file:

Binary Data

0101100001010100110101010010
0101100001010100110101010010
0101010 010101001101010100101

ID

1234

Metadata

name1
2valuename2

nameN

value1

valueN

It's quite difficult to get familiar with wordings, so I have prepared the following
simple diagram that demonstrates the concepts for you:

OSD 1 OSD 2 OSD 3 OSD 4 OSD 5

O Cbj

Obj D

Obj A

Obj B

Obj G

Obj F

Obj E

number of replicas=3 number of replicas=2

Placement Group
Pool

From the diagram, Obj A and Obj B belong to one PG just as Obj C and Obj D belong
to one PG. Obj E is stored in a single PG, while Obj G and Obj F are in the same PG.
Obj A to Obj D are stored in Pool 1, while Obj E to Obj F are stored in Pool 2.

As the number of replicas in Pool 1 is set to three, the placement group that
contains Obj A and Obj B are replicated through OSD 1, OSD 2, and OSD 3.
Although Obj C and Obj D are stored in the same pool of Obj A and Obj B,
they stored in different OSDs.

An important concept in Ceph is the cluster map; it includes most of the
Ceph-related information, as explained in the following points:

•	 Monitor map: This map contains the cluster FSID, the position, name
address, and port of each monitor.

•	 OSD map: This map contains the cluster FSID, a list of pool, replica sizes,
PG numbers, and a list of OSDs and their statuses.

Chapter 3

[57]

•	 PG map: This map contains PG version, the last OSD map epoch (that is
version), its timestamp, and details on each placement group.

•	 CRUSH map: This map contains a list of storage devices and the rules to
traverse the filesystem when storing data. The CRUSH algorithm makes use
of this map to calculate which OSD should be used by clients to store data.

•	 MDS map: Here, MDS stands for metadata server. MDS is used to store the
entire filesystem's metadata (directories, file ownership, access modes, and so
on) when using the Ceph filesystem, and it is deployed with a Ceph storage
cluster. Also, a list of metadata servers and their statuses are stored in the
MDS map.

Notice that a functional Ceph requires a minimal system with one Ceph monitor and
two OSDs for data replication, as shown in the following diagram. We will also
demonstrate how to work with a Ceph storage cluster in the next chapter.

OSD 1 OSD 2

admin node

Ceph monitor A

monitoring

Comparing the types of file storage supported
by Proxmox
We have understood the storage options that are supported by Proxmox, but
what are the differences between them? Let's take a look at these differences.
The following are the advantages of an iSCSI-based storage option:

•	 It allows a user to reserve the whole hard disk on remote storage
•	 It provides the authentication ability using the CHAP protocol
•	 In this, the storage can be restricted to allow access to the clients in

a specific network
•	 With multiple LUNs, clients can access different disk arrays from

remote storage
•	 This is available for both Windows and Linux platforms

Key Components for Building a Proxmox VE Cluster

[58]

The following are the disadvantages of an iSCSI-based storage option:

•	 The user permissions cannot be assigned to a single storage
•	 It has no data integrity without further settings (for example, RAID, and ZFS)
•	 The I/O performance is slower than it is in a local storage option
•	 Dedicated network storage is needed
•	 The scalability of this type of disk storage is limited

The following are the advantages of DRBD:

•	 User permissions can be applied to this type of storage, because it is mounted
as a directory

•	 Data integrity is ensured due to live data synchronization
•	 No extra storage is needed, because local storage is used

The following are the disadvantages of DRBD:

•	 As it is based on two nodes, a situation called split-brain might take place;
this causes the storage to become unavailable. Manual recovery is needed.

•	 The initialization process is slow because it needs to copy every single block
from the master disk.

The following are the advantages of GlusterFS:

•	 Data integrity is ensured with multiple configured nodes
•	 Metadata can be stored in a solid-state drive (SSD) to increase

the performance
•	 Automatic data recovery called auto healing is available on a

Gluster-based volume
•	 High scalability can be achieved on a Gluster volume by adding new nodes

The following are the disadvantages of GlusterFS:

•	 Multiple TCP ports should be opened for Gluster traffic; firewall
configuration is needed

•	 I/O performance is heavily related to network throughput; Gigabit Ethernet
would be the minimum requirement, that is, high-level network switches
are needed

Chapter 3

[59]

The following are the advantages of CEPH:

•	 There's a built-in CEPH server for Proxmox; hence, it is easier to implement it
•	 Similar to GlusterFS, metadata can be stored in a SSD to increase

the performance
•	 It has the ability of self-healing, which is provided by the CRUSH algorithm

The following are the disadvantages of CEPH:

•	 If the CEPH server service is running under a Proxmox host, system
resources will be used by the storage

•	 Many new terms are associated with CEPH; you need to learn their basic
concepts before migrating to CEPH

The following table compares the storage options supported by Proxmox:

Storage option iSCSI DRBD GlusterFS CEPH
Cost Hardware-based

NAS: High
Software-based
NAS: Low

Low Medium Medium

Difficulty on
implementation

Easy Easy Medium Easy (via GUI)

Data-protection
level

No, provided by
filesystem

Low (data
synchronization)

High (file
replica)

High (file
replica)

Scalability Low Low High High

I have tested the performance of these storage options for two different scenarios:
copying 1,000 small files (1 MB each) and copying one big file (1 GB). CEPH storage
is not being tested because it is available for storing KVM images only and, by
default, has no mount point option under Proxmox.

The following table has the performance benchmark results for small files:

Storage options Local storage DRBD GlusterFS
CPU loading 25% 28% 25%
Memory usage 10 MB 10 MB 10 MB
Time taken 1 min 36 sec 1 min 31 sec 4 min 9 sec

Key Components for Building a Proxmox VE Cluster

[60]

The following table has the performance benchmark results for the large file:

Storage options Local storage DRBD GlusterFS
CPU Loading 50% 50% 30%
Memory usage 10 MB 10 MB 10 MB
Time taken 1 min 25 sec 2 min 51 sec 3 min 3 sec

Based on the result, the performance of DRBD storage is almost the same as using
local storage, but we can enjoy the advantage of having a network RAID 1 for
storage. For GlusterFS, the performance is a little less than the others, but in the
long term, I suggest using a cluster filesystem such as GlusterFS and CEPH in the
production environment, because of the scalability and multiple replicas that are
available, while DRBD would be a good storage option for a testing platform.

Key component 2 – reliable network
Based on our setting, almost all the components are running through the network.
This means that a stable and fast network is essential. The best practice is to separate
the network for data replication, storage, and management. So, what does a fast
network mean? Only gigabit Ethernet or a faster version will be chosen; this means
that all the servers should have gigabit Ethernet cards in a local area network
connection. Besides, we need to measure the connection time between two nodes to
ensure that the speed is optimal. Moreover, all of the running nodes should be in the
same subnet to avoid the involvement of further routing processes.

The following screenshot is a simple ping test to measure the network latency on the
network; pay attention to the time column, which should never be longer than 1 ms:

Chapter 3

[61]

To check whether a gigabit Ethernet card has been loaded, the lshw command can
be used. However, it is not a built-in command; we have to install it first. Type the
following command in the terminal to install it:

sudo apt-get install lshw

Then, issue the lshw | grep Ethernet command; you will see the following output:

For network stability, we have to construct a network with HA, as shown in the
following diagram:

Proxmox SRV 1

Gigabit Switch 1

Storage SRV 1

Proxmox SRV 2

Gigabit Switch 2

Storage SRV 2

Key component 3 – a fencing device
So, we have talked about the two key components of a Proxmox HA cluster; they
are the storage devices and reliable network. Do you remember that I mentioned
a fencing device when I introduced DRBD? Do you know what a fencing device
is and how it works? We'll learn more about this in the following section.

What is a fencing device?
A fencing device, as the name suggests, is a virtual fence that prevents
communication between two nodes. It is used to separate the failed node from
accessing shared resources. If there are two nodes that access shared resources
at the same time, a collision occurs; this might corrupt the shared data, which is
the data inside the VM.

Key Components for Building a Proxmox VE Cluster

[62]

Such fencing is done automatically based on the configuration defined, because we
cannot identify a real failure or a temporary hang on a node. If a node is really down,
then a fencing action is not needed, but if it is a temporary hang due to a network
delay or temporary resource shortage, the suspected failure node will try to access
a shared resource, which is harmful for our data. Now, let's see what happens if
there is no fencing device:

•	 During normal operation, only the production node (Proxmox SRV 1)
accesses the shared storage, while the configurations for the VMs are
synchronized with a backup node. This is shown in the following diagram:

Normal operation

running

data synchonication

idle

Proxmox SRV 1
VM1

Proxmox SRV 2
V 1M

Shared storage

•	 If Proxmox SRV1 is temporarily unreachable, Proxmox SRV2 will start to
replace it and access the shared storage, as shown in the following diagram:

temporary unreachable running

Proxmox SRV 1
VM1

Proxmox SRV 2
V 1M

Shared storage

•	 If Proxmox SRV1 is recovered, it will access the shared storage to restore its
service; this will lead to a collision. If both the VMs access the same file on
a shared storage, the write operation from either one or both will fail. This is
shown in the following diagram:

recovered

data synchonication

running

Proxmox SRV 1
VM1

Proxmox SRV 2
V 1M

Shared storage

Chapter 3

[63]

Available fencing device options
It is very important to protect our data from any corruption. What types of fencing
devices are available and how can they build their fences during node failure? There
are two fencing options that are listed in the following points:

•	 Power fencing: In this, both the nodes are added to the fencing device for
monitoring. If there is any suspicious failure on the production node for a
period of time, the fencing device simply turns off the power of the outlet to
which the affected server is connected, while the backup node will take over
the position of the failed node to provide the required services. For the failed
node, the power switch will send a notification to the system administrator
and a manual recovery is required, but no service interruption will occur on
the client side. Here are some manufacturers that manufacture a monitored
power distribution unit (PDU):

°° APC: http://www.apc.com/products/family/?id=136
°° IBM: http://www-03.ibm.com/systems/x/options/

rackandpower/powerdistributionmonitored.html

The monitored PDU offers an administration panel that displays power
consumptions on each outlet for monitoring, which allows us to turn off only
the outlet connected to the failure node. Also, there is an e-mail notification
function that should allow the system to send an e-mail alert to a system
administrator if there is a power problem. The following diagram shows
how it is actually done:

Switched
Power Distribution Unit

Shared storage

Proxmox SRV 1
V 1M

Proxmox SRV 2
V 1M

temporary failure

Network switch

Turn off power to
the outlet

When Proxmox SRV1 encounters a temporary failure, PDU will detect this
problem and turn off the power of Proxmox SRV1.

•	 Network fencing: In this, the server nodes are connected to a network switch
instead of the power switch. There are two types of network fencing:

http://www.apc.com/products/family/?id=136
http://www-03.ibm.com/systems/x/options/rackandpower/powerdistributionmonitored.html
http://www-03.ibm.com/systems/x/options/rackandpower/powerdistributionmonitored.html

Key Components for Building a Proxmox VE Cluster

[64]

•	 IPMI (Intelligent Platform Management Interface): This requires a separate
IMPI card or onboard IPMI port to function. In a running operating system,
periodic query checks can be performed to ensure the accessibility of the
monitored server. If the query check fails many times, an IPMI message
will be sent to this failed node to turn it off. The following diagram shows
how it operates:

temporary failure

Power off
(via IPMI)

Proxmox SRV1

IPMI card
fencing program

Proxmox SRV2

IPMI card
fencing program

Cluster Manager

•	 SNMP (Simple Network Management Protocol): When there is suspicious
failure on a server node in a period of time, the network port between the
network switch and the failed server is disabled; this prevents the failed
server from accessing the shared storage. When the operator requires us
to turn the server back on, manual configuration is required. Here is how
it operates:

Shared storage

Proxmox SRV 1
V 1M

Proxmox SRV 2
V 1M

temporary failure

Network switch

disable network port

Hence, by separating the failed Proxmox SRV1, we can avoid multiple accesses to
the shared storage and make room for us to fix the failure.

Intelligent Platform Management Interface
(IPMI)
We mentioned IPMI earlier in the network fencing section; it is an important feature
of network fencing. So, let's look at it in more detail.

Chapter 3

[65]

IPMI is a standardized interface and a protocol that provides system-level
management software for system administration. IPMI runs separately from an
operating system, which means that it will not be affected during an operating system
crash. It is not implemented in a normal motherboard, but it's only available on a
server-level motherboard. IPMI functions can be used in the following three scenarios:

•	 During the boot-up process before starting the operating system
•	 When the system is powered down
•	 In the case of a system failure

In our infrastructure setting, we will make use of this remote power-off function to
ensure data integrity. What if the network port connected to the affected server is
cut? Simple network management protocol (SNMP) is used instead.

Simple network management protocol (SNMP)
Similar to the IMPI protocol, system administrators are able to manage devices over
IP with SNMP. Unlike IPMI, many motherboards accept SNMP commands as it is
a built-in function of the network interface card. The monitored devices are running
SNMP agents, which transfer the management information to the SNMP server (also
called manager). The SNMP agent can be processed in a read-only or read-write mode.
The following diagram shows the structure of SNMP:

GET/SET Request

GET/SET Reaponse

Agent 6

G
ET

/S
ET

 R
eq

G
ET

/S
ET

 R
es

.

Tr
ap

TrapTrap-
Receiver

Ag
en

t
1

Ag
en

t
2

Ag
en

t
3

Ag
en

t
4

Ag
en

t
5

Master Agent
Manager

As shown in the preceding diagram, if the agent is running in the read-write mode,
the SNMP manager is able to change the SNMP configuration at agent side with
SET request. Another important part is the SNMP trap. The SNMP trap enables
asynchronous notification between the agent and the manager by notifying
significant events with unsolicited SNMP message. By examining the SNMP trap
messages, the switch is able to disable the proper port to finish the fencing function.

Key Components for Building a Proxmox VE Cluster

[66]

Key component 4 – quorum disk
A quorum disk is a small shared storage in a cluster design, and it is necessary for
a two-node Proxmox cluster to work properly. As we only have two member nodes
in a cluster, it will cause racing problems when one of the nodes is down. In our
example, we would like to use a disk-based quorum daemon—qdisk—to solve this
problem. The functionalities of a qdisk are listed as follows:

•	 Heartbeat and liveliness determination: Node updates the status blocks on
a quorum disk and alters the timestamp, which is used to decide whether a
node has hung or not. If there are certain misses during the heuristics testing,
a node is declared as offline.

•	 Scoring and heuristics: As mentioned in the previous point, up to 10
heuristics (minimum 1 heuristic) can be configured by the administrator.
There is a score for each heuristic. Normally, there are multiple heuristics
defined in a cluster configuration. A node is defined as healthy only if it has
scored half of the total maximum score. If the score drops too low for a node,
it will remove itself from the cluster by rebooting. An example of setting up
heuristics is shown in the following command:
<heuristic interval="3" program="ping $GATEWAY -c1 -w1" score="1"
tko="4"/>

This command contains of the following parts:

°° Interval: This is the time to wait between each test
°° Program: This is the heuristic testing to perform
°° TKO: This defines the number of "misses" before marking the node

as dead

•	 Master election: This is an important process for a cluster, because there
is only one node that can be elected as the master. The voting process is
simple; a member node with a lower node ID wins. For more details, refer
to Chapter 4, Configuring a Proxmox VE Cluster.

The process of qdisk can be summarized as follows:

•	 The cluster manager believes that the node is online.
•	 This node has made enough consecutive, timely writes to the quorum disk.
•	 The node has a high enough score to consider itself online. For more details

on the structure of qdisk, refer to http://linux.die.net/man/5/qdisk.

http://linux.die.net/man/5/qdisk

Chapter 3

[67]

Summary
In this chapter, we went through the key components that are needed for a HA
Proxmox cluster. We used a stored storage to save data for a VM, a reliable
dedicated/isolated network to allow data communication between the VM server,
nodes, and storage. Also, we learned that we can use fencing devices as the data
protection point if there are any failures. Different filesystems were introduced with
explanations of their characteristics.

In the next chapter, we will demonstrate how to build a HA cluster with Proxmox
with a practical configuration, and most of the concepts learned in this chapter will
be used.

Configuring a
Proxmox VE Cluster

So far, we have learned all the background knowledge required to work on a
Proxmox VE cluster. I think you should be very excited to play with it on your
own. In this chapter, we are going to cover the following topics:

•	 Configuring a network for a Proxmox VE cluster
•	 Preparing storage for a Proxmox cluster
•	 Configuring a Proxmox VE cluster
•	 Network fencing using a Cisco switch via SNMP
•	 Building a Gluster filesystem for a Proxmox cluster
•	 Building a Ceph filesystem for a Proxmox cluster

Configuring a network for a Proxmox
VE cluster
We have mentioned that a network with redundancy is needed for a HA
environment. As most of our services are based on networks, avoiding network
failure is an important task for us. So how can we build that?

Building a network with redundancy
Since there is a lot of internal traffic including health check messages, data
transferring from/to a shared storage, and SNMP messages, a high-speed
network that allows a gigabit Ethernet connection is recommended.

Configuring a Proxmox VE Cluster

[70]

For our testing environment, we used two Cisco Catalyst 2950 switches that have 24
Fast Ethernet ports each operating at 100 Mb/s. These switches are interconnected
to ensure there is no single point of failure. Since multiple fencing methods will be
demonstrated, an SNMP server will be configured for the network switches too.

Building a separate network for the Proxmox
VE cluster
In Chapter 1, Basic Concepts of a Proxmox Virtual Environment, we successfully created
our own VMs using the default settings. In my opinion, it will be better to use a
separate network between the management network of Proxmox and VMs. It is
much better if we can use a separate network for the VE as it will help us reduce
the chances of leaking user credentials.

There are two methods to achieve this goal: IP subnetting and Virtual LAN tagging.
Let's talk about the network options provided by Proxmox first.

Introducing Proxmox's network options
There are different network options available under Proxmox; the default option
is a bridged interface and the other options supported by Proxmox are routed
interface, NAT, and bonding interface, which are explained in more detail in
the following list:

•	 The bridged interface allows the VMs to behave as if they are directly
connected to a physical network.

•	 The routed interface makes the interface act like a network router. It responds
to the ARP (Address Resolution Protocol) request packet from one network
and uses the proxy_arp function to deliver a reply back to the network that
the VMs need to reply to. The following diagram illustrates this in detail:

PC1

request
10.10.10.1

Proxmox SRV
Eth0: 192.168.1.1

proxy_arp

VM1
vmbr0: 10.10.10.1

Chapter 4

[71]

•	 The NAT interface normally applies to the physical interface that contains
the Internet address. Such a configuration makes use of the network address
translation (NAT) function provided by iptables by masquerading the
traffic when it detects a packet that is coming from a specific network. It is
similar to the routed interface but the NAT interface is more concentrated
on Internet access. The following diagram illustrates this in detail:

internet Proxmox SRV
Eth0: 100.1.1.1

NAT

Vm1
vmbr0: 10.10.10.1

iptables-t nat-A POSTROUTING-s
'10.10.10.0/24'-o eht0-i ,MASQUERADE

•	 There is a special network option for a Proxmox-named bonding device,
which will be introduced in the The concept on bonding device section.

In the next section, we will delve deeper and learn the network concept of
virtual LAN (VLAN) tagging, which is used to divide a network.

Introducing the VLAN structure
Modern networking can be further divided into seven layers of the Open Systems
Interconnection (OSI) model. In a normal operation, we focus on layer 3—the
network layer, which allows IP addressing and routing.

Under the network layer, machines are able to communicate with their assigned IP
addresses if they are within the same network, by calculating their subnet masks.
Applying subnets on machines are actually reducing the number of machines in
the same scope.

On the other hand, VLAN is enlarging the scope by grouping multiple switch ports
in layer 2—the data link layer. VLAN tagging is based on the standard under IEEE
802.1Q, which allows up to 4,094 VLANs.

Tagged VLAN makes use of the VLAN tagging technique where a tagged packet has
a VLAN ID embedded in the tag while an untagged packet does not. To handle this
kind of traffic, access and trunk ports are defined in the following points:

•	 Access port: This represents the port that contains the untagged traffic. If we
do not configure the VLAN for an access port, the entire untagged traffic is
delivered under the default VLAN (VLAN1), which is also called access
VLAN, while dropping the traffic that was tagged.

Configuring a Proxmox VE Cluster

[72]

•	 Trunk port: This allows both tagged and untagged traffic with different
VLANs running through. In this mode, packets are handled in different
ways, which are explained as follows:

°° For untagged packets: If a native VLAN is configured, the switch
will tag the packets for native VLAN. If not, it is tagged with the
default VLAN. The packets will then be sent to all the ports with
the same VLAN.

°° For tagged packets: If there is only one port assigned as a trunk port,
all tagged packets are delivered to this port. When the packet reaches
a trunk port, it is examined and delivered only if it is within the
allowed VLAN. If the allowed VLAN is not configured, the VLAN's
traffic is allowed by default. Then, the packet is sent to all the switch
ports with the same configured VLAN.

Therefore, the access VLAN setting of the access port must match the native VLAN
setting of the trunk port when we want the packets to be successfully delivered.

In the following example, we have two tagged packets with VLAN10 and VLAN20
being sent to the trunk port. In the trunk port, they are configured to have the default
settings. We have two PCs, PC1 and PC2, connected to two access ports configured
with VLAN10 and VLAN20 respectively.

Since there is only one trunk port, all of the tagged traffic is sent to it. When both
the tagged packets arrive in the trunk port at Switch 1, both the packets are allowed
because the trunk port in a Cisco switch allows all VLAN traffic by default. This has
been depicted in the following diagram:

Switch 1

PC1 PC2

untagged
traffic

Trunk mode
Default setting

Access mode
VLAN 10

Access mode
VLAN 20

Tagged: VLAN 10

Tagged: VLAN 20

Chapter 4

[73]

The following example is similar to the previous one, but this time, the switch allows
only VLAN10 traffic. Assuming we have two tagged packets, one is tagged with
VLAN10 and the other one is tagged with VLAN20. When both these packets arrive
in the trunk port at Switch 1, the packet with the VLAN20 tag is dropped because
only the VLAN10 traffic is allowed. This is shown in the following diagram:

Switch 1

PC1 PC2

untagged

traffic

Trunk mode

Allow only VLAN 10

Access mode

VLAN 10

Access mode

VLAN 20

Tagged: VLAN 10

Tagged: VLAN 20

In the following example, when one untagged packet reaches the trunk port at Switch
1, the packet is tagged with the default VLAN1 tag, but there is no device connected
with VLAN1. Therefore, the packet is dropped, as depicted in the following diagram:

Switch 1

PC1 PC2

untagged

Trunk mode

Default setting

Access mode

VLAN 10

Access mode

VLAN 20

Untagged packet

In the following example, we have a similar configuration as that of the previous
example, with the exception that the trunk mode is configured with the native VLAN
tag. The untagged packet will then be tagged with VLAN10, which is therefore able
to reach PC1, as shown in the following diagram:

Switch 1

PC1 PC2

untagged

Trunk mode

Native VLAN=10

Access mode

VLAN 10

Access mode

VLAN 20

Untagged packet

We have gone through some concepts about VLAN; now, let's check out how we can
implement it under our VE.

Configuring a Proxmox VE Cluster

[74]

Creating an infrastructure for a Proxmox
cluster testing environment
Now, we have learned the concept of virtual network. Let's check the infrastructures
we are going to build in this chapter. To start with, let's build our cluster with DRBD
enabled, as shown in the following diagram:

switch 1

HDD

stopped
switch 2

VM1 192.168.2.10

VM2 192.168.2.11

bond 0

192.168.1.58

bond 0.20

92.168.2.21

Proxmox Server 2

running

VM1 192.168.2.10

VM2 192.168.2.11

Proxmox Server 1 HDD

bond 0

192.168.1.57

bond 0.20

92.168.2.11

DRBD

synchronization

NAS4Free

192.168.1.50

Quorum

eth0

eth1

eth1

eth0

To achieve HA, two network cards and two network switches are used. Here, VLAN20 is
set up for the VMs for security purposes.

A cluster has to define which node is currently acting as the primary role.
Therefore, a voting system is used to check whether the cluster is dead or primary
node switching is needed. A small storage called quorum is used to help the cluster
make this decision.

Chapter 4

[75]

The concept of a quorum device
The voting system is a democratic system, which means that there is one vote for each
node. So, if we only have two nodes, no one can win the race, which causes the racing
problem. As a result, we need to add a third node joining this system (quorum, in our
case). The following is a sample diagram on why the racing problem appears and
how we can fix it:

Primary

Cluster engine running

Node 2Node 1

Assume that we have a cluster system with only two nodes; the preceding diagram
shows the initial state of the cluster. We have marked Node 1 as the Primary node.
The following diagram shows the problem with this node:

Primary

Cluster engine

Node 2Node 1

Request for
primary role

Here, Node 1 is disconnected, and therefore Node 2 will take over its position to
become the primary node. However, it cannot be successful because two votes are
needed for a role-switching operation to complete. Therefore, the cluster will become
non-operational until Node 1 is recovered, as shown in the following diagram:

Cluster engine

Node 2Node 1

recovered from

failed

Stopped

When Node 1 has recovered from a failure, it tries to join back with the cluster but
fails to do so because the cluster has stopped working.

Configuring a Proxmox VE Cluster

[76]

To solve this problem, it is recommended to add an extra node to the cluster in order
to create a HA environment. The following diagram shows an example of where
a node failed and Node 2 would like to be the primary node:

Cluster engine

Node 2Node 1

request for
primary role

quorum

When there is a similar condition of a node going down, we have one more node
to decide who will win the race. Therefore, the one missing node will not cause the
cluster to stop.

The concept of a bonding device
For the network interface, a bonding device (Bond0 and Bond1) will be created in
the Proxmox VE. This bonding device is also called NIC teaming, which is a native
Linux kernel feature that allows users to double the network speed performance or
add network redundancy. There are two options for network redundancy, 802.1ad
and Active-backup. They have different response patterns when handling multiple
sessions, shown in the following diagram:

802.1ad Bond 1
192.168.1.100

Active-backup

Switch

Request to
192.168.1.100

Session 1 Session 2

PC 1

NIC 1 NIC 2

Bond 1
192.168.1.100

Switch

Request to
192.168.1.100

Session 1
Session 2

PC 1

NIC 1 NIC 2

These network redundancy options are explained in the following points:

•	 In 802.1ad, both the network interfaces are active; therefore, the sessions can
be processed by a different network card, which is an active-active model.

•	 On the other hand, only one interface is in the active state in the Active-backup
mode. The backup interface will become active only if one active session fails.

Chapter 4

[77]

The concept of DRBD
Since we need to have identical data in both the Proxmox servers, using DRBD
allows us to build a network-based RAID 1.

With this structure, we are able to perform online migration without putting our
VMs down. If we perform a normal shutdown on one node, all of the VMs will then
be switched to another operating cluster node. Therefore, pay attention to maintaining the
available system resources. If the system resources are not enough to run all the VMs,
then the services are likely to be stopped, as shown in the following diagram:

Normal condition

Proxmox 1

VM1

When Proxmox2 is turned off

turned off

VM2

Proxmox 2

VM3

VM4

Proxmox 2Proxmox 1
VM1
VM2
VM3
VM4

If we change the storage option from network RAID 1 to Gluster filesystem, the
infrastructure will change, as shown in the following diagram:

glustertest

switch 1

switch 2

eth0
eth1

VM1 192.168.1.51

Proxmox Server 1

Bond 0
192.168.1.56

bond 0.20
192.168.2.1

Bond 0
192.168.1.57

bond 0.20
192.168.2.2

eth0
eth1

Proxmox Server 2

VM2 192.168.1.52

VM3 192.168.1.53

eth0
eth1

Proxmox Server 3

Bond 0
192.168.1.58

bond 0.20
192.168.2.3

Configuring a Proxmox VE Cluster

[78]

In this setting, we have configured shared storage with the Gluster filesystem inside
three VMs. Of course, it would be much better if we have a unique storage cluster.
A GlusterFS named glustertest is created with the following structure:

15 GB

5 GB

VM01 VM02 VM03

/glusterdata/mount1 /glusterdata/mount1 /glusterdata/mount1

glustertest

5 GB 5 GB

For each VM, I have created a directory to be shared at /glusterdata volume
and a subdirectory, mount1, is created. In the Gluster concept, we have to create
subdirectories under the root mount point. Such a subdirectory is called a brick.
Therefore, a single mount point can be used to form multiple bricks for different
volumes. Here is an example of multiple bricks with a single mount point:

Mount point

brick 1

brick 2
/glusterdata

/glusterdata/mount1

/glusterdata/mount2

gluster-mount

In this diagram, a single mount point, /glusterdata, is defined while mount1 and
mount2 are shared with the volume as storage. Therefore, we can store our VMs
under this distributed filesystem, which enhances the availability.

Chapter 4

[79]

Also, we will check how to build the cluster with another distributed filesystem,
Ceph, as depicted in the following diagram:

eth0

eth1

Proxmox Server 1

Bond

7

0

192.168.1.5

bond0.20

192.168.2.1

Ceph monitor 1(cmon.1)

HDD1

OSD1

HDD2

OSD2

HDD3

OSD3

eth0 eth0

eth1 eth1

Proxmox Server 2 Proxmox Server 3

Bond

8

0

192.168.1.5

bond0.20

192.168.2.2

Bond

9

0

192.168.1.5

bond0.20

192.168.2.3

Ceph monitor 1(cmon.2) Ceph monitor 1(cmon.3)

HDD1

OSD1

HDD1

OSD1

HDD2

OSD2

HDD2

OSD2

HDD3

OSD3

HDD3

OSD3

Ceph-test

no. of replica=3

Switch 1 Switch 2

A three-node cluster is built because three monitors and one OSD is the minimal
requirement for a Ceph environment under Proxmox. Two-node clusters for Ceph
is not available because of the following reasons:

•	 To ensure data safety, there must be at least one backup copy for a file. So,
the minimum replica size is 2. If we have a two-node cluster for Ceph, the
operation stops if a failed node is found.

•	 To prevent the racing condition between two Ceph member nodes (this was
covered in the The concept of a quorum device section).

For testing purposes, the Ceph monitors will be installed in each Proxmox server and
new hard drives will be added on three servers for the purpose of using Ceph as OSD.

As we mentioned in Chapter 3, Key Components for Building a Proxmox VE Cluster, we
can specify the number of replicas for each placement group and we can set up three
replicas for each file. When the setup is complete, we will try to store the VM images
into the OSD, and further testing will be done after a system failure.

In the next part, a demonstration of the system's preparation for cluster creation is
shown. Now, we will cover how to configure bonding devices for our cluster network.

Configuring a Proxmox VE Cluster

[80]

Preparing a network for a Proxmox cluster
In order to provide the HA environment, we will choose to create a bonding device
with the active-backup option. The following are the steps to create our own device:

1.	 Install two network adapters for the system first, with properly
configured drivers.

2.	 If everything goes well, we should have network interfaces called eth0 and
eth1 displayed as follows:
root@vmsrv01:~# ifconfig | grep eth
eth0 Link encap:Ethernet HWaddr 00:19:d1:0b:91:6e
eth1 Link encap:Ethernet HWaddr 00:19:d1:0b:91:6e

3.	 Now, we need to combine eth0 and eth1 into a bonding device—bond0.
First, we will click on vmsrv01 under DataCenter in the panel on the
left-hand side of the web management console. Now, we choose the Network
tab in the panel on the right-hand side and click on Create and then choose
Bond, which will initialize a create bond window. Enter the following
information in that window:

°° Name: bond0
°° Slaves: eth0 eth1
°° Mode: Choose the active-backup method

4.	 For the VLAN interface of the VM, we need to edit the /etc/network/
interfaces file and add the following code lines under the
iface bond0 block:
auto bond0.20
iface bond0.20 inet manual
 vlan-raw-device bond0

5.	 Next, we need to change the default network interface from eth0 to bond0 in
order to have the active-backup network feature. We can double-click on the
vmbr0 interface to edit its properties, as shown in the following screenshot:

Chapter 4

[81]

The following table lists the information to be configured in each server:

Server name Device name IP Net mask Bridge ports
Proxmox1 vmbr0 192.168.1.57 255.255.255.0 bond0

Proxmox2 vmbr0 192.168.1.58 255.255.255.0 bond0

Proxmox3 vmbr0 192.168.1.59 255.255.255.0 bond0

6.	 We also have to create a virtual bridge (vmbr1), which is used by the VMs.
Click on Create in the menu on the top-hand side and choose Bridge; then
insert the information provided in the following table:

Server name Device name IP Subnet mask Bridge ports
Proxmox1 vmbr1 192.168.2.1 255.255.255.0 bond0.20

Proxmox2 vmbr1 192.168.2.2 255.255.255.0 bond0.20

Proxmox3 vmbr1 192.168.2.3 255.255.255.0 bond0.20

7.	 We need to configure the hostname and the host table for each Proxmox
server. Edit /etc/hostname for the local hostname and /etc/hosts for
hostnames of other nodes and enter the following information in it:

Server name /etc/hostname /etc/hosts
Proxmox1 vmsrv01 •	 192.168.1.57 vmsrv01 pvelocalhost

•	 192.168.1.58 vmsrv02 pvelocalhost

•	 192.168.1.59 vmsrv03 pvelocalhost

Proxmox2 vmsrv02 •	 192.168.1.57 vmsrv01 pvelocalhost

•	 192.168.1.58 vmsrv02 pvelocalhost

•	 192.168.1.59 vmsrv03 pvelocalhost

Proxmox3 vmsrv03 •	 192.168.1.57 vmsrv01 pvelocalhost

•	 192.168.1.58 vmsrv02 pvelocalhost

•	 192.168.1.59 vmsrv03 pvelocalhost

The pvelocalhost is set up on each Proxmox server
separately; do not use this keyword in every line.

Configuring a Proxmox VE Cluster

[82]

8.	 Reboot the server to apply the changes. To verify that the bridging device has
started, use the following command:
Root# brctl show
bridge name bridge id interfaces
vmbr0 8000.0019d10b916e bond0
vmbr1 8000.0019d10b916e bond0.20

To save space, I have removed the STP enabled column.

Now, we have configured the network devices for the Proxmox VE and our VMs.
Next, we are going to prepare the file storage for the Proxmox VE.

Preparing storage for a Proxmox cluster
In this section, we need to use multiple storage devices for demonstration; please
prepare the following before starting with this section. The machine requirement
can be either in the physical or virtual form:

•	 One machine should be installed with NAS4free with one extra hard drive
as quorum

•	 Three machines are needed to install Proxmox nodes for CEPH storage
•	 A separate hard drive should be installed in each Proxmox node for

DRBD storage
•	 Three dedicated machines with one extra hard drive is needed to set

up GlusterFS storage

Now, we are going to prepare the storage on the cluster environment. There are
different approaches available on the market; we will create shared storage via
iSCSI with the NAS4free server.

Preparing iSCSI shared storage with
NAS4free for the quorum device
NAS4free is a type of software-based network storage software under the FreeBSD
operation system. There are many sharing methods available, but we will focus on
using the iSCSI because a mounted drive via iSCSI can be treated as a local hard disk
by Proxmox, which is very useful if we would like to create a quorum disk or to form
a network RAID device. Before we demonstrate the process of setting up the iSCSI,
we have to explain how the iSCSI actually works.

Chapter 4

[83]

Basic concepts of an iSCSI device
iSCSI is created based on the concept of SCSI (Small Computer System Interface),
but iSCSI is network-based instead of physically-attached hardware via SCSI.

In iSCSI, there are some important terms we have to learn; these are iSCSI portal,
target, initiator, extent, and LUN (logical unit number), which are explained in
more detail in the following points:

•	 iSCSI portal: This provides an IP with a network port pair for a client to
connect with. The format for the portal is <iSCSI_device_IP>:<network_
port>. This communication runs under the TCP connection.

•	 iSCSI target: This is the storage device(s) that allows the client to use the
device after connecting to it via the iSCSI portal. The user's login information
might be required to access the storage. Normally, this target is shipped with
several hard disks to provide large storage space. The iSCSI target server is
able to restrict the initiation of communication from a certain network only.

•	 iSCSI initiator: The user can make use of the iSCSI initiator program with
the iSCSI portal for discovery or auto-discovery. Discovery is the process of
requesting a list of targets and it gets a list of available types of storage.

•	 Extent: This is the physical location where the iSCSI server provides storage,
and it can be further categorized into file extent and device extent.

•	 LUN: LUN stands for logical unit number. In SCSI, it is used to identify
which device is referring to it in one SCSI channel. Each extent is mapped
to a single LUN for the client to use in iSCSI.

The following diagram shows you the structure of iSCSI and it might give you an
idea of what is happening:

Client

Portal

192.168.1.50

port: 3260

Target 1 LUN0 extentA /dev/sda1 (device extent)

Target 2 LUN0 extentB /dev/sdb1 (device extent)

LUN1 extentC /data/mount1 (file extent)
iscsi initiator

Target

LUN

Extent

Configuring a Proxmox VE Cluster

[84]

It's good for us to learn the basic concepts; now, it's time for us to practice what we
have learned:

1.	 To be able to use newly-added hard disks in Nas4free, we need to import
hard disks under Disks | Management and click on Import disks if you
cannot find your hard drives. Then, we should see the internal hard disks
as listed in the following screenshot:

If you installed NAS4free in a KVM-based VM under Proxmox and found
that the attached hard disks could not be detected in NAS4free, you can try
using the virtio bus and perform a system reboot.

2.	 Then, we have to set up the iSCSI-related information in Services | iSCSI
target. The following window will appear and we have to tick the Enable
option in the right corner. Next, we have to define the base name for iSCSI
targeting. This value begins with iqn (for more information, please refer to
Chapter 3, Key Components for Building a Proxmox VE Cluster). Accept the default
settings and click on Save and Restart at the bottom to start the service:

Chapter 4

[85]

3.	 Next, an extent should be defined, which is either file-based or device-based.
In the following screenshot, we have defined device-based sharing:

If you wish to create a file-based device, you can do so with the help of the
following steps:

1.	 In the top menu, click on Advanced and choose Command, as shown in the
following screenshot:

2.	 Create a new folder under /mnt, and name it mount1, as shown in the
following screenshot:

3.	 If no error is found, we can add a file extent, as shown in the
following screenshot:

Here, we will store the new data in a new file called extent1. After changing
the settings, remember to click on Apply changes.

Configuring a Proxmox VE Cluster

[86]

4.	 After that, we have to configure the initiator; we will see a window similar to
the following:

5.	 Then, we have to set up a portal for the client connection; press the plus (+)
button and enter the information in the <IP_address>:<port_num> format,
for example 192.168.1.50:3260, as shown in the following screenshot:

6.	 Finally, we can configure the iSCSI target, which is the target disk that
we allow the user to use, as shown in the following screenshot:

Here are the settings that appear in this window:

°° Target Name: This field is used to indicate a shared device
°° Type: This field is used to choose a disk as the local storage
°° Flags: This field is used to set the read/write (rw) permission in

order to allow writing to a disk
°° LUN0: We need to use this field only to share single storage

At this point, we have configured a file storage that allows us to connect via the
iSCSI protocol. In the next section, we will proceed with building our own cluster.

Chapter 4

[87]

Configuring a Proxmox VE cluster
Now, we are going to the core part of what this book covers, that is, building
a cluster with HA. Do you have everything you need now? Here is a list for you
to go over quickly:

The following is the hardware checklist:

•	 Two servers installed with the Proxmox server.
•	 Shared storage that is accessible to all servers as quorum and VM storage.

Such storage can be built using NAS4free or other alternatives; here, I have
configured a NAS4free server with the IP address as 192.168.1.50.

•	 Two network cards on each server connected separately to the two network
switches to test the network-fencing ability.

The following is the software checklist:

•	 Proxmox servers are configured with the network settings mentioned before
and should be able to ping each other

•	 Bonding devices Bond0 and Bond1 should be well configured

To minimize the number of physical machines needed, I will demonstrate building
up a two-node cluster for you. However, please note that the two-node cluster should
be used in the testing platform only; a true cluster is built with at least three nodes.

Forming a two-node cluster with DRBD
We have to build our cluster under the terminal, so make sure you can access the
server with the root account. First, we choose Proxmox server 1 (vmsrv01) as the
master and create a cluster called mycluster. Here are the steps:

1.	 Log in to vmsrv01, enter the following command, and wait for the output:
Root# pvecm create mycluster

2.	 In Proxmox server 2 (vmsrv02), type in the following command:
Root# pvecm add vmsrv01

3.	 You will get an output stating that the authenticity of the host vmsrv01 can't
be established and it will ask if you want to continue; simply type yes to
accept the connection. If everything goes fine, you will have an output that
is similar to the one you got when you created the cluster earlier:
Successfully added node 'vmsrv02' to cluster

Configuring a Proxmox VE Cluster

[88]

4.	 If you already have the VMs running on the secondary nodes, you will fail to
join the node to the cluster and you'll get the following message:
This host already contains virtual machines – please remove
the first

5.	 To solve this problem, you can move all of your VMs to your cluster's master
node, for example vmsrv01 in our case. The master node is able to create
a new cluster even if you have VM(s) running on top of it.

6.	 After you have created a cluster and added two nodes to it, you will be able
to control both servers via a web console on a single page, as shown in the
following screenshot:

7.	 Next, we have to add a quorum to prevent a single point of failure. The iSCSI
device is shared over the NAS4free server and is added to our system, as
shown in the following screenshot:

8.	 The Add: iSCSI window is shown; here, we have to fill in the
following information:

°° ID: This can contain any name that starts with a letter
°° Portal: We have already defined it; it is 192.168.1.50:3260

Chapter 4

[89]

°° Use LUNs directly: This should be unchecked, as shown in the
following screenshot:

°° Target: You can simply press the button to initialize auto discovery,
as shown in the following screenshot:

9.	 At this point, we can accept the discovered value and we should have the
new storage, as listed in the following screenshot:

10.	 Our new storage will also appear in the disk storage of each Proxmox server,
as shown in the following screenshot:

Configuring a Proxmox VE Cluster

[90]

11.	 The detailed information will be shown when we click on the Content tab in
the panel on the right-hand side:

12.	 Here, we can see that LUN0 comes with the iSCSI configuration. If we
have configured multiple LUNs under NAS4free, it will be shown here
accordingly, as shown in the following screenshot:

13.	 Then, we have to install the iscsiadm command on both Proxmox server
to keep it connected to our iSCSI device on every boot. To enable this
command, simply type the following in the command line:
Root# aptitude install tgt

14.	 Edit the /etc/iscsi/iscsid_conf file, change node.startup from manual
to automatic as follows:
node.startup="automatic"

15.	 Next, we need to make this new disk our quorum disk. Under CLI of vmsrv01,
make sure you have a new disk and find it by using the following command:
Root# fdisk –l

Disk /dev/sdb: 10.7 GB, 10737418240 bytes

16.	 Assuming that there is a new disk in /dev/sdb on vmsrv01, we can create the
quorum disk by using the following command:
root@vmsrv01# mkqdisk –c /dev/sdb –l proxmox_quorum1

17.	 In the previous code, /dev/sdb is the iSCSI device we have mounted, and
proxmox_quorum1 is the quorum disk identifier that will be used later. When
prompted about destroying all data, type y to accept the operation as shown
in the following command:
Writing new quorum disk label 'proxmox_quorum1' to /dev/sdb

WARNING: About to destroy all data on /dev/sdb; proceed [N/y]? y

Chapter 4

[91]

18.	 We must include the quorum in the cluster configuration file to make it
work. To update the cluster configuration, we have a special procedure as
recommended by Proxmox. First, we need to copy the cluster.conf file
to the cluster.conf.new file using the following command:
Root# cp /etc/pve/cluster.conf /etc/pve/cluster.conf.new

19.	 Next, we need to update /etc/pve/cluster.conf.new in different fields:
<cluster name="mycluster" config_version="2">

This code should be updated to the following:
<cluster name="mycluster" config_version="3">

The value of config_version should be increased by 1
for every new modification.

20.	 The preceding code simply tells the system that our cluster configuration file
has changed. The cman parameters should also be updated as follows:
<cman keyfile="/var/lib/pve-cluster/corosync.authkey"></cman>

This code should be updated to the following:
<cman keyfile="/var/lib/pve-cluster/corosync.authkey"
expected_votes="3"></cman>

21.	 The preceding code tells the system that the expected_votes is 3 because
we now have three nodes after adding the quorum disk as one node to avoid
cluster failure if one node fails. Add the following code after the </cman> tag
to include the quorum disk:
<quorumd votes="1" allow_kill="0" interval="1" label="proxmox_
quorum1" tko="10">
 <heuristic interval="3" program="ping $GATEWAY -c1 -w1"
 score="1" tko="4"/>
 <heuristic interval="3" program="ip addr | grep bond0 | grep
 -q UP" score="2" tko="3"/>
</quorumd>
<totem token="30000" />

Here we have defined:
°° The quorum disk with label as "proxmox_quorum1"
°° The waiting time for a heartbeat message as 30 seconds
°° Heuristic checks on a network node is required by the quorum disk

Configuring a Proxmox VE Cluster

[92]

If we simply edit the cluster.conf file without making a backup
copy, it might not be replicated to other nodes via corosync. If this
happens, the configuration of a cluster is not synchronized, and it will
likely lead to cluster failure! Therefore, follow the instructions provided.

22.	 Get back to the web management console, click on the Datacenter folder
on the left panel, and choose HA from the top menu of the panel on the
right-hand side, as shown in the following screenshot:

23.	 We can see that there is a pending change in the following window:

The change will only be detected if we create a .new file;
if we change the cluster.conf file directly, changes
will not be detected.

24.	 We can click on Activate and confirm to make changes. Now, we have to
reload the cluster configuration files with the following command:
Root# /etc/init.d/cman reload

So far, we have configured a cluster that allows us to have one failure node. In this
setting, live migration and HA are not available yet because shared storage for VMs
has not been defined. Therefore, we need to install the DRBD packages to form our
network RAID device for our VMs.

Installing and configuring DRBD
According to the information provided on the DRBD homepage, DRBD packages
have been shipped into Linux kernel versions above the 2.6.32 release. Unfortunately,
Proxmox comes with Linux kernel Version 2.6.32; you can look at it yourself in the
command line with the following command:

Root# uname –a

This should give you the following output:

Linux vmsrv02 2.6.32-28-pve #1 SMP x86_64 GNU/Linux

Chapter 4

[93]

I have highlighted the kernel version and you should see that Proxmox is running
on the 2.6.32 Linux kernel. So, we have to install DRBD packages manually on both
servers. To simplify the installation process, I will install the package with the
apt-get command. Here are the steps:

1.	 First, we have to log in to the terminal of vmsrv01 and issue the
following command:
root@vmsrv01# apt-get install drbd8-utils

2.	 When the installation has finished, load the DRBD kernel module by using
the following command:
root@vmsrv01# modprobe drbd

3.	 To check whether DRBD is running, use the following command:
root@vmsrv01# lsmod | grep drbd

4.	 You should get output that is similar to the following one:
drbd 339667 0

5.	 Ensure that you have installed DRBD packages in both cluster nodes. The next
step is to create a configuration file under the /etc/drbd.d/ directory. We
need to create a new configuration file named proxmox_drdb.conf in /etc/
drbd.d/ on both the nodes. Let's check which options we have to set up first:
In the global section, we have to change the value of usage-count from yes
to no. The usage-count is used by www.DRBD.org to collect the number of
installations, and it is not necessary to enable it. In the common section, we
have to configure how DRBD handles write I/O:

°° Protocol: The available options for this are A, B, or C. Here, we are
using Protocol C
°° Protocol A: In this, the write I/O is reported as completed if it has

reached the local disk and the local TCP send buffer
°° Protocol B: In this, the write I/O is reported as completed if it has

reached the local disk and the remote buffer cache
°° Protocol C: In this, the write IO is reported as completed if it has

reached both the local and remote disk

In the startup section, we can configure the timeout settings:

°° wfc-timeout: This is used when the cluster is starting up, and
indicates how much time to wait for the connection from another
node. The default value is unlimited, and we set it to 120 seconds
to prevent unlimited waiting.

www.DRBD.org

Configuring a Proxmox VE Cluster

[94]

°° degr-wfc-timeout: This is used when the cluster is degraded
(with one node left), and indicates how much time to wait for the
connection. The default value for this is unlimited, and we set it
to 60 seconds.

°° become-primary-on: Its value can be the hostname or both. If it is not
set, both nodes are secondary nodes. Since both nodes are required to
write data, we set the value to both.

In the net section, we have to configure the security setting and handles for
split brain:

°° cram-hmac-alg: With this, we can define which HMAC algorithm to
use during the peer handshake connection. We use the SHA1 algorithm.

°° shared-secret: This is used with the cram-hmac-alg option to
share the secret password for encryption.

°° allow-two-primaries: We should enable this option because we
have configured both the nodes to be in the primary node.

°° after-sb-0pri: This is used after split-brain when no primary node
is found. Therefore, it is used to synchronize data that has changed
on the disk. We use the discard-zero-changes option with it.

°° after-sb-1pri: This is used after split-brain when one primary node
is left. We will discard any changes from the secondary node using
the discard-secondary option.

°° after-sb-2pris: This is used after split-brain, when both nodes
claim to be the primary node. It is better to disconnect both nodes to
prevent data corruption.

In the syncer section, we need to configure the synchronizer's behavior:

°° rate: This is used to set the bandwidth (calculated in bytes). Please
use around 30 to 50 percent of your total bandwidth. For example,
I will use 100/8 * 0.3 ~ 4 M.
For gigabit Ethernet, the suggested value is between 40 M and 62.5 M.

°° verify-alg: This is used to verify the data content with the help of
the MD5 algorithm.

Chapter 4

[95]

After combining all these options, we get the following code:

In the next part, we will set up the disk configurations for DRBD. Also, we
have to set up our hard disks with the fdisk command; for example, if we
have a hard disk in /dev/sdX, we need to make a partition on it by using the
following command:
Root# fdisk /dev/sdX

Here, X refers to the drive letter system assigned; I have /dev/sdc now. Just
accept the default setting and you should have a device called /dev/sdc1.

6.	 We have to create the r1.res file under /etc/drbd.d/ on both the nodes.
Assume that we have the following disk drive with the same capacity:

Servers Disk drive
vmsrv01, vmsrv02 /dev/sdc1

Configuring a Proxmox VE Cluster

[96]

The final code will look as follows:

The default connection port is 7788 and we use the
local disk for metadata.

7.	 Now, we have to include the files in the /etc/drbd.conf file, as shown in
the following code snippet:
#include "drbd.d/global_common.conf"
include "drbd.d/proxmox_drbd.conf"

Here, the r1.res resource file is already included because there is a rule:

include "drbd.d/*.res"

8.	 Now, we can start the DRBD service on both nodes using the
following command:
Root# /etc/init.d/drbd start

9.	 After that, we should be able to see output similar to the following output:
1: State change failed: (-2) Need access to UpToDate data

10.	 If we check the status of the DRBD service, it shows that it is not configured,
as shown in the following command:
root@vmsrv01# service drbd status

drbd driver loaded OK; device status:

1:r1 Unconfigured

Chapter 4

[97]

11.	 This means that we have to create the metadata now. We have to issue the
following command:
Root# drbdadm create-md r1

12.	 Now, when we check the status, it will have a different output:

13.	 Currently, both the nodes are treating themselves as secondary nodes
because they don't know whether they have the up-to-date data. To fix
this problem, we need to make the following change in vmsrv01:
Root@vmsrv01# drbdadm -- --overwrite-data-of-peer \

primary r1

14.	 If this command executes successfully, when we check the status of DRBD on
vmsrv01, you will see that it says it is up to date. In the following screenshot,
vmsrv01 is trying to synchronize its data to vmsrv02 and it is processed till
0.9%. The synchronization process usually takes a long time.

15.	 When finished, we can see that the status of vmsrv02 has changed
to UpToDate but it is still in a Secondary role, as shown in the
following screenshot:

16.	 To make vmsrv02 primary, we have to restart the DRBD service in the
terminal of vmsrv02:
root@Vmsrv02# /etc/init.d/drbd restart

17.	 Now, vmsrv02 has changed to the primary role, as shown in the
following screenshot:

Configuring a Proxmox VE Cluster

[98]

So far, we have created a DRBD volume but we have to build a filesystem on top of it
for Proxmox to use. We are going to build it into a LVM volume.

Creating an LVM volume based on the DRBD
shared storage
First, we have to enable a clustered LVM by editing the /etc/lvm/lvm.conf file on
both the nodes and make the following change:

locking_type = 3

By default, the LVM locking type is set to 0, which is used for local file-based locking.
We are changing it to 3 because we would like to have cluster-level locking, which
prevents simultaneous access to the LVM volume.

Next, we need to enable the clustered LVM service by editing /etc/init.d/clvm
on both the nodes:

START_CLVM=yes

Activate the cluster LVM service with the following command:

root# /etc/init.d/clvm start

Now, we only need to create the LVM volume under a single node. Let's start the
setup at vmsrv01:

1.	 Under vmsrv01, create a physical volume (PV) for the LVM using the
following command:
root@vmsrv01# pvcreate /dev/drbd1

The /dev/drbd1 volume is defined in the
r1.res resource file.

2.	 You should be able to see /dev/drbd1 become a PV after using the
following commands:
root@vmsrv01# pvscan

PV VG Fmt Attr PSize PFree
DRBDVol drbd-vg lvm2 a-- 20.00g 12.00g

3.	 Then, we have to build a Volume Group (VG) using the
following command:
root@vmsrv01# vgcreate drbd-vg DRBDVol

Chapter 4

[99]

4.	 You can these settings with the help of the following command:
Root@vmsrv01# vgs

VG #PV #LV #SN Attr VSize VFree
drbd-vg 1 1 0 wz--nc 20.00g 12.00g

In the attributes of the VG we created, make sure
that the character c is present, indicating that it is
a clustered LVM volume.

5.	 Add the LVM volume via the Proxmox GUI under Datacenter | Storage.
Then, choose Add | LVM as shown in the following screenshot:

6.	 Follow the settings given in the following screenshot and make sure to check
the Shared option:

7.	 We can only store KVM images in this LVM volume.
8.	 Create a KVM-based VM and install your preferred operating system with

the following information:

Server ID VM ID VM name VM type IP Storage
vmsrv02 201 drbd-kvm KVM 192.168.2.11 drbd-vg, 4GB

Configuring a Proxmox VE Cluster

[100]

9.	 Make sure you have chosen the drbd-vg LVM volume as the system storage,
as shown in the following screenshot:

10.	 Start the VM and check the information of our storage:

As you can see, we have allocated disk space for our KVM machine on the DRBD
storage. Besides, we can also place an OpenVZ container with the DRBD storage,
but we need to create a filesystem first. In this example, we will make use of the
EXT4 filesystem as a demonstration; make sure you have made the following
configurations in both nodes:

1.	 Create an LV in the DRBD volume group (drbd-vg) using the
following command:
root@vmsrv01# lvcreate -N drbd-ext4 -L 6G drbd-vg

2.	 Format the LV with the EXT4 filesystem using the following command:
root@vmsrv01# mkfs.ext4 /dev/drbd-vg/drbd-ext4

3.	 Create a directory and mount the filesystem under it using the
following command:
root@vmsrv01# mkdir /drbd-store/ext4

root@vmsrv01# mount /dev/drbd-vg/drbd-ext4 /drbd-store/ext4

4.	 We are able to use it for the OpenVZ container and add it as the directory
storage. Unlike the storage for KVM, which is a clustered LVM storage, we
are making our custom mount point for the OpenVZ containers, so we must
not check the Shared option, as shown in the following screenshot:

Chapter 4

[101]

After that, we are able to place both the KVM and OpenVZ container under
this storage, as shown in the following screenshot:

5.	 Then, create an OpenVZ container with the following information:

Server ID VM ID VM name VM type IP Storage
vmsrv01 202 drbd-vz openVZ 192.168.2.12 drbd-ext4, 4GB

Network fencing with a Cisco switch
via SNMP
As we have mentioned before, we cannot enable the HA function if we don't have
fencing devices on our cluster. When we check the HA service status, it gives an
empty result, which means that the HA function is not enabled:

Configuring a Proxmox VE Cluster

[102]

The HA-enabled VM creation process will be introduced in the next chapter. Let's
take a look at what will happen if we try to enable HA on a VM at this point:

This error message simply tells us that when we try to enable HA on a VM, the
HA service is not available, which causes error. The main reason for this is leaking
fencing devices. In the next section, we are going to configure a fencing device with
our Cisco switches. To make it easier, I will introduce the graphical tools for you to
perform this task. If you are using a Linux platform as your workstation, you can
simply execute the screen command, shown as follows:

root@workstation# screen /dev/ttyS0 9600

Assuming that we are using the Windows environment, we make use of a program
called HyperTerminal to set up the IP addresses for the switches. For a Linux
platform, we can use minicom.

For the operation of minicom, please refer to http://www.
cyberciti.biz/tips/connect-soekris-single-
board-computer-using-minicom.html.

Configure the switches using the following steps:

1.	 First, you need to find out whether your serial port is mapped with the COM
port. Do this by checking in the Computer Management window as shown
in the following screenshot:

2.	 So, I have a COM3 serial device and I have to set up the serial connection
under HyperTerminal, as shown in the following screenshot:

http://www.cyberciti.biz/tips/connect-soekris-single-board-computer-using-minicom.html
http://www.cyberciti.biz/tips/connect-soekris-single-board-computer-using-minicom.html
http://www.cyberciti.biz/tips/connect-soekris-single-board-computer-using-minicom.html

Chapter 4

[103]

3.	 Then, we have to configure the following settings for the connection to work:

4.	 We can now configure the switch; please note that the IP address for the
switch will change if you abide by the following instruction. Do not apply
the switch configuration if you already have the IP settings applied! We
issue the following commands in the switch:
Switch1> enable

Switch1# config terminal

Switch1(config)# interface vlan 1

Switch1(config-if)# ip address 192.168.1.45 255.255.255.0

Switch1(config-if)# no shut

5.	 We also need to check whether multicast traffic is allowed by your switches.
Install the omping package on both the nodes with the following command:
root@vmsrv01# apt-get install omping

Issue the following command:
root@vmsrv01# omping vmsrv01 vmsrv02

If the multicast packets can be passed to another node, you should have an
output similar to the following output:
vmsrv01 : multicast, seq=245, size=69 bytes, dist=0, time=0.468ms

6.	 After we have applied the IP address on Switch 1, we can apply another IP
address, say 192.168.1.46, to Switch 2. Our existing network infrastructure
is similar to the structure shown in the following diagram:

192.168.1.45
Switch 1

192.168.1.46
Switch 2

eth0 eth1
Proxmox 1

192.168.1.51

eth0 eth1
Proxmox 2

192.168.1.52

fa0/1 fa0/22 fa0/1 fa0/22

Configuring a Proxmox VE Cluster

[104]

7.	 It's time for us to set up the SNMP service and define the network ports on
the switch for network fencing. Before we can start our configuration, we
have to check the interface properties, such as the index number (ifIndex)
and description (ifDescr). For example, if we want to check the interface at
fa0/1, issue the following command:
Switch1(config)# show snmp mib ifmib ifindex fa0/1
FastEthernet0/1: Ifindex = 1

Then we know that the Ifindex value equals to 1.

8.	 If you are unlucky like me and you've failed to execute the mentioned
command, you have to enable the SNMP server on your switch to further
check the interfaces; enter the following command to do so:
Switch1(config)# snmp-server community public ro

9.	 When the SNMP server is activated, we make use of the snmpwalk command
to make the SNMP request switch; for example, we make the following
request to Switch 2:
root@vmsrv01# snmpwalk –v 2c –c public 192.168.1.46

10.	 If we receive a huge amount of returning results, then your SNMP server on
Switch 2 is active. Next, let's check the status of the Ethernet interfaces; the
interface can be identified from the following pattern:
iso.3.6.1.2.1.2.2.1.<property_name>.<interface_name>

11.	 When we make our request, the iso keyword is replaced by .1 as shown in
the following snippet:
root@vmsrv01# snmpwalk –v 2c –c public 192.168.1.46 \
.1.3.6.1.2.1.2.2.1.2

12.	 The response shows the value of the ifDescr interface description:
iso.3.6.1.2.1.2.2.1.2.1 = STRING: "FastEthernet0/1".

13.	 This means we have successfully found the Ethernet port via SNMP; to check
the interface index (ifIndex), use the following command:
root@vmsrv01# snmpwalk –v 2c –c public 192.168.1.46 \
.1.3.6.1.2.1.2.2.1.1

14.	 The values of ifIndex should return the following:
iso.3.6.1.2.1.2.2.1.1.1 = INTEGER: 1

15.	 Then, the values of ifAdminStatus should be iso.3.6.1.2.1.2.2.1.1.7:
iso.3.6.1.2.1.2.2.1.7.1 = INTEGER: 1.

Chapter 4

[105]

16.	 Now, we can go back to the switch for configuration; remember to apply the
commands on both the switches:
Switch1(config)# no snmp-server

Switch1(config)# interface fa0/1

Switch1(config-if)# description NODE2

Switch1(config-if)# interface fa0/22

Switch1(config-if)# description NODE1

17.	 Here, we have turned off the SNMP server if there is an existing one. Then,
we named our interfaces NODE1 and NODE2. After that, an access list is created
to restrict the SNMP server to be accessed by the Proxmox servers only for
security reasons:
Switch1(config)# ip access-list standard MyclusterACL

Switch1(config-std-nacl)# permit 192.168.1.57

Switch1(config-std-nacl)# permit 192.168.1.58

Switch1(config-std-nacl)# deny any

18.	 It's now ready for us to create our own SNMP server for use. Unless further
mentioned, the commands are executed under the configure terminal
(configuration) mode:
snmp-server view Mycluster_view ifEntry.2.1 included

snmp-server view Mycluster_view ifEntry.2.22 included

snmp-server view Mycluster_view ifEntry.7.1 included

snmp-server view Mycluster_view ifEntry.7.22 included

snmp-server community Mycluster_community view Mycluster_view rw 1

Switch1(config)# exit

Switch1# write memory

19.	 In the Cisco switch command interface, ifEntry is used to represent the
string—iso.3.6.1.2.1.2.2.1, and .2.1 is used to query interface description
(ifDescr) for interface 1. Here is a list of objects we used in ifEntry:

°° 2 – ifDescr: This is used for the interface description, for example
FastEthernet0/1

°° 7 – ifAdminStatus: This is used by the administrator to control the
port status

20.	 We also have rw 1 at the end. The word rw means that it grants read-write
permissions, and number 1 means that the access-list number 1 is used for
access control.

Configuring a Proxmox VE Cluster

[106]

We can check whether the SNMP server is working as expected, using the
snmpwalk command:
root@vmsrv01# snmpwalk –v 2c –c Mycluster_community 192.168.1.46

iso.3.6.1.2.1.2.2.1.2.1 = STRING:
FastEthernet0/1"iso.3.6.1.2.1.2.2.1.2.22 = STRING:
FastEthernet0/22"
iso.3.6.1.2.1.2.2.1.7.1 = INTEGER: 1
iso.3.6.1.2.1.2.2.1.7.22 = INTEGER: 1

21.	 Next, we have to restart the cman and pve-cluster service on both the nodes
to apply the new settings:
root@vmsrv01# /etc/init.d/cman restart

root@vmsrv01# /etc/init.d/pve-cluster restart

22.	 After this, we will be able to test whether the fencing is working as expected
with the following command:
root@vmsrv01# fence_node vmsrv02 -vv

If the command finished without any error, all network interfaces for vmsrv02
will be turned off.

23.	 To enable a normal operation, we need to access both the switches and issue
the following command:
Switch1(config)# interface fa0/22

Switch1(config-if)# no shut

24.	 After setting up the fencing devices on both the cluster nodes, some
modifications must be made to the cluster's configuration file /etc/pve/
cluster.conf. Remember to issue the following command before editing.
Do not edit the file directly!
root@vmsrv01# cp /etc/pve/cluster.conf /etc/pve/cluster.conf.new

25.	 Edit the /etc/pve/cluster/conf.new file and add the records for fencing
devices after the <totem> tag:
<fencedevices>
 <fencedevice agent="fence_ifmib" community="Mycluster_
 community" ipaddr="192.168.1.45" name="fence_ifmib_SW1"
 snmp_version="2c" />
 <fencedevice agent="fence_ifmib" community="Mycluster_
 community" ipaddr="192.168.1.46" name="fence_ifmib_SW2"
 snmp_version="2c" />
 </fencedevices>

Chapter 4

[107]

26.	 For the cluster node, we have to change the configuration file with the
following pattern:
####################### From ###########################
<clusternode name="vmsrv01" nodeid="1" votes="1"/>
<clusternode name="vmsrv02" nodeid="2" votes="1"/>
##
######################## To ###########################
<clusternode name="NODE1" nodeid="1" votes="1">
 <fence>
 <method name="1">
 <device action="off" name="fence_ifmib_SW1"
 port="FastEthernet0/22"/>
 <device action="off" name="fence_ifmib_SW2"
 port="FastEthernet0/22"/>
 </method>
 </fence>
<unfence>
 <device action=on name=fence_ifmib_SW1 port=FastEthernet0/22/>
 <device action=on name=fence_ifmib_SW2 port=FastEthernet0/22/>
</unfence>
</clusternode>
<clusternode name="NODE2" nodeid="2" votes="1">
 <fence>
 <method name="1">
 <device action="off" name="fence_ifmib_SW1"
 port="FastEthernet0/1"/>
 <device action="off" name="fence_ifmib_SW2"
 port="FastEthernet0/1"/>
 </method>
 </fence>
<unfence>
 <device action=on name=fence_ifmib_SW1 port=FastEthernet0/1/>
 <device action=on name=fence_ifmib_SW2 port=FastEthernet0/1/>
</unfence>
</clusternode>

Make sure the name property under the clusternode tag matches the one
that we previously defined inside our switches, and is listed under /etc/
hosts. If not, the following error will be shown in /var/log/messages:
fence_ifmib: Parse error: Ignoring unknown option
'nodename=vmsrv01

Configuring a Proxmox VE Cluster

[108]

27.	 Next, we have to browse the HA tab in the web interface and click
on Activate to save the changes. In order to activate the changes, it is
recommended to restart the cman and pve-cluster services.

28.	 In the next step, we need to include the cluster nodes in the fencing domain
for HA. Edit the /etc/default/redhat-cluster-pve file with uncomment
FENCE_JOIN="yes". Restart the cman service and join both the nodes to fence
the domain using the following command:
root@vmsrv01# /etc/init.d/cman restart
root@vmsrv01# fence_tool join

We are now ready to activate the HA function. The setup for this function is easy;
just go to Services, find RGManager, and click on Start on the top menu for both nodes.

If you cannot turn on the service at this stage, don't worry; the
service will start when you configure an HA-enabled VM.

If you see that the RGManager has started in the summary page of datacenter, as
shown in the following screenshot, it means that we were able to create HA-enabled
VMs successfully!

To automatically start the rgmanager service, issue the following command on both
the nodes:

root@vmsrv01# update-rc.d rgmanager defaults

In the next section, I will show you the setup procedure of different storage options.
You can choose one of them based on your system's configuration.

Building a Gluster filesystem for
a Proxmox cluster
Instead of the network RAID 1 device formed by DRBD, we can also place our VMs
into a Gluster filesystem.

Chapter 4

[109]

As we have stated before, we will install three VMs with the CentOS platform for
demonstration, based on the following network configuration:

Hostname VM node IP address Subnet mask Interface
glusterFS1 vmsrv01 192.168.1.51 255.255.255.0 vmbr0

glusterFS2 vmsrv02 192.168.1.52 255.255.255.0 vmbr0

glusterFS3 vmsrv03 192.168.1.53 255.255.255.0 vmbr0

For our practice, we set up three physical servers connected to the same network
in which the Proxmox is located; we assign the vmbr0 interface (to know how to
configure it, please refer to the network preparation section of this chapter) for them
to use. I assume that you have already set up the hostname, IP configuration, and
the /etc/hosts file.

Each VM should have at least 512 MB memory installed.

After the network has been configured, we are ready to install the Gluster filesystem
packages. Here, I will demonstrate the installation under the CentOS 6 platform; the
latest stable version at the time of writing this book is 3.4.3-3, and the following steps
will be applied to all of the three machines.

From http://download.gluster.org/pub/gluster/glusterfs/LATEST, download
the following RPM packages: glusterfs, glusterfs-cli, glusterfs-fuse,
glusterfs-libs, and glusterfs-server, and perform the following steps:

1.	 To install GlusterFS, we have to install the following libraries first:
root# yum install openssl libaio-devel lvm2 xfsprogs

2.	 Before installing the GlusterFS package, install the libraries first:
root# rpm –ivh glusterfs-libs-3.4.3-3.el6.x86_64.rpm

3.	 Next, install gluster-fuse, gluster-cli, and gluster-server
with GlusterFS:
root# rpm –ivh glusterfs-3.4.3-3.el6.x86_64.rpm \
glusterfs-fuse-3.4.3-3.el6.x86_64.rpm \
glusterfs-cli-3.4.3-3.el6.x86_64.rpm \
glusterfs-server-3.4.3-3.el6.x86_64.rpm

If you have encountered an error that tells you that rpcbind is needed for
glusterfs-server, then you have to issue the following command to install
the rpcbind service:
Root# yum install rpcbind

http://download.gluster.org/pub/gluster/glusterfs/LATEST

Configuring a Proxmox VE Cluster

[110]

4.	 If you cannot make the connection between nodes, set up the iptable
firewall rules in each server to allow the incoming connections:

Server name Iptable firewall rules
glusterFS1 iptables -I INPUT -s 192.168.1.52 -j ACCEPT

iptables -I INPUT -s 192.168.1.53 -j ACCEPT

glusterFS2 iptables -I INPUT -s 192.168.1.51 -j ACCEPT
iptables -I INPUT -s 192.168.1.53 -j ACCEPT

glusterFS3 iptables -I INPUT -s 192.168.1.51 -j ACCEPT
iptables -I INPUT -s 192.168.1.52 -j ACCEPT

To make it simple, I have allowed transmission from other
Gluster nodes. If it is not what you want, please make use of
the following specifications to set up your own rules:
One port is reserved for each brick in a volume, starting from
24009 (for versions less than 3.4) and 49152 (for versions 3.4
and above). Ports 34865 to 34867 are reserved for the inline
Gluster NFS server.

5.	 Then, we need to save the iptables configuration using the following
command (optional):
root# service iptables save	

6.	 Now, we start the Gluster daemon service using the following command:
root# /etc/init.d/glusterd start

7.	 Then, we configure the Gluster daemon to start on every boot using the
following command:
root# chkconfig glusterd on

8.	 At the moment, no peer is set up, which can be checked using the
following command:
root@glusterFS1# gluster peer status

peer status: No peers present

9.	 Add peer Gluster nodes (glusterFS2 and glusterFS3) on glusterFS1
using the following command:
root# gluster peer probe 192.168.1.52

root# gluster peer probe 192.168.1.53

Chapter 4

[111]

10.	 We can check the peer status to confirm whether it is working or not using
the following command:
root@glusterFS1# gluster peer status

Number of Peers: 2

Hostname: 192.168.1.12

...

Hostname 192.168.1.11

11.	 If the node is not in the Peer in cluster state, the node is not yet ready.
12.	 Then, we prepare a partition for the hard disk with the fdisk command and

format it to XFS using the following command (assume we have the /dev/
vda1 partiton; if not, please create a new one with the fdisk command):
root# mkfs.xfs /etc/vda1

XFS was the recommended filesystem for GlusterFS at the time
of writing this book. We can also use EXT4 but it is not very
stable. For more information on this, please refer to
http://www.gluster.org/community/documentation/
index.php and https://lwn.net/Articles/544298/.

13.	 If the command is not available in your machine, install the package using
the following command:
root# apt-get install xfsprogs

14.	 Create a directory (/glusterfs-data) and mount point (/glusterfs-data/
mount1) for the Gluster data nodes using the following command:
root# mount /dev/vda1 /glusterfs-data

root# mkdir –p /glusterfs-data/mount1

As we said, we need to make a subdirectory for Gluster use.

15.	 Edit /etc/fstab to make sure that the device is mounted on every boot:
/dev/vda1 /glusterfs-data xfs rw,user,auto 0 0

16.	 It's time to create our Gluster volume; type the following command
in GlusterFS1:
root# gluster volume create glustertest replica 3 \

transport tcp 192.168.1.51:/glusterfs-data/mount1 \

192.168.1.52:/glusterfs-data/mount1 \

192.168.1.53:/glusterfs-data/mount1

http://www.gluster.org/community/documentation/index.php
http://www.gluster.org/community/documentation/index.php
https://lwn.net/Articles/544298/

Configuring a Proxmox VE Cluster

[112]

17.	 Let's start the volume for use by using the following command:
root# gluster volume start glustertest

18.	 Then, you can check the volume status using the following command:
root# gluster volume info
Volume Name: glustertest
Type: Replicate
...
Bricks:
Brick1: 192.168.1.51:/glusterfs-data/mount1
Brick2: 192.168.1.52:/glusterfs-data/mount1
Brick3: 192.168.1.53:/glusterfs-data/mount1

19.	 Before adding volume to Proxmox, we need to add the following
firewall rules:
root# iptables –I INPUT –s 192.168.1.57 –j ACCEPT

root# iptables –I INPUT –s 192.168.1.58 –j ACCEPT

root# service iptables save

20.	 If you are interested in tuning the performance for your GlusterFS volume,
check the configurations in the master node (for example, glusterFS1) at
the following location (optional): /var/lib/glusterd/vols/glustertest/
trusted-glustertest-fuse.vol.

21.	 Make sure you stop the VMs that are running on Proxmox. Then, stop
the Gluster volume in the Gluster master node with the following
command (optional):
root@glusterFS1# gluster volume stop glustertest

22.	 You can add the following new options in the configuration file (optional):
Volume glustertest-write-behind
 type performance/write-behind
 option cache-size 3MB
 option flush-behind on
 subvolumes glustertest
end-volume

Parts of this code are explained as follows:

°° cache-size: This determines the total size of the write buffer used
°° flush-behind: This is used to increase the performance of handling

lots of small files

Chapter 4

[113]

23.	 After this, restart the volume named glustertest using the following
command (optional):
root@glusterFS1# gluster volume start glustertest

This is only one of the possible changes for performance; you
can learn more at http://goo.gl/TwaKlo.
For more options on GlusterFS, visit http://goo.gl/N4j1JJ.

24.	 Next, we can add glustertest to our Proxmox server. Simply navigate to
Datacenter | Storage | Add | GlusterFS. If the connection is okay, you should
have the volume name suggestion, as shown in the following screenshot:

By default, the Gluster server allows all clients to connect. If
you cannot connect to the volume, you can modify the auth.
allow option by using the following command:
root@glusterFS1# gluster volume set glustertest \

auth.allow 192.168.1.*

25.	 Unlike LVM, we can choose the content to be stored in this volume. Here,
we choose Images for KVM and Containers for OpenVZ:

Make sure the following four folders: images, containers,
vztmp, and dump do not exist in your Gluster volume
because Proxmox will try to create them and reject the use of
the volume if this operation fails.

http://goo.gl/TwaKlo
http://goo.gl/N4j1JJ

Configuring a Proxmox VE Cluster

[114]

26.	 You should be able to view the volume information under the glustertest
disk inside vmsrv01 or vmsrv02, as shown in the following screenshot:

27.	 So, we can use the volume when building KVM VMs and OpenVZ
containers. When we create the KVM VM, choose glustertest as storage,
as shown in the following screenshot:

28.	 Similarly, when we create the OpenVZ container, glustertest is available for
use, as shown in the following screenshot:

Chapter 4

[115]

Now, we have created two new VMs with the following information:

Server ID VM ID VM name VM type IP Storage
vmsrv01 203 gfs-kvm KVM 192.168.2.13 glustertest

vmsrv01 204 gfs-vz openVZ 192.168.2.14 glustertest

Based on your network quality, you might need to wait for a couple of minutes for
the VM to be created. In the next section, we will go over another shared storage
option—the Ceph filesystem.

Building a Ceph filesystem for
a Proxmox cluster
We introduced the Ceph filesystem in Chapter 3, Key Components for Building a
Proxmox VE Cluster, and we learned that it is a distributed filesystem. If you are
not comfortable using the command line, Proxmox provides a built-in Ceph server
service for you as an alternative option. Proxmox also provides a GUI to manage
the Ceph service in its web management console, which should be much easier.
In this section, I will show you how to build a Ceph service in Proxmox as a server
and mount a Ceph device as a client.

As we mentioned before, we need to have three monitor nodes for a Ceph service.
So, if we want to use Proxmox as a Ceph server, we need to have at least three nodes.
Do you remember that we have already attached the network configuration for the
third Proxmox server? Now, it's time for you to practice installing a Proxmox server
and add it to the existing cluster. Remember to set up the hostname under the new
node before adding it to the cluster. The following steps will guide you through
building the Ceph filesystem:

1.	 If you have done everything well, you should be able to view a screen like this
where the /dev/block/8:16 is the quorum disk we configured before:

Configuring a Proxmox VE Cluster

[116]

2.	 Now, we can start installing Ceph support for Proxmox. With the Internet
enabled, enter the following command on the three nodes:
root# pveceph install

3.	 Please pay attention, as it will take a while to download the necessary
packages. When the installation is finished, simply issue the following
command in vmsrv01:
root@vmsrv01# pveceph init -–network 192.168.1.0/24

The value of the network will be different based on the network
configuration used for your Ceph storage. In our case, it is the
Proxmox host node's infrastructure network.
Be aware that we need to use pveceph instead of the ceph command,
as running the ceph command will generate a file not found error!
This configuration will be replicated to other nodes in the /etc/
pve/ceph.conf file.

4.	 Next, we need to create a Ceph monitor with at least three or above nodes.
If you want to install more than three nodes, make sure you have an odd
number of monitors (for example, 3, 5, 7, and so on):
root@vmsrv01# pveceph createmon

5.	 After you have the first monitor, you can create the others via the web GUI.
So we browse the Ceph tag (which is located at the end of the right-hand
side) on the top menu under vmsvr01. Choose Monitor at the bottom to view
the Ceph monitor page:

Chapter 4

[117]

6.	 In the Ceph Monitor page, click on Create. Choose vmsrv02 and vmsrv03
accordingly, as shown in the following screenshot:

7.	 After you finish adding the monitors, we are ready to add disks to the
CephFS as object storage devices (OSD). Choose a single server from the
panel towards the left that says vmsrv01. In the panel to the right, choose ceph
from the menu at the top. Then, click on Disks at the bottom, and the hard
drives connected to vmsrv01 are displayed in the panel towards the right,
as shown in the following screenshot:

Here, we have four types of usage status; the meaning of each is as follows:

°° Mounted: This is used as the root device
°° Partitions: This means that the drive is formatted with partitions
°° No: This means that the drive is not formatted as a partition and is

available to be used to form OSD
°° Osd.N: This means the drive is created as the OSD volume

Configuring a Proxmox VE Cluster

[118]

8.	 Thus, if you want to make Ceph storage on a formatted hard drive, make
sure you have removed the partitions with the fdisk command. Choose an
unused hard disk from the list and click on Create: Ceph OSD, as shown in
the following command:

9.	 Accept the default setting and choose an SSD for the journal disk if you
have one.

The size of the OSD must be 10 GB or bigger.

10.	 After the configuration has completed, we will see a window similar to the
following screenshot:

Currently, we have prepared our hard drives in Ceph, but we don't have any
mount point for the client! To build a mount point for them, we need to create
a pool under Ceph.

Chapter 4

[119]

In any one of the Ceph nodes (vmsrv01 for example), we choose pools from
the menu towards the bottom. Click on create present in the top menu, and
the following window appears:

Here, we have defined the following options for our Ceph storage:

•	 Name: This is the mount point for the client connection.
•	 Size: This is used to set the number of replicas to be kept.
•	 Min. Size: This is used to set the minimum number of replicas to be kept.
•	 Crush RuleSet: It is okay to accept the default value, which is 0.
•	 Pg_num: This is used to set the number of placement groups for the

pool, which is approximately 100 per OSD. It is calculated based on
the following formula:

()
100Number of OSDs

Total Placement Groups PGs
Number of Replicas

*
=

In our case, this value is (9*100) / 3 = 300.

Mounting a Ceph device as shared storage
So far, we have built shared storage with Ceph but don't know how to use it on
Proxmox. Let's see how we can use it:

1.	 To add a new storage to our cluster, again we have to click on datacenter in
the panel towards the left, browse to storage in the panel towards the right,
select Add, and choose RBD.

Configuring a Proxmox VE Cluster

[120]

2.	 Then, we have to add our storage, as shown in the following screenshot:

The following are the options for RBD:

°° ID: This is used to set the name for your storage in the cluster.
°° Pool (ceph-test): This must be matched with the one we have

configured before.
°° Monitor Host: Add each Ceph monitor separated by a space, for

example, 192.168.1.57 192.168.1.58 192.168.1.59 and so on.

3.	 However, after we have added the storage, you will see that the storage is not
available and we cannot even know how much storage we are able to use:

This is because we haven't copied the keyring file for the admin user while
connecting the Ceph device. We have to create a new folder to store the
keyring file before copying; for example, we copied the file from vmsrv01
in the following commands:
root@vmsrv01# mkdir /etv/pve/priv/ceph

root@vmsrv01# cp /etc/ceph/ceph.client.admin.keyring \ /etc/pve/
priv/ceph/ceph-test.keyring

Notice that the keyring file is stored as follows:
/etc/pve/prive/ceph/<ceph_mountpoint_name>.keyring

Chapter 4

[121]

4.	 Now, you should be able to view the content without any error, as shown in
the following screenshot:

As we are focusing on building a two-node cluster with Proxmox, I will not go
further and test on the built-in CEPH storage.

We have gone through the setup procedures of different types of storage in Proxmox.
Each storage option has its own advantages and disadvantages, so I would suggest
that you test all of them to choose a suitable one. Meanwhile, I have prepared
the following simple comparison between DRBD, GlusterFS, and CEPH for your
reference when you need to choose your storage:

Product DRBD GlusterFS CEPH
HDD size 2 N N
Filesystem EXT3, EXT4 EXT3, EXT4, and XFS Its own system
Replication Full Full, diff, and reset CRUSH
Management CLI CLI GUI
Storage requirement Partition-based Directory-based Partition-based

Based on the preceding table, I would suggest that you choose DRBD storage if you
want to try it with the HA environment. For a production environment, it would be
better to choose either GlusterFS or CEPH storage. Conceptually, GlusterFS would
be easier to understand, but if you are not comfortable managing it with commands,
then you can give CEPH a try.

Configuring a Proxmox VE Cluster

[122]

Summary
In this chapter, a brief description of a cluster with HA was demonstrated. We also
learned how to build shared storage as a quorum disk. With the help of the quorum
disk, a two-node cluster was configured. Of course, the most important part of a
cluster is the fencing devices. In our testing environment, we learned how to build
them with the help of Cisco switches.

Besides that, we built our DRBD block device for VM migration, which will be
shown to you in the next chapter. In the next chapter, we are going to build a
VM that is protected under HA. Also, I am going to show you the behavior of
our cluster during different levels of failure.

Testing on a Proxmox Cluster
In the previous chapter, we successfully built our own cluster system with Proxmox
on both the two-node and three-node models. We also know that a quorum disk
is essential for a two-node cluster to operate. But what if we have a node failure?
What will happen to the cluster and how will it behave?

In this chapter, we are going to test whether our newly built cluster is protected by
HA or not. To understand the whole picture of different scenarios, the testing will
be conducted in both two-node and three-node clusters. Before we can begin our test,
we have to make some changes to our DRBD storage. The key sections that will be
covered in this chapter are as follows:

•	 Storage preparation for an LVM shared storage
•	 Demonstration of live migration for OpenVZ and KVM
•	 Building a VM with HA protection
•	 Testing different scenarios, including network failure, network switch failure,

and cluster node failure

Storage preparation for an LVM shared
storage
According to the Installing and configuring DRBD section in Chapter 4, Configuring
a Proxmox VE Cluster, we have built an LVM volume with the /dev/sdc1 partition on
both the Proxmox nodes to form our DRBD device. The /dev/sdc1 partition contains
an LVM identifier on it as the LVM storage, and the LVM service tries to import it to
the system; this might affect our DRBD mount point. It would be better to filter out
this device to prevent any possible error by editing the /etc/lvm/lvm.conf file on
both cluster nodes. Before we make any change to the file, we should back up the file
with the following command:
root@vmsrv01# cp /etc/lvm/lvm.conf /etc/lvm/lvm.conf.bak

Testing on a Proxmox Cluster

[124]

Then, we can make the following changes:

Original: filter = ["a/.*/"]
New: filter = ["a|/dev/drbd1|", "r|/dev/sdc1|", "a/.*/"]

In this example, we have defined the configuration, which is explained in the
following points:

•	 a|/dev/drbd1|: This accepts LVM scanning on /dev/drbd1
•	 r|/dev/sdc1|: This rejects LVM scanning on /dev/sdc1
•	 a/.*/: This accepts LVM scanning on the remaining devices

Demonstration of live migration
What is the first benefit that we can enjoy after we have set up a Proxmox cluster?
We are now able to perform live migration on our running VMs. Unlike offline
migration, live migration allows you to have minimal downtime during the data
migration from one cluster node to another.

Before moving on to the demonstration of live migration, do you remember that
we created two VMs named VM 100 and VM 101 in Chapter 1, Basic Concepts of a
Proxmox Virtual Environment, and two more VMs called VM 201, VM 202, VM 203,
and VM 204 in Chapter 4, Configuring a Proxmox VE Cluster?

The following table shows the summary of the six VMs:

Host VM ID IP address VM type Storage type
vmsrv01 100 192.168.1.10 OpenVZ Local
vmsrv01 101 192.168.1.11 KVM Local
vmsrv01 201 192.168.2.11 KVM DRBD
vmsrv01 202 192.168.2.12 OpenVZ DRBD
vmsrv01 203 192.168.2.13 KVM GlusterFS
vmsrv01 204 192.168.2.14 OpenVZ GlusterFS

These VMs are being used to test the behavior when we perform a migration
and configure the VMs with the HA environment. Now, we are going to test
the operation of live migration on these VMs.

Chapter 5

[125]

Using an OpenVZ container for live migration
Before starting with this section, we have to turn the VM on first. To test the
availability, we will perform a simple ping test from vmsrv01 to VM 100. The
following steps will guide you through this process:

1.	 We have to first get back to the web interface of Proxmox and check whether
VM 100 is running under vmsrv01, as shown in the following screenshot:

2.	 When we ping from vmsrv01 to VM 100, the following results appear, which
show that VM 100 is active:
PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.
64 bytes from 192.168.1.10: icmp_req=1 ttl=64 time=0.049 ms
64 bytes from 192.168.1.10: icmp_req=2 ttl=64 time=0.033 ms

3.	 It's time for us to test migrating a VM from vmsrv01 to vmsrv02. Right-click
on VM 100 and choose Migrate, set the Target node to vmsrv02, and check
the Online option for live migration, as shown in the following screenshot:

4.	 Before clicking on the Migrate button, we have to keep checking the status
of VM 100 using the ping test to ensure that the service is not interrupted.
In the task history, we can find that the container is moving, as shown in the
following output:
starting migration of CT 100 to node 'vmsrv02' (192.168.1.58)
container is running - using online migration
starting rsync phase 1
/usr/bin/rsync -aHAX --delete --numeric-ids --sparse \
/var/lib/vz/private/100 root@192.168.1.58:/var/lib/vz/private
dump container state
copy dump file to target node
starting rsync (2nd pass)
/usr/bin/rsync -aHAX --delete --numeric-ids \

Testing on a Proxmox Cluster

[126]

/var/lib/vz/private/100 root@192.168.1.58:/var/lib/vz/private
dump 2nd level quota
copy 2nd level quota to target node
initialize container on remote node 'vmsrv02'
initializing remote quota
turn on remote quota
load 2nd level quota
starting container on remote node 'vmsrv02'
restore container state
removing container files on local node
start final cleanup
migration finished successfully (duration 00:01:49)

At first, the Proxmox server will initiate the vzmigrate command and pass the
--online option to the server to indicate that it is an online migration. From the
operation log, we found that live migration is making use of the rsync command
to copy files under the OpenVZ container directory to the target cluster node.

Two rsync operations are run. The first time, it tries to copy all data from the
OpenVZ container with the -–sparse command-line option that will reduce the
used space at the destination side.

Then, the second time, the rsync operation tries to copy the current state and
memory map to a destination node for restoration. From the output log, we found
that the OpenVZ container is suspended once the migration process starts. As the
container is suspended during the migration process, we will suffer from a period of
downtime in proportion to the amount of memory allocated to the VMs. Therefore,
if we need to move the OpenVZ container on a production platform, we must take
such downtime into consideration.

Reply from 192.168.1.10: bytes=32 time=24ms TTL=63
Reply from 192.168.1.57: Destination host unreachable.
Reply from 192.168.1.58: Destination host unreachable.
Reply from 192.168.1.58: Destination host unreachable.
Reply from 192.168.1.10: bytes=32 time=2ms TTL=63

From the ping test result, we found that the container is not available for a duration of
three ping packets, and the respondent is transferred from vmsrv01(192.168.1.57)
to vmsrv02(192.168.1.58) during the operation. How about if we move an OpenVZ
container to a DRBD storage? Let's check if there is any difference by performing the
following steps:

1.	 Perform the same steps as mentioned earlier, but this time, we choose
VM 202.

Chapter 5

[127]

2.	 Then, we can check the system log; you should see something similar to the
following output:
container is running - using online migration
starting rsync phase 1...
start live migration - suspending container
starting rsync (2nd pass)...
migration finished successfuly (duration 00:01:45)

The operation is the same as what we did in the previous section because the DRBD
storage for our OpenVZ container is a local storage only. So, there is no difference
during a system migration between VM 100 and VM 202. How about if we try to
migrate an OpenVZ container using the GlusterFS storage? The following steps will
show you how to do this:

1.	 Perform the same steps as you did earlier, but this time, choose VM 204.
2.	 Then, check the system log; you should have an output similar to the

following output:
starting migration of CT 204 to node 'vmsrv02' (192.168.1.58)
container is running - using online migration
container data is on shared storage 'glustertest'
start live migration - suspending container
dump container state
dump 2nd level quota
initialize container on remote node 'vmsrv02'
initializing remote quota
turn on remote quota
load 2nd level quota
starting container on remote node 'vmsrv02'
restore container state
start final cleanup
migration finished successfully (duration 00:06:38)

We found that Proxmox skipped the two-level rsync operation and simply dumped the
container state and quota from the source to the destination, because the container is
stored in shared storage. Therefore, there is no need to copy the files again and check
whether the source VM data is removed. Next, let's take a look at the migration process
using a KVM.

Testing on a Proxmox Cluster

[128]

Live migration with a KVM
Again, we start our testing with a KVM that is not running in shared storage; here,
we have VM 101. Before we turn this VM on for testing, we need to remove the
extra configurations rather than the VM root drive itself, for example, an extra
hard disk drive, a CD-ROM device mounted with an ISO image, and so on. If you
have just finished the installation of the OS on VM 101, we might have a CD-ROM
device mounted with a physical drive or ISO file. The following steps will guide you
through the migration process:

1.	 To remove the mounted drive setting, click on VM 101 on the panel on the
left-hand side and choose Hardware on the panel on the right-hand side.
Check the value of CD/DVD Drive; make sure that it is set to Do not use
any media, as shown in the following screenshot:

Then, we will notice that the configuration has changed, as shown in the
following screenshot:

2.	 After we have finished changing the settings, we can now turn on the
machine, right-click on it, and choose Migrate. As usual, we use the online
option for live migration. Unlike the OpenVZ container, the live migration
for VM 101 fails. The following process log shows that because the disk
image is not stored in shared storage, the operation fails:
starting migration of VM 101 to node 'vmsrv02' (192.168.1.58)
copying disk images
...
ERROR: migration aborted (duration 00:00:00): Failed to sync
data - can't do online migration - VM uses local disks

Chapter 5

[129]

We cannot perform live migration on a KVM
with local storage.

3.	 So, we are going to use the KVM that was created in Chapter 4, Configuring
a Proxmox VE Cluster, with VM 201. Note that we also need to remove extra
configurations such as the mounted CD-ROM, ISO files, and so on. Here is
our expected output:
starting migration of VM 201 to node 'vmsrv02' (192.168.1.58)
copying disk images
starting VM 201 on remote node 'vmsrv02'
starting ssh migration tunnel
starting online/live migration on localhost:60000
migrate_set_speed: 8589934592
migrate_set_downtime: 0.1
migration speed: 256.00 MB/s - downtime 3 ms
migration status: completed
migration finished successfully (duration 00:00:12)

As compared to the live migration under an OpenVZ container, there is only a 3 ms
downtime during the live migration under the KVM. Why is the system migration
for a KVM performed so fast? Here are the reasons:

•	 The KVM will not be suspended at the beginning of the migration process;
this reduces the downtime

•	 The KVM uses a pre-copy memory migration that was mentioned in Chapter
2, Getting Started with a High Availability (HA) Environment, which will only
stop the source VM after copying most of the memory map data

•	 As the VM is stored in shared storage, not a lot of data is needed to be copied

Let's see the ping test result for the KVM live migration:

42 packets transmitted, 42 received, 0% packet loss

Now, we have tested migration with one of the most important functions of
a Proxmox cluster. In the next part, we will protect our VMs using HA.

Testing on a Proxmox Cluster

[130]

Building an HA-protected VM
In Chapter 1, Basic Concepts of a Proxmox Virtual Environment, we created two VMs
with OpenVZ and KVM (VM 100 and VM 101, respectively) for demonstration
purposes. As they are stored locally, they do not have the HA ability. So, we
have to use VM 201 and VM 202, which were created in Chapter 4, Configuring
a Proxmox VE Cluster, for testing. The following steps will guide you in building
an HA-protected VM:

1.	 Make sure that you have enabled the resource group manager (rgmanager)
service (refer to Chapter 4, Configuring a Proxmox VE Cluster, if you don't
know how to enable them), as shown in the following screenshot:

2.	 First, turn off the VMs before applying the HA-protected configuration. Then,
choose the Datacenter folder from the panel on the left-hand side and find
the HA tab. You should see a screen similar to the following screenshot:

3.	 Navigate to Add | HA managed VM/CT | Create: HA managed VM/CT,
as shown in the following screenshot:

Chapter 5

[131]

4.	 Enter 201 as the VMID, and select the Auto Start option. Then, click on
the Create button. This action will make changes to the cluster.conf file.
To confirm the change, we click on the Activate button on the top menu.
If everything is working fine, you will see that a small section of code is
inserted in the cluster.conf file, as shown in the following screenshot:

Your VM will not be able to perform offline migration
if it is HA-protected!

The preceding setting is simply telling the Resource Group Manager
(RGManager) that there is a VM that should be under its management
whose VMID is 201.

5.	 If we go back to the Summary page under Datacenter, the VM with a VMID
equal to 201 has been added to the HA service, but the status is disabled.

6.	 After that, we can start the VM. The Proxmox cluster performs a different
start up process, as shown in the following screenshot:

7.	 Also, the status of the HA service for our VM is changed to started, as shown
in the following screenshot:

Testing on a Proxmox Cluster

[132]

As we cannot use the vmctl start <VMID> command anymore, we need to use
a new command called clusvcadm with an -e option to enable the HA service:

root@vmsrv01# clusvcadm -e pvevm:<VMID>

Now, we have built a VM with HA. Before we move on, we can check out some of
the new terms used in this section:

•	 Resource Group Manager (RGManager): This combines with the cluster
manager (CMAN) and distributed lock manager (DLM) processes to
manage and provide failover capabilities for the collection of resources called
services, resource groups, or resource trees. It is an essential process for
HA on services. If this service is turned off, the HA function is disabled.

•	 Cluster manager (CMAN): As the name implies, this is the main process
of the cluster architecture. CMAN manages the state of quorum the status
of different cluster members. In order to check the status of all the cluster
members, monitoring messages are sent periodically to all cluster nodes. If there
is any status change on the cluster member, it will be distributed to the
remaining cluster nodes.
It is also responsible for quorum management. When more than half of the
node members are active, a cluster is said to be healthy. If the number of
active member nodes is decreased to less than half, all cluster-related activities
are blocked. A few more features that are not allowed are as follows::

°° Any change made to the cluster.conf file is not allowed
°° You'll not be able to start the resource manager; this disables the

HA function
°° Any operation to create a VM is blocked

The operation of the existing VMs without HA are
not affected.

•	 Distributed lock manager (DLM): This is used by the resource group
manager to apply different lock modes to resources to prevent multiple
accesses. For details, refer to http://en.wikipedia.org/wiki/
Distributed_lock_manager.

http://en.wikipedia.org/wiki/Distributed_lock_manager
http://en.wikipedia.org/wiki/Distributed_lock_manager

Chapter 5

[133]

I have prepared a simple diagram that shows the relationship between the terms
described previously:

Cluster Manger
(CMAN)

VM101

Local

vmsrv01

VM100

HA-protected

VM201 Resource
group manager

Local

vmsrv02

HA-protected

Resource
group manager

quorum disk

must be running for service failover

Distributed Lock Manger (DLM)

acquire lock

Shared storage

Of course, we would like to add HA to an OpenVZ container too. Therefore, we
follow the steps to configure an HA-protected VM, as demonstrated earlier. If you
have done everything that is needed, you should have the following two entries
under the HA-service status section:

In this section, we have successfully created an HA-protected VM under both
the OpenVZ and KVM environments. Next, we will try to test whether our
HA environment is working or not.

Testing on a Proxmox Cluster

[134]

Testing with the cluster environment
We have gone through one of the most important features provided by a Proxmox
cluster. Under HA protection, the VMs are supposed to be online until there
is not enough quorum in a cluster. At this stage, I would like to test the cluster
functionality first by relocating the VM from one node to another.

Testing an HA service relocation
As a starting point, we need to ensure that the VM can be started up in both the
Proxmox nodes. As the VM is HA-protected, we cannot use vzctl start for
OpenVZ containers and qm start for KVM machines. Instead, we use clusvcadm
with the -e option in the following format:

root@vmsrv01# clusvcadm -e pvevm:<VMID>

In this command, pvevm is used as a prefix to indicate
that it is an HA-protected VM.

What if we need to relocate the HA service from one node to another? We use the
following command:

root@vmsrv01# clusvcadm -r pvevm:<VMID> <proxmox_node>

Testing the OpenVZ container relocation
In the previous chapter, we created three different OpenVZ containers, but the one
with local storage is not available, so the possible containers are:

•	 VM 202 with the drbd-ext4 storage
•	 VM 204 with the glustertest storage

We will try to test them one by one. First, we will test VM 202 using the
following steps:

1.	 Relocate an OpenVZ container (VM 202) using the following command:
root@vmsrv01# clusvcadm -r pvevm:202 vmsrv02

We find that the VM cannot be relocated, and we get the following error code:

Chapter 5

[135]

If we look at the error log, we find that the destination node cannot find the
data for the VM:
task started by HA resource agent
Starting container ...
stat(/drbd-store/ext4/private/202): No such file or directory
Can't umount /var/lib/vz/root/202: Invalid argument

This is because the container is not stored in shared storage; this causes the
relocation to fail.

2.	 So, we add VM 204 to be managed by the HA service and start the service
with the following command:
root@vmsrv01# clusvcadm -e pvevm:204

3.	 Then, we try to relocate the VM to vmsrv02 with the following command:
root@vmsrv01# clusvcadm -r pvevm:204 vmsrv02

4.	 The process log is different from the VM 202 relocation; there is no error now.

These steps show that shared storage is essential for an OpenVZ container relocation.
Of course, we also want to check the behavior of a KVM relocation, too.

Testing a KVM relocation
Just like the OpenVZ container, we cannot add a VM with local storage to the
HA environment, so we can choose from our existing VMs:

•	 VM 201 with the drbd-vg storage
•	 VM 203 with the glustertest storage

Now, we will try to test the behavior of different storages in KVM:

1.	 Make sure that the VM is running; then, perform relocation with the
following commands:
root@vmsrv01# clusvcadm -e pvevm:201

root@vmsrv01# clusvcadm -r pvevm:201 vmsrv02

Testing on a Proxmox Cluster

[136]

2.	 There should be no problem at all, as shown in the Status column of the
following screenshot:

3.	 We can test VM 203 with the following command:
root@vmsrv01# clusvcadm -r pvevm:203 vmsrv02

4.	 We have a similar output result for VM 203 relocation:

As we can see, Proxmox tries to shut down the VM from source and then
starts it up at the destination node. Therefore, we can only minimize the
downtime but cannot reach zero downtime for both OpenVZ containers
and KVMs.

Testing a single network interface failure
In order to meet the requirements of an HA cluster, it should be able to bear different
levels of failures without service interruption. Let's perform a simple ping test on
network failures in a cluster node.

First, we will test whether our system is operational if there is a single network card
failure. For simulation, we will turn off one network interface on vmsrv01 and start
up a ping test from vmsrv02 to see what will happen.

Issue the ping command from vmsrv02 to test the connectivity of vmsrv01:

root@vmsrv02# ping 192.168.1.57

Now, turn off the network interface (eth0) from vmsrv01:

root@vmsrv01# ifconfig eth0 down

Chapter 5

[137]

In our expectation, the connectivity of vmsrv01 should not be affected because we
have created a bonding device (bond0) with the failover policy and assigned the IP
address 192.168.1.57 to it. Let's check the output we got from the ping test:

64 bytes from 192.168.1.57: icmp_req=536 ttl=64 time=0.353 ms
...
560 packets transmitted, 560 received, 0% packet loss

Here, I tested it for over 500 packets and found no packet loss during the ping
test. Now, we need to check the status in the graphic interface by browsing to
https://192.168.1.57:8006. In the cluster summary, vmsrv01 is still marked
as Online, as shown in the following screenshot:

From this screenshot, we can say that our cluster has passed the availability test.
Before we move on to the next test, make sure that you have rolled back the change
by logging in to vmsrv01 and issuing the following command:

root@vmsrv01# ifconfig eth0 up

Testing a single network switch failure
In this section, we are going to create a test to simulate a network switch failure.
To avoid network inaccessibility between two switches, we have to add an extra
switch—Switch A—before we can actually turn the switch off. A diagram of the
connection is shown as follows:

Switch A

Switch 1 Switch 2

Proxmox 1 Proxmox 2

Testing on a Proxmox Cluster

[138]

The following steps will help you check the status of your connections:

1.	 When two switches are available, we can check the status of the bonding
device using the following command:
root# cat /proc/net/bond/bond0

Bonding Mode: fault-tolerance (active-backup)
Currently Active Slave: eth0
Slave Interface: eth0
MII Status: up
Slave Interface: eth1
MII Status: up

2.	 Next, we can simply power off the switch and watch its impact on our cluster.
After we have confirmed that the switch is powered off, we can check the
/var/log/message file on both nodes. You should be able to see that the
connection for eth0 is down, and the bonding interface will switch to use eth1
as the primary device:
vmsrv02 kernel: eth0: link down
vmsrv02 kernel: bonding: bond0: link status definitely down for
interface eth0, disabling it
vmsrv02 kernel: bonding: bond0: making interface eth1 the new
active one.

3.	 Inside the status of the bonding device, the interface state for eth0 changes to
down, as shown in the following output:
Slave Interface: eth0
MII Status: down

So, we have proven that the availability of our cluster nodes is not affected by
a single switch failure. Let's move on to see whether the cluster will be disabled
in the case of a failed cluster node.

Testing a single cluster node failure
In the previous sections, we tested the different types of network failures that can
cause the cluster to become unusable. Fortunately, with the configuration we have
applied, our cluster can still operate in a tough environment.

Chapter 5

[139]

As we have two running HA-enabled VMs (that is, VM 201 and VM 202), we can
simply fence vmsrv02 to test how Proxmox handles HA VMs if the corresponding
cluster node has been shut down:

root@vmsrv01# fence_node vmsrv02

The services that run in vmsrv02 have all failed. This is not our expectation and not
acceptable! When there is a node failure (for example, system reboot, shutdown, or
hardware failure), the VMs configured with the HA protection should be migrated
to other healthy nodes. Why would this problem occur? This will occur as we do not
configure a failover domain that tells Proxmox what to do when there is a node failure.

Setting up a failover domain
According to the definition in Red Hat, a failover domain is a named subset of cluster
nodes that are eligible to run a cluster service in the event of a node failure. This
means that if there is a node failure, the nodes inside the subset will take the place
and responsibility of the failed member that will move the VM to the other node, in
our case. For more information, refer to http://goo.gl/6Vmbjb.

At the time of writing this book, we have to configure a failover domain under CLI
by adding new settings to the cluster.conf file.

You might notice that there is a Failover domain option under the Add button on
the HA-management page. However, if you choose it, you will get the following
window, which shows you that there is no GUI tool available yet:

The steps required to set up a failover domain are as follows:

1.	 First, we need to copy the current contents of the cluster.conf file to form
a new file named cluster.conf.new:
root# cp /etc/pve/cluster.conf /etc/pve/cluster.conf.new

2.	 Assume that the current version for the configuration file is 59. Before we
make any changes to the configuration file, increment config_version by 1 ,
which becomes 60, in the /etc/pve/cluster.conf.new file:
<cluster config_version="60" name="mycluster">

http://goo.gl/6Vmbjb

Testing on a Proxmox Cluster

[140]

3.	 Then, we need to add the failover domain section after the rm tag and before
the pvevm tag:
</rm>
 <failoverdomains>
 <failoverdomain name="myfailover" nofailback="1" ordered="1"
 restricted="1">
 <failoverdomainnode name="vmsrv01" priority="1"/>
 <failoverdomainnode name="vmsrv02" priority="2"/>
 </failoverdomain>
 </failoverdomains>
<pvevm>

First, we defined restricted (restricted="1") and ordered
(ordered="1") in the failover domain named myfailover without setting
failback (nofailback="0"). Besides, we have to check whether the
recovery method of our VM is set to "relocate". The meanings of these
settings can be summarized as follows:

°° Restricted domain: This means we only make use of defined failover
nodes when a failover is needed.

°° Ordered domain (nofailback="1" and recovery="relocate"):
This means that priority is applied to the cluster node. A service is
relocated to another cluster node when its owner is down. With the
nofailback setting equaling 1, if the priority of the original service
owner is higher than the relocated one, then the service will not be
relocated back to its original owner when it comes back online. This
allows the system administrator to check the failed cluster node
before moving the services back to it.

4.	 After that, changes to VM 203 and VM 204 are made to identify what kind of
action is needed if their active host is turned off:
<pvevm autostart="1" vmid="203" domain="myfailover"
recovery="relocate"/>
<pvevm autostart="1" vmid="204" domain="myfailover"
recovery="relocate"/>

5.	 Finally, remember to close the rm tag by adding the following code after the
previous lines of code:
</rm>

6.	 Save this file. Click on Datacenter on the panel on the left-hand side in the
web console and find the HA tab on the panel on the right-hand side. Click
on Activate to make new changes.

Chapter 5

[141]

7.	 Now, we have configured a higher priority value for vmsrv02. Therefore, we
expect that the VM203 and VM204 services will be relocated back to vmsrv02
when it comes online. We can test the failover function by fencing vmsrv02
using the following command:
root@vmsrv01 # fence_node vmsrv02

8.	 Now, VM 203 and VM 204 are still not available after vmsrv02 is fenced.
Here is the ping test result for them:
64 bytes from 192.168.1.21: icmp_req=33 ttl=64 time=0.52 ms
From 192.168.1.57 icmp_seq=67 Destination Host Unreachable
...
64 bytes from 192.168.1.22: icmp_req=29 ttl=64 time=0.30 ms
From 192.168.1.57 icmp_seq=63 Destination Host Unreachable

9.	 Instead of keeping the services down, after around half a minute, the services
are relocated to vmsrv01, as shown in the following screenshot:

Why do we have downtime for half a minute? This is because we have defined
30000 microseconds as the value of the totem token, which equals 30 seconds, for the
waiting time of a heartbeat message in the Forming a two-node cluster with DRBD
section of Chapter 4, Configuring a Proxmox VE Cluster. Therefore, we need to wait
for 30 seconds before determining whether vmsrv02 is down, as shown in the
following steps:

1.	 To restore the status of vmsrv02, issue the following command in vmsrv01:
root@vmsrv01# fence_node vmsrv02 -U

2.	 We also need to transit the services back to vmsrv02 using the
following command:
root@vmsrv01# clusvcadm –r pvevm:201
root@vmsrv01# clusvcadm –r pvevm:202

Testing on a Proxmox Cluster

[142]

Summary
In this chapter, we have gone through two important features of Proxmox—live
migration and HA. Using live migration, we can shift our services to other machines
with minimal system downtime when we find that the system resources on a cluster
node are almost fully utilized. This allows us to have better resource management.
With a VM running with HA, the system downtime can be minimized, and the
system administrators are not required to monitor the system 24/7 on their own.

In the next chapter, we are going to see how to import our existing operating systems
to our Proxmox cluster to enjoy the functionalities we just mentioned.

System Migration of an
Existing System to a
Proxmox VE Cluster

In Chapter 5, Testing on a Proxmox Cluster, we did some tests on our Proxmox cluster.
During our tests, the VMs under HA protection were not affected due to a network
card or a network switch failure. Even if we manually turned off one cluster node, the
VMs where HA was enabled will automatically be switched to the remaining nodes.

Building a VM from scratch is pretty easy, but what if we already have a running
system in hand? In this chapter, we are going to demonstrate the processes of
moving an existing system to our cluster platform. The following topics will be
covered in this chapter:

•	 System migration of an existing Linux platform
•	 Live migration of a physical machine to a KVM
•	 System migration of a Windows platform
•	 System migration from VMware to Proxmox
•	 System migration from XenServer / Hyper-V Server to Proxmox

Assume we have a physical machine with the following system specifications:

•	 OS: CentOS 6.5 and the Windows Server 2012 standard edition.
•	 CPU: Any CPU with two physical cores.
•	 Memory: 1 GB RAM for Linux, and 2 GB RAM for Windows.

System Migration of an Existing System to a Proxmox VE Cluster

[144]

•	 Hard drive: For Linux, a 10 GB hard drive is required with two LVM
volumes—lv_root and lv_swap.
For Windows, a 20 GB hard drive is needed with one hidden system volume
and one data volume.

•	 NIC: One network card with the IP address ranging from 192.168.1.31
to 37 with the subnet mask 255.255.255.0 is required. A temporary IP
address, 192.168.1.39, will be used during the migration.

•	 For VMware system migration, VMware ESXi Version 5.5 is used.
•	 For XenServer system migration, XenServer Version 6.2 is used.

Our demonstration assumes that you only have one physical hard drive and one
physical network adapter. If you have multiple hard drives, and you have created
multiple mount points under your physical machine, you have to add the same
number of virtual disk drives and customize the /etc/fstab file under your VM
so as to make the migration successful.

If we move the Linux platform to form an OpenVZ container, please note that for
most circumstances, migrating the current system to KVM-based VMs requires the
existing system to shut down while we do the live migration.

System migration of an existing
Linux platform
This type of migration can only be used for a Linux platform and has a limit of only
one hard drive as an OpenVZ container does not allow you to add extra hard drives.

Preparing for container migration on
a Proxmox server
We have two different approaches to do the system migration. These have been
explained in the following points:

1.	 You can simply perform an rsync operation from the source machine
on the Proxmox server, and then create a configuration file for the
OpenVZ container.

2.	 You can create a blank container and copy the data from the source.
You can view the link http://goo.gl/byzsji for your reference.

http://goo.gl/byzsji

Chapter 6

[145]

If we start our migration with the template file, we are likely to run into trouble
for comparing the files on the source and destination machines, because the target
container will also contain the data copied from the template. Therefore, it is much
better to create the container using the GUI, keeping the configuration files, and
remove all the data inside. The following steps will guide you in creating the container:

1.	 Click on the Create CT button at the top right and fill in the
following information:

The password will be overwritten by the source machine.

2.	 For the Template tab, make sure you have downloaded the OpenVZ
template file for the required Linux distribution and OS version from
http://wiki.openvz.org/Download/template/precreated.

3.	 This is the most important step! To reduce the chance of having a hardware
problem, make sure that you allocate enough system resources (similar to
the source machine):

4.	 For the network part, we choose venet and enter the IP address (for example,
192.168.1.31) for the VM.

5.	 The DNS settings are not important; you can use the following example:
°° DNS domain: localdomain
°° DNS Server 1: 192.168.1.1

http://wiki.openvz.org/Download/template/precreated

System Migration of an Existing System to a Proxmox VE Cluster

[146]

6.	 When the operation completes, make sure you turn off the newly created
VM. Then, double-confirm if the OSTEMPLATE option is already set up in
the /etc/vz/conf/301.conf file:
OSTEMPLATE="centos-6-x86_64_minimal.tar.gz"

Our preparation process is now complete. In the next section, we are going to copy
data from the source machine to our VM using the rsync command.

Migrating data to a container using the
rsync command
In order to ensure that all our data is properly copied even with minor data changes,
we have to perform the rsync operation twice. In the first pass, most of the data is
copied from the source while minor changes will be copied in the second pass when
we turn off most of the system services (for example, web, database, mail, and so on).
With such an approach, the system downtime is minimized.

Before we can proceed with copying, make sure that the rsync command is available
on both the machines and perform the following steps (all the commands should be
executed from vmsrv01 unless advised):

1.	 First, we have to create a list of directories that are to be excluded during the
copy operation because the environment for a virtual platform is different
from the physical one. If we copy the information directly from the source,
our VM might be unable to start up. So, we create a file with the following
code under /tmp/exclude.txt:
/tmp # folder containing temporary files
/boot # boot folder, stores information used for booting up
/lib/modules# library modules
/etc/blkid # stores information about block devices
/etc/mtab # stores information on currently mounted FS
/etc/lvm # stores information for LVM devices
/etc/fstab # stores information on mount points
/etc/udev # stores naming alias for devices

2.	 We have to allow remote access for the root account in the physical machine.
Edit the /etc/ssh/sshd_config file to enable the PermitRootLogin option:
PermitRootLogin yes

3.	 Restart the SSH service of the physical machine to apply the
configuration changes:
service sshd restart

Chapter 6

[147]

4.	 Next, we can start copying the files from the source to the destination:
[root@vmsrv01]# rsync -avz -A -H --one-file-system --numeric-ids \
--exclude-from=/tmp/exclude.txt root@192.168.1.31:/ \
/var/lib/vz/private/301

If you have defined a customized port for the SSH server, you have to tweak
the command, as follows:
[root@vmsrv01]# rsync -e "ssh -p <ssh_port> -i <identity> -avz -A
-H --one-file-system --numeric-ids --exclude-from="/tmp/exclude.
txt" root@192.168.1.31:/ /var/lib/vz/private/301

Make sure that you have entered the command in
a single line.

5.	 Configure the network interface to ensure that the IP settings are applied:
[root@vmsrv01]# vzctl set 301 –ipadd 192.168.1.31 –save

As the container is different from a physical machine, we have to make the
modifications under the Proxmox server using the following commands:
Line1: cd /var/lib/vz/private/301

Line2: sed -i -e 's/^[0-9].*getty.*tty/#&/g' etc/inittab

Line3: ln -sf /proc/mounts etc/mtab

Line4: mv etc/fstab etc/fstab.old

Line5: egrep '/dev/pts|/dev/shm|/proc|/sys' etc/fstab.old >
 etc/fstab

Line6: mknod --mode 666 dev/ptmx c 5 2
Line7: mkdir -p dev/pts
Line8: cp -a /dev/ttyp* /dev/ptyp* dev

Line9: /sbin/MAKEDEV -d dev ttyp ptyp

Line10: rm -rf dev/null

Line11: mknod --mode 666 dev/null c 1 3

Line12: mknod --mode 444 dev/urandom c 1 9

Line13: mkdir proc

Line14: cp -a etc/network/interfaces etc/network/interfaces.old

Line15: cat /dev/null > etc/network/interfaces

These commands are explained as follows:

°° In line 1, we have navigated to the directory of the container.
°° In line 2, as the container does not contain real ttys, we have to

disable the getty content inside/etc/inittab.

System Migration of an Existing System to a Proxmox VE Cluster

[148]

°° In line 3, we linked the {VMDIR}/etc/mtab file to /proc/mounts with
the host system (that is, Proxmox). The container's root filesystem
(/) is not actually mounted at root (/); rather, it is under the host's
filesystem. Therefore, linking the mount file from the host system to
the VM will make the df command work properly in a VM.

°° In lines 4 and 5, we create a backup of the /etc/fstab file first. Since
the container does not have a real hard disk, there should be no
entries except /dev/pts, /proc, and /sys.

°° In lines 6 to 9, we are trying to create tty device nodes for the vzctl
command to work. The directories included are /dev/ptmx, /dev/
pts/, /dev/ttyp*, and /dev/ptyp*.
If you cannot use the MAKEDEV command, you can copy the file
directly with the following command:

cp -a /dev/ttyp* /dev/ptyp* /var/lib/vz/private/301/dev/

°° In lines 10 and 11, we make sure that /dev/null is correctly
configured. So, we remove the old one and create a new one
with the mknod command.

°° In line 12, we create /dev/urandom for a random generator; please
refer to http://www.2uo.de/myths-about-urandom/ for more info
about random generators.

°° In line 13, we create the /proc directory if it does not exist. This
folder is used to store runtime system information. For more details
on system information, you can check out http://goo.gl/Q0917w.

°° In lines 14 and 15, we copied the network configuration files for
the VM.

6.	 The VM is now ready for us to start testing; issue the following commands:
[root@vmsrv01]# vzctl start 301

[root@vmsrv01]# vzctl enter 301

7.	 If the VM is working as expected, turn off the source machine and turn
on the network interface inside the newly-created container with the
following command:
[root@p2v-01]# ifconfig eth0 up

If you are using Fedora, your network interface might be venet0, so the
command becomes:

[root@p2v-01]# ifconfig venet0 up

http://www.2uo.de/myths-about-urandom/
http://goo.gl/Q0917w

Chapter 6

[149]

The downtime for system migration to an OpenVZ container for a Linux platform
is minimum in our demonstration; this is because the OpenVZ container shares the
Linux kernel with the host system. So, if the kernel version of your source system
cannot run on the Linux kernel that Proxmox is using, you may need to use a
KVM-based VM. In the next section, we will cover the procedures of system
migration to form a KVM-based VM.

Live migration of a physical machine
to a KVM
Such a migration will only work for a Linux platform. Let's check how we can
convert our Linux platform to a virtualized one.

Preparing for migration on the source
machine
Make sure that logging in from the root account is allowed via SSH on the physical
server (as the data source) and vmsrv01, just as we did while migrating the system
from a physical machine to an OpenVZ container. To make it simpler, I will create
a folder named /backup to store the backup files. Make sure that you have enough
disk space to place a backup of your boot partition. The following steps will guide
you through the process of migration:

1.	 Create a backup folder in both the physical machine and vmsrv01:
mkdir /backup

2.	 Check the partition name used by Linux to boot up the system from the
source machine using the following command:
[root@source]# fdisk –l
Disk /dev/sda: 10.7 GB, 10737418240 bytes
...
Device Boot Start End Blocks Id System
/dev/sda1 * 1 64 512000 83 Linux
Partition 1 does not end on cylinder boundary.
/dev/sda2 64 1306 9972736 8e Linux LVM

[root@source]# cat /etc/fstab
/dev/mapper/vg_p2v01-lv_root / ext4 defaults 11
/dev/mapper/vg_p2v01-lv_swap swap swap defaults 0 0

System Migration of an Existing System to a Proxmox VE Cluster

[150]

From this output result, we know the following information:
°° /dev/sda1 is our boot partition
°° There are two logical volumes in the vg_p2v01 volume group;

they are vg_p2v01-lv_root and vg_p2v01-lv_swap
°° Here, vg_p2v01-lv_root is a root partition with the ext4 filesystem
°° vg_p2v01-lv_swap is a swap partition

3.	 Next, we need to prepare the boot information of our VM from the source
machine. Extract the first 512 bytes, which is the Master Boot Record (MBR),
into a file (source-mbr.bin) using the following command:
[root@source]# dd if=/dev/sda of=/backup/source-mbr.bin \
bs=512 count=1

We define the block size (bs) as 512 bytes and the write value as one
(count=1).

4.	 Then, we need to extract the following information from the boot partition:
[root@source]# dd if=/dev/sda1 of=/backup/source-boot-part.img
bs=1M

5.	 If there is any LVM inside the source machine, we have to make a backup
of its configuration with the vgcfgbackup command, as shown in the
following command:
[root@source]# vgcfgbackup -f /backup/source-lvm.cfg
Volume group "vg_p2v01" successfully backed up.

6.	 Transfer the files from the source to vmsrv01:
[root@source]# scp /backup/* root@192.168.1.57:/backup

Next, we need to prepare the data source for our VM. Since we have used LVM in
our source server, we would be able to create an LVM snapshot volume to prevent
any change during our copy operation. If you don't have an LVM volume on your
source server, you can simply skip the next part and move on to the Preparing for
migration on a Proxmox server section.

Creating an LVM snapshot volume for data copying
Of course, this method is only available if you have used LVM volume on your source
server. This is the preferred method because you don't need to stop the services in
your physical machine as the changes are only applied on the snapshot. Please note
the steps covered in the following points are executed in the source server.

Chapter 6

[151]

An LVM snapshot requires around 15 percent to 20 percent
disk space of the original volume; make sure you have enough
room to save the data.

1.	 Using the following command, we will check whether we have free physical
extents for our LVM snapshot:
[root@source]# pvdisplay –m
PV Name /dev/sda2
VG Name vg_p2v01
Total PE 2434
Free PE 1280

As we can see, there are 1280 physical extents (PE) available for use.

If you do not have a free PE for a snapshot, you can shrink
down your LVM volume, but it requires a system shutdown.
Please refer the System migration of a Windows platform
section as your read more on offline migration ona physical
machine with Linux platform to a KVM.

2.	 Next, we create our LVM volume with the lvcreate command and tell the
system that it is a snapshot of the lv_root volume:
[root@source]# lvcreate -s -n mysnap –L800M /dev/vg_p2v01/lv_root

No error is returned because we only need 20% of original disk
space (3.5GB * 0.2 = 702MB), so we have no problem creating a
volume named mysnap with 800MB size.

3.	 We can create a directory as a mount point and mount the read-only volume
mysnap to it using the following command:
[root@source]# mkdir /mnt/source
[root@source]# mount /dev/vg_p2v01/mysnap /mnt/source

4.	 If you have enabled SELinux, make sure that you have issued the following
command to reset the security context (extended attributes added by SELinux):
[root@source]# restorecon -R -v /mnt/source

Then, we have to perform a restore with the backup files on the virtual machine.
This includes the partition table recovery and LVM volume configuration restore.

System Migration of an Existing System to a Proxmox VE Cluster

[152]

Preparing for migration on a Proxmox server
After we have transferred the backup files to the Proxmox server, we have to create
a blank KVM-based VM via a web GUI:

1.	 Choose the Create VM button from the top-right corner and fill in the
following information:

°° Node: vmsrv01
°° VM ID: 302
°° Name: p2v-02

2.	 Since we are migrating to a Linux server, we choose Linux 3.x/2.6 kernel
as the OS type.

3.	 We choose Do not use any media option in the CD/DVD tab as we are not
performing installation from the disc.

4.	 Then, we need to build a virtual disk with a size that is identical to the
source server:

5.	 We have to set up two cores in the CPU tab, as shown in the
following screenshot:

Chapter 6

[153]

6.	 We have to identify the memory size, 1 GB, which is the same as that of the
source, as shown in the following screenshot:

7.	 For the network part, simply accept the default setting.
8.	 Click on Finish to complete the process.

In the next part, we need to work in the command-line interface to restore disk
information and copy data from the source server.

Restoring disk information from the source backup
Now, we have transferred the backup files that contain disk information, including
the LVM structure information. It's time for us to restore them to the virtual disk for
our new machine. The following steps will help you achieve that:

1.	 In the beginning, we have to restore the master boot record from the backup
file /backup/source-mbr.bin using the following command:
[root@vmsrv01]# dd if=/backup/source-mbr.bin \
of=/var/lib/vz/images/302/vm-302-disk-1.raw \
conv=notrunc

2.	 Next, we need to install the kpartx package to mount our image using the
following command:
[root@vmsrv01]# apt-get install kpartx

If you cannot install kpartx, you might need to update your Proxmox system
first using the following command:
[root@vmsrv01]# aptitude update

Kpartx is a command-line tool used to view the partitions
for an image file. The partitions can be mounted at /dev/
loop0 for the read/write process. Please refer to http://
goo.gl/Io9VkP for more details.

http://goo.gl/Io9VkP
http://goo.gl/Io9VkP

System Migration of an Existing System to a Proxmox VE Cluster

[154]

3.	 Then, we can mount the KVM disk image to /dev/loop0 using the
following command:
[root@vmsrv01]# kpartx –av /var/lib/vz/images/302/vm-302-disk-1.
raw

4.	 To list the partitions inside the file, use the following command:
[root@vmsrv01]# fdisk -l /dev/loop0
Disk /dev/loop0: 10.7 GB, 10739318784 bytes
...
 Device Boot Start End Blocks Id System
/dev/loop0p1 * 1 64 512000 83 Linux
/dev/loop0p2 64 1306 9972736 8e Linux
LVM

This command will show the same partition layout as the source server.

5.	 After that, we need to restore the boot partition using the following command:
[root@vmsrv01]# dd if=/backup/source-boot-part.img \ of=/dev/
mapper/loop0p1 bs=1M

6.	 If you have an LVM volume, open the LVM configuration file /backup/
source-lvm.cfg and find the ID under the physical_volumes section:
physical_volumes {
 pv0 {
 id = "RZ7PZh-RJlN-SZ09-Rw25-NZfo-H1Yn-cTidgs"

7.	 Before we can restore LVM settings, make sure your server does not contain
PV with the same ID or the same name for the LVM volume using the
vgdisplay and pvscan commands:
[root@vmsrv01]# pvscan
[root@vmsrv01]# vgdisplay | grep "PV Name"

If you already have an LVM volume with the same name, you might need
to rename your existing volume to another name using the vgrename
command. Please refer to http://linux.die.net/man/8/vgrename for
more information on the vgrename command.

8.	 Restore the LVM configuration using the pvcreate and vgcfgrestore
commands:
[root@vmsrv01]# pvcreate -u RZ7PZh-RJlN-SZ09-Rw25-NZfo-H1Yn-cTidgs
\
--restore /backup/source-lvm.cfg /dev/mapper/loop0p2

[root@vmsrv01]# vgcfgrestore -f /backup/source-lvm.cfg vg_p2v01
 Restored volume group vg_p2v01

http://linux.die.net/man/8/vgrename

Chapter 6

[155]

9.	 When everything is done, check the LVM information with the pvs, vgs, and
lvs commands:
[root@vmsrv01]# pvs
PV VG Fmt Attr PSize PFree
/dev/mapper/loop0p2 vg_p2v01 lvm2 a-- 9.51g 5.00g

[root@vmsrv01]# vgs
VG #PV #LV #SN Attr VSize VFree
vg_p2v01 1 2 0 wz--n- 9.51g 5.00g

[root@vmsrv01]# lvs
LV VG Attr LSize Pool Origin Data%
lv_root vg_p2v01 -wi------ 3.51g
lv_swap vg_p2v01 -wi------ 1.00g

10.	 Next, we need to create the filesystem(s) for the LVM image file; lv_swap is
a swap partition and lv_root is the root partition with the ext4 filesystem:
[root@vmsrv01]# vgchange -ay vg_p2v01
[root@vmsrv01]# mkswap /dev/vg_p2v01/lv_swap
[root@vmsrv01]# mkfs.ext4 /dev/vg_p2v01/lv_root

11.	 Create a directory as the mount point and mount lv_root to it using the
following command:
[root@vmsrv01]# mkdir /mnt/source
[root@vmsrv01]# mount /dev/vg_p2v01/lv_root /mnt/source

Up to this point, we have built a partition layout on our VM that is identical to that
of the source machine. In the next step, we need to copy data from the source.

Copying data from the source server to the
Proxmox server
In the previous section, we mounted our data volume to /mnt/source as the data
source for the Proxmox server. The following are the steps to copy data from the
source machine to the destination machine:

1.	 Start our copy operation by issuing the rsync command; it will take a couple
of minutes to complete the command:
[root@source]# rsync –avz –H -A –X /mnt/source \
root@192.168.1.57:/mnt/source

System Migration of an Existing System to a Proxmox VE Cluster

[156]

If you haven't mounted the LVM snapshot volume from the previous section,
you need to create an exclude directory list first, as shown in the following
lines of code:
/tmp/exclude.txt:
/tmp
/lost+found
/mnt
/proc
/tmp
/sys

2.	 Assume that we have mounted a partition by mapping our virtual disk
image file with the kpartx command to /mnt/source in the Proxmox
server; issue the following command to start the copy operation:
[root@source]# rsync –auz –H –X / --exclude--from=/tmp/exclude.txt
root@192.168.1.57:/mnt/source

3.	 As the LVM snapshot will not include mount points, there are a few
directories that need to be copied manually:
[root@source]# rsync -auz -H –X /boot \
root@192.168.1.57:/mnt/source/boot
[root@source]# rsync -auz -H –X /selinux \
root@192.168.1.57:/mnt/source/boot
[root@source]# rsync -auz -H –X /dev \
root@192.168.1.57:/mnt/source/dev

4.	 If you have custom mount points (for example, /download) and an additional
hard disk with the ext4 filesystem (for example, /dev/sdb1) in your physical
machine, you might need to do the following (this is optional):

°° Add an extra virtual hard drive first and create a mount point in the
VM using the following command:
[root@vmsrv01]# mkdir /mnt/source/download

°° Simply copy the data from the mount point first using the
following command:
[root@vmsrv01]# rsync -avz -H –X /download \
root@192.168.1.57:/mnt/source/download

°° Edit the /etc/fstab file to reflect the mount point:
/dev/sdb1 /download ext4 defaults 0 0

5.	 We can list out the content under /mnt/source in Proxmox after the copy
operation is finished using the following command:
[root@vmsrv01]# ls /mnt/source

Chapter 6

[157]

6.	 Before booting up our VM, we have to change the IP address for the VM
to a temporary one, for example, 192.168.1.39. Also, the default Ethernet
adapter (eth0) is unlikely to be used because the network card is different
from the source server's network card. So, the network card in the VM will
be bonded with eth1 instead. We need to copy the original configuration
file to form a new one. Then, change the IP address for this network card for
testing purposes:
[root@vmsrv01]# cd /mnt/source/etc/sysconfig/network-scripts/
[root@vmsrv01 network-scripts]# cp ifcfg-eth0 ifcfg-eth1
[root@vmsrv01 network-scripts]# nano ifcfg-eth1

7.	 Change the IP address and remove the HWADDR option if it is defined:
Change: IPADDR=192.168.1.32 to IPADDR=192.168.1.39
Remove this: HWADDR=02:33:DC:EA:92:FE

8.	 We can dismount the virtual disk image from our Proxmox server using the
following commands:
[root@vmsrv01]# umount /mnt/source
[root@vmsrv01]# vgchange –an vg_p2v01
[root@vmsrv01]# kpartx -dv \
/var/lib/vz/images/302/vm-302-disk-1.raw

9.	 Then, start the VM via the web console.
10.	 Test whether the server is back online using the ping command:

[root@vmsrv01]# ping 192.168.1.39

11.	 If everything works fine, shut down the physical machine and change the
IP address of the VM back to 192.168.1.32.

12.	 We can further reduce the allocated size for the virtual disk by converting it to
the qcow2 format (optional). Please note that this is not an essential process:
[root@vmsrv01]# qemu-img convert -O qcow2 \
/var/lib/vz/images/302/vm-302-disk-1.raw \
/var/lib/vz/images/302/vm-302-disk-1.qcow2

13.	 You can see that there is a significant difference in size between the two files
because only used data space will be preserved in the qcow2 file format:
2388000768 vm-302-disk-1.qcow2
10737418240 vm-302-disk-1.raw

14.	 Edit the VM configuration file at /etc/pve/qemu-server/302.conf
as follows:
From: ide0: local:302/vm-302-disk-1.raw,size=10G
To: ide0: local:302/vm-302-disk-1.qcow2,size=10G

System Migration of an Existing System to a Proxmox VE Cluster

[158]

15.	 Remove the raw file to save disk space:
[root@vmsrv01]# rm /var/lib/vz/images/302/vm-302-disk1.raw

System migration of a Windows platform
If turning off the physical machine is possible, then this process is much easier.
The main concept is to use a live CD to boot up the system and then copy the source
data to the target VM. Since this method makes a full clone of the source system,
it is suitable for both the Linux and Windows platforms.

If you are planning to move a domain controller that is running
with Active Directory, then this method is not going to work
because you cannot simply clone the operating system. Simple
instructions on this are listed at http://goo.gl/Z5jO7j;
for more details, you can refer to articles from Microsoft at
http://goo.gl/yx0BPG.

The following steps will guide you through the migration of a Windows platform:

1.	 The first thing we need to do is build a blank KVM machine with VM ID
303, which will be running on a Linux platform, and VM ID 304, which will
be running on a Windows platform, and name them as p2v-03 and p2v-04;
please refer to the configuration steps covered in Chapter 4, Configuring
a Proxmox VE Cluster, on how to create VM 302.

2.	 Then, we need to perform the following procedure to clone an existing
system. We need to make use of a Clonezilla live CD for the operation;
download the ISO file at (normally choosing i686 should be enough)
http://goo.gl/hvZHgM.

3.	 Burn the ISO file on a CD-ROM and prepare to turn off the source machine.
4.	 Insert the CD with Clonezilla and choose Clonezilla live as shown in the

following screenshot:

http://goo.gl/Z5jO7j
http://goo.gl/yx0BPG
http://goo.gl/hvZHgM

Chapter 6

[159]

5.	 Choose Don't touch keymap to use the default keyboard layout, as shown in
the following screenshot:

6.	 To enable the command-line interface, choose Enter Shell first, as shown in
the following screenshot:

7.	 Then, choose cmd in the next screen, as shown in the following screenshot:

8.	 Now, we can assign a temporary IP address on the source server using the
following commands:
[user@debian]$ sudo su
[root@debian]# ifconfig eth0 192.168.1.32 netmask 255.255.255.0 up

You can even assign an IP address with DHCP if you have a local DHCP
server, as shown in the following command:
[user@debian]$ sudo su
[root@debian]# dhclient eth0

9.	 Then, we can copy the data to the virtual disk image file located in our
Proxmox server:
[root@debian]# dd if=/dev/sda | ssh root@192.168.1.57 \
dd of=/var/lib/vz/images/303/vm-303-disk-1.raw

10.	 To save disk space, we will convert the disk image to the qcow2 format in our
Proxmox server using the following command (optional):
[root@vmsrv01]# qemu-img convert -O qcow2 \
/var/lib/vz/images/303/vm-303-disk-1.raw \
/var/lib/vz/images/303/vm-303-disk-1.qcow2

System Migration of an Existing System to a Proxmox VE Cluster

[160]

11.	 Change the ide0 value in the VM configuration file to use the new disk image:
[root@vmsrv01]# nano /etc/pve/qemu-server/303.conf
ide0: local:303/vm-303-disk-1.qcow2,size=10G

When we migrate a Windows platform to VM ID 304, you need to perform the same
steps that we just covered. You will just need to change all the 303 keywords to 304
and change the IP address to 192.168.1.34 instead. So, we have prepared our VM
with a copy of data from the source server. Let's check out the post-migration tasks
we need to perform.

Post-migration for offline migration with
a physical machine
For a Linux system, everything should run fine with block-level data copying,
as mentioned previously. We only need to fix the network interface configuration
problem that has been listed in the online migration section in the following location:

[root@p2v-03]# cp /etc/sysconfig/network-scripts/ifcfg-eth0 \
/etc/sysconfig/network-scripts/ifcfg-eth1

[root@p2v-03]# nano /etc/sysconfig/network-scripts/ifcfg-eth1

For the Windows platform (VM 304), we are likely to run into a blue screen of death
(BSOD) because the system drivers do not match with the source machine and
the virtualized machine. The entire process of migration has been explained in the
following steps:

1.	 If you have encountered the following error when you boot up your VM after
migration, you have to perform post-migration operations:

Chapter 6

[161]

2.	 When you cannot boot up your system, you will be able to enter the Auto
Recovery mode, as shown in the following screenshot. You should choose
Troubleshoot in this screen:

3.	 Within the three options, we choose Startup Settings:

System Migration of an Existing System to a Proxmox VE Cluster

[162]

4.	 Next, the system will boot up with a traditional boot menu (for example, the
boot menu you get when you press F8 in the previous version of Windows):

5.	 We choose Safe Mode in order to avoid additional drivers being loaded,
which may cause the system to crash, as shown in the following screenshot:

6.	 Now, we should be able to enter the system in safe mode. Then, we open the
Device Manager and search to see whether there is a device shown with errors.
If we find one, we have to remove it, as shown in the following screenshot:

Chapter 6

[163]

7.	 When finished, reboot the system to see if everything is working.

In this section, we have successfully moved our existing system from a physical
server to a VM. Next, we are going to introduce the process of converting VMs
from different virtual appliances to a Proxmox server.

System migration from VMware
to Proxmox
If you want to move a VMware-based VM to an OpenVZ container, please refer to
the Live migration of a physical machine to a KVM section. Note that it only works for
Linux platforms.

To migrate a system to a KVM-based VM, you can use Clonezilla to copy the system
content by referring to the System migration of a Windows platform section. Just
remember that you have to remove VMware Tools if you have already installed
them on the source VM.

Rather than cloning the content, we can simply import the virtual disk of the source
VM because Proxmox supports the VMware format. Please note that the following
applies to a Linux environment too; you just need to skip the Windows-specific options.

To enhance the performance, you will likely need to install VMware Tools for your
existing system. If you want to have a smooth migration, it is essential to remove
VMware Tools from the existing system. You can refer to http://goo.gl/kyheH6 for
more information on this. The following steps will guide you through the process of
making native IDE driver for our source platform in order to reduce the chance of
getting boot up problems:

1.	 First, start the VM from a Windows platform and download the
Mergeide.zip file from http://goo.gl/Ju5t00.

2.	 When the file download is finished, extract it and execute mergeide.reg to
change the Windows registry to allow Windows to boot from IDE (Windows only).

3.	 Check whether Atapi.sys, Intelide.sys, Pciide.sys, and Pciidex.sys
are in the %SystemRoot%\System32\Drivers folder (Windows only). If there
is any missing file, copy the files back from %SystemRoot%\Driver Cache\
I386\Driver.cab.

http://goo.gl/kyheH6
http://goo.gl/Ju5t00

System Migration of an Existing System to a Proxmox VE Cluster

[164]

4.	 Now, make sure that the virtual disk that was used by VMware is a single
file; that is, there is only one file with the vmdk extension in the VM storage.
If the virtual disk is split into multiple files as shown in the following
screenshot (with extensions s001.vmdk, s002.vmdk, and so on), we need to
use the vmware-vdiskmanager command to combine them into a single file:

The reason for splitting a large single file in to smaller fixed-sized files is that there
might be a single maximum file size limit in some operation systems. Also, it is much
easier for us to move smaller files than to move a file with a huge size. Therefore, it is
the default option selected when you create a VM under the VMware platform.

Since the vmware-vdiskmanager command is not available in both the VMware player
and vSphere client, we have to download vSphere 5.0.3 Virtual Disk Development Kit via
the link http://goo.gl/tzJ03s; you will require a VMware account to download
it. You can choose either a Windows or Linux version based on the operating system
in your workstation. The following steps will guide us in migrating our existing
operating system from a VMware-based environment to Proxmox:

1.	 Turn off your Windows VM and copy your virtual disk files including
Win2012-s001.vmdk, Win2012-s002.vmdk, and so on to where you have
vSphere 5.0.3 Virtual Disk Development Kit installed.

2.	 For a Windows version, open the command prompt and enter the following
command to start the conversion. For example, my virtual disk is located at
D:\VM, so I will issue the following command:
c:\program files (x86)\VMware\VMware Virtual Disk Development Kit\
bin\vmware-vdiskmanager.exe –r D:\VM\Win2012.vmdk –t 0 D:\WM\
Win2012_merged.vmdk

-r: refers to source disk name -t 0: means to create a single
file

http://goo.gl/tzJ03s

Chapter 6

[165]

3.	 For Linux, extract the gzip file and place the virtual disk image file in
/root. Then, execute the following command. [32|64] refers to a 32- or
64-bit platform:
[root@local:/root]# ./vmware-vix-disklib-distrib/bin[32|64]/
vmware-vdiskmanager –r Win2012.vmdk –t 0 Win2012_merged.vmdk

4.	 Create a new blank KVM-based VM with VM ID 305. Copy the newly created
virtual disk file to the directory (/var/lib/vz/images/305) in Proxmox using
FileZilla (if you are using Windows) with the following login information via
the SSH tunnel:

°° Host: 192.168.1.57
°° User: root
°° Password: <your_password_for_Proxmox>
°° Port: 22

If you are using Linux, you can transfer the image file with the
following command:
[root@local:/root]# scp Win2012_merged.vmdk \
root@192.168.1.57:/var/lib/vz/images/305

5.	 Tell the VM to use the new image by modifying the configuration file at
/etc/pve/qemu-server/305.conf:
ide0: local:305/Win2012_merged.vmdk,format=vmdk,size=20G

6.	 Boot up the system and configure the network settings and other settings.
If you find a BSOD problem, solve it by referring to the Post-migration for
offline migration with a physical machine section.

In the next section, we will see how we can migrate from XenServer.

System migration from XenServer /
Hyper-V Server to Proxmox
Although these two virtualization platforms (XenServer / Hyper-V Server)
are different, they can both export VMs into a VHD file.

When we deal with the Xen environment, we can make use of the methods mentioned
in the Live migration of a physical machine to a KVM section. However, I would also like
to provide another method by exporting a VM from XenServer and then importing it
back to the Proxmox environment.

System Migration of an Existing System to a Proxmox VE Cluster

[166]

If you have a Hyper-V environment, you can directly start from step 6 to skip
the XenServer-related steps. The concept here is to turn off the VM and find out
the storage location, copy the VHD file to Proxmox, and execute the disk image
conversion command.

The steps involved in system migration for both XenServer and Hyper-V Server are
as follows:

1.	 Before starting the migration, it is recommended to remove XenServer Tools
to avoid any system driver conflicts.

2.	 We can export a VM from XenServer using XenCenter, a management tool
for VM management, or using the XenServer command line. If we choose
to use XenCenter, choose the VM you would like to export, as shown in the
following screenshot:

3.	 Before we can start the export process, we need to turn off the source VM.
Then, choose the VM from the top menu and choose Export….

4.	 A wizard will open, and we need to specify the export Location. Here,
I define the location path as D:\VM:

Chapter 6

[167]

5.	 We need to select the VM for export. Since we already selected this in step 1,
the VM is automatically selected; now, follow these steps:

°° Don't specify the EULA for use.
°° Don't specify Advanced Options and choose Next.
°° Assign a temporary IP address, 192.168.1.39, to the VM.
°° Click on Finish to start the export operation.

6.	 When the export operation is completed, there will be two output files—one
VHD (Virtual Hard Disk) file named with a random string and one OVF
(Open Virtualization Format) file. VHD is a file that contains the system
content, and OVF can be treated as the configuration file for this VM. For
more information, check out the following links:

°° VHD: http://en.wikipedia.org/wiki/VHD_%28file_format%29
°° OVF: http://en.wikipedia.org/wiki/Open_Virtualization_

Format

7.	 Create a new VM with ID 306, and make sure that you have configured it
with the same number of CPUs and memory.

8.	 Transfer the VHD file to Proxmox at /var/lib/vz/images/306.
9.	 Then, issue the following command to convert the VHD file to a

Proxmox-supported file format, for example, qcow2. Assume that we
have a VHD file named 29de62e1-11dd-4d6f-9c80-6bccf020db1d.vhd
stored in the directory /var/lib/vz/images/306:
[root@vmsrv01]# qemu-img convert -f vpc -O qcow2 \
/var/lib/vz/images/306/29de62e1-11dd-4d6f-9c80-6bccf020db1d.vhd \
/var/lib/vz/images/306/vm-306-disk-1.qcow2

10.	 Set up the configuration file for VM 306 at /etc/pve/qemu-server/306.
conf with the following code:
ide0: local:306/vm-306-disk-1.qcow2,size=20G

11.	 Start VM 306 to see if there is any problem.

In this section, I have demonstrated how to perform system migration of a VM from
XenServer and Hyper-V Server to Proxmox.

http://en.wikipedia.org/wiki/VHD_%28file_format%29
http://en.wikipedia.org/wiki/Open_Virtualization_Format
http://en.wikipedia.org/wiki/Open_Virtualization_Format

System Migration of an Existing System to a Proxmox VE Cluster

[168]

Summary
In this chapter, we have gone through the system migration processes for different
scenarios including a physical machine, VMware, XenServer, and Hyper-V Server
to either OpenVZ containers or KVM-based VMs. In most cases, suffering from
downtime is inevitable, which means that we have to make a proper plan before
starting with the migration.

Next, we will take a look at how to perform the backup/restore processes on the
Proxmox server, create an OpenVZ template for future deployment, and recover
a failed Proxmox cluster.

Disaster Recovery on
a Proxmox VE Cluster

In the previous chapters, we covered different concepts of virtualization methods
and the components needed for a cluster environment. We learned how to build
shared storages with DRBD, GlusterFS, CEPH, and others, and how to implement
them under Proxmox to build an HA environment. We also learned how to move
our existing operating systems to Proxmox.

You might notice that you are centralizing your production platforms in one server.
From a system administrator's perspective, if we do not have any backup in hand, it
is very dangerous. Therefore, we will go through the backup and restore processes
of Proxmox in this chapter, including the following topics:

•	 Backup and restore processes of OpenVZ containers and KVM
•	 Creating a system template for OpenVZ for further use
•	 Backup and restore processes for a Proxmox cluster
•	 Recovering from a failed Proxmox cluster

Let's find out how we can make our own backup for the VMs. Note that during
the backup process, you might lose your existing backup files. Make sure you
have stored your existing backup to another location before you start the
following tutorials.

Disaster Recovery on a Proxmox VE Cluster

[170]

Backup process for VMs in Proxmox
From the previous chapters, we know that a VM is controlled by two different
components: the configuration file and the data inside the VM (the virtual disk in
a KVM and the workspace in an OpenVZ environment). In the upcoming sections,
we will go through the process of backing up these two components.

Backing up the configuration files of
a Proxmox cluster
In Chapter 2, Getting Started with a High Availability (HA) Environment, we mentioned
where the configuration files are located.

•	 For OpenVZ, the files are located at /etc/pve/nodes/${Proxmox_hostname}/
openvz

•	 For KVM, the files are located at /etc/pve/nodes/${Proxmox_hostname}/
qemu-server

As the configuration files are only stored in plain text format, we can simply pack
them up with the TAR command. For example, we issue the following commands
under the Proxmox server (vmsrv01) and change their directory to /etc/pve/
nodes/vmsrv01:

root@vmsrv01:/etc/pve/nodes/vmsrv01# tar –czf openvz-backup.tgz openvz

root@vmsrv01:/etc/pve/nodes/vmsrv01# tar –czf kvm-backup.tgz qemu-server

root@vmsrv01:/etc/pve/nodes/vmsrv01# mv openvz-backup.tgz /backup/

root@vmsrv01:/etc/pve/nodes/vmsrv01# mv kvm-backup.tgz /backup

In these commands, we created a copy of all the configuration files at /backup for
both the OpenVZ containers and the KVM VMs as tar files named openvz-backup
and kvm-backup, respectively, with gzip enabled.

During the backup operation, the associated OpenVZ/KVM
configuration is automatically backed up using the vzdump
command, which will be introduced in the next section.
Therefore, if you have backed up all of your VMs with the
vzdump command or via the web GUI, you can skip this part
or create a separate configuration backup for safety reasons.

Chapter 7

[171]

Now, we have to create a backup copy of the following configuration files:

•	 /etc/pve/cluster.conf: This file stores the cluster information
•	 /etv/pve/storage.cfg: This file stores the available storage inside

the cluster
•	 /etc/pve/ceph.cfg: This file stores the information of the CEPH server

We also have to copy the configuration files to /backup as our primary backup
location using the following commands:

root@vmsrv01# cp /etc/pve/ceph.cfg /backup

root@vmsrv01# cp /etc/pve/cluster.conf /backup

root@vmsrv01# cp /etc/pve/storage.cfg /backup

Backing up the VM data in Proxmox
After we have made a copy of the container configuration files, we are going to back
up the actual data inside the VM. There are two different methods to do this: manual
backup using the vzdump command for both KVM and OpenVZ guests or backup via
the GUI management console.

In our example, VM 100 will be used to demonstrate the OpenVZ container backup,
while VM 101 will be used to demonstrate the KVM machine backup.

Backing up using the vzdump command for VMs
There are the following three different backup approaches when using the
vzdump command:

•	 Stop mode: This stops the VM that takes a long time during backup.
•	 Suspend mode: This uses the rsync command to copy data to a temporary

location (defined in --tmpdir) and then performs a second rsync operation
while suspending the container. When the second rsync operation
completes, the suspended VM is resumed.

•	 Snapshot mode: This mode makes use of the LVM2 snapshot function.
It requires extra space within the LVM volume.

These operation modes are very similar to what we covered in Chapter 6, System
Migration of an Existing System to a Proxmox VE Cluster. We will now go through all
the possible methods one by one. Unless explicitly specified, the following sections
are relevant to both the OpenVZ container and KVM VMs.

Disaster Recovery on a Proxmox VE Cluster

[172]

Backing up using the vzdump stop mode for the
OpenVZ container
This is the simplest method to create a system backup if a certain amount of system
downtime is acceptable. We need to stop the container first, dump the container
data as an image file, and start the VM again. So, what is the advantage of using the
vzdump command over the rsync command? If you are familiar with the OpenVZ
container structure and feel confident to back up yourselves, then vzdump will have
no advantage for you in the stop mode. However, if you are doubtful that you might
lose files during your manual backup, then vzdump is a better solution for you, as it
can pack all the necessary files to run the VMs.

In OpenVZ, vzctl is a command-line tool to manage any operation related to the
OpenVZ container, including checking the status, starting/stopping the container,
and even accessing the system itself. As we are required to turn off the container
before taking a backup, the system downtime is a huge disadvantage of this method.
Make sure that we don't have services running in the container. Log in with the root
user account and follow these steps:

1.	 Use the following command to check the status of a container, for example,
in VM 100:
root@vmsrv01# vzlist 100
CTID NPROC STATUS IP_ADDR HOSTNAME
100 4 running 192.168.1.10 myvm1.localdomain

You can further check the process status of the container using the vztop
and vzps commands that are equivalent to the top and ps commands of
a Linux environment:

root@vmsrv01# vztop -E 100

root@vmsrv01# vzps -E 100

2.	 Now, we would like to turn the container off; we can do so with the
vzctl command:
root@vmsrv01# vzctl stop 100
Stopping container ...
Container was stopped
Container is unmounted

3.	 Make sure the container is properly turned off:
root@vmsrv01# vzlist 100
CTID NPROC STATUS IP_ADDR HOSTNAME
100 - stopped - myvm1.localdomain

Chapter 7

[173]

4.	 Of course, you can also turn off the virtual machine with the shutdown
command if your guest OS is running under Linux:
root@vm01# shutdown -h now

5.	 Perform a backup process by issuing the following command:
root@vmsrv01# vzdump 100

6.	 You might receive an error message, as shown in the following output:
Can't use storage for backups - wrong content type

This output means that the backup storage is not defined under Proxmox.
Here, we can make use of the local keyword or create a new one with the
web management console.

Defining a new backup storage location
To create a new backup storage location, we need to access the web management
console with the help of the following steps:

1.	 Log in to the web interface, click on Datacenter on the left-hand side panel,
and choose Storage from the right-hand side panel.

2.	 Create a new directory for the backup storage, if it does not exist, using the
following command:
root@vmsrv01# mkdir /backup

3.	 Click on Add from the right-hand side panel and choose Directory to open
the Add: Directory window. Enter the information, as shown in the following
screenshot. Make sure that the Content field is changed to Backups.

Now, we are back at creating the backup process for the OpenVZ container.

Disaster Recovery on a Proxmox VE Cluster

[174]

4.	 You should be able to perform the backup using our new storage location
with the following command:
root@vmsrv01# vzdump 100 -storage backup

The keyword backup refers to the storage ID defined in the previous
window, and the backup file will be placed in a directory named dump under
the /backup directory. The following is the dump process log for VM 100:

INFO: Starting Backup of VM 100 (openvz)
INFO: CTID 100 exist unmounted down
...
INFO: creating archive '/backup/dump/vzdump-
openvz-100-2014_07_04-16_12_05.tar'
...
INFO: Finished Backup of VM 100 (00:00:41)
INFO: Backup job finished successfully

As we do not specify the backup mode, the stop mode is chosen, and the data
is packed in a TAR package for the OpenVZ container by default. Moreover,
stdexcludes is set to 1 by default; this means that the following files are
excluded from the packages:

°° /var/log/.*

°° /tmp/.*

°° /var/tmp/.*

°° /var/run/.*pid

5.	 We can check out the result in the /backup/dump directory using the
following command:
root@vmsrv01# ls -lh /backup/dump

-rw-r--r-- 1 root root 850M Jul 4 17:07 /backup/dump/vzdump-
openvz-100-2014_07_04-17_06_52.tar

The file is named in the following format:

vzdump-openvz-<VMID>-YYYY_MM_DD-HH_MM_SS.tar

Make sure that your backup file follows the naming
format and is not changed, as the GUI expects this format.

Chapter 7

[175]

6.	 The backup was finished successfully, but we found that it requires a lot
of space as the data is not compressed. To enable compression, use the
-compress option with vzdump:
root@vmsrv01# vzdump 100 -storage backup –compress gzip

7.	 Again, we can check the size difference between the tar package and GZIP
package using the following command:
root@vmsrv01# ls -lh /backup/dump
-rw-r--r-- 1 root root 850M Jul 4 17:07 /backup/dump/vzdump-
openvz-100-2014_07_04-17_06_52.tar
-rw-r--r-- 1 root root 338M Jul 4 17:22 /backup/dump/vzdump-
openvz-100-2014_07_04-17_21_13.tar.gz

There is an obvious difference in size between the two files. Therefore,
I recommended that you compress the backup file to save space. We don't
need to back up the configuration file manually because the VM configuration
file will be copied to /etc/vzdump/vps.conf.

Backing up with vzdump stop mode for KVM
Backing up with KVM is similar to the backup process of an OpenVZ container,
but there are a few differences during the backup stage. Here are the steps to
backup a KVM:

1.	 Make sure that your VM is properly turned off.
2.	 Issue the vzdump command as follows:

root@vmsrv01# vzdump 101 -storage backup
INFO: Starting Backup of VM 101 (qemu)
...
INFO: starting kvm to execute backup task
INFO: creating archive '/backup/dump/vzdump-
qemu-101-2014_07_05-23_36_29.vma'
...
INFO: status: 0% (34340864/8589934592), sparse 0% (12648448),
duration 3, 11/7 MB/s
...
INFO: status: 100% (8589934592/8589934592), sparse 84%
(7282487296), duration 189, 212/2 MB/s
INFO: stopping kvm after backup task
INFO: Finished Backup of VM 101 (00:03:12)
INFO: Backup job finished successfully

Disaster Recovery on a Proxmox VE Cluster

[176]

3.	 For an OpenVZ-based VM, the VM remains suspended during the backup
operation, but the KVM will be turned on during the backup process, as
shown in the following screenshot:

The file is named using the following format:
vzdump-qemu-<VMID>-YYYY_MM_DD-HH_MM_SS.vma

Starting from Proxmox Version 2.3, a new file format, VMA, was introduced
to replace the old common TAR format as the default output file option for
KVM-based machines.
The VMA file format was developed by Proxmox in order to use just one
format for the backup file, and it deals with the overheads that the snapshot
might have generated. Besides, this file format can work with any storage
type and image format, and no temporary storage is required during backup.
Moreover, the most important point is that only used blocks will be copied to the
backup file; this slightly reduces the size of the output file. For more details,
please refer to http://pve.proxmox.com/wiki/VMA.

4.	 We can check out the result in the /backup/dump directory using the
following command:
root@vmsrv01# ls -lh /backup/dump
-rw-r--r-- 1 root root 1.3G Jul 4 23:39 vzdump-
qemu-101-2014_07_05-23_36_29.vma

5.	 We can further reduce the output file's size by enabling compression; this can
be done with the following command:
root@vmsrv01# vzdump 101 -storage backup -compress gzip

http://pve.proxmox.com/wiki/VMA

Chapter 7

[177]

6.	 We can check out the result files in the /backup/dump directory:
-rw-r--r-- 1 root root 1.3G Jul 4 23:39
vzdump-qemu-101-2014_07_05-23_36_29.vma
-rw-r--r-- 1 root root 445M Jul 5 23:58 vzdump-
qemu-101-2014_07_05-23_55_25.vma.gz

Backing up with the vzdump suspend mode
Although the preceding method is simple, it has already taken around 1 minute to
completely back up a 900 MB container. How about if we have a container that is
several gigabytes in size? It was observed that the backup duration is slightly more
if the data size of the container is increased; this results in a longer system downtime.
So, let's try something else: vzdump suspend mode.

Before we start, make sure you have enough disk space and have defined a backup
storage location for this demonstration. In the following example, the backup storage
/backup is used as created in the preceding command:

1.	 To start with, turn on the VM.
2.	 Then, we can issue the vzdump command for backup testing:

root@vmsrv01# vzdump 100 -storage backup -compress gzip -mode
suspend
...
INFO: status = running
INFO: backup mode: suspend
INFO: starting first sync /var/lib/vz/private/100/ to /backup/
dump/vzdump-openvz-100-2014_07_04-18_01_46.tmp
...
INFO: first sync finished (15 seconds)
INFO: suspend vm
INFO: Setting up checkpoint...
...
INFO: starting final sync /var/lib/vz/private/100/ to /backup/
dump/vzdump-openvz-100-2014_07_04-18_01_46.tmp
INFO: final sync finished (0 seconds)
INFO: Resuming...
INFO: vm is online again after 3 seconds
INFO: creating archive '/backup/dump/vzdump-
openvz-100-2014_07_05-16_44_41.tar.gz'
...
INFO: Finished Backup of VM 100 (00:02:34)
INFO: Backup job finished successfully

Disaster Recovery on a Proxmox VE Cluster

[178]

3.	 During a backup operation, we will suffer from a short period of no-response
time, depending on the size of our container. In my example, I am backing up
a system that is less than 1 GB in size; here is my response time result:
64 bytes from 192.168.1.10: icmp_req=83 ttl=63 time=0.249 ms
64 bytes from 192.168.1.10: icmp_req=84 ttl=63 time=1.32 ms
64 bytes from 192.168.1.10: icmp_req=85 ttl=63 time=0.272 ms

4.	 We can check out the output file at /backup/dump again:
root@vmsrv01# ls -lh /backup/dump
-rw-r--r-- 1 root root 338M Jul 4 17:22 /backup/dump/vzdump-
openvz-100-2014_07_04-17_21_13.tar.gz

As you can see, the system downtime is set to minimum, but it is not guaranteed.
With the use of an LVM snapshot, we will enjoy the ability to back up a running
system without the need to make the services unavailable.

Preparation for using the LVM snapshot with vzdump
Backing up with an LVM snapshot is the best solution among the methods described
earlier as we can have guaranteed zero system downtime, but it requires some
preparation first. Before we can move on, let's check the following criteria:

•	 You need at least 512 MB free space in your LVM volume group, which
means that you need to have free physical extents in your VG volume. You
can check the memory usage with the help of the following command:
root@vmsrv01:~# vgdisplay
--- Volume group ---
VG Name pve
Total PE 28490
Alloc PE / Size 24939 / 97.42 GiB
Free PE / Size 3551 / 13.87 GiB

In this example, we have 13.87 GB free space that can be
used to create an LVM snapshot.

•	 You cannot place your backup in the same LVM volume that contains VM
data. By default, your VM is in /pve/data, which is mounted as /var/lib/
vz. You cannot back up the data in the same LVM volume at /var/lib/vz/
dump. In this case, you have to define a new backup location for the LVM
snapshot to take place. If you don't have a separate LVM volume under
the existing system, you might need to create a new LVM volume. This is
described in the following section.

Chapter 7

[179]

Creating a new LVM volume for backup storage
Assume that you have a new physical storage available at /dev/sdd1. Then, using
the following steps, you can create a separate LVM volume as the backup storage:

1.	 Create the base physical volume with the pvcreate command:
root@vmsrv01# pvcreate /dev/sdd1

2.	 Create a new volume group (for example, backup-store) with the
vgcreate command:
root@vmsrv01# vgcreate backup-store /dev/sdd1

3.	 Create a new logical volume with a size of 10 GB, for example, for the
filesystem with the lvcreate command:
root@vmsrv01# lvcreate -L10G --name backup-data backup-store

4.	 If you want to use all the space that is available in the volume group,
check the number of free extents with the vgdisplay command first:
root@vmsrv01# vgdisplay backup-store
Free PE / Size 3551 / 13.87 GiB

Then, we can assign the new logical volume with all the free extents available
using the following command:
root@vmsrv01# lvcreate -L 3551 --name backup-data backup-store

5.	 Format the logical volume with the filesystem for system use:
root@vmsrv01# mkfs.ext4 /dev/backup-store/backup-data

6.	 Create a new directory that is to be used as the system mount point:
root@vmsrv01# mkdir /mybackup

7.	 Mount the filesystem for usage:
root@vmsrv01# mount /dev/backup-store/backup-data /mybackup

8.	 Then, follow the instructions from the previous section, Defining a new backup
storage location.

If you do not have enough free physical extents but you have not used up all the
space, you can either resize the existing LV to free up space or add additional
physical devices to the VG to increase the usable space.

Disaster Recovery on a Proxmox VE Cluster

[180]

Reducing the size of an LVM's logical volume
Assume that we have an LVM volume group (mygroup) and a logical volume
(backup) of 20 GB disk size, formatted with ext4 and mounted at /backup. Let's
check out the steps to resize the logical volume to 10 GB to free up some space:

1.	 To check the current disk usage of the logical volume, we can use the
following command:
root@vmsrv01# lvdisplay

LV Path /dev/mygroup/backup
LV Name backup
VG Name mygroup
LV Size 20.0 GiB

2.	 Then, we have to dismount the volume before we can actually shrink it:
root@vmsrv01# umount /backup

Now, confirm whether the volume is not found under the df –h command.

3.	 Next, we have to reduce the size of the filesystem:
root@vmsrv01# lvreduce --resizefs --size 10G /dev/mygroup/backup

fsck from util-linux 2.19.1
/dev/mygroup/backup: clean,35/1310720 files, 60554/5242880 blocks
resize2fs 1.40-WIP (14-Nov-2006)
Resizing the filesystem on /dev/mygroup/
backup to 2621440 (4k) blocks.
The filesystem on /dev/mygroup/backup is now 2621440 blocks long.
Reducing logical volume media to 10.00 GB
 Logical volume media successfully resized

Make sure that your LV is formatted with a filesystem,
for example, ext4, before using the --resizefs
option. If not, it will fail and display the message
Bad magic number in super-block.

4.	 The volume is reduced in size now, and we can mount it back to the system
using the following command:
root@vmsrv01# mount /dev/mygroup/backup /backup

5.	 To confirm that the volume is resized, we can use the df -h command:
root@vmsrv01# df -h

Filesystem 	 Size Used Avail Use% Mounted on
/dev/mygroup/backup 10G 236M 9.7G 2% /backup

Chapter 7

[181]

6.	 Then, we can check the status of the LVM volume by issuing the
following command:
root@vmsrv01# lvdisplay

LV Path /dev/mygroup/backup
LV Name backup
VG Name mygroup
LV Size 10.0 GiB

Now, we should have some free extents in the volume group and be able to perform
the snapshot. Another possible solution is to add an extra physical device to the
volume group.

Adding/replacing physical storage for the existing LVM volume
Assume that we still have the preceding configuration and an additional physical
device available at /dev/sdd1 with 10 GB of free space. Then, we can add this
device to the volume group using the following steps:

1.	 At this moment, we can check the new status of the volume group using the
following command:
root@vmsrv01# vgdisplay

VG Name mygroup
VG Size 19.99 GiB
Total PE 5117
Alloc PE / Size 4096 / 16.00 GiB
Free PE / Size 1021 / 3.99 GiB

2.	 Prepare the physical device to be converted to a physical volume in the LVM:
root@vmsrv01# pvcreate /dev/sdd1

3.	 Next, we can simply add this volume to our volume group (mygroup):
root@vmsrv01# vgextend mygroup /dev/sdd1

4.	 If you want to replace a physical volume (for example, /dev/sdc1) from the
volume group, use the following command (this step is optional):
root@vmsrv01# pvmove /dev/sdc1 /dev/sdd1

/dev/sdc1: Moved: 1.9%
/dev/sdc1: Moved: 3.8%
...
/dev/sdc1: Moved: 100.0%

5.	 Then, remove the physical volume from the volume group with the
following command:
root@vmsrv01# vgreduce mygroup /dev/sdc1

Disaster Recovery on a Proxmox VE Cluster

[182]

6.	 At this moment, we can check the new status of the volume group:
root@vmsrv01# vgdisplay

VG Name mygroup
VG Size 29.99 GiB
Total PE 7676
Alloc PE / Size 4096 / 16.00 GiB
Free PE / Size 3580 / 13.99 GiB

7.	 We have now allocated some free extents in our existing volume group
(mygroup). Thus, we are able to create an LVM snapshot.

Backing up with vzdump and an LVM snapshot
Now, we are ready to perform a backup on a VM with zero downtime. Simply follow
the ensuing steps to achieve it:

1.	 Log in to the target Proxmox server.
2.	 Issue the following command:

root@vmsrv01# vzdump -mode snapshot -dumpdir /backup \
-compress gzip 100

...
INFO: status = running
INFO: backup mode: snapshot
INFO: creating lvm snapshot of /dev/mapper/pve-data ('/dev/pve/
vzsnap-vmsrv01-0')
INFO: Logical volume "vzsnap-vmsrv01-0" created
INFO: creating archive '/backup/vzdump-
openvz-100-2014_07_05-16_30_56.tar.gz'
INFO: Total bytes written: 702310400 (670MiB, 6.4MiB/s)
INFO: archive file size: 247MB
INFO: Finished Backup of VM 100 (00:02:00)
INFO: Backup job finished successfully

We found that during the operation, an LVM snapshot, vzsnap-vmsrv01-0,
is created at /dev/mapper/pve-data, as the data for the VM is stored under
this directory. Besides, I have modified the command-line option to use
-dumpdir instead of -storage; with this option, you can specify the target
directory directly without the need to create a backup location under the web
management console. Notice that the operation time is similar to the time we
needed under the suspend mode. Therefore, it is the recommended method
to back up an OpenVZ container.

3.	 By default, if the VM is in the stop state, vzdump will be operated in the stop
mode, while it will be operated in the snapshot mode if the VM is running. So,
you can remove the -mode snapshot option if your VM is running.

Chapter 7

[183]

4.	 Don't forget to back up your configuration file using the following command:
root@vmsrv01# cp /etc/pve/nodes/vmsrv01/openvz/100.conf \ /backup/
dump/100.conf

If you think that it is difficult to remember all the parameters needed for
a backup operation, you can simply define the default settings for vzdump
in /etc/vzdump.conf.

We have gone through the backup procedures on both the OpenVZ containers
and KVM machines under the command-line interface with the vzdump command.
Shouldn't it be easier to make use of our web interface to perform a backup? Let's
check this in the next section.

Backing up with the web management console
Apart from manually backing up the container using the command-line interface, we
can also back it up using the web management interface. Here are the steps to back
up the container with the help of the web management GUI:

1.	 Log in to the web management console using the root account information.
2.	 Browse to the left-hand side panel to locate the VM that needs to be

backed up.
3.	 Choose the Backup tab from the right-hand side panel, and you will only

see the latest backup files you created in the previous steps.

4.	 Then, we can simply click on the Backup button to start the backup dialog
box, as shown in the following screenshot:

Disaster Recovery on a Proxmox VE Cluster

[184]

Notice that Proxmox uses the TAR package as the compression method and
makes use of the Snapshot mode by default. Therefore, make sure you have
enough free space in your VG that stores the data of the VMs before using the
default values. By default, the volume group used is pve, which is mounted
at /var/lib/vz, and you cannot place your dump file in the same VG.

5.	 From the dialog box, we can choose whether the backup output file should
be compressed or not. To conserve disk space, we choose GZIP as the
Compression method and choose a snapshot to enjoy a zero downtime
backup process, as shown in the following screenshot:

6.	 If you follow my steps, the backup should be stopped with the following
error, because we have defined that there should be only one backup per
VM to be stored in our backup storage:
ERROR: Backup of VM 100 failed - only 1 backup(s) allowed - please
consider to remove old backup files.

In this scenario, we have two options:
°° We can remove the existing backup file and run the backup again
°° We can redefine the backup storage to allow more than one backup file

I will go for the second option for your reference.

7.	 Click on Datacenter in the left-hand side panel and choose the Storage tab
from the right-hand side panel.

8.	 Find our backup storage, that is, Backup, and double-click on it. An
Edit: Directory window appears, as shown in the following screenshot:

Chapter 7

[185]

9.	 As you can see, the Max Backups value is set to 1. Now, we can change it
to 2 and click on OK.

10.	 Get back to the backup page of VM 100 and click on the Backup button
again. This time, we should be able to run the backup without any error.

11.	 A new backup file should be listed as follows:

This is the backup process for both OpenVZ containers and KVM machines. In the
next section, we will go through the restore procedures of VMs.

The restore process of VMs in Proxmox
We have gone through different types of backup modes provided by the vzdump
command and created different backup files for our VMs. However, we won't stop
here because our target is to restore the VMs when there is a problem. This is the
main reason we would like to perform a backup. Let's learn about it step by step.

Restoring a VM with vzrestore
In the previous section, we created our own backup files for VM 100 and VM 101
under /backup/dump. Now, it's time for us to practice restoring a VM from those
backup files. We can restore the container with the vzrestore command or via the
web management console. The following section shows the restore procedures when
you choose to restore a VM using the command line with the vzrestore command.

Restoring an OpenVZ container with vzrestore
To avoid overwriting the existing VM data, we will restore it to VMID401. The steps
for this are as follows:

1.	 Make sure that we have the backup file at /backup/dump. The filename might
be different but should match the pattern mentioned earlier:
vzdump-openvz-100-2014_07_06-09_05_14.tar.gz

Disaster Recovery on a Proxmox VE Cluster

[186]

2.	 Issue the vzrestore command with the following parameters:
root@vmsrv01# vzrestore \
/backup/dump/vzdump-openvz-100-2014_07_06-09_05_14.tar.gz 401

...
extracting archive '/backup/dump/vzdump-
openvz-100-2014_07_06-09_00_36.tar.gz'
Total bytes read: 703651840 (672MiB, 13MiB/s)
restore configuration to '/etc/pve/nodes/vmsrv01/openvz/401.conf'

As you can see, we don't need to copy the files manually because the
vzrestore command does it for us. It will also create a configuration file in
the right place (for example, at /etc/pve/nodes/vmsrv01/openvz) with the
new VMID we have specified.

If you want to overwrite an existing VM during the restore operation,
issue the vzrestore command with the -force option:
root@vmsrv01# vzrestore \
/backup/dump/vzdump-openvz-100-2014_07_06-09_05_14.
tar.gz 401 -force

3.	 We have to check whether the data is properly restored using the
following command:
root@vmsrv01# ls /var/lib/vz/private/401

bin dev home lib64 media opt root selinux sys usr
boot etc lib lost+found mnt proc sbin srv tmp var

4.	 Also, we would like to check whether the configuration is the same as
VM 100:
root@vmsrv01# diff /etc/vz/conf/100.conf /etc/vz/conf/400.conf

38,39c38,39
< VE_ROOT="/var/lib/vz/root/$VEID"
< VE_PRIVATE="/var/lib/vz/private/100"

> VE_ROOT="/var/lib/vz/root/401"
> VE_PRIVATE="/var/lib/vz/private/401"

5.	 The new configuration of VM 401 is the same as that of VM 100, except for
the values of the root and work directories of the VM.

6.	 It you run the new VM with the following command, you will receive an
error that shows that the IP address is already used, as shown in the following
command and its output:
root@vmsrv01# vzctl start 401

Chapter 7

[187]

Starting container ...
Container is mounted
Adding IP address(es): 192.168.1.10
Unable to add IP 192.168.1.10: Address already in use
Container start failed (try to check kernel messages, e.g. "dmesg
| tail")
Killing container ...
Container was stopped
Container is unmounted

By default, the vzctl start command doesn't check
whether the IP address of the new container exists in the
network. We can prevent this problem by editing the
/etc/vz/vz.conf file with ERROR_ON_ARPFAIL="yes".

7.	 Now, we need to modify the configuration file at /etc/pve/nodes/
vmsrv01/401.conf using the following command:
root@vmsrv01# nano /etc/pve/nodes/vmrv01/401.conf

8.	 Change the value of IP_ADDRESS using the following command:
from: IP_ADDRESS="192.168.1.10"
to: IP_ADDRESS="192.168.1.41"

You might also need to change the value of the HOSTNAME field:
from: HOSTNAME="myvm1.localdomain"
to: HOSTNAME="myvm1-1.localdomain"

9.	 Then, we should be able to start the container without any problem,
as shown in the following command and its output:
root@vmsrv01# vzctl start 401

Starting container ...
Initializing quota ...
Container is mounted
Adding IP address(es): 192.168.1.41
Setting CPU units: 1000
Setting CPUs: 1
Container start in progress...

We can check whether it is running using the vzlist command:
root@vmsrv01# vzlist

CTID NPROC STATUS IP_ADDR HOSTNAME
 401 17 running 192.168.1.41 myvm1-1.localdomain

Disaster Recovery on a Proxmox VE Cluster

[188]

We can also use the ping command:
root@vmsrv01# ping 192.168.1.41

We can also access the VM with the vzctl command:
root@vmsrv01# vzctl enter 401

10.	 Inside the backup page of the web management console, the source backup
files are now being treated as the backup files for the new VM, as shown in
the following screenshot:

We have finished restoring the OpenVZ container. Next, we will check the
procedures on how to restore a KVM machine with the vzdump backup files.

Restoring a KVM machine with vzrestore
To avoid overwriting the existing virtual machine data, we will now restore it to
VMID402. The steps to do this are as follows:

1.	 Make sure we have the backup file at /backup/dump:
vzdump-qemu-101-2014_07_05-23_36_29.vma

2.	 Issue the vzrestore command to restore from the backup file:
root@vmsrv01# vzrestore \

/backup/dump/vzdump-qemu-101-2014_07_06-09_40_32.vma.gz 402

...
extracting archive '/backup/dump/vzdump-
qemu-101-2014_07_06-09_40_32.vma.gz'
tar: This does not look like a tar archive
tar: Skipping to next header
Total bytes read: 10240 (10KiB, 18MiB/s)
tar: Exiting with failure status due to previous errors
command 'tar xpf /backup/dump/vzdump-qemu-101-2014_07_06-09_40_32.
vma.gz --totals --sparse -C /var/lib/vz/private/402' failed: exit
code 2

3.	 From the output result, we know that the vzrestore command requires a
tar package instead of a VMA file. To restore a KVM machine, we need to use
the qmrestore command instead:
root@vmsrv01# qmrestore \

Chapter 7

[189]

/backup/dump/vzdump-qemu-101-2014_07_06-09_40_32.vma.gz 402
...
restore vma archive: zcat /backup/dump/vzdump-
qemu-101-2014_07_06-09_40_32.vma.gz|vma extract -v -r /var/tmp/
vzdumptmp667708.fifo - /var/tmp/vzdumptmp667708
CFG: size: 236 name: qemu-server.conf
DEV: dev_id=1 size: 8589934592 devname: drive-ide0
CTIME: Sun Jul 6 09:40:33 2014
Formatting '/var/lib/vz/images/402/vm-402-disk-1.qcow2', fmt=qcow2
size=8589934592 encryption=off cluster_size=65536
reallocation='metadata' lazy_refcounts=off
new volume ID is 'local:402/vm-402-disk-1.qcow2'
map 'drive-ide0' to '/var/lib/vz/images/402/vm-402-disk-1.qcow2'
(write zeros = 0)
progress 1% (read 85917696 bytes, duration 0 sec)
...
progress 100% (read 8589934592 bytes, duration 32 sec)

If you want to overwrite the existing VM during a
restore operation, issue the qmrestore command
with the -force option:
root@vmsrv01# qmrestore \

/backup/dump/vzdump-
qemu-101-2014_07_06-09_40_32.vma.gz 402 -force

4.	 During the operation, the following two files are created:
°° The configuration file at /etc/pve/qemu-server/402.conf
°° The disk image at /var/lib/vz/images/402/vm-402-disk-1.qcow2

5.	 We can further check whether the configuration file is the same as the
original one using the following command:
root@vmsrv01# diff /etc/pve/qemu-server/402.conf /etc/pve/qemu-
server/101.conf

...
3c3
< ide0: local:402/vm-402-disk-1.qcow2,size=8G

> ide0: local:101/vm-101-disk-1.qcow2,format=qcow2,size=8G

The only difference is the stored directory and the file name of the
disk image.

6.	 Before turning on the new VM, make sure that you change the network
settings by editing the configuration file or with the web management GUI
to avoid service interruption.

Disaster Recovery on a Proxmox VE Cluster

[190]

7.	 Then, we can start the VM to see whether it works:
root@vmsrv01# qm start 402

8.	 You can check the current status of VM 402 with the qm command:
root@vmsrv01# qm list

VMID NAME STATUS MEM(MB) BOOTDISK(GB) PID
402 testvm running 512 8.00 673765

9.	 Inside the Backup page of the web management console, the source
backup files are now being treated as the backup files for the new VM,
as listed in the following screenshot, just like what we found in the
OpenVZ container restoration:

Now, we have gone over the steps to restore a VM for an OpenVZ container and a
KVM machine under the Command Line Interface (CLI). If you are not comfortable
with the CLI, we can do the same thing via the web management console.

Restoring a VM with the web management
console
Besides restoring from a command-line interface, Proxmox provides a graphical
interface for the user to finish a regular task easily. This method is suitable for both
an OpenVZ container and KVM machine. The following steps demonstrate how we
can perform such a task:

1.	 Log in to the web management console with the root account. Find your target
virtual machine, for example, VM 100, from the left-hand side menu and
choose Backup from the right-hand side panel. You should be able to view
the backup files that currently exist, as shown in the following screenshot:

Chapter 7

[191]

You can even browse the content of the backup storage by choosing vmsrv01,
selecting Backup from the left-hand side panel, and then selecting Content
from the right-hand side panel. You can also list out all the backup files
inside the storage, as shown in the following screenshot:

2.	 Click on the most recent backup and then choose Restore from the menu
above it. A window named Restore CT is shown. You can change the
VM ID if you don't want to use the default one.

3.	 A warning message stating that the existing VM data will be overwritten
is shown:

4.	 If your VM is running, you will get following dialog box for an
OpenVZ container:

Disaster Recovery on a Proxmox VE Cluster

[192]

5.	 For a KVM machine, you will get the following dialog box:

6.	 So, you have to turn the VM off and restore it again. For OpenVZ, you have
the following progress log:
you choose to force overwriting VPS config file, private and root
directories.
extracting archive '/backup/dump/vzdump-
openvz-100-2014_07_06-09_05_14.tar.gz'
restore configuration to '/etc/pve/nodes/vmsrv01/openvz/100.conf'

For the KVM, you have the following progress log:
restore vma archive: zcat /backup/dump/vzdump-
qemu-101-2014_07_06-09_40_32.vma.gz|vma extract -v -r /var/tmp/
vzdumptmp846694.fifo - /var/tmp/vzdumptmp846694
...
map 'drive-ide0' to '/var/lib/vz/images/101/vm-101-disk-1.qcow2'
(write zeros = 0)
progress 1% (read 85917696 bytes, duration 0 sec)
progress 100% (read 8589934592 bytes, duration 31 sec)

As you can see, the restoration also overwrites the VM configuration file. So, if you
have done some modifications on the configuration file after your backup operation,
you should properly make a copy of your updated configuration file before running the
restoration process.

Now, you have successfully backed up and restored your VM manually. What if you
need a regular backup? If this is what you want, the following section will be suitable
for you.

Setting up a scheduled backup for
the VMs
In the previous section, we learned the procedures to restore a VM with backup files
under both the command-line and the graphic interfaces. Proxmox provides you with
the ability to perform a regular backup based on the schedule you have configured.
Let's take a further look at how to perform such a task using the following steps:

1.	 Log in to the web management console with the root account details.

Chapter 7

[193]

2.	 Click on Datacenter and then choose Backup from the right-hand side panel,
as shown in the following screenshot:

3.	 Click on the Add button; a window named Create: Backup Job is displayed,
as shown in the following screenshot:

4.	 As an example, we will back up all the VMs that run under Proxmox, and
it's better to compress the output file every Sunday morning at 01:00. The
backup configuration will be as shown in the following screenshot:

Disaster Recovery on a Proxmox VE Cluster

[194]

Note that you can even specify an e-mail address for notifications on the
backup status.

5.	 If we have an important VM (for example, VM 100) that needs to be backed
up every day, we can create a separate backup task to include multiple days
to perform the backup operation, as shown in the following screenshot
(this step is optional):

6.	 Click on Create to make a new backup schedule, and you should have the
newly created backup task in your list, as shown in the following screenshot:

Note that the backup files created by Proxmox are full backups; therefore, you need to
consider whether there is enough space to save your backup files. If you are interested in
making differential and incremental backups, check out these links:

•	 KVM incremental backup at http://wiki.qemu.org/Features/Livebackup
•	 Proxmox differential backup at http://ayufan.eu/projects/proxmox-ve-

differential-backups/

As we can fit the system into a single package, would you be interested to see
whether we can create a system template and deploy it afterwards? If yes, the
next section is made for you.

http://wiki.qemu.org/Features/Livebackup
http://ayufan.eu/projects/proxmox-ve-differential-backups/
http://ayufan.eu/projects/proxmox-ve-differential-backups/

Chapter 7

[195]

Building up our own OS template
We introduced the concept of an OS template in Chapter 1, Basic Concepts of a Proxmox
Virtual Environment, and uploaded a predefined template downloaded from the
Internet. There are two types of templates; one is the OpenVZ template and the other
one is the VM template:

•	 OpenVZ template: This is only used to build OpenVZ containers but not for a
KVM machine. This limits the choice of operating system to a Linux platform.

•	 VM template: This was introduced with the Proxmox 3.x series, and is used
to deploy a KVM's VM. This, therefore, escapes from the limitation of an
operating system.

To begin with, we can make a move to check out how to build an OpenVZ
template first.

Building our own OpenVZ template from an
existing container
First, we need to have a running container, and I would like to pick VM 100 as
our example. Then, follow the ensuing steps:

1.	 Enter the container to install any software you need using the
following command:
root@vmsrv01# vzctl enter 100

2.	 After you have finished installing the software, remember to clear the system
caches. For example, if you are using yum to install software, then use the
following command:
root@myvm1# yum clean all

3.	 Also, we need to remove the network-related settings using the
following command:
root@myvm1# echo "" > /etc/resolv.conf

4.	 Remove the hostname settings for the VM:
For CentOS, remove the hostname value at /etc/sysconfig/network
For Debian, remove the hostname value at rm -f /etc/hostname

5.	 Stop the VM before we can make a template file using the
following command:
root@vmsrv01# vzctl stop 100

Disaster Recovery on a Proxmox VE Cluster

[196]

6.	 Then, remove the network configuration of the OpenVZ container using the
following command:
root@vmsrv01# vzctl set 100 --ipdel all --save

7.	 Change the directory to /var/lib/vz/private/<VMID>:
root@vmsrv01# cd /var/lib/vz/private/100

8.	 Then, we have to decide the name of the template file. We must follow the
naming pattern that is shown here:
<OS>-<OSVERSION>-<NAME>_<VERSION>_<ARCH>.tar.gz

For the ARCH value, use i386 for a 32-bit platform and amd64 for a
64-bit platform.

9.	 For example, if I am running on a CentOS 6.4 64-bit platform and installed
a web server, I will have the following name:
centos-6.4-web_6.4_amd64.tar.gz

10.	 When we are ready, pack the folder while excluding any temporary folders
and custom mount points, and save it to the template directory:
root@vmsrv01:/var/lib/vz/private/100# tar --numeric-owner -czf
/var/lib/vz/template/cache/centos-6.4-web_6.4_amd64.tar.gz
--exclude=tmp/* --exclude=lost+found/ .

11.	 When the operation is finished, we can log in to the web management
console, choose vmsrv01, and find the Local storage. Then, choose Content
from the right-hand side panel. Under the Templates section, you will be
able to see your newly created template available for use, as shown in the
following screenshot:

Chapter 7

[197]

12.	 Now, we can try to build a new VM with our own template. Make sure you
have chosen the right Proxmox server that contains your custom template
file, because the custom template file is not published throughout the cluster.
When you choose Template from the container-creation window, you can
choose your own template, as shown in the following screenshot:

You might be wondering how the operation can be completed even if we haven't
created a configuration file for our new VM. This is because there are default
configuration files under /etc/vz/dists that include well-known Linux distributions.
Therefore, we must follow the naming criteria when we create our own template. This
template-creation process is based on CentOS. If you are creating templates for other
operating systems, check out the following links:

•	 Debian: https://openvz.org/Debian_template_creation
•	 Ubuntu: https://openvz.org/Ubuntu_Gutsy_template_creation

Building our own VM template from an
existing KVM machine
Like the OS template concept in an OpenVZ container, KVM also provides
a template function named the VM template. To build with this template, we
need to have a running KVM. We can make use of VM 101 for testing.

Note that when you convert a KVM into a template, you won't
be able to start it again without building a new VM based on it.

The following steps will help you while building your own VM template from an
existing KVM:

1.	 As usual, install the required software on the template operating system.
2.	 When finished, remove all the user data, passwords, and keys

(for example, SSH keys) from the operating system. This part will not be
explained in more detail. To learn how to do this for a Windows platform,
you can check out http://technet.microsoft.com/en-us/library/
ee523217%28v=ws.10%29.aspx.

https://openvz.org/Debian_template_creation
https://openvz.org/Ubuntu_Gutsy_template_creation
http://technet.microsoft.com/en-us/library/ee523217%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/ee523217%28v=ws.10%29.aspx

Disaster Recovery on a Proxmox VE Cluster

[198]

3.	 Then, right-click on the VM and choose Convert to template, as shown in the
following screenshot:

4.	 Click on Yes when a confirmation prompt is shown.
5.	 When the operation is finished, the icon of VM 101 changes, indicating that it

is a template rather than a standard VM and you won't be able to turn it on.

At this time, we can perform the following types of operations on the VM template:

•	 Migrate: This simply moves the selected template file from one Proxmox
server to another

•	 Clone: In the clone mode, there are two different options:
°° Full clone: This is used to create a complete separate copy of

the original template file, and it requires the same disk space
as the original.

°° Linked clone: This uses up less space but cannot run without the
original VM template file. Besides, it doesn't work with the LVM
and iSCSI storages.

Chapter 7

[199]

Therefore, if you are using the Linked clone option to conserve disk space, you have
to remember not to move/migrate the original VM template file, as the linked clone
image will record all the changes made after the base image has been created. For
more information on full clone versus linked clone, check out the following link:

https://www.vmware.com/support/ws5/doc/ws_clone_overview.html

If we choose to use the linked clone mode, the configuration file for the hard disk
will be different, as shown in the following screenshot:

The disk image size is slightly smaller than the original one. The size can be checked
with the following command:

root@vmsrv01# ls -lah /var/lib/vz/images/103

-rw-r--r-- 1 root root 193K Jul 7 00:38 vm-103-disk-1.qcow2

On the other hand, in the full clone mode, the size will be the same as the normal one:

The new disk image size is the same as the original one:
root@vmsrv01# ls -lah /var/lib/vz/images/104

-rw-r--r-- 1 root root 8.1G Jul 7 00:38 vm-104-disk-1.qcow2

Therefore, we have gone through the process of creating system templates on both
the OpenVZ containers and KVMs. It will now be much easier if we need to build
similar VMs with the same operating system.

Up to this stage, we have learned how to set up our own backup schedule to protect
our VMs. We also know the procedures of VM restoration. What if a cluster member,
(a Proxmox server in our case) fails? Is there any way to replace the existing server
with another one? I am going to show you how to solve the problem of a single
cluster node failure and rebuild a failed cluster.

System recovery of a Proxmox
cluster failure
Normally, the cluster can be automatically recovered from a cluster node after
a network or system failure. However, when you need to upgrade or replace the
existing cluster node, we have to follow the procedures listed in the following
sections to make it work.

https://www.vmware.com/support/ws5/doc/ws_clone_overview.html

Disaster Recovery on a Proxmox VE Cluster

[200]

Replacing a failed cluster node
In this case, you probably have one broken machine inside your cluster. When you
log in to the web management console, you might see that the status of the broken
cluster node turns red and shows that the node is not online; this can be seen on the
Summary page under Datacenter. Assume that the broken machine is vmsrv02, as
shown in the following screenshot:

When you check the status of the cluster with the clustat command, you will get
the following result:

root@vmsrv01# clustat

Member Name ID Status
 ------ ---- ---- ------
 vmsrv01 1 Online, Local, rgmanager
 vmsrv02 2 Offline
 /dev/block/8:16 0 Online, Quorum Disk

Another problem is that all your non-HA enabled VMs under vmsrv02 are unable
to start. According to the backup files you have, the repair steps are different.
Let's check out how to perform the repair process in the following steps. For more
information on the installation steps of different components, refer to Chapter 4,
Configuring a Proxmox VE Cluster:

1.	 Turn off your failed machine. Fortunately, our cluster is able to bear one
cluster node failure. So, we can simply remove the failure node from the
cluster with the pvecm command, as shown in the following command:
root@vmsrv01# pvecm delnode vmsrv02

2.	 After that, you can perform a brand new installation on your new Proxmox
server. Make sure that you have installed the DRBD and GlusterFS packages.
Copy all files at /etc/drbd.d for the DRBD configurations of vmsrv01 to
vmsrv02. Configure all the storage devices, for example, the DRBD storage
and GlusterFS storages, in vmsrv02.

3.	 If you have used CEPH as the storage for a VM, you can copy the
configuration files from vmsrv01 to /etc/pve/ceph.conf.

Chapter 7

[201]

4.	 The mount points associated with them should be properly defined in
Proxmox, because you have to restore the storage.cfg file to vmsrv02.
If you don't have storage.cfg on your backup media, you can simply copy
the file from /etc/pve/storage.cfg in vmsrv01 to vmsrv02.

5.	 If you have done everything well, you should see all the storages as shown in
the following screenshot:

6.	 Make sure that you can properly view the status of your storages. For example,
the DRBD storage should look as shown in the following screenshot:

Disaster Recovery on a Proxmox VE Cluster

[202]

7.	 After your storage configurations are restored, we can restore the VMs
to resume normal operation. If you have backed up the content with the
following folders, you can simply restore the VM by copying the following
files to vmsrv02:

°° /etc/pve/nodes/vmsrv02/openvz/

°° /etc/pve/nodes/vmsrv02/qemu-server/

°° /var/lib/vz/private/

°° /var/lib/vz/images/

If you have only the following VM backup files, then you need to restore your
VMs one by one with the web management console. Refer to the Restoring a
virtual machine with the web management console section for more information:

°° vzdump-openvz-100-2014_07_04-16_12_05.tar.gz

°° vzdump-qemu-101-2014_07_05-23_36_29.vma.gz

8.	 Try to start your VMs one by one after the VMs have recovered, to check
whether there is any problem.

9.	 If there is no problem when running the VMs, check whether the quorum disk
is available to vmsrv02 (no need to rebuild it) before you add it back to the
cluster, as shown in the following screenshot:

10.	 Issue the pvecm command on vmsrv02 to join the server back to the cluster:
root@vmsrv02# pvecm add vmsrv01

Chapter 7

[203]

11.	 Now, you should be able to see vmsrv02 on the web management page,
as shown in the following screenshot:

Here, we learned how to recover a failed node from the backup files. What if we
want to build an identical cluster system for service redundancy? There are many
preparations that need to be performed, and detailed steps have been provided for
your reference in the following section.

Building a redundant cluster from the
backup files
First of all, we need to back up all the VMs and cluster-related configuration files.
Then, use the following files as your source files for the new cluster:

1.	 The first thing we need to back up is the following cluster configuration file:
°° /etc/pve/cluster.conf

2.	 If you want to have an identical system, then you need to copy the
following authorization key, which is used by the Proxmox server
to perform configuration synchronization (this step is optional):

°° /etc/pve/authkey.key

3.	 Back up the following configuration file, which keeps all the storage
information listed in the cluster source page:

°° /etc/pve/storage.cfg

4.	 As we need to have the iSCSI storage to be our quorum disk, back up the
iSCSI configuration file too:

°° /etc/iscsi/iscsid.conf

5.	 If you also need to back up the settings for the iSCSI server, then you can
refer to http://goo.gl/iFGphj.

http://goo.gl/iFGphj

Disaster Recovery on a Proxmox VE Cluster

[204]

6.	 If you have enabled the CEPH service, you also need to copy the
following files:

°° /etc/pve/priv/ceph.conf

°° /etc/pve/priv/ceph.client.admin.keyring

°° /etc/pve/priv/ceph.mon.keyring

7.	 Moreover, back up the following DRBD configuration files:
°° /etc/drbd.d/*

°° /etc/drbd.conf

8.	 If you have defined your default settings for the vzdump command, then you
need to back up the following file:

°° /etc/vzdump.conf

9.	 If you have created a scheduled backup, then you need to copy the following
file to every cluster node for which you have scheduled backup tasks:

°° /etc/pve/vzdump.cron

10.	 You might also need to copy your custom OS and OpenVZ templates that are
at the following location:

°° /var/lib/vz/template/cache/*

11.	 You might also need to copy the ISO files that you needed for the operating
system installation with the KVM machine:

°° /var/lib/vz/template/iso/*

12.	 Furthermore, back up the configuration file to define a system mount point
at startup:

°° /etc/fstab

13.	 You might have custom cron jobs to clear log files; in which case, you also
need to back them up:

°° /etc/crontab

14.	 If you are using an LVM storage, you need to back it up too:
°° /etc/lvm/lvm.conf

Remember to back up the settings for the LVM devices with the
vgcfgbackup command. You can refer to Chapter 6, System Migration
of an Existing System to a Proxmox VE Cluster.

Chapter 7

[205]

15.	 Of course, you need to back up all the VMs; for this, refer to the previous
section, Back up process for VMs in Proxmox.

16.	 Don't forget to copy your network configuration file from every cluster node at
the vmsrv01.interfaces path; you can identify the files with names such as:

°° /etc/network/interfaces

°° /etc/hosts

°° /etc/hostname

17.	 For the network part, we need to back up the switch configuration too. Since
I am using a Cisco product, refer to the following link for more information
about it:
http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/
ios-software-releases-122-mainline/46741-backup-config.html

If you are not using a Cisco product, search for the backup method available
for your product.

18.	 If you have created a Gluster filesystem on separate machines, you need to
back up the directory that you have exported for Proxmox to use. In my case,
it would be /glusterfs-data/*.

19.	 Save the firewall rules used by iptables separately using the
following commands:
root@glusterFS1# iptables-save > glusterFS1.iptables

root@glusterFS2# iptables-save > glusterFS2.iptables

root@glusterFS3# iptables-save > glusterFS3.iptables

You can restore the configurations afterwards with the following commands:
root@glusterFS1# iptables-restore < glusterFS1.iptables

root@glusterFS2# iptables-restore < glusterFS2.iptables

root@glusterFS3# iptables-restore < glusterFS3.iptables

With all the configurations in hand, you can follow the instructions to install all the
software packages by referring to Chapter 4, Configuring a Proxmox VE Cluster, and
restore the configurations to your new machines to form an identical cluster as a
redundancy system to be used in case of an emergency.

We have gone through the topics on how to rebuild/recover our cluster system.
If we want to remove Proxmox from a cluster node to free up a server for some other
use, what will be the right procedure that will not affect the cluster? This is covered
in the following section.

http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-122-mainline/46741-backup-config.html
http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-122-mainline/46741-backup-config.html

Disaster Recovery on a Proxmox VE Cluster

[206]

Removing a cluster member node
For this kind of operation, I would suggest that you create backup files on all the
VMs that run under the affected server. If you are running a two-node cluster, it is
recommended that you add another Proxmox server (for example, vmsrv03) to the
cluster to avoid a single point of failure.

Next, make sure that you have moved all the VMs that run under the affected server
to prevent any system service downtime with the following steps:

1.	 Log in to the web management console of the cluster's main server, for
example, vmsrv01.

2.	 Browse to the affected server (for example, vmsrv02), right-click on the
VMs, and choose Migrate.

3.	 Migrate to a cluster node other than vmsrv02 (for example, vmsrv01) and
click on Migrate.

4.	 Perform the preceding steps on all the VMs that run under vmsrv02.
When there is no VM that runs under the affected server, you are ready to
remove the cluster information on your machine, for example, vmsrv02.

5.	 Now, you are free to remove the node from vmsrv01 using the
following command:
root@vmsrv01# pvecm delnode vmsrv02

Chapter 7

[207]

6.	 When we check the cluster status using the following command, there is no
vmsrv02 inside:
root@vmsrv01# clustat

Member Name ID Status
 ------ ---- ---- ------
 vmsrv01 1 Online, Local, rgmanager
 /dev/block/8:16 0 Online, Quorum Disk

7.	 After that, we need to stop the Proxmox cluster filesystem (pmxcfs) service
that contains the corosync service on vmsrv02. This will also unmount the
Proxmox system mount point at /etc/pve:
root@vmsrv02# /etc/init.d/pve-cluster stop

8.	 Stop the cluster manager service using the following command:
root@vmsrv02# /etc/init.d/cman stop

9.	 To ensure that the service is properly turned off, issue the kill command:
root@vmsrv02# killall -9 corosync cman dlm_controld fenced

10.	 Remove the cluster configuration files using the following command:
root@vmsrv02# rm /etc/cluster/cluster.conf

root@vmsrv02# rm -rf /var/lib/pve-cluster/*

root@vmsrv02# rm -rf /var/lib/cluster/*

Make sure you are not removing the cluster directory itself. If you remove
the cluster directory, you will be unable to start the pve-cluster service,
which means you cannot mount the main Proxmox configuration directory,
/etc/pve.

11.	 Check whether pve-cluster can be started using the following command:
root@vmsrv02# /etc/init.d/pve-cluster start

12.	 Perform a system reboot after the removal.
13.	 When you log in to the web management console of vmsrv02 again, you

should not see the other cluster node. Then, you can safely remove this
machine from the cluster farm.

Disaster Recovery on a Proxmox VE Cluster

[208]

Summary
In this chapter, we learned how to perform a backup and restore of our VMs.
As a good habit, I introduced how to create our own backup schedules for our
system. If we encounter a system failure during daily operation, we now know the
procedures to recover the failed node in our cluster. If the system is unrecoverable,
we know how to remove it safely without affecting the production system. Finally,
I introduced the configuration files needed if we want to build
the cluster from the beginning.

In the next chapter, we will go through some problems I encountered during the
system installation and how we can solve them. I hope it will be a good reference
for you.

Troubleshooting on
a Proxmox Cluster

Up to this point, we have acquired all the knowledge necessary to build our own
Proxmox cluster. In case you encounter any problem during the operation, I have
prepared this chapter to share the difficulties I faced during the creation of this
book and the solutions to fix the problems. For your convenience, the problems
are summarized into different categories listed as follows:

•	 System access problems
•	 System migration problems
•	 System storage problems
•	 Cluster system problems

First, let's start with the display problems that you might face when you use
a Proxmox system.

Troubleshooting system access
problems
Now, it should not be difficult for you to install a new Proxmox server from scratch.
However, after I performed a few installations on different platforms, I noticed that
there were a few scenarios that might cause you trouble. The problems I found are
discussed in the following sections.

Troubleshooting on a Proxmox Cluster

[210]

Undefined video mode number
Symptom: In some motherboards, you will receive the Undefined video mode number
warning after you press Enter to begin the installation. It simply tells you that you
cannot run the fancy installation wizard, as shown in the following screenshot:

Root cause: The main problem is the display chipset. When your motherboard is
using a display chipset that is not VESA 2.0-compatible, this error message appears.
To learn more about VESA 2.0, visit the following links:

•	 VESA BIOS Extensions on Wikipedia: http://goo.gl/dODlKj
•	 A Proxmox forum thread that describes the installation problem:

http://goo.gl/qnFgP3

Solution: You will be asked to press Enter or the Space bar, or wait for 30 seconds
to continue. If you have pressed Enter, the possible video modes available on your
system will be displayed, as shown in the following screenshot:

http://goo.gl/dODlKj
http://goo.gl/qnFgP3

Chapter 8

[211]

You can pick up a display mode number based on the list shown in this screenshot.
Normally, you can select the display mode 314 that has 800x600 resolution and a 16-bit
color depth, or you can choose the display mode 311, which provides you with a 640x480
resolution and a 16-bit color depth. Now, you should be able to continue with the
installation process.

Prevention: I found that this problem normally happened with Nvidia display cards.
If possible, you can try to replace the Nvidia card with an Intel or an ATI display
card for your installation.

Cannot open the console window in the web
management GUI
Symptom: If we want to display the system console window for one VM under
Proxmox, a Java-based applet program is executed as the viewer to interact with
the getty service, which exports the system terminal (TTY1) to the user when there
is a connection.

By default, the system terminal is not exported to the user. To do that, you have to
follow the instructions provided in the Accessing a new VM section of Chapter 1, Basic
Concepts of a Proxmox Virtual Environment. When you try to access the VM properly,
you might receive the following message on the screen:

Root cause: This error simply indicates that your current security settings in the Java
runtime environment are not allowing the Java applet to run, and you cannot allow it
exclusively at this stage. You can visit the following link to learn more about the error:

How do I control when an untrusted applet or application runs in my web browser?:
http://goo.gl/2P277z.

http://goo.gl/2P277z

Troubleshooting on a Proxmox Cluster

[212]

Solution: Therefore, to access our system console, we need to change the setting
using these steps:

1.	 If, like me, you are running a Windows-based client, access your Java
Control Panel, that is, Java (32-bit), through the System Settings option
from Control Panel.

2.	 Inside the Java Control Panel, select Security. The default security level
should be set to High, as shown in the following screenshot:

3.	 Next, you need to add the IP address for the Proxmox server as an exception
site to allow Java applet execution. Choose Edit Site List from the window:

4.	 Click on Add and enter https://192.168.1.57:8006 in the list, as shown
in the following screenshot:

Chapter 8

[213]

5.	 Click on OK and the website is added to the Exception Site List, as shown in
the following screenshot:

6.	 When you try to launch the console window of a VM, you will now be able to
see the following option that allows execution of the Java applet:

Prevention: We cannot prevent this error as it is the default setting that Java
uses to protect us from harmful applets. Just allowing our applet to run will
solve the problem.

A KVM machine cannot be turned off using
the Shutdown command
Symptom: This issue occurs if you want to turn off a Linux-based VM with
the Shutdown command via a web management console, as shown in the
following screenshot:

However, you find that the Shutdown command is executed with the
following output:

TASK ERROR: VM quit/powerdown failed - got timeout

Troubleshooting on a Proxmox Cluster

[214]

Root cause: The error appears because Proxmox uses an ACPI signal to turn off
the VM, and the ACPI-related packages might not be installed in the Linux-based
template. So, the VM cannot be normally shut down via the GUI console.

Solution: In this case, you need to perform the following operations inside the
Linux-based VM:

1.	 Install the ACPI daemon service with the yum command:
root@myvm1# yum -y install acpid

2.	 Start the ACPI daemon service:
root@myvm1# service acpid start

3.	 Enable auto startup for the ACPI service during system startup:
root@myvm1# chkconfig acpid on

Prevention: You can build a customized Linux template that includes the ACPI
daemon to avoid this problem.

These are the main problems I have encountered during the setup process with the
HA environment. In the next section, I will mention some of the problems that might
occur during system migration.

Troubleshooting system migration
problems
With reference to Chapter 6, System Migration of an Existing System to a Proxmox VE
Cluster, we ran through all the steps to perform system migration. However, there
are some minor configurations that will cause the migration process to fail.

The KVM machine cannot be migrated
Symptom: When you try to move your existing KVM machine from one server to
another, you might encounter the following error:

ERROR: Failed to sync data - can't migrate local cdrom 'local:iso/CentOS-
6.5-x86_64-minimal.iso'
aborting phase 1 - cleanup resources

Root cause: This is a common mistake, especially if you want to move your KVM
image after you have finished installing the operating system under your VM.
The local mounted ISO image cannot be found in the target Proxmox server,
and synchronizing this ISO image from the source to the target server also fails.
Therefore, Proxmox stops this operation to avoid any data loss.

Chapter 8

[215]

Solution: To solve this problem, we have two possible approaches: remove the
mounted ISO file from the CD-ROM entry or move the ISO file manually from
the source server to the target server. To remove the CD-ROM entry, you need to
change the content of the VM configuration file manually in the path /etc/pve/
nodes/<proxmox_hostname>/<VMID>.conf.

For example, we have the following entry:

ide2: local:iso/CentOS-6.5-x86_64-minimal.iso,media=cdrom

Change the value to: ide2: none,media=cdrom

Of course, you can make such a change in the web management console too, using
the following steps:

1.	 Choose the VM from the left panel, then choose the Hardware tab from the
right panel, and locate the CD/DVD Drive entry:

2.	 Double-click on the CD/DVD Drive entry or click on Edit from the top
menu, and choose Do not use any media from the Edit window:

3.	 Rerun the migrate operation again, and you should now be free from the error.

Prevention: Make sure you remember to disable the localized settings (for example,
CD/DVD drives, mounted ISO, and so on) before performing system migration.

Troubleshooting on a Proxmox Cluster

[216]

An OpenVZ container cannot be migrated
Symptom: Similar to the migration problem with the KVM VM, we also have
a chance of encountering a failure during migration with an OpenVZ container.
The following is the error output that you might get during the migration:

suspend…
Cannot suspend container: Resource temporarily unavailable
Error: foreign process 554/523862(vzctl) inside CT (e.g. vzctl enter or
vzctl exec).
Error: suspend is impossible now.

Root cause: During the system migration for an OpenVZ container, the VM will
be suspended. The output of a failed suspension is shown in the preceding code.
It tells us that the resource is temporarily unavailable because Proxmox tries to
reallocate the container to the target server, but it cannot be done because there
is a user that is accessing the container with the vzctl enter command. Visit
http://goo.gl/P3P1iv for more information.

Solution: To solve this problem, log out the user that is using vzctl to enter a
command. You can check whether there is such a process by issuing the following
command at the Proxmox node:

vzctl exec <VMID> | ps aux | grep vzctl

Prevention: Ensure that you do not enter the container if you want to perform
system migration.

Now, I will show you the storage problems I have faced.

Troubleshooting system storage
problems
In the previous chapters, we introduced three different storage systems, namely
GlusterFS, CEPH, and DRBD volumes. In this section, I will list out the problems
I have encountered while building the system for each separate filesystem.

DRBD volume not in synchronization
During a normal operation, data synchronization should be automatically
performed. However, there are different scenarios that will cause a synchronization
problem. The following problems will be covered in this section:

•	 Need access to up-to-date data

http://goo.gl/P3P1iv

Chapter 8

[217]

•	 Node with Diskless status
•	 Node with Unknown status

Need access to up-to-date data during service
initialization
Root cause: Your system might indicate that the data inside the current node (in the
following example, vmsrv02) is not up to date, and the resynchronization does not
take place probably because of the timeout.

Solution: So, we need to tell the DRBD service to copy data from a peer node by
overwriting the data in the current node. Assume that we have a DRBD resource,
r1, defined as follows:

root@vmsrv02# drbdadm -- --discard-my-data connect r1

As of DRBD 8.4, we have a new syntax:

root@vmsrv02# drbdadm connect --discard-my-data r1

If this does not help, try to issue the following command on the healthy node vmsrv01:

root@vmsrv01# drbdadm -- --overwrite-data-of-peer primary r1

As of DRBD 8.4, we also have a new syntax for this command:

root@vmsrv01# drbdadm primary --force r1

Prevention: Normally, this problem occurs when there is a network delay between
the DRBD nodes. Ensuring the connectivity between them will reduce the chance of
getting this error.

DRBD volume shows the Diskless status
Symptom: You might encounter the following output when you check your DRBD
service status:

m:res cs ro ds p

1:r1 Connected Primary/Primary Diskless/UpToDate C

Root cause: Normally, this error indicates that there is a disk I/O problem on the
local DRBD node. Refer to this article for more information: http://goo.gl/vwPcYN.
If you confirm that your hard drives are healthy, perform the operation provided in
the solution.

http://goo.gl/vwPcYN

Troubleshooting on a Proxmox Cluster

[218]

Solution: Since both nodes are connected and one node shows the UpToDate status,
we can easily fix this by restarting the DRBD service for the peer node showing the
Diskless status using the following code:

root@vmsrv02# /etc/init.d/drbd restart

Stopping all DRBR resources:.
Starting DRBD resources: [d(r1) s(r1) n(r1)].

The peer node will become the primary node again if we check the service status,
and the data will be synchronized from the healthy DRBD node:

root@vmsrv01# /etc/init.d/drbd status

m:res cs ro ds p
... sync'ed: 0.9% (10148/10236) M
1:r1 SyncTarget Primary/Primary Inconsistent/UpToDate C

When synchronization is complete, the DRBD volume operates normally.

Prevention: This error shows that there is an I/O problem on the local node, so
make sure your local hard drive is operating normally. As DRBD highly depends
on network connectivity, the network availability is also important.

DRBD volume shows the Unknown status
Symptom: You will receive the following output when you check the DRBD status in
this situation:

m:res cs ro ds p
1:r1 WFConnection Primary/Unknown UpToDate/DUnknown C

Root cause: It simply tells you that your node (for example, vmsrv01) is working
properly with the up-to-date data, but the peer node (for example, vmsrv02) is either
under a system failure or its network is disconnected. Therefore, the connection
status for vmsrv01 changes to WFConnection, which indicates that it is waiting for
the connection of the peer node, and data resynchronization is needed.

Solution: If the resynchronization doesn't take place when vmsrv02 is back online,
you need to perform the following steps to solve the problem:

root@vmsrv02# drbdadm secondary r1

root@vmsrv02# drbdadm disconnect r1

root@vmsrv02# drbdadm --discard-my-data connect r1

For DRBD 8.4, we have the following new syntax:

root@vmsrv02# drbdadm connect --discard-my-data r1

Chapter 8

[219]

If the result of the service status on vmsrv01 is similar to the following output,
then vmsrv01 is running as the standalone mode:

m:res cs ro ds p
1:r1 Standalone Primary/Unknown UpToDate/DUnknown C

As vmsrv01 is not waiting for the peer node to connect and is running as
a standalone mode, we have to issue the following command:

root@vmsrv01# drbdadm connect r1

The data should then be replicated from vmsrv01 to vmsrv02. If this does not
happen, you can restart the DRBD service in vmsrv02 using the following command:

root@vmsrv02# /etc/init.d/drbd restart

Prevention: This error only appears if the network connectivity from the affected node
(vmsrv02) is lost. So, make sure that the network is available to prevent this error.

Rebuilding a DRBD volume
In most circumstances, the automatic and manual recovery methods mentioned in
the preceding section should solve the DRBD volume problem. If they don't, you
could first back up the data in your volume and then rebuild the volume. To do this,
follow these steps:

1.	 Back up the data in the DRBD volume to other locations, for example,
/drbd-backup.

2.	 Stop the DRBD system service on both nodes using the following command:
root@vmsrv01# /etc/init.d/drbd stop

root@vmsrv02# /etc/init.d/drbd stop

3.	 Remove the partition used in the DRBD volume on both the nodes with the
fdisk command, for example, /dev/sdd1:
root@vmsrv01# fdisk /dev/sdd

Command (m for help): d
Partition number (1-4): 1
Command (m for help): w

Repeat the steps in vmsrv02.

Troubleshooting on a Proxmox Cluster

[220]

4.	 Create a partition for the DRBD volume for use on both the nodes, as shown
in the following command:
root@vmsrv01# fdisk /dev/sdd

Command (m for help): c
Partition number (1-4): 1
Command (m for help): w

Repeat the steps in vmsrv02.

5.	 Follow the instructions to create the DRBD volume mentioned in Chapter 4,
Configuring a Proxmox VE Cluster.

In the next section, we will discuss the problems I came across with the Gluster
filesystem during my system setup, which are listed as follows:

•	 Missing extended attribute trusted.glusterfs.volume-id
•	 Replacing a failed Gluster node

Failed to get the extended attribute
trusted.glusterfs.volume-id for brick x
on a GlusterFS volume
Root cause: Before we can go deep into this problem, we need to know whether the
extended file and folder attributes are applied in the GlusterFS volume on top of the
normal permission settings. Therefore, if these attributes are missing by accident or
get replaced by a new hard drive, we will not be able to turn on this volume brick.

Solution: So, we need to perform the following steps to add the attributes back to the
GlusterFS volume. Assume that we have a Gluster volume named glustertest and
we set up a directory named /glusterfs-data/mount1 as the storage for the volume:

1.	 We need to stop the Gluster daemon service on all the nodes:
root@glusterFS1# service glusterd stop

2.	 In the affected node, we need to issue the following command to restore the
extended file attribute, which is missing for the brick:
root@glusterFS1# (vol=glustertest; brick=/glusterfs-data/mount1; \
setfattr -n trusted.glusterfs.volume-id -v "$(grep volume-id \
/var/lib/glusterd/vols/$vol/info | cut -d= -f2 | \
sed 's/-//g')" $brick)

Chapter 8

[221]

In this command, we have defined the Gluster volume name and the brick
name with the variables vol and brick. Then, we make use of these two
variables with grep volume-id from the Gluster info (/var/lib/glusterd/
vols/glustertest/info) file, and remove the hyphens from the value.
After that, we assign the new file attribute trusted.glusterfs.volume-id
with this new volume-id to the brick (/glusterfs-data/mount1).

The Gluster info file contains the volume identifier (volume-id), number
of replicas, the brick information, and so on. A sample info file is given as
follows for your reference:
type=2
count=3
status=1
sub_count=3
stripe_count=1
replica_count=3
version=2
transport-type=0
volume-id=3f5f5433-7436-4592-8925-a686ca972281
username=3948ce10-81b5-4298-9371-fa317dfc11bb
password=c1740e99-3c16-4949-afe5-b9b5408df443
op-version=2
client-op-version=2
brick-0=192.168.1.51:-glusterfs-data-mount1
brick-1=192.168.1.52:-glusterfs-data-mount1
brick-2=192.168.1.53:-glusterfs-data-mount1

3.	 Then, we can start the Gluster daemon service in all the nodes:
root@glusterFS1# /etc/init.d/glusterd start

Note that this method should also solve the GlusterFS volume ID mismatch for bricks
problem that we encountered during system start. Refer to this website as a solution
for this problem: http://goo.gl/dvCiYK.

Prevention: Normally, this problem will only occur when you have accidentally
removed the brick directory but created it again without applying the extended file
attribute to it. Avoid removing the bricks simply with the rm command; or, use the
following command:

gluster volume remove-brick glustertest 192.168.1.57:/glusterfs-data/
mount1

http://goo.gl/dvCiYK

Troubleshooting on a Proxmox Cluster

[222]

Replacing a failed Gluster node
Assume that we have a three-node Gluster system that contains glusterFS1,
glusterFS2, and glusterFS3; glusterFS3 fails and is replaced with a new one.
The steps to finish the replacement process are as follows:

1.	 On either glusterFS1 or glusterFS2, we need to find the UUID of the
original glusterFS3:
root@glusterFS1# grep glusterFS3 /var/lib/glusterd/peers/*

You should receive a result similar to the one shown as follows:
/var/lib/glusterd/peers/700558a5-fb4b-444c-869d-638bf37bfb84:hostn
ame1=glusterFS3

2.	 After you have installed the GlusterFS packages on the glusterFS3
server, make sure that you have stopped the glusterd service using
the following command:
root@glusterFS3# /etc/init.d/glusterd stop

3.	 Then, we need to restore the UUID value 700558a5-fb4b-444c-869d-
638bf37bfb84 back to the Gluster information file in glusterFS3:
echo UUID={700558a5-fb4b-444c-869d-638bf37bfb84} > \
/var/lib/glusterd/glusterd.info

4.	 Restore the extended file attribute to the shared brick on glusterFS3:
root@glusterFS3# (vol=glustertest; brick=/glusterfs-data/mount1; \
setfattr -n trusted.glusterfs.volume-id -v "$(grep volume-id \
/var/lib/glusterd/vols/$vol/info | cut -d= -f2 | \
sed 's/-//g')" $brick)

This command is the same as the one listed before. It actually restores the
extended file attribute by getting back the volume-info information from
the Gluster info file, /var/lib/glusterd/vols/glustertest/info, and
assigns the value back to the brick directory. For more details, read the
Failed to get extended attribute trusted.glusterfs.volume-id for brick x on a
GlusterFS volume section.

5.	 Start the glusterd service on glusterFS3 to make it back to the
Gluster system:
root@glusterFS3# /etc/init.d/glusterd start

In the next section, we are going to run through the following CEPH service errors
as shown:

•	 Pipe fault during the CEPH service start up
•	 Degraded CEPH storage that shows OSD.X is down

Chapter 8

[223]

CEPH service that shows AA.BB.CC.DD/0
pipe (XXX).fault
Symptom: When the CEPH service is starting, it will check whether all the CEPH
monitors are started up or not. If there is one failure on the monitor node, the
following symptom will be outputted on the system terminal:

2014-04-24 16:43:26.139718 7f6eb0293700 0 -- :/1180718 >>
192.168.1.58:6789/0 pipe(0x2847860 sd=4 :0 s=1 pgs=0 cs=0 l=1
c=0x2847ac0).fault

Root cause and solution: In this example, we found that the monitor service at
192.168.1.58 is not running, so we only need to start the monitor service at
vmsrv02 (assuming that the monitor service is named mon.1):

root@vmsrv02# pveceph start mon.1

Prevention: Make sure that the CEPH monitor service is running and
operating normally.

CEPH service that shows OSD.X is down
Symptom: When we check the CEPH service status, you might find that the CEPH
storage is in a degraded status, as shown in the following screenshot:

Root cause: If you take a further look at the preceding screenshot, you will notice
that there are some problems with the OSDs because there are only three out of
seven OSDs active.

Troubleshooting on a Proxmox Cluster

[224]

Solution: We have to solve the failure on the OSDs to get the CEPH service to
run properly:

1.	 We need to check the OSD page for more details; you might find that there is
an OSD listed in the CEPH storage but with the down state, as shown in the
following screenshot:

2.	 In this situation, you need to check the status of the corresponding physical
hard drive under the Disks page, shown as follows:

3.	 Next, you need to check whether we have a physical disk in /dev/sde and
fix the problem. Once you have solved the physical disk problem, you can
simply click on the Start button at the top menu to add your storage back
to CEPH.
If your hard drive cannot be recovered, you can consider removing this entry
from the CEPH storage.

4.	 First, you need to choose the target OSD drive (for example, osd.8) and click
on the Out button in the top menu:

5.	 When the status of osd.8 is changed to down/out, you can click on the
Remove button in the top menu.

Chapter 8

[225]

6.	 Click on Remove to clear the osd.8 entry from CEPH, as shown in the
following screenshot:

You have successfully removed the damaged hard drive from the CEPH storage, and
of course, you can add another hard drive with the name osd.8 afterwards.

Prevention: This error is normally caused due to disk failure in the CEPH storage;
make sure that you have a healthy hard drive to prevent this error.

Now, I will share with you some troubleshooting experiences with cluster
service failure.

Troubleshooting Proxmox cluster
problems
In this section, we will go through some common problems that we encounter
during the operation of a Proxmox cluster, which are as follows:

•	 HA VM start up problem
•	 The fenced cluster node cannot recover automatically
•	 The cluster member node cannot join back with the cluster
•	 The cluster service cannot be restarted because of the DLM lockspace
•	 Activity blocked within the cluster

Unable to start the HA-enabled VM
Symptom: When you try to start an HA-enabled VM, the operation fails with the
following output:

Executing HA start for VM 201
Member vmsrv01 trying to enable pvevm:201… Aborted; service failed
TASK ERROR: command 'clusvcadm -e pvevm:201 -m vmsrv01' failed: exit code
254

Troubleshooting on a Proxmox Cluster

[226]

Root cause: So, if you start the HA-enabled VM again, the process will still be
unsuccessful with the same output. The problem is that the VM 201 is in the
failed status, and so it cannot be turned on:

Solution: The HA service with the failed status cannot be used until we re-enable it,
so we need to perform the following steps:

1.	 To solve the problem, we need to disable this HA service first with
the following:
root@vmsrv01# clusvadm -d pvevm:201

Local machine disabling pvevm:201...Success

2.	 After that, you can verify that the status of this service is changed
to disabled:

3.	 You should be able to turn on the VM either from the web management
console or with the command line:
root@vmsrv01# clusvadm -e pvevm:201

Prevention: An HA service will be marked as failed because it cannot be run on both
the cluster nodes. Make sure that you have enough system resources for the HA
service in terms of CPU, memory, and most importantly, the status of the shared
storage resource.

Chapter 8

[227]

The cluster node is being fenced
Symptom: The first thing you will notice is that the cluster node is shown in the
red icon and is offline in the Summary page in the web management console. In this
example, the fenced node is vmsrv02:

Another symptom is that many error messages will appear in the failed node when
you check using the dmesg command:

sd 8:0:0:0: rejecting I/O to offline device

If you have configured your quorum disk, you can still create a new VM. However,
when you further check the cluster status in the command-line interface with the
pvecm command, you will find that the node is not in a cluster:

root@vmsrv01# pvecm nodes

Node Sts Inc Joined Name
 0 M 0 2014-07-05 04:21:38 /dev/block/8:16
 1 M 5820 2014-07-05 04:20:48 vmsrv01
 2 X 5824 vmsrv02

The X sign under the Sts column means that vmsrv02 is not available. Since we have
configured a quorum disk, the cluster is still operational, as shown in the following
command and its output:

root@vmsrv01# pvecm status

Cluster Name: mycluster
Cluster Member: Yes
Membership state: Cluster-Member
Nodes: 1
Expected votes: 3
Quorum device votes: 1
Total votes: 2
Node votes: 1
Quorum: 2
Node name: vmsrv01
Node ID: 1

Troubleshooting on a Proxmox Cluster

[228]

Root cause: Due to network connectivity problems or system failure, the cluster node
is being fenced from the cluster.

Solution: To solve this problem, we need to issue the following command on vmsrv01:

root@vmsrv01# fence_node vmsrv02 –U

Then, the server vmsrv02 will be restarted; the normal cluster operation is resumed
when the cluster node comes back online, as shown in the following screenshot:

Prevention: Ensure that your Proxmox node is equipped with multiple network
cards to provide network redundancy; having redundancy in power supplies will
greatly reduce the chance of getting into this problem.

Nodes unable to rejoin cluster after fence
or reboot
Root cause: After a system reboot or after recovering from a network failure,
a cluster node might not be able to join back with the cluster domain. One of the
possible reasons for this is the inconsistency of the cluster configuration file. During
a normal operation, cluster configuration content is synchronized via the corosync
service that ensures data consistency.

When we make changes to the cluster configuration file in vmsrv01, corosync will
also update the file at vmsrv02, as shown in the following command and its output:

root@vmsrv01:/etc/pve# ls -la

-rw-r----- 1 root www-data 2220 Jul 7 20:57 cluster.conf

root@vmsrv02:/etc/pve# ls -la

-rw-r----- 1 root www-data 2220 Jul 7 20:57 cluster.conf

When there is a high network latency or network failure, then the synchronization
process might fail if both the cluster nodes attempt to change the content of the
cluster configuration file at /etc/pve/cluster.conf.

Chapter 8

[229]

If the configuration file is out of synchronization, the cluster node without the latest
update will not be able to start the cluster service, as shown in the following output:

Starting cluster:
 Checking if cluster has been disabled at boot... [OK]
 Checking Network Manager... [OK]
 Global setup... [OK]
 Loading kernel modules... [OK]
 Mounting configfs... [OK]
 Starting cman... [OK]
 Waiting for quorum... Timed-out waiting for cluster

Solution: To solve this problem, we need to make the affected node (vmsrv02)
acquire the updated content of the cluster configuration file by copying the content
from another node (vmsrv01). Then, we should be able to join vmsrv02 back with
the cluster using the following command:

root@vmsrv02# /etc/init.d/cman restart

Starting cluster:
Checking if cluster has been disabled at boot... [OK]
 Checking Network Manager... [OK]
 Global setup... [OK]
 Loading kernel modules... [OK]
 Mounting configfs... [OK]
 Starting cman... [OK]
 Starting qdiskd... [OK]
 Waiting for quorum... [OK]
 Starting fenced... [OK]
 Starting dlm_controld... [OK]
 Tuning DLM kernel config... [OK]
 Unfencing self... [OK]
 Joining fence domain... [OK]

Prevention: There are two possible reasons that cause the cluster.conf file to be
out of sync with the cluster member nodes, and they are as follows:

•	 First, you manually edit the content of the cluster.conf file that will have a
great chance of harming your cluster, leading to a cluster failure. The correct
method to update the configuration is to create a new cluster.conf.new
file from the original cluster.conf file and activate the changes under the
GUI console.

•	 Another possible reason also mentioned before is to make sure that you have
a reliable network that can help you avoid this kind of error.

Troubleshooting on a Proxmox Cluster

[230]

Unable to restart the cluster service
Symptom: In some situations, you may want to restart the local cluster service with
the following command:

root@vmsrv01# /etc/init.d/cman restart

However, the operation fails and you receive an output similar to the
following output:

Stopping cluster:
Leaving fence domain... found dlm lockspace /sys/kernel/dlm/rgmanager
fence_tool: cannot leave due to active systems
[FAILED]

Root cause: The reason for this error is that there is a DLM lockspace for rgmanager.
We can perform a further check with the dlm_tool or cman_tool commands, shown
as follows:

root@vmsrv01# dlm_tool ls

We can also use the following:

root@vmsrv01# cman_tool services

Now, we will get the following output:

dlm lockspaces
name rgmanager
id 0x5231f3eb
flags 0x00000000
change member 2 joined 1 remove 0 failed 0 seq 2,2
members 1 2

Solution: As we found from the preceding result, there is a locking status in the
rgmanager process. We need to perform the following action to solve this problem:

1.	 As rgmanager requires a lock operation between the cluster members,
we need to stop it from escaping from the locking scheme using the
following command:
root@vmsrv01# /etc/init.d/rgmanager stop

2.	 Then, we should be able to restart the cluster manager (cman) on the target
member node:
root@vmsrv01# /etc/init.d/cman restart

Chapter 8

[231]

3.	 Next, we can start the rgmanager service:
root@vmsrv01# /etc/init.d/rgmanager start

4.	 Finally, you might need to restart the Proxmox filesystem service
(pve-cluster):
root@vmsrv01# /etc/init.d/pve-cluster restart

Unable to perform any change on the cluster
As there are not enough node members in the cluster, any activity changed on the
cluster will be blocked, as shown in the following command and its output:

root@srv01# pvecm status

Cluster Name: mycluster
Cluster Member: Yes
Membership state: Cluster-Member
Nodes: 2
Expected votes: 3
Total votes: 2
Node votes: 1
Quorum: 2 Activity blocked

In such a circumstance, we need to make sure that the available cluster member
nodes are at least equal to the number of Expected votes.

Troubleshooting on a Proxmox Cluster

[232]

Summary
In this chapter, we listed out some common problems and solutions that we might
face during daily operation, from system access problems to the actual cluster-related
problems for a Proxmox cluster. Of course, I cannot list out all the circumstances that
would cause the problem, but we can list some ideas by checking the system log files
under the following paths:

•	 /var/log/messages

•	 /var/log/syslog

•	 /var/log/cluster/qdiskd.log

•	 /var/log/cluster/corosync.log

•	 /var/log/cluster/dlm_controld.log

•	 /var/log/cluster/fenced.log

•	 /var/log/cluster/rgmanager.log

If you have read through this book, I have no doubt that you have learned not
only the practical techniques, but also the background concepts behind this
software. Proxmox is an open source virtualization tool that comes with amazing
functionalities. If you are new to virtualization, Proxmox would be a good starting
point for you to catch a glimpse of how system administrators or developers work
when creating a cluster system.

Index
A
access port, VLAN structure 71
APC

URL 63
ARP (Address Resolution Protocol) 70
auto-discovery process, iSCSI initiator 83
auto healing function, Gluster filesystem

(GlusterFS) 53
availability

about 30
calculating 30, 31
system downtime, negative effects 31

B
backup approaches, with vzdump command

snapshot mode 171
stop mode 171
suspend mode 171

backup process, VM 170-184
basic administration, Proxmox VE

ISO file, uploading 14, 15
KVM, creating 18-20
OpenVZ-based virtual machine,

creating 16, 17
OS template, uploading 14, 15
performing 12-14
virtual machine, accessing 21, 22

basics, server virtualization
guest OS 10
host OS 10

battery backup unit (BBU) 39, 42
binary translation 8
blue screen of death (BSOD) 160
bonding interface, Proxmox network 70, 71

brick 78
bridged interface, Proxmox network 70
bridged mode, OpenVZ-based virtual

machine 17

C
Ceph device

mounting, as shared storage 119-121
Ceph filesystem

about 54-56
advantages 59
building, for Proxmox cluster 115-119
Ceph device, mounting as shared

storage 119-121
disadvantages 59

Ceph monitor daemon 55
Ceph object storage devices (OSD)

daemon 55
Cisco switch

via SNMP, network fencing with 102-108
cloud computing 6
cluster environment

HA service relocation, testing on 134
single cluster node failure, testing

on 138, 139
single network interface failure,

testing on 136, 137
single network switch failure,

testing on 137, 138
testing with 134

cluster manager (CMAN) 132
cluster map, Ceph

CRUSH map 57
MDS map 57
monitor map 56

[234]

OSD map 56
PG map 57

cluster member node
removing 206, 207

Command Line Interface (CLI) 190
Control Processing Unit (CPU) 7
Corosync Cluster Engine (Corosync) 45
CRUSH algorithm 57
CRUSH map 57

D
data

migrating, to container with rsync
command 146

Debian
URL 197

differential backup 25
discovery process, iSCSI initiator 83
Distributed lock manager (DLM)

about 132
URL 132

Distributed Replicated Block
Device. See DRBD

downtime
scheduled downtime 30
unscheduled downtime 31

Downtime duration (DD) 30
DRBD

about 35, 36, 52, 77-79
advantages 58
configuring 92-97
disadvantages 58
installing 92-97
LVM volume based on DRBD shared

storage, creating 98-100
used, for forming two-node cluster 87-92

DRBD volume
rebuilding 219, 220

DRBD volume synchronization issue
Diskless status, displaying 217, 218
Unknown status, displaying 218, 219
up-to-date data access, requiring 217

E
ESX 11
Expected uptime (EU) 30

extent
device extent 83
file extent 83

F
failed cluster node

replacing 200-203
failed Gluster node

replacing 222
failover domain

ordered domain 140
restricted domain 140
setting up 139-141

failover, HA 33
features, Proxmox VE

bridged networking 6
Command-line (CLI) tool 6
flexible storage 6
High Availability 6
live migration 6
open source 6
OS template 6
scheduled backup 6

features, QCOW2
snapshot 25
thin-provisioning 25
VMDK 25

fencing 45
fencing device

about 61, 62
options 63

Filesystem in Userspace (FUSE) 45
flash-based protection 43
full virtualization (FV) 8
functionalities, qdisk

heartbeat and liveliness determination 66
master election 66
scoring and heuristics 66

G
Gluster filesystem (GlusterFS)

about 52-54
advantages 58
building, for Proxmox cluster 108-115
components 52
disadvantages 58

[235]

URL 111, 113
used, for handling server failure 53

graphical user interface (GUI) 14, 115
guest OS 10

H
HA

achieving, strategies 32
HA environment

about 29
availability 30

HA-protected VM
building 130-133

hardware-assisted virtualization (HV) 9
HA service relocation

KVM relocation, testing 135
OpenVZ container relocation,

testing on 134, 135
testing on 134

heartbeat, HA
about 33
first condition 33
second condition 33

High Availability. See HA
host OS 10
HyperTerminal 102
hypervisor

about 5
comparing, virtualization platforms

based 12
Hyper-V server

comparing, with server virtualization
software 11

I
IBM

URL 63
Intelligent Platform Management

Interface (IPMI) 64
iSCSI-based storage option

advantages 57
disadvantages 58

iSCSI device
about 83
device extent 83
file extent 83

iSCSI initiator 83
iSCSI portal 83
iSCSI target 83
LUN (logical unit number) 83
working with 84-86

iSCSI initiator 83
iSCSI portal 83
iSCSI shared storage

device 83-86
preparing, with NAS4free 82

ISO file
uploading, to Proxmox 14, 15

ISO image option 15

K
Kernel-based Virtual Machine. See KVM
key components, for building Proxmox VE

Cluster
fencing device 61
quorum disk 66
reliable network 60
shared storage 47

Kpartx, command-line tool 153
KVM

about 23
backing up, with vzdump stop

mode 175, 176
creating 18-21
restoring, with vzrestore 188-190
using, with live migration 128, 129

L
Linux platform

system migration 144
live migration

about 36, 124
KVM, using 128, 129
OpenVZ container, using 125-127
post-copy memory migration 36
pre-copy memory migration 36-38

live migration preparation, of physical
machine

data, copying from source server to
Proxmox server 155-157

on Proxmox server 152, 153
on source machine 149, 150

[236]

live migration preparation, on Proxmox
server

about 152
disk information, restoring on source

backup 153-155
live migration preparation, on source
machine

about 149
LVM snapshot volume, creating for data

copying 150, 151
load balancing, HA 32
Logical Volume Manager. See LVM
LUN (logical unit number) 83
lvcreate command 151
LVM

about 50, 51
creating 50
volumes, adding 51

LVM logical volume
size, reducing 180, 181

LVM shared storage
storage preparation 123

LVM snapshot
used, for backing up 182
using, with vzdump 178

LVM volume
based on DRBD shared storage, creating 98
for backup storage, creating 179
physical storage, adding 181, 182
physical storage, replacing 181, 182

M
Master Boot Record (MBR) 150
MDS map 57
minicom

about 102
URL 102

monitor map 56

N
NAS4free

used, for iSCSI shared storage
preparation 82

negative effects, system downtime
customer trust loss 31
internal staff productivity reduction 32

system recovery 31
network

building, with redundancy 69
configuring, for Proxmox VE cluster 69
preparing, for Proxmox cluster 80-82

network address translation (NAT) 71
Network-attached storage (NAS) 48
network fencing

about 63
using, with Cisco switch via SNMP 101-108

network options, Proxmox
bonding interface 70
bridged interface 70
NAT interface 70
routed interface 70

network, Proxmox VE cluster
bonding device 76
building, with redundancy 70
configuring 69
DRBD 77
infrastructure, creating 74
quorum device 75
separate network, building 70
VLAN structure 71

NIC teaming 76

O
object, Ceph storage 55
object storage devices (OSD) 117
OpenVZ (Open Virtuozzo)

about 10, 23, 24
supported operating system 24

OpenVZ-based virtual machine
creating 16, 17

OpenVZ container
backing up, with vzdump stop mode 172
restoring, with vzrestore 185-188
using, for live migration 125-127

OpenVZ template
about 15, 25
building, from existing container 195-197
downloading 25, 26
URL, for downloading 25, 145

operation types, clone mode
full clone 198
linked clone 198

[237]

migrate 198
options, fencing device

Intelligent Platform Management Interface
(IPMI) 64

network fencing 63
power fencing 63
Simple Network Management Protocol

(SNMP) 64
OSD map 56
OS template

about 14
building 195
OpenVZ template 195
uploading, to Proxmox 14, 15
VM template 195

OVF (Open Virtualization Format)
about 167
URL 167

P
para-virtualization 9
PG map 57
physical volume (PV) 98
Placement Group 55
pool 55
post-copy memory migration

steps 36
power distribution unit (PDU) 63
power fencing 63
pre-copy memory migration

steps 37, 38
stop-and-copy phase 37
warm-up phase 37

pre-paging process 36
Proxmox

backup process, for VMs 170-184
ISO file, uploading to 14-17
OS template, uploading to 14, 15
restore process, for VMs 185-192
system, migrating from VMware 163-165
system, migrating from

XenServer / Hyper-V Server 165-167
VM data, backing up 171

Proxmox cluster
Ceph filesystem, building for 115-119
configuration files, backing up 170

Gluster filesystem, building for 109-115
iSCSI shared storage, preparing with

NAS4free 82
network, preparing for 80-82
storage, preparing for 82
system availability, enhancing 43-45
system requisites 39

Proxmox cluster failure
system recovery 199

Proxmox Cluster file system (pmxcfs) 45, 46
Proxmox cluster problems, troubleshooting

cluster change issue 231
cluster node, fencing 227, 228
cluster node, rejoin issue 228, 229
cluster service, restart issue 230
HA-enabled VM, starting issue 225, 226
testing environment infrastructure,

creating 74
Proxmox server

container migration, preparing for 144, 145
data, copying from source server to 155-157

Proxmox VE
about 5
basic administration, performing in 13, 14
comparing, with server virtualization

software 10
features 5
URL 6, 12
using 5
virtual disk, options 24
virtualization, options 23

Proxmox VE cluster
about 35
configuring 87
DRBD 35
live migration 36
network, configuring for 69
separate network, building for 70

Proxmox VE cluster configuration
DRBD, installing 92
hardware checklist 87
software checklist 87
two-node cluster, forming with

DRBD 87-92
Proxmox Virtual Environment. See

Proxmox VE

[238]

Q
QCOW2 25
quorum device 75
quorum disk (qdisk)

about 66
process 66
URL 66

R
RADOS (Reliable Autonomic Distributed

Object Store) 54
RAID 0 operation 40
RAID 1 operation 41
RAID 10 operation

about 41
battery backup unit (BBU) 42
flash-based protection 43

random generator
URL 148

redundancy, HA 34
redundant cluster

building, from backup files 203-205
reliable network 60, 61
Replicate mode 53
requisites, RAID

RAID 0 operation 40
RAID 1 operation 41
RAID 10 operation 41

Resource Group Manager (RGManager) 132
restore process, VMs 185-192
Ring 0 (supervisor mode) 8
Ring 3 (user mode) 8
root mode 9
routed interface, Proxmox network 70
routed mode, OpenVZ-based virtual

machine 17
rsync command

about 171
used, for data migration to

container 146-149

S
scheduled backup setup, for VMs

OpenVZ template, building from existing
container 195-197

OS template, building 195
steps 192-194
VM template, building from existing KVM

machine 197-199
scheduled downtime 30
SCSI (Small Computer System Interface) 83
security settings, DRBD

after-sb-0pri 94
after-sb-1pri 94
after-sb-2pris 94
allow-two-primaries 94
cram-hmac-alg 94
rate 94
shared-secret 94
verify-alg 94

server virtualization
about 6, 7
basics 10
full virtualization 7, 8
hardware-assisted virtualization 7, 9
need for 7
para-virtualization 7, 9
software, comparing 10

server virtualization software
comparing 10
comparing, with Hyper-V server 11
comparing, with Proxmox VE 10
comparing, with VMware ESX/ESXi 11
comparing, with XenServer 11

shared storage
about 47
Ceph filesystem, advantages 59
Ceph filesystem, disadvantages 59
DRBD, advantages 58
DRBD, disadvantages 58
Gluster filesystem (GlusterFS),

advantages 58
Gluster filesystem (GlusterFS),

disadvantages 58
iSCSI-based storage option, advantages 57
iSCSI-based storage option,

disadvantages 58
NAS 47
SAN 47
storage options, in Proxmox 48

Shutdown command 213

[239]

Simple Network Management
Protocol (SNMP)

about 64, 65
network fencing, using with Cisco

switch via 101-108
single cluster node failure

testing on 138, 139
single network interface failure

testing on 136, 137
single network switch failure

testing on 137, 138
snapshot mode 171
SNMP trap 65
solid-state drive (SSD) 58
SPICE

URL 21
stop mode 171
storage area network (SAN) 48
storage device, for Proxmox cluster

iSCSI shared storage, preparing with
NAS4free 82

machine requirements, forms 82
preparing 82

storage options, Proxmox
about 48
Ceph filesystem 54
comparing 59
DRBD 52
Gluster filesystem (GlusterFS) 52
iSCSI 49
LVM 50

strategies, HA
failover 33
heartbeat 33
load balancing 32
redundancy 34

suspend mode 171
system access problems, troubleshooting

about 209-214
console window, opening issues 211-213
KVM machine, turning off 213, 214
undefined video mode number 210

system migration
from VMware, to Proxmox 163-165
from XenServer / Hyper-V Server,

to Proxmox 165-167
of Windows platform 158-160

system migration, of Windows platform
post-migration for offline migration, with

physical machine 160-162
system migration problems,

troubleshooting
KVM machine, migration issues 214, 215
OpenVZ container, migration issues 216

system recovery, of Proxmox cluster failure
cluster member node, removing 206, 207
failed cluster node, replacing 200-203
redundant cluster, building from

backup files 203-205
system requisites, Proxmox cluster

about 39, 40
hardwares 39
requisites, for RAID 40

system specifications, physical machine
CPU 143
hard drive 144
memory 143
NIC 144
OS 143

system storage problem, troubleshooting
DRBD volume, rebuilding 219
DRBD volume synchronization issue 216
failed Gluster node, replacing 222
OSD.X in CEPH service, displaying 223

T
timeout settings, DRBD

become-primary-on 94
degr-wfc-timeout 94
wfc-timeout 93

trunk port, VLAN structure
about 72
for tagged packets 72
for untagged packets 72

two-node cluster
disadvantages 79
forming, with DRBD 87-92

U
Ubuntu

URL 197
umount command 48
unscheduled downtime 31

[240]

usage status, Ceph filesystem
mounted 117
no 117
Osd.N 117
partitions 117

V
vCenter server 11
vgrename command

URL 154
VHD (Virtual Hard Disk)

about 167
URL 167

virtual disk options, Proxmox VE
QCOW2 25
RAW 24

virtualization options, Proxmox VE
KVM 23
OpenVZ 23

Virtual Machine Monitor (VMM) 5
virtual machine (VM)

about 7
accessing 21, 22
backing up, with vzdump command 171
creating 14
restoring, with vzrestore 185
restoring, with web management

console 190-192
scheduled backup, setting up for 192-194

VLAN structure
about 71
access port 71
example 72, 73
handling 71
trunk port 72

VM data, backing up
vzdump command, using 171
web management console, using 183

VMDK 25
vmkernel 11

VM template
building, from existing KVM

machine 197-199
VMware

system, migrating to Proxmox 163-165
VMware ESX/ESXi

comparing, with server virtualization
software 11

VSphere client 11
vzdump

used, for backing up 182
using, with LVM snapshot 178

VZDump backup file option 15
vzdump stop mode

backup storage location, defining 173-175
used, for backing up KVM 175, 176
used, for backing up OpenVZ

container 172, 173
vzdump suspend mode

used, for backing up 177
vzrestore

used, for restoring KVM machine 188-190
used, for restoring OpenVZ

container 185-187
used, for restoring VM 185

W
web management console

used, for backing up 183-185
used, for restoring VM 190-192

Windows platform
system migration 158-160

X
XenServer

comparing, with server virtualization
software 11

XenServer / Hyper-V Server
system, migrating to Proxmox 165-167

Thank you for buying
Proxmox High Availability

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

[242]

Getting Started with Oracle
VM VirtualBox
ISBN: 978-1-78217-782-1 Paperback: 86 pages

Build your own virtual environment from scratch
using VirtualBox

1.	 Learn how to install, configure, and manage
VirtualBox.

2.	 A step-by-step guide which will teach you
how to build your own virtual environment
from scratch.

3.	 Discover advanced features of VirtualBox.

Getting Started with
XenDesktop® 7.x
ISBN: 978-1-84968-976-2 Paperback: 422 pages

Deliver desktops and applications to your end users,
anywhere, anytime, with XenDesktop® 7.x

1.	 Build a complete and secure XenDesktop 7
site from the ground up.

2.	 Discover how to virtualize and deliver
accessible desktops and applications to
your end users.

3.	 Full of clear, step-by-step instructions with
screenshots, which will walk you through the
entire process of XenDesktop site creation.

Please check www.PacktPub.com for information on our titles

[243]

Windows Server 2012 Hyper-V:
Deploying Hyper-V Enterprise
Server Virtualization Platform
ISBN: 978-1-84968-834-5 Paperback: 410 pages

Build Hyper-V infrastructure with secured
multitenancy, flexible infrastructure, scalability,
and high availability

1.	 A complete step-by-step Hyper-V deployment
guide, covering all Hyper-V features for
configuration and management best practices.

2.	 Understand multi-tenancy, flexible architecture,
scalability, and high availability features of new
Windows Server 2012 Hyper-V.

Instant VMware Player
for Virtualization
ISBN: 978-1-84968-984-7 Paperback: 84 pages

A simple approach towards learning virtualization to
play with virtual machines

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Discover the latest features of VMware
Player 5.0.

3.	 Evaluate new technology without paying
for additional hardware costs.

4.	 Test your applications in an isolated
environment.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basic Concepts of Proxmox Virtual Environment
	Introduction to Proxmox Virtual Environment
	Introduction to server virtualization
	Server virtualization basics – guest versus host
	Comparing types of server virtualization software
	Comparison table of hypervisors

	Basic administration on Proxmox VE
	Uploading the OS template or the ISO file to Proxmox
	Creating an OpenVZ-based virtual machine
	Creating a kernel-based virtual machine
	Accessing the new virtual machine

	Virtualization options explained in Proxmox VE
	Virtual disk options under Proxmox VE
	Introducing the OpenVZ template
	Summary

	Chapter 2: Getting Started with a High Availability (HA) Environment
	What is High Availability (HA) environment?
	What is availability?
	Negative effects of system downtime
	Strategies to achieve High Availability (HA)

	Introducing a Proxmox VE cluster
	Introduction to DRBD
	Explaining live migration
	Introducing the post-copy memory migration
	Introducing the pre-copy memory migration

	System requirements for the
Proxmox cluster
	Describing the requirements for RAID
	The RAID 0 operation
	The RAID 1 operation
	The RAID 10 operation

	HA capability for Proxmox with a two-node cluster
	The Proxmox Cluster file system (pmxcfs)

	Summary

	Chapter 3: Key Components for Building a Proxmox VE Cluster
	Key component 1 – shared storage
	Characteristics of SAN and NAS
	Available storage options in Proxmox
	Storage option 1 – storage over iSCSI

	Storage option 3 – the Gluster filesystem
	Storage option 2 – a distributed replicated block device (DRBD)
	Comparing types of file storage supported by Proxmox
	Storage option 4 – the Ceph filesystem

	Key component 2 – reliable network
	Key component 3 – a fencing device
	What is a fencing device?
	Available fencing device options
	Intelligent Platform Management Interface (IPMI)
	Simple network management protocol (SNMP)

	Key component 4 – quorum disk
	Summary

	Chapter 4: Configuring a Proxmox VE Cluster
	Configuring a network for a Proxmox
VE cluster
	Building a network with redundancy
	Building a separate network for the Proxmox VE cluster
	Introducing Proxmox's network options
	Introducing the VLAN structure

	Creating an infrastructure for a Proxmox cluster testing environment
	The concept of a quorum device
	The concept of a bonding device
	The concept of DRBD
	Preparing a network for a Proxmox cluster

	Preparing storage for a Proxmox cluster
	Preparing iSCSI shared storage with NAS4free for the quorum device
	Basic concepts of an iSCSI device

	Configuring a Proxmox VE cluster
	Forming a two-node cluster with DRBD
	Installing and configuring DRBD
	Creating an LVM volume based on DRBD
shared storage

	Network fencing with a Cisco switch
via SNMP
	Building a Gluster filesystem for
a Proxmox cluster
	Building a Ceph filesystem for
a Proxmox cluster
	Mounting a Ceph device as shared storage

	Summary

	Chapter 5: Testing on a Proxmox Cluster
	Storage preparation for an LVM shared storage
	Demonstration of live migration
	Using an OpenVZ container for live migration
	Live migration with a KVM

	Building an HA-protected VM
	Testing with the cluster environment
	Testing a HA service relocation
	Testing OpenVZ container relocation
	Testing a KVM relocation

	Testing a single network interface failure
	Testing a single network switch failure
	Testing a single cluster node failure

	Setting up a failover domain
	Summary

	Chapter 6: System Migration of an Existing System to a Proxmox VE Cluster
	System migration of an existing
Linux platform
	Preparing for container migration on
a Proxmox server
	Migrating data to a container using the
rsync command

	Live migration of a physical machine
to a KVM
	Preparing for migration on the source machine
	Creating an LVM snapshot volume for data copying

	Preparing for migration on a Proxmox server
	Restoring disk information from the source backup

	Copying data from the source server to the Proxmox server

	System migration of a Windows platform
	Post-migration for offline migration with
a physical machine

	System migration from VMware
to Proxmox
	System migration from XenServer / Hyper-V Server to Proxmox
	Summary

	Chapter 7: Disaster Recovery on
a Proxmox VE Cluster
	Backup process for VMs in Proxmox
	Backing up the configuration files of
a Proxmox cluster
	Backing up the VM data in Proxmox
	Backing up using the vzdump command for VMs
	Backing up with the web management console

	The restore process of VMs in Proxmox
	Restoring a VM with vzrestore
	Restoring an OpenVZ container with vzrestore
	Restoring a KVM machine with vzrestore

	Restoring a VM with the web management console

	Setting up a scheduled backup for
the VMs
	Building up our own OS template
	Building our own OpenVZ template from an existing container
	Building our own VM template from an existing KVM machine

	System recovery of a Proxmox
cluster failure
	Replacing a failed cluster node
	Building a redundant cluster from the
backup files
	Removing a cluster member node

	Summary

	Chapter 8: Troubleshooting on
a Proxmox Cluster
	Troubleshooting system access problems
	Undefined video mode number
	Cannot open the console window in the web management GUI
	A KVM machine cannot be turned off using the Shutdown command

	Troubleshooting system migration problems
	The KVM machine cannot be migrated
	An OpenVZ container cannot be migrated

	Troubleshooting system storage problems
	DRBD volume not in synchronization
	Need access to up-to-date data during service initialization
	DRBD volume shows the Diskless status
	DRBD volume shows the Unknown status

	Rebuilding a DRBD volume
	Failed to get the extended attribute
trusted.glusterfs.volume-id for brick x
on a GlusterFS volume
	Replacing a failed Gluster node
	CEPH service that shows AA.BB.CC.DD/0 pipe (XXX).fault
	CEPH service that shows OSD.X is down

	Troubleshooting with Proxmox cluster problems
	Unable to start the HA-enabled VM
	The cluster node is being fenced
	Nodes unable to rejoin cluster after fence
or reboot
	Unable to restart the cluster service
	Unable to perform any change to the cluster

	Summary

	Index

